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Figure 9.1: AAD error maps, interpolated
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Figure 9.2: AD+ error maps, interpolated
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Figure 9.3: AD− error maps, interpolated
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9.3.1 General observations

The first impression made by these maps is their similarity. At first glance, no striking

differences are immediately observable. This lends itself to a couple easy conclusions.

First, the methods all manage reasonably robust approximations; no method is a

disaster. Second, the fact that certain regions (certain interior points, in particular)

manage to be consistently poorly estimated suggests that the majority of error is

inherent to the underlying data (i.e., disagreements between CoCoRaHS and NWS

Coop). For this reason, we will avoid drawing conclusions about the error magnitude

of isolated methods; rather, we will only compare algorithms to one-another.

9.3.2 Outlier points

Let us now briefly set aside the general to focus on two specific points of interest

identified in Figure 9.4.

Figure 9.4: Haigler and Falls City

• Haigler. Haigler is interesting because it breaks the DECAF-EG family. The

DECAF-EG algorithm has a known boundary problem: event borders are de-

fined using sample points in P ; if the verification point is near a boundary (e.g.,

the Nebraska-Kansas border) it may always fall outside of the event estimation.

Our DECAF-EG implementation has border-snapping logic that fixes this prob-
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lem most of the time—except, it appears, if the verification point is wedged into

the very end of a 90◦ corner. All three DECAF-EG algorithms predict Haigler

as absent at every day in the six-year span.

• Falls City. Falls City is also strange. Not only do all algorithms perform

poorly at Falls City, but the error moves both directions—all methods over-

estimate badly when they overestimate and underestimate badly when they

underestimate. In part, this is another border problem—Falls City is tucked

inside an acute angle—and the DECAF-EG family does the worst here. Second,

Falls City is in the rainiest part of Nebraska [42]. Because we are measuring raw

magnitude in this section, Falls City will proportionally result in higher errors.

9.3.3 Method differences

Note that the DECAF algorithms tend to behave similarly, and that IDW and kriging

also tend to behave similarly. This matches the results of the Tukey HSD tests.

IDW and Kriging both suffer a bit more overestimation error than the DECAF-

family methods (excepting DECAF-EG-3, of course). This is expected; the DECAF

approach is very good at correctly identifying absent points, which avoids one source

of overestimation.

Second, note that DECAF-EG-2 and DECAF-EG-3 AD+ maps are very similar,

both differentiating themselves from DECAF-EG-1 and DECAF-IK with lower levels

of AD+ error. This suggests that simply treating the border region of events differ-

ently than core regions results in a better prediction. The particular algorithm used

in the border region isnt important; kriging and IDW are comparable. Rather, the

simple act of considering exterior absent points is sufficient to reduce overestimation

error. Note that the AD− maps are extremely similar across DECAF-EG methods,
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suggesting that underestimation error is dominated by PA prediction.

Third, and more perplexing, the entire DECAF family suffers less underestimation

error than IDW and kriging. High specificity does not help here: underestimation

results from doing poorly at present points. We may have been able to predict

this behavior for DECAF-IK and DECAF-EG-1, both of which ignore all points

external to event boundaries that they estimate, tending to ignore absent points and

increasing the magnitude of estimations inside of the event as a result. Yet DECAF-

EG-2 and DECAF-EG-3—both of which consider points outside of the estimated

event boundary when predicting border points—also outperform IDW and Kriging.

This suggests that the difference is not a result of improved border predictions but

instead improved core predictions. This may happen when IDW or kriging uses

nearby absent points to predict at a location inside of an event core, causing the

location to be underestimated.

9.4 Error maps, accumulated percent error

The above maps showed the average day-scale error magnitudes. These maps allowed

us to explore day-scale tendencies—methods tending to overestimate or underestimate

as well as to perform interpretable Tukey HSD tests. However, because the maps

report error magnitude (instead of a percent or proportion) there is no normalization

across the event space. For example, east Nebraska is wetter than the west, and so

error magnitudes may be higher while error percentages remain the same.

