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Map-Reduce [6] is “a programming model and an associated implementation for pro-

cessing and generating large data sets.” Hadoop is an open-source implementation

of MapReduce, enjoying wide adoption, and is used not only for batch jobs but also

for short jobs where low response time is critical. However, Hadoop’s performance is

currently limited by its default task scheduler, which implicitly assumes that cluster

nodes are homogeneous and tasks make progress linearly, and uses these assumptions

to decide when to speculatively re-execute tasks that appear to be stragglers. In prac-

tice, the homogeneity assumptions do not always hold. Longest Approximate Time

to End (LATE) [27] is a scheduling algorithm that takes a heterogeneous environment

into consideration. However, its problem is that it still depends on a static method

to compute the progress of tasks. As a result neither Hadoop default nor LATE

schedulers perform well in a heterogeneous environment. Self-adaptive MapReduce

Scheduling Algorithm (SAMR) [4] is more advantageous than LATE. It uses historical

information to adjust the stage weights of map and reduce tasks when estimating task

execution times. However, SAMR does not consider the fact that for different types

of jobs their map and reduce stages’ weights may be different. Even for the same

type of jobs, different datasets may lead to different weights. To this end, we propose

ESAMR: an Enhanced Self-Adaptive MapReduce scheduling algorithm to improve

the speculative re-execution of slow tasks in MapReduce. In ESAMR, in order to

identify slow tasks accurately, we differentiate historical stage weights information on



each node and divide them into K clusters using a K-means clustering algorithm; and

when executing a job’s tasks on a node, ESAMR classifies the tasks into one of the

clusters and uses the clusters weights to estimate the execution time of the job’s tasks

on the node. Experimental results show that among the aforementioned algorithms,

ESAMR leads to the smallest error in task execution time estimation and identifies

slow tasks most accurately.
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Chapter 1

Introduction

In Today’s world, data is growing exponentially, doubling its size every three years

[23]. Huge amounts of data are being generated from digital media, web authoring,

scientific instruments, physical simulations, and so on. Effectively storing, querying,

analyzing, understanding, and utilizing these huge data sets presents one of the grand

challenges to the computing industry and research community.

The popular solutions [6] [8] [3] are to build data-center scale computer systems

to meet the high storage and processing demands of these applications. Such a sys-

tem is composed of hundreds, thousands, or even millions of commodity computers

connected through a local area network housed in a data center. It has a much larger

scale than a traditional computer cluster, while enjoying better and more predictable

network connectivity than wide area distributed computing.

One of the most popular programming paradigms on data-center scale computer

systems is the MapReduce programming model [6]. MapReduce [6] is “a program-

ming model and an associated implementation for processing and generating large

data sets.” It was first developed at Google by Jeffrey Dean and Sanjay Ghemawat.

MapReduce was used in Cloud Computing in the beginning [7] [2] . Under this model,



2

an application is implemented as a sequence of MapReduce operations, each consist-

ing of a map stage and a reduce stage that process a large number of independent

data items. The system supports automatic parallelization, distribution of compu-

tations, task management, and fault tolerance in hopes that programmers can focus

on application algorithms without worrying about these complex issues. MapReduce

has achieved an increasing success in various applicaitons, such as [9] [21] [5] [15] [22]

[28] [26] [24] and [16]

Hadoop[11], which was created by Doug Cutting[12], is the Apache Software Foun-

dation open source and Java-based implementation of the MapReduce framework.

Hadoop provides the tools for processing vast amounts of data using the MapRe-

duce framework and, additionally, implements the Hadoop Distributed File System

(HDFS)[10]. It can be used to process vast amounts of data in parallel on large clus-

ters in a reliable and fault-tolerant fashion. Consequently, it makes the advantages

of MapReduce available to users.

A key benefit of MapReduce is that it automatically handles failures, hiding the

complexity of fault-tolerance [25] [11] [20] from the programmer. If a node crashes,

MapReduce reruns its tasks on a different machine. Equally importantly, if a node is

available but is performing poorly, a condition that we call a straggler, MapReduce

runs a speculative copy of the straggler task on another machine to finish the com-

putation faster. Without this mechanism of speculative execution [14], a job would

be as slow as the misbehaving task. Stragglers can arise for many reasons, including

faulty hardware and misconfiguration.

In this work, we address the problem of how to robustly perform speculative exe-

cution to maximize performance [1] [17]. Hadoop default scheduler starts speculative

tasks based on a simple heuristic that compares each task’s progress to the average

task progress of a job. LATE MapReduce scheduling algorithm takes a heterogeneous
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environment into consideration. However, LATE still has a poor performance due to

the static method used to compute the progress of tasks. SAMR shares a similar idea

with LATE scheduling algorithm. However, SAMR also uses historical information

to tune weights of map and reduce stages and to get more accurate progress scores

than LATE. SAMR falls short of solving one crucial problem. It fails to consider

other factors such as different job types and different job sizes that can also affect

stage weights.

To overcome the deficiency of SAMR, we have developed ESAMR: an Enhanced

Self-Adaptive MapReduce scheduling algorithm. Like SAMR, ESAMR is inspired by

the fact that slow tasks prolong the execution time of the whole job and different

amounts of time are needed to complete the same task on different nodes due to their

differences, such as computation and communication capacities and architectures. In

addition, to consider other factors that affect a task’s progress ESAMR incorporates

historical information recorded on each node and K-means cluster identification al-

gorithm to tune parameters dynamically and find slow tasks accurately. As a result,

ESAMR significantly improves the performance of MapReduce scheduling in terms

of launching the backup tasks.
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Chapter 2

Background

In this Chapter, we first describe the MapReduce programming model. It is the

basis of ESAMR. We also introduce Hadoop default scheduler, LATE scheduler, and

SAMR scheduler. These schedulers’ disadvantages have motivated us to develop

ESAMR scheduler.

2.1 Basic concepts in MapReduce

MapReduce is a programming model controlling a great number of nodes to handle a

huge amount of data by cooperation. A MapReduce application that needs to be run

on the MapReduce system is called a job. The input file of a job, which reside on a

distributed filesystem throughout the cluster, is split into even-sized chunks replicated

for fault tolerance. A job can be divided into a series of tasks. Each chunk of input is

first processed by a map task, which outputs a list of key-value pairs. Map outputs

are split into buckets based on the key. When all map tasks have finished, reduce

tasks apply a reduce function to the list of map outputs corresponding to each key.
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In a cluster which runs MapReduce, there is only one NameNode also called

master, which records information about the location of data chunks. There are lots

of DataNodes, also called workers, which store data in individual nodes. There is only

one JobTracker and a series of TaskTrackers. JobTracker is a process which manages

jobs. TaskTracker is a process which manages tasks on a node. Before explaining the

steps involved in a MapReduce job, let us clarify the terminology that will be used

from this point on in this thesis.

