
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

6-2010

Analysis and Transformation of Pipe-like Web
Mashups for End User Programmers
Kathryn T. Stolee
University of Nebraska at Lincoln, kstolee@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Stolee, Kathryn T., "Analysis and Transformation of Pipe-like Web Mashups for End User Programmers" (2010). Computer Science and
Engineering: Theses, Dissertations, and Student Research. 6.
http://digitalcommons.unl.edu/computerscidiss/6

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/6?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages

ANALYSIS AND TRANSFORMATION OF PIPE-LIKE WEB MASHUPS
FOR END USER PROGRAMMERS

by

Kathryn T. Stolee

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Sebastian Elbaum

Lincoln, Nebraska

June, 2010

ANALYSIS AND TRANSFORMATION OF PIPE-LIKE WEB MASHUPS

FOR END USER PROGRAMMERS

Kathryn T. Stolee, M. S.

University of Nebraska, 2010

Adviser: Sebastian Elbaum

Mashups are becoming increasingly popular as end users are able to easily access, ma-

nipulate, and compose data from several web sources. To support end users, communi-

ties are forming around mashup development environments that facilitate sharing code and

knowledge. We have observed, however, that end user mashups tend to suffer from sev-

eral deficiencies, such as inoperable components or references to invalid data sources, and

that those deficiencies are often propagated through the rampant reuse in these end user

communities.

In this work, we identify and specify ten code smells indicative of deficiencies we ob-

served in a sample of 8,051 pipe-like web mashups developed by thousands of end users

in the popular Yahoo! Pipes environment. We show through an empirical study that end

users generally prefer pipes that lack those smells, and then present eleven specialized

refactorings that we designed to target and remove the smells. Our refactorings reduce the

complexity of pipes, increase their abstraction, update broken sources of data and dated

components, and standardize pipes to fit the community development patterns. Our assess-

ment on the sample of mashups shows that smells are present in 81% of the pipes, and

that the proposed refactorings can reduce that number to 16%, illustrating the potential of

refactoring to support thousands of end users developing pipe-like mashups.

iii

ACKNOWLEDGMENTS

I would like to acknowledge and give sincerest thanks to all those who have played a

role in the completion of this thesis. Support for an endeavor such as this comes from many

places, each uniquely important and worthy of mention, though not all can be listed on just

one page. I am so blessed to have wonderful family, friends, and colleagues, and I thank

you all sincerely.

It goes without saying that none of this work would have been possible without the

guidance of my advisor, Sebastian Elbaum. I cannot thank him enough for his support and

dedication. I would also like to thank all the ESQuaReD faculty, most specifically those

on my committee, Gregg Rothermel and Anita Sarma, for their thoughtful feedback and

suggestions.

My deepest thanks goes to my family, and especially my husband Derrick, for his un-

failing love and his ability to keep me grounded and focused. I would also like to thank my

best girlfriends, Aimee and Stephanie, for the countless girls’ nights and adventures that

help us all keep our sanity! The students in the ESQuaReD lab deserve special acknowl-

edgement, especially Elena, Brady, Charlie, Isis, Zhihong, and Tingting, who have kept me

caffeinated and smiling.

I would also like to extend gratitude to my collaborators in the EUSES Consortium,

who have helped to motivate and guide this work. Additionally, I would like to thank all

the rest of the faculty and staff in CSE for all they do in supporting students during our

graduate careers.

This work was supported in part by the EUSES Consortium through NSF-ITR 0324861

and 0325273, NSF-0915526, and CFDA#84.200A: Graduate Assistance in Areas of Na-

tional Need (GAANN).

iv

Contents

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Motivating Example . 3

1.2 Research Contributions . 7

1.3 Thesis Overview . 8

2 Related Work 9

2.1 End User Software Engineering . 9

2.2 Mashups and Environments . 11

2.3 Refactoring . 12

2.4 Graph Transformations . 14

3 Smell Detection 16

3.1 Mashup Notation Definitions . 17

3.2 Smell Definitions . 19

3.2.1 Laziness Smells . 20

v

3.2.2 Redundancy Smells . 22

3.2.3 Environmental Smells . 24

3.2.4 Population-Based Smells . 25

3.3 End Users’ Perspectives on Smelly Pipes 26

3.3.1 Study Design . 26

3.3.1.1 Experiment #1: Preference 28

3.3.1.2 Experiment #2: Output Analysis and Correctness 30

3.3.1.3 Presentation of Results 31

3.3.2 Study Implementation and Operation 33

3.3.3 Participant Profiles . 34

3.3.4 Results . 37

3.3.4.1 Experiment #1: Preference 38

3.3.4.2 Experiment #2: Output Analysis and Correctness 43

3.3.5 Summary . 45

3.4 Smells in the Community Artifacts . 47

3.4.1 Artifact Selection and Collection 47

3.4.2 Smell Detection Infrastructure . 49

3.4.3 Smell Frequencies . 50

4 Refactoring 51

4.1 Refactoring Definitions . 51

4.1.1 Reduction . 52

4.1.2 Consolidation . 54

4.1.3 Abstraction . 59

4.1.4 Deprecations . 62

4.1.5 Population-Based Standardizations 63

vi

4.2 Refactorings Adapted to Yahoo! Pipes . 64

4.3 Refactoring Study Infrastructure . 66

4.4 Effectiveness of Refactorings . 68

4.5 Generalizability and Threats . 70

4.5.1 Generalizability . 71

4.5.2 Other Threats to Validity . 71

5 Conclusions and Future Work 73

A Mechanical Turk Implementation 75

A.1 Qualification Quiz for Web Mashup Understanding 75

A.1.1 Part 1: Background Questions . 76

A.1.2 Part 2: Tutorial Information . 77

A.1.3 Part 3: Comprehensive Questions 77

A.1.4 Part 4: Informed Consent (IRB#20100410792 EX) 80

A.2 Human Intelligence Tasks . 82

A.2.1 Preference . 82

A.2.2 Output Analysis . 91

B End User Study Additional Results 97

B.1 First Experiment: Preference . 97

B.2 Second Experiment: Correctness . 98

C On the Semantic Correctness of the Refactorings 100

C.1 Overview and Approach . 100

C.2 Proof Sketches . 102

Bibliography 115

vii

List of Figures

1.1 Original Pipe . 3

1.2 Partially Refactored Pipe . 4

1.3 Completely Refactored Pipe . 6

3.1 Shorthand for Common Predicates Used in Mashup Definitions 17

3.2 Shorthand for Common Predicates Used in Smell Definitions 20

3.3 Experimental Design . 27

3.4 Preference Task Example . 29

3.5 Output Analysis Hit Example, as it Appears to a Participant 32

3.6 Participant Workflow in Mechanical Turk . 34

3.7 Our HIT Entries in Mechanical Turk . 34

3.8 Four-Module Pipe with Two Generators . 48

3.9 Smell Detection and Pre-Processing Infrastructure 49

4.1 Shorthand for Common Predicates Used in Refactoring Definitions 52

4.2 Merge Consecutive Operators . 55

4.3 Merge Path Altering . 56

4.4 Merge Subsequent Operator . 57

4.5 Joined Generators . 58

4.6 Identical Parallel Operators (two generators) 60

viii

4.7 Manipulation Infrastructure . 66

4.8 Greedy Algorithm . 67

A.1 Pipe for Qualification Test Questions . 77

A.2 Output Analysis Example Pipe . 91

A.3 Isomorphic Paths Smell and Extract Local Subpipe, Refactored 92

A.4 Isomorphic Paths Smell and Extract Local Subpipe, Smelly 93

A.5 Unnecessary Abstraction Smell and Joined Generators Smells and Push Down

Module, Refactored . 95

A.6 Unnecessary Abstraction and Joined Generators Smells and Push Down Mod-

ule, Smelly . 96

ix

List of Tables

3.1 Preference Tasks General Description . 30

3.2 Output Analysis Tasks General Description 31

3.3 User Responses to the Question, What is your programming experience? 35

3.4 User Responses to the Question, How long have you been programming (e.g.,

using languages like Java, C/C++, JavaScript, Perl, Python, etc.)? 35

3.5 Comparison Between Groups Segmented on Education (O1) 36

3.6 Comparison Among Groups Segmented on Qualification Score (O2) 37

3.7 Overall Preference Selection . 38

3.8 Overall Preference Results per Task . 39

3.9 Preference Results for Based on Education (O3 and O1) 39

3.10 Preference Results Based on Qualification Scores (O3 and O2) 40

3.11 Overall Correctness on Output Analysis Tasks 44

3.12 Overall Correctness for Output Analysis Tasks by Treatment 44

3.13 Correctness Results by Education (O4 and O1) 44

3.14 Correctness Results by Qualification Score (O4 and O2) 44

3.15 Most Prevalent Smells across 8051 Pipes . 50

4.1 Smells and Refactoring Effectiveness . 68

A.1 Preference HIT Example . 82

x

A.2 Joined Generators Smell and Joined Generators Refactoring 83

A.3 Duplicate Strings Smell and Pull Up Module Refactoring 84

A.4 Consecutive Order-Independent Operators Smell and Merge Consecutive Op-

erators Refactoring . 85

A.5 Invalid Source Smell and Remove Deprecated Sources Refactoring 86

A.6 Deprecated Module Smell and Replace Deprecated Modules Refactoring 87

A.7 Duplicate Field Smell and Clean Up Module Refactoring 88

A.8 Global Isomorphic Paths Smell and Extract Global Subpipe Refactoring 89

A.9 Unnecessary Module and Non-conforming Module Orderings Smells and Nor-

malize Order of Operations Refactoring . 90

B.1 Time to Completion of Preference HITs by Education (O1) 97

B.2 Time to Completion of Preference HITs by Qualification Scores (O2) 98

B.3 Spearman’s Correlation Coefficients for Preference Tasks 98

B.4 Average Time to Completion of HITs by Education (O1) 99

B.5 Average Time to Completion of HITs by Qualification Score (O2) 99

B.6 Spearman’s Correlation Coefficients for Output HITs 99

1

Chapter 1

Introduction

A mashup is an application that manipulates, composes, and reuses existing data sources

or functionality to create a new piece of data or service [11]. A web mashup is a mashup

application in which the sources of data or services reside on the web. For example, a web

mashup could grab data from some RSS feeds (e.g., house sales, vote records, bike trails),

join those data sets, filter them according to a specified criteria, and plot them on a map

published at a website [36].

Mashups have become extremely popular as development environments make it possi-

ble for end users to quickly get, process, and glue data with powerful APIs. For example,

Yahoo Pipes [29], one of the most popular mashup development environments and the par-

ticular target of our techniques and empirical studies, provides users with a drag and drop

environment to create pipes by selecting and configuring predefined modules and connect-

ing them with wires through which data flows. We refer to these as pipe-like mashups.

Over 90,000 end users have created pipes since 2007 and over 5 million pipes are executed

in the Yahoo’s servers daily [15].

In addition to popular use by individuals, communities are forming around mashup

environments that facilitate sharing of resources. Users are sharing their programs with

2

one another via public repositories, sharing knowledge via message boards, and creating

tutorials to help others learn. These trends of programming support and community growth

for end user programmers can be seen across many mashup environments [1, 6, 14, 29, 37].

In spite of mashups’ increasing power and popularity, in our investigation of pipe-like

mashups we have observed that mashups tend to suffer from common deficiencies such as

being unnecessarily complex, using inappropriate or dated modules or sources of informa-

tion, assembling non-standard patterns, and duplicating values and functionality. Clearly,

these characteristics are undesirable and they become especially problematic when we con-

sider that reuse is rampant among end user programmers. Over 73,000 pipes have been

committed to Yahoo’s public repository, and from the sample of 8,051 pipes we studied,

66% had been reused an average of 17 times. While reuse should be encouraged so users

can take advantage of the knowledge and resources of the community, deficiencies are often

propagated during the reuse process.

Undesirable program characteristics, such as the deficiencies described for mashups,

are often referred to as code smells[10]. Smells are indications that something may be

wrong with a piece of code. Professional programmers often perform semantic preserving

transformations in their programs to remove smells and improve code quality, a process

called refactoring [10]. While refactoring has been well-studied in the development en-

vironments utilized by professional programmers [28], these rich program transformation

techniques have not yet penetrated the end user domain. Through the application of smell

detection and refactoring techniques to web mashups, we can begin to address the deficien-

cies in web mashups and provide better support to end user programmers, allowing them

to more effectively contribute to and utilize resources from their communities.

3

1.1 Motivating Example

We now present a running example to illustrate what is a pipe-like mashup, what are the

potential smells in such mashups, and how refactorings can help to remove those smells.

Figure 1.1: Original Pipe

Figures 1.1 to 1.3 show screenshots of the Pipes Editor, Yahoo!’s development environ-

ment operating in a browser, alongside the prototype interface for our smell detection and

refactoring toolset (grayed area). The Editor contains one of the pipes we collected from

the Yahoo! Pipes repository. This pipe is meant to aggregate and sort news articles from

several websites, and was selected for illustration due to the variety of smells it exhibits in a

relative small number of modules. Throughout these figures we will see different revisions

of this pipe as the refactorings are applied to address the smells detected (the letter labels

4

Figure 1.2: Partially Refactored Pipe

serve to reference the affected modules). At each stage, the prototype indicates the smells

that are present in the pipe, shows examples of how the smells can be refactored, and offers

to perform the refactorings for the user.

The structure of the pipe is best understood as a data-flow representation from top

(inputs) to bottom (output). Each module is defined by the Pipe’s environment, and is

connected to other modules via wires. Most modules contain fields, and fields can contain

hard-coded values or receive values via wire. In Figure 1.1, six generator modules retrieve

data from external sources: five Fetch Feed modules, A, B, C, F , and I , and one Feed

Auto-Discovery module, D, each containing one field. These generator modules provide

the data for the rest of the pipe modules to process. Two generator modules, A and C,

5

are wired directly into Truncate modules E and G, respectively. Truncate modules only

retain the first n items to pass to the next module, where n is set by the field value. Two

other generator modules, B and F , are aggregated through a path-altering Union module,

H , before feeding to Truncate module J . Modules E, G, J , and I are aggregated with a

Union module, K, that feeds to a Sort operator module, L, and finally to the pipe’s Output

module, M .

Although this is a functional pipe, it has several smells that can be removed by refactor-

ing, while preserving the underlying semantics of the pipe. First, one of the modules, D, is

completely disconnected from the pipe and serves no purpose, thus it should be removed.

Additionally, the data produced by the two generator modules, B and F , are immediately

aggregated prior to any manipulation. Since generator modules can accommodate multi-

ple fields, this redundancy can be removed by joining them. Additionally, in two of the

Truncate modules, E and J , the string “3” specifies the number of items to allow; if the

user ascertains that this value represents the same concept, then it can be abstracted into a

separate module to facilitate and ensure consistency in future changes. Given that 36% of

the pipes in our sample were modified after being published and 66% had been cloned at

least once, making future changes easier is likely a concern for users.

The deficiencies and redundancies discussed for Figure 1.1 were addressed to generate

the pipe in Figure 1.2. Generator modules B and F were merged to yield module B + F ,

the disconnected module D was removed, and a new module, N , was added to abstract the

value “3” from modules E and J , which now receive their field values via wire. Despite

these changes, the pipe in Figure 1.2 also suffers from some deficiencies. Since merging the

generator modules, the Union module H has only one incoming wire, becoming ineffectual.

Additionally, two of the paths leading to module K, A to E and C to G, are nearly identical

except for their field values. These isomorphic paths can be abstracted into a separate pipe

6

Figure 1.3: Completely Refactored Pipe

that can be included as Subpipe module, increasing the modularity and maintainability of

the pipe.

Figure 1.3 shows the fully-refactored pipe from this example. Unnecessary module H

was removed and a separate pipe was created to replace the isomorphic paths. Overall,

through the refactoring process, two of the original modules were removed, two modules

were merged into one, two hard-coded fields are now abstracted in one place to ease future

changes, and two new subpipes hide unnecessary details in the pipe making it easier to

understand.

The example just presented is not the only pipe that suffers from so many deficiencies.

Of the thousands of pipe-mashups we examined, approximately 23% had redundant mod-

7

ules, 32% had the same string hard-coded in multiple places, and 14% used sources of data

that were not working as specified anymore. In total, 81% of the pipes we examined had at

least one type of deficiency that made them more susceptible to failure, harder to maintain,

or more difficult to reuse properly by other end users.

1.2 Research Contributions

To address these problems that limit the dependability of end user mashups and the pro-

ductivity of end user mashup programmers, we adapt and extend a well-known software

engineering technique, refactoring, to the mashup domain. Although the body of work on

refactoring is rich, this is the first effort targeting the rapidly growing pipe-like mashup

domain. Our contributions are:

• Identification of ten of the most prevalent smells observed in pipe-like mashups,

their specification utilizing a general graph representation, and evidence that end

users prefer non-smelly pipes over smelly pipes in nearly two-thirds of the exercises

performed by 22 users in an empirical study.

• Design of eleven semantic preserving transformations to refactor a smelly pipe. We

show how domain specific attributes such as the data-flow representation, the con-

strained set of parameterizable modules, and the reliance on the community, provide

unique refactoring opportunities.

• Implementation of the analysis to detect the smells and the transformations to refactor

pipes, tailored to the Yahoo! Pipes programming language.

• Study of the effectiveness of the refactorings on a population of 8,051 pipes devel-

oped by thousands of end users and shared through a public repository. The results

indicate that the refactorings can eliminate the smells in 80% of the affected pipes.

8

1.3 Thesis Overview

After introducing end user programming, web mashups, and motivating the need for refac-

torings that can remove smells from mashup programs, the rest of the thesis is organized

as follows. Chapter 2 presents related work pertaining to end user software engineering,

mashups, refactoring, and graph transformations. Chapter 3 defines a family of code smells

that are commonly found in web mashups as well as empirical evidence that users prefer

non-smelly mashups to smelly mashups. We also present the results of a smell detection

study that analyzes over 8,000 mashups created in the Yahoo! Pipes environment and shows

that the smells we defined are indeed common. Chapter 4 defines refactorings that target

the smells defined in Chapter 3, and shows the effectiveness of the refactorings by mea-

suring the reduction in smells for the artifacts used in the smell detection study. Chapter 5

discusses the results of the studies and outlines several avenues for future work.

9

Chapter 2

Related Work

Although detecting smells in end user programs with removal through automated refac-

toring is novel, there are several avenues of related work that warrant discussion in this

section. We briefly describe recent work in end user software engineering, the landscape

of mashup environments, the emergence of end user communities surrounding mashup de-

velopment tools, current work in traditional refactoring techniques, and the application of

graph transformations to refactoring.

2.1 End User Software Engineering

In 2005 there were an estimated 55 million end user programmers in the United States, and

that number has been projected to increase to 90 million in 2012 [32]. In general, end users

create programs and engage in programming activities to support their hobbies and work,

and the programs that are being created are meaningful to them, important to the businesses

for which they work, and impactful to society. However, the programs created by end

users suffer from the same deficiencies as those created by professional programmers (e.g.,

10

fault-proneness, security holes), making the quality of the programs created by end users a

primary concern [12].

