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Image registration is the process of aligning two different images of the

same object taken at different times, at different orientations or using different

instruments. This is common in medical applications since multiple modalities

are used to image different parts of the body. This is an important early step

in many diagnostic procedures such as change detection, monitoring tumor or

quantifying spread of a disease. The widely used landmark based registration

approach is tedious, time consuming, inconsistent and error prone. Furthermore,

the standard schemes based on rigid and affine transformation can only describe

global geometric differences between the objects of interest. In the medical domain,

local variations and changes are common due to natural, instrument, surgical

and patient induced distortions. Such effects can be accommodated by elastic or

non-linear schemes.

Thin-plate spline warping is a non-linear technique that is widely used for

registering different types of medical images including magnetic resonance and

histology images. However, this technique is constrained by manual landmark



selection. In this research, we have developed a method to automate the landmark

selection process using thin-plate splines by maximizing the normalized mutual

information between the two images. The approach has been studied in the context

of registering MRI images and the histological sections of a rodent brain. The

approach involves using level-set evolution to isolate the brain in a volumetric

MRI image. Then the MRI volume is registered to the corresponding 3D histology

(stacked histological sections) image using an affine transformation. The MRI

volume is then re-sliced to match the corresponding histological sections. Finally

these 2D MRI slices are warped to the histological sections using thin-plate splines

maximizing the normalized mutual information. The approach was tested with

images from 4 rodent brains with over 170 MRI images and over 120 block face

images for each brain. The effectiveness of the landmark was determined by

comparing its performance with the results manually obtained by three experi-

enced technicians. The results show that the landmarks obtained using the NMI

optimization approach is effective and comparable to manual extraction results.
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Chapter 1

Introduction

It is a popular saying that ”A picture is worth a thousand words” which conveys

the immense amount of data contained in an image. In the previous few years the

image acquisition techniques have improved by leaps and bounds, leaving a wide

and unexplored field of image data which is yet to be analyzed and understood

fully. Image analysis principles have become indispensable to cope with the

growing amount and the diversity of images obtained. Over the years a broad

range of techniques have been developed to understand various types of image

data and problems. An important problem in image analysis is the problem of

image registration.

Image Registration is the process of overlaying two or more images of the

same object taken at different time, from different viewpoints or with different

scanners or sensors[51]. The main problem arises when these images taken at
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different time/viewpoint or with different scanners need to be compared. These

images need to be aligned to one another so that the differences can be determined.

These differences in these images arise due to difference in imaging conditions.

Image registration geometrically aligns two images - the reference and the sensed

image and hence serves as a crucial step in image analysis technique. In any

image analysis technique the determination of final information involves other

related processes as combination of various data sources like in image fusion,

change detection and multichannel image registration. Image registration is used

extensively in medical image analysis. For example, Computed Tomography (CT)

images of a certain region of the body yields high contrast image of the local bone

structures and calcification. On the other hand MRI image of the same region shows

high soft-tissue contrast.[29, 18] In this case for proper diagnosis of the disease and

also designing the therapy require information from both the CT and MRI image

modalities. In order to do the comparative analysis of both the images and to gain

more complete knowledge about the same part of the body being imaged, image

registration provides a powerful, accurate and automatic tool. Image registration

has widespread applications in various fields like remote sensing, environmental

monitoring, weather forecasting, and geographic information systems (GIS). In

medical science the application of image registration is extensive in multimodal

image analysis like combining computed tomography (CT) images with magnetic

resonance imaging (MRI) to obtain more complete information about the patient

health, tracking growth of diseases or tumors, determine therapeutic solutions and

also for comparing specific patient’s data with anatomical atlases.

One of the key research goals in image registration is to find identify

the variations in the images. The type of variation guides the choice of the
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registration techniques. There are three major types of variations.[51] The first

type of variation arises from differences in acquisition which make the images

misaligned. In order to reduce the deformation of these images a global spatial

transformation model is typically used. The optimal transformation required

for this registration is determined by knowledge of the factors which caused

the deformation. The second type of variation between two images originates

from the different conditions during acquisition of the images. These differences

in conditions can be diverse, e.g. lighting and atmospheric conditions, which

are often difficult to model. The difference in ambient conditions during image

acquisition results in difference in image intensity values, but may differ in spatial

orientations such as perspective distortions. The third type of variation is found

when the regions of interest in the images are under motion, growth or other

changes. Image registration principles in general are not used for the second

and third type of image variations but these variational effects make the process

of registration difficult to implement. Specifically, in the third type of variation

where the region of interest (ROI) is under motion or growth, it is the variation

of the images which contains the information about the ROI; hence registration

is not used to remove the deformations. Image Registration consists of several

processes; in general image registration can be represented as combinations of the

following[18]:

1. a feature space,

2. a search space,

3. a search strategy, and

4. a similarity metric.
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The feature space consists of those ROIs or features in the image which

are used for matching. The search space consists of those features with which the

correspondence of the feature space is searched and determined. The search strategy

determines how to find and model the transformation of the feature space to the

search space. The similarity metric determines the correlation of the registered

image and the target image and is the index of how closely these two images

match. The general algorithm for image registration is to continue the search until

a predetermined satisfactory value of similarity measure is obtained.

1.1 Medical Image Registration

The increasing use of radiological images in healthcare and medical research has

made a radical impact on medical science and disease therapy. Use of medical

imaging techniques provides the clinician an increasingly multifaceted view of

brain function and anatomy. In most cases medical images are complimentary

which means that they convey different sets of data about the same organ taken at

different time or by different modalities.

It is important to be able to accurately relate information in the multiple

images taken for diagnosis, treatment and basic science. Registration plays a

central role in this process. It is extensively applied in combining images of the

same subject from different modalities, aligning temporal sequences of images

to compensate for motion of the subject between scans, image guidance during

interventions and aligning images from multiple subjects. Radiological image
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acquisition systems are not efficient enough to produce images which can convey

all the information that a physician needs for accurate diagnosis. In this context

efficient medical image registration becomes indispensable because it provides

benefits by extracting information after accurately aligning the images, and visu-

alizing the aligned images. For example, the structural orientation and anatomy

of different parts of the brain are exquisitely demonstrated by several imaging

techniques such as X-ray, computed tomography (CT) and magnetic resonance

(MR) imaging. Complimentary image information can provide comprehensive

knowledge about the concerned organ to physician and hence clinical diagno-

sis and therapy planning are increasingly based on these data[51]. Traditionally

physicians used to interpret data from different modalities recorded at different

times using poorly described manual alignment which involves applying some

spatial transformation between structures within the image pair, but it resulted

in poor visual quality of the aligned images. Based on their previous experience

the physicians can generally understand the poorly aligned images and decipher

important information. But there is a need for automated and objective methods

of aligning and quantifying image information. Registration of information of

one image to the information of another image involves the establishment of a

one-to-one mapping between the points in each image. The mapping can be partial

or complete, but it must include all points of diagnostic or surgical interest to be

useful.

As defined earlier, the term registration means the determination of a

transformation from one image space to another. The image pair is considered

to be registered when the transformation is entirely determined considering the

pre-determined similarity metric. For easier comparison of multimodal images
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the registration techniques are used to superimpose features from one imaging

study over those of another study. For example, registration can be used to overlay

skeletal structures and areas of contrast enhancement seen in CT images and

soft-tissue anatomy as seen in MR images thus making the final registered image

more complete and informative. Similarly, functional activities of the brain as

scanned by PET can be viewed in the context of brain anatomy imaged with MR

giving a clear indication of localization of certain activities in particular sections of

the brain. Sometimes, growth of disease, tumors and other structural changes of a

particular organ with respect to time needs to be logged. In that case same modality

image of the same organ is taken at different times and registration algorithms are

utilized for comparative monitoring of serial images for the purpose of quantitative

comparison, which increases the precision of treatment.

1.2 Applications

Medical image processing has widespread application in medical science. With

increasing accuracy of imaging systems, higher resolution and contrast of in-vivo

imaging has made medical image processing an indispensable part. Among the

varied application of different image processing techniques in medical science,

here we are mentioning only some of them. Mammography is an imaging process

of human breast for diagnosis of breast cancer. It is perhaps the most reliable

technique to determine the lesions in the breast. The image quality of the mammo-

grams is severely affected by factors like luminance, ambient light etc. which may

result in false negative cases, which means that the patient had cancer but she was
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detected to be negative. Medical image processing techniques are applied to make

the process of mammography more error free. Image enhancement techniques can

significantly improve the quality of the acquired mammogram, image registration

techniques provides an important tool to quantify the growth of the disease and

its present situation. CT and MRI imaging techniques are extensively used in

neuroimaging problems. Medical image processing technique can be used to study

the flow processes of the brain, such as flow of information, energy, chemicals,

drugs etc. which is an approximate indication of brain activity. Synchronization of

MRI, fMRI, Conductivity tensor imaging (CTI) and EEG is used to map the electri-

cal dipole source of epileptic firing focus deep inside brain, different behavioral

stages of Alzheimers disease can also be determined in this process. It is evident

from this discussion how broad and diverse is the application of medical image

processing techniques. In our project we developed an image processing technique

to quantify the growth of HIV related neurocognitive disorders in rodent brain

and also an automatic point-landmark selection system in co-registering the MRI

and histological image slices. It is described in details in the following paragraphs.

In the advanced stages of HIV-1 infection, a spectrum of neurological

dysfunctions termed as HIV-1 Associated Neurocognitive Disorders (HAND), are

associated. In the most severe cases, HAND can be correlated pathologically to

multinucleated giant cell called the HIV-1 Encephalitis (HIVE)[25, 26, 32]. Cur-

rently, there are Magnetic Resonance Imaging (MRI) methods to diagnose different

kinds of neurological dysfunctions. But, they haven’t been designed specifically

to diagnose HIVE and HAND. Biomarkers to visualize disease progression and

treat it are not available currently. In case of diseases like HIV, cancer etc. early

detection of the disease serves as a very important step towards the therapy of
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the disease. In order to do that the first thing we need to determine is the quan-

tification of the growth of disease in a subject. In this case to understand the

pathological procedure of HAND and to develop effective therapies to improve

the life quality of AIDS patients, murine models of HIVE and HAND are de-

veloped. Non-invasive ultra-high spatial resolution MRM with relatively short

scan time is a good indicator of the disease progression. As the brains of the

Murine Models are stained with manganese we can make use of the Manganese

Enhanced multispectral Magnetic Resonance Microscopy (MEmMRM) technique

to detect different structures and neuronal viability. Multispectral MRI provides

significantly enhanced anatomical details and indications of pathology in HIVE

and HAND compared to standard MRI techniques. In order to determine a non-

invasive technique to diagnose the progress of the disease and treat it accordingly,

a correlation between the MEmMRM results and the histologically images could

be achieved. Image processing techniques could be developed such that given a

MEmMRM (MRI) and the histological image of a HIV-1 infected mice brain, the

process of co-registering the MEmMRM (MRI) and the histological images could

be automated.

