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ABSTRACT 

The blow flies Lucilia sericata Meigen, Phormia regina Meigen and Calliphora 

vicina Robineau-Desvoidy (Diptera: Calliphoridae) are important decomposers that 

specifically colonize carrion. Adult flies must make oviposition decisions that impact the 

survival of their offspring and may be influenced by abiotic and biotic conditions. 

Although a great deal of research has been conducted regarding their development under 

different environmental conditions, the influence of species interactions has been scarcely 

investigated. The objective of my dissertation was to examine the effects of temperature, 

relative humidity and species interactions on the oviposition behaviour and development 

of these blow flies.  

To accomplish this, I manipulated the temperatures that adult blow fly 

populations experienced and measured how this affected decisions when ovipositing with 

conspecifics (Chapter 2) and after heterospecifics (Chapter 3) in the laboratory. These 

observations were then validated in semi-natural conditions in the field (Chapter 5). The 

development and eclosion success of blow fly eggs was measured over a range of relative 

humidities (Chapter 4) and larval development was recorded over multiple temperatures 

in the presence of conspecifics and heterospecifics (Chapter 6). I predicted that 

oviposition decisions exhibit plasticity with varying temperature, but shifts in oviposition 

would be influenced to a greater extent by heterospecifics to either avoid competition or 

benefit from facilitation. I predicted that species interactions would either facilitate faster 

development, greater survival and larger adults or lowered survival and smaller adults 

due to competition. The results indicate that mediation of oviposition decisions by 

temperature are species-specific, but for P. regina, 25°C may be a switching point 

between facilitation and competition outcomes with heterospecifics. Differential effects 

of relative humidity on egg eclosion at different temperatures may provide a partial 

mechanism, as well as developmental impacts on adult size in the presence of 

heterospecifics. 
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CHAPTER 1 

BLOW FLIES: ENVIRONMENTAL INFLUENCES, SPECIES INTERACTIONS AND 

REAL WORLD APPLICATIONS 

	
  

1.1 Summary 
	
  

The behaviour and development of insects is often influenced by abiotic and 

biotic conditions, which include temperature, relative humidity and species interactions. 

The outcome of interactions among species can be mediated by abiotic conditions. The 

overall objective of this research was to examine the oviposition behaviour of blow flies 

to investigate how such behaviour could change over a range of temperatures or due to 

species interactions. These behaviours were then examined under natural conditions to 

validate the observations made under controlled lab settings. Oviposition decisions made 

by insects that colonize carrion, such as blow flies, has implications for their offspring’s 

survival and performance, and therefore outcomes in the dynamics of these ephemeral 

resource-based communities. Additionally, where and when blow flies lay their eggs on a 

dead body starts a biological clock that is utilized in forensic entomology to estimate how 

long someone has been dead. Thus, the influences of temperature and species interactions 

were examined for blow fly development with the goal of exploring potential community 

outcomes and providing further developmental data useful in estimating time since death.  

 

1.2 Finding a Suitable Oviposition Resource 
	
  

Carrion represents an ephemeral resource on which a dynamic community of 

insects arrives, colonizes and develops. Despite the large number of observational studies 

of species associated with decomposition stages in carrion ecology (Benbow et al. 2015a) 

or the forensic application of these studies (Reed 1958; Payne 1965; Early and Goff 

1996; Watson and Carlton 2003, 2005), few ecological concepts and processes have been 

explicitly tested or incorporated into forensic investigations until recently (VanLaerhoven 

2010; Tomberlin et al. 2011). Tomberlin et al. (2011) proposed a stage-based framework 
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for describing the behavioural and physiological responses of insects over time as they 

find and utilize a decomposing resource. The first stage, or the precolonization interval, 

involves the detection and location of a suitable resource (Tomberlin et al. 2011) using 

external or internal stimuli. External, or allothetic stimuli are often based on abiotic and 

biotic environmental conditions (Benbow et al. 2015b). Abiotic cues may include 

temperature, relative humidity, and photoperiod whereas biotic cues, either visual or 

olfactory, may indicate the presence and density of other species that may affect 

oviposition choice. Idiothetic or internal stimuli are biological and are based on the 

reproductive status of an insect, such as the egg load or stage of ovarian development 

(Visser 1988). These behavioural responses can change as the physiological state of the 

organism changes (Wall and Warnes 1994) indicating a response to both internal and 

external stimuli. For example, previous studies have observed that in Lucilia sericata 

Meigen (Diptera: Calliphoridae), odours emitted from liver were more attractive to gravid 

females compared to nongravid females and males (Brodie et al. 2014; Wall and Warnes 

1994). In parasitoids, females that are experienced in oviposition and have higher egg 

loads are more receptive to chemical cues than naïve females that have not oviposited 

(Vinson 1998). 

Species that can detect and locate carrion for the purpose of colonization may be 

influenced by the release of volatile organic compounds (VOC) and changes in the 

resident microbial community (Ma et al. 2012; Tomberlin et al. 2012). Blow flies 

(Diptera: Calliphoridae) probe carrion with their ovipositor to determine an oviposition 

site which may involve the use of both visual and olfactory cues (Brodie et al. 2014). 

During decomposition, various compounds are released including those containing sulfur, 

nitrogen, alcohols and acids (Morris et al. 1998; Frederickx et al. 2012; Paczkowski et al. 

2012). For insects, the detection of odours is dictated by the quantity of olfactory receptor 

neurons which are responsible for propagating electrical impulses when stimulated by 

VOC’s (Hansson 2002). A human body can produce over 400 chemical odours during 

decomposition and these odours change during the decomposition process (Archer and 

Elgar 2003; Vass et al. 2008). These changes in odour profiles may signal different 

species at different stages of decomposition. For example, female beetles of Nicrophorus 

vespilloides Herbst (Coleoptera: Silphidae) respond only to odours released during 
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advanced decomposition (Rozen et al. 2008) and it could therefore be the attractant 

quality that regulates the arrival time of this species. 

Blow flies may determine the suitability of an oviposition site using close range 

cues, including chemotactile contact, detected by receptors present on their legs and 

mouthparts (Chapman 2003). Females must accept the carrion as a suitable resource for 

oviposition and these choices are critical to the survival of the offspring and the fitness of 

the ovipositing female (Papaj 2000). The presence of ovipositing females can make the 

resource visually more attractive to other flies (Barton Browne et al. 1969). 

Semiochemicals released during aggregation, the mass egg laying of multiple females in 

a single location, may play a role in the acceptance and collective oviposition behaviour 

of blow flies (Brodie et al. 2015). Females can respond to semiochemicals from both 

conspecifics and heterospecifics (Brodie et al. 2015). Flies and larvae release enzymes 

and microorganisms in their salivary secretions that can facilitate liquefaction of the food 

source and, as a result, may release volatiles that can attract other fly species (Telford et 

al. 2012; Zheng et al. 2013). Brodie et al. (2015) found that gravid female blow flies are 

more attracted to liver that has heterospecifics compared to liver on its own.  

Behaviour and acceptance of a resource for egg laying may also depend on a 

female’s perception of fitness consequences for offspring. Determining an optimal site 

for oviposition is crucial for insects, since the reproductive success of the female depends 

on the survival of their offspring (Thornhill 1976; Jaenike 1978). Insects such as blow 

flies do not invest in parental care and their larvae have limited dispersal capabilities. For 

these organisms, offspring survival is dependent on the resource upon which they are 

deposited, and this ultimately determines the fitness of the female. Optimal oviposition 

theory, as outlined by Jaenike (1978) dictates that insects should select oviposition sizes 

that maximize the development of their offspring. This theory can be interpreted as the 

preference-performance hypothesis, as female preference for certain oviposition sites 

should optimize the performance of their offspring (Thompson 1988). Optimal 

oviposition theory predictions have held true for many insects with a range of life 

histories, including various dipteran families such as Tephritidae (Joachim-Bravo et al. 

2001), Drosophilidae (Krebs et al. 1992) and Culicidae (Ellis 2008). Ellis (2008) found 

that for the eastern tree-hole mosquito, Ochlerotatus triseriatus Say (Diptera: Culicidae), 
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oviposition preferences were based on larval density in different breeding sites. Female 

mosquitoes selected patches with fewer larvae as oviposition sites resulting in greater 

fitness and reduced development time (Ellis 2008). In the leaf miner, Liriomyza 

huidobrensis Blanchard (Diptera: Agromyzidae), females often preferred to feed on 

poorer host plants but selected higher quality plants for oviposition when provided with a 

choice (Videla et al. 2012). 

Oviposition decisions and arrival of blow flies may vary in terms of the carrion 

size or type. When comparing carrion of different sizes, Kuusela and Hanski (1982) 

found that there was no difference in the species attracted to either size carrion, but there 

were differences in the abundance of the flies present with larger carrion attracting more 

flies. Denno and Cothran (1975) found that certain species of blow flies preferred 

different size carrion, where Lucilia sericata Meigen and Phormia regina Meigen 

demonstrated a preference for small and large carrion, respectively. The carcass type can 

also influence the arrival of insects. In a study comparing the insect succession on black 

bear, deer, alligator and swine, Watson and Carlton (2003, 2005) found that although 

numerous species arrived to the carrion, only 19 species were collected from all four 

carcass types. In this study, alligator carrion had the fewest taxa associated with it, most 

likely due to the lack of suitable oviposition sites due to the morphology of the alligator 

(closed cloaca, eyes and jaws) (Watson and Carlton 2005). 

In addition to carrion size and type, I predict oviposition sites selected across a 

whole carrion animal resource varies and that the performance of the offspring based on 

these decisions can vary as well. I expect preference may be divided into a preference for 

specific oviposition sites by different species, which I will measure by the number of 

oviposition events by individual females as well as the preference in terms of the number 

of eggs deposited by these females.  
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1.3 Abiotic and Biotic Interactions 
 

1.3.1 Abiotic Conditions 

 

Environmental factors often constrain the life history traits of organisms. In 

particular, conditions such as temperature, relative humidity or photoperiod can change 

the behaviour and influence the success of an organism. Insects are poikilotherms and 

rely on ambient heat to maintain body temperature (Harrison et al. 2012). Furthermore, 

their development rate is heavily dependent on temperature (Huey and Kingsolver 1989; 

Angilletta et al. 2004). Insects develop and perform within a thermal range, which 

contains a critical thermal maximum (CTmax) and minimum (CTmin) temperature for 

development of the insect as well as an optimal temperature (Topt) (Huey and Kingsolver 

1989; Figure 1.1). These thresholds generally follow a thermal performance curve (TPC), 

with an optimal temperature as well as a lower threshold temperature, that represents the 

lowest temperature that insect development can occur (Huey and Kingsolver 1989; 

Colinet et al. 2015). Contrasting this, the highest temperature that maximizes the 

development rate is the maximum threshold temperature (Huey and Kingsolver 1989). At 

these thresholds, the rate of development is reduced and insect mortality increases 

(Wagner et al. 1984). Overall, the relationship between temperature and insect 

development has a wide range of applications in agriculture and forestry with control of 

pests and disease vectors, and in medicolegal entomology (Arnold 1959; Ames and 

Turner 2003; Highley and Peterson 1994; Roe 2014). 

In addition to temperature, relative humidity can influence development and 

behaviour of insects. In the black soldier fly Hermetia illucens L. (Diptera: 

Stratiomyidae), mating and oviposition behaviour is greater at higher humidities 

(Tomberlin and Sheppard 2002) and Holmes et al. (2012) found that the successful egg 

hatch of H. illucens also depends on humidity. In addition, the fecundity of the female 

mosquito, Aedes aegypti (L.) (Diptera: Culicidae), is reduced during periods of low 

humidity and females will delay oviposition due to low humidity stress (Canyon et al. 

1999). Periods of low and high humidity can also influence the egg hatching success of 

various insects, as observed for the bamboo borer beetle, Dinoderus minutus (Fabricius) 



	
  

	
  
	
  

6	
  

(Coleoptera: Bostrichidae), with low hatching rates at low (20%) and high (85%) 

humidity (Norhisham et al. 2013). Low relative humidity may have repercussions for 

eggs as this can lead to desiccation (Evans 1934), loss of lubrication for proper release of 

larvae from the egg (Guarneri et al. 2002) and ultimately increased mortality (Norhisham 

et al. 2013). Blow flies can combat periods of low humidity by clustering eggs during 

aggregated oviposition (Cruickshak and Wall 2002), thereby reducing exposure to harsh 

environmental conditions and limiting desiccation of eggs (Stamp 1980). 

 

1.3.2 Biotic Conditions 

 

In addition to these abiotic environmental conditions, blow fly larvae developing 

on carrion experience varying biotic conditions in the form of intraspecific and 

interspecific species interactions which can have positive, negative or neutral 

consequences for individuals involved and range from competition, to mutualism and 

commensalism. The patchy nature of carrion results in the formation of discrete 

ephemeral communities, often composed of interacting species that coexist on the 

transitory resource (Atkinson and Shorrocks 1981; Kneidel 1985; Hanski 1987). For blow 

flies competing for limited resources, the high density of larvae on carrion often results in 

scramble competition and can lead to reduced growth rate or increased mortality 

(Saunders and Bee 1995; Smith and Wall 1997a, 1997b; Davies 1999; Ireland and Turner 

2006; VanLaerhoven 2015). Larval crowding on limited resources can produce smaller 

larvae, pupae and undersized adults (Saunders and Bee 1995; Ireland and Turner 2006). 

However, faster development may occur at high larval densities due to the higher 

temperatures generated in larval aggregations (Turner and Howard 1992; Ireland and 

Turner 2006; Slone and Gruner 2007). Insects using carrion resources face a trade-off 

between body size and development, where individuals that emerge as adults sooner are 

often smaller (Nijhout 2003; Davidowitz et al 2005; Chown and Gaston 2010). While 

development of a larger size results in fitness benefits (Kingsolver and Huey 2008), 

longer development times increase the risk of parasitism or predation (Nijhout 2003).  

Aside from competition, insects can experience facilitation, a form of 

commensalism where one species benefits and the other species is not affected 
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(Shorrocks and Bingley 1994) and can occur when a resource is modified by the presence 

of one species, making it easier for another species to utilize. On carrion, early arriving 

species can modify the resource and make it more suitable for later arriving species 

(Hanski 1987; Hanski and Kuusela 1977; Kneidel 1983; Brundage et al. 2014). 

Facilitation has been documented for blow fly species that coexist on carrion. In larval 

stages, P. regina has greater survival rates and larger adult body size when feeding on 

carrion with L. sericata (Rosati 2014). The facilitation of feeding in the larval stages may 

be due to shared salivary enzymes, released by L. sericata, which allows for more 

efficient use of the resource by P. regina (Charabidze et al. 2011).  

Despite these interactions and the ephemeral nature of the resource, numerous 

species of blow fly manage to coexist on carrion. Species that utilize the same resource 

can coexist on a resource due to many different mechanisms (Atkinson and Shorrocks 

1981; Kneidel 1984; Hanski 1987; Ives 1991) such as partitioning the resource in an 

attempt to reduce species interactions. The aggregation model of coexistence predicts that 

competing species can coexist on ephemeral resources if they aggregate in irregular 

patterns (Atkinson and Shorrocks 1984). It is uncommon for one species to dominate and 

exclude another species on an ephemeral resource (Shorrocks 1979; Atkinson and 

Shorrocks 1984). Blow flies also exhibit preferences spatially, in terms of habitat and 

aggregation on resources (Fiene et al. 2014). Baseline studies have examined differences 

between indoor and outdoor habitats (Anderson 2010), aquatic and terrestrial (Anderson 

2010), urban and rural (Hwang and Turner 2005) and sun and shade (Joy et al. 2006).  

Species can also differ in their temporal availability, which can influence the 

extent of species interactions that can occur (Hanski and Kuusela 1977; Kneidel 1983; 

Shorrocks and Bingley 1994). In warmer temperatures experienced in the summer, L. 

sericata arrives to carrion (Smith 1986; Rosati 2014) whereas C. vicina is typically active 

at cooler temperatures and often arrives to carrion during the spring and fall in the 

temperate zone of North America (Donovan et al. 2006; Rosati 2014). Other species, 

such as P. regina, are tolerant of a wider range of temperatures and can be observed on 

carrion in all three seasons in this region (Hall 1948; Anderson and VanLaerhoven 1996; 

Byrd and Allen 2001). The arrival time of these species can also change with geographic 

location. For example, in California and Maine P. regina has been reported to arrive later 
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in decomposition, within 24 - 48 h after death (Denno and Cothran 1976; Lord and 

Burger 1984). However, in British Columbia, Anderson and VanLaerhoven (1996) 

collected P. regina adults earlier in decomposition, immediately after death. 

The dispersal capability of adult blow flies ranges between 4 and 20 km each day 

(Greenberg 1991; Whitworth 2006). Adult flies feed at pollen and nectar rich flowers to 

obtain carbohydrates (Karczewski 1967; Grinfel’d 1955), which are required before they 

feed on protein or engage in mate seeking (Smith and Gadawski 1994; Foster and Takken 

2004; Gary and Foster 2006). Large amounts of protein are needed to mature oocytes and 

flies often acquire protein from pollen, carrion or feces (Evans 1935; Stoffolano et al. 

1995; Erzinçlioğlu 1996). The egg load and clutch size of female blow flies are 

dependent on temperature as well. Specifically, ovariole development and the number of 

eggs that gravid females can carry are influenced by temperature (Harlow 1956; Davies 

2006). For Calliphora vicina Robineau-Desvoidy females, there is a low threshold at 

5°C, and egg maturation does not occur below this temperature (Davies 1998).  

	
  

1.4 Natural History of Study Species 
	
  

Among the dipterans commonly associated with carrion, the family Calliphoridae, 

or blow flies, represent the majority of individuals present (Greenberg 1991; Byrd and 

Castner 2010). This family is diverse and is comprised of about 1100 species (Smith 

1986; Merritt and De Jong 2015). There are five subfamilies found in North America, 

including the Calliphorinae, Luciliinae and Chrysomyinae (Whitworth 2006) all of which 

are very closely associated with carrion in both larval and adult stages (Greenberg 1991; 

Villet 2011; Whitworth 2006). The three species used in this study are locally occurring 

in southern Canada (Smith 1986; Byrd and Castner 2010) and have been observed 

colonizing carrion simultaneously (Anderson and VanLaerhoven 1996; VanLaerhoven 

and Anderson 1999; Sharanowski et al. 2008). 

The life cycle of blow flies is divided into six stages (Greenberg 1991). Females 

lay clutches of eggs that hatch into first-instar larvae. The larvae feeds and moults, 

shedding its exoskeleton, into the second and then a third instar stage. These larval stages 

are the feeding stages in the lifecycle of the blow fly and other than the change in size the 
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larvae look very similar. Morphologically, the life stage can be determined by examining 

the posterior spiracles, where one v-shaped spiracular slit represents a first instar, two 

separate spiracular slits represent a second instar and three represent a third instar 

(Erzinçlioğlu 1996). When the larvae acquire enough nutrients to complete their lifecycle 

and stop feeding, they crawl from the food resource to find a dry place to pupate. During 

this stage, the cuticle hardens and contracts, forming a puparium, or the outer covering 

that provides protection for the pupae (Greenberg 1991). When pupal development is 

complete, an adult fly emerges from the puparium (Greenberg 1991). On carrion 

resources, blow flies can have multiple generations per year (Erzinçlioğlu 1996). Mean 

survival for adult Calliphoridae is between three to four weeks, however, adults have 

been documented to survive for up to 76 days in outdoor and indoor cages (Mackerras 

1933; Parman 1945).  

The female reproductive system contains two ovaries, composed of ovarioles, 

which house the developing eggs. Females are anautogenous, requiring protein to mature 

the eggs and often mate after feeding (Gullen and Cranston 2005). Several days after the 

first mating, a female will reject further attempts from males due to a peptide transferred 

to the female during mating from the male accessory glands which reduces the receptivity 

of the female (Gullen and Cranston 2005). Females that are unreceptive to mating will 

respond to attempts from males by curling their abdomen or kicking males. Females can 

deposit between one and four egg masses before remating and this strategy by males 

ensures paternity of those egg masses (Gullen and Cranston 2005).  

In the Luciliinae subfamily, the species Lucilia sericata Meigen is cosmopolitan, 

and is very abundant in the temperate zone of North America. Adult flies are metallic 

green and range from 6-9 mm in length (Smith 1986; Byrd and Castner 2010). This 

species is an early carrion colonizer and can arrive and deposit eggs within hours after 

death (Anderson and VanLaerhoven 1996; Grassberger and Frank 2004; Sharanowski et 

al. 2008). In addition, this species is more common in seasons with higher temperatures 

above 30°C and prefers open, sunny habitats (Cragg 1955; Smith and Wall 1997b). The 

lower activity threshold for L. sericata is around 14°C (Mellanby 1939), but oviposition 

typically occurs between 30-40°C (Smith 1986; Zurawski et al. 2009). However, L. 

sericata often deposit eggs in more shaded areas of the body, such as inside the mouth, 
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ears or nostrils (Grassberger and Frank 2004). Adult females commence oviposition 

between 5-9 days after they emerge from the puparium and can lay approximately 225 

eggs at a time (Davies 1998), with a lifetime output of between 2000-3000 eggs (Smith 

1986). Development of L. sericata is dependent on temperature, with faster development 

as temperature increases (Kamal 1958; Ash and Greenberg 1975; Greenberg 1991; Wall 

et al. 1992; Davies and Ratcliffe 1994; Greenberg and Reiter 2001; Roe 2014), but the 

incubation period for eggs is typically between 10-52 hours (Smith 1986). The pre-pupal 

stage of this species is variable and can last between 3 days to several weeks, depending 

on the temperature (Smith 1986). The temperature range for development of L. sericata is 

15°C (Grassberger and Reiter 2001) to 37.5°C (Gosselin et al. 2010) and this species 

overwinters in the third-instar or pre-pupae stage (Erzinçlioğlu 1996). 

The species Calliphora vicina Robineau-Desvoidy is in the subfamily 

Calliphorinae and is often referred to as the blue bottle fly due to its dark blue thorax and 

overall blue appearance (Byrd and Castner 2010). Adult flies of this species are larger 

than other calliphorids, ranging in length from 10-14 mm (Smith 1986; Byrd and Castner 

2010). This species is cosmopolitan and is more abundant in the northern United States 

and Canada, and is often observed in the spring and fall in temperate areas, when 

temperatures range between 5-30°C (Smith 1986; Donovan et al. 2006; VanLaerhoven, 

personal observations). This species is an early colonizer to carrion and oviposition often 

occurs within a few hours. Females can oviposit between 200-300 eggs at a time (Smith 

1986; Davies 1998). Egg hatching can occur in temperatures as low as 3.5 °C (Donovan 

et al. 2006) and hatching can take 25 h at 20°C (Ames and Turner 2003). The 

development threshold for C. vicina is between 3.5°C (Myskowiak and Doums 2002; 

Donovan et al. 2006) and 30°C (Smith 1986; Hwang and Turner 2009). At 20°C, 

development from egg to adult can take up to 22 days (Ames and Turner 2003). This 

species overwinters in the larval stage (Erzinçlioğlu 1996). 

Phormia regina Meigen is in the subfamily Chrysomyinae and is commonly 

called the black blow fly, although adults are usually olive green in colour. This species 

is abundant in the United States and southern Canada (Byrd and Castner 2010) and is a 

medium-sized fly, usually between 7-9 mm in length (Smith 1986). Depending on 

temperature, the total lifecycle for P. regina is reported to range from 10-25 days (James 
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1947; Kamal 1958; Smith 1986; Greenberg 1991; Byrd and Allen 2001; Roe 2014). 

Although this species is considered a cooler weather fly in sub-tropical areas of the 

southern USA (Smith 1986; Byrd and Castner 2010), P. regina is abundant in the spring, 

summer and fall in more temperate regions of North America (Byrd and Castner 2010; 

Rosati 2014). This species is active between 10-35 °C (Deonier 1940; Byrd and Allen 

2001). The arrival of P. regina to carrion is variable and this species can arrive later in 

succession (Denno and Cothran 1975) but has also been observed arriving simultaneously 

with L. sericata early in succession (Anderson and VanLaerhoven 1996; Sharanowski et 

al. 2008; Vanin et al. 2013) and can be observed in shaded or sunny areas (Joy et al. 

2002). Females lay large clusters of approximately 200 eggs (Smith 1986). Development 

of P. regina has been reported to occur in temperatures as low as 15°C and as high as 

35°C (Byrd and Allen 2001), with individuals overwintering in the adult stage (Marshall 

et al. 2011). 	
  

	
  

1.5 Forensic Entomology and its Applications 
	
  

Forensic entomology is a multidisciplinary field that incorporates aspects of 

arthropod ecology and forensic investigations. This field is subdivided into three areas 

(urban, stored-produce and medicolegal), but medicolegal entomology is the primary 

focus of this thesis and involves utilization of insect evidence in criminal investigations, 

most of which are of a homicidal and suicidal nature (Byrd and Castner 2001). This 

information is primarily used to provide answers on the time of death or the place where 

death occurred (Catts 1992). Life history traits and succession patterns of carrion insects 

are used in this estimate, which is commonly referred to as the postmortem interval 

(PMI) or the length of time between death and discovery of the body (Catts 1992; Byrd 

and Castner 2010). The immediate arrival of insects after death is useful in determining 

this length of time (Nuorteva 1977; Rodriguez and Bass 1983; Smith 1986; Greenberg 

1991; Anderson and VanLaerhoven 1996; Anderson 2001), as the time of colonization 

(TOC) often closely approximates the PMI (Amendt et al. 2007; Tomberlin et al. 2011). 

