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ABSTRACT 

 

Triple-negative breast cancer is considered the most aggressive subtype of breast cancer; 

while patients respond well to initial treatment the tumour relapse rate in patients is 

approximately 1 in 3. There is increasing evidence for a small population of cells that are 

able to evade treatment and repopulate the tumour after treatment, called cancer stem cells. 

Understanding key factors in cancer stem cell resistance is important to decrease tumour 

relapse. In a Spy1 clinical trial, responses to treatment and in vitro and in vivo to a standard 

of care treatment are investigated. Spy1 is an atypical cyclin-like regulator that enhances 

cellular proliferation. Spy1 overexpression has been implicated in cancer stem cell 

population and drug resistance, in other forms of cancer. The role of Spy1 in resistance to 

treatment has yet to be elucidated in triple-negative breast cancer (TNBC) cells; however, 

we have established the knockdown of Spy1 sensitizes cells to treatment. The current 

standard of care for TNBC is a combination of AC/T. When mimicking clinical treatment 

in vitro and in vivo, with standard of care with or without carboplatin, a population of cells 

remain viable after treatment. Detoxification enzymes, like aldehyde dehydrogenase 

(ALDH), have enhanced expression in cancer stem cell populations; thereby, ALDH can 

be used as a marker to identify and isolate cancer stem cells. This study outlines the creation 

and validation of an ALDH reporter system to identify cancer stem cells in heterogeneous 

triple-negative breast cancer cell lines. Elucidating characteristic of drug-resistant 

populations, such as expression of Spy1 and ALDH, can provide insight into drug-

resistance and tumour relapse. 
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INTRODUCTION 

 

I. Prevalence of Breast Cancer 

Breast cancers are the most common cancers in Canadian women and the 3rd most 

common overall (Canadian Cancer Statistics Advisory Committee, 2017). Canadian 

females are more likely to develop breast cancer than any other type of cancer, with 1 in 

8 females developing breast cancer at some point in their lifetime (Canadian Cancer 

Statistics Advisory Committee, 2017). Breast cancer accounts for approximately 25.8% 

of all new cancer cases in women, approximately 25,700 females in Canada alone 

(Canadian Cancer Statistics Advisory Committee, 2017). Women comprise 

approximately 99% of all breast cancer cases; suggesting a link between the development 

of the mammary gland and breast cancer incidence (Canadian Cancer Statistics Advisory 

Committee, 2017). In both Canada and the United States of America, breast cancer 

incidence rates declined around 2002, with numbers stabilizing from 2004-2010 

(Canadian Cancer Statistics Advisory Committee, 2017; Edwards et al., 2014). Breast 

cancer deaths have continued to decline due to breast cancer screening, decrease use of 

hormone therapies and advances in breast cancer treatment (Autier et al., 2011; Bleyer 

and Welch, 2012; Kricker et al., 1995). The five-year relative survival rate for breast 

cancer has increased reaching 79-87% in 2016, with survival rates increasing with 

decreasing grade (Canadian Cancer Statistics Advisory Committee, 2017). Research into 

factors important in cancer initiation, progression and response to treatment will continue 

to improve breast cancer statistics. 
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II. An Overview of the Mammary Gland 

Given that breast cancer is a predominantly female disease (Canadian Cancer Statistics 

Advisory Committee, 2017),  the unique features of mammary development of the female 

gland may provide critical insight for the initiation and progression of breast cancer. 

Mammalian female breasts, or mammary glands, are very dynamic and undergo the 

majority of growth and development postnatally. The mammary gland is a network of 

epithelial cells, connective tissue, adipocytes, fibroblasts, and extracellular matrix that 

undergo changes in response to hormonal cues and growth factors (Malhotra et al., 2010). 

Within the mammary gland network, there are important morphological features that are 

necessary to produce milk (Malhotra et al., 2010; Visvader and Stingl, 2014). A mature 

gland contains alveoli, hollow spherical structures comprised of epithelial cells, that 

produce and secrete milk into the lumen (Malhotra et al., 2010; Visvader and Stingl, 

2014). Several alveoli group together form lobules; lobules connect to a shared 

lactiferous duct which transports produced milk to the nipple, by way of contractile 

myoepithelial cells (Malhotra et al., 2010; Visvader, 2009). These types of mammary 

cells are thought to be organized in a hierarchy where the initial mammary gland 

develops from a single multipotent fetal mammary stem cell (MaSC) (Spike et al., 2012; 

Visvader and Stingl, 2014).  

The concept of MaSCs was introduced when random fragments of the mammary 

gland were serially transplanted into a cleared fat pad of mice and rats and the functional 

gland reformed, indicating regenerative potential (Daniel et al., 1968). MaSCs are 

important in establishing the mature gland at puberty and for maintenance of the gland 

and expansion during pregnancy (Dontu et al., 2003; Liu et al., 2005). MaSCs are found 
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within highly heterogeneous populations of long and short-term populating cells 

(Asselin-Labat et al., 2010; Visvader and Lindeman, 2006). More differentiated 

progenitor cells are sometimes described as an intermediate cell between stem cells and 

the differentiated target cell; they are able to form one or more types of cells down a 

specific cell lineage, but cannot divide indefinitely (Malhotra et al., 2010; McDermott 

and Wicha, 2010). The type and number of stem and progenitor cell populations within 

the mammary gland is still under investigation and requires further research; however, 

there are established luminal and myoepithelial progenitor populations (Visvader and 

Lindeman, 2006; Visvader and Stingl, 2014). Differentiated myoepithelial progenitor 

cells form mature myoepithelial cells that produce the basement membrane surrounding 

the gland and contractile cells for milk expulsion (Visvader and Lindeman, 2006; 

Visvader and Stingl, 2014). Mature ductal and alveolar cells are formed from 

myoepithelial progenitor cells. Interestingly, when luminal progenitor cells were 

transplanted into the cleared fat pad of mice, they were able to reconstitute the entire 

gland showing that the hierarchy of cells is not necessarily a unidirectional progression 

from MaSC to mature differentiated cell (Visvader and Stingl, 2014). It is important to 

note, however, that not all cells have the capacity to form a functioning mammary gland, 

specifically more differentiated cells (Neville et al., 1998). Progression down the 

hierarchy of MaSC results in cells with less potency. 

III. Adult Stem Cell Characteristics 

Stem cells possess many qualities that allow for their longevity: the capacity for self-

renewal and differentiation, increased anti-apoptotic and detoxification mechanisms, and 

the ability to enter a temporary dormant state. To be considered an adult stem cell, a cell 



4 

 

must possess the ability to self-renew and differentiate into multiple progeny lineages 

(Morrison and Kimble, 2006). Tissue homeostasis is highly dependent on stem cell 

populations that balance asymmetric and symmetric cell division. Asymmetrical division 

results in two daughter cells of two different fates that allow for tissue maintenance 

throughout the lifespan of the organism (Morrison and Kimble, 2006). Symmetric cell 

division results in two daughter cells that are genetically identical to the parent, thereby 

expanding the stem cell pool, also known as self-renewal (He et al., 2009; Morrison and 

Kimble, 2006). Both modes of division are essential for maintaining a pool of stem cells 

that can divide during the wound repair process or at important developmental times 

(Prockop et al., 2003; Rojas et al., 2005; Slack, 2008). Due to their necessity in tissue 

maintenance, stem cells require mechanisms, such as anti-apoptotic factors and enhanced 

telomerase activity, to evade cell death through their lifetime (Allsopp et al., 1992; 

Blalock et al., 1999; Reya et al., 2001; Yui et al., 1998). Over time, stem cells can be 

exposed to and resist many forms of endogenous and exogenous stressors including, 

alcohols, vitamins, lipids, and environmental toxins and agents, respectively (Bettinardi 

et al., 2012; Dontu et al., 2003; Reya et al., 2001; Tu et al., 2002). To prevent 

accumulation of dangerous agents, detoxification mechanisms are important to decrease 

the risk of mutations. Additionally, stem cells are able to evade damage through a 

temporary reversible exit of the cell cycle, termed quiescence. Quiescence is a 

mechanism that allows stem cells to exit the cell cycle, not incurring damage as a result 

of cellular division.  

Numerous assays are utilized to examine the functional characteristics of stem 

cells. Stem cells are primarily isolated by using known stem cells markers, alone or in 
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combination with each other. Further validation of these stem cell populations has been 

highlighted using lineage tracing, transplantation assays and mammosphere formation 

assays. Lineage tracing is a method of using fluorescent detection used to monitor the 

fate of a potential stem cell; daughter cells retain the label from the marked parent cell, 

allowing identification of progeny (described in (Hayakawa et al., 2015; Schepers et al., 

2012)). Lineage tracing can be used in combination with transplantation assays, where 

one, or a population, of potential stem cells are injected in vivo to assess tumour-

formation potential (Illa-Bochaca et al., 2010). Originally modelled in the brain using 

‘neurosphere formation assays’ (Weiss et al., 1996), sphere-formation assays utilize 

anchorage-independent conditions to select for or expand populations of stem and 

progenitor cells in vitro (Louis et al., 2008). Differentiated normal epithelial cells 

undergo apoptosis when in anchorage-independent conditions, as they require adhesion to 

survive and proliferate (Askari et al., 2003; Krause et al., 2001; Reynolds and Weiss, 

1996; Simian et al., 2001; Weiss et al., 1996). Stem and progenitor cells will remain 

viable and form 3-dimensional spheres of cells. Details within these assays differ 

depending on the tissue of study, speaking to differences in the biology of adult stem cell 

populations, an area of science that requires much more work.  

IV. Cancer Stem Cells  

Similar to adult stem cells, a small population of malignant cells with stem-like 

characteristics exist within many forms of cancer (Heppner, 1984). The cancer stem cell 

(CSC) model supports the hypothesis that this small population of stem-like cells can 

generate a heterogeneous tumour. This hierarchical model suggests CSCs give rise to all 

malignant cells comprising a tumour (Sleeman et al., 2006; Stingl et al., 2001, 2005; 
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Villadsen et al., 2007; Wicha et al., 2006). This model is supported by data demonstrating 

that not all cells have the ability to form a tumour; however, a single CSC transplanted 

into immunodeficient mouse recapitulated an entire heterogeneous tumour (Shackleton et 

al., 2006; Sleeman et al., 2006; Stingl et al., 2006). Evidence for differentiation capacity 

was demonstrated when CSCs cued to differentiate produced cells with varying 

proliferative potential and phenotypes (Kleinsmith and Pierce, 1964). Additionally, self-

renewal potential was evaluated when single CSCs or colonies were selected and placed 

into micro-wells and they were able to repopulate the well (Buick et al., 1979). CSCs are 

highly implicated in tumour recurrence as in driving tumourigenesis; protection of the 

population is critical for the long-term survival of a tumour. 

Similar to normal stem cells, CSCs have several mechanisms of protection that 

mimic those in adult stem cells. Quiescent CSCs resist cytotoxic agents and may 

repopulate a tumour after treatment, whereas actively dividing CSCs drives progression 

of cancer (Chen et al., 2012). Ishikawa et al. found dormant human leukemia cancer cells 

in the bone marrow of transplanted mice (Ishikawa et al., 2007). CSCs have increased 

expression of anti-apoptotic proteins and drug pumps that protect the integrity of the cell 

(reviewed in (Clevers, 2011)). CSC populations vary within the different forms of cancer 

and have implications for treatment, prognosis, and tumour relapse. 

V. Breast Cancer Stem Cell Populations in Genetic Subtypes 

While initially discovered in the blood (Spangrude et al., 1988), CSCs have been 

described in many solid cancers including, but not limited to, brain, colon, head and neck, 

lung, and breast (reviewed in (O’Brien et al., 2009)). In the breast, data supports that 

breast cancer can be initiated by the malignant transformation of normal mammary stem 
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cells or progenitor populations (Dontu et al., 2003). Malignant stem-like cells specific to 

the breast were isolated and verified for the first time in 2003, termed breast cancer stem 

cells (BCSC) (Al-Hajj et al., 2003). Like other CSCs, BCSCs and progenitor cells show 

resistance to therapies – chemotherapy, targeted therapies, radiation therapy; a proposed 

mechanism for cancer relapse post-treatment (Dontu et al., 2003; Li et al., 2008; Phillips 

et al., 2006; Reya et al., 2001; Tu et al., 2002; Zielske et al., 2011).  

Differences in the cell of origin of the subtypes of breast cancer is a possible 

explanation for variation in gene expression profiles and overall prognosis. Gene 

expression profiles eluted to at least five distinct subtypes of breast cancer: luminal A or 

B, human epidermal growth factor receptor 2 (HER2)-overexpressing, basal-like, and 

claudin-low (Perou et al., 2000). Debate exists for a potential 6th type of breast cancer, 

called normal-like breast cancer, that accounts for less than 10% of all breast cancer cases 

(Fan et al., 2006; Perou et al., 2000). The inclusion of additional data, like single 

nucleotide polymorphisms and copy number variants have resulted in the further 

subdivision of classes to upward of 10 distinct forms of breast cancer (Curtis et al., 2012). 

