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Geospatial information fusion is the process of synthesizing information from com-

plementary data sources located at different points in space and time. Spatial phe-

nomena are often measured at discrete locations by sensor networks, technicians, and

volunteers; yet decisions often require information about locations where direct mea-

surements do not exist. Traditional methods assume the spatial phenomena to be

either discrete or continuous, an assumption that underlies and informs all subse-

quent analysis. Yet certain phenomena defy this dichotomy, alternating as they move

across spatial and temporal scales. Precipitation, for example, appears continuous at

large scales, but it can be temporally decomposed into discrete spatial events (e.g.,

storms, fronts) inside which rainfall is continuous. We describe such phenomena as

behaving discretely-continuous.

This thesis presents an event detection framework that both leverages existing

techniques such as indicator kriging as well as a novel embedded-graph based algo-

rithms. This event detection framework is applied to the spatial information fusion

problem in order to more intelligently parameterize existing interpolation methods

according to local spatial structure (i.e., presence or absence of events). Tests on sim-

ulated data demonstrate the efficacy of the event detection logic as well as help inform

how to better apply this event detection logic to the fusion problem. Results of tests

on real-world precipitation data compare favorably, and in some cases outperform,



traditional interpolation methods.
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on three different days in June 2010 . . . . . . . . . . . . . . . . . . . . . 52

4.6 Example neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Example neighborhood II . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8 Illustration of event interior, border, and exterior. . . . . . . . . . . . . 59

4.9 Example neighborhood III . . . . . . . . . . . . . . . . . . . . . . . . . . 61



xiii

4.10 Two clusters connected by a single point. . . . . . . . . . . . . . . . . . . 63

5.1 The simulation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Example sample and verification sets . . . . . . . . . . . . . . . . . . . . 75

5.3 Two-dimensional Gaussian distribution . . . . . . . . . . . . . . . . . . . 77

5.4 Thresholded two-dimensional Gaussian distribution . . . . . . . . . . . . 78

5.5 Thresholded two-dimensional Gaussian distribution with pseudo-nugget

noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 The simulation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 AAD method by size interaction plot . . . . . . . . . . . . . . . . . . . . 97

6.3 AD+ method by size interaction plot . . . . . . . . . . . . . . . . . . . . 98

6.4 AD- method by size interaction plot . . . . . . . . . . . . . . . . . . . . 99

6.5 MAD method by size interaction plot . . . . . . . . . . . . . . . . . . . . 100

6.6 AAD method by shape interaction plot, size small . . . . . . . . . . . . . 104

6.7 AD+ method by shape interaction plot, size small . . . . . . . . . . . . . 105

6.8 AD- method by shape interaction plot, size small . . . . . . . . . . . . . 106

6.9 AD- method by orientation interaction plot, size small . . . . . . . . . . 108

6.10 AD- method by orientation interaction plot, size large . . . . . . . . . . . 108

6.11 AAD method by nugget interaction plot . . . . . . . . . . . . . . . . . . 110

6.12 AAD method by sill interaction plot . . . . . . . . . . . . . . . . . . . . 111

6.13 AD+ method by nugget interaction plot . . . . . . . . . . . . . . . . . . 112

6.14 AD- method by nugget interaction plot . . . . . . . . . . . . . . . . . . . 113

6.15 AAD noise by method interaction plot, small circle . . . . . . . . . . . . 116

6.16 AAD noise by method interaction plot, large circle . . . . . . . . . . . . 117

6.17 AAD noise by method interaction plot, large circle . . . . . . . . . . . . 118



xiv

7.1 DECAF-IK underestimation along event border. . . . . . . . . . . . . . . 120

7.2 DECAF-EG Error along event border. . . . . . . . . . . . . . . . . . . . 121

7.3 Example interior, border, exterior regions of an event estimation ê . . . . 122
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Chapter 1

Introduction

Spatial data abundance is the new norm, the consequence of sensor proliferation,

inexpensive storage, and near-universal network access. Goods, services, people, and

natural phenomena are tracked with increasing regularity and precision. Often, these

data capture different aspects of the same phenomenon. For example, regional diesel

prices, the presence of bad weather events, and the distribution of grain silos are all

spatial information, and all may tell part of a larger story about the economy of a

rural farming region. Yet, integrating and interpreting these disparate data sources

can be difficult: some sources may overwhelm the analyst with torrents of data while

other aspects, or even geospatial extents, may be underreported or poorly covered.

When this process is automated such that algorithms are responsible for deriving

useful information both more concise and complete, it is known as information fusion

Information fusion is defined by the International Society of Information Fusion as

“the study of efficient methods for automatically or semi-automatically transforming

information from different sources and different points in time into a representation

that provides effective support for human or automated decision making” [7]. The

information fusion process can be extended to the geospatial context to parse spatial
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data, such as raster fields, vector objects, and point data. However, space exhibits

properties that make the application of traditional non-spatial techniques cumber-

some, suspect, or simply inappropriate [44]. A true geospatial information fusion

engine must incorporate spatial logic in order to effect intelligible, useful output.

This thesis is motivated by the need to incorporate spatial logic into the infor-

mation fusion process. We focus on a particular subset of spatial input types: point

data. Point data is simple. It associates a point location (often represented as a

Latitude, Longitude tuple) with a value (or vector of values) that measure the phe-

nomenon of interest. Unlike raster data, coverage is necessarily limited and most

locations are unknown. Furthermore, no information about the spatial structure is

explicitly recorded. For example, consider trying to classify land use by point data:

do two nearby water points record a common body, such as a lake, or do they record

two parallel ditches along a highway? A raster approach is clearly better suited for

the land classification problem; temperature data, however, tends to be very easy

to interpolate: given two temperature measurements located near to one another, it

is generally reasonable to assume that the temperature in-between can be estimated

according to a linear gradient.

In other words, spatial phenomena are assumed to be either discrete or continuous

[14]. Discrete objects are those that are distinct in space, such as a paved road or

a parcel of land, and are modeled as vectors or objects. Continuous phenomena,

on the other hand, are unbroken across the landscape, and are conceptualized as

fields and modeled as rasters (e.g., temperature, airborne particulate concentrations).

Both conceptualizations are necessary to understand the real world [47] and modeling

interactions between them remains an active area of research [24] [31].

It has long been recognized that this dichotomization is imperfect [14]. Continuous

phenomena can behave discretely when a barrier separates two otherwise neighbor-
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ing locations. For example, air temperature behaves continuously, but a very sharp

delineation is found at the rim of the Grand Canyon. Identifying and representing

geospatial barriers is an established and well-researched problem [52]. On the other

hand, is a forest a discrete object? It is treated so under a land use classification

scheme, but Sorites paradox uncomfortably illuminates the imperfect relationship

between abstraction and reality[2].

We raise the problem of phenomena which we label as delineated continuous.

These phenomena can be clearly defined to be either present or absent at a particular

point in space—that is, any phenomenon that can take a zero value (or equivalent).

If the values types tend to be collocated (i.e., present points near to other present

points), then the phenomenon acts discretely at large scales. Distinct regions can be

identified, and their borders demarcated. However, within a specific present region

the phenomenon is best described continuously. For example, precipitation happens in

discrete events (e.g., cells, storms, fronts), but inside of the borders of those events the

precipitation amount varies continuously. In fact, the model can be further extended

to include an arbitrary number of distinct zones, as long as the phenomena behaves

continuously within the zone. For the purposes of this thesis, we will restrict our

analysis to the present/absent dichotomy.

Delineated continuous phenomena may be further subdivided into static and dy-

namic categorizations. The static variety have temporally fixed boundaries, such as

a mountain range or the borders of a nation. These boundaries may themselves be

dependent on the phenomenon at hand; for example, a mountain range may divide

a watershed but have no impact on the migration of people, while national borders

do not impact the flow of water but may restrict migration. Such delineations can be

encoded a priori to divide the region of analysis into discrete subregions, each to be

treated differently. This area has been comparatively well-researched, though under
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such disparate topics as zonal analysis and spatial barriers and attractors [40] [58]

[53]. Because these regions can be predefined, skilled analysts can take the time to

either manually encode their extents or to verify the results of automated methods.

On the other hand, dynamic delineated continuous phenomena are difficult (and

expensive) to encode a priori. These events may move as well as appear and dis-

appear through time. For example, no two precipitation events share precisely the

same boundaries, and the extent of a storm cannot be known a priori. Similarly, the

extent of a pollution event, such as an oil spill or hazardous gas leak, may be dis-

cretely defined but change over time while the interior is characterized by continuous

but variable pollutant concentrations. A fusion engine is only useful if it is highly

automated, especially if it is fusing information across many time steps. Therefore,

a spatial fusion engine that works with dynamic delineated continuous phenomena

should be able to structure the space automatically.

1.1 Motivations

A fusion engine is only useful if it is highly automated, especially if it is fusing infor-

mation across many units of time. Therefore, a spatial fusion engine that works with

dynamic delineated continuous phenomena should be able to structure the space au-

tomatically. This thesis is motivated by the need to automatically structure dynamic

delineated continuous space in order to inform the spatial fusion process.

Towards this end, we identify two immediate goals:

1. Automatically identify individual delineated continuous events from sample point

data.

Discrete events define the delineated continuous phenomenon space. If these
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events can be identified from the sample point-data, they might be leveraged

by a spatially aware fusion engine. Furthermore, we identify a sub-goal:

a) The event detection process should be computationally efficient. Sub-polynomial

time complexity is preferred.

Information fusion engines are often associated with large data sets. Be-

cause of the proliferation of geospatially aware devices, the amount of avail-

able geospatial data is rapidly growing. Therefore, an efficient approach is

ideal.

2. Leverage this spatial structure (the identified events) to improve estimations at

unknown points.

We test the utility of the formalized spatial structure by applying it towards a

simple fusion problem: spatial interpolation. While the particular problem is

well researched and established methods are effective, we aim to demonstrate

that our approach achieves comparable or improved results.

In the long term, we envision a geospatial data fusion engine that exploits many va-

rieties of spatial data inputs—point observations, raster fields, object vectors, etc.—

that capture many kinds of spatial phenomena, whether discrete, continuous, or some-

where in-between (e.g., delineated continuous). The event detection logic presented

in this thesis would play a critical role in parsing sample-point data that captures

delineated continuous events. Furthermore, we envision that the identified delineated-

continuous events may be used to better recognize patterns across space and time (e.g.,

they may make for a useful input to data mining algorithms). We hope that this will

better enable the automated fusion of delineated continuous phenomena with discrete

phenomena and continuous phenomena to effect a higher-level picture of the overall

system. For example, precipitation measurements (delineated continuous) may be
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fused with watershed boundaries and water body extents (discrete) as well as soil

moisture and transpiration rates (continuous) to arrive at a better understanding of

the water cycle in a given region.

1.2 Contributions

In this thesis, we propose a method—Delineated-Aspect Continuous-Event Fusion

(DECAF)—that automatically structures the dynamic delineated continuous event

space for the purpose of making point estimations. We present two algorithmic

realizations of this method, DECAF-Indicator Kriging (DECAF-IK) and DECAF-

Embedded Graph (DECAF-EG).

Both DECAF approaches effectively structure the delineated continuous event

space into present events and absence space. We demonstrate the usefulness of

this approach by leveraging the derived spatial structure to match and occasion-

ally out-perform the traditional interpolation techniques Inverse Distance Weighting

and kriging. The results are mixed, but evidence suggests that structuring delineated

continuous holds promise for improving point estimation and, eventually, informing

a geospatial information fusion engine.

Furthermore, we have created a software system to both implement and test these

approaches. The system supports the following:

1. Persistence. Identified events are stored in a database to facilitate future

analysis for the purpose of improved data fusion.

2. Concurrency. Distinct temporal slices can be computed concurrently, reduc-

ing computation time for large spatio-temporal datasets.

3. Visualization. Datasets and identified events can be visualized in-program.



7

The software is written in Python, allowing deployment to a variety of platforms

as well as facilitating integration into existing geospatial programs, such as ESRIs

ArcGIS.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 reports background

information, Chapter 3 formally defines the problem, and Chapter 4 presents the

DECAF logic as well as two realizations (DECAF-IK and DECAF-EG). Chapters 5

and 6 report the design and results of tests on simulated data. Chapter 7 considers

modifications to the DECAF approach based on the simulation results. Chapters 8

and 9 report the design and results of tests on real-world precipitation data. Chapter

10 concludes the report.
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Chapter 2

Background Information

In this chapter we review topics pertinent to DECAF. The first section discusses

information fusion and takes the time to tease out definitions that have become, to

a degree, confused over time and across disciplines. The second section discusses

properties of space that are germane, including spatial autocorrelation and spatial

boundaries. The third section focuses on the standard interpolation technique kriging,

which DECAF both employs and is compared to. The fourth section wraps up by

pausing to integrate information fusion and the geospace together.

2.1 Knowledge discovery and information fusion

The Knowledge Discovery in Databases (KDD) process defines the general problem

whereby data too abundant or complex for standard analysis is refined for human

digestion [21]. Large amounts of data are stored in databases—hence the name. KDD

can be better understood through the “information hierarchy,” which distinguishes

between data, information, and knowledge. Applying precise definitions to these terms

is as much philosophy as science, and even the well-developed field of Information
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Science struggles to develop consistent demarcations [59]. For our purposes, however,

it is sufficient to make only general distinctions. Data may be understand to be

facts, signals, or symbols that have been removed from context and neglected by

interpretation [41]. Data itself has no meaning and alone is useless. Information may

be structurally identical data, but is relationally associated with other data to answer

questions such as who, what, when, and where [1]. Knowledge is information collected

together for a useful purpose, such as hypothesis testing. It can be understood to

answer the how question [1].

Information fusion can be understood as a KDD problem, and is defined by the

International Society of Information Fusion as “the study of efficient methods for

automatically or semi-automatically transforming information from different sources

and different points in time into a representation that provides effective support for

human or automated decision making” [7]. In other words, information fusion is the

process of synthesizing data (with emphasis on multiple kinds of data) to produce

output of higher conceptual complexity (i.e., information).

Information fusion need not be understood strictly through the lenses of computer

science. For example, the United Nation’s Human Development Index may be under-

stood as a non-automated information fusion output [38]. As seen in Figure 2.1, four

data sources (“indicators”) are mapped to three information types (“dimensions”) to

synthesize a single knowledge product (“index”).
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Figure 2.1: The methodology behind the United Nation’s Human Development Index

[38]

2.1.1 Information fusion, data fusion, and data integration

A brief detour into definition is now necessary. Above—and throughout this paper—

we will refer to the process of amalgamating data and elevating it to information as

information fusion. It is our opinion that this term best describes the process as

well as the product (information). The term is also an old one firmly rooted in the

information sciences [54]. The related term data fusion can be a source of confusion,

and so warrants a brief discussion.

The definition of data fusion depends upon context. In the fields of robotics and

remote sensing, the terms data fusion and sensor fusion are used interchangeably

in addition to (more rarely) using the term information fusion [33] [10]. All three

integrate data to produce information, and so are consistent with the notion of moving

up the data-information-knowledge hierarchy. It could be argued that data fusion is
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a subset of information fusion because data fusion tends to work with inputs that are

minimally-filtered while information fusion can utilize a mixture of unprocessed data,

processed data, and information. We do not find this distinction to be particularly

useful, and instead to be the product of an attempt to shoehorn a popular term (data

fusion) into a more logical one.

Second—and of more pertinence to this thesis—data fusion has a very different

meaning in the geospatial sciences, where it was borrowed from the field of database

management [44] [55]. In database management, the term data fusion is synonymous

with data integration [5] [28]. Data integration is the process by which two or more

databases are merged to produce a new database of improved quality [43]. This

process involves mapping differing database schema [39], identifying shared objects

(e.g., two different databases each record the same farmhouse) [22] [4], and resolving

inconsistencies (e.g., two databases each associate the same farmhouse with different

owners) [16]. The second step is similar to the sensor fusion meaning of the term,

and hence confusion can result. Because this thesis is firmly rooted in the geospatial

realm, we deliberately eschew the term data fusion for information fusion to avoid

conflation with the idea of data integration.

2.2 Space

Humans have been filtering, synthesizing, and analyzing spatial information for millennia—

and we tend to be good at it. Cartography’s long and productive history attests to

this fact. The great models of geography are intuitive, such as Von Thunen’s agri-

cultural circles and the gravity model of spatial interaction [52] [15]. This success is

born from spatial reasoning—which is to say, space has certain properties that differ-

entiate it from the nonspatial that, when recognized, act as a foundation upon which
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to reason. We previously discussed discrete vs. continuous space in Chapter 1. We

will continue to discuss space here, focusing on the idea of spatial autocorrelation.

When Tobler states in his First Law of Geography that “everything is related to

everything else, but near things are more related than distant things” we are almost

bewildered by its banality [51]. Yet, it illustrates an essential geospatial truth: spa-

tial events are autocorrelated. Pelicans tend to live near other pelicans; crime tends

to happen in the same part of town. Temperatures are not randomly distributed—

Baltimore is not a balmy 80◦ while Washington D.C. is a chilly 30◦—and neither

are precipitation, vegetation cover, or the density of Homo sapiens. In essence, spa-

tial phenomena are, to varying degrees, prestructured. While this can bedevil naive

analysis (such as the application of traditional statistical measures, which assume

independence), such structure can (and does) inform intelligent algorithms. For ex-

ample, interpolation techniques—which are discussed in detail below—work because

they exploit the fact that nearby points are similar: we can predict the value at

point q because that value is related to the values of neighbors a, b, and c—and that

relationship can be modelled using well-understood distance relationships.

Spatial autocorrelation can be quantified using different methods. Moran’s I is a

commonly used statistic that measures autocorrelation on a (−1, 1) scale, where −1

describes a spatial set that is perfectly dispersed, 0 a set that is randomly distributed,

1 a set that is completely clustered [34]. Geary’s C is a similar measure, but is more

sensitive to localized pockets of autocorrelation [25].

These quantifications of spatial autocorrelation are interesting and can make for

useful analysis, but they only summarize the space. They do not provide much useful

information upon which to build a spatial information engine, as they do not inform

about relationships across space or at particular locations. A more useful construct

is the semivariogram.
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The intuition behind the semivariogram is straightforward. Assuming some level

of spatial autocorrelation, it is reasonable to expect nearby point pairs to be more

alike than distant point pairs. If the value difference is found for all point pairs, it

can be plotted against distance to produce a graph. From such a graph the precise

relationship between distance and value difference might be derived.

Figure 2.2 shows such a graph, though instead of raw difference we use the semi-

variance (calculated using Equation 2.1, which we will consider in detail shortly).

Unfortunately, this figure—referred to formally as an experimental semivariogram

cloud—is messy. We do not observe an orderly relationship between distance and

semivariance. In part, this is because geospatial data is often noisy and ill-behaved

with many different factors at work. However, noise is not the only culprit.

Figure 2.2: An example semivariogram cloud

Consider the bull’s eye phenomenon in Figure 2.3. If we plot the relationship

between point a and all possible points, we will observe an orderly, increasing semi-

variogram cloud. However, if we plot the relationship between point b and all possible

points, the cloud will not be so meticulously ordered. For example, the semivariance

between b-c is the same as that between b-d, but the distances are not. Furthermore,
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the distances between b-d and b-e are the same, but the semivariance is not. In

environments that are no as carefully ordered as our bull’s eye, the cloud becomes

very messy very quickly and ceases to be useful.

Figure 2.3: Five points in a well-ordered space

However, return to Figure 2.2. Note that we do observe a very general positive

relationship between distance and maximum semivariance. This suggests that the

semivariogram cloud might be useful if it can be cleaned up.

Consider the following equation, which calculates the semivariance by distance

threshold:

γ̂(h) =
1

2
· 1

n(h)

n(h)∑
i=1

(vi − vh,i)2 (2.1)

where h is a distance threshold (i.e., the distance between points i and j is at least h),

n(h) is the number of point-pairs that are at least h distant, vi is the value associated

with point i, and vh,i is the value assocaited with a point at least h from point i. The

variable h is drawn from the series of distance thresholds H = 〈h1, h2, . . . , hn〉—these

distance thresholds should recreate a figure similar to a bulls eye (though the intervals
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need not be uniform in size). In effect, Equation 2.1 bins point-pairs by distance and

computes the semivariance within that bin. This is called the experimental semivar-

iogram. An experimental semivariogram derived from the Figure 2.2 experimental

semivariogram cloud is shown in Figure 2.4.

Figure 2.4: Example semivariogram. Produced in EsriArcGIS. Blue crosses represent
semivariance bin values. The blue line is the fitted model.