• JobTracker

-Master node controlling the distribution of a Hadoop (MapReduce) job across

free nodes on the cluster. It is responsible for scheduling jobs on TaskTracker

nodes. In case of a node failure, the JobTracker starts the work scheduled on the

failed node on another free node. The simplicity of MapReduce tasks ensures

that such restarts can be achieved easily.

• NameNode

-Master node controlling the HDFS. It is responsible for serving any component

that needs access to files on the HDFS. It is also responsible for ensuring fault

tolerance on HDFS. Usually, fault tolerance is achieved by replicating data

chunks over three different nodes with one of the nodes being an off-rack node.

• TaskTracker (TT)

-Node actually running the Hadoop tasks. It requests work from the JobTracker

and reports back the progress of the work allocated to it. The TaskTracker

daemon does not run tasks on its own, but forks a separate daemon for each

task. This ensures that if the user code is malicious, it does not bring down the

TaskTracker.
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• DataNode

-This node is part of the HDFS and holds the files that are put on the HDFS.

Usually, these nodes also work as TaskTrackers. The JobTracker often tries to

allocate work to nodes, where file accesses can be done locally.

• ProgressScore (PS)

-A progress score of a task in the range [0,1], based on how much of a task’s

key/value pairs have been finished.

• ProgressRate (PR)

-A progress rate of a task is calculated based on how much a task’s key/value

pairs have been finished per second.

• TimeToEnd (TTE)

-TimeToEnd estimates the time left for a task based on the progress rate pro-

vided by Hadoop.

• Weights of map function stage (M1) and order stage (M2) in map tasks

-M1 and M2 in the range [0,1] record the stage weights in a map task. The sum

of M1 and M2 is 1.

• Weight of shuffle stage (R1), order stage (R2), and merge stage (R3) in reduce

tasks

-R1, R2 and R3 in the range [0,1] record the stage weights in a reduce task.

The sum of R1, R2 and R3 is 1.

MapReduce scheduling system has six steps when executing a MapReduce job, as

illustrated in Figure 2.1.
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Figure 2.1: A MapReduce computation. Image from [6]

1. The MapReduce framework first splits an input data file into G pieces of fixed

size, typically being 16 megabytes to 64 megabytes (MB) (controllable by the

user via an optional parameter). These G pieces are then passed on to the

participating machines in the cluster. Usually, 3 copies of each piece are gener-

ated for fault tolerance. It then starts up the user program on the nodes of the

cluster.

2. One of the nodes in the cluster is special - the master. The rest are workers

that are assigned work by the master. There are M map tasks and R reduce

tasks to assign. M and R is either decided by the configuration specified by

the user program, or by the cluster wide default configuration. The master
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picks idle workers and assigns them map tasks. Once map tasks have generated

intermediate outputs, the master then assigns reduce tasks to idle workers.

Note that all map tasks have to finish before any reduce task can begin. This

is because a reduce task needs to take output from every map task of the job.

3. A worker who is assigned a map task reads the content of the corresponding

input split. It parses key/value pairs out of the input data chunk and passes

each pair to an instance of the user defined map function. The intermediate

key/value pairs produced by the map function are buffered in memory at the

corresponding machines that are executing them.

4. The buffered pairs are periodically written to a local disk and partitioned into

R regions by the partitioning function. The framework provides a default par-

titioning function but the user is allowed to override this function by a custom

partitioning. The locations of these buffered pairs on the local disk are passed

back to the master. The master then forwards these locations to the reduce

workers.

5. When a reduce worker is notified by the master about these locations, it uses

remote procedure calls to read the buffered data from the local disks of map

workers. When a reduce worker has read all intermediate data, it sorts it by the

intermediate key so that all occurrences of the same key are grouped together.

The sorting is needed because typically many different keys are handled by a

reduce task. If the amount of intermediate data is too large to fit in memory,

an external sort is used. Once again, the user is allowed to override the default

sorting and grouping behaviors of the framework. Next, the reduce worker

iterates over the sorted intermediate data and for each unique intermediate key

encountered, it passes the key and the corresponding set of intermediate values
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to the reduce function. The output of the reduce function is appended to a final

output file for this reduce partition.

6. When all map tasks and reduce tasks have completed, the master wakes up the

user program. At this point, the MapReduce call in the user program returns

back to the user code.

2.2 MapReduce scheduling algorithm in Hadoop

One problem of Hadoop default scheduler is that it can not identify tasks which need

to be re-executed on fast nodes correctly. Hadoop chooses a task for it from one of

three categories:

• Any failed tasks are given the highest priority.

• Non-running tasks are considered. For maps, tasks with data local to the node

are chosen first.

• Slow tasks that need to be executed speculatively are considered.

To select speculative tasks, Hadoop monitors the progress of tasks using a Progress

Score (PS) between 0 and 1. The average progress score of a job is denoted by PSavg.

The Progress Score of the ith task is denoted by PS[i]. It supposes that the number

of tasks which are being executed is T, the number of key/value pairs that need to

be processed in a task is N, the number of key/value pairs that have been processed

successfully in a task is M, the map task spends negligible time in the order stage

(i.e., M1=1 and M2=0) and the reduce task has finished K stages and each stage

takes the same amount of time (i.e., R1=R2=R3=1/3). Hadoop gets PS according

to the Eq. (2.1) and Eq. (2.2), then launches backup tasks according to Eq. (2.3).
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PS =


M/N For Map tasks

1/3 ∗ (K + M/N) For Reduce tasks

(2.1)

PSavg =
T∑
i=1

PS[i]/T (2.2)

For task Ti: PS[i] < PSavg − 20% (2.3)

If Eq.(2.3) is satisfied, Ti needs a backup task. The main disadvantages of this

method include:

1. In Hadoop, the values of R1, R2, R3, M1, and M2 are 0.33, 0.33. 0.34, 1 and

0 respectively. However R1, R2, R3, M1 and M2 are different when tasks are

running on different nodes, especially in a heterogeneous environment.

2. In Hadoop, the scheduler uses a fixed threshold for selecting tasks to re-execute.

Too many speculative tasks may be launched, taking away resources from useful

tasks. Because the scheduler launches speculative tasks also by considering

their data localities, the wrong tasks may be chosen for re-execution first. For

example, if the average progress was 70% and there was a 2x slower task at 35%

progress and a 10x slower task at 7% progress, then the 2x slower task might be

chosen to run before the 10x slower task if the former’s input data was available

on the idle node.

3. Hadoop always launches backup tasks for those tasks that satisfy Eq. (2.3),

which may not be appropriate. For example, the PS of Ti is 0.7 and needs 120

seconds to finish on a very slow node, while the PS of Tj is 0.5, but only needs

20 seconds to finish on a relatively faster node. Suppose the average progress
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score PSavg is 0.8; the method will launch a backup task for Tj according to

Eq.(2.3). However, if we launch a backup task for Ti instead of Tj, it will save

more time. What is more, a task with PS larger than 0.8 will have no chance

to have a backup task, even though its node may be very slow and needs a very

long time to finish the task.

