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ABSTRACT 

 

 

Acoustic signalling in teleost fishes serves a variety of communicatory purposes, 

mostly centered around aggression and courtship. There is strong evidence that courtship 

calls are used by many fishes to locate mates, coordinate spawning, and for species 

recognition, but the possibility that these calls also act as honest signals is not yet highly 

explored. Calls produced by the male round goby, Neogobius melanostomus, were 

analyzed for dominant frequency, interpulse interval, duration and number of pulses in 

the call. Call characteristics were then analyzed for relationships to body morphometrics 

of total length, head width, total weight, and gonadosomatic index. Strong interactive 

relationships between male body traits and individual call characteristics were found. 

Females were shown to have a preference for longer interpulse interval, suggesting that 

calls are capable of honestly signalling male body size. These findings suggest that 

acoustic honest signalling as well as individual discrimination exists in this species.
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Chapter I 

 

REVIEW ON SEXUALLY SELECTIVE BIOACOUSTICS IN THE GOBIIDAE 

 

 

Thesis Objectives 

 This thesis aims to determine if acoustic signalling in the round goby functions as 

an honest signal. For this purpose, I define honest signalling as a communicatory signal 

where some measurable aspect of male condition is related to the signals reliability and 

where females are able to accurately judge and have a preference for signal variability. 

The first portion of the study, presented in Chapter 2, examines the correlation between 

the male body characteristics of head width, total length, total weight and gonadosomatic 

index and the call characteristics of call duration, dominant frequency and average 

interpulse interval. If any of these call characteristics are strongly correlated to male body 

size, round goby courtship calls may act as reliable predictors of male body size. The 

second portion of this thesis, Chapter 3, focuses on female call preference, to determine if 

the relationship present between male body measures and call characteristics is a true 

honest signal. Confirming female preference is critical to defining these courtship calls as 

honest signals. 

 

Sensory Systems in an Aquatic Environment 

The underwater environment is a complex system, which heavily influences signal 

transmission and detection, therefore, communicating with conspecifics poses a challenge 

for inhabitants in such environments.   One of the barriers that must be overcome is the 

challenge of communicating with conspecifics. To do this, many species will combine 

several types of sensory displays simultaneously (Saunders et al., 2010; Smith and van 



2 

 

Staaden, 2009; Thaker et al., 2006). While multimodal signals can be perceived as being 

redundant, the transference of the same information through several sensory systems 

assures that the receiver will perceive the sender‘s communication accurately (Partan and 

Marler, 2005). Redundant multimodal signals become increasingly important in habitats 

where the information communicated might be misinterpreted. For instance, visual 

displays are often limited to very short distances due to poor visibility, olfaction is 

complicated by highly variable water flow and auditory cues can be masked by the 

surrounding biotic and abiotic acoustic environment.  Of these three common underwater 

signalling modalities, bioacoustic signals can often be transmitted the furthest, increasing 

the chances that the sender‘s information will reach a desired target. In many species, 

these acoustic displays are low in frequency (Ladich, 2014), allowing the sound to travel 

a great distance without attenuating in ideal conditions but causing propagation 

difficulties in shallow water (Rogers and Cox, 1988). Communicating with low frequency 

sounds can also create issues with sound reception and localization as the wavelength of 

the sound is larger than the distance between the ears of the fish (Popper and Fay, 1973) 

and yet the majority of fish communication calls are in the low frequency range (Ladich, 

2014). 

 

Underwater Sound Propagation 

 The basic physics of how sound travels underwater are important to understanding 

the reception and production of sound in the aquatic environment. Many differences exist 

between sound transmission through air compared to water. The substantial increase in 

speed from 332 m/s in air to 1484 m/s in water greatly increases the wavelengths of 

sounds underwater. Attenuation is the loss of energy as the sound propagates due to 



3 

 

effects like absorption and scattering. Low frequencies can travel great distances with 

very little attenuation in an unbounded medium, however higher frequency sounds tend to 

travel only very short distances. Absorption of sound also increases with increasing water 

temperature and salinity. This lack of attenuation means that the background noise caused 

by biotic and abiotic factors is immense, increasing the overall noise levels by up to 30 

dB (Rogers and Cox, 1988). This increase in sound intensity becomes incredibly 

important when considering that communicatory sounds will potentially be masked, 

preventing the fish from hearing the sound of interest (Fay and Popper, 2012). As sound 

passes across a thermocline or halocline, the speed at which the sound wave is 

propagating will change, causing refraction of the sound wave. Similarly, when a sound 

wave encounters the surface it will both refract and reflect the sound. The substrate that 

the sound wave encounters will also affect how it travels; harder surfaces will reflect 

sound better than soft surfaces (Nedelec et al., 2015). As the angle of incidence increases, 

more sound will be reflected than refracted, until refraction becomes undetectable. This 

effect becomes important in shallow water where much of the energy of the sound wave 

is refracted instead of traveling to the potential receiver and can greatly complicate the 

use of sound as a communication signal in shallow waters. 

  

Uses of Sound in Fish 

 Several types of calls are produced by fishes, most notably alarm, agonistic and 

courtship calls (Smith, 1992; Bass and McKibben, 2003; Van Staaden and Smith, 2011). 

Typically, fish produce alarm calls when being handled or when the fish encounters a 

predator (Smith, 1992). Alarm calls are those that elicit a response by conspecifics, while 

distress calls are meant to dissuade the predator from attacking (Smith, 1992).  The 
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Atlantic cod (Gadus morhua) will produce grunting calls when chased by a novel object 

or by a predator and will continue to grunt when cornered and immobile (Brawn, 1961). 

In the cod, the cues may be used as a warning to nearby conspecifics or as a means of 

attracting a secondary predator, potentially allowing escape (Smith, 1992). A more clear 

alarm signal exists in the longspine squirrelfish (Holocentrus rufus) where an encounter 

with a predator will cause the squirrelfish to produce a staccato call, which either elicits 

retreat or mobbing behaviour by nearby conspecifics (Winn et al., 1964).  

 Many fish species are known to produce calls under agonistic contexts, especially 

when competing for food or mates. Competition for food stimulates the grey gurnard, 

Eutrigla gurnardus, to produce knocking sounds when grasping food and grunting sounds 

when doing frontal displays to competitors (Amorim et al., 2004). Growling and other 

sounds produced by gurnards may act as keep-away signals to nearby competitors 

(Amorim and Hawkins, 2000; Amorim et al., 2004). Acoustic signalling is also often used 

by territory holding males in both an agonistic context as well as in courtship. Parental 

male plainfin midshipmen, Porichthyes notatus, have two call types, the grunt used in 

agonistic displays and the hum used in attracting mates (McKibben and Bass, 1998). 

Hums will elicit a phonotactic response from females, but grunts and modified calls that 

do not closely resemble a hum receive no response from females (Bass and McKibben, 

2003). 

 Perhaps the most well documented uses of acoustic signalling in fish are courtship 

calls. These calls are used by monogamous pairs (Boyle and Tricas, 2011), group 

spawners (Rowe and Hutchings, 2003) and territory holders when attracting mates 

(Amorim et al., 2011). Courtship calls are used to locate mates (McKibben and Bass, 

1998), ensure correct species recognition (Rollo and Higgs, 2008) and potentially even 
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act as honest signals of mate quality (Amorim et al., 2013a). In species like the burbot, 

Lota lota, which spawns under the cover of sea-ice, acoustic signalling seems to be 

critically important to the timing of gamete release (Cott et al., 2014). Calls are likely 

very important for species that nest under objects where the caller may be hard to locate 

(Lugli et al., 1997). Many fish calls may serve multiple purposes and have simply yet to 

be examined.  

 

Sound Production in Fish 

 There is an exceptionally diverse variety of fish that are known to produce sounds 

as a means of communication. Fish and Mowbray (1970) provided extensive 

documentation on 36 families of Osteichthyes fish with sound producing members and 

one species of Chondrichthyes. Several more soniferous families have been discovered 

since the publication of this compendium. Over 700 species of fish are now known to 

produce sound (Kaatz, 2002; Luczkovich et al., 2008) and there are many bioacoustic 

sounds attributed to fish that have yet to be identified (Anderson et al., 2008). In the cases 

of the families examined by Fish and Mowbray (1970), all species documented were 

producing agonistic calls in response to electric or mechanical stimulus. Fish will also 

produce these calls under agonistic and aggressive interactions, such as when a predator 

or other intruder has entered their territory (Ladich, 1997). Many of these sound 

producing families also contain species that produce courtship sounds. Courtship sounds 

are typically only produced by males, whereas aggressive and agonistic calls are 

commonly produced by both sexes (Ladich, 1997). Several species have separate calls 

that they produce in agonistic and courtship contexts (Table 1.1). However, the 

characterization of these sound types may vary between researchers, leaving the simple  
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Table 1.1 

Table 1.1. Sound production across families. The qualitative descriptions of fish sounds 

across 42 families of soniferous fishes. Most calls are described similarly and many 

families contain species that produce distinct calls for courtship and agonistic displays. 

