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ABSTRACT 

 

 

 

Assessing the quality of biological communities is important in the management 

of Great Lakes Coastal Wetlands. Biological indicator models can be used to quantify the 

condition of biotic communities. A number of biological indicators have been developed 

for use with fish communities in Great Lakes Coastal wetlands. The overall goal of this 

thesis was to assess the performance of various biological indicators in their ability to 

identify degradation in wetland fish communities. Biological indicators were assessed 

with respect to the disturbance gradient against which they was originally derived. 

Subsequently, the models' utility as diagnostic tools was assessed for use in identifying 

sources of anthropogenic stress. Overall, the Cooper-IBIs and Wetland Fish Indices 

demonstrated the highest classification accuracy, although factors such as their relative 

sensitivity and specificity, and the purposes for which they were originally designed 

should be taken into account when applying each indicator. 
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The overall objective of this thesis is to evaluate indicator models of biological 

condition to determine which composite indices are able to accurately classify wetlands 

as being degraded. These models quantify the condition of a site, based on the biological 

community found there. Indicators of biological condition can be an important tool in the 

monitoring, assessment and restoration of biological communities and wetland sites in the 

Great Lakes. Few, if any, models have seen thorough testing and validations as accurate 

indicators of site condition.  

 

Great Lakes Coastal Wetlands 

 Wetlands are an important part of the Great Lakes ecosystem. Coastal wetlands 

provide many valuable services including disturbance regulation, nutrient retention and 

cycling, commercial fishing, and recreation (Costanza et al. 1989, Costanza et al. 1997, 

Sierszen et al. 2012). Overall, wetlands in the Great Lakes provide approximately $2 

billion in ecosystem services each year (Costanza et al. 1997, Sierszen et al. 2012). 

Additionally, coastal wetlands are ecologically important to multiple taxa including birds, 

mammals, amphibians, and invertebrates as habitat and breeding grounds (Sierszen et al. 

2012). Coastal wetlands are particularly important to fish communities as seventy-five to 

ninety percent of Great Lakes fish species spend at least part of their life cycle in a coastal 

wetland (Brazner & Beals 1997, Sierszen et al. 2012). Fish can use coastal wetlands as a 

primary habitat, spawning and nursing habitat, and as a source of protection from 

predation (Jude & Pappas 1992).  

Despite their economic and ecological importance, many Great Lakes coastal 

wetlands have experienced extreme degradation from anthropogenic activities. Since 
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European colonization of the Great Lakes, approximately 75% of wetlands in developed 

areas have been lost due to land drainage, commercial and industrial land use, dyking, 

and dredging (Whillans 1982). Wetland communities currently face risk of degradation 

from agricultural run-off, point-source pollution, shoreline development and other 

anthropogenic stressors (Danz et al. 2007). Due to the importance of the Great Lakes 

ecosystem and the threats posed to it, the governments of Canada and the United States 

developed the Great Lakes Water Quality Agreement (GLWQA) to address these issues 

(Canada and the United States 1972). The most recent amendment to the GLWQA calls 

for an increased emphasis on monitoring nearshore Great Lakes waters and for the 

development of indicators for use in monitoring (Canada and the United States 2012). 

Indicators are tools used by scientists and local managers to assess to assess the 

condition of a site and have been applied to biological communities in coastal wetlands. 

A biotic community is commonly defined as being in good condition if it has experienced 

minimal or no impact from anthropogenic activity, that is, the condition of a community 

is defined by its ‘naturalness’ (Cains et al. 1993, Karr 1999, Davies & Jackson 2006, 

Stoddard et al. 2006, Hawkins et al. 2010). A community in poor condition is thus one 

that has been subject to significant impact from anthropogenic stress. Biological 

condition is therefore intrinsically tied to the condition of the environment and the effects 

of anthropogenic activity. Environmental Indicators of human disturbance of wetlands 

include altered water chemistry (for example, concentrations of nutrients such as 

phosphorus and nitrogen, or surrogate measures such as chlorophyll-a (algal biomass), 

chloride (ions) or dissolved oxygen (heterotrophic activity) (Uzarski et al. 2005, 

Seilheimer & Chow-Fraser 2006). These indicators have been used to assess the 
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environmental expression of anthropogenic activity. However, reliance on chemical based 

indicators alone does not necessarily reflect the full effect of human activity on biological 

communities and the environment (Cairns et al. 1993). Biological indicators integrate the 

net effect of anthropogenic stressors and reflect the level of impact experienced directly 

by the biological community (Karr 1991, Karr 1999, Niemi et al. 2007, Cvetkovic & 

Chow-Fraser 2011). Finally, by establishing the connection between biological indicators 

and measures of the direct risk of anthropogenic impact (e.g. human land use [Danz et al. 

2007]) management decisions can can address the specific causes of impairment affecting 

biological communities. 

 

Biological Indicators  

A biological indicator can be defined as a measurable aspect of the biotic 

community that changes predictably with changes in anthropogenic disturbance (Caro & 

O'Doherty 1999, McGeogh 1998, Heink & Kowerick 2010). A good biological indicator 

will: reliably and accurately change as a response to disturbance, distinguish between 

natural and anthropogenic disturbance, diagnose specific environmental stressors, be 

quick and easy to employ, and is easily interpretable by managers and end-users of the 

indicator (Kurtz et al. 2001).  

 A simple biological indicator may consist of a single metric; for example, the 

presence or abundance of individuals of an indicator species (McGeogh 1998, Heink & 

Kowarik 2010). However, Karr (1981) argued that a single metric may reflect the effects 

of only a particular environmental stress. According to Karr, the effects of multiple and 

synergistic stressors can be inferred by summing the scores of many individual metrics to 
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create a multimetric index (MMI), which he called the Index of Biotic Integrity (IBI). In 

developing the original IBI, Karr (1981) used fish community data to generate a single 

composite score for a site that would indicate the site's condition from the perspective of 

the fish assemblage. These scores were based on an a priori decision of the community 

attributes (individual metrics) that distinguish a community in good condition from one in 

poor condition. The MMI approach has been greatly refined since the original Index of 

Biotic Integrity was proposed (Karr & Chu 1997, Schoolmaster et al. 2012). While Karr 

(1981) originally suggested that the IBI should be a composite of twelve fish community-

based metrics, the US Environmental Protection Agency now lists over 60 possible fish-

based metrics (Barbour et al. 1999). The MMI approach is now used throughout the 

world (Dos Santos et al. 2011, Shah & Shah 2012, Wu et al. 2012) as a model for 

developing biological indicators, and is the dominant approach in the United States 

(Reynoldson et al. 1997). Other approaches to deriving composite indices of biological 

condition have been developed in Australia (Smith et al. 1999), Canada (Reynoldson et 

al. 1995) and the United Kingdom (Wright et al. 1997) that use multivariate analyses to 

model community composition and integrate it into a single measure of biological 

condition. Collectively, MMIs, multivariate models, and other integrated measures of 

community composition can be referred to as biological indicator models. 

The specific methods used to develop indicators can vary widely among different 

models. However, some steps are common in the development of all varieties of 

indicator. Firstly, variability in community composition due to natural environmental 

variation within the region of interest (e.g., the Great Lakes) must be taken into account. 

This is accomplished by identifying the primary drivers of natural variation in community 
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composition across a region either by using best professional judgment (Karr & Chu 

1997) or by evaluating the composition of communities at reference sites (Stoddard et al. 

2006) and assigning homogeneous communities to groups across the range of natural 

variation. Secondly, the community composition is typically integrated into a single, 

composite value representing the biological condition of the community, either through 

combining individual metrics of community composition, or through multivariate 

analysis of community composition. Finally, the model as a whole is evaluated to 

determine whether it truly indicates the biological condition of a community. This testing 

requires applying the model to data from many sites and determining if the indicator 

score generated by the model accurately matches an independent measure of site 

condition.  

 

Fish-Based Biological Indicator Models in the Great Lakes 

Biological indicator models have been developed for Great Lakes wetlands using 

a variety of taxa including birds, invertebrates, diatoms and fishes (see Niemi et al. 2007, 

or Cvetkovic & Chow-Fraser 2001). Among these taxa, fishes are particularly useful as 

biological indicators of wetland habitats. Fishes can be sampled through electro-fishing, 

seine netting, fyke-netting or other commonly-used methods, and can be non-

destructively identified in the field, permitting the community to be quickly evaluated. 

Most fish species in the Great Lakes spend a portion of their life in coastal wetlands and 

occupy many different niches and trophic levels (Jude & Pappas 1992). Therefore, the 

community composition will integrate effects of stressors that occur across different 

trophic levels 
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 A number of fish-based biological indicator models have seen initial development 

for use within the Great Lakes. While some of these models are only applicable to littoral 

habitats (Minns et al. 1994), four models have been designed as indicators of Great Lakes 

coastal wetland quality: Indices of Biological Integrity developed by Cooper et al. (in 

review, based on Uzarski et al. 2005), the Fish Condition Index (Bhagat et al., in prep.), 

the Wetland Fish Index (Seilheimer & Chow-Fraser 2006, 2007) and the Index of 

Ecological Condition (Howe et al. 2007a, 2007b). 

 

Cooper Indices of Biological Integrity (Cooper-IBIs) 

 The Cooper-IBIs are multimetric indices of wetland condition. According to 

Wilcox & Meeker (1992), Uzarski et al. (2005), and Cvetkovic et al. (2010), emergent 

wetland plants are the primary factor driving natural variation in fish communities across 

the Great Lakes. Therefore, fish IBIs were developed by Cooper et al. under the 

framework of dominant plant zones. That is, individual IBIs were developed for areas 

sampled within a wetland that contained a single dominant plant type. Currently, there are 

published IBIs for bulrush (Schoenoplectus spp.), cattail (Typha spp.), lily (Nymphaceae) 

and submerged aquatic vegetation (SAV) – dominant zones (Cooper et al. in review.), 

hereafter referred to as the Bulrush-IBI, Cattail-IBI, Lily-IBI and SAV-IBI respectively 

and the Cooper IBIs collectively.  

To develop these models, a list of 154 individual, candidate metrics were initially 

investigated for inclusion in each of the final Cooper IBIs. These metrics were based on 

fish community attributes including: total number of individuals caught, species richness, 

relative omnivore abundance (number of omnivorous individuals as a proportion of the 
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total number of individuals caught) and Centrarchidae abundance, among others. This 

initial list of metrics was chosen based on best professional judgment of fish community 

characteristics expected in a community that is in good condition (i.e., equivalent to 

reference). Metrics were calculated in each zone of a wetland, based on the pooled catch 

of three fyke nets set overnight.  

To test each individual metric for its relationship to human impact on fish 

communities, a disturbance scale (‘gradient’) was created as a surrogate for overall 

anthropogenic stress and was used as an independent variable against which to ordinate 

candidate individual metrics and the final IBIs. This scale consisted of a combination of 

land use (e.g., proportion of watershed area consisting of developed land, forest, etc.) in 

surrounding areas extending up to both 1 km and 20 km from the sampling location, as 

well as water quality (e.g. specific conductance, pH, turbidity, dissolved oxygen 

concentration, etc.). Each sampled site was then ordered according to its combined level 

of disturbance and assigned a rank-order score. All data were stratified by wetland plant 

zone. Therefore, each fish community metric was tested against the disturbance scale 

separately for each zone type and the rank-order disturbance scale was recalculated for 

each plant zones. 

Individual metrics that correlated highly with the anthropogenic disturbance scale 

were retained for use within the final IBIs. Ranges of values for each metric were 

assigned metric scores such that a higher metric score implied greater biotic integrity. For 

example, for the metric ‘total number of fishes caught’ : < 10 = 0; 10-30 = 1; > 30 = 2. A 

list of individual metrics and their scoring criteria were then used as the final IBI, with a 

separate list of metrics used for each plant zone type. The summed scores for all metrics 
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in an IBI therefore represent the biologically inferred condition of the fish community. 

All four Cooper-IBIs generate a score from 0 to 100 with a lower score indicating a 

poorer condition (see Appendix 3 for full IBIs). 

 

Fish Condition Index (FCI): 

 The Fish Condition Index is a multivariate measure of fish community 

composition that indicates community and wetland quality and is based on the Benthic 

Assessment of Sediment (BEAST) model of indicator development (Reynoldson et al. 

1995). As a first step in its development, the FCI stratified groups of sites based on 

cluster analysis of fish assemblages found at minimally disturbed sites. Five distinct fish 

assemblages were identified in minimally disturbed reference sites across the Great Lakes 

(Bhagat et al. 2005). Discriminant function analysis (DFA) was used to identify the 

environmental variables that best characterize the sites for each of the five groups. 

Multiple regression was then used to develop a predictive classification model based on 

the DFA. This predictive model was used to classify additional (i.e., nonreference) sites 

and determine their membership in a specific group (i.e., expected reference assemblage) 

based on the naturally occurring environmental features of the site.  

An anthropogenic disturbance scale was developed based on watershed land use 

(Host et al. 2005; Danz et al. 2007). Bray-Curtis two-endpoint ordination analysis was 

used to determine which species best characterized wetlands at the reference end of the 

disturbance gradient, and which species characterized wetlands at the degraded end. 

Finally, multiple regression was used to generate an equation predicting the Bray-Curtis 



 

10 
 

ordination score for each environmental class of wetlands based on the relative 

abundance of key species designated by the Bray-Curtis ordination.  

To assess the biological condition at a site, a wetland is first assigned to one of the 

five environmental classes based on environmental variables in the DFA model. The fish 

assemblage is sampled, and the relative abundances of the species caught are used in the 

predictive equation to generate a single value that represents inferred wetland condition. 

Assemblages that are more similar to the expected reference communities of a given 

group will produce a higher score, while communities that are more similar to the 

degraded communities will produce a lower score. 

 

Wetland Fish Index (WFI) 

 The Wetland Fish Index is a fish-based measure of wetland condition that is 

meant to be applicable across all coastal wetlands within the Great Lakes. This index was 

developed by ordinating fish species relative abundances against a disturbance scale 

(Chow Fraser 2006). This scale, the Water Quality Index (WQI) was itself derived from 

an ordination of ten water quality variables (total phosphorus, nitrate, ammonia, etc.) that 

were considered indicative of anthropogenic disturbance. Each species was given a 

tolerance score between 1 and 5 based on its position on the disturbance axis. A score of 

1 indicates a high tolerance for degraded water quality conditions while a score of 5 

indicates a very low tolerance for degraded conditions. Additionally, each species was 

given a niche breadth score between 1 and 3, again based on its distribution across the 

disturbance axis.  
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To apply the WFI, tolerance, niche breadth and abundance values for each fish 

species found in a wetland are used to calculate the WFI composite score according to a 

formula detailed in Seilheimer and Chow-Fraser (2006; 2007). The final score generated 

by the WFI for a wetland is between 1 and 5, with a lower value implying more degraded 

conditions. The WFI has been developed for use based on either the abundance of 

individual fish species (WFI-AB) or the presence/absence of species (WFI-PA). 

 

Index of Ecological Integrity (IEC) 

 The IEC, as described in Howe et al. (2007 a, 2007b), is a general, multivariate 

method for computing the expected biological condition of a community. Development of 

a specific IEC model consists of using biological community data, collected across a 

large number of sites, based on either the abundance or the presence/absence of species 

and ordinating the presence or abundance of each taxon along an anthropogenic 

disturbance scale. The disturbance scale is chosen a priori to the development and can be 

based on professional judgment, or a quantitative measure of human impact. A 

maximum-likelihood based approach is used to determine the expected ‘biotic response’ 

function for each species. The biotic response function relates the probability of 

observing a species to the site’s condition (anthropogenic stress score) characterizes a 

species’ tolerance to stress and the likelihood of observing the species at a given point on 

the disturbance scale.  

The biotic response functions calculated during the initial development of the IEC 

can then be applied to a novel site to infer the site’s biological condition. A second 

maximum-likelihood based approach is used to generate a score for the novel site based 
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on the observed community composition and the previously derived biotic response 

functions. The score is a value between 1 and 10 with a higher number indicating a better 

biological condition. 

IEC models were initially developed for bird communities, but can be applied to 

any taxon, or combination of taxa, so long as the sampling of sites is standardized 

between those that are used to develop the initial biotic response functions and those that 

are novel sites in which the user wishes to infer condition. 

 

Overall Goals and Study Objectives 

 Although several fish-based biological indicator models have been published and 

are in common use, none have been validated through prospective sampling using a new 

and independent dataset. In this thesis, I test these models by validating their accuracy, 

determine which are suitable indicators of biological condition, and finally assess the 

ability of each model to diagnose specific types of disturbance.  

