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Data mining of protein databases poses special challenges because many protein

databases are non-relational whereas most data mining and machine learning al-

gorithms assume the input data to be a relational database. Protein databases are

non-relational mainly because they often contain set data types. We developed new

data mining algorithms that can restructure non-relational protein databases so that

they become relational and amenable for various data mining and machine learning

tools. We applied the new restructuring algorithms to a pancreatic protein database.

After the restructuring, we also applied two classification methods, such as decision

tree and SVM classifiers and compared their accuracy in predicting whether partic-

ular pancreatic proteins are involved in pancreatic cancer. From our prediction the

SVM gave us not only the highest accuracy, about 73%, but it also gave the most

consistency among the GO terms and PFAM family proteins.



iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Peter Revesz for his optimism, guidance and

feedback during the course of my research and the writing of the thesis. He always

stood by my side during challenging times. I’m grateful for having Dr. Jitender

Deogun and Dr. Anita Sarma as part of my examination committee. I have benefited

from taking several excellent classes from them during my years at the University of

Nebraska-Lincoln.

I would also like to thank Dr. Robert Powers and his Ph.D. student Bradley

Worley from the Department of Chemistry at the University of Nebraska-Lincoln for

providing me the pancreatic cancer-related database. They also helped to motivate

the work by explaining to me many aspects of protein and pancreatic cancer.

Last but not least, I would like to give a special thanks to my undergrad

advisor Dr. Lalchand Shimpi from Saint Augustine’s University for his support of

my thesis and also thanks my family and friends for standing behind me during the

tough times and always giving me kind words of encouragements.



iv

Contents

Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background Concepts and Tools 9
2.1 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The WEKA Library . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 The Restructuring Method 14
3.1 Challenges to Overcome . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Merging Cancer and Non-Cancer Data . . . . . . . . . . . . . . . . . 18
3.3 Data Restructuring . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Merging GO merge and PFAM merge . . . . . . . . . . . . . . . . . . 27

4 Experimental Results 31
4.1 Results of GO PFAM merge . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Conclusion 38
5.1 Summarizing our contributions . . . . . . . . . . . . . . . . . . . . . 38
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A Program implementation details 41
A.1 Program structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2 GO merge proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.3 PFAM merge proteins . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.4 GO PFAM merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



v

B Appendix 59

Bibliography 61

Index 63



vi

List of Figures

1.1 Cancer Survival Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 WEKA GUI Chooser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 GO PFAM Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



vii

List of Tables

3.1 GO table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 GO merge table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 GO merge flat table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Pfam merge table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



1

Chapter 1

Introduction

“The Human Protein Reference Database represents a centralized platform to visually

depict and integrate information pertaining to domain architecture, post-translational

modifications, interaction networks and disease association for each protein in the

human proteome.”

Prasad, 200916

Data mining is a greatly successful and expanding field that combines statistical

analysis, machine learning and database technology to extract hidden patterns and

relationships from large databases 24. Fayyad 7 defines data mining as “a process of

nontrivial extraction of implicit, previously unknown and potentially useful informa-

tion from the data stored in a database.” Giudici 8 defines it as “a process of selection,

exploration and modeling of large quantities of data to discover regularities or rela-

tions that are at first unknown with the aim of obtaining clear and useful results for

the owner of database.”
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Figure 1.1: Cancer Survival Rates

Data mining is increasing applied to novel and non-traditional types of databases.

Our primary focus in this thesis is protein databases. We work on a particular pancre-

atic cancer-related protein database on an interdisciplinary project in collaboration

with Dr. Robert Powers and Bradley Worley in the Department of Chemistry at the

University of Nebraska-Lincoln 25. In particular, they have contributed the database

used in the thesis. Their database was a collection of several related databases that

were described in earlier papers regarding pancreatic cancer 2,3,4,9,12,22,29. However,

the thesis contains ideas that are generally applicable to other protein databases and

in fact to other databases that have a similar structure.

Protein databases are very important because they give us a starting point on do-

ing research. By having the databases, we are able to study the proteins in depth and

understand where the needs of change have to be. Without the protein databases, we

wont have the knowledge on which proteins to focus our work in. There are thousands

of pancreatic proteins and grouping them together is a focal key on our research.

Pancreatic cancer proteins have the lowest survival rate among cancer. The sur-

vival rate is barely over 5% chance 15 as showed in figure 1.1. In consequence, the
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need of early prediction of pancreatic cancer is greatly needed. We need to know

whether anomalous proteins, which is the unusually high or low levels in a patient

predicts future pancreatic cancer. If the anomalous protein is cancer-related, it may

be blocked or reduced by some drug. In a nutshell, preventing the development of

cancer is what our research long-term goal is intending to do.

Our pancreatic protein databases, which were obtained from the Department of

Chemistry, had some limitations. Dr. Robert Powers and Bradley Worley designed

the databases in a way that we could not run certain types of SQL queries. Therefore,

we reformatted the databases in a way that we could run new queries and data min-

ing software. Our research shows several ways we could overcome those challenges by

describing effecting way to change the structure of the databases. Our new structure

databases are not only feasible for computer scientists but also will help biologists

continue doing their work in a more defined way. They would not be running in issues

such as having multiple many to many attributes throughout the databases. They

will now be able to see a much clear databases with easy understanding throughout.

Data mining of protein databases poses special challenges because many protein

databases are non-relational whereas most data mining and machine learning algo-

rithms assume the input data to be a relational database. Protein databases are

non-relational mainly because they often contain set data types. This thesis was mo-

tivated by the need to solve the special problems posed by the non-relational nature

of the protein databases that we were asked to consider for data mining. Solving the

data mining problems was an important part of the joint work, and we focus on that

aspect in this thesis, although we contributed to solving other database issues related

to the joint project.
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1.1 Summary of Contributions

The three major contributions of the thesis can be listed as follows:

1. Restructuring algorithms: The goal of our research was to define a well

structure way to better understand the pancreatic protein databases. The

databases were designed in a way not practicable for non-biologists. During our

preliminary analysis while we were studying and working on the databases, we

ran into issues where the databases had large amount of redundancies through-

out. We were conflicted on which approach to take. Moreover, because our

focus was to use data mining techniques, it was inevitable we come to a solu-

tion on how to solve the problem. This problem did not bother the Biologists

community because it was never such an issue ever been reported. Our solution

was to come up with high-level SQL queries, which will help solve the problem.

During our initial phases, all our SQL queries failed. We were unable to recog-

nize our problems at the start of the research project. It was not until we chose

to move the two databases into one that we were able to located our problem,

which was because we were dealing with two pancreatic protein databases on

two different databases. Our goal was then to bring the two databases together

into one single database. We then proceed it with that approach by creating a

new database and moving the pancreatic cancer proteins from the two databases

into one.

In addition, we developed algorithms to restructure non-relational protein databases

so that they become relational and amenable for various data mining and ma-

chine learning tools. The restructuring algorithms were partly based on the

MySQL databases system and written in part in the Perl programming lan-

guage. As examples, we restructured several non-relational tables from a pan-
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creatic cancer-related protein database. This protein database included several

large tables, such as, the pancreatic protein GO term and PFAM family clas-

sification tables. GO terms and PFAM family groups describe characteristics

of proteins. The restructuring method and the details of the restructuring of

these tables are both described in Chapter 3.

2. WEKA data formatting and extension: We also formatted our data as

an “ARFF” file, which is the usual input data format to use in WEKA. The

ARFF format which stands for Attribute Relation File Format, has a specific

structure we had to follow to put our data in. Below is a general example to

how the format should look:

The dataset has to start with a declaration of its name

@relation name

The declaration of the relation name is then followed by a list of all the attributes

in the dataset including the class attribute. These declarations have the form

@attribute attribute name specification

If an attribute is nominal as was our data, specification contains a list of the

possible attribute values in curly brackets. For our data the attributes, which

were in the curly bracket, were all the UIDs of the database:

@attribute nominal attribute {first value, second value, third value}

In addition to these two types of attributes, there also exists a string attribute

type. This attribute provides the possibility to store a comment or ID field for

each of the instances in a dataset. In our case the attribute name we chose was

called relation were we designated either a ‘0’ or ‘1’ to differentiate between the

pancreatic and non-pancreatic protein database:

@attribute relation { 0, 1}
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After the attribute declarations, the actual data is introduced by a

@data

The data is where we listed of all our instances. The instances were our newly

restructured data. Our process started with a raw data which had a lot of

redundancies, was then transformed by eliminating all redundancies into a new

format, which could be used by computer scientist as well as non-scientists. By

the time the restructured data was completed it was then converted in comma-

separated values (csv) format that was added to the data section of the ARFF

file.

The comma-separated values format is frequently used to transfer large amount

of data between databases or applications, which are not directly join. The

records are editable using Microsoft Excel spreadsheets where the fields are

separated by commas 6.

Moreover, we have added to the WEKA the libSVM (Library for Support Vector

Machines) software implementation of support vector machines. This addition

made the WEKA package more useful for our project and made the project more

efficient because the other data mining algorithms we used were all available

in WEKA already. Hence all these data mining algorithms, including libSVM

could be run on the same input data without any additional effort. We describe

the WEKA system and this addition to the WEKA system in Chapter 2

3. Experiments: WEKA is a java program that contains a large variety of tools

that can be used for pre-processing datasets, so that we can focus on our al-

gorithm without considering too much details as reading the data from files,

implementing filtering algorithm and providing code to evaluate the results.

There are several ways to learn machine learning algorithms and several plat-
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forms available, but to be able to combine all the platforms into one is a major

bonus. WEKA gives us that flexibility. This tool allows us to classify and pre-

dict the outcome of pancreatic cancer.

Moreover, after the restructuring the pancreatic cancer database and extending

by libSVM using the WEKA system, we applied several classification methods.

In particular, we describe the results of our experiments with the J48 decision

tree and the libSVM support vector machine.

SVM is an effective technique for data classification. Support vectors are the

data points that lie closest to the decision surface, also called the hyperplane

7. We do not expect everyone to have a great understanding of the underlining

hypothesis behind SVM. We introduce the main objective of our research by

using this technique to explain our procedures. The libSVM, which refers to

the Library of Support Vector Machine, is an integrated software, which has

a better optimization to the Support Vector Machine (SVM) because it runs

much faster and the efficiency has been enhanced.

The decision tree is referred as the J48 when using WEKA. It is defined as a

tree whose internal nodes are tests and whose leaf nodes are categories. In a

nutshell, the non-leaf nodes are labeled with attributes and the leaves of the tree

are labeled with classications. The decision tree is a widely popular algorithmic

method when dealing with data mining and classification in general.

The purpose of using multiple classifiers was to compare their accuracy and

identify the most efficient among them. From our results, the SVM holds an

edge over the decision tree. Our detailed test results are presented in Chapter

4.
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1.2 Outline of the Thesis

This thesis is structured as follows. Chapter 2 describes some basic background that

is needed to understand the work in the thesis. In particular, Chapter 2 gives a brief

description of classifiers and the WEKA system. Chapter 3 presents the restructuring

method and illustrates it on sample protein databases. Chapter 4 gives the results

of applying the J48 decision tree and the libSVM classifiers to the restructured pan-

creatic cancer database. Chapter 5 gives our conclusion and possible directions for

future work.
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Chapter 2

Background Concepts and Tools

This chapter provides a background to the main concepts and tools used in the thesis.

Section 2.1 gives an introduction to classifiers and Section 2.2 describes the WEKA

system that contains a library of implemented classifiers.

2.1 Classifiers

There are problems in which we need to classify items in many instances, that is,

we need to predict some distinctive of an item based on several of its parameters. A

variable is represented by every parameter, which can then also a take a numerical

value. The variable is called a feature and the set of variables is called the feature

space. The dimension of the feature spaces is the number of feature.

The concrete feature of the item we want to predict is called the label or class

of the item. We use the classifier to make our predictions. A feature space X to

a set Y labels maps each classifier. The classifiers are built using machine learning

algorithms, which are able to automatically improve by the analysis of data sets, a

rationale reason we called them machine learning because they learn by experience
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24.

Let R(x1,...,xn, y) be a relation, where the set of attributes X = {x1,...,xn} is

called the feature space and the y attribute is called a label. Each tuple of the rela-

tion describes some entity based on specific values of the feature space and the label.

For example, each row may describe a protein with specific feature attributes, such

as, the proteins molecular weight, its amino acid sequence etc. and a label attribute,

such as, whether it is involved in pancreatic cancer.