What differentiates end user programmers from professional programmers is that to end

users, software is a means to an end, not the end itself. These end users utilize programming

environments and languages such as spreadsheets, databases, web macros, mashups, and

many domain-specific scripting languages. Additionally, many end users are also using

languages and environments that were traditionally targeted at professional developers. For

example, Amazon’s Mechanical Turk command line interface requires knowledge of XML,

web services, and shell scripting, yet it is targeted at “business analysts who do not want to

write software” [25].

Unlike professional programmers, end users do not have much support for all stages

of the software lifecycle. Researchers and practitioners have started applying software en-

gineering techniques to provide support for end user tasks, yet these tools are far from

pervasive in end user development environments. For example, version control has been

introduced to help users during development [14], debugging has been introduced to allow

users to ask questions about output during development [21] or preview program output

during testing [29], assertions have been used to increase the dependability of web macros

during runtime [22], and strides have been made toward providing better program mainte-

nance by using program characteristics to predict how likely a program is to be reused [31].

However, considering the increasing number of end user programmers, the diversity of pro-

grams being created, and the deficiencies in their programs, providing better education and

support for these end users is critical.

11

2.2 Mashups and Environments

Web mashups are a particular type of program that has gained popularity among end user

programmers. Most broadly, a mashup is a program that takes several input sources, per-

forms some operation, and creates a singular output. The target of the empirical studies in

this work is Yahoo! Pipes [29], a mashup tool that will “retrieve data from one or several

data sources, process the data, and publish the results as feeds or in widgets,” otherwise

referred to as an information mashup [11].

Many mashup development environments are available, some oriented toward more

proficient developers that require users to know scripting languages (e.g., Plagger requires

perl programming [30]), and many others are oriented toward environments and languages

that allow users to work at higher levels of abstraction. These more abstract environments

often wrap common mashup tasks (e.g., fetching data in known formats, aggregating, fil-

tering) into preconfigured modules, trading flexibility and control for lower adoption bar-

riers. The languages provide visual mashup representations, with the pipe structure/flow

representation being the most common among mashup development environments (e.g.,

Apatar [1], DERI Pipes [6], Feed Rinse [9], IBM Mashup Center [14], Kivati [20], Plag-

ger [30], Yahoo! Pipes [29], and xFruits [37]). Some of these environments work ex-

clusively with web data [6, 9, 29, 30, 37], while others allow the mashing of online and

offline data sources [1, 14, 20]. Despite the variety and availability of different mashup

environments that target a wide range of users and provide various types of abstraction and

development support [36], over 90,000 users created mashups with Yahoo! Pipes between

2007 and 2009, making it one of the most popular environments available. [15].

Another interesting trend is the emergence of communities around these environments

to provide user support, either as a forum, wiki, or better yet as a repository of mashups

to be shared with other users [1, 6, 14, 29, 37]. The amount of support provided in each

12

environment is in a large part dependent on the activity of the community, and researchers

are only beginning to study these communities to discover how to better support end users

developing mashups [15]. We also note that while the level of end user support for mashup

creation is increasing, the level of support for facilitating maintenance, understanding, and

robustness of mashups is just starting to be noticed. From the examples of software engi-

neering support for end user programming environments mentioned in Section 2.1, Yahoo!

Pipes provides some level of debugging support and IBM Mashup Center provides some

version control, but these solutions do not address all the correctness and quality concerns

associated with end user programs, and this type of support is certainly not widespread in

mashup environments [11].

2.3 Refactoring

Although no refactoring support has yet been introduced into mashup tools, the body of

work on refactoring is extensive [28]. Refactorings are semantics-preserving transforma-

tions on source code, typically for the purpose of maintainability and simplicity. The deci-

sion to apply a refactoring is usually motivated by the presence of a smell, which is some

characteristic in the code that could inhibit maintainability, introduce errors, or is unnec-

essarily complex. Fowler introduced refactoring to improve code design in object-oriented

programs, and introduces a family of refactorings and smells in his seminal Refactoring

book [10]. Many Integrated Development Environments (IDEs), such as Eclipse [8], in-

clude rudimentary refactoring support such as renaming methods or variables, extracting

classes, and introducing parameters. However, other refactorings that, for instance, in-

troduce design patterns or update calls to deprecated libraries, require more specialized

support.

13

To provide more sophisticated refactoring support, researchers have applied refactor-

ing techniques toward a number of targets. Toward improving code design and increasing

maintainability, refactoring has been used to make java libraries more expressive and type

safe by introducing generic type parameters [19], to migrate references to deprecated li-

brary classes using specifications that map legacy classes to replacement classes [2], to

support parallelization of sequential code using program analyses that will introduce calls

to libraries that support concurrency [7], and to making programs reentrant by replacing

global state with thread-local state for the purpose of deploying on parallel machines [35].

To automate code updates, refactorings have been captured as they occur during the evo-

lution of libraries, and then replayed to refactor and update client applications [13]. To

generalize bloated code that results from unnecessary inheritance, delegation can be intro-

duced to decouple inherited classes by applying the Delegation Design Pattern [18]. While

the refactoring techniques just described are targeted at the library or source-code level,

refactoring can also be used at a higher level of abstraction. For example, a process of fea-

ture oriented refactoring has been developed to decompose a legacy system into features

by manipulating the program structure in an effort to support feature-based changes during

program evolution [24].

The evaluations of these recent refactoring techniques have focused on languages uti-

lized by professional software developers, and developer support has been integrated into

IDEs such as Eclipse for many of the recent refactoring works [2, 7, 13, 18, 19, 35]. In

these studies, a typical course of evaluation is to implement the refactorings in a tool and

evaluate the tool on a set of programs, measuring time to completion [2, 19, 35], changes

in program size [2, 18, 35], or the tool’s accuracy when compared to the same refactorings

performed manually [7, 19]. Part of our work follows a similar approach, taking advantage

of a public mashup repository to perform a study of larger scale to determine the preva-

14

lence of the smells (Section 3.4) and the effectiveness of the refactorings in addressing

those smells (Section 4.4).

While refactorings have been thoroughly studied, little effort has gone toward the pre-

cise definition and analysis of code smells. To some extent, refactoring preconditions in-

directly create smell definitions, or at least define necessary conditions for a refactoring to

be applied, yet providing such specifications is not widespread [18, 35]. In our work, we

precisely define a family of code smells and demonstrate how the application of refactor-

ings creates opportunities for other refactorings, and how multiple refactorings can work

together to more completely target certain smells. In addition to an empirical analysis on

the effectiveness of refactorings, we also explore the impact of the smells by conducting a

user study that assesses whether smells matter to users (see Section 3.3).

2.4 Graph Transformations

Despite the rich literature on refactoring, program transformations are often expressed in

natural language or by example, and this can lead to ambiguities and incomplete defini-

tions that can under or over estimate their applicability [18]. Graph transformations have

been shown to be suitable for expressing refactoring transformations, and can be used to

prove the preservation of certain program properties [26] and to detect dependencies among

different refactorings [27].

Although refactoring and model-driven software development are separate areas of re-

search, recent work has explored the connections between the two areas, as one of the

goals of both research areas is to manage software complexity [4]. Within the context

of model-driven software development, refactoring has been applied at the design level,

mostly through UML transformations to, for example, support program evolution [33] or

facilitate the transformation of different types of UML [34] or EMF [23] diagrams. Al-

15

though not exclusively [26], it is among such model refactorings that we often see the use

of graph transformations as a mechanism to make the preconditions, postconditions, and

transformation steps explicit to work in complex software systems [3]. Influenced by such

use of graphs to perform model transformations, we have adopted a graph-based notation

to make explicit the smell detection and refactoring transformations described in this paper.

16

Chapter 3

Smell Detection

A code smell is a term used to refer to deficiencies in code. These program characteristics

indicate something might be wrong with the code, and can be used to determine when code

should be refactored. In Fowler’s refactoring book, he provides motivation and guidelines

for refactorings and smells, but specifications are not given for when refactoring should be

performed. He argues that human intuition is the best indication of when refactoring should

occur [10]. However, as demonstrated in recent work that automated the Replace Inher-

itance with Delegation refactoring, program transformations that are expressed in natural

language or by example can lead to ambiguities and incomplete definitions that may cause

refactorings to be confusing or less applicable than they appear [18]. In this section, we

present precise definitions for code smells that exist in web mashups and can be used as

preconditions for refactoring transformations.

We begin by presenting some general definitions for notation that represents a pipe-like

mashup. These definitions will be referred to throughout the rest of this work. Then, we

use those definitions to define 10 code smells we discovered by studying common defi-

ciencies in mashups found in the Yahoo! Pipes repository. Next, we present the results of

an empirical user study aimed to determine the impact of smells on the understandability

17

in wire(m, w) w.dest = m ∧ w.fld = ∅
out wire(m, w) w.src = m

Figure 3.1: Shorthand for Common Predicates Used in Mashup Definitions

and maintainability of pipes. Finally, we describe our infrastructure for smell detection and

present the results of another empirical study showing the commonality of the smells in a

sample of 8,051 pipes programs from the Yahoo! Pipes repository.

3.1 Mashup Notation Definitions

A pipe-like mashup can be represented as a directed acyclic graph where the modules

are nodes and the wires are the edges that transmit items between the modules in a pipe.

Figure 3.1 presents some shorthand notations that are used in these definitions.

Definition 1. A module is a tuple (F , name, type), containing a list of fields F indexed

from 1 to | F | where F [1] is the first item in the list, a name assigned by the Pipes

programming environment (e.g., fetch or truncate module names from Figure 1.1), and a

type, to be defined later.

Definition 2. A wire is a tuple (src, dest, f ld), containing a module pointer to src, the

source module of the wire, a module pointer to dest corresponding to the wire destination

module, and a field pointer fld for the destination field, if one exists.

Definition 3. A field is a tuple (wireable, value) containing a function wireable : F →
{true | false} indicating whether or not that field can be set by an incoming wire, and a

value that contains the string-representation of the field’s content.

Definition 4. A pipe is a graph, PG = (M,W ,F , owner), containing a set of modules

M, a set of wiresW , a set of fields F , and a function owner : F → M assigning every

18

field to exactly one module. The wires are constrained such that ∀w ∈ W , w.src 6= w.dest

(no cyclic wires). Every pipe must contain one module named output.

Definition 5. A pipe path is a sequence of n connected modules mi ∈ M | ∀mi, 0 < i <

n − 1, ∃w ∈ W | out wire(mi, w) ∧in wire(mi+1, w). For notational convenience, the

path length is defined by p.length, the first module in the path can be accessed by p(first),

and the last module in the path by p(last).

A module’s m.type can be one of the following: 1) generator if it retrieves from exter-

nal sources (e.g., an RSS feed, another pipe) and provides a list of items for other modules

in the pipe to process; 2) setter if it only produces a value that will be wired directly into the

fields of other modules; 3) path-altering if it either joins multiple paths, as in a union, or

diverts one path into multiple paths, as in a split; and 4) operator if it obtains, manipulates,

and produces a list of items. More formally, for m ∈M:

m.type =

gen if∃f ∈ m.F ,∃es ∈ ExternalSources |
f refers to es

setter if@w ∈ W | in wire(m, w)

pathAlt if∃wi, wj ∈ W |
(in wire(m, wi) ∧ in wire(m, wj))∨
(out wire(m, wi) ∧ out wire(m, wj))

op if∃1wi ∈ W | in wire(m, wi)∧
∃1wj ∈ W | out wire(m, wj)

19

We further subtype a setter module as a string-setter if m sets a string (m.type =

setter.string) or as a user-setter if the user may be queried to set a parameter when the

pipe is executed (m.type = setter.user). An operator module o can be further classified

across two orthogonal dimensions. First, o is said to be read-only if it does not modify the

content of items in the input list (o.type = op.ro); o is said to be read-write if it can modify

the content of list items, such as appending a string to the title of each list item (o.type =

op.rw). Second, o is said to be order-independent if the operation being performed is not

dependent on the order of the items passed into it (o.type = op.orderIndep). This kind

of module will, for example, sort, remove, and rename list items. On the other hand, o is

order-dependent if the outcome depends on the order of the items passed into it (o.type =

op.orderDep). An example is a truncate module that only outputs the first n items in a list.

We define two pipes as being semantically equivalent if the set of unique items that

reaches each pipe’s final output module are the same, ignoring duplicate items and item

order (further details are provided in Appendix C). As a pipe’s intention is to aggregate and

manipulate data from multiple sources, duplicate entries do not provide new information

to the user and the order of items that reach the output module can be easily manipulated

using a sort module. In terms of semantics, order preservation is useful, but not necessary.

3.2 Smell Definitions

In this section, we define a family of code smells that can help an end user programming

with Yahoo! Pipes identify areas where refactoring may be useful. Many of the smells were

inspired by smells found in the code of professional programmers [10], and the smells target

different aspects of a pipe-like mashup, including modules and fields that do not contribute

to the pipe or are unnecessarily duplicated. Other smells were inspired by deficiencies we

witnessed when exploring the population of Yahoo! Pipes and the availability of many ex-

20

op(m) m.type = op
op indep(m) m.type = op.orderIndep

setter str(m) m.type = setter.string
path alt(m) m.type = pathAlt

gen(m) m.type = gen
union(m) m.name = union

in wire(m, w) w.dest = m ∧ w.fld = ∅
field wire(m, w) w.dest = m ∧ w.fld 6= ∅

out wire(m, w) w.src = m
all field wires(m) ∀w ∈W | w.dest = m, field wire(m, w)

joined by(mi, mj , w) out wire(mi, w) ∧ in wire(mj , w)

subsequent modules(mi, mj) ∃ path p | mi, mj ∈ p ∧mi ≺ mj

between modules(mk, mi, mj) ∃ path p | mk, mi, mj ∈ p ∧mi ≺ mk ≺ mj

connected to union(mi, mj) ∃mu ∈M | union(mu) ∧ ∃wi, wj ∈ W
| joined by(mi, mu, wi) ∧ joined by(mj , mu, wj)

same number fields(mi, mj) | mi.F |=| mj .F |
all same field values(mi, mj) same number fields(mi, mj)

∧ for k = 1 · · · | mi.F |, mi.F [k] = mj .F [k]
same field value(fi, fj , bool) fi.wireable = fj .wireable = bool

∧fi.value = fj .value 6= “”

Figure 3.2: Shorthand for Common Predicates Used in Smell Definitions

ample pipes generated by the community. These other smells identify modules that have

been deprecated or patterns of modules that do not conform to standards set by the popula-

tion. Figure 3.2 presents some shorthand definitions that are used throughout this section.

3.2.1 Laziness Smells

This category of smells was inspired in part by the Lazy Class smell, which aims to inline

classes, components, or methods that do not do enough [10]. Similarly, these smells iden-

tify pipes that contain modules or fields that do not contribute to the output of the pipe,

making it unnecessarily complex or potentially faulty.

21

Smell 1. Noisy Module: a module that has unnecessary fields, making a pipe harder to

read, less efficient to execute, and potentially adding errors that go unnoticed by the end

user. Module m ∈M is considered noisy if:

Case 1.1. Empty field:

(gen(m) ∨ setter str(m)) ∧ ∃f ∈ m.F | f.value = “”

Case 1.2. Duplicated field:

∃fi, fj ∈ m.F | same field value(fi, fj, true)

Smell 2. Unnecessary Module: a module whose execution does not affect the pipe’s out-

put, adding unnecessary complexity. Module m ∈M is considered unnecessary if:

Case 2.1. Cannot reach output:

∃n ∈M | n.name = output ∧ !subsequent modules(m, n)

Case 2.2. Ineffectual path altering:

path alt(m) ∧ ∃1wi ∈ W | in wire(m, wi)∧
∃1wj ∈ W | out wire(m, wj)

Case 2.3. Inoperative module:

!path alt(m) ∧m.F = ∅

Case 2.4. Unnecessary redirection:

setter str(m)∧ | m.F |= 1 ∧ all field wires(m)

Case 2.5. Swaying module:

(path alt(m)∧ 6 ∃w ∈ W|in wire(m, w))∨
(op(m) ∧ all field wires(m))

22

For example, in the transformation from Figure 1.1 to Figure 1.2, module D was re-

moved because it fit Case 2.1. From Figure 1.2 to Figure 1.3, module H was removed

because it fit Case 2.2.

Smell 3. Unnecessary Abstraction: a module that always performs the same operation

on constant field values (fields that are not wired) may be unnecessary. Module m ∈M is

unnecessarily abstract if:

setter str(m) ∧ ∃1wi ∈ W | out wire(m, wi) ∧ @wj ∈ W | field wire(m, wj)

3.2.2 Redundancy Smells

Duplicated code has been identified as the worst smell in programs written by profession-

als [10]. The redundancy smells identify pipes that have duplicated strings, modules, or

paths of modules. Redundancies in pipes bloat the modules and the pipe structure, adding

unnecessary complexity, and making pipe understanding and maintenance more difficult.

Smell 4. Duplicate Strings: a constant string that is used in at least n wireable fields in

at least two modules. Given n = 2, fields are marked as duplicates if:

∃fi, fj ∈ F | owner(fi) 6= owner(fj)∧
same field values(fi, fj, true)

For example, in Figure 1.1 the truncate modules E and J have a duplicate string “3.”

Smell 5. Duplicate Modules: operator modules appearing in certain patterns may be re-

dundant and candidate for consolidation. Modules mi, mj ∈M are considered duplicates

if mi.name = mj.name and:

Case 5.1. Consecutive order-independent operators:

op indep(mi) ∧ ∃w ∈ W | joined by(mi, mj, w)

23

Case 5.2. Consecutive path-altering modules:

path alt(mi) ∧ ∃w ∈ W | joined by(mi, mj, w)

Case 5.3. Joined generators:

gen(mi) ∧ connected to union(mi, mj)

Case 5.4. Identical subsequent operators:

op indep(mi) ∧ all same field values(mi, mj)∧
subsequent modules(mi, mj)∧
∀mk ∈M | between modules(mk, mi, mj)∧

(op indep(mk) ∨ union(mk))

Case 5.5. Identical parallel operators:

op indep(mi) ∧ all same field values(mi, mj)∧
connected to union(mi, mj)∧
∃mk, ml ∈M,∃wk, wl ∈ W |

joined by(mk, mi, wk) ∧ joined by(ml, mj, wl)∧
(gen(mk) ∨ union(mk)) ∧ (gen(ml) ∨ union(ml))

For example, Case 5.1 is illustrated in Figure 4.2, Case 5.2 in Figure 4.3, Case 5.3 in

Figure 4.5, Case 5.4 in Figure 4.4, and Case 5.5 in Figure 4.6.

Smell 6. Isomorphic Paths: non-overlapping paths with the same modules performing

the same manipulations may be missing a chance for abstraction. Two paths p and p′ are

isomorphic if:

24

p.length = p′.length ∧ p ∩ p′ = ∅∧
gen(p(first)) ∧ gen(p′(first))∧
∀mn ∈ p,∀m′n ∈ p′, 0 ≤ n < p.length,

mn.name = m′n.name ∧ same number fields(mn, m
′
n)∧

∀mn ∈ p | op(mn)

for k = 1 · · · | mn.F |
if mn.F [k].wireable = false then same field value(mn.F [k], m′n.F [k], false)

An example is shown in Figure 1.2, where p consists of the path from A to E and p′

consists of the path from C to G.