 The thesis consists of four chapters. In chapter 2, I comparatively assess each 

biological indicator model with respect to the data and disturbance gradient with which it 

was originally derived. While these models are intended to indicate overall anthropogenic 

stress, the measure of stress used in the development of each model differs. The Fish 

Condition Index and the Index of Ecological Integrity were calibrated with a purely land 

use based measure of stress, the Wetland Fish Index was initially calibrated with 

reference to a water quality-based scale, whereas the Cooper IBIs were calibrated with a 

scale consisting of a combination of land use and water quality to characterize stress. In 

testing against each model's original disturbance gradient I how reliably and accurately 

each model indicated wetland condition under its own terms.  
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 In chapter 3 I tested each fish-based biological indicator model’s ability to 

identify degraded wetlands based on a direct measure on human impact - land use. As 

well, I tested these indicator models as measures of various types of anthropogenic 

disturbance. A useful characteristic of an index is the ability to correctly diagnose specific 

types of anthropogenic stress. In testing indices against different types of stress I 

determined which models are best as diagnostic tools. Additionally, I used receiver-

operating characteristic curve analysis to determine how models can be optimized for use 

as indicators of specific stressors. 

 Chapter four integrates the findings of the previous two chapters, recommends 

which indicator models should be implemented within the Great Lakes, and discusses 

how the validated models can be used in a monitoring and restoration capacity, as well as 

how they can be used to address other questions related to wetland ecology and 

conservation. 
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GENERAL METHODS 

 Data were collected through two multi-investigator, multi-year projects – the 

Coastal Wetland Monitoring Project and the Great Lakes Environmental Indicators 

(GLEI) Project. Each project extensively sampled wetlands throughout the Great Lakes. 

However, the primary purpose of the Coastal Wetland Monitoring Project is to monitor 

the environmental health of Great Lakes coastal wetlands, while the purpose of the GLEI 

Project is to develop and test indicators or environmental and biological condition, with a 

focus on relating biological condition to land use-based sources of anthropogenic impact. 

Similar sampling protocols for fish and water quality among these projects meant that the 

two sources of data could be used interchangeably. 

Site Selection 

A total of 254 coastal wetland sites were sampled between 2011 and 2013 

(Appendix 1). All sites were sampled between June and September. Sites were selected 

according to a stratified random sampling design following the protocols of the Great 

Lakes Coastal Wetland Monitoring Project (Uzarski and Otieno 2008). All wetlands 

within the Great Lakes Basin has been identified using GIS coverages created by Albert 

and Simpson (2004) and Ingram and Potter (2004). Sites were stratified according to 

wetland type (riverine, lacustrine or barrier-protected), ecoregion (Olmernik 1987), and 

Great Lake. Each year, sites were randomly chosen from each stratum such that 20% of 

all sites in a stratum were sampled each year. The intention of this stratification was to 

ensure that sampling occurred across the range of geomorphic variation in the Great 

Lakes. Note that sites were not stratified by risk of anthropogenic impact (see GLEI 

methods below). All sites were at least 4 ha in area and had a close connection via surface 
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water to a Great Lake. Sites were not sampled if they were deemed unsafe to reach from 

shore or by motorboat, on private property, or no longer existed due to lake level 

fluctuations. 

 

Site Sampling 

Upon arrival at a site, the distribution of plant morphotypes was assessed across 

the entire site. Morphotypes generally included plants classified by genus (e.g. Typha 

spp., Schoenoplectus spp., Pontedaria spp.), but also included more general categories 

such as submerged aquatic vegetation (SAV) and water lily (Nymphaeaceae spp.) (see 

Uzarski et al. 2005). Across the entire site, up to three dominant vegetation zones were 

identified. A zones was defined as an area within the wetland containing a single, 

monodominant morphotype. A single plant type had to have a coverage of at least 75 % 

of the zone to be considered monodominant. A vegetation zone could be represented by a 

single, large expanse, or by a collection of disconnected patches. However, one 

vegetative type had to cover a total area of least 400 m
2
 to be considered large enough to 

warrant fish sampling. Physical characteristics of each wetland, including near shore land 

cover, shoreline structures (docks, gabions, groynes, etc.), and hydrologic connection to 

the main lake were recorded for each site. 

 

Fish Sampling 

Fish were sampled using large (3/16" mesh, 25' x 3' lead, 6' x 3' wings, 4' x 3' 

front opening) and small (3/16" mesh, 25' 1.5 ' lead, 6' x 1.5' wings, 3' x 18" front 

opening) fyke nets. Three nets were set overnight (12 - 24 h) in each vegetation zone. A 
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zone was considered to have been successfully fished if at least two nets remained upright 

overnight and a total of at least ten fish were caught among the three nets set within a 

vegetation zone. If a zone was not successfully fished it was re-sampled the following 

night. Most fish were identified to species according to Holm et al. (2010) and released 

alive in the field. Fish that could not be identified in the field were preserved in ethanol 

and identified at a later date with the aid of a dissecting microscope. Some species, 

particularly young-of-year individuals, were identified to a higher taxonomic level. These 

included Ameiurus spp., Notropis spp., Lepomis spp., and Lepisosteus spp. Fish 

representing each species found at a site were also preserved in ethanol and kept as a 

voucher specimen according to the protocols of Portt et al. (2008). For larger species, 

photographs were taken of key identifying characteristics as vouchers. A random subset 

of up to 25 individuals per species at each net was measured for total length. Young-of-

year status as well as any lesions or deformities were noted when caught. Zone fish 

counts were pooled counts among all nets in a zone (3). Catch per unit effort (CPUE) was 

defined as total catch per net per night. 

 

Water Sampling 

In situ water temperature, dissolved oxygen concentration, pH and specific 

conductance were recorded at each net using a multi-probe meter (YSI 556 MPS). Probes 

were calibrated before visiting each site. A water sample was collected into a 1-L acid-

washed Nalgene container each net at at least 1 cm in depth. Samples were pooled 

together for each zone in an acid-washed 18-L plastic container. Samples were collected 

before nets were set and, where possible, from a boat to minimize disturbance of the 
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substrate. Turbidity was measured approximately 3 – 5h after samples were collected 

using a Hach 2100Q portable turbidity meter. At that time subsamples were filtered 

and/or stabilized according to standard methods for the analysis of total phosphorus, total 

nitrogen, alkalinity, turbidity, chlorophyll-a, chloride, colour, soluble reactive 

phosphorus, nitrate, and nitrite (Uzarski et al. 2008) and stored refrigerated for later 

analyses. These analyses were performed within a week of collection by the Canadian 

National Laboratory of Environmental Testing (Burlington, Ontario). 

 

Great Lakes Environmental Indicators Project (GLEI) 

 The GLEI Project was a collaborative initiative to assess biological condition 

across a human disturbance gradient (Niemi et al. 2007). The initial GLEI Project (GLEI 

1, 2001 - 2003) collected data for the training and development of new biological 

indicator models, while the current GLEI Project (GLEI 2, 2011 - 2013) focused on 

assessing indicators and calibrating their relationship to human a disturbance scale (Niemi 

et al. 2007). Sampling for the GLEI project followed the same methods and protocols as 

the Coastal Wetland Monitoring Project, except for the following:  

 

Site Selection 

 A total of 82 and 60 coastal wetland sites were sampled for GLEI 1 and GLEI 2, 

respectively (Appendix 2). Site selection was based on a stratified random sampling 

design as described in Danz et al. (2005). In short, wetlands within the Great Lakes were 

stratified by wetland type (riverine, lacustrine, barrier-protected, or high energy), 

ecoprovince (Keys et al. 1995) and by environment, representing potential sources of 
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anthropogenic-based stress. Importantly, this design ensured sampling across the entire 

gradient of anthropogenic –based disturbance.  

 

Site Sampling 

  Zonation of sites was based on the dominant near shore land use. Dominant land 

use was defined as a single land use type encompassing at least 10 % of the site’s shore 

line. Land use types included residential, industrial, agricultural, and forested land. Up to 

three zones were identified at each site. Fish and water samples were collected along 

transects randomly placed in each zone extending from the shoreline. Fish were sampled 

with paired fyke net arrays at approximately 50 cm and 100 cm depth placed parallel to 

shore, for a total of 4 nets per zone. Fish were sampled along only a single transect and in 

up to 2 zones. Site-wide fish abundance estimates consisted of the counts of individuals 

pooled from all nets (2 – 8) at a site. Catch per unit effort was calculated as the total 

number of fish caught at a site, per net per night. 

 Water samples were collected along both transects at 50 cm and 100 cm depths in 

all zones. Samples at each depth in each zone were pooled for later analysis, resulting in 2 

samples per zone. 

 

Indicator Model Calculation 

 Biological indicator models developed using four independent methods were 

assessed in this study, the Fish Condition Index (FCI), the Wetland Fish Index (WFI), the 

Cooper-IBIs, and the Index of Ecological Condition (IEC). For a full description of 

indicator models, see the General Introduction. 
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Fish Condition Index 

 All FCI scores were calculated based on Bhagat et al. (in prep.). The FCI takes as 

input fish abundance data. Abundances were calculated as the total catch per net per night 

from all nets at a site and were converted to relative abundances, and log2+1 (i.e. octave) 

transformed. Site scores were calculated using the equation:  

FCI = 0.616 + ∑ 𝐴𝑖𝐶𝑖
𝑛
𝑖  

 Where A is the relative abundance (octaves) and C is the coefficient for species i. 

C values are derived from a multivariate analysis of fish communities from both reference 

and degraded wetlands across the Great Lakes. In the initial development of the FCI, 5 

unique fish community reference assemblages were found in the Great Lakes. Unique sets 

of species coefficients were derived for each of the assemblages. To determine which set 

of coefficients should be applied to a novel site, the expected assemblage can be 

determined based on the physical characteristics of the site. Currently, species 

coefficients are only available for the assemblage that corresponds to the Southern 

Superior Uplands (SSU) and Northern Great Lakes (NGL) ecoregions in Omernik (1987). 

In this study, data were not available for this ecoregion classification. However, the SSU 

and NGL correspond approximately to the Northern ecoprovince (Keys et al. 1995) 

classification used in the study. Therefore, the FCI was only applied to sites in the 

Northern ecoprovince in the GLEI 2 database. 

 

Wetland Fish Index 
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 All WFI scores were calculated using the methods found in Seilheimer & Chow-

Fraser (2006, 2007). WFI scores are based on a weighted average equation: 

𝑊𝐹𝐼 =  
∑ 𝑌𝑖𝑇𝑖𝑈𝑖

𝑛
𝑖=1

∑ 𝑌𝑖𝑇𝑖
𝑛
𝑖=1

 

Where Y is either the log+1 transformed total abundance (WFI-AB) or the 

presence/absence (1/0; WFI-PA) of species i. U and T are constants determined for 

common species in the Great Lakes (see Appendix 4) and have been calculated based on 

a multivariate analysis of each species’ response to a water quality based disturbance 

gradient. T represents a species’ likelihood to be found across a range of disturbance (i.e. 

niche breadth), with a 3 signifying a very specific range and 1 signifying a broad range. U 

represents a species’ tolerance to degradation, with a 1 signifying high tolerance and a 5 

signifying low tolerance.  

 

 

Cooper IBIs 

 Cooper-IBI scores were calculated from the methods described in Cooper et al. (in 

review), which are based on the methods of Uzarski et al. (2005). All IBI scores take as 

input fish abundance data. Abundance values were calculated as the pooled catch per net 

per night within a given vegetation zone (see General Introduction). Abundance values 

were used to calculate individual metrics within each zone. Metric values were then 

scored as either 0, 1, or 2. The final IBI score for a zone was the sum of all metric scores. 

The specific metrics used and scoring criteria for each metric are unique to each 

vegetation zone (see Appendix 3 for all metrics and scoring criteria). IBI score were 

calculated for Lily, Typha, Bulrush, and SAV zones. 
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Index of Ecological Integrity 

 IEC scores were calculated based on Howe et al. (2007a, 2007b). The IEC 

generates site scores using fish species abundance data and previously established Biotic 

Response Curves (BRC). BRCs represent a species’ predicted occurrence across a 

disturbance gradient and are derived through a maximum likelihood-based analysis. Each 

set of BRCs is therefore meant to be applied to a specific population and as a measure of 

a specific disturbance gradient. No BRCs are currently available for Great Lakes wetland 

fish communities, so the GLEI 1 database was used as a training set to develop an IEC 

model for disturbance based on cumulative anthropogenic land use (Danz et al. 2007) in 

the Great Lakes. 

All abundance data were calculated as the pooled catch per net per night for all 

nets at a site and were log +1 transformed. The ‘est_brc()’ function in the R package 

“IEC” was used to train BRCs. A measure of cumulative agricultural and urbanization-

based land use (see chapter 2) was used as the disturbance gradient. The disturbance 

gradient was rescaled to a scale of 0 – 10 where the wetland in poorest condition in the 

training dataset was given a score of 0 and the wetland in best condition in the training 

dataset was given a score of 10. Separate BRCs were generated for the Northern and 

Southern ecoprovinces (Keys et al. 1995) of the Great Lakes. The ‘est_iec()’ function in 

the “IEC” package was used to generate final IEC based site scores. Site scores for both 

GLE 1 and GLEI 2 sites were generated using the BRCs derived from the GLEI 1 (i.e. 

training) database.  
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Abstract 

Assessing the quality of biological communities is important in the management of Great 

Lakes Coastal Wetlands. Biological indicator models can be used to quantify the 

condition of biotic communities. An essential step in model development is assessing the 

performance of the model and validating it with new, independent data. The Wetland Fish 

Index, Fish Condition Index, Index of Ecological Integrity, and the Cooper IBIs have 

seen initial development for use in Great Lakes coastal wetlands. However, none have 

been thoroughly tested. Using data collected by the Great Lakes Environmental Indicators 

(GLEI) and Great Lakes Coastal Wetland Monitoring (CWM) projects, biological indices 

were evaluated to determine which indicators were able to accurately classify fish 

communities as degraded or not degraded. Both regression analysis and receiver 

operating characteristic (ROC) curve analysis, indicated that the Wetland Fish Index – 

Abundance, Lily-IBI, and Cattail-IBI had high classification accuracy when evaluated 

according to the stressor scales against which they were calibrated.   
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Introduction 

Coastal wetlands are ecologically important to many taxa, but are particularly 

important to fish communities (Jude & Pappas 1992, Brazner & Beals 1997, Sierszen et 

al. 2012). Despite their importance, coastal wetlands have seen large amounts of 

degradation over the past century (Whillans 1982) and are subject to continued 

disturbance from anthropogenic activity (Danz et al. 2007, Host et al. 2001, Hondrop et 

al. 2014). 

Assessing the quality of biological communities is important in the management, 

and restoration of wetlands (Karr 1991, Reynoldson et al. 1995, Wilcox et al. 2002, 

Bailey et al. 2004). Biological indicator models quantify the condition of a whole 

community and can be used to infer the impact of anthropogenic stress on that 

community. Through evaluating the entire assemblage at a site, a model produces a single 

score (index value) argued to represent the biological condition. These indicator models 

are useful because they purport to generate easily interpretable and biologically relevant 

summary assessments suitable for wetland management that integrate information from 

the entire assemblage (Karr 1981, Cairns et al. 1993). In recent years a number of fish-

based biological indices have seen initial development for evaluating the condition of fish 

communities in Great Lakes coastal wetlands, including The Wetland Fish Index (WFI, 

Seilheimer & Chow-Fraser 2007), Fish Condition Index (FCI, Bhagat et al. in prep.), 

Index of Ecological Integrity (IEC, Howe et al. 2007a, 2007b) and the Cooper IBIs 

(Cooper et al. in review). 

An essential step in model development is to assess its performance, often called 

model validation (Hawkins 2006, Mouton et al. 2010). This exercise ensures that a 
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model’s outputs accurately and reliably indicate the condition of the biological 

community. Despite their potential value, to date no fish-based biological indicator 

models have been thoroughly validated as measures of biological condition in the Great 

Lakes coastal wetlands. Using novel, contemporary data, I assessed the accuracy of these 

models and compared these findings to previous assessments of the models performed 

during their initial development 

 

Assessing the Accuracy of Biological Indicators 

An important aspect in the performance of a biological indicator model is the 

accuracy with which it indicates the biological condition of a community (Hawkins 

2006). To assess the accuracy of a model, it must be compared to a standard measure of 

the biological condition. Biological community condition as first defined by Frey (1977), 

and later adopted by others (e.g. Karr & Dudley 1981, Hughes et al. 1998, Hawkins 2006, 

Stoddard et al. 2006) is "the capability of supporting and maintaining a balanced, 

integrated, adaptive community of organisms having a species composition, diversity, and 

functional organization comparable to that of the natural habitat of the region". An 

accurate model should indicate these qualities when applied to a community. However, 

there is no standard, quantifiable measure of community quality with which to evaluate 

the accuracy of biological indicators. Therefore, surrogate measures of community 

condition are used that reflect the ‘naturalness’ (Stoddard et al. 2006) of the habitat 

(Hawkins 2006, Yates & Bailey 2010). 