Yet, day-scale differences in magnitude are so small and true zeroes so frequent

that calculating day-scale percent error is a fools errand. Instead, we consider the

accumulated percent error: the day-scale predictions are summed across time at each

station for each method; the truth is also summed across time for each station. These
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two sums are used to find the percent error for each method at each predicted station

location. The results are mapped in Figure 9.5 on page 152.

With these maps, the proclivities of each method are rendered more starkly. First,

members of the DECAF family rarely overestimate, and where they do they overesti-

mate less than IDW and kriging. Second, kriging and IDW overestimate more often

than their counterparts (DECAF-EG-3 excepted), but also tend to better balance the

two varieties of error.

Finally, we begin to detect some differences between DECAF-EG-1 and DECAF-

EG-2/DECAF-EG3. DECAF-EG-1 suffers less underestimation error, as expected.

DECAF-EG-2 and DECAF-EG-3 appear to suffer less overestimation error, also as

expected.
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Figure 9.5: Maps of percent error for accumulated (2007–2012) estimations
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9.5 Points of interest

Let us now put aside the maps of interpolated error to consider interesting individual

estimated points. To conduct this analysis, we will be using the same accumulated

percent error mapped in Figure 9.5 on page 152.

We will not consider DECAF-EG-1 and DECAF-IK but instead treat DECAF-

EG-2 as a reasonable proxy for both. All three behave very similarly according to Fig-

ure 9.5: the differences across maps result from the degree to which each method tends

to underestimate. DECAF-EG-1 suffers more overestimation error than DECAF-EG-

2 which in turn is worse than DECAF-IK; on the reverse, DECAF-IK is more prone to

underestimate than DECAF-EG-2, and DECAF-EG-2 is worse than DECAF-EG-1.

DECAF-EG-2 acts as a reasonable average of DECAF behavior.

Furthermore, we will not consider DECAF-EG-3. DECAF-EG-3 is also func-

tionally similar to DECAF-EG-2. There is a little less underestimation error than

DECAF-EG-2, but it suffers overestimation errors at the same locations but to a

greater degree. Interestingly, it also performs poorly at those points where kriging

noteably underperforms (these are discussed below).

Figure 9.6 on page 154 reports all verification points (NWS Coop stations) where

at least one of the three methods considered (DECAF-EG-2, Kriging, IDW) suffered

greater than 10% absolute percent error. The location icon indicates which method

performed the worst (e.g., IDW performs the worst at Auburn and Valentine). Fur-

thermore, each point is coded with the colored string “D I K” to indicate how well

each method performed at the location—red indicates “high” error (greater than

20%); yellow, moderate error (between 10-20%) and gray, low (less than 10%).
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Figure 9.6: Locations of notable percent error
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Table 9.5: IDW points of note

Observe that IDW is the inferior method at two points, Auburn and Valentine,

but never breaches the 20% error threshold. Table 9.5 shows the error estimations

at these two points. Note that in the case of Auburn, IDW is effectively the same as

Kriging. The difference at Valentine is not particularly stark, either.

Next, note that DECAF-EG-2 breaks the 20% error threshold at three points

(Bridgeport, Butte, and Haigler); kriging as well (Bloomfield, Harrisburg, Walthill).

We previously discussed how Haigler’s location inside the corner caused the DECAF-

EG algorithms to underestimate every associated present value. Butte, in the north-

eastern quadrant, appears to be a similar case. IDW and kriging suffered little error,

but DECAF-EG-2 underestimated the accumulated precipitation by 56%. While

Butte isnt nestled into a corner, it is in a part of the state that is relatively sparsely

covered by P (CoCoRaHS). Because DECAF-EG is so dependent upon the location of

source points to estimate border extent, source point sparseness near border regions

may render the border-snapping logic less efficacious.