3.2.3 Environmental Smells

Inspired by the pervasive use of invalid and unsupported sources and modules by programs

in the Yahoo! Pipes repository, these smells identify pipes that have not been updated

in response to changes to the external environment. A pipe containing a module that is no

longer maintained by the Pipes language or a field that references an invalid external source

exhibits an environmental smell that may cause a failure.

Smell 7. Deprecated Module: a module that is no longer supported by the pipe envi-

ronment. Given SupportedM, a pipe presents this smell if: ∃m ∈ M | m.name /∈
SupportedM. For example, four modules were deprecated in the Yahoo! Pipes environ-

ment between 2007 and 2010.

Smell 8. Invalid Sources: a source es ∈ ExternalSources is invalid if n consecutive

attempts to retrieve data from it report errors. Given n = 1, a pipe presents this smell

when ∃f ∈ F that refers to an invalid es.

25

3.2.4 Population-Based Smells

The previous smells focused on individual pipes. Population-based smells, on the other

hand, rely on the community knowledge captured in the public pipes repositories to dis-

cover module patterns that have been commonly employed in highly reused pipes. Pipes

using alternative module structures to implement such patterns are considered smelly since

they may discourage reuse of pipes across the community.

Smell 9. Non-conforming Module Orderings: given a community prescribed order for

read-only and order-independent operator modules appearing in a path of size n, a pipe

with a path including such modules but in a different order may unnecessarily increase

the difficulty for other end users to understand and adopt the pipe. We obtain a pool of

prescribed paths, PPres, and consider path p to be non-conforming if:

∀m ∈ p | op indep(m) ∧m.type = op.ro

∃p′ ∈ PPres|p 6= p′ ∧ bag(p) = bag(p′)

Defining PPres requires the identification of the sample of the population from which

the prescribed paths are to be derived and the bounding of the path length to be considered.

Smell 10. Global Isomorphic Paths: building on the isomorphic path smell (Smell 6), we

extend the scope of the smell to paths appearing in multiple pipes. Global isomorphic paths

represent missed opportunities for a community to reuse the work of its contributors, and

make it harder to understand pipes due to the lack of abstraction of commonly occurring

paths. Given a pool of prescribed global paths PGPaths, a pipe PG has this smell if:

∃p ∈ PG,∃p′ ∈ PGPaths | p′ is isomorphic to p

Generating PGPaths requires identification of the population sample from which the

paths are derived and a threshold of how often a path must occur to be considered global.

26

3.3 End Users’ Perspectives on Smelly Pipes

In the software engineering literature, code smells are known to be things to avoid, and

when they occur, removed through refactoring [10]. While a professional developer may

be able to detect code smells, it has yet to be explored whether end users have the same

awareness, and specifically in the context of pipe-like web mashups. The goal of this study

is to evaluate the impact of coding practices, specifically smells, on the preference and

understandability of pipe-like web mashups from the perspective of users in the context

of the Yahoo! Pipes environment. We aim to answer the following question: Are pipes

with bad program characteristics (i.e., smells) less understandable or desirable than pipes

without such characteristics?

3.3.1 Study Design

We designed two experiments that evaluate the impact of code smells from the perspective

of the user. The first aims to determine if users prefer clean 1 or dirty 2 pipes, presenting the

user with two versions of the same pipe side-by-side, one clean and one dirty, and asking

the user to select the most preferable. The second aims to determine if smelly or clean pipes

are harder to understand by presenting the user with a pipe and a set of potential outputs,

asking them to select the most fitting output. Each experiment is split into a series of tasks,

as shown by the experimental design in Figure 3.3. In each experimental task, we treat one

pipe with a smell, X . In the tasks associated with the first experiment (1–8), the user is

presented with both the treated (smelly) and the untreated (clean) pipe. In the tasks for the

second experiment (9–10), the user is either presented with the treated or the untreated pipe.

In both experiments we estimate the user aptitude by measuring education level (O1) and

1The terms clean, non-smelly, and refactored are used interchangeably.
2The terms dirty and smelly pipe are used interchangeably.

27

qualification score (O2), using a comprehensive pretest. The first experiment also measures

user preference (O3), the second measures correctness (O4), and both measure time (O5).

Task Assignment Pretest Measures Object Treatment Posttest Measures
1 R O1, O2 P1 X5 O3, O5

2 R O1, O2 P2 X4 O3, O5

3 R O1, O2 P3 X5 O3, O5

4 R O1, O2 P4 X8 O3, O5

5 R O1, O2 P5 X7 O3, O5

6 R O1, O2 P6 X1 O3, O5

7 R O1, O2 P7 X5, X10 O3, O5

8 R O1, O2 P8 X2, X7 O3, O5

9
R O1, O2 P9 X6 O4, O5

R O1, O2 P9 O4, O5

10
R O1, O2 P10 X2, X3 O4, O5

R O1, O2 P10 O4, O5

Figure 3.3: Experimental Design

Each smell defined in Section 3.2 is used as a treatment (Xn) in at least one task, where

the subscripted number, n, represents a particular smell. All the pipes (Pm) used in the

experiments were derived from pipes found in the public Yahoo! Pipes repository, and each

task uses a different pipe (indicated by different values of m). A pipe was selected only if

the pipe structure was dirty; the clean version was generated by manipulating the pipe to

remove the smell. In this way, the smells were representative of real smells generated by

users in the Yahoo! Pipes community, and were not artificially inserted. Some pipes were

also modified for size so the study participants would not be overwhelmed when trying to

understand each pipe’s behavior. Size modifications included removal of modules, wires,

and fields, but nothing was added.

Users self-selected their participation for each task in the experiment, giving a random

assignment of participants to tasks (represented by the R in Figure 3.3). Our goal was to

consider participants from a range of backgrounds and expertise to be representative of end

users, and control for variability by segmenting the population based on user aptitude in the

28

analysis. Prior to participation, all users were required to pass a pretest test to demonstrate a

basic knowledge of Yahoo! Pipes. We designed the test with eight comprehensive questions

detailed in Appendix A.1.3. The passing score was set to 50%, a seemingly low-bar, but

the test was designed to be challenging even for advanced users of Yahoo! Pipes. A tutorial

video was provided for participants who were not previously familiar with the Yahoo! Pipes

environment. The results of this pretest were used to measure user aptitude (O1 and O2).

3.3.1.1 Experiment #1: Preference

Each task in this experiment was designed to assess a user’s preference between two pipes

given some context. Figure 3.4 gives an example of a task in this experiment, specifically

representing task 1.

Pipe A represents P1 with a dirty structure that is treated with smell X5, defined by

Smell 5.3:Joined Generator; Pipe B represents P1 with a clean structure. The context reads,

Pipes with different structures can generate the same output, as is the case with Pipes A

and B. The user is asked to select the pipe that is easiest to understand and to justify their

selection in short-answer form.

In Table 3.1, we identify the preference question, map each smell treatment to its named

smell definition, indicate the size of each the clean and smelly versions of the pipe structure

in terms of the number of modules, and give the context for each preference task. The size

is given as a proxy for the complexity of the pipes we asked the participants to analyze.

We offer coverage of different pipe types by applying different smell treatments for

each task; as a result, each task presents different challenges to the participant. Some of

the pipes contain complex structures, such as those for tasks 2 and 8, while others contain

complex modules, such as the loop modules in task 5, the regex modules in task 3, and

the subpipe in task 7. Many of the smelly pipes contain multiple paths, as is the case

29

Figure 3.4: Preference Task Example

with tasks 1, 2, and 4, while others contain modules with many parameters, for example in

tasks 6 and 7.

30

Table 3.1: Preference Tasks General Description

Task Question Smell Dirty Clean ContextTreatment Size Size
1 to understand Joined 8 3 Pipes with different structures can generate the same output,

Generators as is the case with Pipes A and B.
2 to update Duplicate 12 13 Truncate modules in Pipe A have hard-coded field values,

in the future Strings but receive values via wire in Pipe B.
3 to understand Consecutive 7 6 Rules in Regex modules modify a specified field’s content

Operators (e.g., item.title), replacing instances of a pattern ((̂.+))
with some text (JENI Latest -).

4 to update Invalid 8 6 Websites can be deleted, causing 404 errors, like these 2 in
in the future Source Pipe A: http://www.gamemakergames.com and

http://www.gmshowcase.dk/forums.
5 for others Deprecated 4 4 Components are sometimes deprecated and replaced with

to understand Module improved features. In Pipe B, Content Analysis and
For Each: Replace were deprecated.

6 to update Noisy 3 3 Specifying the same website multiple times can lead to
in the future Module duplicate items in a pipe’s output.

7 to understand Global 5 3 In Pipe A, the ”Fetch 6, Unique” subpipe module gathers
Isomorphic the content of the six specified URLs and removes items
Paths that have duplicate titles or links.

8 for others Module 5 4 The majority of the most popular pipes in the Yahoo! Pipes
to understand Orderings repository place the Unique module before the Filter module.

3.3.1.2 Experiment #2: Output Analysis and Correctness

The output tasks are designed to determine if users can understand the behavior of a Pipe

and to assess how understandable non-smelly pipes are compared to smelly pipes. The

experiment contains two tasks. To meet the first goal, each task gives the user an image of

a pipe and asks the user to select which multiple-choice answer best describes the output of

the pipe. We achieve the second goal by showing the experimental group participants the

treated pipe and showing the control group participants the clean pipe.

In an output analysis task, the user is given a pipe image, as shown in Figure 3.5, which

maps to the control group in Task 9, showing P9 with a clean structure. The context reads,

Subpipe ”fetchfilterpermitany” behaves as follows: it gathers the content of the website

specified in the Feed field and filters items based on the title or description, and the user is

31

asked to select the answer to a multiple-choice question that most appropriately represents

the pipe’s output, followed by a short-answer justification.

In Table 3.2, for each pipe in each task, we present the size of each pipe in terms of the

number of modules, the smell treatment mapped to its smell name, and the context for each

task in each experiment.

Table 3.2: Output Analysis Tasks General Description

Task Group Size Smell Treatment Context

9
Control 8 none

A filter module can be configured to permit
or block items with certain characteristics.

Experimental 11 Isomorphic Paths
When multiple rules are provided, the filter
module can consider any or all of the rules.

10
Control 5 none

A Search For module is a user-input module
that gets a string from the user when the

Experimental 11
Unnecessary Module & Pipe is run, using that string to set the value
Unnecessary Abstraction of fields connected via wire.

Each of the experimental tasks has a different smell treatment that creates unique chal-

lenges for the user. The pipes for experimental groups in Tasks 9 and 10 contain com-

plicated structures with multiple paths through the pipe. Both pipes for Task 10 contain

complex modules, such as user-input modules, and the pipe in the control group for Task 9

contains subpipe modules.

3.3.1.3 Presentation of Results

The results are presented in summary across the participants, organized per experiment and

then per task. We also use the Spearman’s Rank Correlation Coefficient to explore relation-

ships between the measures in the experiments, such as education (O1) and selection of the

non-smelly pipe (O3) in the first experiment. This statistical measure is a non-parametric

value that indicates the linear relationship between two variables, assigning a value between

32

Figure 3.5: Output Analysis Hit Example, as it Appears to a Participant

33

−1 and +1, where values close to 0 indicate a low correlation. Our correlation analysis was

performed using Apache’s org.apache.commons.math.stat library [5].

3.3.2 Study Implementation and Operation

This study was implemented using Amazon’s Mechanical Turk website [25], a service pro-

vided by Amazon advertised as a “marketplace for work that requires human intelligence.”

There are two roles in Mechanical Turk, a requester and a worker. The requester is the

creator of a human intelligence task, or HIT, which is intended to be a small, goal-oriented

task that can be accomplished in less than 60 seconds. The worker is the one who completes

the HIT and gets paid for their work, if satisfactory.

Each of the tasks described in Section 3.3.1 was implemented as a HIT, and users were

paid $0.20 per HIT completed. To deliver the pretest, we created a custom qualification

test that was required before a user could complete any HITs (see Appendix A.1). Once a

user submitted a qualification test, it was graded as per our specification. A passing score

allowed the user to complete the HITs we created. Participants were given a maximum

of 60 minutes to complete each HIT and the study was available for two weeks, from

April 28 - May 13, 2010. We show the workflow for a user participanting in our study in

Figure 3.6. A user must first create an account in Mechanical Turk and then locate our HITs

by searching. Figure 3.7 shows our tasks as they would appear to participants searching

for tasks to complete. Next, they must take the qualification test. If they pass the test, the

participant is able to perform any of the HITs in this study.

The initial participant recruitment relied on people finding our HITs on the Mechanical

Turk website. After the first week, we began soliciting participation using internal mailing

lists. While our targeted recruitment undoubtedly increased participation in the study, we

34

!"#$%#&

'#()$*+($,&

-."/&0((1.*%&

-$/#&

2.$,+3($41*&

-#5%&

6#"71"8&$*9&

:.;8+%&<=-5&

>*9&

6$55?&

@1&

A#5&B1($%#&<=-5&;C&

:#$"()+*D&

Figure 3.6: Participant Workflow in Mechanical Turk

Figure 3.7: Our HIT Entries in Mechanical Turk

are unable to distinguish between participants who found the HITs on their own and those

whom we contacted, since Amazon anonymizes the identities of all participants.

3.3.3 Participant Profiles

While 50 users took the qualification quiz and 34 (68%) received a passing score, a total of

22 users completed at least one HIT in the study. We received 160 HIT responses, and each

participant completed an average of 7.3 HITs. Although we did not control for gender in

this study, we did collect that data. Among the 22 participants there were 12 females and

10 males. The users had varying levels of education in computer science, as is shown by

their responses to the question, What is your programming experience? in Table 3.3. The

% of Population column indicates what percentage of the total participants selected that

35

answer for their programming experience, and the % Male and % Female columns indicate

what percentage of those respondents were male or female, respectively. In terms of years

of experience programming, the users declared similarly varied responses, as shown in

Table 3.4.

Table 3.3: User Responses to the Question, What is your programming experience?

Response # % of % %
Population Female Male

Limited or No Experience 5 24% 80% 20%
Self-taught only 3 14% 67% 33%
On-the-job training only 0 0% 0% 0%
One or more classes, in high school or college,

6 24% 83% 17%
in computer science or related field
Undergraduate/Graduate degree, in progress

8 38% 13% 87%
or completed, in computer science or related field
Total 22 100% 55% 45%

Table 3.4: User Responses to the Question, How long have you been programming (e.g.,
using languages like Java, C/C++, JavaScript, Perl, Python, etc.)?

Response # % of % %
Population Female Male

no experience 5 24% 80% 20%
less than 1 year 4 19% 75% 25%
1-5 years 6 14% 67% 33%
5+ years 7 33% 14% 86%
Total 22 100% 55% 45%

For the purpose of analysis, we measure user aptitude in two ways, according to ed-

ucation (O1) and according to qualification score (O2). The first division is based on the

idea that users with degrees in computer science will have more aptitude for the tasks than

those without degrees. The second division is based on our intuition that formal education

does not necessarily imply more attention to detail for these tasks, and we can estimate a

36

participants’ attention to detail using their qualification score. It seems appropriate to use

both measures given that the Spearman rank correlation coefficient between education and

scores on the qualification test indicates a low correlation (r = 0.2164).

In our measure of education (O1), we identify two groups, degreed users and end users.

We define the degreed users as those who have a degree in computer science or related

field (last answer in Table 3.3), and the end user group as those who do not have a degree

in computer science. We compare other characteristics between the two groups in Table 3.5.

Table 3.5: Comparison Between Groups Segmented on Education (O1)

Characteristic End Users Degreed Users
Number of Participants 14 8
Total HITs Completed 91 69
HITs Completed per User 6.50 8.63
Percentage (female | male) (79% | 21%) (13% | 87%)
Average Qualification Score 79% 78%
Median Qualification Score 88% 94%

As shown in Table 3.5, among the 160 HITs completed by the users in this study,

91 were completed by the end users and 69 were completed by degreed users. The av-

erage scores on the qualification test among the groups of degreed users and end users

are very similar, as was expected based on the low Spearman rank correlation coefficient

(r = 0.2164) between education and qualification test scores. For both groups, the median

scores on the qualification test were higher than the averages, showing that most partici-

pants scored above the average. In fact, only seven users out of 22 scored below 75%. The

end users scored an average of 79% on the test, whereas the degreed users scored an aver-

age of 78%. This also shows a similarity in the collective understanding of Yahoo! Pipes

between the two groups, making a comparison of the responses appropriate. The gender

split between the end user and degreed user groups is quite disparate, with the end user

37

group being composed of nearly 80% female, and the degreed user group being composed

of 87% male participants.

For the purpose of measuring qualification test scores (O2), we split the population into

three groups of relatively equal size based on their scores. The High Score group received

a perfect score on the qualification test, the Middle Score group scored in the upper quartile

but less than perfect, and the Low Score group scored less than 75%.

Table 3.6: Comparison Among Groups Segmented on Qualification Score (O2)

Characteristic High Score Middle Score Low Score
Qualification Score 100% 75% - 88% < 75%
Number of Participants 9 6 7
Total HITs Completed 70 44 46
HITs Completed per User 7.78 7.33 6.57
Percentage (female | male) (44% | 56%) (67% | 33%) (57% | 43%)

Table 3.6 presents the group characteristics of participants split based on qualification

test scores. Unlike the segmentation strategy according to education, the ratio of female

to male participants in these groups is similar to the ratio in the population as a whole.

The Spearman rank correlation coefficient between gender and qualification scores also

indicates very low correlation, with r = −0.0601.

3.3.4 Results

For the tasks in the first experiment, we measure user preference (O3) between the non-

smelly pipe, the smelly pipe, or do not express a preference (neutral). For the tasks in the

second experiment, we measure correctness (O4) of the answers and compare the output

results of of the control group versus the experimental group. Overall, we see that partic-

ipants preferred the non-smelly pipes in 61% of the first experiment tasks (an additional

18% of the responses were neutral), and were able to select the correct output for a pipe in

38

87% of the tasks in the second experiment (86% correct on the clean pipes and 88% correct

on the smelly pipes).

3.3.4.1 Experiment #1: Preference

Table 3.7 presents the preferences (O3) summarized across all tasks, organized by group

according to the pretest measures. The Segment column indicates the measure used to split

the population (i.e., based on education (O1) or qualification score(O2)), the Group column

indicates the specific user group, and Responses indicates the total number of preference

HIT responses received from a particular group. The % Smelly column indicates how

many participants preferred the smelly pipe, % Non-Smelly indicates how many participants

preferred the clean pipe, and % Same indicates the percentage of participants who were

neutral.

Table 3.7: Overall Preference Selection

Segment Group Responses % Smelly % Non-Smelly % Same

O1
End Users 75 24% 63% 13%
Degreed Users 55 18% 58% 24%

O2

High Score 56 16% 63% 21%
Middle Score 35 20% 63% 17%
Low Score 39 31% 56% 24%

All Participants 130 22% 61% 18%

We further break down the user responses per task, shown in Table 3.8. In most cases,

the overall preferred pipe among the participants was the non-smelly pipe, with few excep-

tions. We also explore the preferences per task (O3) against the pretest measures of user

aptitude (O1 and O2) and utilize these breakdowns in our analysis that follows.