The semivariogram is better behaved than the semivariogram cloud. To it we

can fit a semivariogram function, which allows us to model the relationship between

distance and semivariance. This is important, as this model can be used to inform pre-

dictive functions (e.g., kriging). Because semivariograms are so often used to inform

a kriging function, not just any fitted function will do. The function must not pro-

duce negative variances, and it must be positive definite. While many semivariogram

models exist only a few are commonly used: linear, circular, spherical, Gaussian, and

exponential. These all share three parameters in common, and each parameter is

easily interpreted:
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Nugget. The nugget is the y-intercept of the fitted model. Conceptually, the nugget

captures the fact that phenomena often have a minimal area of effect. The

term originates from mining gold: gold may be distributed continuously at large

scales, but at small scales it is highly clustered into nuggets. A gold nugget may

or may not be found right beside another; this is the inherent minimal variance.

Sill. The sill is the horizontal asymptote the bounds the maximal values semivari-

ogram model (y-axis).1 Conceptually, this is the expected variance between two

independent observations (i.e., two non-neighbor points).

Range. The range is the distance (x-axis) at which the curve levels off. Conceptu-

ally, this is the distance at which observations cease to be correlated (i.e., the

neighborhood distance).

The semivariogram is powerful, but it suffers a limitation: it is a global measure.

The semivariogram is computed from all sample points. If two regions in the space

are expected to behave differently, the analyst must manually separate the sample

points into two sets and compute two semivariograms. If a phenomenon behavies

discrete-continuously, individual semivariograms must be computed for each discrete

region. If the phenomenon is dynamic, then this process has to be repeated at each

individual time step.

2.3 Interpolation

Suppose we have a set of points P that sample a space such that each p ∈ P has an

associated value vp that measures a phenomenon of interest. Because P is composed

of points, there are necessarily locations in our space that have not been sampled

1This is not necessarily a true asymptote: for example, a linear semivariogram model will not
level off. In the case of these models, the sill must be estimated using alternative methods.
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and so have no associated value—i.e., the value is unknown. How do we estimate the

value vq at such a point q?

Recall Toblers Law and the notion of spatial autocorrelation. Because space is

so structured, we can reasonably surmise that points from P located near q might

inform us about the value vq. The simplest approach would be to simply assign vq

equal to the value of q’s nearest neighbor.

A more sophisticated approach would be to develop some neighborhood of nearby

points. This neighborhood could be constructed any number of ways: k points nearest

to q, all points within radius r of q, sector-searches, etc.2 Once this neighborhood is

developed, the values simply need to be combined in some fashion. A naive approach

would be to use a traditional measure of centrality, such as the mean or the median.

We can do better, and we explore two traditional geospatial approaches—inverse

distance weighting and kriging—below.

2.3.1 Inverse Distance Weighting

Inverse distance weighting (IDW) is intuitive. Instead of a simple mean, the averag-

ing process is modified to weigh each value according to distance. IDW is a linear

combination of the form

v̂q = w1v1 + w2v2 + . . .+ wnvn (2.2)

where wi is a weight assigned to value vi and n is the number of points in the neigh-

borhood of point q. In the case of the tradition mean computation, all weights are

equivalent such that

wi =
1

n
(2.3)

2See Chapter 4 section 4.4.3 for a more detailed discussion of neighborhood search algorithms.
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We want to modify these weights to reflect spatial information, so each weight is

a function of distance. Each weight wi can be made proportional to the distance

between the pi and q. This proportion can take many forms. The term “inverse

distance weighting” can refer to many different such functions, such as the linear

1

distance
(2.4)

and the polynomial

1

distance2
(2.5)

Others exist, but these two are the most common. For the purpose of this paper,

when use IDW we use Equation 2.4.

Finally, these weights are normalized such that

n∑
i=1

wi = 1 (2.6)

So, the linear inverse distance weighted function is of the form

v̂q =

∑m
i=1

vi
di∑m

i=1
1
di

(2.7)

where m is the number of points neighbor to the estimation point q, di is the distance

between the estimation point q and the point pi, and vi is the value of the point pi.

2.3.2 Kriging

Kriging is more sophisticated than IDW, and satisfies many of IDW’s shortcomings.

We will discuss three of these improvements; for a complete discussion see Chapter 9

of [11].
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Neighborhood selection. If IDW uses a maximum-radius search is to find neigh-

bors, the size of the radius must be parameterized a priori. IDW itself has no

mechanism by which to identify a reasonable search radius.

Kriging relies on the semivariogram. Recall that the range of a semivariogram

was the distance at which points ceased to be correlated (and become inde-

pendent of one another). This range makes for a reasonable maximum search

radius, as points within this radius can inform the prediction and points out-

side of it cannot (at least on average). Now, while not typically implemented

by IDW functions, the semivariogram can be used to manually parameterize

IDW.

Point clustering. IDW only weights points based on distance. So, a dozen points

all tightly clustered to the east of q will each be weighted similarly to one point

located to the west. Yet, it is reasonable to think that the dozen points are

highly correlated and capture much of the same information while the single

point to the west probably captures new, interesting information. Kriging com-

pensates for clustering, splitting weight among clustered points and effectively

upweighting points located in alternative directions More accurately, kriging

does not explicitly consider direction (that is, if we ignore anisotropy) but in-

stead considers correlation. Highly correlated points are effectively treated as a

single point, which because of spatial autocorrelation tends to result in clusters

of point q. Note, however, that this measure of correlation is not computed from

the values of the points but from the fitted theoretical semi-variogram—data is

not considered, only location via modelled correlation.

Error map. In practice, IDW and kriging tend not to make wildly different estima-

tions [6]. Kriging, however, produces an estimation of error. Now, the usefulness
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of this error is limited—as [6] notes, it is really just a map of the distance to the

nearest point scaled by the covariance function. Furthermore, it is not trivial for

a novice to produce “good” error maps (unlike actual prediction maps, which

tend to be robust to parameterization). Much of the skill of an experienced ana-

lyst is associated with appropriately parameterizing the kriging method to build

an accurate error map. But, the quantification of error, however imperfect, is

often just as if not more important than the prediction itself [17].

To explain the logic behind kriging, we will begin by focusing on error. In fact, the

error map described above is not just a useful byproduct of the kriging method, but

that estimation error is essential to the kriging process. The following is based on

[11] and [6].

Suppose we define error to be

ε = qv − q̂v (2.8)

where qv is the true value at point q and q̂v is the estimated value. If we assume

that the sample values follow a normal distribution, then the error values should also

be normal with a mean µε and standard deviation σε. Furthermore, let E() be the

expected value of a variable; then, µε = E(ε) at a given point q. Suppose we know

the value at point p. From this it follows that

µε = E(pv)− E(qv) = µ− µ = 0 (2.9)

if we assume that there is no trend in the data. In other words, if the values do

not consistently change in one direction, then we expect the error resulting from an

estimation based exclusively on the nearest neighbor (p) to be equal to the mean error
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µε. Finally, we expect that difference, on average, to be zero.

In other words, in the absence of trends, the average error is zero.

Next, the variance is of the form

σ2
ε = E((ε− µε)2) (2.10)

We just demonstrated that µε = 0. Therefore, the error variance is equivalent to the

error itself squared. We will skip a couple mathematical steps to arrive at a very

important conclusion: the error variance is equivalent to the squared difference in

value between point-pairs that share a similar distance. This should sound familiar:

this is (almost) precisely what the semivariogram computed. Therefore,

σ2
ε = 2γ(h) (2.11)

where γ(h) is the semivariogram (Equation 2.1) and the constant 2 makes the math

prettier. Let us now consider a simple example. Suppose we are estimating point q

from points p and r. To do so, a linear combination is used (same as for IDW):

qv = w1p1,v + w2p2,v (2.12)

and the error will be estimated using the equation

σ2
ε = 2w1γ(q, p1) + 2w2γ(q, p2)− 2w1w2γ(p1, p2) (2.13)

Observe that the estimated error depends on:

1. The relationship (semivariance) between the unsampled location (q) and the

first sampled location (p1).
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2. The relationship (semivariance) between the unsampled location (q) and the

second sampled location (p2).

3. The relationship (semivariance) between the two sampled locations (p1 and p2).

This term, in particular, is interesting because it captures the relationship be-

tween the two known points. Consider these scenarios:

• The two points are nearby (e.g., clustered). The correlation should be

high—or, alternatively, the variance should be low. This term (which is

subtracted from the others) is low, and the estimated error is larger as a

result. These two points were similar, and so should it is reasonable to

think that the second point only contributed marginal information.

• The two points are distant (e.g., dispersed). The correlation should be low.

Therefore, the variance is high. The overall error is lower because of the

presumption that these two points each contribute distinct (and therefore

more useful) information.

Let us now take this two-point example and generalize it to the case of n points.

We will need n terms of the form 2wiγ(q, pi) and n2 terms of the form 2wiwjγ(pi, pj).

We arrive at the equation

σ2
ε = 2

m∑
i=1

wiγ(q, pi)−
m∑
i=1

m∑
j=1

wiwjγ(pi, pj)− γ(q, q) (2.14)

Note that γ(q, q) captures the nugget effect.

From here, kriging becomes an optimization problem: the weights in the linear

combination will be formulated such that the error is minimized overall. We now

consider two varieties of kriging in particular.
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2.3.2.1 Simple Kriging

In simple kriging, we assume that the mean is constant across the phenomenon. This

is a simplifying assumption, which makes the series of equations we must optimize

comparatively simple set of equations

m∑
i=1

wiγ(pi, pj) = γ(pi, q) (2.15)

We adjust the weights to equalize the variances; some calculus shows that this also

minimizes the overall error.

Once the weights have been calculated, they can be plugged into the linear com-

bination and used to estimate qv.

2.3.2.2 Ordinary Kriging

Ordinary kriging is more complicated than simple kriging because it drops the as-

sumption of the constant population mean. Instead, we assume that it is constant in

the neighborhood around q [6].

Now, the results in a more complicated set of equations (there are now more

unknowns than equations and Lagrangian multipliers must be used to get around

this fact). For the sake of brevity, we do not report this derivation and instead skip

to the matrix form of problem:

ABT = C (2.16)

Matrix A contains the n2 pairwise semivariances among known points (note, most
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software packages use the correlation matrix instead, but the intuition is the same):

A =



γ(v1, v1) γ(v1, v2) · · · γ(v1, vm) 1

γ(v2, v1) γ(v2, v2) · · · γ(v2, vm) 1

· · · · · · · · · · · · · · ·

γ(vm, v1) γ(vm, v2) · · · γ(vm, vm) 1

1 1 1 1 0


(2.17)

Matrix C contains the semivariances between the estimation point q and all known

sample points:

C =



γ(v1, q)

γ(v2, q)

· · ·

γ(vm, q)

1


(2.18)

Finally, matrix B is the set of weights (and the Lagrangian variable)

B =

[
w1 w2 · · · wm γ

]
(2.19)

So, if we use the matrix equation B1 = A−1C we can solve for the weights. Note

that this requires that we invert the matrix A, which is computationally expensive

(O(n3)).
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2.3.2.3 Indicator Kriging

Indicator kriging is nothing more than the adaptation of ordinary kriging to Boolean

data.3 Instead of reporting a continuous variable, indicator kriging maps the two cat-

egorizations to the integers 0 and 1. Ordinary kriging proceeds as normal, producing

a continuous estimation between 0 and 1. Finally, the range (0, 1) is mapped back to

the original categorizations and the final output is discrete [11] [27]. Indicator kriging

will be discussed in more detail in Chapter 4 in relation to the DECAF-Indicator

Kriging algorithm.

2.3.2.4 Cokriging

Cokriging is the process by which covariate variables are incorporated into the kriging

process [27]. In this way, cokriging leverages information related to but distinct from

the phenomenon of interest to make better estimations. While cokriging is not neither

used nor studied in the course of this thesis, but it warrants a passing mention because

of its similarity to the information fusion process. In effect, cokriging performs spatial

information fusion, and may play an important role in future spatial fusion engines.

2.3.2.5 Zonal kriging

We end with zonal kriging because it is uniquely relevant to delineated-continuous

phenomena.

The term zonal kriging was formalized by William Wingle, though the basic pro-

cess is probably as old as kriging itself [57]. In short, if distinct regions are best de-

scribed by distinct semivariograms, then the space is manually divided, distinct semi-

variograms are computed, and distinct interpolations are stitched together. Wingle

3Indicator kriging can be generalized to categorical data with an arbitrary number of classifica-
tions, but this requires the use of cokriging and is beyond the scope of this thesis
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partially automates this process by improving upon the stitching process, allowing

for fuzzy and gradient boundaries.

If the number of distinct spaces is large—whether the result of a large and variable

geographical extent or because of dynamism across time—then this method becomes

very labor intensive. Each zone must be predefined (the borders must be manually

constructed). Furthermore, each zone must be manually identified.

2.4 Spatial information fusion

We define the geospatial fusion process as follows:

Geospatial information fusion is the process of automatically synthesizing

high-level, concise, and integrated information from complementary data

sources located at different points in space and time, each of which rep-

resent related aspects of a phenomenon, to provide effective support for

decision making or scientific discovery.

Incorporating space into the fusion process is a non-trivial task. Many of the as-

sumptions integral to the traditional information fusion problem, such as assumptions

of normality and independence, simply do not apply in a spatial context. If spatial

properties are ignored or treated in a non-spatial way, synthesized output is probably

suspect; on the other hand, if these traits are recognized they might be leveraged to

improve output.

Again, spatial information fusion need not be understood through the lenses of

computer science. Such an example is the United States Drought Monitor produced

by the University of Nebraska in consortium with the United States Department

of Agriculture, and the National Oceanic and Atmospheric Administration [9]. In
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this case, data such as temperature and precipitation are synthesized into a map of

estimated drought severity across the United States. An example map is shown in

Figure 2.5.

Figure 2.5: Example of U. S. Drought Monitor map [3]

The Drought Monitor is an example of geospatial information fusion. Geospatial

information fusion anchors the spatial position of data onto the surface of the Earth

(typically through the means of a latitude, longitude coordinate pair).

Most traditional examples of automated geospatial information fusion are exten-

sions of sensor fusion. Primarily, they are focused around combining satellite imaging

data across the electromagnetic spectrum to produce novel but useful maps, often

focused on land-use classification [20] [45] [49]. They also involve fusing raster data

between source sets to improve land-use classification [46].
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An almost uniquely interesting approach is explored by Carrara et al [8]. This

paper explores the creation of environmental indicators by deriving individual phe-

nomenon indicators from remote-sensed raster map data. These indicators are com-

bined at the continent-wide scale using fuzzy set theory. Related papers other fuzzy

logic methods, such as Dempster-Shafer [29], but tend back towards either sensor

fusion or database integration.

We have discussed two spatial traits in particular: 1) discrete vs. continuous space

(Chapter 1) and 2) spatial autocorrelation. We intend to use existing methods—

the interpolation techniques just described—to leverage autocorrelation. This thesis

introduces a novel approach for automatically structuring space that behaves in a

mixed discrete/continuous way. This structure is used to selectively parameterize

interpolation techniques to improve estimations at unknown points.
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Chapter 3

Problem Definition

This chapter formally specifies the fusion subproblem explored in this thesis.

3.1 The general geospatial fusion problem

Let us consider again our definition of the geospatial information fusion process:

Geospatial information fusion is the process of automatically synthesizing

high-level, concise, and integrated information from complementary data

sources located at different points in space and time, each of which rep-

resent related aspects of a phenomenon, to provide effective support for

decision making or scientific discovery.

We can formalize this definition by defining the geospatial information fusion

process as a function

f(P, q, t,K)→ V (3.1)

where P is a dataset defined below, q is the location of interest, t is time, K is

associated domain knowledge, and V the output of the function (adapted from [33]).
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Each element is defined below.

3.1.1 Input

As defined above, the inputs are P , q, t, and K.

3.1.1.1 Defining P

A dataset P is a set of sample observations made on a common phenomenon, where

P is given by

P = {p1, p, ..., pn} (3.2)

where n is the number of total observations. Each observation is of the form

p = 〈A, q, t, y,∆y〉 (3.3)

where A is the aspect label defined below, q is the associated location, t is time, y is

the observed value, and ∆y is a measurement of uncertainty associated with a given

observation (e.g., quality metadata).

A is an aspect label taken from a restricted set of labels {l1, l2, ..., la} where a is the

number of different aspects of the phenomenon under observation. Each observation is

associated by its label with a particular aspect. For example, suppose the phenomenon

of interest is the population density of an animal species over space and time (such as

a migratory bird population). Available aspects of this phenomenon (A) may include

photographs from automated cameras, incidental observations reported by citizens,

direct evidence such as tracks or abandoned nests, and indirect evidence such as

density of predatory species.
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3.1.1.2 Defining q

The location q may be specified at a single point, along a linear structure, or for a

region:

1. The location of a point is specified by its geographic coordinates (latitude and

longitude):

qp = 〈Latitude, Longitude〉 (3.4)

2. The location of a linear structure can be specified by a polyline

ql = 〈qp1, q
p
2, . . . , q

p
n〉 (3.5)

where n is the number of points in the linear structure and each point qp is of

the form given in Equation 3.4.

3. The location of a region can be represented by a polygon as follows

qr = ql (3.6)

where a line segment is understood to exist between the final point and first

point in the polyline vector. The area interior to this hull is considered to be

the region.

3.1.1.3 Defining K

K represents domain knowledge relevant to the fusion process. By definition, K is

dependent upon the problem domain, and we cannot further specify it without a

context. Examples of K, however, can include spatial and temporal dependencies
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(e.g., business competitors tend to co-locate, precipitation is a leading indicator for

stream flow) or environments (e.g., attractors and barriers).

3.1.2 Output

We have defined output V of function f as “high level, concise, and integrated” in-

formation. Clearly, a more precise definition of V must rely on context. For example,

V may be outputs as disparate as population density of an animal species (to borrow

from our previous example) at a point location (qp), flow volume in a stream (ql),

or estimated demographic information in a county (qr). It is reasonable, however, to

expect a minimal V to be of the form

V = 〈v, ε〉 (3.7)

where v is the synthesized value and ε is a measure of error. Error is important;

current geospatial literature argues that information without an associated quantifi-

cation of quality is, at best, of limited value [30] [26]. Error introduced or propagated

by the information fusion process needs to be recorded to inform and protect the

consumers of the fusion output.

3.2 Geospatial information fusion for delineated

continuous phenomena

To build a complete fusion engine is no trivial task, and describing one is not our

intention. Rather, in this thesis we consider a simplified fusion problem: how to

select and fuse observations from a sample set P to produce an accurate output V at

location q and time t where V is of the same conceptual complexity as P (e.g., if P
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is a census of Alligator mississippiensis at points in the Okefenokee Swamp then v is

an estimate of the number of alligators at point q).

The problem is similar to standard spatial interpolation; indeed, it may be argued

that we are recapitulating geospatial interpolation as an information fusion problem.

We are. Spatial interpolation may be thought of a special case of geospatial informa-

tion fusion where only a single aspect phenomenon must be considered.1 A geospatial

fusion engine that relies on point data P must use some variety of interpolation logic,

as does ours. Our approach is novel because it selectively applies interpolation logic

by leveraging the spatial information latent to delineated continuous phenomenon.

Let us now reformulate the formal definition. The function appears the same as

before, in the form

f(P, q, t,K)→ V (3.8)

and the inputs t and K—location of time, and domain knowledge—remain the same.

The inputs P and q as well as the output V are modified.

The input P remains a set of points of the form {p1, , pn}, but the aspect is

restricted to a single dimension (|A| = 1) such that each p ∈ P is simplified to p =

〈q, t, y〉. The input q is restricted to be a point of the form qp = 〈Latitude, Longitude〉.

We previously defined the output V to be of the form V = 〈v, ε〉 where V was

the synthesized value and ε is a measure of error. For the purposes of this paper,

however, we will consider instead

V = 〈v〉 (3.9)

where v is the synthesized value. We explore the error associated with f through

experimental analysis, but we have not yet taken the step to automatically compute

1See the discussion on cokriging in Chapter 2 for a traditional interpolation technique that
incorporates additional aspects.
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error output in f . We leave this for future work.
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Chapter 4

The DECAF framework

In this chapter, we outline our Delineated-Event Continuous-Aspect Fusion DECAF

approach. The first section will outline the basic logic of DECAF. The subsequent

two sections will describe in detail two implementations of DECAF: DECAF Indicator

Kriging (DECAF-IK) and DECAF Embedded Graph (DECAF-EG).

4.1 Intuition and overview

We seek to predict the value of a delineated-continuous phenomenon at point q. To

do so, we must use known points (points in the set P ) that are nearby (neighbor to)

q. Choosing precisely what subset of P constitutes a “good” neighborhood for q is

not necessarily straightforward, but it is essential—in fact, some argue that a good

neighborhood is just as important to accurate estimation as a good interpolation

algorithm [6]. A vanilla inverse distance weighted (IDW) approach typically relies on a

user-specified cutoff distance or maximum number of neighbors (k -nearest neighbors).