The final point at which DECAF-EG-2 strongly underperforms—Bridgeport—

reveals the limitations of this sort of map. Two methods in the same error cate-

gorization may, in fact, be less alike that two methods across categorizations (e.g.,

errors of 9% and 11% will be grouped separately but 11% and 20% will be grouped to-

gether). At Bridgeport, DECAF-EG-2 suffers -22% underestimation error, but both

IDW and kriging suffer -18%. DECAF-EG-2 has the greatest error, but all three

methods perform terribly.
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Table 9.6: Kriging points of note

The points at which kriging breaks the 20% absolute error threshold are interesting

(reported in Table 9.6). The DECAF-EG-3 error has also been included. While in

most cases it behaves very similar to DECAF-EG-2, the effects of its kriging-based

border approximations can be seen at Harrisburg and Walthill. Here, it suffers from

kriging’s tendency to overestimate these locations.

All three of these points are found along the Nebraska border; one at the west-

ernmost extent and two in the northeast corner. It appears that kriging suffers from

a border problem of its own. Instead of tendency to underestimate, kriging overesti-

mates. Notably, at two of these points, DECAF-EG-2 performs excellently.

Because these points fall inside the “border” region of DECAF-EG estimated

events, it not unexpected to see a closer relationship between kriging and DECAF-EG-

3 than between kriging and DECAF-EG-2. Bloomfield is interesting; the similarity

between the DECAF-EG measures suggests that kriging’s low specificity played an

important role it its overestimation.

Finally, lets consider points where DECAF-EG-2 differs by greater than 10% from

the other methods. All differences between DECAF-EG-2 and IDW are less than 10%,

so we can ignore IDW. We exclude Butte and Haigler from this analysis because we

already know that DECAF-EG-2 performs terribly at these points. There are six

such points; they are listed in Table 9.7.

We have already discussed three of these: Bloomfield, Harrisburg, and Walthill.
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Table 9.7: Notable differences in error

All three appear on the periphery. Harrison is located on the periphery as well, but

the associated border effect favors kriging.

Broken Bow and Bloomfield, however, are more intriguing. Both are located in

the interior, so border effects cannot play a role in their errors. While two points

are far too few to make any reasonable inferences, this hints that DECAF-EG-2 may

outperform kriging on the event interior.

Consider Figure 9.6 again. Note that all points where DECAF-EG-2 suffers 10-

20% error while the other methods suffer less than 10% are located along the periphery

of Nebraska (there are nine such points). We already know that the DECAF-EG

family of algorithms is not as robust near the border as alternatives (save for the fact

that when kriging botches a point near the border, it really botches it), but this also

suggests that DECAF-EG-2 is doing better away from the border.

Also, consider where kriging is in the 10-20% error bracket but the other methods

are in the <10% category. There are only four of these, so we must be careful not

to draw conclusions, but all four are located in the interior of Nebraska. Let us then

consider the importance of location—interior vs. periphery—on error by returning

to Table 9.7. A 10% threshold was used to construct this table. What if, instead,

we consider a 5% threshold: all points where kriging and DECAF-EG-2 differ in
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accumulated percent error by greater than 5% (positive or negative)? We plot these

points in Figure 9.7.

Figure 9.7: Points where either Kriging or DECAF-EG-2 outperforms the by > 5%

error.

Both methods have border problems. Many of these happen along the northern

Nebraskan border, which is a region —the western stretch in particular—-that is

sparsely covered by the CoCoRaHS dataset. In the northeast corner, we find two

points that are located relatively far away from the border; however, the methods

split the two points. Four points remain, all associated with kriging. These four are

located in the Nebraskan interior, and all are located in regions very well covered by

the CoCoRaHS dataset (refer to ?? on page ??).