4. Hadoop may launch backup tasks for fast tasks. For example, in a typical

MapReduce job, the shuffle phase of reduce tasks is the slowest, because it

involves all-pairs communication over the network. Tasks quickly complete the

other two phases once they have all map outputs. However, the shuffle phase

counts for only 1/3 of the progress score. Thus, soon after the first few reducers

of a job finish the copy phase, their progress score goes from 1/3 to 1, greatly

increasing the average progress. Assuming 30% of reducers have almost finished,

the average progress is roughly 0.3*1 + 0.7*1/3 = 53%, and now all reducers

still at the beginning of the copy phase will be 20% behind the average, and

some of them will be speculatively executed. As a result, task slots will be filled

up and true stragglers may never be re-executed.

5. In Hadoop, the 20% progress difference threshold used by the default scheduler

means that tasks with more than 80% progress score can never be speculatively

executed, because average progress score can never exceed 100%.

2.3 Longest Approximate Time to End(LATE)

MapReduce scheduling algorithm

LATE MapReduce scheduling algorithm also uses Eq.2.1 to calculate task’s progress

score, but launches backup tasks for those that have longer remaining execution times.
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Suppose a task T has run Tr seconds. Let PR denotes the progress rate of T, and TTE

denotes how much time remains until T is finished. LATE MapReduce scheduling

algorithm computes ProgressRate (PR) and TimeToEnd (TTE) according to Eqs.

(2.4) and (2.5).

PR = PS/Tr (2.4)

TTE = (1− PS)/PR (2.5)

Advantage of LATE: since LATE focuses on estimating the remaining execution

time rather than just the progress score, LATE speculatively executes only tasks that

will improve job response time rather than any slow tasks.

Disadvantage of LATE: although LATE uses an improved strategy to launch

backup tasks, it still frequently chooses wrong tasks to re-execute. This is because

LATE does not approximate TTE of running tasks correctly.

Same as the Hadoop default scheduler, LATE sets the values of R1, R2, R3, M1

and M2 at 0.33, 0.33. 0.34, 1 and 0 respectively. This setting may lead to the wrong

TTE estimation. Suppose reduce stage weights R1, R2 and R3 are actually 0.6, 0.2

and 0.2, respectively. When the first stage finishes in Tr seconds, the reduce task

still needs (1− 0.6)(Tr/0.6) = 0.67Tr seconds to finish the whole task. However, the

TTE computed by LATE scheduling algorithm is (1− 0.33)(Tr/0.33) = 2Tr seconds

instead.
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2.4 A Self-adaptive MapReduce Scheduling

Algorithm(SAMR)

SAMR also estimates the remaining execution time to find slow tasks. However,

SAMR does not use the fixed stage weights for map and reduce tasks. Unlike Hadoop

default and LATE schedulers, which assume M1, M2, R1, R2, and R3 are 1, 0, 1/3,

1/3, and 1/3. SAMR recordes M1, M2, R1, R2, and R3 values on each TaskTracker

node and uses these historical information to facilitate more accurate estimation of

task’s TTE.

Figure 2.2: Two stages of a map task. Image from [4]

Figure 2.3: Three stages of a reduce task. Image from [4]

SAMR assumes that the number of key/value pairs which have been processed

in a task is Nf , the number of overall key/value pairs in the task is Na, the current

stage of processing is S (S could be 0, 1 or 2), and the progress score in the stage is
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SubPS. The SubPS in the stage can be computed according to Eq. (2.6). The PS of

a task is computed according to Eq. (2.7) and Eq. (2.8). SAMR also uses Eq. 2.4 and

Eq. 2.5 to calculate PR and TTE.

SubPS = Nf/Na (2.6)

For maptask : PS =


M1 ∗ SubPS if S=0

M1 + M2 ∗ SubPS if S =1.

(2.7)

For reducetask : PS =


R1 ∗ SubPS if S=0

R1 + R2 ∗ SubPS if S =1

R1 + R2 + R3 ∗ SubPS if S=2.

(2.8)

Figure 2.4 shows that SAMR uses historical information recorded for individual

node to estimate the stage weight values (M1, M2, R1, R2, and R3) on each node.

Figure 2.4: How to use and update historical information. Image from [4]
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Advantage of SAMR: SAMR uses historical information recorded on each node

to tune the weight of each stage dynamically. Instead of setting M2=0, SAMR takes

the two stages of a map task into consideration for the first time.

Disadvantage of SAMR: although SAMR uses historical information stored on

each node to set a more accurate estimate of PS than LATE, it does not consider

that different job types can have different weights for map and reduce stages. In

addition, the same type of jobs can even have different weights for map and reduce

stages when handling datasets with different sizes.
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Chapter 3

Empirical Study

As mentioned in Chapter 2, since there are many factors that could affect the weights:

the nodes, the job types, and the dataset sizes. We believe that we could not use

historical information directly without classifying the information. Therefore, in this

Chapter, we investigate and prove our hypotheses by doing some controlled experi-

ments T − Test [19]. We will answer the following questions:

Q1: Does the job type affect the stage weights of map and reduce tasks?

Q2: Does the dataset size affect the stage weights of map and reduce tasks?

Q3: Does the node configuration affect the stage weights of map and reduce tasks?

3.1 Variables and measures

3.1.1 Independent variables

Our experiment manipulates three independent variables:

IV1: Type of a job executed on a cluster. We use two different job types:

Sort and WordCount. These two benchmarks have been widely used in Hadoop and
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researchers who developed SAMR [4] and LATE [27] algorithms have also used these

two types of jobs in their experiments. We believe these two benchmarks show key

characteristics of MapReduce clearly.

IV2: Dataset size for a job. We set job dataset size to be either 2.5GB or 10.0GB.

IV3: Node configuration in a cluster. We consider two kinds of nodes in a

cluster. They have different configurations, including different CPUs, memory sizes

and I/O capabilities.

3.1.2 Dependent variables and measures

We aim to investigate the stage weights of map and reduce tasks under different

conditions. It is straightforward that we select the following five dependent variables.

• M1: Weight of the map function stage of a map task

• M2: Weight of the intermediate results ordering stage of a map task

• R1: Weight of the data shuffle stage of a reduce task

• R2: Weight of the data ordering stage of a reduce task

• R3: Weight of the data merging stage of a reduce task

3.2 Experiment setup

Several steps have to be followed to establish the experiment setup needed to conduct

our experiments.

We use six computers to compose a cluster for our experiments. This cluster con-

tains one master node and five worker nodes. All the computer use Ubuntu operating
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Figure 3.1: Impact of different job types on weights
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system. The version of JDK is 1.6.0.26, and the version of Hadoop is 0.21.0. Our

algorithm is implemented based on Hadoop 0.21.0. Because we cannot get the pri-

mary version of SAMR MapReduce scheduling algorithm, we implement it ourselves

according to the algorithm description in [4].

