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Autonomous Robots must carry out their tasks as independently as possible and 

each robot may be assigned different tasks at different locations. As these tasks are being 

performed, the robots have to navigate correctly such that the assigned tasks are 

completed efficiently, while also avoiding each other and other obstacles. To accomplish 

effective navigation, we must ensure that the robots are calibrated to avoid colliding with 

any kind of object on its path. Each robot has to sense the obstacles on its path and take 

necessary corrective measure to avoid those obstacles. In a situation with multiple robots, 

robots may cross each other’s paths and thus algorithms have to be developed to ensure 

collision avoidance among them. 

Collision avoidance among multiple robots has been studied extensively over 

many years. In this thesis, we investigate the Reciprocal n-body Collision Avoidance 

Algorithm (RCAA) where collision avoidance among multiple robots is addressed. One 

advantage of RCAA over other techniques is the decentralized approach that allows 

robots to take collision- avoidance decisions by themselves using only velocity and 

position of the nearby robots that are along its trajectory. Though this method is widely 

used, a major limitation is the assumption of perfect sensing, which is not a guaranteed 

behavior in real environments. In real world scenarios, erroneous measurements may be 

obtained during which the RCAA is not capable of ensuring perfect collision avoidance. 
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This limitation in the RCAA needs to be addressed and in this thesis, we have devised a 

method to address this using particle filters. 

A particle filter is appended to the RCAA to sample velocities and thereby 

provide the robots with more options to avoid coming in the path of each other. A 

simulation program has been developed to implement the entire system showcasing 

different scenarios where the introduction of particle filter has made the system more 

stable as it ensures a more streamlined and efficient collision avoidance among robots. 
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Chapter 1 
 

Introduction 
 

 
Research on mobile robots has gained sufficient traction over the years as the 

robots are being investigated for use in different kinds of missions. Significant work has 

been carried out in various disciplines like underwater research, studying the flock of 

birds, collecting data for ecological study, handling hazardous ammunitions and fighting 

fire hazards to name a few.  The scope and the opportunities that have come up in this 

area in the past few years have been tremendous.  In all these applications, an important 

requirement is that the robots should be able to navigate easily in any kind of 

environment to carry out the task assigned to them. In order to do the same, the robots 

should localize and move without colliding with any kind of obstacle on its way.  

Collision is a fundamental problem in mobile robotics and therefore collision 

avoidance becomes an important research area. Over the years, there have been various 

approaches that have been formulated, analyzed and discussed. The obstacles that are 

considered in such research can be moving or static and are usually other robots that are 

involved in that operation. The research presented here focuses only on homogeneous 

robots where each one is considered as a moving obstacle with respect to the rest. In real 

world applications, robots work in uncertain environments and therefore in motion 

planning, one of the main objectives of the robot would be to avoid any kind of 

unexpected object on its way while progressing towards its goal. In a decentralized 

approach, the responsibility of collision avoidance is equally shared between the robots 

and the robots are expected to take intelligent decisions to avoid one another. We have 

worked on the Optimal Reciprocal Collision Avoidance Algorithm (ORCA), proposed by 
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Berg et al. [1], where we have extended the scope of the algorithm by readjusting the 

assumptions put forward by the authors. One of the main assumptions of the algorithm 

proposed in [1] is perfect sensing where variations in the measurements obtained by the 

sensors on a real platform are ignored. However in real world environments, erroneous 

measurements may be obtained. Therefore in order to implement the algorithm in such 

circumstances, we are exploring the possibility of introducing a particle filter approach.  