The TOC can be examined using the various ecological processes that can influence 
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insects occurring on carrion and may contribute to minimum PMI estimates (Tomberlin 

et al. 2011).  

To estimate the PMI, there are two general approaches; one method uses the 

predictable rates of development of blow flies (Nuorteva 1977; Smith 1986; Catts and 

Goff 1992) and the other uses the predictable changes in composition in the succession of 

insects through decomposition (Payne 1965; Schoenly and Reid 1987). Using species-

specific growth rates, combined with temperature conditions that the larvae experience 

during development, the minimum TOC estimate can be calculated. The estimations of 

the minimum TOC and PMI use calculations and predictions of development based on 

previously published data. These data, however, are controversial due to different 

developmental rates reported for identical species (Ash and Greenberg 1975; Anderson 

2000; Grassberger and Reiter 2001; Tarone and Foran 2006; Gallagher et al. 2010). This 

issue has been addressed in the forensic entomology community through validation 

studies that compare estimates of PMI using different developmental data (VanLaerhoven 

2008); however, other issues may also impact these estimates.  

Most studies examine a range of temperatures that can influence the development 

of blow flies, but these studies mainly look at growth rate in the absence of competition 

(Byrd and Butler 1996; Byrd and Butler 1997; Byrd and Allen 2001; Grassberger and 

Reiter 2002; Nabity et al. 2006). Multiple species often colonize a resource 

simultaneously and their larvae co-develop on one resource (Anderson and 

VanLaerhoven 1996; Smith and Wall 1997b; Tabor et al. 2004). Species interactions, 

including competition, occur on these ephemeral resources and can have significant 

impacts on the development rate, size and mortality of species that are interacting (Hutton 

and Wasti 1980; Prinkkilä and Hanski 1995; Smith and Wall 1997a; Rosati 2014; 

Pacheco 2015). Understanding the role of species interactions and temperature on the 

behaviour and development of blow flies can provide useful information to the forensic 

entomology community and allow development of confidence intervals for more accurate 

estimates of TOC and PMI (VanLaerhoven 2010). The incorporation of ecological theory 

into the precision of these estimates increases the confidence in the interpretation of 

insect evidence in the judicial system (VanLaerhoven 2010). 
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1.6 Research Objectives 
	
  

The overall aim of my research was to examine the effect of temperature, 

humidity and species interactions on the oviposition behaviour and development of the 

forensically-relevant blow flies L. sericata, P. regina and C. vicina. The colonization 

behaviour of adult flies was investigated under different temperature regimes and in the 

presence of other species to determine if these factors affect the oviposition decisions of 

female blow flies. The timing and location of oviposition events and the number of eggs 

were recorded, as these decisions can influence the survival of the offspring (Chapters 2, 

3). Based on the temperature ranges in which these species are active, increased 

temperature should change adult behaviour, resulting in more oviposition events and eggs 

laid for L. sericata, the warm weather species, and P. regina, but fewer for the cooler 

weather species, C. vicina. Optimal oviposition theory indicates that blow flies should 

select sites that benefit their offspring, protecting them from desiccation by placing the 

eggs in sites such as the natural openings or body folds. Based on the preferences 

reported in the literature, L. sericata and C. vicina should oviposit in the mouth and on 

the face, whereas P. regina should oviposit on the body folds, near the legs and all 

species should avoid open, exposed areas of the carrion resource. When female P. regina 

are in the presence of eggs from other blow fly species, they should increase performance 

of their offspring by selecting the same sites and aggregating their eggs with those of the 

other species. The presence of other species eggs should facilitate faster oviposition by P. 

regina. When examined in a field setting, the oviposition behaviour of these three species 

should reflect those observed in the laboratory, with respect to oviposition timing, site 

selection and total egg number deposited (Chapter 5).  

Egg development was measured under different relative humidities to determine 

the influence of environmental conditions on hatching time and eclosion success (Chapter 

4). Environmental conditions, such as humidity and temperature, should influence the 

hatching success and development time of blow fly eggs. The developmental temperature 

thresholds of these blow fly species should determine the egg hatch success and 

development of larvae. Based on the reported relative humidity thresholds, egg hatching 

for the warm weather species L. sericata should be less successful and should require 
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more time during periods of low relative humidity. The wide temperature range of P. 

regina suggests that relative humidity would not affect this species, and eclosion time and 

success would be similar over the range tested. For C. vicina, we expected that while low 

relative humidity would not affect eclosion time or hatching success, high humidity 

would be challenging for this cool weather species and would result in reduced hatching 

success.  

The development of larvae was measured under different temperature regimes and 

the interactions of conspecifics and heterospecifics was observed to examine the 

influences on growth rate, pupal mass, survivorship and adult body size (Chapter 6). The 

combined effects of temperature and species interactions should result in developmental 

changes for L. sericata, P. regina and C. vicina. With increasing temperature, L. sericata 

development should increase. Smaller larvae and therefore reduced pupal weight and 

smaller adults will accompany faster development. Development during interspecific 

interactions and survival of L. sericata will remain largely unchanged over this range of 

temperatures due to developmental plasticity of this species. The growth rate of P. regina 

will be impacted by temperature and species interactions. As temperature increase and 

due to facilitation by heterospecifics, the growth of P. regina will increase, resulting in 

larger larvae, heavier pupae and ultimately, larger adults. The survivorship of P. regina 

should remain unchanged as temperature increases, due to the wide temperature range 

that this species can tolerate. As documented previously, as temperature increases, C. 

vicina growth rate will increase, but at high temperatures, the development of C. vicina 

will be hindered, resulting in high mortality. Based on previous findings that C. vicina is 

more heavily affected by intraspecific interactions, C. vicina should experience reduced 

effects on development, resulting in slower growth and reduced size, due to interspecific 

interactions.  

Through this research, I hope to elucidate interactions among blow fly species on 

carrion resources that provides some insight into the mechanisms of their coexistence. 

Furthermore, the conclusions from this research will also highlight the behavioural and 

developmental differences among blow fly species, providing further information that 

may be utilized in the interpretation of insect evidence.  
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Figure 1.1. Thermal performance curve (TPC) for insects, representing the relationship 
between temperature and development or performance of an insect. The critical thermal 
minimum (CTmin) and maximum (CTmax) represent the thresholds for development or 
performance. Below the optimal temperature (Topt), there is an increase in development or 
performance but a decrease in development or performance above the Topt. 
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CHAPTER 2 

THE EFFECT OF TEMPERATURE ON THE OVIPOSITION BEHAVIOUR AND 

EGG LOAD OF BLOW FLIES (DIPTERA: CALLIPHORIDAE) 

 

2.1 Introduction 
	
  

 Selecting oviposition sites can have consequences that affect the life history traits 

of a female’s developing offspring and therefore her fitness (Janz 2002). Oviposition 

strategies are a series of complex trade-offs between numerous factors, such as 

host/resource quality, clutch size, difficulty and probability of finding another suitable 

host/resource, predation risks, and the mobility of the resultant offspring (Janz 2002). 

Parental care increases the chances of offspring survival and can result in increased 

reproductive fitness (Tallamy 1984; Tallamy and Horton 1990). However, parental care 

can be costly in both energy and risk. Females that do not practice parental care can 

devote energy to producing more offspring compared to females that do provide parental 

care (Tallamy and Horton 1990).  

 Due to the costs of parental care, many insect species ensure their fitness by 

increasing offspring survival or performance in other ways. For example, some insects 

use piercing ovipositors to penetrate plant tissues and lay eggs within a leaf; this strategy 

ensures that the eggs are hidden and protected (Herrera and Pellmyr 2002). Other insects 

lay large masses of eggs to reduce the number of eggs exposed to predators, parasitoids 

(Stamp 1980) and the abiotic environment (Clark and Faeth 1998). Egg clustering results 

in communal feeding which can promote larval survival by deterring predators 

(Gamberale and Tullberg 1996) or allowing for efficient use of the food source 

(Goodbrod and Goff 1990; Crowe 1995). Ideally, insects that offer no parental care 

should position their eggs where a sufficient food supply, or resources of adequate 

nutritional value are available for offspring development (Jaenike 1978). This theory, 

referred to as optimal oviposition theory (Jaenike 1978) or the female preference-

offspring performance hypothesis (Ellis 2008), has been widely tested as oviposition 

behaviour by females often determines larval survival for species that have limited larval 
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mobility and high dependence on the food source selected by the ovipositing female 

(Joachim-Bravo et al. 2001).  

 On an ephemeral resource, the fitness of individuals developing in clutches can be 

influenced by clutch size. For ovipositing females, the decision of the number of eggs to 

lay is often a trade-off. Larger clutch sizes can produce a greater number of offspring, but 

females may face diminishing returns in fitness due to the limited resource available for 

their offspring (Skinner 1985; Wilson and Lessels 1994). Competition for ephemeral 

resources can affect the clutch size decisions made by females, particularly when 

numerous females are laying clutches simultaneously (Parker and Begon 1986; Ives 

1989; Goubault et al. 2007). Intraspecific competition should result in fewer eggs laid by 

each female, since the number of ovipositing females increases (Parker and Courtney 

1984; Parker and Begon 1986; Ives 1989). However, some insects demonstrate clutch 

size decisions based on the presence of conspecifics, and positively respond to the 

presence of eggs from conspecific females (Wilson 1994). 

 If avoiding high densities of offspring on ephemeral resources is important (Ellis 

2008), then choosing different oviposition sites may be a form of spatial resource 

partitioning. The preference for oviposition sites may be influenced by a number of 

factors, such as resource suitability (Jaochim-Bravo et al. 2001), resource availability and 

risk of predation (Giao and Godoy 2007). Some studies outlining the oviposition 

preferences of blow flies (Diptera: Calliphoridae) have demonstrated that gravid females 

exhibit preferences for natural orifices (Grassberger and Frank 2004; Smith 1986) with 

particular species demonstrating strong site preferences on fetal pig carcasses, such as the 

ears, mouth or legs (Rosati 2014; Pacheco 2015). However, there is little research that 

explores the impact of temperature on these oviposition decisions. 

 Insects are poikilotherms and thus are highly responsive to temperature (Harrison et 

al. 2012). Temperature influences seasonal and geographic distribution of blow flies 

(Anderson 2001) as well as their behaviour and physiology (Grassberger and Reiter 2001; 

Donovan et al. 2006). At low temperatures, performance rates increase with increasing 

temperature, until they reach a maximum, or Topt, the optimal temperature (Huey and 

Stevenson 1979; Huey and Kingsolver 1989). After this Topt, these rates rapidly decline, 

resulting in an asymmetric thermal sensitivity. Numerous processes have similar thermal 
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sensitivity, such as growth, development and fitness (Huey and Stevenson 1979). The 

common pattern, called a thermal performance curve (TPC) shows the thermal sensitivity 

of an organism’s performance or fitness (Huey and Kingsolver 1989; Izem and 

Kingsolver 2005). A shift in this curve vertically, shows variation in the performance of 

an organism over a temperature range, whereas a horizontal shift indicates a trade-off 

between temperature and performance (Kingsolver 2009).  

 Temperature may also influence the reproductive potential of blow flies as it can 

change the ovariole development and number of eggs (egg load) that gravid females carry 

(Harlow 1956; Davies 2006). Egg maturation is temperature-dependent for blow flies, 

with a temperature threshold required for the development of eggs (Wall et al. 1992; 

Wall 1993). The oviposition differences between Lucilia sericata Meigen and Calliphora 

vicina Robineau-Desvoidy relating to egg loads oviposited under various conditions have 

been reported and the variation in egg production may be due to abiotic factors (Hayes 

1999; Davies 2006). Davies (1999) reported that in temperatures greater than 11°C, L. 

sericata females lay approximately 225 eggs, whereas Phormia regina Meigen and C. 

vicina lay 200 eggs each (Davies unpublished, in Davies 2006). Others have reported 

varying ranges in egg load for each of these species (Smith 1986; Erzinçlioǧlu 1996; 

Wall 1993) indicating that egg load may be dependent on conditions experienced by the 

female blow flies.  

 The flight and oviposition behaviours of insects are also subject to thermal ranges. 

Although L. sericata, P. regina and C. vicina are common and Holarctic in distribution 

(Byrd and Castner 2010), they have different temperature thresholds.  Lucilia sericata 

prefers to oviposit when temperatures reach 30°C or greater (Smith 1986) and is therefore 

considered a warm weather, or summer species in Ontario. In northern climates, P. 

regina is a dominant species and displays an activity threshold of 10-12.5°C; below this, 

activity and oviposition does not occur (Byrd and Allen 2001). However, more northern 

populations of this species are active below 10°C (VanLaerhoven, personal observations) 

making it active in spring, summer and fall in southern Ontario. Calliphora vicina is 

considered a dominant species in the early spring and fall in Ontario, and is often active 

at temperatures below 10°C, and has a lower threshold of 3.5°C (Donovan 2006) and an 

upper threshold around 30°C (Smith 1986). This species has been observed arriving to 
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carrion in temperatures up to 32°C in Ontario but is not typically present in the warmer 

summer months in southern Ontario (VanLaerhoven, personal observation).  

 The aim of this study was to examine the effect of temperature on the egg load 

and oviposition behaviour of the blow flies L. sericata, P. regina and C. vicina (Diptera: 

Calliphoridae). We evaluated oviposition behaviour in terms of site preference, time to 

the first oviposition event and the number of eggs laid by female blow flies. Due to the 

relationship between insect activity and temperature, and the temperature tolerances of 

each species, increased temperature should result in changes in insect behaviour, with 

more oviposition events and eggs deposited by L. sericata and P. regina. We expected 

female blow flies of all three species to prefer the natural orifices (mouth, nostril, ears) 

and body folds (on legs) for oviposition sites on fetal pig carcasses. We expected 

different optimum temperatures for each species as they have different temperature 

tolerances such that C. vicina would have the lowest optimum temperature, followed by 

P. regina with a more intermediate optimum temperature and L. sericata with the highest 

optimum temperature demonstrated by more oviposition events, greater egg numbers and 

greater egg load and the shortest time to oviposition at or near their respective optimum 

temperatures.	
  

 
2.2 Materials and Methods 
 

 Laboratory colonies maintained at the University of Windsor were used to obtain 

eggs of L. sericata, P. regina and C. vicina. The colonies originated from wild-caught 

females in Windsor, Ontario, Canada and were housed in 46 x 46 x 46 cm aluminum 

cages (Bioquip 1450C collapsible cage). Adult flies were provided with water and sugar 

ad libitum. Fresh pork liver (40 g) was provided for 24 h as an oviposition substrate. 

When large egg masses (approximately 1000 eggs) were laid, the egg masses were 

removed from the liver and equally divided among ten 1 L rearing jars containing a new 

piece of liver (40g) and wood shavings. The wood shavings acted as a pupation medium. 

Jars were sealed with permeable woven landscape fabric (Quest Brands Inc., Item ID: 

WBS 50) and a metal ring that permits gas exchange but prevents larvae from leaving the 

jars. Developing larvae were provided with additional liver as needed. When adult flies 
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emerged in the rearing jars, they were cold sedated (Ricker et al., 1986) and sorted by 

gender based on spacing between the eyes (Erzinçlioǧlu 1996) into treatment cages. Each 

treatment cage (46 x46 x 46 cm) consisted of 100 females and 50 males of a single 

species. This density allows for access to the resource, ensuring that each female had an 

opportunity to oviposit. To minimize any harmful density dependent effects, the density 

of flies in each cage ensured maximum reproductive rates and survival (Moe et al. 2002). 

In addition, males mate with multiple females and this density is sufficient to ensure that 

all females in each cage are mated. 

 Each treatment cage was assigned to one of five temperatures (15°C, 20°C, 25°C, 

30°C, 35°C) and placed into a growth chamber (Conviron Adaptis A1000) programmed 

with a photoperiod of 16:8 (L:D), 50% relative humidity and the appropriate temperature. 

Each species and temperature treatment was replicated six times. Every 60 minutes, data 

loggers (HOBO U12-012, Onset, Pocasset, MA) recorded the temperature and relative 

humidity in the growth chambers. During the first five days of the experiment, 50 g of 

fresh pork liver was placed into each treatment cage for one hour as a protein source to 

ensure female ovarian egg development and male spermatogenesis (Erzinçlioǧlu 1996; 

VanLaerhoven and Anderson 2001). On day six, a fetal pig on an aluminum tray was 

placed into each treatment cage and left for 24 h during which observations were made 

every hour during daylight hours. The time of the first oviposition event and the location 

of oviposition events were recorded. Potential oviposition sites included the mouth, 

ear/nostril, face, neck, legs and abdomen (Rosati 2014). After 24 h the pigs were removed 

from the cages and the egg masses were photographed with a Nikon D70 camera and AF 

Micro-Nikkor 60 mm f/2.8D lens with a 15cm ruler for scale. The depth and area of each 

egg mass was measured following the methods described by Rosati et al. (2015). In brief: 

depth measurements were recorded manually for each section of the egg mass that had a 

different depth and the surface area of each egg mass was determined using ImageJ 

software. This information was used to calculate the volume of each egg mass (Rosati et 

al. 2015) and the volumes were used to estimate the number of eggs in each egg mass 

using species-specific regression equations (L. sericata: y = 0.34785 + 0.99974x; P. 

regina: y = 0.24706 + 1.02851x; C. vicina: y = 0.3426 + 0.99603x) (Rosati et al. 2015, 

Hans et al., submitted).  
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 To determine the egg load for each species, three treatment cages were set up for 

each species in a similar manner as those described above and placed into programmed 

growth chambers. All cages received fresh pork liver as a protein source daily and 

females were monitored until they displayed a distended abdomen, indicating that they 

were gravid (Harlow 1956). Once females were identified as gravid, they were removed 

from the cages, killed and their ovaries were carefully dissected out from the abdomen. 

Ovaries were placed into 70% ethanol until egg counts were made using a Meiji EMZ 

zoom stereomicroscope.  

 
 

2.2.1 Statistical Analysis 
	
  

 All analyses were performed in R 3.1.1(R Project for Statistical Computing, 

http://www.R-project.org/). All data presented are back-transformed. The time to first 

oviposition event data was natural-log transformed and was analyzed using a two-way 

ANOVA (aov function) to examine the effect of species, temperature and the interaction 

of species and temperature on time to first oviposition. Significant results were followed 

with multiple comparisons post-hoc tests. False discovery rate (FDR) was controlled for 

in order to account for multiple comparisons (Benjamini and Hochberg 1995). The FDR 

controls for the proportion of hypotheses falsely rejected (Benjamini and Hochberg 

1995). We used a maximum false discovery rate of 0.05 on overall p-values.  

 A two-factor MANOVA (manova function) was used to examine the effects of 

temperature and species, and the interaction of these two factors on the oviposition sites 

selected by female blow flies. The data for oviposition site selection was transformed 

using (ln(site count + 1.5) to meet the normality assumptions of MANOVA. Significant 

two-way MANOVA results were followed with one-way MANOVA and ANOVA to 

determine which sites selected were influenced by temperature or species. To determine 

significance in MANOVA, we compared p values to α = 0.01, adjusting for multiple 

tests.  
 The effect of species, temperature, and the interaction of species and temperature 

on the total number of eggs deposited was determined using a two-way ANOVA (aov 
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function). The data was square root transformed in order to meet parametric assumptions. 

All significant ANOVA results were followed with multiple comparisons and FDR was 

controlled for.   

 The influence of temperature on egg load for all three species was examined using 
a Generalized Linear Model (glm function, error distribution=Poisson, link=log). 
  

2.3 Results 
	
  
 Temperature and species interacted to affect oviposition time  (F8, 75 = 9.97, p  < 

0.001) such that as temperature increased, the time for first oviposition event decreased 

for L. sericata and P. regina (Figure 2.1), but increased for C. vicina at the highest 

temperature tested (Figure 2.1).    

Oviposition site selection depended on both temperature and species (temperature 

x species MANOVA: Wilk’s λ = 0.299, F 8,75 = 2.01, p < 0.001; Figure 2.2). The three 

species differed in their site selection at 15°C (MANOVA: Wilk’s λ = 0.033, F 2,15 = 

7.52, p < 0.001) and 30°C (MANOVA: Wilk’s λ = 0.027, F 2,15 = 8.49 p < 0.001), but not 

at 20°C (MANOVA: Wilk’s λ = 0.299, F 2,15 = 1.38 p = 0.25), 25°C (MANOVA: Wilk’s 

λ = 0.128, F 2,15 = 2.99 p = 0.02) or 35°C (MANOVA: Wilk’s λ = 0.194, F 2,15 = 2.11 p = 

0.07). Overall, at 15°C, each species differed in site selection of the face (ANOVA F 2,15 

= 17.06, p < 0.001) whereas at 30°C, there was a difference in selection of the mouth 

(ANOVA F 2,15 = 10.55, p = 0.001) and ears (ANOVA F 2,15 = 8.57, p = 0.003). 

Specifically, temperature affected the oviposition sites selected by P. regina (MANOVA: 

Wilk’s λ = 0.124, F 4,25 = 2.43 p = 0.002), such that as temperature increased, P. regina 

used more oviposition sites on the pig carcass such as the neck (ANOVA F 4,25 = 6.20 p = 

0.001; Table 2.1). The most preferred sites for oviposition overall were the abdomen and 

the legs, but the legs were preferred at all temperatures included in the study (Figure 2.2). 

Temperature also affected site selection by C. vicina (MANOVA: Wilk’s λ = 0.118, F 4,25 

= 3.36, p < 0.001), and by L. sericata (MANOVA: Wilk’s λ = 0.174, F 4,25 = 17.98, p = 

0.01). Overall, L. sericata demonstrated a preference for oviposition sites on the head, 

especially the mouth, at all temperatures tested (Figure 2.2). In contrast, female C. vicina 

only chose four oviposition sites and preferred sites on the head, including the face 
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(ANOVA F 4,25 = 5.74 p = 0.002) and also the legs, as temperature increased (Table 2.1; 

Figure 2.2). 

 The number of eggs deposited differed for each species, depending on an 

interaction between species and temperature (F8, 75 = 7.37, p < 0.001) (Figure 2.3). All 

three species laid the most eggs at 30°C (Figure 2.3), however, at cooler temperatures, 

both L. sericata and P. regina laid the fewest eggs (Figure 2.3) whereas for C. vicina, the 

fewest eggs were laid at 35°C (Figure 2.3).  

 Egg load of females for all three blow fly species depended on temperature (GLM, 

poisson, z = 35.57, p < 0.001). Overall, P. regina had the highest egg load as temperature 

increased, with a peak in egg load at approximately 28-30°C. Although L. sericata and C. 

vicina had peak egg loads around 20-25 and 20-23°C respectively, L. sericata had a 

higher egg load at this temperature range than C. vicina (Figure 2.4). 

2.4 Discussion 
	
  
 Overall, we found that temperature influences the oviposition decisions made by 

female blow flies.  We expected that with increasing temperature there would be an 

increase in egg load and oviposition events, particularly for L. sericata and P. regina. 

Each species demonstrated a peak in egg load, with the largest number of eggs overall 

near 30°C for P. regina, followed by L. sericata and C. vicina between 20-25°C, yet peak 

egg deposition occurred at 30°C for L. sericata and P. regina but between 15-30°C for C. 

vicina. The lack of congruence between the peaks in egg load and number of eggs laid for 

L. sericata and C. vicina was unexpected, suggesting that clutch size decisions are not 

predominantly dependent on egg load and that other factors, such as relative humidity or 

the presence of conspecifics, mediate these decisions. 

 Given the high temperatures for activity of L. sericata (up to 37°C), we expected 

that egg deposition would peak at the higher temperatures of this study and this finding 

agrees with our predictions. Additionally, our observation that L. sericata females carried 

fewer eggs and deposited low numbers of eggs at low temperatures of this study agrees 

with our prediction. Pitts and Wall (2004) found that the oviposition rate of L. sericata is 

lowest below 16°C and is positively correlated with temperature. In this case, the clutch 

size is behaviourally modified by L. sericata, and is dependent on temperature, with 
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increasing clutch sizes associated with higher temperatures. 

 For P. regina, the number of eggs deposited increased with increasing temperature, 

with a peak in eggs laid at 30°C that coincides with their peak egg load between 25-30°C. 

The results for P. regina are somewhat surprising, given that in southern Ontario this 

species is present in a wide range of seasons and temperatures (Byrd and Allen 2001). 

We expected that P. regina would oviposit most frequently at intermediate temperatures 

of this study. Oviposition decisions by ovipositing females can be influenced by 

temperature (Forsman 2001). For example, the pygmy grasshopper Tetrix subulata L. 

(Orthoptera: Tetrigidae) oviposits faster in warmer environments, but also takes less time 

to lay each clutch, compared to those in colder environments (Forsman 2001). Perhaps 

for P. regina, a similar mechanism allows for oviposition to occur at a faster rate with 

increasing temperature and if given more time, the interval between clutches could be 

measured to determine if this decreases with temperature as well.  

