
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Fall 12-1-2015

Bandwidth Estimation for Virtual Networks
Ertong Zhang
University of Nebraska-Lincoln, zhangertong@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Digital Communications and Networking Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Zhang, Ertong, "Bandwidth Estimation for Virtual Networks" (2015). Computer Science and Engineering: Theses, Dissertations, and
Student Research. 95.
http://digitalcommons.unl.edu/computerscidiss/95

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/95?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages


BANDWIDTH ESTIMATION FOR VIRTUAL NETWORKS

by

Ertong Zhang

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professor Lisong Xu

Lincoln, Nebraska

December, 2015



BANDWIDTH ESTIMATION FOR VIRTUAL NETWORKS

Ertong Zhang, Ph.D.

University of Nebraska, 2015

Adviser: Professor Lisong Xu

Cloud computing is transforming a large part of the IT industry, as evidenced by the in-

creasing popularity of public cloud computing services, such as Amazon Web Service,

Google Cloud Platform, Microsoft Windows Azure, and Rackspace Public Cloud. Many

cloud computing applications are bandwidth-intensive, and thus the network bandwidth in-

formation of clouds is important for their users to manage and troubleshoot the application

performance.

The current bandwidth estimation methods originally developed for the traditional In-

ternet, however, face great challenges in clouds due to virtualization that is the main en-

abling technique of cloud computing. First, virtual machine scheduling, which is an im-

portant component of computer virtualization for processor sharing, interferes with packet

timestamping and thus corrupts the network bandwidth information carried by the packet

timestamps. Second, rate limiting, which is a basic building block of network virtualiza-

tion for bandwidth sharing, shapes the network packets and thus complicates the bandwidth

analysis of the packets.

In this dissertation, we tackle the two virtualization challenges to design new bandwidth

estimation methodologies for clouds. First, we design bandwidth estimation methods for

networks with rate limiting, which is widely used in cloud networks. Bandwidth estimation

for networks with token bucket shapers (i.e., a basic type ofrate limiters) has been studied

before, and the conclusion is that “both capacity and available bandwidth measurement

are challenging because of the dichotomy between the raw link bandwidth and the token



bucket rate”. Our methods are based on in-depth analysis of the multi-modal distributions

of measured bandwidths.

Second, we expand the design space of bandwidth estimation methods to challenging

but not rare networks where accurate and correct packet timeinformation are hard to obtain,

such as in cloud networks with heavy virtual machine scheduling. Specifically, we design

and develop a fundamentally new class of sequence-based bandwidth comparison methods

that relatively compare the bandwidth information of multiple paths instead of accurately

estimating the bandwidth information of a single path. By doing so, our methods use only

packet sequence information but not packet time information, and are fundamentally dif-

ferent from the current bandwidth estimation methods that all use packet time information.

Furthermore, we design and develop a new class of sequence-based bandwidth estima-

tion methods by conveying the time information in the packetsequence. Sequence-based

bandwidth estimation methods estimate the bandwidth information of a path using the time

information conveyed in the packet sequence from another path.
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1 Introduction

1.1 The Epoch of Virtual Technology

In 1943, IBM President Thomas J Watson had said that the worldonly needed five comput-

ers. Watsons idea was to share a super computer among multiple users. This idea is used

again in the current cloud computing, where multiple applications are running in a single

cloud. The cloud enables the sharing of thousands of serversacross multiple application

providers through the virtualization technology.

One fundamental virtualization technology ismachine virtualization. It can create a

large number of virtual machines (VM) on a given physical machine. With machine virtual-

ization, the cloud size can be increased by hundreds of times. If a cloud has 1,000 physical

computers, it can now provide 100,000 VMs to cloud users if each physical machine has

100 VMs. In addition, all VMs are separated from one another,and applications running

on one VM does not influence other applications on different VMs, even if they are located

in the same physical machine.

The second virtualization technology isnetwork virtualization. Network virtualization

splits a physical network into multiple small virtual networks. Different network users can

have different virtual networks over the same shared physical network. Network virtual-

ization has many advantages. First, it isolates the virtualnetwork users from one another,

so that it is more convenient and secure for them to use the physical network. Second,

it is easier for a network provider to manage the whole physical network. For example,
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Figure 1.1: FAT tree structure for a data center network.

more bandwidth can be applied to a virtual network, if its user wants more bandwidth and

is willing to pay for it. Third, it saves money for both the network provider and network

users. The network provider does not need to build a separatephysical network for each

user, and the users can get their virtual networks at a very low cost.

However, sharing a physcial network is much more complex than sharing a physical

server. A network is composed of multiple servers and multiple routers. For example, a

typical data center network [3] is shown in Figure 1.1. A network user uses only a small

portion of the physical network. This small network portioncan be in various network

structures. For example, a user uses three VMs. These VMs canbe close or far away from

one another as shown in Figure 1.2a, 1.2b, and 1.2c where we use a rectangle to represent a

VM and a circle to represent a switch. Let us use the number of hops between two VMs to

denote the length of network path, and the maximum of hops(denoted asHop) to describe

the proximity of the VMs in the network. In Figure 1.2a,1.2b,and 1.2c, the Hop is 2, 4, and

6 respectively. This example shows that the virtual networkstructures can be very different

even if we have only a small number of VMs.

An important question is how the current virtual network is being used by the user.
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(a) Hop=2 (b) Hop=4 (c) Hop=6

Figure 1.2: Different virtual networks from the same physical network.

To answer this question, we need some mechanism to describe avirtual network by some

metrics. The most important metric is the bandwidth. This dissertation proposes effective

algorithms and tools to help users to measure the bandwidth of virtual networks.

1.2 Bandwidth: to describe a virtual network

Regarding bandwidth, my apartment, for example, uses 50 Mbps of xfinity Internet. The

50Mbps is the bandwidth of my Internet connection. This is how we describe a physical

network, and it is the same for a virtual network.

To formally describe bandwidth, we usually use the termcapacity. Capacity is defined

as the maximum rate of data transmission that a network path allows a user to send. A

links capacity is usually determined by the network cards and the cable connecting the

two network cards. As shown in Figure 1.2c, a network path includes more than one link.

The whole paths capacity is equal to the minimum capacity of the path, which is called a

bottleneck.

However, a user usually cannot send data out at its capacity,because the network is

shared among multiple users. Therefore, we also use anotherterm available bandwidth

to describe the network bandwidth. The available bandwidthis the remaining rate of a

network path at which data can be sent. Available bandwidth is a dynamical metric used to
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Table 1.1: impact of time measurement accuracy on bandwidthestimation

accurate bandwidth 1 Kbps 1 Mbps 1Gbps 10Gbps
time to transfer

a 1500 Bytes packet
12s 12 ms 12µs 1.2µs

estimated bandwidth when
time error is±1µs

1 Kbps 1 Mbps 0.92∼1.09Gbps 5.45∼60Gbps

describe a network. The techniques used to measure capacityand available bandwidth of a

network are called bandwidth estimation techniques.

There are a wealth of studies of bandwidth estimation techniques. Interested readers

can refer to PathChar [16], TailGater [32], CapProbe [29], PBProbe [11], PBM [40], and

PathRate [15] for capacity estimation. More techniques about available bandwidth esti-

mation come from Pathload [23], Pathchirp [49], and the system-theoretic approach [35].

These techniques have been shown to fail in virtual networksbecause of one or more chal-

lenges in virtual networks as explained in the next section.

1.3 Challenges to bandwidth estimation in virtual networks

Virtual networks bring more challenges to bandwidth estimation techniques. We explain

various challenges to bandwidth estimation in virtual networks below.

Time measurement accuracy:What is the impact of time measurement accuracy on

bandwidth estimation? Data is send in packets in a network. Let the packet size be 1500

Bytes, which is the default maximum transmission unit for a network interface card (NIC).

Table 1.1 shows the estimated bandwidth where the time measurement error is±1µs. We

can see that the accuracy of a microsecond unit has little or no impact on low-speed band-

width, but it has a big impact on high-speed bandwidth such as10 Gbps. A time measure-

ment accuracy of nanosecond is a must for high-speed bandwidth estimation, but current

computers cannot measure span of time at the level of a nanosecond. Hence, new methods
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are needed to overcome this time measurement accuracy problem.

Hardware factors: Many new features have been added to NICs to improve NIC

speeds. For example,interrupt coalescence(IC, also calledinterrupt moderation) [25, 44]

is commonly used in high-speed NICs, and it reduces the CPU load by generating an in-

terrupt for a group of packets instead of one for each packet.As a result, the packet time

information, such as the time difference between two consecutive packets, is changed. Fig-

ure 1.3 shows the inter-arrival times of 200 packets from a 1Gbps NIC with and without

IC, and we can see that inter-arrival times are considerablyaffected by IC. The inter-arrival

times without IC are 12µs as shown in Table 1.1, but the inter-arrival times with IC are

either much smaller or greater than 12µs.
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Figure 1.3: Impact of interrupt coalescence on packet inter-arrival times.

VM scheduling: VM scheduling [58, 12] is commonly used in cloud computing, and it

enables multiple VMs to share the same pool of CPUs on a physical machine. However, it

interferes with packet timestamping of VMs. For example, when a VM is not running, all

packets arriving at the VM must wait until the VM is scheduledto run again. As a result,

the packet delays and time differences measured by the VM maybe drastically different

from the actual values.

Rate limiters: Rate limiters are used in data centers to provide guaranteedbandwidth

for data center users [8, 18, 24, 43, 50, 51]. A rate limiter works like a set of traffic lights,

in which cars can only go through a crossing when the light is green. Likewise, a packet
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can send only when it gets permission from the rate limiter. As an example, a Linux token

bucket filter(tbf) allows packets to be sent at the network capacity when thereare enough

tokens. When the tokens have been consumed, packets are sentat the token rate. Another

example is a Xen token bucket, which only allows a fixed numberof packets or bytes to go

through in a certain amount of time. The link remains idle when the tokens are consumed

until the tokens are updated for the next period.

The challenges listed in this section are urgent; these problems need to be solved for

current bandwidth estimation techniques. In this dissertation, we design and develop novel

and effective bandwidth estimation tools for virtual networks.

1.4 Improvements to bandwidth estimation in virtual networks

The contribution of this dissertation consists mainly of two points. First we provide a deep

understanding of bandwidth in virtual networks. Second, wedesign and develop novel

and effective bandwidth estimation tools for virtual networks. In this section, we offer

an overview of this dissertation. Interested readers can select specific chapters of concern

based on this overview.

• Contribution 1: We have designed effective bandwidth estimation methods to esti-

mate the bandwidth of networks with token bucket shapers, which are widely used

in virtual networks. Bandwidth estimation for networks with token bucket shapers

has been studied before, and the conclusion [33] is that ”both capacity and available

bandwidth measurement are challenging because of the dichotomy between the raw

link bandwidth and the token bucket rate”.

• Contribution 2: We have designed a fundamentally new path capacity comparison

method to compare the capacities of two paths without using accurate time infor-

mation. This method extends the design space of traditionaltime-based bandwidth
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estimation methods by introducing a new class of sequence-based bandwidth com-

parison methods.

• Contribution 3: We conducted a large scale of measurement study of rate limiting in

the three most popular clouds, Amazon EC2, Microsoft Azure,and Google Computer

Engine. We found that different rate limiters are used in these clouds, and their traffic

characteristics are different.

• Contribution 4: We have designed an available bandwidth estimation method for

virtual networks based on the idea that the packet sequence is not affected by packet

arrival time. In our contribution 2, we considered only the capacity of a path, and in

this work, we have considered the available bandwidth of a path, another important

bandwidth metric.

1.5 Organization

We describe our work on token bucket shaper measurement in Chapter 2. In Chapter 3, we

present a tool to compare the capacities with packet sequence information. In Chapter 4, we

offer the details of our study in EC2, Azure and Google clouds. In Chapter 5, we present

our PacketTick tool which is used to measure available bandwidth for a virtual network.

We present the conclusion and needs for future work in the last chapter.
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2 Capacity and Token Rate Estimation for Networks with TokenBucket Shapers

2.1 Introduction

Cloud computing is transforming a large part of IT industry,as evidenced by the increasing

popularity of public cloud computing services, such as Amazon Web Service [6], Google

Cloud Platform [17], Microsoft Windows Azure [22], and Rackspace Public Cloud [46].

Many cloud computing applications are bandwidth-intensive, such as MapReduce appli-

cations and high performance computing applications, and thus the network bandwidth

information of clouds is important for their tenants to manage and troubleshoot the ap-

plication performance. For example, if the bandwidth information can be estimated, the

application performance can be improved by appropriately placing application tasks on

virtual machines [31].

Bandwidth estimation methods, such aspathrate[15], capprobe[29], tailgater [32],

pathload[23], andspruce[53], have been successfully used to estimate the capacity and

available bandwidth information of a network path in the traditional Internet. However,

they face great challenges with clouds. One important reason is that traffic shapers are

widely used as a basic building block for rate limiting in clouds, however, traffic shapers

interfere with the probing packets of bandwidth estimationmethods.

In this chapter, we study token bucket shapers that are a basic type of traffic shapers. To-

ken bucket shapers have been widely used in virtualization software such as VMWare [55]

and Xen [9], cloud computing platforms such as Amazon EC2 [6], large-scale virtual net-
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works such as PlanetLab [52], software switches such as OpenvSwitch [39] and OpenFlow

Software Switch [48], and data center resource management schemes such as Seawall [51].

A popular type of token bucket shapers is the Token Bucket Filter (tbf) provided in Linux,

which regulates traffic according to a token rate and a burst size. tbf is the building block

of more advanced token bucket shapers, such as the HierarchyToken Bucket (htb) in Linux

that regulates traffic using multipletbf shapers and allows token borrowing among different

shapers. In this chapter, we focus ontbf andtbf-like shapers.

The contributionof this chapter is that we propose two methods to actively estimate

the capacity and token rate, respectively, of a path in a network with potentially multiple

tbf or tbf-like shapers. Specifically, we propose a method calledNarrowLinkCapacityto

estimate the capacity of a path, which is the slowest link capacity among all links in the

path. It is an important property of the path, because it determines the average rate of a

short train of packets. We also propose a method calledNarrowTokenRateto estimate the

token rate of a path, which is the slowest token rate among alltoken bucket shapers in the

path. It is another important property of the path, because it determines the average rate of

a long train of packets.

2.2 Related Work

Network bandwidth estimation methods can be classified intotwo categories: capacity

estimation and available bandwidth estimation. Capacity estimation methods can be further

classified into two classes: 1) methods to estimate the capacity of a path, such asbprobe

[10] , pathrate[15], andcapprobe[29], which mainly use the dispersion of two consecutive

probing packets; and 2) methods to estimate the capacity of each individual link in a path,

such aspathchar[16] andtailgater [32]. Available bandwidth estimation methods further

fall into two classes: 1) Probe Gap Model (PGM), such asspruce[53] andIGI/PTR [20],
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which use the initial and final time gap information of probing packets; and 2) Probe Rate

Model (PRM), such aspathload[23] andpathchirp[49], which are based on self-induced

congestion.

There are very few related works on bandwidth estimation in networks with token

bucket shapers. Khandelwalet al. [30] study the accuracy of available bandwidth esti-

mation methods, such aspathload, on Amazon EC2, and they find that the current methods

are “un-suitable for bandwidth estimation in data center networks”. Lakshminarayanan

et al. [33] measure the impact of token bucket shapers on bandwidthestimation meth-

ods in broadband access networks, and they conclude that “both capacity and available

bandwidth measurement are challenging because of the dichotomy between the raw link

bandwidth and the token bucket rate”.

The closest work isshaperprobedeveloped by Kanuparthy and Dovrolis to measure the

token bucket characteristics as a traffic shaping service inresidential ISP networks [28].

shaperprobedetects a level shift in the measured rates, and estimates the token rate as the

median rate after the level shift. Our work is different fromshaperprobein that we consider

general networks whereasshaperprobemainly considers residential ISP networks. There

are two important differences between token bucket shapersin general networks and in res-

idential ISP networks. First, token bucket shapers in residential ISP networks usually have

bigger burst sizes (e.g., 5-10 MBytes), and as a result the path capacity can be estimated

using existing capacity estimation methods. Second, thereis no or very little background

traffic competing with the probing packets at a token bucket shaper in residential ISP net-

works, and thus the token rate can be relatively easily estimated.
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Table 2.1: Notation used in the chapter

Symbol Description

c The capacity of a link or a token bucket shaper

r The token rate of a token bucket shaper

s The size of a packet

C The capacity of a path

R The token rate of a path

λ The sending rate of packets by the sender

u The dispersion rate of two consecutive packets

ut The average rate of a train of packets

2.3 Networks with Token Bucket Shapers

In this section, we introducetbf andtbf-like shapers, and discuss their impact on the dis-

persions of a train of packets. The important notation used in this chapter is summarized in

Table 2.1.

2.3.1 tbf and tbf-like Shapers

Figure 2.1 illustrates atbf or tbf-like shaper. It consists of two buffers: a token bucket and

a packet buffer. Tokens are generated and placed into the token bucket at a rate ofr bits per

second (bps). The token bucket can hold up toσ bits of tokens, and any newly generated

token will be discarded if the token bucket is full. When a packet of sizes bits arrives at the

shaper, if there are at leasts bits of tokens available, the packet is immediately transmitted

to the outgoing link at its capacityc bps and at the same times bits of tokens are consumed

from the token bucket. Otherwise, the packet will be queued in the packet buffer until there

are at leasts bits of tokens available.

A tbf or tbf-like shaper is described by four parameters(r, σ, c, b): 1) token rater bps,
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capacity c bpspackets

token rate: r bps

packet buffer
of size b bits

token bucket
of size      bitsσ

Figure 2.1: Atbf or tbf-like shaper with four parameters(r, σ, c, b).

2) burst sizeσ bits (also called token bucket size), 3) capacityc bps, and 4) packet buffer

sizeb bits. Note that,r ≤ c. In addition,σ ≥ σmin = MTU , and this ensures that a packet

with the maximum transmission unit (MTU) size can pass though a token bucket. Since

the typical MTU is 1500 bytes, we haveσmin = 1500 × 8 bits. For example, we observe

that a PlanetLab [52] node sets its burst sizeσ to 1600× 8 bits.

Considering a case where the token bucket is full, and a trainof packets each of sizes

bits arriving at the shaper at rateλ > r. In this case, the firstK packets will be transmitted

at ratemin(c, λ), whereK is given in Equation (2.1). Note thatK ≥ σ/s, because new

tokens are being generated during the transmission of the firstσ/s packets. After the firstK

packets, the token bucket becomes empty, and thus the remaining packets will be throttled

by token rater.

K =











⌊(σ/s− r/c)/(1− r/c)⌋, if λ ≥ c

⌊(σ/s− r/λ)/(1− r/λ)⌋, if r < λ < c
(2.1)

2.3.2 Impact on Packet Dispersions

We use the following two simple networks to show the impact oftoken bucket shapers on

a train of packets.

• Network 1: A one-hop network without any shaper. The link capacity between the

sender and the receiver isc.
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Figure 2.2: In network 1, the dis-
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Figure 2.3: In network 2, the first
few dispersions ares/c, but the re-
maining dispersions becomes/r1
due to the regulation of the token
bucket shaper.

• Network 2: A one-hop network with one token bucket shaper at the sender. The

shaper has the following four parameters:r1 = c/2 bps,σ1 = 2×MTU , c bps, and

b =∞ bits. Initially, the token bucket is full.

Let’s consider a case when a train of 9 packets are sent at rateλ = c and there is no cross

traffic. We assume that every packet has the same size ofs = MTU . We are interested

in thedispersionbetween two consecutive packets at the receiver, which is the arrival time

difference between their last bits.

• In network 1: The dispersion between any two consecutive packet is always the same,

and depends on the link capacity. Figure 2.2 shows the arrival time of each packet at

the receiver, and the dispersion is alwayss/c.