 

Family Agonistic call Uncharacterized 

sound 

Courtship call Reference 

 

Elopidae thumps   Fish and Mowbray (1970) 

Albulidae thumps   Fish and Mowbray (1970) 

Clupeidae thumps and 

knocks 

  Fish and Mowbray (1970) 

Arridae sobs, yelps, grunts   Fish and Mowbray (1970) 

Anguillidae clucking and 

knocks 

  Fish and Mowbray (1970) 

Gadidae thumps  grunts and hums Fish and Mowbray (1970); 

Cott et al. (2014) 

Syngnathidae  snaps and clicks 

during feeding 

 Fish and Mowbray (1970) 

Holocentridae grunts   Fish and Mowbray (1970) 

Centropomidae thumps and 

knocks 

  Fish and Mowbray (1970) 

Serranidae thumps  pulses and a 

tonal sweep 

Fish and Mowbray (1970); 

Lobel (1992) 

Lutjanidae thumps   Fish and Mowbray (1970) 

Pomatomidae thumps and 

knocks 

  Fish and Mowbray (1970) 

Carangidae thumps and 

knocks 

  Fish and Mowbray (1970) 

Gerridae weak knocks   Fish and Mowbray (1970) 

Pomadasyidae grunts   Fish and Mowbray (1970) 

Sciaenidae knocks and croaks  drumming Fish and Mowbray (1970); 

Connaughton et al. (2002) 

Mullidae thumps and 

knocks 

  Fish and Mowbray (1970) 

Sparidae thumps and 

knocks 

  Fish and Mowbray (1970) 

Kyphosidae thumps and 

knocks 

  Fish and Mowbray (1970) 

Ephippidae thumps, knocks 

and grunts 

  Fish and Mowbray (1970) 

Chaetodontidae thumps and 

knocks; pulses 

  Fish and Mowbray (1970); 

Boyle and Tricas (2011) 

Pomacentridae thumps, knocks 

and clicks 

 clicks Fish and Mowbray (1970); 

Parmentier et al. (2010) 

Labridae thumps and 

knocks 

 pulses Fish and Mowbray (1970); 

Boyle and Cox (2009) 

Scaridae clicks and knocks  group spawning, 

individual 

sounds 

indiscernible 

Fish and Mowbray (1970); 

Lobel (1992) 
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Acanthuridae Knocks and 

grunts 

  Fish and Mowbray (1970) 

Triglidae growls, grunts and 

barks 

  Fish and Mowbray (1970); 

Amorim et al. (2004) 

Cottidae growls   Fish and Mowbray (1970) 

Dactylopteridae barks   Fish and Mowbray (1970) 

Sphyraenidae  thumps and knocks 

with swift movement 

 Fish and Mowbray (1970) 

Polynemidae knocks   Fish and Mowbray (1970) 

Balistidae grunts, knocks, 

scrapes, thumps 

and clicks 

  Fish and Mowbray (1970) 

Ostraciidae groans, clicks and 

scrapes 

  Fish and Mowbray (1970) 

Tetraodontidae  "erks" with inflation  Fish and Mowbray (1970) 

Diodontidae  whines with inflation  Fish and Mowbray (1970) 

Molidae grunts high-pitched groan 

when lifted from the 

water 

 Fish and Mowbray (1970) 

Batrachoididae grunts  boatwhistle Fish and Mowbray (1970); 

Amorim et al. (2011) 

Blenniidae   grunt DeJong et al. (2007) 

Cichlidae   pulses Maruska et al. (2012) 

Percidae   knocks, purrs 

and drums 

Speares and Johnston (2011) 

Mormyridae   grunts and 

moans 

Crawford et al. (1997) 

Doradidae grunts and growls  pulse Kaatz and Stewart (2012) 

Auchenipteridae grunts and growls  pulse Kaatz and Stewart (2012) 
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description of the sound up for debate (Parmentier et al., 2006). While the majority of fish 

sounds are categorized as pulsed sounds resembling grunts, thumps or knocks, there is a 

huge amount of variation from species to species, and in many cases calls are species 

specific (Luczkovich et al., 2008). 

 

Sound Production in the Gobiidae 

The ability to produce sound has been documented across many taxa of fish, with 

one of the most intensively studied families being the Gobiidae. As these fish lack 

specialized structures that aid in hearing, they can be thought of as hearing generalists 

(Popper and Fay, 2011); the actual amount of sound detection abilities in these fish is 

debated as the group is exceptionally diverse. Currently, the family contains some 1950 

species across 210 genera (Nelson, 2006) of which only 23 species are documented as 

sound producers (Lugli et al., 1997; Parmentier et al., 2013).  

 

Phylogenetic Links Between Sound Production 

Where the Gobiidae is such an expansive and widely distributed group, the 

taxonomic links between members are still under some consideration. Many studies use 

different names for some call producing species, most notably Padogobius martensii and 

P. bonelli, which appear to be the same species (Nocita and Vanni, 2001). Very detailed 

work has been done to attempt to organize this clade using morphological and genetic 

analyses (Thacker and Roje, 2011). While the phylogenetics of the Gobiidae is still 

unclear, there appears to be no evolutionary patterns in call structure with some species 

using pulse trains while other use simple grunts, regardless of phylogenetic position 

(Figure 1.1). There are also clear differences in call structure between species, allowing   
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Figure 1.1 

 

 

Figure 1.1. Phylogenetic tree of soniferous gobies. All oscillograms are scaled to the 

same time frame. Individual calls represent different species, from left to right in each 

genus where species are not labeled, calls belong to Pomatoschistus: P. pictus, P. 

canestrinii, P. marmoratus, P. minutus; Knipowitschia: K. panizzae; Gobius: G. niger, G. 

cobitis, G. paganellus, G. cruentatus; Padogobius: P. martensii, P. nigricans. This 

phylogeny was modified from Thacker and Roje (2011), to include soniferous species in 

the Gobiidae. Oscillograms were used with permission from Drs. S. Malavasi, C. 

Amorim, and G. Polgar.
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for species recognition when examining the calls. The soniferous species in this family 

are widely distributed across the clade, and yet, more ancestral species like the 

mudskipper, Periophthalmodon septemradiatus, also produce sound (Polgar et al., 2011). 

This suggests that acoustic signalling may be far more common in this family than the 

few species already described. 

 

Call structure 

Several terms are used by different researchers seemingly interchangeably when 

referring to certain sounds, such as drums, grunts and pulses. A call is usually referred to 

as ―drumming‖ when grunts are repeated in a grunt or pulse train (Lugli et al., 1997). A 

grunt is defined as a single, low frequency pulse and a pulse is a short, continuous sound 

burst. The grunt is possibly the most commonly produced call by gobiids. Grunts are 

generally low in frequency, typically between 100 and 200 Hz for most species (Malavasi 

et al., 2008). Grunts may be produced singly, in pulse trains resembling a drumming 

sound or as part of complex sound that includes a grunt train and a tonal sound (Lugli et 

al., 1995). The tonal sound is a continuous waveform with a low range of frequency 

modulation. It is possible that the tonal sound is produced by reducing the inter-pulse 

duration to the point that the pulse train becomes a single tone (Malavasi et al., 2008). 

Depending on the method of sound production, some species should be incapable of 

making tonal sounds as these sounds would likely depend on rapid stridulation, 

something not all species are capable of (Stadler, 2002). Similar to the pulse train is 

another call described as a stutter where the call is weaker than individual grunts, but 

otherwise similar in structure (Stadler 2002). The weakness of this call is potentially 

caused by the alternation of body sides when the fish is ejecting water through the gills 

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=3760
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=60932
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where single grunts would have water ejected simultaneously from both sides (Stadler, 

2002). This method of calling has only been described in one species thus far, the 

notchtongue goby, Bathygobius curacao, though may be found in other species of this 

genus (Tavolga, 1958; Stadler, 2002). Differentiation of call components may be 

important for species recognition when several species of gobies live sympatrically to 

avoid hybridization (Blair, 1958).  

 

Seasonality and Nesting 

Sound production is generally linked to courtship behaviour in the Gobiidae and as such 

occurs during the spawning seasons (Table 1.2). Typically, acoustic signals are paired 

with visual (Lugli et al., 1995) and olfactory stimuli (Kasurak et al., 2012). Visual 

displays vary by species, but often the male will actively fan his pectoral fins (Meunier et 

al., 2013), swim in and out of the nest and perform tail beats (Lugli et al., 1995). Calls are 

produced solely by males (Parmentier et al., 2013) and occur during aggressive, courtship 

and spawning interactions (Stadler, 2002). During the spawning season, male gobies 

guard nests from which they produce these calls (Rollo et al., 2007). Generally, these 

nests are simple cavities under rocks or shells. However, this resource may be limiting, 

causing males to be territorial for the best nesting sites (Lugli et al., 1992). The distance 

between nesting freshwater goby (Padogobius martensii) increases with male size and 

when females are not a limiting factor, larger males will take over larger nesting sites 

(Lugli et al., 1992). When deciding on a nesting site, male sand gobies (Pomatoschistus 

minutus) preferentially choose the nest cavity that looks larger from the outside 

(Lindstrӧm, 1992). Larger males have a tendency to win more fights, thus gaining better  
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Table 1.2 

Table 1.2. Reproductive seasons of soniferous gobies. The reproductive season of 17 of 

the 23 known soniferous gobies. The taxonomy of  Padogobius bonelli and Padogobius 

martensii is unclear however and these may be the same species. 