Particle filtering in motion planning has been widely used in robotics navigation 

and tracking. This is mainly due to their well-defined ability to estimate nonlinear 

dynamic systems. Successful implementations of particle filtering are available in various 

applications because the approach can fill in the measurements of the system based on 

estimation and discard erroneous observations thereby making the system stable. One of 

the main issues faced during the implementation of ORCA is the lack of reliability in 

velocity computation once global deadlock is achieved. This is important to avoid 

collision. Also the assumption of perfect sensing makes the algorithm more difficult to 

implement in a real-life platform. To provide more scope and reliability to the existing 

algorithm, our intention is to couple particle filtering so that a more consistent solution 

can be found within the specified time frame. One of the main reasons for using the 

particle filtering approach is that this provides a likelihood function to estimate the next 

position without knowledge of the final target. Our objective is therefore to analyze the 

Reciprocal n-body Collision Avoidance algorithm proposed in [1] and implement a 

simulation taking a different approach to solve the problem of collision avoidance in 

mobile robots. This is proposed by appending the particle filtering approach to the 

existing algorithm. Through this, we hope to prove that this approach will better sample 
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velocities and therefore improve collision avoidance among mobile robots. This approach 

will also be suited to robots in real-life environments where perfect sensing of velocities 

between robots cannot be guaranteed.  

1.1 Contributions 

 In this research, significant progress has been made in different areas and 

will be briefly explained below. The complete description of each task will be available 

in subsequent chapters.  

 

Understanding the system:  

During our literature survey, we exhaustively evaluated various collision 

avoidance algorithms applied in this area. After this evaluation, we decided to implement 

the Reciprocal n-Body Collision Avoidance Algorithm [1]. In addition, we also explored 

several path planning algorithms, topics on linear programming and particle filtering 

techniques.  

 

Simulation Environment: 

 Through this research, we have developed a complete simulation package that can 

be used by other research groups working in the area. The simulation environment that is 

setup in Matlab consists of no inbuilt functions, thereby making it easier for future users 

to debug in case of any error. In addition, the simulation environment assigns tasks to the 

robots, geometrically obtains collision-avoiding velocities and calculates the optimal 

velocity using half planes. In addition, linear programming applied to rectangular 
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constraints is included in our program. Our simulation package also includes particle-

filtering approach. This simulation package is a major contribution to this field of study.  

 

Improvement in the Existing System: 

 In the existing linear programming approach, the ORCA planes were placed 

within circular constraints. We were able to show that rectangular constraints can also be 

used and the results bear this out. In addition, the introduction of particle filters improved 

the collision detection percentage compared to just applying ORCA on robots. This is a 

major contribution to this area and can be improved in further studies.   
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Chapter 2 
 

 Related Work 
 

Over the years there have been different methods proposed and researched in the 

area of path planning and obstacle avoidance in mobile robotics. In this section, we 

present the related work in the area of path planning, obstacle avoidance and velocity 

obstacle.  

 

2.1 Global Path Planning 
 

  An elaborate discussion on the importance for calculating configuration space of 

obstacles during global path planning has been provided by Faverjon and Tournassoud 

[2]. During path planning, it becomes important to predict the obstacle and thus reorient 

the calculated path corresponding to the target position. Perez [3] gives a complete 

overview of the various roadmaps, cell decomposition and potential field methods in the 

area of path planning. The usefulness of that approach lies in the fact that the entire path 

from the starting position to the target position can be calculated offline. In [4] one of the 

main assumptions made by the authors is that the entire model of the surrounding feature 

of the environments is made to be available, which may be unrealistic and not 

conforming to real-life applications. Also these algorithms are inapt for obstacle 

avoidance mainly due to a slow and complex procedure for robot motion planning.  