It should be noted that in all cases in Figure 9.7 where DECAF-EG-2 outperforms

kriging, it is the result of kriging overestimation error. Similarly, in all cases where

kriging outperforms DECAF-EG-2, it is the result of DECAF-EG-2 underestimation

error.
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9.6 Error by error-type

Evidence presented until now suggests that the DECAF family of algorithms compare

favorably with Kriging and IDW. However, we cannot conclude that one method

consistently outperforms the others. Consider Table 9.8, which reports absolute mean

error, averaged across points. The mean errors are statistically indistinguishable. 2

Table 9.8: Mean absolute error across points

We have considered error by geographic location; now let us consider error by

error category. We can define three error subtypes:

1. PP error: The point was, in fact, present and the algorithm predicted present.

Error results from the difference in predicted value.

2. AP error: The point was, in fact, absent but the algorithm predicted present.

The error results from overestimating the zero value as a non-zero value.

3. PA error: The point was, in fact, present but the algorithm predicted absent.

Error results from underestimating the value as zero.

Error is reported by type in Table 9.9.

Note that there is no AA error; no error can result from correctly estimating a zero-

value as zero. Also, note that PP error + PA error + AP error = mean error as

reported in Table 9.8.
2DECAF-EG-1 and DECAF-EG-3 behave almost identically to DECAF-EG-2
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Table 9.9: Mean absolute error across points by error type

PP error. All methods are statistically distinguishable from one-another (according

to a TukeyHSD test at the α = 0.05 level). The DECAF methods outperform

the traditional approaches.

AP error. The traditional approaches are indistinguishable from one-another. Again,

the DECAF methods outperform these approaches.

PA error. The traditional approaches form one statistically indistinguishable group;

the DECAF approaches another. This time, however, the traditional approaches

significantly outperform the DECAF algorithms. Now, the low Recall of DE-

CAF hurts its predictive power to such a degree that its PP and PA success is

washed out.

This breakdown reveals that the two approaches produce complementary information.

As a final excercise, we weigh and combine DECAF-EG-2 and kriging to demonstrate

that the two produce complementary information. The combination of the two is an

improvement over either individual method. Similar approaches are represented in

the geospatial information fusion literature [56].

To effect this combination, we calculate the average error of each set.3 The average

error is added to the preciptiation estimation at points in the respective set, resulting

3Haigler and Butte were considered outliers and dropped.
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in an average error functually equivalent to zero. Then, the DECAF-EG-2 and kriging

estimations are averaged at each point. The interpolated map of aggregated error is

shown in Figure 9.8. The original kriging and DECAF-EG-2 maps are included for

the purposes of comparison.

It is apparent that the combination is an improvement upon each individual

method, suggesting that future geospatial fusion engines might exploit the strengths

of different methods to improve final predictions.

Figure 9.8: Maps of percent error for accumulated (20072012) estimations, weighted
combination of DECAF-EG-2 and kriging
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9.7 CPU runtime analysis

The theoretical time complexities are reported in Table 9.10 for reference.4 In this

table, the time complexity for each algorithm is split into two columns. The first

column reports the time complexity to estimate the value at a single point q. The

second column reports the time needed to estimate each subsequent q from the same

sample set P (i.e., estimate at each subsequent verification point on the same day).

This column is not essential for determining overall worst-case time complexities: for

m points in the verification set Q, the time complexity would be a series m long with

the first term drawn from the first column of the table and subsequent terms from

the second column of the table. The first column is always of equal or greater time

complexity, and so dominates the series.

Table 9.10: Algorithm time complexities

However, this second column is interesting because it helps to illuminate algorithm

behavior for large verification sets. The non-kriging approaches all suffer significant

overhead for the first q that can be amortized across subsequent q. For large verifi-

4These time complexities are developed earlier in the thesis. Chapter 2: IDW and kriging,
Chapter 4: DECAF-EG-1 and DECAF-IK, Chapter 7: DECAF-EG-2 and DECAF-EG-3
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cation sets, kriging may be less appropriate.

Let us pause to briefly consider each method.

Kriging. The time complexity of kriging is identical for all points in the verification

set.

DECAF-EG. The worst-case time complexity for the first and subsequent points are

the same. However, this warrants further discussion. Most of the computational

overhead in DECAF-EG is the result of the neighborhood building and cluster

analysis, which only needs to be performed once per set P (i.e., once per day).