• In network 2: The first two dispersions are stills/c, but all other dispersions become

s/r1 = 2s/c due to the regulation of the shaper as shown in Figure 2.3. Note that the

first K = 3 packets (obtained using Equation (2.1)) are transmitted back-to-back at

capacityc.

These examples show that the dispersion between two consecutive packets depends on

the link capacity and the token rates. We have the following observations:

• Observation 1: For a short train of packets, the majority of dispersions depend on

the link capacity. For example, the first two dispersions in both networks depend on
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c. Therefore,the average rate of a short train of packets highly depends onthe link

capacity in networks with and without token bucket shapers.

• Observation 2: For a long train of packets, the majority of dispersions depend on

the token rate. For example, the last several dispersions innetwork 2 depend onr1.

Therefore,the average rate of a long train of packets highly depends on the token

rate in a network with token bucket shapers. Note that, the average rate of a long

train of packets in a network without any shaper still depends on the link capacity.

2.4 Design Goals and Challenges

2.4.1 Goals

In this chapter, we design two methods, calledNarrowLinkCapacityandNarrowTokenRate,

to actively estimate the capacity and the token rate of a path, respectively, in a multi-hop

network with possibly multipletbf or tbf-like shapers. Let’s consider a path withn links

of capacitiesc1, c2, ..., cn and withm token bucket shapers of token ratesr1, r2, ..., rm.

• CapacityC of the pathis defined as the capacity of thenarrow linkof the path, which

is the link with the minimum capacity among all links in the path.

C = min
i=1,...,n

ci (2.2)

• Token rateR of the pathis defined as the token rate of thenarrow token bucket shaper

on the path, which is the token bucket shaper with the minimumtoken rate among all

token bucket shapers on the path.

R = min
i=1,...,m

ri (2.3)
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If there are multiple links with capacityC, the narrow link is the last one among them.

If there are multiple shapers with token rateR, the narrow shaper is the last one among

them.

2.4.2 Challenges

There are two major factors that make it challenging to estimate the capacityC and the

token rateR of a path. 1) The first factor is the token bucket shapers, eachof which regulate

the probing traffic depending the availability of their tokens, and greatly complicates the

analysis of probing packets. 2) The second factor is random cross traffic, which interferes

with the probing packets and changes their dispersions. Thepacket dispersions could be

enlarged or reduced due to cross traffic, and it is hard to distinguishC orR from the noises

caused by cross traffic.

2.4.3 Definitions

The dispersion rate histogramU of a path is commonly used by bandwidth estimation

methods [15, 29, 53, 20], because it carries lots of useful information of the path. Both

NarrowLinkCapacityandNarrowTokenRateuseU . Below we define dispersion rate his-

togramU and some related terms.

Three types of probing traffic are commonly used by bandwidthestimation methods: a

single packet, apacket pair(two packets), and apacket train(more than two packets). In

this chapter, we consider only packet pairs and trains, in which all packets have the same

sizes and are uniformly spaced. Thesending rateλ of a packet pair or train can be adjusted

by controlling the inter-packet gaps at its sender.

Thedispersiond of a packet pairat a receiver as illustrated in Figure 2.4 is the arrival

time difference between these two packets at the receiver. Thedispersion rateu is the ratio
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of the packet sizes to their dispersiond (i.e., u = s/d). We denote the histogram of the

dispersion rates of multiple packet pairs byU .

The pair-wise dispersions (or dispersions for short) of a packet train at a receiver as

illustrated in Figure 2.5 are the dispersions of all pairs oftwo consecutive packets of the

train at the receiver. Thepair-wise dispersion rates (or dispersion rates for short)of a

packet trainare the dispersion rates of all pairs of two consecutive packets of the train. By

overloading the symbol, letU also denote the histogram of the dispersion rates of a packet

train. Theaverage arrival rateut of a train with l packets at the receiver is the ratio of

(l − 1)s to the arrival time difference between the first and the last packets.

Pair 3

dispersion dispersiondispersion

timePair 1 Pair 2

Figure 2.4: Dispersions of multiple packet pairs received by a receiver.

A train received by a receiver time

dispersions

Figure 2.5: Dispersions of a train of packets received by a receiver.

Figure 2.6 illustrates a possibleU . Due to the factors explained in Section 2.4.2,U has

multiple modes. Amodeis a local maximum (i.e., peak). Thestrength of a modeis the

frequency or density of the mode (i.e., the height of the peak). Note that,C or R may not

be the strongest mode in aU , and sometimes is not even a mode. Thus, it is challenging to

estimateC andR.

2.5 Capacity Estimation

In this section, we explain how we designNarrowLinkCapacityto estimate the capacityC

of a path, which is the capacity of the narrow link on the path.We first demonstrate why it



17

%
 o

f D
is

pe
rs

io
n 

ra
te

s
Dispersion Rates

modes

Figure 2.6: Dispersion rate histogramU is multimodal.

is challenging to estimateC, then describe how we tackle the challenge, and finally present

our capacity estimation method.

To estimate the capacity of a path from a sender to a receiver,NarrowLinkCapacity

sends many packet pairs, and then estimates the path capacity using the dispersion rate

histogramU of the packet pairs. There are two reasons why using packet pairs instead of

packet trains. First, a packet pair is less likely to be throttled by the path token rate than a

packet train. Second, it has been shown [15] that packet trains are more sensitive to cross

traffic than packet pairs.

2.5.1 Simulation setup

We use NS2 simulations to explain how our two methods work in this and next sections,

and we will present testbed and Amazon EC2 results in the evaluation section. We consider

a multi-hop network with multiple token bucket shapers shown in Figure 2.7. It has 5 links,

each with capacityc1 = 1200 Mbps,c2 = 1000 Mbps,c3 = 400 Mbps,c4 = 600 Mbps,

andc5 = 800 Mbps, respectively. Therefore, the path capacityC is c3 = 400 Mbps. It has

5 shapers, one for each link, each shaper with token rater1 = 100 Mbps,r2 = 900 Mbps,

r3 = 300 Mbps,r4 = 500 Mbps, andr5 = 700 Mbps, respectively. Therefore, the path

token rateR is r1 = 100 Mbps.

All shapers have the same burst size of 1500 bytes, unless otherwise noted. All shapers

and all routers have sufficiently large packet buffer so thatno packets will be lost. Cross
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traffic is generated on each link by multiple Pareto traffic generators with shape parameter

1.9. The packet size of cross traffic is 1500 bytes. Unless otherwise noted, the total amount

of cross traffic on each link is set to 50% of the token rate on the link. To simplify the

description of the simulation (but without reducing the estimation difficulty), all packets

including probing packet and cross packets on a link go through the token bucket shaper

on the link.

cross traffic

r2,c2 r3,c3 r4,c4 r5,c5r1,c1sender receiver1 2 3 4

cross traffic cross traffic cross traffic cross traffic

Figure 2.7: A multi-hop network with multiple token bucket shapers.

2.5.2 Why it is challenging?

It is challenging to estimate the capacityC of a path, becauseC may not be the strongest

mode and sometime is not even a mode in the dispersion rate histogramU due to token

bucket shapers and random cross traffic.

Impact of token bucket shapersFigure 2.8 shows two dispersion rate histograms,

each of which is obtained using 1000 packet pairs with a bin width of 10 Mbps. Every

pair of probing packets are sent at the maximum sending rate (i.e., back-to-back), and the

probing packet size is 1500 bytes. We set the burst size of every shaper to 1500 bytes and

150000 bytes, respectively, for the left and right histograms.

When the probing packet size is the same as the burst size (i.e., 1500 bytes in His-

togram 2.8(a)), a single packet can empty the token bucket. As a result, all packet pairs are

throttled by the path token rate 100Mbps. When the probing packet size is much smaller

than the burst size (e.g., 150000 bytes in Histogram 2.8(b)), many packet pairs can pass the

shapers without any delay and are throttled only by the path capacity 400Mbps. We can see

that in order to estimate the path capacity, the probing packet size should be much smaller

than the token burst size.
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(b) Burst = 150000 bytes

Figure 2.8: The impact of token burst sizes. Cross traffic=50%, Sending rate=max, Probing
packet=1500 bytes.

Impact of cross traffic Figure 2.9 shows the impact of cross traffic. We set the amount

of cross traffic on each link to 30% and 70% of the token rate on the link, respectively, for

the left and right histograms. The probing packet size is 500bytes, which is much smaller

than the burst size 1500 bytes. We observe thatthe path capacity with light cross traffic is

the strongest mode and easy to estimate, but the path capacity with heavy cross traffic may

not be the strongest mode and thus hard to estimate.
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(b) Cross traffic = 70%

Figure 2.9: The impact of cross traffic. Burst=1500 bytes, Sending rate=max, Probing
packet=500 bytes.

There are some dispersion rates spread to the left ofC = 400 Mbps in both histograms.
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They are caused when the second packet of a packet pair is delayed due to cross traffic at

a link or shaper. There are also some dispersion rates concentrated at several modes to the

right of C in both histograms, such as at 500, 600, 700, and 800 Mbps, which correspond

to the link capacities (600 and 800 Mbps) and token rates (500and 700 Mbps) on the path

after the narrow link withc3 = 400 Mbps. They are caused when the first packet of a packet

pair is delayed due to cross traffic at the links and shapers onthe path after the narrow link.

2.5.3 How to tackle the challenge?

To estimate the capacity of a path, we make the path capacity astrong mode inU by

reducing the probing packet size, and then distinguish it from other modes by adjusting the

sending rate of packet pairs.

Making the path capacity C a strong mode by reducing the probing packet size

There are two reasons why a smaller probing packet size leadsto more dispersion rates

atC: First, for a packet pair, the smaller their packet size, theless their probability to be

throttled by token bucket shapers; Second, consider a packet pair whose dispersion rate

becomesC after passing the narrow link. The smaller their packet size, the less their

probability to be interfered by cross traffic between the narrow link and the receiver.

This is demonstrated in Figure 2.10. For example, as the probing packet size reduces

from 1000 bytes to 500 bytes, the percentage of dispersion rates atC = 400 Mbps increases

from 0.2% to 11%. However, in order to mitigate the impact of system processing over-

head and link-layer frame headers [15], the probing packet size should not be too small.

NarrowLinkCapacitysets the packet sizes to 500 bytes.

Distinguishing the path capacity mode from other modes by adjusting the sending

rate This step is necessary because the path capacityC may not be the strongest mode

(e.g., in Histogram 2.9(b)). It is based on the fact that a packet pair with a sending rate

λ < C is likely to maintain its rate all the way to the receiver, whereas a packet pair with
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Figure 2.10: The impact of probing packet sizes. Cross traffic=50%, Burst=1500 bytes,
Sending rate=max.

λ > C will definitely be throttled by the narrow link.
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(a) Sending rate = 350Mbps
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Figure 2.11: The impact of sending rates. Cross traffic=50%,Burst=1500 bytes, Probing
packet=500 bytes.

This is demonstrated in Figure 2.11. For example, 350 Mbps isnot a mode in His-

togram 2.10(b), but it turns to a mode in Histogram 2.11(a), which is obtained using send-

ing rate 350Mbps that is slower thanC. As another example, 450 Mbps is not a mode in

Histogram 2.10(b), and it is still not a mode in Histogram 2.11(b), which is obtained using

sending rate 450 Mbps that is faster thanC.
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2.5.4 NarrowLinkCapacity: A capacity estimation method

NarrowLinkCapacityhas the following four steps.

• Step 1: Obtain histogramU by sendingLc = 1000 packet pairs of sizes = 500

bytes. Every pair of packets are sent back-to-back, and the inter-pair gapg is 0.02

second.

• Step 2: Identify all local modes inU in the increasing order:u1, u2, u3, ...

• Step 3: Use the binary search algorithm to find a modeui, such that

– Condition 1: Rateλ1 = (ui−1 + ui)/2 turns to a mode in the dispersion rate

histogram obtained by sendingLc packet pairs at rateλ1. We do not test this

condition for the first mode.

– Condition 2: Rateλ2 = (ui + ui+1)/2 is still not a mode in the dispersion rate

histogram obtained by sendingLc packet pairs at rateλ2. We do not test this

condition for the last mode.

• Step 4: The modeui is the estimated path capacity.

Implementation remark: In some high-speed or virtual networks, it might be hard to

precisely control and measure the rate of a packet pair. In this case, we can replace a packet

pair with a very short packet train (like with 3-5 packets). For condition 1 at step 3, we

can check whether there is a new mode betweenui−1 andui instead of checking whether

(ui−1 + ui)/2 is a new mode, and similarly for condition 2.

2.6 Token Rate Estimation

In this section, we explain how we designNarrowTokenRateto estimate the token rateR

of a path, which is the token rate of the narrow token bucket shaper on the path. We first



23

demonstrate why it is challenging to estimateR, then describe how we tackle the challenge,

and finally present our token rate estimation method.

NarrowTokenRateuses long packet trains, because they are more likely to drain the

token bucket of the narrow shaper. Specifically,NarrowTokenRatesends two packet trains

from a sender to a receiver: a drain train and an estimation train.

First, it sends adrain train with Ldt packets of size MTU at rateλdt, in order to drain

the token bucket of the narrow shaper. The train sizeLdt and the sending rateλdt should be

long and high enough to completely drain the tokens, but the sending rateλdt should not

be too high to overflow the network. For all the simulations inthis chapter, we setLdt to

1000 packets.NarrowTokenRatesetsλdt to αC with α = 7/8, which is slightly less than

C to avoid network congestion.

Next, it sends anestimation trainwith Let packets of sizes at rateλet, in order to

measure the dispersion rate histogramU , and then find the path token rateR. We setLet to

1000 packets. Below, we discuss how to set the other two parameterss andλet, in order to

accurately findR from U .

2.6.1 Why it is challenging?

It is challenging to estimate the token rateR of a path, becauseR may not be the strongest

mode and sometimes is not even a mode inU due to token bucket shapers and random cross

traffic.

Impact of token bucket shapersFigure 2.12 shows the dispersion rate histograms

when we set the token rater1 of the network in Figure 2.7 to 100 and 250 Mbps, respec-

tively, for the left and right histograms. In both cases,r1 is still the token rateR of the path,

and the sending rate of the estimation trainλet is set toαC = 350 Mbps. We notice thatR

is not always the strongest mode, for example in Histogram 2.12(b).

Figure 2.12 also shows the average arrival rateuet of the estimation train, which is
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(a) Token rater1=100 Mbps
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(b) Token rater1=250 Mbps

Figure 2.12: The impact of path token rates. Cross traffic=50%, Burst=1500 bytes, Sending
rateλet=350 Mbps, Probing packets=1500 bytes.

defined in Section 2.4.3, and is labelled “average rate” in the figures. We can see that

average arrival rateuet is not an accurate estimate of the path token rateR in general,

instead it is a lower bound ofR. Limited by the space, below we only give an intuitive

proof: On a path without any shapers, it has been proved [15] that the average arrival rate

of a long train is the lower bound of the capacityC of the narrow link due to cross traffic.

On a path with shapers, the drain train has drained the token bucket of the narrow shaper,

the narrow shaper instead of the narrow link actually throttles the estimation train, and thus

uet is a lower bound ofR.

Impact of cross traffic Figure 2.13 shows the dispersion rate histograms when we set

the amount of cross traffic on each link to 5% and 70% of the token rate on the link. We can

see thatR is the strongest mode when the cross traffic load is low as in Histogram 2.13(a),

but is not the strongest mode and actually is not even a mode when the cross traffic load is

highas in Histogram 2.13(b).
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(b) Cross traffic=70%

Figure 2.13: The impact of cross traffic. Token rater1=200 Mbps, Burst=1500 bytes,
Sending rateλet=350 Mbps, Probing packets=1500 bytes.

2.6.2 How to tackle the challenges?

To estimate the token rateR of a path, we first find a lower bound and an upper bound for

R, then makeR a strong mode between the two bounds by adjusting the probingpacket

sizes and sending rateλet of the estimation train.

Finding a lower bound and an upper boundAs discussed in the previous subsection,

the average arrival rateuet of an estimation train is a lower bound ofR. The sending rate

λdt of the drain train is an upper bound ofR. Thus, we haveR ∈ [uet, λdt].

Making the path token rate a strong modeWe use two techniques to makeR a

strong mode:First, choose a small packet sizes for the estimation train. Because the token

bucket of the narrow shaper has already been drained by the drain train, all packets of the

estimation trains are throttled by the narrow shaper. For these estimation train packets,

the smaller their packet sizes, the less their probability to be interfered by cross traffic,

and thus the more the number of packets maintaining rateR all the way to the receiver.

Second, choose an appropriate sending rateλet for the estimation train. Rateλet should

be sufficiently high to keep draining the token bucket, but should not be too high to cause

severer congestion that also interferes with the estimation.
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The impact of packet sizes is demonstrated in Figure 2.14, which shows thata smaller

packet sizes leads to a higher percentage of dispersion rates atR (e.g., from 1.4% to 3.5%

whens reduces from 1500 bytes to 500 bytes). However, in order to mitigate the impact of

system processing overhead and link-layer frame headers [15], s should not be too small.

Therefore,NarrowTokenRatesetss to 500 bytes.

The impact of sending rateλet is demonstrated in Figure 2.15. By comparing His-

togram 2.14(b) with Figure 2.15, we can see thata sending rateλet closer toR leads to

a higher percentage of dispersion rates atR (e.g., 3.5% whenλet = 350 Mbps in His-

togram 2.14(b), 5.3% whenλet = R = 200 Mbps in Histogram 2.15(a), and 3.4% when

λet = 100 Mbps in Histogram 2.15(b)). This observation is further validated by Figure 2.16

that shows the percentage of dispersion rates atR as the sending rateλet varies between

20 and 350 Mbps. Without knowing token rateR in advance,NarrowTokenRatesets the

estimation train sending rateλet to (λdt + udt)/2, which is the average of the drain train

sending rateλdt and the drain train arrival rateudt, and is used as an initial estimate ofR.

Finding the path token rate R from U Once we get the dispersion rate histogramU

of the estimation train, we estimateR by the strongest mode between lower bounduet and

upper boundλdt in U . For example,R is the strongest mode between the two bounds in

Histogram 2.15(a), although it is not the overall strongestmode (i.e., 800 Mbps). Also

note that there is another strong mode (i.e., 300 Mbps) between the two bounds in His-

togram 2.15(a), which corresponds to the token bucket shaper with r3 = 300 Mbps.

2.6.3 NarrowTokenRate: A token rate estimation method

NarrowTokenRatehas the following five steps.

• Step 1: Send the drain train at sending rateλdt = αC with α = 7/8. The drain train

consists ofLdt probing packets of size MTU.
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(a) Packet sizes=1500 bytes
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(b) Packet sizes=500 bytes

Figure 2.14: The impact of probing packet sizes. Token rater1=200 Mbps, Cross traf-
fic=50%, Burst=1500 bytes, Sending rateλet=350 Mbps.
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(a) Sending rateλet=200 Mbps
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(b) Sending rateλet=100 Mbps

Figure 2.15: The impact of sending rateλet. Token rater1=200 Mbps, Cross traffic=50%,
Burst=1500 bytes, Probing packets=500 bytes.

• Step 2: Measure the average arrival rateudt of the drain train at the receiver.

• Step 3: Send the estimation train at sending rateλet = (λdt + udt)/2. The estimation

train consists ofLet = 1000 packets of sizes = 500 bytes.

• Step 4: Measure the average arrival rateuet of the estimation train at the receiver,

and measure the dispersion rate histogramU of the estimation train at the receiver.

• Step 5: The path token rateR is estimated by the strongest mode betweenuet and



28

 0

 1

 2

 3

 4

 5

 6

 7

 0  50  100  150  200  250  300  350  400

%
 o

f D
is

pe
rs

io
n 

R
at

e 
20

0 
M

bp
s

Estimation Train Sending Rate (Mbps)

CapacityToken Rate

Figure 2.16: The impact of sending rateλet on the percentage ofR in U . Token rater1=200
Mbps, Cross traffic=50%, Burst=1500 bytes, Probing packets=500 bytes.