 Overall, C. vicina deposited fewer eggs than the other two species, across all 

temperatures tested. There was no difference in egg numbers across treatments, except 

for 35°C. As expected, at the highest temperature tested, C. vicina laid fewer eggs than at 

any other temperature. It was interesting that there does not appear to be an obvious 

optimal temperature for oviposition for C. vicina within the range of temperatures tested, 

suggesting that this species utilizes the same clutch size decisions across a larger range of 

temperatures compared to the other two species. At most temperatures tested, C. vicina 

had a smaller egg load than the other species examined and this was more noticeable at 

higher temperatures between 25-35°C. Calliphora vicina is considered a cool weather 

species, often active between 3.5° and 30°C (Smith 1986; Donovan et al. 2006). Given 

the temperature threshold of this species, the results for egg load and number are not 

surprising. Davies (2006) found that C. vicina had lower egg production as well as a 

delay in the production of eggs when compared to L. sericata. In addition, after 30 days, 

Davies (2006) found that only 29% of C. vicina females had oviposited. The lifetime 

reproductive output of C. vicina was observed to be approximately 400 eggs per female, 

which is much lower than L. sericata, with an average of 1400 eggs per female (Davies 

2006). According to these results, C. vicina may invest more energy into production of 

larger eggs, which are approximately 1.4 mm in length, 0.40 mm in width, than L. 
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sericata whose average egg length is 1.1 mm in length and 0.33 in width (Greenberg and 

Singh 1995; Davies 2006). 

 Temperature affected the time to first oviposition event on fetal pig carcasses for L. 

sericata and P. regina, with a decrease in the length of time until oviposition began as 

temperature increased. Our results for oviposition time were consistent with previous 

findings. Zurawski et al. (2009) found that when temperatures were roughly 30°C, L. 

sericata required approximately three hours for oviposition, whereas C. vicina and P. 

regina required five hours (Zurawski et al. 2009). Although our results demonstrate that 

L. sericata required only one hour at 30°C, the study by Zurawski et al. (2009) was 

performed in the field and many environmental factors could have influenced their 

results. Flutctuating temperatures have variable results for fecundity of insects. The 

reproductive output of some species may be greater in fluctuating temperatures 

(Terblanche et al. 2010) if the temperatures are within an optimal range, whereas insects 

experiencing stressful temperatures during fluctuating temperatures may have decreased 

fecundity (Marshall and Sinclair 2010). For Ceratitis capitata Wiedemann, (Diptera: 

Tephritidae), fluctuating temperature resulted in greater egg production (Terblanche et al. 

2010). For some insects, oocyte development can be impaired by stressful temperatures, 

which can result in reduced reproductive output (Marshall and Sinclair 2010). Marshall 

and Sinclair (2010) found that there was a trade-off in survival and future reproduction 

for flies of Drosophila melanogaster Meigen (Diptera: Drosophilidae) where flies that 

were exposed to cold temperatures multiple times had decreased mortality, but also 

reduced fecundity, compared to flies that were exposed to cold for the same length of 

time, but continuously. It would be informative to repeat our experiment in a field setting 

to determine if our observations hold true in more dynamic and fluctuating abiotic 

conditions with wild-type females.  

 Calliphora vicina did not demonstrate a strong dependence on temperature for 

oviposition in the range of temperatures tested here, where oviposition timing fluctuated 

between one and three hours. Due to the large body size and higher metabolic rate of C. 

vicina, the tested temperature range may not have had a strong influence on oviposition 

of this species (Meyer and Schaub 1973). Perhaps we would see a stronger response to 

temperature by this species if lower temperatures between 0-15°C were tested. 
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 Species that compete for temporally ephemeral resources may partition the resource 

spatially by ovipositing in different areas of a pig carcass (Ives 1991). It is possible that 

the site preference exhibited by the species included in this study is the result of their 

history of interspecific interactions. In southern Ontario, L. sericata and P. regina are 

often observed together during the warm summer months, whereas P. regina and C. 

vicina are often observed colonizing carcasses in the spring and fall (Rosati 2014). If 

these species often compete with other blow flies and each other, L. sericata should 

prefer areas that P. regina does not commonly colonize. For L. sericata, oviposition 

occurred most frequently in and on orifices of the head. This species often selects sites 

that contain sufficient moisture, such as the mouth, nose and ears (Grassberger and Reiter 

2001; Rosati 2014; Pacheco 2015). In this study, P. regina oviposited preferentially on 

the legs, abdomen and the head, as previously documented (Rosati 2014; Pacheco 2015), 

but surprisingly preferred the face as an oviposition site at the lowest temperature 

examined. Finally, C. vicina preferred the head as well and the legs, as females of this 

species oviposited on these sites most frequently. 

 Based on the oviposition preference-offspring performance hypothesis (Jaenike 

1978; Thompson 1988; Ellis 2008) the oviposition preferences demonstrated by each 

species should be a consequence of differences in offspring performance that arise from 

selecting different oviposition sites; higher offspring performance at particular sites 

should result in female preference for those sites. Thus, an important future area of 

research will be to determine if the site selection preferences by females actually result in 

increased offspring performance. 

 Due to intense competition for resources at the larval stages, oviposition behaviour 

may also be influenced by density of offspring at a site that are the result of individual 

female clutch size decisions in the presence of conspecifics. The results of our study 

indicate that decisions females make regarding how many eggs to place in a site can be 

modified by temperature, and it is expected that these decisions have consequences for 

offspring. Larval aggregation is beneficial due to the fact that raised temperatures, 

resulting from the formation of maggot masses, can accelerate development (Baxter and 

Morrison 1983; Catts 1992; Catts and Goff 1992; Ireland and Turner 2006). In addition, 

aggregation can increase the quantity of proteolytic enzymes, which aid in resource 
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decomposition and facilitate feeding (Goodbrod and Goff 1990; dos Reis et al. 1999; 

Ireland and Turner 2006; Kheirallah et al. 2007). However, at higher temperatures, high 

densities of larvae may be detrimental to the offspring, as these aggregations can generate 

excess heat, which may raise the temperature beyond thermal tolerances for developing 

larvae. Additionally, at high densities, aggregation can be detrimental as intense 

competition for resources may result in increased development time and decreased 

survival rates (Goodbrod and Goff 1990; So and Dudgeon 1990; Saunders and Bee 1995; 

Smith and Wall 1997) as was also found in the eastern tree-hole mosquito Ochlerotatus 

triseriatus Say (Diptera: Culicidae)(Ellis 2008). Female mosquitoes preferred to oviposit 

in sites with lower densities of larvae and often avoided the high density sites (Ellis 

2008). For blow flies, the optimal density preferred by females has not been determined, 

but there is most likely an ideal density for each species that may depend on abiotic 

conditions that interact to influence both site selection and clutch size decisions during 

oviposition. Our results demonstrate that temperature is an important abiotic factor that 

influences blow fly oviposition behaviour, yet it is likely that a combination of abiotic 

factors such as temperature, humidity, photoperiod and wind speed mediate oviposition 

by blow flies (Zurawski et al. 2009) and these factors should all be examined to further 

quantify the oviposition behaviour of the blow flies studied here.  

 The intense competition that blow flies face when arriving to a limited resource has 

driven the evolution of behaviour and decisions made by female blow flies. The carrion 

resource can be partitioned, both spatially and temporally, by different species arriving to 

the resource at different times of year, at different times throughout decomposition and 

by selecting different oviposition sites and modifying clutch sizes. The different optimal 

temperatures for egg load and differential effect of temperature on the speed of 

oviposition and clutch size by each of these three species may be community-structuring 

mechanisms that result in temporal resource partitioning mediating coexistence of these 

species. Further research measuring oviposition behaviour in the presence of other 

species and then the outcomes of these oviposition decisions is required to understand the 

community-level implications of these decisions. 
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Table 2.1. Multivariate Analysis of Variance (MANOVA) results to determine the 
effects of temperature on the oviposition sites selected by L. sericata P. regina, and C. 
vicina. Significant effects are indicated in bold font; α = 0.01 for all effects. 

Oviposition Site d.f. F ratio p - value 

Lucilia sericata 

Mouth 4, 25 1.72 0.177 

Ears 4, 25 1.63 0.197 

Face 4, 25 12.01 < 0.001 

Neck 4, 25 0.49 0.741 

Legs 4, 25 0.33 0.855 

Abdomen 4, 25 1.23 0.323 
 

Phormia regina 

Mouth 4, 25 3.19  0.030 

Ears 4, 25 1.35 0.279 

Face 4, 25 3.17 0.031 

Neck 4, 25 6.20 0.001 

Legs 4, 25 3.35 0.025 

Abdomen 4, 25 3.33 0.031 

Calliphora vicina 

Mouth 4, 25 0.40 0.807 

Ears 4, 25 3.92 0.013 

Face 4, 25 5.74 0.002 

Neck 4, 25 1.00 0.426 

Legs 4, 25 6.76 < 0.001 

Abdomen 4, 25 1.00 0.426 
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Figure 2.1. The mean time (± S.E.) until the first oviposition event for (A) L. sericata, 
(B) P. regina and (C) C. vicina. Temperature had an effect on oviposition time for L. 
sericata (F4, 25 = 5.55, p  = 0.002), P. regina (F4, 25 = 58.49, p  < 0.001) and C. vicina (F4, 

25 = 5.63, p  = 0.002). Means with the same letter are not significantly different. 
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Figure 2.2. Interaction between temperature and species treatment on the mean (± S.E.) 
oviposition frequency at each site on pig carcasses.       : L. sericata,        : P. regina,     :                      
C. vicina. Oviposition frequency was calculated as the number of oviposition events that 
occurred at each site over the observation period. There were no oviposition events by C. 
vicina on the neck and abdomen in any trials over the temperature range tested. 
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Figure 2.3. The mean number of eggs (± S.E.) deposited by 100 females in each cage of 
(A) L. sericata, (B) P. regina and (C) C. vicina. Temperature had an effect on egg 
number for L. sericata (F4, 25 = 4.91, p  = 0.004), P. regina (F4, 25 = 22.98, p  < 0.001) and 
C. vicina (F4, 25 = 12.52, p  < 0.001). Means with the same letter are not significantly 
different. 
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Figure 2.4. Mean (± S.E.) egg load for each species over the temperature ranges tested. 
Temperature had a significant effect on egg load (GLM, poisson, z = 35.57, p < 0.001). 
For P. regina (y = -1.16x2 + 64.62x -646.5), L. sericata (y = - 0.63 x2+ 30.45x – 195.3) 
and C. vicina (y = - 0.88 x2 + 41.26x – 312.6).  
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CHAPTER 3 

SPATIAL AGGREGATION OF PHORMIA REGINA (DIPTERA: CALLIPHORIDAE) 

OVIPOSITION IS MEDIATED BY TEMPERATURE AND THE PRESENCE OF 

HETEROSPECIFICS 
 

3.1 Introduction 
 

Resources such as carrion, fruit, fungi and dung represent ephemeral resources 

that many insects select as breeding and oviposition sites. Carrion colonizing flies deposit 

eggs onto carcasses (Smith 1986; Byrd and Castner 2010) which can be hazardous 

environments for the developing larvae. Eggs and larvae have a greater chance of 

desiccation and attack from predators and parasitoids when they are exposed on carrion 

surfaces. Given these challenges, female blow flies (Diptera: Calliphoridae) should select 

oviposition sites that contain nutrient rich resources that protect their larvae from natural 

enemies and desiccation. The sites preferred by female insects for oviposition often 

determine the performance of their larvae and therefore females should oviposit on sites 

that maximize the performance of their offspring (Jaenike 1978). It has been previously 

demonstrated that blow fly females often deposit eggs in natural orifices (Smith 1986; 

Byrd and Castner 2010) and body folds (Archer and Elger 2003). Due to decomposition 

and larval feeding, the locations for oviposition may change over time. The arriving flies 

assess the resource for oviposition sites based on suitability of the sites for their 

developing offspring, rather than merely having a consistent preference for particular 

sites (Archer and Elger 2003).  

Because females of different blow fly species deposit their eggs on multiple sites 

on carrion, it can lead to collective oviposition and the spatial aggregation of eggs (Byrd 

and Castner 2010; Chapter 2) particularly when certain species prefer to deposit their 

eggs in locations where a large number of eggs or females are located (Barton-Browne 

1958; Barton-Browne et al. 1969; Brodie et al. 2015). Collective oviposition and 

aggregation may be beneficial for flies as it should indicate the suitability of a resource 

(Collins and Bell 1996; Jiang et al. 2002), enhance the development of larvae by reducing 

desiccation (Stamp 1980) and enhance digestion of the resource through shared salivary 
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enzymes (dos Reis et al. 1999; Charabidze et al. 2011). Additionally, aggregation of 

larvae can result in accelerated growth due to elevated temperatures resulting from 

maggot mass formation (Turner and Howard 1992; Ireland and Turner 2006; Kheirallah 

et al. 2007). Yet, there is certainly an optimal density of larvae, above which the negative 

impacts of competition may result in increased mortality, decreased adult size and longer 

developmental rates (Ullyett 1950; Goodbrod and Goff 1990; Smith and Wall 1997; 

Kheirallah et al. 2007). Species competing for carrion resources often face exploitative 

competition, where the consumption of the resource by one species limits the resource for 

another species (Denno and Cothran 1976). In addition, competing species may engage in 

interference competition, where access to the limited carrion resource by one species is 

reduced by another. For ovipositing female blow flies, this can be observed in space 

available for oviposition. If one species occupies optimal areas, this makes these sites less 

available for the next arriving species (VanLaerhoven 2015). If high densities of 

offspring are detrimental (Ellis 2008), then choosing different oviposition sites from other 

females may be a form of spatial resource partitioning.  

Thus, in addition to the oviposition site selected, clutch size decisions made by 

females can influence offspring survival, particularly on ephemeral resources with 

numerous females laying clutches simultaneously (Parker and Begon 1986; Ives 1989; 

Goubault et al. 2007). Whereas larger clutch sizes have the potential to produce a greater 

number of offspring, these offspring may have smaller adult size and reduced fitness due 

to competition of developing on a limited, ephemeral resource (Goubault et al. 2007). 

Females face many trade-offs where reproduction is costly and the female must 

determine how much to invest in a reproductive event to maximize the reproductive 

success over her lifetime (Stearns 1977; Reznick 1985). For organisms that lay multiple 

clutches in their lifetime, females must also decide how much energy to allot for each 

breeding cycle in order to maximize her fitness (Forsman 2001). In this case, there may 

be an additional trade-off between clutch size and clutch interval (Forsman 2001). 

Forsman (2001) found that female grasshoppers Tetrix subulata L. (Orthoptera: 

Tetrigidae) that were kept in warm conditions not only oviposited faster, but had less 

time between each clutch laid than females in colder environments. This indicates that 
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abiotic factors, such as temperature, may also result in differential reproductive 

performance for female insects (Forsman 2001). 

Temperature can affect geographic and seasonal distribution of poikilotherms 

such as blow flies (Anderson 2001) through physiological impacts on immature 

development, as well as larval and adult behaviour (Grassberger and Reiter 2001; 

Donovan 2006; Gomes and Von Zuben 2009). Over the range of 15-35°C, blow fly 

species differentially change oviposition behaviour by changing their time to oviposition, 

the location in which they oviposit on carrion and the number of eggs females are 

depositing (Chapter 2). Physiologically, each blow fly species has different optimal 

temperatures for egg load (Chapter 2). Since the blow fly Phormia regina Meigen is 

found throughout the year in southern Ontario, together with Calliphora vicina Robineau-

Desvoidy in the spring/fall and with Lucilia sericata Meigen in the summer, we utilized 

P. regina to test the influence of temperature and presence of heterospecific eggs on 

oviposition behaviour. Here, oviposition behaviour included time to first oviposition 

event, the sites selected for oviposition as well as the total number of eggs deposited by 

P. regina. These data were utilized to calculate relative strengths of inter and intraspecific 

spatial aggregation. 

Based on previous observations of P. regina oviposition behaviour (Chapter 2), 

we expected that as temperature increased, time to oviposition would decrease, number of 

eggs deposited would increase and sites selected for oviposition would be the legs and 

abdomen (Rosati 2014; Pacheco 2015; Chapter 2). This species demonstrated an 

increased egg load with increasing temperature, which resulted in a greater number of 

eggs deposited on pig carcasses at higher temperatures (Chapter 2). To test the influence 

of heterospecific eggs, either L, sericata or C. vicina were allowed to oviposit for 24 

hours prior to introducing P. regina to the resource. If P. regina is not influenced by the 

presence of a heterospecific’s previous colonization, the oviposition behaviour of P. 

regina should be consistent with what is observed when P. regina oviposits in the 

absence of heterospecifics. If secondary colonization after heterospecifics has a positive 

effect, P. regina will oviposit more quickly and will deposit more eggs when in the 

presence of heterospecific eggs. If secondary colonization has a negative effect, P. regina 

will exhibit slower oviposition and lower egg deposition in the presence of heterospecific 
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eggs. Additionally, if P. regina colonization is positively affected by the presence of 

heterospecific eggs, P. regina will shift their oviposition site selections to mimic those of 

the heterospecific colonizers and choose to aggregate their eggs with the other species. If 

P. regina is unaffected, site selection preferences will not differ from those of P. regina 

when colonizing alone. If P. regina is negatively affected by the presence of 

heterospecific eggs, P. regina will avoid locations with heterospecific eggs. There are 

documented examples of P. regina facilitation due to the presence of other species 

(Rosati 2015; Pacheco 2015), indicating that P. regina should oviposit faster, deposit 

more eggs and oviposit closer in the presence of heterospecific eggs. 

  

3.2 Materials and Methods 

 

3.2.1 Colony Maintenance 

	
  

Blow fly colonies maintained at the University of Windsor were used to acquire eggs of 

P. regina, L. sericata and C. vicina. All colonies were initiated with wild caught females, 

collected in Windsor, Ontario, Canada and were stored in 46 x 46 x 46 cm cages (Bioquip 

1450C aluminum collapsible cage). Water and sugar were added ad libitum and an 

oviposition substrate of 40g of fresh pork liver was provided to obtain large egg masses 

(approximately 1000 eggs or larger), which were removed and distributed into 1L rearing 

jars with fresh liver and wood shavings as a pupation medium. Each jar was then sealed 

with woven landscape fabric that is permeable to allow gas exchange (Quest Brands Inc., 

Item ID: WBS 50) and metal rings. Larvae were provided with fresh liver as needed 

during development. After adult emergence, flies were cold sedated (Ricker et al., 1986) 

and sorted intro treatment cages. All cages received 100 females and 50 males of one 

species, which allowed for all females to have access to the resource to oviposit. Male 

blow flies mate with multiple females and the density used ensured that all females would 

be mated. In addition, this density ensured maximum reproductive rates and survival and 

minimized density dependent effects (Moe et al. 2002). . All species and temperature 

treatments were repeated six times. Treatment cages were assigned to treatments of: P. 
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regina alone, L. sericata as a primary colonizer then P. regina as a secondary colonizer 

or C. vicina as a primary colonizer then P. regina as a secondary colonizer.  

3.2.2 Experimental Design 

	
  

Treatment cages were assigned to one of five temperatures (15°C, 20°C, 25°C, 30°C, 

35°C) and were placed into a programmed growth chamber (Conviron Adaptis A1000) 

set to the appropriate temperature with a photoperiod of 16:8 (L:D) and 50% relative 

humidity. During the first five days of the experiment, 50 g of fresh pork liver was 

provided to flies in each treatment cage to encourage spermatogenesis and ovarian 

development (Erzinçlioǧlu 1996; VanLaerhoven and Anderson 2001). A fetal pig on an 

aluminum tray was placed into each primary colonizer cage (L. sericata or C. vicina) as 

well as cages with P. regina colonizing alone, on day six and left for 24h. After this time 

period, the fetal pig was removed from the primary colonizer cage and transferred into 

the secondary colonizer (P. regina) cages and left for an additional 24 h. Observations 

were made every hour during daylight hours for the duration of the experiment. 

Observations included the time of first oviposition event as well as the site selected for 

oviposition events. Sites included the mouth, ear/nostril, face, neck, legs and abdomen.	
  

3.2.3 Egg Number Estimations 
	
  

After each 24 h observation period the pigs were removed from the treatment cages and 

each egg mass was photographed using a Nikon D70 camera and AF Micro-Nikkor 60 

mm f/2.8D lens and 15cm ruler for scale. The measurements of each egg mass followed 

those described by Rosati et al. (2015), but will be described briefly here. For each 

section of an egg mass that had different depth, depth measurements were recorded. 

Using ImageJ, the surface area of each egg mass was measured and this information was 

used to calculate volume of each mass (Rosati et al. 2015). The volumes were then 

included in species-specific regression equations to estimate the number of eggs in each 

egg mass (L. sericata: y = 0.34785 + 0.99974x; P. regina: y = 0.24706 + 1.02851x; C. 

vicina: y = 0.3426 + 0.99603x) (Hans et al., submitted; Rosati et al. 2015). 
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3.2.4 Aggregation Models 
	
  

The aggregation model of coexistence quantifies intraspecific and interspecific 

aggregation over patches. The index Jab, quantifies intraspecific aggregation as the 

increase in the number of conspecifics compared to a random distribution (Ives 1988; 

Fiene et al. 2014); Ja = Σ  𝑛𝑖  (𝑛𝑖 − 1)/ 𝑁𝐿 −   𝑁 /𝑁, where n represents the eggs in a 

site i, L is the number of sites, N is the total number of eggs collected from all patches on 

a pig carcass. Values of Ja indicate intraspecific aggregation, where a more positive value 

indicates greater intraspecific aggregation and values closer to 0 indicate random 

distribution.  

The aggregation index Cab was used to examine interspecific aggregation, or the 

extent that aggregation results in an increase in the expected number of species b when it 

encounters an individual from species a (Ives 1988); Cab = {[  Σ  𝑛𝑖  𝑚𝑖/(𝑁𝐿)]−   𝑀}/𝑀,  

where ni and mi represent the number of eggs from species n and m, in each site on a pig 

carcass, L is the total number of sites, and N and M represent the total number of eggs 

collected from all sites (L) on a pig carcass. Negative values of Cab indicate a negative 

association between heterospecifics.  

 To examine coexistence of heterospecifics, Ives (1988) defines the “relative 

strength of competitor aggregation” with Aab = 𝐽𝑎 + 1 𝐽𝑏 + 1 /(𝐶𝑎𝑏 + 1)!. 

Interspecific aggregation is greater than intraspecific aggregation if the value of Aab is 

less than 1.0, where a value greater than 1.0 indicates that intraspecific aggregation is 

stronger (Ives 1988; Fiene et al. 2014). This simply indicates the degree of intra versus 

interspecific aggregation but does not determine whether the interaction is competitive or 

facilitative. 

3.2.5 Statistical Analyses 
	
  

All analyses were completed in R 3.1.1(R Project for Statistical Computing 

http://www.R-project.org/). Data were natural log transformed to meet the assumptions of 

parametric testing. Analyses were conducted for each species combination (P. regina 

after L. sericata and P. regina after C. vicina) to determine if the presence of 



	
  

	
  
	
  

59	
  

heterospecific eggs influenced time to oviposition, site selection and total egg number of 

P. regina compared to when P. regina colonized a pig carcass alone. 

The data for time to first oviposition event was analyzed using a two-way 

ANOVA to examine the effect of temperature, species or the interaction of temperature 

and species on time to oviposition. The relationship between temperature and time to first 

oviposition event was determined for each species combination using linear regression 

analyses.  

To examine the effects of temperature, species, and the interaction of temperature 

and species on the sites selected for oviposition by P. regina, a two-factor MANOVA 

(manova function) was used. The oviposition site data was ln(site count +1.5) 

transformed in order to meet the assumptions of parametric testing. All significant 

MANOVA results were followed with a one-way MANOVA and ANOVA in order to 

determine how site selection was influenced by temperature or species separately. To 

determine significance, we compared p values to α = 0.01, to adjust for multiple tests. 

The effect of temperature, species and the interaction of temperature and species on the 

total egg number were determined using a two-way ANOVA. The relationship between 

temperature and total egg number was determined for each species combination using 

linear regression analyses. 

3.3 Results 
	
  

The presence of heterospecifics, temperature and the interaction of these factors 

influenced the amount of time until the first oviposition event by P. regina when arriving 

after L. sericata (F4, 50 = 17.57, p < 0.001; Table 3.1). Time to first oviposition event was 

faster in the presence of L. sericata and faster as temperature increased from 15°C until 

after 25°C, at which point, as temperature increased, P. regina oviposition slowed down 

and was slower in the presence of L. sericata than when on its own  (p < 0.001, R2 = 

0.69; Figure 3.1). This same trend was observed in the presence of C. vicina eggs as 

temperature increased (F4, 50 = 7.96, p < 0.001; Table 3.1) such that time to first 

oviposition event was faster in the presence of C. vicina eggs (p < 0.001, R2 = 0.68) as 
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temperature increased from 15°C to 25°C but after 25°C, P. regina oviposited slower in 

the presence of C. vicina eggs than when on its own (Figure 3.1).  

Temperature and the presence of heterospecific eggs changed the oviposition site 

selection of P. regina (MANOVA: Wilk’s λ = 0.304, F 8,75 = 2.68, p < 0.001). 