Normal-like breast cancers have a much more favourable prognosis for patients 

compared to all other subtypes (Perou et al., 2000). Luminal A breast cancers have a 

favourable prognosis for patients in initial responses to treatment; whereas luminal B 

breast cancers respond well to treatment but are at a higher risk for relapse (Dontu et al., 

2004; Sørlie et al., 2001). A third type of luminal cancer exists, luminal C, however, is 

considered a subtype of luminal A and luminal B due to expression of genes, whose 

function is not yet known (Sørlie et al., 2001). HER2-overexpressing breast cancers have 

elevated levels of the HER2 receptor, are highly proliferative, have a poor prognosis for 
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patients with an overall lower survival rate (Sørlie et al., 2001). Basal-like breast cancers 

represent approximately 10-15% of all breast cancer cases and are difficult to treat 

(Gusterson, 2009). Basal-like cancers are often affiliated with an aggressive form of 

breast cancer that is classified on receptor status, triple-negative breast cancers (TNBC). 

It is important to note that not all basal-like breast cancers are triple-negative and not all 

TNBC are basal-like. TNBC is characterized by the absence or extremely low levels of 

estrogen receptor (ER), progesterone receptor (PR), and HER2 receptors. TNBCs are 

very aggressive and patients are at a high risk for tumour relapse (Perou et al., 2000). 

TNBC encompasses several subtypes, most commonly in basal-like breast cancers, but 

also normal-like and claudin-low (Kumar and Aggarwal, 2016). Lastly, claudin-low 

breast cancers have low levels of claudins involved in cell-cell and cell-membrane 

adhesion (Gusterson, 2009). Claudin-low breast cancers are associated with poor 

prognosis as evidence suggests they are relatively resistant to conventional 

chemotherapies (Prat et al., 2010). 

Differences in the stem cell population may provide information about the origin 

of these different subtypes of breast cancer. It is reasonable that luminal B, HER2-

overexpressing, and basal-like breast cancers, some of the more difficult to treat, are 

derived from similar progenitor populations, as they have common gene alterations 

(Dontu et al., 2004; Liu et al., 2016). Luminal B breast cancers had signatures most like 

bipotent-enriched progenitor cells (Liu et al., 2016). CSCs in HER2-overexpressing 

cancers most resembles bipotent-enriched progenitor cells (Liu et al., 2016). Basal-like 

breast cancer gene signatures are most similar to bipotent-enriched progenitor cells or 

mature luminal cells (Liu et al., 2016). Luminal A breast cancers have gene signatures 
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similar to luminal progenitor or mature luminal cells, of which it is thought to be derived 

(Liu et al., 2016). Claudin-low breast cancers are thought to be derived from the 

mammary stem cell population; making these heterogeneous tumours difficult to treat 

(Prat et al., 2010). The aforementioned subtypes have varying levels of established stem 

cell and progenitor populations (Ricardo et al., 2011). Isolation of stem cells and 

progenitor cells are routinely performed via fluorescence active cell sorting (FACS) using 

known markers of stem/progenitor cells: cluster of differentiation (CD) proteins (CD44, 

CD24, CD133), epithelial cell adhesion molecule, lineage markers (Lin), epithelial 

specific antigen (ESA) and aldehyde dehydrogenase (ALDH) (Perou et al., 2000; Sotiriou 

et al., 2003; Stingl et al., 1998, 2001). 

VI. Cluster of Differentiation Proteins as Markers of CSC 

Presence, low or high, or absence of different markers of stemness are used to isolate 

desired subpopulations, based on previously established markers. CD proteins have been 

used extensively for the identification and isolation of subpopulations of cells. This has 

been particularly useful to analyze stem/progenitor populations that are fewer in number 

than the bulk of a tumour. CD44, a trans-membrane glycoprotein involved in cell 

adhesion, and CD24, a phosphatidylinositol-anchored glycoprotein, have been widely 

used in the literature in combination with other markers of stemness to isolate 

CSCs/progenitor cells (Aigner et al., 1997; Aruffo et al., 1990). When progenitor luminal 

B cells and differentiated luminal C cells from a heterogeneous population were sorted 

for CD44high and CD24low populations, both formed mammospheres; however, luminal B 

had greater forming efficiency, suggesting increased potency (Ghebeh et al., 2013). In 

another experiment, reduced CD44 expression with short-interfering RNA (siRNA) and 
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short hairpin RNA (shRNA) enhanced differentiation of the progenitor population (Pham 

et al., 2011).  

The functional application of sorting with stem cell markers was examined when 

serial dilutions of human breast cancer cells, with the marker combination 

ESA+CD44+CD24-/lowLin-, was injected into immunocompromised mice; as few as 200 

injected cells were able to form tumours on a consistent basis after 5-6 months (Al-Hajj 

et al., 2003). Cells sorted for ESA-CD44+CD24-/lowLin- failed to form tumours even when 

20,000 cells were injected (Al-Hajj et al., 2003). When secondary tumours were analyzed 

via flow cytometry ESA, CD44 and CD24 expression resembled the tumour from which 

they were derived (Al-Hajj et al., 2003). ESA+CD44+CD24-/lowLin- cells passaged 

through four rounds of tumour formation had no decrease in their tumourigenicity (Al-

Hajj et al., 2003), suggesting that their tumourigenic capacity is similar to that of normal 

stem cells (Al-Hajj et al., 2003). Clinically, Lin et al. showed that the cell surface markers 

CD44high and CD24-/low negative correlated with disease-free survival (DFS) and overall 

survival (OS), and positively correlated with cancer recurrence (Lin et al., 2012). While 

evidence demonstrated that for CD44high and CD24-/low selects for a tumourigenic 

subpopulation of cells, others found that they are better indicators of relapse when used 

with a marker of stemness (Zhong et al., 2014). 

VII. Aldehyde Dehydrogenase –A Marker of Stemness 

ALDHs are a family of NAD(P)+-dependent enzymes. The family of 19 isoenzymes are 

ubiquitously distributed in adult tissues to protect cells by catalyzing aldehyde oxidation 

to carboxylic acids (Bettinardi et al., 2012; Chen et al., 2013; Kiefer et al., 2012). Several 

isoforms of ALDH (notably ALDH1A1, ALDH1A2, ALDH1A3 and ALDH8A1) 
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function in the retinoic acid (RA) signalling pathway (Collins and Watt, 2008; Marcato et 

al., 2011a; Rexer et al., 2001). Through a series of stages retinol (vitamin A1) is oxidized 

to RA, with ALDH1 facilitating the final oxidation step (Duester et al., 2003; Marchitti et 

al., 2008). RA can bind to the retinoic acid receptor (RAR) and mediate gene expression 

and cellular differentiation (Figure 1) (Duester et al., 2003; Elizondo et al., 2009). A 

negative feedback mechanism controls ALDH expression. Due to its ability to detoxify 

harmful agents, it is not surprising ALDH expression is present in both normal and 

cancerous tissues.  

Originally used as a marker of normal stem/progenitor cells in neural stem cells, 

ALDH became useful in identification of CSC populations in a disease like multiple 

myeloma and acute myeloid leukemia (Hess et al., 2004, 2006; Matsui et al., 2004). 

ALDH became an important enzyme in several clinical applications; where high 

expression of ALDH had value in predicting metastasis, prognosis and was correlated 

with poor patient outcome (Balicki, 2007; Charafe-Jauffret et al., 2010; Ginestier et al., 

2007; Liu et al., 2014; Marcato et al., 2011b). Interestingly, suppression of specific 

isoforms of ALDH found in blood cancers by all-trans retinoic acid showed that drove 

differentiation of CSCs and increased sensitivity to cyclophosphamide (Fenaux et al., 

1992; Sanz and Lo-Coco, 2011). This demonstrated that targeting specific isoforms of 

ALDH could increase sensitivity to drugs, to which CSCs are highly resistant.  
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Figure 1: Retinol oxidation to retinoic acid. Retinol is reversibly oxidized by alcohol 

dehydrogenase (ADH) to retinal. Retinal is irreversibly oxidized by aldehyde 

dehydrogenase (ALDH) to retinoic acid.    
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The role of ALDH1 in breast cancers was identified in 2007 by Ginestier et al. 

when they established ALDH1 as a marker of normal and cancerous human MaSC 

(Ginestier et al., 2007). ALDH expression varied in different subtypes of breast cancers 

where drug-sensitive subtypes had the lowest expression and drug-resistant subtypes had 

the highest expression (Ricardo et al., 2011). A clinical role for ALDH was established 

when ALDH1 expression in patient tissues positively correlated with poor clinical 

outcome and prognosis, supported by several additional studies (Charafe-Jauffret et al., 

2010; Ginestier et al., 2007; Marcato et al., 2011a; Morimoto et al., 2009; Neumeister et 

al., 2010; Resetkova et al., 2010; Sophos and Vasiliou, 2003; Zhou et al., 2010). 

Additionally, all-trans retinoic acid used in breast cancer treatment with chemotherapy, 

but not on its own, was effective in regulating apoptosis, cell growth and differentiation 

(Elizondo et al., 2000; Moreb et al., 2005). Numerous other studies confirmed that 

ALDH1 expression in tumour cells is associated with stem-like characteristics, clonal 

capacity, and drug resistance (Ginestier et al., 2007; Ikawa et al., 1983; Magni et al., 

1996). Specific isoforms ALDH1A1 and ALDH1A3 play an important role in RA 

production in the breast (Collins and Watt, 2008). To determine the effects of ALDH1 

isozyme expression on characteristics of cancer, Croker et al. used siRNAs targeted 

against ALDH1A1 and ALDH1A3. Knockdown of ALDH1A3 demonstrated no variation 

in proliferation or chemotherapy/radiation sensitivity but decreased cell adhesion and 

migration in vivo, suggesting importance in metastasis (Croker et al., 2017). The 

knockdown of ALDH1A1 decreased cellular proliferation, adhesion, migration in vivo 

and increased sensitivity to multiple classes of chemotherapy drugs and radiation (Croker 

et al., 2017). These findings suggest that ALDH1A1 is important in therapy resistance in 
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breast cancer cells, supporting clinical data where ALDH1A1 correlated with poor 

prognosis in breast cancers (Charafe-Jauffret et al., 2010; Ginestier et al., 2007; Khoury 

et al., 2012; Morimoto et al., 2009). Studies of ALDH1A1 and ALDH1A3 suggest their 

different, but important, roles to consider for patient prognosis.  

To identify ALDH expression in cells, Storms et al. developed the 

ALDEFLUOR™ Assay (Storms et al., 1999). BODIPY-aminoacetaldehyde diffused into 

viable cells is converted by ALDH to a fluorescing BODIPY-aminoacetate substrate and 

trapped inside the cell (Figure 2A). Highly fluorescent cells are indicative of high 

expression of ALDH (Storms et al., 1999). Populations are sorted via (FACS) and 

compared to a control containing diethylaminobenzaldehyde (DEAB), an inhibitor of 

many ALDH isoenzymes (Figure 2B) (Alexa et al., 2009; Bunting and Townsend, 1996; 

Moreb et al., 2008; Storms et al., 1999). It is presumed that the ALDEFLUOR™ assay 

measures activity from the ALDH1 family (STEMCELL Technologies, 2009). Based on 

several studies, the ALDEFLUOR™ assay recognizes other ALDH isoenzymes (Moreb 

et al., 2008; Morgan et al., 2015; Wu et al., 2016).  
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Figure 2: Schematic of ALDEFLUOR™ Assay. (A) ALDH acts to breakdown BAAA 

into substrate BAA- that fluoresces. (B) DEAD inhibits the breakdown of BAAA to BAA- 

by inhibiting ALDH. 
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VIII. Drug Resistance in CSCs and Tumour-Initiating Populations 

Drug resistance is thought to develop as an adaptive response to DNA-damage repair 

(DDR) or mutations. Clinically, the presence of drug-evading cells, namely CSCs, may 

result in an increased risk of recurrence, serving as a prognostic indicator for patient 

disease-free survival and prognosis for patients (André and Zielinski, 2012). 

Improvements in treatment can be made to decrease the risk of recurrence of cancers as 

mechanisms of drug-resistance are better understood. CSCs can resist the action of many 

drugs due to modifications of cellular mechanisms – drug transport modification, 

detoxification, pro-survival proteins, and alternative DNA damage responses (Dontu et 

al., 2003; Reya et al., 2001; Tu et al., 2002). Mechanisms to protect the cell from damage 

are necessary for the longevity of the CSC pool. 

Expression of membrane proteins has been implicated in playing a role in drug 

resistance. ATP-binding cassette (ABC) transport proteins are involved in molecule 

transport across a plasma membrane and have been implicated in resistance by ejecting 

drugs from the cell (Fletcher et al., 2010). Acquired resistance models suggest that CSCs 

express drug transporters to survive chemotherapy, while differentiated cells are killed 

(Dean, 2009).  