λdt in U . In case of multiple strongest modes (e.g., corresponding to multiple token

rates), choose the slowest one (i.e., the narrow shaper).

NarrowTokenRatehas one parameters:Ldt is the number of packets in the drain train.

A user should specify the value ofLdt depending on how much probing traffic the user

can afford. The larger theLdt, the larger the burst sizeNarrowTokenRatecan work with.

Specifically,Ldt should be greater thanK given in Equation (2.1).

Discuss:shaperprobe[28] is designed for detecting a token bucket shaper in a residen-

tial ISP network, where there is no or very little cross traffic competing with the probing

packets at a token bucket shaper. Thus, it is mainly based on the average train arrival rate,

which however is sensitive to the cross traffic in a general network.

2.7 Evaluation

In this section, we evaluate the accuracy ofNarrowLinkCapacityandNarrowTokenRateus-

ing our lab test-bed, Amazon EC2 [6], and NS2 simulations. Weuse their default parameter

values and setLdt = 1000 packets forNarrowTokenRate, unless otherwise noted.

We compare our methods with two other methods. 1)pathrate [15] that is one of

the most accurate and tested capacity estimation methods. In the experiments, we use
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the originalpathratecode released by the authors. 2)shaperprobe[28] that is designed to

detect the token rate of a residential ISP network. Without its source code, we re-implement

it by following the algorithm described in theshaperprobepaper [28].

2.7.1 Test-bed Results

The test-bed topology is similar to Figure 2.7, but with one more link. Between the sender

and the receiver, there are a total of five switches, including two gigabit switches, one

10-gigabit switch, and two switches emulated using Dell servers. Among the six links,

two links have capacity 10 Gbps, and all others have capacity1 Gbps. Therefore, the

path capacityC is 1 Gbps. There is one token bucket shaper created using a Linux Token

Bucket Filter (tbf) on an emulated switch, and therefore itstoken rate is the path token rate

R. There are several other Dell servers to generate random Poisson cross traffic over each

link using MGEN [1]. The interrupt coalescing feature of every network card is turned off

to improve the packet timestamp accuracy.

Capacity experiments:In this group of experiments, we evaluate the accuracy ofNar-

rowLinkCapacityandpathrate. We vary the token rateR from 200, to 400 and 600 Mbps,

and we also vary the burst size from 1.6, to 10 and 100 Kbytes. Figure 2.17 shows the

experiment results. We can see thatNarrowLinkCapacitycan accurately estimate the path

capacity (i.e., 1 Gbps) for all tested token rates and burst sizes. However,pathratecannot

correctly estimate the path capacity, and its results depend on both the token rates and burst

sizes. Especially when the burst size is small,pathrateactually estimates the token rate

instead of the capacity.

There are several reasons thatpathratedoes not work well in networks with shapers.

First, it varies the packet size between 550 and 1500 bytes. However, packet pairs of

large packet sizes are more likely to be throttled by the pathtoken rate instead of the path

capacity, when the burst size is small. Second, it uses packet trains for quick estimation.
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Figure 2.17: Capacity results estimated byNarrowLinkCapacityandpathrate.

However, packet trains are more likely to be throttled by thepath token rate. Third, it uses

the average arrival rate of a long packet train as a lower bound when selecting the path

capacity. However, due to the regulation of the shapers, theaverage arrival rate of a long

packet train could be lower the path token rate, and then muchlower than the path capacity.

As a result, it is not a good lower bound for the path capacity.

Token rate experiments: In this group of experiments, we evaluate the accuracy of

NarrowTokenRateandshaperprobe. We still vary the token rateR from 200, to 400 and

600 Mbps, and we also vary the percentage of cross traffic on each link from 10% to

50%. Figure 2.18 shows the experiment results. We can see that NarrowTokenRatecan

accurately estimate the token rateR for all tested token rates and cross traffic. However,

the result estimated byshaperprobeis only a lower bound of the token rate, and is sensitive

to the cross traffic. This is becauseshaperprobeis mainly designed to detect a token bucket

shaper in a residential ISP network, where there is no or verylittle cross traffic competing

with the probing packets at a token bucket shaper.

2.7.2 Amazon EC2 Results

We evaluateNarrowLinkCapacityandNarrowTokenRateusing virtual machines on Ama-

zon Elastic Compute Cloud (EC2) [6], which is a very popular public cloud computing plat-

form. The EC2 facilities are located at multiple locations,and we choose the one in the US
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Figure 2.18: Token rate results estimated byNarrowTokenRateandshaperprobe.

West (Oregon) region. EC2 provides different types of virtual machines, called instances,

with different computing and networking capacity. We select a micro instance (t1.micro),

a small instance (m1.small), and a medium instance (m3.medium) as three senders, and

select an xlarge instance (m3.xlarge) as the receiver to make sure that the receiver is not the

bottleneck. We are interested in whether EC2 traffic is throttled by traffic shapers, and if so

what the path capacity and the path token rate from each sender to the receiver are.

Figure 2.19 shows the experiment results. From the big differences betweenNar-

rowLinkCapacityand NarrowTokenRateresults, it is clear that the traffic from all three

senders are throttled by traffic shapers. The capacity of allthree senders is 1 Gbps, and

this is possibly because they use Gigabit network cards. They have slightly different token

rates, in the increasing order of micro, small, and medium instances. This is consistent with

their computing capacity ordering specified by EC2 [6].
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Figure 2.19: The path capacity and token rate of EC2 instances.
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Since the detailed network capability of each instance is not provided by EC2, we also

run iperf on these machines in order to verify our results to some extent. We runiperf on

each sender for 10 seconds to get a stable throughput, and then calculate the average rate.

We find that theiperf results are close to the token rate estimated byNarrowTokenRate.

Note that,NarrowTokenRatereports more consistent results thaniperf, and requires much

less traffic thaniperf.

We also evaluatepathrateandshaperprobeon EC2. pathratedoes not work and it

reports that interrupt coalescing is detected and there is an insufficient number of packet

dispersion estimates. This is possibly due to interferenceof interrupt coalescing and traffic

shapers.shaperprobereports very similar results asNarrowTokenRate, and this is because

we do not generate any cross traffic at the token bucket shaperin these experiments.

Finally, we notice that the same type of EC2 instances in different zones or regions

may have different networking capability, such as different token rates (usually slightly

but sometime significantly different), and we are interested in conducting a comprehensive

measurement of EC2 instances using our tools in the future.

2.7.3 Simulation Results

We also comprehensively evaluate our methods using NS-2 formuch more network topolo-

gies and parameters. Limited by the space, we present only some of our simulation results.

We simulate a network as illustrated in Figure 2.7 with 5 links of capacities 2, 1, 2, 1,

and 2 Gbps, respectively. Therefore, the path capacity is 1 Gbps. The cross traffic of a link

is set to 20% of the link capacity if the link does not have a shaper, or of the token rate if

the link has a shaper.

Impact of the location of a token bucket shaper:We add just one token bucket shaper

into the network, but at different locations: at the sender,router 1, router 2, router 3, and

router 4. If the shaper is added at the sender, it regulates all packets on the link between
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the sender and router 1. The token rate is always 600 Mbps, andthe burst size is 2000

bytes. Figure 2.20 shows that our methods can accurately estimate the path capacity and

path token rate in all cases independent of the shaper location.
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Figure 2.20: Our methods can accurately estimate the path capacity and path token rate,
respectively, independent of the shaper location.

Multiple token bucket shapers: We add multiple shapers into the network as follows:

• Case 1) we add the first shaper with token rate 800 Mbps and burst size 10K bytes at

router 1.

• Case 2) add the second shaper with token rate 600 Mbps and burst size 20 Kbytes at

router 2.

• Case 3) add the third shaper with token rate 400 Mbps and burstsize 40 Kbytes at

router 3.

• Case 4) add the fourth shaper with token rate 200 Mbps and burst size 40 Kbytes at

router 4.

Therefore, the path capacity remains 1 Gbps in all cases, butthe path token rate reduces

from 800 Mbps to 200 Mbps from case 1 to case 4. Figure 2.21 shows that our methods

can accurately estimate both the path capacity and path token rate in all cases with multiple

shapers.
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Figure 2.21: Our methods can accurately estimate the path capacity and path token rate in
case of multiple shapers.
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3 Network Path Capacity Comparison without Accurate PacketTime Information

3.1 Introduction

A rich body of bandwidth estimation methods [45] have been proposed and studied in the

past two decades, due to the wide range of applications of bandwidth estimation. However,

there is a fundamental problem with the current bandwidth estimation methods. Most (if

not all) of them need to accurately measure certain time information of network packets,

such as the arrival time difference (ATD) between two consecutive packets [15], the one-

way or round-trip delay of each packet [29], and the queueingdelay of each packet [23].

However, it is hard and sometimes impossible to accurately measure these time information

in an increasing number of network environments, such as widely deployed high speed

networks, and emerging cloud computing networks.

There are two major reasons why it is sometimes hard to accurately measure the packet

time information. First, it takes very short times to send orreceive packets at very high

speeds. However, it is hard to measure such short times due tothe limited system capabil-

ity [25, 41]. Second, various software and hardware factorsat the receiver of packets, such

as interrupt moderation [44, 25] (commonly used in high speed network cards) and virtual

machine (VM) scheduling [58, 12] (commonly used in cloud computing), greatly change

the original packet time information. As a result, the packet time information measured by

the packet receiver is not correct.

Our work is motivated by the observation that many applications only need to relatively
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compare the bandwidth information of different paths. For example, in a peer-to-peer (P2P)

network, a new peer needs to select several fastest peers as its neighbors from a set of

existing peers. More motivating examples will be discussedin Section 3.2. In these cases,

we do not need to measure the actual bandwidth information ofeach path, instead, we only

need to relatively compare the bandwidth information of different paths, and then rank

them according to their bandwidth information.

In this chapter, we study how to relatively compare the bandwidth information of mul-

tiple paths without requiring accurate packet time information. There are several important

bandwidth metrics [45]. As the first step, this chapter considers only the capacity of a path

that is the capacity of the narrow link in the path, and the narrow link of a path is the link

with the smallest capacity among all links in a path. The pathcapacity is a basic bandwidth

metric and will provide useful information for studying other bandwidth metrics, such as

available bandwidth and bulk TCP throughput, which will be considered in our future work.

Specifically, this chapter proposes a capacity comparison method, called PathComp,

which can relatively compare the path capacities from two senders to the same receiver.

Basically, PathComp actively sends probing packets from both senders to the receiver, mea-

sures the arrival sequence of these packets at the receiver,and then relatively compares the

capacities of the two paths.

PathComp is based on the fact that the inter-arrival gap between two consecutive pack-

ets from the same sender is related to the capacity of their path. This fact is also the

basis of the current capacity estimation methods [15, 29]. The uniqueness of PathComp

is that it measures the packet inter-arrival gap using the packet arrival sequence informa-

tion, whereas the current capacity estimation methods measure the packet inter-arrival gap

using the packet arrival time information. Therefore, PathComp does not require any ac-

curate packet time information, and is fundamentally different from the current capacity

estimation methods.
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The contributions of this chapter are as follows. First,we expand the design space

of traditional time-based bandwidth estimation methods byintroducing a new class of

sequence-based bandwidth comparison methods. Note that bandwidth comparison meth-

ods are inherently more scalable than traditional bandwidth estimation methods in terms

of the measurement time for a large number of paths. This is because bandwidth compar-

ison methods are designed to simultaneously measure multiple paths, whereas traditional

bandwidth estimation methods are designed to measure a single path and are sensitive to

the interference among multiple concurrent measurements [14].

Second,we propose a capacity comparison method, called PathComp, which can de-

termine not only which path is faster but also how much fasterin terms of the path capacity.

In the chapter, we thoroughly study the impact of various types of cross traffic on capacity

comparison, and we also discuss some implementation challenge, such as Receiver Side

Scaling [38]. Our testbed, campus network, and Amazon EC2 [6] experiments show that

PathComp can accurately compare the capacities of two pathsin a variety of network envi-

ronments.

3.2 Motivation

Bandwidth Comparison Scenarios

Our work is motivated by the observation that many applications only need to relatively

compare the bandwidth information of different paths.

P2P neighbor selection: When a new peer joins a P2P network [36], it usually needs to

select its neighbors from a set of existing peers. Typically, the new peer selects the existing

peers with fast network bandwidth as its neighbors so that itcan quickly download data

from its neighbors. Bandwidth comparison methods can be used to quickly select several

fastest peers from a set of existing peers.
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Network-aware task placement[31]: Consider a bandwidth-intensive cloud application

with three tasks:T1, T2, andT3, and a cloud consisting of three interconnected VMs:V1,

V2, andV3. Assume that tasksT1 andT2 communicate often with taskT3, but not much

with each other. If we find that the path betweenV1 andV2 is the slowest one using a

bandwidth comparison method, and network measurements show that the latency between

any two of these three VMs is the same, then the application performance can be improved

with the optimal task placement that places taskT3 on V3, and places the other two tasks

on the other two VMs.

Difficulties in Obtaining Accurate Packet Time Information Another motivation

of our work is that the current time-based capacity measurement algorithms do not work

well in some network environments, such as high speed networks and cloud computing

networks, where it is hard to accurately measure the packet time information. As discussed

the challenges in the Introduction part of this proposal, there are two main reasons. First,

it takes very short times to send or receive packets at very high speeds. For example, it

takes only 12µs to send or receive a 1500-byte packet at 1 Gbps, and only 1.2µs at 10

Gbps. However, it is hard to accurately measure such short times due to the limited system

capability [25, 41], such as clock time resolutions, clock frequency differences between the

sender and the receiver, and the system call overhead.

Second, there are various software and hardward factors at the receiver of packets,

such as interrupt coalescence [25, 44], context switching,and virtual machine schedul-

ing [58, 12], which change the original packet time information, and thus the packet time

information measured by the packet receiver is not correct.
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3.3 Design Space and Related Work

We discuss the design space of capacity estimation methods in Figure 3.1, which helps us to

understand the relation between the current capacity estimation methods and our proposed

capacity comparison method. Some methods measure the capacity information of the path

from a computer to another computer, and we refer to the first computer as the sender and

the second computer as the receiver. Some other methods measure the capacity information

of the round-trip path from a computer to another computer and then back to the first one.

For these methods, we refer to the first computer as both the sender and receiver.
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Figure 3.1: The design space of capacity estimation methods.

The design space shown in Figure 3.1 is based on the required information of probing

packets at the receiver. PathChar [16] and TailGater [32] estimate the capacity of each

individual link in the path using the packetarrival timesat the receiver. CapProbe [29]

and PBProbe [11] estimate the path capacity using the packetarrival times. BProbe [10],

PBM [40], and PathRate [15] estimate thepathcapacity using the packetarrival time differ-

encesat the receiver (defined in Section 3.4). Our proposed PathComp relativelycompares

the path capacities from two senders to the same receiver using the packetarrival sequence

number differencesat the receiver (defined in Section 3.4).

Note that if we know the capacity of each individual link of a path, we can infer the
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capacity of the path. If we know the capacities of two paths, we can infer their relative

capacity ratio. Also note that the arrival times can be used to calculate the arrival time

differences, and the arrival time differences can be used toinfer the arrival sequence number

differences. Therefore, we can see that the less the estimated capacity information, the less

the required packet information.

Further more, the arrival time differences are relatively easier to accurately measure

than the arrival times. For example, they are not sensitive to clock time differences be-

tween the sender and the receiver. The arrival sequence number differences can be more

accurately measured than the arrival time differences. Forexample, they are not sensitive

to the interrupt moderation at the receiver. Overall, we cansee thatthe less the estimated

capacity information, the less the required packet information, and the more robust the

method.

3.4 Capacity Comparison

In this section, we explain the difference between the traditional capacity estimation prob-

lem and our proposed capacity comparison problem, and explain the difference between

the traditional time-based capacity estimation methods and our proposed sequence-based

capacity comparison method.

3.4.1 Capacity Estimation and Comparison Problems

We use an example illustrated in Figure 3.2 to describe the difference between the tradi-

tional capacity estimation problem and our proposed capacity comparison problem. There

are two paths in Figure 3.2: patha is from senderSNDato receiverRCV, and pathb is from

senderSNDbto the same receiverRCV. Both paths merge with each other at routerR5. Net-

work 5 in the figure represents everything betweenR5(includingR5) andRCV. Network 1
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represents everything betweenSNDaand the narrow link of patha (called narrow linka),

and network 2 for everything between narrow linka andR5. Similarly networks 3 and 4

for pathb. Let Ca denote the capacity of patha that is the capacity of narrow linka, and

let Cb denote the capacity of pathb that is the capacity of narrow linkb.

SNDb

SNDa network network

network network

1 2

3 4

path a

path b

narrow link a

narrow link b

network
5

RCV
router

R5

Figure 3.2: Two paths: patha is from senderSNDato receiverRCV, and pathb is from
senderSNDbto the same receiverRCV.

The traditional capacity estimation problem considers thecapacity of the narrow link

of a single path. For example, for the two paths in Figure 3.2,the traditional capacity

estimation problem separately estimatesCa andCb.

Our proposed capacity comparison problem considers the capacity ratio of the narrow

links of two paths. For example, for pathsa andb in Figure 3.2, the capacity comparison

problem estimates the capacity ratio ofCa andCb. That is, it relatively compares the link

capacities of these two narrow links.The capacity ratioγ of two pathsa andb is defined

as follows. Note thatγ is a real number at least 1.

γ =











Ca/Cb, if Ca ≥ Cb

Cb/Ca, otherwise.
(3.1)
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We also define therounded capacity ratioas follows, which is an integer at least 1.

Γ = round(γ) (3.2)

Note that Figure 3.2 assumes that pathsa andb do not have a shared narrow link (i.e.,

if the narrow link is located in network 5). This is a reasonable assumption for a variety

of scenarios. For example, consider the P2P neighbor selection problem described in Sec-

tion 3.2. The narrow link of the path from a neighbor to a peer is usually the upload link

of the neighbor, and thus different neighbors usually do nothave a shared narrow link. As

another example, consider the network-aware task placement problem in Section 3.2. The

narrow link of the path from a sender VM to another receiver VMis usually located near

the sender VM due to the rate limiting of the sender VM, and thus the paths from different

sender VMs usually do not have a shared narrow link.

In cases where two paths have a shared narrow link, there are two options. First, capac-

ity comparison reports the capacity ratio of the narrow links of the distinct segments of the

two paths. Second, capacity comparison does not report anything, if a shared narrow link

is detected. However, the method to detect a shared narrow link is out of the scope of this

chapter. We choose the first option in this chapter.

3.4.2 Traditional Time-based Capacity Estimation

The traditional capacity estimation methods, such as PathRate [15], and CapProbe [29],

are usually based on packet arrival time differences (also called inter-arrival times, and

dispersion times). The packetarrival time difference (ATD, denoted byτ ) of two packetsis

the time difference between their arrival times. For example, Figure 3.3 shows twoSNDa

packets,a1 anda2, on the link from network 5 to receiverRCV, and the time differenceτ

is their ATD atRCV.
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RCV

a1

network 5

a2

τ (seconds)

Figure 3.3: The ATDτ at RCVbetween twoSNDapackets (a1 anda2) is their arrival time
difference atRCV.

Assuming that there is no cross traffic on patha, and assuming thatRCVcan accurately

measure the ATD, the capacityCa can be obtained as follows [15, 29], whereS is the

packet size andτ is the ATD.

Ca = S/τ (3.3)

The traditional capacity estimation methods mainly differin how to accurately estimate

Ca in the presence of cross traffic. However, ifRCV cannot accurately measure the ATD,

none of these methods works.