3.2.1 Experimental operations

Given our independent variables, an experiment is specified by three parameters,

(N, D, T), where N is one of the node configurations (n1 or n2), D is one of the

two dataset sizes(2.5GB or 10.0GB), and T is one of the two job types (Sort or

WordCount). Considering randomness, we repeat each experiment 10 times. This

results in 40 runs of experiments from which we collect M1, M2, R1, R2, and R3

values using SAMR algorithm.

3.3 Results and analysis

Figures 3.1, 3.2, and 3.3 present box-plots showing the data collected for our inde-

pendent variables. The first figure plots the stage weights of running two types of
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Figure 3.2: Impact of different dataset sizes on weights
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jobs with the same size of datasets on Node 1. The second figure plots the stage

weights of executing the same type of jobs with different size of datasets on Node 1.

The third figure plots the stage weights of executing the same type of jobs with the

same size of datasets on two different nodes. The lower bar of each box plot is the

smallest data and the upper bar is the largest data. The bottom and the top of the

box are the 25th and 75th percentile, and the band near the middle of the box is the

50th percentile. The circles out of the box plots are considered outliers.

3.3.1 Q1: Impact of the job type

To address Q1 (impact of job type), we compare the five weights for map and reduce

tasks generated from executing two types of jobs. As the boxplots in Figure 3.1 show,

the map tasks for WordCount and Sort have different M1 and M2 values. For the

reduce tasks, WordCount and Sort also have very different R1 and R3 values, while

R2 values are similar.

To evaluate if these two job types’ data are different in statistics, we performed

t-tests on the data. The t-test assesses whether the means of two data groups are

statistically different from each other. This analysis is appropriate whenever you want
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to compare the means of two data groups. We performed t-test on the data for a

significant level of 0.05 to reject/validate the null hypothesis: there is no significant

difference between the two job types (Sort and WordCount) in terms of task stage

weights. Table 5.1 reports the results. As the p-values in the rightmost column

show, since it is less than 0.05, there is enough statistical evidence to reject the null

hypothesis: that is, the stage weights for map and reduce tasks are different for

different job types.

3.3.2 Q2: Impact of the dataset size

To address Q2 (impact of the dataset size), we compare the five weights obtained for

jobs with 2.5GB and 10GB datasets. From Figure 3.2, we can see different M1 and

M2 values in map tasks for the two dataset sizes. For reduce tasks, R1 and R3 are

also different for the two sizes.

We also performed t-tests on the data for a significant level of 0.05 to reject/validate

the null hypothesis: there is no significant difference between two job dataset sizes

(2.5GB and 10GB) in terms of task stage weights. Table 3.2 shows the results. As

the p-values in the rightmost column indicate, there is enough statistical evidence to

reject the null hypothesis: that is, the stage weights for map and reduce tasks are

different for different dataset sizes.

3.3.3 Q3: Impact of node configuration

To address Q3 (impact of node configuration), we compare the five weights obtained

when running jobs on two different nodes. As the boxplots in Figure 3.3 show, M1

and M2 values are very different for map tasks executing on the two nodes. For reduce

tasks, we can also see different R1 and R3 values.
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We also performed t-tests on the data for a significant level of 0.05 to reject/validate

the null hypothesis: there is no significant difference between two node configurations

(n1 and n2) in terms of task stage weights. Table 3.3 shows the results. As the

p-values in the rightmost column show, there is enough statistical evidence to reject

the null hypothesis: that is, the stage weights of map and reduce tasks are different

for different node configurations.

3.3.4 Additional analysis

To complete our study, we performed another experiment to investigate our hypoth-

esis: all these weights would be the same under the same conditions, where we are

executing the same types of jobs with dataset of the same size on the same node.

Figure 3.4 shows the boxplots, and it is obvious that these weights are similar. We

also performed t-tests on the data. The p-values in Table 3.4 are all greater than

0.05, which proves that the weights collected under the same condition are similar.

We have identified three factors, the job types, the dataset sizes, and the node

configurations that we think could affect the weights of different stages for map and

reduce tasks. We did experiments to investigate them separately and the results have

proved our hypotheses: they have impacts on the weights of different stages for map

and reduce tasks.

Table 3.1: Results of t-test on job types

Stage Sort WordCount P-value
m1 0.09 0.21 3.90E-06
m2 0.91 0.79 4.00E-06
r1 0.70 0.37 8.26E-06
r2 0.03 0.02 0.77E-03
r3 0.27 0.61 3.87E-06
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Table 3.2: Results of t-test on job sizes

Stage 2.5GB 10GB P-value
m1 0.90 0.83 0.02
m2 0.10 0.17 0.02
r1 0.49 0.60 0.41E-02
r2 0.02 0.01 0.02
r3 0.49 0.39 0.48E-02

Table 3.3: Results of t-test on node configurations

Stage Node1 Node2 P-value
m1 0.75 0.19 6.56E-16
m2 0.25 0.81 6.56E-16
r1 0.19 0.41 6.90E-07
r2 0.02 0.01 0.03
r3 0.79 0.58 4.31E-07

Figure 3.3: Impact of different node configurations on weights
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Table 3.4: Results of t-test on same condition

Stage First execution Second execution P-value
m1 0.75 0.78 0.06
m2 0.25 0.22 0.06
r1 0.20 0.21 0.15
r2 0.01 0.01 0.52
r3 0.79 0.78 0.14



23

Figure 3.4: Weights comparison of executing WordCount 10GB jobs on a node
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Chapter 4

ESAMR algorithm

In Chapter 2, we have presented the disadvantages of LATE and SAMR algorithms.

In LATE, it uses fixed stage weights of map and reduce tasks to estimate TimeToEnd

of each task. In SAMR, although it uses historical information to find better stage

weights of map and reduce tasks to estimate TimeToEnd of each task, it does not

consider the fact that the dataset sizes and the job types can also affect the stage

weights of map and reduce tasks.

In this chapter, we present our new Enhanced Self-adaptive MapReduce (ESAMR)

scheduling algorithm. This algorithm is designed to overcome the shortcoming of

SAMR algorithm by taking into account many factors that could impact the stage

weights. The main step taken by ESAMR is to classify the historical information

stored on each TaskTracker node into k clusters using a machine learning technique.

In the map phase, ESAMR records a job’s temporary M1 weight based on its map

tasks completed on the node and uses the temporary M1 weight to find the cluster

whose average M1 weight is the closest. Then, the cluster’s stage weights on the node

will be used for the job to estimate its map tasks’ TimeToEnd on that node. In the

reduce phase, ESAMR carries out a similar procedure. it uses temporary R1 and R2
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weights to find the cluster with the closest reduce stage weights. ESAMR then utilizes

these stage weights to estimate TimeToEnd of the job’s reduce tasks on the node and

identify slow tasks. After a job has finished, ESAMR calculates the stage weights of

map and reduce tasks on each TaskTracker node, and saves these new weighs as a part

of the historical information. Finally, ESAMR applies K-means, a machine learning

algorithm, to re-classify the historical information stored on each TaskTracker node

into k clusters and saves the average stage weights of each of the k clusters. By

utilizing more accurate stage weights to estimate TimeToEnd of each task, ESAMR

can identify slow tasks more accurately than SAMR and LATE algorithms.