Temperature had an effect on P. regina oviposition choices when L. sericata eggs were 

present (MANOVA: Wilk’s λ = 0.097, F 4,25 = 2.81, p < 0.001), but not when C. vicina 

eggs were present (MANOVA: Wilk’s λ = 0.236, F 4,25 = 1.93, p = 0.02). When 

ovipositing in the presence of L. sericata eggs, P. regina oviposited more frequently on 

the legs at temperatures between 20-25°C (ANOVA F 4,25 = 5.19, p = 0.003; Figure 3.2; 

Table 3.2) and as temperature increased, P. regina selected the mouth, ears and legs for 

oviposition, with the mouth and ears being sites previously colonized by L. sericata. 

Across all temperatures, P. regina demonstrated a preference for ovipositing on the legs 

when C. vicina eggs were present on this site (Figure 3.2).  

The number of eggs deposited by P. regina depended on an interaction of 

temperature and the presence of heterospecific eggs (F4, 50 = 6.84, p < 0.001; Table 3.3). 

Temperature had a significant influence on the total number of eggs deposited by P. 

regina when colonizing after L. sericata (p < 0.001) such that as temperature increased, 

P. regina laid more eggs in the presence of L. sericata eggs until 25°C, at which point P. 

regina deposited fewer eggs in the presence of L. sericata eggs compared on its own 

(Figure 3.3). There was also an interaction between temperature and presence of 

heterospecific eggs on the number of eggs deposited in the presence of C. vicina eggs (F4, 

50 = 10.73, p < 0.001; Table 3.3). As temperature increased, P. regina laid more eggs in 

the presence of C. vicina eggs, but after 20°C, P. regina laid fewer eggs in the presence 

of C. vicina eggs compared to on its own (p < 0.001; Figure 3.3). 

Heterospecifics influenced the oviposition site selection and aggregation of eggs 

of P. regina. When P. regina was in the presence of L. sericata or C. vicina, interspecific 

aggregation was greater than intraspecific aggregation at all sites where oviposition 

occurred for both species, between 15-25°C (Table 3.4). Above this temperature, 

intraspecific aggregation was greater than interspecific aggregation of eggs when P. 

regina was in the presence of L. sericata or C. vicina (Table 3.4). 
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3.4 Discussion 
	
  

Coexistence of multiple species on ephemeral resources may be sustained by 

priority effects (Denno 1975; O’Flynn 1983; Schoenly 1992). The first arriving species 

may have a competitive advantage due to the ability to select the most beneficial sites and 

utilize the resource without the effects of interspecific competition (Beaver 1984). This 

has been demonstrated on many resources, such as mushrooms (Shorrocks and Bingley 

1994), fruit (Atkinson and Shorrocks 1977), and carrion (Brundage et al. 2014; Kneidel 

1983). In Drosophila, initial colonizers have an advantage in arriving first, whereas 

subsequent colonizers often face negative consequences including increased mortality, 

slower development and smaller size (Shorrocks and Bingley 1994). In carrion systems, 

initial colonizers may have an advantage if their offspring can consume a large portion of 

the resource before other species arrive (Hanski and Kuusela 1977).  

Although priority effects are often viewed as having negative consequences for 

the later arriving species, these interactions may have facilitative effects as well. Previous 

research has demonstrated that for the blow fly P. regina, offspring have greater survival 

rates and larger adult body size when arriving after or at relatively the same time as L. 

sericata (Rosati 2014). Facilitation may be due to egg clustering to reduce desiccation 

(Stamp 1980) and predation, and in the larval stage may be due to benefits of increased 

temperatures in a larval mass to increase development rate (Turner and Howard 1992; 

Ireland and Turner 2006; Kheirallah et al. 2007) and sharing of salivary enzymes, as 

some species may require modification of the resource for more efficient processing 

(Heard 1994; Hodge et al. 1996; Charabidze et al. 2011).  

The clutch size decisions made by females contribute to the larval density present 

on the resource. For blow flies, high densities may be beneficial at lower temperatures, 

where these aggregations can generate heat, which allows for survival and increased rate 

of development for the larvae present in these masses (Catts 1992; Catts and Goff 1992; 

Ireland and Turner 2006). However, if females lay large clutches and the resulting larval 

aggregations are developing in periods of high temperatures, high larval density may be 

detrimental for the larvae, as the temperatures they experience while in the larval 

aggregation may extend beyond their thermal tolerances. In order to limit the mortality of 
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offspring, theories on egg desiccation dictate that the clustering of eggs limits exposure to 

natural enemies and aridity (Stamp 1980). The position and arrangement of eggs within a 

layered mass offers protection from desiccation and increases survival (Clark and Faeth 

1998). It is possible that abiotic cues of temperature and relative humidity are interacting 

to determine where female blow flies choose to oviposit.  

Attraction of females to particular sites may be due to the presence of 

heterospecific eggs (Brundage 2012) or microbial communities on the eggs (Lam et al. 

2007). Brundage (2012) fond that for the blow flies Chryromya rufifacies Macquart and 

Cochliomyia macellaria Fabricius (Diptera: Calliphoridae), conspecific and 

heterospecific eggs mediated the oviposition behaviour of gravid adults, with attractant 

properties of the eggs changing with age and microbial communities. Indeed, previous 

studies indicate that some species are more attracted to sites where eggs are located rather 

than sites that are unoccupied (Bryant 1970; Barnard and Geden 1993; Brundage 2012; 

Brodie et al. 2015). These decisions may be affected by cues from aggregation of eggs as 

if this is beneficial to the offspring and provides protection and promotes survival (Clark 

and Faeth 1998).  

There are two possible ways of interpreting indices of intra versus interspecific 

aggregation depending on whether facilitation or competition is the predominate outcome 

of the interaction with heterospecifics. If P. regina is facilitated by other species, then it 

would be expected that it would aggregate its eggs more with heterospecifics. 

Alternatively, if competition is the predominate outcome, then P. regina should avoid 

heterospecific eggs and aggregate with conspecifics. Based on the results of this study, 

the outcomes of species interactions may be competitive or facilitative depending on 

temperature. If there is a trade-off between the impact of competition for resources on the 

one hand and facilitation through reduction of egg mortality due to desiccation or 

increased rate of development due to larval mass or more efficient nutrient extraction due 

to shared salivary enzymes on the other hand, it appears to switch at 25°C.  

At and below 25°C, P. regina oviposited faster (4-15 h), selected oviposition sites 

that were previously colonized by other species, such as the face and mouth (after L. 

sericata) and the legs (after C. vicina), and laid more eggs that were aggregated with the 

other species when arriving after L. sericata or C. vicina compared to when P. regina was 
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alone. These results suggest that at or below 25°C, P. regina is facilitated by L. sericata 

or C. vicina. However, it will be important to determine if aggregation with 

heterospecific eggs at and below 25°C actually results in an increase in the resulting 

offspring size, lower mortality during development or faster development for P. regina to 

conclude that this is facilitation. 

At 25°C, there appears to be a switch in the outcome of the interaction to 

competition, indicated by slower oviposition by P. regina  in the presence of other 

species compared to on its own, and aggregation of its eggs more with conspecifics 

instead of heterospecifics in terms of site selection and number of eggs laid. It will be 

important to determine if aggregation with heterospecific eggs above 25°C results in 

increased mortality during development, smaller adult size or longer development times 

for P. regina. 

The results of oviposition behaviour in this study demonstrate that both abiotic 

and biotic conditions influence the oviposition behaviour of the blow fly P. regina, 

providing some much needed insight into potential mechanisms of coexistence within 

this diverse community of decomposers. Temperature appears to mediate the outcomes of 

species interactions with P. regina, suggesting a switch from facilitation to competition 

around 25°C, resulting in changes in time to first oviposition and degree of aggregation 

with heterospecifics or conspecifics in both site selection and clutch size decisions. This 

strategy may ensure that P. regina offspring have increased survival at lower 

temperatures than they would on their own, yet at higher temperatures, when offspring 

survival is more likely, P. regina chooses to aggregate its eggs with conspecifics and 

lessen competitive interactions with other species. This change in resource partitioning 

and spatial aggregation based on temperature may contribute to the coexistence of P. 

regina with other members of this community. It is likely other community members 

employ different strategies as we observed in Chapter 2. Exploring the oviposition 

behaviour of other blow flies in the presence of heterospecifics at different abiotic 

conditions and under natural conditions is an important next step to understanding the 

structure of this community. 
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Table 3.1. Analysis of Variance (ANOVA) results to determine the effects of species, 
temperature and the interaction of these effects, on the time to first oviposition event for 
P. regina when arriving secondary to L. sericata or C. vicina. Significant effects are 
indicated in bold font; α = 0.05 for all effects. 

Effect d.f. F ratio p - value 

Phormia regina after Lucilia sericata 

Species 1, 50 12.42 < 0.001 

Temperature 4, 50 57.50 < 0.001 

Species * 
Temperature 4, 50 17.57 < 0.001 

Phormia regina after Calliphora vicina 

Species 1, 50 5.82 0.029 

Temperature 4, 50 30.72 < 0.001 

Species * 
Temperature 4, 50 7.96 < 0.001 
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Table 3.2. Multivariate Analysis of Variance (MANOVA) results to determine the effect 
of temperature on the oviposition sites selected by P. regina when ovipositing after L. 
sericata or C. vicina. Significant effects are indicated in bold font; α = 0.01 for all 
effects. 

Oviposition Site d.f. F ratio p - value 

Phormia regina after Lucilia sericata 

Mouth 4, 25 0.94 0.453 

Ears 4, 25 0.67 0.665 

Face 4, 25 2.19 0.099 

Neck 4, 25 1.54 0.222 

Legs 4, 25 5.19 0.003 

Abdomen 4, 25 3.50 0.021 

Phormia regina after Calliphora vicina 

Mouth 4, 25 0.75  0.567 

Ears 4, 25 3.40 0.024 

Face 4, 25 2.04 0.119 

Neck 4, 25 2.22 0.096 

Legs 4, 25 1.37 0.271 

Abdomen 4, 25 0.78 0.55 
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Table 3.3. Analysis of Variance (ANOVA) results to determine the effects of species, 
temperature and the interaction of these effects on the total number of eggs deposited by 
P. regina when arriving secondary to L. sericata or C. vicina. Significant effects are 
indicated in bold font; α = 0.05 for all effects. 

Effect d.f. F ratio p - value 

Phormia regina after Lucilia sericata 

Species 1, 50 9.29 0.004 

Temperature 4, 50 7.99 < 0.001 

Species * 
Temperature 4, 50 6.84 < 0.001 

Phormia regina after Calliphora vicina 

Species 1, 50 34.45 < 0.001 

Temperature 4, 50 11.62 < 0.001 

Species * 
Temperature 4, 50 10.73 < 0.001 

 

 

 

 

 

 

 

 

 

 

 



	
  

	
  
	
  

72	
  

Table 3.4. The strength of intra versus interspecific aggregation (Aab) across all 
temperatures for P. regina interacting with heterospecifics, L. sericata and C. vicina. 
Dashes indicate sites in which oviposition did not occur for both species. Interspecific 
aggregation is greater than intraspecific aggregation if the value of Aab is less than 1.0, 
where a value greater than 1.0 indicates that intraspecific aggregation is stronger.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	
  

 

 

 

Temp 
(°C) 

Oviposition          
Site 

P. regina after L. 
sericata 

P. regina after C. 
vicina 

Measures of Aggregation Aab Aab 

15 

Mouth 0.013 - 
Ears - - 
Face 0.03 - 
Neck - - 
Legs - 0.010 
Abdomen - - 

20 

Mouth - - 
Ears - 0.019 
Face 0.002 0.004 
Neck - - 
Legs 0.001 0.03 
Abdomen - - 

25 

Mouth 0.002 0.004 
Ears 0.0008 0.004 
Face 0.001 0.002 
Neck - - 
Legs 0.01 0.02 
Abdomen - - 

30 

Mouth 0.98 - 
Ears 0.99 - 
Face 0.99 0.99 
Neck - - 
Legs 0.99 0.99 
Abdomen 0.99 - 

35 

Mouth 0.99 - 
Ears 0.99 - 
Face 0.99 0.99 
Neck - - 
Legs 0.99 0.99 
Abdomen - - 
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Figure 3.1. Mean time (± S.E.) to first oviposition event across all temperatures for P. 
regina colonizing alone (y = 0.05x2 – 3.77x + 70.79) compared to P. regina arriving after 
L. sericata colonization (A) and after C. vicina colonization (B). Temperature had a 
significant influence on time to first oviposition event by P. regina when colonizing after 
L. sericata (p < 0.0001, y = 0.08x2 – 4.45 + 63.9, R2 = 0.64) and after C. vicina (p < 
0.0001, y = 0.02x2 – 1.56 + 28.81, R2 = 0.68).  
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Figure 3.2. Interaction between temperature and species on the mean (± S.E.) oviposition 
frequency at each site on pig carcasses.         : P. regina alone,      : after L. sericata,       : 
after C. vicina. Oviposition frequency was calculated as the number of oviposition events 
that occurred at each site over the observation period. 
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Figure 3.3. Mean (± S.E.) number of eggs deposited by 100 females in each cage across 
all temperatures for P. regina colonizing alone (y = 10.89x2 – 13.84x – 2883.7) compared 
to P. regina arriving after L. sericata colonization (A) and after C. vicina colonization 
(B). Temperature had a significant influence on the number of eggs deposited by P. 
regina when colonizing after L. sericata (p < 0.0001, y = -17.63x2 + 960.38x – 10388, R2 
= 0.44) and after C. vicina (p < 0.0001, y = -6.42x2 + 341.9x – 3665.8, R2 = 0.72). 
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CHAPTER 4 

EFFECTS OF RELATIVE HUMIDITY ON EGG DEVELOPMENT AND HATCHING 

SUCCESS OF BLOW FLIES (DIPTERA: CALLIPHORIDAE) 

4.1 Introduction 
	
  

The life history of insects is often constrained by environmental factors. 

Temperature, photoperiod and relative humidity can all impact the physiology, 

development, behaviour and success of an organism. As mostly terrestrial organisms, 

insects face challenges in conserving water (Harrison et al. 2012). Water loss and gain is 

due to changes in the water content of an insect; to gain water, an insect can ingest food, 

drink or absorb water (Harrison et al. 2012). Excretion from the respiratory system and 

cuticle results in water loss (Harrison et al. 2012). Insects can choose environments that 

are suitable, in terms of humidity, as a way to control water loss (Harrison et al. 2012).  

The ability to regulate water content during fluctuations in ambient conditions is 

influenced by relative humidity (Romoser and Stoffolano 1998). Insects living in habitats 

with high humidity have longer lifespans and greater fecundity than those in habitats with 

low humidity (Ouedraogoa et al. 1996). Tomberlin and Sheppard (2002) found that 

environmental cues, such as temperature and humidity, correlated positively with 

oviposition in the black soldier fly Hermetia illucens L. (Diptera: Stratiomyidae). In 

mosquitoes, oviposition is delayed by periods of low humidity and results in reduced egg 

numbers and decreased survival of Aedes aegypti (L.) (Diptera: Culicidae) (Canyon 

1999). For the bamboo borer, Dinoderus minutus (Fabricius) (Coleoptera: Bostrichidae), 

a decrease in egg eclosion, or hatching, occurred at the lowest and highest relative 

humidity levels examined (20-85%) (Norhisham et al. 2013). Low relative humidity can 

prevent the development of an embryo or make it difficult for larval release from an egg 

due to a loss of lubrication (Guarneri et al. 2002), resulting in high mortality (Norhisham 

et al. 2013). 

For blow flies (Diptera: Calliphoridae), environmental cues have important 

impacts on physiology and development. For example, blow fly development rates 

accelerate with increasing temperatures (Ames and Turner 2003). Blow flies rely on 

patchy resources, such as carrion, and often engage in egg clustering and aggregation, 
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both of which are advantageous for the survival of offspring in heterogeneous 

environments (Cruikshak and Wall 2002). When facing periods of extreme temperature 

or humidity, egg clustering limits the number of eggs that are exposed to environmental 

conditions and can act to limit egg mortality (Stamp 1980). Low relative humidity leads 

to dehydration of eggs, which can make it difficult for larvae to be released from the 

chorion of the egg (Norhisham et al. 2013). Water loss can extend development of the 

egg stage, inducing dormancy for some species (Zrubek and Woods 2006). On the other 

hand, excessive moisture due to high humidity can result in greater mortality for insect 

eggs (Guarneri et al. 2002; Norhisham et al. 2013). Species that can tolerate a wider 

range of humidity should demonstrate more successful egg hatching than species that 

have a more limited range. For species that have higher optimal temperatures, high levels 

of humidity should reflect greater egg hatching ability, whereas species that have lower 

optimal temperatures should have greater egg hatching at lower humidities as well. 

The amount of water in the air depends on temperature, where increased 

temperature results in greater capacity of air to hold water (Anderson 1936). The vapor 

pressur deficit (vpd) is the difference between saturation vapor pressure (es) and actual 

vapor pressure (ea) (Anderson 1936). To calculate saturation vapor pressure: 

𝑒! = 0.611  ×  10(!".!  ×  !
!!!"#.!

) , where T is temperature in degrees Celsius (Melesse and 

Abtew 2013). The actual vapor pressure is calculated for a given relative humidity as: 

 𝑒! = 𝑒𝑠(1− (!"
!""
)  and vapor pressure deficit (vpd)  = es – ea (Monteith and Unsworth 

2013). Vapor pressure deficit is a sensitive indicator for atmospheric water vapor 

conditions compared to relative humidity (Anderson 1936). 

The aim of this study was to examine the influence of relative humidity on the 

egg eclosion time and hatching success of three forensically important blow flies that are 

common in Southern Ontario: Lucilia sericata Meigen, Phormia regina Meigen and 

Calliphora vicina Robineau-Desvoidy. Lucilia sericata is a ubiquitous species, abundant 

in the US and Canada, that demonstrates a preference for sunny, open habitats (Byrd and 

Castner 2010). This species is commonly observed at temperatures above 30°C (Smith 

1986) and is typically collected in the summer months in Windsor, Ontario. Phormia 

regina is often observed in southern Canada in the spring, summer and fall months (Byrd 
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and Castner 2010) when temperatures are above 10°C (Byrd and Allen 2001). In contrast, 

C. vicina is a cool weather species, abundant in the northern US and Canada and can be 

found in the spring and fall months in this area (Byrd and Castner 2010) when 

temperatures range between 3.5°C (Donovan et al. 2006) and 30°C (Smith 1986). Due to 

the temporal distribution of these three species, we predicted that eggs of the warm 

weather species L. sericata would require more time to first eclosion and have reduced 

hatching success at low humidity. Based on the wide temperature range that P. regina can 

tolerate, we expected that this species would remain largely unaffected by changes in 

relative humidity and should have similar eclosion time and success over the humidity 

range tested. We predicted that lower humidity levels would not significantly affect the 

time to first eclosion or hatching success of C. vicina. 

 

4.2 Materials and Methods 
	
  

Eggs of L. sericata, P. regina and C. vicina were collected from laboratory 

colonies maintained at the University of Windsor, Ontario, Canada. The colonies were 

maintained at 23 ± 1°C, 60 ± 5 % RH and 12L:12D photoperiod, in aluminum cages 

(Bioquip 1450C collapsible cage, 46 x 46 x 46 cm) and originated from wild type females 

collected using liver-baited traps in Windsor. Colonies were provided with water and 

sugar ad libitum. Fresh pork liver (40g) was used as an oviposition substrate to collect 

eggs from the colony cages. Egg masses (5-7 mm in diameter) were carefully removed 

from the liver to maintain the structure of the egg mass and prevent damage to the eggs. 

The surface area and depth of the egg masses was measured to estimate the number of 

eggs per egg mass as detailed in Rosati et al. (2015). A one-way analysis of variance 

(ANOVA) was used to determine if there was a difference in the number of eggs in each 

egg mass for each species. Despite the egg masses being within the same overall size 

range across all three species, the number of eggs in each cluster was significantly 

different by species composition (F2,216 = 213.37, p < 0.001) potentially due to 

differences in egg size and orientation in the mass. Due to these differences, the percent 

of successful eclosion was used in this study.  
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Egg masses were then distributed into 266 mL glass containers, lined with 

moistened filter paper and sealed with paper towel and an elastic band. The containers 

were arranged into a clear plastic tray and assigned one of six relative humidity 

treatments: 30, 40, 50, 60, 70 and 80%. The relative humidity treatments were selected 

based on previous work done by Clark and Faeth (1998) and Holmes et al. (2012). 

Growth chambers (Conviron Adaptis A1000) were programmed to 25°C with a 

photoperiod of 16:8 (L:D) and the appropriate relative humidity level. Ten replicates of 

each species treatment at each humidity level were used in this study. Data loggers 

(HOBO U12-012, Onset, Pocasset, MA) recorded the relative humidity and temperature 

every 30 minutes and the mean (±SE) relative humidity and temperature in each 

treatment is provided in Table 4.1. Vapor pressure deficit was calculated for each 

temperature and relative humidity (Table 4.1) by subtracting actual vapor pressure from 

saturation vapor pressure, as described above. 

Following the initial emergence of larvae from the eggs, observations continued 

every six hours for two days, as the majority of eggs that would hatch did so in this time 

frame (personal observation). The egg masses and neonatant larvae were submerged in 

70% ethanol and stored until manual counts of larvae could be made. The time until egg 

eclosion and the percentage of successful eclosion were recorded for each replicate 

within each relative humidity treatment. 

Logistic regression was used to examine the effect of relative humidity and 

species identity on the time to eclosion and mean percentage of successful eclosion, using 

the glm function in R 3.1.1(R Project for Statistical Computing, http://www.R-

project.org/). 

 

4.3 Results 
	
  

Relative humidity had a significant influence on the time to eclosion for all blow 

fly species (GLM, poisson, z = -16.8, p < 0.001) such that as relative humidity increased, 

eclosion time was faster for all three species (Figure 4.1). Compared to P. regina, the 

time to eclosion was slightly slower for L. sericata (GLM: z = 3.99, p < 0.001) and C. 

vicina (GLM: z = 2.27, p = 0.02) as relative humidity increased (Figure 4.1).  
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 There were differences in the hatching success of all three species due to relative 

humidity (GLM, binomial, z = 40.29, p < 0.001) such that Phormia regina had the lowest 

rate of hatching success compared to L. sericata and C. vicina, which had the highest rate 

overall (Figure 4.2). Calliphora vicina had relatively high hatching success (65-80%) 

across all relative humidities, whereas P. regina had hatching rates of less than 50% at 

low humidities, but had the highest hatching success at 70-80% (Figure 4.2). As relative 

humidity increased, the rate of hatching success also increased, with significant 

differences for L. sericata (GLM, binomial, z = -2.63, p = 0.009) and C. vicina (GLM, 

binomial, z = -19.02, p < 0.001) (Figure 4.2). Under the lower humidities, L. sericata had 

the lowest hatching success, but this appeared to change at 50% relative humidity, where 

this species experienced 70% hatching success or greater at all higher relative humidities 

(Figure 4.2). 

 

4.4 Discussion 
	
  

Survivorship of insects at the egg stage can be dependent on abiotic factors, with 

water loss becoming a critical factor for successful development and eclosion. The 

harmful effects of low relative humidity in this study are apparent in the low survival of 

eggs for L. sericata and P. regina eggs, which is most likely the result of desiccation. At 

relative humidity treatments below 50%, P. regina demonstrated a greater survival rate 

compared to L. sericata. Due to the array of temperatures that P. regina experiences in 

Windsor from the spring through the fall, it was expected that this species can withstand 

lower humidity than a summer species such as L. sericata, which performed better than 

P. regina at higher humidity treatments (50% and above). Lucilia sericata exhibited 

slower and less successful egg hatching at lower humidities, which is in agreement with a 

previously described minimum development threshold of 50% relative humidity (Davies 

1947). At lower humidities, egg hatching occurs in the middle of the egg mass and eggs 

along the surface are often desiccated (Davies 1947). As expected, the low relative 

humidity treatments were not detrimental to C. vicina eggs, as this species often 

experiences lower relative humidity in Southern Ontario during the spring and fall 

months in Windsor.  
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Egg hatching rate and survival changes with humidity, not just for the blow fly 

species examined in this study, but for other insects as well. Black soldier flies, Hermetia 

illucens L. (Diptera: Stratiomyidae) had greater eclosion success as eggs and adults, as 

well as a decrease in development time, with increasing humidity. For pine caterpillars 

Dendrolimus tabulaeformis Tsai et Liu (Lepidoptera: Lasiocampidae), extreme low and 

high relative humidity resulted in prolonged development time and reduced hatching 

success (Han et al. 2008). The area of origin may play an important role in tolerance to 

desiccation (Juliano et al. 2002). For the mosquito Aedes albopictus Skuse (Diptera: 

Culicidae), egg mortality was strongly dependent on both relative humidity and 

temperature, with high egg mortality except at the highest relative humidity for this 

species, whereas for Aedes aegypti L., low mortality was observed across the range of 

temperatures and humidities tested (Juliano et al. 2002).  