Kriging, on the other hand, uses a data-derived cutoff distance.

DECAF attempts to build better neighborhoods by modeling event extents in
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a delineated continuous phenomena space. With perfect knowledge, a delineated

continuous space can be categorized into two distinct areas:

1. Present: these are regions inside of delineated events. In present regions (that

is, inside events) the phenomenon acts continuously.

2. Absent: there are regions outside of delineated events. In absent regions,

estimation takes some default value (this may be zero, a predefined constant,

or a random number drawn from a predefined distribution).

The motivation of DECAF is simple: by exploiting this spatial structure, we

hope to improve predictions involving delineated continuous phenomena (and thereby

improve the associated information fusion process). While a human expert may be

able to manually categorize a delineated continuous space into discrete events, we

want to automate this process so that it can be deployed across hundreds or thousands

of distinct event spaces.

DECAF can be understood as a tripartite process: structure the space from P ,

locate structures relevant to q, and predict V at q.

We begin by structuring the event space into discrete present and absent regions.

Most of DECAF’s complexity arises in this step, and it is here that DECAF-EG and

DECAF-IK differ. This process is demonstrated in Figure 4.1 (a) and (b) (following

page). Second, DECAF checks whether q is in present or absent space. This step is

comparatively trivial. The process is demonstrated in Figure 4.1 (c) and (d). Finally,

if q is inside a present region, DECAF uses the points associated with that region for

prediction; otherwise, q is presumed to be absent and is assigned the default absent

value (typically zero). The precise method that can be used to predict a present q

may vary. The process is demonstrated in Figure 4.1 (c) and (d).
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Figure 4.1: The DECAF approach to delineated continuous data

In short, DECAF first detects events before using those events to make predictions.

Pseudo-code outlining this process is shown in Algorithm 1. Events (discrete present

regions) are discovered in Line 1. In Line 2, q is associated with one of these events

(or none, if it falls outside of all such events). If an associated event ê is found, that

event is used to approximate V (Lines 5-6). Otherwise, V is set as the default absent

value in Line 3 (zero in this case).

We will now discuss these three steps in more detail.

4.1.1 Developing spatial context

We structure the spatial context by identifying the set of distinct events

Et = {e1, e2, . . . , en} (4.1)
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Algorithm 1 Delineated-Event Continuous-Aspect Fusion

1: function DECAF(P, q, t,K)
2: Ê ←find events(P )
3: ê←find associated event(q, t, ê)
4: V ← 0
5: if ê 6= NULL then:
6: V ←predict(ê, q)
7: end if
8: return V
9: end function

where t is a time stamp or date, n is the number of events, and each ei is a region

(polygon) located in the geospace that defines the extent of an individual event. The

interior of ei is a continuous spatial random field.

Since these regions are neither static nor predetermined, they have to be approx-

imated from P . To this end we compose a set of event approximations

Êt = {ê1, ê2, . . . , êm} (4.2)

where m is the number of detected events (if P is accurate then m ≤ n) and each êi is

a subset of P . The hull of êi is an approximation of the shape of ei, and the members

of êi sample the spatial random field interior to ei.
1 This hull may be the convex or

concave; in either case, the goal is to properly compose each êi to accurately reflect

ei.

Because we are interested in phenomena that behave delineated continuously, we

can classify each pi as either present or absent. Present indicates vi > β and absent

vi ≤ , where β is a predefined threshold parameterized according to the domain. For

example, all soil contains trace amounts of the potentially-harmful element Radon

[23]. Yet, below a certain concentration (a threshold β) it meaningfully harmless,

1In the case of a completely continuous event (one that exhibits no discrete behavior) Et = {e},
where e is composed of all points in P .
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and so it can be treated as absent. Above this threshold, however, it is harmful to

human health, with increasing doses causing more harm. Above the concentration

threshold β, it behaves continuously.

Because each present point indicates the presence of an event ei, we group present

points to compose Ê. Two neighboring present points do not necessarily record

a common event, but neither do they indicate two separate ones. To settle this

impasse, we introduce a bias: in lieu of information to the contrary, nearby present

points record the same event. Adjacent present points are grouped; absent points

split the groups. Figure 4.2 demonstrates this logic.

Figure 4.2: Forming event estimations by presence/absence association

The algorithm by which these events (Ê) are detected can vary. We explore two

different methods, DECAF-IK and DECAF-EG, later in this chapter. The first,

DECAF-IK, uses an indicator kriging approach while the second, DECAF-EG, uses

an embedded graph. Later, in Chapter 7, we will reconsider and modify DECAF-EG.

4.1.2 Finding associated events

The algorithm must now determine whether the point of interest q is located inside

of any of the events ê ∈ Ê (Line 3 of Algorithm 1). Because each ê has an associated

bounding hull, this process is simple. For each ê ∈ Ê, DECAF tests whether q is
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spatially inside of ê using the find associated event method in Line 2 of Algorithm

1. When a circumscribing êi is found, an association is made between this êi and q.

4.1.3 Computing V

As noted earlier, the prediction point q can fall inside some event êi or, instead,

fall outside all events. In this second case, the estimated value V for q is set to a

predefined absent value. In most cases, this may simply be zero. In cases where a

low level of noise is expected and well understood, V may be drawn from a known

distribution.

If, on the other hand, q falls inside some event êi, the function predict(ê, q) will

be used to estimate V . Because q is inside of the spatial extent of ê, predict must

perform spatial interpolation. Instead of trying to invent our own, we simply leverage

existing interpolation methods. These methods can be described using the general

form

i(P, q)→ V (4.3)

where P is the set of sample points where measurements are available and q is the

prediction point. Different interpolation techniques select a subset of P in various

ways. Some, such as Inverse Distance Weighting (IDW), are blind—they are param-

eterized with a maximum search radius and/or a maximum number of neighbors k.

Others are partially data driven. Kriging, for example, estimates the range of spatial

dependence (the range at which points are correlated) and only uses points within

this range of q to estimate the value at q.

DECAF selectively composes subsets of P to parameterize the function i(P, q)

for a specific q. This composition is based on the estimated events: only points in the

event êi that circumscribes q are used. So, our function predict simply encapsulates
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a traditional interpolation method.

The choice of the interpolation algorithm is important. A kriging variant may be

ideal, as kriging is robust and provides an estimation of statistical error [11]. However,

kriging requires fitting a model to the semivariogram before prediction. A robust fit

requires a minimum number of points (the industry rule of thumb is around 30 points

[50]), and standard kriging packages require a minimum number of points before even

attempting a fit [36]. Because the size of êi is not guaranteed, we currently use the

simpler IDW algorithm in our implementation.

4.1.4 Incorporating time

For the purposes of this thesis, we treat events as independent across time—what

happens at time t has no impact on time t + 1. Therefore, DECAF only uses obser-

vations associated with points in sample set P that match the parameterized time t.

It makes no effort to leverage information latent across time. We leave this to future

work.

4.2 DECAF-Indicator Kriging

DECAF has three basic steps: event estimation (the derivation of Ê), association of

q with an event (êi) (or no event), and using the associated event to estimate V . The

second and third step were described in the previous section; they are straightforward

and consistent across our DECAF implementations. The first step, event estimation,

is where most of the logic resides, and it is here that the DECAF implementations

are differentiated.
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4.2.1 Overview

DECAF-Indicator Kriging uses a geostatistical approach to identify events, and so

is intuitive to one familiar with geostatistical methodology. Simply put, indicator

kriging is used to categorize the event space into regions of presence and absence

using a grid approximation. Next, this raster is translated into a series of hulls, each

hull representing a unique event.

Indicator kriging is really nothing more than ordinary kriging applied to a binary

space; all observations are effectively 0 or 1 [11]. By dividing this space into dis-

crete thresholds (e.g., between 0.1 and 0.3), indicator kriging (in conjunction with

cokriging) can be used to interpolate an arbitrary number of discrete categorizations

[19]. For our purposes, two categories will do: presence and absence. The output

generated by indicator kriging at point q can be interpreted as a “probability that

the unknown value is above the cutoff value” (assuming that the bottommost value

has been mapped to zero and the topmost to one) [11]. For our purposes, then, 0

indicates absence and 1 indicates presence; an output of 0.75 can be translated as a

75% chance that point q is of type present (and therefore there is a 75% chance that

q is inside some event ê).

Now, simply estimating whether or not q is present or absent is not very helpful.

In the end, we seek a prediction of event magnitude—simple presence/absence is

n0t sufficient. In the short run, we want to approximate the set of events E, and

the solitary point q is not helpful. However, it is straightforward to imagine that

with enough such estimated points a reasonably complete picture of the event space

may begin to emerge. To accomplish this, we simply do what geostatisticians and

GIS users have been doing for decades: we predict every point in a predefined grid,

producing a raster representation of the presence/absence space.
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From here, this binary map needs only to be translated into a set of hulls. Once

accomplished, we have our approximation of the events E. Next, the points from P

are mapped onto the individual events e ∈ E (that is to say, the set P is surjective to

E). Once complete, the standard DECAF algorithm can continue: the point q can

be associated with some event êi, and the points from P mapped to this êi can be

used to approximate the value (V ) at q.

4.2.2 Thresholding input data

The first step in the DECAF-IK process is to create from sample set P a new set PB

where each p ∈ P is of the form

p = 〈A, q, t, y,∆y〉 (4.4)

as defined in Chapter 3. Now, however the associated value y is strictly binary

(y ∈ {0, 1}).

This process is straightforward: every point pi ∈ P is considered; if the associated

value yp > β (where β is a threshold, often but not necessarily zero) then pBi = 1 else

pBi = 0.

4.2.3 Indicator kriging

Next, indicator kriging is performed. This process is straightforward, as it does not

deviate from the standard indicator kriging procedure.

It is important, however, to consider the resolution of the grid. A low-resolution

grid may be fast to compute but suffer inaccuracies. A high-resolution grid may

achieve a better result, but at the cost of slower computation time. Resolution grows

polynomially, and so can become expensive very quickly. Simultaneously, the utility
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of increased resolution follows a traditional diminishing returns curve. Finding the

most appropriate grid resolution is, unfortunately, domain-dependent.

Figure 4.3 shows two different resolutions. Map b is much smoother and, depend-

ing on the application, may be required. Map a is roughly forty times less dense,

however, and is commensurately faster.

Figure 4.3: Example DECAF-IK presence/absence grids (blue is presence)

4.2.4 Boundary detection

At this point, the event space has been categorized into presence and absence re-

gions. However, no relationships between individual presence grid cells have been

developed—no notion of an event yet exists. So, even though q can now be predicted

to be present or absent, points cannot be intelligently selected from P to perform



45

the estimation. Event extent estimations must first be extracted from the binary

presence/absence raster.

Many edge detection methods have been developed in the fields of computer vision

and raster analysis. While we could choose to borrow one of these, we instead find

the mathematical study of alpha shapes to be more helpful. Alpha shapes are simply

polygons that circumscribe all points in a point cloud; an example of a well-defined

alpha shape is the convex hull. Non-convex alpha shapes are necessarily concave hulls,

which are more difficult to define (except for the fact that all points in the cloud must

fall inside the polygon, “goodness of fit” is a judgment left to human eye).

We choose this route for efficiency’s sake: DECAF-EG requires a similar hull

algorithm but has no associated raster: only a point-cloud method will work. On the

other hand, we can trivially treat a raster as a point-cloud by translating each raster

cell to its center point. Therefore, the same hull-finding approach can be used in both

DECAF-EG and DECAF-IK, which saves the trouble of implementing two different

algorithms.

To compute the alpha shape, we rely on the alphahull package from the R lan-

guage [37].

Figure 4.4 on page 46 builds on Figure 4.3 to show the estimated events. Because

the alpha hull method is an approximation based on cell centerpoints, it does not

guarantee that the edge will follow the precise outline of the rasterized region. At

high grid resolutions, however, it is effectively equivalent to a raster edge detection

algorithm. Note that in (a) not all presence pixel groups have a corresponding hull.

Only groups with >5 pixels are considered for hull approximation (this is both a

limitation of the alpha-shape algorithm and a deliberate decision to match similar

weeding logic in DECAF-EG).
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Figure 4.4: Example DECAF-IK event extent approximations (blue is presence, black
is the concave hull)

4.2.5 Event filling

At this point we have a polygon that estimates the extent of event ei. This polygon,

in and of itself, does not help us estimate a point q beyond a simple prediction of

presence or absence. If q falls inside of êi, we need to parameterize the prediction

function predict(ê, q) with sample points from inside of êi. To do so, we need to

“fill” our polygon with points from P .

This procedure is straightforward. We check each point p ∈ P to see if it falls

inside the polygon associated with each êi; if it does, the point is assigned membership

to a set associated with êi.
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4.3 Time complexity analysis: DECAF-IK

4.3.1 Developing spatial context

First, DECAF-IK must threshold all points in the sample set P . This is accomplished

in time linear to P .

Second, an m× n grid is imposed on the event space. We assume that m ≈ n, so

we consider the grid to be size O(m2). Each point in this grid must be estimated by

the indicator kriging function to determine presence/absence. The time complexity

of ordinary kriging (of which indictor kriging is a variant) is O(|P |3) [48]. Therefore,

the time complexity of grid estimation is O(m2|P |3).

Finally, a polygonal hull must be estimated from the presence/absence grid. Our

implementation uses the alpha-shape detection library alphahull. This package uses

the Edelsbrunner Algorithm, which is of time complexity O(n log n) (Edelsbrunner

relies on the Delaunay triangulation, which takes O(n log n) time) [37]. In our case,

n is the number of points in the grid, defined above to be of size m2. Therefore,

polygonal hull estimation takes O(m2 logm2).

Therefore, developing spatial context takes time

O(m2 · |P |3) +O(m2 logm2) (4.5)

At high-resolution grids, the right term may dominate; if the sample set is dense, the

left term may dominate.

4.3.2 Computing V

The fusion algorithm can be decomposed into two steps. First, it must determine

whether q is inside of an êi; in the worst-case, it is outside Ê. Each is inside
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determination is linear to the number of edge points in êi; in the worst-case, the

number of border points in Ê is equal to |P |.

Second, the points are interpolated, and the time complexity will vary with the

choice of interpolation algorithm. IDW, which we use, is constant to the maximum

number of neighbors allowed, k. Finding these k neighbors, however, is linear in |P |

if a distance matrix is used and logarithmic in |P | if a k-d tree is used. Composing a

distance matrix requires O(n2) time while composing the k-d tree requires O(n log n)

time. We use the k-d tree, so IDW time complexity is O(|P | log |P |).

The time complexity of fusion is therefore:

O(|P |) +O(|P | log |P |) = O(|P | log |P |) (4.6)

4.3.3 Incorporating time

If a single moment in time is considered, the time complexity is the total of event

construction and fusion,

O(m2|P |3 +m2 logm2) + |P |) = O(m2|P |3 +m2 logm2) (4.7)

If time is incorporated via a time window τ , where τ = (ts, tf ), then the time

complexity rises to:

O(|τ | · (m2 · |P |3 +m2 logm2)) (4.8)

The union operation is linear to the number of points in Ês through Êf . Assuming

these are similar, we arrive at:

(|τ | · (m2|P |3 +m2 logm2)) +O(2 · |P |) = O(|τ | · (m2|P |3 +m2 logm2)) (4.9)
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Given the linear rate of time and the non-linear proliferation of spatial data sources,

it is reasonable to argue that in most applications τ � |P |.

4.3.4 Aggregated time complexity

The time complexity of DECAF-IK is

O(|τ | · (m2|P |3 +m2 logm2)) (4.10)

and we assume that τ � |P |. Therefore, the overall time complexity of DECAF-IK

is cubic in |P | and square in m:

O(m2|P |3 +m2 logm2) (4.11)

4.4 DECAF-Embedded Graph

DECAF-IK has certain strengths. First, indicator kriging, which it relies upon, is an

established and well-understood geostatistical procedure. Second, it can be performed

at an arbitrarily-fine resolution. However, it is computationally expensive: the indi-

cator kriging approach is slow and is impractical for a large P over a fine-resolution

space

DECAF-Embedded Graph (DECAF-EG) uses a different method to approximate

the event set E. DECAF-EG treats the point set P as a graph embedded in geospace

and uses graph component analysis to find Ê. The result is an approach that is

O(n log n) in the size of P and is free from the constraints of a grid—and, therefore,

is much more scalable.
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4.4.1 Overview

The algorithm for DECAF-EG’s find events(P) function is outlined in Algorithm 2.

DECAF-EG is otherwise identical to DECAF-IK; the input, the logic to find event

approximation ê, and the logic to use ê to estimate q are unchanged (Lines 1, 3, and

4-6 of Algorithm 1, respectively).

Algorithm 2 DECAF-Embedded Graph’s find events algorithm

1: function find events algorithm(P )
2: G← graph()
3: G.nodes← P )
4: for x ∈ G.nodes do
5: if x.v > β then:
6: N ←find neighbors(x,G)
7: for m ∈ N do
8: G.add edge(x,m)
9: end for

10: end if
11: end for
12:

13: Ê ←connected components(G)
14: find hulls(Ê)
15:

16: clean events(Ê,K)
17: fill events(Ê, P )
18: snap boundaries(Ê)
19: return Ê
20: end function

DECAF-EG begins by building an embedded graph G where each node n ∈

G.nodes is associated with a p ∈ P (Lines 1 and 2 of Algorithm 2). In other words,

each sample point is a node in the graph. Next, in Lines 3-7, edges are added to the

graph G to encode the adjacency relationships between points. After the adjacency

relationships are established, the graph is then divided into connected components

(Line 9) and the bounding hull of each connected component computed (Line 10).

Each component estimates an event e, and so the set of connected components is
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Ê (the approximation of E). Finally, in Lines 12-14, the connected components are

refined to improve the accuracy of Ê.

Three examples of these Ê are given in Figure 4.5 on page 52. Note how the com-

position of Ê varies considerably through time: (a) is a sparse graph with a handful

of small clusters, (b) is characterized by a large cluster covering the entire southeast

with several small clusters dotting the west, while in (c) a single cluster dominates

the entire space. It is reasonable to posit that a global approach to characterize this

space across time would be prone to inaccuracy (i.e., regions of presence and absence

must be identified independently at eat time t). Also, as (b) demonstrates, it may be

equally inaccurate to treat events uniformly across space (e.g., using a semivariogram

to characterize this entire space would be inappropriate).

We now review the algorithm in detail.
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Figure 4.5: The approximated precipitation events (Ê) in the state of Nebraska (US)

on three different days in June 2010
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4.4.2 Initialize embedded graph

The graph is initialized to a completely unconnected graph G = 〈V,E〉 with the

points from P as nodes, i.e. V = GetPoints(P) and E 6= ∅ where GetPoints returns

the points from the dataset P .

4.4.3 Encode spatial relationships

Next, edges are added to encored neighborhood relationships between points. Con-

sider Figure 4.6. Point a is surrounded by several points; which of these points should

be considered neighbors—b-c, b-c-d, b-c-d-e?

Figure 4.6: Example neighborhood

There exist a number of traditional approaches to finding neighbors. Let us start

with two:

1. Distance threshold: all points inside of the specified radius are considered

neighbors. The threshold is specified a priori. Using this method on Figure 4.6,

we could arrive at neighborhoods b-c, b-c-d, or b-c-d-e but never just b or c.

2. Count threshold: the nearest k points are considered neighbors. The param-

eter k is specified a priori. Using this method on Figure 4.6, we could arrive at
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a variety of neighborhoods. For k = 3, then c-b-d ; for k = 1, we could choose

between b and c.

These methods are not robust to differences in point density across the event space,

however. The first method can result in wildly different numbers of neighbors de-

pending on the density of nearby points. The second method, instead, can produce

neighborhoods of wildly different physical extent—which, for DECAF’s purposes, this

is not a weakness; in fact, it is exactly the behavior that we want.

Remember, we want to group present points for the purpose of discovering events.

However, if an absent point exists between two present points, the two present points

are presumed to be of separate events. Therefore, it is the nearest neighbor that is

important—regardless of how close that neighbor actually is.2 The same information

is collected in spare and dense regions: who is my nearest neighbor (and, consequently,

is this neighbor present or absent)?

If the points in P are spatially clustered, this method has problems. For example,

consider point a in Figure 4.7 on page 55. If the neighborhood of a is defined to

be the four nearest neighbors, all of those neighbors will be located to the west of

a. Because we seek to estimate event boundaries, we would like to know something

about a’s neighbors to the east as well (not to mention north and south). So, instead,

we use another traditional method, the sector search.