The subsequent O(n log n) time is the result of the find associated event()

function. This function checks to see if the point q is inside of an event; in the

worst case, all points in P are boundary points of the event polygon, resulting

in O(n) time. In the worst case, q falls inside the event and neighbors must

be found—O(log n) time. Aggregated, this is O(n log n). Yet, it is a lighter

O(n log n) for subsequent q than for the initial q.

IDW. IDW strictly improves. The initial O(n log n) time is required to compute

the k-d tree. Subsequent approximations reuse this tree, and so require only

O(log n) time.

DECAF-IK. DECAF-IK also strictly improves. The entire u · v grid must be com-

puted for the first q and the event hulls subsequently extracted. Just as for

DECAF-EG, these data structures can be reused for subsequent q and the time

complexity becomes O(n log n).

To check these complexities, we collected total CPU time estimates for each of the

methods as they worked through the 900 days. The results are presented in Table

9.11.
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Table 9.11: Algorithm CPU times

The DECAF algorithms behave as we would expect. The IDW-based DECAF-

EG-1 and DECAF-EG-2 algorithms perform more-or-less identically. DECAF-EG-3

is slower, reflecting its reliance on Kriging. DECAF-IK, unsurprisingly, is very slow.

Note that the dimensions for the DECAF-IK grid were a low 150× 70.

IDW and Kriging are a little trickier to interpret. Methods were implemented in

Python. Because Python is an interpreted language, is suffers considerable overhead

for even simple function calls.

IDW was implemented in Python and used the SciPy package’s k-d tree imple-

mentation for neighbor-finding. Function calls are minimal. The result is a fast

O(n log n). DECAF-EG-1 and DECAF-EG-2, on the other hand, have many func-

tion calls and perform considerably more computation (especially for subsequent q in

the same day). The result is a slow O(n log n).

The kriging implementation that we used relies heavily on the Numpy package,

which uses C routines for major computations. So, despite suffering a greater time

complexity, kriging has a lower runtime than DECAF-EG-1 and DECAF-EG-2 be-

cause most of kriging’s intensive routines are performed in a compiled language. It

is reasonable to expect that DECAF-EG-1 and DECAF-EG-2 would see consider-

able improvement (and perhaps beat kriging) if they were implemented in C (or a

comparable compiled language).
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9.8 Summary

There is evidence that the DECAF-EG approach can outperform kriging. It appears

that the DECAF-EG’s high presence/absence specificity helps prevent overestimation

error. On event interiors, this allows it to match (and occasionally outperform but

very rarely underperform) kriging.

DECAF’s weakness is clearly underestimation error. DECAF-IK’s low recall is

simply unacceptable. DECAF-EG performs better, but the DECAF-EG-1 algorithm

fails to treat the border region of an event differently than the core of that event.5 This

results in overestimation error inside of events. The more sophisticated DECAF-EG-2

manages to successfully leverage the high precision of DECAF without a significant

overestimation cost. DECAF-EG-3 appears to be functionally equivalent to DECAF-

EG-2, but at a higher time complexity.

Preliminary results suggest that the DECAF approaches produce information

complementary to traditional approaches. DECAF might be used in tandem with

these methods to effect more accurate predictions.

5This is not the border of the event space (such as the boundary of Nebraska) but the border of
a precipitation event.
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Chapter 10

Conclusion

The Delineated-Event Continuous-Aspect Fusion algorithm arose from the realization

that quality long-term, fine-grained temporal information fusion of dynamic delin-

eated continuous phenomena may require that the event space be formally structured.

We hypothesized that a method that could automatically distinguish between events

(as well as the lack of an event) might be able to exploit that information to improve

the quality of subsequent point-value estimations. This method had to be automated;

otherwise, it could not be used to power a true information fusion engine.