Common surrogates for community condition are either anthropogenic stressors 

present at a site or measures of the potential risk of stress at a site, and are expressed as a 
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disturbance scale (or ‘gradient’). Stressors are often measured in terms of the water 

chemistry-based water quality. Their components include measures of nutrients (e.g. total 

phosphorus & total nitrogen), chloride, and turbidity (Chow-Fraser 2003, Seilheimer & 

Chow-Fraser 2006, Seilheimer & Chow-Fraser 2007). Risk of stress in wetlands can be 

measured in terms of the human activity in the surrounding area. These measures include 

agricultural land use, urbanization, and point sources of pollution (Danz et al. 2007, Host 

et al. 2001, Niemi et al. 2011). Within the context of fish-based coastal wetland 

indicators, all currently used indices have been developed using different surrogates. 

Seilheimer & Chow-Fraser (2006, 2007) used a purely water quality-based measure when 

developing the WFI; Bhagat et al. (in prep.) and Howe et al. (2007a, 2007b) used 

different land use-based measures when the developed the FCI and IEC, respectively; and 

Cooper et al. (in review) used a combination of both water quality and land use based 

measures when developing the Cooper IBIs. 

Biological indicator models are commonly evaluated through regression analysis, 

with the Coefficient of Determination (R
2 

) used as the performance criterion. To date, R
2
 

is the only criterion that has been used to evaluate fish biological indicators for Great 

Lakes coastal wetlands (Uzarski et al. 2005, Seilheimer & Chow-Fraser 2006, Bhagat et 

al. 2007, Seilheimer & Chow-Fraser 2007). Regression analysis calculates the least-

squares relationship between biological indicator scores (the dependent variable) and 

scores along a disturbance gradient (the independent variable). The coefficient of 

determination is a measure of the precision of this relationship. However, the end-use of 

biological indicators by managers is not to determine the precise amount of disturbance at 

a site, but to determine whether or not it is degraded. For example, the European Water 
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Framework Directive (Herring et al. 2010) calls for monitoring of water resources based 

on classes of water quality (e.g. high, moderate, poor). Therefore, biological indicators 

should be assessed in terms of their classification accuracy (Dos Santos et al. 2011) rather 

than their goodness-of-fit to a regression equation. 

The purpose of this study was to validate the accuracy of the Wetland Fish Index, 

the Fish Condition Index, the Index of Ecological Integrity and the Cooper IBIs. In order 

to give the fairest assessment, this study evaluated each indicator using the environmental 

disturbance gradient scale with which it was originally developed. Specifically, this study 

asks which fish-based biological indicator models are able to accurately classify 

communities as being degraded by assessing model classification accuracy using receiver 

operating characteristic curve analysis. 

 

Methods 

 See General Methods (Chapter 1) for all data collection and indicator calculation 

procedures. 

Datasets Used in Model Assessment 

 A biological indicator model is evaluated throughout its entire cycle of 

development (Mouton et al. 2010). A training dataset is used to initially create the model 

(e.g. to find individual metrics in the case of IBIs (Uzarski et al. 2007), or to ordinate 

communities using multivariate methods (Reynoldson et al. 1995)). Once the final model 

is developed, it is validated against a gold standard using a test dataset. The means by 

which data are partitioned into training and test datasets can affect the measured accuracy 

of the model when it is evaluated (Fielding & Bell 1997). To date, most published models 
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relating fish biological indices to anthropogenic stress in Great Lakes wetlands have been 

assessed only by resubstitution (i.e., the same dataset was used for both the training and 

test data) rather than through true validation, thus overestimating the accuracy (Fielding 

& Bell 1997). Ideally, a model is evaluated with reference to a dataset that has been 

collected separately and is independent of the training dataset (Fielding & Bell 1997). 

 

Training Data sets  

In this study, training datasets refer to data used in the original creation of a 

particular indicator model (Table 2.1). Training data for the WFI-AB and WFI-PA 

indices were obtained from Seilheimer & Chow-Fraser (2007) (n = 100). Training data 

for IEC-North (n = 78), IEC-South (n = 58), and FCI (n = 73) were taken directly from 

the Great Lakes Environmental Indicator (GLEI 1) database (T. Brown, Natural 

Resources Research Institute, University of Minnesota Duluth, pers. comm.). For the 

Cooper-IBIs the training dataset was provided by M. Cooper (Central Michigan 

University, pers. comm.) et al. using the Great Lakes Coastal Wetland Monitoring 

(CWM) database. One-half of the samples from each vegetation zone had been randomly 

designated by Cooper et al. as training sites (lily: n = 54; bulrush: n = 58; SAV n = 60; 

cattail n = 37). These samples were used as the training dataset for the current study. The 

remaining samples were used as the test dataset. Training data for the WFI, FCI and IEC 

were collected from 2001 – 2005. Training data for the Cooper-IBIs were collected from 

2011 – 2013. 

 

Test Datasets 
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 In this study, test datasets refer to data used to evaluate indicator models that had 

not been used during the training of the model (Table 2.1). For the WFI, the entire GLEI 

2 database (n = 60) was used as the test dataset. All sites in the GLEI 2 database from the 

Northern ecoprovince (Keys et al. 1995) were used as the test dataset for the FCI and 

IEC-North. All sites in the GLEI 2 database from the Southern ecoprovince (Keys et al. 

1995) were used as the test dataset for the IEC-South. For the Cooper-IBIs the test dataset 

was generated by Cooper et al. using the CWM database. One-half of the samples from 

each vegetation zone were randomly assigned by Cooper et al. as test sites (lily: n = 54; 

bulrush: n = 58; SAV n = 59; Typha n = 35). The same sites assigned by Cooper et al. for 

testing were used as the test dataset for the current study. All test datasets were collected 

between 2011 and 2014. Test datasets for assessment of the Cooper IBIs were collected 

contemporaneously with training datasets. Test datasets for the WFI, FCI and IEC were 

collected approximately 6 – 10 years after training datasets. 

 

Disturbance Scales 

Water Quality Index (WQI) 

 The WQI is a measure of water quality developed by Chow-Fraser (2006) and was 

designed as a measure of anthropogenic impact on wetlands. This index was derived from 

water chemistry data sampled from 110 wetlands across each of the five Great Lakes and 

has been shown to be significantly correlated with forested land cover and negatively 

correlated with altered (agriculture + urbanization) land cover. Twelve water quality 

variables were used to generate the index, they were: turbidity, temperature, pH, 

conductivity, chlorophyll-a, total suspended solids, total inorganic suspended solids, total 
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phosphorus, soluble reactive phosphorus, total ammonium nitrogen, total nitrate, and total 

nitrogen. A Principal Components Analysis (PCA) was used to ordinate wetlands with 

respect to water quality. A final water quality score was generated for each wetland using 

the PC site scores for each of the twelves axes found in the original PCA. The score for 

an individual site was the sum of its PC scores, with each score weighted by the 

proportion of explained variable for each axes based on the eigenvalue. Finally, a 

stepwise multiple regression was used to generate predictive equations that can produce 

WQI scores based on raw water quality data. In total, 9 predictive equations, each using a 

different combination of water chemistry variables were found to correlate highly with 

the original PC derived scores. In this study, WQI #8 was used. The formula for WQI 8 

is:  

0.523 – (0.832 * log total phosphorus) – (0.313 * log total nitrogen) – (0.983 * log 

conductivity) – (0.583 * log chlorophyll-a). 

The WQI generally produces scores between 3 and -3. Higher scores indicate 

better water quality, and lower scores indicate worse water quality. It is suggested by 

Seilheimer & Chow-Fraser (2007) that a score of < 0 denotes a degraded wetland.  

  

RankSum 

 RankSum is a relative measure of overall anthropogenic disturbance developed by 

Uzarski et al. (2005) and Cooper et al. (in review) and is based on both land cover and 

water quality measures of anthropogenic impact. These variables include land use in both 

a 1-km and 20-km buffer from the site, turbidity, chlorophyll a, total phosphorus, soluble 

reactive phosphorus, total nitrogen, ammonium-N, nitrate-N, dissolved oxygen, pH, 
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specific conductivity and the first principal component score based on a principal 

components analysis of all disturbance variables. RankSum is not an absolute measure of 

anthropogenic disturbance, but instead only shows the relative amount of impact found 

among a defined group of wetlands and therefore must be recalculated for each dataset to 

which it is applied. To calculate RankSum, each individual disturbance variable is ranked 

among all sites in a given dataset, then the rank values are summed for each wetland and 

rescaled to a range of 0 to 100, with higher values indicating less anthropogenic 

disturbance and lower values indicating higher anthropogenic disturbance. 

 For all analyses in this study, RankSum values were recalculated for each 

biological indicator being assessed (e.g. RankSum was only calculated for Lily-IBI test 

sites when assessing the Lily-IBI and independent RankSum scores were calculated when 

assessing the Cattail-IBI test sites). 

 

Land Use (Agriculture, Development, Cumulative, SumRel) 

 Anthropogenic land use is a direct measure of the risk of anthropogenic stress 

within the watershed surrounding the wetland. These measures were derived by the Great 

Lakes Environmental Indicators project and are based on previous research by Danz et al. 

(2005) and Host et al. (2011). In a Principal Components Analysis of over 200 individual 

measures of land-based anthropogenic activity (e.g. Road density, row crop count, 

forested land cover, residential land cover, etc.) Danz et al. and Host et al. found that the 

dominant stressors were: percent agricultural land cover, percent urban land cover, road 

density, and population density. These variables represented the two primary axes of 

anthropogenic stress to wetlands: agriculture and urbanization/population pressures. In 
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the current study, percent agricultural land cover within the surrounding watershed was 

used as a measure of agriculture-based stress. Percent developed (i.e. urban) land cover 

within the surrounding watershed was used as a measure of urbanization/population 

pressures.  

 A measure of cumulative anthropogenic land use was generated by combining 

both agricultural and development based stressors. Development based land use was 

summarized in each watershed as the maximum normalized value of percent urban land 

cover, road density, and population density. For each watershed, the Euclidean distance 

from the origin of the development and percent agriculture scales was used to combine 

scores according to the two axes into a single measure of overall anthropogenic land use. 

Finally, a second measure of overall land use, SumRel, was derived from these data. 

SumRel is the sum of standardized and normalized land use stressors (agricultural land 

cover, residential land cover, road density, population density, and point source 

discharge).  

 All land use variables (percent agriculture, percent development, cumulative land 

use, and SumRel) were scaled from 0.0 to 1.0, with 1.0 being the maximum observed 

value across the entire Great Lakes basin. For all land use measures, higher values 

indicate greater anthropogenic disturbance, while lower values indicate less 

anthropogenic disturbance. 

 

The Degraded Condition  

  To determine observed degradation status, each disturbance scale was divided into 

two portions, corresponding to nondegraded (little disturbance) and degraded (much 
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disturbance). The value of the disturbance gradient that divides degraded sites from non-

degraded sites was called the ‘disturbance threshold’. For the WFI disturbance threshold 

values were taken from Seilheimer & Chow-Fraser (2007), while Bhagat et al. (in prep.) 

provided thresholds for the FCI. Explicit disturbance thresholds were not identified by the 

developers of the IEC or Cooper IBIs. Therefore, an operational definition of a 

degradation boundary was used. Disturbance thresholds were defined by the 20 % of 

wetlands exhibiting the greatest amount of disturbance within the training dataset (IEC 

and Cooper-IBIs). For example, if 100 wetlands were sampled in the training dataset, the 

disturbance scale value that corresponded to the wetland rank 80
th

 (from least to most 

disturbed) was used as the threshold for degradation. 

 

Statistical Analysis 

 All previous evaluations of the performance of models assessed in this study have 

used linear regression, with R
2
 (Coefficient of Determination) as the performance 

criterion (Seilheimer & Chow-Fraser 2007, Howe et al. 2007a, 2007b, Cooper et al. in 

review, Bhagat et al. in prep.). To compare current test datasets with previous analyses, 

linear regression analysis was performed using the lm() function in the base package of 

the R Statistical Programming Language (R Core Team 2014) on test datasets. All R
2
 

values were deemed significant at p < 0.05. 

 

Receiver Operating Characteristic (ROC) curve Analysis 

  Receiver Operating Characteristic (ROC) curve analysis was used to assess 

classification accuracy (Fawcett et al. 2006) of biological indicators. While this method is 
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commonly used in medical research (Park et al. 2004, Obuchowski et al. 2005) and 

machine learning (Hand & Hill 2001, Fawcett 2006), only recently has it seen use in 

ecology (Mouton et al. 2010, Liu et al. 2011) and specifically with biological indicators 

(Dos Santos et al. 2011).  

Biological indicator models were evaluated on their ability to accurately classify 

sites as being in the degraded condition. To do this, the predicted degradation status 

(biological condition model score) was compared to the observed degradation status 

(amount of environmental stress) of each wetland site to assess the classification accuracy 

of models. The observed degradation status was determined by an anthropogenic 

disturbance scale (see the degraded condition above).  

In this classification scheme there are four possible outcomes from an indicator's 

classification of a wetland (summarized as a confusion matrix, Fig. 2.1). If a wetland is 

degraded according to its score on the environmental disturbance scale and the biological 

index score derived from an indicator model also classifies the site as degraded then this 

is a true positive result; if the wetland is not degraded according to the disturbance scale 

and the biological indicator model classifies it as degraded then it is a false positive 

result; if the wetland is not degraded according to the disturbance scale and the indicator 

model classifies the site as not degraded it is a true negative result and if the site is not 

degraded but the indicator says it is degraded then it is a false negative result.  

When a set of wetlands are assessed, there are a number of criteria that can be 

used to evaluate the classification accuracy of a model given the number of sites that fall 

into each of these four categories. Two of the primary measures of accuracy are 

sensitivity and specificity. 
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Sensitivity is the ability of a model to correctly identify a degraded site. That is, 

the proportion of sites that are degraded according to the disturbance scale, that the 

biological indicator model classifies as degraded (A / [A+C], Fig. 2.1); A highly sensitive 

indicator is more likely to tell the user that a site is degraded. Specificity is the ability of a 

model to correctly identify a non-degraded site, calculated as the proportion of sites that 

are not degraded according to the disturbance scale, that the indicator says are not 

degraded (D / [B+D], Fig. 2.1); A highly specific model is more likely to not say a site is 

degraded. Both sensitivity and specificity are important metrics when evaluating the 

accuracy of an indicator. A useful indicator will have both high sensitivity and specificity, 

however it is possible for an indicator to be very sensitive but not specific, and vice versa. 

The output for most biological indicator models is not an explicit classification of 

sites as degraded or not degraded, but a continuous score. To evaluate the classification 

accuracy of an indicator using just a confusion matrix (as in Fig. 2.1), a cut-point would 

need to be set for the indicator which delineates what the model classifies as degraded vs. 

non-degraded. ROC analysis evaluates classification accuracy, but does not require a 

single cut-point to be specified. Instead, in ROC analysis the sensitivity and specificity 

for all possible cut-points are determined. The sensitivity/specificity of each cut-point of 

the model is plotted to generate the ROC curve (e.g. Fig. 2.4a.). By convention, the 

sensitivity is plotted on the y-axis and specificity plotted (and reversed) on the x-axis. The 

overall accuracy of the model can then be quantified with the area under the curve 

(AUC). ROC analysis is also useful as it provides a graphic representation on both the 

sensitivity and specificity of a model; a ROC curve that encompasses more of the left side 

of the plot is more specific and minimizes the likelihood of committing a Type II error, 
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while a curve that encompasses more of the top of the plot is more sensitive and 

minimizes likelihood of committing a Type I error. 

All ROC curve analysis was performed using the package "pROC" (Robin et al. 

2011) of the R Statistical Programming Language (R Core Team 2014). The Area Under 

the ROC Curve (AUC) was used as the performance criterion for classification accuracy. 

An AUC of 1.00 signifies a model with perfect classification accuracy while an AUC of 

0.500 signifies a model that is no better at classifying sites than random chance. 

Confidence intervals of AUCs are generated using the DeLong method described in 

DeLong et al. (1988) and Robin et al. (2011).  

 

 

 

Results 

Disturbance Thresholds 

 For the Water Quality Index (WQI, Seilheimer & Chow-Fraser 2006, 2007), a 

value of 0 was used in the evaluation of the Wetland Fish Index – Abundance (WFI-AB) 

and the Wetland Fish Index – Presence/Absence (WFI-PA) as the disturbance threshold. 

Sites with a WQI value lower than this value were designated as degraded (Table 2.1.). 

For SumRel (Bhagat et al. in prep.), a value of 0.745 was used in the evaluation of 

the Fish Condition Index (FCI) as the disturbance threshold. Sites with a SumRel value 

higher than this were designated as degraded (Table 2.1.). 

For Cumulative Land Use, a value of 0.385 was used in the evaluation of the IEC-

North as the disturbance threshold while a value of 0.755 was used in the evaluation of 
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the IEC-South. In both cases sites with higher Cumulative Land Use values were 

designated as degraded (Table 2.1.). 

For RankSum, values of 16, 24, 41, and 42 were used as the disturbance threshold 

in the evaluation of the Lily-IBI, Cattail-IBI, Bulrush-IBI, and SAV-IBI, respectively. In 

all cases sites with lower values than this were designated as degraded (Table 2.1.). 