Differences in egg size between these three blow fly species could account, in 

part, for the differences in time to eclosion. Lucilia sericata has the smallest eggs of the 

three species in this study, with a mean size of 1.1 ± 0.2 x 0.33 ± 0.05 mm, whereas the 

largest eggs were those of C. vicina, with a mean size of 1.4 ± 0.2 x 0.4 ± 0.05 mm 

(Greenberg and Singh 1995). According to Greenberg and Singh (1995) P. regina eggs 

are of ‘intermediate’ size, with a mean size of 1.2 ± 0.1 x 0.3 ± 0.03mm. The variation in 

the egg sizes as well as the orientation of the eggs within a mass can affect the number of 

eggs that are present within masses as well as offer protection from desiccation (Clark 

and Faeth 1998). 

Our results indicate that relative humidity may be an abiotic cue that influences 

the timing and success of egg hatching for blow flies. Eggs cannot regulate water loss, 

although the chorion, or eggshell provides protection (Woods 2010). However, by laying 

eggs in large masses, female blow flies can account for potential water losses (Ireland 

and Turner 2006). Egg clustering is advantageous and egg aggregation can reduce egg 

predation and parasitism in addition to reducing egg exposure to environmental factors 

such as desiccation due to low humidity (Stamp 1980). In harsh ambient conditions, an 

egg mass experiences desiccation of the outer layer of eggs, which then protects the eggs 

inside the mass and ensures the survival of the majority of the offspring (Clark and Faeth 

1997). Based on our results, abiotic cues such as humidity may be driving the aggregation 



	
  

	
  
	
  

82	
  

of eggs by female blow flies, resulting in mixed species egg masses which may enhance 

the survival of the offspring. For C. vicina, high egg hatching success was maintained 

across the relative humidity ranges tested here, indicating that this species may not 

require large aggregations of eggs to ensure survival. For P. regina, however, eclosion 

success was more heavily influenced by humidity and this species only exhibited higher 

success at 70 and 80% relative humidity.  Because P. regina may have higher egg 

mortality at lower humidities, females may prefer to oviposit in areas where eggs are 

already located to assemble aggregations of eggs and facilitate more successful egg 

hatching.  

Studies examining the oviposition behaviour of female flies would benefit greatly 

from examining the influence of relative humidity and vapor pressure deficit on their 

choices. Based on our results, decisions regarding oviposition site selection and egg 

aggregation may be determined in part, by relative humidity. The relative importance of 

competition due to density of offspring compared to facilitation due to protection from 

desiccation is likely to be mediated by these abiotic conditions and partly explain clutch 

size decisions and the likelihood of mixed species egg masses. Furthermore, field 

validation studies to examine the influence of natural weather conditions with fluctuating 

temperatures and humidity would contribute to the knowledge of hatching success of 

blow flies. Due to the constraints of the equipment, the lowest humidity allowed in this 

study was 30%. It would be valuable to explore a lower range of humidity levels and 

determine the effect of such extreme conditions. In the moth, Manduca sexta 

(Lepidoptera: Sphingidae), eggs are protected by wax, which offers resistance to water 

loss (Woods et al. 2005). Additionally, around the eggs is a boundary layer of air, and the 

thickness of this boundary layer depends on the wind speed and the substrate used for 

oviposition (Woods et al. 2005). For insects facing fluctuating temperatures and periods 

of low humidity, either the wax layer or the boundary layer of air may provide additional 

protection.  

Based on this information, the influence of relative humidity on the life history of 

blow flies, in terms of egg development and hatching success, can have implications for 

the behavioural ecology of blow flies. The oviposition behaviour of P. regina in the 

presence of heterospecifics indicated a transition from facilitation to competition at 25°C 
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(Chapter 3). This transition may be driven by other changing environmental conditions, 

such as fluctuations in relative humidity. The hatching success of offspring over a range 

of relative humidity indicates that for some species, low relative humidity may present a 

challenge for egg hatching or may delay development of the egg. For females ovipositing 

in low relative humidities, these environmental conditions may facilitate the aggregation 

of eggs to ensure greater offspring survival. For P. regina, the aggregation of this species 

eggs with heterospecifics at low temperatures and low relative humidites could result in 

greater success for the offspring. Not only does this information advance the field of 

insect ecology, but also provides information pertaining to the potential mechanisms for 

aggregation and coexistence of multiple species within a community. It is vital to 

understand the role of environmental factors that modify egg development and 

oviposition decisions for coexisting species.  
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Table 4.1. Mean temperature and relative humidity recorded for each treatment and 
calculated vapor pressure deficit.  

RH 

(%) 

Mean (±SE) 

Temperature °C 

Mean (±SE) RH 

(%) 

Vapor Pressure 

deficit (kPa) 

30 24.9 ± 0.06 29 ± 0.34 0.99 

40 24.8 ± 0.1 41 ± 0.95 1.27 

50 24.8 ± 0.01 51 ± 0.75 1.58 

60 25.2 ± 0.03 60 ± 0.37 1.90 

70 24.7 ± 0.05 70 ± 0.91 2.22 

80 24.6 ± 0.15 81 ± 0.07 2.54 
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Figure 4.1. Mean (+/- S.E.) eclosion time for each species treatment over the range of 
relative humidities tested (30-80%). Relative humidity had a significant influence on the 
time to eclosion for all blow fly species (GLM, poisson, z = -16.8, p < 0.001). For P. 
regina (y = 0.02x2 - 2.59x + 105.2, R2= 0.75), L. sericata (y = 0.009x2 – 1.46x + 72.23, 
R2= 0.51) and C. vicina (y = 0.018x2 – 2.45x + 93.97, R2= 0.57). 
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Figure 4.2. Mean percentage (+/- S.E.) of eclosion success for each species treatment 
over the range of relative humidities tested (30-80%). Relative humidity had a significant 
influence on the hatching success of all three species (GLM, binomial, z = 40.29, p < 
0.001). For P. regina (y = 0.015x2 – 0.85x + 49.93, R2= 0.54), L. sericata (y = -0.047x2 + 
5.63x - 122.89, R2= 0.63) and C. vicina (y = 0.010x2 – 0.87x + 88.08, R2= 0.58).  
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CHAPTER 5 

DOES OVIPOSITION BEHAVIOUR OF BLOW FLIES IN THE LABORATORY 

REFLECT BEHAVIOUR IN THE FIELD? 

5.1 Introduction 
 

 The measurement of life history traits is crucial to understanding the population 

dynamics of insect species. For small, highly mobile insects, quantifying rates of activity 

and oviposition is difficult in a field setting. In order to evaluate these traits, controlled 

laboratory conditions are used to measure characteristics such as the rate of development 

or oviposition; however, these traits are infrequently assessed in semi-natural field 

conditions (Bezemer and Mills 2003; Casas et al. 2004). Controlled conditions and 

laboratory colonies may provide different results from field trials due to differences in the 

lab and the variable climatic conditions in the field.   

 Blow flies (Diptera: Calliphoridae) are used in forensic entomology to estimate the 

postmortem interval (PMI), or time between death and discovery of the body based on 

their arrival time, behaviour and subsequent immature development (Catts 1992; 

Tomberlin et al. 2011). Female blow flies are attracted to animal tissues after death and 

can arrive within minutes (Smith 1986; Byrd and Castner 2010). Blow flies prefer natural 

orifices as well as skin folds on the legs and abdomen as oviposition sites (Smith 1986; 

Byrd and Castner 2010; Rosati 2014; Pacheco 2015). Often, PMI estimates are based on 

insect behavior and development data collected under controlled laboratory conditions 

(Kamal 1958; Greenberg 1991; Anderson 2000), yet these data are not sufficient alone; 

they should be compared to data collected under field conditions in order to be applied in 

forensic investigations (Byrd and Castner 2001). 

 Under controlled abiotic conditions in laboratory settings, oviposition behaviour 

may be influenced by various factors, such as the presence of conspecifics or 

heterospecifics (Chapter 3; Yang and Shiao 2012), the presence of predators (Giao and 

Godoy 2007) or the structural integrity of the oviposition medium (Pacheco 2015). 

However, in the field, climatic conditions vary and flight activity and oviposition 

behavior of wild flies may also be influenced by additional factors such as wind speed 
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and precipitation (Catts 1992; Fink and Volkl 1995; Erzinçlioğlu 1996), solar radiation 

(Von Aesch et al. 2003) or light levels (Catts 1992; Erzinçlioğlu 1996), relative humidity 

(Holmes et al. 2012) and temperature (Byrd and Allen 2001; Zurawski et al. 2009). In 

particular, temperature affects the activity and development of blow flies (Grassberger 

and Reiter 2001; Ames and Turner 2003; Donovan 2006) with reports suggesting that 

blow fly activity ceases below 10°C (Williams and Richardson 1984), yet, solar radiation 

may also be an important factor during colder seasons (Von Aesch et al. 2003). Although 

blow fly activity, arrival times and oviposition site selection have been described in 

laboratory settings (Chapter 2; Chapter 3;Yang and Shiao 2012; Rosati 2014; Pacheco 

2015) and field settings (Hanski and Kuusela 1980; Thomas and Mangan 1989; Tessmer 

et al. 1995), few studies have examined these simultaneously in order to compare 

observations.   

  The aim of this study was to compare the oviposition behaviour of three local, 

forensically relevant blow flies Lucilia sericata Meigen Phormia regina Meigen and 

Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae) in terms of timing of the 

first oviposition event, oviposition site preference and the number of eggs deposited, 

between controlled laboratory conditions and in semi-natural field cages. Calliphora 

vicina is active during cooler temperatures (Donovan et al. 2006) and arrives to carrion in 

the spring and fall in southern Ontario, when temperatures range between 5-30°C (Rosati 

2014); Lucilia sericata is often active between temperatures of 20-37°C (Smith and Wall 

1997; Zurawski et al. 2009) and arrives in the summer and early fall in Ontario (Rosati 

2014). Phormia regina is often dominant in northern climates during the summer months, 

but is also tolerant of cooler temperatures with a temperature range between 10-35°C. 

(Hall 1948; Byrd and Allen 2001) and is present during all three seasons, fall, spring and 

summer in southern Ontario (Rosati 2014). Average seasonal temperatures in Southern 

Ontario are 2.6-14.5, 14.4-34.8 and 10.3-25.8°C, for the spring, summer and fall seasons, 

respectively (Environment Canada National Historical Database).  

 Thus, we tested the oviposition behaviour of laboratory-raised C. vicina and P. 

regina at 15°C in spring, of P. regina and L. sericata at 35°C in the summer and of all 

three species at 25°C in the fall under semi-natural conditions and with wild flies under 

natural conditions, comparing to the oviposition behaviour of laboratory-raised C. vicina, 
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P. regina and L. sericata under laboratory conditions of 15, 25 and 35°C. Based on the 

assumption that mean temperature is the predominate factor determining these 

oviposition behaviours in the absence of heterospecifics, we predicted that time of first 

oviposition event, oviposition site preference and the number of eggs deposited should be 

similar between blow flies in natural conditions and controlled laboratory conditions, 

testing how reliable these measures are under natural conditions (Nunez-Vasquez et al. 

2013). In controlled laboratory conditions, oviposition occurred faster with increasing 

temperature for L. sericata and P. regina and more eggs were deposited by these species 

(Chapter 2), thus we predict oviposition rate (number of eggs laid/hour) to be faster with 

increasing temperature for L. sericata and P. regina in the field. For C. vicina, 

oviposition remained relatively unaffected by increasing temperature 15 or 25°C (Chapter 

2), thus we predict no change in oviposition rate with temperature in the field. In order to 

test these predictions, we measured oviposition behaviour and calculated species-specific 

oviposition rates comparing between semi-natural field caged flies and lab caged flies.  

5.2 Materials and Methods 
 

Eggs were obtained from laboratory colonies of L. sericata, P. regina and C. vicina 

maintained at the University of Windsor in aluminum cages (Bioquip 1450C collapsible 

cage, 46 x 46 x 46 cm). All colonies originated from wild type females collected in 

Windsor, Ontario and were provided with water and sugar ad libitum. All egg masses 

were collected using fresh pork liver (40 g) as an oviposition substrate. When large egg 

masses (approximately 1000 eggs) were present, they were removed from the substrate 

and divided among 10 rearing containers, which were composed of a 1L mason jar with 

wood shavings, sealed with landscape tarp (Quest Brands Inc., Item ID: WBS 50) and a 

metal ring. Fresh liver was provided to the developing larvae as needed. Once adult flies 

emerged, they were cold sedated (Ricker et al., 1986) and sorted by gender by examining 

eye morphology (Erzinçlioǧlu 1996) for placement into treatment cages. Each treatment 

cage received 100 females and 50 males for all species examined. The density of flies in 

each treatment cages ensured that there would be no damage to the adult flies due to high 

density of individuals. In addition, this density ensured that all females would be mated, 
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since males mate with multiple females and that each female would have access to the 

resource and an opportunity to oviposit. Density dependent effects were minimized with 

the density of individuals in each cae, ensuring maximum survival and reproductive rates 

(Moe et al. 2002). All species and temperature treatments were replicated three times. 

Fresh pork liver (50 g) was provided for each treatment cage during the first five days of 

the experiment to ensure ovarian development and spermatogenesis (Erzinçlioǧlu 1996; 

VanLaerhoven and Anderson 2001); this process ensured that the female flies within the 

treatment cages were gravid on experimentation days. 

 For the laboratory observations, the treatment cages were assigned to one of three 

temperature treatments (15°C, 25°C, 35°C) and placed into a growth chamber 

programmed with a photoperiod of 16:8 (L:D), 50 ± 0.09-0.95 % relative humidity and 

the appropriate temperature. Each species and temperature treatment was replicated six 

times. Every 60 minutes data loggers (HOBO U12-012, Onset, Pocasset, MA) recorded 

the temperature and relative humidity. The data set provided for the laboratory trials was 

collected as a subset of oviposition behavior data (Chapter 2), however, the current 

analyses test different hypotheses. 

5.2.1 Semi-Natural Field Study Site 
 

 On day six of experimentation, three treatment cages of each species were 

transported to the field site. These treatment cages represented semi-natural field cages, 

as the flies were observed in treatment cages, but were held in natural conditions at a 

field site. In the field experiments, the recorded temperatures and relative humidities for 

each set of field trials can be found in Table 5.1. Based on the seasonal preferences and 

temperature thresholds of the species to be studied, the semi-natural field cages were 

constructed to contain the species expected to arrive during each season. Trials conducted 

in the spring had mean temperatures close to 15°C, when it was predicted that C. vicina 

and P. regina would arrive, and cages containing these two species were brought to the 

field site. In the summer, when mean temperatures were close to 35°C, cages of P. regina 

and L. sericata were brought to the field site. In the fall, mean temperatures were close to 

25°C, and cages of all three species were brought to the field site.  

 The field site was located in Ojibway Park (42.2578° N, 83.0691° W) within the 
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Ojibway Prairie Complex in Windsor, Ontario. This nature reserve is approximately 160 

acres and is composed of various habitats, including pin oak forest, tallgrass prairie, 

savanna and aquatic areas. The treatment cages were placed 50 m apart (Amendt et al. 

2010) in the transition zone between the pin oak forest and the tall grass prairie. In 

addition to the treatment cages, three fetal pigs (1-2 kg) were placed throughout the field 

site 50 m apart to attract and observe the oviposition behaviour of wild flies, and to verify 

the arrival of the species of interest. The wild colonized pig carcasses were secured with 

hexagonal wire and rebar to protect from scavenging activity. For observational studies 

on wild colonizing blow flies, pig carcasses were observed every 1 h during daylight 

hours 24 h and then at 3 h intervals for 48 h. Observations were made as to species arrival 

and oviposition sites selected, which included the mouth, ears, face, neck, legs and 

abdomen. Samples of approximately 100 eggs and larvae were collected from each 

oviposition site that contained eggs to identify species that colonized the carcasses. Total 

egg numbers present on the pig carcasses colonized by wild flies were not calculated due 

to the large number of flies that arrived and the uncertainty of the species identity of the 

egg masses making absolute quantification of each species’ contribution to individual egg 

masses not feasible. 

	
  

5.2.2 Oviposition in Controlled Settings 
	
  

 For both laboratory and field trials, a deceased fetal pig was removed from the 

freezer and thawed overnight before being placed on an aluminum tray and positioned 

inside each treatment cage on the sixth day of experimentation. Observations were made 

hourly during daylight hours for 24 h to measure the amount of time until oviposition 

occurred, the site selected for egg deposition and the number of eggs oviposited.  

 After the observation period was complete, the fetal pigs were removed and all egg 

masses were photographed using a Nikon D70 camera and AF Micro-Nikkor 60 mm 

f/2.8D lens and a 15cm ruler for scale. Measurements of depth were recorded for each 

egg mass at all areas of the mass with different depths. The procedure used to calculate 

the number of eggs is outlined in Rosati et al. (2015), but will be briefly outlined here.  

Using the photographic analysis software, ImageJ, the surface area of each egg mass was 
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measured. With the STRAIGHT line tool, a 10mm line was drawn and superimposed 

onto the ruler in each photograph. The scale in each photograph was calibrated using the 

ANALYZE > SET SCALE function. All egg masses were outlined at each depth using 

the polygon selection tool. Measurements of surface area were obtained using the 

ANALYZE > MEASURE function. To calculate the volume of eggs, depth 

measurements were multiplied by their corresponding surface area measurements and this 

was repeated for all egg masses (Rosati et al. 2015). The volumes calculated were put 

into species-specific regression equations (L. sericata: y = 0.34785 + 0.99974x; P. 

regina: y = 0.24706 + 1.02851x; C. vicina: y = 0.3426 + 0.99603x), which provided an 

accurate estimate of the total number of eggs within a given egg mass (Rosati et al. 2015; 

Hans et al. submitted).  

	
  

5.2.3 Statistical Analyses 
	
  

All analyses were performed in R 3.1.1(R Project for Statistical Computing, 

http://www.R-project.org/). Analyses were conducted separately for all three blow fly 

species using the mean temperature of the field trials and corresponding laboratory trial 

temperatures.  

The data for time to first oviposition event were log transformed to meet the 

assumptions of normality and homogeneity of variance for parametric testing. A two-way 

ANOVA (aov function) was conducted for each species to examine the effect of 

temperature and location (laboratory, field, wild) on time to first oviposition event. 

Regression analyses were performed for each species to examine the relationship 

between temperature and oviposition time. 

To examine the effects of temperature and location, and the interaction of 

temperature and location on the sites selected for oviposition by P. regina, L. sericata 

and C. vicina, a two-factor MANOVA (manova function) was used. To meet the 

assumptions of parametric testing, the oviposition site data was ln (site count +1.5) 

transformed. To determine how site selection for each species was influenced by 

temperature or location independently, all significant MANOVA results were followed 
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with one-way MANOVA and ANOVA. P values were compared to α = 0.01 for 

MANOVA.  

To compare the rate of oviposition in the lab and in the field, oviposition rate was 

calculated by dividing the total number of eggs on each pig carcass by the number of 

hours female blow flies laid eggs. These values were square root transformed to meet the 

assumptions of normality and homogeneity of variance for parametric testing. A two-way 

ANOVA (aov function) was performed to examine the difference in oviposition rate due 

to temperature and location for each species. 

A one-way ANOVA (aov function) was used to examine the relative change in 

the total amount of eggs oviposited between the laboratory and caged field trials over the 

temperature range tested. 

 

5.3 Results 
	
  

As expected, the wild fly populations that arrived to pig carcasses in the spring 

consisted of P. regina and C. vicina, in the summer of P. regina and L. sericata and in 

the fall, of all three species.  

Time to first oviposition event depended on the interaction of temperature and 

location for both P. regina (F2, 30 = 27.05, p < 0.001) (Figure 5.1) and C. vicina (F2, 18 = 

14.36, p < 0.001) (Figure 5.2). For P. regina, there were significant differences between 

all temperatures (Figure 5.1). As temperature increased, P. regina required less time for 

oviposition in all locations (Figure 5.1), but demonstrated delayed oviposition in the 

laboratory at 15°C compared to in the field (Figure 5.1). For C. vicina, there was a 

significant difference in oviposition time between the laboratory and the field trials 

(Figure 5.2). For this species, delayed oviposition occurred at 15°C in the field, but time 

to oviposition was between 1-2 hours when tested at 25°C (Figure 5.2). There was no 

effect of temperature (F1, 18 = 3.32, p = 0.09) or location (F2, 18 = 2.83, p = 0.08) on the 

time to first oviposition event for L. sericata (Figure 5.3).  

There was an effect of location (MANOVA: Wilk’s λ = 0.277, F 2,27 = 4.35, p = 

0.002; Table 5.2) on P. regina oviposition site selection, indicating that P. regina selected 

different sites depending on the location in which it was ovipositing. For P. regina, the 
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preferred oviposition sites in the lab were the legs and areas of the head (Figure 5.4).  In 

the field, however, P. regina primarily selected the legs, mouth and face (Figure 5.4). 

Wild colonizing P. regina preferred the legs and face at temperatures of 15 and 25°C, but 

demonstrated a preference for the mouth, face and legs at 35°C (Figure 5.4).   

For C. vicina, there was a significant effect of location on site selection 

(MANOVA: Wilk’s λ = 0.09, F 2,18 = 5.86, p < 0.001; Table 5.2), indicating that C. vicina 

selected different sites when ovipositing in different locations. In both the lab and the 

field, C. vicina demonstrated a similar preference for sites, choosing the face, mouth, legs 

and ears (Figure 5.5). The oviposition sites selected by wild colonizing C. vicina were the 

mouth and face, at both 15 and 25°C (Figure 5.5).  

Location had a significant effect on oviposition site selection of L. sericata 

(MANOVA: Wilk’s λ = 0.092, F 2,27 = 4.97, p < 0.001; Table 5.2) where L. sericata 

selected different oviposition sites more frequently depending on the location it was 

ovipositing. Wild L. sericata selected the mouth more frequently, whereas L. sericata in 

the field selected the mouth more frequently at 25°C, but less frequently at 35°C, 

compared to the wild and lab flies (Figure 5.6).  

The oviposition rate of C. vicina was different due to location (F1,14 = 6.42, p = 

0.02, Table 5.3) and the rate of C. vicina oviposition in the field was greater than in the 

lab.  Oviposition rate of P. regina was influenced by the interaction of temperature and 

location (F2,14 = 12.89, p < 0.001, Table 5.3), and the rate was greater in the field at 15°C, 

but greater than in the lab at 25 and 35°C.  There was no effect of location (F1,14 = 1.86, p 

= 0.194, or temperature (F1,14 = 1.26, p = 0.283), on the oviposition rate of L. sericata. 

Fewer eggs were deposited by L. sericata in the field than in the lab at 35°C (F3, 8 

= 9.08, p = 0.04, Figure 5.7). Calliphora vicina demonstrated no difference in the number 

of eggs deposited on pig carcasses in the lab and the field at any of the temperatures 

tested (C. vicina: F3, 8 = 2.94, p = 0.16). The number of eggs laid by P. regina differed in 

the lab and in the field (F5, 12 = 9.62, p = 0.02) such that at 15°C, more eggs were 

deposited in the field than in the lab; however, at 25 and 35°C, more eggs were 

oviposited in the lab than in the field (Figure 5.7). 
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5.4 Discussion 
	
  

Based on our results, there are noticeable differences between the observations in 

the field setting compared to the lab setting. The differences in the time to the first 

oviposition event between the lab and field at 15°C for P. regina and C. vicina may be 

due to fluctuating temperatures in the field compared to constant temperatures maintained 

in a laboratory setting (Byrd and Allen 2001), as temperature has been shown to 

influence the time to first oviposition (Chapter 2). Whereas previous studies have 

examined the influence of fluctuating temperature on development of eggs and larvae 

(Byrd and Allen 2001; Niederegger et al. 2010), little information is available for the 

influence of fluctuating temperature on the behavior of the adult blow flies. It is also 

possible that different levels of humidity between the lab and field environment result in 

different speeds of first oviposition as humidity has been shown to influence egg eclosion 

success (Chapter 4) and therefore, may impact adult oviposition behaviour. 

Differences in humidity thresholds among species for egg hatching success may 

play a role in the number of eggs a female chooses to deposit in a given location. When 

female P. regina are ovipositing in the presence of heterospecific eggs, the flies deposit 

more eggs at lower temperatures, however, at higher temperatures, P. regina deposits 

fewer eggs in the presence of heterospecific eggs (Chapter 3). The switch in behaviour 

may be due to P. regina females choosing to aggregate their eggs with heterospecific 

eggs under low temperature/low humidity conditions when their eggs are most 

susceptible to reduced hatching success due to desiccation, whereas at higher 

temperatures and higher humidities, P. regina has greater hatching success and may not 

rely on aggregating eggs with those of heterospecifics to ensure offspring survival.  

Although the rate of oviposition for L. sericata was no different between the lab 

and the field locations at either temperature tested, there was an increase in the number of 

eggs laid per hour for this species. As expected, P. regina oviposition rate increased with 

increasing temperature, but only in the lab. In the field, the greatest rate of oviposition 

occurred for P. regina at the lowest temperature tested, and this resulted in a greater total 

number of eggs deposited by P. regina in the field at this temperature. The rate of 

oviposition by C. vicina was greater in the field than in the lab. Although natural 
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conditions may have resulted in greater time to first oviposition event, C. vicina females 

deposited a greater number of eggs per hour in the field, at both temperatures tested. 