3.4.3 Proposed Sequence-based Capacity Comparison

ASND Definition We propose to tackle the capacity comparison problem using packet

arrival sequence number differences instead of packet arrival time differences, so that our

method does not require accurate packet time information. Below we use an example to

explain the concept of the packet arrival sequence number differences.

Each of the two senders,SNDaandSNDb, sends a train ofL = 5 packets of the same

packet sizeS to the receiverRCVat approximately the same time. These packets are sent

back-to-back by their senders (i.e., at their maximum rates). In this example, we assume

that there is no cross traffic in all 5 networks in Figure 3.2.

The top line of Figure 3.4 shows the 5SNDapackets on the link from network 2 to

routerR5. Since there is no cross traffic, the ATD between every two consecutiveSNDa

packets at routerR5 is inversely proportional to the capacityCa of narrow link a. The

bottom line of Figure 3.4 shows the 5SNDbpackets on the link from network 4 to router
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R5, and the ATD between every two consecutiveSNDbpackets at the router is inversely

proportional to the capacityCb of narrow link b. In this example, we setCa = Cb/2,

and thus the ATD between two consecutiveSNDapackets is twice the ATD between two

consecutiveSNDbpackets as illustrated in Figure 3.4.

These 10 packets merge with one another at routerR5. In this example, we assume that

these packets arrive atRCV in the order of their arrival times at routerR5. For example,

Figure 3.4 shows that packetb1 arrives atR5 earlier than packeta1, and thus packetb1

arrives atRCV earlier than packeta1. In Section 3.6.3, we will discuss cases where this

assumption does not hold and describe our solution.RCVassigns the first received packet

an arrival sequence number of 1, and the next received packetan arrival sequence number

of 2, and so on. Figure 3.5 shows the arrival order of these 10 packets atRCV, and their

corresponding arrival sequence numbers.

R5

b5 b3b4 b2 b1

a2 a1a3a4a5

network 2

network 4

R5

Figure 3.4: 5SNDapackets on the link from network
2 to routerR5(top line), and at the same time 5SNDb
packets on the link from network 4 toR5(bottom line).

seq no

a5 a4 a2b3b4 b2a1b1b5a3

10 9 8 7 6 3 2 145
(packets)δ

RCVR5

Figure 3.5: The arrival sequence numbers of all 10
packets atRCV. The ASNDδ between packetsa1 and
a2 is the difference between their packet arrival se-
quence numbers minus one.

The packet arrival sequence number difference (ASND, denoted byδ) of two packets

is defined to be the difference between their arrival sequence numbers minus one.For

example, the arrival sequence number of packeta1 is 2 in Figure 3.5, and that of packeta2
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is 5, thus their ASND isδ = (5− 2)− 1 = 2 packets. Intuitively, this means that there are

two other packets between packetsa1 anda2.

ASND HistogramsWe can infer the capacity ratioγ of pathsa andb by analyzing their

ASND histograms. In this subsection, we present the conceptof ASND histograms, and in

Section 3.5, we will thoroughly study the impact of cross traffic on the ASND histograms.

Let Ha(i) (respectively,Hb(i)) denote the total number of pairs of two consecutive

packets that are sent bySNDa(respectively,SNDb) and separated byδ = i packets atRCV.

For example,Ha(0) = 2 pairs in Figure 3.5, because the ASND between packetsa3 anda4

is 0 and that between packetsa4 anda5 is also 0. As another example,Ha(2) = 2 pairs,

because the ASND between packetsa1 anda2 is 2 and that between packetsa2 anda3 is

also 2.

The ASND histogram of theSNDatrain is vectorHa = (Ha(0), Ha(1), Ha(2), ...), and

that of theSNDb train is vectorHb = (Hb(0), Hb(1), Hb(2), ...). For example, Figure 3.6

shows ASND histogramsHa andHb for SNDaandSNDbtrains, respectively.
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Figure 3.6: The ASND histograms of the two trains in Figure 3.5.

We have the following theorem to simplify our analysis of ASND histograms.

Theorem 1. |Ha(0)−Hb(0)| ≤ 1, if two trains have the same numberL of packets.

Proof. Let symbolsa andb (without the subscripts) to denote a packet ofSNDaandSNDb,



46

respectively. The arrival order of the2L packets can be described by a string consisting of

L symbola’s andL symbolb’s. For example, ifL = 5, the arrival order of the 10 packets

in Figure 3.5 can be described by stringaaabbabbab, where the rightmost symbol (i.e.,b) is

the first packet received byRCV(i.e.,b1), and the leftmost symbol (i.e.,a) is the last packet

received byRCV (i.e.,a5).

A string of L symbola’s andL symbolb’s can be classified into the following four

cases, according to the leftmost and rightmost symbols. We will prove only cases 1 and 2,

and the other two cases can be proved very similarly.

• Case 1: The leftmost one:a, and the rightmost one:a.

• Case 2: The leftmost one:a, and the rightmost one:b.

• Case 3: The leftmost one:b, and the rightmost one:a.

• Case 4: The leftmost one:b, and the rightmost one:b.

Case 1: For a string with2L symbols, there are a total of2L−1 pairs of two consecutive

symbols. Letn(aa), n(ab), n(ba), andn(bb) denote the number of pairsaa, ab, ba, andbb,

respectively. Letn(∗a) andn(∗b) denote the number of pairs whose right symbol isa and

b, respectively. By definition, we haven(∗a) = n(ba)+n(aa), andn(∗b) = n(ab)+n(bb).

We haven(∗a) = L − 1, because the leftmosta cannot be the right symbol of a pair.

We also haven(∗b) = L. Therefore, we haven(∗a) = n(∗b)− 1.

Since both the leftmost and the rightmost symbols area, we haven(ab) = n(ba).

Therefore,Ha(0) = n(aa) = n(∗a)−n(ba) = (n(∗b)−1)−n(ab) = n(bb)−1 = Hb(0)−1.

Case 2: We haven(∗a) = L− 1, because the leftmosta cannot be the right symbol of

a pair. We also haven(∗b) = L. Therefore, we haven(∗a) = n(∗b)− 1.

Since the leftmost symbol isa and the rightmost one isb, we haven(ab) = n(ba) + 1.

Therefore,Ha(0) = n(aa) = n(∗a)−n(ba) = (n(∗b)−1)−(n(ab)−1) = n(bb) = Hb(0).



47

For example,Ha(0) − Hb(0) = 2 − 2 = 0 in Figure 3.6. Note that, Theorem 1 holds

no matter whether there is cross traffic or not and no matter how long the train sizeL is.

We will not show and will not useHa(0) andHb(0) in the rest of the chapter for the

following two reasons. First, usually theSNDaandSNDbtrains only partially overlap with

each other, and thusHa(0) andHb(0) are mainly due to the non-overlapping packets of the

two trains. Second, Theorem 1 shows thatHa(0) andHb(0) are very close to each other,

and thus do not provide much useful information.

A peak (also called a mode) in a histogram is a local maximum that is higher than its

right neighbors and no less than its left neighbor (if exists). For example, histogramHa in

Figure 3.6 has a peak at 2 packets, and histogramHb has a peak at 1 packet (note that it

does not have the left neighbor, since we do not considerHb(0)).

We introduce the second theorem about the peaks in ASND histograms. Without loss

of generality, this theorem considers only caseCa ≤ Cb.

Theorem 2. In the absence of cross traffic, ifCa ≤ Cb, histogramHa has only one peak

and the peak is located atΓ packets, and histogramHb has only one peak and the peak

is located at 1 packet. The capacity ratioγ can be obtained as follow, whereHa(Γ − 1)

should be set to 0 ifΓ = 1.

γ =
(Γ− 1)Ha(Γ− 1) + ΓHa(Γ) + (Γ + 1)Ha(Γ + 1)

Ha(Γ− 1) +Ha(Γ) +Ha(Γ + 1)
(3.4)

Proof. When there is no cross traffic, the ATD of a pair of two consecutive SNDapackets

is S/Ca. The average number ofSNDbpackets that can be transmitted during anS/Ca

interval is(S/Ca) × (Cb/S) = Cb/Ca. Therefore, the average number ofSNDbpackets
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between a pair of two consecutiveSNDapackets isCb/Ca. We consider the following three

possible cases:

Case 1:Cb/Ca is a positive integer. That is,Γ = γ = Cb/Ca. In this case, there are

exactlyΓ SNDbpackets between a pair of two consecutiveSNDapackets. Therefore, the

peak ofHa is atΓ packets. In this case, there are either 0 or 1SNDapacket between a

pair of two consecutiveSNDbpackets. Therefore, the peak ofHb is at 1 packet. Note that,

Ha(Γ− 1) = Ha(Γ + 1) = 0, and thus Equation (3.4) can be proved.

Case 2:Cb/Ca is a decimal greater than 1, andΓ = ⌊Cb/Ca⌋ andΓ + 1 = ⌈Cb/Ca⌉.

In this case, there are either⌊Cb/Ca⌋ or ⌈Cb/Ca⌉ SNDbpackets between a pair of two

consecutiveSNDapackets. BecauseΓ = round(γ) = ⌊Cb/Ca⌋, we haveHa(Γ) > Ha(Γ+

1) > 0. Therefore, the peak ofHa is atΓ packets. In this case, there are either 0 or 1SNDa

packet between a pair of two consecutiveSNDbpackets. Therefore, the peak ofHb is at 1

packet. Note that,Ha(Γ− 1) = 0, and thus Equation (3.4) can be proved.

Case 3:Cb/Ca is a decimal greater than 1, andΓ − 1 = ⌊Cb/Ca⌋ andΓ = ⌈Cb/Ca⌉.

This case can be proved in a similar way to case 2.

For example, in Figure 3.6, becauseCa < Cb, histogramHa has a peak atΓ =

round(Cb/Ca) = 2 packets, and histogramHb has a peak at 1 packet.

ASND-based Capacity ComparisonTheorem 2 provides the foundation of our pro-

posed capacity comparison method in the absence of cross traffic. Given the histogramH of

the slower path, algorithm EST-RATIO can estimate the capacity ratio γ using Theorem 2.

Since initially we do not know which path is slower, algorithm COMPARE calculates two

ratio estimates:γa assuming patha is slower, andγb assuming pathb is slower. Then it

selects the bigger ratio as the final result.
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Algorithm 1 Estimate the capacity ratio from histogramH using Theorem 2 in the absence
of cross traffic

1: function EST-RATIO(H)
2: Γ← max(H(1), H(2), H(3), ...) ⊲ Find the peak
3: γ ← (Γ−1)H(Γ−1)+ΓH(Γ)+(Γ+1)H(Γ+1)

H(Γ−1)+H(Γ)+H(Γ+1)

4: return γ
5: end function

Algorithm 2 Compare the capacities of two paths using their histogramsHa andHb in the
absence of cross traffic

1: function COMPARE(Ha , Hb)
2: γa← EST-RATIO(Ha) ⊲ Assuminga is slower
3: γb← EST-RATIO(Hb) ⊲ Assumingb is slower
4: if γa == γb then
5: print Patha is as fast as pathb.
6: else ifγa > γb then
7: print Patha is slower than pathb.
8: print Cb/Ca = γa
9: else

10: print Patha is faster than pathb.
11: print Ca/Cb = γb
12: end if
13: end function

3.5 Impact of Cross Traffic

In this section, we study the impact of various types of crosstraffic on the ASND his-

tograms using our lab testbed.

We study five possible types of cross traffic as illustrated inFigure 3.7, which is very

similar to Figure 3.2 and just simplifies each network to a single router. The capacity of

each link is chosen to demonstrate the impact of the cross traffic on that link. We emulate

this network using our 10Gbps testbed, and each link is emulated by a Linux token bucket

filter (tbf).

The narrow link of patha from SNDato RCV is the link between routersR1andR2, and

thus the capacity of patha isCa = 200Mbps. The narrow link of pathb from SNDbto RCV
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Figure 3.7: Five possible sources of cross traffic. Link capacity unit: Mbps.

is the link between routersR3andR4, and thus the capacity of pathb is Cb = 800Mbps.

Therefore, we haveΓ = γ = 4.

In each of the following experiments, each sender sends a train of L = 500 packets at

approximately the same time, andRCVmeasures the ASND histograms. Because pathb is

the faster one, allSNDbhistograms concentrate at 0 and 1 packet (similar to Figure 3.6b),

and thus we do not show theSNDbhistograms. For the SNDa histograms, we do not show

the result for 0 packet, as explained in Section 3.4.

No Cross Traffic As a reference case, first we do not generate any cross traffic.Since

γ = 4, there should be 4SNDbpackets between a pair of two consecutiveSNDapackets, as

illustrated in Figure 3.8. The SNDa histogram is shown in Figure 3.13. As we expect, the

ASND of mostSNDapairs is 4 packets. But there are a small number ofSNDapairs with

other ASNDs, which are mainly caused by the randomness of therouters that are emulated

using our lab computers and Linux tbf.

Cross Traffic betweenR1 and R2

This experiment shows the impact of cross traffic before or onthe narrow link of path

a (i.e., the slower path). Random cross traffic is generated using MGEN [1] at an average

rate of200 ∗ 50% = 100 Mbps betweenR1andR2.

Let’s consider the example shown in Figure 3.9. There are still the same 8SNDbpackets
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Figure 3.8: No cross traffic. Each box indicates a packet on the link.
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R5 RCVSNDb
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Figure 3.9: Cross traffic betweenR1andR2.
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Figure 3.10: Cross traffic betweenR2andR5.
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Figure 3.11: Cross traffic betweenR3andR4.

R5 δ=1δ=6

R2

R5
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R4
SNDb
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RCV

Figure 3.12: Cross traffic betweenR4andR5.

passing the link betweenR3andR4as in Figure 3.8. But during this time interval, a cross

traffic packet is inserted between the first (i.e., the rightmost one) and secondSNDapackets

(the thirdSNDapacket is further delayed, and not shown in the figure). As a result, the

ASND between the first and secondSNDapackets is doubled and becomes 8 packets.

This is why theSNDahistogram in Figure 3.14 has a non-negligible number ofSNDa

pairs withδ = 8 packets. Further more, the numbers ofSNDapairs withδ = γi = 4i

packets approximately follow a Geometric distribution described by Equation (3.5), where

N is the total number of pairs withδ = 4i packets, andp is the occurrence probability

of a cross traffic packet. For example, the dotted line in Figure 3.14 is obtained using

Equation (3.5) with the correspondingN andp.

Ha(i ∗ 4) = Npi−1(1− p) 1 ≤ i (3.5)
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Figure 3.13: No cross traffic.
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Figure 3.14: 50% cross traffic between
R1andR2.
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Figure 3.15: 80% cross traffic between
R2andR5.

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8 1011

# 
of

 p
ai

rs

ASND δ (packets)

see Fig 12

SNDa
Binomial

Figure 3.16: 50% cross traffic between
R3andR4.
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Figure 3.17: 50% cross traffic between
R4andR5.
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Figure 3.18: 50% cross traffic on all 5
links.

Cross Traffic betweenR2 and R5

This experiment shows the impact of cross traffic beyond the narrow link of patha but

still before the shared segment. Random cross traffic is generated at an average rate of

400 ∗ 80% = 320 Mbps betweenR2andR5.
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In the example shown in Figure 3.10, there are still the same 8SNDbpackets passing the

link betweenR4andR5as in Figure 3.8. But a cross traffic packet is inserted between the

first and secondSNDapackets. Because the link capacity betweenR2andR5 is twice that

betweenR1andR2, the thirdSNDapacket can still be transmitted at the original time as in

Figure 3.8. As a result, the ASND between the first and secondSNDapackets increases to

5 packets, but the ASND between the next twoSNDapackets decreases to 3 packets.

This is why theSNDahistogram shown in Figure 3.15 has a non-negligible number of

SNDapairs with ASNDs around 4 packets, such as 3 and 5 packets.

Cross Traffic betweenR3 and R4

This experiment shows the impact of cross traffic before or onthe narrow link of pathb

(i.e., the faster path). Random cross traffic is generated atan average rate of800 ∗ 50% =

400 Mbps betweenR3andR4.

In the example shown in Figure 3.11, there are still the same 3SNDapackets passing

the link betweenR1 andR2 as in Figure 3.8. But three cross traffic packets are inserted

between theseSNDbpackets (the rightmost threeSNDbpackets in Figure 3.8 are further

delayed, and not shown in Figure 3.11). As a result, the ASND between the first and second

SNDapackets decreases to 2 packets, and the ASND between the nexttwo SNDapackets

decreases to 3 packets.

This is why theSNDahistogram in Figure 3.16 has a large number ofSNDapairs with

ASND less than 4 packets. The numbers ofSNDapairs with ASNDs between 1 and 4 pack-

ets follow a Binomial distribution described by Equation (3.6), whereN is the total number

of SNDapairs with ASNDs between 1 and 4 packets, andp is the occurrence probability of

a cross traffic packet. The dotted line in Figure 3.16 is obtained using Equation (3.6) with

the correspondingN andp.

Ha(i) = N

(

4

i

)

(1− p)ip4−i/(1− p4) 1 ≤ i ≤ 4 (3.6)
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Cross Traffic betweenR4 and R5

This experiment studies the impact of cross traffic beyond the narrow link of pathb

but still before the shared segment. Random cross traffic is generated at an average rate of

1200 ∗ 50% = 600 Mbps betweenR4andR5.

In the example shown in Figure 3.12, there are still the same 3SNDapackets passing

the link betweenR2 andR5 as in Figure 3.8. But during this time interval, several cross

traffic packets are inserted between the first and secondSNDbpackets. Because the link

capacity betweenR4andR5 is higher than that betweenR3andR4, the remainingSNDa

packets are only slightly delayed than in Figure 3.8. As a result, the ASND between the

first and secondSNDapackets decreases to 1 packet, and the ASND between the next two

SNDapackets becomes 6 packets, which is the capacity ratio of thelink betweenR4and

R5 to the link betweenR1andR2(i.e., 1200/200=6).

This is why theSNDahistogram shown in Figure 3.17 has a large number ofSNDa

pairs with ASND not equal to 4 packets, such as 1 and 6 packets.

Cross Traffic betweenR5 and RCV

This experiment shows the impact of cross traffic in the shared segment of both paths.

As we expect, this type of cross traffic does not have any impact on the histograms.

Cross Traffic on All Five Links

Finally, we generate all five types of cross traffic. TheSNDahistogram is shown in

Figure 3.18, and it shows the combination of the impact of allfive types of cross traffic.

Summary We have the following observations about the ASND histogramof the slower

path.

Observation1: In practice, the ASND histogram could have a small number of ASND

values caused by the randomness of the end-systems and the networks. These ASND values

should be treated as noises and be discarded.

Observation2: With little or no cross traffic, there is only one peak and the peak is lo-
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cated at the rounded capacity ratioΓ (e.g., Figure 3.13). This is consistent with Theorem 2.

Observation3: In the presence of cross traffic, it is possible that there are multiple peaks

(also called multi-mode), andΓ may or may not be the location of a peak. For example,

Figure 3.17 has peaks at 1 and 6 packets, but no peak at 4 packets. We observe thatmultiple

peaks are usually caused by the cross traffic on the faster path. More specifically, they

are usually caused by the cross traffic beyond the narrow linkof the faster path, e.g., in

Figures 3.17 and 3.18.

Observation4: In the presence of cross traffic, if there is only a single peak, the peak

location tends to be a lower bound ofΓ (e.g., Figure 3.15 has a single peak at 4 packets,

and Figure 3.16 has a single peak at 3 packets). Intuitively,this is because an ASND value

greater thanΓ usually leads to another ASND value smaller thanΓ (e.g., Figures 3.10 and

3.12). Therefore, if there is a peak to the right ofΓ, then there is usually another peak to

the left ofΓ. That is, there will be multiple peaks.