Additionally, detoxification enzymes are important in normal cells to protect 

against toxins; however, they play a negative role in breaking-down toxins that kill 

dangerous cells. CSCs have increased expression of detoxification enzymes to decrease 

the effectiveness of drugs within these populations (Manolitsas et al., 1997; Townsend 

and Tew, 2003). For example, ALDH is a detoxification agent and is highly expressed in 
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CSC populations of many tumour types (Clay et al., 2010; Duong et al., 2012; Dylla et 

al., 2008; Friedman et al., 1992; Hellsten et al., 2011; Sreerama and Sladek, 1997; 

Sullivan et al., 2010). Specific inhibitors of ALDH, for example, DEAB, sensitize 

ALDHhighCD44+ populations to radiation and chemotherapy (Croker and Allan, 2012; 

Wickström et al., 2007). Detoxification mechanisms are supported by enhanced 

expression of pro-survival genes, where DNA can be repaired if damage occurred.  

Pro-survival genes play an integral function in damaged cells and can lead to 

drug-resistance in CSC populations. BCL-2 expression, a protein involved in the balance 

of cell survival and apoptosis, impairs the ability to release pro-apoptotic proteins (Madjd 

et al., 2009; Verrier et al., 2004). In numerous cancers BCL-2 was overexpressed in 

CSC/progenitor populations and resulted in resistance to anti-cancer drugs; where the 

knockdown of BCL-2 in CSC/progenitor populations increased sensitivity to drugs 

(Konopleva et al., 2002; Madjd et al., 2009; Pham et al., 2011; Verrier et al., 2004). 

Enhanced pro-survival genes decreased apoptosis in CSC/progenitor populations; 

however, some damage to their DNA was present (Bao et al., 2006). DDR mechanisms 

allow for the cell to efficiently repair the damage allowing for cells to re-enter the cell 

cycle (Bao et al., 2006).   

Inflicting significant amount of DNA damage to a cell to elicit an apoptotic 

response is the basis of anti-cancer treatments (Raguz and Yagüe, 2008). Cells have 

mechanisms to repair damaged DNA thereby decreasing the effectiveness of treatment. 

Many chemotherapies damage DNA through intra-strand, inter-strand, single-stranded, 

and double-stranded breaks (Deans and West, 2011). CSC and progenitor populations, in 

several cancers like breast and glioma, are known to have efficient DDR machinery (Bao 
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et al., 2006; Diehn et al., 2009). When CSCs were isolated from a breast tumour, 

transcriptome analysis shows upregulation of DDR-related genes indicating that CSCs 

have enhanced capacity to repair damage (Zhang et al., 2008). Treatments aim to inflict 

enough damage to the DNA to elicit a cell death response, as opposed to activation of 

DDR mechanisms.  

IX. Current Strategies for Treating Breast Cancers 

Strategies surrounding treatment of breast cancer is highly based on the subtype of breast 

cancer, proliferation status and receptor status. Surgery, radiation, chemotherapies and/or 

hormone therapies are often used in combination with each other to remove tumours and 

any remaining cancer cells (Al-Ejeh et al., 2011; Raguz and Yagüe, 2008). Targeted 

therapies are designed to block ERs and/or PRs, whose activation is known to stimulate 

transcription or pro-proliferative signal transduction pathways (Goldhirsch et al., 2011; 

Migliaccio et al., 1998; Prat et al., 2011). ER+ breast cancers, in general, are treated with 

selective estrogen receptor modulations and aromatase inhibitors to inhibit estrogen 

signalling (Dowsett and Haynes, 2003; Lumachi et al., 2013). Similarly, breast cancers 

that overexpress HER2 are targeted through direct binding to the HER2 receptor or 

suppression of HER2 kinase activity (Spector et al., 2005). 

Breast cancers with the triple-negative phenotype are treated with combinations of 

surgery, radiation, and chemotherapy as they lack targets that are traditionally used in 

endocrine targeted therapies (Al-Ejeh et al., 2011; Raguz and Yagüe, 2008). TNBCs are 

very aggressive and have a higher risk of recurrence and death than non-TNBC (Burnell 

et al., 2008; Dent et al., 2007; Stockmans et al., 2008). Cytotoxic chemotherapies are 
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used to induce large amounts of DNA damage and activate apoptotic pathways in rapidly 

dividing cells (Raguz and Yagüe, 2008). Additional chemotherapies are often tested with 

standard treatments, also referred to as the standard of care (SOC), as an effort to increase 

efficacy. With these rigorous courses of treatment, many patients with TNBC exhibit 

peak tumour relapse within a 3-year period as opposed to other subtypes of breast cancer 

(Dent et al., 2007; Jatoi et al., 2011; Kennecke et al., 2010; Perou et al., 2000).   

X. Current Treatment Options in TNBC 

There are many areas of research working to improve treatments for patients with TNBC.  

Research emphasizing alternative targeted therapies for TNBC patients often fall short in 

clinical trials (Bonner et al., 2010; Heinemann et al., 2014; Pirker et al., 2009). Targeted 

therapies would be beneficial; however, TNBC patients significantly benefit from high 

dose chemotherapies in terms of event-free survival (Carey et al., 2012; Diallo-

Danebrock et al., 2007; Gluz et al., 2008; Lang et al., 2013; Miller et al., 2007). Cell 

cycle dependence of some cytotoxic drugs highlights the importance of drug dose and 

timing of administration in the overall effectiveness of treatment.  

 Currently, many types of chemotherapeutic drugs are used independently or in 

combination with each other for treatment. Anthracyclines induce cell cycle arrest and 

apoptosis by binding to topoisomerase II-alpha and stabilizing DNA double-stranded 

breaks (Pommier et al., 2010; Weiss, 1992). Additionally, taxane drugs such as 

paclitaxel, in combination with anthracyclines, result in a higher pathological complete 

response (pCR), in TNBC, than anthracyclines alone (Liedtke et al., 2008; Rouzier et al., 

2005; Sánchez-Muñoz et al., 2008). A common anthracycline-containing chemotherapy 

regimen first became popular by a National Surgical Adjuvant Breast and Bowel Project 
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for patients with node-positive TNBC; treatment is comprised of doxorubicin plus 

cyclophosphamide (AC) that is administered every 14-21 days (Fisher et al., 1990). AC 

treatment became the regimen standard due to its benefits of a decreased number of 

patient visits while still maintaining the effectiveness of other therapies (Fisher et al., 

1990). A clinical trial by Mamounas et al., with 3060 patients, the addition of paclitaxel 

after AC treatment (AC/T) increased the 5-year DFS events to 76% ±2%, from 72% ±2% 

with only AC treatment, in node-positive breast cancers (Mamounas et al., 2005). Results 

from previous studies with the addition of paclitaxel, improved the standard of care 

(SOC) to an AC/T regimen; becoming an acceptable treatment for node-positive TNBC 

(Henderson et al., 2003; Mackey et al., 2013; Mamounas et al., 2005).  In a follow-up 

stage III clinical trial, 234 TNBC patients received the full treatment of AC/T 

(doxorubicin 60mg/m2 + cyclophosphamide 600mg/m2 administered at 3-week intervals 

followed by weekly paclitaxel 80mg/m2 for 12 weeks); beginning 3 weeks after the 4th 

AC administration (Yardley et al., 2017); the 2- and 5-year DFS rates were high at 88.8 

and 84.7%, respectively, and OS rates were 93.8 and 89.6%, respectively for patients 

receiving AC/T treatment (Yardley et al., 2017). Moreover, patients that exhibit lower 

pCR to anthracycline and/or taxane regimens have a high risk for relapse and a decrease 

in OS 3-5 years post-treatment (Cheang et al., 2009; Dent et al., 2007).  

 Current trials are exploring different combinations of drugs in addition to SOC 

chemotherapies in hopes of increasing pCR and DFS, which remains an important goal to 

be addressed. One category of drugs that have gained interest in treating TNBCs are 

platinum drugs. Platinum agents directly induce DNA damage by cross-linking DNA, 

preventing synthesis and are not metabolized into harmful by-products (Pruefer et al., 
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2008; Rosenberg et al., 1969; Siddik, 2003; Wang and Lippard, 2005). For patients with a 

mutation in the BRCA1 gene, it has been demonstrated that platinum drugs increased 

pCR; cellular mechanisms involved in repairing double-strand breaks, created by 

platinum drugs, are compromised (Byrski et al., 2012; Tutt et al., 2001). Additionally, 

platinum drugs are effective in further increasing pCR when administered sequentially 

with anthracycline-/taxane-based chemotherapy regimens; studies show pCR up to 75% 

when cisplatin or carboplatin (Ca) was combined with anthracycline-/taxane-base 

neoadjuvant chemotherapy (Hurley et al., 2013; Sikov et al., 2009). Platinum-based 

therapies represent an option for TNBC patients to use in addition to SOC treatments and 

a possible strategy for overcoming drug resistance.  

Current chemotherapies target actively dividing cells by damaging DNA at various 

stages in the cell cycle (Bharadwaj and Yu, 2004; Emadi et al., 2009; Hall and Tilby, 

1992; Jordan and Wilson, 2004; Minotti et al., 2004). In the event of DNA damage a cell 

enters a state of repair and is unable to be targeted until it begins actively dividing again; 

therefore, ensuring there is enough time between chemotherapy cycles is necessary. It is 

essential to understand the role of cell cycle regulators and how these mechanisms may 

affect the efficacy of chemotherapy.  

XI. Cell Cycle Regulation 

The process of cellular division is outlined by distinct phases whose proper completion 

will result in two cells. The cell cycle has four stages: a phase of growth coined gap phase 

1 (G1), a phase of DNA synthesis (S phase), a second gap phase (G2) and mitosis (M). 

Progression through phases of the cell-cycle is promoted by cyclin-dependent kinases 

(Cdks); whose activity level is altered during different phases of the cell cycle (Arellano 
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and Moreno, 1997; Nurse, 2002). Cdk protein levels remain constant throughout the cell 

cycle while their binding partners, cyclins, vary in protein levels, controlling Cdk-cyclin 

activity (Evans et al., 1983; Pines and Hunter, 1991). Cyclins interact with Cdks through 

binding at conserved regions of amino acids termed as the “cyclin-box” (Noble et al., 

1997). In the absence of cyclins, active sites of Cdks are blocked by the T-loop resulting 

in an inactive form (Russo et al., 1996). Typically, Cdk catalytic domains remain inactive 

until bound by a cyclin that induces a conformational change but does not result in full 

activation of the Cdk (Kim and Sharpless, 2006; Malumbres and Barbacid, 2009; Sherr, 

1996). Full activation is dependent on Cdk activating kinase that acts on the Cdk to 

phosphorylate a threonine residue found on the T-loop of the Cdk and dephosphorylation 

of inhibitory residues (Jeffrey et al., 1995; Paulovich and Hartwell, 1995). Various 

cyclin-Cdk complexes form throughout cell cycle and aid in its progression. For example, 

cyclin E binds with Cdk2 at the G1/S transition and cyclin A binds with Cdks 2 in S 

phase (Girard et al., 1991; Ohtsubo et al., 1995; Walker and Maller, 1991). Mechanisms 

are in place throughout the cell cycle to ensure proper Cdk activation. Cdk activity can be 

counteracted by Cdk kinase inhibitors (CKIs) proteins that act to regulate cyclin-Cdk 

complexes or Cdk activity alone through inhibition (Sherr and Roberts, 1999). CKIs 

block the adenosine triphosphate region on the Cdk; thereby, controlling the activity of 

cyclin-Cdk complexes and cellular division at specific stages in the cell cycle (Sherr and 

Roberts, 1999). Tumour cells acquire genetic mutations that alter expression of Cdks, 

cyclins, CKIs, Cdk substrates, activating enzymes and checkpoint proteins are implicated 

in the misregulation of the cell cycle (Malumbres and Barbacid, 2009; McDonald and El-

Deiry, 2000; Sherr, 1996; Sherr and Roberts, 1999). Currently, therapies are being 
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developed that act in the same manner as CKIs, inhibiting the cell cycle. Since several 

noncanonical protein regulators are important in normal and cancer cell proliferation, 

further investigation into typical and atypical cyclin-Cdk complexes are needed, to 

increase the effectiveness of CKIs and cell-cycle targeting drugs for patients (Nebreda, 

2006).  