The preference results for each task grouped by education level (O1) are shown in Ta-

ble 3.9. The Smell Type column indicates the category of the smell treatment applied in

task, as defined in Section 3.2. The # column indicates the number of participants who

39

Table 3.8: Overall Preference Results per Task

Task Responses % Smelly % Non-Smelly % Same
1 17 12% 88% 0%
2 17 12% 88% 0%
3 17 18% 53% 29%
4 15 13% 27% 60%
5 15 47% 47% 7%
6 19 5% 63% 32%
7 15 67% 20% 13%
8 15 7% 93% 0%

Table 3.9: Preference Results for Based on Education (O3 and O1)

Task Smell End Users Degreed Users

Type # % % Non- % # % % Non- %
Smelly Smelly Same Smelly Smelly Same

1 Redund. 10 10% 90% 0% 7 14% 86% 0 %
2 Redund. 10 10% 90% 0% 7 14% 86% 0 %
3 Redund. 10 20% 50% 30% 7 14% 57% 29 %
4 Environ. 8 25% 38% 38% 7 0% 14% 86 %
5 Environ. 9 56% 33% 11% 6 33% 67% 0 %
6 Lazy. 11 9% 73% 18% 8 0% 50% 50 %

7
Pop-based

9 56% 33% 11% 6 83% 0% 17%
Redund.

8
Pop-based

8 13% 88% 0% 7 0% 100% 0%
Lazy

submitted results for the particular task. Results for the preference tasks are also presented

in Table 3.10, this time separated into groups based on qualification test scores.

For Task 1, a majority of the end users and the degreed users selected the non-smelly

pipe as the most understandable. All of the end users who selected the non-smelly pipe

indicated that they prefer pipes with fewer modules, mentioning that the non-smelly pipe

is “cleaner,” “simpler,” and “looks less intimidating.” Similarly, the degreed users who

40

Table 3.10: Preference Results Based on Qualification Scores (O3 and O2)

Task Smell High Score Middle Score Low Score

Type # % % Non- % # % % Non- % # % % Non- %
Smelly Smelly Same Smelly Smelly Same Smelly Smelly Same

1 Redund. 6 0% 100% 0% 4 25% 75% 0 % 7 14% 86% 0%
2 Redund. 6 0% 100% 0% 5 0% 100% 0 % 6 33% 67% 0%
3 Redund. 8 13% 50% 38% 5 0% 100% 0 % 4 50% 0% 50%
4 Environ. 7 14% 14% 71% 4 25% 0% 75 % 4 0% 75% 25%
5 Environ. 7 43% 57% 0% 4 50% 50% 0 % 4 50% 25% 25%
6 Lazy. 8 0% 75% 25% 5 0% 40% 60 % 6 17% 67% 17%

7
Pop-based

7 57% 14% 29% 4 75% 25% 0% 6 75% 25% 0%
Redund.

8
Pop-based

7 0% 100% 0% 4 0% 100% 0% 4 25% 75% 0%
Lazy.

preferred the non-smelly pipe indicated that it makes the most sense to “consolidate similar

modules” into a simpler structure.

The responses in Task 2 overwhelmingly favored the non-smelly pipe across all user

groups. This is especially impressive when we consider the context of the pipe, in that

it introduces abstraction using an extra module to parameterize a string constant. One

notable exception is the two users who had low scores on their qualification tests. One of

their responses expresses general confusion over the behavior of the pipe while the other

was concerned about the increased number of wires introduced by the additional module.

In Task 3, the responses are varied among the different user groups. Among the end

users who chose the non-smelly pipe, they all said that one regex module was easier to

understand than two, and the degreed users tended to agree. On this particular task, it is

interesting to also consider the average time to completion (O5). In Table B.1, we see that

the average time to completion for end users was nearly 4 times as long as that for degreed

users, and Table B.2 shows similar results for the participants who had a low qualification

score compared to participants who scored higher. We attribute this, in part, to the presence

41

of a regex module, which may be a more familiar concept to users with computer science

degrees or those who have a higher understanding of Yahoo! Pipes.

For Task 4, the responses were varied, but a majority of the participants (60%) were

indifferent about which pipe would be easier to maintain. Just over one-fourth of the par-

ticipants preferred the non-smelly pipe (27%). We note that the end users spent over twice

as much time (O5) to perform this task as the degreed users (see Table B.1), perhaps in-

dicating that it took them longer to consider the implications of including invalid sources.

The participants with low qualification scores generally favored the non-smelly pipe; par-

ticipants who selected the non-smelly pipe noted that it’s easier to update a pipe with fewer

fields, since it is smaller. Across all groups, many of the participants who were neutral

displayed a lack of understanding of what it would mean to focus on future updates (e.g.,

“both have the same basic structure and will be about as difficult to update,” “Apart from

the modules in A which are causing errors, there is no difference between the 2 pipes”).

Yet other neutral participants desired more support and protection against errors that would

come from broken sources (e.g., “Neither pipe seems to protect against deleted websites,

so they seem equally update-friendly,” “it seems that both would have the same issue with

a deleted website”).

In Task 5, a majority of the end users preferred the smelly pipe while a majority of the

degreed users preferred the non-smelly pipe. One end user who preferred the smelly pipe

indicated that while the modules are deprecated, they are still available, and the smelly pipe

is easier to follow. This shows a clear misunderstanding of the dangers of using deprecated

modules. Other participants shared similar sentiments about the smelly pipe, indicating

that the loop introduced in the non-smelly pipe (to replace a deprecated module) makes it

more difficult to understand. In general, the responses on this task displayed a focus on

the understandability of the task and not necessarily the removal of deprecated sources as

42

a service to others in the community who may be new to the environment and unfamiliar

with the older, deprecated, and undocumented modules.

In Task 6, a majority of end users and half of the degreed users preferred the non-

smelly pipe. Only participants with a low qualification score preferred the smelly pipe, but

a scattering of participants across all groups were neutral about which pipe was easier to

update. One of the neutral participants with a high qualification score noted that the pipes

are the same to update, but the non-smelly pipe is the “most efficient.” The high scoring

participants who preferred the non-smelly pipe indicate that removing duplicates sources

eases extra work that could come from the need to “track down multiple entries in your

pipe output in the future,” recognizing that duplicated sources lead to duplicated entries.

The responses for Task 7 tended to favor the smelly pipe across every user group. The

general sentiments among participants who preferred the smelly pipe was that it was easier

to understand because “you don’t have to look at the subpipe to find out what it does,”

in other words, the behavior is not hidden by a subpipe module. We also note that the

correlation between higher education (O1) and the selection of the non-smelly pipe (O3)

is abnormally strong for this task, r = −0.6434 (see Table B.6), indicating that higher

education correlates strongly with selection of the smelly pipe. This may imply that the end

users will trust the functionality of a subpipe more than a degreed user, and thus prefer the

non-smelly pipe. For example, one end user noted that the non-smelly pipe was easier to

understand “since the subpipe behavior was described in text,” exhibiting a general trust in

the subpipe’s behavior based on a textual description. We will further explore this task in

light of an output task that also uses subpipes for abstraction in Section 3.3.5.

In Task 8, nearly all participants selected the non-smelly pipe instead of the smelly

pipe. Most of the end user participants who favored the non-smelly pipe focused their re-

sponses on the omission of the inoperable module and the simplistic structure that resulted

(five of the seven participants) instead of conformance to the canonical ordering set by the

43

community (two of the seven participants). Similarly, only three of the seven degreed user

participants cite the canonical ordering as the reason for their selection. We see similarly

varied responses across the user groups based on qualification score, except that none of the

respondents with low qualification score mention canonical ordering. Another interesting

observation with this task is that there is an unusually high correlation between higher ed-

ucation (O1) and the selection of the non-smelly pipe (O3), r = 0.8510 (see the Education

& Non-Smelly column in Table B.6), which may indicate that users with more computer

science education are more likely to recognize the importance of coding standards to the

community.

3.3.4.2 Experiment #2: Output Analysis and Correctness

Table 3.11 presents the correctness (O4) of responses summarized across all tasks in the

second experiment. The Segment column indicates the measure by which the population

was segmented (i.e., based on education (O1) or qualification score (O2)), the Group col-

umn indicates the specific user group, and Responses indicates the total number of prefer-

ence task responses received from a particular group. The % Correct column indicates how

many participants selected the correct output and % Incorrect indicates how many partici-

pants selected an incorrect response. Participants were able to select the correct output in

most cases (87%). Degreed users selected the correct output more often than end users,

and participants with higher scores on the qualification test were able to select the correct

answer more often than those with lower scores.

We further break down the user responses based on task, shown in Table 3.12. The Type

column indicates the pipe structure, whether it is clean or smelly, indicating the control and

experimental groups, respectively. The results of the output tasks segmented by education

(O1) are presented in Table 3.13 and the task results for the user groups segmented based

on qualification scores (O2) are shown in Table 3.14.

44

Table 3.11: Overall Correctness on Output Analysis Tasks

Segment Group Responses % Correct % Incorrect

O1
End Users 16 75% 25%
Degreed Users 14 100% 0%

O2

High Score 14 93% 7%
Middle Score 9 89% 11%
Low Score 7 71% 29%

Overall All Users 30 87% 13%

Table 3.12: Overall Correctness for Output Analysis Tasks by Treatment

Task Type Responses % %
Correct Incorrect

9
Clean 8 88% 12%
Smelly 6 100% 0%

10
Clean 6 83% 17%
Smelly 10 80% 20%

Table 3.13: Correctness Results by Education (O4 and O1)

Task Type
End Users Degreed Users

% % # % %
Correct Incorrect Correct Incorrect

9
Clean 6 83% 17% 2 100% 0%
Smelly 1 100% 0% 5 100% 0%

10
Clean 4 75% 25% 2 100% 0%
Smelly 5 60% 30% 5 100% 0%

Table 3.14: Correctness Results by Qualification Score (O4 and O2)

Task Type
High Score Middle Score Low Score

% % # % % # % %
Correct Incorrect Correct Incorrect Correct Incorrect

9
Clean 2 50% 50% 4 100% 0% 2 100% 0%
Smelly 5 100% 0% 0 0% 0% 1 100% 0%

10
Clean 4 100% 0% 1 100% 0% 1 0% 100%
Smelly 3 100% 0% 4 75% 25% 3 67% 33%

45

Overall, we see that the degreed users were able to select the correct answer for the clean

and the smelly pipes in all cases. For Task 10, the end users show a 15% increase in their

ability to recognize the correctness of the clean pipes (control group) versus the smelly

pipes (experimental group), and we see similar behavior (25% improvement) among the

participants in the middle score qualification group. The experimental group was better

able to understand the pipe in Task 9, as more participants were able to select the correct

answer in the smelly pipe. Regardless, this data does show that pipes are understandable

enough for users to select the correct answer from a list of potential outputs. Further,

the transformations we performed on the dirty pipes to remove the smells and create the

clean pipes do not negatively impact the understandability of the pipes generated by the

community.

3.3.5 Summary

For 61% of the responses in the first experiment, the participants preferred the non-smelly

pipes; for 18%, the participants were neutral about their preference. There was a general

theme among all the user responses, that smaller pipes with simpler structures and fewer

parameters are preferable. Additionally, users also recognized the utility of abstraction

in making a pipe easier to maintain (see Task 2). We also saw that some pipes with more

complicated constructs, such as Task 3 with the regex module, took end users a much longer

time to analyze than those pipes with simpler constructs.

There is a notable exception to the preference toward smaller and more abstract pipes

that was shown in Task 7, where the users found the subpipe to be less understandable. If

we compare this to the correctness of responses in the control group of Task 9, which intro-

duces three instances of a subpipe, we find that the subpipe does not impede a participants’

ability to select the correct answer. Even though participants in Task 7 selected the pipe

46

without a subpipe as the most understandable one, that does not mean they are incapable

of understanding a pipe’s behavior if it contains subpipe routines. We conjecture that the

preference toward the less abstract pipe in Task 7 is the result of the pipe’s simplistic struc-

ture, and users may prefer the subpipe abstraction for more complex pipes. Evaluating this

conjecture would require further study and is left for future work.

Returning to the research question, Are pipes with bad program characteristics (i.e.,

smells) less understandable or desirable than pipes without such characteristics?, we can

conclude that end users can certainly tell a difference between pipes with and without

smells, and in general, preferred the non-smelly pipes to the smelly pipes. This theme

was pervasive across most of the preference tasks. Although we did not notice common

differences between user groups segmented based on education or qualification scores, we

do note that these variables do not impede a participant’s ability to analyze and understand

pipes.

We also note several threats to validity of the conclusions drawn from this study. First,

the high percentage of correct answers on the output tasks may have resulted from a correct

answer that was too obvious or from pipes that are too trivial. We tried to control for this

by including answers that have subtle differences, such as answers b and c in Task 9 and

answers b and d in Task 10, and by selecting pipes that are reasonably large and complex,

as indicated in Section 3.3.1.2. Second, the pipes selected here may not be completely

representative of the smells as they are defined, which may limit the generalizability of

the user responses with respect to the specific smells. We controlled for this by selecting

pipes directly from the public repository of Yahoo! Pipes to ensure that the smells were

not artificially inserted. Third, our measures may capture more events than we originally

intended (e.g., the time to completion (O5) on this tasks may include idle time away from

the computer, a user could have set up multiple Mechanical Turk accounts to complete

the same task multiple times, thus introducing learning effects). Last, only a small pool

47

of participants, 22, was considered for this study, which may limit the generalizability of

our findings. Further studies that include more participants to reduce this threat are left for

future work.

3.4 Smells in the Community Artifacts

Motivated by end users’ ability to recognize smelly pipes as being less desirable than non-

smelly pipes, we analyzed a sample of pipes programs found in Yahoo!’s public repository

and recorded how often each smell was present in those pipes. We found that each of the

smells exists in at least 5% of our sample and that 81% of the sampled pipes contained at

least one smell. In this section, we describe our sampling strategy and collection techniques

used to gather artifacts from Yahoo’s public repository, the smell detection infrastructure we

built to analyze the pipes, and then present the results of an empirical study of 8,051 pipes

programs extracted from the Yahoo! Pipes public, detailing the frequency of occurrence

for each smell.

3.4.1 Artifact Selection and Collection

In order to detect smells in pipes (smell detection is described in Section 3.4.2), we had

to collect pipes programs from Yahoo!’s public repository. However, the only available

method for interacting with a pipes program is through the browser, since Yahoo! does

not provide an API with which developers can interact with Yahoo! Pipes. To collect

pipes programs for analysis, we wrote an automated scraper that will intercept HTTP traffic

between a browser and the Yahoo! Pipes server and log the JSON representation of a pipe.

Our scraper will obtain one pipe every ten seconds so as not to exceed the daily request

limit imposed by Yahoo!’s servers.

48

Using our custom scraper, we obtained 10,362 pipes from Yahoo!’s public repository

in approximately 30 hours. This number corresponds to the set of distinct pipes returned

from 20 consecutive queries to the Yahoo! Pipes repository, where each query returns a

maximum of 1,000 pipes. Each pipe in the query result must be loaded individually to

obtain its JSON representation.

To obtain a pool of pipes that is representative without restricting the selection based

on their configuration or structure (since that may affect the frequency of smells), we con-

strained the queries to pipes containing at least one of the 20 most popular data sources,

as reported in January 2010. Among the pipes we collected, the average size is over 8

modules per pipe. We further trim the sample of trivial pipes and retain only those with at

least four modules. The minimum size requirement was imposed to remove any pipes with

trivial structures, since four modules is the minimal number necessary to create a pipe with

multiple generator modules (and thus multiple paths to the output), as shown in Figure 3.8.

This resulted in the final sample of 8,051 pipes.

Figure 3.8: Four-Module Pipe with Two Generators

49

3.4.2 Smell Detection Infrastructure

We built a smell detection infrastructure that parses a JSON [16] representation of a Pipe

and detects smells in the program. We parse the JSON representation using the standard

Java parser provided by json.org [17], and detect the smells using our custom smell

detection infrastructure, shown in Figure 3.9.

Pre-Process

Smell Detection

Pipes

Editor
Yahoo! Server

Response

Decode JSON

Refactor Pipe

Validate Refactored

Pipe

Run Pipe

Response

Encode Pipe

in JSON

Retrieve

POST

Data

Run Pipe

JSON

Measure

ICSE 2010

Decode JSON

Smell Detection

Show Refactored

Pipe

Encode Pipe in JSON

For Y! Pipes
Refa

ctor

For

Y!

Pipe

s

Detect Smells

For Y! Pipes

Parse

JSON
Most

Reused Pipes

Detect Population-Based Smells

Graph-Based

Representation
Log Module

Orderings

Find

Community-

Prescribed

Order

Smell 9

Log Paths

Create Pipes

from Most

Common

Paths

Smell 10

Parse

JSON

All

Pipes
Graph-Based

Representation

Population Standards

Figure 3.9: Smell Detection and Pre-Processing Infrastructure

Our smell detection infrastructure has two phases: pre-processing, and smell-detection.

The pre-processing phase is used to detect the population-based smells. To do so, we

consider only a sample of most reused pipes in the population under investigation, parse

each pipe, create a graph-based representation (as described in Section 3.1), and then obtain

copies of the pipe paths used by the population-based smells. Once each of the most reused

pipes has been analyzed, we build population standards that are fed into the smell-detection

part of the infrastructure.

50

Once the pre-processing is complete, the smell-detection phase begins. Here, we con-

sider all pipes in the sample, parse the JSON representation to create a graph-based repre-

sentation, and then crawl each pipe, logging instances of each smell defined in Section 3.2.

3.4.3 Smell Frequencies

For the population-based smells, we identify the most reused pipes as those that have been

cloned more than 10 times, (∼10% of the pipes in the sample). To detect Smell 9, we

considered paths of length up to six, as this was the maximum length of read-only, order-

independent operator modules in the population we considered. To detect Smell 10, we

considered all those paths that were of length at least three and that existed in at least two

of the most reused pipes in the population. Each smell presented here occurs in at least 5%

of those pipes, and the frequencies of occurrence are summarized in Table 3.15.

Table 3.15: Most Prevalent Smells across 8051 Pipes

Smell Type Smell Presence

Laziness
Noisy Module 28%
Unnecessary Module 13%
Unnecessary Abstraction 12%

Redundancy
Duplicate Strings 32%
Duplicate Module 23%
Isomorphic Paths 7%

Environmental
Deprecated Module 18%
Invalid Source 14%

Population-Based
Non-Conforming Operator Orderings 19%
Global Isomorphic Paths 6%

All Smells 81%

While each smell individually impacts less than one-third of the pipes, we identified at

least one smell in 81% of the pipes. In most cases, a single pipe is impacted by multiple

smells, and each pipe contains instances of approximately two smells. This implies that

the smells are not only common, but that the issues encoded in the pipes are non-trivial to

detect and remove.

51

Chapter 4

Refactoring

To target and remove the most prevalent code smells, we have devised a set of semantics

preserving pipe refactorings, defined in this section (see Appendix C for sketches of proofs

for each refactoring). Similar to the smells, many of these refactorings have been inspired

by refactorings proposed by Fowler [10]. We also present the adaptation of the implemen-

tation of the refactorings to fit the Yahoo! Pipes language, the infrastructure we built to

automate the refactoring process for pipes, and the results of an empirical analysis where

we apply the refactorings to the 8,051 pipes used in the smell detection analysis presented

in Section 3.4. We conclude with a discussion of the generalizability of our techniques.