Observation5: We have calculated and verified that the average of all ASNDvalues of

a histogram could be higher than or lower thanγ (i.e., neither an upper bound nor a lower

bound), depending on the amounts and locations of cross traffic on both paths.

3.6 PathComp

In this section, we present our proposed PathComp to relative compare the capacity ratio

of two paths to the same receiver without requiring accuratepacket time information.

3.6.1 The PathComp Method

PathComp follows the basic idea of algorithms EST-RATIO andCOMPARE as described in

Section 3.4.3. However, there are two problems with algorithm EST-RATIO in the presence

of cross traffic. 1) It is possible to have multiple peaks in a histogram mainly due to the
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Figure 3.19: PathComp has three phrases.

cross traffic on the faster path (i.e., Observation 3 in Section 3.5), however EST-RATIO

assumes only one peak in a histogram. To tackle this problem,we divide the long packet

train on the faster path into multiple short packet blocks, in order to reduce the impact

of cross traffic. 2) If there is a single peak in the histogram of the slower path, the peak

location tends to be a lower bound ofΓ (i.e., Observation 4 in Section 3.5). To tackle this

problem, we estimateΓ by the peak of the weighted histogram.

PathComp consists of three phases as shown in Figure 3.19.

• 1) Preliminary phasemeasures some basic network information, such as the round-

trip times (RTTs).

• 2) Phase Imeasures the histograms of the two paths. If there is a singlepeak in the

histogram of the slower path, PathComp estimatesγ using algorithms COMPARE
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and EST-RATIO2; otherwise, it starts Phase II.

• 3) Phase II re-measures the histograms using multiple packet blocks onthe faster

path, and then estimatesγ using algorithm EST-RATIO2.

Figure 3.19 still considers the two paths shown in Figure 3.2. But to simplify the figure,

Figure 3.19 assumes that there is only one link betweenSNDaandR5 that is the narrow

link of patha, and there is only one link betweenSNDbandR5 that is the narrow link of

pathb.

Preliminary PhaseThis phase measures the RTT difference△RTT betweenSNDa-

RCVandSNDb-RCVas illustrated in Figure 3.19, so that in the next two phases the packets

of SNDaandSNDbcan overlap with each other. PathComp measures△RTT multiple

times, and calculates the mean (denoted by△RTT ) and standard deviation (denoted by

σ(△RTT )) of measured△RTT values.

Phase IRCV first tells the sender with a longer RTT (i.e.,SNDb in Figure 3.19) to

start its packet transmission, and after a delay of△RTT , RCV then tells the sender with

a shorter RTT (i.e.,SNDa) to start its packet transmission. Each sender sends a trainof L

consecutive packets with the same packet sizeS. In Figure 3.19, the capacityCa of patha

is lower than the capacityCb of pathb, soSNDatakes a longer time to transmit the same

numberL of packets thanSNDb.

After RCV receives these two trains, PathComp measures the ASND histogramsHa

andHb of the two paths, and uses Algorithms EST-RATIO2 and COMPARE2 to estimate

the capacity ratio. The difference between EST-RATIO and EST-RATIO2 is that the for-

mer selects the peak from the original histogramH = (H(1), H(2), H(3), ...), whereas

the latter selects the peak from the weighted histogram(H(1), 2H(2), 3H(3), ...). This is

motivated by Observation 4 in Section 3.5. Note that the peaklocation of the weighted his-

togram is greater than or the same as that of the original histogram. The difference between
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COMPARE and COMPARE2 is that the former calls EST-RATIO whereas the latter called

EST-RATO2. In addition, if multiple peaks are detected in the histogram of the slower

path, Algorithm COMPARE2 starts phase II.

Algorithm 3 Estimate the capacity ratio from histogramH in the presence of cross traffic

1: function EST-RATIO2(H)
2: Remove measurement noises fromH
3: Γ← max(H(1), 2H(2), 3H(3), ...) ⊲ Weighted
4: γ ← (Γ−1)H(Γ−1)+ΓH(Γ)+(Γ+1)H(Γ+1)

H(Γ−1)+H(Γ)+H(Γ+1)

5: return γ
6: end function

Parameter SettingIf σ(△RTT ) = 0, the two trains should arrive atRCVat the same

time as illustrated in Figure 3.19. In practice,σ(△RTT ) > 0, and the train sizeL should

be sufficiently long so that the two trains can still overlap with each other. For example,

consider a cloud computing network in a data center withσ(△RTT )=1 ms and with the

capacity=1 Gbps,L should be at least 83 packets longer to compensate for the RTTvariance

if packet sizeS is 1500 Byte. By default, PathComp sets the train sizeL to 500 packets.

If the two trains could not overlap with each other, or overlap for only a small portion

of each train, PathComp increases the train size and re-sends the two trains. However, if

excessive packet loss is detected atRCV, PathComp quits the estimation.

By default, PathComp sets the packet sizeS to 1500 bytes. This is because our exper-

iments show that ASND histograms become hard to predict and analyze when the packet

size is small. Intuitively, this is because the randomness of the end-systems and networks

have a big impact on small packets, and thus there are much more noises in the ASND

histograms.

Phase IIPathComp enters this phase, if there are multiple peaks in the histogram of the

slower path. As observed in Section 3.5, this is usually due to the high cross traffic load on

the faster path. Therefore, we divide the long packet train on the faster path into multiple



59

Algorithm 4 Compare the capacities of two paths using their histogramsHa andHb in the
presence of cross traffic

function COMPARE2(Ha , Hb)
γa← EST-RATIO2(Ha) ⊲ Assuminga is slower
γb← EST-RATIO2(Hb) ⊲ Assumingb is slower
if γa == γb then

print Patha is as fast as pathb.
else ifγa > γb then

print Patha is slower than pathb.
if Ha has multiple peaksthen

starts Phase II
else

print Cb/Ca = γa
end if

else
print Patha is faster than pathb.
if Hb has multiple peaksthen

starts Phase II
else

print Ca/Cb = γb
end if

end if
end function

short packet blocks, in order to reduce the impact of cross traffic.

Specifically, PathComp still sends a train ofL packets back-to-back on the slower path.

But on the faster path, PathComp sends a block ofB packets back-to-back every∆t time

interval, until allL packets have been sent out, as illustrated in Figure 3.19. After RCV

receives these two trains, PathComp measures only the ASND histogram of the slower

path, and uses Algorithm EST-RATIO2 to estimate the capacity ratio.

Parameter Setting The block sizeB should be much larger than the capacity ratio

γ, becauseB limits the maximum ASND between two consecutive packets on the slower

path. By default, PathComp setsB to 20 packets, which is larger than most typical ratios,

such as 2 and 10.

The interval∆t should be long enough in order to sufficiently separate different packet
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blocks, but should not be too long so that most packets on the faster path can still overlap

with the packets on the slower path. By default, PathComp sets ∆t to 2Tf/(L/B) =

2BTf/L, so that the average transmission rate of all packets is approximately reduced by

half and the total transmission time of all packets is approximately doubled.Tf is the time

for RCV to receive the packet train from the faster path in Phase I.

PathComp checks whether∆t is too long or too short as follows. If less than half of the

packet blocks on the faster path overlap with the packet train on the slower path, it is likely

that∆t is too big. If the ASND histogram of the faster path contains very few large ASND

values (e.g.δ ≥ 5), it is likely that∆t is too short. In these cases, PathComp adjusts the

interval∆t and re-sends the packets.

As an example, Figure 3.18 shows the originalSNDahistogram with multiple peaks

obtained using the packet train on the faster path, and Figure 3.20 shows the newSNDa

histogram obtained using packet blocks on the faster path. We can see that in the new

histogram, there are still two peaks, but that there is a peakatΓ = 4, and it is the highest

peak.
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Figure 3.20: The difference between this figure and Figure 3.18 shows the effectiveness of
Phase II in the presence of cross traffic.
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3.6.2 Packet Time Information used in PathComp

PathComp uses only two types of coarse packet time information: the△RTT between two

paths, and the timeTf for RCV to receive the packet train from the faster path in Phase I.

None of them needs to be accurately measured.

△RTT is used in both Phases I and II so that the packets on both pathswill arrive

at RCV at approximately the same time. The inaccuracy in measuring△RTT can be

mitigated by using longer packet trains.

Tf is used in Phase II to calculate block interval∆t. Note that timeTf is the time for

receiving a train ofL packets, not a single packet. Therefore, due to the relatively large

value ofL (e.g., 500),Tf is a relatively long time (e.g., 0.6 ms at 10Gbps). In addition, too

large or too small interval∆t due to the inaccuracy in measuringTf will be detected and

adjusted by PathComp in Phase II.

3.6.3 An Implementation Challenge: RSS and IC

Two features of high-speed NICs may interfere with PathComp: Receiver Side Scaling

(RSS) and Interrupt Coalescence (IC). Each of them alone doenot affect PathComp, but

when both of them are enabled, they greatly interfere with PathComp. Below we explain

the reasons and our solution.

RSS [38] is a relatively new NIC feature to allow a NIC to balance interrupts among

multiple CPUs in a computer. RSS distributes incoming packets into different NIC Rx

queues according to their hash values calculated using the packet information, such as

source IP. As a result, the probing packets from two different senders are placed into dif-

ferent NIC Rx queues and handled by different CPUs onRCV. IC [25] is a NIC feature

to reduce the CPU load by generating an interrupt for a group of packets instead of each

packet.
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When an interrupt is generated as each packet arrives (i.e.,IC disabled), RSS alone

does not affect PathComp because the interrupt sequence follows the packet arrival se-

quence. When there is only a single NIC Rx queue (i.e., RSS disabled), IC along does

not affect PathComp because IC changes only the packet arrival times but not the packet

arrival sequence. However, when both RSS and IC are enabled,they greatly interfere with

PathComp as illustrated in Figure 3.21. Packets from different senders are placed into dif-

ferent NIC Rx queues, and an interrupt is generated only for agroup of packets from a Rx

queue. As a result, the packet arrival sequence measured by PathComp is different from

the original packet arrival sequence at the NIC.

NIC  incoming packets

Rx1

Rx2 Arrival sequence to PathComp

Figure 3.21: Impact of RSS and IC on the packet arrival sequence.

A simple solution is IP address spoofing. We modify the packetsource IP address of one

sender to the same as that of the other sender, in order to concealRCV that all packets are

from the same sender.RCV therefore places all packets to the same Rx queue. Although

packets with a forged source IP address may be filtered by somefirewall, this is a more

practical solution compared with disabling either RSS or IConRCV. We have successfully

tested this solution on our campus network, Amazon EC2 [6], and PlanetLab [52].

Figure 3.22 shows theSNDahistogram when both RSS and IC are enabled. It is ob-

tained with exactly the same testbed setting (including cross traffic, RSS, and IC) as Fig-

ure 3.13, except that the latter uses IP address spoofing. We can see that Figure 3.22

is greatly different from Figure 3.13. That is, without IP address spoofing, RSS and IC

greatly change the packet arrival sequence.
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Figure 3.22: The difference between this figure and Figure 3.13 shows the impact of RSS
and IC on the histogram.

3.7 Evaluation

In this section, we evaluate PathComp using our lab testbed,our campus network, and

Amazon EC2.

3.7.1 Testbed Results

We conduct the following three groups of testbed experiments to evaluate PathComp with

default parameters. For each experiment, we run it for 50 times, and report the average with

a 95% confidence interval. The emulated network topology is the same as the one shown

in Figure 3.7 but with different link capacities. We use Linux tbf with the minimum token

burst size to emulate a link capacity, except 100 Mbps, 1 Gbps, and 10 Gbps. We notice

that Linux tbf on our testbed can only emulate up to 1.6 Gbps links due to limited system

capability. Thus, the maximum link capacity in our testbed experiments is 1.6 Gbps, except

10 Gbps.

Group 1 - Impact of Large Capacity Ratios: This group of experiments study the

accuracy of PathComp when two paths have a capacity ratio at least 2. For patha in

Figure 3.7, we setCa1 = 500 Mbps,C12 = 200 Mbps,C25 = 1 Gbps, and thus the capacity

of patha is Ca = C12 = 200 Mbps. For pathb, we setCb3 = 1.6 Gbps,C34 = 400 Mbps

to 1.6 Gbps,C45 = 10 Gbps, and thus the capacity of pathb is Cb = C34. Therefore, the
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capacity ratioγ = Cb/Ca varies from 2 to 8.

The estimated capacity ratios are shown in Figure 3.23a, where each link marked in

Figure 3.7 has 30% cross traffic. We can see that PathComp can accurately measure these

large capacity ratios. The large confidence interval atγ = 8 is partially because that Linux

tbf has almost reached its max performance limit on our testbed.

Group 2 - Impact of Small Capacity Ratios: This group of experiments study the

accuracy of PathComp when two paths have a capacity ratio no more than 2. Patha has the

same link capacities as in group 1, and thus the capacity of path a is still Ca = C12 = 200

Mbps. For pathb, we setCb3 = 1 Gbps,C34 = 200 Mbps to 400 Mbps,C45 = 1 Gbps, and

thus the capacity of pathb is Cb = C34. Therefore, the capacity ratioγ = Cb/Ca varies

from 1 to 2.

The estimated capacity ratios are shown in Figure 3.23b, where each link marked in

Figure 3.7 has 30% cross traffic. We can see that PathComp can accurately measure these

small capacity ratios. Even whenγ = 2, the average estimated ratio is 1.88, and is very

close to the actual ratio. Note that results withγ = 2 in Figures 3.23a and 3.23b are ob-

tained using different link capacities (e.g.,C45) and then different amounts of cross traffic.

In the latter,C45 is smaller, and thus its link is more congested. This is why the estimation

error withγ = 2 in the latter is larger than that in the former.
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Figure 3.23: Impact of large and small capacity ratios.
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Group 3 - Impact of Cross Traffic: This group of experiments study the accuracy of

PathComp under different amounts of cross traffic. We use thesame link capacities as in

group 2, except that we setC34 to 400 Mbps. Therefore,γ = Cb/Ca is fixed to 2.

Figure 3.24a shows the estimated capacity ratios when the cross traffic on patha varies

from 10% to 60% and that on pathb is fixed to 30%. Figure 3.24b shows the estimated

capacity ratios when the cross traffic on patha is fixed to 30%, and that on pathb varies

from 10% to 60%.

We can see that cross traffic on pathb (i.e., the faster path) has a bigger impact than that

on pasta (i.e., the slower path). The reason is the probing traffic on pathb is sent at a higher

rate. With the same percentage of crossing traffic, pathb is more congested than patha.

For example, with 60% crossing traffic, the link utilizationbetweenR4andR5on pathb

can reach up to0.6 + 400/1000 = 100%, but only up to0.6 + 200/1000 = 80% for the

link betweenR2andR5on patha. This is consistent with our observation in Section 3.5,

and this is also the motivation why PathComp in Phase II divides a long packet train into

multiple short packet blocks on the faster path.
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Figure 3.24: Impact of cross traffic.

Remarks: We also run PathRate [15] on our testbed, which is one of the most well

studied and widely used capacity estimation methods. However, it could not accurately

estimate the capacity of a path on our testbed. For example, in Group 1, it reports a capacity
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of 1100∼1400 Mbps (results of multiple runs) for patha, and reports an insufficient number

of packet dispersion estimates for pathb. This is partially due to interference of IC and

Linux tbf.

3.7.2 Campus Network Results

We also evaluate PathComp using some servers in our campus network, where we know

the network and server information.

Intra-Department Network: We choose three servers, denoted bySNDa, SNDb, and

RCV, in our department.SNDais connected to the department 1 Gbps network through

a 100 Mbps switch, and bothSNDbandRCV are connected to the department network

through 1 Gbps Ethernet. Figure 3.25a shows the ASND histograms ofSNDaandSNDb,

and note that there are some ASND values at 9 and 11 packets which are caused by cross

traffic. PathComp correctly estimates that the capacity ratio is 10 (corresponding to the

peak atδ = 10 packets). We also run PathRate, and it correctly estimates the capacity

betweenSNDaandRCVas 100 Mbps, but it mistakenly reports the capacity betweenSNDb

andRCVas 1900∼2100 Mbps.
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Figure 3.25: Campus network experiments.

Inter-Department Network: We choose three servers, denoted bySNDa, SNDb, and

RCV, in three different departments in our campus network.SNDahas a 100 Mbps NIC,
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and bothSNDbandRCVhave a 1 Gbps NIC. All three servers are connected to the campus

1 Gbps network. Each of the two paths passes four routers, andthey share only the last

router just beforeRCV. Figure 3.25b shows the ASND histograms ofSNDaandSNDb, and

PathComp correctly estimates that the capacity ratio is 10.We also run PathRate, and it

correctly estimates the capacities of both paths:SNDa: 100 Mbps, andSNDb: 970∼990

Mbps.

3.7.3 Amazon EC2 Results

We also evaluate PathComp using VMs on Amazon Elastic Compute Cloud (EC2) [6],

which is a very popular public cloud computing platform. TheEC2 facilities are located

at multiple locations, and we choose the one in the US West (Oregon) region that includes

three zones. We select three micro instances from differentzones as three senders denoted

by SNDa, SNDb, andSNDc, and we select one medium instance as the receiverRCV.

We relatively compare the path capacities from the three senders to the receiver for 100

times, and Figure 3.26 shows the cumulative distribution function (CDF) of the estimated

capacity ratios. PathComp reports thatSNDais slightly faster thanSNDb, SNDbis about

2.2∼2.4 times faster thanSNDc, andSNDais about 2.4∼2.7 times faster thanSNDc. We

can also see that the results are highly consistent. For example, among estimated ratios

betweenSNDcandSNDa, most of them are about 2.4∼2.7, and about 10% of them are

smaller than 2.4. This is possibly due to the interference ofVM scheduling, as micro

instances are scheduled much more frequently than other types of instances.

In order to verify our estimated capacity ratios, we also runPathRate and iperf on

EC2. PathRate reports that IC is detected and there is an insufficient number of packet

dispersion estimates. Since this section considers the capacity of a path that indicates the

short-term peak rate of the path, we use the iperf/tcp highest 1-second throughput in its first

ten seconds. ForSNDa, the iperf results are 540∼980 Mbps. ForSNDb, the iperf results
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Figure 3.26: Amazon EC2 experiments

are 530∼760 Mbps. ForSNDc, the iperf results are 280∼290 Mbps. The iperf results are

consistent with our estimated capacity ratios. We guess that theSNDacapacity is possibly

1 Gbps, and theSNDbandSNDccapacities are limited possibly by the virtual machine

capability and by rate limiters (e.g., a token bucket shaper).

Note that PathComp sends out much less traffic than iperf. Forexample, PathComp

sends less than 1 MBytes fromSNDa, whereas iperf sends 65∼117 MBytes just in the first

second.
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4 Rate Limiting in Public Clouds

4.1 Introduction

Because it is cheaper and more scalable to rent virtual machines (VM) than to buy servers,

a growing number of corporate and government entities are choosing public clouds to run

their applications because it is cheaper and more scalable to rent virtual machines (VM)

than to buy servers. For example, Dropbox is a large IT company using Amazons S3 as file

storage, and Amazons EC2 [7] instances to provide synchronization and collaboration[57].

Besides Amazon, there are also many other VM vendors such as Microsoft Azure [22] and

Google Compute Engine [17].

Though it is more convenient and scalable to use VMs, cloud users share these re-

sources with thousands of other users. Users want to know what they get for their money.

For example, if current bandwidth cannot satisfy a large burst of customer requests, they

can pay more to increase the bandwidth. However, current bandwidth estimation tools can-

not be used in public clouds [56]. One main reason is that bandwidth provided to cloud

users is maximum bandwidth, but not an actual available bandwidth. The actual available

bandwidth may be lower than the maximum bandwidth if more users are sharing the net-

work. Many reliable network structures have been proposed [24, 8, 18, 50, 47, 51]. Most

of the new structures use rate limiters to shape bandwidth, such as thetbf-like rate limiter

[21] and theXen-likerate limiter [9]. For public clouds, an important question is how is

bandwidth shared between multiple users.
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To answer this question, this chapter offers detailed information about rate limiting in

public clouds through a deep study of rate limiting in three popular public clouds: Amazon

EC2, Microsoft Azure, and Google Compute Engine. We find below that the rate is limited

in two aspects in public clouds.