XII. Spy1 – An Atypical Cell Cycle Regulator 

Spy1A1 (also called Speedy, RINGO, Spy1A; herein referred to as Spy1) was originally 

discovered in a cDNA screen to identify genes to rescue a rad1 resistant strain of 

Schizosaccharomyces pombe when subjected to UV or gamma irradiation (Lenormand et 

al., 1999). Xenopus Speedy and the human homolog Spy1A1 possess 40% homology 

(Porter et al., 2002). In humans, Spy1 is encoded by the SPDYA gene on chromosome 2 

and is a member of the Speedy/RINGO family of proteins (Cheng et al., 2005). The 

Speedy/RINGO family of proteins all have a conserved Speedy/RINGO box that 

facilitates interactions with Cdk 2 at the G1/S phase transition as well as Cdk1 at G2/M 

(Cheng et al., 2005). Spy1 also does not display sequence homology to cyclin proteins, 

displaying a unique role in the progression of the cell cycle (Karaiskou et al., 2001). Spy1 

binds and fully activates Cdk1 and Cdk2 independent of classic phosphorylation on the 

T-loop (Karaiskou et al., 2001). Spy1 has been shown to phosphorylate p27Kip1 at Thr187 

and tags it for degradation allowing the cell cycle to progress (Karaiskou et al., 2001). 

Spy1 enhances cellular proliferation and inhibits checkpoint activation, allowing for cell 

cycle progression even in the presence of DNA damage (Gastwirt et al., 2006).  
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Spy1 overexpression leads to resistant phenotypes and decreased sensitivity to 

many agents utilized in cancer therapies (Barnes et al., 2003). In glioblastoma 

multiforme, a very aggressive form of brain cancer, there was positive staining for Spy1 

in 72.8% of patient glioma samples (n=70) (Lubanska and Porter, 2017). Patient samples 

with elevated levels of Spy1 had an overall lower survival rate than those without 

elevated Spy1 (Lubanska and Porter, 2017). A multivariate analysis presented Spy1 as 

one of the highest independent predictor of survival, second to tumour grade (Lubanska 

and Porter, 2017). Additionally, Spy1 plays a role in maintaining stemness in glioma 

tumour-initiating populations (Lubanska et al., 2014). The knockdown of Spy1 in glioma 

cell lines shows a reduction in proliferation, stem cell marker CD133, and other stemness 

properties (Lubanska et al., 2014). The role of Spy1 in brain cancers leads to speculation 

about its role in other Spy1-elevated cancers.  

In human breast cancer cell lines, Spy1 protein levels were found to be elevated 

(Al Sorkhy et al., 2012). Overexpression of Spy1 was also implicated in accelerated 

tumour formation in vivo (Golipour et al., 2008). Additionally, in a study where ER+ 

Spy1-overexpressing breast cancer cells were treated with tamoxifen cell numbers 

increased where their control counterpart failed to proliferate (Ferraiuolo et al., 2017). An 

in vivo xenograft model using Danio rerio, herein referred to as zebrafish, demonstrated 

Spy1s importance in treatment resistance. Spy1-overexpressing cells had decreased 

sensitivity to tamoxifen treatment in comparison to their control counterparts, when 

treated in vivo (Ferraiuolo et al., 2017). The role of Spy1 in breast cancer stem cells needs 

to be further investigated, specifically in more aggressive forms like TNBC. 
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XIII. In vitro and In vivo Model Systems to Study Breast Cancer 

Breast cancer cell lines are a valuable tool for assessing the molecular and biological 

similarities between breast cancer subtypes (Charafe-Jauffret et al., 2009a; Neve et al., 

2006). Currently, there are 51 cells lines and primary breast tumours whose karyotypes 

remain quite stable throughout many divisions in cell culture (Neve et al., 2006). Several 

studies have used gene expression data to outline that breast cancer cell lines can be 

molecularly classified into the 5 classic genomic subtypes of breast cancer discussed 

previously (Hollestelle et al., 2010; Kao et al., 2009; Neve et al., 2006). Cell lines contain 

functional CSCs that are capable of forming mammospheres in culture and tumours when 

injected into mice (Charafe-Jauffret et al., 2009b). While the mouse is the classical model 

for cancer studies, the zebrafish has gained traction in the last few decades as an 

alternative system for drug screens and translational medicine (Blackburn and Langenau, 

2014; Veinotte et al., 2014). Approximately 70% of human genes have a zebrafish 

orthologue and 70% of zebrafish genes have a human orthologue (Howe et al., 2013; 

Vilella et al., 2009). Cost of starting and maintaining colonies are much cheaper than 

mouse counterparts due to less equipment needed, a large number of offspring, quick 

maturity to adulthood and decreased maintenance costs (Lieschke and Currie, 2007; 

White et al., 2013). Human cells are also able to be injected without rejection as the 

zebrafish acquired immune system is not active until approximately 21-30 days post 

fertilization (dpf) when B cells and T cells begin to form (Lam et al., 2004; Willett et al., 

1999). In addition to these advantages, zebrafish embryos are transparent, making 

imaging easy until pigmentation inhibits such imaging. Zebrafish have been of interest in 

translational medicine as a method of drug screening of patient tissues, where tissues are 
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transplanted and drugs are added directly to the water and absorbed by the fish (Veinotte 

et al., 2014). Xenotransplantation of human tumours and the study of them is, therefore, 

increasingly feasible.  

XIV. Summary of Research 

A clinical trial investigating the role of Spy1 in triple-negative breast cancers in patient 

overall survival and tumour relapse is underway at Windsor Regional Hospital (Hamm, 

2011). The study will accrue 90 patients with TNBC where they will undergo surgery 

then combination chemotherapy treatment in an adjuvant setting using a SOC regimen. 

Protein and mRNA will be analyzed from patient tumours by utilizing proteomics, 

microarray analysis and immunohistochemistry. Patients receive treatment with 

AC/T+Ca. Spy1 trial patients will receive dose-dense AC for 4 cycles followed by T±Ca 

with Ca administration on even-numbered cycles (Figure 1A). A portion of the extracted 

tumour will be embedded in paraffin for a tissue microarray assay. The fresh tissue will 

be sent for genomic profiling and lab analysis. Data from multiple in vitro and in vivo 

models, genomic profiling, tissue microarray data will be correlated to 5-year survival 

data (Figure 1B). Optimization of dose and timing of drug administration in vitro and in 

vivo is essential in determining the validity of these tools to act as pre-treatment 

indicators of response to a chemotherapy regimen in TNBC cells. Manipulation of the 

levels of Spy1 prior to treatment will also elucidate its implication in treatment resistance. 

The study hypothesizes that amplification of Spy1 will correlate with clinical resistance, 

and that manipulation of Spy1 will sensitize CSC populations to treatment in vitro and in 

vivo.  
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Objective 1: Establish a treatment protocol to best mimic patient treatment, in vitro 

and in vivo. The cell line, MDA-MB-231, was utilized as a model of TNBC. Cell 

response to AC/T+Ca will be analyzed in a heterogeneous population of TNBC cells, by 

assessing cell viability in vitro. Cells were also injected into zebrafish, and treated with 

the AC/T+Ca. A measure of tumour burden before and after AC/T+Ca treatment with 

MDA-MB-231 cells will establish a protocol of treatment for future patient samples. 

Spy1 is implicated in resistance to standard of care treatment as we know it plays a role 

in resistance to tamoxifen treatment in ER+ breast cancers (Ferraiuolo et al., 2017). 

Objective 2: Validation of a reporter based system for ALDH detection for CSC 

identification. Using TNBC breast cancer cell line, MDA-MB-231 cells, drug-

sensitive/resistant standards must be established for use in vitro and in vivo in which to 

compare patient samples. While the use of the ALDEFLUOR™ assay is optimum for 

assessing patient samples, variability in results demonstrate that it requires further 

optimization. To validate results from the ALDEFLUOR™ assay, a reporter-based 

system for the stem cell marker ALDH1 was designed and is currently being validated to 

answer questions about resistance to treatment in CSC populations.  

 The CSC model of initiation and progression of breast cancer carries significant 

implications for resistance in TNBCs. The CSC model suggests that tumour-initiating 

populations have mechanisms that allow them to evade apoptosis in response to 

treatment. Identification and isolation of CSCs are vital in determining their current 

standard of care treatments; which may explain the high relapse rate in TNBCs. Since 

ALDH is a marker of CSCs, expression data of specific isoforms of ALDH may result in 
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a greater understanding of drug resistance and cancer characteristics, with greater 

reproducibility than that of an enzymatic-based assay. 
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Figure 3: Schematic of Spy1 clinical trial. A) Schematic of chemotherapy 

administration to patients. (B) Schematic of collaboration for Spy1 trial. 
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MATERIALS & METHODS 

I. Cell Lines Utilized 

MDA-MB-231 wild-type (wt) cells were maintained in growth media containing 

Dulbecco’s modified Eagle’s medium (DMEM) (HyClone SH30022.01) supplemented 

with 10% fetal bovine serum (Gibco 10437028) and 1% penicillin and streptomycin 

(Invitrogen 15140148). Once cells reached 80-90% confluency, plates were washed with 

sterile 1X phosphate buffered solution (PBS) and collected by gentle pipetting. Cells 

were cultured in a 5% CO2 environment. 

MCF-7wt cells were maintained in DMEM supplemented with 10% fetal bovine 

serum and 1% penicillin and streptomycin. Once cells reached 80-90% confluency, plates 

were washed with sterile 1XPBS and 1mL of 0.05% trypsin in 1X PBS (Hyclone 

SH3023601) was added to the plate and incubated at 37°C for 3-4 minutes. Cells were 

cultured in a 5% CO2 environment.  

SK-BR-3 cells were maintained in McCoy’s 5A media (ATCC 30-2007) 

supplemented with 10% fetal bovine serum and 1% penicillin and streptomycin. Once 

cells reached 60-70% confluency, plates were washed with sterile 1XPBS and 1mL of 

1XPBS + 0.05% trypsin was as added to the plate and incubated at 37°C for 3-4 minutes. 

Cells were cultured in a 5% CO2 environment. 

II. Cell Viability Assay 

MDA-MB-231wt cells were collected by centrifugation for 5 minutes at 1000rpm. Cells 

were counted using a hemocytometer and resuspended in 1mL of DMEM growth media. 
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Eight-thousand cells were seeded in a 12 well plate with 500µL of DMEM growth media. 

Twenty-four hours after seeding the growth media was removed and replaced with 

serum-free media reflecting the inhibitory concentration(s) of 50% (IC50) of the cells of 

doxorubicin plus cyclophosphamide (AC) was added to the wells. Twenty-four hours 

later, media containing AC was removed and DMEM growth media was added. Twenty-

four hours later, growth media was removed and media reflecting the IC50s of paclitaxel 

and with or without carboplatin (T±Ca) was added for 24 hours. The same regimen was 

done with equal volumes of dimethyl sulfoxide/distilled water (DMSO)/diH2O, to the 

drug counterpart, as a vehicle control. The vehicle control was controlling for the 

addition of carboplatin. The doses of each drug, the IC50s, are outlined in Table 1. Upon 

completion of the treatment regimen, cells were washed 3 times with 1XPBS and 

collected in 1mL of DMEM growth media. Cells were suspended and 50µL was 

transferred to a tube with 50µL of trypan blue and mixed well. Ten microliters of the 

cell/trypan blue suspension were added to a hemocytometer and viable cells were 

counted.  