4.1 Refactoring Definitions

Since a pipe is a graph, we build on the concepts of graph transformation to specify these

refactorings. A pipe refactoring is then a transformation refactor : Pbefore → Pafter,

where Pbefore is the refactoring precondition represented by one of the smells defined in

Section 3.2, and Pafter is the refactoring postcondition. In our specification, we have fur-

ther decomposed each refactoring into a set of more basic transformation rules utilizing the

52

setter str(m) m.type = setter.string
gen(m) m.type = gen

union(m) m.name = union
split(m) m.name = split

in wire(m, w) w.dest = m ∧ w.fld = ∅
field wire(m, w) w.dest = m ∧ w.fld 6= ∅

out wire(m, w) w.src = m

joined by(mi, mj , w) out wire(mi, w) ∧ in wire(mj , w)
joined fld(m, f,w) out wire(m, w) ∧ field wire(owner(f), w) ∧ w.fld = f

Figure 4.1: Shorthand for Common Predicates Used in Refactoring Definitions

actions performed by pipe programmers (set, add, remove, move, copy) on pipe compo-

nents (nodes, wires, and fields) and using visual depictions to complement the presentation

of the most complex transformations. Figure 4.1 presents the shorthand notation used in

the refactoring definitions.

4.1.1 Reduction

This category of refactorings focuses on removing unnecessary fields and modules that

result from duplicated or lazy components. The overall result is a new pipe that is seman-

tically equivalent to the original pipe, yet it is smaller in terms of fields, wires, or modules.

Ref 1. Clean Up Module: removes any fields that are empty or duplicated within a module.

Pbefore Smell 1: Noisy Module

Params Pipe, empty or duplicated field f

Transf. set m = owner(f)

remove f from m

Pafter f /∈ m.F

53

Ref 2. Remove Non-Contributing Modules removes two kinds of unnecessary modules,

those that are poorly placed in the pipe (e.g., modules that do not reach the output) and

those that are ineffectual (e.g., operator modules that do not contain fields).

Case 2.1. Disconnected, Dangling, or Swaying modules that are isolated, do not reach

the output, or are at the top of a path but do not generate any items for the modules in the

path to consume, are unnecessary and can be removed.

Pbefore Smell 2.1, 2.5: Cannot reach output, Swaying module

Params Pipe, ineffectual module m

Transf. ∀w ∈ W | in wire(m, w) ∨ out wire(m, w)∨
field wire(m, w)

remove w

remove m

Pafter m /∈ Pipe

Case 2.2. Lazy Module that does not perform any operation or performs unnecessary

redirection can be removed and its wires reconnected.

Pbefore Smell 2.2, 2.3, 2.4: Ineffectual path altering,

Inoperative module, Unnecessary redirection

Params Pipe, ineffectual module m

Transf. ∃wj ∈ W | out wire(m, wj)

∃wi ∈ W | in wire(m, wi)

set wi.dest = wj.dest

∃wi ∈ W | field wire(m, wi)

set wi.f ld = wj.f ld

remove m, wj

Pafter m, wj /∈ Pipe

54

Ref 3. Push Down Module: removes setter modules that have only one outgoing wire, as

these can be replaced with string values in the destination field without sacrificing abstrac-

tion. This refactoring is inspired in part by the Inline Method refactoring that will “put the

method’s body into the body of its callers and then remove the method” [10].

Pbefore Smell 3: Unnecessary Abstraction

Params Pipe, unnecessary module m

Transf. String s = “”

for k = 1 · · · | m.F |
append m.F [k] to s

remove m.F [k]

∀w ∈ W | out wire(m, w)

set (w.fld).value = s

remove w

remove m

Pafter m /∈ Pipe,

∀w ∈ Pipe.W | out wire(m, w), (w.fld).value = s & w /∈ Pipe

4.1.2 Consolidation

The goal of these refactorings is to unify duplicated code in an effort to simplify pipe

structures and reduce their sizes, as was a desirable pipe characteristic expressed by end

users in our study, as discussed in Section 3.3.4. To this end, these refactorings merge

operator modules performing transformations that could be accomplished with just one

module and collapse duplicate paths that perform identical transformations on separate

lists of items, which are later merged.

55

Ref 4. Merge Redundant Modules: merges operators and path-altering modules that are

connected or perform the same operation along the same path.

Case 4.1. Merge Consecutive Operators with the same name as they can be consolidated

into one module, decreasing the size and complexity of the pipe. This refactoring is moti-

vated by the Inline Class refactoring that moves all the features of one class into another

class, and then deletes it [10]. Here, mj is being inlined, and mi absorbs all its features.

See Figure 4.2 for an example.

Pbefore Smell 5.1: Consecutive order-independent operators

Params Pipe, order independent operators mi, mj

Transf. ∃wi, wj ∈ W | joined by(mi, mj, wi) ∧ out wire(mj, wj)

set wi.dest = wj.dest

for k = 1 . . . mj.F
append mj.F [k] to mi.F

remove mj, wj

Pafter mj, wj /∈ Pipe, mi.F = mi.Fold ∪mj.F

op_indep(mi)
mi. F = {a,b}

wj

op_indep(mj)
mj. F = {c}

wi

op_indep(mi)
mi. F = {a,b,c}

op_indep(mj)
mj.F = {c}

wi

wfld

wfld

wj

Figure 4.2: Merge Consecutive Operators

56

gen(mk)
mk. F = {a,b}

wi

op_indep(mi)
mj. F = {d,e}

wk

union(mi)

union(mj)

union(mi)

union(mj)

wj wk

wl wn wj wk wl wn

wi wi

gen(ml)
mi. F = {c}

wj

op_indep(mj)
mj. F = {d,e}

wl

union(mu)

gen(mk)
mk.F = {a,b}

wi

op_indep(mi)
mj.F = {d,e}

wk

wj

op_indep(mj)
mj.F = {d,e}

wl

union(mu)

union(ml)

wo wp gen(mk)
mk.F = {a,b}

wi

op_indep(mi)
mj.F = {d,e}

wk

wj

op_indep(mj)
mj.F = {d,e}

wl

union(mu)

union(ml)

wo wp

gen(mk)
mk. F = {a,b}

wi

op_indep(mi)
mj. F = {d,e}

wk

gen(ml)
mi. F = {a,b,c}

wj

op_indep(mj)
mj. F = {d,e}

wl

union(mu)

Figure 4.3: Merge Path Altering

Case 4.2. Merge Path Altering Modules that are underutilized by consolidating the in-

coming or outgoing wires. This refactoring is also motivated by Inline Class [10]. See

Figure 4.3 for an example of refactoring consecutive union modules.

Pbefore Smell 5.2: Consecutive path-altering modules

Params Pipe, path altering modules mi, mj

Transf If union(mi), ∃wi ∈ W | joined by(mi, mj, wi)

∀w ∈ W | in wire(mi, w), set w.dest = mj

If split(mi), ∃wi ∈ W | joined by(mj, mi, wi)

∀w ∈ W | out wire(mi, w), set w.src = mj

remove mi, wi

Pafter mi, wi /∈ Pipe

57

Case 4.3. Merge Subsequent Operators with the same name and parameters as they are

redundant. In the precondition, we guarantee that module mj postdominates module mi,

and since both modules perform the same operation on the data, the postdominated module

mi is unnecessary and can be removed. See Figure 4.4 for an example.

Pbefore Smell 5.4: Identical subsequent operators

Params Pipe, identical operator to be removed mi

Transf. ∃wi, wj ∈ W | in wire(mi, wi), out wire(mi, wj)

set wi.dest = wj.dest

∀w ∈ W | field wire(mi, w)

remove w

remove mi, wj

Pafter mi, wj /∈ Pipe

union(mi)

union(mj)

...

union(mi)

union(mj)

wj wk

wl wn
wj wk wl wn

op_indep(mi)

op_indep(mj)

mi. F = {a,b,c}

mj. F = {a,b,c}

...

op_indep(mi)
mi. F = {a,b,c}

op(m)
m.F = {}

op(m)
m.F = {}

wi

wj

wi

op_indep(mi)
mi. F = {a,b}

wj

op_indep(mj)
mj. F = {c}

wi

op_indep(mi)
mi. F = {a,b,c}

op_indep(mj)
mj.F = {c}

wi

wi
wi

wi

wfld

wfld

wi

wj wj

wj

op_indep(mj)
mj. F = {a,b,c}

Figure 4.4: Merge Subsequent Operator

58

Ref 5. Collapse Duplicate Paths: paths that are aggregated using the same union module

can often be consolidated into a single path, simplifying the pipe structure. This can occur

in the presence or absence of operator modules along the paths, so we present two cases

for clarity.

Case 5.1. Joined Generators whose output is unmodified prior to aggregation, reducing

the complexity and size of the pipe. See Figure 4.5 for an example.

Pbefore Smell 5.3: Joined generators

Params Pipe, joined generator modules mi, mj

Transf. for k = 1 · · · | mi.F |
append mi.F [k] to mj.F
∃wi ∈ W | out wire(mi, wi)

remove wi

remove mi

Pafter mi, wi /∈ Pipe, mj.F = mj.F ∪mi.F

wi

gen(mi)
mi. F = {a,b}

wj

gen(mj)
mj. F = {c,d}

union(mu)
wi

gen(mi)
mi. F = {a,b}

wj

gen(mj)
mj. F = {a,b,c,d}

union(mu)

wi

op(mi)
mi.F = {a,b,c,d,e,fi}

wj

op(mj)
mj.F = {fi,h,k,n}

union(mu)

gen(mk)
mk.F = {a,b}

wi

op_indep(mi)
mj.F = {d,e}

wk

gen(ml)
mi.F = {c,a,b}

wj

op_indep(mj)
mj.F = {d,e}

wl

union(mu)

wfld
wfld

Figure 4.5: Joined Generators

59

Case 5.2. Identical Parallel Operator Pairs that perform the same operation prior to

aggregation can be collapsed into one path by merging the generator modules. An instance

of this refactoring is illustrated in Figure 4.6 for two generator modules.

Pbefore Smell 5.5: Identical parallel operators

Params Pipe, operators mi, mj , and modules mk, ml

Transf. ∃wi, wj, wk, wl ∈ W ,∃mu ∈ Pipe |
joined by(mi, mu, wi), joined by(mj, mu, wj),

joined by(mk, mi, wk), joined by(ml, mj, wl)

if gen(mk) ∧ gen(ml)

for x = 1 · · · | mk.F |
append mk.F [x] to ml.F

remove mk, wk

if gen(mk) ∧ union(ml)

set wk.dest = ml

if union(mk) ∧ union(ml)

∀w ∈ W | in wire(mk, w)

set w.dest = ml

remove mk, wk

remove mi, wi

Pafter mi, mk, wi, wk /∈ Pipe

4.1.3 Abstraction

These refactoring focus on abstracting areas of the pipe in which there are duplicate fields

and paths. The inspiration for these transformations draws from refactorings that aim to

more cleanly compose and package code by abstracting common code into its own method

or replacing an algorithm with a cleaner one [10].

60

Figure 4.6: Identical Parallel Operators (two generators)

Ref 6. Pull Up Module: extracts duplicate strings into a separate module and provides

the values via wires to the previous owners of the duplicated strings. This refactoring is

analogous to the common Extract Method refactoring that abstracts the same expression

from two methods in the same class into its own method, and then invokes the new method

from the original expression locations [10].

Pbefore Smell 4: Duplicate Strings

Params Pipe, fields with duplicate strings fi and fj

Transf. add module m to Pipe.M | setter str(m)

add field g to m.F
set g.value = fi.value

add wire wi to Pipe.W | joined fld(m, fi, wi)

add wire wj to Pipe.W | joined fld(m, fj, wj)

Pafter m, wi, wj, g ∈ Pipe | g.value = fi.value

∧joined fld(m, fi, wi) ∧ joined fld(m, fj, wj)

Ref 7. Extract Local Subpipe: creates a subpipe that contains the modules in the isomor-

phic paths in a pipe, and replaces those paths with the subpipe. The replacement of the

61

path with a semantically equivalent subpipe is similar to the Substitute Algorithm refac-

toring that replaces an algorithm with one that is cleaner [10]. In this case, we replace

all instances of the path with a cleaner module. For example, in Figure 1.3, a subpipe was

created to replace two paths from Figure 1.2, from A to E, and from C to G. The field

values from A, C, and G were copied to their respective subpipes. The wire providing the

field value to E was reconnected to the field from E in subpipe A + E.

Pbefore Smell 6: Isomorphic Paths

Params Pipe, isomorphic paths p and p′

Transf. % Build subpipe

(1) create pipe newPipe

add module o to newPipe.M | o.name = output

copy p to newPipe

add wire v to newPipe.W | joined by(p(last), o, v)

∀f ∈ newPipe | f.wireable = true,

add module q to newPipe.M | q.type = setter.user

(2) add wire x to newPipe.W | joined fld(q, f, x)

% Connect subpipe to pipe

(3) for (path a = p, p′)

add module r to Pipe.M | r.name = subpipe(newPipe)

add wire t to Pipe.W | joined by(r, a(last + 1), t)

∀f ∈ F | owner(f) ∈ a ∧ f.wireable = true

if ∃w ∈ Pipe.W | w.fld = f , set w.dest = r.q

if (f.value! =“”), copy f.value to r.q.value

remove a

Pafter p and p′ /∈ Pipe, ∃2subpipe(newPipe) ∈ Pipe

62

4.1.4 Deprecations

Outdated or broken modules and sources can lead to unexpected pipe behavior. These

refactorings either replace or remove such pipe components to increase the pipe’s depend-

ability, similar in spirit to previous work that used refactorings to update references to

deprecated library classes in Java programs [2].

Ref 8. Replace Deprecated Modules: assumes that a function replace :M→M exists

that takes a deprecated module, mdep, and returns a module or sequence of modules, Mnew,

that perform a semantically equivalent operation as mdep.

Pbefore Smell 7: Deprecated Module

Params Pipe, module mdep, Mdep

Transf. add Mnew to Pipe

∃wi ∈ W | in wire(mdep, wi)

set wi.dest = Mnew(first)

∃wj ∈ W | out wire(mdep, wj)

set wj.src = Mnew(last)

remove mdep

Pafter mdep /∈ Pipe

Ref 9. Remove Deprecated Sources: removes all sources that refer to invalid external

data sources to reduce the bloating and remove a common cause of pipe failures.

Pbefore Smell 8: Invalid Sources

Params Pipe, field f referring to es ∈ ExternalSources

Transf. m = owner(f)

remove f from m

Pafter f /∈ m.F

63

4.1.5 Population-Based Standardizations

These refactorings exploit the availability of a large repository of pipes developed by end

users to standardize the practices across the community in order to facilitate reuse. The

inspiration for these transformations draws from the vast amount of community knowledge

encoded in repositories of programs and our ability to extract common knowledge and

standards to enrich the programs created by a single user.

Ref 10. Normalize Order of Operations: reorders the order-independent, read-only op-

erator modules to match the ordering prescribed by the population. The goal of this refac-

toring is to increase the understandability of the pipes by enforcing a canonical ordering

on the operators that has been defined by the population. The results of HIT 8 in Table 3.8

in which users overwhelmingly showed that the pipe with the canonical module ordering is

easier for others to understand, motivates this refactoring.

Pbefore Smell 9: Non-conforming module orderings

Params Pipe, non-conforming path p, prescribed path ppres

Transf. add path ppres to Pipe

wi ∈ W | in wire(p(first), wi)

set wi.dest = ppres(first)

wj ∈ W | out wire(p(last), wj)

set wj.src = ppres(last)

remove p

Pafter ppres in place of p

Ref 11. Extract Global Subpipe: this is the generalization of Refactoring 7 to operate

across a population of pipes. The difference with this refactoring is in the broadening

of the space on which the pattern identification occurs, that is, across multiple pipes as

opposed to across multiple paths within the same pipe. This refactoring assumes that a

64

function getSubP ipe : Path → Pipe exists that takes an isomorphic path and returns a

global pipe that can replace it. Each subpipe is built like those in Refactoring 7, lines (1 –

2).

Pbefore Smell 10: Global Isomorphic Paths

Params isomorphic Paths

Transf. Start at line (3) in Refactoring 7, replacing it with:

for(a = p ∈ Paths), newPipe = getSubP ipe(a)

Pafter ∀p ∈ Paths | p /∈ Pipes,

∃1subpipe(newPipe) ∈ Pipe

4.2 Refactorings Adapted to Yahoo! Pipes

This section describes the additional refactoring constraints and adaptations we performed

to fit the Yahoo! Pipes language. We discuss the impact of these changes in Section 4.4.

For the population-based refactorings, as was done for the smell detection study described

in Section 3.4.3, we identify the most reused pipes as those that have been cloned more

than 10 times, (∼10% of the pipes in the sample).

Refactoring 1: Clean Up Sources. In the case of duplicate fields in the precondition,

this refactoring was performed on the generator modules (the most common case) but not

on operator modules which would have required an additional set of dependency analyses

tailored to a large variety of operators.

Refactoring 3: Push Down Module. The refactoring of the urlbuilder module re-

quired additional processing to insert separator symbols when assembling a url string using

its fields (e.g., base url, paths, query parameters).

Refactoring 4.1: Merge Consecutive Operators. This refactoring was only per-

formed for operator modules that can accommodate multiple fields (e.g., sort, filter,

regex, rename). Operator modules, such as loop and unique, that do not support a vari-

65

able number of fields, cannot be merged. Also, for operators with non-wireable fields,

additional matching constraints were added. For example, the filter module contains two

non-wireable fields whose values are set using a selectable drop-down menu. To merge

consecutive filter modules, we require these values to match.

Refactoring 4.2: Merge Path Altering and Refactoring 5.2: Identical Parallel Op-

erator Pairs. Path-altering modules in Yahoo! Pipes have a bounded number of incoming

and outgoing wires. We added preconditions to respect those bounds (limits of five incom-

ing wires for union and two outgoing wires for split).

Refactoring 8: Replace Deprecated Modules. Yahoo! Pipes provides a list of dep-

recated modules and some suggestions on how to replace them; we used this informa-

tion as a guide for refactoring. The following deprecated modules are replaced: foreach,

foreachannotate, contentanalysis, and babelfish.

Refactoring 9: Remove Deprecated Sources. When accessing information from Ex-

ternalSources, error codes such as 404 Not Found or 503 Service Unavailable may be re-

turned. We use this information to remove deprecated sources. This refactoring is applied

to generator and string-setter modules, but not to user-setter modules because they can be

overwritten at run-time.

Refactoring 10: Normalize Order of Operations. We generate PPres by consider-

ing the most reused pipes and identifying paths of size two to five, containing read-only

and order-independent modules that appear in multiple pipes within this subset of pipes.

Refactoring 11: Extract Global Subpipe. We generate PGPaths by considering the

most reused pipes and identifying paths of at least length three that appear in multiple pipes

within the subset.

66

4.3 Refactoring Study Infrastructure

To facilitate an assessment of the effectiveness of the refactorings, we built a manipulation

infrastructure, shown in Figure 4.7.