Species Seasonality Location Reference 

Bathygobius fuscus June-September Indo-Pacific Zhang and Takemura 1989 

Gobius cobitis March-June Venice lagoon Malavasi et al. 2008 

Gobius cruentatus March-May Mediterranean Sea Sebastianutto et al. 2008 

Gobius niger March-June Venice lagoon Malavasi et al. 2008 

Gobius paganellus March-June Venice lagoon Malavasi et al. 2008 

Knipowitschia panizzae March-June Venice lagoon Malavasi et al. 2008 

Knipowitschia punctatissima March-May Italy Lugli et al. 1997 

  March-June Venice lagoon Malavasi et al. 2008 

Neogobius melanostomus May-August Detroit River MacInnis and Corkum 2000 

Odontobutis  obscura May-July Japan Takemura 1984 

Padogobius bonelli March-June Venice lagoon Malavasi et al. 2008 

Padogobius martensii March-May Italy Lugli et al. 1997 

Padogobius nigricans March-May Italy Lugli et al. 1997 

  March-June Venice lagoon Malavasi et al. 2008 

Pomatoschistus canestrinii March-June Venice lagoon Malavasi et al. 2008 

Pomatoschistus marmoratus March-June Venice lagoon Malavasi et al. 2008 

Pomatoschistus minutus May-August Baltic Sea Lindstrӧm and Lugli 2008 

  March-June Venice lagoon Malavasi et al. 2008 

Pomatoschistus pictus January-May Portugal Amorim et al. 2013 

Zosterisessor ophiocephalus March-June Venice lagoon Malavasi et al. 2008 
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nesting sites (Magnhagen and Kvarnemo, 1989). Larger nesting sites have a greater 

surface area and as such a greater number of eggs are deposited (Lugli et al., 1992). 

However, larger males are not necessarily preferred by females (Magnhagen and 

Kvarnemo, 1989). Likewise, females are not more likely to choose the winner of a fight 

(Forsgren, 1997). In the sand goby, preferred males receive more eggs and provide 

greater parental investment (Forsgren et al., 1996). These factors are somewhat 

confounding however, as males that provide more care to larger clutches may not 

inherently be better fathers (Forsgren, 1997). The importance of individual features of 

interest to females choosing mates is difficult to discern and may differ between species 

and across habitats. 

 

Sound Producing Mechanisms 

Sound production has been documented in at least 23 species in the Gobiidae (see 

Lugli et al., 1997 and Parmentier et al., 2013) and is likely displayed in other species as 

well. Several hypotheses exist on the mechanism behind sound production in this family 

and, due to the diversity of the group, more than one mechanism seems likely. Most 

recently, Parmentier et al. (2013) proposed that the levator pectoralis muscles are key to 

sound production, especially in species lacking swim bladders, though the exact 

mechanism remains unknown. Other possible mechanisms are by rubbing the pharyngeal 

plates together, coupled with an amplification through the swim bladder in species that 

possess one (Takemura, 1984; Lugli 1995) as well as squirting water through the 

opercular openings (Tavolga, 1958) though this latter method is debated (Stadler, 2002; 

Parmentier et al., 2013). Calls produced by Odontobutis obscura are amplified by the 

muscular connection between the pharyngeal teeth to the 2-4 vertebrae, which in turn are 
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in direct connection with the thin-walled swim bladder (Takemura, 1984). At least one 

vocal species lacks necessary structures for producing stridulatory calls (Stadler, 2002). 

However, the absence of pharyngeal teeth seems unlikely as other members of the 

Bathygobius have pharyngeal teeth (Miller and Smith, 1989). In vocal species of gobies, 

the large pectoral fins are often erected when fish are calling, potentially using the 

membrane as an amplifier for the sound (Parmentier et al., 2013) though this behaviour is 

usually attributed to being part of visual or olfactory displays (Meunier et al., 2013). 

 Gobies may use their nest cavities as a way of amplifying their calls, as nests tend 

to only have one opening, which alters the properties of the sound being emitted (Lugli, 

2012). The amplificatory effect depends on the material of the nest as well as the 

frequency of the call. Nesting structures that have a density similar to water do not seem 

to have the capacity to act as resonance chambers (Lugli, 2012). Similarly, some 

structures may not interfere with the amplitude of calls, as toadfish boatwhistles were 

unaltered by terra cotta nesting structures (Barimo and Fine, 1998) due to the resonance 

frequency of the calls (Lugli, 2012). The form of these nesting structures is another factor 

to consider, as the opening to a cavity can often affect the radiation of the sound from its 

source (Fletcher, 2004). In ground crickets, the burrow from which the animal calls 

significantly increases the loudness of the calls (Bailey et al., 2001). The effectiveness of 

the nest cavity acting as a resonance chamber also depends on the coupling between the 

nest cavity and the substrate, as any discontinuity causes a large drop in the shelter‘s 

ability to act as an amplifier (Lugli, 2012). Sand gobies are known to move sand around 

the site of their nest, such that a sand pile forms over top of the nest and the entrance can 

become quite small (Lugli, 2013). This would prevent the goby‘s calls from escaping 
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from any openings other than the entrance, ensuring that the nest cavity could best act as 

a single-opening resonance chamber.  

 

Bioacoustics as Sexually Selected Signals  

In the Gobiidae, calls are produced both for aggressive purposes and in 

reproductive contexts (Lugli et al., 1995; Kasurak et al., 2012). In some species, sound is 

only produced in the presence of a gravid female, usually in combination with other 

courtship displays (Lindstrӧm and Lugli, 2000). In the freshwater goby complex calls are 

produced in combination with tail beats to encourage the female to enter the nest and 

sound production slowly decreases as spawning proceeds (Lugli et al., 1995). Sound may 

be produced as a means of encouraging females to approach or enter the nest (Malavasi et 

al., 2009) or once the female has entered as part of a multisensory display to show 

paternal reliability (Amorim et al., 2013b). The panzarolo goby (Knipowitschia 

punctatissima) calls only when a female is present inside the nest and calling ceases upon 

the female‘s departure (Lugli et al., 1995). Female round goby (Neogobius 

melanostomus) are known to be able to differentiate between calls of several species and 

show a preference for conspecific calls (Rollo and Higgs, 2008). This species is able to 

localize to sound sources (Rollo et al., 2007) and males may use calls to attract mates 

from a distance. Actively displaying males are more attractive mates ensuring proper 

parental care (Forsgren, 1997). 

 

Recommendations and Conclusions 

 There is still much to discover about sound production and its uses in fish. In 

many cases, bioacoustics has only been explored in a few species within a family, leaving 
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gaps in knowledge about how these sounds are used. Since sounds produced by fish are 

species specific, a wide range of possibilities exist for human use. Bioacoustics has the 

capacity to help researchers better understand species interactions and aid in conservation 

and management without the often destructive consequences of capturing fish. However, 

in order to get to the point where bioacoustics could replace more traditional techniques, 

more research on a greater diversity of fish must be done. Some recommendations that 

could increase the success of future studies include 1) Researchers should share calls of 

known species through online sound libraries; 2) For management purposes, acoustically 

active fish should be characterized, enabling the use of passive acoustic monitoring of 

population health and invasion fronts; 3) The phylogenetic backgrounds of calling species 

should be analyzed in greater detail; and 4) The linkages between male quality and sound 

production should be further examined.  
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Chapter II 

 

VARIATION IN THE CALL STRUCTURE OF MALE ROUND GOBIES 

(NEOGOBIUS MELANOSTOMUS) IN RELATION TO BODY MORPHOMETRICS 

 

 

Introduction 

The sounds produced by animals can often be used by listeners and eavesdroppers 

as a means of determining information about the call producer (reviewed in Mock et al., 

2011; Kaplan, 2014). Many terrestrial animals perform acoustic displays to attract 

potential mates (Peters and Peters, 2010), act as a mode of species recognition (Rivero et 

al. 2000), and advertise their quality (Vannoni and McElligot, 2007; Voituron et al., 

2012). Inherent differences in sound production mechanisms can create signals that are 

variable, both within and between individuals (Ryan and Guerra, 2014) and a great deal 

of the variability in an acoustic display of an individual is based on the individual‘s 

―condition‖. For example, in chacma baboons (Papio hamadryas ursinus), a calling bout 

will contain signals of varying intensity, where intensity decreases as the individuals 

exhaust themselves (Kitchen et al., 2003). In cases where these signals are costly to 

produce, it is expected that females can use the display as a measure of the potential 

mate‘s condition (Zahavi, 1975). Honest signals should be those that accurately advertise 

a desirable trait, whether it is male size and resource holding capabilities (Wells, 1977), 

lipid reserves to protect against filial cannibalism (Manica, 2004) or possession of desired 

heritable genes (Bentsen et al., 2006). Acoustic honest signalling has been found in many 

terrestrial species across a wide range of taxa (birds: Spencer et al., 2003; amphibians: 

Gingras et al, 2013; mammals: Vannoni and McElligott, 2008, Kitchen et al., 2013) and 
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is suspected to be in many others (arachnids: Rivero et al., 2000; tortoises: Galeotti et al., 

2005). 