III. Zebrafish Drug Screening 

i. Cell Labelling for use in Zebrafish Injection 

Cells with knock-down Spy1 and its vector control were collected by centrifugation for 5 

minutes at 1000rpm. Cells were counted using a hemocytometer and resuspended in 

serum-free DMEM to a final concentration of 500,000cells/ 500µL. 5µL of Vybrant™ 

Dil cell-labelling solution (ThermoFisher TV22885) was added to a concentration of 

8µL/mL. Cells were mixed then incubated at 37°C for 45 minutes, mixing every 5-10 

minutes. Fluorescence was confirmed via Leica CTR6500 microscope using AF software.  
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Table 1: Chemotherapeutic drugs utilized 

Anti-cancer drug 

(Vehicle) 

Doses used in treatment 

(in vitro/in vivo) 

Product Number 

Doxorubicin 

hydrochloride 

(DMSO) 

0.025µM/0.25µM D1515 Sigma-Aldrich 

Cyclophosphamide 

monohydrate 

(DMSO) 

6000µM/4mM C0768 Sigma-Aldrich 

Paclitaxel 

(DMSO) 

0.1µM/1µM T7402 Sigma-Aldrich 

Carboplatin 

(diH2O) 

1250µM/500 µM C2538 Sigma-Aldrich 
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Cells with a labelling efficiency of 85-90% were deemed sufficient for injection. If less 

than 85% of cells were successfully labelled, cells were incubated further and efficiency 

was checked again. Cells were washed, collected via centrifugation and resuspended in 

50µL of serum-free DMEM media to a final concentration of 500,000 cells/50µL. Cells 

were incubated at 37°C until the injector is prepared. While injecting cells were kept on 

ice and resuspended prior to aspiration of media.  

ii. Zebrafish Injection Protocol 

Eggs were collected 2 hours post fertilization. Dead eggs, opaque in transparency, were 

removed from the rest. Healthy viable eggs were rinsed with 1X Hank’s Buffered Saline 

Solution and stored in embryo media at 28°C. Dead fish were removed promptly. Three 

dpf healthy embryos –no skeletal abnormalities, steady pulse, and maintain homeostasis– 

were used for experiments. Any dishes containing protozoan that can harm embryos were 

not used in experiments. Embryos were anesthetized with 0.168mg/mL of ethyl 3-

aminobenzoate methanesulfonate (Sigma-Aldrich E10521). In a blinded trial, colleagues 

Dr. Rosa Ferraiuolo and Annie Semaan injected labelled cells that were infected with 

knock-down Spy1 or its vector control. Cells at a concentration of 1000cells/µL were 

aspirated into a microinjection needle that has been tapered, for ease of injection. The cut 

site of the needle was standardized between every experiment to ensure consistency. Two 

nanolitres of labelled cell suspension were injected into the yolk sac of the zebrafish 

using a Nanoject II (Fisher Scientific) at 3dpf. Cells were given 24 hours to invade before 

treatment began. Treatment with AC/T+Ca was completed over 7 days and fish were 

imaged to assess tumour burden. Embryos were then imaged under a Leica fluorescence 
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stereo microscope (Leica MZ10 F) to confirm injection and placed into a single well of a 

96-well plate containing embryo water for recovery.  

iii. Drug Screening and Analysis in Zebrafish 

Twenty-four hours post-injection fluorescent images of each embryo were taken for a 

pre-treatment measure of tumour burden (Day 0). After initial imaging (Day 0) embryo 

water containing AC was added to the wells. Twenty-four hours later, drug-containing 

water was removed and replaced with embryo water for 24 hours. Treatment with AC 

was repeated over the next 48 hours. Embryo water was removed and replace with 

embryo water containing T+Ca. Twenty-four hours later drug-containing water was 

replaced with equal volumes of embryo water. Treatment with T+Ca was repeated over 

the next 48 hours (Summarized in Figure 3A). DMSO/diH2O treated fish acted as vehicle 

controls for each treatment Post-treatment fluorescent images were taken immediately 

after the final treatment (Day 7). Experimental fish received the chemotherapy regimen in 

embryo media and control fish received an equal concentration of the vehicle control, 

DMSO/diH2O, in embryo media. Concentrations of drugs are outlined in Table 1.  

Images captured were imported into ImageJ software. The image was cropped to 

include the entire embryo but to limit background fluorescence. The image was converted 

to a 32-bit grayscale and the threshold was adjusted to eliminate background pixels. The 

total area of fluorescence was measured to reflect tumour burden. The difference in 

tumour burden between pre-treatment and post-treatment in each individual was recorded 

and results were reflected in overall fold change. Prior to treatment unhealthy fish with 

skeletal/cardiac abnormalities, slow or rapid pulse, and inability to maintain homeostasis 
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were removed from the trial. Individuals were considered outliers if their fold change was 

3 or more times the standard deviation. 

IV. ALDEFLUOR® Assay 

Aldehyde dehydrogenase (ALDH), primarily ALDH1 isoforms, were detected using the 

ALDEFLUOR™ Assay (STEMCELL Technologies 01700). Multiple dilutions of MDA-

MB-231wt and MCF-7wt cells were collected and resuspended in 1mL of cold 

ALDEFLUOR™ assay buffer in a 15mL conical tube. Two methods of staining were 

utilized. 5µL of activated ALDEFLUOR™ reagent was added to the cell suspension and 

mixed well by pipetting. 500µL of the sample was transferred to a tube containing an 

inhibitor of ALDH, DEAB, to act as the negative control for each sample. Alternatively, 

samples were evenly split into two 15mL conical tubes one of which contains 5µL of 

DEAB. 5µL of activated ALDEFLUOR™ reagent was then added to all cell suspension 

and mixed well by pipetting. Importantly, in both methods buffers and all samples were 

kept on ice. All cell suspensions were incubated for 35-45 minutes in the dark at 37°C. 

After incubation, cells were centrifuged at 1000rpm minutes to collect cells. Cells were 

resuspended in 500µL of cold ALDEFLUOR™ assay buffer, filtered through a 70µm 

filter, and analyzed via BD FACSAria Fusion™ 5-Laser 18-Colour with ACDU. Wild-

type unstained cells were used for cell size calibration and to gate for a fluorescence-

negative population. Each inhibited sample was analyzed and gated for followed by the 

uninhibited sample.  
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V. Plasmid Construction 

The following mammalian DNA plasmids were constructed by Dr. Bryan Welm and 

were utilized for reporter construction and confirmation of infection: 

pHIV-dtomato from Bryan Welm (Addgene plasmid #21374) (unpublished) 

pHIV- enhanced green fluorescent protein (eGFP)(Welm et al., 2008) 

The following mammalian DNA plasmids were constructed by Ellen M. Laurie 

and were utilized during infection: 

pHIV- ALDH1A1- dTomato (hereafter ALDH1A1-dTomato) 

pHIV- ALDH1A1-eGFP (hereafter ALDH1A1-eGFP) 

pHIV-ALDH1A3-eGFP (hereafter ALDH1A3-eGFP) 

Lentiviral vector ALDH1A1-dTomato was constructed by amplification of the 

ALDH1A1 genomic promoter and enhancer regions, flanked by AgeI(BshTI) and NotI 

restriction sites, followed by ligation to pHIV-dTomato backbone replacing elongation 

factor-1α promoter (EF-1α). 

Lentiviral vectors ALDH1A1-eGFP and ALDH1A3-eGFP were constructed by 

the amplification of the ALDH1A1 and ALDH1A3 genomic promoter and enhancer 

regions, flanked by AgeI(BshTI) and XbaI restriction sites, followed by ligation to the 

pHIV-eGFP backbone, replacing the EF-1α promoter. 

VI.  Infection Method 

Twenty-four hours prior to infection MDA-MB-231wt and MCF-7wt cells were seeded at 

20,000 cells/well in a 12-well plate format containing 1mL of growth media. Cells were 

grown to 70-80% confluency and growth media was changed to serum and antibiotic-free 

media with 8µg/mL polybrene (Santa Cruz Biotechnology sc-134220). Cells were then 
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incubated for 45 minutes before the addition of virus to each well. The plate was gently 

rocked to ensure mixing and then incubated for 16-18 hours. The multiplicity of infection 

was 2 and the virus titer for all lentiviral production was 1x107 pfu/mL. After 16-18 

hours, the virus was removed, cells were washed with 1XPBS, and 1mL of growth media 

was added to each well. Successfully infected cells were monitored through fluorescent 

microscopy. 

VII. Transfection Method 

SK-BR-3wt cells were transfected for the incorporation of ALDH1A1-dTomato. Cells 

were seeded 18-24 hours before transfection with 1mL of full growth media, growing to 

60-70% confluency at the time of transfection. Transfections were completed in a 12-well 

plate. Before transfection, 1µg of DNA was incubated in 100µL serum-free media and 

2µL of TransIT-BrCa Reagent (Mirus MIR5504) for 30 minutes at room temperature. 

Incubated DNA was added drop-wise to each well and the plate was rocked to evenly 

distribute the mixture. Cells were harvested 48 hours after transfection for 

experimentation. 

VIII. Isolation of ALDH1 low and high populations using a reporter-based 

system 

MDA-MB-231wt, MCF-7wt or SK-BR-3wt cells were infected/transfected with 

ALDH1A1-dTomato or co-infected with ALDH1A1- and ALDH1A3-eGFP lentiviral 

constructs. Infected MCF-7 and SK-BR-3 cells were washed with 1XPBS, incubated for 

3-4 minutes in 500µL 0.05% trypsin, and collected by gently washing with serum- and 

antibiotic-free media. Infected MDA-MB-231 cells were collected in the same fashion 

without the use of trypsin. Cells were washed three times with 1XPBS and resuspended 
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in 500µL of 1XPBS. Cells were filtered through a 70µm cell strainer and were sorted by 

fluorescence-activated cell sorting (FACS) via BD FACSAria Fusion™ 5-Laser 18-

Colour with ACDU. Wild-type cells of each type were used for FACS to calibrate cell 

size and to gate fluorescence negative. When cells were collected for further 

experimentation, the highest and lowest 0-5% of fluorescent cells were collected from 

MDA-MB-231 and/or MCF-7 infected cells. Upon collection, cells were washed with 

1XPBS three times and pellets were either resuspended in cell culture or stored at -20°C 

for later experimentation.  

IX. Mammosphere assay 

Infected MDA-MB-231 cells sorted for stem-like (ALDH1hi) and non-stem-like 

(ALDH1low) populations were seeded into 6-well ultra-low attachment plates at 500 

cells/well. In each well, 2mL of DMEM/F-12 50/50 1X (Corning 10-092) media 

supplemented with 20ng/mL of epidermal growth factor (Gibco PHG0315), 20ng/mL 

human fibroblast growth factor (Sigma F5392), 4µg/mL heparin (Sigma H0777) and 1% 

penicillin/streptomycin tested against Mammocult™ Basal Medium Human 

(Mammocult™ media) (Stem Cell Technologies 05621) supplemented with 5ng/mL 

epidermal growth factor, 5ng/mL human fibroblast growth factor, 5µg/mL heparin, 

2.5µg/mL isoproterenol (Sigma I6504), 0.5µg/mL hydrocortisone (Sigma H0888), and 

5µg/mL insulin (Sigma I3536). Mammospheres were cultured for 7 days at 37°C with 

5% CO2. Images were taken of each well, in its entirety, using a Leica CTR6500 

microscope with AF software. The mammosphere diameter (µm) was measured using 

ImageJ version 1.51k. Spheres ≥40µm or ≥60µm were counted in the total number of 
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spheres, reflected as a percent sphere formation. Calibration of the scale was performed 

using a slide micrometre.  

X. Quantitative Real-Time polymerase chain reaction (qRT-PCR)  

RNA extractions were performed using Qiagen RNeasy Plus Mini Kit (Qiagen Cat# 

74104) as per manufacture’s instructions. Concentration and purity of eluted RNA were 

measured using an ND-1000 Nanodrop Spectrophotometer (NanoDrop Technologies). 

cDNA synthesis was performed using qScript™ cDNA SuperMix Master Mix 

(Quantabio 9048) as per manufacture’s protocol. cDNA was stored at -20°C for further 

experimentation. qRT-PCR was performed using SYBR Green detection utilizing Fast 

SYBR™ Green Master Mix (ThermoFisher 4385612). Reactions of 10µL were run over 

40 cycles of denaturation at 95°C and primer annealing and elongation at 60°C. Each 

reaction contained 6.25nM of primers (see Table 2). The analysis was done using Viia7 

Real-Time PCR System and software (Life Technologies). Samples were normalized to 

an internal control, human GAPDH. Analysis of qRT-PCR results was completed using 

QuantaStudio™ Real-Time PCR Software v1.3.  

To normalize genes to GAPDH the difference between the Ct value of the gene of 

interest and the Ct value of GAPDH is calculated resulting in the ΔCt. The ΔCt of the 

calibrator sample is set to 0 and all samples are compared to generate ΔΔCt values (ie. 

ΔΔCtsample= ΔCtsample- ΔCtcalibrator). The relative quantification (RQ) of a sample is 

calculated for each sample with the equation RQ=2-ΔΔCtsample. The log10RQ represents the 

fold change between the sample and the calibrator. Error bars represent the standard error 

of the mean log10RQ value.  
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Table 2: Primers utilized in PCR and qRT-PCR 

 Primers (Forward/Reverse) 

ALDH1A1 

(PCR) 

5’-ACCGGTCCACAATCAGAGCATCCAGAG-3’ 

5’-GCGGCCGCCTCCTGGAACACAGGTGACTGGCTCAG-3’ 

ALDH1A3 

(PCR) 

5’-TACCGGTGGAATGGCATGCATCAGAAGCC-3’ 

5’-TTCTAGACTCCTCCGCGCTCCCTGGC-3’ 

hGAPDH 

(qRT-PCR) 

5’-GCACCGTCAAGGCTGAGAAC-3’ 

5’-GGATCTCGTCCTGGAAGATG-3’ 

hALDH1A1 

(qRT-PCR) 

5’-CTGCCGGGAAAAGCAATCTG-3’ 

5‘-CCACAAAAATCCTGGATGCGG-3’ 

hALDH1A3 

(qRT-PCR) 

5’-ACCATCCCCACAGATGACAAC-3’ 

5‘-ATAAAGGGCGGTGAGAGGTGTCT-3’ 

eGFP 

(qRT-PCR) 

5’-ACGTAAACGGCCAAGTTC-3’ 

5’-CGGTGGTGCAGATGAACTTC-3’ 

hSpy1 

(qRT-PCR) 

5’-TTGTGAGGAGGTTATGGCCATT-3’ 

5’-GCAGCTGAACTTCATCTCTGTTGTAG-3’ 
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XI. Immunocytochemistry 

i. Immunostaining 

ALDH1hi and ALDH1low cells were seeded on to a 12-well adherent plate containing 

coverslips. After 48 hours coverslips were collected. Cells were fixed with 4% 

paraformaldehyde in 1XPBS for 45 minutes at room temperature. After fixation, cells 

were stored at -20°C in a 1:1 ratio of glycerol and 1XPBS. Coverslips were then washed 

with 1XPBS three times. Cells were permeabilized with 0.2% Titron X-100 in 1XPBS for 

30 minutes. Slips were blocked with LAP blocker (Titron X-100, glycine, FBS, and 

1XPBS). Rabbit Anti-GFP (Abcam 290) was used at 1/10,000 in LAP blocker incubated 

in the dark for 1 hour at room temperature, followed by 3 washes with 1XPBS. Alexa 

conjugated antibodies (Invitrogen A-11034) and propidium iodide (ThermoFisher 

Scientific p3566) (a gift from Dr. A. Swan) was used at 1/1000 in LAP blocker, 

incubated in the dark for 30 minutes, followed by 3 washes with 1XPBS. Slide coverslips 

were mounted to slides using mounting solution (Ibidi 50001), then sealed with nail 

polish.  

ii. Confocal Microscopy 

Immunostained cells were imaged using an Olympus FluoView FV1000 laser scanning 

confocal microscope. Images were analyzed in Olympus FluoView software version 1.5.  
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RESULTS 

I. Treatment with AC/T±Ca decreased the viability of TNBC in vitro and in 

vivo.  