By successfully implementing the co-registration between the MEmMRM

(MRI) images and the histological images, a non-invasive method to diagnose

the disease could be made possible. The image segmentation and co-registration

techniques are intensively necessary in biomedical applications to validate imaging

results with the histological analysis. The project would provide a valuable

analysis of efficient implementation of the image segmentation and co-registration

techniques particularly for HAND. Initially, landmarks are being selected on the

MRI source image and the histological target image. They can be done manually
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but the process is tedious and error-prone. Using these landmarks, the source

image is being warped on to the target image. Among the various warping

techniques, thin-plate splines algorithm is used in this application because it has

been widely accepted as in medical imaging as a powerful warping tool[23, 30].

The study of HIVE and HAND requires quantitative analysis of the growth

of the disease in the infected mouse brain and in order to do that developing image

processing algorithm is indispensable because the manual methods are always

error prone and tedious. MEmMRM provides lots of mutually supplemental

information and hence stands out as a powerful tool in neuroscience research

in small animals. Processing the data produced by MEmMRM and deciphering

important information out of it are the major applications of the Image processing

algorithm developed in the study. In modern biomedical applications the areas of

intensive research are Image segmentation and image co-registration principles.

The Image processing algorithm not only automates the process of quantification

of the growth of the disease and removes human errors, but also validates imaging

results with the histological analysis. To round up in this project image processing

principles are used extensively to simulate the process of brain extraction from the

skull(skull stripping from the MRI image), 3D affine alignment of MRI volume

and Blockface volume of the same brain, automatic selection and optimization of

landmarks for non-linear co-registration of MRI and histological section, calculation

of Normalized Mutual Information (NMI) of MRI and histological sections and

evaluating the results against manual methods. The greatest advantage of this

method is that it makes the entire process non-invasive. As it is a well-known

fact that histology is used for tissue structure analysis also, the image processing

algorithm used here has the potential to be applied in in-vivo histology analysis in
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future.

1.3 Objectives and Research Contributions

The goal of this research was to develop an approach to register MRI images to cor-

responding histological image sections of rodent brain. The specific contributions

of this image processing research can be enumerated as following:

1. The segmentation of brain from whole head MRI of the rat brain. A major

section of the analysis was done to adapt and fit the traditional Level-set

segmentation algorithm for segmentation of the brain (ROI) from the whole

head MRI image slices.

2. The 3D affine alignment of the blockface volume and the MRI brain volume

thus reducing the global distortion of the brain occurred due to physical

slicing the brain while doing the histological analysis. I developed the

segmentation algorithm of the blockface images, stacking them up to form

the blockface volume and applying the demon-registration algorithm for

affine 3D registration of the MRI volume and the Blockface volume.

3. The main section of the research is dedicated towards developing automatic

landmark selection procedure and the optimization of these landmarks based

on Normalized Mutual Information. In process of that the non-linear co-

registration principle of Thin Plate Spline warping technique is explored in

details. The landmark sets used for this non-linear co-registration is selected



11

automatically and they are optimized along the brain edge by an iterative

method of minimizing a definite cost function which in turn maximizes the

Normalized Mutual information between the pair of images (MRI-histological

image pair).

4. The evaluation of the automatic landmark selection and co-registration pro-

cedure against manual methods of co-registering.

1.4 Thesis Outline

The rest of thesis is organized as follows. Chapter 2 deals with the previous

researches which are specific to our research, i.e. medical image registration.

Chapter 3 explains in details our research approach, the specification of our

algorithms and the implementation strategies. Chapter 4 describes the dataset

used for our research and the results obtained using our approach. The results

are compared with those obtained by trained professionals in this field. Chapter 5

gives a summary and directions for future research.
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Chapter 2

Related Work

In this chapter, we describe previous work related to our research. In particular, we

describe (a) the problem of image segmentation, with a focus on medical images,

(b) alignment of 3D point clouds and (c) registration with landmarks.

2.1 Medical Image Segmentation

Segmentation is highly used technique in computer vision to isolate regions of

that are meaningful to the application and easy to analyze. The body of liter-

ature in segmentation is vast and a complete summary is beyond the scope of

the thesis. Interested readers can see . Segmentation is an important problem in

medical image analysis since many imaging mechanisms like CET and MRI offer



13

high resolution in-vivo structure of organs and identifying them accurately can

greatly assist clinical diagnosis. There are a lot of diverse algorithms available for

successful image segmentation for common applications but the application of

dedicated algorithms for Medical Image processing requires more concrete appli-

cation background. Medical Image segmentation can be successfully performed

only when we have a prior knowledge like the imaging procedure or the biome-

chanical behaviors of organs or structures an that can be crucial for a successful

segmentation. Due to the intrinsic noise and the partial volume effect (Zaidi, 2005)

Medical image processing algorithms should be sophisticated enough to handle

the segmentation task. The present day medical image processing algorithms

incorporate successful implementations of modern mathematical and physical

techniques and have considerably enhanced the accuracy of the segmentation. We

briefly summarize the most widely used segmentation techniques in medical image

analysis. These algorithms are classified into three categories: algorithms based

on threshold, algorithms based on pattern recognition techniques and algorithms

based on deformable models. A very important point that needs mention in this

context is that, often it is found that the algorithm utilizes concepts from all of the

previously classified categories to achieve satisfactory segmentation depending on

the type and properties of the image to be segmented.

Threshold based Approaches : Algorithms that segment based thresholding

make the assumption that region of interest in the image can be discerned by

quantifiable features, like intensity or gradient magnitude. Thus a pre-determined

or dynamically generated threshold is used to filter the intensity or gradient image

to remove the redundant information. In these algorithms, segmentation is done
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based on finding those pixels which satisfy the threshold constraints. Determina-

tion of threshold is the most critical and key part of these algorithms. Thresholds

are either of the following two ways. Manual Threshold: In this method the thresh-

old of segmentation is determined manually by prior knowledge of the image and

its pixel value distribution over the area. Automatic Threshold: The threshold

for segmentation is determined automatically in an iterative manner, gathering

information about the pixels in the image. The threshold based algorithms can be

further divided into edge-based segmentations, region-based segmentations and

hybrid segmentations.

Edge-based segmentation algorithms use threshold values relating to the

edges of different objects in the image. Actually the objects in the images are

represented and depicted by their edge points. The edge-based algorithm tries to

determine the edge pixels based on the threshold constraint and filters the other

pixels as noise. There are lots of edge detection algorithms present, out of which

the Canny edge detection algorithm (Canny, 1986) and Laplacian edge detector are

the more popular and efficient. Canny edge detector algorithm finds the gradient

of the image, object edges are expected to have higher gradient magnitude than

the rest of the image. Hence it uses a threshold of the gradient magnitude to find

the potential edge pixels. It is to be noted that the edge-based algorithms tend to

find the discrete edge pixels only, therefore the segmented edges in most cases are

discontinuous or incomplete. Some post processing of the segmented image has to

be done to Connect the breaks or eliminate the holes.

The region-based segmentation algorithm is based on the observation that

pixels intensities inside a structure are more or less of similar magnitude. In a
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typical region growth algorithm (Adams and Bischof, 1994) the based on prior

knowledge of the position of the structure to be segmented the seeds (few pixels)

are determined and a threshold of intensities is defined. Then the neighboring

pixels are added to this region maintaining the threshold interval thus resulting in

the growth of the region. The success of this method depends on the accuracy of

critical procedure of determining the seeds and the interval of threshold intensities.

In order to get away with it automatic methods involve statistical analysis of the

image and prior knowledge about the image. The accuracy of segmentation of CT

and MR images is improved considerably by introduction of homogeneity criterion

(Pohle and Toennies, 2001) which made the region growing algorithms adaptive to

the different locations of initial seeds. One of the prime drawbacks of the threshold

based segmentation approaches is that it relies entirely on image intensities, and

hence these methods are not equipped enough to handle the partial volume effects.

Due to the intrinsic noise and partial volume effect the edges of structures/organs

in medical images are often not well defined. For that reason only threshold based

segmentation approach has limited application in medical image segmentation,

they are mostly used in conjunction with other sophisticated methods.

Segmentation approach based on pattern recognition : A pattern is an entity

which can be associated with a definite name. Pattern recognition algorithms

deal with grouping and classifying of a set of data into different patterns. (by

E. Micheli-Tzanakou (Boca Raton, FL: CRC, 2000, 371 pp., ISBN 0-8493-2278-

2).Reviewed by Ke Chen.) The main application of pattern recognition algorithms

is feature extraction and classification. There can be two different schemes of

pattern recognition algorithms namely, supervised and unsupervised schemes.
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Supervised algorithms tend to classify the dataset and classify and associate the

data to pre-defined classes (also known as classifiers). In unsupervised scheme

there are no pre-defined data classes and hence this algorithm targets to classify

the input data into different clusters based on some similarity measure. These

clusters are later defined to be classes. The segmentation algorithms based on

pattern recognition treat the structures in the medical images as patterns. Among

all other pattern recognition techniques the most applied ones in medical image

segmentation are supervised or unsupervised classification algorithms.