Given such a relation R, a classifier is mapping from X to y. If a classifier is

correct on all tuples of relation R, then the value of y can be always predicted from

the values of X. In practice, the classifier may not be correct on all proteins. Further,

classifiers are intended to be able to classify even those proteins that are new, not

just those that are already in R. That is a difficult task and perfection is not to be

expected. However, a classifier that has a fairly high accuracy could be still useful in

many applications.

For example, suppose that a physician detects that a patient has an unusually

high presence of a new protein. In this case, a classifier may predict that the new

protein is involved in cancer based only the feature space. Then the doctor may pre-

scribe some drug that either reduces the amount of the protein in the patients cells

or blocks the action of the protein in the cells. Such a treatment could prevent the

formation or spread of cancer.

There are many classifiers. Decision trees are popular classifiers. A decision tree

is a tree which is read from the root towards the leaves, and whose internal nodes

are tests and whose leaf nodes are categories 28. For example, C4.5 is a well-known

decision tree algorithm 18.

A Support Vector Machine (SVM) performs classification by constructing for re-

lation R an n-dimensional hyperplane that optimally separates the data into two
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categories (for example when y=0 and y=1) 14. An example of SVM is the libSVM

implementation.

There are also various approaches to determine the performance of classifiers. The

performance can most simply be measured by counting the proportion of correctly

predicted examples in an unseen test dataset. This value is the accuracy. The sim-

plest case is using a training set and a test set which are mutually independent.

This is referred to as holdout estimate. To estimate variance in these performance

estimates, holdout estimates may be computed by repeatedly resampling the same

dataset. For example, randomly reordering it and then splitting it into training and

test sets with a specific proportion of the examples, collecting all estimates on test

data and computing average and standard deviation of accuracy.

A more elaborate method is cross-validation5. Here, a number of folds n is speci-

fied. The dataset is randomly reordered and then split into n folds of equal size. In

each iteration, one fold is used for testing and the other n-1 folds are used for training

the classifier. The test results are collected and averaged over all folds. This gives the

cross-validation estimate of the accuracy. The folds can be purely random or slightly

modified to create the same class distributions in each fold as in the complete dataset.

In the latter case the cross-validation is called stratified. . An n-fold cross-validation

is called stratified when the folds are selected so that the mean response value is

approximately equal in all the folds. In the case the classification is dichotomous,

this means that each fold contains two types of the same proportions class labels 19.

2.2 The WEKA Library

“The programme aims to build a state-of-the-art facility for developing techniques of

machine learning and investigating their application in key areas of the New Zealand
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economy. Specifically we will create a work-bench for machine learning, determine the

factors that contribute towards its successful application in the agricultural industries,

and develop new methods of machine learning and ways of assessing their effective-

ness.”

Hall 10

Data mining and classification were a main objective to our research but without

the tool to run the experimentation with, they would be unnecessary. The tool we

used is called WEKA. The Waikato Environment for Knowledge Analysis (WEKA)

system was developed at the University of Waikato, New Zealand 26. WEKA is an

extensive library of data mining and machine learning algorithms.

Figure 2.1: WEKA GUI Chooser
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In WEKA, the input data is a relation or table which is represented by an At-

tributes Relation File Format (ARFF) file. Each ARFF file starts with a title to let

the user know what kind of data is stored in the file. The title is followed by a relation

type and the all the attributes and their types. Each attribute can have one of the

following data types:

• nominal, a user-defined set of values,

• numeric, a real number,

• string, an arbitrary long list of characters, or date.

Finally, the attribute declarations are followed by the actual data rows. Once the

WEKA graphical user interface is started, as shown in Figure 2.1, one can use the

Explorer button to enter the system and then load the ARFF file. After that one

can select from a menu of library options any particular classifier, including the J48

decision tree (a close implementation of the C4.5 decision tree) or the libSVM support

vector machine implementation, which is not a basic option, but we also added to

our own copy of the WEKA library.
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Chapter 3

The Restructuring Method

The Borg collection of databases contains two databases Borg pdac, which contains

data about pancreatic proteins that are related to pancreatic cancer and Borg np,

which contains data about pancreatic proteins that are not involved in cancer. The

two different databases needed to be merged into one database. Section 3.1 de-

scribes some of the challenges we have overcame. Section 3.2 describes the process of

merging two databases Borg pdac and Borg np and Section 3.3 describes the restruc-

turing of the merged database so that it is ready for input to various data mining

algorithms. Finally, section 3.4 describes the process of merging the GO merge and

the PFAM merge together.

3.1 Challenges to Overcome

Restructuring the data was a problem we have encountered, but it was definitely not

the only issue we faced. Having to work on two different databases was an issue as

well as having to come up with high-level SQL queries to merge the two databases.

Our issues were new in the database communities because they were never a need for
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them to having to change the format of a database. We spent countless time exper-

imenting different SQL queries, which would work for our dilemma. Once we came

up with some good results, they were practically impossible to use them because it

was unlikely for a user to have to write 200 to 300 lines or more of SQL queries.

In addition, we could not afford to make any typing mistakes, as it has never been

a way to go back and fix any mistakes while in the SQL query command. That was

a huge drawback we had to overcome while using SQL queries. The solution to it

was to write a program as well as the SQL queries to help us automatically generate

those SQL queries lines we have constructed. By doing so, we spared ourselves the

part of a typing any errors as well as the time consuming to write the queries.

Both the Borg np and the Borg pdac database have the same structure tables,

in which their tables contain the same set of attributes. Among the tables that are

of interest to us are the GO and the PFAM tables. Both Borg np and Borg pdac

contain 40 different tables. Out of those 40 tables, we used the following 4 tables,

which had a total number of 125,545 rows.

GO np 70, 331 rows

GO pdac 30, 888 rows

PFAM np 7, 054 rows

PFAM pdac 7, 272 rows

Table 3.1 displays the UID on the left and GO terms on the right. We encountered

huge problems involving many-to-many relations in the GO table. For example, we

can see that rows three and five with the same UID O43491 are related to two dif-

ferent GO terms, GO:0005886 and GO:0019898. On the other hand, similarly, rows

three and eight with the same GO term GO:0005886 are related to two different UIDs,
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O43491 and Q96C24. Restructuring the tables to make the UIDs primary keys and

unique in each row was one of the challenges we faced during our work.

The GO table lists all (UID, GO) pairs, such that UID is the universal identifier of

a pancreatic protein and GO is a feature descriptor, also called a GO term. Each UID

can be associated with a set of GO terms and each GO term can be associated with

a set of UIDs. A simplified version of the GO table in Borg pdac looks as follows:

UID GO
O43491 GO:0003779
O43491 GO:0005198
O43491 GO:0005886
O43491 GO:0008091
O43491 GO:0019898
O43491 GO:0030866
Q96C24 GO:0005215
Q96C24 GO:0005886
Q96C24 GO:0019898
Q96C24 GO:0030658
Q96C24 GO:0042043

Table 3.1: GO table

The PFAM table is similar to the GO table. The PFAM table contains the UID

of proteins and the PFAM terms. PFAM terms form another set of characterizations

of proteins that is sometimes a useful alternative to the GO term characterization.

Before we can do any data mining, we have to merge each pair of corresponding

tables from Borg np and Borg pdac. We illustrate this process only for the two GO

tables because the merging of the two PFAM tables and other pairs of corresponding

tables is similar.

Some of the challenges we faced at the beginning were on how to work on the

tables knowing they were on two different databases. The analysis we wanted to
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do consisted of us having the two tables in the same database, so we could run our

queries. We spent countless hours contemplating different scenarios as on how to go

about the challenge of bringing the two databases together into one big database.

The steps on how we solved this problem are described in Section 3.2.

Another challenge we faced was the process of flattening our data. Flattening is

the process of transforming a data with identical records to be re-ordered in the same

columns or rows so that way we eliminate repeated records. The idea of flattening was

first brought to my attention during one our meetings at the Chemistry Department.

The idea was on how to bring all the raw data into a new file, which not only eliminates

redundancy but then also applies a way to show the relationship among the UIDs.

To find a way to flatten our data was critical because data mining works well only

when the database relation has a flattened structure.

Furthermore, the cancer database we have been working with does not use any

ordering to arrange the proteins. The ordering for the data is depending just on

which proteins is identified first. In our case for the purpose of data mining it is

important to use some sort of ordering method. Some tables are more complex than

others to come up with an ordering process. For example, during the course of this

thesis we have used the GO and PFAM tables to generate our analysis. The GO and

PFAM went through various transformations in order to be used in our data mining

technique. In addition, we have many to many relations tables in our data. They are

tables in which same UIDs have many different GO term or a single GO term has an

UID which has many other GO terms related to. The solution of these challenges,

that is, how the process of flattening works is described in Section 3.3.

Furthermore, we wanted to expend our work to also merge our flattening data.

Our goal was primary to merge the GO np with the GO pdac and as well as the

PFAM np with PFAM pdac because they were on different database so we could
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better run our analysis. Once merged, the GO np and the GO pdac were called

GO merge and the PFAM np and PFAM pdac were called PFAM merge. Our next

goal was then to come up with an even higher SQL query to merge the two already

merged data. Besides dealing with SQL query complexity, the issue we were having

on merging of the two tables (GO merge and Pfam merge) dealt with ambiguity.

Ambiguity in database occurs when more than one table is used in a ’JOIN’, there

may be two columns with the same name. In our case, the GO merge table has two of

the same column names as Pfam merge table, which are ’UID’ and ’Y’. Our challenge

was on to solved two ambiguity columns while joining the two merged tables.

3.2 Merging Cancer and Non-Cancer Data

In order to merge the two GO tables, we exported the GO tables from both Borg np

and Borg pdac. First, we export the GO table from the Borg np database into a

comma separated values (.csv) file with the following command:

mysql> select UID, GO

− > from GO

− > into outfile ‘/tmp/GO np.csv’

− > fields terminated by ‘,’

− >optionally enclosed by ’”’

− >lines terminated by \n;

Similarly, we export the GO table from the Borg pdac database into a .csv file as

follow:
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mysql> select UID, GO

− > from GO

− > order by UID

− > into outfile ‘/tmp/GO pdac.csv’

− > fields terminated by ‘,’

− > optionally enclosed by ’”’

− > lines terminated by \n;

Then we created a new database called Merge using the following query:

mysql> create database Merge

The next phase is to create two new tables in our Merge database in which we will

then import the two tables we have exported from the Borg database into. Two new

tables named GO np and GO pdac were created using SQL. The first query created

the GO np table:

mysql> create table GO np (UID varchar(16), GO varchar(16));

The second query created the GO pdac table:

mysql> create table GO pdac (UID varchar(16), GO varchar(16));

SQL query always check whether the input values are numerical or strings therefore

it is very important to specify those type of values while creating tables. In our case

our value type were varchar which are a mixture of variables and characters. Our
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next step is to import the two previously exported tables, which were the GO np and

the GO pdac. To accomplish that task, we execute the following two queries:

mysql> load data local infile ‘/tmp/Flat/GO np.csv’

− > into table GO np

− >fields terminated by ‘,’

− > lines terminated by \n

− > (UID, GO);

mysql> load data local infile ‘/tmp/Flat/GO pdac.csv’

− >into table GO pdac

− >fields terminated by ‘,’

− >lines terminated by \n

− >(UID, GO);

Finally, we will be able to merge the GO np and GO pdac tables because now they

are in the same Merge database. However, a simple union would lose the information

whether the protein is related to cancer or not. Hence before the union, we extended

the GO np and the GO pdac tables with a Y column, which denotes whether the

protein is related to pancreatic cancer or not. All the proteins in the GO np table

will be extended with a Y value of ”0”, while all the proteins in the GO pdac table

will be extended with a Y value of ”1”. Below is the complete query:

mysql> create view GO merge (UID, GO, Y) as

− >select UID, GO, 0 from GO np

− >union
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− >select UID, GO, 1 from GO pdac;

After the above query is executed the GO merge table looks as follows, where {· · ·}

indicates continuation of the table:

UID GO Y
O43491 GO:0003779 1
O43491 GO:0005198 1
O43491 GO:0005886 1
O43491 GO:0008091 1
O43491 GO:0019898 1
O43491 GO:0030866 1
Q96C24 GO:0005215 1
Q96C24 GO:0005886 1
Q96C24 GO:0019898 1
· · · · · · · · ·
Table 3.2: GO merge table

3.3 Data Restructuring

The next step in the process is a restructuring of the database. In this restructuring,

which we also call “flattening”, the table is transformed into another table that has

the same information but all information about a single protein appears in one row.