To examine the effects of carboplatin (Ca) on cell viability when combined with 

doxorubicin (A) plus cyclophosphamide (C) then paclitaxel (T), MDA-MB-231 triple 

negative breast cancer cells were treated with a regimen of AC/T ± Ca or their vehicle 

control counterparts (outlined in Figure 2A). Cell viability was assessed using a trypan 

blue exclusion assay. The vehicle control shows no effect on cell viability. Treatment of 

AC/T significantly decreased the viability of cells compared to control, to under 18% 

viability and the addition of carboplatin further decreased viability, significantly, to under 

9% (Figure 2B). Therefore, carboplatin further decreases cell viability in MDA-MB-

231wt cells, when combined with AC/T.   

 To elucidate the role of Spy1 in treatment resistance MDA-MB-231 cells were 

infected with shSpy1 or its control empty vector (plko) then injected into zebrafish and 

treated with AC/T+Ca over a 7-day treatment (outlined in Figure 3A). Zebrafish were 

imaged before (Day 0) and after (Day 7) treatment. Treatment with AC/T+Ca decreased 

the area of fluorescence in both shSpy1 and control populations, compared to the vehicle 

control. The knockdown of Spy1 significantly decreased the area of fluorescence when 

combined with AC/T+Ca treatments, suggesting that the knockdown of Spy1 sensitizes 

cells to treatment in vivo (Figure 3B).  
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Figure 4: Treatment of TNBC cells in vitro with AC/T ± Ca decreases cell viability. 

A) Schematic of treatment with doxorubicin (A), cyclophosphamide (C), paclitaxel (T), 

and/or carboplatin (Ca) MDA-MB-231wt cells were treated with the inhibitory 

concentration of 50% of the cells (IC50) (IC50s provided by Dr. R. Ferraiuolo). (B) 

Percent cell viability of cells treated with AC/T ± Ca determined through the trypan blue 

exclusion assay. Error bars represent standard error of the mean of three samples counted 

in triplicate. *p<0.05, ***p<0.001. Statistical significance was analyzed using a Student's 

paired t-test.  
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Figure 5: Knock-down of Spy1 in vivo sensitizes TNBC cells to treatment with 

AC/T+Ca. (A) Schematic of zebrafish treatment regimen with drugs doxorubicin (A), 

cyclophosphamide (C), paclitaxel (P), and carboplatin (Ca) where the pill icon represents 

days where drugs were added and the microscope represents days of imaging. 

(Completed by Dr. R. Ferraiuolo and Anne Semaan) (B) Western blot showing Spy1 

knockdown with actin as a loading control (Completed by Dr. R. Ferraiuolo). 

Densitometry of 1 experiment below. (C) Fold change in the area of fluorescence 

between treatment with AC/ T ± Ca or vehicle control (plko), with or without the 

knockdown of Spy1. Error bars represent standard error of the mean. p*<0.05, p**<0.01. 

Statistical significance was analyzed using a 1-tailed homoscedastic t-test. (D-D’’) 

Representative images before treatment. (E-E’’) Representative images after treatment. 

Images were provided by Dr. R. Ferraiuolo for quantification. Bright-field (left), 

fluorescent images detecting Vybrant™ dye (middle), and merge images (right) were 

taken at 3.75X zoom. 
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II. STEMCELL™ Technologies’ ALDEFLUOR™ kit shows variable results 

for TNBC 

To assess the effectiveness of the ALDEFLUOR™ kit in detecting ALDH-high vs. 

ALDH-low cells, the staining conditions for cell lines MDA-MB-231 and MCF-7s were 

determined. MCF-7s are reported to have a low frequency of stem cells comprising <1% 

of the population (Charafe-Jauffret et al., 2009b; Croker et al., 2009), whereas  

MDA-MB-231wt cells are reported to contain a stem cell population of approximately 

10% and hence were used to initially optimize the ALDEFLUOR™ assay (Ginestier et 

al., 2007; Kong et al., 2015). Unstained MDA-MB-231wt cells were used as a 

fluorescent-negative control (Figure 4B: gate P2). MDA-MB-231 cells were stained with 

ALDEFLUOR™ reagent and an inhibitor of ALDH activity, DEAB, was added to half 

the sample to serve as a control for specificity. All samples were incubated at 37°C for 35 

minutes. Inhibited samples followed the same trend as unstained samples, with only 0.4% 

of cells staining positively (Figure 4C: P3). ALDEFLUOR™ stained cells showed cells 

with an increased ALDEFLUOR™ signal (Figure 4D: P3). Results supported that ~36% 

of the MDA-MB-231 population was ALDEFLUOR™ positive.   

In a repeat experiment, unstained MDA-MB-231wt cells were used to set the 

gates for an ALDH- population (Figure 5B: P3). To increase the staining efficiency of the 

ALDEFLUOR™ kit the incubation times were increased from 35 minutes to 45 minutes, 

as suggested by STEMCELL™ Technologies (STEMCELL Technologies, 2011). 

Increasing the time of incubation altered the spread of signal intensity, shifting towards 

higher intensity (Figure 5D: P2), however, treatment with the DEAB inhibitor resulted in  
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Figure 6: Optimization of ALDEFLUOR™ assay with TNBC cells. A) Schematic of 

experimental design for panels B-D. (B-D) Flow cytometry was conducted to measure 

ALDEFLUOR™ eGFP fluorescence (FITC: x-axis) and light emitted from phycoerythrin 

(PE: Y axis). (B) Unstained MDA-MB-231wt cells were used to gate for a fluorescence-

negative population (P2). (C) Fluorescence intensity of ALDEFLUOR™ stained MDA-

MB-231wt cells inhibited by DEAB. (D) Fluorescence intensity of ALDEFLUOR™ 

stained MDA-MB-231wt cells. P3/P4 representing positive ALDEFLUOR™ 

fluorescence. Quantification, in percent, of cells within each gate are below each plot.   
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Figure 7: ALDEFLUOR™ fluorescence is variable within samples. A) Schematic of 

experimental design where 1 sample was split evenly and analyzed as 2 samples. (B-D) 

Flow cytometry was conducted to measure ALDEFLUOR™ eGFP fluorescence (FITC: 

x-axis) and light emitted from phycoerythrin (PE: Y axis). (B) Unstained MDA-MB-

231wt cells were used to gate for a fluorescence-negative population (P2). (C) 

Fluorescence intensity of ALDEFLUOR™ stained MDA-MB-231wt cells inhibited by 

DEAB. Quantification, in percent, of cells within each gate are below each plot.  (D) 

Fluorescence intensity of ALDEFLUOR™ stained cells from the same culture. (E) 

Quantification, in percent for 3 repetitions of the experiment within each gate. P3/P4 

representing positive ALDEFLUOR™ fluorescence. 
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cells with higher fluorescence than ‘samples’ at 42.4% (Figure 5C: P2). Cells collected 

from a single plate of cells were divided into 2 samples and analyzed separately, as an 

example sample 1 and 1.1. Interestingly, flow cytometry results from samples collected 

from the same plate of cells (Figure 5E) showed variability in some samples of up to 

15.4%. Variability increased further between samples, with ALDH+ populations (P2), 

ranging from 22.8- 43.9%.  

To better understand the variability seen with DEAB inhibition between 

experiments (Figures 4B and 5C), new DEAB inhibitor was purchased and added to 

inhibited samples prior to the addition of ALDELUOR™ reagent (STEMCELL 

Technologies, 2011). In MDA-MB-231 and MCF-7 cell lines, the early addition of 

DEAB did not show results similar to the unstained control (Figure 6A: top/middle and 

6B: top/middle). Additionally, high level of staining at 98.4 and 37.8% in both 231 and 

MCF7 cells, respectively, was particularly discerning (Figure 6A, 6B: middle/far right 

panels).  Overall, these results show that the ALDEFLUOR™ assay may not be a reliable 

method to detect ALDH fluorescence in MDA-MB-231wt and MCF-7wt cells. 

III. Transcriptional Reporter System ALDH1A1 and ALDH1A3 

As an alternative to STEMCELL™ Technologies’ ALDEFLUOR™ kit, we set out to 

derive a transcriptional based system for the isoforms of ALDH, to identify ALDH+ 

populations. An expression reporter construct/system that expresses dTomato under the 

ALDH1A1 enhancer was used to assay ALDH1A1 expression in successfully infected 

cells (Figure 7A). MDA-MB-231wt and SK-BR-3wt cells were infected or transfected,  
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Figure 8: ALDEFLUOR™ fluorescence in triple-negative and luminal breast cancer 

cells. MDA-MB-231wt and MCF-7wt cells were analyzed via flow cytometry to measure 

ALDEFLUOR™ fluorescence (FITC: x-axis) and light emitted from phycoerythrin (PE: 

y-axis).  Quantification of each gated population, in percent, is on the far right. (A) 

Unstained MDA-MB-231wt cells were used to gate for a fluorescence-negative 

population (P2). (A’) Fluorescence intensity of ALDEFLUOR™ stained MDA-MB-

231wt cells inhibited by DEAB. (A’’) Fluorescence intensity of ALDEFLUOR™ stained 

MDA-MB-231wt cells. (B) Unstained MCF-7wt cells were used to gate for a 

fluorescence-negative population (P2). (B’) Fluorescence intensity of ALDEFLUOR™ 

stained MCF-7wt cells inhibited by DEAB. (B’’) Fluorescence intensity of 

ALDEFLUOR™ stained MCF-7wt cells.  

 

  



53 

 

 

 

 

 

 

 

 

 

 

 

 



54 

 

Figure 9: The dTomato-ALDH1A1 reporter has low positive staining. A) Vector map 

of pHIV-ALDH1A1-dTomato. (B-B’) Representative confocal image of MDA-MB-231 

cell stained to detect Phalloidin (green) and dTomato fluorescence (B’: show in 

grayscale). 60X magnification. The scale bar measures 10µm. (C) MDA-MB-231wt and 

SK-BR-3wt cells infected or transfected, respectively, with pHIV-dTomato (control) or 

pHIV-ALDH1A1-dTomato, as indicated. Flow cytometry was conducted to measure 

reporter dTomato signal (PE-A: x-axis) and side scatter (SSC-A: Y axis) to measure cell 

granularity.  P1 gates for negative fluorescence and background and P2 gates for positive 

fluorescence. Each repetition represents an independent infection.  
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respectively, with pHIV-dTomato control or ALDH1A1-dTomato and detection of 

dTomato was performed through fluorescence detection. Infection/transfection of the 

control plasmid in MDA-MB-231 and SK-BR-3 cells did not show any increase 

fluorescence compared to uninfected cells (wt control not shown). There was only a 

marginal increase, of 1.8%, in fluorescence in SK-BR-3wt cells and no increase in MDA-

MB-231wt cells; both lines were specifically chosen for their high ALDH-expression 

(Ginestier et al., 2007; Kong et al., 2015; STEMCELL Technologies, 2009). These 

results suggest that that the live signal of ALDH1A1-dTomato, alone, is not sufficient for 

FACS. 

It is reported that ALDH1A3 is the isoform of ALDH mostly responsible for 

ALDEFLUOR™ fluorescence in stem cell populations (Ikawa et al., 1983; Rexer et al., 

2001); however, after the construction of a pHIV-ALDH1A3-dTomato reporter construct, 

technical issues halted progress with this vector. As an alternate approach, ALDH1A1-

eGFP and ALDH1A3-eGFP reporters were constructed (Figure 8).   