2The semivariogram could be used to set a maximal extent. In section 4.4.5.1, we consider the
problem of excessively distant absent points.
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Figure 4.7: Example neighborhood II

3. Sector search: the space around the point is divided into sectors (typically

of the same size). Either method (1) or (2) is subsequently used to identify

the nearest point(s) in each sector. The number of sectors is specified a priori.

Considering Figure 4.6 once again, we might use b-c-d but never e.

Several varieties of sector search were tested for DECAF-EG. These included different

numbers of sectors, sectors that were dynamically positioned based on the angle

of the closest (according to method 2) neighbor, and sectors that preferred points

located towards the sector interior as opposed to the sector edge. We then found that

a simple quadrant (north, south, east ,west) nearest-neighbor search was the most

robust, consistently producing the most “reasonably” shaped neighborhoods (where

reasonableness is understood to reflect a visual aesthetic).

Each neighbor relationship is encoded by an edge in the graph. The value asso-

ciated with that edge encodes the type of relationship. We identify three types of

neighborhood relationship:

1. Interior edge: Between present points

2. Border edge: Between a present and an absent point
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3. Exterior edge: Between absent points

The utility of these classifications is revealed in the next section when point clusters

are composed using these edge-encoded relationships. Note that the third type of

edge relationship is optional; edges between absent points need not be added to the

graph to find point clusters. In fact, the logic is simpler if we simply treat these

relationships as implicit, and so we choose not to add these edges.

4.4.4 Identifying approximated spatial events

The set of spatial events (Ê) begins to emerge from the spatial neighborhood graph

initialized in the previous section. Clusters of present points are connected together,

along with adjacent absence points (the border edge relationship). If these clusters

can be identified and formalized, they may make for good event approximations.

To this end, we now refine the definition of an event (êi) to be the set points

{p1, p2, , pm} that form a connected component in G, where m is the number of points

in the cluster (and m ≤ |G| ). The connected component logic is a variation of the

canonical connected components algorithm shown in Algorithm 3 on page 57. The

canonical algorithm is based on a traditional breadth-first search. At the top level,

the nodes of the graph are considered individually; if a node x has not be visited,

then the function compose component() is called. This second function “visits” all

nodes accessible from x—that is, all members of the component.

DECAF modifies the canonical connected components algorithm slightly (noted

in red in Algorithm 4 on page 58). Recall that in the previous section edges between

nodes were classified as either interior or border (we chose to ignore exterior edges),

where interior referred to an edge between two present nodes and border to an edge

between a present and an absent node. DECAF retrieves this classification in Line
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Algorithm 3 Canonical connected components algorithm

1: function compose component(x,G)
2: component← list()
3: Q← queue()
4: Q.add(x)
5:

6: while Q is not empty do
7: u← Q.remove()
8: for v ∈ G.adjacent nodes(u) do
9: if not v.visited then:

10: component.add(v)
11: v.visited←TRUE
12: Q.add node(v)
13: end if
14: end for
15: end while
16:

17: return component
18: end function

13 of Algorithm 4. If the edge is interior, the function behaves normally (neighbor v

is added the breadth-first queue). However, if the edge is not interior, then neighbor

v is treated as a leaf (terminating) node. Neighbor v is still added to the component,

but it is not used to find additional nodes.

This logic raises two questions. First, why does DECAF-EG stop at border edges?

Second, why does DECAF include neighbor x of a border edge despite treating that

neighbor as a terminator?

Why stop at border edges? A border edge indicates a connection to an absence

node. A node of type absence should not connect one êi to another êj—that is to

say, we do not want to connect two clusters by absent points only. Connections

based on absence points logically indicate a break between two unique events

(see Figure 4.2 for a visualization of this principle).

Why include border neighbors? From the associations of present neighbors emerge
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Algorithm 4 DECAF-EG connected components algorithm

1: function compose component(x,G)
2: component← list()
3: Q← queue()
4: Q.add(x)
5:

6: while Q is not empty do
7: u← Q.remove()
8: for v ∈ G.adjacent nodes(u) do
9: if not v.visited then:

10: component.add(v)
11: v.visited←TRUE
12: edge← G.get edge(u, v)
13: if edge.type ==INTERIOR then:
14: Q.add node(v)
15: end if
16: end if
17: end for
18: end while
19:

20: return component
21: end function

clusters of adjacent present points. The hull drawn about these points approx-

imates the minimal extent of the event. The absent points adjancent to this

hull define the maximum extent of the event. Now, the space is categorized in

three ways:

1. Interior: Inside a present hull, where the event is presumed continuous.

2. Border: Outside of a hull but not beyond its absent neighbors. This is a

region of uncertainty—the event may extend into this region; it may not.

3. Exterior: Outside a hull and beyond absent neighbors, where it is pre-

sumed no event exists.

Figure 4.8 illustrates these three regions by example.



59

Figure 4.8: Illustration of event interior, border, and exterior.

To collapse this space into two categories, we introduce a second bias: overestima-

tion of extent is preferable to underestimation. We would rather suffer false positives
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than false negatives. So, all adjacent absent points are added to êi such that the hull

of êi is an approximation of the maximal extent of the underlying discrete event. We

have now composed both minimal and maximal extents, which we denote the min

cover and the max cover, respectively.

Ê is the set of all connected components {ê1, ê2, . . . , ên} which signify the set of

events E.

4.4.5 Event refinement

The events derived by the steps described above provide an accurate estimation of

the true events. However, they can be further improved using a set of post-processing

steps. All of these operations are non-essential, but may improve results in certain

domains.

4.4.5.1 Pruning

If present point p is adjacent to a sparsely-sampled subregion, certain neighbors of

p may be (very) far away. Consider Figure 4.9. Is it still reasonable to associate b

with the event, or has the assumption of continuity become tenuous? If a well-known

distance of spatial independence is known for the phenomena it may be included in

the domain knowledge K, and the neighborhood search can be bounded.

We choose to use a more data-driven alternative based on the distribution of edge-

lengths in event êi to identify outliers. The distribution of edges in êi tends to be

right-skewed, for the central nodes create a dense network of short edges (limited at

zero distance) while the peripheral nodes might be much further away. We therefore

use

m = median(êi.edges) (4.12)
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Figure 4.9: Example neighborhood III

and

SD = StandardDeviation(log êi.edges) (4.13)

to define the outlier threshold

prune threshold = m+ k ·m · SD (4.14)

where k is a constant and may be parameterized by K. Edges longer than this

threshold are considered outliers and are removed. The above formula was selected

because it is very conservative and removes very few edges, and so is effective at

removing exceptional outliers and exceptional outliers only. The use of the median and

the log-transformed standard deviation enforce this conservativeness, and k simply

allows this conservatism to be tweaked according to domain (for the real-world tests

in Chapter 9, we use k = 5).

Because each êi is treated uniquely, cluster structure may vary across regions. In

densely-sampled regions the threshold automatically becomes tighter than in sparsely-

sampled ones.
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4.4.5.2 Merging

Cluster merging is only applicable to situations where a threshold defines presence/absence.

Two clusters may share leaf nodes, and in situations where a non-zero threshold

defines presence/absence, those leaves may be associated with trace values (i.e.,

β ≥ v > 0). In certain domains, it may be logical to merge two events connected by

trace values (e.g., a thunderstorm briefly weakens as it moves across the landscape).

A possible solution would be to merge the two events once a predefined threshold—

either count number or a percentage of shared nodes—is passed such that

êk = êi ∪ êj (4.15)

Our implementation of DECAF-EG, however, uses a nonparameterized merging logic.

Given two events êi and êj, count the number of shared absent and trace nodes. If

trace > absent, merge. This method makes use of all cross-event connection informa-

tion (all absent and trace nodes), and chooses to merge only when the evidence for

connection begins to outweigh separation.

In truth, it is reasonable to speculate that the “most appropriate” merging method

varies across problem domains. Demonstrating this is beyond the scope of this paper

and is left for future research.

4.4.5.3 Splitting

Just as it may be appropriate to merge two estimated events, it may be equally

appropriate to split one estimated event into one or more smaller events. Consider

Figure 4.10 on page 63. A single present point connects two otherwise distinct clus-

ters. Currently, DECAF-EG does not implement logic to handle this situation. It

may be appropriate, however, to use more sophisticated graph connectivity measures
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to implement a splitting algorithm in future work.

Figure 4.10: Two clusters connected by a single point.

4.4.5.4 Weeding

A cluster may be composed around a single presence point. It may be advantageous

to weed out such clusters. A threshold may be established a priori for the minimum

number of presence points required; for large data sets this may be derived from a

distribution of the clusters.

4.4.6 Boundary snapping

We seek to approximate the extent of event ei (a polygon) using êi (a set of points),

which necessitates fitting a hull to the point members of êi. To do so, we compute

the alpha hull (concave hull) from the points that compose the connected compo-

nent associated with êi. Computations are performed using the same Edelsbrunner

Algorithm implementation provided by the R package alphahull used in DECAF-IK.

However, this approach results in a boundary problem. The maximal extent of an

estimated event is dependent upon on the points in the connected component, which

in turn are dependent upon P . Any estimation point q that falls beyond the maximal

spatial extent of P will necessarily fall outside of all estimated events. Because P
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is sampled from within our (in practice finite) space, the regions between the edge

of the sample space and the nearest p ∈ P will always be empty. A bias towards

absolute absence is untenable.

To resolve this, when a member m of êi is adjacent to the edge of the geographic

space, the hull is drawn through the point on the edge closest to m. In effect, we are

“snapping” the boundary of the estimated event to the boundary of the event space

when there are no intermediate points between the estimated event and the event

space boundary.

4.4.7 Event filling

Unlike in DECAF-IK, most of the points located inside of event estimation êi are

known without even considering the hull of the event because they are members of

the connected component used to estimate êi. However, points (typically absent)

may be interior to the hull of êi without being members of the connected component

associated with êi. It is only reasonable to add such points to êi, as the hull of êi

denotes the boundaries of a continuous event.

4.5 Time complexity analysis: DECAF-EG

4.5.1 Developing Spatial Context

The time complexity of initializing the neighborhood graph is dependent upon the

neighborhood algorithm used. If a distance matrix is calculated a priori, then find neighbors()

can be resolved in O(k · |P |) time, where k is the number of neighbors and P is the

set of sample points. If a k-d tree is used instead, then find neighbors() can be re-

solved in O(k · log |P |). If all points are present then the function is called |P | times.
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The resulting time complexity ranges from O(|P |2) to O(|P | log |P |) depending on

the implementation. Our implementation uses a k-d tree, and so takes O(|P | log |P |)

time.

Ê is constructed using the traditional connected component algorithm, which has

time complexity linear to the number of nodes and edges in G. The number of edges

is in the worst-case k · |P |, so time complexity is O(k · 2|P |) = O(|P |).

Cleaning is optional but we consider the time complexity nevertheless. Pruning

examines all edges twice in sequence, once to build the cluster histograms and once

to compare, so time complexity is O(|P |). Merging is linear in the number of points

shared by clusters along their borders, which must be less then |P |. Weeding is linear

in |Ê|, which also must be less than |P |. The time complexity of cleaning is O(|P |).

Boundary snapping is linear in |P |; in the worst-case all points are near the border

of the space, so time complexity is O(|P |). Event filling is linear in the number of

enveloped absent points, which much be strictly less than |P |.

Using a k-d tree, we arrive at time complexity

O(|P |log|P |) +O(|P |) +O(|P |) +O(|P |) = O(|P | log |P |) (4.16)

4.5.2 Generating V

The method is identical to that used in DECAF-IK (section 4.3.2). The associated

time complexity is O(|n|)

4.5.3 Incorporating Time

This analysis is similar to the DECAF-IK analysis in section 4.3.3.

If a single moment in time is considered, the time complexity is the total of event
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construction and fusion,

O(|P | log |P |+ |P |) = O(|P | log |P |). (4.17)

If time is incorporated via a time window τ , where τ = (ts, tf ), then the time

complexity rises to O(|τ | · |P | log |P |). The union operation is linear to the number

of points in Ês through Êf . Assuming these are similar, we arrive at

O(|τ | · |P | log |P |) +O(2 · |P |) = O(|τ | · |P | log |P |) (4.18)

Given the linear rate of time and the non-linear proliferation of spatial data sources,

it is reasonable to argue that in most applications τ � |P |.

4.5.4 Aggregated time complexity

The time complexity of DECAF-EG is

O(|τ | · |P | log |P |) (4.19)

and we assume that τ � |P |. Therefore, the overall time complexity of DECAF-EG

is

O(|P | log |P |) (4.20)

Note that the time complexity of DECAF-EG is significantly less than DECAF-IK,

which was O(m2|P |3) where m2 is the dimensionality of the presence/absence grid.
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4.6 Summary

To review, the DECAF algorithm is designed to structure the event space between

present and absent regions in order to selectively use standard interpolation tech-

niques to estimation point values. We hope to improve upon the standard techniques

by avoiding overestimation in absent regions and reducing underestimation in present

regions.

The DECAF-IK implementation exploits indicator kriging to differentiate be-

tween present and absent regions. Indicator kriging is a well-established geostatistical

method. However, DECAF-IK has high computational complexity.

The DECAF-EG implementation uses an embedded graph approach to effect the

presence/absence estimation. Though this methodology is novel, it has a lower com-

putational complexity than DECAF-IK.
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Chapter 5

Simulation Experimental Design

The previous chapter presented two algorithms, DECAF-IK and DECAF-EG, to

address the stated problem of fusing geospatial delineated continuous events. In this

chapter, we test the efficacy of these methods in response to a number of different

factors. The primary goal of these tests is to check the accuracy of the DECAF

presence/absence (PA) predictions under different conditions. The secondary goal is

to test whether the PA logic is improving the accuracy of point-predictions.

The two DECAF algorithms will be compared to one-another as well as two stan-

dard approaches, kriging and inverse distance weighting (IDW). To effect this com-

parison, the methods will be tested through a series of controlled experiments based

on simulated data.

5.1 Algorithms

Each of the methods can be parameterized. Furthermore, the terms IDW and kriging

are umbrella designations for a wide variety of algorithms. To reduce ambiguity, we

pause to further specify each of the methods.
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DECAF. Both DECAF methods threshold the data to determine presence and ab-

sence. This threshold is 0.1. The interpolation algorithm used was IDW, capped

at twelve neighbors.

The two varieties of DECAF were further specified as follows:

DECAF-IK. The alpha hull algorithm was paramaterized with a starting al-

pha value of 0.05, a failure increment of 0.05, and a max alpha of 0.1

(if this threshold was reached, a convex hull is computed instead). The

presence/absence raster was computed at a resolution of 100× 100.

DECAF-EG. Point neighbors were identified using a static sector search (con-

sidered north, south, east, and west). Clusters with fewer than six members

were dropped.

IDW. The maximum number of neighbors considered was twelve. This threshold,

though arbitrary, is borrowed from the industry standard geographic informa-

tion system, Esri’s ArcGIS [18]. The IDW function in ArcGIS uses twelve as

the default cutoff value.

Kriging. Ordinary kriging was used. The semivariogram was fitted with a spherical

model. The spherical model performed similar to other standard models—

exponential, circular, Gaussian—in exploratory analysis. We did not consider

more esoteric models. Furthermore, the literature contends that differences

arising because of choice of model are typically dwarfed by other factors, such

as data selection [6]. The semivariogram is fitted automatically for each test.

We do not parameterize it a priori.
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5.1.1 Dependent Variables

We are interested in the error associated with the four methods. For both tests,

simulation and real-world, the predicted values outputted by the methods will be

compared with known values. So, error is known.

We measure error in two ways: presence/absence prediction and magnitude of

prediction error. The first considers only the accuracy of event presence predictions

(i.e., event ei envelopes location 〈x, y〉). The second considers the accuracy of the

continuous prediction (e.g., predicted 2” of rain at a location that actually experienced

1” of true rain).

5.1.1.1 Presence/Absence

The DECAF approach is predicated upon accurate event detection logic. So, we

want to quantify how well each method predicts present when the event is present

and absent when otherwise. Because neither IDW nor kriging incorporate explicit

present/absent logic, we do not expect them to perform well. However, we include

them for the sake of comparison.

Prediction effectiveness is measured using the confusion matrix in Table 5.1. The

confusion matrix is calculated for each method (DECAF-EG, DECAF-IK, IDW, and

Kriging). From these matrices we derive five secondary measures.

Recall. Recall measures the ability of a method to detect present points. It is com-

puted using the formula

recall =
PP

PA+ PA
(5.1)

Precision. Recall is useful, but it tends to favor methods that use a bias towards

present (such as DECAF-EG). Precision measures the proportion of predicted
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Table 5.1: Confusion matrix

present points that are, in truth, present. Therefore, it penalizes incorrect

present predictions. It is computed using the formula

precision =
PP

PA+ AP
(5.2)

F-score. A high recall may reflect a bias towards present points; a high precision

may reflect a reluctance to predict present. The ideal method would have both

high recall and precision. The f-score is a composite derived from the two. It is

computed using the formula

F = 2 · precision · recall
precision+ recall

(5.3)

Specificity. Specificity measures the ability of a method to detect absent points; a

high specificity means that the methods suffers from few false positives. It is

computed using the formula

specificity =
AA

PP + AA
(5.4)
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Table 5.2: Method presence/absence measures

Accuracy. Accuracy is a composite based in part on the specificity. It measures

the proportion of true results (the proportion of PP and AA) outputted by a

method. It is computed using the formula

accuracy =
PP + AA

AA+ AP + PA+ AA
(5.5)

These results are reported by method in the form of Table 5.2.

We expect the DECAF algorithms to outperform IDW and kriging at PA predic-

tion, as neither IDW nor kriging are intended for this type of prediction.

5.1.1.2 Error Magnitude

In general, it is insufficient to only predict presence/absence. Methods that predict

present/absent with equal effectiveness can be differentiated by the magnitude of

error within the present/absent blocks. Even if methods predict present/absent with

differing effectiveness, the question remains: is a method that suffers 10% error within

PP preferable to a method that suffers 2% error within AA? The answer depends on

domain, but, clearly, magnitude of error must be investigated.

To do so, we consider four measures derived from average difference. Average

difference is the difference between the estimated and true value, averaged across all
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verification points in the set. We do not consider Average Difference directly due to

the problem of averaging out negative and positive values. Instead, we consider:

Absolute Average Difference (AAD). The absolute difference between the esti-

mated and true value, averaged across all verification points in the set. In other

words, what is the average magnitude of error?

Positive Average Difference (AD+). The average difference between the esti-

mated and true value across only those differences that are positive. In other

words, what is the average magnitude of overestimation error?

Negative Average Difference (AD-). The average difference between the esti-

mated and the true value across only those differences that a negative. In other

words, what is the magnitude of underestimation error?

Maximum Absolute Difference (MAD). The maximum difference between the

estimated and true values from the set of verification points. In other words,

how poorly does this method predict in the worst-case?

5.1.2 Experimental Design

We perform simulations in order to purposely control five independent variables: event

size, event shape, and event orientation as well as two types of noise in the continuous

field associated with the event. We use the simulations to consider how variations

along these axes affect the dependent variables outlined above.

5.1.2.1 Independent Variables

The five independent variables can be broken into two groups. The first group charac-

terizes the event boundary: event size, event shape, and event orientation. The second
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group characterizes the event interior: uniform noise and spatial autocorrelation noise.

Uniform noise is approximately measured by the nugget of a semivariogram, and so

we will refer to as the pseudo-nugget. Spatial autocorrelation noise is approximately

measured by the sill of a semivariogram, and so we will refer to it as the pseudo-sill.

5.1.2.2 The simulation process

The simulation process is outlined in Figure 5.1. It can be subdivided into three

parts: truth generation, method simulation, and result aggregation.

First, a generator function builds a truth field. This field represents the “ground

truth” of the phenomenon. This field can be created at an arbitrary resolution (for

our tests, we used a 100x100 grid).

Figure 5.1: The simulation process

Second, two sample sets, a sample and a verification set, are derived from the truth
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field. The sample set is given as the input to each of the four methods (DECAF-IK,

DECAF-EG, IDW, and kriging) to be used to estimate values. The verification set

defines the locations at which the four methods will estimate a value. The true value

is known at each verification location, allowing error to be recorded.

Each of these two sets are constructed identically. First, x values are derived from

a uniform distribution using a pseudo-random number generator. Next, y values are

found using the same method. These are grouped into pairs. Each pair is associated

with a z value, which is derived by sampling the value of the truth field at the

associated x, y location. Figure 5.2 shows an example Gaussian event (a small circle

with no noise) with three-hundred sample points (colored white) and one-hundred

verification points (colored gold).