 

Regression Analysis: 

  For all models, except the FCI (Fig. 2.2c, R
2
 = 0.05, p = 0.944, n = 38), a 

statistically significant linear relationship was observed between the predicted condition 

(biological index score) and the observed condition (disturbance scale score) against 

which each of the models were regressed. The Lily-IBI showed the highest overall 

precision (Fig. 2.2f, R
2 

= 0.597, p = <0.001, n = 54) while the SAV-IBI showed the 

lowest precision (Fig. 2.2i, R
2
 = 0.133, p = <0.01, n = 59). Overall, the order of indices, 

ranging from most precise to least precisce was Lily-IBI > Cattail-IBI > WFI-AB > 

Bulrush-IBI > WFI-PA > IEC-South > IEC-North > SAV-IBI > FCI (Fig. 2.2). Most R
2
 

values for biological indicator models in the test dataset were lower than in their 

respective training dataset (Table 2.2). Only the Lily-IBI and SAV-IBI showed an 

increases in R
2
. 

 

Classification Accuracy: 

 With the original training datasets (Fig. 2.3), the IEC-South and Cattail-IBI had 

the highest classification accuracy with AUCs of 0.961 and 0.955, respectively, while the 

SAV-IBI showed the lowest overall classification accuracy with an AUC of 0.694. All 
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other models were also highly accurate, with AUCs of 0.800 or greater. The order of 

classification accuracy for models based on training datasets was IEC-South > Cattail-IBI 

> Bulrush-IBI > IEC-North> WFI-PA > WFI-AB > FCI > Lily-IBI > SAV-IBI (Table 

2.3). 

When the test datasets were assessed (Fig. 2.4), the Lily-IBI and the Cattail-IBI 

exhibited the highest overall classification accuracy, with AUCs of 0.901 and 0.847, 

respectively. The FCI and IEC-South were the least accurate, with AUCs of 0.640 and 

0.612, respectively. Overall, the order of classification accuracy for all models in the test 

dataset was Lily-IBI > Cattail-IBI > Bulrush-IBI > WFI-AB > IEC-North > WFI-PA > 

SAV-IBI > FCI > IEC-South (Table 2.3). 

 

 

 

Discussion 

Although a large body of research exists describing the development of biological 

indicators (Karr 1981, Whittier et al. 2007, Aparicio et al. 2011 Grabas et al. 2012, Wu et 

al. 2012) including many specifically for Great Lakes communities (Minns et al. 1994, 

Burton et al. 199, Uzarski et al. 2005, Niemi et al. 2007), relatively few models have 

been validated with independent data (Bhagat et al. 2007, Bailey et al. 2014, Strachan et 

al. 2014). Validation is an essential step in model development (Fielding & Bell 1997) to 

ensure that the model is generalizable independently of the data with which it was 

originally developed.  
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In this study, the accuracy of nine biological indicator models of the condition of 

fish communities in Great Lakes coastal wetlands was assessed. Accuracy was defined as 

the ability of a model to correctly classify sites as being in the degraded condition or not. 

Classification accuracy of the models of nearly all biological indicators was high when 

they were assessed with training datasets (Fig. 2.3, Table 2.3). Only one model, the SAV-

IBI, had an AUC value <0.700, while the IEC-South had near perfect classification 

accuracy. However, despite strong classification accuracy during model training, most 

models less accurately classified sites in the test dataset (Table 2.3). 

No previous studies have directly tested the accuracy of the Cooper-IBIs. 

However these models were derived using the methods originally published by Uzarski et 

al. (2005). That paper reported a strong relationship between bulrush spp.-based and a 

cattail spp.-based IBI when assessed with a RankSum disturbance gradient. Further tests 

of these IBIs by Bhagat et al. (2007) demonstrated that these IBI models were sensitive to 

only particular types of stress. Recent application of the Uzarski-derived IBIs by Calabro 

et al. (2013) revealed no correlation between IBI scores and an independent disturbance 

gradient. They argued that the wetlands used to develop the original IBIs did not cover a 

wide enough range of the disturbance gradient and is not transferable to wetlands at or 

near the reference condition. While bulrush and cattail IBIs developed by Uzarski et al. 

were based on a limited number of sample sites (i.e. sites in only two lakes, with most 

sites clustered around three locations in those lakes), the Cooper-IBIs are based on data 

from across all five Great Lakes which may explain their better performance when 

applied to independent data. 
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The current study is the first application of the IEC method to fish communities in 

the Great Lakes. To date, the IEC has only been used as a measure of the condition of 

bird assemblages (Howe et al. 2007a, 2007b). In these previous studies, IEC scores based 

on the condition of bird assemblages were strongly correlated with site condition when 

applied to a set of reserved test sites. Interestingly, when predicted site condition (IEC 

score) and observed condition (disturbance scale score) were plotted together, Howe et al. 

(2007a, 2007b) found a relatively tight cluster of points at the non-degraded end of the 

disturbance scale, but much greater variability at the degraded end. This is similar to the 

relationship found in the current study for both IEC-South (Fig. 2.2e.) and especially 

IEC-North (Fig. 2.2d). As IEC models are initially developed with respect to a single type 

of explicitly defined disturbance, this may suggest that fish assemblages found at non-

degraded sites are similar, while the expected assemblage found at degraded sites is 

dependent on the type of stress impacting a site.  

Despite strong classification accuracy and presicion when assessed with the 

training dataset, the FCI demonstrated the poorest performance when assessed with the 

test dataset. The FCI is meant to measure the similarity of a fish community to the 

community expected at a ‘reference’ site (i.e. a minimally disturbed site). However, 

Bhagat et al. (in prep.) identified five distinct reference assemblages, and proper 

application of the index requires first determining which reference assemblages a test site 

should be compared to. However, data were not available to properly classify sites as to 

their expected assemblage. Therefore, the low accuracy in site classification by the FCI 

may be the result of its improper application to Great Lakes wetlands. 
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Overall, the Cooper-IBI were found to have the highest classification accuracy 

when applied to a test dataset. However, comparisons between the performance of 

Cooper-IBIs and other biological indicators can only be made tentatively. Training and 

test datasets for the Cooper-IBIs are based on a partitioning of sites sampled across the 

same time period while there is a 6-7 year separation in training and test datasets for the 

IEC, FCI and WFI (Table 2.1). Validation of test sites using a partitioned dataset is 

cautioned against by Fielding & Bell (1997) as this may overestimate model accuracy. 

Cooper-IBIs are promising, but further assessment with truly independent data is 

warranted. Despite the time differences between training and test datasets, the WFI and 

IEC were still found to accurately classify sites as being degraded suggesting that these 

indicators are reliable and accurate measures of biological condition interannually.  
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Tables and Figures 

Table 2.1. Databases used to generate training and test datasets, years during which data 

were collected, and disturbance scale used to construct and test each biological indicator 

model. The disturbance threshold is the amount of anthropogenic disturbance delineating 

degraded and non-degraded sites, in units of the disturbance scale. † Seilheimer & Chow-

Fraser 2007. 

 

Index Training Dataset 
Training 
Dataset 

Years 

Test 
Dataset 

Test 
Dataset 

Years 

Disturbance 
Scale 

Disturbance 
Threshold 

WFI-AB Original paper† 2001-2005 GLEI 2 2011-2013 WQI 0 

WFI-PA Original paper† 2001-2005 GLEI 2 2011-2013 WQI 0 

FCI GLEI 1 2002-2003 GLEI 2 2011-2013 SumRel 0.745 

IEC-North GLEI 1 2002-2003 GLEI 2 2011-2013 Cum. Land Use 0.385 

IEC-South GLEI 1 2002-2003 GLEI 2 2011-2013 Cum. Land Use 0.755 

Lily-IBI CM 2 2011-2013 CWM 2 2011-2013 RankSum 16 

Cattail-IBI CM 2 2011-2013 CWM 2 2011-2013 RankSum 24 

Bulrush-IBI CM 2 2011-2013 CWM 2 2011-2013 RankSum 41 

SAV-IBI CM 2 2011-2013 CWM 2 2011-2013 RankSum 42 
 

 

Table 2.2. Coefficients of determination for training and test datasets of biological 

indicator models based on a linear regression analysis. All significant correlations (p < 

0.05) are noted with an asterisk (*). 

Index Training R
2
 Test R

2
 

WFI-AB 0.642* 0.342* 

WFI-PA 0.669* 0.225* 

FCI 0.446* 0.05 

IEC-North 0.49* 0.2* 

IEC-South 0.816* 0.213 

Lily-IBI 0.481* 0.597* 

Cattail-IBI 0.67* 0.478* 

Bulrush-IBI 0.415* 0.327* 

SAV-IBI 0.097* 0.133* 
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Table 2.3. Overall classification accuracy of biological indicator models measured as the 

AUC of ROC curves for training and test datasets. Bracketed values are the 95 % 

Confidence intervals of the AUC. 

Index Training AUC Test AUC 

WFI-AB 0.866 (0.79 - 0.942) 0.804 (0.66 - 0.948) 

WFI-PA 0.874 (0.8 - 0.947) 0.767 (0.618 - 0.916) 

FCI 0.826 (0.721 - 0.93) 0.640 (0.255 - 1) 

IEC-North 0.895 (0.817 - 0.974) 0.779 (0.622 - 0.935) 

IEC-South 0.961 (0.917 - 1) 0.612 (0.219 - 1) 

Lily-IBI 0.815 (0.704 - 0.926) 0.901 (0.814 - 0.988) 

Cattail-IBI 0.955 (0.892 – 1) 0.847 (0.686 – 1) 

Bulrush-IBI 0.924 (0.847 - 1) 0.822 (0.652 - 0.993) 

SAV-IBI 0.694 (0.507 - 0.882) 0.734 (0.592 - 0.876) 

 

 

  
 

Fig. 2.1. Confusion matrix for assessing classification accuracy of biological indicators. 
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Fig. 2.2a. The relationship between the index score for WFI – AB and WQI score using 

the GLEI 2 test dataset. Increasing values for both the WFI and WQI indicate greater site 

degradation. The trendline is the least squares linear regression fitted to the data, R
2
 = 

0.343, p = <0.001, n = 49. 
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Fig. 2.2b. The relationship between the index score for WFI – PA and WQI score using 

the GLEI 2 test dataset. Increasing values for both the WFI and WQI indicate greater site 

degradation. The trendline is the least squares linear regression fitted to the data, R
2
= 

0.22, p = <0.001, n = 49. 
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Fig. 2.2c. The relationship between the index score for FCI and SumRel score using the 

GLEI 2 test dataset, northern region. Increasing FCI score indicates less site degradation 

while increasing SumRel indicates greater degradation. The trendline is the least squares 

linear regression fitted to the data, R
2
= 0.05, p = 0.0944, n = 38. 
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Fig. 2.2d. The relationship between the index score for IEC – North and cumulative land 

use using the GLEI 2, test dataset, northern region. Increasing IEC score indicates less 

site degradation while increasing cumulative land use indicates greater site degradation. 

The trendline is the least squares linear regression fitted to the data, R
2
= 0.2, p = <0.01, n 

= 38. 
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Fig. 2.2e. The relationship between the index score for IEC – South and cumulative land 

use using the GLEI 2 test dataset, south region. Increasing IEC score indicates less site 

degradation, while increasing cumulative land use indicates greater site degradation. The 

trendline is the least squares linear regression fitted to the data, R
2
= 0.213, p = 0.018, n = 

22. 
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Fig. 2.2f. The relationship between the index score for Lily – IBI and the RankSum value 

using CWM test dataset, lily dominant zones. Increasing Lily-IBI scores and RankSum 

scores indicate less site degradation. The trendline is the least squares linear regression 

fitted to the data, R
2
= 0.597, p = <0.001, n = 54. 
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Fig. 2.2g. The relationship between the index score for Typha – IBI and the RankSum 

value using CWM test dataset, Typha dominant zones. Increasing Cattail-IBI scores and 

RankSum scores indicate less site degradation. The trendline is the least squares linear 

regression fitted to the data, R
2
= 0.478, p = <0.001, n = 35. 
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Fig. 2.2h. The relationship between the index score for Bulrush – IBI and the RankSum 

value using CWM test dataset, Bulrush dominant zones. Increasing Bulrush-IBI scores 

and RankSum scores indicate less site degradation. The trendline is the least squares 

linear regression fitted to the data, R
2
= 0.327, p = <0.001, n = 58. 
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Fig. 2.2i. The relationship between the index score for the SAV – IBI and the RankSum 

value using CWM test dataset, SAV dominant zones. Increasing SAV-IBI scores and 

RankSum scores indicate less site degradation. The trendline is the least squares linear 

regression fitted to the data, R
2
= 0.133, p = <0.01, n = 59. 
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Fig. 2.3a. Overall classification accuracy of the WFI – AB using the GLEI 1 training 

dataset. WQI based disturbance threshold: WQI < 0. AUC = 0.866, AUC 95% CI = 

0.7895 - 0.9424. 
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Fig. 2.3b. Overall classification accuracy of the WFI – PA using the GLEI 1 training 

dataset. WQI based disturbance threshold: WQI = 0. AUC = 0.8736, AUC 95% CI = 

0.7998 - 0.9474 
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Fig. 2.3c. Overall classification accuracy of the FCI using the GLEI 1 training dataset. 

SumRel based disturbance threshold: SumRel = 0.745. AUC = 0.8257, AUC 95% CI = 

0.7211 - 0.9303. 
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Fig. 2.3d Overall classification accuracy of the IEC-North using the GLEI 1 training 

dataset. Cumulative land use based disturbance threshold = 0.358. AUC = 0.8952, AUC 

95% CI = 0.8166 - 0.9737. 
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Fig. 2.3e. Overall classification accuracy of the IEC-South using the GLEI 1 training 

dataset. Cumulative land use based disturbance threshold = 0.755. AUC = 0.9615, AUC 

95% CI = 0.9166 - 1.0000. 
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Fig. 2.3f. Overall classification accuracy of the Lily-IBI using the CWM training dataset. 

RankSum based disturbance threshold: RankSum = 16, AUC = 0.815, AUC 95% CI = 

0.704 - 0.926. 
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Fig. 2.3g. Overall classification accuracy of the Cattail-IBI using the CWM training 

dataset. RankSum based disturbance threshold: RankSum = 24. AUC = 0.955, AUC 95% 

CI = 0.892 – 1. 
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Fig. 2.3h. Overall classification accuracy of the Bulrush-IBI using the CWM training 

dataset. RankSum based disturbance threshold: RankSum = 41. AUC = 0.924, AUC 95% 

CI = 0.847 - 1. 

. 
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Fig. 2.3h. Overall classification accuracy of the SAV-IBI using the CWM training 

dataset. RankSum based disturbance threshold: RankSum = 42. AUC = 0.694, AUC 95% 

CI = 0.507 - 0.882 

. 

 



 

66 
 

 

Fig. 2.4a. Overall classification accuracy of the WFI – AB using the GLEI 2 test dataset. 

WQI based disturbance threshold: WQI < 0. AUC = 0.8041, AUC 95% CI = 0.66 - 

0.9481. 
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Fig. 2.4b. Overall classification accuracy of the WFI – PA using the GLEI 2 test dataset. 

WQI based disturbance threshold: WQI < 0. AUC = 0.7669, AUC 95% CI = 0.6182 - 

0.9156. 
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Fig. 2.4c. . Overall classification accuracy of the FCI using the GLEI 2 test dataset. 

SumRel based disturbance threshold: SumRel = 0.745. AUC = 0.6397, AUC 95% CI = 

0.2549 - 1.0. 
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Fig. 2.4d. Overall classification accuracy of the IEC-North using the GLEI 2 test dataset. 

Cumulative land use disturbance threshold = 0.358. AUC = 0.7786, AUC 95% CI = 

0.6222 - 0.935. 
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Fig. 2.4e Overall classification accuracy of the IEC-South using the GLEI 2 test dataset. 

Cumulative land use disturbance threshold = 0.6118. AUC = 0.6118, AUC 95% CI = 

0.2189 - 1. 
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Fig. 2.4f. Overall classification accuracy of the Lily-IBI using the CWM test dataset. 

RankSum based disturbance threshold: RankSum = 19. AUC = 0.901, AUC 95% CI = 

0.814 - 0.988. 
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Fig. 2.4g. Overall classification accuracy of the Cattail-IBI using the CWM test dataset. 

RankSum based disturbance threshold: RankSum = 26. AUC = 0.847, AUC 95% CI = 

0.686 – 1. 
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Fig. 2.4h. Overall classification accuracy of the Bulrush-IBI using the CWM test dataset. 

RankSum based disturbance threshold: RankSum = 39. AUC = 0.822, AUC 95% CI = 

0.652 – 0.993. 
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Fig. 2.4i. Overall classification accuracy of the SAV-IBI using the CWM test dataset. 