IV. Transcript levels of eGFP, ALDH1A1, ALDH1A3 and hSpy1 are 

increased in ALDH1high populations 

The live signal of co-infected cells expressing eGFP was sufficient for FACS. To validate 

the reporter, transcript levels were analyzed to determine whether ALDH1A1 and 1A3 

levels were elevated as indicated by fluorescence. ALDH1A1 and ALDH1A3 (ALDH1, 

for brevity)low and ALDH1high cells were sorted based on eGFP intensity via FACS (as 

summarized in Figure 9A). As performed in other studies, the 0-4% lowest and highest 

fluorescing cells were selected as ALDH1low and ALDH1high (Figure 9B). Quantification,  
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Figure 10: Vector maps of eGFP reporters. A) Vector map of pHIV-ALDH1A1-eGFP. 

(B) Vector map of pHIV-ALDH1A3-eGFP. 
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Figure 11: ALDH1high populations have increase transcript levels of hSpy1, eGFP, 

ALDH1A1 and ALDH1A3. A) Schematic demonstrating the protocol for ALDH1low and 

ALDH1high transcript analysis. (B) FACS was conducted to measure reporter eGFP signal 

(FITC-A: x-axis) and side-scattered light (SSC-A: y-axis) was measuring cell granularity. 

(C) Quantification of three independent sorts, in percent, of gated populations eGFP- 

(neg), eGFP+, eGFPlow (pos low) and eGFPhigh (pos high) cells in MDA-MB-231wt and 

MCF-7. (D) Log10 Relative Quantity (RQ) of transcript levels of eGFP, ALDH1A1, 

ALDH1A3 and hSpy1 in MDA-MB-231 cells. (E) Log10 Relative Quantity (RQ) of 

transcript levels of eGFP, ALDH1A1, ALDH1A3 and hSpy1 in MCF-7wt cells. Error 

bars represent the standard error of the mean of three independent infections, run in 

triplicate qRT-PCR reactions. p*<0.05, p**<0.01. 
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in percent, of the average eGFP-, eGFP+, eGFPlow, eGFPhigh cells between MDA-MB-231 

and MCF-7 populations (Figure 9C). We found an average 13.9% of the population 

reflecting an eGFP positive population, in three separately infected samples with a range 

of 12.3-16.8%. Uninfected cells provide a distinct population of fluorescence-negative 

cells (wt control not shown). MCF-7 infected cells showed an average 7.6% eGFP 

positive cells with a range of 6.3-9.9% over three separately infected samples (Figure 

9C). Relative quantification of mRNA, normalized to GAPDH, showed an increase in 

eGFP, ALDH1A1 and ALDH1A3 in ALDH1high populations compared to ALDH1low in 

both triple-negative MDA-MB-231 cells (Figure 9D) and luminal MCF-7 cells (Figure 

9E). The increase in ALDH1A3 transcript levels was statistically higher in the 

ALDH1high population of triple-negative cells. Additionally, there was an increase in 

hSpy1 in ALDH1high populations, suggesting that Spy1 may play a role in stemness. 

While the reporter needs further validation, preliminary results show that hSpy1 may be 

increased in CSC populations in MDA-MB-231wt cells. 

V. Mammosphere formation is enhanced in ALDH1high triple negative 

populations 

To validate the reporter through functional assays, MDA-MB-231wt cells were co-

infected with ALDH1A1-eGFP and ALDH1A3-eGFP reporters, collected, and sorted by 

low and high eGFP intensity (ALDH1low and ALDH1high respectively). Mammosphere 

forming capacity was in ALDH1low and ALDH1high sorted populations (summarized in 

Figure 10A). Uninfected cells from infected population provide a distinct population of 

fluorescence-negative cells (wt control not shown). The selected lowest and highest 1.5-

2% of fluorescing cells were collected for mammosphere formation analysis (Figure 
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10B). Sorted populations were each put into two different mammosphere conditions that 

favour growth of stem-like cells (Dontu et al., 2003). Mammospheres that measured 

greater or equal to 40µm (Figure 10C) or 60µm (Figure 10C’) were counted. ALDH1high 

cells had more mammospheres in all types of media and cell sizes, significantly in 

DMEM F-12 supplemented media and mammospheres equal or greater to 40 µm in 

Mammocult™ supplemented media (Figure10 D & E: left panel). ALDH1high cells show 

an increased ability to form spheres compared to ALDH1low cells. These results also 

indicate that MDA-MB-231 cells with low expression of ALDH1A1 and ALDH1A3 are 

still capable of sphere formation, but not as efficiently as those with higher expression. 

These results suggest that identification of stem-like cells through reporters for 

ALDH1A1 and ALDH1A3 is functionally relevant, and further supports the functionality 

of our transcriptional reporter system.  
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Figure 12: The number of mammospheres formed in ALDH1high cells are greater 

than ALDH1low cells. A) Schematic of experimental design for mammosphere formation 

assay with ALDH1low and ALDH1high sorted cells. (B) FASC was conducted to measure 

eGFP signal (FITC: x-axis) and side-scattered light (SSC-A: y-axis) measured cell 

granularity in MDA-MB-231 cells. Gated populations negative/ background fluorescence 

(neg), ALDH1-positive low-fluorescing (pos low) and ALDH1-positive high-fluorescing 

(pos high). Each repetition represents an independent infection. (C) Representative 

mammosphere images in bright-field from ALDH1low and ALDH1high cells. (D) 

Quantification, in percent, of mammospheres ≥40 µm and ≥60 µm formed from 

ALDH1low and ALDH1high cells in DMEM F-12 media. (E) Quantification, in percent, of 

mammospheres ≥40 µm and ≥60 µm formed from ALDH1low and ALDH1high cells in 

Mammocult™ media. Error bars represent standard error of the mean percentage of three 

independent co-infections. *p<0.05. Statistical significance was analyzed using a 

Student's paired t-test. Scale bar measures 40µm. 
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DISCUSSION 

Approximately one-third of patients with triple-negative breast cancer (TNBC) will 

experience tumour relapse within the first 3 years after treatment (Dent et al., 2007). 

Compared to other subtypes of breast cancer, TNBC has a higher rate of cerebral 

metastases, visceral metastases, and local relapse (Rodriguez et al., 2006). Pre-clinical 

drug screening has become a focus in translational biology to better understand individual 

patient responses to various treatments. TNBCs are known to be made up of a 

heterogeneous population of cells that add to the complexity of a tumour (Heppner, 

1984). Furthermore, subpopulations of cells in TNBCs are known to respond differently 

to treatment (Visvader and Lindeman, 2006). Targeting the bulk of a tumour and 

targeting subpopulations of cells that evade treatment is a central focus in resolving 

factors contributing to relapse.  

Recently, platinum agents have shown success in further enhancing chemotherapy 

regimens and patient responses (Hurley et al., 2013; Sikov et al., 2009). Currently, there 

is no data in the literature that test the addition of platinum agent carboplatin (Ca) to test 

responses imitating the timing of administration in the clinic, in TNBC cell lines. To 

mimic a clinical setting the platinum drug, carboplatin, was used in combination with 

standard of care (SOC) doxorubicin plus cyclophosphamide the paclitaxel (AC/T) 

treatment (Figure 1A) using the TNBC cell line MDA-MB-231wt (Figure 2A). We found 

that approximately 8% of MDA-MB-231 cells remained viable after treatment with 

AC/T+Ca, a decrease of approximately 9% compared to AC/T alone. The further 

decrease in cell viability with the addition of carboplatin to chemotherapy regimens is 

consistent with the literature (Wang and Lippard, 2005).  
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While preliminary results from drug screens are often determined through the in 

vitro techniques, the use of zebrafish, with an intact microenvironment, provided a more 

translational model for drug-response. Using zebrafish to determine drug responses in 

cells has gained reputability as a pre-clinical model in which survival data from patients 

can later be compared. Labelled cells were injected into zebrafish, followed by addition 

of chemotherapy drugs to determine the resistance of these cells to treatment. Using this 

method, tumour burden was measured, as area of fluorescence, before and after treatment 

to determine the effectiveness of treatment on decreasing tumour burden. The knockdown 

of Spy1, an atypical cell cycle regulator implicated in breast cancer, further sensitized 

cells to AC/T+Ca treatment (Figure 3C). While findings are preliminary, they suggest 

that zebrafish can be utilized as in vivo model to elucidate Spy1’s role in resistance to 

treatment in TNBCs. These findings support similar published data in which the knock-

down of Spy1 sensitizes ER+ breast cancer cells to tamoxifen treatment (Ferraiuolo et al., 

2017).  

While there was a statistically significant difference in the area of fluorescence, a 

large amount of variability was found within groups. Standardization of treatment 

involves many technical aspects leaving several possible explanations for the large 

deviation. One experimental procedure that needs better standardization is the number of 

cells injected. Even though the injection needle is tapered to the same length, it is 

difficult to ensure that the same number of suspended cells are injected every time, 

especially if trials are completed over multiple days. Standardizing the number of cells 

injected will allow greater comparability of replicates and data sets. Assuming the same 

number of cells are injected, the staining of cells is not entirely optimal and can result in 
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an inaccurate measure of tumour burden. The area of fluorescence was compared within 

fish, before and after treatment, and presented as fold change to mitigate variability 

between individuals. The zebrafish are stored in the same well during the duration of 

their treatment with the addition and removal of embryo water, with or without drugs, 

completed by manual pipetting. The removal or addition of embryo water to the well is a 

stressful event for the embryo. If the embryo becomes stressed it may be necessary to 

leave some embryo water in the well prior to the addition of new embryo water. If all the 

embryo water containing drugs cannot be removed it is possible that drugs remaining in 

the well of the plate could affect cell viability. Though it’s unlikely that it would have a 

large impact at such dilute concentrations the possibility of enhancing treatment cannot 

be discounted. Lastly, what cannot be controlled for is variability in metabolism between 

zebrafish. Variation in the metabolism of each fish means that some fish may be affected 

by drugs to a larger or lesser extent. Since the breakdown of drugs into their functional 

components are necessary, a decrease in fish metabolism would reduce the availability of 

drugs to act on the cancer cells. Varying metabolism of drugs between fish can create 

variability in the overall area of fluorescence if drugs are not broken down at the same 

rate. To mitigate these issues, White et al., suggests the use of statistical methods that 

accounts for signal variability using power and significance values to account for false-

call rates (White et al., 2016), though this is geared toward high-throughput samples 

(White et al., 2013). Sample size of 40-50 fish are common in low- to mid-throughput 

screening, however sizes up to 100-200 have been recommended (Veinotte et al., 2014). 

Increasing the number of individuals will increase the accuracy of fold change 

quantification and decrease standard deviation.  
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If in vitro data is an indication, it is conceivable that a resistant population of cells 

will remain in the zebrafish. Previous in vitro studies found that MDA-MB-231 cells that 

survived treatment with paclitaxel had high expression of stemness markers – Sox2, 

OCT3/4, c-Myc, Nanog – compared to untreated populations (Jeong et al., 2016). 

Therefore, it is reasonable to believe that the drug-resistant population would possess 

stem-like characteristics that may allow them to evade cell death mechanisms. A critical 

step after treatment would be the isolation and characterization of the drug-resistant 

populations. Hypothesizing that drug-resistant cells have some stem-like qualities, 

determining whether the drug-resistant populations display markers of cancer 

stem/progenitor cells – ALDH, CD44+, CD24-– would provide an excellent 

characterization of these drug-resistant cells.  