For example, the above GO merge table can be restructured or flattened as follows:

UID 3779 5198 5215 5886 8091 19898 30658 30866 42043 Y
O43491 1 1 0 1 1 1 0 1 0 1
Q96C24 0 0 1 1 0 1 1 0 1 1

Table 3.3: GO merge flat table
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Table 3.3 has been transformed into a table that has the same information form

table 3.2, but now all information about a single protein appears in one row. This

table makes it lot easier to identify any redundancy throughout the database, which

subsequently help us avoid them.

As it can be seen the number of attributes in the restructured relation is n+2,

where n is the number of distinct GO terms. Apart from UID and Y, these distinct

GO terms form the attributes of the restructured relation. Below each GO term a

1 or 0 indicates whether the GO term applied to the protein indicated by the UID

on the left. For example, the GO term 3779 applied to UID O43491; therefore a 1

appears in row O43491 and column 3779.

The above is an explanation of restructuring. Next we describe the steps that we

followed to get the actual restructured table. First, as a practical observation, we

cannot actually restructure the entire GO merge table because there are 7935 GO

terms. Moreover, most of these GO terms occur very infrequently. Hence we selected

only the top 200 most frequent GO terms as follows. First we found the frequency of

each Go terms:

mysql> create view GOcount(GO,count) as

− > select GO, count(*)

− > from GO merge

− > group by GO;

The new table GOcount(GO,count) contains the count of each GO term. Once we

have created the GOcount, we then have to extract the top 200 most frequent GO

terms into a text file as follows:
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mysql> select GO from GOcount

− > order by count desc limit 200

− > into outfile ‘/tmp/MergeTop200GO.txt’;

Next we wrote a C++ program to help us automatically generate the SQL queries

we have constructed to help us perform the restructuring. The program reads each

line from the input file in ifstream ifs (name.txt) and output each line read into a

SQL query format. The new format is then created into a new text file ofstream

a file (name.txt). The output file then can be used in a SQL query console to be run.

The program is ran inside the Netbeans IDE software program. The main purpose

of the program is to read the content from a file and add the written query from the

program to it. The program will go over each line of the file, which is either the GO

terms or PFAM pancreatic cancer proteins and add a query line until the end of the

line. The program and its full structure is display in Appendix A of the thesis.

Moreover, the program while loop will be executed 200 times because the input

file has 200 lines, each containing a single GO term. The program outputs the SQL

query into a new text file called SQL flatten.txt. Below is how the SQL flatten.txt

file looks like, where the {· · ·} means omitted lines. The complete output is displayed

in Appendix B.

select UID,

max(case when GO = ‘GO:0016021’ then 1 else 0 end) as ‘GO:0016021’,

max(case when GO = ‘GO:0005515’ then 1 else 0 end) as ‘GO:0005515’,

max(case when GO = ‘GO:0005634’ then 1 else 0 end) as ‘GO:0005634’,

max(case when GO = ‘GO:0005737’ then 1 else 0 end) as ‘GO:0005737’,

max(case when GO = ‘GO:0008270’ then 1 else 0 end) as ‘GO:0008270’,
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max(case when GO = ‘GO:0006350’ then 1 else 0 end) as ‘GO:0006350’,

max(case when GO = ‘GO:0007165’ then 1 else 0 end) as ‘GO:0007165’,

max(case when GO = ‘GO:0005886’ then 1 else 0 end) as ‘GO:0005886’,

max(case when GO = ‘GO:0005524’ then 1 else 0 end) as ‘GO:0005524’,

max(case when GO = ‘GO:0003677’ then 1 else 0 end) as ‘GO:0003677’,

·

·

·

Y

from GO merge

group by UID

When the SQL query is executed, for each UID it checks all the GO terms. If any of

the GO terms the UID is associated with matches a particular GO term for we are

creating a column in the flattened table, then that GO term will get a value of “1”

else it will get a value of “0”. The process then continues until it does not read any

more UID groups. We executed the above SQL query and exported the output file

to a .csv file by adding at the end the following:

mysql>into outfile ‘/tmp/FlatTop200GO.csv ’;

Below is a sample of the output file flattened (with only the top 30 GO terms):

A0A183,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

A0A5B9,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
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A0AV96,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0

A0AVI2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1

A0AVI4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1

A0AVK6,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

A0FGR8,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

A0FGR9,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1

A0M8Q6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

A0PJE2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0

A0PJK1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1

The above file is composed of the UIDs on the left side and the main body consists

of “1”s and “0”s, where the “0”s indicate a specific GO term has no pancreatic cancer

and “1”s indicate it has pancreatic cancer links. In addition, we have a “Y” value

column at the end of the data, which indicates whether a specific UID is part of the

pancreatic data “1” or non-pancreatic data “0”.

The next phase is to generate an ARFF file. The ARFF file has two parts. The

first part is the Header, which is then followed by the Data information. Before we

start, we have to convert the CSV file to an ARFF file.

Once we have generated the ARFF file, we open a blank text file using a text

editor and paste in the header information, which consists of all the UIDs from both

databases (pancreatic and non-pancreatic). We follow a specific format in which all

UIDs have to be in. We then added all the GO terms as part of the attributes. Finally

we then add all the information from the FlatTop200GO.csv file in the data section

of the ARFF. Below is a small sample of how the final ARFF file would look like with

only ten UIDs and ten GO terms:
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@relation FlatTop200GO

@attribute “UID” A0A183 , A0A5B9 , A0AV02 , A0AV96 , A0AVI2 , A0AVI4 ,

A0AVK6 , A0AVT1 , A0FGR8 , A0FGR9

@attribute “GO:0016021 { 0, 1}

@attribute “GO:0005515 { 0, 1}

@attribute “GO:0005634 { 0, 1}

@attribute “GO:0005737 { 0, 1}

@attribute “GO:0008270 { 0, 1}

@attribute “GO:0006350 { 0, 1}

@attribute “GO:0007165 { 0, 1}

@attribute “GO:0005886 { 0, 1}

@attribute “GO:0005524 { 0, 1}

@attribute “GO:0003677 { 0, 1}

@attribute “relation” { 0, 1}

@data

“A0A183”,0,0,0,0,0,0,0,0,0,0,1

“A0A5B9”,1,0,0,0,0,0,0,0,0,0,0

“A0AV02”,1,0,0,0,0,0,0,0,0,0,1

“A0AV96”,0,0,1,0,0,0,0,0,0,0,1

“A0AVI2”,1,0,0,0,0,0,0,0,0,0,0

“A0AVI4”,1,0,0,0,0,0,0,0,0,0,0

“A0AVK6”,0,0,0,0,0,1,0,0,0,0,1

“A0AVT1”,0,1,0,1,0,0,0,0,1,0,0

“A0FGR8”,1,0,0,0,0,0,0,1,0,0,0
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“A0FGR9”,1,0,0,0,0,0,0,0,0,0,1

The header of the file consists of the @relation and @attribute values. The @data

consists of the information we have generated from the FlatTop200GO.csv file. The

beginning of the file @relation only describes the name of the file type. We have three

types of @attributes in our data. The first is for all the UIDs, the second type is the

10 GO terms we have used, and the third type of attribute in the relation is the “Y”

value.

We repeated the same process for the PFAM tables, first merging PFAM np and

PFAM pdac, then restructuring them and finally converting the restructured data

into an ARFF file. In this way both Y-labeled and restructured and GO and PFAM

tables were made ready for data mining.

3.4 Merging GO merge and PFAM merge

During the most part of our work, we focused mainly on merging the GO np with the

GO pdac and the PFAM np with PFAM pdac. We did so because we were working

on two different databases, therefore it was vital we merge the tables to better work

on our analysis. Throughout this thesis, we have showed our process by starting with

individual tables then have them being merged; which were subsequently followed by

our restructuring method. We carried our work even further by working on merging

the two already merged tables. From the figure 3.1 below, which describes our steps

we can see from the left side the GO np and GO pdac that were merged using ‘SQL1’.

On the right side, we see the PFAM np and PFAM pdac merged using ‘SQL2’. Our
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latter part of the figure shows both GO merge and PFAM merge being merged by

‘SQL3’ to form the GO PFAM merge restructure file.

Figure 3.1: GO PFAM Merge

We faced several challenges while trying to solve the merging of both the GO merge

and PFAM merge, but our toughest challenge dealt with the ambiguity of the two

tables. Recalling that the GO merge table from section 3.2, the table had three

columns UID, GO, Y values. From the PFAM merge table 3.4 below, we have also

three columns UID, family, Y values. The only difference between those two tables is

the GO and family row name.

The problem we ran into while merging the two tables was the similarity of the

name with the UID and the Y values. Our SQL query cannot distinguish the two dif-

ferences; therefore we had to come up with a high SQL query to join the two merging

tables while making query understands the similarity between them. From section
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UID family Y
P02656 PF05778 0
P09651 PF00076 0
Q9BY79 PF00431 0
Q9BY79 PF01392 0
Q9BY79 PF00057 0
O95931 PF00385 0
Q9UKU0 PF00501 0
P10323 PF00089 0
Q17RR3 PF00151 0
Q17RR3 PF01477 0
· · · · · · · · ·

Table 3.4: Pfam merge table

3.3, in order to restructure our data we used a specific SQL query. We followed that

particular SQL query that has some of the same parity as our new query, but we

made some changes to make it feasible for us to obtain our merging result. An exam-

ple of the merging of the GO merge and PFAM merge with our new query is as follow:

SELECT T.UID,

max(case when GO = ‘GO:0016021’ then 1 else 0 end) as ‘GO:0016021’,

·

·

·

max(case when family = ‘PF07647’ then 1 else 0 end) as ‘PF07647’

·

·

·

, T.Y

FROM GO merge T JOIN Pfam merge ON T.UID = Pfam merge.UID
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group by UID

From the query above, we have added an alias called “T” to the UID and to

the Y value, by doing so we have eliminated the UID and Y ambiguity that existed

before between the two merged tables. The query has two parts consisting of the GO

proteins section and the PFAM proteins section. From our experiment we used the

top 100 GO merge proteins as well as the top 100 PFAM merge giving us a total of

200 proteins combine. We have illustrated the rest of the proteins in our example

by using dots. The rest of the query shows the merging of the tables by using SQL

command.
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Chapter 4

Experimental Results

In the experiments we used both libSVM support vector machines and J48 decision

trees. Both of these were available in the WEKA library, which accepted as input of

both the GO merge term and the PFAM merge files in ARFF format. The stratified

cross-validation was used for our classification. Below is the data mining result using

libSVM with the GO merge term file:

=== Stratified cross-validation ===

Correctly Classified Instances 12947 72.1563 %

Incorrectly Classified Instances 4996 27.8437 %

Kappa statistic 0.0116

Total Number of Instances 17943

As the result show, our classifier is not perfect. The classification for all our instance

was correctly classified at 72%. The kappa statistic measures the agreement of predic-

tion with the true class where 1.0 signifies complete agreement. Our kappa statistic

was 0.0116. Below is detailed accuracy result by class.
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=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall Class
0.977 0.968 0.732 0.977 0
0.032 0.012 0.334 0.032 1

WEKA also gave the following confusion matrix:

=== Confusion Matrix ===

a b < − classified

12794 305‖ a = 0

4691 153‖ b = 1

The confusion matrix is more commonly named contingency table. A contingency

table is defined as essentially a display format used to analyze and record the rela-

tionship between two or more categorical variables 27. In our case we have two classes,

and therefore a 2x2 confusion matrix is used. The number of correctly classified in-

stances is the sum of diagonals in the matrix; all the others are incorrectly classified.

The True Positive (TP) rate is the proportion of attributes which were classified

as class x. The Recall is equivalent in the confusion matrix by dividing the diagonal

element by the sum over the relevant, such as 12794/(12794+305) = 0.977 for class

“0” and 153/(4691+153) = 0.032 for class “1”.

The False Positive (FP) rate is the proportion of attributes, which were classified

as class x, but belong to a different class, among all attributes which are not of class x.

In the matrix, this is the column sum of class x minus the diagonal element, divided

by the rows sums of all other classes such as 4691/(4691+153) = 0.968 for class “0”

and 153/(12794+305) = 0.012 for class “1”.

The Precision is the proportion of the attributes which truly have class x among

all those which were classified as class x. In the matrix, this is the diagonal element
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divided by the sum over the relevant column, such as 12794/(12794+469) = 0.732 for

class “0” and 153/(153+305) = 0.0334 for class “1”. Those measures were critical to

comparing classifiers as we follow the same procedures throughout our results.

For libSVM with the PFAM merge file, the data mining results were as follows:

=== Stratified cross-validation ===

Correctly Classified Instances 11590 71.707 %

Incorrectly Classified Instances 4573 28.293 %

Kappa statistic 0.0144

Total Number of Instances 16163

The classification for all our instance was correctly classified at 71.7%. Our kappa

statistic was 0.0144, which was slightly higher than the GO merge classification, sub-

sequently meaning not a better result.