Figure 4.7: Manipulation Infrastructure

Figure 4.7 illustrates the pipe collection process described in Section 3.4.1, contains

the pre-processing and smell detection infrastructure for all 10 smells described in Sec-

tion 3.4.2 (Smell Detector component), provides transformations for all 11 refactorings

subject to the language constraints described in Section 4.2, and supports the full grammar

of Yahoo! Pipes. By executing searches on the Yahoo! Pipes repository, we obtained ids

for those pipes that met our selection criteria. For each id, we then sent a load pipe request

to Yahoo!’s servers; the response contained a JSON [16] representation of the Pipe in the

POST data. We stored the results in a database. These pipes are fed into the Decode JSON

component (same as the Parse JSON step in Figure 3.9), which produces a graph-based

representation of a pipe. The smell detection infrastructure indicates the smelly parts of

67

the pipe, which are then targeted by the refactorings. Once a pipe has been sufficiently

refactored, we can send an encoding of the refactored pipes to Yahoo!’s servers so the

newly-updated version will be loaded in the Pipes Editor.

As part of the Refactor component in the infrastructure, we also implemented a wrap-

per that repeatedly runs the smell detector and the refactorings that address those smells,

until no further smell reduction can be obtained. This helps us explore how refactorings

may interact when applied in sequences (similar to what was described in Section 1.1).

Figure 4.8 illustrates how the wrapper operates. The outer loop ensures that the algorithm

will continue until no smells can be removed. The middle loop iterates on all the current

smells in the pipe, using the smellRefMap to identify the refactorings that may reduce

the smell. The inner loop applies all the relevant refactoring.

Require: Pipe PG = (M,W ,F , owner)
Map < Smell, Refactoring > smellRefMap

Ensure: returns PG′, a pipe with minimal smells
Set < Refactoring > ref
Set < Smell > currentSmells, previousSmells
PG′ = PG
currentSmells = detectSmells(PG′)
previousSmells = ∅
while previousSmells != currentSmells do
for s ∈ currentSmells do
ref = smellRefMap.getAll(s)
for r ∈ ref do
refactor(PG′, r)

end for
end for
previousSmells = currentSmells
currentSmells = detectSmells(PG′)

end while
return PG′

Figure 4.8: Greedy Algorithm

68

4.4 Effectiveness of Refactorings

Analyzing the pipes with the manipulation infrastructure yielded some promising results

for the effectiveness of the refactorings at removing smells. For each smell, Table 4.1

presents the smelliness per pipe in the Smells Per Pipe row, and each subsequent row shows

the change in smelliness after applying each individual refactoring. For example, each pipe

affected by the Duplicate Modules smell contains an average of 5.10 smelly modules. After

applying the Duplicate Paths refactoring, each affected pipe has 1.43 smelly modules, a

reduction of 72%. The final row, Greedy Approach, targets all smells, using the algorithm

in Figure 4.8.

Table 4.1: Smells and Refactoring Effectiveness

Smells

Refactorings

Laziness Redundancy Environmental Population-Based

N
oi

sy
M

od
ul

e

U
nn

ec
es

sa
ry

M
od

ul
e

U
nn

ec
es

sa
ry

A
bs

tr
ac

tio
n

D
up

lic
at

e
St

ri
ng

s

D
up

lic
at

e
M

od
ul

es

Is
om

or
ph

ic
Pa

th
s

D
ep

re
ca

te
d

M
od

ul
e

In
va

lid
So

ur
ce

M
od

ul
e

O
rd

er
in

g

G
lo

ba
l

Pa
th

s

Smells Per Pipe 5.27 2.03 1.81 12.52 5.10 5.64 1.54 2.57 1.00 1.25

R
ed

uc
tio

n

Clean Up -18.4%Module
Non-Contrib. -100%Module
Push Down -11.3% -100% -10.2%Module

C
on

so
l. Merge -17.2%Modules

Duplicate -72.0%Paths

A
bs

tr
ac

t. Pull Up -12.7% -47.4% -100%Module
Local -11.7% -100% -23.0%Subpipe

D
ep

re
ca

t. Deprecated -100% -7.1%Module
Deprecated +24.7% -99.2%Source

Po
pu

la
t. Module -100%Ordering

Global -100%Subpipe

Greedy Approach -42.7% -100% -100.0% -100% -89.7% -100% -100% -99.2% -100% -100%

(Results are only reported for smell changes per pipe that are ≥ 5%.)

69

Seven of the refactorings applied individually are able to target and completely re-

move certain smells from the pipes: Non Contributing Module eliminates Unnecessary

Module, Push Down Module eliminates Unnecessary Abstraction, Pull Up Module elimi-

nates Duplicate Strings, Extract Local Subpipe eliminates Isomorphic Paths, Remove Dep-

recated Modules eliminates Deprecated Module, Normalize Module Ordering eliminates

Non-conforming Module Orderings, and Extract Global Subpipe eliminates Global Iso-

morphic Path. One other refactoring, Remove Deprecated Sources, is almost as effective,

eliminating over 99% of the Invalid Sources smell.

We note that some refactorings cause changes that open the door for other refactor-

ings to be performed. For example, the Remove Deprecated Sources refactoring not only

eliminates 99% of the Invalid Source smells, but it also increases the presence of the Un-

necessary Module smell by 25% (removing deprecated sources can lead to a module with

no fields, a module that is inoperative). This creates an opportunity for other refactorings,

such as Remove Non-Contributing Module.

Other refactorings may have small individual impact, but can be applied in combination

with others to target different aspects of a smell to have a greater overall effect. The Noisy

Module smell is particularly interesting in that only one refactoring targets this smell, Ref 1:

Clean Up Module, yet three refactorings have a valuable impact. Further, the maximal im-

pact of any refactoring on this smell is 18%, but when applied together, the total reduction

is closer to 43%, illustrating how the application of multiple refactorings may be necessary

to more completely address a smell.

We explore the effect of applying a sequence of refactorings utilizing the algorithm

in Figure 4.8. The results, shown in the last row of Table 4.1, indicate that seven smells

are completely eliminated in all the affected pipes. However, even when applying the

refactorings greedily, not all the smells can be eliminated. The Noisy Module smell is not

eliminated because the implementation of Refactoring 1: Clean Up Module only targets

70

the generator modules. The Duplicate Modules smell is not eliminated because of the

implementation limitations of Refactoring 4: Merge Redundant Modules; there are many

consecutive union modules that have reached maximum capacity on their input wires. The

Invalid Source smell is not eliminated because Refactoring 9: Remove Deprecated Sources

does not remove sources within user-setter modules since those values can be over-written

by a user at runtime.

Overall, before applying the refactorings, 6,503 of the 8.051 pipes had at least one

smell, which represents nearly 81% of the population. After applying all the refactorings

in the greedy approach, only 1,323 of the pipes have smells, representing 16% of the pipes.

This means that the refactorings were able to completely eliminate the smells in nearly

80% of the pipes that had smells to begin with. In addition, the average number of smells

per pipe was reduced from eight to one through the proposed refactorings.

4.5 Generalizability and Threats

There are many web mashup environments available to end users, as discussed in Sec-

tion 2.2, though our studies focus on just one of those environments, Yahoo! Pipes. This

environment was selected to maximize the potential impact of the findings (given the popu-

larity of Yahoo! Pipes), and because of the availability of a rich public repository to support

a large study on smell detection and refactorings. In this section, we begin to address this

threat by assessing the generalizability of our approach and performing a manual inspection

and analysis of the pipes available in the newer DERI Pipes repository. Then, we discuss

two more threats to validity.

71

4.5.1 Generalizability

Of the 110 published DERI pipes, 58 meet the size selection criteria used for our Yahoo!

Pipes study. In spite of the small pool size, we find that five of the eight smells we searched

for (population-based smells were not considered as their manual analysis was deemed too

expensive) are present in these pipes, with an average of 1.4 total smells per pipe.

We note, however, that particular DERI language constructs and constraints will re-

quire further tailoring of our infrastructure. For example, there may never be an instance

of Smell 5.2: Consecutive path-altering modules because there is no limit on the number

of incoming or outgoing wires for the path-altering modules. This smell was particularly

common in Yahoo! Pipes because of the limit of five incoming wires on the union mod-

ule. Similarly, language constructs may also impede certain refactorings. Since DERI’s

generator modules do not support multiple fields, they cannot be merged, so the Smell 5:

Duplicate Module, which affects 27% of the pipes, cannot be detected and thus Ref 1:Clean

Up Module cannot be applied.

Despite the language limitations, we observe that three out of the five smells we de-

tected can be successfully refactored. Smell 6: Isomorphic Paths impacts 14% of the pipes

and can be eliminated using Refactoring 7: Extract Local Subpipe. Smell 8: Invalid Source

impacts 10% of the pipes and can be eliminated using Refactoring 9: Remove Deprecated

Sources. Additionally, 9% of the pipes contain unnecessary modules, which can be re-

moved like they are in Refactoring 2: Remove Non-Contributing Modules.

4.5.2 Other Threats to Validity

The first threat regarding the generalizability of our approach was addressed in part through

the analysis of the DERI repository, where we discovered that many of our smells and

72

refactorings could be applied directly. Still, it remains to be explored whether the smells

and refactorings will be relevant in other environments.

A second threat to the general validity of our results that we will address in future work

is the assessment of the proposed refactorings in the hands of end users. Although the

defined smells are prevalent across the pipes shared by the community members, the refac-

torings ultimately need to be assessed with end users to determine, for example, whether

and how they are adopted in practice. We addressed this threat in part by our formative

user study that showed end users’ general preference toward pipes that lacked the smells

we have identified.

A third threat concerns the correctness of the tools we have developed, which includes

the smell detector and the refactorings, but also the components to, for example, scrape,

decode, and load a pipe. In addition to the individual tests of each of those components, we

have manually inspected the end-to-end transformations of over 200 pipes to increase our

confidence in the tools.

73

Chapter 5

Conclusions and Future Work

End users are developing and sharing mashups in increasing numbers. However, a popular

kind of mashup being created by end users, pipes, have many deficiencies such as being

bloated with unnecessary modules, accessing broken sources of data, using atypical con-

structs, or requiring changes in multiple places even for minor adjustments because of the

lack of abstraction. In this work, we have formalized the definitions for a family of code

smells that identify these deficiencies and shown the value of the smells in two ways. First,

we show that end users demonstrate a preference toward pipes that are smaller and lack our

identified code smells. Second, we show that these code smells are pervasive in the com-

munity artifacts, impacting 81% of our large sample of 8,051 pipes developed by thousands

of end users.

Inspired by how refactoring can benefit professional developers by targeting and remov-

ing smells, we have developed refactorings that target the most prevalent smells identified in

the 8051 pipes. The refactorings include some adapted from more traditional programming

domains (e.g., removal of unnecessary modules, pulling up and pushing down modules),

but also some that are unique to the mashup domain, such as the population-based and con-

solidation refactorings. The assessment of these refactorings revealed that they can reduce

74

the frequency of smelly pipes in the population from 81% to 16% and reduce the average

smells per pipe by almost 90%. Given these promising results, we envision several avenues

for future work.

First, we want to study how end users can utilize the refactorings, and have made steps

in this direction by developing a refactoring prototype. A user study will reveal how intu-

itive the refactorings are for end users and how likely an end user is to utilize a refactoring

tool. Such a tool could also serve as a design critic that could perform context-sensitive

suggestions during mashup development toward the goal of making the pipe more usable

by others, or have application toward computer science education by helping students, es-

pecially those just learning to program, to identify and remove code smells in an effort to

instill good programming practices.

Second, we want to broaden the family of refactorings to address other smells we have

observed. For example, some urls return a 403 Forbidden or 401 Unauthorized response

code when accessed. This affects urls in 3% of the pipes, but a forbidden URL is often the

result of missing login credentials, and has implications for the correctness of the pipe when

shared with others - considering that 66% of the pipes with forbidden urls had been cloned,

addressing this error is important. We would also like to extend the population-based refac-

torings to better leverage the community resources and provide better user support. For

example, we would like to extend the global isomorphic paths refactoring to scrape the

Yahoo! Pipes repository and replace isomorphic paths with existing pipes from the com-

munity instead of creating new ones for the purpose of abstraction. With the work we have

presented, we believe that we are just beginning to tap the power of such community based

resources to assist end users in the development of mashups.

75

Appendix A

Mechanical Turk Implementation

A.1 Qualification Quiz for Web Mashup Understanding

Please Note: You must be at least 19 years old to participate. Completing this qualification

exam involves four parts:

1. Answer questions about your background and programming experience

2. View tutorial information about the Yahoo! Pipes mashup environment

3. Answer comprehension questions about Yahoo! Pipes to evaluate your understanding

of the environment

4. Read the Informed Consent notice

Only your answers to the questions in Part 3 will be graded for this exam. To pass the exam,

you must answer at least 4/8 questions correctly in Part 3 and accept the Informed Consent

form in Part 4. It is necessary that you complete Part 1, but we have no expectations about

your answers.

76

A.1.1 Part 1: Background Questions

1. Are you at least 19 years old?

a) Yes

b) No

2. What is your gender?

a) Male

b) Female

c) Prefer not to answer

3. What is your programming experience?

a) Limited or No Experience

b) Self-taught only

c) On-the-job training only

d) One or more classes, in high school or college, in computer science or related

field

e) Undergraduate/Graduate degree, in progress or completed, in computer science

or related field

4. How long have you been programming (e.g., using languages like Java, C/C++,

JavaScript, Perl, Python, etc.)?

a) no experience

b) less than 1 year

c) 1–5 years

d) 5+ years

77

A.1.2 Part 2: Tutorial Information

Please view the following tutorial video (http://video.yahoo.com/watch/5260536/13878389)

on Yahoo! Pipes to prepare you to answer the comprehensive questions in Part 3. If you are

already familiar with the Yahoo! Pipes environment, you may skip straight to the questions.

A.1.3 Part 3: Comprehensive Questions

Answer questions 1-8 below. Questions 1-6 are based on the screen shot of a pipe displayed

below. Each module in the image is annotated with a letter for easy reference. Questions

7-8 are based on the Yahoo! Pipes environment. Feel free to consult the Yahoo! documen-

tation as needed. (For the purposes of the appendix, the correct answers are indicated in

italics.)

Figure A.1: Pipe for Qualification Test Questions

78

1. What is the behavior of Module B?

a) Acts as the final output module of the pipe, aggregating data from all modules

connected to it.

b) Finds the locations of each item in the feeds specified by the websites and places

them on a map.

c) Gathers the content from each website specified in the input fields.

2. What is the behavior of Module C?

a) It aggregates the content from Module A and Module B.

b) It gathers the content from Module A or Module B, depending on which module

works faster.

c) It iterates through content from Module A, Module B, and Module D, only

allowing unique items to pass through.

3. What happens to the content that passes through Module D?

a) It goes to Module C.

b) It goes to Module E.

c) It doesn’t go anywhere.

4. Let’s assume that the website specified in Module A contains three items and each

of the two websites in Module B contains four items. Two items in Module A have

the word soccer in the title, but only one has the word soccer in the description. Five

items from Module B have the word futbol in the description, and three of the five

also have the word soccer in the description. There are no instances of the phrase

world cup in any of the items. What is the maximum number of items that will reach

Module E?

a) Zero, since D blocks all items.

b) One, since only one has the word soccer in the title.

c) Three, since only three have both futbol and soccer in the description.

79

d) Six, since futbol or soccer appears in the description of six items.

e) Eleven, since Module D allows all items to pass through.

5. What happens in the absence of Module E?

a) An error occurs and Yahoo! deletes the pipe.

b) The output of the pipe is printed to the screen.

c) Nothing happens; there is no output.

6. What happens if the link between Module C and Module D is removed?

a) An error occurs and Yahoo! deletes the pipe.

b) The output of the pipe is printed to the screen.

c) Nothing happens; there is no output.

7. What does it mean to clone a pipe? (The tutorial video in Part 2 mentions cloning

toward the end.)

a) Copy a module from another pipe for your own use.

b) Copy an entire pipe for your own use.

c) Copy an entire pipe and insert it as a module in your own pipe.

8. The Yahoo! Pipes environment supports re-use of pipes. That is, a pipe can be

re-used as a building block and inserted as a module in a different pipe. We re-

fer to these as subpipes. Select the answer below that most closely fits the defi-

nition of a subpipe. (The following document may help you answer this question:

http://pipes.yahoo.com/pipes/docs?doc=modules)

a) Given Pipes A and B, A is a subpipe of B if the output of A is a subset of the

output of B.

b) A grouping of some, but not all, of the modules in a given pipe.

c) An entire Pipe that has been inserted as a module in a different pipe.

80

A.1.4 Part 4: Informed Consent (IRB#20100410792 EX)

In order to pass this qualification exam, you must accept to the informed consent informa-

tion, presented here:

–Purpose of the Research–

The goal of this study is to analyze the impact of coding practices in the maintainability

and understandability of pipe-like web mashups in the context of the Yahoo! Pipes envi-

ronment.

–Procedures–

You must be at least 19 years of age to participate in this study. Participation in this study

will involve the completion of one or more HITs that will ask you to analyze pipes created

in the Yahoo! Pipes environment. You will be asked multiple-choice and/or open-ended

questions about the pipes. This study will be conducted from your personal computer

via the Mechanical Turk website. Each HIT should take no more than 5-10 minutes to

complete, though the allotted time by Mechanical Turk allows 60 minutes per HIT. To

complete all 10 of the HITs available to you should take no longer than one hour in total.

–Risks and/or Discomforts–

Potential discomforts may come from the effort it takes to understand Pipes and complete

the tasks.

–Benefits–

As a participant, you will be required to learn about Yahoo! Pipes, which could help you

to streamline your activities on the Internet. Additionally, for each HIT completed (up to

10), you will receive compensation of 0.08, forapotentialtotalcompensationof0.80. If

you choose not to complete any HITs, you will not receive any monetary compensation.

81

–Confidentiality–

Your answers will be strictly confidential and will not be connected to your name, email,

IP address, or any other identifying information.

–Opportunity to Ask Question–

You may ask any questions concerning this research and have those questions answered

before agreeing to participate in or during the study. The e-mail address of the primary

investigator is kstolee ’at’ cse.unl.edu, and the e-mail address of the secondary investigator

is elbaum ’at’ cse.unl.edu. If you have questions concerning your rights as a research

subject that have not been answered by the investigators or to report any concerns about the

study, you many contact the University of Nebraska-Lincoln Institutional Review Board,

telephone (402) 472-6965.

–Freedom to Withdraw–

You are free to decide not to participate in this study or to withdraw at any time without

adversely affecting your relationship with the investigators or the University of Nebraska.

Your decision will not result in any loss or benefits to which you are otherwise entitled, but

compensation is only provided once HITs have been completed.

–Consent, Right to Receive a Copy–

Your acceptance certifies that you have decided to participate having read and understood

the information presented. You may save this page for your records.

–Affiliations–

We are researchers in the ESQuaReD lab at the University of Nebraska-Lincoln and are in

no way affiliated with Yahoo!.

1. Do you agree to the information presented in the informed consent?

a) Yes, I have read, understood, and accept the informed consent.

b) No, I do not accept the informed consent.