 

2.2 Obstacle Detection and Avoidance 
 

The purpose of obstacle avoidance is to facilitate smooth movement of the robots 

in crowded environment and thus in order to achieve the same it is important to consider 
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a larger subset of obstacles rather than a small one.  The earlier methods proposed were 

based on using an Octree and using global algorithms to efficiently calculate a path with 

the estimations of free space. However they had several disadvantages as to being offline 

or the algorithms becoming exponential once the degrees of freedom increase. A 

geometric approach has been proposed in [2] so as to calculate the distance between two 

moving bodies by considering the parallelism, perpendicularity, and concentricity of the 

body. Furthermore as the problem were being investigated, it became evident through 

different methods in [5] and [6] that it is vital to consider the bodies as decision making 

entities so as to utilize the reactive nature of the objects. [7] provides an interesting 

overview of the various methods that have been used for obstacle avoidance. The 

illustrated methods are based on edge detection, certainty grids and potential field 

methods. Edge detection is performed by utilizing the visible edges around the robot or 

the obstacle. [8], [9], [10] and [11] use edge detection as the main tool or in combination 

with other techniques for obstacle avoidance.  The existence of visible edges was 

obtained through global path planning and line-fitting algorithms.  However, erroneous 

readings by the sensors mainly due to the faulty directional approaches result in 

inaccurate locations of the obstacle or of the edges. Another popular approach that is 

worthy of a mention is that of the Certainty Grid for Obstacle Representation ([12], [13], 

[14]), wherein a probabilistic method is used for obstacle detection. Using 24 sensors, the 

robot scans for nearest obstacle and calculates the distance radially from it in an offline 

mode. Based on the data, adjustments are made to the robot’s trajectory towards the 

target.  
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The approach of virtual force field (as illustrated in [7]) where a virtual repulsive 

force is exerted towards the robot is also used for obstacle detection. An algorithm was 

developed for rapid calculation of all the combined repulsive forces.  Nonetheless there 

were problems that arose while applying the algorithm. One of the several causes was the 

drastic change in the repulsive force that resulted in oscillation and unstable motion of the 

respective robots. Also too much data about the obstacle led to the loss of information 

about the exact location of the obstacle. Hence in order to counter the issues faced in the 

above method, Vector Field Histogram (VFH) [7] was developed by using a two-stage 

process, wherein the entire characteristic of the environment is stored in the form of a 

Cartesian Histogram grid, which is continuously modified by the sensors in real-time. 

Furthermore, a polar histogram of one dimension is constructed, so as to estimate the 

transitory location of the robot that would in turn help in mapping the generalized 

position of the obstacle with respect to a specific sector. Also, the data required for the 

procedure is stored in the form of reference values of the drive and steer controllers of the 

vehicle. Subsequently researchers have developed improved versions of the VFH 

algorithm in the form of VFH+ [15] and VFH*[16]. The VFH+ algorithm is applied 

through four stages where the first three steps focuses on laying out polar histograms 

describing the environment of the robot’s current position.   

 

2.3 Velocity Obstacle 
 

Fiorni and Shiller [17] first suggested velocity Obstacle (VO), where a successful 

approach of dynamic collision was formulated such that a robot would be able to select a 

velocity that would result in collision avoidance by just knowing the velocity of the other 
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robot. Further research on VO has resulted in a number of applications like multi robot 

navigation [18], independent motion of robotic wheelchair through any kind of packed 

environment [19], mobile manipulation of an autonomous robots for services [20], 

extensively used for air traffic coordination and also to intimate drivers of possible 

collision ([21], [22]). Another important application of this approach is that it is also used 

to study the behavior of groups of animals like birds and fishes [23] and also such 

reactive behavior with respect to this approach can be effectively used in developing 

simulation and other AI applications [24]. 

 In order to apply VO in real time, it wouldn’t be feasible for each robot to 

communicate every possible data to other robots all the time. The minimum requirement 

would be to take into account of the reactive nature of the other robot. In this case it 

would be enough if one robot can communicate just the position and the velocity when 

both of them are on collision path. This technique is referred to Optimal Reciprocal 