Table 1 gives the pseudo code of ESAMR algorithm. Section 4.1 presents the

definition of two important parameters: Percentage of Finished Map tasks (PFM)

and Percentage of Finished Reduce tasks (PFR). Section 4.2 presents how to use

historical information to find the closest combination of stage weights for a running

job on each TaskTracker node. Section 4.3 describes how to find slow tasks and

section 4.4 discusses how to find slow TaskTracker nodes. Section 4.5 describes the

K-means algorithm used in ESAMR.
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Algorithm 1 ESAMR
Require:

1: PFM (Percentage of Finished Map Tasks), a threshold used to control when to begin the slow

map task identification

2: PFR (Percentage of Finished Reduce Tasks), a threshold used to control when to begin the slow

reduce task identification

3: history, historical information of the K clusters, where each record of a cluster contains 5 values,

M1, M2, R1, R2 and R3

4: threshold, a variable for selecting slow tasks

5: Main Procedure

6: if a job has completed PFM of its map tasks then

7: M1= CalculateWeightsMapTasks

8: M2=1-M1

9: end if

10: if a job has completed PFR of its reduce tasks then

11: < R1, R2 >= CalculateWeightsReduceTasks

12: R3=1-R1-R2

13: end if

14: slowTasks= FindSlowTask

15: run backup tasks for slowTasks

16: if a job has finished then

17: run K −means algorithm to re-classify historical information into k clusters

18: end if

19: Procedure CalculateWeightsMapTasks

20: if a node has finished map tasks for the job then

21: calculate tempM1 based on the job’s map tasks completed on the node

22: M1=randomly chosen first stage weight M1 from the corresponding node’s history

23: beta=abs(tempM1-M1)

24: for each M1[i] ∈ the node′s history, i=1.2,...,K do

25: if abs(M1[i]-tempM1)<beta then

26: M1=M1[i]

27: beta=abs(tempM1-M1[i])

28: end if

29: end for

30: return M1

31: else

32: M1=
K∑
i=1

M1[i]/K

33: return M1

34: end if
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35: Procedure CalculateWeightsReduceTasks

36: if a node has finished reduce tasks for the job then

37: calculate tempR1 based on the job’s reduce tasks completed on the node

38: calculate tempR2 based on the job’s reduce tasks completed on the node

39: < R1, R2 >=a randomly chosen R1 and R2 pair from the node’s history

40: beta = abs(tempR1− r1) + abs(tempR2− r2)

41: for each R1[i] and R2[i] pair in the node’s history, i=1,2,..,K do

42: if abs(R1[i]-tempR1)+abs(R2[i]-tempR2)<beta then

43: R1=R1[i]

44: R2=R2[i]

45: beta=abs(R1[i]-R1)+abs(R2[i]-R2)

46: end if

47: end for

48: return< R1, R2 >

49: else

50: R1=
K∑
i=1

R1[i]/K

51: R2=
K∑
i=1

R2[i]/K

52: return< R1, R2 >

53: end if

54:

55: Procedure FindSlowTasks

56: set SlowTasks //a temp list to save all slow tasks

57: for each job that has completed PFM (or PFR) of its map (or reduce ) tasks do

58: for each running task i of the job do

59: ProgressScorei=CalculateProgressScore

60: ProgressRatei=ProgressScorei/Tri, where Tri is the time that has been used by the task

61: TTEi= (1-ProgressScorei)/ProgressRatei

62: end for

63: ATTE=
N∑
i=1

TTEi/N, where N is the total number of running tasks of the job

64: for each running task i of the job do

65: if TTEi-ATTE > ATTE * threshold then

66: slowTasks.add(ith task)

67: end if

68: end for

69: end for

70: return SlowTasks
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71: Procedure CalculateProgressScore

72: SubPS=Nf/Na, where Nf is the number of key/value pairs which have been processed in a sub-stage

of a task and Na is the total number of key/value pairs to be processed in a sub-stage of the task

73: if the task is a map task then

74: if the map task is on the first sub-stage then

75: PS = M1 * SubPS

76: else

77: PS = M1+M2 * SubPS

78: end if

79: end if

80: if the task is a reduce task then

81: if the reduce task is on the first sub-stage then

82: PS = R1 * SubPS

83: else if the reduce task is on the second sub-stage then

84: PS = R1+R2 * SubPS

85: else

86: PS = R1+R2+R3 * SubPS

87: end if

88: end if

89: return PS

4.1 Percentage of Finished Map tasks (PFM) and

Percentage of Finished Reduce tasks (PFR)

ESAMR sets and uses PFM and PFR to decide when to calculate temporary stage

weights based on completed map and reduce tasks of a job. Eq. 4.1 shows how to

use PFM in ESAMR. In Eq. 4.1, N stands for the total number of TaskTrackers in

a cluster. TM stands for the total number of map tasks in a job. FMi stands for

the number of map tasks finished on each TaskTracker. Eq. 4.2 shows how to use

PFR in ESAMR. In Eq. 4.2, N also stands for the total number of TaskTrackers in
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a cluster. TR stands for the total number of reduce tasks in a job. FRi stands for

the number of reduce tasks finished on each TaskTracker.

PFM ≤
N∑
i=1

FM [i]/TM (4.1)

PFR ≤
N∑
i=1

FR[i]/TR (4.2)

Only when Eq. 4.1 or Eq. 4.2 is satisfied will ESAMR calculate the temporary map

or reduce stage weights for a job.

4.2 How to use historical information and

temporary information

ESAMR algorithm calculates temporary stage weights, and then compares those

weights with historical information to find the best combination of stage weights

appropriate for the job. Figure 4.1 shows the way to use map temporary informa-

tion and historical information in ESAMR. Figure 4.2 shows the way to use reduce

temporary information and historical information in ESAMR.

1. JobTracker checks to see if PFM is reached. If so, ESAMR calculates the

weights of the finished map tasks on each node and generates a temporary

MapWeight file on each node to record the temporary M1.

2. Each TaskTracker reads the historical information (M1, M2, R1, R2, R3) that

are recorded on the node.

3. ESAMR compares the information stored in the temporary MapWeight file with

the historical information. As mentioned above, in the map phase, ESAMR
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Figure 4.1: The way to use map temporary information and historical information

compares temporary M1 with the k average results of classified groups in his-

torical information and finds the group with the closest weight and set M1 as

the average result of that group. In addition, M2 = 1−M1.

4. ESAMR utilizes these new weights of the map phase to estimate the TimeToEnd

of the job’s map tasks currently running on the node and find which tasks of

the job are slow.

5. In the reduce phase, ESAMR checks to see if PFR is reached. If so, ESAMR

calculates the stage weights of finished reduce tasks on each node and gener-

ates a temporary ReduceWeights file on each node. ESAMR compares these

temporary R1 and R2 weights with k average results of classified groups, finds

the group with the closest weights and sets R1 and R2 as the average results of

that group. In addition, R3 = 1−R1−R2.