Figure 5.2: Example sample and verification sets

These sets are fed to each of the four methods. Errors are estimated. This set-

construction, method-testing procedure is performed r times for the sake of statistical

robustness.

Finally, the results are aggregated and stored for future analysis.
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5.1.2.3 Building truth fields

The simulations are derived from the Gaussian distribution; the methodology is out-

lined in Algorithm 5. The parameter A is the maximum possible z value, the pair

x0, y0 encodes the center point of the event, and the values θx and θy are the standard

deviations of the x and y axes, respectively. A is manipulated to model phenomenon

magnitude, x0, y0 for phenomenon location, θ for phenomenon orientation, and θx, θy

for phenomenon shape. The algorithm returns a vector of (x, y, z) pairs, where x and

y are the coordinate values and z is that associated value.

Algorithm 5 Generate Gaussian Event

1: function GENERATE(A, x0, y0, θ, σx, σy)

2: a← cos2θ
2σ2

x
+ sin2θ

2σ2
y

3: b← −sin22θ
4σ2

x
+ sin2θ

4σ2
y

4: c← sin2θ
2θ2x

+ cos2θ
2σ2

y

5:

6: X ←sequence(x min, x max, increment)
7: Y ←sequence(y min, y max, increment)
8: Z ←list()
9:

10: for x, y ∈ X, Y do
11: u← a · (x− x0) · (y − y0) + c · (y − y0)2
12: z ← A · eu
13: Z.append(z)
14: end for
15:

16: return (X, Y, Z)
17: end function

In short, the algorithm builds the values for z by treating the x and y axes as

two Gaussian distributions. The result is an elliptical shape in the xy−plane and a

Gaussian shape in the xz− and yz−planes. Figure 5.3 on page 77 shows an example

output.

Post-generation, we can apply a threshold to create a definite event boundary.
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Figure 5.3: Two-dimensional Gaussian distribution

Figure 5.4 on page 78 shows a thresholded two-dimensional Gaussian distribution.

At this point, we have simulated an event that can be described as behaving

delineated continuouslya discrete event border is identifiable, and the interior of that

event can be modelled as a continuous phenomenon.

Finally, noise can be added to the distribution. Noise is added by iterating through

all presence points and adding a value sampled from the normal distribution N(θ, σ2),

where σ2 is parameterized according to the particular test.

We choose to add two types of noise, pseudo nugget and pseudo sill noise. The

first is uniform noise, noise that behaves uniformly across (or independent of) space.

In this case, σ2 is set as 5% of A (the maximum value) for “low” noise and 10% for

“high” noise. A two-dimensional Gaussian distribution with added pseudo-nugget

noise is shown in Figure 5.5 on page 78.
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Figure 5.4: Thresholded two-dimensional Gaussian distribution

Figure 5.5: Thresholded two-dimensional Gaussian distribution with pseudo-nugget
noise

5.1.2.4 Simulation experimental design

The experimental design is subdivided into three parts. First, we consider the effects

of event structure (size, shape, and orientation) on method accuracy. Second, we
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consider the effects of event noise. Finally, we examine interaction effects between

event structure and event noise.

Event Structure We examine the effects of event structure by manipulating three

treatments: size, shape, and orientation. For each treatment, we consider two factor

levels: large and small (size), circle and ellipse (shape), and θ = 0 and θ = π
4

(orien-

tation). Combining the factors, and we arrive at six structures. These are presented

in Table 5.3 on page 80.

We will use these six designs to explore the effect of event size, shape, and ori-

entation on the predictive qualities of DECAF-IK, DECAF-EG, IDW, and kriging.

Interactions between the three factors will also be considered.

Event Noise We examine the effects of noise by manipulating two treatments:

pseudo-nugget and pseudo-sill. For each treatment, we consider three factor levels:

none, low, and high. As with structure, we use a combinatorial experimental design.

The design is outlined in Table 5.4 on page 81. The resulting structures are shown in

Table 5.5 on page 82.

Structure-Noise Interactions Finally, we wish to consider whether there exists

interactions between the noise and structural elements. A brute-force approach re-

quires 6 × 9 = 54 combinations. To reduce this space, we restrict the noise table to

two levels per noise factor (none, low, high ← none, high). The reduced noise space

is shown in Table 5.6 on page 83.

The resulting design requires 6×4 = 24 combinations. Many of these combinations

are created for the structure-only and noise-only tests. Of these twenty-four, fifteen

are new.
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Table 5.3: Size and shape combinations
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Table 5.4: Noise combinations

Aggregate In total, there are twenty-nine unique simulation structures. These are

outlined in Table 5.7 on page 84. Simulations 1-6 address structure only, simulations

7-14 model noise, and simulations 15-29 consider interactions between structure and

noise.
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Table 5.5: Noise combinations illustrated
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Table 5.6: Restricted noise combinations



84

Table 5.7: Experiment design
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Chapter 6

Simulation Results

The tests on the simulated data were designed to better elucidate the comparative

strengths and weaknesses of the four methods. As per the previous chapter, a total of

29 simulated experiments were undertaken, each resulting in five outputs (presence-

absence and four varieties of error magnitude) for each of the four methods—580

distinct tests. Reporting each and every test in exhaustive detail would be pro-

hibitive. Therefore, we will begin by reporting patterns that tend to hold true across

tests. Then, relevant results will be presented to answer the three questions that the

simulations were designed to answer:

1. Does event structure impact the comparative performances of the four fusion

methods in question (DECAF-IK, DECAF-EG, IDW, and kriging)?

2. Does event noise impact the comparative performances of the four fusion meth-

ods?

3. Finally, do there exist interaction effects between event structure and event

noise that impact the comparative performances of the four fusion methods?
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Tables and figures are judiciously presented in this chapter (and there are still

many). A more thorough collection of tables and figures can be found in the Appen-

dices.

6.1 Generalized results regarding the individual

methods

Table 6.1 on page 87 shows twelve error maps. The maps are derived from Simulation

4 (as reported by Table 5.7 on page 84), where events are modelled as large circles.

Each row corresponds to one of the four tested methods (DECAF-EG, DECAF-IK,

IDW, and kriging). Each column corresponds to one of the measurements of error

magnitude: average absolute difference (AAD), average positive difference (AD+),

and average negative difference (AD−). AAD reports strict error magnitude, ignoring

direction; AD+ reports method overestimation; AD− reports method underestima-

tion. We do not explicitly present maximum absolute difference (MAD), though it

is implicit in the maps provided: MAD is the hottest colored (maximum) point on

the AAD map.

Before continuing, a couple notes must be made about these maps:

1. Maps do not report the results of the aggregated 100 simulations; instead,

they report a single illustrative example run. They are naturally nosier then

the aggregated results, of course, and therefore care should be taken to not

generalize from idiosyncrasies.

2. Cool colors (green) indicate low error, warm colors (yellow, orange) indicate

moderate error, and hot colors (red, pink, white) indicate high error. However,

the color scale of individual maps is based upon the data contained within each
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Table 6.1: Error maps derived from a single simulation run on large circles
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map. Therefore, the scale is not necessarily common across maps—while white

indicates high error in all maps, the exact magnitude associated with white

varies (this is an artifact of the inherent limitations of the tool used to generate

them). We do not consider this a problem for two reasons: first, methods

experience similar maximum errors, so the scales are not wildly different; second,

we use the maps simply to illustrate where different methods suffer problems—

we study the magnitude of those problems later.

Despite their limitations, the maps illustrate certain trends that repeated in test-

after-test and are supported by the aggregated results. Let us now consider each

method in turn.

DECAF-IK. DECAF-IK is conservative when predicting present points. This has

several effects. The first is visible in the AD− map in Figure 6.1. A haphazard

(but small) ring of underestimation is visible. These are locations that fall

outside of the event extent estimated by DECAF-IK and so were estimated to

be zero.

DECAF-IK takeaway I: DECAF-IK suffers some underestimation error on the

event periphery as a result of its conservative bias.

In the same map, observe that underestimation is pronounced in the event

center. Here we witness a problem inherent to all interpolation techniques:

extremes are underestimated. The maximum values of our Gaussian event are

located at the center; ergo, underestimation happens here.

DECAF-IK takeaway II: DECAF-IK suffers underestimation at the event center

when the center is associated with the maximum value.



89

Now consider the AD+ map. Overestimation error is evident on the immediate

interior of estimated event border. When the unknown point q falls inside

of the event boundary, DECAF-IK uses IDW to perform the estimation. It

parameterizes IDW with the sample points that fall inside this boundary (all

points outside are ignored). Therefore, IDW suffers from a border problem.

Estimations near the border must rely on values from the interior, which by the

Gaussian nature of the event must be larger. Absent points on the exterior are

not considered, so the gradient is lost. Consider Figure 6.1.

Figure 6.1: The simulation process

Points a and b are the source points (the points used by the method to make a

prediction) and point q is the point we want to estimate. The background color

indicates the magnitude of the effect (dark gray, high; light gray, low; white,

absent). Suppose DECAF-IK successfully detects the border between present

and absent ; then, DECAF-IK will only use point a and will overestimate q as

high. IDW will include the absent point c, offsetting the effect of point a.

DECAF-IK takeaway III: DECAF-IK suffers from event overestimation at the

immediate interior of the event.

DECAF-EG. Start with the AD− map. First, note that the exterior underestima-

tion has disappeared. DECAF-EG is comparatively liberal at estimating event
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extent, and so tends to include most or all of the event. Second, note that the

interior is underestimated.

DECAF-EG takeaway I: DECAF-EG suffers underestimation at the event cen-

ter when the center is associated with the maximum value.

Move to the AD+ map. The distinctive feature of this map is the obvious

estimated event border. DECAF-EG extends the borders of its event estimation

to the closest known absence points. The region between known present source

points and known absence source points is a region of uncertainty; inside the

present points the event may be presumed to be present while outside the absent

points is may be presumed to be absent, but precisely where each region begins

and ends is a source of confusion. However, DECAF-EG only uses points interior

to the estimated event boundary to estimate at point locations interior to that

same boundary. As a result, counterweighting absence points are ignored. The

result is region of overestimation error.

DECAF-EG takeaway II: DECAF-EG suffers from event overestimation be-

tween the exterior of the true event and the immediate interior of its event

estimation.

IDW. In many respects, IDW appears very similar to DECAF-EG—which, is not

surprising considering that it is a component of the DECAF-EG method. In

fact, the AD− maps tend to be almost indistinguishable. The central region of

underestimation error should be familiar by now.

IDW takeaway I: IDW suffers underestimation at the event center when the

center is associated with the maximum value.

While IDW doesnt have the jagged overestimation border visible in DECAF-

EG’s AD+ maps, it tends to suffer from a significant overestimation corona
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that extends from the true event boundaries.

IDW takeaway II: IDW tends to overestimate regions near the event but outside

of the event boundaries.

Kriging. The kriging AD− map is interesting. Compared to the other three meth-

ods, kriging doesnt suffer the same underestimation problems to the same

degree—at least for large events. However, consider Table 6.2 on page 92,

which reports AD− maps for the four methods.

Kriging takeaway I: Kriging is less susceptible to underestimation at event cen-

ters when the center is associated with the maximum value—at least for larger

events.

Next, notice the thin halo of underestimation along the event interior. While

not as pronounced as DECAF-IK, it tends to be more pronounced than IDW

and DECAF-EG.

Move to the AD+ map. As with IDW, an overestimation corona is distinctly

visible around the event exterior. While this corona is of comparable magnitude

to IDW immediately adjacent to the event border, it does not extend nearly as

far into the absent space beyond.

Kriging takeaway II: Kriging tends to overestimate regions near the event but

outside of its boundaries, but not as severely as IDW.

Magnitude is one measure of error to consider. The other is presence/absence

(PA) prediction. Table 6.3 reports the PA results for the large circle simulations (the

aggregated results for simulations of the variety shown in Table 6.1).

Ignore the magnitude of these various measures; they can differ from one sim-

ulation design to another, as we will see later. For the moment, consider only the
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Table 6.2: AD− maps for small circles

Table 6.3: Presence/Absence, large circle
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relative positions of the methods to one-another; these remain remarkably consistent

across tests.

The liberal tendencies of DECAF-EG, IDW, and kriging are captured by Recall.

Recall measures the ability of a method to correctly identify a present point as present.

These methods tend to predict present in lieu of information to the contrary, and so

are good (very good in the case of well-behaved Gaussian events) at detecting present

points. DECAF-IK’s comparatively conservative nature hurts its recall score, but the

impact is limited.

The liberal tendencies of DECAF-EG, IDW, and kriging are penalized by the

Precision measure. Precision measures the proportion of predicted present points

that are, in fact, present. IDW and kriging tend to do the worst (the two trade places

from one test to another). DECAF-EG does better, but DECAF-IK tends to do very

well.

Specificity measures the ability to detect absent points. DECAF-IK continues to

be dominant while IDW and Kriging do poorly and DECAF-EG remains sandwiched

in-between.

The F-score, a composite of the Recall and Precision measures, summarizes the

above: DECAF-IK is very effective at differentiating between present and absent

points. The Accuracy score is but further evidence.

Presence/Absence takeaway: DECAF-IK performs excellently. DECAF-EG does

well. As expected, IDW and Kriging range from decent to terrible, depending on the

exact measure used.
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Table 6.4: Experiment Design, event structure

6.2 Event Structure

For event structure, we consider simulation types 1-6. The summary of these simula-

tion types is given in Table 6.4.

Table 6.5 on page 95 reports the results of the analysis of variance test (ANOVA).

The response variable for this test is absolute average difference (AAD). This test

demonstrates that event orientation has no statistically significant effect on AAD.

However, all remaining terms are reported as significant, warranting further investi-

gation (the size×shape interaction is also insignificant, but the three way interaction

between size, shape, and method demands its inclusion).

Furthermore, these results are consistent across dependent variables positive aver-

age distance (AD+) and maximum absolute difference (MAD) (the ANOVA tables

can be found in the Appendices). Negative average distance (AD−) reports orienta-

tion as significant, so we will consider orientation in that case.
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Table 6.5: Results of ANOVA (AAD)

Table 6.6: Presence/Absence measures, small circles

6.2.1 Event size

6.2.1.1 PA accuracy

Let us first consider the effectiveness of presence/absence prediction across event

sizes. Table 6.6 summarizes the small size results; Table 6.7 reports on size large

(both appear on page 95.

Table 6.7 should be familiar; it is the same as Table 6.3 from page 92. Note that

the generalized observations hold true in Table 6.6. DECAF-IK continues to impress,
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Table 6.7: Presence/Absence measures, large circles

DECAF-EG is a notable second, and IDW and kriging perform comparatively poorly.

Size has an impact on certain PA prediction measures. Recall is effectively un-

changed across size, but precision (and, hence, F-score) increases. Note that this may

be less a function of size and more a result of the proportion of P compared to A in the

dataset. The large event occupies well over fifty percent of the total event space—so,

methods that tend to predict P will naturally improve their precision score. This

hypothesis is supported by sharp drop in specificity scores: DECAF-EG, IDW, and

kriging all struggled to avoid false positives.

6.2.1.2 AAD

DECAF-IK is the clear winner at PA prediction, but the results presented in Table

6.8 show that this does not necessarily translate into a reduction of error magnitude.

The table reveals two distinct groups: the three IDW-based methods (DECAF-IK,

DECAF-EG, and IDW) are outperformed by kriging.1

The interaction plot in Figure 6.2 illustrates the table results (for future results,

we will use the interaction plot only).

Clearly, smaller events result in less AAD (average absolute error). This is not

necessarily interesting, however, as the large empty spaces in the small event space

1Individual means and confidence intervals are computed using a t-test. Statistical differentiation
is determined using Tukey’s Honest Significant Difference test)
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Table 6.8: Results for t-test on AAD by method at large and small sizes

Figure 6.2: AAD method by size interaction plot

will naturally reduce error. More interesting, however, is the behavior of DECAF-

IK, DECAF-EG, and IDW relative to one-another. At the large scale, DECAF-EG

and IDW are statistically indistinguishable, as may be expected. DECAF-IK slightly

outperforms both at this scale. At the small scale, however, IDW slightly outperforms

the two DECAF methods, which become indistinguishable.
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6.2.1.3 AD+

The AAD measure is agnostic to the direction of error. To better understand the

effect of event on size the overestimation of error, let us consider the interaction plot

for AD+ (Figure 6.3).

Figure 6.3: AD+ method by size interaction plot

Kriging suffers almost no estimation error; IDW suffers significantly more—both

have statistically significant interaction effects, but the magnitude of the differences

is too minor to warrant much attention. The DECAF methods are more interest-

ing. Both suffer some error at the large scale, but the two differentiate at the small

scale. DECAF-IK, despite its excellent present/absence predictions, strongly (rela-

tive) overestimates small events. DECAF-EG suffers a similar problem, but not to

the same degree.
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6.2.1.4 AD-

Now consider underestimation error. The interaction plot, Figure 6.4, shows that all

methods struggle with smaller events (note that the y-axis is negative: lower values are

larger underestimation errors). Remember the discussion from the start of the section,

where we noted that DECAF-IK, DECAF-EG, and IDW tended to underestimate

the center of Gaussian events—this clearly holds true. We also noted in that same

discussion that kriging was more prone underestimate at smaller rather than larger

scales—this also holds true, though kriging’s underestimation error remains much

smaller than that of its peers. DECAF-IK suffers from the larger AD−; clearly, it is

failing to leverage its excellent event detection rate.

Figure 6.4: AD- method by size interaction plot

6.2.1.5 MAD

The interaction plot for worst-case errors reveals the familiar KrigingIDWDECAF-

EGDECAF-IK order of ascending error (Figure 6.5). All methods do worse on small
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Table 6.9: Presence/Absence measures, differences between small circles and ellipses

events; the consistency of error increase across methods is interesting.

Figure 6.5: MAD method by size interaction plot

6.2.2 Event shape

6.2.2.1 PA accuracy

Let us begin by analyzing the effectiveness of presence/absence prediction across event

shapes. Tables 6.9 and 6.10 may look similar to Tables 6.6 and 6.7 on page 95, but

be careful—they are constructed differently and report different results.
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Table 6.10: Presence/Absence measures, differences between large circles and ellipses

Table 6.9 concerns small shapes. It was constructed by building a PA measure

table (just like Table 6.6, but for ellipses instead of circles); then, the values in Table

6.6 were subtracted from these to produce a different (this) table. Table 6.9 reports

the difference in PA measures between shapes (ellipse, circle) at the same size (small).

Table 6.10 reports the same, but for large sizes. (Because there was a size × shape

interaction, we must compare at both sizes).

So, what can we gather from these tables? First, Recall doesnt change—DECAF-

EG, IDW, and Kriging all continue to have perfect Recall, and DECAF-IK continues

to be close. Precision falls in all cases, indicating that the number of false positives

increases with ellipse-shaped events. Note that DECAF-IK is effected the least, how-

ever, and kriging is effected the most. The F-Scores reflect this fact, with the kriging

F-score plummeting for both sizes.

Specificity is the most interesting measure, remaining effectively unchanged for

smaller shapes but exhibiting erratic behavior at larger scales. IDW improves its

performance from a dismal 0.3 for circles to a remarkable 0.68 for ellipses; DECAF-

EG improves by an impressive 0.18 from a mediocre 0.67 to a respectable 0.85. This

behavior is probably the result of the fact that the ellipse takes up less of the total

event space than does a circle; therefore, there are simply more absence points that

are distance from (and therefore cant be improperly influenced by) present points.

Changes in accuracy are unremarkable.
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Table 6.11: Presence/Absence measures, differences between large circles and ellipses

Table 6.11 shows the same difference in measures, but between small and large

ellipse, small − large (we are isolating the effect of size in ellipses). It appears that

all methods have higher precision with large ellipses than small ones. In specificity,

we see again that IDW and DECAF-EG perform comparatively well on larger ellipse.

Kriging sees a drop in accuracy at larger scales; IDW sees improvement.

6.2.2.2 AAD

Table 6.12 on page 103 shows the AAD visualizations for small and large ellipses.

When compared to our earlier circle visualizations (Table 6.1 on page 87), these

suggest that not much is happening as a result of the change in shape. The same ring

pattern occurs, where underestimation error dominates the center and overestimation

error dominates the exterior.

For the magnitude measures, we will only show the interaction plots for small

events. The stories are very similar across size. The interaction plots for large shapes

can be found in Appendices. The AAD interaction plot for small ellipses is shown in

Figure 6.6.

This plot looks interesting, but it is difficult to discern exactly what is happening.