Collision Avoidance [1]. Similarly Reciprocal Velocity Obstacle (RVO) [25] is another 

algorithm based on VO for robot-robot collision avoidance in which each robot selects a 

velocity that lies outside the velocity obstacle of the other robot and an average of its 

current velocity. This algorithm mainly explored the cycle of sensing and reacting in 

moving and static obstacles. A neighboring region was developed for each robot with 

respect to all other obstacles around it in the surrounding environment. The size of the 

region is directly proportional to the average speed around the obstacles. This approach 

was tested on differently shaped environments like circle, narrow passages and fast 

moving obstacles. One of the main results is that there is a linear relationship between the 

number of robots and each cycle of sensing and reacting. However this approach has 
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been found to be collision-free under certain unique conditions and this can easily fail if 

both the robot’s choice of velocity lies in the same region. In [26], each robot develops a 

common velocity obstacle (CVO) map that includes all the robots around it in the 

surrounding environment. This is eventually shared between all the robots through the 

proposed CCA (Cooperative Collision Avoidance) method.  To have a more defined 

selection of velocity a parameter known as Reachable Velocity (RV) is used. In order to 

consistently select a velocity to avoid collision, Reachable Available Velocity (RAV) is 

used by the CCA method throughout.    

 Mathematically RAV is defined as  

                                           𝑅𝐴𝑉 = 𝑅𝑉   ∩   𝑉𝑂     (1) 

Comparing with the VO method [17] where the velocity of robots remain constant due to 

which robots collide, the CCA method aims to find collision avoidance velocities for the 

robots in each sampling time. Furthermore, the CCA method computes a larger scope of 

RAV, which would find collision avoidance velocities in instances where the VO method 

fails to do so.  

There are further studies on velocity obstacle avoidance but are not listed here due 

to their relevance with our approach. The active and reactive nature of the initial method 

led to generation of recursive probabilistic velocity obstacles as in [7] and [27] where the 

main issue was that it was never consolidated to a specific point. Mostly the methods in 

[25] and [26] worked well with two robots but were never consistent when more robots 

were involved in the same dynamic environment. Another main issue found with [1] and 

[28] was that there were diminished collision cones computed in various scenarios, which 

eventually led to collisions in the corresponding time windows. In [29] using overhead 
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video camera sensor reading were obtained and thus a hybrid velocity obstacle was 

computed that resulted in oscillation and collision free movement of robots. Here the 

ClearPath efficient algorithm is used to spearhead motion for each robot in case no 

collision is imminent and also depending on the visibility of HVO. In case there isn’t any 

then it is possible that the robots might collide with each other.  

The main approach in most of the algorithms using Velocity Obstacle [2] is that 

there is minimal dependency of robots on each other to avoid any kind of collision. In 

contrast to considering the robots as wholesome polygonal structures, the first step would 

naturally be to consider each one as a point of mass and thus describe the movement of 

the respective body corresponding to the target position. Even after obtaining a set of 

collision avoidance velocity, we need to have an efficient optimization method to select a 

velocity closest to the preferred velocity. Using k-means algorithm should help one to 

find the most nearest velocity from the available set to avoid collision. This can be done 

using triangle inequality [40], or balltree algorithms [41], which would help find feasible 

solutions with probability distribution representing different types of data. Another 

popular approach used effectively is [42] where the cell partition method is used to store 

the nearest neighbors in an effort to reduce computational power. Finally after studying 

the nature of the VO algorithm it was decided to go ahead with [38] with the linear 

programming approach with a modified technique when compared with [1]. 

 

2.4 Particle Filter in motion planning 
 

Visual Tracking, Speech recognition and neural information processing ([30], 

[31], [32], [33]) are some of the applications among the many that use particle filters. 
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Object Tracking using vision techniques was mainly based on contours and color features 

of the object. Using particle Filter for such applications (such as [34], [35]) provided a 

likelihood estimate and thereby better sampling and tracking of objects. Similarly for 

path planning in mobile robots, particle filter is to estimate the position and is used in a 