Using precipitation as a template, we formalized the notion of a delineated con-

tinuous phenomenon. The boundaries of a delineated continuous event are distinctly

defined, but the interior is a spatial random field. We noted that techniques are well

developed for such static phenomena (zonal kriging). Experts must manually divide

a space into distinct sub-regions (typically with help from automated methods, such

as indicator kriging) and then apply methods appropriate to each sub-region. For

a phenomenon that does not change through time, this may be a perfectly effective

approach. But, if the phenomenon is dynamic—as is precipitation—sub-regions must

be identified at each time step.
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This thesis reports our attempts to design an effective and efficient DECAF algo-

rithm and prove its usefulness. The first such algorithm introduced was DECAF-IK,

which was built on top of traditional kriging techniques. It was no less efficient

than these techniques, but it struggled to effect quality predictions and was generally

overshadowed by the second variety of algorithm, the DECAF-EG family.

The original DECAF-EG had low time complexity, and the DECAF-EG-2 up-

date maintained this efficiency. DECAF-EG-3 sacrificed efficiency for the sake of an

increased effectiveness that was not attained—or at least not detected by our verifi-

cation methods. So, we currently consider DECAF-EG-2 to be the most advanced

realization of our attempts to formalize and exploit the structure of dynamic delin-

eated continuous phenomenon.

We conducted tests based on simulated data to better understand how variations

in event structure effected DECAF and traditional alternatives. These tests revealed

DECAF to be robust to changes in event size, shape (strictly convex), orientation,

and noise. They also revealed a border problem, which lead to the DECAF-EG-2

update.

Next, we conducted tests on real-world precipitation data. The precipitation

results defied easy analysis: at the day scale, total precipitation is limited and so it is

difficult to identify meaningful differences across methods; at larger scales, differences

can be detected by the underlying cause of those differences is lost to aggregation.

Nevertheless, our analysis revealed important strengths and weaknesses inherent to

the DECAF approach.
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10.1 Key observations

The event detection logic works. DECAF-IK and DECAF-EG both outperformed

IDW and kriging at correctly predicting presence/absence. Because neither

IDW nor kriging (of the ordinary variety) are intended for presence/absence

prediction, this is not surprising.

The event detection logic is helpful. In the real-world experiments, the DECAF

methods were less prone to overestimation error than kriging and IDW, a result

of correctly predicting absence points.

Fuzzy logic is necessary. DECAF-IK did not perform well either the simulated or

real-world datasets. DECAF-IK treats space in a strictly dichotomous manner—

present or absent—and so suffered considerable area in regions where it is diffi-

cult to accurately make this distinction. DECAF-EG-1 suffered a similar prob-

lem (though not to the same degree). DECAF-EG-2 and DECAF-EG-3 use

fuzzy logic in a selective way, treating border zones as mixture of present and

absence. As a result, both eliminate the border-type overestimation error found

in DECAF-EG-1.

The event detection logic is not always helpful. The reduction in recall causes

DECAF methods to be more prone to underestimation error. However, the

fuzzy logic introduced in DECAF-EG-2 and DECAF-EG-3 helped to alleviate

this problem.

Existing border-snapping logic is imperfect. The DECAF-EG methods suffer

inexcusable error rates in certain cases at the event space border. However,

kriging is vulnerable to significant border problems as well—overestimation

problems in particular, precisely the sort of error that DECAF corrects. Fur-
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thermore, snapping logic is very correctable; better border-snapping algorithms

exist in the literature and simply need to be properly implemented inside of

DECAF.

Kriging is a very robust method. It is very difficult to beat kriging at its own

game—interpolation—as the experimental results so starkly advertise. As ex-

pected, kriging was impaired by the spatial discontinuities of the day-scale

precipitation data; yet, not so strongly as to allow DECAF-EG-2 to clearly

outperform it.