Let us return to this plot after considering the AD+ and AD− plots.
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Table 6.12: Ellipse visualizations (AAD)
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Figure 6.6: AAD method by shape interaction plot, size small

6.2.2.3 AD+

The AD+ interaction plot is given in Figure 6.7. All methods suffer greater overes-

timation error when estimating elliptical events.

6.2.2.4 AD-

The AD− interaction plot is given in Figure 6.8.

All methods also suffer greater underestimation error when estimating elliptical

events. Intuitively, the AAD plot should also show the four methods suffering greater

AAD for elliptical events—yet, with the exception of kriging, it did not. In fact, both

DECAFs showed improvement.

Remember, DECAF-IK and DECAF-EG do better than their counterparts at cor-

rectly identifying absent points, with DECAF-IK doing the best. Note that DECAF-

EG improves on the AAD plot when working with ellipses, but DECAF-IK does

even better. But, then, why would only AAD (but neither AD+ nor AD−) reflect
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Figure 6.7: AD+ method by shape interaction plot, size small

improvements resulting from improved present/absent prediction accuracy?

This is an artifact of how AD+ and AD− are computed. AD+ is the measure of

average error at those points that are overestimated; AD− is the measure of average

error at those points that are underestimated. Points estimated with perfect accuracy

do not factor into either AD− or AD+. AAD, on the other hand, is the measure

of error at all points, so points estimated with perfect accuracy do get factored into

AAD. Because error stored as a floating point number, just about the only time

“perfect” (no) error occurs is when an absent point is correctly predicted! DECAF-

IK is best positioned to benefit from this peculiarity; DECAF-EG is not too far

behind.

6.2.2.5 MAD

The MAD interaction plot simply recapitulates the fact that ellipse estimates suffer

higher error than circles. See Appendices for the plots.
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Figure 6.8: AD- method by shape interaction plot, size small

6.2.3 Orientation

According to the ANOVA test performed on the AD- measure, orientation (θ) has a

statistically significant effect at the α < 0.05 threshold (this table can be found in

the Appendices). This is much less significant than the thresholds crossed for most

of the other significant results, such as shape and size (which typically exceed the

α < 0.001 threshold). It warrants a brief investigation, however.

Table 6.13 on page 107 shows the visualizations of AD− for the orientated events,

large and small. A visual inspection does not reveal anything out of the ordinary,

with the exception of an odd seam effect along the cardinal directions in the kriging

plot.
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Table 6.13: Orientation visualizations
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Figure 6.9: AD- method by orientation interaction plot, size small

Figure 6.10: AD- method by orientation interaction plot, size large

The interaction plots are a little more revealing. Figure 6.9 shows the interaction

across orientations (0◦ and 45◦) at the small scale; Figure 6.10 shows the interaction
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at the large scale.

Kriging and IDW are effectively indifferent to event orientation. DECAF-IK shows

no effect at the small scale, but, interestingly, suffers increased error at the large

scale when orientated at θ = π
4
. DECAF-EG shows the only noteworthy increase in

underestimation error when oriented.

6.2.4 Noise

To analyze the effect of noise, we consider simulation types 4 and 7-14. All of these

are large circles; only the noise levels vary. The summary of these simulation types

is given in Table 6.14.

Table 6.14: Experiment design, noise

Table 6.15 reports the results of the analysis of variance test (ANOVA). The

response variable for this test is absolute average difference (AAD). All terms are

significant; this holds true for the AD+, AD−, and MAD response variables as well

(these can be found in the Appendices).
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Table 6.15: ANOVA results, AAD for noise

6.2.4.1 AAD

Figure 6.11 is an interaction plot across nugget levels. Figure 6.12 is an interaction

plot across sill levels.

Figure 6.11: AAD method by nugget interaction plot
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Figure 6.12: AAD method by sill interaction plot

Clearly, as expected, increased noise causes increased error. More interestingly,

kriging and DECAF-IK exchange places: kriging outperforms all other methods by

a wide margin when no noise is present, but its advantage over DECAF-IK is erased

when noise is high. In the case of pseudo-nugget noise, it is statistically indistin-

guishable from DECAF-IK; DECAF-IK statistically outperforms kriging under high

pseudo-sill noise conditions.

6.2.4.2 AD+

Figure 6.13 shows the AD+ pseudo-nugget interaction plot (the pseudo-sill plot is

almost identical and can be found in Appendices).
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Figure 6.13: AD+ method by nugget interaction plot

6.2.4.3 AD-

Figure 6.14 shows the AD− pseudo-nugget interaction plot (the pseudo-sill plot is

almost identical and can be found in Appendices).
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Figure 6.14: AD- method by nugget interaction plot

Here, all methods start in their by-now familiar order of underestimation error.

Interestingly, all converge at high levels of noise.

Note DECAF-IK matches the performance of kriging in the AAD metric but

is handily outperformed in AD+ and only matches kriging in AD−. We saw this

pattern before in the event shape analysis: DECAF-IK’s correct absent predictions

are captured by AAD but in neither AD+ nor AD−.

6.2.5 Noise × event structure interactions

To analyze the effect of noise× event structure interactions, we consider simulation

types 1-6, 8, 12, and 14-29. Only noiseless and high-noise tests are considered. The

summary of these simulation types is given in Table 6.16.

Table 6.17 on page 115 reports the results of the ANOVA test on AAD. We are

interested in interactions of the type method × noise × structure parameter; there
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Table 6.16: Experiment design, noise × structure interaction

are three of two: nugget× sill ×method× size and sill ×method× shape.

The ANOVA tests for AD+, AD−, andMAD show similar (or fewer) interactions.

The associated tables are provided in Appendices.

6.2.5.1 Size × noise interaction

Figure 6.15 shows the interaction between noise and method for small circles. Test

s01 is noiseless, test s15 is no pseudo-sill/high pseudo-nugget, test s16 is high pseudo-



115

Table 6.17: ANOVA results for noise × structure interaction, AAD
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sill/no pseudo-nugget, and test s17 is high for both types of noise. Nothing interesting

happens; the four methods all suffer increased error with increased noise and are

typically ordered.

Figure 6.16 shows the same interaction but for large circles. Kriging and IDW

begin in their standard positions with IDW suffering greater AAD, but at high noise

levels the two trade places. The DECAFs begin at almost identical positions, but

diverge as noise increases.

Figure 6.15: AAD noise by method interaction plot, small circle
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Figure 6.16: AAD noise by method interaction plot, large circle

6.2.5.2 Shape × pseudo-sill interaction

The interaction plot for pseudo-sill and method within large circles was shown in

Figure 6.12 on page 111. Figure 6.17 is the interaction plot between pseudo-sill and

method within large ellipses.

The effect of pseudo-sill within the large circle was interesting: DECAF-IK’s AAD

performance overtook krigings when pseudo sill was high. No such effect is visible

in the ellipse interaction plot, however, as the methods are all comparatively well-

behaved.
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Figure 6.17: AAD noise by method interaction plot, large circle

6.2.6 Conclusions derived from simulation results

The above tests were performed to answer three questions regarding event structure.

1. Does event structure impact the comparative performances of the

four fusion methods in question (DECAF-IK, DECAF-EG, IDW, and

kriging)?

Technically, yes. Differences were identified, most notably in size but also in

shape. A minor orientation difference was identified for one measure (AD−).

Practically, however, event structure as studied does not meaningfully impact

the comparative performances of the four fusion methods. It may be instructive

to note that kriging does better at larger event sizes, which is probably the result

of more data with which to fit its models—but size does not affect kriging’s

performance relative to the other three methods.
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2. Does event noise impact the comparative performances of the four

fusion methods?

Yes. High levels of noise reduced the efficacy of kriging to the point that it was

indistinguishable from the other methods.

3. Finally, do there exist interaction effects between event structure and

event noise that impact the comparative performances of the four

fusion methods?

Technically, yes. However, the results were not so dramatic as to be interesting.

That DECAF-EG and DECAF-IK diverge at high levels of noise in large but

not small objects is probably as likely a consequence of the experimental setup

as a real effect—and, in any case, that divergence just maintains their standard

relative positions.

The tests above failed to uncover event structure effects, which underscores the robust-

ness of the general conclusions presented at this chapter’s start. More importantly, it

demonstrated that the DECAF methods are relatively insensitive to changes in event

size, shape, or direction. They are relatively stable methods.

These simulations were not designed to uncover differences between DECAF and

the traditional methods, though they were illustrative towards that end. We found

that for simple Gaussian events with a minor threshold (10% in this case), kriging

tends to outperform all other types in error magnitude tests. This is not unexpected.

In the next chapter, we will consider improvements to the DECAF approach based

on unexpected results found in this chapter (namely, border behavior). We will also

two additional experiments designed to better highlight DECAF’s strengths.
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Chapter 7

Improving DECAF-EG

The results from the simulation tests revealed a weakness in the DECAF approach.

While DECAF had success detecting event boundaries, it failed to leverage this in-

formation to improve point-value prediction. In this chapter, we propose two new

varieties of DECAF-EG to better exploit the spatial structure that DECAF captures.

The previous chapter revealed three weaknesses. First, DECAF-IK’s conservatism

caused underestimation at present points that fell immediately outside the estimated

event boundary (Figure 7.1).

Figure 7.1: DECAF-IK underestimation along event border.

Second, DECAF-EG overestimated absent points that fell inside the estimated

event boundary but outside the true event boundary (overestimation type I in Figure

7.2). Finally, both DECAF algorithms suffered overestimation just inside the event
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boundary, the consequence of ignoring exterior absent points (overestimation type II

in Figure 7.2).

Figure 7.2: DECAF-EG Error along event border.

All of these problems result from the mishandling of the border region of the

estimated event ê. Recall, in Chapter 4 we defined three subregions that the DECAF-

EG process illuminates:

1. Interior. Inside a present hull, where the event is presumed continuous.

2. Border. Outside of a hull but not beyond its absent neighbors. This is a region

of uncertainty—the event may extend into this region; it may not.

3. Exterior. Outside a hull and beyond absent neighbors, where it is presumed

no event exists.

In a true delineated continuous event space, only two regions exist: present and

absent—or, by this definition, interior and exterior. Either the event occurs at the

location, or it does not.

However, information is imperfect in the estimated delineated continuous event

space. Sample set P , however dense, cannot capture all locations. Space must exist

between a present observation and an immediately adjacent absent neighbor. This

region—the border region—is a region of inherent uncertainty. See Figure 7.3.
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Figure 7.3: Example interior, border, exterior regions of an event estimation ê

DECAF-EG makes this division explicit, but it is no less important to DECAF-

IK. DECAF-IK’s indicator kriging-derived event boundary estimation can be thought

of as tracing the midpoint between adjacent present and absent points. DECAF-IK

effectively splits the border region between the interior and exterior regions. This is

not an unreasonable thing to do, but it clearly results in error.

DECAF-EG, on the other hand, captures the entire border region by extending

the event estimated boundary all the way to the nearest absent points. Effectively, it

treats the border region as interior. The original expectation was that the interpola-

tion process (IDW) would be effective at estimating these points—after all, towards

the interior lie present points and towards the exterior lie absent points, and the

weighted average between the two seemed to be an appropriate approximation for a

point that may or may not be present.

Yet, overestimation happened. Why? The number of absent points is over-

whelmed by the number of present points. Barring a very strange (a very non-
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uniform) distribution of points in P , the number of points on the interior of estima-

tion point q will greater than (and often much greater than) the number of nearby

absent points that define the DECAF-EG exterior. Consider Figure 7.4, where q is

estimated using four present points and two absent points; the two distant absent

points are ignored even though they are probably just as informative as the pair of

distant present points.

With this shortcoming in mind, let us consider how to improve the DECAF algo-

rithms.

Figure 7.4: The DECAF-EG border overestimation problem

7.1 DECAF-IK

Recall that DECAF-IK uses indicator kriging to produce a grid of present probability.

A cell with a value of 0.05 is considered to have 5% chance of being present (based

on the sample set P provided). DECAF-IK thresholds at 50%, categorizing regions

with > 0.5 present probability as interior and other regions as exterior. Clearly, we

can alter this thresholding logic to produce a border region. For example, > 0.66
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might be considered interior, < 0.33 might be considered exterior, and everything

in-between border.

However, while the 0.5 logic was straightforward and easily defensible, selecting

these new thresholds is probably more art than science. DECAF-EG, on the other

hand, already creates these subdivisions as a consequence of its logic. Furthermore,

DECAF-IK is slow. For these reasons, as well as time constraints, this “improved”

DECAF-IK is not explored further by this thesis.

7.2 DECAF-EG

The first step towards improving DECAF-EG is simple. Previously, we only formally

compute the hull at the border—this defines the maximal extent of the event. Now,

we also compute a hull around all present members that fall inside the border hull;

this new hull is the interior hull.

The pseudo-code for the DECAF algorithm is reprinted in Algorithm 6 for ref-

erence. The find events() logic has been tweaked, as we just described. Now, we

must alter the predict() function. Previously, this function was IDW parameterized

with all points inside estimated event ê. From now on, we will refer to this original

algorithm as DECAF-EG-1.

Algorithm 6 Delineated-Event Continuous-Aspect Fusion

1: function GENERATE(P, q, t,K)
2: Ê ←find events(P )
3: ê←find associated event(q, t, ê)
4: V ← 0
5: if ê 6= NULL then:
6: V ←predict(ê, q)
7: end if
8: return V
9: end function
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Now, we must define a new predict() function. First, we must decide whether or

not to treat estimations inside the interior differently. Previously, when estimating

a point q that fell inside the interior, absent points from the border may or may not

have been used. This could be problematic, as it may cause some underestimation.

So, it could be argued that the estimations inside the interior should strictly use

interior points.

The potential downside, however, is that we would be introducing a new border

problem. Points at the edge of the interior may be overestimated because nearby

absent points are ignored, causing gradient information loss.

Table 7.1 shows the results of a simulation using the two approaches (based on

the s01 simulation—small circle, noiseless; absence region was cropped for figure).

There appears to be a small improvement in underestimation error at the interior

margins of the underestimated region, as we would expect. However, we also witness

the expected increase in overestimation at the exterior of this same region.

We choose to be conservative and avoid the potential border effects. Therefore,

interior points are estimated using all points from P that fall inside estimated event

ê.1

Second, we must decide whether or not to treat estimations in the border region

differently, which we do.

7.2.1 DECAF-EG

The predict method of DECAF-EG-2 is outlined in Algorithm 7. Border logic has

been introduced. If the estimation point q falls inside the interior, IDW is parameter-

ized using all points inside the estimated event ê. If q falls outside of the event, it is

1To be clear, these points simply parameterize the interpolation function. For example, IDW,
as implemented, would choose the nearest twelve points (maximum).



126

Table 7.1: Effects of using interior points to exclusively estimate values inside interior
space

set to zero (or another default absent value). So far, this is identical to DECAF-EG-1.

However, DECAF-EG-2 checks whether q falls inside the border region. If so,

IDW is used to estimate q. The IDW function is parameterized with all points. It

chooses the k nearest points agnostic to their position inside or outside ê.2

In effect, where DECAF-EG-1 can be understood as the intelligent application

of one IDW function (inside ê), DECAF-EG-2 can be understood as the intelligent

application of two IDW functions (inside ê interior and inside ê border).

2In reality, the function is parameterized with the k -d tree so that distances are not recomputed.
It uses this data structure to find the k nearest neighbors, preserving O(n log n) time complexity.
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Algorithm 7 predict for DECAF-EG-2

1: function PREDICT(ê, q)
2: v ← 0
3: if q ∈ ê.interior members then:
4: v ← IDW(ê.interior members)
5: else:
6: v ← IDW(ê.members)
7: end if
8: return v
9: end function

7.2.1.1 Time complexity

DECAF-EG-2 is nothing more than DECAF-EG-1 with a little more filtering logic

for the IDW function. DECAF-EG-2 has the same time complexity as DECAF-EG-1,

O(n log n).

7.2.2 DECAF-EG

DECAF-EG-3 is identical to DECAF-EG-2, but instead of using IDW to estimate

q inside a border region it uses kriging. The motivation is straightforward: in the

simulation tests, kriging outperformed IDW.

We have not used kriging in cases where the input is limited to points inside ê

(such as the DECAF-EG-1 logic or the DECAF-EG-2/3 interior logic). The fear is

that in the real-world tests, the number of points from P that constitute an event

estimation ê may be very small—too small for the kriging implementation that we use

to run. (Furthermore, using kriging causes time complexity to jump from O(n log n

to O(n3)).

However, the DECAF-EG-2 border logic uses all points in P . Set P is assumed

to have enough points to fit a sensible semivariogram, so kriging becomes a viable re-

placement to IDW in our implementation. So, we create another variation of DECAF-
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EG that uses kriging in border regions: DECAF-EG-3.

7.2.2.1 Time complexity

DECAF-EG-3 is at least as complex as DECAF-EG-1, O(n log n. However, if so much

as a single verification point falls inside a border region, kriging will be used. In the

worst-case, all verification points fall inside border regions and kriging is used in all

cases. Therefore, DECAF-EG-3 has a time complexity of O(n3).

7.2.3 Example: comparing DECAF-EG-2 and

DECAF-EG-3

Figure 7.2 on page 129 shows the results of a sample test against DECAF-EG-1,

DECAF-EG-2, DECAF-IK, IDW, and kriging. Note that both are significant im-

provements over DECAF-EG-1. It also appears that DECAF-EG-3 slightly outper-

forms DECAF-EG-2.

Because this is simply a visualization of a single simulation run, we will not claim

that this conclusively demonstrates that the modifications to DECAF-EG are neces-

sarily better. However, the evidence is sufficient enough for us to compare all three

DECAF-EG methods in the following chapters.
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Table 7.2: Comparison of methods on small circle, no noise, AAD
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Chapter 8

Precipitation Experimental Design

We will now test the methods on real-world data. The simulated tests were very sim-

ple: only one event appears in the event space at a time, these events were shaped con-

vexly, and the random fields inside events followed a Gaussian distribution. Though

these tests revealed the efficacy of DECAF at presence/absence detection, traditional

methods suffers less continuous error than the DECAF algorithms. We hypothesize

that this will not hold true in a more complex environment.

This hypothesis is based on several observations. First, kriging presupposes a

phenomenon that behaves homogenously—spatial relationships developed in one part

of the space are presumed to hold true in another (otherwise, the semivariogram is

no longer useful). Suppose one large event and one small event that exist in the same

space; the spatial relationships existant within one event probably do not hold true

in the other. Because DECAF treats events individually, it does not suffer the same

weakness.

Second, complicated shapes can confuse kriging. For example, consider a C-shaped

event; the C itself is composed of present events, everything else is absent. Kriging

and IDW would be prone to predict the interior of the C as present (depending on
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factors such as size, of course). Both DECAF-EG and DECAF-IK can handle concave

shapes, and so are (comparatively) immune to non-simple shapes.

Finally, the simulated events had a low threshold “drop-off”. If kriging fitted the

curve perfectly, it was guaranteed the small amount of error shown in Figure 8.1 (a).

We already have witnessed how sill noise, which increased this drop-off, caused more

problems for kriging than other methods. If the drop-off is larger, as shown in Figure

8.1 (b), krigings low specificity may cause it significant problemsproblems that will

likely be shared by IDW.

Figure 8.1: The threshold effect on a well-fitted curve

To test this hypothesis, we test our methods on a precipitation dataset at the day

scale over a six year period.

8.1 Algorithms

The previous chapter presented two new algorithms, DECAF-EG-2 and DECAF-

EG-3, which brings the total number of methods to six. As was the case with the

simulations, each of the methods can be parameterized. So, we will review those

parameterizations below.
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DECAF. All DECAF methods threshold the data to determine presence and ab-

sence. For the precipitation data, it is 0.02 inches of precipitation in a 24-hour

period (this number was chosen after experimentation as well as discussion with

the High Plains Regional Climate Center).

The varieties of DECAF were further specified as follows:

DECAF-IK. The alpha hull algorithm was paramaterized with a starting al-

pha value of 0.05, a failure increment of 0.05, and a max alpha of 0.1

(if this threshold was reached, a convex hull is computed instead). The

presence/absence raster was computed at a resolution of 150× 70.

DECAF-EG. Point neighbors were identified using a static sector search (con-

sidered north, south, east, and west). Clusters with fewer than six members

were dropped.

DECAF-EG-1. The interpolation algorithm used was IDW, capped at

twelve neighbors.

DECAF-EG-2. The interpolation algorithm used was IDW, capped at

twelve neighbors.

DECAF-EG-3. The interior interpolation algorithm was IDW capped

at twelve neighbors. The border interpolation algorithm was kriging,

same as specified below.

IDW. The maximum number of neighbors considered was twelve. This threshold,

though arbitrary, is borrowed from the industry standard geographic informa-

tion system, Esri’s ArcGIS [18]. The IDW function in ArcGIS uses twelve as

the default cutoff value.