Bayesian Network. Using laser range data similar approach has been tested on multiple 

robots ([36], [37]). Hence, research over the years has showcased that estimation of next 

sample with respect to different applications has improved system stability and 

consistency. 
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Chapter 3 
 

 Velocity Obstacle 
 

Navigating a mobile robot in dynamic environment is a considerably difficult task 

as there is sufficient amount of planning required with respect to the path and the velocity 

profile computed. Path planning is defined as calculating a trajectory for the robot from 

the start to the end position without colliding with any object on its way. Simultaneously 

a reasonable velocity profile needs to be maintained with respect to each robot so that the 

robot does not hit another robot while traversing towards its target position. Thereby 

Fiorni and Shiller [17] came up with a geometric and dynamic approach for robots to 

avoid collisions. The VO method set the platform for various algorithms for dynamic 

motion planning due to its advantage of giving a dependable geometric representation for 

allowing robots to shift and move away from obstacles. However, the method is defined 

for a specific time frame since in dynamic environments the constraints would keep 

evolving at different intervals. Hence the solution for each window of time may not be 

same. The biggest turning point with respect to this method is that the constraints of the 

robots in consideration is only the position and the velocity that makes it a simplified 

process and also provides lot of avenues for further exploration for dynamic motion 

planning especially for a large number of robots.  

Velocity Obstacle mainly refers to the set of velocities that would result in 

collision between robots with in a specific time window. In Figure 3-1there are two 

robots A and B moving with velocities VA and VB at time t0. A and B are interchanging 

positions with each other and since their trajectories are pointed in opposite directions 
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along the same line, an imminent collision is expected within time t1. The velocity profile 

of A would contain velocities enabling it to collide with B on its way. Hence, Velocity 

Obstacle is defined as VOA|B, which contains velocities of A with respect to B that would 

result in collision between the two. 

 

Figure 3-1 Robots A and B are moving with velocities VA and VB respectively. A and B are swapping 
positions. Conclusively they are travelling with velocities that would result in collision between the 

two robots 

 

Now, VO of robot A with respect to B is used to modify the current velocity of A 

accordingly so that it can move around B. Initially the representation of A is reduced to a 

point mass and B is illustrated with the radius of A in the form of a circle. This approach 

to depict what is known as Velocity Space. Before moving any further one would have to 

consider relative velocity between A and B, which is,  

                               𝑉!/! =   𝑉!   −   𝑉!      (2) 

 

Suppose the line λAB corresponding to the relative velocity 𝑉!/! goes through B, then 

                          𝜆!"   ∩   𝐵   ≠   ∅       (3) 
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Geometrically VO for robot A with respect to B is defined in the form of a Collision 

Cone (Figure 3-2), illustrating the colliding velocities of robot A and B. Collision Cone 

(CCAB) can be mathematically represented as: 

  

                         𝐶𝐶!" =    𝑉!" 𝜆!"   ∩   𝐵   ≠   ∅     (4) 

     

 

Figure 3-2 Geometric representation of Relative Velocity VAB and collision cone CCAB 
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In the figure above (Figure 3-2),  𝑉!/! is the relative velocity between A and B 

while λAB is the tangent line to the relative velocity 𝑉!/! intersecting B. This would 

indicate that a collision is expected to occur in the next time window t1 if the respective 

robots are moving further in the same velocity. As it is clear, any velocity selected from 

an external area with respect to CCAB would help in avoiding any obstacle coming in the 

way of the robot and would ensure collision avoidance within the specified time frame.  

Another angle of observation is that the CCAB also divides the velocities into colliding 

and collision avoiding. As CCAB is elaborated for a definite obstacle, then in case of 

multiple obstacles by simply adding the velocities of other robots and thereby translating 

the CCAB would develop Velocity Obstacle (refer Figure 3-3 and Figure 3-4). An 

absolute equivalent partition of obstacles would thus help to compute the velocities for A 

that would avoid B but also ensure that A is back on its computed path. 
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Figure 3-3 VO is constructed by adding the velocities of B to the set CCAB. The addition is in the 
form of Minkowski sum 

 

Therefore, 

                           𝑉𝑂 =   𝐶𝐶!"   Θ  𝑉!      (5) 
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Figure 3-4 The collision cones and velocity obstacles of B1 and B2 that is computed with respect to A. 
Combining the VO for both would result in a set of velocities that allow A to avoid both B1 and B2. 