• First: The traffic in public clouds is shaped by VM scheduling. A VM isscheduled

out when it consumes its credit, and scheduled back after an interval. We define a

VM’s sending rate as the sending capability of a VM, which is mainly determined by

the VM scheduling. In our study, we observe Amazon and Googlemicro instances

with high sending rates and Azure micro instances with lowersending rate.

• Second:Two typical rate limiters are found in Amazon, Google and Azure public

clouds. Azure instances use aXen-likerate limiter to shape the traffic after it is

shaped by VM scheduling in the first step. Amazon and Google clouds use a Linux

tbf-like rate limiter to shape traffic.

Chapter Organization. We provide the background related to bandwidth allocation

for a VM and rate limiters in section 4.2. We describe our measurement tool and data,

and offer an overview of our work in section 4.3. Secontion 4.4 offers a discussion of a

VM’s sending rate in clouds. Section 4.5 measures the rate limiters in clouds. Section 4.6

comprises the conclusion to this chapter.

4.2 Background

4.2.1 Bandwidth allocation in VMs

We use Xen as an example to explain how bandwidth is allocatedto a VM. The networking

processsing path is shown in Figure 4.1.
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Figure 4.1: Networking processing path in Xen.

token

packets

Figure 4.2: Token bucket model.

When a VM is scheduled to work based on a credit scheduling policy [13] it can use

CPU resources to process packets, i.e. sending or receivingpackets. The traffic goes

through DOM0 (also called hypervisor) by a netfront/netback channel [37]. DOM0 con-

trols all VM traffic, and decides when to help a VM send a packetout and when to deliver

a packet to a VM from outside. This function is implemented ina rate limiter. Each VM

has a rate limiter in DOM0, and the rate limiter is different from each other based on its

services. We consider two of the most popular rate limiters used in the literature: the Linux

tbf-like rate limiter, and the Xen-like rate limiter. We will discuss them in the next section.

4.2.2 Rate limiting

The token bucket model is shown in Figure 4.2. A packet is allowed to pass when it gets a

token. The token is removed from the bucket when it is allocated to a packet. The bucket

size is the maximum tokens available for use. When the bucketis empty, all packets are

buffered in order to wait for new tokens. Thus, packets are shaped to fit the token rate.
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With theLinux tbf-like rate limiter, there are a large number of tokens at the beginning

(the maximum is calledburst size b). Packets can be sent out at a high rate, calledpeak rate

P, as there are enough tokens allocated for the packets. Tokens are replenished at a lower

rate,token rate R. When the tokens are consumed, packets are sent out at this token rateR.

A Linux token bucket filter can be described by(P,R, b).

A Xen-like rate limiter, on the other hand, updates the token after an intervalT . Each

time the added token size is∆. If ∆ tokens are consumed in a short time, the packets are

saved in a local buffer for the next token update period. Comparing it with the Linux tbf-

like filter, which updates the available tokens when a packetarrives, the Xen rate limiter

updates the token less frequently. A Xen rate limiter can be described by(T,∆).

In our measurement, if the measured rate can be described by(P,R, b), i.e. a high

constant rateP at the beginning and a lower constant rateR later, we consider the network

to be using a tbf-like rate limiter. If the packet trace follows a(T,∆) pattern, i.e.∆ packets

are sent every intervalT , we consider the network to be using a Xen-like rate limiter.

4.3 Data and overview

In this section we describe the data we use in this chapter andoffers an overview of our

work. We design a UDP probing tool including ProbeSnd and ProbeRcv. ProbeSnd sends

UDP packets into a cloud network at a maximum rate, and ProbeRcv receives UDP packets

sent by ProbeSnd. We record each packet’s id, sending time and receiving time. We run

our ProbeSnd and ProbeRcv on VMs from the selected public clouds.

Table 4.1 shows the clouds, selected instance types and short names used in this chapter.

Note that we are not going to try to determine which instance or cloud is better. This

study only offers technical details of rate limiting in public clouds. Cloud users should not

decide which VM instance to use based simply on our results.
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Table 4.1: Public clouds and instance types

Public Cloud Instance Type Short Name

Google Compute Engine
US-Central1

f1-micro G1

n1-standard-1 G2

n1-standard-2 G3

Microsoft Azure
South Central US

basic-a0 M1

basic-a1 M2

basic-a2 M3

Amazon EC2
US West (Oregon)

t2.micro E1

m3.meduim E2

m3.xlarge E3

The overview of our measurement is as follows:

(1), We use our UDP probing tool to measure each instance’ssending rate. The main

contribution to the sending rate is the VM scheduling. We describe the scheduling process

using two periods theactive period, and thesleeping period. A detailed study ofactive

period, sleeping periodandsending rateis in Section 4.4.

(2), We measure the rate limiters in the networking path. We use iperf for EC2 and

Google Compute Engine instances as we find the burst size is very large for these instances.

We find that a Linuxtbf-like rate limiter is used in EC2 and Google Compute EngineG1

instances in both directions. Moreover,G1 gives its instances a large number of tokens

every 20 seconds. By using our UDP probing tool, we find that Azure instances use a

Xen-likerate limiter.

4.4 Rate limiting in a sender VM

In this section, we discuss a sender VM’s performance. Rate limiting in a networking path

is considered in the next section. We define the sending rate of a VM first, and then measure

the sending rate in public clouds.
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Figure 4.3: Active and sleeping periods.

4.4.1 How does a sender VM shape traffic?

When a number of packets are sent from a sender VM, the packetsare sent out periodically

as shown in Figure 4.3. A virtual machine sends traffic into the network in a given period,

calledactive period AP. Then the virtual machine is suspended for a certain interval, called

sleeping period SP. Figure 4.3 shows the packet trace from a sender VM. Packets are sent

out in the active periods in shadow. No packets are sent during the sleeping periods because

the VM is sleeping.

We define a VM’s sending rate based on the active period and sleeping period. Consider

the number of packets generated during anAP asN , packet size assize, and the length of

AP andSP asA, andS. Sending rate of a virtual machiner is defined by,

r =
N × size

A + S
(4.1)

Summary: Sending rate is the capability of a VM of transmitting packets. The sending

rate is the bottleneck of a path when it is lower than the path’s bandwidth. In other words,

the traffic from the VM is limited by the sending rate if the sending rate is too low .

4.4.2 Real data analysis regarding sending rate

Measurement Method, We use our UDP probing tool to probe a large number of packets

into the network. We keep a record of the sending time of everypacket. The intervals

between every two packets are calculated. The intervals canbe one of the following cases.

(1)Dispersion time to send a packet counts more than 90% of all the time intervals. A
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Figure 4.4: Probability distribution of time intervals between two consecutive packets

dispersion time is usually less than 10µs as modern processors and NICs are very fast. (2)

Interrupt coalescence (IC) or offloading time is longer thandispersion time. The interval

falls in the range10 ∼ 100µs. (3) VM sleeping period is the longest one and usually longer

than 1ms.

Figure 4.4 shows the probability density distribution of time intervals from two in-

stancesG2 andE2. The sleeping period is the second peak area shown in Figure 4.4. The

probability of the time intervals between 0.05 ms and 0.5 ms is very low as IC time is

shorter than 0.05 ms and the sleeping period is longer than 0.5 ms. Hence, we select the

second peak area as the sleeping period, i.e. if an interval is located in the second peak area

we consider it a sleeping period.

Figure 4.4 shows that the measured sleeping periodSi lies in a large range. For exam-

ple, for aG2 instance in Figure 4.4,Si is in the range of 0.6∼6 ms. We can choose the

peak to estimate the sleeping period. This is true for most instances such as Amazon EC2

instanceE2. However, some instances such asG2 have two peak points. In other words, a

G2 instance may be scheduled out for 1ms or 5ms. In this case, we use the median of peaks

to estimate the length of a sleeping period.

Figure 4.5 shows the average length of APs and SPs of different VM instances with a
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Figure 4.5: Average deviation of APs and SPs of different VM instances

95% confidence interval obtained using at least 30 runs. The instances from different zones

in the public clouds are in Table 4.1. Figure 4.5 shows that the sleeping period can be as

short as 400µs, and as long as 120 ms. Overall, an active period is much shorter than a

sleeping period.
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Figure 4.6: The average number of packets in one active period

Figure 4.6 shows the average number of packets in an active period with 95% confi-

dence interval. We find that in most cases, the number of packets Ni in an active period

APi does not change whetherSi is long or short. In a few cases,Ni increases ifSi is longer,

such asG2. Similar to SP estimation, we use the median ofNi andAi, to estimateN and
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A. Thenr is calculated based on Equation 4.1.
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Figure 4.7: The sending rate for different VM instances

Figure 4.7 shows the average sending rate of different instances with a 95% confidence

interval. We conclude that the sending rate of each instanceis as follows.

• The sending rate ofE1 is a little below 1Gbps, and theE2 andE3 instances’ sending

rates are very close and above 1 Gbps.

• Google instances’ sending rates are all above 1Gbps.G1’s sending rate is high be-

cause it offers ”bursting capabilities” [17].

• Azure instances’ sending rates are set to be the same as the token rate (we will discuss

the token rate in next section).

4.5 Rate limiters in a network path

In this section, we describe the rate limiters observed in Amazon EC2, Google Compute

Engine, and Azure data centers. We use a bandwidth measurement tool iperf in EC2 and

Google Compute Engine. We use our UDP probing tool to analyzehow Azure shapes the

traffic. For each cloud, we offer an example of one instance, then answer the following
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three questions: What type of rate limiter is it, why it is a rate limiter, and how are the other

instances in the cloud shaped?

4.5.1 EC2’s rate limiter
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Figure 4.8: Iperf result for EC2 instanceE1

Amazon EC2 uses aLinux tbf-like rate limiter in the network. The iperf result demon-

strate that the rate follows a(P, R, b) pattern. In this experiment, the receiver is a large

instance with high throughput, and the senders are the instances in Table 4.1. Figure 4.8 il-

lustrates the iperf result of an instanceE1. This figure shows the probing rate isP = 1Gbps

at the beginning, and later it changes toR = 65Mbps, and stays at the rateR.

The property of the rate limiter in EC2 is that it shapes traffic in both directions with the

same token rate. We use iperf to send packets from a high throughput instance to instance

E1, and the result curve is the same as the curve in Figure 4.8. The change from peak rate

to token rate should take a time as short asG1 instance in Figure 4.2, but it takes a long time

to change the rate from 1 Gbps to 600 Mbps, and then changes to the token rate quickly.

We think some techniques in the rate limiter make this changesmoothly.

We measure different instances’ token rates on Amazon EC2 byusing iperf. The result

is shown in Table 4.2. Not allE1 instances can get the 1Gbps, which can be explained by
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Table 4.2: Peak rate and token rate for EC2 instances

Instance type Peak rate (Mbps) Token rate (Mbps)
E1 400∼1000 65
E2 1000 300
E2 1000 700

its sending rate below 1 Gbps.

4.5.2 Google’s rate limiter
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Figure 4.9: Iperf Result for Google instanceG1

G1 uses aLinux tbf-like rate limiter in the network. The conclusion is based on the

fact that the iperf result demonstrates that the rate follows (P, R, b) pattern. As shown in

Figure 4.9 about an iperf result ofG1 instance, the peak rate isP = 3.2 Gbps at beginning,

and later changes toR = 500Mbps. We observe that the peak rate is varied when the

receiver changes from n1-standard-2, to n1-standard-4, and n1-standard-8, The peak rate

changes from 1.5 Gbps to 2.2 Gbps, and 3.2 Gbps. This is due to that a high performance

instance can send data at a high speed.

The rate limiter inG1 has two characteristics. First, it shapes traffic in both directions

but with different token rates. Figure 4.9 shows the token rate for outgoing traffic is around

500Mbps. The incoming traffic is limited at the rate around 300 Mbps from the iperf result.
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Second, the measured rate increases to a high rate every 20 seconds. The received data also

increase every 20 seconds as shown in Figure 4.9. We think that Google offers a reward of

a large number of tokens to the bucket every 20 seconds.

We also measuredG2 andG3 by using iperf, and found that there is no change in the

rate and the rate stays above 1 Gbps. We think there may be no rate limiters in the high

performance instancesG2 andG3, or we need other bandwidth measurement tools for high

speed networks.

4.5.3 Azure’s rate limiter
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Figure 4.10: Time intervals on sender and receiver side for Azure instanceM1

In Azure,M1 uses aXen-like rate limiter in the network. The reason is the traffic

follows a (T, ∆) pattern. Using our UDP probing tool, we measure the time intervals

between two consecutive packets on both the sender side and the receiver side as shown

in Figure 4.10. The large interval is around 120 ms on the sender side (sleeping period),

and on the receiver side it is 15 or 30 ms. Moreover, we find that6.5 packets are received

on average when the interval is 15ms, and 13 packets are received when the interval is 30

ms. Hence, ifT = 15 ms, then∆ = 6.5 packets; ifT = 30 ms, then∆ = 13 packets.
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Table 4.3: Peak rate and token rate for EC2 instances

Instance Type T (ms) ∆ (packets)
M1 15 6.5
M2 15 130
M3 15 260

Both intervals and packets follow the(T, ∆) pattern. We use the small one to show the

instance’s pattern.

The significant property of the rate limiter in Azure is that it only shapes the outgoing

traffic, not the incoming traffic. When we change the sender from a low throughput instance

to a high throughput instance, we find the estimated rate by iperf also increases on the same

receiver. This proves the incoming traffic is not shaped.

Why is a Xen-like rate limiter still used for Azure instanceswhen the rate has already

been shaped by the sender VM? By separating the large number of packets from one active

period into several small groups, the Xen-like rate limitersmoothes the traffic. A possible

replacement of the Xen-like rate limiter is to schedule the VM every 15 or 30 ms. However,

VM scheduling causes more overhead, compared with the rate limiter implemented in a

hypervisor.

We measure different instances’ token rates on Azure by using the UDP probing tool.

M1 is shaped by the Xen rate limiter, andM2 andM3 are shaped by VM scheduling. The

result is shown in Table 4.3, in which the packet size is 1500 Bytes.

4.5.4 Summary of rate limiting in public clouds

We summarize the rate limiting and property in the selected instances in Table 4.4.
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Table 4.4: All instances’s rate limiters and property

Instance type Rate limiter type Properties
E1, E2, E3 tbf-like both directions, same rate
G1 tbf-like both directions, different rate
G2, G3 NA high speed
M1 Xen-like single direction
M2,M3 VM scheduling single direction

4.6 Conclusion

In this chapter, we described how rates are limited in publicclouds. We measure the three

most popular public clouds, Amazon EC2, Google Compute Engine, and Microsoft Azure,

and found two main rate limiting methods. First, VM scheduling itself can shape the traffic,

proven by the observations from the Azure instances. Second, rate limiters are used in the

network paths to shape traffic. We considered two main rate limiters, the Linux tbf-like rate

limiter and the Xen-like rate limiter. These rate limiters are found in the public clouds.

Our data was measured in September of 2014. This is a little different from our mea-

surement in June 2014, as the cloud providers update their networks and instances. It is

also possible that our result would be different from other studies done in the future. Even

so, our measurement can be used to compare the degree to whichpublic clouds improve

their networking performance.
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5 Packet Ticking: A New Timing Mechanism and Its Application in Bandwidth

Estimation

5.1 Introduction

Current high-speed networking and cloud computing technologies have been using inter-

rupt coalescence and virtual machine scheduling well for decades. However, the interrupt

coalescence [60] and virtual machine (VM) scheduling [58, 12] can change probing pack-

ets arrival time. Thus it is hard to estimate available bandwidth (AB) accurately based on

the packet arrival time. An accurate AB can be put to good use in rate-based streaming ap-

plications [2], task scheduling in data centers [4], resource allocation in grids/clouds using

optical network architecture [61], and congestion controlfor TCP in data center networks

[59, 54]. To provide an accurate AB, it is urgent to develop a more efficient AB estimation

method that works in high-speed networking and virtual environment.

There are a few methods to handle the inaccuracy in arrival time caused by interrupt

coalescence, but no methods have been proposed for inaccurate arrival time in virtual en-

vironment. The first class of methods usesmoothing techniques. The packet arrival time

comes with noise caused by interrupt delay. For example, IMR-pathload [26] uses the

wavelet-based and average-based methods to eliminate the noise. PRC-MT [27] tunes the

packet train size to reduce the impact of noise. BASS [60] smooths packet arrival times

in an interrupt coalescence interval to improve AB estimation accuracy in high-speed net-

works. The smoothing techniques simply estimate AB based onpackets’ average arrival
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rate in a short interval. If the interval is longer such as VM scheduling time, the smoothing

techniques may not work. The new AB estimation method proposed in this chapter does not

use smoothing techniques, and is the first method to estimateAB in a virtual environment.

The second class involves getting more accurate packet arrival time. For example, Min-

Probe [19] is based on special physical layer idle symbols that are transmitted and analyzed

by a software-defined NIC [34]. Only through this software defined NIC, MinProbe can ac-

cess the physical layer in real time, so it cannot be used in a general network card. Another

example is PathComp [62], a recently proposed capacity measurement tool. PathComp

relies on packet sequence information to compare the capacity of two paths by a capacity

ratio. Packet sequence is not affected by interrupt coalescence and VM scheduling. Our

proposed method is inspired by the work of PathComp and also uses the packet sequence

information, but our method can estimate the AB of a path, whereas PathComp can only

get the capacity ratio of two paths.

In this chapter, we propose a novel timing mechanism, calledpacket ticking, which

can provide high-accuracy timing for measuring the arrivaltime ofprobing packetsfrom a

sender denoted by SND1 to a receiver denoted by RCV. Packet ticking relies on an addi-

tional sender, denoted by SND2, to send specialticking packetsto the same receiver RCV.

The sending rate of these ticking packets is carefully chosen to be sufficiently low so that

their inter-packet gaps∆ are long and less affected by crossing traffic. On the receiver

RCV, the inter-arrival gaps between the ticking packets areapproximately∆, and thus can

be used as time units to measure the arrival times of the probing packets from SND1. Our

analysis shows that packet arrival time calculated from theticking packets can accurately

detect increasing trend ofone way delay(OWD), which is a key metric used in current AB

estimation tools such as PathLoad [23].

The contribution of this chapter consists of three main points.
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• We analyze current AB estimation tools and show that they do not work well with

interrupt coalescence and VM scheduling. Using Pathload asan example, we show

how it is affected by inaccurate actual arrival times.

• We propose a new timing mechanism,packet ticking, for AB estimation tools. To

demonstrate the application of packet ticking, we design a new AB estimation tool

PacketTick. PacketTick uses a similar algorithm to Pathload with the new timing

mechanism. We analyze and discuss the impact of various factors, such as∆, ticking

packet size, and crossing traffic, on the accuracy of PacketTick.

• We compare the accuracy of PacketTick with Pathload in testbed and Amazon EC2.

In our local testbed, we emulate a virtual network. The results in tested and wild net-

work both validate that PacketTick can estimate AB more accurately than Pathload

in virtual environment.

The chapter is organized in the following sections. In Section 5.2, we offer background

on available bandwidth definition and related challenges. In section 5.3, we present the

Pathload algorithm and explain why Pathload fails with actual arrival time. In Section 5.4,

we propose packet ticking and how to use it to estimate AB. In Section 5.5, we analyze

factors that affect packet tick, including packet train size and background traffic. In Section

5.6, we propose our AB estimation tool PacketTick. We evaluate PacketTick in testbed and

Amazon EC2 in Section 5.7, and conclude our work in the end of this chapter.