Kriging. Ordinary kriging was used. The semivariogram was fitted with a spherical
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model. The spherical model performed similar to other standard models—

exponential, circular, Gaussian—in exploratory analysis. We did not consider

more esoteric models. Furthermore, the literature contends that differences

arising because of choice of model are typically dwarfed by other factors, such

as data selection [6]. The semivariogram is fitted automatically for each test.

We do not parameterize it a priori.

8.2 Dependent Variables

We are interested in the error associated with the six methods. For both tests,

simulation and real-world, the predicted values outputted by the methods will be

compared with known true values. So, error is known.

We measure error in two ways: presence/absence prediction and magnitude of

prediction error. The first considers only the accuracy of event presence predictions

(i.e., event ei envelopes location 〈x, y〉). The second considers the accuracy of the

continuous prediction (e.g., predicted 2” of rain at a location with 1” of true rain).

8.2.1 Presence/Absence

This is computed the same as before. Of note, however, the aggregated matrix is

across time instead space. Previously, the number of presence and absence points

were counted for one run of the simulation (so, the total PA numbers for the 100

verification points); this was performed individually for each simulation (with a result

of 100 confusion matrices). The individual measures—PP, PA, AP, and AA—were

averaged across runs.

Now, presence and absence predications are summed across time at a single point.

The result is a confusion matrix at each point. The individual measures—PP, PA,
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AP, and AA—were averaged across points.

From the confusion matrices, we compute the same measures as before: recall,

precision, F-score, specificity, and accuracy. See Chapter 5 for a description of these

measures.

8.2.2 Magnitude

For this test, we only compute three day-scale magnitude measures. These are

given familiar names—Absolute Average Distance (AAD), Positive Average Differ-

ence (AD+), and Negative Average Distance (AD−)—but take note, there are dif-

ferences. AAD remains exactly the same, but AD+ and AD− have been tweaked to

be more informative.

Absolute Average Difference (AAD). AAD is the absolute difference between

the estimated and true value, averaged at the same point across days. In other

words, what is the average magnitude of error at this point?

Positive Average Difference (AD+) AD+ the average difference between the es-

timated and true value across only those differences that are positive. In other

words, what is the average magnitude of over-estimation error?

Previously, this was computed using the formula

AD+ =

∑
overestimationerror

n
(8.1)

where n is the number of estimation errors that are measured. Now, we use the

formula

AD+ =

∑
overestimationerror

n+m
(8.2)
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where n is the number of estimation errors that are measured and m is the

number of perfect estimations (effectively, where absence was predicted cor-

rectly). Recall that one of the problems faced in the simulations chapter was

the care that had to be taken to interpret AD+ and AD− results, especially

when they did not appear to match the AAD measure. The DECAF methods,

which can and do get “perfect” errors (because of corrent absent predictions),

ended up appearing to do worse than they do in reality—they were penalized

for perfection.

Negative Average Difference (AD-) The average difference between the estimated

and the true value across only those differences that a negative. In other words,

what is the magnitude of under-estimation error?

AD− is computed using the same new formula as AD+ (except that underes-

timation error is used instead of overestimation error, of course).

Finally, we also compute a fourth measure, accumulated error. This is the simple

sum of error at points across days. From this measure we derive accumulated percent

error, which is computed using the traditional percent error formula. As will be seen

in the following chapter, in some circumstances this measure can be more illuminating

than AAD, AD+, and AD−.

8.3 Real-world application

The real-world application comes from the domain of meteorology and climatology.

Precipitation behaves in a delineated-continuous manner at fine temporal resolution-

sstorms have a definite geographical extent, and within that extent precipitation falls

continuously. We apply our two DECAF algorithms to the problem of precipitation
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estimation. How well do DECAF-IK and DECAF-EG estimate the value of precipi-

tation at unknown locations compared to IDW and kriging?

For this test, we use daily precipitation data for the state of Nebraska (United

States). The temporal extend of the data set is the six year period 2007–2012 (in-

clusive). The time period is restricted to the months May–September of each year

in order to avoid the non-trivial problem of normalizing snowfall and rainfall [12]. A

volunteered dataset (CoCoRaHS) is used as the source dataset (P ), and an institu-

tional dataset (NWS Coop) is used for validation. The two data sets are shown in

Figure 8.2.

Figure 8.2: Source (CoCoRaHS) and Verification (NWS Coop) data sets

8.3.1 Source Set

The set P is drawn from the Community Collaborative Rain, Hail & Snow network

(CoCoRaHS). CoCoRaHS is a volunteered geographic information (VGI) initiative

where thousands of minimally-trained volunteers submit daily weather reports [13].

The daily participation rate varies widely among volunteers, with some contributing
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regularly over long periods of time while others report for a couple weeks before

stopping. The result is a large P (roughly 450 for any given t) with a composition

that fluctuates through time.

8.3.2 Verification Set

We verify our results by comparing the estimated values with a second dataset, the

National Weather Services Cooperative Observer Program (NWS Coop). These val-

ues are also collected by volunteers, but, in contrast to CoCoRaHS, the volunteers

undergo extensive training and their reports are treated to a quality control regime

[35]. The number of observations for any particular time t is fewer than CoCoRaHS.

We further restrict the set to “centennial” stationsthat is, stations which have a his-

tory of reports dating back over a century. The final verification set is composed of

74 points.

8.3.3 Methodology

For each day (t) in the time span, the value of precipitation (V ) is computed at each

of the target 74 NWS Coop locations using the CoCoRaHS precipitation data as (P ).

We repeat this process for all six methods: DECAF-IK, DECAF-EG-1, DECAF-EG-

2, DECAF-EG-3, IDW, and kriging. This totals to approximately 67,000 day-station

observations for each technique (74 verification points × 6 years × 150 days).
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Chapter 9

Experimental Results:

Precipitation Data

This chapter reports the results of the six methods—DECAF-EG-1, DECAF-EG-2,

DECAF-EG-3, DECAF-IK, IDW, and kriging—on the real world data set described

in Chapter 8.

9.1 Presence/Absence Results

The presence/absence results are presented in Table 9.1.

Table 9.1: Presence/Absence measures
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The table lends itself to several conclusions.

First, the three DECAF-EG algorithms are essentially identical. This should

come as no surprise, as the three define the event boundary the same way. The (very

minor) differences are the result of the occasional correct absence prediction inside of

the event border.

Second, DECAF-IK no longer clearly eclipses all other methods at PA prediction.

While it performed excellently in the comparatively simple simulations, it fails to

repeat that performance on the real-world data. DECAF-IK continues to suffer the

worst Recall—and now “worst” means 0.65 instead of 0.96—but it also has the best

precision and specificity. So, its ability to detect absence remains unrivaled, but its

capacity to correctly predict presence has suffered considerably. According to the two

composite scores, F-score and Accuracy, it is indistinguishable from the DECAF-EGs.

Third, Kriging and IDW continue to have high recall (though not the 1.00 ob-

served in the simulations). However, precision and specificity continue to suffer. Of

note, kriging now underperforms IDW, which was not necessarily the case in the

simulations.

What are the implications? Primarily, DECAF-EG is now an acceptable approx-

imation of DECAF-IK (unless Precision is essential, in which case DECAF-IK may

still be preferred). Furthermore, DECAF does what it is supposed to do: detect event

extents better than either IDW or kriging.

Let us now turn to error magnitude—a low precision score may not matter if the

magnitude of the resulting estimation errors is small.
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9.2 Statistical differences among methods

according to average error aggregated by

location

On each of the 900 days, each point location in the verification set (NWS Coop)

was estimated using the sample set (CoCoRaHS). The estimations were compared

with the known value to quantify error at each location. For each station, error

is averaged across time to produce a station-associated average absolute difference

(AAD) value. Furthermore, we also compute the average positive difference (AD+)

to quantify overestimation and the average negative difference (AD−) to measure

underestimation.1

9.2.1 AAD

Table 9.2 on page 141 reports the results of a Tukey Honest Significant Difference test

(Tukey’s HSD test). The response variable is AAD. Differences between methods are

reported. The test also blocked on point ID and the ANOVA test reported it effect

as significant, but we have chosen not to report the associated differences because we

expect spatial variation and we do not consider differences between individual points

to be interesting.

From this table we observe two clusters of statistically indistinguishable methods.

Group a is composed by all DECAFs; group b consists of DECAF-EG-1, kriging, and

IDW. DECAF-EG-1 has membership in both groups, and DECAF-EG-3 is indistin-

guishable from kriging. We can approximately order the methods from best to worst

as DECAF-EG-2/DECAF-IK, DECAF-EG-1/DECAF-EG-3, kriging/IDW.

1The AD− and AD+ reported here are modified from the measures used in Chapter 6 to
incorporate lessons learned from the simulation analysis. See Chapter 8 for details.
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Table 9.2: Results of Tukey Honest Significant Difference test on AAD

9.2.2 AD+

According to Table 9.3 on page 142, the DECAFs are statistically indistinguishable.

Kriging and IDW are also indistinguishable. All DECAF methods outperform kriging

and IDW. Also, note that DECAF-EG-2 consistently outperforms all other methods—

the difference isnt statistically significant, but it is consistent.

9.2.3 AD-

According to Table 9.4 on page 143, The DECAF methods continue to be statistically

indistinguishable. Again, all DECAF methods outperform kriging and IDW.
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Table 9.3: Results of Tukey Honest Significant Difference test on AD+

9.2.4 Conclusions

First, kriging is no longer the clear champion that it was in the simulation tests. The

noise tests hinted that kriging might not perform as well on the comparatively messy

precipitation data. The results of the Tukey HSD tests begin to bear this out.

Second, the DECAF methods generally outperform kriging and IDW but are

indistinguishable among themselves. This suggests that PA logic is, in and of itself,

sufficient to improve precipitation predictions, and therefore the precise variety of PA

logic is less important.
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Table 9.4: Results of Tukey Honest Significant Difference test on AD-
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9.3 Error maps, averages

Until now, we have analyzed estimation error more-or-less removed from spatial con-

text (technically, we considered spatial context in the Tukey HSD statistical test

because we blocked by point, but the subsequent analysis ignored space).

Figures 9.1 on page 145, 9.2 on page 146, and 9.3 on 147 show error maps (AAD,

AD+, and AD−, respectively). These maps are interpolations (using IDW) of the

values associated with the 77 verification points. The verification points are indicated

on the maps by black circles. All maps within a figure use the same scale.
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Figure 9.1: AAD error maps, interpolated
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Figure 9.2: AD+ error maps, interpolated
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Figure 9.3: AD− error maps, interpolated
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9.3.1 General observations

The first impression made by these maps is their similarity. At first glance, no striking

differences are immediately observable. This lends itself to a couple easy conclusions.

First, the methods all manage reasonably robust approximations; no method is a

disaster. Second, the fact that certain regions (certain interior points, in particular)

manage to be consistently poorly estimated suggests that the majority of error is

inherent to the underlying data (i.e., disagreements between CoCoRaHS and NWS

Coop). For this reason, we will avoid drawing conclusions about the error magnitude

of isolated methods; rather, we will only compare algorithms to one-another.

9.3.2 Outlier points

Let us now briefly set aside the general to focus on two specific points of interest

identified in Figure 9.4.

Figure 9.4: Haigler and Falls City

• Haigler. Haigler is interesting because it breaks the DECAF-EG family. The

DECAF-EG algorithm has a known boundary problem: event borders are de-

fined using sample points in P ; if the verification point is near a boundary (e.g.,

the Nebraska-Kansas border) it may always fall outside of the event estimation.

Our DECAF-EG implementation has border-snapping logic that fixes this prob-
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lem most of the time—except, it appears, if the verification point is wedged into

the very end of a 90◦ corner. All three DECAF-EG algorithms predict Haigler

as absent at every day in the six-year span.

• Falls City. Falls City is also strange. Not only do all algorithms perform

poorly at Falls City, but the error moves both directions—all methods over-

estimate badly when they overestimate and underestimate badly when they

underestimate. In part, this is another border problem—Falls City is tucked

inside an acute angle—and the DECAF-EG family does the worst here. Second,

Falls City is in the rainiest part of Nebraska [42]. Because we are measuring raw

magnitude in this section, Falls City will proportionally result in higher errors.

9.3.3 Method differences

Note that the DECAF algorithms tend to behave similarly, and that IDW and kriging

also tend to behave similarly. This matches the results of the Tukey HSD tests.

IDW and Kriging both suffer a bit more overestimation error than the DECAF-

family methods (excepting DECAF-EG-3, of course). This is expected; the DECAF

approach is very good at correctly identifying absent points, which avoids one source

of overestimation.

Second, note that DECAF-EG-2 and DECAF-EG-3 AD+ maps are very similar,

both differentiating themselves from DECAF-EG-1 and DECAF-IK with lower levels

of AD+ error. This suggests that simply treating the border region of events differ-

ently than core regions results in a better prediction. The particular algorithm used

in the border region isnt important; kriging and IDW are comparable. Rather, the

simple act of considering exterior absent points is sufficient to reduce overestimation

error. Note that the AD− maps are extremely similar across DECAF-EG methods,
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suggesting that underestimation error is dominated by PA prediction.

Third, and more perplexing, the entire DECAF family suffers less underestimation

error than IDW and kriging. High specificity does not help here: underestimation

results from doing poorly at present points. We may have been able to predict

this behavior for DECAF-IK and DECAF-EG-1, both of which ignore all points

external to event boundaries that they estimate, tending to ignore absent points and

increasing the magnitude of estimations inside of the event as a result. Yet DECAF-

EG-2 and DECAF-EG-3—both of which consider points outside of the estimated

event boundary when predicting border points—also outperform IDW and Kriging.

This suggests that the difference is not a result of improved border predictions but

instead improved core predictions. This may happen when IDW or kriging uses

nearby absent points to predict at a location inside of an event core, causing the

location to be underestimated.

9.4 Error maps, accumulated percent error

The above maps showed the average day-scale error magnitudes. These maps allowed

us to explore day-scale tendencies—methods tending to overestimate or underestimate

as well as to perform interpretable Tukey HSD tests. However, because the maps

report error magnitude (instead of a percent or proportion) there is no normalization

across the event space. For example, east Nebraska is wetter than the west, and so

error magnitudes may be higher while error percentages remain the same.

Yet, day-scale differences in magnitude are so small and true zeroes so frequent

that calculating day-scale percent error is a fools errand. Instead, we consider the

accumulated percent error: the day-scale predictions are summed across time at each

station for each method; the truth is also summed across time for each station. These
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two sums are used to find the percent error for each method at each predicted station

location. The results are mapped in Figure 9.5 on page 152.

With these maps, the proclivities of each method are rendered more starkly. First,

members of the DECAF family rarely overestimate, and where they do they overesti-

mate less than IDW and kriging. Second, kriging and IDW overestimate more often

than their counterparts (DECAF-EG-3 excepted), but also tend to better balance the

two varieties of error.

Finally, we begin to detect some differences between DECAF-EG-1 and DECAF-

EG-2/DECAF-EG3. DECAF-EG-1 suffers less underestimation error, as expected.

DECAF-EG-2 and DECAF-EG-3 appear to suffer less overestimation error, also as

expected.
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Figure 9.5: Maps of percent error for accumulated (2007–2012) estimations
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9.5 Points of interest

Let us now put aside the maps of interpolated error to consider interesting individual

estimated points. To conduct this analysis, we will be using the same accumulated

percent error mapped in Figure 9.5 on page 152.

We will not consider DECAF-EG-1 and DECAF-IK but instead treat DECAF-

EG-2 as a reasonable proxy for both. All three behave very similarly according to Fig-

ure 9.5: the differences across maps result from the degree to which each method tends

to underestimate. DECAF-EG-1 suffers more overestimation error than DECAF-EG-

2 which in turn is worse than DECAF-IK; on the reverse, DECAF-IK is more prone to

underestimate than DECAF-EG-2, and DECAF-EG-2 is worse than DECAF-EG-1.

DECAF-EG-2 acts as a reasonable average of DECAF behavior.

Furthermore, we will not consider DECAF-EG-3. DECAF-EG-3 is also func-

tionally similar to DECAF-EG-2. There is a little less underestimation error than

DECAF-EG-2, but it suffers overestimation errors at the same locations but to a

greater degree. Interestingly, it also performs poorly at those points where kriging

noteably underperforms (these are discussed below).

Figure 9.6 on page 154 reports all verification points (NWS Coop stations) where

at least one of the three methods considered (DECAF-EG-2, Kriging, IDW) suffered

greater than 10% absolute percent error. The location icon indicates which method

performed the worst (e.g., IDW performs the worst at Auburn and Valentine). Fur-

thermore, each point is coded with the colored string “D I K” to indicate how well

each method performed at the location—red indicates “high” error (greater than

20%); yellow, moderate error (between 10-20%) and gray, low (less than 10%).
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Figure 9.6: Locations of notable percent error
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Table 9.5: IDW points of note

Observe that IDW is the inferior method at two points, Auburn and Valentine,

but never breaches the 20% error threshold. Table 9.5 shows the error estimations

at these two points. Note that in the case of Auburn, IDW is effectively the same as

Kriging. The difference at Valentine is not particularly stark, either.

Next, note that DECAF-EG-2 breaks the 20% error threshold at three points

(Bridgeport, Butte, and Haigler); kriging as well (Bloomfield, Harrisburg, Walthill).

We previously discussed how Haigler’s location inside the corner caused the DECAF-

EG algorithms to underestimate every associated present value. Butte, in the north-

eastern quadrant, appears to be a similar case. IDW and kriging suffered little error,

but DECAF-EG-2 underestimated the accumulated precipitation by 56%. While

Butte isnt nestled into a corner, it is in a part of the state that is relatively sparsely

covered by P (CoCoRaHS). Because DECAF-EG is so dependent upon the location of

source points to estimate border extent, source point sparseness near border regions

may render the border-snapping logic less efficacious.

The final point at which DECAF-EG-2 strongly underperforms—Bridgeport—

reveals the limitations of this sort of map. Two methods in the same error cate-

gorization may, in fact, be less alike that two methods across categorizations (e.g.,

errors of 9% and 11% will be grouped separately but 11% and 20% will be grouped to-

gether). At Bridgeport, DECAF-EG-2 suffers -22% underestimation error, but both

IDW and kriging suffer -18%. DECAF-EG-2 has the greatest error, but all three

methods perform terribly.
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Table 9.6: Kriging points of note

The points at which kriging breaks the 20% absolute error threshold are interesting

(reported in Table 9.6). The DECAF-EG-3 error has also been included. While in

most cases it behaves very similar to DECAF-EG-2, the effects of its kriging-based

border approximations can be seen at Harrisburg and Walthill. Here, it suffers from

kriging’s tendency to overestimate these locations.

All three of these points are found along the Nebraska border; one at the west-

ernmost extent and two in the northeast corner. It appears that kriging suffers from

a border problem of its own. Instead of tendency to underestimate, kriging overesti-

mates. Notably, at two of these points, DECAF-EG-2 performs excellently.

Because these points fall inside the “border” region of DECAF-EG estimated

events, it not unexpected to see a closer relationship between kriging and DECAF-EG-

3 than between kriging and DECAF-EG-2. Bloomfield is interesting; the similarity

between the DECAF-EG measures suggests that kriging’s low specificity played an

important role it its overestimation.

Finally, lets consider points where DECAF-EG-2 differs by greater than 10% from

the other methods. All differences between DECAF-EG-2 and IDW are less than 10%,

so we can ignore IDW. We exclude Butte and Haigler from this analysis because we

already know that DECAF-EG-2 performs terribly at these points. There are six

such points; they are listed in Table 9.7.

We have already discussed three of these: Bloomfield, Harrisburg, and Walthill.
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Table 9.7: Notable differences in error

All three appear on the periphery. Harrison is located on the periphery as well, but

the associated border effect favors kriging.

Broken Bow and Bloomfield, however, are more intriguing. Both are located in

the interior, so border effects cannot play a role in their errors. While two points

are far too few to make any reasonable inferences, this hints that DECAF-EG-2 may

outperform kriging on the event interior.

Consider Figure 9.6 again. Note that all points where DECAF-EG-2 suffers 10-

20% error while the other methods suffer less than 10% are located along the periphery

of Nebraska (there are nine such points). We already know that the DECAF-EG

family of algorithms is not as robust near the border as alternatives (save for the fact

that when kriging botches a point near the border, it really botches it), but this also

suggests that DECAF-EG-2 is doing better away from the border.