RankSum based disturbance threshold: RankSum = 17.5. AUC = 0.734, AUC 95% CI = 

0.592 – 0.876. 
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CHAPTER 3 

 

 

USING FISH-BASED BIOLOGICAL INDICATORS TO DIAGNOSE LAND USE-

BASED ANTHROPOGENIC STRESS IN GREAT LAKES COASTAL WETLANDS   
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Abstract 

 

Biological indicator models can be used to assess the effects of human disturbance on 

biological communities and to diagnose possible sources of stress. If an indicator is to be 

used to make actionable decision with respect to human impacts on wetlands, the 

indicator must first be calibrated with a scale of human disturbance. Land use-based 

measures of stress directly measure the risk of stress due to anthropogenic activity. In this 

study, four fish-based biological indicator models of wetland condition were evaluated to 

determine whether they can accurately classify sites as degraded or not-degraded based 

on various land use-based stresses. Additionally, I use Receiver-Operator Curve 

Characteristic (ROC) analysis to determine biological index score cut-points that most 

effectively distinguish non-degraded from degraded sites. Using data collected by the US 

EPA-funded Great Lakes Environmental Indicator (GLEI) and Coastal wetland 

Monitoring (CWM) projects, the characteristic biological condition scores derived from 

fish assemblages at wetlands were tested against scales of agricultural land use stress, 

development and population-based stress, as well as a cumulative measure combining 

both agricultural and development based stresses. The Lily-IBI, Wetland Fish Index and 

fish Index of Ecological Condition were found to be accurate classifiers of cumulative 

stress, while only the Lily-IBI and Wetland Fish Index were found to be accurate 

classifiers of agricultural stress. No biological indicators accurately classified sites based 

on development-based stress. 
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Introduction 

Several fish-based biological indicator models have seen initial development for 

use in Great Lakes coastal wetlands (Seilheimer & Chow-Fraser 2007, Howe et al. 2007, 

Uzarski et al. 2007). These models are meant to indicate the condition of the biological 

community and quantify the amount of degradation a wetland experiences due to 

anthropogenic activity. While biological indicators can be used as an end-point in 

environmental monitoring as a measure of the condition of the biological community 

(Karr et al. 1991), many (Dale & Beyeler 2001, Cairns et al. 2003, Niemi et al. 2004, 

Meador et al. 2008, Quataert et al. 2001, Murphy et al. 2013) argue that indicators can 

also be useful tools in diagnosing sources of stress. For these models to be useful tools in 

the assessment of anthropogenic stress on wetlands, they must be evaluated to determine 

whether they can accurately indicate anthropogenic stress.  

 

Quantifying Anthropogenic Impacts on Wetlands 

Although biological indicators share similar goals in assessing the effect of 

anthropogenic activity on the biota, current indicators have been developed under 

different assumptions regarding how environmental condition is assessed. This is because 

there is no universally agreed upon measure of anthropogenic stress. Many indicators 

have used chemical variables related to water quality (e.g. phosphorus concentrations, or 

turbidity) in their initial development (Seilheimer & Chow-Fraser 2006, Grabas et al. 

2012, Wilson & Bayley 2012, Wu et al. 2012). However, according to Yates and Bailey 

(2010) chemical based measures of anthropogenic impact show only possible effects of 

human activity, and that these measures show naturally high variability (Bailey et al. 
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2007, Lucena-Moya et al. 2012). Therefore, they argue that if biological indicators are to 

be related meaningfully to human activity, then human activity should be directly 

measured and not its effects (Yates and Bailey 2010).  

Water chemistry-based measures of stressors are driven largely by land use. 

Varanka & Luoto (2012) demonstrated a strong correlation in phosphorus and nitrogen 

concentrations to both increasing agricultural land use and decreasing forested land. 

Likewise, Peterson et al. (2007) showed that nitrogen, specifically in Great Lakes coastal 

wetlands, is clearly linked to agricultural land use. Further, Chow-Fraser (2003) found a 

strong correlation between land cover and a composite measure of water quality in Great 

Lakes wetlands that included phosphorus and nitrogen concentrations as well as pH, 

conductivity, temperature and turbidity.  

 Agricultural land use and urban development are considered to be the primary 

axes of land use-based anthropogenic stress (Johnson et al. 1997, Carpenter et al. 1998, 

Wang et al. 2001, Allan 2004, Foley et al. 2005). The importance of agricultural and 

urban development from nonpoint sources as measures of potential anthropogenic stress 

was confirmed by the Great Lakes Environmental Indicators (GLEI) project in analysis of 

over 200 individual measures of anthropogenic land use (Danz et al. 2005, Danz et al. 

2007). Using principal components analysis, they identified five primary axes based on 

anthropogenic land use: agriculture, atmospheric deposition, human population, land 

cover, and point source pollution. Each of these axes was then found to correlate strongly 

with either percent agricultural land cover or percent developed land cover (Bhagat et al. 

2007, Host et al. in prep).    
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The goal of the current study was to first to determine which fish-based biological 

indicator models are able to accurately classify sites as degraded or non-degraded using a 

land use-based disturbance scale. Four biological indices were evaluated: the Wetland 

Fish Index – Abundance (Seilheimer & Chow-Fraser 2007), the Index of Ecological 

Condition (IEC, Howe et al. 2007), the Fish Condition Index (FCI, Bhagat et al., in 

prep.), and the Lily-IBI (Cooper et al., in prep, but based on Uzarski et al. 2007). 

Biological indicator model scores were assessed to determine whether a given model was 

diagnostic of scales of agricultural-based land use stress, development-based land use 

stress and cumulative anthropogenic stress using receiver operating characteristic curve 

analysis. Next, I use ROC analysis to determine the accuracy of biological indicators 

when either sensitivity or specificity is more heavily weighted in importance. Finally, I 

used ROC analysis to identify the biological index cut-point that optimally classified sites 

ordinated against each of the types of land use-based stresses. 

 

Methods 

For full data collection and indicator calculation procedures, see General Methods 

(Chapter 1).  

 ROC Analysis 

 Receiver operating characteristic (ROC) curve analysis (see Chapter 2) was 

conducted using the pROC package (Robin et al. 2011) for the R Statistical Programming 

Language version 3.1.2 (R Core Team 2014). In short, to assess classification accuracy, 

predicted site scores (biological indicator model scores) were compared to the observed 

site status (degraded/non-degraded) for each wetland. Observed site status was based on 
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watershed land use (see below). ROC curves were generated based on the sensitivity and 

specificity of the model, calculated for all possible indicator values. The AUC (Area 

Under the ROC Curve) was used as a measure of overall classification accuracy. 

At times though, the relative importance of sensitivity and specificity are not 

equal (Mapstone 1995, Field et al. 2007, Mudge et al 2012, Connors & O’Conner 2014). 

For example, a manager’s policy decision to designate a site as a candidate for 

conservation may depend on an index having high specificity. In contrast, a sampling 

program designed to routinely monitor a small group of sites may need to immediately 

document when degradation has occurred. In such a case sensitivity is the important 

measure of effectiveness. Therefore, it may not be adequate to assess only a model’s 

overall accuracy. The AUC can be evaluated across a limited region of the ROC curve to 

assess either high sensitivity or high specificity. This produces an estimate of the partial 

area under the curve (pAUC; Robin et al. 2011, Ma et al. 2013) giving independent 

measures of the model’s sensitivity and specificity. A model with a high accuracy (AUC) 

in the ‘high sensitivity- region of the curve minimizes Type II error when classifying 

sites. A model with a high accuracy (AUC) in the ‘high specificity- region of the curve 

minimizes Type I error when classifying sites.  

In the current study, (pAUC) values were calculated for both high sensitivity and 

high specificity regions of the curve. A value of 80% was defined operationally to 

delineate the area of the curve designated as high sensitivity or specificity. Therefore, 

pAUC-sensitivity is a performance criterion measuring the classification accuracy of a 

biological index and is defined by the partial area under the ROC curve for a given index-

stress pair in which the sensitivity is at least 80%. pAUC-specificity refers to the partial 
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area under the ROC curve for a given index-stress pair in which the specificity is at least 

80%. All pAUC values were standardized as per McClish (1989) to values between 0 and 

1. 

Finally, indicators can be optimized by determining the meaning of a biological 

indicator model’s output. Most indicators produce a numeric score denoting the relative 

condition of a biological community (Karr 1981, Howe et al. 2007, Seilheimer & Chow-

Fraser 2007, Uzarski et al. 2007, Grabas et al. 2012). ROC analysis evaluates a model 

across all possible values of the indicator to assess overall classification accuracy. 

However, for an indicator to be easily interpretable by the end user, the biological cut-

point that delineates degraded sites from non-degraded sites must be determined. 

Optimal biological cut-points were calculated for each index-stress pair based on 

the ‘closest to topleft’ method. ‘Closest to topleft’ is defined as the minimum value of (1 - 

Sensitivity)
2 

+ (1 - Specificity)
 2 

across all points on the ROC curve. Confidence intervals 

for all AUC values were calculated using the DeLong method (DeLong et al. 1988, Robin 

et al. 2011), while confidence intervals for pAUC values and for optimal cut-points 

values were calculated by bootstrapping using 10 000 random permutations of the data 

with replacement (Robin et al. 2011). 

 

Observed Site status 

 The observed degradation status of sites was determined using the overall land use 

of the watershed draining into a given site (see Chapter 2). Three scales of land use-based 

stresses were considered: agricultural stress, development stress, and a cumulative 

measure combining both agriculture and development based stress. The agricultural stress 
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scale was measured as the percentage by area of agricultural land cover in a watershed 

scaled from 0 (no agricultural land in a watershed) to 1.0 (100% of the watershed used for 

agriculture) according to a composite map of the Great Lakes basin compiled from 

Canadian and US land cover data available for 2000-2001 (Ciborowski et al. 2012). 

Development stress was measured as the percentage of developed land cover in a 

watershed. Cumulative stress was the Euclidean distance of combined agricultural and 

development stress. All stress measures have been transformed to a scale 0 to 1 with 0 

signifying the absence of that stress within the site’s watershed and 1 signifying maximal 

stress for a given stress type. 

 Site degradation was defined operationally as the most environmentally disturbed 

wetlands within the Great Lakes basin. A site was degraded if it was among the most 

disturbed 20% for a given land use-based stress type of all sites within the entire Great 

Lakes (i.e. the 20% of sites with the highest agricultural land cover, developed land cover 

or cumulative land use-based stress). A disturbance threshold was determined for each 

stress type. This threshold is the disturbance scale value that delineates degraded wetlands 

from non-degraded wetlands. Watershed land use data collected by the GLEI project 

(Host et al. 2005, Danz et al. 2007, Hollenhorst et al. 2007) was analyzed for the entire 

population of wetland sites within the Great Lakes basin to determine the amount of land 

cover that denoted a degraded site for each stress type. 

 

Results 

Disturbance Thresholds 
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 A total of 3488 wetland sites across the entire Great Lakes basin were analyzed. 

Watershed land use is summarized in Table 3.1. Agricultural stress scores ranged from 

0.000 to 0.976, with a mean value of 0.213. The disturbance threshold for agricultural 

stress was 0.464. Development stress scores ranged from 0.000 to 0.969, with a mean 

value of 0.108. The disturbance threshold for development stress was 0.151. Cumulative 

stress ranged from 0.000 to 0.966, with a mean value of 0.288. The disturbance threshold 

for cumulative stress was 0.548. 

 

ROC Analysis 

 The Lily-IBI was found to have the highest overall classification accuracy when 

tested against agriculture-based stress (Table 3.2), with an AUC of 0.851 and had a 

greater accuracy at almost all points on the ROC curve (Fig. 3.1a). The WFI was also 

found to have a high overall classification accuracy of 0.797. No indices were found to 

have a high level of classification accuracy when tested against development-based stress 

(Fig. 3.1b, Table 3.2). However, the FCI had the highest overall accuracy with an AUC of 

0.661. The Lily-IBI, WFI and IEC were found to have high overall accuracy, with AUCs 

of 0.839, 0.830, and 0.791 respectively (Fig. 3.1c, Table 3.2).  

 When tested against agricultural-based stress, at high levels of sensitivity the Lily-

IBI was found to have the greatest classification accuracy, followed by the WFI then IEC 

(Fig. 3.2a). The corrected pAUCs for these indices were 0.780, 0.726, and 0.651 

respectively (Table 3.2). Accuracy was worse than random chance at high sensitivities for 

the FCI. When tested against agricultural-based stress, at high levels of specificity the 

Lily-IBI was found to have the greatest classification accuracy, followed by the WFI then 
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IEC (Fig. 3.2b). The corrected pAUCs for these indices were 0.698, 0.640, and 0.537 

respectively (Table 3.2). Accuracy was worse than random chance at high sensitivities for 

the FCI. 

When tested against development-based stress, at high levels of sensitivity all 

indices were found to have low classification accuracies. The corrected pAUCs for all 

indices were below 0.600 (Table 3.2), with the FCI having the greatest accuracy with a 

pAUC of 0.593 (Fig. 3.3a). When tested against development-based stress, at high levels 

of specificity again all indices were again found to have low classification accuracies 

(Table 3.2). The corrected pAUCs for all indices were below 0.600, with the WFI having 

the greatest accuracy with a pAUC of 0.550 (Fig. 3.3b). 

When tested against cumulative land cover-based stress, at high levels of 

sensitivity the Lily-IBI was found to have the greatest classification accuracy (Fig. 3.4a), 

followed by the IEC then WFI. The corrected pAUCs for these indices were 0.846, 0.755, 

and 0.710 respectively (Table 3.2). Accuracy was worse than random chance at high 

sensitivities for the FCI. When tested against cumulative land cover-based stress, at high 

levels of specificity the WFI was found to have the greatest classification accuracy, 

followed by the IEC then Lily-IBI (Fig. 3.4b). The corrected pAUCs for these indices 

were 0.715, 0.607, and 0.5957 respectively (Table 3.2). Accuracy was worse than random 

chance at high sensitivities for the FCI. 

Optimal biological cut-points are shown in Table 3.3 and Figure 3.5. Optimal cut-

points for agriculture-based stress are 0.66, 7.48, 39.59, and 3.05 for the FCI, IEC, Lily-

IBI, and WFI respectively. For Development-based stress optimal cut-points are 7.34, 

43.75, and 3.11 for the FCI, IEC, Lily-IBI, and WFI respectively. Optimal cut-points for 
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cumulative land use-based stress are 0.70, 7.48, 39.59 and 3.5 for the FCI, IEC, Lily-IBI, 

and WFI respectively. 

 

Discussion 

Indicators as Measures of Anthropogenic Stress 

 This study was undertaken to determine the relative accuracy with which selected 

fish-based biological indicator models distinguished wetlands that are degraded by 

anthropogenic stress from those that are not.  

 High overall classification accuracy for the Lily-IBI, WFI and IEC (Table 3.2) 

suggests that these indicators reflect anthropogenic stress in coastal wetlands. Despite 

being developed in part (Lily-IBI) or entirely (WFI) with a disturbance gradient based on 

water quality, these two indices showed high levels of accuracy when assessing 

degradation based on land use. These findings are consistent with previous studies, which 

have demonstrated strong correlations between water quality and land use (Johnson et al 

1997, Chow-Fraser 2003, Morrice et al. 2008) and suggests that biological indices that 

have been calibrated with integrated water quality characteristics measured 

contemporaneously with biological data collections also reflect watershed-based 

anthropogenic pressures.  

 Disturbance thresholds used in this study were based on an operation definition of 

degradation for a wetland as being in the 20% of wetlands at most risk for stress. This 

definition of degradation was similar to previous studies which have used quintile based 

divisions of environmental condition (Coates et al. 2007, Hallet 2014), including the 

European Water Framework (Sandin & Herring 2010) which uses a scale of five quality 
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classes (bad, poor, moderate, good, high) for all indicator. Further, the disturbance 

threshold values derived in this study (Table 3.1) correspond to values found in previous 

studies. For example, Chow-Fraser (2006) found a disturbance threshold of ~48% natural 

land cover when developing the Water Quality Index, which is comparable to thresholds 

found in the current study for agricultural land use (~46% land cover). 

 

Indicators as Diagnostic Tools 

Many researcher including Cains et al (1993), Dale & Beyeler (2001), and Niemi 

& McDonald (2004), suggest that a primary purpose of indicators is to be diagnostic of 

the source of degradation. In this study, biological indicator models were evaluated as 

measures of different types of land use-based stress to determine if they were diagnostic 

of these sources of stress (Table 3.2). Previous work by the Great Lakes Environmental 

Indicators (GLEI) project (Danz et al. 2007) demonstrated that human activity could be 

summarized according to two distinct types of pressure - one based on agricultural uses, 

and a second based on human urban and suburban development and associated population 

pressures. The Lily-IBI developed by Cooper et al. and the Wetland Fish Index (WFI) 

developed by Seilheimer & Chow-Fraser both showed high overall classification 

accuracy when tested against agricultural-based land use stress. However, no indicators 

were found to accurately classify sites when tested against development-based stress.  