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall Class
0.037 0.026 0.345 0.037 0
0.974 0.963 0.728 0.974 1

Below is the confusion matrix for the PFAM merge libSVM:

=== Confusion Matrix ===

a b < − classified

163 4263‖ a = 0

310 11427‖ b = 1
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Once we completed our analysis with the libSVM, the next set of analysis was to use

the J48 decision tree. The decision tree with the GO merge term file, the data mining

results were as follow:

=== Stratified cross-validation ===

Correctly Classified Instances 12922 72.0169 %

Incorrectly Classified Instances 5021 27.9831 %

Kappa statistic 0.0448

Total Number of Instances 17943

The classification for all our instance was correctly classified at 72%. Our kappa

statistic was 0.0448.

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall Class
0.959 0.926 0.737 0.959 0
0.074 0.041 0.401 0.074 1

Below is the confusion matrix for the GO merge decision tree:

=== Confusion Matrix ===

a b < − classified

12562 537‖ a = 0

4484 360‖ b = 1

For decision tree with the PFAM merge file, the data mining results were as follows:

=== Stratified cross-validation ===

Correctly Classified Instances 11719 72.5051 %
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Incorrectly Classified Instances 4444 27.4949 %

Kappa statistic 0.0264

Total Number of Instances 16163

The classification for all our instance was correctly classified over 72%. It was slightly

better than the GO merge decision tree classification. Our kappa statistic was 0.0264,

which was lower subsequently also given us a better result.

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall Class
0.033 0.014 0.471 0.033 0
0.986 0.967 0.73 0.986 1

Below is the confusion matrix for the PFAM merge decision tree:

=== Confusion Matrix ===

a b < − classified

144 4282‖ a = 0

162 11575‖ b = 1

Hence for both the GO merge and the PFAM merge files and both the libSVM and

the decision tree results were similar, around 72% in accuracy.

4.1 Results of GO PFAM merge

Our initial goal was to work with the GO np and GO pdac as well as the PFAM np

and PFAM pdac. Once we had our data, our following step was to merge the

GO np with the GO pdac (GO merge) and the PFAM np with the PFAM pdac

(PFAM merge) and run several analyses to find the accuracy results. After we have
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gathered our results, we decided to go even further by also merging the GO merge

with the PFAM merge. We decided to go with this approach because we believe it

would improve our previous accuracy percentage. Below are the resutls from our

prediction:

Below are the results of the GO PFAM merge using libSVM:

=== Stratified cross-validation ===

Correctly Classified Instances 13099 73.0034 %

Incorrectly Classified Instances 4844 26.9966 %

Total Number of Instances 17943

Below are the results of the GO PFAM merge using decision tree:

Correctly Classified Instances 12936 72.095 %

Incorrectly Classified Instances 5007 27.905 %

Total Number of Instances 17943

Our results from the GO PFAM merge analysis show that the libSVM has the highest

percentage of 73% compare to 72% for the decision tree.

4.2 Discussion of Results

The results in this thesis reveal an extremely interesting fact, namely that the char-

acterizations of the proteins by either GO terms or PFAM families can be used to

predict with a good, that is, around 72%, accuracy whether they are involved in
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cancer. Since the characterizations of proteins is mainly based on their biological

functions, the results reveal, according to our knowledge for the first time, that the

likelihood of a protein being involved in pancreatic cancer depends on its particular

functions. Although the accuracy result of 72% is intriguing, for medical applications

a higher, around 90 %, accuracy would be necessary.

Moreover, the purpose of us going further in our merging process by merging

both the GO merge and PFAM merge was to come up with a way to strengthen and

improve from our previous analysis of 72%. Our latest analysis has showed a slight

increase to 73% and we believe once we keep adding more of the protein terms from

our database to our SQL query we would certainly get a higher percentage.
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Chapter 5

Conclusion

In this thesis, we have shown that the functional characterizations of proteins by

either GO term or PFAM families enable a good prediction of pancreatic cancer

link. The algorithm to flatten our data was a vital source of success to help achieve

our goal. Flattening our raw data enable us to run our queries with relational data,

which subsequently provided a much better way to use in our data mining techniques.

5.1 Summarizing our contributions

We have identified a better way to optimize our database that previously gave us

various problems. We were able to restructure a database, which not only help us

better generate analysis, but also could be use in the computer science area. The

restructure method helped us better understand the pancreatic protein databases

that had a lot of many to many relationships fields.

In addition, we have shown that our algorithms was an effective tool to restructure

our database, which subsequently help us eliminate the many to many relationships
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fields that were redundant. The solution to these issues helps us to effectively apply

some of our data mining techniques.

We have also investigated a way to better our prediction method by merging

both the GO merge proteins and the PFAM merge proteins. The merging strategy

was a bit different from the previous merging of the GO np with GO pdac and the

PFAM np with PFAM pdac; consequently, we made some changes to our high level

SQL query to better accommodate our changes.

Finally, we provided an iterative program for the high level SQL query, which help

us automatically generate hundreds of query lines. The existing pancreatic cancer

proteins database was not structure for a way to use in an extensive research and the

use of data mining technique could not be practical.

5.2 Future Work

One of our obvious questions was whether the accuracy of the predictions could be

improved in any way. We showed it might be improved in a number of ways. For

example, it was possible to use as input to the data mining algorithm a join of

the restructured GO merge and PFAM merge tables, which increase the number of

attributes and help to derive a higher accuracy prediction. This work has left us with

some questions that deserve investigation:

1. Is whether adding the many tables terms we have in our database help increase

the overall accuracy of our prediction?

2. Is it an other way for improving the restructure data effectiveness in finding

pancreatic cancer proteins?
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3. How can we take advantage of the restructure algorithm for future use in

database and computer science for successful data mining procedure?

These are some of the questions we would like to answer by carrying it out those ideas

in our future work.
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Appendix A

Program implementation details

The code written for this thesis was a C++ extension for the SQL query. The code

help us automatically generate hundreds of query lines. We chose to write a C++

program along with the SQL queries becuase it would not have been practical to

manually write hundred SQL lines.

Section A.1 shows our C++ program. Section A2. shows our high level SQL

queries program from the GO merge proteins. Section A3. shows our high level SQL

queries program from the PFAM merge proteins. Finally, Section A4. shows the high

levl SQL queries program used to merge both the GO merge and the PFAM merge

pancreatic proteins.

A.1 Program structure

Below is the C++ program which help us automatically generate the written SQL

queries to perform the restructuring:

#include < iostream >
#include < fstream >
#include < string >
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using namespace std;

int main()
{

string line;

ifstream ifs(“MergeTop200GO.txt”);

ofstream myfile (“SQL flatten.txt”, ios::app);

if (ifs.good()) // If opening is successful

{

myfile “select UID , \n”; // output the first line
while(getline(ifs,line)) //read each line until EOL

{
myfile � “max(case when GO = \” � line �
“\ then 1 else 0 end) as \”� line �”\,” � endl;

{ // end-while

myfile � “Y \n”;
myfile � “from GO merge \n”;
myfile � “group by UID \n”;
myfile.close(); ifs.close(); //close the file

}
else

cout � “ERROR: can’t open file!!!” � endl;

return 0;
}

A.2 GO merge proteins

Below is the high level SQL queries program from the GO merge proteins which help