6. ESAMR utilizes these new stage weights of the reduce phase to estimate the

TimeToEnd of the job’s reduce tasks currently running on the node and find

which tasks of the job are slow.
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7. After a job is finished, ESAMR calculates the average stage weights of all map

or reduce tasks of the job that were completed on the node, and generates a

new combination of stage weights as a part of the historical information.

8. In the end, ESAMR runs the K-means algorithm to re-classify all combinations

of stage weights into k clusters and store the re-classified historical information.

(See Figure 4.2).

Figure 4.2: The way to use reduce temporary information and historical information

4.3 Find slow tasks

SlowTaskThreshold (STT ) in the range [0,1] is used to classify tasks into fast and

slow tasks. If the TimeToEnd of the ith task (TTEi) (see Eq. 2.5) and the average

TimeToEnd of all running tasks (ATTE) fulfill Eq. 4.3, the ith task is judged to be

a slow task. Suppose for a job, the number of currently running map or reduce tasks

is N . ATTE is computed according to Eq. 4.4.
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TTEi − ATTE > ATTE ∗ STT (4.3)

ATTE =
N∑
j=1

TTEj/N (4.4)

According to Eq. 4.3, if STT is too small (close to 0), ESAMR will classify some

fast tasks to be slow tasks. If STT is too large (close to 1), ESAMR will classify

some slow tasks to be fast tasks. Therefore, we need to choose an appropriate value

for STT.

ESAMR schedules tasks as follows. First, all the TaskTrackers obtain tasks from

a queue of new MapReduce jobs. Then, a TaskTracker computes TimeToEnd for all

tasks running on it. Next, ESAMR finds which map or reduce tasks are slow and put

them in a slow task queue. When the queue of new jobs is empty, a TaskTracker tries

to fetch tasks from the slow task queue and launch backup tasks for them. However,

Only when the TaskTracker is not a slow node, can it launch backup tasks.

4.4 Find slow tasktracker nodes

SlowNodeThreshold (SNT ) in the range [0,1], is used to classify TaskTrackers into

fast TaskTrackers and slow TaskTrackers. This value is important because it protects

ESAMR against launching a speculative task on a node that is slow but happens to

have a free slot when ESAMR needs to make a scheduling decision. Launching a task

on a slow node does not help and also means that we cannot re-execute the task on

any other node because ESAMR allows only one speculative copy of each task to run

at any time.
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Suppose there are N TaskTrackers in the system. The progress rate of the ith

TaskTracker node is TRmi
for map task and TRri for reduce task, and the aver-

age progress rate of all TaskTrackers for map task is ATRm, and for reduce task is

ATRr. If there are M map tasks and R reduce tasks running on the ith TaskTracker

node, TRmi
, TRri , ATRm and ATRr can be computed according to Eqs.(4.5), (4.6),

(4.7), and (4.8). Progress rate PRk in Eqs. (4.5) and (4.6) is calculated according to

Eq. (2.4).

TRmi
=

M∑
k=1

PRk/M (4.5)

TRri =
R∑

k=1

PRk/R (4.6)

ATRm =
N∑
i=1

TRmi
/N (4.7)

ATRr =
N∑
i=1

TRri/N (4.8)

For the ith TaskTracker, if it fulfills Eq.(4.9), it is a slow map TaskTracker. If it

fulfills Eq.(4.10), it is a slow reduce TaskTracker.

TRmi
− ATRm > ATRm ∗ SNT (4.9)

TRri − ATRr > ATRr ∗ SNT (4.10)

According to Eq.(4.9) and Eq.(4.10), if SNT is too small, ESAMR will classify

some fast TaskTrackers to be slow TaskTrackers. If SNT is too large, ESAMR will
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classify some slow TaskTrackers to be fast TaskTrackers. Therefore, we need to choose

an appropriate value for SNT.

4.5 K-means algorithm in ESAMR

In statistics and data mining, K-means [18] [13] clustering is a method of cluster

analysis. The main purpose of K-means clustering is to partition a set of entities

into different clusters in which each observation belongs to a cluster with the nearest

mean value.

In our K-means algorithm, ESAMR first assigns random values for the centroids

(i.e., mean values) of K groups. Second, ESAMR assigns each entity to a cluster that

has the closest centroid. Third, ESAMR recalculates the centroids and repeats the

second and third steps until entities can no longer change groups. Table 2 gives the

pseudo code of the K-means algorithm used in ESAMR.

Each TaskTracker runs K-means algorithm to classify the historical information

for the node on which it is running. No additional communication between nodes

is needed when reading and updating historical information and the running time of

K-means algorithm is around 80 milliseconds on each TaskTracker node. So, ESAMR

is scalable.
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Algorithm 2 K-means

Require: E=e1,e2,...,en (set of entities to be clustered)

1: k (number of clusters)

2: MaxIters(Maximum number of iterations)

3:

Ensure: C = {c1,c2,...,ck} (set of cluster centroids)

4: L = {l(e)|e = 1, 2, ..., n} (set of cluster labels of E)

5:

6: for i = 1 to k do

7: ci=ej (randomly select an ej from E)

8: end for

9: for ei ∈ E do

10: l(ei) = argminDistance(ei, cj), j ∈ {1...k}// find the cluster j whose center is

nearest to an entity

11: end for

12: iter = 0

13: repeat

14: for ci ∈ C do

15: ci= avg(ek), for all l(ek) = i

16: end for

17: changed = false

18: for ei ∈ E do

19: clusterID= argminDistance(ei, cj), j ∈ {1...k}

20: if clusterID 6= l(ei) then

21: l(ei) = clusterID

22: changed = true
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23: end if

24: end for

25: iter++

26: until changed = false or iter > MaxIters
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Chapter 5

Evaluation

To evaluate our ESAMR algorithm, we compare it with SAMR and LATE algorithms.

Three metrics, weight estimation error, TimeToEnd estimation error, and identified

slow tasks, are used for evaluation.

We run experiments in a cluster of 1 JobTracker and 5 TaskTrackers that are

configured as a rack. The version of JDK is 1.6.0.26, and the version of Hadoop is

0.21.0. Because we cannot get the primary version of SAMR MapReduce scheduling

algorithm, we implement it ourselves according to the algorithm description in [4].

Table 5.1 lists our Hadoop cluster hardware environment and configuration.