The failure of the 5 fish-based biological indices to accurately classify sites based 

on development pressures could be due to biases in the models’ development disturbance 

gradients. WFI and Lily-IBI were developed using water quality gradient that included 

measures associated with nutrient loading such as total nitrogen, and total phosphorus. 
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These measures have been shown to be more highly associated with agricultural land use 

than urbanization. For example Lenat & Crawford (1998) found greater concentrations of 

total phosphorus, nitrate/nitrite, and ammonium in streams within agricultural catchments 

compared to streams in urban catchments. Likewise, Morrice et al. (2008) found a much 

higher correlation between total nitrogen concentrations and agriculture-based stress than 

with human population-based pressures.  

Alternatively, poor classification accuracy in sites heavily affected by 

development-based stress may be due to the scale used to measure this stress. In the 

current study, all stress gradient data were based on watershed level land use. However, 

previous research by Wang et al. (2001) found that urbanization within 50 m of a stream 

had a much greater influence on fish communities than did urbanization measured at 

larger buffer sizes. Similarly, Wang et al. (1997) found only a weak correlation between 

watershed-wide urban land use and fish community integrity. Conversely, Allan et al. 

(1997) found that agricultural land use at the scale of the entire catchment had a very 

strong correlation with fish community integrity, while the relationship between biotic 

integrity and agriculture at only a 150-m buffer was low and non-significant. 

Future research should focus on evaluating the relationship between current 

biological indices and urban land use at different spatial scales to determine whether the 

effects of urbanization or if these indices are only calibrated to agricultural-based 

stressors. However, it would not be advisable to diagnose risk of watershed-based 

development pressure with current indicators.  

  

Which indicators are most sensitive/specific? 
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 The AUC provides an unbiased measure of the overall accuracy of an index. 

However, overall AUC analysis assigns equal weight to both sensitivity and specificity. 

In practice, the sensitivity and specificity components of an index may be weighted 

according to the context and specific goal of a monitoring study. This study investigated 

whether the fish-based indices were biased towards certain types of classification error by 

determining partial areas under the ROC curve (pAUCs) in which either the sensitivity or 

specificity was weighted as important in assessment. 

The pAUCs of all of the models indicated a tendency for the indices to be 

sensitive rather than specific (Table 3.2). For agricultural-based stress, the Lily-IBI and 

WFI showed moderate sensitivity accuracy. However, neither model was very specific. 

All of the models were uniformly insensate and nonspecific when evaluated with respect 

to development-based stress. When tested against the cumulative measure of land use-

based stress, all indicators except the FCI were found to be moderately to highly 

sensitive, but were generally nonspecific. 

 In a recent validation test of the BEAST biological indicator model, Strachan and 

Reynoldson (2014) found that the model had low classification accuracy when applied to 

data from certain geographic regions. However, misclassification was primarily due to 

Type 1 error. They noted that in these cases, despite classification error, the BEAST 

model could still be useful because it was sensitive to detecting sites in the degraded 

condition. Results of the current study similarly highlight the importance of knowing a 

biological index’s strengths and limitations. While the Lily-IBI and IEC were both found 

to have high overall classification accuracy, analysis of pAUCs demonstrates that this 

accuracy reflects primarily the indices’ sensitivity and not their specificity. In other 
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words, these indices are much less likely to erroneously diagnose wetland as degraded 

when it isn’t; however, they are more likely to make the mistake of classifying a non-

degraded wetland is degraded. The Wetland Fish Index was likewise found to have a high 

overall classification accuracy for cumulative stress. However, pAUC values were 

moderate for both sensitivity and specificity. Therefore, when applying the indices in the 

field, the end user should take care to determine the relative importance of sensitivity and 

specificity in their assessment of the wetland. 

 

Optimal biological Cut-Points 

 ROC analysis is useful because it does not make any assumptions about the 

indicator cut-point that distinguishes a non-degraded site from one that is degraded. In 

practice though, indicator cut-point values are important information as they give 

meaning to a score produced by an indicator. ROC analysis tests the overall classification 

accuracy of a model by evaluating every possible biological score as a criterion for 

classifying a site as biologically degraded or not, and calculating the total area under the 

ROC curve. The point on the ROC curve that is closest to the top left corner of the plot 

corresponds to the single biological index score that has the greatest classification 

accuracy for the data making up the curve. This value can be the one that can most 

effectively classify sites as non-degraded vs. degraded when using the biological index. 

 In the current study optimal cut-point values were found for all indicator-stress 

type pairs (Table 3.3). The optimal cut-point score when measuring cumulative stress 

were 0.7 for the FCI, 7.48 for the IEC, 44 for the Lily-IBI and 3.05 for the WFI. A cut-

point of 3.25 has previously been previously proposed by the model’s authors (Cvetkovic 
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& Chow-Fraser 2011). The cut-points found in this study are the first that have been 

proposed for all other models.  

 

Comparison to Previous Tests of these Indicators 

 The high accuracy of the WFI is in line with previous assessments of this 

indicator. Seilheimer et al. (2009) tested multiple biological indices of wetland condition 

and found the WFI to be highly correlated with the Water Quality Index (R
2
 = 0.75), an 

independent measure of stress based on water chemistry. While the Water Quality Index 

has been shown to have a significant correlation to anthropogenic land use (Chow-Fraser 

2003), my analysis is the first to directly test the WFI against a land use-based stress 

gradient. Moreover, all previous evaluations of the WFI (Seilheimer & Chow-Fraser 

2006, Seilheimer & Chow-Fraser 2007, Seilheimer et al. 2009, Cvetkovic & Chow-Fraser 

2011) were performed using the data that was used in the model’s initial development. 

The current study is the first to test the WFI against a novel dataset. The Lily-IBI, IEC, 

and FCI have not previously been evaluated for their accuracy in classifying wetlands. 

 

Summary 

 The purpose of this study was to first test biological indicator models as measures 

of anthropogenic stress defined specifically by land use. Overall, the Lily-IBI and WFI 

most accurately classified environmental degraded sites as biologically degraded. These 

indices were most accurate when classifying sites ordinated according to agricultural-

based stress. They were less effective at diagnosing environmental impairment due to 

development. Future work should look to developing fish indices that reflect development 
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and urbanization-based stresses. While the Lily-IBI was found to be a very sensitive 

measure of anthropogenic-based disturbance it lacked specificity in classification. The 

WFI was found to be moderately accurate when either sensitivity or specificity was more 

highly weighted. Finally, a Lily-IBI value of 44 and a WFI value of 3.05 were the single 

biological scores that were found to give the highest classification accuracy with respect 

to cumulative anthropogenic stress. 
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Tables and Figures 

 

Table 3.1. Summary land use stress values for all wetlands and coastal margin sites in the 

Great Lakes basin (N = 3488 sites). The disturbance threshold is the amount of land use 

stress which separates degraded and non-degraded sites (i.e. 20% of all sites in the Great 

Lakes have a higher stress score than the disturbance threshold). 

 

Stress Type Median  Mean Range 
Disturbance 

Threshold 

Agricultural 0.076 0.213 0 - 0.976 0.464 

Development 0.063 0.108 0 - 0.969 0.151 

Cumulative 0.194 0.288 0 - 0.966 0.548 

 

 

Table 3.2. Classification accuracy of biological indicators measured as the Area Under 

the ROC Curve (AUC) for different types of land use stress. Bracketed values are 95% 

confidence intervals of the AUC.  

 

Index Stress AUC 

FCI Agriculture 0.522 (0.151 - 0.893) 

IEC Agriculture 0.675 (0.532 - 0.818) 

Lily-IBI Agriculture 0.851 (0.746 - 0.955) 

WFI Agriculture 0.797 (0.677 - 0.917) 

FCI Development 0.661 (0.467 - 0.854) 

IEC Development 0.603 (0.448 - 0.759) 

Lily-IBI Development 0.586 (0.356 - 0.815) 

WFI Development 0.647 (0.491 - 0.82) 

FCI Cumulative 0.463 (0.084 - 0.842) 

IEC Cumulative 0.791 (0.674 - 0.908) 

Lily-IBI Cumulative 0.839 (0.727 - 0.951) 

WFI Cumulative 0.830 (0.715 - 0.944) 
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Table 3.3. Classification accuracy of biological indicators measured as the partial AUC 

(pAUC) for different types of land use stress. pAUC –Sensitivity is the AUC where 

sensitivity is at least 80%. pAUC –Specificity is the AUC where specificity is at least 80 

%. Missing values signify an AUC of < 0.500 across the specified range of sensitivity or 

specificity. Bracketed values are 95% confidence intervals of the pAUC. 

 

Index Stress pAUC - Sensitivity pAUC - Specificity 

FCI Agriculture - - 

IEC Agriculture 0.651 (0.534 - 0.789) 0.537 (0.451 - 0.66) 

Lily-IBI Agriculture 0.780 (0.656 - 0.912) 0.698 (0.537 - 0.888) 

WFI Agriculture 0.726 (0.617 - 0.866) 0.640 (0.512 - 0.808) 

FCI Development 0.593 (0.484 - 0.821) 0.524 (0.444 - 0.707) 

IEC Development 0.533 (0.462 - 0.663) 0.548 (0.47 - 0.667) 

Lily-IBI Development 0.526 (0.444 - 0.752) 0.528 (0.444 - 0.686) 

WFI Development 0.521 (0.449 - 0.713) 0.550 (0.463 - 0.708) 

FCI Cumulative - - 

IEC Cumulative 0.755 (0.597 - 0.886) 0.607 (0.509 - 0.763) 

Lily-IBI Cumulative 0.846 (0.752 - 0.929) 0.596 (0.484 - 0.839) 

WFI Cumulative 0.710 (0.542 - 0.886) 0.715 (0.579 - 0.866) 
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Table 3.4. Optimal cut-point scores and the sensitivity and specificity of those cut-points 

for biological indicators in classifying degradation due to land use-based stress. Optimal 

Indicator Cut-points are the biological indicator scores which provide the greatest 

classification accuracy. Optimal sensitivity and optimal specificity values denote the 

sensitivity and specificity of the optimal indicator value. Thresholds are calculated using 

the ‘closest to topleft’ method. Bracketed values are 95% confidence intervals of the 

AUC. 

. 

Index Stress 

Optimal 

Indicator 

Cut-point 

Optimal Sensitivity Optimal Specificity 

FCI Agriculture 0.66 0.750 (0.250 - 1) 0.559 (0.382 - 0.755) 

IEC Agriculture 8.42 0.938 (0.813 - 1) 0.432 (0.296 - 0.568) 

Lily-IBI Agriculture 40 0.833 (0.667 - 0.958) 0.833 (0.700 - 0.967) 

WFI Agriculture 3.16 0.875 (0.688 - 1) 0.651 (0.512 - 0.791) 

FCI Development 0.62 0.600 (0.300 - 0.9) 0.750 (0.571 - 0.893) 

IEC Development 7.34 0.667 (0.476 - 0.857) 0.615 (0.462 - 0.769) 

Lily-IBI Development 48 0.875 (0.625 - 1) 0.348 (0.217 - 0.478) 

WFI Development 3.01 0.571 (0.381 - 0.762) 0.763 (0.632 - 0.895) 

FCI Cumulative 0.7 0.500 (0 - 1) 0.706 (0.559 - 0.853) 

IEC Cumulative 7.48 0.905 (0.762 - 1) 0.718 (0.564 - 0.846) 

Lily-IBI Cumulative 44 0.957 (0.870 - 1) 0.677 (0.516 - 0.839) 

WFI Cumulative 3.05 0.762 (0.571 - 0.952) 0.816 (0.684 - 0.921) 
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A B 

Figure 3.2. pAUC values showing the classification accuracy of biological indicator for 

agriculture-based land use stress when either sensitivity or specificity is weighted heavier. 

pAUC –Sensitivity (A) is the AUC where sensitivity is at least 80%. pAUC –Specificity 

(B) is the AUC where specificity is at least 80 %. Missing values signify an AUC of < 

0.500 across the specified range of sensitivity or specificity. Error bars are 95% 

confidence intervals of the pAUC.  
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Figure 3.3. pAUC values showing the classification accuracy of biological indicator for 

development-based land use stress when either sensitivity or specificity is weighted 

heavier. pAUC –Sensitivity (A) is the AUC where sensitivity is at least 80%. pAUC –

Specificity (B) is the AUC where specificity is at least 80 %. Missing values signify an 

AUC of < 0.500 across the specified range of sensitivity or specificity. Error bars are 95% 

confidence intervals of the pAUC.  
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Figure 3.4. pAUC values showing the classification accuracy of biological indicator for 

cumulative land use-based stress when either sensitivity or specificity is weighted 

heavier. pAUC –Sensitivity (A) is the AUC where sensitivity is at least 80%. pAUC –

Specificity (B) is the AUC where specificity is at least 80 %. Missing values signify an 

AUC of < 0.500 across the specified range of sensitivity or specificity. Error bars are 95% 

confidence intervals of the pAUC. 
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Figure 3.5. Comparison of the sensitivity and specificity of optimal biological indicator 

score cut-points. Cut-points are calculated using the ‘closest to topleft’ method. 
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The goal of this thesis was to assess the performance of fish-based indicator 

models for Great Lakes coastal wetlands. As these models are meant to indicate the 

biological condition of wetland communities, performance was assessed based on the 

accuracy of indicator models in classifying wetlands as being in the degraded or non-

degraded environmental condition based on their biological attributes.  

The purpose of biological indicator models is to determine the condition of a 

biological community and provide a measure of the wetland’s overall environmental 

quality. A community is in good condition is if it is capable of “supporting and 

maintaining a balanced, integrated, adaptive community of organisms having a species 

composition, diversity, and functional organization comparable to that of natural habitat 

of the region” (Karr & Dudley 1981). Importantly, good condition of a community is 

defined by the ‘naturalness’ of its habitat (Herring et al. 2003, Stoddard et al. 2006, 

Hawkins et al. 2010) and, therefore poor condition is defined by an ‘un-natural’ habitat, 

that is, one that has been impacted by human activity. The accuracy of a model as an 

indicator of biological condition can therefore be assessed by comparing it to an 

independent measure of the level of human impact. 

Independent measures of human impact are not widely agreed upon. For example 

Lougheed & Chow-Fraser (2002), Seilheimer & Chow-Fraser (2006), Croft & Chow-

Fraser (2007) use water quality as a measure of human impact. However, Bailey et al. 

(2007), and Yates & Bailey (2010) argue that these measures are often confounded with 

natural variation and are therefore not reliable measures of human impact. They argue 

that human activity should be measured directly in the form of land use. This thesis took 

two approaches to how human impact should be measured. In Chapter 2, human impact 
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was measured using the same disturbance scale used in the original development of the 

index, while in Chapter 3, human impact was explicitly measured as direct land use. 

Interestingly, in both chapters the Wetland Fish Index and Lily-IBI, which were 

originally calibrated against scales related to water quality were found to accurately 

classify communities that were identified as degraded according to land use criteria.  

Receiver operating characteristic curve analysis was used to assess classification 

of biological indicators in this thesis. A large body of research has been established 

around the use of ROC as a test of classification accuracy (Hanley & McNeil 1982, 

McClish 1989, Obuchowski 1994, 2005, 2006, Obuchowski et al. 1998, 2004, Walter 

2005, Fawcett 2006) and it has been applied to clinical medicine (Zweig & Campbell 

1993), radiology (Obuchowski 2003, Park et al. 2008), psychiatry (Streiner & Cairney 

2007), machine learning (Hand & Hill 2001, Fawcett 2006) and species distribution 

modelling (Fielding and Bell 1997, Mouton et al. 2010, Lui et al. 2011). However, only 

recently has ROC curve analysis been used to assess ecological indicators (Dos Santos et 

al. 2001, Connors & Cooper 2014). The current study was the first to apply ROC analysis 

in the assessment of biological indicators within the Great Lakes.  

The Reference Condition Approach (RCA) is commonly used to classify site 

condition whereby the minimally disturbed sites are deemed ‘reference’, while more 

impacted sites are considered non-reference (Hughes et al. 1986, Stoddard et al 2006, 

Hawkins et al. 2010). However, Palmer et al. (2005) recommended that indicators should 

be used to assess change of condition away from the degraded state in addition to change 

of condition as it approaches the Reference Condition. In this thesis, assessment of sites 

was based on a measure of the most stressed condition of wetlands in the Great Lakes and 
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therefore assesses the accuracy of biological indicators in classifying communities as 

being in the degraded state. I found that the Wetland Fish Index and the Lily-IBI were 

able to accurate classify communities as degraded with respect to each model’s original 

definition of degradation (Chapter 2) as well as a definition of degradation based on land 

use (Chapter 3).  

Through the Great Lakes Water Quality Agreement (GLWQA; IJC 1978), the 

governments of both Canada and the United States established Areas of Concern (AOCs) 

as locations in which there was especial need to “restore and maintain the chemical, 

physical and biological integrity of the Waters of the Great Lakes”, with AOCs including 

many coastal wetlands (IJC 2005). AOCs have experienced high levels of environmental 

degradation and have been targeted for restoration through the implementation of AOC-

specific Remedial Action Plans. Biological indices can play an important role in 

monitoring as they can quantify changes in the condition of biotic communities (Karr & 

Chu 1997, Niemi et al. 2007) providing valuable information to managers regarding the 

success of restoration initiatives.  