generate 200 lines of the restructuring data:
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select UID,
max(case when GO = ’GO:0016021’ then 1 else 0 end) as ’GO:0016021’,
max(case when GO = ’GO:0005515’ then 1 else 0 end) as ’GO:0005515’,
max(case when GO = ’GO:0005634’ then 1 else 0 end) as ’GO:0005634’,
max(case when GO = ’GO:0005737’ then 1 else 0 end) as ’GO:0005737’,
max(case when GO = ’GO:0008270’ then 1 else 0 end) as ’GO:0008270’,
max(case when GO = ’GO:0006350’ then 1 else 0 end) as ’GO:0006350’,
max(case when GO = ’GO:0007165’ then 1 else 0 end) as ’GO:0007165’,
max(case when GO = ’GO:0005886’ then 1 else 0 end) as ’GO:0005886’,
max(case when GO = ’GO:0005524’ then 1 else 0 end) as ’GO:0005524’,
max(case when GO = ’GO:0003677’ then 1 else 0 end) as ’GO:0003677’,
max(case when GO = ’GO:0005576’ then 1 else 0 end) as ’GO:0005576’,
max(case when GO = ’GO:0005829’ then 1 else 0 end) as ’GO:0005829’,
max(case when GO = ’GO:0005887’ then 1 else 0 end) as ’GO:0005887’,
max(case when GO = ’GO:0006355’ then 1 else 0 end) as ’GO:0006355’,
max(case when GO = ’GO:0003700’ then 1 else 0 end) as ’GO:0003700’,
max(case when GO = ’GO:0046872’ then 1 else 0 end) as ’GO:0046872’,
max(case when GO = ’GO:0007186’ then 1 else 0 end) as ’GO:0007186’,
max(case when GO = ’GO:0045449’ then 1 else 0 end) as ’GO:0045449’,
max(case when GO = ’GO:0005509’ then 1 else 0 end) as ’GO:0005509’,
max(case when GO = ’GO:0005615’ then 1 else 0 end) as ’GO:0005615’,
max(case when GO = ’GO:0003723’ then 1 else 0 end) as ’GO:0003723’,
max(case when GO = ’GO:0050896’ then 1 else 0 end) as ’GO:0050896’,
max(case when GO = ’GO:0055114’ then 1 else 0 end) as ’GO:0055114’,
max(case when GO = ’GO:0055085’ then 1 else 0 end) as ’GO:0055085’,
max(case when GO = ’GO:0006955’ then 1 else 0 end) as ’GO:0006955’,
max(case when GO = ’GO:0005789’ then 1 else 0 end) as ’GO:0005789’,
max(case when GO = ’GO:0006915’ then 1 else 0 end) as ’GO:0006915’,
max(case when GO = ’GO:0007608’ then 1 else 0 end) as ’GO:0007608’,
max(case when GO = ’GO:0004984’ then 1 else 0 end) as ’GO:0004984’,
max(case when GO = ’GO:0005730’ then 1 else 0 end) as ’GO:0005730’,
max(case when GO = ’GO:0043565’ then 1 else 0 end) as ’GO:0043565’,
max(case when GO = ’GO:0006468’ then 1 else 0 end) as ’GO:0006468’,
max(case when GO = ’GO:0007275’ then 1 else 0 end) as ’GO:0007275’,
max(case when GO = ’GO:0006508’ then 1 else 0 end) as ’GO:0006508’,
max(case when GO = ’GO:0005739’ then 1 else 0 end) as ’GO:0005739’,
max(case when GO = ’GO:0005525’ then 1 else 0 end) as ’GO:0005525’,
max(case when GO = ’GO:0005622’ then 1 else 0 end) as ’GO:0005622’,
max(case when GO = ’GO:0015031’ then 1 else 0 end) as ’GO:0015031’,
max(case when GO = ’GO:0004872’ then 1 else 0 end) as ’GO:0004872’,
max(case when GO = ’GO:0007155’ then 1 else 0 end) as ’GO:0007155’,
max(case when GO = ’GO:0030154’ then 1 else 0 end) as ’GO:0030154’,
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max(case when GO = ’GO:0005654’ then 1 else 0 end) as ’GO:0005654’,
max(case when GO = ’GO:0044419’ then 1 else 0 end) as ’GO:0044419’,
max(case when GO = ’GO:0005794’ then 1 else 0 end) as ’GO:0005794’,
max(case when GO = ’GO:0005488’ then 1 else 0 end) as ’GO:0005488’,
max(case when GO = ’GO:0000139’ then 1 else 0 end) as ’GO:0000139’,
max(case when GO = ’GO:0016020’ then 1 else 0 end) as ’GO:0016020’,
max(case when GO = ’GO:0003676’ then 1 else 0 end) as ’GO:0003676’,
max(case when GO = ’GO:0005624’ then 1 else 0 end) as ’GO:0005624’,
max(case when GO = ’GO:0042803’ then 1 else 0 end) as ’GO:0042803’,
max(case when GO = ’GO:0004871’ then 1 else 0 end) as ’GO:0004871’,
max(case when GO = ’GO:0005856’ then 1 else 0 end) as ’GO:0005856’,
max(case when GO = ’GO:0042802’ then 1 else 0 end) as ’GO:0042802’,
max(case when GO = ’GO:0005783’ then 1 else 0 end) as ’GO:0005783’,
max(case when GO = ’GO:0003779’ then 1 else 0 end) as ’GO:0003779’,
max(case when GO = ’GO:0000166’ then 1 else 0 end) as ’GO:0000166’,
max(case when GO = ’GO:0004674’ then 1 else 0 end) as ’GO:0004674’,
max(case when GO = ’GO:0008283’ then 1 else 0 end) as ’GO:0008283’,
max(case when GO = ’GO:0051301’ then 1 else 0 end) as ’GO:0051301’,
max(case when GO = ’GO:0006810’ then 1 else 0 end) as ’GO:0006810’,
max(case when GO = ’GO:0048471’ then 1 else 0 end) as ’GO:0048471’,
max(case when GO = ’GO:0030054’ then 1 else 0 end) as ’GO:0030054’,
max(case when GO = ’GO:0005874’ then 1 else 0 end) as ’GO:0005874’,
max(case when GO = ’GO:0005198’ then 1 else 0 end) as ’GO:0005198’,
max(case when GO = ’GO:0007267’ then 1 else 0 end) as ’GO:0007267’,
max(case when GO = ’GO:0007399’ then 1 else 0 end) as ’GO:0007399’,
max(case when GO = ’GO:0007049’ then 1 else 0 end) as ’GO:0007049’,
max(case when GO = ’GO:0003924’ then 1 else 0 end) as ’GO:0003924’,
max(case when GO = ’GO:0006397’ then 1 else 0 end) as ’GO:0006397’,
max(case when GO = ’GO:0005578’ then 1 else 0 end) as ’GO:0005578’,
max(case when GO = ’GO:0007283’ then 1 else 0 end) as ’GO:0007283’,
max(case when GO = ’GO:0008380’ then 1 else 0 end) as ’GO:0008380’,
max(case when GO = ’GO:0007264’ then 1 else 0 end) as ’GO:0007264’,
max(case when GO = ’GO:0006954’ then 1 else 0 end) as ’GO:0006954’,
max(case when GO = ’GO:0007601’ then 1 else 0 end) as ’GO:0007601’,
max(case when GO = ’GO:0005625’ then 1 else 0 end) as ’GO:0005625’,
max(case when GO = ’GO:0008285’ then 1 else 0 end) as ’GO:0008285’,
max(case when GO = ’GO:0007067’ then 1 else 0 end) as ’GO:0007067’,
max(case when GO = ’GO:0003713’ then 1 else 0 end) as ’GO:0003713’,
max(case when GO = ’GO:0009055’ then 1 else 0 end) as ’GO:0009055’,
max(case when GO = ’GO:0005792’ then 1 else 0 end) as ’GO:0005792’,
max(case when GO = ’GO:0004930’ then 1 else 0 end) as ’GO:0004930’,
max(case when GO = ’GO:0008083’ then 1 else 0 end) as ’GO:0008083’,
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max(case when GO = ’GO:0003823’ then 1 else 0 end) as ’GO:0003823’,
max(case when GO = ’GO:0003735’ then 1 else 0 end) as ’GO:0003735’,
max(case when GO = ’GO:0008284’ then 1 else 0 end) as ’GO:0008284’,
max(case when GO = ’GO:0004252’ then 1 else 0 end) as ’GO:0004252’,
max(case when GO = ’GO:0005125’ then 1 else 0 end) as ’GO:0005125’,
max(case when GO = ’GO:0000287’ then 1 else 0 end) as ’GO:0000287’,
max(case when GO = ’GO:0006813’ then 1 else 0 end) as ’GO:0006813’,
max(case when GO = ’GO:0006366’ then 1 else 0 end) as ’GO:0006366’,
max(case when GO = ’GO:0005529’ then 1 else 0 end) as ’GO:0005529’,
max(case when GO = ’GO:0006916’ then 1 else 0 end) as ’GO:0006916’,
max(case when GO = ’GO:0009986’ then 1 else 0 end) as ’GO:0009986’,
max(case when GO = ’GO:0006457’ then 1 else 0 end) as ’GO:0006457’,
max(case when GO = ’GO:0006886’ then 1 else 0 end) as ’GO:0006886’,
max(case when GO = ’GO:0005759’ then 1 else 0 end) as ’GO:0005759’,
max(case when GO = ’GO:0005516’ then 1 else 0 end) as ’GO:0005516’,
max(case when GO = ’GO:0006357’ then 1 else 0 end) as ’GO:0006357’,
max(case when GO = ’GO:0006281’ then 1 else 0 end) as ’GO:0006281’,