The rest of this section is organized as follows. Section 5.1 presents the best

parameters of ESAMR. Section 5.2 shows the correctness of stage weights estimation

and section 5.3 shows the TimeToEnd estimation error and slow tasks identified by

the algorithms.
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Table 5.1: Evaluation Environment

Nodes Quantity Hardware and Hadoop Configuration

Master node 1 2 single-core 2.2GHz Optron-64 CPUs,
6GB RAM, 1Gbps Ethernet

Data nodes A 3 2 single-core 2.2GHz Optron-64 CPUs,
4GB RAM, 1Gbps Ethernet, 2 map and 1 reduce slots per node

Data nodes B 2 2 single-core 2.3GHz Optron-64 CPUs,
2GB RAM, 100Mbps Ethernet, 2 map and 1 reduce slots per node

5.1 Best parameters of ESAMR

Before evaluating the performance of ESAMR, we should select the proper combina-

tion of parameters in ESAMR. The parameters include the Percentage of Finished

Map tasks (PFM) and the Percentage of finished Reduce tasks (PFR) mentioned in

section 4.1, SlowTaskThreshhold (STT) mentioned in section 4.3, SlowNodeThresh-

hold (SNT) mentioned in section 4.4 and the values of K in K-means algorithm

mentioned in section 4.5. In order to select the proper parameters in ESAMR, we

run experiments where we change one parameter while keeping all other parameters

constant. In the experiments, we run Sort and WordCount benchmarks ten times

each for a setting.

1. PFM: PFM represents the Percentage of Finished Map tasks for a job. ESAMR

uses PFM to decide when ESAMR calculates temporary M1. We show the

difference between real and estimated M1 weights when PFM is set at 5%, 10%,

20%, and 50% respectively. As shown in Figure 5.1 and Figure 5.2, setting PFM

at 20% leads to a similar weight estimation error as setting PFM at 50% in

WordCount. The difference between setting PFM at 20% and 50% in Sort is a

little bigger than that in WordCount.
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Figure 5.1: Weight Estimation Error with different PFM (WordCount)
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Figure 5.2: Weight Estimation Error with different PFM (Sort)
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2. PFR: PFR represents the Percentage of Finished Reduce tasks for a job. ESAMR

uses PFR to decide when ESAMR calculates temporary weights of the reduce

phase. We show the difference between real and estimated R1 weights when

PFR is set at 5%, 10%, 20%, and 50% respectively. As shown in Figure 5.3 and

Figure 5.4, we can see that setting PFR at 10% leads to a similar estimation

error as PFR at 20% in WordCount and Sort. The difference between setting

PFR at 20% and 50% is not significant either.

3. The value of K in the K-means algorithm: ESAMR uses the parameter K to

decide how many clusters are partitioned by the K-means algorithm. We show

the differences between real and the estimated M1 weights when K is at 2, 4,
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Figure 5.3: Weight Estimation Error with different PFR (WordCount)
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Figure 5.4: Weight Estimation Error with different PFR (Sort)
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10, and 20 respectively. As shown in Figure 5.5 and Figure 5.6, the difference

between the real M1 and the estimated M1 is smaller than 0.1 when K is set

at 10 in WordCount and Sort.

4. STT: STT is a parameter used to find slow tasks according to Eq. (4.3). From

Eq. (4.3), we know if we set STT too large, ESAMR classifies some slow tasks to

be fast tasks and vice versa. In Figure 5.7 , we show the resultant MapReduce

job execution time when setting STT at 10%, 20%, 30%, 40%, 50%, and 60%

respectively. From Figure 5.7, we see that the job execution time first decreases,

then increases, with increasing STT. This is because ESAMR considers a fewer

number of tasks to be slow tasks with the increase of STT according to Eq.(4.3).
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Figure 5.5: Weight Estimation Error with different K (WordCount)
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Figure 5.6: Weight Estimation Error with different K (Sort)
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When STT is smaller than 0.4, ESAMR considers several fast tasks to be slow.

Backup tasks of these fast tasks consume a great deal of system resources, so

the job execution time is prolonged. On the other hand, when STT is larger

than 0.4, some very slow tasks are considered to be fast. These slow tasks

will prolong the job execution time as well. We thus set STT to be 0.4 in the

following experiments.

5. SNT: SNT is a parameter used to find slow TaskTracker nodes according to

Eqs. (4.9) and (4.10). As shown in Figure 5.7 , the job execution time is the

shortest when SNT is set at 0.3. This is because ESAMR considers a fewer

number of TaskTrackers to be slow TaskTrackers with the increase of SNT
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Figure 5.7: Algorithm effectiveness with different STT and SNT
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according to Eqs. (4.9) and (4.10). When SNT is smaller than 0.3, ESAMR

considers several fast TaskTrackers to be slow. As a result, the system resources

that can be used are limited. When the SNT is larger than 0.3, some slow

TaskTrackers are considered to be fast. Consequently, backup tasks may run on

these slow TaskTrackers, so the execution time cannot be shortened. We thus

set SNT to be 0.3 in the following experiments.

Since, the same equations are used to identify slow tasks and slow TaskTrackers

in ESAMR, SAMR and LATE algorithms, we choose the same parameter values for

all three algorithms. HP is an important parameter for SAMR [4]. We set HP at

0.2, since experiments show setting HP at 0.2 can achieve the best performance [4]

for SAMR.

5.2 Correctness of weights estimation

In order to verify the correctness of the weights of the map and reduce phases es-

timated by ESAMR, we list the weights of map and reduce phases estimated by

ESAMR and the actual weights of map and reduce phases collected from the system

in Table 5.2 . Because M1+M2 = 1 and R1+R2+R3 =1, we chose M1, R1 and
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R3 to show the result. As shown in Table 5.2, for either map task or reduce task,

the weights of the map and reduce stage estimated by ESAMR are not far from the

real weights collected from the system. However, all stage weights are far from the

constant weights(1,0,1/3,1/3,1/3) used in LATE algorithm. In Table 5.3, we can see

that the differences between the weights of the map and reduce stages estimated by

SAMR and the real weights are bigger than the differences between the weights esti-

mated by ESAMR and the real weights. The reason for this is that SAMR does not

differentiate different types of jobs and jobs with different sizes of datasets.

Table 5.2: Weights estimated by ESAMR vs Real Weights of a WordCount 10GB job

Node Name M1 R1 R3
Node 1 0.7261/0.7198 0.1926/0.1901 0.8062/0.8078
Node 2 0.7633/0.7502 0.1917/0.1899 0.8072/0.8090
Node 3 0.6200/0.6109 0.2060/0.2079 0.7920/0.7814
Node 4 0.2142/0.2078 0.3647/0.3699 0.6327/0.6284
Node 5 0.2062/0.2012 0.3954/0.3894 0.6028/0.6012

Table 5.3: Weights estimated by SAMR vs Real Weights of a WordCount 10GB job

Node Name M1 R1 R3
Node 1 0.9563/0.7902 0.5717/0.2247 0.4248/0.7747
Node 2 0.2942/0.8074 0.5839/0.2332 0.4116/0.7661
Node 3 0.9487/0.7836 0.5683/0.1794 0.4276/0.8197
Node 4 0.8241/0.5922 0.4990/0.3395 0.4513/0.5549
Node 5 0.8164/0.4071 0.6949/0.2960 0.2916/0.6948
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5.3 TimeToEnd Estimation and Slow Task

Identification

In order to evaluate the performance of ESAMR, we compare the TimeToEnd estima-

tion of the three MapReduce scheduling algorithms by running Sort and WordCount

applications ten times each. The three algorithms are LATE, SAMR and ESAMR.