In fish, the role of acoustic signalling as an honest signal is much less clear. It is 

often difficult to break down acoustic cues to determine the information being carried 

with them and what may be true for some groups does not necessarily apply to others. 

Dominant frequency, an acoustic feature that is often negatively correlated with male size 

in some species ( e.g. Myrberg et al. 1986; McKibben and Bass, 1998; Amorim et al. 

2003; De Jong et al., 2007), appears to have no relationship to male size in others (Boyle 

and Tricas, 2011). In the painted goby (Pomatoschistus pictus), acoustic activity is related 

to lipid stores, with fattier males displaying more and with a greater sound pressure level 

(Amorim et al., 2013). Female midshipman (Porichthys notatus) prefer calling bouts that 

are longer and uninterrupted (McKibben and Bass, 1998) and both sound amplitude and 

calling activity are indicators of condition in sand goby, Pomatoschistus minutus (Pedroso 

et al. 2013). There is also limited evidence that acoustic parameters influence mate choice 

in some fish species (Myrberg et al. 1986; Rowe & Hutchings 2008), suggesting that 

sound can be a true honest signal in fish, but the data remain sparse and more 

investigation is needed.  

 The purpose of the current study was to determine if the sounds produced by male 

round goby (Neogobius melanostomus) have the potential to act as size indicators. 

Previous work shows that round goby males vocalize and females are able to localize to 

calling males (Rollo et al., 2007), but whether or not these calls also function as honest 

signals is not yet known.  I examined the correlations between male body characteristics 

and call variability in several call components of the round goby as a means of 

determining the potential use of calls as a measure of male condition. I test the prediction 
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that acoustic signals will correlate to at least one measure of body size, thus creating a 

link to body condition. Determining a linkage between calls and body condition is the 

first step in determining if acoustic honest signalling has the potential to exist in this 

species and to explain observed variability in call characteristics.  

 

Methods 

Model Organism 

The round goby is a benthic fish, originally from the Ponto-Caspian region that 

has established populations throughout the Great Lakes (Jude et al., 1992). This fish is a 

brood guarder (Meunier et al. 2009), with the males keeping and defending nests. 

Territory holding males, hereafter referred to as parental males, are very readily identified 

by their nuptial characteristics of black colour, swollen cheeks, a slimy coating and an 

enlarged urogenital papilla (Marentette et al., 2010). Parental males are known to call to 

attract females (Rollo et al. 2007; Rollo & Higgs 2008) much like other species of gobies 

(Lugli et al. 1996). The acoustic component of courtship is accompanied by visual and 

olfactory cues, whereby the male will fan with his pectoral fins (Meunier et al., 2013). It 

has been hypothesized (Marentette et al., 2009) that these parental males must defend 

their nests from sneaker males, reproductive males that do not display nuptial 

characteristics. 

 

Sampling Methods 

Round gobies were caught by angling at the Erieau Marina (N 42.2572945 W 

81.9084025), on the north shore of Lake Erie and in the Detroit River, Ontario, in the 

summers of 2013 and 2014. Fish were then transported to the Animal Care Facility at the 
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University of Windsor where they were kept on a 12L:12D light cycle at 18±1°C and fed 

daily (Hikari Cichlid Gold; Kyorin Corporation, Japan). Males were visually and 

acoustically isolated from each other in a Z-Hab System (Aquatic Habitats Incorporated; 

Apopka, Florida, USA) and kept for no longer than one month.  A length of PVC tube 

was supplied in each tank to act as a shelter. Females were kept in communal tanks of up 

to ten females. 

 

Experimental Procedure 

Only reproductive round gobies were used in this study. Male reproductivity was 

assessed by the enlargement of the urogenital papilla (Marentette et al., 2010). Both 

parental and ―sneaker‖ males may have been used as parental males lost their nuptial 

colouration after transport and could not be differentiated by size. Reproductive females 

were identified by the enlargement and colour of the urogenital papilla; the papilla 

appears round and swollen in reproductive females, with the colour shifting from white to 

yellow-orange (Marentette et al., 2010). 

Fish were tested at night as round gobies are more vocal between the hours of 

dawn and dusk than during daylight hours (Higgs and Humphrey, 2014). During testing 

all filters, lights and air pumps were turned off to reduce abiotic noise and a plastic, grid 

barrier was placed into the tank with the male. The PVC shelter was removed to remove 

any chance of noise being produced by banging against the shelter and a hydrophone 

(RESON TC4013-4, -210.9 dB re 1μPa/V at 1m) was inserted into the male‘s side of the 

tank. Recordings were made using a solid state recorder (Marantz PMD670) after running 

through a preamplifier (RESON VP2000 Voltage Preamplifier EC6081) with a high pass 

setting of 1 Hz and a low pass setting of 15 kHz. The hydrophone remained in close 
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proximity to the male throughout the trial. After five minutes of acclimation, the 

recording was started for a 30 minute control recording and then a reproductive female 

was added to the unoccupied side of the tank. The male could see and smell the female, 

but could not access her. After each half hour trial, the female was placed back into the 

communal female tank to be used for other trials.  

After the experiment, males were euthanized using clove oil (>20 ppm after 

anaesthesia with 10 ppm) and measured for head width above the eyes (HW), total length 

(TL), total wet weight (TW) and gonad weight (GW). Total weight and gonad weight 

were used to calculate gonadosomatic index (GSI) using the equation 

.  

 

Call Analysis 

 Male calls were analyzed using Adobe Audition® 3.0 software (Adobe Systems 

Incorporated, USA). Sound files were cleaned of background noise by using the 

software‘s Noise Reduction feature and each call was measured for the dominant 

frequency (DF, characterized as the frequency with the greatest energy determined by the 

power spectra, FFT size 32768, Blackmann-Harris window), number of pulses, total 

duration of the call and the interpulse interval (IPI). Interpulse interval was defined as the 

time in between two peaks of consecutive pulses when viewed using the waveform 

setting of Adobe Audition® 3.0. 

 

Statistical Analysis 
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 Data was Log10 transformed to obtain a normal distribution. Call and body 

characteristics were associated against each other using principal components analysis 

(PCA) on JMP 10 software (SAS Institute Incorporated, North Carolina, USA) to 

determine general correlative relationships between body quality and call characteristics. 

Redundant and non-correlative variables identified by the PCA were removed from all 

subsequent tests. Generalized Linear Models (GLMs) were performed using call 

characteristics of IPI, DF and duration as dependent factors with body morphometrics of 

total length, head width and total weight acting as explanatory variables. For these 

analyses, only calls of more than one pulse were included. In cases where a three-way or 

two-way interaction between these body characteristics was non-significant, the 

interaction term was removed and the model run again. Effects of interaction terms on 

call characteristics were examined using procedures provided by Dr. Jeremy Dawson 

(http://www.jeremydawson.co.uk/slopes.htm). The residuals of all of the GLMs were 

normally distributed. 

 The variation of the calls‘ dominant frequency component was analyzed by 

examining the coefficients of variation between and within male calls. Coefficient of 

Variation (CV) is defined with the function  . For this purpose, only the first 

pulse of each call was examined and any males with at least 3 calls were included in the 

within male variability (CVw) analysis. As in Bee et al. (2001), between-male variability 

(CVb) uses the mean of all of the first and single pulses across all males recorded. 

Variation is considered greater between males than among males when the ratio of 

CVb/CVw > 1. 
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Results 

 A total of 36 males were tested, of which 24 produced calls, one of which only 

called during the control trial. Sixteen actively calling males produced at least one call of 

more than one grunt, with two of these males producing more than a single call of one 

pulse. The total number of calls was 37 with 20 of these being calls of more than one 

pulse. Only 4 males produced at least three calls during a single recording, these calls 

were analysed for CVw, with 3 of the four having much lower variation in frequency 

within than between males (Table 2.1). 

 The principal components analysis identified three main components (Table 2.2), 

of which, the first principal component accounted for nearly 41% of the variability in the 

model. Three body characteristics, total length, head width and total weight were strongly 

associated with scores of PC1, as was a single call characteristic, interpulse interval. The 

second component accounted for 26% of the variability. Call characteristics of frequency, 

duration and number of pulses were all strongly associated with this component. Total 

width and total size were weakly positively associated with this component. 

Gonadosomatic index is most strongly associated with scores of PC4 and is not tightly 

correlated with any feature of the call or other body measure so GSI was discounted from 

further analyses. 

 Generalized Linear Models of call characteristics against body morphometrics 

identify several significant interactions between body features affecting the call. 