Further, biological indices, may have be highly sensitive (resulting in a low Type 

2 classification error rate, if the null hypothesis is that the site is ‘not degraded’), highly 

specific (low Type 1 classification error rate), or a combination of both (Fielding and Bell 

1997). A Type 2 error (i.e. not detecting the degraded condition) can be costly (Rapport 

& Whitford 1999, Zedler 2000, Suding et al. 2004, Standish et al. 2014) when indices are 

used as monitoring tools. According to Rapport & Whitford (1999), ecosystems, and the 

Great Lakes in particular, are often resistant to rehabilitation as mechanisms of 

degradation can often cause further degradation themselves. For example, a degraded 
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environment becomes vulnerable to non-native species, who themselves make the 

reestablishment of native species more difficult (Rapport and Whitford 1999). In effect, 

degraded communities can become ecologically resilient to change due to restoration 

efforts (Suding et al. 2004, Standish et al.  2014) and it is therefore desirable to detect 

possible degradation before large changes have occurred in the community. When 

evaluating indicators, it is then important to know both the sensitivity and specificity of 

an index and to ensure that indices are not biased toward Type 2 errors. The current study 

(Chapter 3) demonstrated that most fish based biological indices were generally more 

sensitive than specific and therefore less likely to commit a Type 2 error than a Type 1 

error.  This means that when used in a biological monitoring context, indices evaluated in 

this study will likely detect the degraded state.  

  Change points for disturbance were set a priori to the analysis as the most 

disturbed condition within the Great Lakes. A degraded site was operationally defined as 

being among the 20% most impacted sites of all Great Lakes wetlands. This operational 

definition of degradation was similar to others proposed by Coates et al. (2007), Yates & 

Bailey (2010), and Hallet (2014), who used proportional thresholds of 20 %, 25 %, and 

10 % respectively to define degraded sites. However, using a definition of degraded based 

purely on human activity may not necessarily correspond to levels of degradation that 

significantly affect biological communities.  

Recent work by Kovalenko et al. (2014) could be used to set threshold levels of 

disturbance that specifically reflect stress levels at which changes in biological 

communities are observed. Kovalenko et al. (2014) used Threshold Indicator Taxon 

Analysis (TITAN, Baker & King 2010) to find threshold points on an anthropogenic 
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disturbance gradient at which large changes in the biological community’s composition 

occurred. Transitions were observed across multiple taxa (including fish) between 

reference/non-reference communities and non-reference/degraded communities. Future 

research should assess the ability of biological indicator models to classifying wetlands 

according to the disturbance thresholds determined by Kovalenko et al. relative to the 

performance of operationally defined changepoints such as those that I used. An indicator 

that is able to accurately classify wetlands in this way could be used to monitor sites and 

assess their risk of large negative shifts in community composition.  

A second implication of the work of Kovalenko et al. (2014) is that fish 

community changes occur not at a single threshold of human impacts, but at two; one 

threshold at which sensitive species are reduced in abundance or extirpated and a second 

one at which disturbance tolerant species appear or become dominant. Therefore, binary 

classification of communities, as either reference/non-reference as seen in the Reference 

Condition Approach or as degraded/non-degraded as in this current study, may not be the 

ideal method of site evaluation. An indicator that has been shown to accurately classify 

biological communities at both thresholds would provide better information when 

assessing sites. An extension of ROC analysis called Multiclass ROC analysis (Hand & 

Hill 2001, Robin et al. 2011) uses the same principles of traditional ROC analysis except 

that multiple classes of disturbance (thresholds) can be applied to the analysis. Future 

work should look to assess the classification accuracy of biological indicators using both 

types of thresholds identified by Kovalenko et al.  

 

GENERAL SUMMARY 
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Biological indicator models are a powerful tool for monitoring and managing 

biological communities. Individual, water chemistry-based indicators do not necessarily 

give a complete view of the cumulative effect of human impact on the biota. Reliable 

biological indicators model the community as a whole to give a value that is indicative of 

the community’s condition. The desired biological condition can then be used as an 

endpoint in decision making by managers and policy makers. Reliable biological 

indicators will predictably reflect human impact on the community. In this thesis the 

criterion for reliability was the accuracy of the model in classifying wetlands as being 

degraded, with degradation being defined by the greatest amount of land alteration in 

contributing watersheds in the Great Lakes.  

The Cooper-IBIs (particularly the Lily-IBI) and Wetland Fish Indices exhibited 

the highest classification accuracy. This accuracy was demonstrated when indicators were 

validated with the same disturbance gradient used in their development (Chapter 2), or 

with a novel disturbance gradient based purely on a direct measure of human impact 

(Chapter 3). The Lily-IBI was found to have the highest overall classification accuracy 

(Chapters 2 & 3). However, this index’s accuracy was found to be weighted much more 

heavily on its sensitivity to degradation rather than its specificity. The Wetland Fish 

Index, while slightly lower in overall classification accuracy, did not exhibit a large 

difference between its sensitivity and specificity. Finally, optimal thresholds were found 

for all indices, which can be used in their future application (Chapter 3). 
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APPENDICES 

Appendix 1. Coastal Wetland Monitoring site descriptions. 

Site # Zone Site Name Lake Latitude Longitude 

5003 Bulrush Adolphus Reach Wetland Ontario 44.102 -76.929 

630 Bulrush Ailes Point Area Wetland #2 Huron 45.993 -84.365 

1077 Bulrush Allouez Bay Wetland Superior 46.681 -91.982 

922 Bulrush Ashman Bay Wetland Huron 46.495 -84.377 

812 Bulrush Baie de Wasai Wetland #1 Huron 46.467 -84.267 

590 Bulrush Cheboygan Area Wetland #2 Huron 45.655 -84.473 

901 Bulrush Chicken Island Area Wetland Huron 46.306 -84.132 

5206 Bulrush Corisande Bay 5 Huron 45.132 -81.56 

548 Bulrush Crooked Island Wetland Huron 45.065 -83.296 

434 Bulrush Dickenson Island Area Wetland Erie 42.607 -82.651 

619 Bulrush Duck Bay Wetland Huron 45.966 -84.384 

515 Bulrush 
East Saginaw Bay Coastal Wetland 

#5 
Huron 43.673 -83.575 

1039 Bulrush Fish Creek Wetland #1 Superior 46.583 -90.945 

637 Bulrush Flowers Creek Wetland Huron 45.995 -84.319 

1519 Bulrush Garden Bay Wetland Michigan 45.772 -86.559 

5408 Bulrush Hay Bay Wetland Huron 46.298 -83.74 

7061 Bulrush Indian Harbor Wetland Michigan 45.799 -85.512 

5510 Bulrush Lake George 2 Huron 46.45 -84.097 

7020 Bulrush 
Lakeview Pond-Sandy Creek-

Colwell Ponds Marsh 
Ontario 43.75 -76.204 

973 Bulrush L'Anse Bay Wetland Superior 46.749 -88.504 

951 Bulrush Laughing Whitefish River Wetland Superior 46.524 -87.028 

521 Bulrush Linwood Area Wetland #2 Huron 43.742 -83.949 

616 Bulrush Mackinac Creek Wetland Huron 46.002 -84.41 

615 Bulrush Mill Pond Wetland Huron 46.007 -84.435 

1681 Bulrush Mink River Wetland Michigan 45.241 -87.046 

793 Bulrush Munuscong Island Wetland Huron 46.213 -84.239 

792 Bulrush 
Munuscong Lake Wetland #2,#3 

Munuscong River Delta 
Huron 46.216 -84.257 

5661 Bulrush Musky Bay Wetland 1 Huron 44.812 -79.783 

494 Bulrush 
Nayanguing Point Wildlife Area 

Wetland #2 
Huron 43.845 -83.926 

122 Bulrush North Pond Area Wetland Ontario 43.656 -76.183 

776 Bulrush 
Northwest Drummond Island 

Wetland #4 
Huron 46.076 -83.69 

7033 Bulrush Oconto Marsh #2 Michigan 44.968 -87.801 

1745 Bulrush Ogontz Bay Area Wetland Michigan 45.811 -86.774 

1514 Bulrush Ogontz Bay Wetland #3 Michigan 45.866 -86.765 
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920 Bulrush Palmers Point Area Wetland #2 Huron 46.523 -84.17 

917 Bulrush Palmers Point Wetland Huron 46.532 -84.199 

778 Bulrush Paw Point-North Scott Bay Wetland Superior 46.061 -83.67 

1469 Bulrush Peshtigo River Wetland #1 Michigan 44.995 -87.672 

5735 Bulrush Pine Point Wetland 1 Ontario 44.098 -77.501 

5746 Bulrush Point Au Baril 1 Huron 45.604 -80.487 

976 Bulrush Portage River Wetland #1 Superior 46.989 -88.437 

5785 Bulrush Presquille Bay Marsh 7 Ontario 44.03 -77.71 

5791 Bulrush Quarry Island Wetland 1 Huron 44.843 -79.82 

5792 Bulrush Quarry Island Wetland 2 Huron 44.835 -79.812 

790 Bulrush Raber Bay Wetland Huron 46.12 -84.06 

791 Bulrush Roach Point Wetland Huron 46.168 -84.173 

804 Bulrush Sand Island Wetland Huron 46.315 -84.203 

660 Bulrush 
Scammon Cove, Meade Island 

Wetland 
Huron 45.952 -83.64 

1522 Bulrush South River Bay Wetland Michigan 45.745 -86.626 

1102 Bulrush Spirit Lake Wetland #6 Superior 46.699 -92.195 

535 Bulrush Squaw Bay Wetland #1 Huron 44.996 -83.462 

5952 Bulrush Stokes Bay Wetland 1 Huron 44.992 -81.393 

1303 Bulrush Stony Creek Wetland Michigan 43.571 -86.455 

5963 Bulrush Sturgeon Bay 1 Superior 48.207 -89.297 

6050 Bulrush West Shore of St. Joseph Island 1 Huron 46.178 -84.053 

6051 Bulrush West Shore of St. Joseph Island 2 Huron 46.167 -84.024 

461 Bulrush Wildfowl Bay Wetland Huron 43.872 -83.344 

5013 Lily Anderson Creek Huron 46.331 -83.977 

1866 Lily Bay View Wetland Erie 41.459 -82.808 

1070 Lily Bibon Lake-Flag River Wetland Superior 46.784 -91.387 

5098 Lily Black Creek Wetland Ontario 43.946 -77.063 

7052 Lily Braddock Bay Ontario 43.308 -77.72 

1152 Lily Dead River Wetland Superior 46.579 -87.402 

7027 Lily East Sodus Ontario 43.263 -76.94 

7024 Lily Floodwood Pond Ontario 43.727 -76.194 

637 Lily Flowers Creek Wetland Huron 45.995 -84.319 

1325 Lily Galien River Wetland Michigan 41.805 -86.73 

1896 Lily Halfway Creek Wetland Erie 41.744 -83.472 

5407 Lily Hay Bay Marsh 8 Ontario 44.155 -76.909 

1863 Lily Hemming Ditch Wetland Erie 41.435 -82.655 

1438 Lily Henderson Point Wetland Michigan 44.848 -87.556 

7053 Lily Irondequoit Bay Wetland Ontario 43.167 -77.528 

1584 Lily Kenyon Bay Wetland Michigan 46.054 -85.198 

999 Lily Lac LaBelle Wetland Superior 47.378 -87.978 

7020 Lily 
Lakeview Pond-Sandy Creek-

Colwell Ponds Marsh 
Ontario 43.75 -76.204 
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1282 Lily Little Manistee River Wetland Michigan 44.208 -86.267 

123 Lily Little Sandy Creek Marsh Ontario 43.637 -76.163 

5573 Lily Lynde Creek Marsh Ontario 43.856 -78.962 

5601 Lily Maskinonge Bay 2 Huron 46.342 -84.086 

1847 Lily Mentor Marsh Erie 41.734 -81.31 

5634 Lily Mill Creek Wetland Erie 42.31 -81.911 

1928 Lily Monroe City Area Wetland Erie 41.9 -83.363 

7062 Lily Monroe Dikes A Erie 41.907 -83.361 

523 Lily 
Nayanguing Point Wildlife Area 

Wetland #3 
Huron 43.861 -83.922 

1933 Lily North Maumee Bay Area Wetland Erie 41.761 -83.456 

122 Lily North Pond Area Wetland Ontario 43.656 -76.183 

1849 Lily Old Woman Creek Wetland Erie 41.375 -82.512 

1888 Lily 
Ottawa National Wildlife Refuge 

Wetland 
Erie 41.624 -83.213 

1904 Lily Otter Creek Wetland Erie 41.847 -83.417 

5718 Lily Parrott Bay Wetland 2 Ontario 44.221 -76.691 

1859 Lily Plum Brook Area Wetland #2 Erie 41.428 -82.629 

1870 Lily Port Clinton Wetland Erie 41.492 -82.951 

7050 Lily Radio Tower Bay Superior 46.654 -92.214 

116 Lily Ramona Beach Marsh Ontario 43.532 -76.222 

5818 Lily Roberts Island Wetland Huron 44.858 -79.835 

28 Lily Salmon Creek Ontario 43.31 -77.741 

804 Lily Sand Island Wetland Huron 46.315 -84.203 

5873 Lily Sawguin Creek Marsh 5 Ontario 44.143 -77.322 

1703 Lily Seagull Bar Area Wetland Michigan 45.078 -87.585 

119 Lily South Pond Wetland #1 Ontario 43.62 -76.187 

780 Lily South Scott Bay Area Wetland Huron 46.048 -83.687 

5988 Lily Tobies Bay Wetland Huron 44.847 -79.788 

6025 Lily Waupoos Creek Swamp 1 Ontario 43.983 -77.026 

6053 Lily Westside Beach Marsh Ontario 43.888 -78.681 

1898 Lily Woodtick Penninsula Wetland Erie 41.768 -83.44 

7048 SAV 40th Ave West Superior 46.74 -92.15 

5008 SAV Amherst Bar Wetland 1 Ontario 44.186 -76.623 

130 SAV 
Black Pond-Little Stony Creek 

Marsh 
Ontario 43.796 -76.221 

5103 SAV Blessington Creek Marsh 1 Ontario 44.171 -77.317 

7052 SAV Braddock Bay Ontario 43.308 -77.72 

51 SAV Buck Pond Ontario 43.28 -77.674 

1830 SAV Buckthorn Island Wetland Ontario 43.061 -78.988 

7026 SAV Buttonwood Creek Ontario 43.298 -77.73 

5151 SAV Carnachan Bay Wetland 2 Ontario 44.076 -77.027 

1475 SAV Cedar River Wetland #1 Michigan 45.409 -87.352 
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167 SAV Chaumont River Mouth Wetland Ontario 44.067 -76.151 

1089 SAV Clough Island Wetland #1 Superior 46.71 -92.187 

5187 SAV Collingwood Harbour Marsh 5 Huron 44.505 -80.229 

5235 SAV Detroit River Marshes Erie 42.203 -83.1 

66 SAV East Bay Wetland Ontario 43.277 -76.902 

23 SAV East Creek Wetland Ontario 43.338 -77.796 

7027 SAV East Sodus Ontario 43.263 -76.94 

1039 SAV Fish Creek Wetland #1 Superior 46.583 -90.945 

7024 SAV Floodwood Pond Ontario 43.727 -76.194 

187 SAV Fox Creek Marsh Ontario 44.059 -76.296 

8 SAV Golden Hill State Park Wetland Ontario 43.37 -78.478 

5374 SAV Greater Cataraqui Marsh Ontario 44.266 -76.466 

5401 SAV Hay Bay Marsh 2 Ontario 44.167 -76.953 

10 SAV Johnson Creek Wetland Ontario 43.366 -78.261 

1651 SAV Kalamazoo River Wetland Michigan 42.64 -86.146 

1437 SAV Keyes Creek Wetland Michigan 44.829 -87.57 

112 SAV Little Salmon River Marsh Ontario 43.521 -76.253 

1063 SAV Little Sand Bay Wetland Superior 46.948 -90.883 

5541 SAV Long Point Wetland 3 Erie 42.579 -80.296 

1457 SAV Long Tail Point Wetland #2 Michigan 44.593 -87.984 

5573 SAV Lynde Creek Marsh Ontario 43.856 -78.962 

62 SAV Maxwell Bay Wetland Ontario 43.269 -77.026 

5634 SAV Mill Creek Wetland Erie 42.31 -81.911 

199 SAV Mud Bay Marsh #2 Ontario 44.084 -76.306 

122 SAV North Pond Area Wetland Ontario 43.656 -76.183 

7033 SAV Oconto Marsh #2 Michigan 44.968 -87.801 

989 SAV Oskar Area Wetland Superior 47.184 -88.639 

163 SAV Perch River Wetland Ontario 43.998 -76.077 

5735 SAV Pine Point Wetland 1 Ontario 44.098 -77.501 

5736 SAV Pine Point Wetland 2 Ontario 44.105 -77.493 

1096 SAV Pokegama River Wetland Superior 46.676 -92.144 

5785 SAV Presquille Bay Marsh 7 Ontario 44.03 -77.71 

116 SAV Ramona Beach Marsh Ontario 43.532 -76.222 

1494 SAV Rapid River Wetland Michigan 45.918 -86.959 

5849 SAV Sadler Creek Wetland 6 Huron 45.049 -81.461 

5849 SAV Sadler Creek Wetland 6 Huron 45.049 -81.461 

5855 SAV Sand Bay 1 Ontario 44.15 -76.503 

5869 SAV Sawguin Creek Marsh 10 Ontario 44.078 -77.309 

1041 SAV Sioux River Wetland Superior 46.733 -90.882 

119 SAV South Pond Wetland #1 Ontario 43.62 -76.187 

7051 SAV South Pond Wetland 2 Ontario 43.58 -76.192 

1522 SAV South River Bay Wetland Michigan 45.745 -86.626 

5933 SAV Southwest Sturgeon Bay 2 Huron 45.616 -80.459 
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5950 SAV Stobie Creek 1 Huron 46.331 -83.885 