Pattern recognition algorithms are used extensively in medical image seg-

mentation problems. Artificial neural network (Alirezaie, et al, 1997), support

vector machine (Wang, et al 2001) and active appearance models (Cootes, et al,

2001) are the better known supervised classification algorithms used in Medi-

cal Image segmentation. In order to determine the pre-determined classifiers a

training dataset is required. In some algorithms like supervised artificial neural

networks (ANNs) and support vector machines (SVMs) non-linear statistical data

modeling is used. The weights in each classifier is determined through optimized

energy functionals and updated after processing of each sample in the training

set. Training sets are used to determine the mean shape, mean appearance and

ranges of shape parameters hence it is an important and critical aspect of the

entire pattern recognition process. Moreover some restrictions are laid down to

make the segmentation of the image follow a definite shape and pattern and hence

the amount of similarity of the segmented image and the original image can be

maintained at a certain level. Supervised pattern recognition algorithms produce

very satisfactory results in medical image segmentation problems. This method is

found very effective in segmenting cardiac and brain images.
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Unsupervised pattern recognition algorithms are also used frequently in

medical image segmentation where the classifiers cannot be determined from

prior knowledge of the image. Unsupervised algorithms are popularly known as

clustering algorithms because they can determine the clusters themselves without

any training sets and the structure features in the image are determined from

the classified points itself. FCM algorithm is commonly used in segmentation of

MR images and transmission images (Mohamed, et al, 1998). The idea behind

this FCM algorithm is derived from the extensively used K-means clustering

algorithm where K is the predetermined number of clusters. The segmentation

of the image is achieved by labeling different parts of the image based on their

respective membership in K different clusters. The membership of a particular

pixel in a cluster is determined by its Euclidean distance from the cluster centroid,

the cluster centroids are updated iteratively when a new pixel is added to it. The

algorithm ends when all the pixels in the image are assigned to each of the K

clusters. Iterative Self-organizing Data Analysis Technique Algorithm (ISODATA)

is based on the same idea driving the FCM algorithm; the only difference is that

the number of clusters is not pre-determined but dynamically generated. These

unsupervised clustering algorithms have yielded good results in segmentation of

Positron Emission Tomography (PET) scans where it is applied to segment different

types of tissues and blood. Other popular unsupervised algorithms in medical

image segmentation field are unsupervised neural networks like Hopfields neural

network (Cheng, et al,1996). Template matching algorithms and atlas-guided

algorithms are other important medical image segmentation algorithms which

need prior knowledge of the image for its successful implementation (Gindi, et al,

1993; Akselrod-Ballin, et al, 2006).
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Deformable templates : Another popular approach towards shape analysis is

based on deformable models which are more flexible and can be used for complex

segmentations. The procedure of this algorithm can be viewed as study of active

contours and modeling evolution of the contour. Based on the representation of

the contour the deformable template models can be classified as parametric models

and geometric models. Parametric models have been inspired from the concept of

Snake Method (Kass, et al, 1987). In this model the contour is sampled at a certain

interval and those sampled points are the points of interest when the contour is

moving. The evolution of the contour is defined by energy functionals which are

actually a combination of two terms, namely the internal and external energy. The

internal energy is defined as the geometric properties of the contour like the length,

area and curvature etc. The external energy pulls the contour outside so that it

can take the proper shape and position and it is define by image information. An

Euler-Lagrange equation is defined which states position of the contour under

proper balancing of both the internal and external energy functions. The position

of the moving contour at any point of time is actually the object boundary.

The parametric deformable model has an intrinsic disadvantage, which is

known as the topological constraint. As a result of that the curve cannot properly

approximate the boundaries of not properly connected components. In order to get

over this disadvantage the geometric deformable models are developed which are

based on the level set methods (Osher and Sethian). This model incorporates the

concept of implicit snake method [2, 12] as opposed to the explicit snake method

used in the parametric model. In this model the initial curve is approximated as

the zero level curve of a Snake function. The evolution of the curve is determined

by partial differential equations. As a result it is not required to track sampled
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contour point. The topological changes are implicitly handled because the contour

equation is embedded as higher dimensional level set functions. In this project we

have used level set evolution technique to segment the brain from the whole head

skull MRI images.

2.2 3D Volume Reconstruction and Alignment

The problem of 3D volume reconstruction and medical cross section registration

is considered a challenging problem in medical image processing and has been

extensively studied. The goal of 3D volume alignment is to form a high resolution

3D volume from a set of spatial tiles (high-resolution 2D images or 3D cross section

volumes). Literature in determining the accuracy and computational complexity

of 3D alignment techniques is rather scarce. The related work in this field has

been from computer vision which deals with matching and alignment from points

and frames while modeling rigid motion of objects. A researcher performing 3D

alignment problem has to decide on some very critical factors like the image size

used in the registration, transformation models (rigid, affine or elastic) or whether

the registration process is to be manual, semi-automatic or fully automatic.

Thirion introduced a registration algorithm called ’demons algorithm

for 3D registration based on pixel velocities caused by edge based forces and is

similar to fluid registration . This method of 3D alignment has high registration

precision and it has been used extensively in medical image processing. The main

application it has been used is for 3D registration of MRI volumes. However this
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method is not directly applicable to register 3D image volumes obtained from

different modalities. In our research we use the 3D alignment of MRI volume and

the blockface volume. This algorithm is modified for our application.

2.3 Image Registration Principles

Image registration is a well-known technique which is used extensively in establish-

ing one to one correspondence between images of the same scene taken at different

time or at different viewpoints or with different sensor, scanner, other modalities

etc. One of the most interesting applications of image registration is in medical

imaging where it is effectively used in fusion of medical images like PET-MRI,

CT-PET and many more. To register two images the geometric transformation

between the pair is calculated which determines the alignment of the source image

with respect to the reference image. The most common image registrations are

namely rigid, affine, projective, perspective, global and elastic.

Image registration algorithms can be classified based on modality, intensity

or methods for registration. Some important registration algorithms and their

respective basis of registration are discussed here. In pixel based registration

cross-correlation is the basic statistical approach used. It is used for template

matching or pattern recognition in a particular picture where location and the

orientation of a template or pattern is determined. Feature based registration

makes use of image features derived by feature extraction algorithms and thus

reduce the redundant information during registration. Therefore in this approach
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the unique features which are likely to be found in both images and are tolerant of

local distortions are selected for registration. After feature extraction, control points

in the reference image are matched with feature points and then spatial mapping

is performed on the image pair to get the registration information. Contour based

registration uses high statistical features for matching image feature points. The

characteristic concept of this registration is the extraction of region of interest from

the image using color image segmentation principle.

Image registration based on point landmarks is a very important and

widely used approach. Several schemes are used for point landmark based

registration, e.g. rigid, affine and elastic schemes. Of these schemes the elastic

scheme is more important in medical imaging because it is non-linear and is

better known as warping . The geometric global differences between two images

are described by rigid and affine transforms but the elastic schemes also deal

with local differences. In medical image registration several deformation factors

like difference in anatomy (or pathology), scanner or patient induced distortions,

as well as intraoperative deformations due to surgical interventions need to be

considered. Hence the local geometric differences considered in the non-linear/

elastic registration scheme is more suitable for this application. The most widely

used point-landmark based elastic registration is Thin Plate Spline registration.

This approach was introduced in medical image analysis by Bookstein. Evans et

al. applied this scheme to 3D medical images. Alternative splines based on the

Navier equation, which have been named elastic body splines, have recently been

introduced by Davis et al. Extensions of point-based elastic schemes which allow

inclusion of additional attributes at landmarks have been proposed by Bookstein

et al. The combination of thin-plate splines with mutual information as similarity
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measure for the purpose of refining initially coarsely defined landmarks was first

proposed by Meyer et. al.

In all the registration approaches mentioned above the interpolation case

has been considered, which means that the corresponding landmark set are as-

sumed to match exactly. It implicitly means that the exact position of the land-

marks is known and has to be specified precisely for doing this TPS registration.

This assumption is unrealistic because landmark extraction is always error-prone.

Hence the need for approximation based landmark selection schemes needs to

be developed. Bookstein proposed a process of relaxation of initial landmarks

incorporating several energy terms, where a term represents the bending energy of

interpolating thin plate splines and the other term represents the distance of land-

mark configurations. This approach incorporates both isotropic and anisotropic

error. This approach is not related to a minimizing functional with respect to the

searched transformation. Recently Christensen et al. introduced another approach

for non-linear registration which has a hierarchical approach to image registration

combining landmark based scheme with a fluid model.
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Chapter 3

Approach

3.1 Problem Definition

Medical image registration serves as an important tool to build up a comparative

study between the images of the same organ taken at different time, or different

point of view or different scanners. In order to directly compare in-vivo MRI

images with histological slices the application of image co-registration is necessary.

It should be kept in mind that the MRI procedure is in-vivo which means that the

brain is intact in its position inside the skull, on the other hand the histological

slices are produced by physically dissecting the brain, fixing it in paraffin and

slicing it. Therefore it is expected that the histological slices are quite deformed

than the actual in-vivo MRI slices. The success of MRI-histology co-registration
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depends on the accuracy of both global and local alignment of the histological and

MRI slices. To determine the global deformations resulting from brain removal

from skull and tissue fixation, as well as the slice specific deformation caused by

tissue tearing and distortion during histological processing is definitely a challenge

that is addressed in this project. Direct co-registration of the MRI and histological

images is feasible but its computational complexity is very high, has to deal with

lots of parameters defining the actual deformation and also very error-prone.

In order to get past this technical challenge an intermediate imaging system is

developed. In the process of intermediate imaging either ex-vivo MRI of the

brain volume is obtained or in other cases digital images are obtained during

cryosectioning (slicing the brain fixed in paraffin). In our project the second

approach is taken and the cryosectioning of the brain at an interval of 150µm is

done and the digital images thus produced are known as the blockface images.

The blockface image slices can be stacked up in 3D producing the entire brain

volume and it acts as a spatial reference which helps in compensating the global

deformation factors encountered during the MRI and histological co-registration.