The VO is recomputed for a different time interval. 

  

Now to avoid more than one, for instance n-obstacles             

𝑉𝑂 =  ∪!!!!   𝑉𝑂!                          (6)      

Now selection of velocities for robot A outside of VO would not result in collision with B 

whereas if VA lies on the boundary of VO would result in a very close movement along 

the side of B which might eventually lead to collision.  There are mainly two assumptions 

made here in developing VO by Fiorni and Shiller [17]. The robots are considered to be 

circular in shape so that the configuration space is reduced and thereby result in easier 

computation of VO. Also for each specific time frame the robots are expected to maintain 

the same velocity throughout that would allow a smaller area for RAV. 
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Chapter 4  
 

Optimal Reciprocal Collision Avoidance Algorithm 
 

4.1 Overview 
 
Multi-robots provide fascinating areas of research like assigning specific tasks and 

ensuring those are carried out by each of them in perfect synchronization. As opposed to 

assigning a complex task to a single robot, it was found easier to breakdown the load and 

assign the same to a number of homogenous robots. Such an area has gained wide 

prominence for various applications like space, underwater and ecological exploration, 

and entertainments, industrial and similar systems where they can be efficiently utilized.  

In such an instance, the fundamental requirement is to make sure that all the robots are 

well coordinated at all times. One of the simple tasks would be to have them moving 

around in a common environment without coming on the path of each other.  Therefore, 

the approach of Reciprocal n-body Collision Avoidance Approach (RCAA) is a way by 

which multiple homogenous robots are made to move around so that they hinder in each 

other’s paths. A decentralized concept is considered so that each of the robots can take 

care of itself and accordingly the system would be stable for the expected period of time. 

Reciprocal n-body collision avoidance is another view of collision avoidance where 

each of the robots is assumed to be decision-making entities. This mode of operation of 

collision avoidance is mainly a heavy-handed method since each robot has to 

continuously execute a set of techniques to avoid each other in the specified time 

window. Since each of the robots has to decide its next course of action within a 

stipulated time, it has to perpetually carry out a cycle of sensing and reacting. 
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In order to find a consistent solution for such an instance where we have a collection of 

robots with the same behavior, there has to be a set of parameters set. A major measure is 

to use a holonomic robot with simplified characteristics, which would permit the robot to 

navigate in any direction. Since a continuous cycle of sensing has to be sustained, each 

robot is assumed to have perfect sensing nature. Furthermore all the robots are expected 

to have the same, size and shape. Since this is such an exhausting approach, a 2-

dimensional velocity vector describes the maneuver of each robot. The importance of 

using a holonomic robot is mainly so that the navigation of robots can easily be 

controlled in any kind of congested environment. This is because the robot has the 

flexibility to turn in any direction without any kind of change in its pivot point. Another 

advantage in using such a robot is that it would also allow the robot to change direction 

from any type of complex juncture. Moreover such kind of robots would just need simple 

hardware that can easily be intercepted with preprogrammed instructions with 

adaptability of dynamic processing rather than on the basis of being statically defined. 

This approach also has another angle to it where the algorithm ensures that the 

robots avoid collision for a predetermined period of time. The window for this period can 

be defined based on the total number of robots or the efficiency of the instructions 

programmed. The optimal velocity that each robot selects is from the corresponding 

velocity space where a favorable region is found using linear programming. 