In both the laboratory and field, L. sericata selected orifices such as the mouth 

and ears, as was expected for this species based on previous work (Rosati 2014; Pacheco 

2015). This species often selects areas that can provide moisture and protection for their 

offspring, from factors such as desiccation, predators and parasitoids (Kamal 1958; 

Grassberger and Reiter 2001). Site selection by P. regina females demonstrated that the 

legs, face and mouth were the preferred sites when tested in the lab as well as the field. 

This behaviour has been documented previously (Rosati 2014; Pacheco 2015) in which 

P. regina selects the larger areas on a carcass. Lastly, C. vicina preferred the face as an 

oviposition site when tested in the laboratory, but demonstrated a preference for the face, 

legs and mouth when examined in the field. In this study, P. regina and C. vicina females 

preferred to oviposit on larger areas of the pig carcass, such as the legs and the face, in 

both the laboratory and field setting. This preference for oviposition sites may be due, in 

part, to the surface area that is available for egg deposition (Pacheco, Hans and 

VanLaerhoven, in prep). Smaller orifices, such as the nostrils or ears, could limit the 

number of eggs that can be deposited into these areas, whereas larger areas allow for 

more eggs to be laid and the formation of larger egg masses. Selecting larger areas for 

oviposition, and therefore, the ability to form larger aggregated egg masses, may be 

beneficial for the developing offspring. The large egg masses can increase development 

temperatures (Catts and Goff 1992; Ireland and Turner 2006), facilitate resource 

consumption by increasing the amount of digestive enzymes present (Goodbrod and Goff 

1990; Reis et al. 1999; Ireland and Turner 2006) and dilute predatory effects (Stamp 

1980), although there is likely a density at which larger egg masses are detrimental.  

This study demonstrated the importance of verifying conclusions drawn on lab-

based behaviour with field-based studies as the response by each species differed in 

different ways between the lab and field, yet with good correspondence between field-

caged and wild flies. The differences in the behaviour of P. regina, in particular, 

emphasize the caution that is required when applying various parameters measured in a 

lab-based setting to a more natural setting. Still to be explored is the added factor of 

species interactions on the oviposition behaviour of these flies in a more naturalized 
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setting and much more investigation is required to understand the mechanisms driving 

their oviposition behaviour. Few studies combine observations of behaviour and 

development made in a controlled setting to that of insects under natural conditions (Pitts 

and Wall 2004). Observing the natural history of these organisms in field settings 

provides valuable information, particularly when these observations can be compared to 

those made in controlled conditions. Caution must be applied when taking measurements 

collected under controlled settings and applying them our understanding of these 

organisms in the wild. Because the behaviour of organisms in these settings can differ, it 

provides the means to test the robustness of hypotheses developed in controlled 

mechanistic experiments to real world environments.  
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Table 5.1. Mean temperature and relative humidity for the controlled laboratory and field 
trials.  

 

Treatment Mean (±SE) Temperature °C Mean (±SE) % RH  

Lab 15 15.4 ± 0.27 52 ± 0.09 

Lab 25 24.8 ± 0.01 51 ± 0.75 

Lab 35 34.8 ± 0.06 51 ± 0.95 

Field 15 14.7 ± 1.12 50 ± 0.6 

Field 25 24.7 ± 0.5 62 ± 1.4 

Field 35 35.3 ± 2.2 71 ± 0.7 
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Table 5.2. Multivariate Analysis of Variance (MANOVA) results to determine the effect 
of location (lab, field, wild) on the oviposition sites selected by L. sericata P. regina, and 
C. vicina. Significant effects are indicated in bold font; α = 0.01 for all effects. 

Oviposition Site d.f. F ratio p - value 

Lucilia sericata 

Mouth 2, 18 15.21 < 0.001 

Ears 2, 18 4.74 0.022 

Face 2, 18 5.86  0.010 

Neck 2, 18 0.47 0.633 

Legs 2, 18 0.24 0.778 

Abdomen 2, 18 2.89 0.082 
 

Phormia regina 

Mouth 2, 27 2.03 0.151 

Ears 2, 27 0.14 0.867 

Face 2, 27 8.99  0.001 

Neck 2, 27 0.08 0.924 

Legs 2, 27 7.34 0.003 

Abdomen 2, 27 1.50 0.241 

Calliphora vicina 

Mouth 2, 18 1.94 0.173 

Ears 2, 18 3.75 0.044 

Face 2, 18 4.81 0.021 

Neck 2, 18 1.13 0.346 

Legs 2, 18 7.32  0.004 

Abdomen 2, 18 3.31 0.061 
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Table 5.3 Mean oviposition rate (number of eggs per hour) for each species at each 
temperature and location. For these analyses, L. sericata was not tested at 15°C and C. 
vicina was not tested at 35°C. 

  Mean Oviposition Rate (#eggs/h) 

Location Temperature L. sericata P. regina C. vicina 

Lab 
15 - 2.8 ± 2.8 51.5 ± 9.3 

25 135.4 ± 52.1 298.6 ± 104.4 35.8 ± 7.6 

35 287.3 ± 78.2 841.5 ± 162.9 - 

Field 
15 - 313.5 ± 49.3 68.1 ± 12.8 

25 145.1 ± 35.9 118.1 ± 91.2 110.4 ± 45.2 

35 214.9 ± 36.9 204.6 ± 116.1 - 
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Figure 5.1. Mean time (± S.E.) to first oviposition event across all temperatures for P. 
regina ovipositing in the laboratory, field or colonization by wild P. regina. There was a 
significant interaction between temperature and location on P. regina oviposition time 
(F2, 30 = 27.05, p < 0.0001). For P. regina Lab (y = -1.13x + 38.56, R2 = 0.87), P. regina 
Field (y = -0.15x + 7.64, R2 = 0.69), and P. regina Wild (y = -0.17x + 7.72, R2 = 0.82). 
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Figure 5.2. Mean time (± S.E.) to first oviposition event across all temperatures for C. 
vicina ovipositing in the laboratory, field or colonization by wild C. vicina. There was a 
significant interaction between temperature and location on C. vicina oviposition time  
(F2, 18 = 14.36, p = 0.0002). For C. vicina Lab (y = 0.02x + 0.92, R2 = 0.40), C. vicina 
Field (y = -0.33x + 9.33, R2 = 0.86), and C. vicina Wild (y = -0.03x + 2.50, R2 = 0.20). 
For these analyses C. vicina was not tested at 35°C. 

 

 

 

 

 

0 

1 

2 

3 

4 

5 

6 

10 15 20 25 30 

M
ea

n 
Ti

m
e 

to
 O

vi
po

si
tio

n 
(h

) 

Temperature (°C) 

C. vicina Lab C. vicina field C. vicina wild 

Linear (C. vicina Lab) Linear (C. vicina field) Linear (C. vicina wild) 



	
  

	
  
	
  

110	
  

Figure 5.3. Mean time (± S.E.) to first oviposition event across all temperatures for L. 
sericata ovipositing in the laboratory, field or colonization by wild L. sericata. There was 
no significant effect of temperature (F1, 18 = 3.32, p = 0.09) or location (F2, 18 = 2.83, p = 
0.08) on L. sericata oviposition time. For L. sericata Lab (y = -0.15x + 8.92, R2 = 0.05), 
L. sericata Field (y = -0.10x + 4.83, R2 = 0.53), and L. sericata Wild (y = -0.13x + 4.08, 
R2 = 0.67). For these analyses L. sericata was not tested at 15°C.  
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Figure 5.4. Interaction (MANOVA: Wilk’s λ = 0.277, F 2,27 = 4.35, p = 0.002) between 
temperature and location on the mean (± S.E.) oviposition frequency by P. regina at each 
site on pig carcasses.      : P. regina Lab,     :P. regina  Field,     : P. regina Wild. 
Oviposition frequency was calculated as the number of oviposition events that occurred 
at each site over the observation period. 
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Figure 5.5. Interaction (MANOVA: Wilk’s λ = 0.09, F 2,18 = 5.86, p = 0.0003) between 
temperature and location on the mean (± S.E.) oviposition frequency by C. vicina at each 
site on pig carcasses.      : C. vicina Lab,    :C. vicina  Field,     : C. vicina Wild. 
Oviposition frequency was calculated as the number of oviposition events that occurred 
at each site over the observation period. 
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Figure 5.6. Interaction ((MANOVA: Wilk’s λ = 0.092, F 2,27 = 4.97, p = 0.0003) between 
temperature and location on the mean (± S.E.) oviposition frequency by L. sericata at 
each site on pig carcasses.      : L. sericata Lab,    :L. sericata  Field,     : L. sericata Wild. 
Oviposition frequency was calculated as the number of oviposition events that occurred 
at each site over the observation period. 
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Figure 5.7. Mean difference (±S.E.) in the number of eggs oviposited by 100 females in 
each cage in the semi-natural field trials compared to a baseline of the eggs oviposited 
under controlled laboratory conditions for P. regina, L. sericata and C. vicina. There 
were significant differences in number of eggs deposited by P. regina (F5, 12 = 9.617, p = 
0.02) and L. sericata (F3, 8 = 9.08, p = 0.04), but not C. vicina (F3, 8 = 2.941, p = 0.16). 
For these analyses, L. sericata was not tested at 15°C and C. vicina was not tested at 
35°C. Asterisks indicate a difference between the baseline number of eggs oviposited 
under controlled laboratory conditions and the semi-natural field trial for that species that 
that temperature. 
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CHAPTER 6 

INFLUENCE OF TEMPERATURE AND SPECIES INTERACTIONS ON 

DEVELOPMENT ON LARVAL DEVELOPMENT AND ADULT SIZE OF BLOW 

FLIES (DIPTERA: CALLIPHORIDAE) 

6.1 Introduction 
 

Insects are poikilotherms and therefore rely on ambient conditions to maintain 

their body temperatures (Harrison et al. 2012). The association between temperature and 

insect development has been thoroughly documented (Huey and Kingsolver 1989; 

Angilletta et al. 2004). Insect development occurs within a thermal range, having an 

optimal temperature (Topt) for development, which lies between a critical thermal 

minimum (CTmin) and maximum (CTmax) (Huey and Kingsolver 1989). This represents 

the lowest and highest temperatures at which an insect can develop (Huey and Kingsolver 

1989). This relationship between temperature and development can be demonstrated as a 

thermal performance curve (TPC), that shows thermal sensitivity of an organism over a 

range of temperature (Huey and Kingsolver 1989; Izem and Kingsolver 2005). Shifts in a 

TPC can reflect changes in development (Kingsolver 2009). A vertical shift in the height 

of a TPC indicates variation in the development of the organism over a temperature range 

and a shift horizontally demonstrates a trade-off between development and temperature, 

at low or high temperatures (Kingsolver 2009).  

These trade-offs have been examined in evolutionary biology, as reaction norms, 

which describe the relationship between a phenotype and an environmental variable, and 

involve a series of trade-offs relating to allocation, acquisition and specialist-generalists 

(Angilletta et al. 2003). Allocation trade-offs are described as allocating the available 

resources to one function over another, whereas acquisition trade-offs focus on 

minimizing mortality and maximize the foraging and consumption of resources 

(Angilletta et al. 2003). Specialist-generalist trade-offs describe the specialization of an 

organism in a particular environment, resulting in greater performance over a range of 

environmental conditions (Angilletta et al. 2003). For insects, thermal reaction norms 

examine the trade-offs associated with physiological and behavioural processes in a given 

environment (Angilletta et al. 2003). 
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The thermal environment can affect ectotherms, including insects, by altering the 

rates of growth and development or affecting the final adult size of the organism 

(Atkinson 1993; Angilletta et al. 2003). Typically, high temperatures result in faster 

development, resulting in smaller organisms (Atkinson 1994; Davidowitz and Nijhout 

2004; Kingsolver 2009). Kingsolver et al. (2004) explain that plasticity can occur in two 

ways. In a TPC, performance or development of an individual is affected by temperature 

(Kingsolver et al. 2004). This can be compared to a thermal development reaction norm  

where a trait in a later stage is influenced by temperature during development and 

growth. Thermal development reaction norms and TPCs are both considered forms of 

phenotypic plasticity, where there is considerable variation in the traits of organisms in 

response to the thermal environment (Kingsolver et al. 2004). 

For carrion feeding insects, development of offspring occurs on decomposing 

tissue. Adult blow flies (Diptera: Calliphoridae) are attracted to carrion where they feed 

on blood and decomposition fluids and reproduce while their larvae feed on body tissues 

(Greenberg 1991). Gravid females use decomposing material as an oviposition substrate 

to deposit their eggs. The hatching larvae develop through three (L1, L2 and L2) larval 

instars. Once individual larvae have met their nutritional requirements in the third larval 

stage, larvae crawl from the food source to pupate (Hutton and Wasti 1980). During 

pupation, larvae shorten in length and the outer membrane hardens to form a puparium; 

following metamorphosis, an adult fly emerges from the puparium (Greenberg 1991). 

Blow fly species have different growth and developmental rates, which have been 

measured for numerous species including: Lucilia sericata Meigen (Kamal 1958; Ash 

and Greenberg 1975; Greenberg 1991; Wall et al. 1992; Davies and Ratcliffe 1994; 

Grassberger and Reiter 2001), Calliphora vicina Robineau-Desvoidy (Kamal 1958; 

Reiter 1984; Greenberg 1991; Davies and Ratcliffe 1994; Donovan 2006); and Phormia 

regina Meigen (Kamal 1958; Greenberg 1991; Byrd and Allen 2001; Nabity et al. 2006). 

Numerous studies provide examples of variable development within species of blow flies. 

This may be a result of constant versus fluctuating temperatures, or different geographic 

populations. Growth rate, larval weight and adult size may all be influenced by 

temperature (Kingsolver and Huey 2008).  
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Generally, there are three principles associated with temperature, size and fitness 

(Kingsolver and Huey 2008). These ideas utilize the term ‘better’ to denote greater 

fitness, which can be associated with population increases and reproductive rates. 

However, due to the difficulty associated with quantifying these metrics, components of 

fitness, such as fecundity or survival, are often measured (Kingsolver and Huey 2008). 

The first rule, bigger is better, suggests that a larger body size leads to increased fitness 

compared to individuals with a smaller body size (Kingsolver and Huey 2008). However, 

attaining a large size involves trade-offs where increased energy demands often require 

more time, leaving the individual more susceptible to predation (Kingsolver and Huey 

2008). The second principle is the temperature-size rule, which proposes that higher 

temperatures result in the development of smaller adults, due to faster growth rates which 

shorten development time (Atkinson 1994; Atkinson and Sibly 1997; Angilletta and 

Dunham 2003; Kingsolver and Huey 2008). The third rule, hotter is better, indicates that 

species with a higher optimal temperature have greater fitness or development (Frazier et 

al. 2006). Studies of insect development have taken these principles into consideration, 

however, many of these studies are not looking at all aspects that can influence insect 

development.  

Although many studies examine the influence of temperature, many of these 

studies examine only one species developing, with species interactions noticeably absent 

(Byrd and Butler 1996; Byrd and Butler 1997; Byrd and Allen 2001; Grassberger and 

Reiter 2002; Nabity et al. 2006) and it is likely that species interactions together with 

environmental effects result in variable blow fly development. Group oviposition sets up 

a potential scenario for different species interactions among larvae, such as intraspecific 

and interspecific competition (Saunders and Bee 1995; Smith and Wall 1997; Von Zuben 

et al. 2001). Species interactions, including competition, can alter body size and 

fecundity of blow flies (Ives 1988; Catts 1992; Von Zuben et al. 1996; Faria et al. 1999; 

Reis et al. 1999; Ireland and Turner 2006). Overall, there is a lack of information 

regarding the influence of species interactions on the development of coexisting blow 

flies. 

The blow flies L. sericata, C. vicina, and P. regina are three of the most 

ubiquitous species that are frequently encountered on decomposing remains (Haskell and 



	
  

	
  
	
  

118	
  

Williams 2008). These blow fly species often arrive to carrion and oviposit large 

aggregations of eggs. Lucilia sericata and P. regina often colonize the same carrion 

resource (Anderson and VanLaerhoven 1996; VanLaerhoven and Anderson 1999; 

Sharanowski et al. 2008; Vanin et al. 2013). The developmental temperature range for L. 

sericata is between 10-35°C (Gosselin et al. 2010; Roe and Higley 2015), however, this 

species demonstrates increased mortality between 10-17.5°C (Roe and Higley 2015). 

Adult L. sericata are smaller than the other species in this study, with a size between 6-9 

mm (Byrd and Castner 2010). It is generally believed that L. sericata is a poor 

competitor, exhibiting negative effects such as reduced body size and reduced survival 

due to intraspecific competition (Prinkkilä and Hanski 1995; Smith and Wall 1997; 

Kheirallah et al. 2007). However, when competing with P. regina, L. sericata 

development and survival were not reduced, indicating a potential benefit due to 

interspecific interactions (Hutton and Wasti 1980; Rosati 2014).  

The temperature range of development for P. regina is between 10-35°C (Deonier 

1940; Byrd and Allen 2001) and adults are usually between 7-9 mm (Byrd and Castner 

2010). When P. regina develop with heterospecifics, differing responses have been 

documented. For example, Hutton and Wasti (1980) found that P. regina larvae were 

completely eliminated from resources when competing with L. sericata. However, others 

found that P. regina survival and adult fitness increased when developing with L. 

sericata (Reid 2012; Rosati 2014).  

Calliphora vicina has the lowest temperature tolerance of the three species, with a 

development range between 3.5-30°C (Donovan 2006; Hwang and Turner 2009). At 

temperatures above 30, Reiter (1984) reported that C. vicina larvae exhibit inhibited 

growth, with high mortality and few surviving to pupation. The growth rate of C. vicina 

is often greater than that of other species, due to the larger size of this species (Smith and 

Wall 1997), with an overall greater pupal mass and adult body size (10-14 mm) (Byrd 

and Castner 2010). This species experiences increased mortality and reduced adult size 

due to intraspecific competition during development, indicating that the growth of C. 

vicina should be reduced during intraspecific interactions (Saunders and Bee 1995; Smith 

and Wall 1997). Due to their large size, C. vicina may not be as heavily impacted by 

interspecific competition when competing with smaller larvae and may have the ability to 
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outcompete and exclude a smaller species. Conversely, the larger size of C. vicina may 

result in increased competition with other species due to their greater resource 

requirements.   

The objective of this study was to determine the effects of temperature and 

intraspecific and interspecific species interactions on the growth rate, pupal mass, 

survivorship and resulting adult size of the blow flies L. sericata, C. vicina and P. regina. 

We were specifically interested in development of L. sericata when developing with P. 

regina as these two species co-occur in the summer in southern Ontario, C. vicina when 

developing in the presence of P. regina as these two species co-occur in the spring/fall in 

southern Ontario, and P. regina when developing in the presence of each of these species 

separately as it is found throughout the spring, summer and fall. Given its affinity for 

warmer temperatures (Smith 1986), L. sericata should have a faster growth rate at higher 

temperatures, resulting in a lower pupal mass, increased survivorship and smaller adult 

body size. With C. vicina being a cold-adapted species (Smith 1986; Donovan et al. 

2006), high temperatures should have a negative impact on the growth rate, pupal mass 

and survivorship of larvae, with smaller adults emerging at higher temperature. Due to 

the wide temperature range for development of P. regina, we expect that development 

will be faster at lower temperatures compared to L. sericata, but slower at lower 

temperatures than C. vicina. In addition, we expect P. regina will have faster growth rate, 

lower pupal mass, greater survivorship and smaller adult body size as temperature 

increases.  

Furthermore, we predicted that the growth rate of L. sericata would not change 

due to both intra- and interspecific interactions. However, we believe that interspecific 

interactions would result in smaller adult size and therefore decreased pupal mass as 

documented in previous studies (Fuller 1934; Smith and Wall 1997). The larger blow fly, 

C. vicina, should exhibit stronger intraspecific interaction effects when compared to 

interspecific effects, as demonstrated by reduced pupal weight and smaller adults. Based 

on previous work on interspecific interactions among blow flies (Rosati 2014; Pacheco 

2015), which indicates the facilitation of P. regina larval growth, we expected larger 

adult flies directly resulting from increased growth rates and greater pupal mass. 

Although P. regina oviposition is facilitated by the presence of L. sericata and C. vicina 
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at low temperatures, there is a switch at 25°C, where rather than facilitation, P. regina 

faces competition from these species (Chapter 3). Based on these results, we expect 

similar outcomes for faster development when P. regina larvae are developing in the 

presence of L. sericata and C. vicina below 25°C and potentially slower development in 

the presence of heterospecifics above 25°C.  

 

6.2 Materials and Methods 
	
  

6.2.1 Colony Maintenance 
 

All adult flies were maintained in colonies at the University of Windsor and were housed 

in 46 x 46 x 46 cm aluminum cages (Bioquip 1450C aluminum collapsible cage). Colony 

cages were provided with sugar and water ad libitum. Pork liver was used as an 

oviposition substrate for gravid females within the colony cages. Egg masses 

(approximately 1000 eggs) were removed from the liver and placed into 1L rearing jars 

with wood shavings as a pupation medium and pork liver as a food source. The openings 

of all jars were secured with landscape tarp (Quest Brands Inc., Item ID: WBS 50) and 

metal rings to ensure the larvae remained within the jars. Larvae were given fresh liver 

throughout development and were monitored until emergence of adults. After emergence, 

flies were transferred to clean colony cages.  

	
  

6.2.2 Experimental Design 
	
  

The species treatments for this study were as follows: (1) P. regina only, (2) L. 

sericata only, (3) C. vicina only, (4) P. regina  and L. sericata, (5) P. regina and C. 

vicina. For treatments 1-3, the species developed with conspecifics and therefore 

experienced intraspecific interactions. Treatments 4 and 5 represent mixed species 

treatments, with the species experiencing both intra and interspecific interactions. All 

species and temperature treatments were replicated five times at every sample point. For 

each temperature and species treatment, 40 cups were prepared and were composed of 20 
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first stage larvae were transferred to 59 mL polystyrene cups using a dampened 

paintbrush. Density of larvae was maintained at 20 individuals regardless of treatment, 

thus in mixed species treatments, 10 individuals of each species were placed into the cup. 

Each cup contained 20 g of pork liver to ensure that excess liver would be present, as 

each larvae requires between 0.5- 1 g liver (Ives 1991; Reid 2012) and 1.5 cm of sawdust, 

to act as a pupation medium (Hutton and Wasti 1980). All cups were covered with 

landscape tarp and secured with a plastic lid. Cups were placed into growth chambers 

(Conviron Adaptis A1000) that were programmed to a constant temperature, with 50% (± 

0.41- 2.59) RH and a 12:12 L:D cycle. Temperatures within the growth chambers were 

programmed to be one of five temperatures (15°C, 20°C, 25°C, 30°C, 35°C (±0.66)). 

Dataloggers (HOBO U-12 data loggers, Onset, Pocasset, MA) were placed into the 

growth chambers to record both temperature and relative humidity, hourly.  

	
  

6.2.3 Sampling 
	
  

At each time point, one cup from each species and temperature treatment was 

removed from the growth chambers. All larvae present in one cup, representing each 

species and temperature treatment were removed from their respective polystyrene cups 

at 12 h intervals. Larvae were immediately placed into boiling water for 30 s to prevent 

shrinkage and were then preserved in 70% ethanol. This continued until pupation of all 

larvae in the polystyrene cups was observed. Following pupation, pupae were sampled in 

24 h increments. The wet mass of larvae and pupae were measured to the nearest 0.1 mg 

using an analytical scale (Denver Instruments M-120). After emergence, adult flies were 

counted in each cup to determine percentage of survival. Size of adults was measured to 

the nearest 0.01 mm using the length of the cm-du cross vein (Smith and Wall 1997).  
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6.2.4 Statistical Analyses 
	
  

All analyses were completed in R 3.1.1(R Project for Statistical Computing, 

http://www.R-project.org/). Analyses were conducted for each mixed species 

combination (L. sericata with P. regina, C. vicina with P. regina, P. regina with L. 

sericata and P. regina with C. vicina) to determine if species composition influenced 

growth rate, pupal mass, wing vein length and survivorship. To satisfy the assumptions of 

normality and homogeneity of variance for ANOVA, variables were square-root (larval 

weight, wing vein length), log (pupal mass) or arc sine (survivorship) transformed. 

Growth rate was examined using the weight of larvae at each sampling interval. A 

two-factor ANOVA (aov function) was performed to determine the effect of temperature, 

species composition and the interaction of temperature and species composition on 

growth rate. This was performed for all species combinations used in this study. 

Polynomial contrasts (lsmeans package, Lenth 2013) were used to determine the 

differences in the growth rates between heterospecific and conspecific treatments at each 

temperature.  

For each species composition, a two-factor ANOVA was performed to examine 

the effect of temperature, species composition and the interaction of temperature and 

species composition on pupal mass. Multiple comparisons post hoc tests were used to 

examine differences among treatment groups, with a Tukey adjustment to account for 

multiple comparisons (lsmeans package). Regression analyses were performed to 

examine the relationship between temperature and pupal mass for each species 

combination. 

For all species treatments, two-factor ANOVA was performed to examine the 

effect of temperature, species composition and the interaction of temperature and species 

composition on survivorship. Survivorship was calculated as number of emerged adults 

divided by the number of initial larvae. To examine the relationship between temperature 

and survivorship, regression analyses were performed for each species combination. 