The complex registration process is simplified by first registering the MRI brain

volume to the intermediate reference to compensate for the global deformation,

and then warp the corresponding registered MRI-histology sections to correct

slice specific deformations (81-84). It is worth mentioning at this point that the

introduction of intermediate imaging system simplifies the MRI-histology co-

registration but the two critical problems addressed in this project still remains

to be the segmentation of brain from the MRI slices which is nothing but the

differentiation of brain and non-brain tissue in MRI (termed as brain extraction or

skull stripping), and the non-linear warping of MRI images with corresponding

histological slices.
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Automated Image Processing Technique Flowchart The method to coregister

MEmMRM to histology will consist of four independent processes as described in

the following table 3.1

Table 3.1: Principle steps of the Automated Image Processing Technique

1. A brain MRI extraction technique.

2. A 3D blockface volume reconstruction.

3. A 3D linear registration of the MRI volume to the blockface volume.

4. A 2D non-linear registration (warping) of the MRI and histological
slices to corresponding blockface slices.

The co-registration process is illustrated in figure 3.1. First, using level set

image segmentation method the mouse brain slices are extracted from the whole

head MRI and these MRI slices are stacked in 3D to create the entire in-vivo brain

volume. In the second step the blockface brain slices are segmented out from the

intermediate blockface images and stacked up in 3D to reconstruct 3D blockface

volume. Then MRI volume undergoes 3D registration(affine transformation) and

resliced to match the orientation of the blockface volume. Finally, both histological

slices and resliced MRI are warped to the blockface images using Thin Plate

spline (TPS) algorithm to correct for slice specific deformations. In this process

of warping (TPS algorithm) automatic scheme is developed for selection of point

landmarks and also its optimization based on the maximization of Normalized

Mutual information or NMI between the histological image and the warped image.
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Figure 3.1: Flowchart of the MRI and histology co-registration procedure. Texts
without boxes represent data; boxed texts represent data processing procedures.
Arrows entering a box represent input for transformation.

3.1.1 Brain Extraction from MR images

One of the most challenging problems in this project is extracting the brain volume

from whole head MRI. The differentiation of brain and non-brain tissue from MRI

image and corresponding segmentation of only the brain portion is a difficult task

because the pixel intensity is almost similar in both kinds of tissues and due to

partial volume effect (ref) the edges are also not clearly evident. Extraction of the

brain volume from whole head MRI is also known popularly as skull stripping

and it is a required step for image processing and analyses including brain volume

measurements, co-registration with histology, co-registration of MRI acquired

at different times, and identification of brain neuro-structures. Several image
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segmentation techniques have been employed for brain extraction. Level set curve

evolution technique yields better results than any other technique in this aspect

and it is researched extensively for this purpose. Level sets belong to broad family

called active contour models. In active contour model segmentation approach

an initial curve is determined inside a particular structure in the image and the

curve is expanded based on energy functionals, when a balance equilibrium is

attained the curve function gives the approximate boundary of the image. The

curve propagation, including its speed and the accuracy of its final position, can

depend on image properties, constraints on the curve, and a priori knowledge of

the object. Level sets are better fit in this scenario because it results in more perfect

segmentations around cusps, corners, and may break or merge naturally during

the evolution, and the topological changes are thus automatically handled.

Some important points about brain extraction from MR images should

be mentioned in this context. As described in the previous paragraph advanced

algorithms like level sets have been applied with considerable success in brain

extraction procedures. But in case of rodent brain the situation is a little more

complicated. The inherent anatomy and size of mouse brain makes the brain

extraction algorithm challenging. Even at considerably highest field intensity

the T1-wt MRI and PD images of the mouse brain yields brain tissues and the

non-brain surrounding tissues of almost same graylevel intensities. Moreover the

gap between the brain and the surrounding tissues is so narrow that the gradient

at the edges are relatively small and sometimes it is even non-discernible. At

several places there is almost no visible gap and it is of the order of 150 µm

spatial resolution. In this case more sophisticated segmentation algorithm with

level-sets incorporated with prior knowledge about the brain image is developed.
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Though in these sophisticated algorithm human intervention is considerably high

to incorporate the prior knowledge about the image. The following figure 3.2 give

a pictorial overview of the brain extraction method that we are working on, which

described in more details in section 3.2.

Figure 3.2: Brain extraction using a level set method. A: Selection of constrain
contour on one sagittal slice and B: two axial slices. C: Constrain points defined on
coronal slices from contours are D: used to automatically define a starting contour.
E-F: Resulting brain extraction

3.1.2 Image Warping for Nonlinear MRI-Histology Registration

In order to reduce the global deformation between the MRI image volume and the

blockface reconstructed volume and to simplify the 2D image warping, 3D image

volume alignment is performed. But each histological section is subject to different

distortions during slicing and handling, requiring individual 2- D slice-by-slice
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warping for the registration to in vivo images. Non-linear co-registration or image

warping is a method with which we try to compensate the local deformation of

each MRI image slice with corresponding histological slice. Many image warping

techniques have been developed including polynomial functions, B-splines, mesh

warping, thin-plate splines and pseudophysical models. In this project thin-plate

splines have been used for histological section warping due to the capability to

correct severe distortion and computational efficiency.

Implementation of thin-plate spline registration algorithm needs to deter-

mine two sets of point landmarks specified on both source (image to be warped,

e.g., histological section or MRI slice) and target (image to be registered on, e.g.,

blockface image) images. The landmarks are considered to be the points of one

to one correspondence which are pre-determined and these landmarks will be

matched exactly between the source and target images, and other part of the source

image will be warped using the thin-plate splines accordingly. It is evident that

the selection of landmarks is an important part of this registration procedure, the

accuracy of the registration procedure depends on the correctness of landmark

selection. Manual selection of point landmarks for the thin-plate splines is an error

prone and time-consuming procedure. Image features were used for landmark se-

lection in previous studies. But irrespective of how accurately the initial landmarks

are chosen, it cannot be guaranteed the exact correspondence between the source

and target landmarks which is the underlying assumption of thin-plate splines. In

this project we develop an automatic landmark selection technique. Arbitrary set of

initial landmarks are provided to the system, the landmark positions are optimized

in an iterative manner maximizing the Normalized Mutual information(NMI)

between the warped image and the histological slices. The following figure 3.3
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gives an overview of how the non-linear co-registration process is approached, it

is discussed in details in section 3.5.

Figure 3.3: Image warping using thin-plate splines with landmark optimization.
Contours of the brain boundary and corpus callosum were manually traced on
the MRI (A) and histology (C) to generate landmarks. Similarly, corresponding
contours on the blockface were traced to generate the homologues of the landmarks
(B). (D, E): The warped MRI slice (D) and histological slice (E) using thin-plate
splines. BMM clusters appear on the MRI image (black line) (A and D) and on the
histological section (blue line) (C and E).

3.2 Level-Set in Brain Extraction on MRM

3.2.1 Introduction

Level set methods were first introduced by Osher and Sethian. They showed how

to propagate interfaces under various constraints on the speed to obtain an entropy-

satisfying solution. Most of the ideas originated from the equations used in fluid
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mechanics and gas laws. Malladi,Sethian and Vemuri later showed how to use

these ideas for shape modeling in images. The results obtained by implementing

the technique described in are shown in this report and a detailed description of

their technique is also presented. The primary advantage of this technique is that

it can model complex shape features such as sharp corners. In fact, the contour can

split and merge to detect multiple objects in the image. The equations are also easy

to extend to higher dimensions. In implementing the traditional level set methods,

it is numerically necessary to keep the evolving level set function close to a signed

distance function. Reinitialization, a technique for periodically re- initializing the

level set function to a signed distance function during the evolution, has been

extensively used as a numerical remedy for maintaining stable curve evolution and

ensuring usable results. This report discusses a new variational formulation that

forces the level set function to be close to a signed distance function, and therefore

completely eliminates the need of the costly re-initialization procedure and applies

the concept in Medical Image Segmentation.

3.2.2 Motivation

In Medical image processing, Segmentation plays the pivotal role in deter- mining

and quantization of the position and size of various organs. In this project images

of brain as obtained by Magnetic Resonance Imaging(MRI) and effective segmenta-

tion of the brain from the rest of the image is being considered. Anatomically the

brain (see fig. below) is being surrounded by tissues like Duramater(consisting

of Periosteal Layer and Meningeal Layer), Arachnoid mater,Pia matter, which
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protects the brain, allows blood circula- tion to the cerebral cortex and the cir-

culation of Cerebro-Spinal Fluid(CSF) through the Arachnoid matter(specifically

sub-arachnoid space). These con- nective tissues around the brain are very closely

attached to the brain tissues and show up with almost same intensity as the

brain tissues in MRI images. The challenge and motivation of this project is the

application of Level Set methods to determine the boundary of the brain with

preciseness.

Figure 3.4: Connective tissues around the brain

3.2.3 Theory

Traditional Level Set Method In level set formulation of moving fronts (or active

contours), the fronts, denoted by C, are represented by the zero level set

C(t) = {(x, y)|φ(t, x, y) = 0} (3.1)
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of a level set function φ. The evolution equation of the level set function φ can be

written in the following general form:

∂φ

∂t
+ F|Oφ| = 0 (3.2)

which is called level set equation. The function F is called the speed function. For

image segmentation, the function F depends on the image data and the level set

function φ.

In traditional level set methods, the level set function φ can develop

shocks, very sharp and/or flat shape during the evolution, which makes further

computation highly inaccurate. To avoid these problems, a common numerical

scheme is to initialize the function φ as a signed distance function before the

evolution, and then reshape (or re-initialize) the function φ to be a signed distance

function periodically during the evolution. Indeed, the re-initialization process is

crucial and cannot be avoided in using traditional level set methods.

Algorithm of the level-set method for shape modeling

1. Calculate the image gradient at each point in the image.

2. Initialize φ, this is done by first making φ = 0 at the points specified by the

user in the initial boundary. The value of φ at all the other points is ±dxy ,

where dxy is the distance of point (x, y) from the closest point on the level set.

The value is positive or negative depending on whether the point is outside

or inside the boundary.
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3. Calculate the velocity at the points on the level set φ = 0 using the equations

given in the previous section. The velocity of other points is equal to the

velocity of the closest point on the level set φ = 0. This step is knows as

extending the velocity. This is done because, the curvature term is defined

only on the front, so it does not make sense to calculate velocities at every

point but it should only be calculated at the front.

4. Use the velocities to update the function using equation.

5. Repeat steps 2 through 4 till the solution converges or for a fixed (large)

number of iterations.