10.2 Limitations of our analysis

We investigated the efficacy of our algorithms two ways. The first was a painstakingly

thorough investigation into the effects of event size, orientation, shape, and two kinds

of noise on simulated data. The second was involved over 1000 days of precipitation

data, each day composed of hundreds of observations. Yet, the twin tyrannies of time

and energy necessarily limit all, and no less the graduate student than any other. We

must now discuss the deficiencies of our analyses and what improvements might be

made.

10.2.1 Simulations

The simulation experimental design explored five factors (size, shape, orientation,

and two kinds of noise) and arrived at robust conclusions concerning these. In this

sense, the simulations accomplished what they were designed to do: answer specific

questions about the behavior of our algorithms.
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Yet, a secondary objective—to better understand where kriging does poorly—was

not investigated well by our experimental design. The only interesting result regard-

ing kriging was how it behaved when exposed to high levels of noise (it performed

equivalently to IDW). Yet, additional tests could have been performed to better un-

derstand the strengths and weaknesses of DECAF vis-à-vis kriging.

Note: The following two paragraphs will not apply if we have the time to perform

the associated experiments.

For example, one of the weaknesses of kriging is that it fits a semivariogram to

the entire event space, assuming a certain spatial homogeneity. While we tested the

effects of this based on the thresholding effect, we never tried to place two artificial

events in the same event space. Ideally, a large event and a small event would coexist

and the efficacy of DECAF and kriging in this event space could be compared.

Secondarily, the DECAF methods may perform better on oddly-shaped events.

For example, an absent point wedged inside of concave space on an irregularly shaped

event is likely to be overestimated by the traditional interpolation methods while the

DECAF methods may, in fact, recognize it as absent. Simulations based on more

complicated shapes would be revealing.

10.2.2 Precipitation data

The precipitation data itself is messy. While we try to establish a ground truth by se-

lecting choosing National Weather Service stations that have been reporting for over

a century, it remains at best an approximation. For example, we have documented

certain stations that appear to be consistently bad (at least according to their neigh-

bors). In fact, we witnessed more variation in error between verification points than

we did across methods. This is an inescapable fact when working with precipitation
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data.1 Yet, it necessarily complicates (and reduces the effectiveness of) data analysis.

Also, it would have been ideal to expand beyond the seven year period that we

tested. We were limited by the CoCoRaHS data, which begins in Nebraska in 2002

but does not reach complete spatial coverage until mid-summer 2006. An alternative

approach would be to divide the NWS Coop stations into source and verification sets

and run repeated tests (resampling each time). This could be performed on over a

centurys worth of data; however, the number of points at each time step would be

limited.

Finally, it would have also been ideal to test different states. Nebraska is flat, and

except for a west-to-east dry-to-wet gradient doesnt exhibit interesting meteorological

differences. Washington state, however, has a clearly discontinuous east-west resulting

from the Cascade mountains. It would also be interesting to consider a region where

storm-cells dominate, where act even more discretely than the sweeping fronts that

typify Nebraskan precipitation.

10.2.3 Efficiency

One of the primary strengths of DECAF-EG-2 is its lower time complexity. It does

not requre the inversion of matrices, and so has a much lower time (and memory)

complexity than kriging. However, we were unable to empirically demonstrate that

it performs faster than kriging (though we did do so compared to DECAF-IK).

Our algorithms were written in Python. Python is an interpreted language, and

so is slow—particularly so during function calls (and our methods made extensive use

1We arrived at the NWS Coop set as our ground truth after wasting a considerable amount of
time trying to use the High Plains Regional Climate Center data. We were originally interested in
this set because it was collected by automated sensors which, being computer scientists, we presumed
to be more accurate than human-sourced data. After much analysis and confusion, we eventually
learned (from HPRCC itself) that the precipitation sensors are prone to significant underestimation
error!
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of function calls). Yet, we chose to use it because it has certain strengths. First, it

is a language noted for getting out of the way of the programmer for the purposes of

faster development, which allowed us to rapidly prototype many algorithm variations

[32]. Second, Python’s large standard library and freely-available third-party libraries

allowed us to develop a sophisticated backend very quickly. Those libraries also

allowed us to interface with external products, such as routines in the R language

and Esri’s ArcGIS.