82

A.2 Human Intelligence Tasks

A.2.1 Preference

A HIT in this category has a structure like the one shown here. The points of variability are

pipe images (i.e., A and B), number of clones (i.e., X and Y), the context (i.e., Pipes with

different structures can generate the same output.) and the characteristic being evaluated

with the questions (i.e., to understand). Each preference HIT description that follows in

Sections 1–8 defines these points of variability. We indicate the smelly and clean pipes for

reference, but that information was not available to the users.

Table A.1: Preference HIT Example

A B

X clones Y clones

Click each image to open a larger view.

Take some time to understand the behavior of each pipe. To answer questions 1 and 2

below, consider the following context:

Pipes with different structures can generate the same output.

1. Select the pipe that is easiest to understand

a) A

b) B

c) Same

2. Justify your answer (you must use at least 10 words in your explanation):

83

HIT 1. Preference Joined Generators

Table A.2: Joined Generators Smell and Joined Generators Refactoring

A (smelly) B (clean)

65 clones 65 clones

Context: Pipes with different structures can generate the same output, as is the case

with Pipes A and B.

Characteristic: to understand

84

HIT 2. Preference Duplicate Strings

Table A.3: Duplicate Strings Smell and Pull Up Module Refactoring

A (smelly)

65 clones
B (clean)

32 clones

Context: Truncate modules in Pipe A have hard-coded field values, but receive values

via wire in Pipe B

Characteristic: to update in the future (e.g., allow only 1 item per website, not 3)

85

HIT 3. Preference Consecutive Order-Independent Operators

Table A.4: Consecutive Order-Independent Operators Smell and Merge Consecutive Oper-
ators Refactoring

A (clean) B (smelly)

41 clones 41 clones

Context: Rules in Regex modules modify a specified field’s content (e.g., item.title),

replacing instances of a pattern ((̂.+)) with some text (JENI Latest -).

Characteristic: to understand

86

HIT 4. Preference Invalid Source

Table A.5: Invalid Source Smell and Remove Deprecated Sources Refactoring

A (smelly)

12 clones
B (clean)

12 clones

Context: Websites can be deleted, causing 404 errors, like these 2 in Pipe A:

http://www.gamemakergames.com and http://www.gmshowcase.dk/forums.

Characteristic: to update in the future

87

HIT 5. Preference Deprecated Modules

Table A.6: Deprecated Module Smell and Replace Deprecated Modules Refactoring

A (clean) B (smelly)

128 clones 65 clones

Context: Components are sometimes deprecated and replaced with improved features.

In Pipe B, Content Analysis and For Each: Replace were deprecated.

Characteristic: for others to understand

88

HIT 6. Preference Noisy Module

Table A.7: Duplicate Field Smell and Clean Up Module Refactoring

A (smelly) B (clean)

7 clones 7 clones

Context: Specifying the same website multiple times can lead to duplicate items in a

pipe’s output.

Characteristic: to update in the future

89

HIT 7. Preference Global Isomorphic Paths

Table A.8: Global Isomorphic Paths Smell and Extract Global Subpipe Refactoring

A (clean) B (smelly)

74 clones 74 clones

Context: In Pipe A, the ”Fetch 6, Unique” subpipe module gathers the content of the

six specified URLs and removes items that have duplicate titles or links.

Characteristic: to understand

90

HIT 8. Preference Unnecessary Module and Non-conforming Module Orderings

Table A.9: Unnecessary Module and Non-conforming Module Orderings Smells and Nor-
malize Order of Operations Refactoring

A (clean) B (smelly)

13 clones 13 clones

Context: The majority of the most popular pipes in the Yahoo! Pipes repository place

the Unique module before the Filter module.

Characteristic: for others to understand

91

A.2.2 Output Analysis

A HIT in this category has a structure like the one shown here. There are two HITs divided

into two pairs. Section 9 shows two pipes with the same output, one refactored and one

smelly. The same is true with Section 10. Each pipe is contained in its own HIT, but the

options of output are the same. The points of variability are the pipe image the context

(i.e., Pipes with different structures can generate the same output) and answers to the first

question about the pipe’s output.

Figure A.2: Output Analysis Example Pipe

Click the image to open a larger view.

Take some time to understand the behavior of each pipe. To answer questions 1 and 2

below, consider the following context:

Pipes with different structures can generate the same output.

1. Select the answer that most closely resembles the pipe’s output.

a) Option 1

b) Option 2

c) . . .

2. Justify your answer (you must use at least 10 words in your explanation):

92

HIT 9. Evaluating Isomorphic Paths

HIT 9.1. Clean Pipe

Figure A.3: Isomorphic Paths Smell and Extract Local Subpipe, Refactored

Context: Subpipe ”fetchfilterpermitany” behaves as follows: it gathers the content of the
website specified in the Feed field and filters items based on the title or description.

93

HIT 9.2. Dirty Pipe

Figure A.4: Isomorphic Paths Smell and Extract Local Subpipe, Smelly

Context: A filter module can be configured to permit or block items with certain charac-
teristics. When multiple rules are provided, the filter module can consider any or all of the
rules.

1. Select the answer that most closely resembles the pipe’s output.

a) The content of three websites, sorted based on publication date in descending

order, and where items with duplicate descriptions have been removed.

b) The content of six websites (three of which are filtered based on the con-

tent in the title or description), sorted based on pubDate, where items with

duplicate descriptions have been removed.

94

c) The content of six websites, sorted based on publication date in descending

order, then filtered based on the title and description of each item, where items

with duplicate descriptions have been removed.

d) There are four sets of output. One from each of the three websites that go to the

fetchfilterpermitany module, and one for the three websites that are specified in

the Fetch Site Feed module. The output from the three websites is also sorted

and filtered for uniqueness.

95

HIT 10. Joined Generators Smells and Evaluating Unnecessary Abstraction

HIT 10.1. Dirty Pipe

Figure A.5: Unnecessary Abstraction Smell and Joined Generators Smells and Push Down
Module, Refactored

Context: A Search For module is a user-input module that gets a string from the user when
the Pipe is run, using that string to set the value of fields connected via wire.

96

HIT 10.2. Clean Pipe

Figure A.6: Unnecessary Abstraction and Joined Generators Smells and Push Down Mod-
ule, Smelly

Context: A Search For module is a user-input module that gets a string from the user when
the Pipe is run, using that string to set the value of fields connected via wire.

1. Select the answer that most closely resembles the pipe’s output.

a) No Output

b) All of the content of the websites specified in the URL Builders.

c) The content of eight websites, filtered based on the presence of a user-defined

value in the title of each item.

d) The content of four websites, filtered based on the presence of a user-

defined value in the title of each item.

97

Appendix B

End User Study Additional Results

B.1 First Experiment: Preference

As a measure of understandability of the tasks themselves and the attention to detail given

by each user group, we present the average time to completion for each associated HIT in

Table B.1 for end users and degreed users, and in Table B.2 for users segmented based on

qualification score.

Table B.1: Time to Completion of Preference HITs by Education (O1)

HIT Type End Users Degreed Users
1 Understanding 01:12 02:01
2 Maintainability 03:05 03:20
3 Understanding 07:43 02:01
4 Maintainability 05:34 01:57
5 Community Importance 02:45 03:38
6 Maintainability 02:16 01:50
7 Understanding 02:53 02:38
8 Community Importance 02:41 02:53

Table B.6 explores correlation coefficients across three other categories, organized per

HIT.

98

Table B.2: Time to Completion of Preference HITs by Qualification Scores (O2)

HIT Type High Score Middle Score Low Score
1 Understanding 02:11 01:15 01:28
2 Maintainability 03:36 02:25 03:24
3 Understanding 02:44 00:51 16:18
4 Maintainability 04:53 02:04 03:56
5 Community Importance 03:28 02:16 03:20
6 Maintainability 01:54 01:40 02:42
7 Understanding 02:57 03:04 02:11
8 Community Importance 02:56 01:57 03:19

Table B.3: Spearman’s Correlation Coefficients for Preference Tasks

HIT Qual Score & Qual Score & Education &
Time to Completion Non-Smelly Non-Smelly

1 0.9968 0.7718 0.7296
2 0.9967 0.7797 0.6884
3 0.9971 0.4251 0.2308
4 0.9970 0.1889 0.2309
5 0.9980 0.0073 -0.0733
6 0.9953 0.6943 0.4958
7 0.9983 -0.4952 -0.6434
8 0.9977 0.8723 0.8510

B.2 Second Experiment: Correctness

Table B.4 shows the average time to completion for end users and degreed users on each

of the output analysis HITs, and Table 3.14 gives the average times to completion for the

participants grouped by qualification score.

We also explore the Spearman rank correlation coefficients among several variables for

the output HITs, shown in Table B.6. The Qual Score & Time to Completion column indi-

cates the correlation between a user’s qualification score (scale of 0 to 8) and the time to

completion for a particular HIT (in seconds). These variables are very strongly correlated.

The Qual Score & Correctness column indicates the correlation between a user’s qualifi-

99

Table B.4: Average Time to Completion of HITs by Education (O1)

HIT Smell Type
End Users Degreed Users

Type Time to Time to
Completion Completion

9 Redund.
Clean 9.1 17:40 04:27

Smelly 9.2 03:22 22:50

10
Redund. Clean 10.2 09:04 04:14
Lazy Smelly 10.1 27:56 14:55

Table B.5: Average Time to Completion of HITs by Qualification Score (O2)

HIT Smell Type
High Score Middle Score Low Score

Type Time to Time to Time to
Completion Completion Completion

9 Redund.
Clean 9.1 04:09 12:08 05:50

Smelly 9.2 22:46 00:00 03:26

10
Redund. Clean 10.2 06:27 02:30 04:21
Lazy Smelly 10.1 11:48 21:39 09:24

cation score and the correctness of their answer for a particular HIT. These correlations

are also quite strong. The last column, Education & Correctness, indicates a correlation

between the computer science education level of a user (scale of 0 to 4, where 4 is a degree)

and the selection of the correct output.

Table B.6: Spearman’s Correlation Coefficients for Output HITs

HIT Qual Score & Qual Score & Education &
Time to Completion Correctness Correctness

9.1 (clean) 0.9973 0.9571 0.8292
9.2 (dirty) 0.9979 0.9184 0.8661

10.2 (clean) 0.9973 0.9034 0.8759
10.1 (dirty) 0.9980 0.8965 0.8271

100

Appendix C

On the Semantic Correctness of the

Refactorings

In this section, we show that each refactorings defined in Section 4.1 preserves a pipe’s se-

mantics. We say a refactoring is semantics preserving if the set of unique items that reaches

the pipe’s final output module is the same before and after the refactoring is applied.

C.1 Overview and Approach

To ensure that the output of the pipe remains the same, we need to ensure that the items

reaching the output module are the same before and after the refactoring transformations,

given the preconditions of the refactorings. Similar to the refactoring definitions, we let

Pbefore represent a pipe that meets the refactoring precondition, and Pafter represent a pipe

that meets the refactoring postcondition. We also extend the notation to individual modules,

using mbefore to represent a module before a refactoring, and mafter to represent a module

after a refactoring.

101

The refactorings involve several different transformations on the pipe, in which paths

(p), modules (m), wires (w), and fields (f) are added and removed. For removal, we

represent the transformation as follows: Pafter = Pbefore \ {p, m,w, f}.1 When adding

artifacts to the pipe, it is represented as follows: Pafter = Pbefore ∪ {p, m,w, f}. We use

the same notation when fields are removed from modules, mafter = mbefore \ f , or when

fields are added to modules, mafter = mbefore ∪ f .

To describe the output of a pipe, P , we use the notation out(P) to represent the set

of items returned by the execution of the pipe. We extend this notation to the output of

modules, out(m), paths, out(p) and fields, out(f), allowing us to compare between the

output of different artifacts. For example, given the output module m ∈ P , we can say that

out(P) = out(m) for every pipe P .

Definition 6. A refactoring is semantics preserving if the output of the pipe before the

refactoring, out(Pbefore), contains the same set of unique items as the output of the pipe

after the refactoring, out(Pafter), that is, if out(Pbefore) = out(Pafter). The ’=’ opera-

tor indicates that the output of Pbefore and Pafter are semantically equivalent, using this

definition.

Here, we give an example to illustrate the concept of semantic preservation given in

Definition 6. If out(Pbefore) = {a, b, a, c} and applying refactoring r results in out(Pafter) =

{a, b, c}, then r would be a semantics-preserving refactoring since {a, b, a, c} = {a, b, c}.
However, if out(Pbefore) = {a, b, a, c} and applying refactoring r′ results in out(Pafter) =

{a, b, d}, then r′ would not be semantics-preserving as {a, b, a, c} 6= {a, b, d}. We use a

set to emphasize that it is not the order that matters, but rather the unique items that reach

the output. The ordering of the items can always be modified by inserting a sort module

1It is implied that m ∈ Pbefore.M, w ∈ Pbefore.W , and f ∈ Pbefore.F , and ∀mod ∈ p, mod ∈
Pbefore.M, but we chose a shortened syntax for brevity.

102

prior to the output, so in terms of the semantics, preservation of order is useful, but not

necessary.

Some of the refactorings are trivially semantics preserving, as modifying a single mod-

ule while preserving its behavior, or replacing a module with a semantically equivalent

module are easily seen to preserve a pipe’s behavior. That is, for any single module

m that is altered by a refactoring, if out(mbefore) = out(mafter), then it is clear that

out(Pbefore) = out(Pafter), and the refactoring preserved the pipe’s semantics. And so,

in refactorings that involve only a single module, it is sufficient to show that the output

of the single module before and after the refactoring is preserved. With refactorings that

involve multiple modules along a single path or the aggregation of multiple paths, it is suf-

ficient to show that the output of the deepest module (i.e., the one closest to the output

module) is the same before and after the refactorings.

Section C.2 presents proof sketches for each of the refactorings defined in Section 4.1,

illustrating how each transformation preserves the semantics of the pipes. For simplicity,

we will consider a representative subset of the pipes language, specifically the generator

module fetch, path-altering modules union and split, operator modules filter and sort,

string setter module strconcat, and the output module.

C.2 Proof Sketches

As previously defined in Section 3.1, a Pipe is directed acyclic graph in which the modules

are nodes and the wires are edges over which data flows. A module’s output is either a

single value, as when m.type = setter.string or a list of items, as when m.type = {gen |
pathAlt | op | output}. Here, we list some useful properties of the modules that will be

used throughout this section.

103

• In a fetch module m, out(m) =
⋃
f∈m

out(f), where out(f) is the set of items re-

turned from querying f , an external data source.

• In a union module m, we consider all the wires w such that w.dest = m, and define

the set of all modules that are inputs to m, inputMods(m) =
⋃

w∈W|w.dest=m

w.src,

and define the output of m, out(m) =
⋃

n∈inputMods(m)

out(n).

• In a split module m, we consider all the wires such that w.src = m, and define the

set of all output modules for m, outputMods(m) =
⋃

w∈W|w.src=m

w.dest. We say

the output of m, out(m) →
⋃

n∈outputMods(m)

in(n), where→ indicates that out(m) is

copied and sent to each module in outputMods(m). Since a copy of the input is sent

along each output wire, out(m) = in(m).

• In a filter module m, out(m) = in(m) \ `m, where `m is the list of items matching

the conditions set by the fields in m. A filter module generates `m by removing

items that meet the criteria set by the fields in m. Here, we consider the behavior of

m when it removes items that match any the criteria: `m =
⋃
f∈m

f.match = true.

• In a sort module m, out(m) = in(m), since no items are added or removed.

• In a strconcat module m, out(m) = s, where s is the concatenation of all fields in

m. For example, if | m.F |= 3, then s = m.F [1] + m.F [2] + m.F [3].

Refactoring 1: Clean Up Module

We have two cases of this refactoring: an empty field in a generator or setter, and a duplicate

field in a generator. Each case modifies a single module in the pipe.

104

Smell 1.1: Empty Field

We consider an empty field in a fetch module separately from an empty field in a strconcat

module. First, consider a fetch module mbefore such that mbefore.F = {f, g, h} where f

is an empty field. From the refactoring transformation, mafter = mbefore \ f

Pbefore Pafter

out(m) = out(f) ∪ out(g) ∪ out(h)

out(f) = {}
out(m) = out(g) ∪ out(h) out(m) = out(g) ∪ out(h)

Additional non-empty fields will be treated similar to g and h.

Second, Consider a strconcat module mbefore with an empty field f . From the refactor-

ing transformation, mafter = mbefore \ f . Let us consider the case when m.F [i] = f =“”,

where 1 < i < n, n =| m.F |.
Pbefore Pafter

out(m) = m.F [1] + · · ·+ m.F [i− 1]

+m.F [i]

+m.F [i + 1] + · · ·+ m.F [n]

m.F [i] = “”

out(m) = m.F [1] + · · ·+ m.F [i− 1] out(m) = m.F [1] + · · ·+ m.F [i− 1]

+m.F [i + 1] + · · ·+ m.F [n] +m.F [i + 1] + · · ·+ m.F [n]

As shown for both the fetch and strconcat modules, out(mbefore) = out(mafter) and

out(Pbefore) = out(Pafter).

Smell 1.2: Duplicate Field

Consider a fetch module mbefore such that mbefore.F = {f, g, h} where f.value =

g.value. From the refactoring, mafter = mbefore \ f .

105

Pbefore Pafter

out(m) = out(f) ∪ out(g) ∪ out(h)

out(f) = out(g)

out(m) = out(g) ∪ out(g) ∪ out(h)

out(m) = out(g) ∪ out(h) out(m) = out(g) ∪ out(h)

As is shown, out(mbefore) = out(mafter), and so out(Pbefore) = out(Pafter). If m

contains other fields, then each additional field is treated just as h is in this proof sketch.

Refactoring 2: Remove Non-Contributing Module

The precondition of this refactoring is one of the cases in Smell 2. In each case, a single

module is removed.

Case 2.1. Disconnected, Dangling, or Swaying

We consider three scenarios for this case, where each scenario comes from the precondi-

tions for this refactoring. First, consider a disconnected module m. From the refactoring

transformation, Pafter = Pbefore \ m. Second, consider a dangling module m connected

to Pbefore by wire w. From the refactoring, Pafter = Pbefore \ {m, w}. Third, consider a

swaying path altering or operator module m and wire w connecting m to Pbefore. From the

refactoring transformation, Pafter = Pbefore \{m, w}. In all cases, since m does contribute

to the output of the pipe, out(Pbefore) = out(Pafter).

Case 2.2. Lazy Module

There are three separate preconditions that can trigger this refactoring. For ineffectual path

altering module m in which there is exactly one wire w | w.dest = m, then out(m) =

out(w.src) = in(m). For an inoperative module m with outgoing wire w, such as a filter

106

module with no fields, then out(m) = in(m). For unnecessary redirection in which a

strconcat module m with output wire w has only one field f that receives its value via wire,

then again out(m) = in(m). In all these cases, the refactoring transformation removes m

and w, so Pafter = Pbefore \ {m, w} and out(Pbefore) = out(Pafter).

Refactoring 3: Push Down Module

For a strconcat module m in which none of the field values are wired, the value of

s = out(m) can be generated statically and used set the value for all wired fields that

received their value from m. The refactoring transformation removes m and sets field

values to s. From the refactoring, Pafter = Pbefore \ m and ∀wbefore ∈ Pbefore.W |
out wire(m, wbefore), (wafter.f ld).value = s & wbefore /∈ Pafter. This leaves m discon-

nected in Pafter so m can be trivially removed. It follows that out(Pbefore) = out(Pafter).