6. The function is reinitialized every fixed number of iterations to the signed

distance function. The standard re-initialization method is to solve the

following reinitialization equation

∂φ

∂t
= sign(φ0)(1− |Oφ|) (3.3)

where φ0 is the function to be re-initialization, and sign(φ0) is the sign

function.

Drawbacks Associated with Re-initialization

1. Unfortunately, if φ0 is not smooth or φ0 is much steeper on one side of the

interface than the other, the zero level set of the resulting function φ can be

moved incorrectly from that of the original function.
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2. Moreover, when the level set function is far away from a signed distance

function, these methods may not be able to re-initialize the level set function

to a signed distance function. In practice, the evolving level set function

can deviate greatly from its value as signed distance in a small number of

iteration steps, especially when the time step is not chosen small enough.

Variational Level Set Formulation of Active Contours without Re-initialization

As discussed in Chunming et.al. it is crucial to keep the evolving level set function

as an approximate signed distance function during the evolution, especially in a

neighborhood around the zero level set. It is well known that a signed distance

function must satisfy a desirable property of |Oφ| = 1. Conversely, any function φ

satisfying |Oφ| = 1 is the signed distance function plus a constant. Naturally, we

propose the following integral

ρ(φ) =
∫

Ω

1
2
(|Oφ| − 1)2dxdy (3.4)

as a metric to characterize how close a function φ is to a signed distance function

in Ω ⊂ R2. With the above defined ρ(φ), we propose the following variational

formulation

E(φ) = µρ(φ) + Em(φ) (3.5)

where µ > 0 is a parameter controlling the effect of penalizing the deviation of φ

from a signed distance function, and Em(φ) is a certain energy that would drive

the motion of the zero level curve of φ.We denote by ∂E
∂φ ,the Gateaux derivative (or
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first variation) of the functional E, and the following

∂φ

∂t
= −∂E

∂φ
(3.6)

is the gradient flow that minimizes the function E.

In image segmentation, active contours are dynamic curves that moves toward the

object boundaries. To achieve this goal, we explicitly define an external energy

that can move the zero level curve toward the object boundaries. Let I be an image,

and g be the edge indicator function defined by

g =
1

1 + |OGσ ∗ I|2 (3.7)

where Gσ is the Gaussian kernel with a standard deviation σ. We define an external

energy for a function φ(x, y) as below

Eg,λ,ν(φ) = λLg(φ) + νAg(φ) (3.8)

where λ > 0 and ν are constants, and the terms Lg(φ) and Ag(φ) are defineed by

Lg(φ) =
∫

Ω
gδ(φ)|Oφ|dxdy (3.9)

Ag(φ) =
∫

Ω
H(−φ)dxdy (3.10)
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respectively, where δ is the univariate Dirac function, and H is the Heaviside function.

Now, we define the following as the total energy function

E(φ) = µρ(φ) + Eg,λ,ν(φ) (3.11)

The external energy Eg,λ,ν drives the zero level set towards the object boundaries,

while the internal energy µρ(φ) penalizes the deviation of φ from a signed distance

function during its evolution. By calculus of variations, the Gateaux derivative(first

variation) of the functional Ecan be written as

∂E
∂φ

= −µ[4φ− div(
Oφ

|Oφ| )]− λδ(φ)div(g
Oφ

|Oφ| )− νgδ(φ) (3.12)

where δ is the Laplacian operator. Therefore, the function φ that minimizes this

functional satisfies the Euler- lagrange equation

∂E
∂φ

= 0 (3.13)

The steepest descent process for nomination of the functional E is the following

gradient flow:

∂φ

∂t
= µ[4φ− div(

Oφ

|Oφ| )] + λδ(φ)div(g
Oφ

|Oφ| ) + νgδ(φ) (3.14)
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The gradient flow is the evolution equation of the level set function in the proposed

method.

3.2.4 Level Set segmentation

Loading an image A set of whole head MRI images was taken in the coronal

plane are generated by previous procedure as described in 4.1.1. This section

explains with one of the MRI slices of how the level set segmentation procedure

described in chapter 3, can be applied to segment out just the brain from a whole

head MRI. A MRI image of the brain which was chosen and loaded into the system.
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Figure 3.5: The whole head MRI slice from which the brain is segmented

Calculation of Edge Indicator Function Let I be the image considered here. The

Gaussian Kernel Gσ for 2D is defined as

Gσ(x, y) =
1

2πσ2 exp−
x2+y2

2σ2 (3.15)

where (x, y) are the co-ordinates of a point on a 2D plane and σ is the standard

deviation. The Image is first histogram equalised to make the image data spread

out through the entire range of 0− 255 and the following Image shows the initial

histogram and the modified histogram. This step is done to improve the contrast

of the image and thus make the edges more pronounced.
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Figure 3.6: Original Histogram of the Image

Figure 3.7: Modified Histogram of the Image

Gσ ∗ I can be calculated easily. In this case only a 4 ∗ 4 window of gaussian

filter with the standard deviation(σ = 20) is generated, the convolution of the

Gaussian Filter with the original image I results in the following smoothened

image

The corresponding edge indicator function over the image I is displayed

in the figure below
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Figure 3.8: The Gaussian Smoothing Filter

Evolution function The evolution of the Level Set is being defined by the equa-

tion
∂φ

∂t
= µ[4φ− div(

Oφ

|Oφ| )] + λδ(φ)div(g
Oφ

|Oφ| ) + νgδ(φ) (3.16)

where δ(x) is the Dirac function. In practice, the Dirac function is slightly smoothed

as the following function

δε =

 0 |x| = 0

1
2ε [1 + cos(πx/ε)] |x| ≤ ε

(3.17)

and regularized Dirac function δε(x) with ε = 1.5

Selection of time step τ In this method the time step can be chosen significantly

larger than the time-step used in the traditional level set algorithm. But in order

to maintain stable level-set evolution the time step τ and the coefficient µ must
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Figure 3.9: The Convolution of the original Image and the Gaussian Filter

satisfy

τ.µ < 0.25 (3.18)

Using larger value of τ speeds up the curve evolution but it may cause error in the

boundary location if the time step is chosen too large. There is a trade-off between

choosing larger time step and accuracy in boundary location. Usually, τ ≤ 10.0 for

most images.

Flexibility in Initial Level Set Function The level set function φ is not required

to be initialized as a signed distance function. Let the initial Level Set function be
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Figure 3.10: The Edge Indicator Function

φ0(x, y) and it is defined as below

φo(x, y) =


−c0 (x, y) ∈ Ω0 − ∂Ω0

0 (x, y) ∈ ∂Ω0

c0 (x, y) ∈ Ω−Ω0

(3.19)

where Ω0 be a subset in the image domain Ω, and ∂Ω0 be all the points on the

boundaries of Ω0, it is suggested to choose c0 larger than 2ε, where ε is the width

in the definition of the regularized Dirac function δc. In the experiment ε = 1.5

and the value of c0 = 4.

The figure 3.11 and 3.12 show how the level set curve and the corresponding

contour grows with increasing iterations. The figure ?? is the initial image that we
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started with and the final segmented image that we get after applying Level Set

Evolution algorithm is shown in 3.13.

Figure 3.11: The Evolution of Level Set Function: (a) after 50 iterations (b) after
200 iterations (c) after 500 iterations (d) after 1500 iterations
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Figure 3.12: The Evolution of Level Set Contour: (a) after 50 iterations (b) after 200

iterations (c) after 500 iterations (d) after 1500 iterations

Figure 3.13: The Final Segmented Image of the Brain from the initial image
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The brain segmentation from the entire MRI volume (also known as skull

stripping) can be approached in a different way. Instead of applying Level Set

segmentation approach on 2D brain slices and stacking them up to create 3D

volume, the Level Set algorithm can be modified to be applied in 3D nifty volume

directly to segment the brain volume as a whole. The biggest disadvantage of this

procedure is that the brain intensity and topological characteristics are varying

in different regions of the volume and hence the parameters which are set for

the preprocessing as well as edge indicator functions will need to be changed

accordingly. As a solution to this problem the entire volume is divided into

subvolumes such as brain1, brain2, brain3 etc. This method is exactly similar

to the way the blockface images were generated of the sub-volumes, not the

entire brain taken as a whole (described in details in Section 3.3). Each of the

sub-volumes consists of 20-25 coronal slices of the rat brain on an average. On

successful determination of volume with 3D levelset methods the sub-volumes are

arranged in order to create the entire brain volume It is assumed that the image

characteristics of the 20-25 adjacent coronal slices are very similar. In the exact

fashion of determination of 2D levelset segmentation, the intial volume is placed

interactively by the user in the volume of interest and the curve is let to evolve and

gradually we get the segmented brain volume. The figure 3.21 shows some steps

in the 3 D curve evolution and the corresponding volume generated.
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Figure 3.14: The Evolution of 3D Level Set volume curve: (a) after 1 iteration (b)
after 15 iterations (c) after 80 iterations
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3.3 Blockface Image Segmentation

This section defines about how the blockface images are generated and the image

segmentation techniques applied on these images. The rat brain is physically taken

out of the cranium and fixed in paraffin. After this step is done the entire brain

is sliced in the coronal plane at an interval of 150 µm. Pictures of each of these

slices are the blockface images. We have used histogram equalization, Gaussian

smoothing and canny edge detection principle to segment the brain slices from

the actual blockface slices. Here we briefly discuss the theoretical concepts of the

techniques used and how the approach to our problem was designed based on

these concepts.

3.3.1 Histogram Equalization

Histogram equalization is considered as a very popular and extensively used image

pre-processing tool that is used for improving the contrast of the image under

consideration. It is mostly found that in the medical images the edges are not

properly defined and they are pretty blurred; in that case the image enhancement

techniques need to be used for getting a better understanding of the image and

also as a pre-processing step for other algorithms to be applied. It is commonly

found that the pixel values in an image only cover a certain part of the entire

gray-level values. The idea of Histogram equalization is to distribute the intensity

values across the entire gray-level and thus it enhances the contrast. In a grayscale
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image, Probability Density Function of an image is defined as average number of

pixels per gray-scale value. Mathematically it can be expressed as

px(i) = p(x = i) =
ni

n
, 0 ≤ i < L (3.20)

where L is the total number of gray levels in the image , n is the total number of

pixels in the image and ni is the number of pixels in graylevel i.