We set PFM at 20%, PFR at 20%, K at 10, STT at 40%, and SNT at 30% respectively.

Figures 5.8 and 5.10 show the the TimeToEnd estimation error of map and reduce

tasks by ESAMR, SAMR and LATE on a WordCount 10GB job (Figures 5.9 and 5.11

show the ratios of Figures 5.8 and 5.10 respectively). From Figures 5.8 and 5.10 we

can see that the effectiveness of ESAMR. Among the three algorithms ESAMR leads

to the smallest prediction error. With ESAMR, the differences between estimated and

actual TimeToEnd of map and reduce tasks are less than 4 and 5 seconds respectively.

With SAMR, the differences between estimated and actual TimeToEnd of map and

reduce tasks are less than 38 and 27 seconds respectively. With LATE, the differences

between estimated and actual TimeToEnd of map and reduce tasks are less than 64

and 129 seconds respectively.

Figures 5.12 and 5.14 show the TimeToEnd estimation error of map and reduce

tasks by ESAMR, SAMR and LATE on a Sort 10GB job (Figures 5.13 and 5.15 show

the ratios of Figures 5.12 and 5.14 respectively). From Figures 5.12 and 5.14, we

can see that ESAMR still has the smallest error, but LATE has a better performance

than SAMR from the first task to the seventh task on the map and reduce phases.

The reason is that the default weights of map and reduce phases used in LATE is

close to the real weights of the map and reduce phases than SAMR which still uses

historical information from running the WordCount job to estimate the weights of

the map and reduce phases. From the eighth task to the twentieth task, SAMR has
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Figure 5.8: Map tasks TimeToEnd estimation error (WordCount 10GB)
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Figure 5.9: Map tasks TimeToEnd estimation error ratio (WordCount 10GB)
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a better performance than LATE. The reason is that SAMR begins to use historical

information from running the Sort job to estimate the weights of map and reduce

phases, but LATE still uses fixed weights for the map and reduce phases. So SAMR’s

estimation of TimeToEnd become more accurate than LATE’s. With ESAMR, the

differences between estimated and actual TimeToEnd of map and reduce tasks are less

than 0.77 and 3 seconds respectively. With SAMR, the differences between estimated
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Figure 5.10: Reduce tasks TimeToEnd estimation error (WordCount 10GB)

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

D
iff

er
en

ce
 b

et
w

ee
n 

re
al

 a
nd

 e
st

im
at

ed
 T

im
eT

oE
nd

(s
ec

on
d)

 

Reduce task index 

ESAMR 

SAMR 

LATE 

Figure 5.11: Reduce tasks TimeToEnd estimation error ratio (WordCount 10GB)
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and actual TimeToEnd of map and reduce tasks are less than 14 and 83 seconds

respectively. With LATE, the differences between estimated and actual TimeToEnd

of map and reduce tasks are less than 27 and 139 seconds respectively.

To evaluate if these algorithms differ statistically, we performed ANOVA analysis

on the data sets of the three algorithms for a significant level of 0.05. Table 5.4 reports

the results. As the p-values in the rightmost column show all p-values are less than
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Figure 5.12: Map tasks TimeToEnd estimation error (Sort 10GB)
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Figure 5.13: Map tasks TimeToEnd estimation error ratio (Sort 10GB)
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0.05, there is enough statistical evidence to reject the null hypothesis on all cases,

indicating that the mean of the differences between real TimeToEnd and estimated

TimeToEnd achieved by the three algorithms are significantly different in statistics.

The ANOVA analysis is used to evaluate whether these algorithms perform dif-

ferently, and a multiple comparison procedure using Bonferroni analysis quantifies

how the datasets differ from each other. Table 5.5 presents the results of this analy-
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Figure 5.14: Reduce tasks TimeToEnd estimation error (Sort 10GB)
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Figure 5.15: Reduce tasks TimeToEnd estimation error ratio (Sort 10GB)
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sis, ranking the datasets by their means in an ascending order. Grouping letters (in

columns with the header “Gr”) indicate the degree of differences: datasets with the

same grouping letter were not significantly different in statistics. For all the data,

ESAMR has the datasets with the smallest means while LATE and SAMR are in

a single group, which means ESAMR estimates significantly more accurately than

LATE and SAMR .
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Table 5.4: Results of ANOVA Analysis

Df Sum Sq Mean Sq F value Pr
Map WordCount 2 22259 11129.3 19.341 3.879e-07

Reduce WordCount 2 178247 89124 33.434 2.472e-10
Map Sort 2 4464.1 2232.1 40.364 1.203e-11

Reduce Sort 2 188394 94197 18.605 6.034e-07

Table 5.5: Results of Bonferroni Means Test

WordCount
Mean Map Gr Mean Reduce Gr

ESAMR 3.41 A ESAMR 4.17 A
SAMR 37.64 B SAMR 27.43 B
LATE 64.64 B LATE 129.65 B

Sort
ESAMR 0.77 A ESAMR 3.26 A
SAMR 13.87 B SAMR 83.95 B
LATE 27.06 B LATE 139.77 B

Figure 5.16 shows the execution time estimated by ESAMR, SAMR and LATE.

There are 100 map tasks in each job. For convenience, We chose the first 20 map

tasks to show the performance of ESAMR, SAMR and LATE in selecting speculative

tasks. 20 map tasks is enough to show the difference and performance of the three

algorithms. From Figure 5.16, we see that ESAMR considered the 8th and 9th map

tasks as the slowest tasks. SAMR chose the 10th map task as the slowest task. LATE

chose the 1st map tasks as the slowest tasks. The real slowest tasks were the 8th and

9th map tasks. Only ESAMR identified the slow tasks correctly.

Figure 5.17 shows the execution time estimated by ESAMR, SAMR and LATE.

There are 20 reduce tasks in each job. We use all 20 reduce tasks to show the

performance of ESAMR, SAMR and LATE in selecting speculative tasks. From

Figure 5.17, we see that ESAMR estimated the 1st reduce task as the slowest task.

SAMR estimated the 8th reduce task as the slowest task. LATE estimated the 8th

and 9th reduce tasks as the slowest tasks. The real slow tasks was the 1st reduce

task. ESAMR is the only algorithm to find the correct slow reduce task.
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Figure 5.16: Real and estimated execution time of map tasks for a WordCount 10GB
job
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Figure 5.17: Real and estimated execution time of reduce tasks for a WordCount
10GB job
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Chapter 6

Conclusion

To overcome the limitations of existing MapReduce scheduling algorithms, we have

proposed ESAMR: an Enhanced Self-Adaptive MapReduce scheduling algorithm in

this master thesis, which uses K-means clustering algorithm to classify historical

information into K clusters and thus generates more accurate estimation of task’s

stage weights especially in heterogeneous environments to correctly identify slow tasks

and re-execute them. Experimental results have shown the effectiveness of ESAMR.
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