max(case when GO = ’GO:0007156’ then 1 else 0 end) as ’GO:0007156’,
max(case when GO = ’GO:0045211’ then 1 else 0 end) as ’GO:0045211’,
max(case when GO = ’GO:0016563’ then 1 else 0 end) as ’GO:0016563’,
max(case when GO = ’GO:0008152’ then 1 else 0 end) as ’GO:0008152’,
max(case when GO = ’GO:0006814’ then 1 else 0 end) as ’GO:0006814’,
max(case when GO = ’GO:0006412’ then 1 else 0 end) as ’GO:0006412’,
max(case when GO = ’GO:0007268’ then 1 else 0 end) as ’GO:0007268’,
max(case when GO = ’GO:0005743’ then 1 else 0 end) as ’GO:0005743’,
max(case when GO = ’GO:0005215’ then 1 else 0 end) as ’GO:0005215’,
max(case when GO = ’GO:0003714’ then 1 else 0 end) as ’GO:0003714’,
max(case when GO = ’GO:0004842’ then 1 else 0 end) as ’GO:0004842’,
max(case when GO = ’GO:0005681’ then 1 else 0 end) as ’GO:0005681’,
max(case when GO = ’GO:0020037’ then 1 else 0 end) as ’GO:0020037’,
max(case when GO = ’GO:0045087’ then 1 else 0 end) as ’GO:0045087’,
max(case when GO = ’GO:0006511’ then 1 else 0 end) as ’GO:0006511’,
max(case when GO = ’GO:0006917’ then 1 else 0 end) as ’GO:0006917’,
max(case when GO = ’GO:0016568’ then 1 else 0 end) as ’GO:0016568’,
max(case when GO = ’GO:0008022’ then 1 else 0 end) as ’GO:0008022’,
max(case when GO = ’GO:0016787’ then 1 else 0 end) as ’GO:0016787’,
max(case when GO = ’GO:0006470’ then 1 else 0 end) as ’GO:0006470’,
max(case when GO = ’GO:0009615’ then 1 else 0 end) as ’GO:0009615’,
max(case when GO = ’GO:0005764’ then 1 else 0 end) as ’GO:0005764’,
max(case when GO = ’GO:0031225’ then 1 else 0 end) as ’GO:0031225’,
max(case when GO = ’GO:0016607’ then 1 else 0 end) as ’GO:0016607’,
max(case when GO = ’GO:0046982’ then 1 else 0 end) as ’GO:0046982’,
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max(case when GO = ’GO:0051082’ then 1 else 0 end) as ’GO:0051082’,
max(case when GO = ’GO:0006811’ then 1 else 0 end) as ’GO:0006811’,
max(case when GO = ’GO:0016564’ then 1 else 0 end) as ’GO:0016564’,
max(case when GO = ’GO:0006260’ then 1 else 0 end) as ’GO:0006260’,
max(case when GO = ’GO:0003702’ then 1 else 0 end) as ’GO:0003702’,
max(case when GO = ’GO:0008134’ then 1 else 0 end) as ’GO:0008134’,
max(case when GO = ’GO:0007166’ then 1 else 0 end) as ’GO:0007166’,
max(case when GO = ’GO:0006935’ then 1 else 0 end) as ’GO:0006935’,
max(case when GO = ’GO:0010008’ then 1 else 0 end) as ’GO:0010008’,
max(case when GO = ’GO:0045944’ then 1 else 0 end) as ’GO:0045944’,
max(case when GO = ’GO:0004222’ then 1 else 0 end) as ’GO:0004222’,
max(case when GO = ’GO:0000122’ then 1 else 0 end) as ’GO:0000122’,
max(case when GO = ’GO:0016055’ then 1 else 0 end) as ’GO:0016055’,
max(case when GO = ’GO:0043123’ then 1 else 0 end) as ’GO:0043123’,
max(case when GO = ’GO:0007050’ then 1 else 0 end) as ’GO:0007050’,
max(case when GO = ’GO:0005765’ then 1 else 0 end) as ’GO:0005765’,
max(case when GO = ’GO:0005096’ then 1 else 0 end) as ’GO:0005096’,
max(case when GO = ’GO:0005102’ then 1 else 0 end) as ’GO:0005102’,
max(case when GO = ’GO:0006816’ then 1 else 0 end) as ’GO:0006816’,
max(case when GO = ’GO:0016192’ then 1 else 0 end) as ’GO:0016192’,
max(case when GO = ’GO:0016324’ then 1 else 0 end) as ’GO:0016324’,
max(case when GO = ’GO:0006414’ then 1 else 0 end) as ’GO:0006414’,
max(case when GO = ’GO:0008219’ then 1 else 0 end) as ’GO:0008219’,
max(case when GO = ’GO:0004867’ then 1 else 0 end) as ’GO:0004867’,
max(case when GO = ’GO:0006897’ then 1 else 0 end) as ’GO:0006897’,
max(case when GO = ’GO:0008201’ then 1 else 0 end) as ’GO:0008201’,
max(case when GO = ’GO:0042612’ then 1 else 0 end) as ’GO:0042612’,
max(case when GO = ’GO:0015629’ then 1 else 0 end) as ’GO:0015629’,
max(case when GO = ’GO:0001525’ then 1 else 0 end) as ’GO:0001525’,
max(case when GO = ’GO:0016491’ then 1 else 0 end) as ’GO:0016491’,
max(case when GO = ’GO:0007154’ then 1 else 0 end) as ’GO:0007154’,
max(case when GO = ’GO:0017124’ then 1 else 0 end) as ’GO:0017124’,
max(case when GO = ’GO:0045095’ then 1 else 0 end) as ’GO:0045095’,
max(case when GO = ’GO:0005815’ then 1 else 0 end) as ’GO:0005815’,
max(case when GO = ’GO:0030036’ then 1 else 0 end) as ’GO:0030036’,
max(case when GO = ’GO:0007018’ then 1 else 0 end) as ’GO:0007018’,
max(case when GO = ’GO:0006461’ then 1 else 0 end) as ’GO:0006461’,
max(case when GO = ’GO:0007218’ then 1 else 0 end) as ’GO:0007218’,
max(case when GO = ’GO:0005975’ then 1 else 0 end) as ’GO:0005975’,
max(case when GO = ’GO:0006928’ then 1 else 0 end) as ’GO:0006928’,
max(case when GO = ’GO:0008076’ then 1 else 0 end) as ’GO:0008076’,
max(case when GO = ’GO:0042470’ then 1 else 0 end) as ’GO:0042470’,
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max(case when GO = ’GO:0031965’ then 1 else 0 end) as ’GO:0031965’,
max(case when GO = ’GO:0005813’ then 1 else 0 end) as ’GO:0005813’,
max(case when GO = ’GO:0016874’ then 1 else 0 end) as ’GO:0016874’,
max(case when GO = ’GO:0008289’ then 1 else 0 end) as ’GO:0008289’,
max(case when GO = ’GO:0019899’ then 1 else 0 end) as ’GO:0019899’,
max(case when GO = ’GO:0003682’ then 1 else 0 end) as ’GO:0003682’,
max(case when GO = ’GO:0005179’ then 1 else 0 end) as ’GO:0005179’,
max(case when GO = ’GO:0006364’ then 1 else 0 end) as ’GO:0006364’,
max(case when GO = ’GO:0016481’ then 1 else 0 end) as ’GO:0016481’,
max(case when GO = ’GO:0019901’ then 1 else 0 end) as ’GO:0019901’,
max(case when GO = ’GO:0006334’ then 1 else 0 end) as ’GO:0006334’,
max(case when GO = ’GO:0008624’ then 1 else 0 end) as ’GO:0008624’,
max(case when GO = ’GO:0006936’ then 1 else 0 end) as ’GO:0006936’,
max(case when GO = ’GO:0002474’ then 1 else 0 end) as ’GO:0002474’,
max(case when GO = ’GO:0004221’ then 1 else 0 end) as ’GO:0004221’,
max(case when GO = ’GO:0005882’ then 1 else 0 end) as ’GO:0005882’,
max(case when GO = ’GO:0003777’ then 1 else 0 end) as ’GO:0003777’,
max(case when GO = ’GO:0004725’ then 1 else 0 end) as ’GO:0004725’,
max(case when GO = ’GO:0042742’ then 1 else 0 end) as ’GO:0042742’,
max(case when GO = ’GO:0010843’ then 1 else 0 end) as ’GO:0010843’,
max(case when GO = ’GO:0004888’ then 1 else 0 end) as ’GO:0004888’,
max(case when GO = ’GO:0006629’ then 1 else 0 end) as ’GO:0006629’,
max(case when GO = ’GO:0046983’ then 1 else 0 end) as ’GO:0046983’,
max(case when GO = ’GO:0016042’ then 1 else 0 end) as ’GO:0016042’,
max(case when GO = ’GO:0045893’ then 1 else 0 end) as ’GO:0045893’,
max(case when GO = ’GO:0030308’ then 1 else 0 end) as ’GO:0030308’,
max(case when GO = ’GO:0007517’ then 1 else 0 end) as ’GO:0007517’,
max(case when GO = ’GO:0005741’ then 1 else 0 end) as ’GO:0005741’,
max(case when GO = ’GO:0005200’ then 1 else 0 end) as ’GO:0005200’,
max(case when GO = ’GO:0005788’ then 1 else 0 end) as ’GO:0005788’,
max(case when GO = ’GO:0006464’ then 1 else 0 end) as ’GO:0006464’,
max(case when GO = ’GO:0012505’ then 1 else 0 end) as ’GO:0012505’,
max(case when GO = ’GO:0032580’ then 1 else 0 end) as ’GO:0032580’,
Y
from GO merge
group by UID
into outfile ‘/tmp/GO merge.csv’;
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A.3 PFAM merge proteins