1523 SAV Sucker Lake Wetland Michigan 45.67 -86.597 

1090 SAV Tallas Island Wetland Superior 46.717 -92.192 

1941 SAV Thompson Bay Area Wetland Erie 42.168 -80.081 

5990 SAV Toronto Island Wetlands 2 Ontario 43.618 -79.381 

6055 SAV Wheatley West Two Creeks Erie 42.084 -82.46 

6073 SAV Wilmot Rivermouth Wetland Ontario 43.901 -78.598 

630 Typha Ailes Point Area Wetland #2 Huron 45.993 -84.365 

1866 Typha Bay View Wetland Erie 41.459 -82.808 

1070 Typha Bibon Lake-Flag River Wetland Superior 46.784 -91.387 

1464 Typha Charles Pond Wetland Michigan 44.764 -87.939 

1089 Typha Clough Island Wetland #1 Superior 46.71 -92.187 

1201 Typha Clough Island Wetland #3 Superior 46.701 -92.183 

1458 Typha Dead Horse Bay Wetland #9 Michigan 44.627 -88.013 

1152 Typha Dead River Wetland Superior 46.579 -87.402 

434 Typha Dickenson Island Area Wetland Erie 42.607 -82.651 

515 Typha 
East Saginaw Bay Coastal Wetland 

#5 
Huron 43.673 -83.575 

1489 Typha Escanaba River Wetland Michigan 45.786 -87.066 

5409 Typha Hay Bay Wetland 1 Huron 45.234 -81.704 

5422 Typha Hillman Marsh Erie 42.042 -82.5 

5509 Typha Lake George 1 Huron 46.408 -84.111 

1698 Typha Little Suamico River Area Wetland Michigan 44.699 -87.993 

1457 Typha Long Tail Point Wetland #2 Michigan 44.593 -87.984 

616 Typha Mackinac Creek Wetland Huron 46.002 -84.41 

1281 Typha Manistee River Wetland Michigan 44.265 -86.233 

5654 Typha Muddy Creek Erie 42.071 -82.472 

792 Typha 
Munuscong Lake Wetland #2,#3 

Munuscong River Delta 
Huron 46.216 -84.257 

523 Typha 
Nayanguing Point Wildlife Area 

Wetland #3 
Huron 43.861 -83.922 

496 Typha 
Nayanguing Point Wildlife Area 

Wetland #5 
Huron 43.922 -83.902 

1904 Typha Otter Creek Wetland Erie 41.847 -83.417 

917 Typha Palmers Point Wetland Huron 46.532 -84.199 

777 Typha 
Paw Point-North Scott Bay Wetland 

#1 
Huron 46.071 -83.665 

1465 Typha Pensaukee River Wetland Michigan 44.816 -87.91 

988 Typha Pilgrim River Wetland Superior 47.105 -88.514 

1862 Typha Plum Brook Area Wetland #3 Erie 41.427 -82.639 

5782 Typha Presquille Bay Marsh 4 Ontario 44 -77.721 

780 Typha South Scott Bay Area Wetland Huron 46.048 -83.687 

1697 Typha Suamico River Area Wetland Michigan 44.643 -88.012 

1090 Typha Tallas Island Wetland Superior 46.717 -92.192 
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5988 Typha Tobies Bay Wetland Huron 44.847 -79.788 

1497 Typha Whitefish River Wetland #3 Michigan 45.916 -86.945 

1898 Typha Woodtick Penninsula Wetland Erie 41.768 -83.44 
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Appendix 2. Site descriptions for GLEI2 Database 

Site # Site Name Lake Region Latitude Longitude 

1041 Sioux River Wetland Superior N 46.733 -90.882 

1077 Allouez Bay Wetland Superior N 46.681 -91.982 

1444 Atkinson Marsh Michigan N 44.558 -88.039 

1458 Dead Horse Bay Wetland #9 Michigan N 44.627 -88.013 

1465 Pensaukee River Wetland Michigan N 44.816 -87.91 

1469 Peshtigo River Wetland #1 Michigan N 44.995 -87.672 

1497 Whitefish River Wetland #3 Michigan N 45.916 -86.945 

1514 Ogontz Bay Wetland #3 Michigan N 45.866 -86.765 

1698 Little Suamico River Area Wetland Michigan N 44.699 -87.992 

1703 Seagull Bar Area Wetland Michigan N 45.078 -87.585 

1859 Plum Brook Area Wetland #2 Erie S 41.428 -82.629 

1862 Plum Brook Area Wetland #3 Erie S 41.427 -82.639 

1863 Hemming Ditch Wetland Erie S 41.435 -82.655 

1866 Bay View Wetland Erie S 41.459 -82.808 

1888 Ottawa Nat'l Wildlife Refuge Wetland Erie S 41.624 -83.213 

1928 Monroe City Area Wetland Erie S 41.9 -83.363 

5512 Lake St. Clair Marshes Erie S 42.418 -82.417 

5541 Long Point Wetland 3 Erie S 42.579 -80.296 

5634 Mill Creek Wetland Erie S 42.31 -81.911 

5729 Pine Bay 1 Superior N 48.033 -89.523 

5933 Southwest Sturgeon Bay 2 Huron N 45.616 -80.459 

5950 Stobie Creek 1 Huron N 46.331 -83.885 

11362 Unnamed US High-energy Superior N 47.873 -89.856 

11365 Unnamed US High-energy Superior N 47.455 -91.032 

11366 Unnamed US High-energy Superior N 47.411 -91.099 

11367 Unnamed US High-energy Superior N 47.004 -91.689 

11368 Unnamed US High-energy Superior N 46.789 -92.083 

11371 Unnamed US High-energy Superior N 46.747 -91.638 

11372 Unnamed US High-energy Superior N 46.833 -91.29 

11383 Unnamed US Embayment Superior N 46.434 -86.634 

11385 Unnamed US Embayment Huron N 45.998 -84.403 

11389 Unnamed US High-energy Michigan N 45.427 -87.32 

11393 Unnamed US High-energy Michigan N 44.813 -87.649 

11397 Unnamed US High-energy Michigan S 42.796 -87.768 

11400 Unnamed US High-energy Michigan S 41.825 -86.728 

11418 Unnamed US Embayment Erie S 41.751 -83.457 

11421 Unnamed US High-energy Erie S 42.101 -80.199 

11422 Unnamed US Embayment Erie S 42.139 -80.115 

11423 Unnamed US High-energy Ontario S 43.83 -76.277 

11425 Unnamed US Embayment Ontario N 43.968 -76.114 
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20032 Unnamed Canadian High-energy Huron N 45.004 -81.229 

20034 Unnamed Canadian High-energy Huron N 45.193 -81.322 

20037 Unnamed Canadian High-energy Huron S 43.722 -81.724 

20102 Unnamed Canadian embayment Superior N 48.018 -89.54 

20103 Unnamed Canadian embayment Superior N 48.036 -89.502 

20108 Unnamed Canadian embayment Superior N 48.19 -89.296 

20130 Unnamed Canadian embayment Huron N 46.293 -83.786 

20143 Unnamed Canadian embayment Huron N 45.984 -81.536 

20157 Unnamed Canadian embayment Huron N 44.809 -79.919 

20158 Unnamed Canadian embayment Huron N 44.81 -80.062 

20160 Unnamed Canadian embayment Huron N 44.789 -81.081 

20168 Unnamed Canadian embayment Huron N 44.866 -81.331 

20169 Unnamed Canadian embayment Erie S 42.874 -79.259 

20173 Unnamed Canadian embayment Ontario N 43.992 -77.011 

20176 Unnamed Canadian embayment Ontario S 44.073 -77.57 

20278 Unnamed Canadian High-energy Erie S 42.033 -82.626 

20279 Unnamed Canadian High-energy Erie S 41.994 -82.853 

20342 Unnamed Canadian High-energy Huron N 44.634 -81.272 

20371 Unnamed Canadian High-energy Huron S 43.012 -82.384 

20408 Unnamed Canadian High-energy Huron S 43.094 -82.137 
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Appendix 3. Final metrics and scoring system for Cooper-IBIs. From Cooper et al. (in 

review) 

  Scoring
†
 

Bulrush (Schoenoplectus spp.) 0  1  2 

Pielou's Evenness 0-0.4  >0.4-0.8  >0.8 

Non-native species richness ≥2  1  0 

Notropis species richness 0  >0-2  >2 

Native Cyprinidae CPUE 0  >0-50  >50 

Rock bass CPUE 0  >0-4  >4 

White sucker CPUE 0  >0-5  >5 

Smallmouth bass CPUE <2  >2-5  >5 

% Black+brown bullhead 0  >0-25  >25 

Johnny darter CPUE 0  >0-0.33  >0.34 

Common carp CPUE >2  >0-2  0 

% Carnivore (invertivore+piscivore+zooplanktivore) >90  40-90  <40 

% Richness of high and extra-high temperature spawners 100  >82-100  0-82 

% Richness short-lived species <20  20-60  >60 

% Richness species particularly sensitive to degradation 0  >0-15  >15 

      

Final score for zone = (sum of metrics / 28) * 100      

      

Cattail (Typha spp.)      

Pielou's Evenness <0.50  0.5-0.75  >0.75 

% Richness native species* <60  60-<100  100 

Non-native species richness* >2  1-2  0 

Notropis species richness 0  1  ≥2 

% Native Cyprinidae 0-20  >20-50  >50 

Rock bass CPUE 0  >0-3  >3 

% Black+brown bullhead* 0  >0-25  >25 

% Richness benthic habitat species >75  40-75  <30 

% Vegetation habitat species <20  20-60  >60 

% Richness nest spawners 0  >0-70  >70 

% Richness of high and extra-high temperature spawners 100  60-<100  <60 

% Richness large and extra-large species >40  20-40  <20 

% Richness species particularly sensitive to degradation 0  >0-8  >8 

      

Final score for zone = (sum of metrics / 32) * 100      
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 Scoring
†
 

Water lily (Brassenia spp., Nuphar spp., Nymphaea spp.) 0  1  2 

Pielou's Evenness <0.5  0.5-0.75  >0.75 

Non-native species richness >2  >0-2  0 

Rock bass CPUE <2  2-6  >6 

Smallmouth bass CPUE 0  >0-3  >3 

% Black+brown bullhead <5  5-30  >30 

Round goby CPUE >4  >0-4  0 

Yellow perch CPUE 0  >0-10  >10 

% Common carp >3  >0-3  0 

% Richness carnivore species (invertivore+piscivore+zooplanktivore) <50  50-75  >75 

% Richness vegetation spawners <15  15-40  >40 

% Richness species particularly sensitive to degradation* 0  >0-10  >10 

      

Final score for zone = (sum of metrics / 24) * 100      

      

Submersed aquatic vegetation      

Pielou's Evenness <0.5  0.5-0.75  >0.75 

Non-native species richness ≥2  1  0 

% Richness Centrarchidae species <25  25-50  >50 

Cyprinidae species richness >3  2-3  0-1 

Bluntnose minnow CPUE >5  >0-5  0 

Common carp CPUE >1  >0-1  0 

% Richness carnivore species (invertivore+piscivore+zooplanktivore) <50  50-75  >75 

% Benthic invertivores <10  10-30  >30 

% Vegetation spawners <5  5-30  >30 

% Richness species particularly sensitive to degradation 0  >0-15  >15 

      

Final score for zone = (sum of metrics / 20) * 100      

Note: Catch per unit effort (CPUE) was catch net
-1

 night
-1

. 
†
Scores for cattail and lily metrics 

identified with an “*” should be doubled (e.g., 0, 2, 4) 
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Appendix 4. Species specific values for calculating the Wetland Fish Index. From 

Seilheimer & Chow-Fraser (2006). 

  

WFI-PA WFI-AB 

Scientific Name Common Name T U T U 

Alosa pseudoharengus Alewife 2 2 2 1 

Ambloplites rupestris Northern Rock Bass 1 4 2 4 

Ameiurus melas Black Bullhead 2 3 2 3 

Ameiurus nebulosus Brown Bullhead 1 3 1 2 

Amia calva Bowfin 2 4 2 4 

Aplodinotus grunniens Freshwater Drum 2 1 2 1 

Carassius auratus Goldfish 2 1 2 1 

Catostomus catostomus Longnose Sucker 3 5 3 5 

Catostomus commersonii White Sucker 1 3 2 3 

Cottus bairdii Mottled Sculpin 3 4 3 4 

Cottus cognatus Eastern Slimy Sculpin 2 4 2 4 

Culaea inconstans Brook Stickleback 2 4 2 4 

Cyprinella spiloptera Spotfin Shiner 1 2 1 1 

Cyprinus carpio Common Carp 1 2 1 1 

Dorosoma cepedianum Gizzard Shad 2 1 2 1 

Esox americanus Grass Pickerel 3 4 3 4 

Esox lucius Northern Pike 2 4 2 4 

Esox masquinongy Great Lakes Muskellunge 3 4 3 4 

Etheostoma exile Iowa Darter 3 5 3 4 

Etheostoma microperca Least Darter 3 4 3 5 

Etheostoma nigrum Johnny Darter 2 3 2 3 

Fundulus diaphanus Banded Killifish 3 4 3 4 

Gasterosteus aculeatus Threespine Stickleback 2 2 1 2 

Hybognathus hankinsoni Brassy Minnow 2 1 2 1 

Ictalurus punctatus Channel Catfish 2 1 2 1 

Labidesthes sicculus Northern Brook Silverside 2 4 2 4 

Lepisosteus osseus Longnose Gar 3 5 3 5 

Lepomis cyanellus Green Sunfish 1 1 1 1 

Lepomis gibbosus Pumpkinseed Sunfish 2 3 2 3 

Lepomis macrochirus Bluegill Sunfish 1 3 1 3 

Lepomis megalotis Longear Sunfish 3 4 3 4 

Luxilus cornutus Common Shiner 3 4 3 4 

Margariscus margarita Pearl Dace 3 4 3 4 

Micropterus dolomieu Smallmouth Bass 2 4 2 4 

Micropterus salmoides Largemouth Bass 2 3 2 3 

Morone americana White Perch 1 1 2 1 

Morone chrysops White Bass 1 1 1 1 

Moxostoma anisurum Silver Redhorse 3 5 3 5 
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Moxostoma breviceps Smallmouth Redhorse 2 4 2 4 

Notemigonus crysoleucas Golden Shiner 2 3 2 3 

Notropis atherinoides Emerald Shiner 2 3 2 3 

Notropis heterodon Blackchin Shiner 3 5 3 5 

Notropis heterolepis Blacknose Shiner 2 4 2 4 

Notropis hudsonius Spottail Shiner 1 2 1 2 

Notropis stramineus Sand Shiner 1 3 1 3 

Notropis volucellus Northern Mimic Shiner 3 5 3 5 

Noturus gyrinus Tadpole Madtom 2 4 2 4 

Osmerus mordax Rainbow Smelt 3 4 3 4 

Perca flavescens Yellow Perch 2 3 2 3 

Percina caprodes Logperch 2 3 2 4 

Percopsis omiscomaycus Troutperch 3 4 2 4 

Phoxinus eos Northern Redbelly Dace 3 5 3 5 

Pimephales notatus Bluntnose Minnow 1 3 2 4 

Pimephales promelas Fathead Minnow 1 2 1 2 

Pomoxis annularis White Crappie 1 1 1 1 

Pomoxis nigromaculatus Black Crappie 2 3 2 3 

Prosopium cylindraceum Round Whitefish 3 4 3 4 

Pungitius pungitius Ninespine Stickleback 3 4 3 4 

Sander vitreus Walleye 3 4 3 4 

Semotilus atromaculatus Creek Chub 1 3 1 3 

Umbra limi Central Mudminnow 2 4 2 4 
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