A two-factor ANOVA was performed to examine the effect of temperature, 

species composition and the interaction of temperature and species composition on wing 

vein length. This was done for all species combinations. The relationship between 
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temperature and wing vein length was examined for each species combination using 

regression analyses. 

6.3 Results 
 

6.3.1 Growth Rate 
	
  

Temperature significantly affected the growth rate of all species in this study 

(Table 6.1, Figures 6.1-6.3). For L. sericata, growth rate was faster when developing with 

heterospecifics, but larvae weighed less at 15°C (Figure 6.1). The growth rate of C. 

vicina was influenced by temperature with the slowest growth at 35°C (Table 6.1, Figure 

6.2), but not by interactions with P. regina (Figure 6.2). The growth rate of P. regina was 

influenced by temperature and the presence of other species (Table 6.1) such that as 

temperature increased, the growth rate of P. regina increased in all species treatments 

(Figure 6.3).  

	
  

6.3.2 Pupal Mass 
	
  

When L. sericata developed with P. regina, there was a significant interaction of 

temperature and the presence of P. regina on the pupal mass of L. sericata (p = 0.04) 

such that the pupal mass of L. sericata when developing alone was lower than when 

developing with P. regina at 15°C, yet the pupal mass of L. sericata was greater at 35°C 

when in the presence of P. regina (Table 6.2, Figure 6.4).  

The pupal mass of C. vicina was influenced by an interaction between 

temperature and the presence of P. regina (p < 0.001) (Table 6.2). When developing 

alone, C. vicina pupal mass increased with increasing temperature; however, no C. vicina 

pupated at temperatures above 30°C. When developing with P. regina, C. vicina pupal 

mass was greatest at 15 and 30°C (Figure 6.5). 

Pupal mass of P. regina was influenced by the interaction of species composition 

and temperature when developing with L. sericata (p = 0.002) however was only 

marginally significant when P. regina developed with C. vicina (p = 0.05) (Table 6.2). 
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When developing alone, P. regina pupal mass was greatest at 15°C. When developing 

with L. sericata, P. regina had a greater pupal mass at 20, 25 and 35°C (Figure 6.6). In 

contrast, when developing with C. vicina, P. regina pupal mass was lowest at 

temperatures between 15-20°C, but greater at temperatures above 20°C (Figure 6.6). 

	
  

6.3.3 Survivorship 
	
  

Temperature and species composition interacted to influence the survivorship of 

L. sericata (p < 0.001) (Table 6.3). When L. sericata developed with conspecifics, as 

temperature increased, survivorship increased to a peak at 30°C (Figure 6.7). In contrast, 

when developing in the presence of P. regina, L. sericata survivorship was reduced at 25-

30°C (Figure 6.7).  

Survivorship of C. vicina also depended on an interaction of species composition 

and temperature (p < 0.001) (Table 6.3). The survivorship of C. vicina increased with 

increasing temperature to 20°C, yet there were no survivors at higher temperatures of 30 

and 35°C (Figure 6.8). In the presence of P. regina, C. vicina survivorship was greatest at 

20°C and C. vicina survived at 30°C, albeit at a low rate (Figure 6.8).  

Temperature and species composition interacted to influence the survivorship of 

P. regina, when P. regina developed with L. sericata and C .vicina (p < 0.001) (Table 

6.3). When developing with conspecifics, P. regina survivorship increased with 

temperature, peaking between 30-35°C (Figure 6.9). In the presence of L. sericata larvae 

or C. vicina larvae, P. regina survivorship displayed similar results peaking around 30°C, 

but had lower survival at 15°C with heterospecifics than when on its own (Figure 6.9).  

	
  

6.3.4 Adult Body Size (Wing Vein Length) 
	
  

The wing vein length of L. sericata was influenced by temperature (p < 0.001) 

(Table 6.4). As temperature increased, the wing vein length of L. sericata increased, with 

a peak at 20°C, then decreased at higher temperatures (Figure 6.10). The wing vein 

length of C. vicina was influenced by species composition (p < 0.001) as well as 
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temperature (p < 0.001) (Table 6.4). The wing vein length of C. vicina decreased with 

increasing temperatures when developing alone and with P. regina (Figure 6.11). 

The difference in P. regina wing vein length was based on the interaction of 

temperature and species composition when developing with L. sericata (p < 0.001) and 

C. vicina (p = 0.001) (Table 6.4). The wing vein length of P. regina increased with 

increasing temperature, with the largest adults occurring at 25°C when developing alone 

(Figure 6.12). When developing with L. sericata, P. regina wing vein length increased, 

with a peak between 20 and 25°C (Figure 6.12). When P. regina developed with C. 

vicina, P. regina wing vein length increased with increasing temperature, with a peak 

between 30-35°C (Figure 6.12).  

	
  

6.4 Discussion 
 

Ecological conditions can influence development time and adult body size in 

many organisms. For insects that face competition on limited resources, a trade-off exists 

between faster development times, which result in increased chance of survival, or the 

production of larger and more fit adults (Prinkkilä and Hanski 1995; Smith and Wall 

1997). It has been hypothesized that the minimum requirements for the occurrence of life 

history events, or the development thresholds, influence physiological processes (Day 

and Rowe 2002). Adaptations to combat adverse conditions, either environmental or due 

to species interactions, consist of rapid growth during larval stages, having a lower 

critical weight to reach before pupation or an overall reduction of adult body size in order 

to promote greater survivorship (Ullyett 1950; Saunders and Bee 1995). There are many 

interactions, both positive and negative, that can influence individuals that are feeding 

and developing on an ephemeral resource. The nature of these interactions experienced 

by the developing larvae will impact the adult size, survivorship and fitness of these 

individuals. In the present study, interactions, both intraspecific and interspecific, 

influenced larval development of L. sericata, C. vicina and P. regina.   
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6.4.1 Lucilia sericata 
 

The survival and success of larvae developing on ephemeral resources, such as 

carrion, depends on the rate of development and the time they require to reach a 

minimum weight for pupation (Ullyett 1950; Levot et al. 1979). The growth rate for L. 

sericata was similar during both intra and interspecific interactions. Previous studies have 

found that L. sericata is a poor competitor, by displaying negative effects on survival and 

adult size due to interspecific competition (Hutton and Wasti 1980; Smith and Wall 1997; 

Kheirallah et al. 2007). Other studies have indicated that L. sericata may be facilitated by 

the presence of other species, such as P. regina (Rosati 2014; Pacheco 2015). Our study, 

however, demonstrates that the outcomes of these interactions among different species 

may be dependent on temperature. When developing in the presence of conspecifics, L. 

sericata had the smallest pupal mass at 15°C and the largest mass at 20°C indicating that 

this species has delayed development between these two temperatures. This is 

corroborated by previous data, as Higley et al. (2014) reported delays in development of 

L. sericata and P. regina at temperatures below 17.5°C.  

The survivorship of blow flies can be dependent on temperature and species 

interactions. For L. sericata, decreases in survivorship were more apparent at higher 

temperatures during interspecific interactions with P. regina. This agrees with findings of 

Smith and Wall (1997) in which L. sericata was negatively influenced by the presence of 

other species.  

Lucilia sericata demonstrates plasticity in growth and development and are often 

more successful in reaching the adult stage compared to other blow fly species when 

developing under adverse conditions (Ullyett 1950; Tarone and Foran 2006). The adult 

size of L. sericata in this study indicates that temperature had a strong influence, yet 

species interactions did not. Although others have documented a reduction in size when 

L. sericata interacts with heterospecifics (Hutton and Wasti 1980; Prinkkilä and Hanski 

1995; Smith and Wall 1997; Kheirallah et al. 2007), the results of this study demonstrate 

that there are no differences in adult size due to species interactions. This may be due to 
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the low density of larvae used in this study, as we did not allow them to naturally 

colonize or manipulate density of individuals. It would be of great interest to add the 

factor of density to outcomes of species interactions at different temperatures as our 

previous results demonstrate that females change the number of eggs that they lay in the 

presence of heterospecifics and at different temperatures (Chapters 2-3). 

 

6.4.2 Calliphora vicina 
 

For C. vicina, temperature had an influence on development, as expected. Growth 

rates of C. vicina were similar in both conspecific and heterospecific treatments and, 

overall, growth rate increased with temperature. Although the differences were not 

significant when developing in the presence of conspecifics, there was an overall increase 

in pupal mass with increasing temperature. At temperatures between 30-35°C, C. vicina 

did not successfully pupate. This is not surprising given that C. vicina is considered a 

cold weather species (Smith 1986; Donovan et al. 2006). However, when developing 

with P. regina, C. vicina larvae successfully pupated at 30°C, a possible indication that P. 

regina facilitated the development of C. vicina at this temperature.  

Critical weights required for pupation have been studied in many insect systems 

(Kingsolver 2000; Davidowitz 2003; Mirth and Riddiford 2007). When examining the 

influence of temperature and diet quality on critical weight of Manduca sexta L. 

(Lepidoptera: Sphingidae), Davidowitz et al. (2003) found that while temperature had no 

influence, critical weight decreased with the decreasing quality of resources. Saunders 

and Bee (1995) found that the minimum pupal weight for C. vicina was 30 mg when 

developing in low densities of less than 50 larvae, but this critical weight was reduced to 

15-20 mg when C. vicina was developing at higher densities of 150 larvae or more. These 

results indicate that critical weight may fluctuate due to the influence of species 

interactions and competition. In our study, the mean pupal mass of C. vicina was greater 

than 40 mg in all species and temperature treatments, but could have been influenced by 

the low density used in this study. 
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Species interactions had mixed effects for C. vicina. Survivorship was negatively 

and positively affected, varying with temperature. Although survivorship was low when 

developing with P. regina at 30°C, there were no C. vicina survivors when developing 

with conspecifics at the same temperature. The presence of P. regina larvae positively 

impacted C. vicina development at higher temperatures. This may be due to the smaller 

size of P. regina larvae, compared to C. vicina, resulting in less competition for food 

during interspecific interactions at the same density of larvae. 

For C. vicina, increasing temperature resulted in smaller adults. Adult C. vicina 

were larger when interacting with P. regina compared to intraspecific interactions, 

although these differences were not significant. Similar to the survivorship results, the 

body size of C. vicina may be greater when developing with P. regina due to the smaller 

size of these larvae, and the lower nutritional requirements of P. regina.  

 

6.4.3 Phormia regina 
	
  

When developing with L. sericata, P. regina pupal mass was greater at most 

temperatures tested, indicating possible facilitation. Others have suggested that the 

presence of proteolytic enzymes released by L. sericata may facilitate more efficient 

feeding by other blow fly species (Baxter and Morrison 1983; Reis et al. 1999; Ireland 

and Turner 2006; Kheirallah et al. 2007). The release of these enzymes may be a 

mechanism that facilitates feeding by P. regina, resulting in larger larvae, with greater 

mass at pupation. A similar trend was observed when P. regina developed with C. vicina, 

but was more noticeable at higher temperatures. This increase in P. regina pupal mass 

may be the result of the low C. vicina survivorship at higher temperatures, allowing the 

food resource to be more accessible for P. regina.  

The reduction in pupal mass at the highest temperatures might be due to the 

tradeoffs associated with metabolism and food acquisition costs, which can affect 

development (Higley and Haskell 2010; Ribiero and Von Zuben 2010; Tarone et al. 

2011). Temperature can also have an effect, as there is a direct relationship between 

temperature and feeding rates; as temperatures increase, feeding rates increase and larvae 

may not be able to metabolize as quickly, leading to smaller adults (Atkinson 1996; 
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Tarone and Foran 2006). Competition for food, especially between larvae that differ in 

size such as P. regina and C. vicina, can result in reduced larval weight for the smaller 

species. The larger size and higher metabolic rate of C. vicina (Meyer and Schaub 1973) 

may have influenced the availability of food for P. regina, leading to a reduction in pupal 

mass at lower temperatures.  

In regards to survivorship of P. regina, this species demonstrated both positive 

and negative effects due to species interactions. When developing with L. sericata, P. 

regina had reduced survivorship at 15, 25 and 35°C and enhanced survivorship only at 20 

and 30°C. There was an increase in survivorship between 20-25°C, when P. regina was 

with conspecifics and heterospecifics, indicating that 25°C may represent an optimal 

temperature for P. regina survivorship. Survivorship of P. regina was greatly increased 

in the presence of C. vicina at low temperatures between 15-20°C, indicating that P. 

regina is facilitated by C. vicina at these temperatures.  

The wing vein length and therefore adult size of P. regina increased with 

temperature. When interacting with L. sericata, P. regina displayed greater adult size, but 

this difference was only prominent at 20°C. When P. regina developed in the presence of 

C. vicina, adult size increased with increasing temperatures and was greatest at 30 and 

35°C, but again, this was most likely due to the diminished survivorship of C. vicina at 

these temperatures, which made the food resource more available.  

 

6.4.4 Future Areas of Consideration 
	
  

Although the present study examined species interactions in various combinations 

of blow flies, it would be worthwhile to examine these interactions at varying densities. It 

is likely that initial densities of each species’ population affect the outcome of the 

interaction, where the more abundant species has the greatest probability of dominating a 

resource (Mittelbach 2012; VanLaerhoven 2015). Known as founder control, at each 

carrion resource, a different species could arrive to and colonize the resource at a greater 

abundance ultimately resulting in different potential outcomes on each of these carrion 

patches (Mittelbach 2012; VanLaerhoven 2015). The density of 20 larvae utilized in this 

study limits the amount of competition that the larvae can experience while developing. 
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On carrion, much higher densities of larvae occur, which can result in the formation of a 

maggot mass. The large number of larvae associated with maggot masses produce heat 

due to metabolic activity, resulting in elevated temperatures and accelerated development 

(Catts and Goff 1992; Turner and Howard 1992). This may be an advantage when 

temperatures are below the optimum temperature for a species but may be detrimental if 

it results in temperature over the thermal tolerances of a species. As we did not 

manipulate density, it remains to be seen if the outcomes observed here would differ. 

Associated with density, the nutritional requirement for each species, as well as 

the growth rate and size may impact the interactions. For example, C. vicina is a larger 

fly and may have the ability to exclude smaller species by dominating a food source. 

However, C. vicina generally has a longer developmental period, which can be a 

disadvantage when developing on an ephemeral resource if they run out of food before 

achieving their critical weight. In addition, development on different food types can result 

in variable growth rates (Kaneshrajah and Turner 2004; Clark et al. 2006; Tarone and 

Foran 2006; Reid 2012). Tarone and Foran (2006) found that L. sericata developed faster 

on whole rat carcasses when compared to liver alone. Others documented faster 

development of C. vicina when reared on kidney, brain and heart tissues (Kaneshrajah 

and Turner 2004). Therefore, the development times and interaction outcomes reported in 

this study may change if a different food source is utilized, depending on the nutritional 

requirements of each species.  

Temporal variability can also impact the interactions among species and the 

outcomes of such interactions. Chesson and Warner (1981) describe the lottery model, in 

which the outcome of species interactions depends on fluctuating population dynamics as 

well as resource availability. Competitive exclusion can be prevented due to fluctuation 

in the environmental conditions such as temperature that changes throughout the year; 

however, the species that has the greatest number of offspring when a resource is made 

available at the same time temperatures are also favourable for flight and oviposition is 

more likely to establish a population on that resource. Because carrion resources occur 

randomly and the population size of species at any given time is unpredictable, the 

changes of locating and establishing a population on this resource can be equated to 

winning a lottery (Chesson and Warner 1981; VanLaerhoven 2015). It is possible that 
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temporal and spatial fluctuation, prevent any one species from always being favoured, 

thereby allowing the coexistence of multiple species that utilize this ephemeral resource.  

At a smaller temporal scale, the development of blow flies under constant 

temperatures, as presented here, may also differ from those developing under fluctuating 

temperatures (Greenberg 1991; Davies and Ratcliffe 1994; Byrd and Allen 2001). 

Fluctuating temperatures exemplify temperatures blow flies experience in natural 

conditions, but the results of fluctuating temperatures on larval development are mixed. 

Some species develop faster under fluctuating temperatures, such as Calliphora 

vomitoria L. (Hagstrum and Hagstrum 1970), whereas development of L. sericata, P. 

regina and C. vicina are delayed under periods of fluctuating temperatures (Greenberg 

1991; Niederegger et al. 2010). Since temperature interacts with development to mediate 

species interactions, fluctuating temperatures have the potential to change outcomes of 

species interactions. For C. vicina, constant temperatures of 30°C and above proved 

lethal in the third instar stage when developing with conspecifics, yet some C. vicina 

survived these temperatures when developing with heterospecifics. It would be important 

to determine if fluctuating temperature changed the outcome of this interaction. 

 

6.4.5 Conclusion 
	
  

The information obtained here demonstrates that there are differences in blow fly 

development due to abiotic and biotic factors, which may change outcomes of 

community dynamics as these factors, such as temperature and the presence of other 

species, fluctuate over a spatial and temporal scale. Species coexistence can occur for 

carrion communities by spatial and temporal heterogeneity (VanLaerhoven 2015). 

Spatially, coexistence can occur due to the partitioning of species by habitat or season, or 

by aggregation of individuals in different sites on the resource (Atkinson and Shorrocks 

1984; Fiene et al. 2014). This assumes that the primary outcome of species interactions is 

competition, where greater intraspecific compared to interspecific competition results in 

coexistence of multiple species on a limited resource (Fiene et al. 2014; VanLaerhoven 

2015). Yet, oviposition behaviour of P. regina suggested that it is facilitated by the 

presence of other species at temperatures at or below 25°C (Chapter 3) and indeed, in the 
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presence of L. sericata, P. regina adults are larger and have a larger egg load as a result 

(Reid 2012) and in the presence of C. vicina, has a higher survival than on its own at 

some temperatures below 25°C, thereby providing some evidence of facilitation at the 

density tested here.  
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Table 6.1. Analysis of Variance (ANOVA) results to determine the effects of species 
composition, temperature and the interaction of these effects, on the growth rate 
(mg/sampling) for L. sericata, C. vicina and P. regina. Significant effects are indicated in 
bold font; α = 0.05 for all effects. 

Effect d.f. F ratio p - value 

Lucilia sericata with Phormia regina 

Species Composition 1, 176 0.97 0.327 

Temperature 4, 176 2.65 0.035 

Species Composition   
* Temperature 4, 176 1.68 0.157 

Calliphora vicina with Phormia regina 

Species Composition 1, 212 0.46 0.497 

Temperature 4, 212 2.69 0.032 

Species Composition 
* Temperature 4, 212 0.31 0.874 

Phormia regina with Lucilia sericata 

Species Composition 1, 142 2.61 0.109 

Temperature 4, 142 4.95 < 0.001 

Species Composition 
* Temperature 4, 142 1.33 0.263 

Phormia regina with Calliphora vicina 

Species Composition 1, 152 8.19 0.005 

Temperature 4, 152 4.73 0.001 

Species Composition 
* Temperature 4, 152 0.48 0.752 
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Table 6.2. Analysis of Variance (ANOVA) results to determine the effects of species 
composition, temperature and the interaction of these effects on the pupal mass (mg) for 
L. sericata, C. vicina and P. regina. Significant effects are indicated in bold font; α = 
0.05 for all effects. 

Effect d.f. F ratio p - value 

Lucilia sericata with Phormia regina 

Species Composition 1, 117 2.18 0.143 

Temperature 4, 117 13.68 < 0.001 

Species Composition    
* Temperature 4, 117 2.89 0.039 

Calliphora vicina with Phormia regina 

Species Composition 1, 41 8.85 0.005 

Temperature 4, 41 26.75 < 0.001 

Species Composition    
* Temperature 4, 41 9.85 < 0.001 

Phormia regina with Lucilia sericata 

Species Composition 1, 109 1.00 0.319 

Temperature 4, 109 1.79 0.136 

Species Composition    
* Temperature 4, 109 4.51 0.002 

Phormia regina with Calliphora vicina 

Species Composition 1, 103 1.54 0.218 

Temperature 4, 103 2.09 0.089 

Species Composition    
* Temperature 4, 103 2.98 0.049 
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Table 6.3. Analysis of Variance (ANOVA) results to determine the effects of species 
composition, temperature and the interaction of these effects on the survivorship of L. 
sericata, C. vicina and P. regina. Significant effects are indicated in bold font; α = 0.05 
for all effects. 

Effect d.f. F ratio p - value 

Lucilia sericata with Phormia regina 

Species Composition 1, 131 62.80 <0.001 

Temperature 4, 131 7.25 <0.001 

Species Composition 
* Temperature 4, 131 18.33 <0.001 

Calliphora vicina with Phormia regina 

Species Composition 1, 87 21.66 <0.001 

Temperature 4, 87 131.84 <0.001 

Species Composition 
* Temperature 4, 87 24.67 <0.001 

Phormia regina with Lucilia sericata 

Species Composition 1, 137 1.422 0.234 

Temperature 4, 137 98.16 <0.001 

Species Composition 
* Temperature 4, 137 8.36 <0.001 

Phormia regina with Calliphora vicina 

Species Composition 1, 141 3.65 <0.001 

Temperature 4, 141 34.46 0.056 

Species Composition 
* Temperature 4, 141 10.83 <0.001 
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Table 6.4. Analysis of Variance (ANOVA) results to determine the effects of species 
composition, temperature and the interaction of these effects on the wing vein length 
(mm) for L. sericata, C. vicina and P. regina mixed with L. sericata and C. vicina. 
Significant effects are indicated in bold font; α = 0.05 for all effects. 