Below is the high level SQL queries program from the PFAM merge proteins which

help generate 200 lines of the restructuring data:

select UID,
max(case when family = ’PF00001’ then 1 else 0 end) as ’PF00001’,
max(case when family = ’PF00096’ then 1 else 0 end) as ’PF00096’,
max(case when family = ’PF00069’ then 1 else 0 end) as ’PF00069’,
max(case when family = ’PF01352’ then 1 else 0 end) as ’PF01352’,
max(case when family = ’PF07686’ then 1 else 0 end) as ’PF07686’,
max(case when family = ’PF00400’ then 1 else 0 end) as ’PF00400’,
max(case when family = ’PF00046’ then 1 else 0 end) as ’PF00046’,
max(case when family = ’PF00023’ then 1 else 0 end) as ’PF00023’,
max(case when family = ’PF00076’ then 1 else 0 end) as ’PF00076’,
max(case when family = ’PF00560’ then 1 else 0 end) as ’PF00560’,
max(case when family = ’PF00169’ then 1 else 0 end) as ’PF00169’,
max(case when family = ’PF00097’ then 1 else 0 end) as ’PF00097’,
max(case when family = ’PF00041’ then 1 else 0 end) as ’PF00041’,
max(case when family = ’PF00595’ then 1 else 0 end) as ’PF00595’,
max(case when family = ’PF07654’ then 1 else 0 end) as ’PF07654’,
max(case when family = ’PF00018’ then 1 else 0 end) as ’PF00018’,
max(case when family = ’PF00071’ then 1 else 0 end) as ’PF00071’,
max(case when family = ’PF00651’ then 1 else 0 end) as ’PF00651’,
max(case when family = ’PF00089’ then 1 else 0 end) as ’PF00089’,
max(case when family = ’PF00168’ then 1 else 0 end) as ’PF00168’,
max(case when family = ’PF07714’ then 1 else 0 end) as ’PF07714’,
max(case when family = ’PF00028’ then 1 else 0 end) as ’PF00028’,
max(case when family = ’PF00010’ then 1 else 0 end) as ’PF00010’,
max(case when family = ’PF00271’ then 1 else 0 end) as ’PF00271’,
max(case when family = ’PF00520’ then 1 else 0 end) as ’PF00520’,
max(case when family = ’PF00017’ then 1 else 0 end) as ’PF00017’,
max(case when family = ’PF00622’ then 1 else 0 end) as ’PF00622’,
max(case when family = ’PF00129’ then 1 else 0 end) as ’PF00129’,
max(case when family = ’PF07645’ then 1 else 0 end) as ’PF07645’,
max(case when family = ’PF01391’ then 1 else 0 end) as ’PF01391’,
max(case when family = ’PF07653’ then 1 else 0 end) as ’PF07653’,
max(case when family = ’PF00059’ then 1 else 0 end) as ’PF00059’,
max(case when family = ’PF00047’ then 1 else 0 end) as ’PF00047’,
max(case when family = ’PF00270’ then 1 else 0 end) as ’PF00270’,
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max(case when family = ’PF00515’ then 1 else 0 end) as ’PF00515’,
max(case when family = ’PF00038’ then 1 else 0 end) as ’PF00038’,
max(case when family = ’PF07690’ then 1 else 0 end) as ’PF07690’,
max(case when family = ’PF00307’ then 1 else 0 end) as ’PF00307’,
max(case when family = ’PF06623’ then 1 else 0 end) as ’PF06623’,
max(case when family = ’PF00643’ then 1 else 0 end) as ’PF00643’,
max(case when family = ’PF00621’ then 1 else 0 end) as ’PF00621’,
max(case when family = ’PF00628’ then 1 else 0 end) as ’PF00628’,
max(case when family = ’PF00412’ then 1 else 0 end) as ’PF00412’,
max(case when family = ’PF01344’ then 1 else 0 end) as ’PF01344’,
max(case when family = ’PF08266’ then 1 else 0 end) as ’PF08266’,
max(case when family = ’PF00620’ then 1 else 0 end) as ’PF00620’,
max(case when family = ’PF00443’ then 1 else 0 end) as ’PF00443’,
max(case when family = ’PF00536’ then 1 else 0 end) as ’PF00536’,
max(case when family = ’PF00008’ then 1 else 0 end) as ’PF00008’,
max(case when family = ’PF07707’ then 1 else 0 end) as ’PF07707’,
max(case when family = ’PF00090’ then 1 else 0 end) as ’PF00090’,
max(case when family = ’PF00067’ then 1 else 0 end) as ’PF00067’,
max(case when family = ’PF02023’ then 1 else 0 end) as ’PF02023’,
max(case when family = ’PF00036’ then 1 else 0 end) as ’PF00036’,
max(case when family = ’PF00092’ then 1 else 0 end) as ’PF00092’,
max(case when family = ’PF00153’ then 1 else 0 end) as ’PF00153’,
max(case when family = ’PF00106’ then 1 else 0 end) as ’PF00106’,
max(case when family = ’PF00646’ then 1 else 0 end) as ’PF00646’,
max(case when family = ’PF00566’ then 1 else 0 end) as ’PF00566’,
max(case when family = ’PF00084’ then 1 else 0 end) as ’PF00084’,
max(case when family = ’PF02214’ then 1 else 0 end) as ’PF02214’,
max(case when family = ’PF00505’ then 1 else 0 end) as ’PF00505’,
max(case when family = ’PF00130’ then 1 else 0 end) as ’PF00130’,
max(case when family = ’PF00787’ then 1 else 0 end) as ’PF00787’,
max(case when family = ’PF00250’ then 1 else 0 end) as ’PF00250’,
max(case when family = ’PF00004’ then 1 else 0 end) as ’PF00004’,
max(case when family = ’PF00431’ then 1 else 0 end) as ’PF00431’,
max(case when family = ’PF00002’ then 1 else 0 end) as ’PF00002’,
max(case when family = ’PF00005’ then 1 else 0 end) as ’PF00005’,
max(case when family = ’PF00226’ then 1 else 0 end) as ’PF00226’,
max(case when family = ’PF00125’ then 1 else 0 end) as ’PF00125’,
max(case when family = ’PF00104’ then 1 else 0 end) as ’PF00104’,
max(case when family = ’PF02931’ then 1 else 0 end) as ’PF02931’,
max(case when family = ’PF00373’ then 1 else 0 end) as ’PF00373’,
max(case when family = ’PF00105’ then 1 else 0 end) as ’PF00105’,
max(case when family = ’PF02932’ then 1 else 0 end) as ’PF02932’,
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max(case when family = ’PF00702’ then 1 else 0 end) as ’PF00702’,
max(case when family = ’PF00612’ then 1 else 0 end) as ’PF00612’,
max(case when family = ’PF00225’ then 1 else 0 end) as ’PF00225’,
max(case when family = ’PF00057’ then 1 else 0 end) as ’PF00057’,
max(case when family = ’PF00048’ then 1 else 0 end) as ’PF00048’,
max(case when family = ’PF00782’ then 1 else 0 end) as ’PF00782’,
max(case when family = ’PF01462’ then 1 else 0 end) as ’PF01462’,
max(case when family = ’PF00397’ then 1 else 0 end) as ’PF00397’,
max(case when family = ’PF02210’ then 1 else 0 end) as ’PF02210’,
max(case when family = ’PF01562’ then 1 else 0 end) as ’PF01562’,
max(case when family = ’PF01421’ then 1 else 0 end) as ’PF01421’,
max(case when family = ’PF00179’ then 1 else 0 end) as ’PF00179’,
max(case when family = ’PF00240’ then 1 else 0 end) as ’PF00240’,
max(case when family = ’PF00063’ then 1 else 0 end) as ’PF00063’,
max(case when family = ’PF08205’ then 1 else 0 end) as ’PF08205’,
max(case when family = ’PF00102’ then 1 else 0 end) as ’PF00102’,
max(case when family = ’PF00822’ then 1 else 0 end) as ’PF00822’,
max(case when family = ’PF00856’ then 1 else 0 end) as ’PF00856’,
max(case when family = ’PF00079’ then 1 else 0 end) as ’PF00079’,
max(case when family = ’PF00019’ then 1 else 0 end) as ’PF00019’,
max(case when family = ’PF01094’ then 1 else 0 end) as ’PF01094’,
max(case when family = ’PF00439’ then 1 else 0 end) as ’PF00439’,
max(case when family = ’PF07525’ then 1 else 0 end) as ’PF07525’,
max(case when family = ’PF07647’ then 1 else 0 end) as ’PF07647’,
max(case when family = ’PF00642’ then 1 else 0 end) as ’PF00642’,
max(case when family = ’PF00122’ then 1 else 0 end) as ’PF00122’,
max(case when family = ’PF00013’ then 1 else 0 end) as ’PF00013’,
max(case when family = ’PF01825’ then 1 else 0 end) as ’PF01825’,
max(case when family = ’PF00433’ then 1 else 0 end) as ’PF00433’,
max(case when family = ’PF00788’ then 1 else 0 end) as ’PF00788’,
max(case when family = ’PF01454’ then 1 else 0 end) as ’PF01454’,
max(case when family = ’PF00061’ then 1 else 0 end) as ’PF00061’,
max(case when family = ’PF01585’ then 1 else 0 end) as ’PF01585’,
max(case when family = ’PF00615’ then 1 else 0 end) as ’PF00615’,
max(case when family = ’PF00685’ then 1 else 0 end) as ’PF00685’,
max(case when family = ’PF00083’ then 1 else 0 end) as ’PF00083’,
max(case when family = ’PF07974’ then 1 else 0 end) as ’PF07974’,
max(case when family = ’PF00170’ then 1 else 0 end) as ’PF00170’,
max(case when family = ’PF00531’ then 1 else 0 end) as ’PF00531’,
max(case when family = ’PF00027’ then 1 else 0 end) as ’PF00027’,
max(case when family = ’PF00134’ then 1 else 0 end) as ’PF00134’,
max(case when family = ’PF09379’ then 1 else 0 end) as ’PF09379’,
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max(case when family = ’PF00335’ then 1 else 0 end) as ’PF00335’,
max(case when family = ’PF07648’ then 1 else 0 end) as ’PF07648’,
max(case when family = ’PF01412’ then 1 else 0 end) as ’PF01412’,
max(case when family = ’PF00176’ then 1 else 0 end) as ’PF00176’,
max(case when family = ’PF00053’ then 1 else 0 end) as ’PF00053’,
max(case when family = ’PF01437’ then 1 else 0 end) as ’PF01437’,
max(case when family = ’PF00386’ then 1 else 0 end) as ’PF00386’,
max(case when family = ’PF00085’ then 1 else 0 end) as ’PF00085’,
max(case when family = ’PF01403’ then 1 else 0 end) as ’PF01403’,
max(case when family = ’PF00514’ then 1 else 0 end) as ’PF00514’,
max(case when family = ’PF00025’ then 1 else 0 end) as ’PF00025’,
max(case when family = ’PF00501’ then 1 else 0 end) as ’PF00501’,
max(case when family = ’PF00617’ then 1 else 0 end) as ’PF00617’,
max(case when family = ’PF00022’ then 1 else 0 end) as ’PF00022’,
max(case when family = ’PF00098’ then 1 else 0 end) as ’PF00098’,
max(case when family = ’PF00561’ then 1 else 0 end) as ’PF00561’,
max(case when family = ’PF01363’ then 1 else 0 end) as ’PF01363’,
max(case when family = ’PF00688’ then 1 else 0 end) as ’PF00688’,
max(case when family = ’PF00619’ then 1 else 0 end) as ’PF00619’,
max(case when family = ’PF00498’ then 1 else 0 end) as ’PF00498’,
max(case when family = ’PF00632’ then 1 else 0 end) as ’PF00632’,
max(case when family = ’PF02985’ then 1 else 0 end) as ’PF02985’,
max(case when family = ’PF00640’ then 1 else 0 end) as ’PF00640’,
max(case when family = ’PF00178’ then 1 else 0 end) as ’PF00178’,
max(case when family = ’PF01023’ then 1 else 0 end) as ’PF01023’,
max(case when family = ’PF00093’ then 1 else 0 end) as ’PF00093’,
max(case when family = ’PF00535’ then 1 else 0 end) as ’PF00535’,
max(case when family = ’PF00149’ then 1 else 0 end) as ’PF00149’,
max(case when family = ’PF01833’ then 1 else 0 end) as ’PF01833’,
max(case when family = ’PF03372’ then 1 else 0 end) as ’PF03372’,
max(case when family = ’PF05296’ then 1 else 0 end) as ’PF05296’,
max(case when family = ’PF00989’ then 1 else 0 end) as ’PF00989’,
max(case when family = ’PF00091’ then 1 else 0 end) as ’PF00091’,
max(case when family = ’PF00625’ then 1 else 0 end) as ’PF00625’,
max(case when family = ’PF01049’ then 1 else 0 end) as ’PF01049’,
max(case when family = ’PF09380’ then 1 else 0 end) as ’PF09380’,
max(case when family = ’PF00147’ then 1 else 0 end) as ’PF00147’,
max(case when family = ’PF00627’ then 1 else 0 end) as ’PF00627’,
max(case when family = ’PF05986’ then 1 else 0 end) as ’PF05986’,
max(case when family = ’PF02518’ then 1 else 0 end) as ’PF02518’,
max(case when family = ’PF02793’ then 1 else 0 end) as ’PF02793’,
max(case when family = ’PF00754’ then 1 else 0 end) as ’PF00754’,
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max(case when family = ’PF00664’ then 1 else 0 end) as ’PF00664’,
max(case when family = ’PF00385’ then 1 else 0 end) as ’PF00385’,
max(case when family = ’PF01529’ then 1 else 0 end) as ’PF01529’,
max(case when family = ’PF01284’ then 1 else 0 end) as ’PF01284’,
max(case when family = ’PF00652’ then 1 else 0 end) as ’PF00652’,
max(case when family = ’PF00167’ then 1 else 0 end) as ’PF00167’,
max(case when family = ’PF00413’ then 1 else 0 end) as ’PF00413’,
max(case when family = ’PF00246’ then 1 else 0 end) as ’PF00246’,
max(case when family = ’PF00045’ then 1 else 0 end) as ’PF00045’,
max(case when family = ’PF05831’ then 1 else 0 end) as ’PF05831’,
max(case when family = ’PF02373’ then 1 else 0 end) as ’PF02373’,
max(case when family = ’PF00324’ then 1 else 0 end) as ’PF00324’,
max(case when family = ’PF03953’ then 1 else 0 end) as ’PF03953’,
max(case when family = ’PF00530’ then 1 else 0 end) as ’PF00530’,
max(case when family = ’PF01392’ then 1 else 0 end) as ’PF01392’,
max(case when family = ’PF00581’ then 1 else 0 end) as ’PF00581’,
max(case when family = ’PF00855’ then 1 else 0 end) as ’PF00855’,
max(case when family = ’PF00435’ then 1 else 0 end) as ’PF00435’,
max(case when family = ’PF08447’ then 1 else 0 end) as ’PF08447’,
max(case when family = ’PF01390’ then 1 else 0 end) as ’PF01390’,
max(case when family = ’PF00610’ then 1 else 0 end) as ’PF00610’,
max(case when family = ’PF01477’ then 1 else 0 end) as ’PF01477’,
max(case when family = ’PF00249’ then 1 else 0 end) as ’PF00249’,
max(case when family = ’PF02758’ then 1 else 0 end) as ’PF02758’,
max(case when family = ’PF00200’ then 1 else 0 end) as ’PF00200’,
max(case when family = ’PF00003’ then 1 else 0 end) as ’PF00003’,
max(case when family = ’PF12440’ then 1 else 0 end) as ’PF12440’,
max(case when family = ’PF00293’ then 1 else 0 end) as ’PF00293’,
max(case when family = ’PF00009’ then 1 else 0 end) as ’PF00009’,
max(case when family = ’PF00043’ then 1 else 0 end) as ’PF00043’,
max(case when family = ’PF01582’ then 1 else 0 end) as ’PF01582’,
max(case when family = ’PF00583’ then 1 else 0 end) as ’PF00583’,
max(case when family = ’PF01423’ then 1 else 0 end) as ’PF01423’,
max(case when family = ’PF10582’ then 1 else 0 end) as ’PF10582’,
max(case when family = ’PF00029’ then 1 else 0 end) as ’PF00029’,
max(case when family = ’PF00233’ then 1 else 0 end) as ’PF00233’,
max(case when family = ’PF07885’ then 1 else 0 end) as ’PF07885’,
max(case when family = ’PF05739’ then 1 else 0 end) as ’PF05739’,
max(case when family = ’PF00969’ then 1 else 0 end) as ’PF00969’,
max(case when family = ’PF02798’ then 1 else 0 end) as ’PF02798’,
Y
from PFAM merge
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group by UID
into outfile ‘/tmp/PFAM merge.csv’;