 

4.2 Initial Assumptions 
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In order to proceed with the problem as outlined above, the components being used 

need to be less complex as the solution itself is expected to use up a lot of resources. The 

environment in consideration here is a simple 2D space with circular robots of the same 

radius. As elaborated in [1], we would need to set parameters that would define state of 

the robots. The state of the robots refers to the position and velocity of each robot. As 

discussed before, each and every robot is assumed to be able to obtain the velocity of 

other robots. The current position of a robot known as A is defined as POSA with current 

velocity as VELA. Along with the current state of the robot, other values that are set are 

VELmax
A and VELpref

A. The maximum velocity for each robot has to be fixed so as to 

given an upper bound in order to avoid permanent looping. Similarly a preferable 

velocity has to be also set so that the robot by itself should move around in optimal 

velocity when no obstacle is in its way. Furthermore, the collision avoidance of robots is 

set for particular window of time known as τ.  

An overview of the algorithm indicates that to guarantee non-aligned collision 

avoidance among the robots it is imperative of each and every robot to avoid coming in 

the way of other. Another important point to be considered is that other than knowing the 

velocities and positions of each other there are no other means of communication 

between them. As there in no centralized coordination system in the environment, the aim 

of the robots should be to move around in a velocity close to the VELpref
A so that 

consistency can be maintained so that a thorough consistency can be maintained all 

through the process. 

 

4.3 Reciprocal Collision Avoidance 
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Before elaborating further on collision avoidance on n robots, it is important to 

further define and elucidate velocity obstacle of robot A with respect to robot B 

considering the shape of the robots as well as other constraints ([1], [17]).  

A collection of relative velocities of robot A with respect to B, thereby resulting in 

collision within the time τ is known as velocity obstacle VelObτ A|B. All the robots are 

assumed to be in homogeneous with disc shape of fixed radius r. The characteristics 

robots are mathematically formulated as D(POS,r) where POS and r refers to position and 

radius respectively. The position of each robot, for instance robot A is POSA assuming 

with center of the open disc at POSA. 

𝐷 𝑃𝑂𝑆, 𝑟 = 𝑞  |   𝑞 − 𝑃𝑂𝑆 < 𝑟       (7) 

            then, 

𝑉𝑒𝑙𝑂𝑏!|!! = 𝑉𝐸𝐿  |  ∃  𝑡  ℰ   0, 𝜏 ∶∶ 𝑡  𝑉𝐸𝐿   ∈ 𝐷   𝑃𝑂𝑆! −   𝑃𝑂𝑆!, 𝑟! + 𝑟!  (8)   

           In equation (8) the velocity obstacle of A with respect to B, VelObτ A|B is defined 

such that all velocities, VEL within the time window t would result in collision between 

the robots A and B at positions POSA and POSB (refer Figure  4-1). 
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Figure 4-1 Placement of robots A and B with position POSA  and POSB. Here the robots are place in a 
Cartesian coordinate frame so as to depict as how the positions are obtained, that is each of the 

coordinates are collected based on the positions of the centers of each robot. 
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Figure  4-2 Construction of VelObτ A|B of robots A and B with position POSA  and POSB.The 
geometric illustration is in the form of a cone from the origin with the each of the two circles having 
theirs radii computed as rA + rB and (rA + rB)/τ. The centers are also similarly computed as POSB – 
POSA and (POSB – POSA)/τ , where τ is the specified time frame. The area enclosing the two circles 

with the respective tangents is the defined velocity obstacle. 

 
          Before we delve deep into the mathematical and geometric illustration of Velocity 

Obstacle it is important to go through the Minkowski sum. It plays a major part for 

applications related to motion planning, object containment, collision avoidance with 

respect to both 2D and 3D Computer Graphics. In simple terms, Minkowski Sum is the 

addition of two sets of position vectors in Euclidean space. 

               i.e.,  {  a + b : a Є A, b Є B                                                                      (9) 
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Considering robots A and B, their respective current velocities are depicted as velA and 

VELB where VELA – velB Є VelObτ A|B and similarly VELB – VELA Є VelObτ B|A, thus 

indicating that A and B with collide with each other if they keep navigating in the same 

velocities (refer Figure 4-2). On the contrary if VELA – VELB ∉ VelObτ A|B and VELB – 

VELA ∉ VelObτ B|A, thus ensuring that during the defined time period τ, they would not 

come in the way of each other. As the velocity obstacle is represented in the Figure 4-2, 

we see that they are symmetric in the origin. 