Frequency is affected by two two-way interactions of HWxTW and HWxTL. The 

HWxTW cross showed heavier males having lower frequency calls than their smaller 

counterparts (X
2 

; df=1, N = 20 p = 0.0293; Figure 2.1a). On the other hand, the HWxTL 

cross showed longer males had higher frequencies than smaller males (X
2 

; df=1, N = 20   



28 

 

Table 2.1 

 

Table 2.1. Inter- and intra-male variability of call frequency. The coefficients of 

variation in dominant frequency for four male round goby that each called at least 3 times 

compared to the variation in the calls of all recorded males. Only the dominant frequency 

of the first pulse of each call was used in the analysis. CVw within male variability, CVb 

between male variability.  

 

Male CVw CVb CVb/ CVw 

5 13.6 36.0 2.7 

31 17.3  2.1 

32 7.0  5.1 

36 50.0  0.7 
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Table 2.2 

 

Table 2.2. Loadings of call and body measures. Principal components loadings 

showing interpulse interval, total length, head width and total weight were most highly 

associated with the first component, frequency, duration and number of pulses grouped in 

the second component and GSI most strongly in the fourth component by itself. 

 
Characteristic PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Log#pulses 0.191 0.783 0.524 0.152 -0.091 -0.158 0.131 0.001 

LogDuration 0.471 0.772 0.280 0.224 0.019 0.170 -0.151 -0.002 

LogFreq -0.180 -0.572 0.506 0.554 0.275 -0.005 0.007 0.001 

LogTW 0.916 -0.378 0.082 0.045 -0.058 0.023 0.054 -0.020 

logGSI -0.450 0.102 -0.498 0.702 -0.198 0.056 0.044 -0.001 

logTL 0.820 -0.464 0.214 0.020 -0.209 0.137 0.049 0.014 

logHW 0.877 -0.125 -0.297 0.235 -0.016 -0.238 -0.117 0.004 

logIPI 0.700 0.380 -0.508 0.022 0.296 0.070 0.113 0.004 

Total 
variability 

40.839 25.847 15.738 11.660 3.243 1.733 0.932 0.009 

 

  

 

 



30 

 

Figure 2.1 

 

 
 

Figure 2.1. The relationship between HWxTW, HWxTL and DF. a.) The negative 

relationship between the log10 transformed dominant frequency of calls and the two-way 

interaction effect of head width and total weight. This interaction suggests larger males 

have lower dominant frequencies of their calls. b.) The positive relationship between the 

log10 transformed dominant frequency of calls and the two-way interaction effect of head 

width and total length. This interaction suggests larger males have higher dominant 

frequencies of their calls. 
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p = 0.0213; Figure 2.1b. These interactions work in opposite directions with large headed, 

heavier males having lower frequency calls, but large headed, long males having higher 

frequency calls.  

The IPI is also affected by two two-way interactions of HWxTW and HWxTL. The 

HWxTW cross showed heavier, large-headed males having longer IPIs compared to 

thinner, small-headed males (X
2
; df=1, N = 20 p = 0.045; Figure 2.2a). This interaction is 

contradicted by the HWxTL cross, which shows shorter, small-headed males having 

longer IPIs (X
2 

; df=1, N = 20 p = 0.0383; Figure 2.2b). 

The GLM indicated that duration was significantly influenced by a three way interaction 

of HWxTLxTW X
2 

(df=1, N = 20 p = 0.0005; Figure 2.3). This interaction suggests that 

long duration calls are produced by short, heavy males and short duration calls are 

produced by thin, long males. In this case, males with a greater TW did not change 

duration as considerably as males with a lesser TW. Males producing the shortest 

duration calls were those with long, thin bodies and a large head. Long, thin males with a 

small head produced calls with durations comparable to short, thin males with large 

heads.  

 

Discussion 

 Honest signalling requires that a signal accurately and consistently 

displays the trait of interest (Zahavi, 1975; Johnstone, 1995). In the current study, the 

accuracy of call features predictive ability for body measures is quite high, suggesting 

that these acoustic signals could be used by conspecifics to determine the ―quality‖ of the 

caller. There is also a greater inter-male variability in calls than intra-male variability,  
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Figure 2.2 

 

 
 

Figure 2.2. The relationship between HWxTW, HWxTL and IPI. a.) The positive 

relationship between the log10 transformed interpulse interval of calls and the two-way 

interaction effect of head width and total weight. This interaction suggests larger males 

have greater interpulse intervals in their calls. b.) The negative relationship between the 

log10 transformed interpulse interval of calls and the two-way interaction effect of head 

width and total length. This interaction suggests larger males have shorter interpulse 

intervals in their calls. 

a b 
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Figure 2.3 

 

 
 

Figure 2.3. The relationship between HWxTLxTW and duration. The negative 

relationship between the log10 transformed duration of calls and the three-way interaction 

effect of head width, total length and total weight. Males with a greater weight show a 

considerably longer call duration regardless of head size and length. The shortest call 

durations are produced by long, thin males with large heads. Call produced by short, thin, 

big-headed males and long, thin, small-headed males are of a comparable length.
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another factor necessary for honest signalling to exist. The calls produced by individual 

males were consistent over the short time frame of this study, showing a high reliability in 

signalling body condition. While the mechanism for sound production is not known in 

this species, calling may not be overtly costly (Amorim et al 2013) as honest signals are 

usually thought to be (Gintis et al.,2001; Számadó, 2011), however, the physical 

mechanism of sound production is likely limited by the body traits measured. In species, 

such as the weakfish (Cynoscion regalis), which use sonic muscles, larger fish produce 

sounds of lower frequencies due to the increased time it takes for the longer muscle fibres 

to contract and relax. Similarly, these larger fish produce sounds of greater intensity 

because they have greater muscle mass (Connaughton et al., 2002). A size-restricted 

sound production mechanism can be assumed to be the case where head size and body 

length of the fish affect characteristics of the call, as was seen in the current study. In 

other species of gobies where the mechanism of sound production has been examined, the 

call invariably originates from the head region of the fish. Some suspected modes of call 

production in gobies include projection of water through the operculum (Tavolga, 1958), 

grinding pharyngeal teeth together (Takemura, 1984; Lugli, 1995) and vibration of the 

levator pectoralis muscle which originates on the skull and inserts on the pectoral girdle 

(Parmentier et al., 2013). Should one of these modes of call production prove to be true 

for the round goby, the physical properties of the fish‘s head would alter the call, 

consistent with my results.  

 In the current study, long males with big heads produced short, high frequency 

calls with short IPI, while heavy, big headed males produce calls with lower frequencies 

and longer IPI. Depending on female preference for male traits, the female may be able to 

tease apart the various levels of a call to determine which nests to visit. In other species of 
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gobies, there is very little evidence supporting female preference for male size 

(Magnhagen and Kvarnemo, 1989; Forsgren, 1997; Amorim et al., 2013). Conversely, 

larger males are more capable fighters and tend to win larger territories, for which 

females do display a preference (Magnhagen and Kvarnemo, 1989). This contradiction 

may in part reflect the effort put into courtship. In Pacific blue-eye fish (Pseudomogil 

signifier) females do not mate more frequently with larger, more competitive males, 

instead choosing males that put greater effort into courtship (Wong, 2004). Bicolor 

damselfish (Stegastes partitus) females are less likely to mate with males that are not 

actively courting, perhaps because these males have lower energy reserves (Knapp and 

Kovach, 1991). Female gobiids are thought to prefer males with greater lipid stores 

(Amorim et al., 2013) and in the current study total weight was a significant predictor of 

IPI, DF and call duration. Choosing males with greater lipid stores would be adaptive 

because fattier males may be less likely to cannibalize their eggs (Neff, 2003), larger 

testes allowing for greater sperm production (Taborsky, 1998), and larger males may have 

greater brood survival rates (Sabat, 1994).  

 Call duration provides some counterintuitive results, wherein the longest call 

durations were performed by short, heavy males with small heads. There is not as great a 

difference between the groups of heavy males with HW and TL varying as there is 

between the groups of light males. This could suggest that males must have attained a 

minimum weight be able to call for any substantial length of time, perhaps resorting to 

alternate, less costly modes of communication. While frequency and IPI might be related 

to morphological restrictions of the sound production mechanism, duration of the call 

may be more heavily influenced by the male‘s condition. Plainfin midshipman males that 

are in better condition and have greater mass, also have a greater number of young at the 
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end of the season (Sisneros et al., 2009). These males likely use their greater energy 

reserves for increased courtship effort, to produce calls of longer duration, to which 

females are more attracted (McKibben and Bass, 1998). Greater fat stores would allow 

the male to increase courtship, gain more mating opportunities and receive more eggs. 

Male gobies that care for more eggs exhibit lower incidence of filial cannibalism and 

more fanning behaviour than those that care for fewer eggs (Forsgren et al., 1996). 