The cumulative distribution function is the summation of all the graylevel pixels

below a certain graylevel in the image. It can be expressed as

cd fy(i) =
i

∑
j=0

px(j) (3.21)

Histogram equalization is a linear mapping of the cumulative distribution function

to make the graylevel values stretch though the entire grayscale. The mapping can

be defuned as

y = T(x) = cd fx(x) (3.22)

y′ = y.(max{x} −min{x}) + min{x} (3.23)
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3.3.2 Canny Edge Detector

The Canny edge detector algorithm is a very popular edge detection principle

coined by John Canny (ref). In this problem the edge detection problem is modeled

as a signal processing optimization problem. The solution to edge determination

problem is actually a rather complex exponential function, but canny edge detection

follows several ways to approximate and optimize the edge-searching problem.

The following are the important steps involved in canny edge detection algorithm

1. As a part of pre-processing the image is smoothened by convolution with a

2D Gaussian filter. In order to reduce the computational complexity instead

of using a 2D Gaussian 2 one dimensional Gaussian filters can be used in

each dimension of the image.(ref)

2. The gradient of the image determines the relative difference in the values of

neighboring pixels. Therefore the positions of abrupt change in the gradient

determine the places of higher intensity changes, which show the presence

of edges in those regions.

3. The gradient calculated in the previous step should be maximum at the

edges because the maximum intensity change between 2 adjacent pixels

are at the edges. Hence the gradient at each pixel is calculated and then

it is compared with the gradients of all other pixels in the image. If it not

the maximum it is neglected to be an edge point. This process is called

non-maximal suppression.

4. After the potential edge points are determined, not all maximum gradient
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points determine the object boundaries which are of prime importance in

this case. In order to solve this problem canny edge detector uses two

different threshold values, one High threshold and the other Low threshold

depending on prior knowledge of the original image. Any edge point having

intensities within this window of threshold values are considered to be the

required edge in the image. This process of thresholding is also referred to

as ”hysteresis”.(ref)

3.3.3 Blockface Image Segmentation

Loading an image A set of blockface images taken in the coronal plane are

generated by previous procedure as described in the subsection4.1.2. This section

explains with one of the Blockface Image slices of how some segmentation proce-

dures can be applied to segment out just the brain from the entire blockface Image.

We are considering only the edge of the blockface slice because that is enough

information to generate the Blockface volume. A Blockface image slice of the brain

which is chosen and loaded into the system.
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Figure 3.15: Blockface Image of the brain fixed in paraffin

As seen in figure 3.15, it contains a lot of redundant informations which is

useless in segmentation and generation of the 3D blockface volume. The image

was cropped to concentrate in our particular region of interest(ROI).
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Figure 3.16: Region of Interest in the Blockface Image slice
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The image thus obtained is histogram equalized to improve the contrast

and thus making the edges more pronounced. A 15 ∗ 15 gaussian filter is defined

with a standard deviation of σ = 1.5 and the original image is convolved with

the Gaussian kernel to produce a smoothened image. The following figures 3.17

and 3.18 show the Gaussian kernel used and the corresponding edge-indicator

function thus produced.

Figure 3.17: Gaussian Kernel
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Figure 3.18: Edge Indicator function used in segmenting the blockface image

The most popular ’canny edge detection’ principle is applied on the edge

indicator function after the image is converted into boolean Black and White

datatype thresholded at 42% of its entire gray value range. The Edge of the

image thus obtained undergoes affine transformation. This Affine transforma-

tion(translation and rotation) is applied to gain alignment within each slice of

the entire stack of blockface image, thus reducing the effect of mechanical shear

while physically slicing the brain fixed in paraffin with the precise slicing tool at

an interval of 150µm. The centroid of the brain is calculated and translated to the

center of the image slice as described in the figure 3.19. The orientation of the

blockface brain about the principal axis is studied which gives us an estimate of

the angle of tilt of the brain image and thus we rotate the image counterclockwise
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to nullify the tilt. The following figure 3.19 show the affine transformation of the

image and final segmented image with the centroid pointed out is showed in the

figure 3.20.

Figure 3.19: Affine Transformation of the blockface image slices: (a) Translation (b)

Rotation
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Figure 3.20: Final Segmented image of the blockface Images

The segmentation of the blockface images can be extended to include

the grayscale segmentation part of the original image. In this step not only the

blockface images are segmented but also the grayscale intensities of the segmented

regions are restored from the original blockface images. This step is included be-

cause it is critical for the proper functioning of the next step of alignment (described

in Section 3.4). The reason of the improper functioning of the volume alignment

section is that affine transformation between a volume of binary images(blockface

volume) and another volume of grayscafunctioningle images(MRI volume) is very
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difficult and may come out erroneous. The figure 3.3.3 shows some slices where

the grayscale segmentation is also included. The blockface volume is generated

by stacking up these segmented images in 3D. But a mapping or interpolation

scheme is applied in this case. One of the very important characteristics of the

blockface slices created is the thickness of the slices. This parameter should be

considered when the blockface volume is recreated. Depending on the thickness

of the blockface slices, image slices were replicated in adjacent volume slices to

replicate the concept of interpolation.
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Figure 3.21: The Blockface segmented image slices where the graylevel values of
the original images are also restored
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3.4 Alignment

At this point of the project we only have several sets of brain MRI slices and the

corresponding blockface image slices of the same brain. Though our final goal is

to get the co-registration of the MRI slices and the histological images, we target

to minimize the global deformations between these two sets of images . In order

to do that we use the concept of 3D volume alignment of the MRI image volume

and the blockface image volume. We concentrate only on affine transformation

(translation and rotation in 3D) of these two image volumes. In order to achieve

this alignment we use the concept of 3D registration known as demon registration

as introduced by Thirion. The following paragraphs describe the driving principle

behind the classical algorithm and then how it is modified to put it to our use.

In traditional demon registration principle, like other image registration

algorithms, one to one correspondence between two images is determined, only

difference is that the registration is in 3D and the images are 3D volume images.

But it still has a static image F and another moving image M and the moving image

is modified to match in orientation as the static image. Several energy functionals

act as internal or external forces when one image volume is co-registered with the

other one. The optical flow equation for finding small deformations in temporal

image sequences is used as basis of the demon registration forces (ref). Consider a

given point p in the static image F and the corresponding point of match in the

moving image M be given by p′. Let the intensity of point p be f and that of p′ be

m. Thirion estimated the approximate displacement (velocity) u required for point

p to match p′ and it is given by
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U =
(m− f )O f

|O f |2 + (m− f )2 (3.24)

where u = (ux, uy) in 2D, and triangledown f is the gradient of the static image.

Similarly like other registration algorithms there are two forces determining the

registered shape of the moving image. There is an internal edge based force

triangledown f and the external force is (m− f ). In order to stabilize the velocity

equation and to make the equation fit for registration, the term (m− f )2 is added by

Thirion. This registration method is very similar to viscous fluid model registration

principles (ref). The velocity equation is modified by He Wang et. al. (ref) and he

introduced another term to improve the overall edge forces and thus results in a

better registration process. The modified velocity equation is shown below

U =
(m− f )O f

|O f |2 + α2(m− f )2+ =
(m− f )Om

|Om|2 + α2(m− f )2 (3.25)

Cachier et.al.(ref) proposed the term α as a normalizing factor which gives a

balance between the two force terms.

One of the prime disadvantages of traditional demon registration algo-

rithm is that it inapplicable to multimodal MRI images. So a modification of the

algorithm is done to make it suitable for this process. The modification in this

case is known as the process of modality transformation. We utilize the concept

of mutual information between two sets of images for modality transformation.

Mutual information is the index of similarity in information content between 2

sets of images. The mutual information of moving image M and static image F is
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defined as (ref)

I(M, F) = ∑
M,F

p(m, f )log
( p(m, f )

p(m)p( f )
) (3.26)

where p(m) and p( f ) are the probability distribution functions of image

M and F respectively, p(m, f ) is the joint probability distribution derived from joint

histogram approach. The proposed method uses joint histogram peaks to transform

one image representation to another. In our application we are using the demon

registration method for 3D alignment of MRI image volume and blockface volume.

The key point to be noted in this respect is the objective behind this transformation.

The global deformation parameters are tried to be reduced in this step, so the

intrinsic grayscale characteristics of the MRI and Blockface images can be neglected

while doing this 3D registration. The local transformation characteristics are later

defined when the Thin Plate spline 2D warping is considered. Hence we represent

both the MRI volume and the blockface volume as binary BLOB, that is pixels

having information about the brain are considered as ’1’ and the rest of the 3D

points are considered as ’0’. Then we utilize the multimodal variant of demon

registration algorithm to find the 3D aligned binary BLOB. Accordingly we can

align the MRI images to match the binary BLOB. Then the MRI image volume

is re-sliced to match the slicing done for histological sections and in this way we

prepare the input for the non-linear co-registration system which uses Thin Plate

Spline algorithm to model the local distortions.
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3.5 Registration approach and Optimization

In this project we use Thin Plate Spline Warping to co-register the MRI slices

and corresponding histological slices. The following sections deal briefly with

the background theory of the warping method and then discuss the registration

approach used in this method.

3.5.1 Thin Plate Spline Warping

Thin plate splines (TPS) were introduced to geometric design by Duchon (Duchon,

1976). The name thin plate spline refers to a physical analogy involving the

bending of a thin sheet of metal. In the physical setting, the deflection is in the

direction, orthogonal to the plane. In order to apply this idea to the problem of

coordinate transformation, one interprets the lifting of the plate as a displacement

of the or coordinates within the plane. In 2D cases, given a set of K corresponding

points, the TPS warp is described by 2(K + 3) parameters which include 6 global

affine motion parameters and coefficients for correspondences of the control points.

These parameters are computed by solving a linear system.

Radial Basis Function Given a set of control points wi, i = 1, 2, ..., K, a radial

basis function is a spatial mapping function which maps any location x in space to

a new location f (x) represented by
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f (x) =
K

∑
i=1

ci ϕ(||x− wi||) (3.27)

where ||.|| denotes the ususal Euclidian norm and ci is a set of mapping coefficients.