In preparation for the use of patient samples in the Spy1 trial, drug-sensitive and 

drug-resistant standards are necessary to establish, to which patient samples will be 

compared. Since the knockdown of Spy1 sensitized TNBC cells to AC/T+Ca treatment, 

knockdown and overexpression of Spy1 are important standards for patient sample 

comparison. Additionally, since CSCs are highly drug-resistant compared to more 

differentiated cells, ALDH+/high and ALDH- cells, as well as CD44+/CD24- and CD44-

/CD24+ cells would provide an excellent standard for drug-resistant and drug-sensitive 

populations. Protocols for isolation of CD44+CD24- populations are currently being 

optimized. Isolation of ALDH+/high populations is routinely completed by use of the 

ALDEFLUOR™ assay. The ALDEFLUOR™ kit has been used in numerous studies as a 

method for identifying ALDH expression in cells using fluorophore GFP, as a marker for 

BCSCs. Optimization of this assay involved a number of steps. STEMCELL™ 
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Technologies, used the SK-BR-3 cell line as a positive control for ALDH expression as it 

has a substantial ALDH+ expression (STEMCELL Technologies, 2009, 2011). MCF-7 

cells were used as a negative control as studies examined a low ALDH population of 

<1% (Croker et al., 2009; Ginestier et al., 2007). TNBC cell line MDA-MB-231 cells are 

known to have an ALDH+ population of approximately 10% (Ginestier et al., 2007; Kong 

et al., 2015). Unfortunately, the SK-BR-3 cell line was not available at that time and 

would have provided an excellent positive control. Inhibitor of ALDH, DEAB, was used 

as a control for non-specific staining and an unstained control provided a control for 

background fluorescence (Figure 4B-C). Interestingly, there was a higher percent of 

ALDH+ cells than what has been reported in the literature (Figure 4D) (Croker and Allan, 

2012). Furthermore, it has been reported that MDA-MB-231 populations have high levels 

of transcript variation (Nguyen et al., 2016), which may explain an increased ALDH+ 

population. To validate these findings, cells were incubated longer as recommended by 

STEMCELL™ Technologies (STEMCELL Technologies, 2011) and samples were split 

and analyzed as 2 (ie. sample 1 and 1.1). Interestingly, the inhibited sample showed 

positive staining for ALDH (Figure 5C) which could be a result of multiple possibilities: 

the inhibitor did not work to inhibit ALDH and/or there is non-specific staining allowing 

for enriched detection of fluorescence. Equally as concerning was the high degree of 

variability between samples derived from the same plate of cells; this suggests that the 

enhanced ALDH+ fluorescence in the prior experiment was not a result of transcript 

variation within the MDA-MB-231 population (Figure 5E). To test for non-specific 

staining, ALDEFLUOR™ fluorescence of MCF-7 cells were compared to MDA-MB-231 

cells. Similar to the previous experiment, the DEAB inhibitor, showed increased 
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fluorescence compared to the unstained control, even though it was added before the 

additional of ALDEFLUOR™ reagent to ensure inhibition of enzymatic activity. 

Additionally, in MCF-7 cells there were a large amount of ALDEFLUOR+ cells, which is 

inconsistent with previous findings (Figure 6B’’) (STEMCELL Technologies, 2009). 

This suggests that the inhibitor DEAB and non-specific staining could both be 

possibilities in the variability of results shown. Future work with the ALDEFLUOR™ kit 

will utilize SK-BR-3s as a positive control for ALDEFLUOR™ and MCF-7s as a 

negative control. Further troubleshooting with the STEMCELL™ Technologies is 

required.  

In addition to the technical issues with the ALDEFLUOR™ kit, it is known that 

this kit does not distinguish between isoforms of ALDH (STEMCELL Technologies, 

2009). The identification of individual isoforms would serve as a powerful tool to 

enhance consistency of results while serving as a tool to further identify characteristics of 

specific isoforms. ALDH1A1 and ALDH1A3 are two important isoforms of ALDH1 that 

have been identified in BCSC populations (Croker et al., 2017; Marcato et al., 2011b). It 

has been demonstrated that ALDH1A1 expression is an important predictor of metastasis 

but does not greatly contribute to the expression of ALDH detected by the 

ALDEFLUOR™ kit (Croker et al., 2017). Inversely, ALDH1A3 is important in the 

overall detection of ALDH levels in the ALDEFLUOR™ assay but its expression has not 

demonstrated importance in predicting metastasis (Croker et al., 2017). For these reasons, 

the creation of reporters to detect expression of ALDH1A1 and ALDH1A3 are valuable 

tools for BCSC identification and are good candidates for verifying results from the 

ALDEFLUOR™ assay.  
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To investigate the validity of constructed reporter systems in the identification of 

breast cancer cells, MB-MDA-231s, MCF-7s and SK-BR-3s were infected or transfected, 

respectively, with ALDH1A1-dTomato or coinfected with ALDH1A1-eGFP and 

ALDH1A3-eGFP. Reporter systems were modelled after the development of a 

fluorescent reporter for CSC pluripotency gene, Nanog (Thiagarajan et al., 2015). From 

ALDEFLUOR™ data we know that MDA-MB-231 cells show 2 distinct populations 

when sorted, one similar to an inhibited sample and one with enhanced ALDH activity 

(Croker et al., 2009). MCF-7 cells were utilized because their ALDH activity is 

extremely low (Croker et al., 2009; Nie et al., 2015). Since many important vectors in our 

lab contain eGFP fluorescent reporters, dTomato was chosen as it would be beneficial for 

expression experiments. Our preliminary results using flow cytometry showed MB-

MDA-231 and SK-BR-3 cells infected or transfected, respectively, however, ALDH1A1-

dTomato exhibited lower expression, as indicated by low detection of a live signal in 

both cell lines (Figure 7C). The empty vector, expressing dTomato under the control of 

the eukaryotic translation EF-1α enhancer also showed very low or no fluorescence. 

Detection of dTomato by confocal microscopy confirmed these results as the dTomato 

signal was present, but very low, in MDA-MB-231 cells (Figure 7B-B’). These results 

were presumably not a result due to infection/transfection efficiency, as utilization of the 

same protocol resulted in other experiments resulted in successfully infected/transfected 

cells. While others have reported a strong signal with dTomato (Lee et al., 2012), there is 

no published material, using this vector, to directly compare results. Future work, using 

an antibody against dTomato could verify that the low signal is a true reflection 
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ALDH1A1 activity; however, would limit further experimentation and downstream 

applications due to fixation of the cells.  

Due to the fact that ALDH1A3 is important in overall expression in the 

ALDEFLUOR™ assay, and technical issues prevented the construction of an ALDH1A3-

dTomato reporter, eGFP containing reporters were constructed. The fluorophore eGFP 

was chosen as many have used in reporter-based systems (Kain et al., 1995), an antibody 

was readily available, and the live signal was strong enough to detect for FACS. Co-

infection with ALDH1A1-eGFP and ALDH1A3-eGFP reporter constructs allowed us to 

quantify expression of important isoforms in the ALDH1 family. Co-infected MDA-MB-

231 were sorted via FACS after gating for the 2% of lowest and highest fluorescence of 

the population. Gating was modelled after Croker et al., where the lowest and highest 

20% of fluorescing cells represented ALDHlow and ALDHhigh populations, respectively 

(Croker and Allan, 2012). Gates were unchanged for MCF-7 populations where there was 

a decreased percent of cells collected; this is not surprising considering MCF-7 have an 

extremely low stem cell population (STEMCELL Technologies, 2009). It is surprising, 

however, that a notable percentage of MCF-7 cells were eGFP+, contrary to findings from 

the ALDEFLUOR™ kit (STEMCELL Technologies, 2009), however this population 

represents a smaller proportion of cells compared to eGFP+ cells in MDA-MB-231 cells. 

Therefore, these results support the functionality of the reporter system designed. 

Previous literature suggests that Spy1 plays an important role in maintaining 

stem-like characteristics in CSC of glioblastoma multiforme (Lubanska and Porter, 

2017). Additionally, Spy1 is known to contribute to tamoxifen resistance in a breast 

cancer cell line (Ferraiuolo et al., 2017). The increase in transcript levels from ALDH1low 
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to ALDH1high cells, in both MDA-MB-231 and MCF-7 cells, indicated that Spy1 may 

contribute to BCSC properties, including drug-resistance. To investigate the role of Spy1 

in BCSC, the ALDH1low and ALDH1high populations were isolated using our reporter 

system, and hSpy1, ALDH1A1, ALDH1A3 and eGFP transcript levels were quantified 

by qRT-PCR (Figure 9D-E). Levels of all transcripts were elevated in ALDH1high 

populations compared to ALDH1low populations, in both cell lines. It is interesting that 

eGFP mRNA levels in either cell line were not statistically significant, considering cells 

were sorted eGFP on protein expression, comparison to eGFP negative populations is a 

future experiment.  

Ideally, protein levels of ALDH would be quantified in addition to mRNA 

expression, however with gates established as the lowest and highest 2% of fluorescence, 

scaling to the number of cells required for protein would be a challenge. An alternative 

would involve gating to include a larger percentage of cells in low and high-fluorescent 

populations; however, as gates become close together, mRNA and protein differences 

between low and high-fluorescing populations would be less obvious. An alternative 

would be to generate GFP tagged ALDH1 isoforms, expressed under its endogenous 

enhancers to distinguish post-translational regulatory mechanisms of ALDH1 in different 

cell lines. This would provide an easier detection method by western blotting, using anti-

GFP antibodies, if enough cells can be collected, and would determine whether there are 

translational mechanisms that regulate ALDH1 activity. Transcript levels of ALDH1A3 

increased in ALDH1high population of MDA-MB-231 cells and MCF-7 cells. This data 

supports the literature demonstrating that the majority of fluorescence in the 

ALDEFLUOR™ assay is a result of the ALDH1A3 expression (Marcato et al., 2011b). 
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 Mammosphere formation assays provide a functional representation of the 

percentage of CSCs in a given population (Grimshaw et al., 2008). ALDH1low and 

ALDH1high were collected from MDA-MB-231 cells co-infected with ALDH1A1-eGFP 

and ALDH1A3-eGFP. Sorted cells were put in two different media conditions. 

Supplements and growth factors are known to have a large impact on cellular 

proliferation and mammosphere formation (Dontu et al., 2003; Wang et al., 2014), 

mammospheres were cultured in 2 types of mammosphere media. ALDH1high cells had a 

greater capacity for sphere formation when spheres were ≥40µm and ≥60µm. In all media 

types and cell sizes, mammosphere formation was still possible in approximately 1-3% of 

ALDH1low cells (Figure 10D). There are many isoforms within the ALDH family, many 

of which have applications in various cancers. While ALDH1A1 and ALDH1A3 are 

important in the identification of the CSC population in TNBCs, ALDH expression is not 

limited to those isoforms (STEMCELL Technologies, 2009). Further construction of 

reporters of relevant ALDH isoforms, such as ALDH3A1, are important in understanding 

what specific isoforms contribute to different characteristics of CSC, both alone and 

together. Due to the specific roles of select isoforms, fluorescent reporters of select 

isoforms may provide further insight into select isoforms important in drug-resistance, 

and other clinically relevant applications.  

Future experiments regarding validation of these ALDH1A1-eGFP and 

ALDH1A3-eGFP reporters are necessary. To better understand the role of each 

individual isoform, described experiments should be repeated assessing 1 isoform at a 

time. Assays involving co-infection with ALDH1A1-eGFP and ALDH1A3-eGFP was 

initially used as a tool to answer questions of ALDH’s role in stemness, as an alternative 
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to the ALDELFUOR™ kit while it was being optimized. When results from the 

ALDEFLUOR™ assay are reproducible, an issue currently being addressed by a 

colleague, co-infected populations with ALDH1A1-eGFP and ALDH1A3-eGFP can 

validate eGFP fluorescence in the ALDEFLUOR™ assay. These preliminary results 

suggest that co-infection of ALDH1A1-eGFP and ALDH1A3-eGFP may be an effective 

tool in isolating CSC, as suggested by the mammosphere assay. Validation using 

transplantation assays and lineage tracing assays in vivo would be importing in 

supporting evidence for these reporters as tools for CSC isolation. In the event these 

reporter constructs are effective in isolating CSC populations, drug testing with AC/T+Ca 

in vitro and in vivo could establish standards for drug-sensitive (ALDH1-/low) and drug-

resistant (ALDH1high) for the Spy1 clinical trial. 

This thesis set out to investigate relapse in TNBC patients. Data from in vitro and 

in vivo models suggest that the addition of carboplatin to SOC AC/T treatment sensitizes 

cells to treatment using clinically relevant drug regimens. Technical tools were developed 

to study CSC populations, which have major implications in relapse and remains a major 

barrier. While these reporter constructs need further validation, they have many 

applications moving forward. CSC and more differentiated populations can be examined 

for viability after AC/T±Ca in vitro. Additionally, reporter-based fluorescence can allow 

for long-term treatment in vivo of CSC populations. Since CSC are known to be resistant 

to chemotherapies, these reporters may provide insight into TNBC drug-resistant 

populations. Insight into treating and identifying drug-resistant populations is critical to 

enhance the predictability of TNBC recurrence, which remains a real concern for many 

patients after treatment.   
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APPENDIX A 

 

Dear Sir/Madam, 

 

Please accept this letter as my authorization for Ms. Ellen Laurie to use the work I 

conducted in Figures 2 and 3 in her thesis. My contribution to her figures include 

optimization of drug screening platforms in figure 2, provision of key ideas, in vivo drug 

screening platforms, experimental design, technical assays, and data collection in figure 

3. Please do not hesitate to contact me if you require further clarification. 

 

 

 

Sincerely, 

 

 

Rosa-Maria Ferraiuolo, PhD 

University of Windsor 
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APPENDIX B 

 

Dear Sir/Madam, 

 

Please accept this letter as my authorization for Ms. Ellen Laurie to use the work I 

conducted in Figure 3 in her thesis. My contribution to her figures include technical 

assays in figure 3. Please do not hesitate to contact me if you require further clarification. 

 

 

 

Sincerely, 

 

 

Annie Semaan 

University of Windsor  
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