 For both IPI and dominant frequency I saw opposite relationships for total length 

or total weight. Longer fish had a shorter IPI and higher frequency and heavier fish had a 

longer IPI and lower frequency than their counterparts.  This disparity may be explained 

by the different information portrayed to the female by these two metrics of size.  Total 

body weight is a more immediate measure of condition in fish (Cargnelli and Gross, 

1997), with immediacy due to ability to thrive under current conditions while total length 

may be a sum total of growth capability over longer time frames (Nate and Bremigan, 

2005). A heavier fish will be more capable of putting in the reproductive effort in the 

current season rather than waiting until it is larger, but possibly in worse condition. While 

I do not know which metric is more preferred by female round gobies, it is possible that 

the two metrics convey different information, or conversely that the call characteristics 

are influenced more by weight than length. This possibility seems unlikely however, as 

these two characteristics are very tightly correlated in the reproductive males used in this 

study (Pearson‘s r = 0.959). Until we can ascertain how calls are produced in round goby 

however I cannot assess what is driving these differences. 

 Although acoustic recordings are greatly affected by small tank dynamics 

(Akamatsu et al. 2002), the recordings in the current study were taken with the 

hydrophone very close to the fish and all experiments were done in the same conditions 
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so individual comparisons would not be affected.  The removal of the male‘s shelter for 

the duration of the recording may also have negatively impacted call production. This 

does not seem to be the case however, as male call rate is similar to that found in nature 

(unpublished data), as are the call characteristics (Rollo et al., 2007). There also remains 

the possibility that male mate choice affected the results of this study. However, females 

were size matched and always checked for status of the urogenital papilla before being 

placed in the experimental setup. Regardless, male courtship effort may have been altered 

by the use of several females across trials. The production of calls by males thought to 

have been ―sneakers‖ may suggest that this reproductive stage could be an alternate 

behavioural tactic when more dominant males are present.  

 In conclusion, male round goby have call parameters that are strongly linked to 

several body characteristics. These acoustic traits may act as an honest signal to females 

during courtship of the male‘s condition or parental capabilities. Male courtship calls may 

carry a large amount of information not only of male lipid stores, but also of overall size. 

These traits, if the female is able to detect them, would be beneficial for determining risks 

of filial cannibalism, effort put into rearing, as well as fighting capabilities. Future studies 

should aim to determine the relative importance of acoustic cues in relation to other male 

courtship signalling modalities and test the response of females to these courtship signals 

as a true test of honest signalling in this species.   
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Chapter III 

 

EXAMINING THE POTENTIAL FOR ACOUSTIC HONEST SIGNALLING IN THE 

ROUND GOBY (NEOGOBIUS MELANOSTOMUS) THROUGH FEMALE CHOICE 

 

 

Introduction 

 Acoustically-mediated honest signalling is dependent upon two factors: the first 

being that the acoustic signal correlates with male condition and the second being that 

females can discern this relationship through the sound. Both of these aspects are well 

studied in terrestrial systems. Male condition is usually examined as a function of male 

size (Schulte-Hostedde et al., 2005), though some studies are beginning to look into 

condition as a factor of social ranking (Kitchen et al., 2003, Vannoni and McElligott, 

2008). Larger males are often more capable combatants, winning themselves a greater 

social rank (Le Boeuf , 1974; Bowyer, 1986). From the aspect of size, sound production 

should be a reliable signal as sound tends to scale linearly with the size of the larynx or 

syrinx and diameter of the mouth, or in the case of insects, the size of the vibrating organ 

producing the sound (Fletcher, 2004). When presented with acoustic signals produced by 

conspecific males, females are often able to judge male size accurately, often by the 

frequency of the call (Ryan et al, 1990). Female crickets (Teleogryllus commodus) prefer 

males that present greater calling effort, a trait that is condition dependent and suspected 

of being heritable (Bentson et al., 2006). Having offspring that in turn produce more 

attractive calls fits into the ―sexy son‖ hypothesis, increasing overall fitness as the female 

would ultimately have more descendants (Weatherhead and Robertson, 1979). Males in 

better condition put greater effort into raising young in species that do so (Iwasa and 

Pomiankowski, 1999). 
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 In fish, evidence for female choice for male acoustic signals is limited. While 

male acoustic signals often correlate strongly with male body size (Amorim et al., 2010; 

Chapter 2), few studies examine honest signalling from the female choice perspective. In 

cases where female preference for male calls is examined, females tend to prefer calls 

where the temporal aspects of the call correlate with male body characteristics. In the 

plainfin midshipman (Porichthys notatus), male calls that are uninterrupted and longer in 

duration are preferred by females (McKibben and Bass, 1998). Greater size and muscle 

mass may be attributed to the longer call duration (Connaughton et al., 2002) and if larger 

males are preferred, duration may act as an honest signal of size. Greater courtship effort 

is also linked to greater male energy reserves, reducing the chances that males will 

cannibalize their brood (Knapp and Kovach, 1991), thus increasing female fitness.  

 The current study focuses on the potential for honest signalling in the round goby 

(Neogobius melanostomus). Previous work has shown that acoustic characteristics do 

correlate strongly with male body conditions (Chapter 2). Where male calls function as 

indicators of body size, the potential exists for females to exploit this trait. The preference 

for larger males and the ability to tell a male‘s ―condition‖ from his call would make the 

acoustic signal a true honest signal. The objective of this chapter is to determine if female 

round goby show some level of preference for male call characteristics, providing 

evidence for true honest signalling of male size in this species. 

 

Methods 

Sampling Methods 

Round gobies were caught by angling at the Erieau Marina (N 42.2572945 W 

81.9084025), on the north shore of Lake Erie and in the Detroit River, Ontario in the 
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summers of 2013 and 2014. Fish were then transported to the Animal Care Facility at the 

University of Windsor where they were kept on a 12L:12D light cycle at 18±1°C and fed 

daily (Tetramin Fish Flakes; Tetramin Inc, Blacksburg, VA, USA). Fish were housed in 

communal tanks of up to 10 females. Lengths of PVC tubes and clay pots were provided 

as artificial shelters. 

 

Effects of Hormone Injection 

Once recordings of reproductive males had concluded, out-of-season female round 

gobies were tested for male call preference. Initial tests were run at night during the 

months of October and November, 2013. Previously reproductive females were given an 

intraperitoneal injection of 0.5 μL/g fish body mass of Ovaprim (Syndel Laboratories 

Ltd., Vancouver, B.C.) 5 days before testing, and then again after testing. The second test 

was done 48 hours after the second injection. This timing was decided as the fish were no 

longer in reproductive condition, thus the longer timeline for injection with a booster was 

chosen. This method has been used previously for inducing maturation in juvenile fish 

(Hansen and Routledge). Two trials were done in order to see if female choice was 

consistent across time within the same female. A total of 10 fish were used for this test. 

Hormone injection was decided upon in order to enhance female response rates, since the 

fish used in this time frame were no longer in reproductive condition. The experimental 

procedure for the hormone injection study was the same procedure used in subsequent 

tests. After the second trial females were euthanized with clove oil and measured for total 

length (mm), total weight (g) and gonad weight (g). When females were in reproductive 

condition during the summer of 2014, Ovaprim injection did not occur, and an additional 

34 females were tested for call preference. 
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Male Call Playback 

  I had recordings from several reproductive male round gobies from previous 

work (Chapter 2) that I used in female call preference experiments. Both parental and 

―sneaker‖ males were used in this portion of the study, as parental male nuptial 

colouration returned to normal colouration and the two morphs were not distinguishable 

by size. These calls were recorded in individual tanks in a Z-Hab System (Aquatic 

Habitats Incorporated; Apopka, Florida, USA), at night during the summer months of 

2013 and 2014 while in the presence of a reproductive female. All calls used were 

produced by males while in the presence of a reproductive female. The longest call train 

from each male was sectioned out of a 30 minute recording using Adobe Audition 3.0 

software (Adobe Systems Incorporated, USA) so that the file used for playback was of a 

single, clear fish call. Calls were saved with a 15 decibel gain to allow for easy playback. 

A 1020-L rectangular (243.8 × 91.4 × 91.4 cm) fibreglass tank with a holding area 

in the center and speakers (UW-30, Lubell Labs, Columbus, OH, USA) at either end was 

used for all female choice trials (Figure 3.1). The barriers had four 10 cm wide exits 

located approximately 20 cm apart so that fish must navigate through the barrier to gain 

access to the speaker of choice. Speakers were on acoustic foam to reduce vibration and 

were surrounded by a nylon mesh barrier so that fish could not use the speaker as a 

shelter. A GoPro Hero 2 camera (Woodman Labs Inc., USA) was situated above the tank 

and recorded 960p definition video of each thirty minute trial. The tank was filled with 

dechlorinated tap water to a depth of 30 cm and was held at 13 ± 1 °C. To start a trial, a 

reproductive female was placed in the centre of the holding area using a net. In order to 

reduce the chances that a female would seek shelter and refuse to move when calls began,  
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Figure 3.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Diagram of the female choice experimental set-up. The tank in which 

female call preference was tested consisted of three ―zones‖, the two outer zones in which 

a speaker played a call from and the centre or starting zone. Dashed lines represent the 

barrier from which females had to navigate out of to reach a speaker. Speakers are 

represented by circles and the nylon mesh cage around the speakers are represented by the 

boxes. 
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there was no acclimation period. Two calls were chosen at random from a total of 12 

male calls, and the speakers never played the same call during the same trial. A call was  

then played from each speaker simultaneously and each at an intensity of 140 dB re 1μPa 

as measured before each trial by a precalibrated hydrophone (Interocean Inc., San Diego, 

CA, U.S.A.). Calls were left playing on a continuous loop for the duration of the 30 

minute trial.  The fish was left without any other outside stimulus for the duration of the 

trial. After the trial, females were euthanized with clove oil and measured for total length 

(mm), total weight (g) and gonad weight (g). 