A.4 GO PFAM merge

Below is the high level SQL queries merge program for both the GO merge and the

PFAM merge pancreatic proteins which help generate 200 lines of the restructuring

data for GOpfam merge:

SELECT T.UID,
max(case when GO = ’GO:0016021’ then 1 else 0 end) as ’GO:0016021’,
max(case when GO = ’GO:0005515’ then 1 else 0 end) as ’GO:0005515’,
max(case when GO = ’GO:0005634’ then 1 else 0 end) as ’GO:0005634’,
max(case when GO = ’GO:0005737’ then 1 else 0 end) as ’GO:0005737’,
max(case when GO = ’GO:0008270’ then 1 else 0 end) as ’GO:0008270’,
max(case when GO = ’GO:0006350’ then 1 else 0 end) as ’GO:0006350’,
max(case when GO = ’GO:0007165’ then 1 else 0 end) as ’GO:0007165’,
max(case when GO = ’GO:0005886’ then 1 else 0 end) as ’GO:0005886’,
max(case when GO = ’GO:0005524’ then 1 else 0 end) as ’GO:0005524’,
max(case when GO = ’GO:0003677’ then 1 else 0 end) as ’GO:0003677’,
max(case when GO = ’GO:0005576’ then 1 else 0 end) as ’GO:0005576’,
max(case when GO = ’GO:0005829’ then 1 else 0 end) as ’GO:0005829’,
max(case when GO = ’GO:0005887’ then 1 else 0 end) as ’GO:0005887’,
max(case when GO = ’GO:0006355’ then 1 else 0 end) as ’GO:0006355’,
max(case when GO = ’GO:0003700’ then 1 else 0 end) as ’GO:0003700’,
max(case when GO = ’GO:0046872’ then 1 else 0 end) as ’GO:0046872’,
max(case when GO = ’GO:0007186’ then 1 else 0 end) as ’GO:0007186’,
max(case when GO = ’GO:0045449’ then 1 else 0 end) as ’GO:0045449’,
max(case when GO = ’GO:0005509’ then 1 else 0 end) as ’GO:0005509’,
max(case when GO = ’GO:0005615’ then 1 else 0 end) as ’GO:0005615’,
max(case when GO = ’GO:0003723’ then 1 else 0 end) as ’GO:0003723’,
max(case when GO = ’GO:0050896’ then 1 else 0 end) as ’GO:0050896’,
max(case when GO = ’GO:0055114’ then 1 else 0 end) as ’GO:0055114’,
max(case when GO = ’GO:0055085’ then 1 else 0 end) as ’GO:0055085’,
max(case when GO = ’GO:0006955’ then 1 else 0 end) as ’GO:0006955’,
max(case when GO = ’GO:0005789’ then 1 else 0 end) as ’GO:0005789’,
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max(case when GO = ’GO:0006915’ then 1 else 0 end) as ’GO:0006915’,
max(case when GO = ’GO:0007608’ then 1 else 0 end) as ’GO:0007608’,
max(case when GO = ’GO:0004984’ then 1 else 0 end) as ’GO:0004984’,
max(case when GO = ’GO:0005730’ then 1 else 0 end) as ’GO:0005730’,
max(case when GO = ’GO:0043565’ then 1 else 0 end) as ’GO:0043565’,
max(case when GO = ’GO:0006468’ then 1 else 0 end) as ’GO:0006468’,
max(case when GO = ’GO:0007275’ then 1 else 0 end) as ’GO:0007275’,
max(case when GO = ’GO:0006508’ then 1 else 0 end) as ’GO:0006508’,
max(case when GO = ’GO:0005739’ then 1 else 0 end) as ’GO:0005739’,
max(case when GO = ’GO:0005525’ then 1 else 0 end) as ’GO:0005525’,
max(case when GO = ’GO:0005622’ then 1 else 0 end) as ’GO:0005622’,
max(case when GO = ’GO:0015031’ then 1 else 0 end) as ’GO:0015031’,
max(case when GO = ’GO:0004872’ then 1 else 0 end) as ’GO:0004872’,
max(case when GO = ’GO:0007155’ then 1 else 0 end) as ’GO:0007155’,
max(case when GO = ’GO:0030154’ then 1 else 0 end) as ’GO:0030154’,
max(case when GO = ’GO:0005654’ then 1 else 0 end) as ’GO:0005654’,
max(case when GO = ’GO:0044419’ then 1 else 0 end) as ’GO:0044419’,
max(case when GO = ’GO:0005794’ then 1 else 0 end) as ’GO:0005794’,
max(case when GO = ’GO:0005488’ then 1 else 0 end) as ’GO:0005488’,
max(case when GO = ’GO:0000139’ then 1 else 0 end) as ’GO:0000139’,
max(case when GO = ’GO:0016020’ then 1 else 0 end) as ’GO:0016020’,
max(case when GO = ’GO:0003676’ then 1 else 0 end) as ’GO:0003676’,
max(case when GO = ’GO:0005624’ then 1 else 0 end) as ’GO:0005624’,
max(case when GO = ’GO:0042803’ then 1 else 0 end) as ’GO:0042803’,
max(case when GO = ’GO:0004871’ then 1 else 0 end) as ’GO:0004871’,
max(case when GO = ’GO:0005856’ then 1 else 0 end) as ’GO:0005856’,
max(case when GO = ’GO:0042802’ then 1 else 0 end) as ’GO:0042802’,
max(case when GO = ’GO:0005783’ then 1 else 0 end) as ’GO:0005783’,
max(case when GO = ’GO:0003779’ then 1 else 0 end) as ’GO:0003779’,
max(case when GO = ’GO:0000166’ then 1 else 0 end) as ’GO:0000166’,
max(case when GO = ’GO:0004674’ then 1 else 0 end) as ’GO:0004674’,
max(case when GO = ’GO:0008283’ then 1 else 0 end) as ’GO:0008283’,
max(case when GO = ’GO:0051301’ then 1 else 0 end) as ’GO:0051301’,
max(case when GO = ’GO:0006810’ then 1 else 0 end) as ’GO:0006810’,
max(case when GO = ’GO:0048471’ then 1 else 0 end) as ’GO:0048471’,
max(case when GO = ’GO:0030054’ then 1 else 0 end) as ’GO:0030054’,
max(case when GO = ’GO:0005874’ then 1 else 0 end) as ’GO:0005874’,
max(case when GO = ’GO:0005198’ then 1 else 0 end) as ’GO:0005198’,
max(case when GO = ’GO:0007267’ then 1 else 0 end) as ’GO:0007267’,
max(case when GO = ’GO:0007399’ then 1 else 0 end) as ’GO:0007399’,
max(case when GO = ’GO:0007049’ then 1 else 0 end) as ’GO:0007049’,
max(case when GO = ’GO:0003924’ then 1 else 0 end) as ’GO:0003924’,
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max(case when GO = ’GO:0006397’ then 1 else 0 end) as ’GO:0006397’,
max(case when GO = ’GO:0005578’ then 1 else 0 end) as ’GO:0005578’,
max(case when GO = ’GO:0007283’ then 1 else 0 end) as ’GO:0007283’,
max(case when GO = ’GO:0008380’ then 1 else 0 end) as ’GO:0008380’,
max(case when GO = ’GO:0007264’ then 1 else 0 end) as ’GO:0007264’,
max(case when GO = ’GO:0006954’ then 1 else 0 end) as ’GO:0006954’,
max(case when GO = ’GO:0007601’ then 1 else 0 end) as ’GO:0007601’,
max(case when GO = ’GO:0005625’ then 1 else 0 end) as ’GO:0005625’,
max(case when GO = ’GO:0008285’ then 1 else 0 end) as ’GO:0008285’,
max(case when GO = ’GO:0007067’ then 1 else 0 end) as ’GO:0007067’,
max(case when GO = ’GO:0003713’ then 1 else 0 end) as ’GO:0003713’,
max(case when GO = ’GO:0009055’ then 1 else 0 end) as ’GO:0009055’,
max(case when GO = ’GO:0005792’ then 1 else 0 end) as ’GO:0005792’,
max(case when GO = ’GO:0004930’ then 1 else 0 end) as ’GO:0004930’,
max(case when GO = ’GO:0008083’ then 1 else 0 end) as ’GO:0008083’,
max(case when GO = ’GO:0003823’ then 1 else 0 end) as ’GO:0003823’,
max(case when GO = ’GO:0003735’ then 1 else 0 end) as ’GO:0003735’,
max(case when GO = ’GO:0008284’ then 1 else 0 end) as ’GO:0008284’,
max(case when GO = ’GO:0004252’ then 1 else 0 end) as ’GO:0004252’,
max(case when GO = ’GO:0005125’ then 1 else 0 end) as ’GO:0005125’,
max(case when GO = ’GO:0000287’ then 1 else 0 end) as ’GO:0000287’,
max(case when GO = ’GO:0006813’ then 1 else 0 end) as ’GO:0006813’,
max(case when GO = ’GO:0006366’ then 1 else 0 end) as ’GO:0006366’,
max(case when GO = ’GO:0005529’ then 1 else 0 end) as ’GO:0005529’,
max(case when GO = ’GO:0006916’ then 1 else 0 end) as ’GO:0006916’,
max(case when GO = ’GO:0009986’ then 1 else 0 end) as ’GO:0009986’,
max(case when GO = ’GO:0006457’ then 1 else 0 end) as ’GO:0006457’,
max(case when GO = ’GO:0006886’ then 1 else 0 end) as ’GO:0006886’,
max(case when GO = ’GO:0005759’ then 1 else 0 end) as ’GO:0005759’,
max(case when GO = ’GO:0005516’ then 1 else 0 end) as ’GO:0005516’,
max(case when GO = ’GO:0006357’ then 1 else 0 end) as ’GO:0006357’,
max(case when GO = ’GO:0006281’ then 1 else 0 end) as ’GO:0006281’,
max(case when family = ’PF00001’ then 1 else 0 end) as ’PF00001’,
max(case when family = ’PF00096’ then 1 else 0 end) as ’PF00096’,
max(case when family = ’PF00069’ then 1 else 0 end) as ’PF00069’,
max(case when family = ’PF01352’ then 1 else 0 end) as ’PF01352’,
max(case when family = ’PF07686’ then 1 else 0 end) as ’PF07686’,
max(case when family = ’PF00400’ then 1 else 0 end) as ’PF00400’,
max(case when family = ’PF00046’ then 1 else 0 end) as ’PF00046’,
max(case when family = ’PF00023’ then 1 else 0 end) as ’PF00023’,
max(case when family = ’PF00076’ then 1 else 0 end) as ’PF00076’,
max(case when family = ’PF00560’ then 1 else 0 end) as ’PF00560’,
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max(case when family = ’PF00169’ then 1 else 0 end) as ’PF00169’,
max(case when family = ’PF00097’ then 1 else 0 end) as ’PF00097’,
max(case when family = ’PF00041’ then 1 else 0 end) as ’PF00041’,
max(case when family = ’PF00595’ then 1 else 0 end) as ’PF00595’,
max(case when family = ’PF07654’ then 1 else 0 end) as ’PF07654’,
max(case when family = ’PF00018’ then 1 else 0 end) as ’PF00018’,
max(case when family = ’PF00071’ then 1 else 0 end) as ’PF00071’,
max(case when family = ’PF00651’ then 1 else 0 end) as ’PF00651’,
max(case when family = ’PF00089’ then 1 else 0 end) as ’PF00089’,
max(case when family = ’PF00168’ then 1 else 0 end) as ’PF00168’,
max(case when family = ’PF07714’ then 1 else 0 end) as ’PF07714’,
max(case when family = ’PF00028’ then 1 else 0 end) as ’PF00028’,
max(case when family = ’PF00010’ then 1 else 0 end) as ’PF00010’,
max(case when family = ’PF00271’ then 1 else 0 end) as ’PF00271’,
max(case when family = ’PF00520’ then 1 else 0 end) as ’PF00520’,
max(case when family = ’PF00017’ then 1 else 0 end) as ’PF00017’,
max(case when family = ’PF00622’ then 1 else 0 end) as ’PF00622’,
max(case when family = ’PF00129’ then 1 else 0 end) as ’PF00129’,
max(case when family = ’PF07645’ then 1 else 0 end) as ’PF07645’,
max(case when family = ’PF01391’ then 1 else 0 end) as ’PF01391’,
max(case when family = ’PF07653’ then 1 else 0 end) as ’PF07653’,
max(case when family = ’PF00059’ then 1 else 0 end) as ’PF00059’,
max(case when family = ’PF00047’ then 1 else 0 end) as ’PF00047’,
max(case when family = ’PF00270’ then 1 else 0 end) as ’PF00270’,
max(case when family = ’PF00515’ then 1 else 0 end) as ’PF00515’,
max(case when family = ’PF00038’ then 1 else 0 end) as ’PF00038’,
max(case when family = ’PF07690’ then 1 else 0 end) as ’PF07690’,
max(case when family = ’PF00307’ then 1 else 0 end) as ’PF00307’,
max(case when family = ’PF06623’ then 1 else 0 end) as ’PF06623’,
max(case when family = ’PF00643’ then 1 else 0 end) as ’PF00643’,
max(case when family = ’PF00621’ then 1 else 0 end) as ’PF00621’,
max(case when family = ’PF00628’ then 1 else 0 end) as ’PF00628’,
max(case when family = ’PF00412’ then 1 else 0 end) as ’PF00412’,
max(case when family = ’PF01344’ then 1 else 0 end) as ’PF01344’,
max(case when family = ’PF08266’ then 1 else 0 end) as ’PF08266’,
max(case when family = ’PF00620’ then 1 else 0 end) as ’PF00620’,
max(case when family = ’PF00443’ then 1 else 0 end) as ’PF00443’,
max(case when family = ’PF00536’ then 1 else 0 end) as ’PF00536’,
max(case when family = ’PF00008’ then 1 else 0 end) as ’PF00008’,
max(case when family = ’PF07707’ then 1 else 0 end) as ’PF07707’,
max(case when family = ’PF00090’ then 1 else 0 end) as ’PF00090’,
max(case when family = ’PF00067’ then 1 else 0 end) as ’PF00067’,
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max(case when family = ’PF02023’ then 1 else 0 end) as ’PF02023’,
max(case when family = ’PF00036’ then 1 else 0 end) as ’PF00036’,
max(case when family = ’PF00092’ then 1 else 0 end) as ’PF00092’,
max(case when family = ’PF00153’ then 1 else 0 end) as ’PF00153’,
max(case when family = ’PF00106’ then 1 else 0 end) as ’PF00106’,
max(case when family = ’PF00646’ then 1 else 0 end) as ’PF00646’,
max(case when family = ’PF00566’ then 1 else 0 end) as ’PF00566’,
max(case when family = ’PF00084’ then 1 else 0 end) as ’PF00084’,
max(case when family = ’PF02214’ then 1 else 0 end) as ’PF02214’,
max(case when family = ’PF00505’ then 1 else 0 end) as ’PF00505’,
max(case when family = ’PF00130’ then 1 else 0 end) as ’PF00130’,
max(case when family = ’PF00787’ then 1 else 0 end) as ’PF00787’,
max(case when family = ’PF00250’ then 1 else 0 end) as ’PF00250’,
max(case when family = ’PF00004’ then 1 else 0 end) as ’PF00004’,
max(case when family = ’PF00431’ then 1 else 0 end) as ’PF00431’,
max(case when family = ’PF00002’ then 1 else 0 end) as ’PF00002’,
max(case when family = ’PF00005’ then 1 else 0 end) as ’PF00005’,
max(case when family = ’PF00226’ then 1 else 0 end) as ’PF00226’,
max(case when family = ’PF00125’ then 1 else 0 end) as ’PF00125’,
max(case when family = ’PF00104’ then 1 else 0 end) as ’PF00104’,
max(case when family = ’PF02931’ then 1 else 0 end) as ’PF02931’,
max(case when family = ’PF00373’ then 1 else 0 end) as ’PF00373’,
max(case when family = ’PF00105’ then 1 else 0 end) as ’PF00105’,
max(case when family = ’PF02932’ then 1 else 0 end) as ’PF02932’,
max(case when family = ’PF00702’ then 1 else 0 end) as ’PF00702’,
max(case when family = ’PF00612’ then 1 else 0 end) as ’PF00612’,
max(case when family = ’PF00225’ then 1 else 0 end) as ’PF00225’,
max(case when family = ’PF00057’ then 1 else 0 end) as ’PF00057’,
max(case when family = ’PF00048’ then 1 else 0 end) as ’PF00048’,
max(case when family = ’PF00782’ then 1 else 0 end) as ’PF00782’,
max(case when family = ’PF01462’ then 1 else 0 end) as ’PF01462’,
max(case when family = ’PF00397’ then 1 else 0 end) as ’PF00397’,
max(case when family = ’PF02210’ then 1 else 0 end) as ’PF02210’,
max(case when family = ’PF01562’ then 1 else 0 end) as ’PF01562’,
max(case when family = ’PF01421’ then 1 else 0 end) as ’PF01421’,
max(case when family = ’PF00179’ then 1 else 0 end) as ’PF00179’,
max(case when family = ’PF00240’ then 1 else 0 end) as ’PF00240’,
max(case when family = ’PF00063’ then 1 else 0 end) as ’PF00063’,
max(case when family = ’PF08205’ then 1 else 0 end) as ’PF08205’,
max(case when family = ’PF00102’ then 1 else 0 end) as ’PF00102’,
max(case when family = ’PF00822’ then 1 else 0 end) as ’PF00822’,
max(case when family = ’PF00856’ then 1 else 0 end) as ’PF00856’,
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max(case when family = ’PF00079’ then 1 else 0 end) as ’PF00079’,
max(case when family = ’PF00019’ then 1 else 0 end) as ’PF00019’,
max(case when family = ’PF01094’ then 1 else 0 end) as ’PF01094’,
max(case when family = ’PF00439’ then 1 else 0 end) as ’PF00439’,
max(case when family = ’PF07525’ then 1 else 0 end) as ’PF07525’,
max(case when family = ’PF07647’ then 1 else 0 end) as ’PF07647’,
, T.Y
FROM GO merge T JOIN Pfam merge ON T.UID = Pfam merge.UID
group by UID
into outfile ‘/tmp/GOpfam merge.csv’;
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Appendix B

Appendix

Borg - Name of the pancreatic cancer protein database

GO - Protein name (Gene Ontology). Associated with non-pancreatic as well as pan-
creatic cancer proteins

PFAM - Protein Families. Associated with non-pancreatic as well as pancreatic can-
cer proteins

NP - Non-pancreatic cancer protein

PDAC - Pancreatic cancer protein

WEKA - Waikato Environment for Knowledge Analysis. Java program that contains
a large variety of tools that can be used for pre-processing datasets

ARFF - Attributes Relation File Format

CSV - Comma-separated Values

LibSVM - Library for support-vector machines. Performs classification by construct-
ing an N-dimensional hyperplane that optimally separates the data into two categories

J48 - Decision Tree classifier used in WEKA

C4.5 - Decision tree algorithm. In classification mode, when a test case, which has
no label, reaches a leaf node, C4.5 classifies it using the label stored there
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SQL - Structured Query Language. Designed to manage data in relational database
management systems

FP - False Positive

TP - True Positive
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