5.2 Background

In this section, we present the background of AB estimation techniques, including the AB

definition and two main AB estimation models first. Then we discuss the challenges in AB

estimation.
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5.2.1 Background on AB Estimation

When we talk about AB estimation, AB refers to the maximum bandwidth that users can

access along a path from a sender SND1 to a receiver RCV, whichmay include multiple

links. Denote the linki’s capacity asCi. Crossing traffic through the linki at timet is

Ai(t). Available bandwidth on the path SND1→RCV is the minimum one of all links’ AB.

B(t) = min
i
{Ci − Ai(t)} (5.1)

Instead of measuringAi(t) at a specific time, we estimateAi(t) as an average ratêAi(t)

in a time range T.

Âi(t) =
1

T

∫ t+T

t

Ai(τ)dτ (5.2)

There are two AB estimation models, Probing Gap Model (PGM) and Probing Rate

Model (PRM). PGM sends a pair of packets with an inter-packetgapδs and receives with

an inter-packet gapδr. If packets are sent at the maximum rateC, the delay difference

δr − δs is caused by crossing traffic. Thus, the crossing traffic can be calculated by

Â(t) =
δr − δs

δs
× C (5.3)

PRM introduces self-induced congestion into the network. When packets are sent out

at a rate lower than AB, they are received at a rate equal to thesending rate. If the sending

rate is higher than AB, packets are delayed in the router buffer, so receiving rate is lower

than the sending rate. The later packets are delayed longer than the earlier packets. PRM

tools, such as Pathload [23], Pathchirp [49], and the system-theoretic approach [35], check

packet delays to see if the sending rate exceeds AB. The new ABestimation tool proposed

in this chapter uses the PRM model, specially a revised Pathload algorithm, to estimate
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AB.

One way delay(OWD) is the total delay for a packet to transfer from SND to RCV.

It includes each link’s packet processing delay, queuing delay, transmission delay, and

propagation delay. Among those delays, only queueing delaychanges based on queue

size. If we send apacket pairat a rateR1 > AB, packets are delayed in a router buffer

because they cannot be sent out atR1 in the bottleneck link. The second packet delays a

longer time because its delay includes the first packet’s processing time, thusOWD1 >

OWD2. Accordingly if we send apacket train(multiple packets or a group of packets),

the related OWDs show an increasing trend ifR1 > AB. If R1 < AB, a packet has been

processed before the following packets enters in the same queue. ThusOWD1 andOWD2

are independent. The related OWDs of a packet train should show a stable trend. If we

send packet trains at different rates, AB is the turning ratethat OWD starts increasing.

5.2.2 Challenges in AB Estimation

We present two challenges for AB estimation, and we pay more attention to the second one

because current AB estimation tools are not able to solve this challenge.

The first challenge for AB estimation is stochastic crossingtraffic. All existing AB es-

timation tools aim to improve AB estimation accuracy under different crossing traffic. For

example, Pathload [23] uses a binary search algorithm to findan AB range with which to

approach the accurate AB. Pathchirp uses an exponentially spaced packet train to estimate

AB. Our proposed tool PacketTick uses aPathload-likealgorithm. Consequently, Pack-

etTick is as accurate as Pathload with the same crossing traffic. The main advantage over

Pathload is a better timing metric.

The second challenge for AB estimation is the time requirement. For high-speed net-

works, it requires high-fidelity instruments to estimate a high-fidelity AB. It is impossible

to get a high-fidelity timestamp based on current technology. Many factors may affect the
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time accuracy, such as OS process scheduling, interrupt coalescence, and VM scheduling.

We offer two case studies to show why the timing is inaccuratein estimating AB.

Case 1: Interrupt Coalescence (IC), Interrupt Coalescence delays an interrupt to in-

form packet arrival time. Usually multiple packets are transferred to the kernel in an inter-

rupt. Figure 5.1 is an example in our testbed. We send packetsat 1Gbps through a 10 Gbps

network card. The inter-packet gaps should be 12µs when the packet size is 1500 Bytes.

Because the interrupt coalescence feature is enabled in thenetwork card driver by default,

packets are transferred to the kernel by group. The inter-packet gaps in a group are very

small, and inter-packet gaps between groups are large. Researchers [5] try to introduce

hardware taping to decrease the influence of interrupt coalescence. But using the interrupt

coalescence feature to increase a network card’s processing speed is unavoidable.
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Figure 5.1: Inter-packet gaps for a packet train through a 10Gigabit network card. The
sending rate is 1Gbps, and the packet size is 1500 Byte.

Case 2: VM scheduling, a VM is periodically scheduled to share CPU, networking

and other resources with multiple VMs residing in the same physical machine. When a

VM runs out of its allocated resources, it is suspended and waits for the next allocated

resources. Packets that arrive during the suspending period are buffered and delivered to
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the VM when it is scheduled to work. The timestamp from the buffered packets cannot be

used to estimate AB.

We use two VMs from Amazon EC2, one small instance as RCV and one medium

instance as SND1, and measure the OWD between SND1 and RCV. Todismiss clock syn-

chronization, we calculate a relative OWD, which is the OWD difference with the first

packet’s OWD. The relative OWD can be also used to check the OWD increasing trend.

We send packets at two different rates, a very low rate, and a very high rate. OWD

should be stable in Figure 5.2(a) and increasing in Figure 5.2(b). However, it is impossible

to check the OWD increasing trend using the actual arrival time on RCV. Figure 5.2 shows

that there is a large gap of about 4 ms in the OWD. This is causedby a VM scheduling.

The following OWD decreases because it has a shorter queuingdelay. The ideal OWD in

Figure 5.2 is estimated by the new timing mechanism that we propose in this chapter.

(N0, T0) Traffic Pattern . Through the case studies, we found that the time information

on RCV is not accurate enough to estimate AB in the above cases. Packets may be delayed

for a given timeT0 before being delivered to RCV. To simplify our simulation, we modeled

the packets received on RCV by a pattern (N0, T0), whereN0 is the number of packets

continuously received by RCV before RCV is suspended for aT0 interval. In the interrupt

coalescence,N0 andT0 can be set by the parameters rx-frames and rx-usecs in a Linux

system. In public clouds,N0 andT0 are based on VM types and workloads, and previous

studies such as [56] validate the existence of the (N0, T0) traffic pattern in Amazon EC2.

A detailed analysis ofN0 andT0 distributions is outside of the scope of this dissertation.

We made a preliminary study using over 100 EC2 instances and 50 Azure instances during

2014 and 2015. The result is thatN0 is around 30∼200, andT0 can be 1ms, 2ms, 4ms, 8ms

or the other intervals with different probabilities. In ourevaluation section, we will setN0

andT0 to these values to simulate a real public cloud environment.
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Figure 5.2: Sending rate in (a) is 100 Mbps, and in (b) 500 Mbps.

5.3 Pathload

5.3.1 Overview of Pathload

Pathload is one of the most well studied and accurate AB estimation tools to estimate

the AB along a path between two hosts SND1 and RCV. The processof estimation is (1)

SND1 sends a packet train to RCV at a specific rate by setting the inter-packet interval of

the packet train; (2) RCV receives all the packets, calculates each packet’s one way delay

(OWD) which is the total delay from sending to receiving a packet, and determines the next

rate; (3) Pathload uses a binary search algorithm to find a range to estimate AB. We discuss
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Table 5.1: Notation used in the chapter

Symbol Description

pi, Di, si Packet i, its OWD, and sending time

δri Inter-packet gap betweenpi andpi−1

ti Ticking packet i, also used as its arrival time

rIi , r
A
i , r

P
i

Receiving time forpi by ideal time,

actual time, and packet tick

SI
PDT , S

A
PDT , S

P
PDT

PDT calculated by ideal time,

actual time, and packet tick

δs Inter-packet gap at SND1

∆,∆r Inter-tick gap at SND2 and at RCV

R1, R2 Sending rate at SND1 and SND2

the OWD calculation and how to determine the next rate in Pathload.

OWD is the time difference betweensi andri for a packetpi. We have three types of

receiving times in this chapter, (1)rIi , the ideal time which is the accurate time thatpi arrives

on RCV; (2)rAi , the actual time that users get from an OS function such as gettimeofday();

(3) rPi , a new time that we propose in this chapter.

Pathload uses the OWD increasing trend to check if the packettrain sending rate isR >

AB or R < AB. Specifically, Pathload[23] uses the Pairwise Difference Test (PDT) and

Pairwise Comparison Testing (PCT) criterion to check the increasing trend. PDT is defined

by Equation 5.4, whereDi is the OWD of packetpi. The range ofSPDT is [−1, 1]. If

SPDT → 0, the OWDs are stable or independent. IfSPDT → 1, the OWDs are increasing.

SPDT =
DN −D0

∑N

i=1 |Di −Di−1|
(5.4)

Pathload changes the sending rate based on the increasing trend. If the OWDs are
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increasing, which means the current sending rate is greaterthan AB, the new sending rate

is going to be lower. If the OWDs are stable, which means the current sending rate is less

than AB, the next sending rate should be greater than the current sending rate. A binary

search process is used to find a range to estimate AB.

Receiver

Switch

p0 p1 p2 p3

Sender

p3p2p0 p1
p0 p1 p2 p3

packet time

ideal time

actual time

p2p1

p0 p1 p2 p3

p3p0

Figure 5.3: Three arrival times- ideal time, actual time, and packet ticks.

5.3.2 Pathload failures with actual arrival times

Pathload cannot estimate AB correctly with actual arrival times. Figure 5.3 shows the

difference between ”ideal time” and ”actual time”. A packetarrives at the RCV network

card at an ideal arrival time. However, the ideal time cannotbe captured by a common

network card or a user-level software. The time used in a user-level software is the actual

time, which is often delayed by network card features such asinterrupt coalescence or VM

scheduling. The actual arrival time of four packetsp0 ∼ p3 is shown in Figure 5.3. The
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inter-arrival time between packetsp0 andp1 is caused by an interrupt delay. A short inter-

arrival time is betweenp1, p2 andp3 because they are transferred to the kernel together.

When the inter-arrival time is shorter, such as the one between p1 andp2, the related

SA
PDT is lowered. Denoteδri = rAi −r

A
i−1 aspi’s inter-arrival time on RCV, andδs = si−si−1

as inter-sending time on SND. As we know,Di − Di−1 = rAi − si − (rAi−1 − si−1) =

rAi − rAi−1 − (si − si−1). Therefore we have

Di −Di−1 = δri − δs (5.5)

packet id

O
W

D

N0

∑ δri −N0δ
s

T0 − δs

Figure 5.4: OWD of a (N0, T0) pattern packet train, everyN0 packets delayT0.

For example, in a (N0, T0) pattern packet train, everyN0 packets delayT0. As shown in

Figure 5.4, the OWD difference betweenD0 andD1 is T0 − δs based on Equation 5.5. For

pi, 1 < i < N0, Di−Di−1 = δri − δs. The difference betweenD0 andDN0
is
∑

δri −N0δ
s.

Figure 5.4 is a special example that we can use the firstN0 packets to estimateSA
PDT . The

SA
PDT is

SA
PDT =

DN −D0
∑N

i=1 |Di −Di−1|
=

∑

δri −N0δ
s

2(T0 − δs)−
∑

δri −N0δs

Therefore,SA
PDT is lowered whenT0 increases. It is highly possible thatSA

PDT cannot

check the increasing trend becauseT0 is much longer than
∑

δri −N0δ
s.
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5.4 Packet Ticking: a new timing mechanism

5.4.1 Overview of Packet Ticking

From the case study of Pathload, we have found that we need a new timing mechanism that

can work even if the RCV is suspended. An obvious solution is to keep a record of the

ideal arrival time for each packet. If users use special hardware such as DAG, it is easy to

get the ideal arrival time or add the ideal arrival time to thepacket header. However, this

method requires specific hardware and a super user privilege.

.

network a

tick

SND1

SND2 network b

tic
k

RCVnetwork c

Switch

Figure 5.5: Packet tick example.

We proposepacket ticking, a software solution that provides a new timing mechanism to

record the arrival time of a packet. Packet ticking sends special ticking packets at a specific

rateR2 from a different pathSND2 → RCV . These ticking packets are calledticks. We

call this timing mechanismpacket ticking. To differentiate the packets from SND1 and

SND2, below we call packets from SND1probing packets, and packets from SND2ticking

packets.

A probing packet’s arrival time is estimated by the closest ticking packet. For example,

in Figure 5.6 which is part of Figure 5.3. Each ticking packetis denoted as a white rectan-

gle, and each probing packet as a green rectangle. Then we usethe latest ticking packet’s

arrival time to estimate a probing packet’s arrival time. For example,rP0 = t0, wheret0 is
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the arrival time of the first ticking packet. Though we do not know the exact time oft0, we

know the inter-ticking packet gap (or the length of one tick)ti − ti−1, which is assumed to

be a constant and does not change after the ticking packets are sent from SND2. It can be

calculated by the ticking packet sizeS and sending rateR2. Denote the inter-ticking packet

gap as∆, then∆ = S
R2

. A ticking packet’s arrival time is estimate as

ti = i∆+ t0

. We assumet0 = 0, soti = i∆.

Probing packets and ticking packets intersect with each other at the Switch before the

RCV as shown in Figure 5.5. So the first point at which probing packets and ticking packets

meet is not at RCV, but at the Switch. After the Switch, the packet sequence is not changed.

Hence, when we use packet tick to estimate the probing packets’ arrival time, we estimate

the packets’ arrival time at the Switch. In this chapter, we assume that the bottleneck

is always innetwork a, and the probing packets and ticking packets are not droppedin

network c.

One advantage of packet tick is that we get time in the network. It is known that a user

cannot get time from a switch directly unless he is a network administrator and the switch is

also required to provide the packets’ arrival time. Using the arrival time at a switch, we can

estimate the AB along the path SND1→ Switch, which is the AB of the path SND1→RCV

because we assume that the bottleneck is innetwork a.

Another advantage is that the arrival time is saved in the packet sequence. As long

as we get the sequence such as the one shown in Figure 5.6, we can estimate all probing

packets’ arrival time. A detail of how we get the arrival timeand use it to estimate the AB

is presented in the following section.
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t0 p0 t1 p1 p2 t2 p3 t3

Figure 5.6: Packet sequence at RCV.

5.4.2 Use packet ticking to estimate AB

In this section, we present the use of packet ticking to estimate available bandwidth. The

first step is to calculate the one way delay of probing packetsbased on ticking packets. The

second step is to check OWD’s increasing trend to calculate the next sending rate.

The procedure to calculate OWD using packet ticking is described as follows.

Procedure 1

• 1) Send probing packets from SND1 to RCV at the rateR1, and send ticking packets

from SND2 to RCV with an inter-tick gap∆. Record each probing packet’s sending

timesi. RCV receives the packets in a sequence that includes all probing and ticking

packets.

• 2) Calculate a ticking packet’s arrival time asti = i∆. A probing packet’s arrival

time is estimated as the latest ticking packet’s arrival time. For example, in Figure

5.6,rP0 = t0, rP1 = rP2 = t1 andrP3 = t2.

• 3) Calculate a probing packet’s OWD byDi = rPi − si.

One difference between the packet ticking and the actual times is that we do not use

all of the probing packets. When more probing packets arrivein one tick we take the first

packet to calculate its OWD. As the example shown in Figure 5.6, two probing packets

p1 andp2 fall in one tick, and both are estimated to arrive att1 at the Switch. It is more

accurate to estimatep1’s arrival time ast1 thanp2’s arrival time ast1 becausep2 arrives

later thanp1. Hence, we usep1’s OWD, and notp2’s.
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∆ ∆

p0 p1 p2 p3

∆ = δr

Figure 5.7: Example: one probing packet in one tick.

∆ ∆ ∆

p6p2p1 p4 p5p0 p3

Figure 5.8: Example: multiple probing packets in one tick.

Pathload [23] is a state-of-art available bandwidth estimation tool, and uses PDT to

check the OWD increasing trend. We have an equation similar to Equation 5.5 regarding

to the OWD difference and probing packets’ inter-packet gapδs. Considerm probing

packets arrive in one tick, for instance the packet sequenceis ti, pj+1, ..., pj+m, ti+1, pj+m+1.

Based on the above analysis, onlypj+m+1 andpj+1 are used to calculate OWD. The OWD

difference is calculated by Equation 5.6.

Di+1 −Di = ∆−mδs (5.6)

We use Theorem 1 to show that packet ticking can achieve the same accuracy as ideal

times in some special cases, 1)SI
PDT = 0 when OWDs are stable and 2)SI

PDT = 1 when

OWDs are increasing.

Theorem 1,∃∆, whenSI
PDT = 0, SP

PDT = 0; ∃∆, whenSI
PDT = 1, SP

PDT = 1.

Proof. Let N be the total number of probing packets, which coversK ticks. DI
i is the

OWD calculated with idea times, andDP
i with packet ticking.

(1), WhenSI
PDT = 1, SP

PDT = 1.
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WhenSI
PDT = 1, i.e. DI

N
−DI

0∑
N

i=1
|DI

i
−DI

i−1
|
= 1, thenDI

N−D
I
0 =

∑N

i=1 |D
I
i−D

I
i−1|. This is true if

and only if∀i, DI
i−D

I
i−1 > 0. Based on Equation 5.5,SI

PDT = 1 only when∀i, δri−δ
s > 0,

i.e. δri > δs. Let∆ ∈ [δs,min δri ]. Then there is at most one packet in a tick on the Switch

as shown in Figure 5.7. If there is only one packetpi, thenDP
i −DP

i−1 = ∆ − δs > 0. If

there is no packet in a tick, for example the packet sequence as tj , pi, tj+1, tj+2, pi+1, then

the OWD difference betweenpi+1 andpi is DP
i+1 − DP

i = 2∆ − δs > 0. So we can get

∀i, DP
i −DP

i−1 > 0. ThereforeSP
PDT = 1.

(2), WhenSI
PDT = 0, SP

PDT = 0.

WhenSI
PDT = 0, i.e.DI

N −DI
0 = 0, DI

N −DI
0 =

∑N

i=1 δ
r
i −Nδs based on Equation 5.5,

so
∑N

i=1 δ
r
i = Nδs . When using packet tick,DP

N −DP
0 = K∆−Nδs. If we set∆ = Nδs

K
,

DP
N −DP

0 = 0, thenSP
PDT = 0.

Ideal time
Packet tick

Actual time

A
cc

ur
ac

y

T0

Figure 5.9: The accuracy of using packet tick, actual time and ideal time to estimate AB.

5.4.3 Comparison of Packet tick, Actual time and Ideal time

Figure 5.9 shows the accuracy of using packet ticking, actual times and ideal times to

estimate AB. First, ideal arrival times achieve the highestaccuracy. The accuracy depends

on the Pathload algorithms if we use Pathload to estimate AB.Second, actual arrival times

are very close to ideal times when the interrupt timeT0 is short. However, its accuracy
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decreases asT0 increases. Third, our proposed packet ticking can achieve ahigh accuracy

and is not affected byT0.

The accuracy achieved by packet ticking depends on inter-tick gap∆ and the crossing

traffic’s effect on∆. Theorem 1 shows that under some special cases packet ticking can

achieve the same accuracy as ideal times. However, the special cases require an ideal∆

which is hard to get if we do not know AB in advance. In Section 5.5, we analyze the

accuracy of packet ticks.

5.5 Analysis of Packet Ticking

In this chapter, we analyse the precision and accuracy of packet ticking. Basically,∆ is the

precision of packet ticking, and it determines the AB estimation accuracy. We analyze how

∆ affectsSP
PDT , and discuss the factors that affect∆.

5.5.1 ∆: precision and accuracy

The packet ticking precision is defined by∆. If ∆ is a very small value, i.e.∆ → o,

the packet ticking becomes a computer clock with the highestprecision. Simply speaking,

when∆ is longer, it has a low precision, and more packets from SND1 are located in one

tick. In Figure 5.7,∆ is small and there is one packet in each tick. In Figure 5.8,∆ is large

and there are multiple packets in every tick.