Female behavioural responses to male playback were quantified from video to 

determine speaker of choice for male preference, latency of response before approach 

began, and time spent near speaker. A responsive female was any female that oriented 

suddenly to a call and navigated through the barriers to approach one of the speaker 

zones. Females that oriented towards a call but stopped at the barriers were counted as 

non-responders as the motivation for moving from the starting zone could not be judged. 

A female was considered to have chosen a speaker when she was within 10 cm of the 

cage in which the speaker was placed. ―Time spent near a speaker‖ was determined by 

recording the period of time during which a female was situated within 10 cm of a 

speaker cage. 

 

Statistical Analysis 

 All statistical analyses were performed using JMP 10 statistical software (SAS 

Institute Incorporated, North Carolina, USA). A matched pairs t-test was performed to 

compare the mean amount of time spent within each speaker region between trials of 

hormone injected females that responded in both trials. The responses of injected and 
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non-injected fish were tested and found not to be significantly different. Therefore, all 

females were analyzed as a single group. 

Data from trial 1 of each responsive fish was log10 transformed to obtain a normal 

distribution. A Generalized Linear Model (GLM) was run using latency to respond as the 

dependent variable and the dominant frequency (DF) and interpulse interval (IPI) of the 

first male chosen as explanatory variables. A separate GLM was run with time spent in 

the speaker area as the explanatory variable and the dominant frequency and interpulse 

interval as explanatory variables. The GLM of time spent at the speaker of choice was 

then repeated with the initially chosen speaker‘s DF and IPI.  

To determine if females exhibited a  preference for particular male call 

characteristics, males‘ calls were ranked as attractive or unattractive based on the amount 

of time a female spent in their respective speaker arena. An attractive male was ranked a 

1 if that male had a lower frequency than the unattractive male and a 2 if that male had a 

higher frequency than the unattractive male. For IPI, attractive males were given a rank of 

1 if that male had a longer IPI than the unattractive male and a 2 if that male had a shorter 

IPI than the unattractive male. The binomial probability of each outcome was calculated 

using the equation with a 50% chance of occurrence in 

either direction. 

 

Results 

 Of the total 44 female fish used, 24 responded to the male call stimulus. Of these 

24 fish, 7 were from the hormone injection trials. Of the 7 responsive Ovaprim-injected 

females, 3 females were only responsive during one of the trials. From the matched pairs 
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t-test, females consistently spent the same amount of time in each speaker region across 

both trials (t(df=7) = -0.47, p = 0.651; Figure 3.2). The 4 females that responded in both 

trials spent more time with the same male across each of their trials. Injected and non-

injected fish were not significantly different in their responses (F-Ratio(df=1,38) = 

3.3907, p = 0.0738). 

  In trial 1, 21 females responded to male call stimulus. Winning calls were those 

where the female spent more time in the speaker‘s arena. One of the males (male 31) was 

consistently rejected by females in all 5 of the trials where females were responsive; this  

male was atypical in sound, with a call that was ―tinny‖ in quality and probabilities were 

calculated both including and excluding data where this male was an option. Females did 

spend time at the speaker playing this call and would occasionally choose this speaker 

first; however, females consistently spent less time at this speaker. Of the responding 

females, 1 had the option of choosing between males of the same frequency and was 

discounted from the probability calculation. The remaining 20 females showed an even 

distribution of choice between high and low frequency males (P(x=10) = 0.176). When 

data from male 31 was removed, the total number of trials dropped to 17 and choosing the 

low frequency male had a probability of random occurrence of (P(x=10) = 0.148) (Figure 

3.3a).  

Examination of the IPI chosen by responsive females shows that females had a 

strong preference for male calls with a longer average IPI. When including data from 

male 31, females chose the male with the longer interpulse interval in 15 of the 21 trials 

(P(x=15) = 0.0259). Without the data using male 31, the number of trials was 17 and the 

probability of random occurrence of 14 ―wins‖ dropped to (P(x=14) = 0.00519) (Figure 

3.3b).  
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Figure 3.2 

 

 
 

Figure 3.2. Time spent in arena speaker across trials. The 4 hormone injected females 

that responded in both trials spent similar amounts of time in the same speaker arenas 

during both trials. These 4 females spent time in both arenas, for a total of 8 choices, 

during the two trials and time spent in the arena was consistent between trials. Each line 

represents one chosen speaker, where the time spent at that speaker between trials is not 

significantly different. The hormone injected females consistently chose the same males 

across trials, and also spent similar amounts of time in the chosen speaker arena (t(df=7) 

= -0.47, p = 0.651).  
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Figure 3.3 

 

 
 

Figure 3.3. Number of females showing call preference. The call with which a female 

spent the greater amount of time or chose first was classed as the attractive male of the 

two calls and tallied as the preferred call. a. shows the frequency of the call where 

attractive males were decided by time spent in the speaker arena by the female; b. shows 

the interpulse interval of the call where attractive males were decided by time spent in the 

speaker arena by the female; c. shows the frequency of the call where attractive males 

were decided by the initially chosen call; and d. shows the interpulse interval of the call 

where attractive males were decided by the initially chosen call.
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Initial call of choice showed a similar pattern, where frequency had a probability 

of (P(x=11) = 0.160) with male 31 and (P(x=10) = 0.0944) without male 31 (Figure 3.3c). 

The initial IPI chosen loses some of the distinction, with females only slightly preferring 

longer IPIs ((P(x=12) = 0.140) with male 31 and (P(x=11) = 0.0944) without male 31) 

(Figure 3.3d).  

 None of the GLMs performed showed any clear pattern (Table 3.1). Time spent 

near speaker was independent of call DF or IPI (p > 0.05), nor did it depend on the DF or 

IPI of the initially chosen call (p > 0.05). Removing interaction terms from these  

models created no change in the results. Latency of the response was also not determined 

by the initially chosen call‘s DF or IPI (p > 0.05). All residuals were normally distributed.  

 

Discussion 

The possibility for female choice is evidenced by the very low probability (2.6% 

chance of random occurrence) of females choosing males with longer IPI over males with 

shorter IPI, showing that this was a choice rather than a random occurrence. When 

choices involving male 31 were removed from the analyses, the probability drops even 

lower (0.5% chance of random occurrence). The atypical call of male 31 may be due to 

the hydrophone resting against the wall of the tank, producing a call with a tinny quality. 

In other fish species, the temporal aspect of the call seems to have a greater impact on 

female preference (McKibben and Bass, 1998). In the midshipman, females are much 

more discriminatory over pulse duration than over modulations in frequency, where even 

short breaks of a few hundred milliseconds in a call would decrease female 

responsiveness (McKibben and Bass, 2001). Another fish species where temporal  
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Table 3.1  

 

Table 3.1. Statistical results of female choice GLMs. The results of the Generalized 

Linear Models with a normal distribution performed on time spent with the chosen 

speaker and latency of the females‘ response. No significant results were found.  

 

  
DF ChiSquare Prob>ChiSq 

Time spent Initial DF chosen 1,38 0.3544 0.5516 

 
Initial IPI chosen 1,38 0.114 0.7356 

 
Initial DFxIPI chosen 1,38 0.0202 0.8868 

Time spent DF chosen 1,38 0.1558 0.693 

 
IPI chosen 1,38 0.7538 0.3853 

 
DFxIPI chosen 1,38 0.563 0.453 

Latency Initial DF chosen 1,21 0.5266 0.468 

 
Initial IPI chosen 1,21 1.5234 0.2171 

 
Initial DFxIPI chosen 1,21 0.2837 0.5943 
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discrimination has been discovered, the bicolour damselfish, Eupomacentrus partitus, 

increases courtship effort when calls with longer pulse intervals are played (Myrberg and 

Spires, 1972). The enhancement in courtship effort is evident with as little as a 10 msec 

increase in pulse interval; however, increasing the length of the pulse itself does not affect 

the courtship effort (Myrberg and Spires, 1972). The fact that female choice was stronger 

on the basis of time spent rather than speaker of first choice may be suggestive that 

females will visit multiple male nests before choosing a mate. This seems to be a distinct 

possibility as round goby will lay their eggs in several nests (Corkum et al., 1998). 

Acoustic signalling is part of male courtship effort, and so females may assess males on 

several courtship tactics before mating (Malavasi et al., 2009). 