Also, consider where kriging is in the 10-20% error bracket but the other methods

are in the <10% category. There are only four of these, so we must be careful not

to draw conclusions, but all four are located in the interior of Nebraska. Let us then

consider the importance of location—interior vs. periphery—on error by returning

to Table 9.7. A 10% threshold was used to construct this table. What if, instead,

we consider a 5% threshold: all points where kriging and DECAF-EG-2 differ in
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accumulated percent error by greater than 5% (positive or negative)? We plot these

points in Figure 9.7.

Figure 9.7: Points where either Kriging or DECAF-EG-2 outperforms the by > 5%

error.

Both methods have border problems. Many of these happen along the northern

Nebraskan border, which is a region —the western stretch in particular—-that is

sparsely covered by the CoCoRaHS dataset. In the northeast corner, we find two

points that are located relatively far away from the border; however, the methods

split the two points. Four points remain, all associated with kriging. These four are

located in the Nebraskan interior, and all are located in regions very well covered by

the CoCoRaHS dataset (refer to ?? on page ??).

It should be noted that in all cases in Figure 9.7 where DECAF-EG-2 outperforms

kriging, it is the result of kriging overestimation error. Similarly, in all cases where

kriging outperforms DECAF-EG-2, it is the result of DECAF-EG-2 underestimation

error.
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9.6 Error by error-type

Evidence presented until now suggests that the DECAF family of algorithms compare

favorably with Kriging and IDW. However, we cannot conclude that one method

consistently outperforms the others. Consider Table 9.8, which reports absolute mean

error, averaged across points. The mean errors are statistically indistinguishable. 2

Table 9.8: Mean absolute error across points

We have considered error by geographic location; now let us consider error by

error category. We can define three error subtypes:

1. PP error: The point was, in fact, present and the algorithm predicted present.

Error results from the difference in predicted value.

2. AP error: The point was, in fact, absent but the algorithm predicted present.

The error results from overestimating the zero value as a non-zero value.

3. PA error: The point was, in fact, present but the algorithm predicted absent.

Error results from underestimating the value as zero.

Error is reported by type in Table 9.9.

Note that there is no AA error; no error can result from correctly estimating a zero-

value as zero. Also, note that PP error + PA error + AP error = mean error as

reported in Table 9.8.
2DECAF-EG-1 and DECAF-EG-3 behave almost identically to DECAF-EG-2
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Table 9.9: Mean absolute error across points by error type

PP error. All methods are statistically distinguishable from one-another (according

to a TukeyHSD test at the α = 0.05 level). The DECAF methods outperform

the traditional approaches.

AP error. The traditional approaches are indistinguishable from one-another. Again,

the DECAF methods outperform these approaches.

PA error. The traditional approaches form one statistically indistinguishable group;

the DECAF approaches another. This time, however, the traditional approaches

significantly outperform the DECAF algorithms. Now, the low Recall of DE-

CAF hurts its predictive power to such a degree that its PP and PA success is

washed out.

This breakdown reveals that the two approaches produce complementary information.

As a final excercise, we weigh and combine DECAF-EG-2 and kriging to demonstrate

that the two produce complementary information. The combination of the two is an

improvement over either individual method. Similar approaches are represented in

the geospatial information fusion literature [56].

To effect this combination, we calculate the average error of each set.3 The average

error is added to the preciptiation estimation at points in the respective set, resulting

3Haigler and Butte were considered outliers and dropped.
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in an average error functually equivalent to zero. Then, the DECAF-EG-2 and kriging

estimations are averaged at each point. The interpolated map of aggregated error is

shown in Figure 9.8. The original kriging and DECAF-EG-2 maps are included for

the purposes of comparison.

It is apparent that the combination is an improvement upon each individual

method, suggesting that future geospatial fusion engines might exploit the strengths

of different methods to improve final predictions.

Figure 9.8: Maps of percent error for accumulated (20072012) estimations, weighted
combination of DECAF-EG-2 and kriging
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9.7 CPU runtime analysis

The theoretical time complexities are reported in Table 9.10 for reference.4 In this

table, the time complexity for each algorithm is split into two columns. The first

column reports the time complexity to estimate the value at a single point q. The

second column reports the time needed to estimate each subsequent q from the same

sample set P (i.e., estimate at each subsequent verification point on the same day).

This column is not essential for determining overall worst-case time complexities: for

m points in the verification set Q, the time complexity would be a series m long with

the first term drawn from the first column of the table and subsequent terms from

the second column of the table. The first column is always of equal or greater time

complexity, and so dominates the series.

Table 9.10: Algorithm time complexities

However, this second column is interesting because it helps to illuminate algorithm

behavior for large verification sets. The non-kriging approaches all suffer significant

overhead for the first q that can be amortized across subsequent q. For large verifi-

4These time complexities are developed earlier in the thesis. Chapter 2: IDW and kriging,
Chapter 4: DECAF-EG-1 and DECAF-IK, Chapter 7: DECAF-EG-2 and DECAF-EG-3
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cation sets, kriging may be less appropriate.

Let us pause to briefly consider each method.

Kriging. The time complexity of kriging is identical for all points in the verification

set.

DECAF-EG. The worst-case time complexity for the first and subsequent points are

the same. However, this warrants further discussion. Most of the computational

overhead in DECAF-EG is the result of the neighborhood building and cluster

analysis, which only needs to be performed once per set P (i.e., once per day).

The subsequent O(n log n) time is the result of the find associated event()

function. This function checks to see if the point q is inside of an event; in the

worst case, all points in P are boundary points of the event polygon, resulting

in O(n) time. In the worst case, q falls inside the event and neighbors must

be found—O(log n) time. Aggregated, this is O(n log n). Yet, it is a lighter

O(n log n) for subsequent q than for the initial q.

IDW. IDW strictly improves. The initial O(n log n) time is required to compute

the k-d tree. Subsequent approximations reuse this tree, and so require only

O(log n) time.

DECAF-IK. DECAF-IK also strictly improves. The entire u · v grid must be com-

puted for the first q and the event hulls subsequently extracted. Just as for

DECAF-EG, these data structures can be reused for subsequent q and the time

complexity becomes O(n log n).

To check these complexities, we collected total CPU time estimates for each of the

methods as they worked through the 900 days. The results are presented in Table

9.11.
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Table 9.11: Algorithm CPU times

The DECAF algorithms behave as we would expect. The IDW-based DECAF-

EG-1 and DECAF-EG-2 algorithms perform more-or-less identically. DECAF-EG-3

is slower, reflecting its reliance on Kriging. DECAF-IK, unsurprisingly, is very slow.

Note that the dimensions for the DECAF-IK grid were a low 150× 70.

IDW and Kriging are a little trickier to interpret. Methods were implemented in

Python. Because Python is an interpreted language, is suffers considerable overhead

for even simple function calls.

IDW was implemented in Python and used the SciPy package’s k-d tree imple-

mentation for neighbor-finding. Function calls are minimal. The result is a fast

O(n log n). DECAF-EG-1 and DECAF-EG-2, on the other hand, have many func-

tion calls and perform considerably more computation (especially for subsequent q in

the same day). The result is a slow O(n log n).

The kriging implementation that we used relies heavily on the Numpy package,

which uses C routines for major computations. So, despite suffering a greater time

complexity, kriging has a lower runtime than DECAF-EG-1 and DECAF-EG-2 be-

cause most of kriging’s intensive routines are performed in a compiled language. It

is reasonable to expect that DECAF-EG-1 and DECAF-EG-2 would see consider-

able improvement (and perhaps beat kriging) if they were implemented in C (or a

comparable compiled language).
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9.8 Summary

There is evidence that the DECAF-EG approach can outperform kriging. It appears

that the DECAF-EG’s high presence/absence specificity helps prevent overestimation

error. On event interiors, this allows it to match (and occasionally outperform but

very rarely underperform) kriging.

DECAF’s weakness is clearly underestimation error. DECAF-IK’s low recall is

simply unacceptable. DECAF-EG performs better, but the DECAF-EG-1 algorithm

fails to treat the border region of an event differently than the core of that event.5 This

results in overestimation error inside of events. The more sophisticated DECAF-EG-2

manages to successfully leverage the high precision of DECAF without a significant

overestimation cost. DECAF-EG-3 appears to be functionally equivalent to DECAF-

EG-2, but at a higher time complexity.

Preliminary results suggest that the DECAF approaches produce information

complementary to traditional approaches. DECAF might be used in tandem with

these methods to effect more accurate predictions.

5This is not the border of the event space (such as the boundary of Nebraska) but the border of
a precipitation event.
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Chapter 10

Conclusion

The Delineated-Event Continuous-Aspect Fusion algorithm arose from the realization

that quality long-term, fine-grained temporal information fusion of dynamic delin-

eated continuous phenomena may require that the event space be formally structured.

We hypothesized that a method that could automatically distinguish between events

(as well as the lack of an event) might be able to exploit that information to improve

the quality of subsequent point-value estimations. This method had to be automated;

otherwise, it could not be used to power a true information fusion engine.

Using precipitation as a template, we formalized the notion of a delineated con-

tinuous phenomenon. The boundaries of a delineated continuous event are distinctly

defined, but the interior is a spatial random field. We noted that techniques are well

developed for such static phenomena (zonal kriging). Experts must manually divide

a space into distinct sub-regions (typically with help from automated methods, such

as indicator kriging) and then apply methods appropriate to each sub-region. For

a phenomenon that does not change through time, this may be a perfectly effective

approach. But, if the phenomenon is dynamic—as is precipitation—sub-regions must

be identified at each time step.
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This thesis reports our attempts to design an effective and efficient DECAF algo-

rithm and prove its usefulness. The first such algorithm introduced was DECAF-IK,

which was built on top of traditional kriging techniques. It was no less efficient

than these techniques, but it struggled to effect quality predictions and was generally

overshadowed by the second variety of algorithm, the DECAF-EG family.

The original DECAF-EG had low time complexity, and the DECAF-EG-2 up-

date maintained this efficiency. DECAF-EG-3 sacrificed efficiency for the sake of an

increased effectiveness that was not attained—or at least not detected by our verifi-

cation methods. So, we currently consider DECAF-EG-2 to be the most advanced

realization of our attempts to formalize and exploit the structure of dynamic delin-

eated continuous phenomenon.

We conducted tests based on simulated data to better understand how variations

in event structure effected DECAF and traditional alternatives. These tests revealed

DECAF to be robust to changes in event size, shape (strictly convex), orientation,

and noise. They also revealed a border problem, which lead to the DECAF-EG-2

update.

Next, we conducted tests on real-world precipitation data. The precipitation

results defied easy analysis: at the day scale, total precipitation is limited and so it is

difficult to identify meaningful differences across methods; at larger scales, differences

can be detected by the underlying cause of those differences is lost to aggregation.

Nevertheless, our analysis revealed important strengths and weaknesses inherent to

the DECAF approach.
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10.1 Key observations

The event detection logic works. DECAF-IK and DECAF-EG both outperformed

IDW and kriging at correctly predicting presence/absence. Because neither

IDW nor kriging (of the ordinary variety) are intended for presence/absence

prediction, this is not surprising.

The event detection logic is helpful. In the real-world experiments, the DECAF

methods were less prone to overestimation error than kriging and IDW, a result

of correctly predicting absence points.

Fuzzy logic is necessary. DECAF-IK did not perform well either the simulated or

real-world datasets. DECAF-IK treats space in a strictly dichotomous manner—

present or absent—and so suffered considerable area in regions where it is diffi-

cult to accurately make this distinction. DECAF-EG-1 suffered a similar prob-

lem (though not to the same degree). DECAF-EG-2 and DECAF-EG-3 use

fuzzy logic in a selective way, treating border zones as mixture of present and

absence. As a result, both eliminate the border-type overestimation error found

in DECAF-EG-1.

The event detection logic is not always helpful. The reduction in recall causes

DECAF methods to be more prone to underestimation error. However, the

fuzzy logic introduced in DECAF-EG-2 and DECAF-EG-3 helped to alleviate

this problem.

Existing border-snapping logic is imperfect. The DECAF-EG methods suffer

inexcusable error rates in certain cases at the event space border. However,

kriging is vulnerable to significant border problems as well—overestimation

problems in particular, precisely the sort of error that DECAF corrects. Fur-
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thermore, snapping logic is very correctable; better border-snapping algorithms

exist in the literature and simply need to be properly implemented inside of

DECAF.

Kriging is a very robust method. It is very difficult to beat kriging at its own

game—interpolation—as the experimental results so starkly advertise. As ex-

pected, kriging was impaired by the spatial discontinuities of the day-scale

precipitation data; yet, not so strongly as to allow DECAF-EG-2 to clearly

outperform it.

10.2 Limitations of our analysis

We investigated the efficacy of our algorithms two ways. The first was a painstakingly

thorough investigation into the effects of event size, orientation, shape, and two kinds

of noise on simulated data. The second was involved over 1000 days of precipitation

data, each day composed of hundreds of observations. Yet, the twin tyrannies of time

and energy necessarily limit all, and no less the graduate student than any other. We

must now discuss the deficiencies of our analyses and what improvements might be

made.

10.2.1 Simulations

The simulation experimental design explored five factors (size, shape, orientation,

and two kinds of noise) and arrived at robust conclusions concerning these. In this

sense, the simulations accomplished what they were designed to do: answer specific

questions about the behavior of our algorithms.
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Yet, a secondary objective—to better understand where kriging does poorly—was

not investigated well by our experimental design. The only interesting result regard-

ing kriging was how it behaved when exposed to high levels of noise (it performed

equivalently to IDW). Yet, additional tests could have been performed to better un-

derstand the strengths and weaknesses of DECAF vis-à-vis kriging.

Note: The following two paragraphs will not apply if we have the time to perform

the associated experiments.

For example, one of the weaknesses of kriging is that it fits a semivariogram to

the entire event space, assuming a certain spatial homogeneity. While we tested the

effects of this based on the thresholding effect, we never tried to place two artificial

events in the same event space. Ideally, a large event and a small event would coexist

and the efficacy of DECAF and kriging in this event space could be compared.

Secondarily, the DECAF methods may perform better on oddly-shaped events.

For example, an absent point wedged inside of concave space on an irregularly shaped

event is likely to be overestimated by the traditional interpolation methods while the

DECAF methods may, in fact, recognize it as absent. Simulations based on more

complicated shapes would be revealing.

10.2.2 Precipitation data

The precipitation data itself is messy. While we try to establish a ground truth by se-

lecting choosing National Weather Service stations that have been reporting for over

a century, it remains at best an approximation. For example, we have documented

certain stations that appear to be consistently bad (at least according to their neigh-

bors). In fact, we witnessed more variation in error between verification points than

we did across methods. This is an inescapable fact when working with precipitation
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data.1 Yet, it necessarily complicates (and reduces the effectiveness of) data analysis.

Also, it would have been ideal to expand beyond the seven year period that we

tested. We were limited by the CoCoRaHS data, which begins in Nebraska in 2002

but does not reach complete spatial coverage until mid-summer 2006. An alternative

approach would be to divide the NWS Coop stations into source and verification sets

and run repeated tests (resampling each time). This could be performed on over a

centurys worth of data; however, the number of points at each time step would be

limited.

Finally, it would have also been ideal to test different states. Nebraska is flat, and

except for a west-to-east dry-to-wet gradient doesnt exhibit interesting meteorological

differences. Washington state, however, has a clearly discontinuous east-west resulting

from the Cascade mountains. It would also be interesting to consider a region where

storm-cells dominate, where act even more discretely than the sweeping fronts that

typify Nebraskan precipitation.

10.2.3 Efficiency

One of the primary strengths of DECAF-EG-2 is its lower time complexity. It does

not requre the inversion of matrices, and so has a much lower time (and memory)

complexity than kriging. However, we were unable to empirically demonstrate that

it performs faster than kriging (though we did do so compared to DECAF-IK).

Our algorithms were written in Python. Python is an interpreted language, and

so is slow—particularly so during function calls (and our methods made extensive use

1We arrived at the NWS Coop set as our ground truth after wasting a considerable amount of
time trying to use the High Plains Regional Climate Center data. We were originally interested in
this set because it was collected by automated sensors which, being computer scientists, we presumed
to be more accurate than human-sourced data. After much analysis and confusion, we eventually
learned (from HPRCC itself) that the precipitation sensors are prone to significant underestimation
error!
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of function calls). Yet, we chose to use it because it has certain strengths. First, it

is a language noted for getting out of the way of the programmer for the purposes of

faster development, which allowed us to rapidly prototype many algorithm variations

[32]. Second, Python’s large standard library and freely-available third-party libraries

allowed us to develop a sophisticated backend very quickly. Those libraries also

allowed us to interface with external products, such as routines in the R language

and Esri’s ArcGIS.

The kriging implementation against which DECAF was compared was also writ-

ten in Python. However, it made extensive use of the NumPy package, which is

a scientific computing package that wraps highly-optimized C routines. Because of

time constraints, DECAF was never so similarly optimized. As a result, we could not

directly compare the two methods in a meaningful way.

10.3 Future Work

Future work can be categorized into improvement to DECAF itself and steps toward

building upon it towards an information fusion engine.

10.3.1 Improving DECAF

Error estimation. Unlike kriging, DECAF does not produce an error map. Either

additional error logic must be invented or DECAF must rely upon kriging in-

stead of IDW to perform interpolation. The downside, of course, is increased

time complexity.

Better exploit kriging. Choosing to set aside the time-complexity benefits of a

non-kriging approach, we can instead focus on strict accuracy. Several possi-
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bilities are immediately evident. First, we could expand upon DECAF-EG-3

to also use kriging in the event core. This would require logic that reverts

to IDW when very small neighborhoods are found (or would require a custom

implementation of kriging that handles this situation). Second, we could cir-

cumvent the problem of fitting the semivariogram to small amounts of data by

developing generalized semivariograms based on cluster size. Finally, instead of

trying to introduce kriging logic into DECAF, we could attempt the opposite:

post-kriging, DECAF’s presence/absence predictions could be used to zero-out

absence values.

Adapt neighborhoods. DECAF-EG-2 is limited because of its reliance on the IDW

algorithm. It could better use IDW by intelligently selecting the number of

neighbors instead of relying on external parameterization (e.g., the 12 neighbor

cap that we imposed in our experiments). In the simulations, for example,

DECAF used too many neighbors, resulting in significant underestimation at

the event maximum which kriging was able to avoid.

10.3.2 Building upon DECAF

Beat kriging at its own game. DECAF simply parameterizes an interpolation func-

tion by selectively composing neighborhoods. We could move one step down

the ladder to consider how to weight neighbors within the neighborhood itself.

Temporal correlations, measures of mutual information, and cluster membership

data could be used to uncover relationships specific to individual point pairs,

informing the value of in individualized weights in the interpolation process.

Better exploit temporal information. A product of the DECAF process is a

well-structured history of event shapes, sizes, and locations. This history could
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be mined to determine whether certain varieties of clusters exhibit certain pat-

terns. Such patterns might be able to be exploited to improve predictions. Also,

clusters could be composed at larger temporal scales (e.g., day pairs, week).

Consider additional phenomenon aspects. Instead of limiting the algorithm, for

example, to precipitation data, it could also consider related aspects (e.g.,

stream flow, groundwater tables). Results could be compared to cokriging,

but methods might be based on measures of mutual information.

10.4 Final thoughts

DECAF-EG-2 is a reasonable alternative to kriging for dynamic delineated continuous

data where event shapes are difficult to predict a priori and are not simple (e.g.,

circles, ellipses), but is not an obvious improvement. Because it has lower time

complexity, it may be especially useful in data-intensive environments.

At the moment, however, DECAF is not ready for immediate application. How-

ever, the method shows promise, and with additional development may consistently

outperform kriging at estimating dynamic delineated continuous phenomena. In time,

a properly evolved derivation may become the foundation for a true spatio-temporal

information fusion engine.

[1]

[2]

[37]

[3]

standard: [50]

[4]

[5]



175

[6]

[7]

[8]

[10]

[11]

[13]

[12]

[14]

[15]

[9]

[16]

[17]

[19]

esri idw: [18]

[20]

[21]

[22]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]



176

[33]

[34]

[42]

[35]

[23]

[39]

[40]

[36]

[41]

[43]

[44]

[45]

[46]

[47]

[49]

[48]

[51]

[52]

[53]

[38]

[54]

[55]

[56]

[57]

[58]

[59]



177

Appendix A

Appendix to Chapter 6

A.1 ANOVA tables

Table A.1: ANOVA, event structure, AD+
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Table A.2: ANOVA, event structure, AD−



179

Table A.3: ANOVA, event structure, MAD

Table A.4: ANOVA, noise, AD+
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Table A.5: ANOVA, noise, AD−

Table A.6: ANOVA, noise, MAD
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Table A.7: ANOVA, event × noise, AD+
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Table A.8: ANOVA, event × noise, AD−
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Table A.9: ANOVA, event × noise, MAD
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