The accuracy of packet ticking is the percentage of∆ remaining the same after ticking

packets are sent from SND2. The inter-tick gaps affect by crossing traffic at each hop. In-

tuitively, when∆ is small, the packet ticking is less accurate and more affected by crossing

traffic. When∆ is large, the packet ticking is more accurate.

Using a large∆ or a small∆ is a trade-off. The advantage of a smaller∆ is that the

packet ticking is more precise. More packets are used to calculate OWD, so we can get
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more information from the packet sequence. The disadvantage is causing more network

overhead and less accuracy. Figure 5.10 is an example of∆r distribution measured in

Amazon EC2. We select a medium instance (SND1) and a micro instance (RCV), and keep

sending packets at a specific rateR2. We use the inter-arrival time∆r on the receiver to

estimate∆r on the Switch. We find that when the sending gap is set as∆=120ms, 90% of

∆r on the receiver is around 120ms. However, if the sending rateis high, less∆r on the

receiver is equal to the sending gap. This example indicatesthat if we send ticks at a high

rate, i.e. a smaller∆, ∆r is less accurate on the Switch.
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Figure 5.10: The distribution of different∆ measured in Amazon EC2.

The procedure to select a right∆ with high precision and accuracy is as follows.

Procedure 2

• 1) SendingK ticking packets from SND2 to RCV with an inter-tick gap∆0. Record

each packet’s receiving timerAi .

• 2) Calculate the inter-arrival gap∆r based onrAi andrAi−1.

• 3) If π% of∆r locates in the range((1− ǫ)∆0, (1 + ǫ)∆0), choose∆ = ∆0. Other-

wise, set∆0 = λ∆0, and go back to Step 1.
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K is the number of probing packets we send, and the default value is set as 500, the same

length used in Pathload. The initial∆0 is set as 20µs, which is a very high precision for

current 1 Gbps and 10 Gbps networks. Users can select a low sending rate or a larger∆0

if they have an idea of the upper bound of AB. We use inter-arrival gap∆r to estimate the

gap at the Switch because this is the only time we can get.π is the confidence to use∆,

and we use 90% in our packet ticking. It may change depending on specific environments.

For example 90% may not be achievable then users can use a small one. ǫ is the allowable

variance for∆r from ∆, and we use 10%.λ is the parameter for finding a larger∆0, and

we set default value as 1.5.

Users can adapt(K,∆0, ǫ, λ, π) to find a suitable∆, or set it as a constant if they know

the AB range. For example, if AB>100Mbps, set∆ = 120µs.

SND1 RCV

SND2

R1 R2 R3

crossing traffic

Figure 5.11: A multi-hop network used for simulation in NS2.

5.5.2 Impact of∆ on SP
PDT

What is the difference between∆1 and∆2 if they both have high accuracy but a different

precision, i.e.∆1 < ∆2?

We use a simulation with NS2 to discuss the impact of∆ onSP
PDT . Using a simulator,

we can get the sameSI
PDT while changing different∆s. Figure 5.11 illustrates the network

for the simulation. The capacity of all the links in the network is 1Gbps, and we use two

one-hop crossing traffic 600Mbps and 400Mbps. So the AB is 400Mbps.
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Figure 5.12: The comparison ofSPDT when using different∆s.

Figure 5.12 calculates theSPDT with different∆s, 60µs, 120µs, and 240µs, and the

corresponding sending rate is 200Mbps, 100Mbps, and 50Mbpsrespectively. We change

the probing rate on SND1. The idealSPDT is SPDT = 1 whenR1 > 400, andSPDT = 0

whenR1 < 0. However,SI
PDT is the worst in our simulation because it is more sensitive to

crossing traffic. Comparing∆ = 60µs, 120µs, and 240µs, 240µs is better than the others

because it reachesSP
PDT = 1 with the lowest probing rateR1 = 450Mbps. The estimated

AB is closest to the correct AB: AB=400Mbps.

On the other hand, a large∆ requires a large packet train for probing packets. In our

simulation, when∆ = 60µs, there are about 2 probing packets in one tick. When we

use∆ = 240µs, there are about 7 packets in one tick. We set the packet trainsize as

N = 200. For∆ = 60µs, this packet train coversK = 100 ticking packets. However, for

∆ = 240µs, it covers less than 30 ticking packets. That is why for a large∆ we have to

send more probing packets to get the same number of ticking packets to estimate AB.

From this experiment, we find that a small∆ can estimate AB more correctly. A large

∆ with a high precision is more sensitive to crossing traffic. However, small∆ requires a

large packet train in AB estimation.
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Figure 5.13: Effect of ticking packet size on∆.

5.5.3 Ticking packet size

∆ is independent of the ticking packet size because∆ is comparably very large with the

sending time, which is determined by the ticking packet size. A large ticking packet takes a

longer propagation time to send at each hop. For example, in Figure 5.6, the ticking packet

size determines the rectangle width.∆ is relatively longer than the rectangle width. So

∆ is independent of the ticking packet size. We use an example in Amazon EC2, and the

inter-packet gap is set as∆ = 240µs. Figure 5.13 shows the distribution of∆r measured

on RCV; it clearly indicates that∆r is independent with the packet size.

5.5.4 Actual∆r is inconstant

Though the inter-ticking packet gap∆ is set as a constant, the actual inter-ticking packet

gap∆r on the Switch is inconstant because of crossing traffic innetwork b. However, we

use the constant∆ to estimate the probing packets’ arrival time. In this section, we analyze

the effect of∆r.

There is a rich body of related work in the study of inter-packet gap distribution. For

example, Piratala used a log-logistic model to describe a packet train’s inter-packet gap
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Figure 5.14:SP
PDT when actual∆ is inconstant.

distribution [42]. This distribution is also validated by our measurement in Amazon EC2

network as shown in Figure 5.13.

The cumulative distribution function for a log-logistic distributionLL(α, β) is

F (x, α, β) =
xβ

αβ + xβ

whereα is the median ofx, andβ is a shape parameter. In our measurement, the inter-

packet gap follows a log-logistic distribution LL(241.18,31.42).

We use the same settings from our measurement in Amazon EC2 tosimulate a packet

train in NS2. We generate ticking packets with random gaps which follows a LL(240,31.42)

distribution. Figure 5.14 compares theSP
PDT calculated by constant∆ and∆r. This figure

is the average result of 50 runs with a 95% confidential interval. Figure 5.14 indicates that

SP
PDT is lowered when it is calculated by∆r. The estimated AB based on∆r will be larger

than one based on∆. If we useSP
PDT = 0.5 as a criterion to estimate AB, the final AB

range is 400Mbps∼430Mbps based on∆, whereas the final AB is 400Mbps∼450Mbps

based on∆r.
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The accuracy of∆r in estimating AB depends on the shape of LL, i.e.β. If β is smaller,

more actual inter-ticking packets gaps fall out of((1− ǫ)∆, (1 + ǫ)∆). The corresponding

SP
PDT is smaller. The estimated AB is going to be a much larger range. This explains

why in Procedure 2, to select a good∆, we require thatπ% of Gi is located in the range

((1− ǫ)∆0, (1 + ǫ)∆0).

5.6 PacketTick: a new AB estimation tool

Putting it all together, we designed a new AB estimation tool, called PacketTick. Pack-

etTick is based on the new timing mechanism packet ticking, and uses the same algo-

rithm as Pathload to estimate AB. Basically, the main difference between PacketTick and

Pathload is that PacketTick requires an additional sender SND2 to send ticks to RCV. The

times used in AB estimation is estimated from the ticking packets from SND2.

The process of PacketTick is described by as follows.

Procedure 3

• 1) Select a new sender SND2. The bottleneck of SND1→ RCV should be before the

Switch.

• 2) Use Procedure 2 to select a good∆ to set the sending rateR2 on SND2.

• 3) Send a packet train on SND1 at rateR1, simultaneously sending ticking packets

on SND2 at rateR2.

• 4) Use Procedure 1 to calculate OWD, and use the Pathload algorithm to check the

increasing trend. Stop if we get a proper AB range; otherwiseset a newR1 based on

the Pathload algorithm and go to step 3.
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In step 1, the selection of SND2 is discussed in Section IV-A.Users can use software

such as traceroute to check the links innetwork a. Or users can use PacketTick to estimate

the AB along the path SND1→Switch.

In step 3, to minimize the overhead caused by ticking packets, SND2 sends ticking

packets to RCV at first, and then sends a request to SND1 to ask it to send a packet train at

R1. After SND1 sends the packet train, it sends a request to SND2to stop sending ticking

packets. This process can guarantee that ticking packets arrive at the Switch before probing

packets, and SND2 stops sending ticking packets after all probing packets go through the

Switch.

In step 4, the Pathload algorithm is reviewed in Section III.For more details of its

implementation, users can refer to Pathload [23].

Moreover, PacketTick can implement the other algorithms such as Pathchirp [49] to

estimate AB. Due to this chapter’s limits, we only discuss PacketTick based on the Pathload

algorithm.

SND1

SND2

R1

R3 R4

R5

R2

RCV

Figure 5.15: Testbed topology.

5.7 Evaluation

We evaluated the performance of PacketTick in our local testbed, and Amazon EC2. We

also compared it with the existing AB estimation tool Pathload. The result in the figures is

the average value of 50 times running with a 95% confidence interval.
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5.7.1 Testbed setup

The network topology of our 10 Gigabit testbed is shown in Figure 5.15. Routers 1, 2, 3, 4

and RCV are Linux servers, and each server has two Intel 8259910 Gigabit network cards.

We use Linux tc to set different link capacities. Router 5 is a10 Gigabit Netgear switch.

We use Poisson crossing traffic generated by MGEN. The bottleneck in the network is

on Router 2. We add different crossing traffics before Router2 and after Router 2, i.e. a

crossing traffic from R1 to R2, and from R2 to R3. The computersgenerating crossing

traffic and receiving crossing traffic are not shown in Figure5.15.

We emulate a data center network environment in our testbed which follows a (N0, T0)

traffic pattern. This emulation is implemented by modifyingPacketTick and Pathload to

send everyN0 packets as usual, and then keeps the program sleeping forT0.

5.7.2 Impact of crossing traffic
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Figure 5.16: We change the crossing traffic innetwork bfrom 10% to 90%, and estimate the
AB in network aby PacketTick. We consider two settings innetwork bwhere (1) capacity
= 1Gbps, and (2) capacity = 300 Mbps.

Section 5.5.4 discuss the impact of the inconstant∆ on SPDT . The inconstant∆ is

caused by crossing traffic on the path SND2→ RCV. In this experiment, we study the
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Figure 5.17: Average AB estimated by Pathload and PacketTick in our testbed.

effect of crossing traffic on AB estimation. We change the crossing traffic on the path

SND2→ RCV. Then we run PacketTick to estimate AB on the path SND1→ RCV. The

correct value is 600 Mbps. Figure 5.16 shows that PacketTickcan correctly estimate AB

when the crossing traffic is below 60%. When the crossing traffic is above 60%, estimated

AB is close to the correct AB.

Another study is the different capacities innetwork b. Two capacities are considered, 1

Gbps and 300 Mbps. We find that PacketTick works better when the capacity is 300 Mbps,

especially when the crossing traffic is above 60%. The reasonis that∆ is large whenC is

small. A larger∆ can increaseSPDT values, resulting in a more correct AB based on the

analysis in Section 5.5.2.

5.7.3 Testbed Evaluation

We implemented two experiments to compare Pathlaod and Packettick on our testbed. First,

we compare the AB estimation accuracy with Pathload and PacketTick. Second, we sim-

ulate the data center environment(N0, T0); and compare the performance of Pathload and

PacketTick.
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Table 5.2: Compare Pathload and PacketTick

Actual AB
Send data Time Measured AB Range

PL PT PL PT PL PT

200 7.40 19.4 8.63 6.35 72∼248 164∼178

300 21.9 20.5 13.9 5.56 190∼291 280∼291

400 11.0 13.9 8.71 4.32 322∼449 374∼390

500 19.9 11.5 11.7 3.56 471∼603 503∼524

600 11.0 15.4 8.68 4.7 499∼825 610∼629

700 11.0 14.5 8.66 4.44 743∼912 686∼700

800 9.20 9.86 8.05 3.09 775∼846 753∼765

(PT: PacketTick; PL: Pathload.)

Basic networks : In a basic network, we compare the performance of PacketTickand

Pathload on the following aspects: average AB, overhead, time, and AB range. Figure 5.17

shows the result of average. Both Pathload and PacketTick provide users a range of AB

(Rmin, Rmax). The average AB is the mean value of the range, i.e.(Rmin + Rmax)/2.

Figure 5.17 shows the result of the average(Rmin + Rmax)/2 with a 95% confidence.

From Figure 5.17, we can see that both Pathload and PacketTick can be used to estimate

AB, which approaches the accurate AB. PacketTick works better than Pathload especially

when the accurate AB is higher.

Comparing the estimated AB range, shown in Table 5.2, PacketTick estimates the AB

range more accurately than Pathload. Pathload’s AB range isvery large. This can be

explained by the Section 5.5.2, whereSI
PDT < SP

PDT , resulting in a large AB range, and

SA
PDT is very close toSI

PDT . When the accurate AB is higher, Pathload cannot estimate it

correctly. For example, Pathload’s result is 743∼912 Mbps when the accurate AB is 700

Mbps, but PacketTick is more accurate, and its result is 686∼700 Mbps. When AB=800

Mbps, the estimated AB is less accurate because we cannot generate packets correctly at a

high rate.
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We also studied the overhead and time to measure AB by Pathload and PacketTick. The

result is shown in Table 5.2. PacketTick uses more probing packet than Pathload because

we add one more path to send ticks. The additional cost of the ticks is not very heavy in

view of fact that we use small-sized packets (500 Byte), and ticking packets are sent at a

relatively low rate. Comparing the time needed to estimate AB, PacketTick takes less time

than Pathload.
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Figure 5.18: We simulate data center networks in our testbed, and compare the AB esti-
mated by PacketTick and Pathload. The settings areT0 = 1, 5, and 10 ms, andN0=200,
and 1000 packets.

Data center networks : We simulate a data center network in our testbed that follows

the (N0, T0) traffic pattern. We modify the PacketTick and Pathload programs to suspend

them for a timeT0 after receivingN0 packets. Figure 5.18 shows the average AB estimated

by Pathload and PacketTick whenT0=1, 5, and 10 ms,N0=200, and 1000. The accurate

AB is also set as 600 Mbps.

Pathload works only whenN0 is large andT0 is small, i.e.N0 = 1000 andT0 = 1 ms.

In the other casesN0 = 200, andT0 = 5 and 10 ms, Pathload estimates the AB as 100

Mbps. WhenN0 = 1000, andT0 = 5 and 10 ms, Pathload estimates the AB as 300 Mbps.
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Incidentally, the result of Pathload in Figure 5.18 is the average of valid values, and the

other invalid values include 0 Mbps or aborting by Pathload.

In contrast, PacketTick can estimate the exact AB in all settings ofN0 andT0. This

shows PacketTick can be used to estimate the(N0, T0) pattern traffic.

5.7.4 PacketTick in the wild
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Figure 5.19: The comparison of PacketTick and Pathload in Amazon EC2 instances. The
crossing traffic is changed from 0 to 300 Mbps.

We show that PacketTick can be used in public clouds to estimate AB. We select one

small instance as RCV and one medium instance as SND1 from Amazon EC2. The two

instances are in different zones, so they are not in the same physical machine and the path

SND1→ RCV goes through multiple links.

We use iperf to measure the capacity of the path. We found thatEC2 uses a token

bucket shaper. The peak rate is 1Gbps, and token rate is about300Mbps. So we change the

crossing traffic from 0 to 300 Mbps. The accurate AB is 1Gbps minus the crossing traffic

we add from SND1 to RCV. The crossing traffic is generated by a light weight Poisson

crossing traffic generator we developed.

Figure 5.19 shows the result of AB estimation from Pathload and PackeTick. The

results of PacketTick are a little lower than the accurate AB. This may be caused by the
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real crossing traffic besides the crossing traffic we probe inthe network. Compared with

Pathload, PacketTick’s estimated AB changes linearly withthe crossing traffic, and reflects

the load of the crossing traffic we send. Pathload cannot be used to estimate AB in EC2.

5.8 Conclusions

In this chapter, we propose a novel way to use packets to convey the time information.

We call these packets ticking packets, and they work the sameas clock ticks. We de-

signed a new available bandwidth estimation software, PacketTick, based on the packet

ticks. Since PacketTick uses the time information in the network as estimated from packet

ticks, it can correctly estimate the AB. The advantage is that the time information is saved

in packet sequence, so it is not affected by receiver’s interrupt delay or virtual machine

scheduling. From our testbed study, we find that PacketTick can estimate AB more cor-

rectly than Pathload, though it requires a few more packets than Pathload. We also show

that PacketTick can be used to estimate AB in the Amazon EC2 network. In the future, we

implement the other algorithms such as Pathchirp to estimate AB.
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6 Conclusion and Future Work

6.1 Conclusion

In this dissertation, we studied bandwidth estimation in virtual networks. The challenges

of bandwidth estimation are multifold because of the properties of virtual networks. As

per our analysis in this dissertation, the two main problemsare rate limiters used in virtual

networks and incorrect time information used in bandwidth-estimation software.

For the first problem, we designed a new software tool to estimate bandwidth in a

virtual network with a tbf-like rate limiter. This case involves the most popular ones used,

such as Amazon EC2 and Linux systems. The bandwidth is separated into two parts, peak

rate and token rate. Our algorithms and software can estimate peak rates and token rates

successfully. We tested this in different networks, including Amazon EC2.

For the second problem, we designed novel algorithms to use packet-sequence informa-

tion to estimate bandwidth. Our idea was to compare two pathsand determine which path

is faster at transferring packets from a packet sequence. Wecannot only determine which

path is faster, but also get an accurate capacity ratio. Based on this idea, we designed

two software tools to estimate capacity and available bandwidth separately. Through our

experiments in different environments, we found the new software tools can estimate the

bandwidth successfully.
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6.2 Future Work

With the rapid development of cloud technologies, there arenow many cloud vendors in

the industry; these include Amazon Web Services, Cloudera,Hortonworks, IBM, Intel,

MapR Technologies, Microsoft, Pivotal Software, and Teradata. They use very different

technologies at various levels: hardware, software drivers, operating system, and manage-

ment. The vendors are trying their best to provide a good service to customers. It is still

very difficult to check whether there is a networking problemin the cloud networks even

if the customer has good networking knowledge. A powerful networking tool is needed

for customers to detect networking issues. The new tools proposed in this dissertation aim

to detect networking problems in clouds. However, there arestill some improvements and

enhancements needed for these tools, which are construed asfuture work.

The first improvement is PacketTick. In PacketTick, SND2 is required to send packets

at a fixed time step. We used a very slow traffic rate to ensure that the traffic is not affected

by VM scheduling. However, there is no 100% guarantee that SND2 is scheduled out

during the measurement. For our future network, we can implement a specific packet for

VM that can go through DOM0 at a fixed time step. This packet will be sent out at real

time and not affected by VM scheduling, so it can further improve our available bandwidth

estimation. Moreover, we can implement the SND2 as a specialserver in a cloud that sends

ticking packets to RCV when a cloud user requests an estimation of available bandwidth

We provide efficient bandwidth-estimation tools both for cloud users and cloud vendors.

However, cloud vendors still cannot provide the best VM allocation for cloud users because

the bandwidth usage is unknown when the vendors try to allocate VMs to cloud users. For

our future work, we can use our current bandwidth-estimation techniques to estimate AB.

Then we can manage the network more efficiently by various techniques, such as changing

the routing to schedule traffic to idle links from busy links.
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