The lack of obvious choice by females based on frequency is not entirely 

unexpected. Round goby do not have a strong ability to differentiate between low range 

frequencies (Belanger et al., 2010), however this is condition dependent, as reproductive 

females are capable of distinguishing differences in frequencies (Zeyl et al., 2013). Even 

in the midshipman, a species that does display a preference for frequency, the preference 

is for a call frequency that is expected at a certain temperature and not for a frequency 

that displays information about the male (McKibben and Bass, 1998). In species that 

produce sound through vibratory muscles, larger males produce lower frequency calls, as 

larger muscles take longer to contract (Crawford et al., 1997; Connaughton et al., 2002). 

Male call frequency may indicate male size accurately, but larger males are not 

necessarily more capable fathers (Forsgren, 1997). Thus frequency may not be an 

important factor for females when selecting a mate. 

 Between trial 1 and trial 2 of the Ovaprim-injected females, all 4 of the hormone 

treated females that were responsive in both trials were consistent in their responses. The 
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precision of the amount of time spent between trials at each speaker for the Ovaprim-

injected females suggests that female round goby can differentiate between calls and will 

consistently choose the same male over time (Figure 3.2). Honest signalling likely plays a 

large part of the reasoning behind choosing the same male consistently. Another 

possibility may be that females associated certain territories with the call, as each call was 

played from the same speaker across both trials. Since male gobies have quite high site 

fidelity (Marentette et al., 2011) and inter-male variability is greater than intra-male 

variability (Chapter 2), females may have made decisions based on previous experience 

from trial 1. 

 The GLMs performed did not show evidence of female choice based on latency of 

response or time spent in the arena of the speaker of choice. This may be due to the 

female only having the choice of two males that were randomly selected from the group 

of 12 male calls. The random playback of two of twelve male calls was deemed necessary 

so as to avoid pseudoreplication that is so common in sound playback experiments 

(Slabbekoorn and Bouton, 2008). The limitation of using this method is that comparisons 

across the entire data set are made. Trends that are clear from individual choices become 

impossible to discern when examined as a whole. While the individual trials show the 

female spent more time with the males with longer IPIs, the individual variation of these 

female choices was great enough to mask patterns present in the overall data set. Females 

did not spend the most time with the speakers producing the largest IPIs, instead spending 

roughly equal amounts of time with whichever male of the pair presented to them had the 

longer IPI. The discrepancy caused by comparing randomly chosen calls could perhaps 

have been alleviated by having groups of calls from which females could randomly 

choose, so that a long IPI call would always be compared against a short IPI call. Using 
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this method would prevent pseudoreplication of only offering the female two choices, 

while simultaneously presenting two very clear choices that would be easier to analyze. 

 Certain factors that may be important to female choice were not examined in the 

current study. The sound pressure level of many species is also a key factor in female 

choice (Searcy, 1996; Nandi and Balakrishnan, 2013), however all calls were played back 

at a standard of 140 dB re 1 μPa, preventing me from examining this as a potential factor. 

Likewise, where calls were played continuously to encourage female responsiveness, 

duration of the call could not be examined as a measure of female choice. Duration is a 

significant predictor of male size in this species (Chapter 2) as well as in some others 

(McKibben and Bass, 1998). Future studies delving into female acoustic preference in 

this species could attempt to modulate these two factors to determine their importance to 

female decision making.  

The current study is one of only a few studies that have examined and found 

acoustic honest signalling in fish from the female choice perspective. Female choice is 

critical to the distinction of true honest signals from physiological by-products. This is 

especially true for acoustic signals, where the characteristics of a call will be highly 

dependent on the mechanism of production. From an allometric stand point, one would 

expect call characteristics to scale with the size of the call producing mechanism. While 

the sound producing mechanism is not known in the round goby, other goby species 

create sound using the head region (see Chapter 1) and Chapter 2 of this thesis shows that 

body characteristics interact in complex ways with male head size to alter call 

characteristics. Future studies examining bioacoustics as honest signals should be sure to 

incorporate female choice experiments before acoustic signals are deemed honest. Further 
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research needs to be done to determine what specific benefits female round goby receive 

by choosing larger males. 
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Chapter IV 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

  This thesis expands our understanding of the roles of bioacoustics in fish, 

particularly in terms of honest signals and male call variation. Previous work from our lab 

showed that the round goby is capable of localizing to a sound source (Rollo et al., 2007), 

distinguishing conspecifics from heterospecifics (Rollo and Higgs, 2008) and that 

auditory responses are dependent on the sexual condition of the fish (Zeyl et al., 2013). 

We have now also added that calls correlate strongly with male body characteristics and 

that females are capable of detecting these differences. 

 In Chapter 2, I collected calls from round goby at night in the presence of a 

reproductive female and analyzed several characteristics of these calls. Principal 

Components Analysis showed a strong association among Interpulse Interval (IPI), Total 

Length (TL), Total Weight (TW) and Head Width (HW) as well as links between 

Dominant Frequency (DF), Call Duration and Number of Pulses. Gonadosomatic Index 

was not highly related to any call or body features and was discounted from further 

analyses. Generalized Linear Models used individual call characteristics as dependent 

variables and incorporated the remaining body characteristics as explanatory variables. 

Interaction terms in the models were significant for all three call variables. In the case of 

frequency and IPI, the interactions between HWxTL and HWxTW worked in opposite 

directions. The three-way interaction of HWxTLxTW that affected call duration showed 

that a decreased TW greatly decreased call duration. The shortest calls were produced by 

long, thin males with big heads.  

 These results suggest that there is a very complex interplay between male body 

morphometrics and the calls that are produced. The fact that calls do correlate to male 
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body condition also provides evidence of the potential that these calls function as true 

honest signals of male body size. The next Chapter focused on validating whether or not 

females actually could differentiate between male calls and would have a preference for 

certain call features. 

 Chapter 3 used 12 of the calls recorded from the male portion of the study to 

determine if female round goby would display a preference for call characteristics when 

presented with 2 randomized calls. Calls were played continuously with no breaks for the 

duration of each trial and female responsiveness in the form of latency to respond, initial 

speaker of choice and time spent in each speaker zone was quantified. While there was no 

relationship with latency to respond, there was a pattern observed for time spent in the 

speaker zone with regards to IPI of the calls being played. The pattern was similar when 

considering the IPI and the initial speaker of choice, albeit not as strong. The chances of 

females randomly choosing the longer IPI in 15 out of 21 trials was extremely low 

(P(x=15) = 0.0259), suggesting that female round goby prefer male calls with a longer 

interpulse interval.  

 Taken together, the results of both chapters suggest that females prefer males that 

have large heads and high body mass. Male length affects call parameters in an 

unexpected way, making the effects of individual body characteristics much harder to 

discern. While the frequency of a male call was also strongly correlated to an individual‘s 

body morphometrics, females did not show any preference for this trait. Male size is 

known to alter call frequency in several species of fish (Crawford et al., 1997; 

Connaughton et al., 2002); however, females may be more interested in calling effort 

typically presented by better condition males than simply the largest males (Amorim et 

al., 2010). Males that put forth greater effort during courtship may be less likely to 
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cannibalize their brood, perhaps because of greater energy reserves (Forsgren, 1997). If 

interpulse interval is directly related to male energy reserves, the female would benefit 

from increased survival of her young. Further studies into honest signalling in round goby 

could assess male body lipid content and how this body characteristic affects courtship 

and paternal care.  

 Our understanding of the ecology of this invasive species is slowly increasing. 

Greater knowledge of how the round goby breeds is important to help prevent the spread 

of this species and other future invaders from this family. Incorporating passive acoustic 

monitoring into management practices could allow for more specific targeting of the 

larger more desirable males, and aid in early detection of a moving invasion front. Round 

gobies at the edges of an established area that disperse to establish new populations are 

often larger (Brandner et al., 2013) or much more aggressive (Groen et al., 2012). Using 

acoustic monitoring to determine which invasion fronts are more likely to be successful 

will more effectively slow the spread of this invasive species. While I realize that the 

round goby will likely never be successfully eradicated from the regions in which it has 

now become established, it is still important to prevent the movement of this species into 

new bodies of water. 

This study is also very important in terms of the overall understanding of fish 

bioacoustics and understanding the diverse uses of underwater acoustic signalling. There 

are important benefits of determining in which fish species acoustic cues reliably signal 

mate condition, especially as anthropogenic impacts on aquatic ecosystems increases. 

Increasing our understanding of fish reproduction could aid us in reducing the detrimental 

effects of human activities. Where the Gobiidae is such a large family, there is still much 

to learn about the individual species within this group. It is also very likely that a great 
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many more species than the ones highlighted in Chapter 1 are soniferous. Ideally, field 

studies will also be done on this topic as acoustic laboratory studies usually cannot be 

used to represent the natural environment. The restrictions of the tank affect the sound 

being produced by the animals, preventing a direct comparison between lab and field-

based studies.  

True acoustic honest signalling in fish is not widely examined. This thesis 

highlights the importance of confirming the occurrence of female choice before signals 

can be labeled as honest indicators of male ―quality‖. The confirmation of female 

preference for certain male call variables in the round goby is one of the few studies to 

take this approach to honest signalling in fish. This study also highlights the abilities for 

sound detection in a fish with no swim bladder or auditory accessory organs.  
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