Refactoring 4: Merge Redundant Modules

For this refactoring, modules that lie along the same path or that are on different paths

connected with a union module, are merged. We consider each case individually.

Case 4.1: Merge Consecutive Operators

Consider two filter modules, m and n, and wire w, where out wire(n, w) (mapping to mi,

mj , and wj in Figure 4.2, respectively). From the refactoring transformation, mafter.F =

mbefore.F ∪ nbefore.F and Pafter = Pbefore \ {n, w}. Since n is being removed, the final

condition is that out(pbefore) = out(mafter), where path pbefore = [mbefore, nbefore]. This

is because mafter absorbs the fields from nbefore, nbefore is the immediate postdominator of

mbefore, and nbefore /∈ Pafter.

107

Pbefore Pafter

out(m) = in(m) \ `m

out(n) = in(n) \ `n

in(n) = out(m)

out(n) = out(m) \ `n

out(n) = (in(m) \ `m) \ `n

out(n) = in(m) \ (`m ∪ `n) out(m) = in(m) \ (`m ∪ `n)

As shown, the items reaching the output of nbefore are the same as those reaching

mafter, which means out(pbefore) = out(mbefore), and so out(Pbefore) = out(Pafter).

Case 4.2: Merge Path Altering Modules

Consider union modules m and o connected by wire w (mapping to mi, mj and wi in

Figure 4.3, respectively), where inputMods(m) = {j, k} and inputMods(o) = {m, l, n}.
From the refactoring transformation, Pafter = Pbefore \ {m, w}.

Pbefore Pafter

out(m) = out(j) ∪ out(k)

out(o) = out(m) ∪ out(l) ∪ out(n)

out(o) = (out(j) ∪ out(k)) ∪ out(l) out(o) = out(j) ∪ out(k) ∪ out(l)

∪out(n) ∪out(n)

As shown, out(obefore) = out(oafter), so consequently, out(Pbefore) = out(Pafter). If

m has additional input modules, then the output of each module would be added via union

to out(mbefore), and also out(oafter). If o has additional input modules, these are added via

union to out(obefore) and out(oafter).

108

We also consider split modules m and o connected by wire w where outputMods(m) =

{j, o}, outputMods(o) = {k, l}, and inputMods(m) = n. From the refactoring, Pafter =

Pbefore \ {m, w}.
Pbefore Pafter

out(m) → in(j) ∪ in(o)

out(o) → in(k) ∪ in(l)

out(o) = in(o)

out(m) → in(j) ∪ (in(k) ∪ in(l))

out(o) = out(m)

out(o) → in(j) ∪ (in(k) ∪ in(l)) out(o) → in(j) ∪ in(k) ∪ in(l)

As shown, out(obefore) = out(oafter), so consequently, out(Pbefore) = out(Pafter).

Additional output modules for m will be treated similar to j, and additional output modules

for o will be treated similar to k or l.

Case 4.3: Merge Subsequent Operators

Consider two identical operator modules, m and n, and wire w such that out wire(m, w)

(mapping to mi, mj , and wj in Figure 4.4, respectively), in which n postdominates m.

According to the precondition, m and n may be separated by op.orderIndep or union

modules. We consider a path p = [m,a,b,n] where a.name = filter and b.name = union,

and inputMods(b) = {a, c}. From the refactoring, Pafter = Pbefore \ {m, w}, and so for

our example, in(mbefore) = in(aafter).

109

Pbefore Pafter

out(m) = in(m) \ `m

out(a) = in(a) \ `a

in(a) = out(m)

out(a) = (in(m) \ `m) \ `a out(a) = in(a) \ `a

out(b) = out(a) ∪ out(c) out(b) = out(a) ∪ out(c)

out(b) = ((in(m) \ `m) \ `a) ∪ out(c) out(b) = (in(a) \ `a) ∪ out(c)

out(n) = in(n) \ `n out(n) = in(n) \ `n

in(n) = out(b) in(n) = out(b)

out(n) = (((in(m) \ `m) \ `a) ∪ out(c)) \ `n out(n) = ((in(a) \ `a) ∪ out(c)) \ `n

out(n) = (in(m) \ (`m ∪ `a ∪ `n))

∪(out(c) \ `n)

`m = `n

out(n) = (in(m) \ (`a ∪ `n)) out(n) = (in(a) \ (`a ∪ `n))

∪(out(c) \ `n) ∪(out(c) \ `n)

As shown, since in(mbefore) = in(aafter), out(nbefore) = out(nafter) and out(Pbefore) =

out(Pafter). This proof sketch generalizes for any number and any order of union and

operator modules along the path separating m and n. Additional operator modules, such

as q, would be treated similar to a, and the out(n) would also have `q removed in Pbefore

and Pafter. Additional union modules would be treated similar to b, and additional source

modules into a union module would be treated like c.

Refactoring 5: Collapse Duplicate Paths

These refactorings involve collapsing two paths in a pipe into a single path.

110

Case 5.1: Joined Generators

Consider fetch module m with fields a and b, fetch module n with fields c and d, union

module u with inputMods(u) = {m, n, q}, with wire w connecting m to u (mapping

to mi, mj , mu, and wi, respectively, as illustrated in Figure 4.5). From the refactoring,

nafter.F = mbefore.F ∪ nbefore.F , and Pafter = Pbefore \ {m, w}.
Pbefore Pafter

out(m) = out(a) ∪ out(b)

out(n) = out(c) ∪ out(d) out(n) = out(a) ∪ out(b)

∪out(c) ∪ out(d)

out(u) = out(m) ∪ out(n) ∪ out(q) out(u) = out(n) ∪ out(q)

out(u) = (out(a) ∪ out(b)) out(u) = (out(a) ∪ out(b)

∪(out(c) ∪ out(d)) ∪out(c) ∪ out(d))

∪out(q) ∪out(q)

As is shown, out(ubefore) = out(uafter), and so out(Pbefore) = out(Pafter). If u has

additional input modules, the output of each additional input module would be added via

union everywhere out(q) appears in the proof. If u has fewer input modules, for example

the absence of q, then out(q) can be removed without impacting the final equality condition.

Case 5.2: Identical Parallel Operator Pairs

Consider fetch module k with fields a and b, fetch module l with field c, identical sort

modules m and n, union module u where inputMods(u) = {m, n, o}, wire w connecting

k to m, and wire y connecting m to u, mapping to mk, ml, mi, mj , mu, wk, and wi, respec-

tively, as illustrated in Figure 4.6. From the refactoring, Pafter = Pbefore \ {k,m, w, y},
and lafter.F = kbefore.F ∪ lbefore.F

111

Pbefore Pafter

out(k) = out(a) ∪ out(b)

out(l) = out(c) out(l) = out(a) ∪ out(b) ∪ out(c)

out(m) = in(m) \ `m

in(m) = out(k)

out(m) = (out(a) ∪ out(b)) \ `m

out(n) = in(n) \ `n out(n) = in(n) \ `n

in(n) = out(l) in(n) = out(l)

out(n) = (out(c)) \ `n out(n) = (out(a) ∪ out(b) ∪ out(c)) \ `n

out(u) = out(m) ∪ out(n) ∪ out(o) out(u) = out(n) ∪ out(o)

out(u) = ((out(a) ∪ out(b)) \ `m)

∪(out(c) \ `n) ∪ out(o)

`m = `n

out(u) = (out(a) ∪ out(b) ∪ out(c)) \ `n out(u) = (out(a) ∪ out(b) ∪ out(c)) \ `n

∪out(o) ∪out(o)

As is shown, out(ubefore) = out(uafter), and so out(Pbefore) = out(Pafter). In this

example, we consider merging paths with two modules connected by a union, but it could

be generalized to longer paths. For each additional operator module along the paths, they

would be treated similarly to m and n, where the module along the path including m would

be removed (as m is removed). Additional input modules for u would be treated just like

o, and o could be removed from the proof sketch without altering its validity.

Refactoring 6: Pull Up Module

This refactoring works in the opposite direction as Refactoring 3: Push Down Module.

Here, the strings from fields in multiple modules are abstracted into a separate module so

the fields can receive their values via wire. Consider the case of two modules, n and o,

112

with duplicated fields f and h. From the refactoring, Pafter = Pbefore ∪ {m, g}, where

g.value = f.value. Additionally, ∀f ∈ Pbefore.F | f.value = g.value,∃w ∈ Pafter.W |
field wire(owner(f), w). Through the refactoring, no fields or modules are removed

from the pipe. For fields f and h, owner(fbefore) = owner(fafter) and owner(hbefore) =

owner(hafter). For the modules n and o, out(nbefore) = out(nafter), and out(obefore) =

out(oafter). In Pafter, fields f and h receive their values via wire from a new module m,

where out(m) = fbefore.value = hbefore.value. This preserves the output of the entire

pipe, so out(Pafter) = out(Pbefore). If there are more duplicated field values in the pipe,

then a wire is added from m to each duplicated field.

Refactoring 7, 11: Extract Local Subpipe, Extract Global Subpipe

For this refactoring, we need to show that for some path p, we can create a separate pipe,

Pnew, that encodes the behavior as p, and can replace p while preserving a pipe’s semantics.

That is, we must show that out(p) = out(Pnew).

In the refactoring, the pipe Pnew is generated by first copying p into a new pipe. The next

step is to add an output module, o, and a wire such that p(last) and o are now connected.

We now have a complete pipe, Pnew, that is a replica of p, so out(p) = out(Pnew). The

next step is to parameterize all the fields in Pnew so that when subpipe(Pnew) is added to a

pipe, it can be populated with appropriate values that will encode the behavior of the path

being replaced. This is done by adding a user.setter module for every field in Pnew that

can receive a value via wire. For each user.setter module in Pnew, subpipe(Pnew) contains

a wireable field. These fields in subpipe(Pnew) are populated in Pafter using the values of

the wireable fields from p. In this way, for every field f ∈ Pnew | f.wireable = false, this

value is set by the copy of p in Pnew. For every field f ∈ Pnew | f.wireable = true, it can

be set in Pafter, so that out(p) = out(subpipe(Pnew)).

113

If we create Pnew for some path p ∈ Pbefore, then all paths isomorphic to p can be

similarly replaced. For every path p replaced through this refactoring, we see that Pafter =

Pbefore \ p, and Pafter = Pbefore ∪ subpipe(Pnew). Since out(p) = out(subpipe(Pnew)),

then out(Pbefore) = out(Pafter).

Refactoring 8: Replace Deprecated Modules

Consider a deprecated module, mdep that can be replaced by a module or path, Mnew using

a function replace : m→M that takes a deprecated module and replaces it with a semanti-

cally equivalent module or path. From the refactoring, Pafter = Pbefore \mdep and Pafter =

Pbefore ∪Mnew. And so, as long as out(mdep) = out(Mnew), out(Pbefore) = out(Pafter).

The correctness of this refactoring is dependent on the correctness of the replace function,

which is based on Yahoo!’s documentation.

Refactoring 9: Remove Deprecated Sources

By the definition of a deprecated source, it is non-contributing to the module. If field f

refers to a deprecated external source, then out(f) = {}. In the refactoring, we see that

Pafter = Pbefore \ f . The only impacted module in this refactoring is m = owner(f).

Through the refactoring, mafter = mbefore \ f . Since out(f) = {}, then out(mbefore) =

out(mafter), and out(Pbefore) = out(Pafter).

Refactoring 10: Normalize Order of Operations

Consider a non-conforming path p and a path ppres that will replace p. From the refactor-

ing, Pafter = Pbefore \ p and Pafter = Pbefore ∪ ppres, where bag(p) = bag(ppres). Since

all the modules are the same between p and ppres, and only the ordering of modules in p

114

has changed, we just need to show that out(p) = out(ppres). Consider an example where

n is a filter module, o is a sort module, p = [n, o], and ppres = [o, n].

Pbefore Pafter

in(n) = in(p) in(o) = in(ppres)

out(n) = in(n) \ `n out(o) = in(o)

out(n) = in(p) \ `n out(o) = in(ppres)

out(o) = in(o) out(n) = in(n) \ `n

in(o) = out(n) in(n) = out(o)

out(o) = in(p) \ `n out(n) = in(ppres) \ `n

out(p) = out(o) out(ppres) = out(n)

out(p) = in(p) \ `n out(ppres) = in(ppres) \ `n

Since ppres ∈ Pafter replaces p ∈ Pbefore, in(ppres) = in(p). As shown, out(p) =

out(ppres), and so out(Pbefore) = out(Pafter). If p contains additional filter modules (like

n in the example), then out(p) = in(p) \ (`n ∪ `filter), where `filter is the union of the set

of items removed by each additional filter module in bag(p). Since bag(p) = bag(ppres),

`filter will have the same impact on out(ppres), so the proof sketch holds. Additional sort

modules can be trivially shown to preserve the semantics of the pipe, since out(sort) =

in(sort) for any sort module.

115

Bibliography

[1] Apatar. http://www.apatar.com/, August 2009.

[2] Ittai Balaban, Frank Tip, and Robert Fuhrer. Refactoring Support for Class Li-

brary Migration. In Proceedings of the 20th annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications, pages 265–

279, 2005.

[3] Luciano Baresi and Reiko Heckel. Tutorial Introduction to Graph Transformation: A

Software Engineering Perspective. Lecture Notes in Computer Science, pages 402–

429, 2002.

[4] Don S. Batory. Program Refactoring, Program Synthesis, and Model-Driven Devel-

opment. In Compiler Construction: 16th International Conference, Held as Part of

the Joint European Conferences on Theory and Practice of Software, pages 156–171,

2007.

[5] Math - The Commons Math User Guide - Statistics.

http://commons.apache.org/math/userguide/stat.html, May 2010.

[6] DERI Pipes. http://pipes.deri.org/, August 2009.

116

[7] Danny Dig, John Marrero, and Michael D. Ernst. Refactoring Sequential Java Code

for Concurrency via Concurrent Libraries. In Proceedings of the 31st International

Conference on Software Engineering, pages 397–407, 2009.

[8] Eclipse.org. http://eclipse.org/, May 2010.

[9] Feed Rinse. http://feedrinse.com/, January 2010.

[10] Martin Fowler and Kent Beck. Refactoring: Improving the Design of Existing Code.

Addison-Wesley, 1999.

[11] Lars Grammel and Margaret-Anne Storey. An End User Perspective on Mashup Mak-

ers. Technical Report DCS-324-IR, University of Victoria, September 2008.

[12] Warren Harrison. From the Editor: The Dangers of End-User Programming. IEEE

Software, pages 5–7, 2004.

[13] Johannes Henkel and Amer Diwan. CatchUp!: Capturing and Replaying Refactorings

to Support API Evolution. In Proceedings of the 27th International Conference on

Software Engineering, pages 274–283. ACM, 2005.

[14] IBM Mashup Center. http://www.ibm.com/software/info/mashup-center/, August

2009.

[15] M. Cameron Jones and Elizabeth F. Churchill. Conversations in Developer Commu-

nities: A Preliminary Analysis of the Yahoo! Pipes Community. In Proceedings of the

Fourth International Conference on Communities and Technologies, pages 195–204,

2009.

[16] JSON. http://www.json.org/, August 2009.

[17] JSON in Java. http://www.json.org/java/index.html, July 2009.

117

[18] Hannes Kegel and Friedrich Steimann. Systematically Refactoring Inheritance to

Delegation in Java. In Proceedings of the 30th International Conference on Software

Engineering, pages 431–440, 2008.

[19] Adam Kiezun, Michael D. Ernst, Frank Tip, and Robert M. Fuhrer. Refactoring for

Parameterizing Java Classes. In Proceedings of the 29th International Conference on

Software Engineering, pages 437–446, 2007.

[20] Kivati. http://kivati.com/, January 2010.

[21] Ko, Andrew J. and Myers, Brad A. Debugging Reinvented: Asking and Answering

Why and Why Not Questions About Program Behavior. In Proceedings of the 30th

International Conference on Software Engineering, pages 301–310, 2008.

[22] Andhy Koesnandar, Sebastian Elbaum, Gregg Rothermel, Lorin Hochstein, Christo-

pher Scaffidi, and Kathryn T. Stolee. Using Assertions to Help End-User Program-

mers Create Dependable Web Macros. In Proceedings of the 16th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, pages 124–134,

2008.

[23] Christian Köhler, Holger Lewin, and Gabriele Taentzer. Ensuring Containment Con-

straints in Graph-based Model Transformation Approaches. In International Work-

shop on Graph Transformations and Visual Modeling Techniques, pages 45–56, 2007.

[24] Jia Liu, Don S. Batory, and Christian Lengauer. Feature Oriented Refactoring of

Legacy Applications. In Proceedings of the 28th International Conference on Soft-

ware Engineering, pages 112–121, 2006.

[25] Amazon Mechanical Turk Command Line Tool Reference .

http://docs.amazonwebservices.com/AWSMturkCLT/2008-08-02/, January 2010.

118

[26] Tom Mens, Niels Van Eetvelde, Dirk Janssens, and Serge Demeyer. Formalizing

Refactorings with Graph Transformations. Journal of Software Maintenance and

Evolution, 17(4):247–276, 2005.

[27] Tom Mens, Gabriele Taentzer, and Olga Runge. Analysing Refactoring Dependencies

Using Graph Transformation. Software and Systems Modeling, 6(3):269–285, 2007.

[28] Tom Mens and Tom Tourwe. A survey of software refactoring. IEEE Transactions

on Software Engineering, 30(2):126–139, 2004.

[29] Yahoo! Pipes. http://pipes.yahoo.com/, July 2009.

[30] Plagger. http://plagger.org/trac, August 2009.

[31] C. Scaffidi, C. Bogart, M. Burnett, A. Cypher, B. Myers, and M. Shaw. Predicting

reuse of end-user web macro scripts. In Proceedings of the 2009 IEEE Symposium on

Visual Languages and Human-Centric Computing, pages 93–100, 2009.

[32] Christopher Scaffidi, Mary Shaw, and Brad Myers. Estimating the numbers of end

users and end user programmers. In Symposium on Visual Languages and Human

Centric Computing, pages 207–214, 2005.

[33] Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel. Refactoring

UML models. Lecture Notes in Computer Science, pages 134–148, 2001.

[34] Gabriele Taentzer, Dirk Müller, and Tom Mens. Specifying Domain-Specific Refac-

torings for AndroMDA Based on Graph Transformation. In Applications of Graph

Transformations with Industrial Relevance, pages 104–119, 2007.

[35] Jan Wloka, Manu Sridharan, and Frank Tip. Refactoring for Reentrancy. In Proceed-

ings of the the 7th joint meeting of the European Software Engineering Conference

119

and the ACM SIGSOFT Symposium on Foundations of Software Engineering, pages

173–182, 2009.

[36] Jeffrey Wong and Jason Hong. What Do We ”Mashup” When We Make Mashups? In

Proceedings of the 4th International Workshop on End-User Software Engineering,

pages 35–39, 2008.

[37] xFruits. http://www.xfruits.com/, August 2009.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	6-2010

	Analysis and Transformation of Pipe-like Web Mashups for End User Programmers
	Kathryn T. Stolee

	tmp.1280326671.pdf.uvRic