The kriging implementation against which DECAF was compared was also writ-

ten in Python. However, it made extensive use of the NumPy package, which is

a scientific computing package that wraps highly-optimized C routines. Because of

time constraints, DECAF was never so similarly optimized. As a result, we could not

directly compare the two methods in a meaningful way.

10.3 Future Work

Future work can be categorized into improvement to DECAF itself and steps toward

building upon it towards an information fusion engine.

10.3.1 Improving DECAF

Error estimation. Unlike kriging, DECAF does not produce an error map. Either

additional error logic must be invented or DECAF must rely upon kriging in-

stead of IDW to perform interpolation. The downside, of course, is increased

time complexity.

Better exploit kriging. Choosing to set aside the time-complexity benefits of a

non-kriging approach, we can instead focus on strict accuracy. Several possi-
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bilities are immediately evident. First, we could expand upon DECAF-EG-3

to also use kriging in the event core. This would require logic that reverts

to IDW when very small neighborhoods are found (or would require a custom

implementation of kriging that handles this situation). Second, we could cir-

cumvent the problem of fitting the semivariogram to small amounts of data by

developing generalized semivariograms based on cluster size. Finally, instead of

trying to introduce kriging logic into DECAF, we could attempt the opposite:

post-kriging, DECAF’s presence/absence predictions could be used to zero-out

absence values.

Adapt neighborhoods. DECAF-EG-2 is limited because of its reliance on the IDW

algorithm. It could better use IDW by intelligently selecting the number of

neighbors instead of relying on external parameterization (e.g., the 12 neighbor

cap that we imposed in our experiments). In the simulations, for example,

DECAF used too many neighbors, resulting in significant underestimation at

the event maximum which kriging was able to avoid.

10.3.2 Building upon DECAF

Beat kriging at its own game. DECAF simply parameterizes an interpolation func-

tion by selectively composing neighborhoods. We could move one step down

the ladder to consider how to weight neighbors within the neighborhood itself.

Temporal correlations, measures of mutual information, and cluster membership

data could be used to uncover relationships specific to individual point pairs,

informing the value of in individualized weights in the interpolation process.

Better exploit temporal information. A product of the DECAF process is a

well-structured history of event shapes, sizes, and locations. This history could
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be mined to determine whether certain varieties of clusters exhibit certain pat-

terns. Such patterns might be able to be exploited to improve predictions. Also,

clusters could be composed at larger temporal scales (e.g., day pairs, week).

Consider additional phenomenon aspects. Instead of limiting the algorithm, for

example, to precipitation data, it could also consider related aspects (e.g.,

stream flow, groundwater tables). Results could be compared to cokriging,

but methods might be based on measures of mutual information.

10.4 Final thoughts

DECAF-EG-2 is a reasonable alternative to kriging for dynamic delineated continuous

data where event shapes are difficult to predict a priori and are not simple (e.g.,

circles, ellipses), but is not an obvious improvement. Because it has lower time

complexity, it may be especially useful in data-intensive environments.

At the moment, however, DECAF is not ready for immediate application. How-

ever, the method shows promise, and with additional development may consistently

outperform kriging at estimating dynamic delineated continuous phenomena. In time,

a properly evolved derivation may become the foundation for a true spatio-temporal

information fusion engine.
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Appendix A

Appendix to Chapter 6

A.1 ANOVA tables

Table A.1: ANOVA, event structure, AD+



178

Table A.2: ANOVA, event structure, AD−
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Table A.3: ANOVA, event structure, MAD

Table A.4: ANOVA, noise, AD+
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Table A.5: ANOVA, noise, AD−

Table A.6: ANOVA, noise, MAD
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Table A.7: ANOVA, event × noise, AD+
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Table A.8: ANOVA, event × noise, AD−
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Table A.9: ANOVA, event × noise, MAD
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