Effect d.f. F ratio p - value 

Lucilia sericata with Phormia regina 

Species Composition 1, 131 0.20 0.652 

Temperature 4, 131 118.9 < 0.001 

Species Composition 
* Temperature 4, 131 2.35 0.053 

Calliphora vicina with Phormia regina 

Species Composition 1, 87 12.94 < 0.001 

Temperature 4, 87 81.68 < 0.001 

Species Composition 
* Temperature 4, 87 0.36 0.699 

Phormia regina with Lucilia sericata 

Species Composition 1, 137 22.52 < 0.001 

Temperature 4, 137 81.32 < 0.001 

Species Composition 
* Temperature 4, 137 12.23 < 0.001 

Phormia regina with Calliphora vicina 

Species Composition 1, 141 0.362 0.547 

Temperature 4, 141 129.93 < 0.001 

Species Composition 
* Temperature 4, 141 5.85  0.001 
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Figure 6.1. Mean larval (first instar through third instar) growth rate across all 
temperatures for L. sericata when developing alone and mixed with P. regina. There was 
a significant effect of temperature on growth rate of L. sericata (F4, 176 = 2.65, p = 0.035) 
but no effect of species. Letters indicate significant differences between temperatures. 
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Figure 6.2. Mean larval (first instar through third instar) growth rate across all 
temperatures for C. vicina when developing alone and mixed with P. regina. There was a 
significant effect of temperature on growth rate (F4, 212 = 2.69, p = 0.032) but no effect of 
species. Letters indicate significant differences between temperatures. 
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Figure 6.3. Mean larval (first instar through third instar) growth rate across all 
temperatures for P. regina when developing alone and mixed with L. sericata  and C. 
vicina. There was a significant effect of temperature on growth rate of P. regina in mixed 
treatments with L. sericata (F4, 142 = 4.95, p < 0.001). There was a significant effect of 
temperature (F4, 152 = 4.73, p = 0.001) and species composition (F4, 152 = 8.19, p = 0.005) 
on P. regina growth rate in mixed treatments with C. vicina. Asterisks indicate the effect 
of species within temperatures among species combinations.	
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Figure 6.4. Mean pupal mass (±S.E.) across all temperatures for L. sericata when 
developing alone and mixed with P. regina. The interaction between temperature and 
species composition was significant for L. sericata pupal mass (F4,117 = 2.89, p = 0.039). 
For L. sericata alone (y = 0.016x3 – 1.27x2 + 32.72x – 231.86, R2 = 0.64) and for L. 
sericata mixed with P. regina (y = 0.017x3 – 1.22x2 + 29.16x – 184.91, R2 = 0.66).	
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Figure 6.5. Mean pupal mass (±S.E.) across all temperatures for C. vicina when 
developing alone and mixed with P. regina. The interaction between temperature and 
species composition was significant for C. vicina pupal mass (F4,41 = 9.85, p < 0.001). No 
C. vicina pupated at 30°C when alone or at 35°C for either treatment. For C. vicina alone 
(y = 0.151x2 – 4.54x + 83.15, R2 = 0.82) and for C. vicina mixed with P. regina (y = -
0.079x3 + 5.66x2 -130.41x + 1017.2, R2 = 0.89).  
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Figure 6.6. Mean pupal mass (±S.E.) across all temperatures for P. regina when 
developing alone and mixed with L. sericata (A) or C. vicina (B). The interaction 
between temperature and species composition was significant for P. regina pupal mass 
when developing with L. sericata (F4,109 = 4.51, p = 0.002), but only marginally 
significant when developing with C. vicina (F4,103 = 2.48, p = 0.05). For P. regina alone 
(y = -0.016x3 + 1.16x2 -27.88x + 247.13, R2 = 0.78), mixed with L. sericata (y = 0.027x3 
– 2.07x2 + 51.12x – 358.45, R2 = 0.76) and mixed with C. vicina (y = -0.017x3 + 1.16x2 -
25.27x + 206.89, R2 = 0.62). Means with an asterisk indicate a difference between P. 
regina alone or with L. sericata (A) or C. vicina (B) at that temperature.	
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Figure 6.7. Mean survivorship (±S.E.) across all temperatures for L. sericata when 
developing alone and mixed with P. regina. The interaction between temperature and 
species composition was significant for L. sericata survivorship (F4,131 = 18.33, p < 
0.001). For L. sericata alone (y = -0.0003x3 + 0.019x2 – 0.39x + 3.35, R2 = 0.78) and for 
L. sericata mixed with P. regina (y = 0.0003x3 – 0.023x2 + 0.57x – 3.78, R2 = 0.64). 
Means with an asterisk indicate a difference between L. sericata alone or with P. regina 
at that temperature. 
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Figure 6.8. Mean survivorship (±S.E.) across all temperatures for C. vicina when 
developing alone and mixed with P. regina. The interaction between temperature and 
species composition was significant for survivorship of C. vicina when developing with 
P. regina (F4,87 = 24.67, p < 0.001). For C. vicina alone (y = 0.0005x3 + 0.039x2 + 0.97x 
+ 6.90, R2 = 0.67) and for C. vicina mixed with P. regina (y = 0.0006x3 – 0.05x2 + 1.14x 
– 8.04, R2 = 0.70). Means with an asterisk indicate a difference between C. vicina alone 
or with P. regina at that temperature.	
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Figure 6.9. Mean survivorship (±S.E.) across all temperatures for P. regina when 
developing alone and mixed with L. sericata or C. vicina. The interaction between 
temperature and species composition was significant for P. regina survivorship when 
developing with L. sericata (F4,137 = 8.36, p < 0.001) and C. vicina (F4,141 = 10.83, p < 
0.0001). For P. regina alone (y = -0.002x3 + 0.02x2 -0.33x + 2.4, R2 = 0.68), mixed with 
L. sericata (y = -0.003x2 + 0.19x – 2.18, R2 = 0.67) and mixed with C. vicina (y = 
0.0002x3 + 0.02x2 -0.46x + 4.19, R2 = 0.40). Means with an asterisk indicate a difference 
between P. regina alone or with L. sericata (A) or C. vicina (B) at that temperature.	
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Figure 6.10. Mean wing vein length (±S.E.) across all temperatures for L. sericata when 
developing alone and mixed with P. regina. There was a significant effect of temperature 
on wing vein length (F4,131 = 118.9, p < 0.001). For L. sericata alone (y = 0.0002x3 - 
0.016x2 – 0.41x – 2.14, R2 = 0.76) and for L. sericata mixed with P. regina (y = 0.0001x3 
– 0.01x2 + 0.34x – 1.53, R2 = 0.79).	
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Figure 6.11. Mean wing vein length (±S.E.) across all temperatures for C. vicina when 
developing alone and mixed with P. regina. There was a significant effect of temperature 
(F4, 87 = 81.68, p < 0.001) and species composition (F1, 87 = 12.94, p < 0.001) on wing 
vein length. No C. vicina survived at 30°C for C. vicina mixed with P. regina or at 35°C 
for either treatment. For C. vicina alone (y = -0.018x + 2.04, R2 = 0.93) and for C. vicina 
mixed with P. regina (y = -0.022x + 2.15, R2 = 0.89). 	
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Figure 6.12. Mean wing vein length (±S.E.) across all temperatures for P. regina when 
developing alone and in mixed treatments with L. sericata (A) or C. vicina (B). The 
interaction between temperature and species composition was significant for P. regina 
when developing with L. sericata (F4,137 = 12.23, p < 0.001) and C. vicina (F4,141 = 5.85, 
p = 0.001). For P. regina alone (y = 0.0005x3 - 0.005x2 + 0.18x – 0.64, R2 = 0.65), mixed 
with L. sericata (y = 0.0003x3 - 0.02x2 + 0.59x – 3.79, R2 = 0.79) and mixed with C. 
vicina (y = 0.0005x3 + 0.002x2 + 0.003x + 0.73, R2 = 0.66). Means with an asterisk 
indicate a difference between P. regina alone or with L. sericata (A) at that temperature. 
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CHAPTER 7 

SPECIES INTERACTIONS AND TEMPERATURE INFLUENCE THE BEHAVIOUR 

AND DEVELOPMENT OF BLOW FLIES. IMPLICATIONS FOR FORENSIC 

ENTOMOLOGY 

	
  

7.1 Overview 
 

Environmental conditions can influence the behaviour and development of 

insects. Although many studies have documented the arrival times of forensically 

relevant species during different seasons and at various temperatures, few studies have 

investigated how these temperatures affect the behaviour of blow flies when arriving to 

and ovipositing on carrion. The goal of this research was to determine if the oviposition 

behaviour of blow flies changed over a range of temperatures, or due to species 

interactions and to determine if these factors interacted to affect development over this 

temperature range. The role of species interactions and temperature and their effect on 

blow fly development and behaviour provides information on insect behaviour as well as 

has applications for forensic entomologists that can assist in more accurate estimates of 

the time of colonization (TOC). Understanding the ecological concepts associated with 

blow flies allows for incorporation of this information into making more precise 

estimates and interpretation of the insect evidence. To complete this study, three species 

of blow fly, locally occurring in southern Canada, were used: Lucilia sericata Meigen, 

Phormia regina Meigen, and Calliphora vicina Robineau-Desvoidy.  

 

7.2 Behavioural, Evolutionary and Community Ecology 
 

Natural selection shapes the behaviour of animals, assuming there is genetic 

variability associated with variable behaviour, and the adaptive significance of certain 

behaviours may be determined by the impact of their behaviour on reproduction and 

survival, or fitness (Mousseau and Roff 1987). Reproductive behaviour involves all 

behaviours associated with locating and selecting mates, as well as allocating energy and 
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time to rear offspring. The reproductive strategy utilized by an animal consists of the 

behaviours that maximize their reproductive success and have evolved due to the 

energetic costs of reproduction under the environmental conditions they experience 

(Krebs and Davies 1993). In carrion flies, the energetic costs involve locating a suitable 

resource and site to lay eggs as well as the number of eggs laid per clutch. The female 

flies in my study differed in their oviposition behaviour, depending on the temperature 

they experienced, as well as the conspecifics and heterospecifics present on the resource. 

When ovipositing in the presence of heterospecifics, Phormia regina Meigen selected 

oviposition sites that were occupied by heterospecific eggs, in sites such as the mouth and 

ears.  In the presence of heterospecifics, P. regina females laid more eggs at a faster rate, 

but only at temperatures below 25°C. Above this temperature, P. regina oviposition time 

was greater and fewer eggs were deposited.  

Determining the factors that contribute to fitness, or the evolutionary ecology of 

these flies, involves looking at traits that are linked to fitness. For these flies, egg 

production and body size correspond to reproduction and fitness, where larger bodied 

females carry larger egg loads. Temperature influenced survival and resulting adult body 

size of these blow flies developing under those conditions, thus impacting their fitness 

through egg loads and potential reproductive success. For Calliphora vicina Robineau-

Desvoidy, smaller adults resulted at higher temperatures, whereas, for P. regina, adult 

size was greater at higher temperatures than at lower temperatures. Temperature can also 

influence the number of eggs a female carries while she is an adult, despite her body size, 

where lower temperatures result in diminished egg loads, resulting in reduced fitness for 

these individuals. These traits determine the ability of individuals to successfully 

reproduce and to leave viable offspring. The carrion system provides a means to study 

reproductive behavioural strategies of species on ephemeral resources and the outcomes 

of these strategies on the success of individuals that may drive the evolutionary ecology 

of these species. 

In community ecology, the overall objective is to explain distribution patterns, 

abundance of species and the interactions between species. There are many types of 

species interactions that can occur, with six theoretical categories defined, which can be 

positive, negative or neutral for the species interacting (Haskell 1947). Interactions can be 
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intraspecific, between members of the same species, or interspecific, between members 

of different species. It is assumed that one of the strongest interactions in carrion 

communities is competition due to the ephemeral and unpredictable nature of the 

resource. For blow flies utilizing carrion resources, there are often high densities of 

individuals on the resource, which generates different outcomes of interactions and 

individuals can trade-off adult body size for faster development or female flies can 

choose different locations to deposit offspring (VanLaerhoven 2015). Competition 

between these individuals can influence the survival and development of these offspring. 

Competition can occur in different ways, as exploitative competition, where the 

consumption of the resource by one species makes it less available for another species or 

through contest competition, where access to the resource for one species is inhibited by 

another species (Mittelbach 2012). For blow flies depositing eggs on carrion, space for 

oviposition sites is limited in areas such as the eyes, mouth or nose. The selection of these 

sites for oviposition by one species restricts other species from depositing eggs in these 

suitable locations.  

Another interaction that can occur between species is mutualism, where both 

species have positive outcomes due to the interaction. For example, interactions between 

blow flies and microbes on carrion can be mutualistic if blow flies use cues emitted from 

microbes to detect suitable resources, and transport microbes to other resources 

(Tomberlin et al. 2012). A more common interaction among species is facilitation, where 

one species can benefit from the interaction while the other is unaffected. When one 

species colonizes a resource and alters the environment, making it more suitable for later 

arriving species, this can be considered facilitation (Connell and Slatyer 1977).  

The current study highlighted potential mechanisms that may promote 

coexistence of blow flies on ephemeral carrion resources. By exploring the decisions 

made by ovipositing female blow flies and the development of their offspring under 

variable environmental conditions and in the presence of other carrion fly community 

members, this work demonstrated the potential for differential outcomes of species 

interactions at different temperatures and humidities, switching between facilitation and 

competition. Unlike previous work that suggested competition was the predominate 

interaction between these species, such that temporal and spatial resource partitioning 
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with fugitive species were the sole structuring mechanisms for coexistence (Denno and 

Cothran 1976; Hanski 1987), the current study suggest that fluctuating abiotic conditions 

over time may mediate the outcomes of these interactions such that no one species 

consistently has a competitive advantage, and may in fact, benefit from the presence of 

other species under some abiotic conditions. 

Species interactions influence the structure and diversity of communities that 

assemble on ephemeral resources. Although species interactions have been explored in 

various communities, there is a need for examining such interactions in communities that 

utilize ephemeral resources, as these interactions can have greater consequences for these 

species due to the limited availability of the resources and outcomes at the individual 

community patch level have implications for the wider meta-community, suggesting 

variable outcomes amongst patches may stabilize the meta-community over time 

(VanLaerhoven 2015). This work can be scaled up by looking at the additional 

interactions among not only blow flies, but carrion beetles and even vertebrate 

scavengers.  

 

7.3 Conclusions 
  

7.3.1 Oviposition Behaviour 
 

Incorporating theories of optimal oviposition behaviour and offspring 

performance (Jaenike 1978; Thompson 1988), I examined the influence of temperature 

and species interactions on female oviposition behaviour (Chapters 2,3). I also performed 

field validation studies, expecting that blow flies would demonstrate similar behaviours 

under natural conditions as they do in controlled laboratory settings (Chapter 5).  

Oviposition varied due to temperature, and this relationship was stronger for L. 

sericata and P. regina compared to C. vicina (Chapter 2). With increasing temperature, 

the time to the first oviposition event decreased and the number of eggs deposited 

increased for L. sericata and P. regina. This trend was not observed for C. vicina, as 

temperature did not affect oviposition timing and the number of eggs oviposited was only 
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reduced at the highest temperature tested. As L. sericata is active at warmer temperatures 

up to 30-40°C, it was expected that it has a higher optimal temperature for oviposition 

than C. vicina, which is active at cooler temperatures between 5-30°C (Smith and Wall 

1997; Donovan et al. 2006; Zurawski et al. 2009). However, it is surprising that there 

was no apparent optimum temperature for oviposition by C. vicina within the range tested 

here. Although P. regina is often considered tolerant of a wide temperature range, 

between 10-35°C (Hall 1948; Byrd and Allen 2001), it was expected that it would have 

an optimum temperature for oviposition that was intermediate between the other two 

species. Perhaps in southern Ontario, local P. regina populations are more of a warm 

weather species. These differences in oviposition timing due to temperature challenge 

previous assumptions regarding the oviposition behaviour of these blow flies, including 

the belief that oviposition occurs immediately after arrival to the resource. 

Optimal oviposition predicts that females should select oviposition sites that will 

maximize the performance of their offspring, optimizing her fitness (Jaenike 1978). 

Stronger preferences for particular oviposition sites should reflect suitability of a site for 

offspring survival. The species examined in this study demonstrate clear preferences in 

oviposition site. Whereas L. sericata and C. vicina often selected natural orifices (mouth, 

nose) and areas on the face, P. regina deposited eggs more often on the legs. This can be 

explained by the protection that these sites offer from predators and parasitoids as well as 

the space available for large egg masses to form, limiting chance of desiccation for these 

eggs.  

When interacting with heterospecifics, the oviposition behaviour of P. regina 

changed (Chapter 3). The oviposition timing of this species was significantly faster when 

arriving after L. sericata and C. vicina at lower temperatures, but slower at higher 

temperatures. Additionally, P. regina laid more eggs when arriving secondary to the 

other species at lower temperatures, but fewer eggs at higher temperatures. Phormia 

regina selected similar sites as these species for oviposition. The shift in behaviour of P. 

regina among the low and high temperature treatments indicate that the mechanisms 

driving species interactions can change from facilitation to competition.  

Field validation of oviposition behaviour was examined for these three species, 

observing egg laying behaviours under natural conditions (Chapter 5). Phormia regina 
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exhibited differences in oviposition behaviour between the controlled laboratory and 

natural field conditions, where P. regina deposited eggs faster in the field at temperatures 

between 15-25°C, compared to in the lab. The acceleration in oviposition may be due to 

fluctuating temperatures in the field, as well as other abiotic factors, such as light levels 

or humidity. The results of this field validation study highlight the caution that should be 

applied when using generalizations about insect behaviour obtained from controlled 

laboratory settings in practical applications under fluctuating natural conditions.  

Although understanding behaviours of individual species is valuable for an 

ecological perspective, on carrion, multiple species often arrive simultaneously. Our 

results indicate that the oviposition behaviour of P. regina is dependent on the presence 

of heterospecific eggs, with P. regina ovipositing faster, at temperatures below 25°C, 

when interacting with heterospecifics. The plasticity in the oviposition behaviour of P. 

regina suggests that this response may also occur in other species and future studies 

should expand this work to examine the influence of P. regina on other blow fly species. 

7.3.2 Development 
 

Egg development and hatching success of blow fly eggs can be influenced by 

abiotic conditions. Due to the short duration of the egg, this stage can provide valuable 

information for a forensic entomologist (Byrd and Tomberlin 2010). Understanding the 

influence of abiotic factors, such as temperature or relative humidity, can provide 

information pertaining to the mechanisms driving female oviposition behaviour. The 

results of this study indicate that for some species, periods of low relative humidity can 

delay egg hatching for up to 48 h, which can have implications for the survival of the 

developing offspring.  

Based on the preferences demonstrated by female blow flies in their oviposition 

behaviour, I expected that larval development would reflect this, where development 

would occur faster at higher temperatures for some species, resulting in smaller adults 

(Chapter 6). Faster development can provide a competitive advantage for larvae feeding 

on an ephemeral resource, allowing them to disperse from the source quickly and avoid 

predation or parasitism from later arriving species.  
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Many aspects of blow fly development can be assessed to determine the influence 

of external factors. In addition to temperature, the influence of relative humidity is 

important for blow fly eggs, as they are susceptible to desiccation (Evans 1934). Blow 

flies often engage in aggregative oviposition and deposit large egg masses to combat the 

risk of desiccation and dilute predatory effects for their offspring (Stamp 1980). Few 

studies have examined the effect of relative humidity on blow fly egg hatching  timing or 

success (Davies 1947; VanLaerhoven and Anderson 2001). Overall, I observed that 

hatching time decreased with increasing relative humidity for all three species, but 

hatching success differed (Chapter 4). At low relative humidities, L. sericata was the 

least successful and this was expected due to the proclivity of this species for warmer 

temperatures (Smith 1986). A relatively high hatching success was observed for C. vicina 

over the range of humidity tested and P. regina demonstrated increasing hatching success 

with increasing humidity.  

To investigate this, I looked at changes in development over a range of 

temperatures, within both intraspecific and interspecific interactions (Chapter 6). Overall, 

species demonstrated an increased growth rate with increasing temperature, which was 

expected based on previous research on the relationship between insect development and 

temperature. There were differences in larval and pupal size due to interspecific 

interactions and this was noticeable for C. vicina and P. regina, indicating potential 

facilitative and competitive mechanisms influence the development of these species. I 

also examined survival rates of these blow flies and found that interspecific interactions 

resulted in increased survivorship for C. vicina. This species typically has very low 

survivorship when developing at constant temperatures of 30˚C and above (Smith 1986), 

but when in the presence of P. regina, mean survivorship was around 15%. Additionally, 

due to the influence of temperature on development, it would interesting to examine the 

presence and change in heat shock proteins during development of these blow flies. 

7.4 Suggestions for Future Studies 
 

The oviposition decisions made by female blow flies have consequences for their 

developing offspring and can provide useful information in a forensic entomology 

investigation. While previous studies have addressed insect oviposition behaviour, few 



	
  

	
  
	
  

163	
  

have examined the combined effects of abiotic and biotic interactions. The behaviour and 

development of the blow flies L. sericata, P. regina and C. vicina are influenced by 

temperature and species interactions. Oviposition behaviour may depend on many factors 

relating to the physiological state of the female or previous experience. It would be 

worthwhile to examine differences in oviposition behaviour of naïve and experienced 

females. In this study, all females used were considered naïve due to their inexperience 

with oviposition until fetal pig carcasses were introduced. Experienced females, having 

had the opportunity to oviposit, may behave differently under the temperatures tested 

here. Differences between naïve and experienced female insects have been observed in 

their egg loads and response to chemical cues (Vinson 1998) and this idea would be 

interesting to explore in blow flies. Additionally, the age of the insect may change their 

behaviour, as older females may be more likely to deposit eggs in less suitable 

oviposition sites or may deposit fewer eggs overall. Although temperature was a primary 

focus of this study, other abiotic factors can change blow fly behaviour and should be 

investigated. For example, relative humidity can change oviposition behaviour in the 

soldier fly Hermetia illucens L. (Diptera: Stratiomyidae), with more oviposition events 

occurring at higher periods of relative humidity (Tomberlin and Sheppard 2002). For 

other species, periods of relative humidity can result in a delay in oviposition (Canyon et 

al. 1999). Understanding how abiotic conditions influence the oviposition decisions made 

by female blow flies can provide valuable information relating to the community of 

insects colonizing a carrion resource and can have applications in forensic investigations 

in which the oviposition timing and sites selected can provide evidence pertaining to the 

crime scene. 

This research can be expanded to not only look at adult behaviour, but 

development of larvae based on the oviposition decisions of the females. The differential 

success of larvae based on the sites selected and the clutch sizes of females may be 

dependent on temperature or species interactions. In studies of these species developing 

under different temperatures and in mixed species compositions, differences were 

observed in the growth rate and body size of the larvae and adults (Chapter 6). These 

differences may be more pronounced if larvae are developing in larger densities and in 

specific oviposition sites selected by female blow flies. It would be of interest to 
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understand how the female’s oviposition decisions impact her offspring by examining the 

behaviour of the offspring and future generations. 

Future work on the development of blow flies should expand to examine other 

forensically relevant species that coexist on carrion. Although only three species were 

selected for this study and are commonly occurring in this area, studying other species 

could provide valuable information regarding species interactions and their influences on 

behaviour and development on an ephemeral resource. Blow flies on carrion represent a 

system that can be used to examine coexistence patterns and mechanisms that has 

applications in forensic entomology as well as community ecology. 

7.5 Forensic Entomology Implications 
 

Historically, studies in forensic entomology have involved examining 

decomposition and the insects associated with each stage. Although the earliest recorded 

use of forensic entomology dates back to 13th century China where a homicide was 

investigated and a confession was derived based on the arrival of insects to the suspects 

weapon (Tz’u, translated by McKnight 1981), it was not until the mid 1800’s that 

medicolegal entomology was applied in a more formal sense. In 1855, the mummified 

remains of an infant were discovered and the insects present on the body were used to 

develop a timeline of death (Bergeret 1855). Human decomposition was thoroughly 

described by work of Mégnin (1894) and many have followed in his footsteps to describe 

the insects associated with each stage of decomposition (Review in Anderson 2010). 

Foundational work completed by Payne in the 1960’s contributed to the idea of 

investigating insect succession on carrion within an ecological framework, where the 

organisms interact with the food source, changing the resource in a predictable sequence, 

thereby making it attractive to different types of insects during the stages of 

decomposition (Payne 1965). Payne (1965) demonstrated the importance of insects 

during decomposition by comparing pig carcasses exposed to and protected from insects, 

showing that decomposition can take as long as 100 days when insects are denied access 

compared to only 6 days when carrion is exposed to insects.  

Life history traits and taxonomy of the families of flesh flies and blow flies began 

to be documented during the first half of the 20th century (Aldrich 1916; Knipling 1936; 
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Hall 1948). The development of forensically important species was examined initially by 

Kamal (1958) and many others have expanded upon this work but this information was 

not utilized to estimate the postmortem interval (PMI), or time between death and 

discovery of the body, until the 1990’s (Catts 1992; Wallace et al. 2015). Forensic 

entomology was not brought into the courtroom until the 1970’s in the US and this 

triggered a dramatic increase in empirical research since this time (Wallace et al. 2015). 

Research in the last 40 years has examined patterns of insect succession, decomposition 

and insect arrival in various terrestrial and aquatic habitats, anthropological influences, 

entomotoxicology as well as DNA techniques (Byrd and Castner 2010). Genetic 

sequencing has been performed in blow flies to determine species identity (Sperling and 

Anderson 1994) as well as the degree of relatedness among individual flies collected in 

one area (Picard and Wells 2009; Picard and Wells 2010). Tarone and Foran (2011) 

examined gene expression of blow flies during development to allow for greater precision 

in blow fly aging in relation to PMI estimations. Recently, it was suggested that genetic 

sequencing should be incorporated into behavioural studies to better understand blow fly 

behaviours and the genes that may be expressed during different behaviours (Sanford et 

al. 2015).  

Although forensic entomology has made great strides, incorporating more 

ecological processes to test some of the long-standing assumptions in this field can 

strengthen the credibility of forensic entomology. For example, the assumption that blow 

flies arrive and oviposit immediately after death is not true in all circumstances. Although 

insects arrive and colonize carrion in a fairly predictable fashion, the behaviour and 

development of these insects is shaped by the biotic and abiotic conditions they 

experience. In order to better understand these behaviours, the mechanisms driving them 

must be established and thoroughly tested.  

My study aimed to address some of these issues and to incorporate ecological 

theory in explaining blow fly behaviour and development, which can then be applied in 

forensic entomological investigations. The effects of temperature, humidity and species 

interactions on the oviposition behaviour and development of three ubiquitous and 

forensically relevant species were examined. The influence of abiotic conditions on 

oviposition behaviour is important in an applied sense, given that forensic entomologists 
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often incorporate temperature data into the estimation of PMI. We predicted that given 

that some species are considered warm weather species (L. sericata), some are cool 

weather species (C. vicina) and others have a wide temperature tolerance (P. regina), 

these species should change their oviposition behaviour in accordance with their 

temperature tolerances. Although oviposition timing is thought to occur almost 

immediately, our study examines how the timing can be delayed or accelerated due to 

temperature or species interactions. Information regarding the oviposition decisions of 

blow flies can provide valuable evidence for forensic entomologists, as changes in 

oviposition timing can alter the estimates of the TOC and PMI. 

We also examined the influence of temperature, relative humidity and species 

interactions on blow fly development. We expected that given the thresholds for egg 

hatching of these species, low humidity would result in water loss and would delay egg 

hatching timing and success, compared to high relative humidity, for L. sericata and P. 

regina, but not for C. vicina. The timing of egg hatch is also a crucial stage in 

development that can provide information in forensic entomological investigations. The 

duration of this stage is relatively short, compared to other life stages in blow flies and 

understanding what mechanisms can influence the development of eggs is useful in 

accurate estimates of the TOC.  

In terms of larval development, we expected that increasing temperature would 

result in faster development for these species, but high temperatures should result in 

higher mortality for cool weather species and lower temperature would result in higher 

mortality for warm weather species. The presence of heterospecifics was expected to 

influence the development of P. regina, as previous studies indicate that P. regina 

development is facilitated when in the presence of heterospecifics. The results of our 

study on larval development indicate that the presence of heterospecifics in conjunction 

with temperature act to influence the development of blow flies. This data provides useful 

information for forensic entomologists and can used to provide more accurate estimations 

of the PMI.	
  

The results of this study highlight the need for further examination of the natural 

history of blow flies in an ecological context. Within the field of forensic entomology, 

various aspects of the behaviour and development of these organisms are often assumed 
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to occur in similar manners across species. This is not the case, as the results of my study 

indicate. The choices made by female blow flies are susceptible to variation due to 

factors such as temperature and humidity, and these choices have consequences for the 

developing offspring. For a forensic entomologist to utilize information obtained from 

these organisms, the full spectrum of the adult and larval behaviour and development 

must be understood. These assumptions have been overlooked and with more 

information, the field of forensic entomology can advance ecologically, which will 

improve the validity of this field within forensic science. 
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