One possible choice for the kernel function ϕ is the thin plate spline ϕ(r) = r2logr.

It has a more global nature than the Gaussian kernel ϕ(r) = exp(−r2

σ2 ), which is

another common function, a small perturbation of one of the control points always

affects the coefficients corresponding to all the other points as well. Note that a

thin plate spline is generally understood as a function minimizing the integral of

the squared second derivative, typically in two dimensions. This corresponds to

the radial basis kernel . Other choices of radial basis kernel produce interpolation

that would not normally be described as a thin plate spline. The TPS fits a

mapping function f (x) between corresponding point-sets yiand xi by minimizing

the following energy function:

E =
∫ ∫

[(
∂2 f
∂x2 )

2 + 2(
∂2 f
∂xy

)2 + (
∂2 f
∂y2 )

2]dxdy (3.28)

And for a smoothing TPS, it is

Etps =
K

∑
i=1

(||yi − f (xi)||)2 + λ
∫ ∫

[(
∂2 f
∂x2 )

2 + 2(
∂2 f
∂xy

)2 + (
∂2 f
∂y2 )

2]dxdy (3.29)
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Then smoothing TPS is defined as

ftps = argminEtps (3.30)

3.5.2 Automation of Landmark Selection, Registration and Opti-

mization

Image warping is used to register mMRM and histological sections to blockface

imaging. The image warping technique is developed based on thin-plate splines

with point-landmark optimization. The technique developed in this project is an

extension of our landmark optimization method, in which contours are manually

drawn on the anatomical features on the MRI and histological sections, and

corresponding landmarks are extracted from the contours and optimized according

their distance and local curvature. In this project, we fully automate the semi-

automatic method with the introduction of normalized mutual information (NMI).

Implemented Technique The source image (MRI slice) will be first aligned with

the target (blockface image) images using affine transformation. The edge maps

(gradients) of the images will be calculated. One point landmark is placed on

the centroid, and four landmarks are placed on the brain boundaries detected on
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the edge maps. The four boundary landmarks are distributed every 90 ◦ from the

centroid of each slice after affine transformation. The landmarks on the source

image are then relaxed to move in a region A. Nonlinear transformation will

be performed on the source image and the NMI of the source and target will

be calculated. The source landmarks will be optimized by minimizing the cost

function defined by:

M = λ ∗ NMI(S, T) +
n

∑
j=1

(|PS,j − P0
S,j|) (3.31)

where S and T are the source and target images, respectively; n is the

number of landmarks, and Ps is a point landmark; superscript ”o” indicates the

initial landmark location; λ is the weighting between NMI (term 1) and landmark

displacement (term 2). More landmarks will added on locations of maximal

gradients on the source image, and on the same locations on the target image

until the pre-defined landmark number N. After adding each landmark, all source

landmarks will be optimized by minimizing eqn (1). The same process will be

used to warp the stained histological slices to the corresponding blockface slice(s).

The landmark selection procedure is illustrated using pseudocode in Table 3.2.

The actual process of non-linear registration as described in the pseu-

docode of Table 3.2 can be best understood if the intermediate images and the

corresponding landmarks are studied. The following figures present a pictorial

representation of the landmark selection procedure and optimization of the land-

marks. We have selected only one pair of MRI-histo slices and have shown the
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1. Align the source image with the target image using affine transforma-
tion.

2. The brain boundary in the MRI and the histological sections are
detected using ’Canny Edge Detection’ principle.

3. Initial set of landmarks are specified by determining the centroid and
the four boundary points distributed every 90 ◦ from the centroid of
each slice.

4. Thin-plate splines are used to coregister the MRI and the histologcal
section by warping the MRI.

5. Normalized Mutual information(NMI) of the warped MRI and the
histological section is calculated.

6. For i = 5 to N
Relax source landmarks
Optimize source landmarks by minimizing Equation 3.31

7. End

8. More landmarks are added by sampling the brain boundary obtained
from the edge detection principle described in step 2. The process
goes back to step 5 to optimize the landmarks. This process of adding
more landmarks is done by reducing the sampling interval along the
brain boundary and is repeated until the maximum number of pre-
determined landmarks, N is reached or the displacement of landmarks
after optimization is lower than a pre-determined threshold or NMI
between the source and target images reaches a pre-determined value.

Table 3.2: Pseudocode of the algorithm for MRI-histological slice registration

intermediate images obtained while doing the Thin Plate Spline registration proce-

dure. Figure 3.22 shows the initial pair of MRI and histological slices before any

preprocessing.

The pre-processing operation is done on both the MRI and histological

slices which includes the affine trnsformation of both so that they are aligned with
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Figure 3.22: MRI histological pair of images to be registered: (a) Low resolution
T1-wt MR image (b) High resolution stained Histological image

each other. Then both the images are converted into logical BW images for further

processing. The BW images are shown in Figure 3.23

Figure 3.23: (a) Logical BW representation of T1-wt MR image (b) Logical BW
representation of histological image

Canny edge detection principle is applied on the BW images on the

previous step to do the gradient calculations and find out the edges. The edge

detection is a critical process because the landmarks selected on the images for

Thin plate spline algorithm are going to be placed on the edges; the corresponding

edge of the MRI and the histological slices are shown in the Figure 3.24.

Once the edges are determined an abritrary set of landmarks are decided.
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Figure 3.24: (a) Canny Edge detection of T1-wt MR image (b) Canny Edge detection
of histological image

As an arbitrary choice the centroid and four boundary points on the edge dis-

tributed every 90 ◦ are chosen as initial landmarks. Figure 3.25 shows the initial

arbitrary landmarks pointed on both the images.

Figure 3.25: (a) Initial 5 landmarks determined on T1-wt MR image (b) Initial 5

landmarks determined on histological image

The optimization of the landmarks are continued iteratively, new land-

marks are added by sampling the brain boundary obtained from the edge detection

principle. This process of adding more landmarks is done by reducing the sampling

interval along the brain boundary and is repeated until the maximum number

of pre-determined landmarks, N is reached or the displacement of landmarks

after optimization is lower than a pre-determined threshold or NMI between the
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source and target images reaches a pre-determined value. Figure 3.26 shows the

final warped image having a NMI index of 0.69. Figure 3.27 shows inital set of

landmarks(yellow) and the optimized set of landmarks(blue) plotted on the same

image to show the effect of landmark optimization technique used. Figure 3.28 is

a superimpositon of warped image and the actual histological image, it gives a

sense how closely related are the two image and the perfection of the automatic

landmarking and registering process used.

Figure 3.26: Final Warped image after the co-registration is completed. NMI index
is 0.69
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Figure 3.27: The initial landmark set(yellow) and optimized landmark set(blue)

Figure 3.28: Visible similarity between the warped and histological image observed
from the superimposition of the 2 images
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Chapter 4

Results and Evaluations

The problem of automated landmark selection and non-linear registration of MRI

images and Histological brain slices are of immense importance because of its

widespread application. MRI is an non-invasive process that means the subject

of concern does not need to be operated while doing the MRI. On the other

hand process of making histological slides is invasive that is the concerned tissue

is separated from the subject’s body, stained properly and examined under the

microscope. Thus our project deals with the bridge between the invasive and

non-invasive methods of examining the same tissue. As we know cancer detection

of a particular tissue is done by the method of Biopsy. A biopsy is a procedure

to remove a piece of tissue or a sample of cells from the subject’s body so that it
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can be analyzed in a laboratory after making histological slides of the concerned

tissues. Thus with further research in this field and incorporation of machine

learning algorithms, we can design some non-invasive efficient techniques which

can predict the structure of the underlying tissues.

As a part of the procedure the experimentation is done on infected rat

brain. Rats are being cultured and infected with HIV-1. After the 2-3 weeks

when the neuro-cognitive disorders become pronounced in the animals under

experimentation then axial T2* MRI of the rat brain is performed. After the

MRI was performed, brains were removed, embedded, sectioned and digital

images were acquired every 150µm (blockface imaging) during sectioning within a

cryostat. The same brain slices that were photographed as blockface images were

then stained with Prussian blue and counterstained with hematoxylin. Ten pairs of

such MRI slices and the corresponding histological slides were prepared. These ten

sets of pictures are the inputs to our Automated landmark detection and Thin Plate

Spline warping system. The problem that we deal in this project is to find a one-one

correspondence between these two pairs of MRI and histological images in these

ten different sets. Our system should be able to automatically determine an efficient

set of landmark in the MRI image so that it can be effectively warped onto the

histological image using non linear registration. In some semi-automatic method

for landmark detection contours are manually drawn on the anatomical features on

the MRI and the histological sections, and corresponding landmarks are extracted

from the contours and optimized according to their distances and local curvatures.

We will focus on fully automating this process with the introduction of the concept

of Normalized Mutual Information, which is a widely used as a measure of image

similarity. Thus the output of the system would be an automatically landmarked
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MRI image which is co-registered with the corresponding histological image. This

chapter describes the dataset we are working on and then describe the experimental

results and corresponding evaluations.

4.1 DataSets

4.1.1 MRI slices

The MRI images considered in this experiment are obtained from the Bruker 7T

scanner. The entire MRI image volume is stored in Analyze75 format. The volume

is loaded into the system by MRIcro software. The figure 4.1 shows how the MRI

looks when it is loaded into the software. The figure 4.1(a) shows the coronal view

of the rat brain which is actually one slice of the brain MRI taken from the front

to back direction. In this experiment we consider only the coronal view of the

MRI. So we can use the MRIcro software to save only the coronal view of the MRI

volume into 176 different slices.
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Figure 4.1: MRI volume:(a) Coronal view, (b) Sagittal view, (c) Axial View

4.1.2 Blockface and Histological Images

BlockFace Images The blockface images are produced by a series of procedures.

Just after the MRI scan of the brain the rat infected with HIV-1 is sacrificed. Then

the brain of the animal is removed with utmost care so that the intact shape of

the brain is preserved as much as possible. The brain is put in an upside down

position in a trough of paraffin and it is fixed. The entire brain fixed in paraffin is

held in a clamp and with a precise slicing tool the brain is sliced into layers in the

coronal plane at an interval of only 150µm. Images of each of these slices are taken
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which are known as the Blockface Images and they are shown below in the figure

4.2. Each of these slices are taken in such a way that they can be stacked up in 3D

to regenerate the original brain volume and this property we will utilize when we

use 3D alignment and registration technique to register the original brain volume

and MRI volume in 3D.

Figure 4.2: Blockface Image of the brain fixed in paraffin

Histological Images The blockface images thus produced are stained with Prus-

sian Blue and the HIstological Slices are produced. These histological slices of the

brain are kept under the microscope for further studies, the 3D volume aligned

MRI images are re-sliced to match these histological slices and we apply Thin-Plate

Spline warping technique for non-linear co-registration of the MRI and Histological

slices. The figure 4.3 shows one Histological image slice thus produced.
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Figure 4.3: Histological Image slice

4.2 Results

Because this is an image processing project the results are mostly images that are

generated by some image processing techniques. This project deals with several

subsections like MRI image segmentation (4.4) with the application of level set

evolution, blockface image segmentation (4.5) with canny edge detection princple,

3D reconstruction and alignment of MRI brain volume and Histological volume

(??) and non-linear co-registration of MRI-histo image pairs (4.10) using thin plate

spline technique. This section will consist mostly of the figures of input images

and the processed images. The following figures show the results of different

objectives of this project.
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Figure 4.4: Level Set Evolution Application: Column(a) Whole head MRI slices
Column(b) Corresponding segemented brain sections
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Figure 4.5: Blockface Image segmentation: Column(a) Blockface image slices
Column(b) Corresponding segemented and affine transformed brain sections
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The segmentation of blockface slices were not perfect for all images in the

dataset; the dataset is not quite as good as we expected. It is understandable that

the sections were done physically with a cryostat, hence some slices were poorly

imaged and resulted in poor segmented image quality. Some examples are shown

in Figure (4.6)

Blockface Slice 16 Segmented Image Slice 16

Blockface Slice 35 Segmented Image Slice 35

Figure 4.6: Poor Blockface Image segmentation examples

Because of the poor quality of the segmented image the entire brain volume

could not be regenerated from the stack of blockface images. We checked the 3D

alignment algorithm considering only a part of the brain that was regenerated.

Figure 4.7represents the MRI volume and the Blockface volume generated. The
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volume aligned image is displayed in Figure 4.8. The volume representation in 2D

images are difficult and hence Figure 4.9 shows only one slice of the MRI volume,

corresponding slice of blockface volume and the volume aligned image slice. At

this point the research is targeted to align the MRI image volume with the blockface

image volume, it is not yet researched how to determine the transformation of the

pixel values of the MRI volume to the aligned volume. In order to do the next

section of the project that is Thin Plate Spline Registration of MRI and Histological

image pairs we use a dataset of 10 sets of MRI-Histo pairs which are previously

aligned. The results obtained from this step are shown in Figure 4.10.Three

experienced technicians did the landmarking procedure on these sets of MRI-Histo

images and the automatic landmarking procedure developed in this research is

evaluated based on the Normalized Mutual Information measure of the resulting

warped images obtained from the two procedures.

MRI volume Blockface volume

Figure 4.7: Representation of MRI and Blockface volume
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Figure 4.8: Representation of 3D aligned volume

MRI slice 20 Blockface slice 3 3D aligned slice 20

Figure 4.9: Representation of MRI and Blockface and 3D aligned slices
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Brain MRI Slice 1 Histogram Slice 1 TPS Warped Image 1

Brain MRI Slice 2 Histogram Slice 2 TPS Warped Image 2

Brain MRI Slice 3 Histogram Slice 3 TPS Warped Image 3

Figure 4.10: Thin Plate Spline(TPS) warping results of three MRI-Histological Slice
pairs
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4.3 Evaluation

In this section the data obtained from the automated landmarking system is directly

compared against the results obtained from manual landmark selection procedures.

The quality of the warped image and the Normalized mutual information index

shows significant improvement over the manual techniques. Figure 4.11 , Figure

4.12 and Figure 4.13 show the comparative study of the warped images obtained

from manual landmarking method 1, manual landmarking method 2, manual

landmarking method 3 and the automatic landmarking method developed in this

project. Table 4.1, Table 4.2 and Table 4.3 represent a list of source and target points

on the MRI and Histology pair apart from the landmark points. The target points

obtained from the automatic landmark methods are listed in the column 3 of each

of the tables. This gives us another index of registration accuracy and evaluation

of the automatic landmark method, Target Registration Error which is defined as

TRE =
∑i = 1n| f (si)− ti|

n
(4.1)

where n is the number of points apart from the landmark points that are considered

for evaluation. f is the transformation i.e. Thin Plate Spline in this project. Target

Registration Error is not used as an index in this project, it will be taken up as a

future work. The Table 4.4and Figure 4.14 repesents the comparison of Normalized

Mutual Information obtained from the automatic landmarking method and the

manual methods.
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Manual landmarking Method 1 Manual landmarking Method 2

Manual landmarking Method 3 Automatic landmarking Method

Figure 4.11: Comparison of Warped Images obtained from Manual Landmarking
Methods and Automatic Landmarking Methods of Brain Slice 1
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Manual landmarking Method 1 Manual landmarking Method 2

Manual landmarking Method 3 Automatic landmarking Method

Figure 4.12: Comparison of Warped Images obtained from Manual Landmarking
Methods and Automatic Landmarking Methods of Brain Slice 2
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Manual landmarking Method 1 Manual landmarking Method 2

Manual landmarking Method 3 Automatic landmarking Method

Figure 4.13: Comparison of Warped Images obtained from Manual Landmarking
Methods and Automatic Landmarking Methods of Brain Slice 3

Table 4.1: Comparison of Target points on the Histological Image and Warped
Points obtained from Experiment for particular Source Points (Set1)

Source Points Target Points Warped points
X Y X Y X Y

211.216667 90.04 425.406667 139.78 329.7 260.50

299.09 143.84 547.753333 235.673333 541.5 181.19

320.61 91.833333 607.273333 133.166667 544.1 150.95

191.49 97.213333 389.033333 146.393333 297.0 282.07

313.436667 39.826667 584.126667 47.193333 490.4 148.76
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Table 4.2: Comparison of Target points on the Histological Image and Warped
Points obtained from Experiment for particular Source Points (Set2)

Source Points Target Points Warped points
X Y X Y X Y

214.803333 91.833333 425.406667 143.086667 337.9 257.12

313.436667 93.626667 597.353333 133.166667 531.0 158.29

313.436667 39.826667 584.126667 47.193333 490.4 148.76

299.09 143.84 547.753333 235.673333 541.5 181.19

193.283333 95.42 392.34 149.7 299.2 279.91

Table 4.3: Comparison of Target points on the Histological Image and Warped
Points obtained from Experiment for particular Source Points (Set3)

Source Points Target Points Warped points
X Y X Y X Y

270.396667 120.526667 494.846667 215.833333 466.5 205.70

265.016667 86.453333 501.46 133.166667 429.9 205.18

211.216667 91.833333 422.1 143.086667 331.0 260.80

401.31 163.566667 716.393333 252.206667 772.5 84.87

266.81 47 504.766667 67.033333 404.1 19.658

265.016667 321.38 478.313333 526.66 581.6 247.18

Table 4.4: Comparison of Normalized Mutual Information of Warped Brain Slice
and Histological sections

Brain Slice Manual
Landmark
process 1

Manual
Landmark
process 2

Manual
Landmark
process 3

Automatic
Landmark
process

Slice 1 0.191 0.1981 0.1508 0.6925

Slice 2 0.1677 0.1859 0.1544 0.6695

Slice 3 0.1901 0.1931 0.1426 0.5987
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Figure 4.14: Cmparison of Normalized Mutual Information of Warped Brain Slice
and Histological sections
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Chapter 5

Summary and Future Work

The research presented in this thesis addresses a challenging problem of Medical

Image Registration of MR images and histology slices. This image processing

technique is developed to track the growth of HIV-1 infection in rodent brain.

Combining the data obtained from in-vivo MR imaging and the histological studies

of the mouse brain can provide comprehensive knowledge about the growth of

the disease. But the landmark selection and warping of the MR images with

histological slices are mostly done manually which is tedious and error-prone. The

main emphasis of this project was to develop a new approach towards automatic

landmark selection techniques. The entire project can be considered as 4 distinct

but related sections. First, the brain tissue is differentiated from its surrounding
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non-brain tissues in MR image slices by level-set segmentation procedure. Then

segmented brain images are stacked in 3D to recontruct the in-vivo brain volume.

The second aim of the project was to determine the global deformations between

the MRI slices and the histological slices. In order to chieve that the concept of

intermediate imaging technique of the brain was developed(blockface imaging in

this case). The blockface brain slices is segmented from the blockface images using

histogram equalization and canny edge detection principle. The blockface images

are stacked in 3D to form a blockface volume. The third aspect of the project

deals with the 3D reconstruction of MRI and blockface volumes and alignment

of the two brain volumes to reduce the global deformation parameters and hence

simplify the further registration procedure. After 3D alignment the MRI volume is

re-sliced to match corresponding histological sections. The final step in the project

was the application of Thin Plate spline Warping technique to get a non-linear

registration between MRI and histological slices. The set of landmarks required

for the coregistration procedure is selected automatically and the final number of

landmarks used and the position of the landmarks are optimized automatically

based on the maximization of Normalized Mutual Information between the warped

image and the histological image.

Considering the time complexity of the optimization procedure it is not

the best designed algorithm. The initial landmark points are defined arbitrarily

as the centroid and 4 other points at right angles to each other on the brain

boundary. Therefore the algorithm repeatedly counts the NMI of the warped

image and the histological image and tries to determine the optimized location

of the landmark initially determined. Suppose there are n number of landmarks

which are optimized and the number of possible positions checked for NMI
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maximization is k. Clearly there are kn different combinations generated in this

procedure which makes this algorithm of exponential time complexity. This makes

the entire procedure highly computationally intensive. In order to deal with this

inherent problem of the designed algorithm we have decided to use heuristic

approach in the future work. A good algorithm to work with would be the Genetic

Algorithm which votes for some specific arrangements out of the kn different

combinations based on some pre-determined screening procedure.
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