In order to define and compute the collision avoiding velocities, Minkowski sum 

(refer Figure 4-3) is put into effect where for any VELB Є VELB and VELA ∉ VelObτ A|B 

⊕ VELB. This would permit the robots A and B to be collision free for the definite time 

window τ. Thereby in order to further set forth the set of collision avoiding velocities, 

ColAv τ A|B, 

        ColAv τ A|B(VelB) = { VEL| VEL  ∉  VelObτ A|B ⊕ VELB }                                   (10) 

Such a collection of sets VELA and VELB is known as reciprocally collision avoiding 

where VELA ⊆ ColAv τ A|B (VELB) and VELB ⊆ ColAv τ B|A(VELA). There are also cases 

where  VELA = ColAv τ A|B (VELB) and VelB = ColAv τ B|A(VELA), which are thereby 

known as reciprocally maximal. 
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Figure 4-3 As Minkowski Sum is addition of two sets of positive vectors in Euclidean space, of VO 
and VELB. Here ColAv τ A|B(VELB) is the set of collision avoiding velocities. The area shown in the 

form of a parallelogram in dark shading with red borders,  VELB is the complement of the 
Minkowski sum of VO and VELB. ColAv τ A|B(VELB) is formulated on the assumption that B would 

choose velocity from VELB. 

 

As there are reciprocally maximal velocities and preferred velocities for A and B, it 

would be ideal to actually choose a velocity that is optimal using linear programming. 

This is because there can be boundless sets of VELA and VELB that would satisfy the 

needful as stated above. Due to the same reason it’s important to select a velocity that is 
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near to the set of optimization velocities but at the same time fully utilizing the set of 

velocities allowed. As the problem is being studied in a two dimensional space, |VEL| 

denote the measure of the entire set of velocities in area R2. 

To proceed ahead we would need to define the Optimal Reciprocal Collision 

Avoidance for a robot A coming in the way of B or vice versa. Let it be known as ORCAτ 

A|B  for A with respect to B and similarly ORCAτ B|A.As the velocities for such a set has to 

be reciprocally collision avoiding and maximal since, ColAv τ A|B = ORCAτ 
A|B  and     

ColAv τ B|A = ORCAτ 
B|A. The other important measure to be in consideration is that the 

rest of all other pairs of sets of reciprocally collision avoiding velocities VELA and 

VELB, VELA ⊆ ColAv τ A|B(VELB) and VELB ⊆ ColAv τ B|A(VELA).. This is also 

applicable only when the radii of all the robots r >0. 

Thus, 

|ORCAτ A|B  ∩ D(VEL opt A, r)| =| ORCAτ B|A ∩ D(VEL opt B, r)| >=  

                          min(|VELA ∩ D(VEL opt A, r)|,  min(|VELB ∩ D(VELopt B, r)|).     (11) 

 

Therefore it can be deduced that the set ORCAτ A|B  and ORCAτ B|A consists of higher 

velocities that are near to VEL opt A and VEL opt B than the rest of the number of 

reciprocally collision avoiding velocities. Another important part of this strategy as 

discussed above is that the responsibility to avoid collisions is shared equally between the 

robots. Therefore the distribution of velocities permissible to the defined set of conditions 

that is close to the optimal velocities is the same for A and B. 
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Figure 4-4 Geometric depiction of ORCAτ 
A|B and ORCAτ B|A. Initially the velocity obstacle VelObτ A|B 

is calculated for A with respect to B’s current position. Also,  ORCAτ 
A|B is composed of those 

velocities that would enable A to avoid colliding with B in time τ , which is calculated using the  
reciprocal collision avoidance method. Here u is the vector that is placed at shortest distance from 

VEL opt A – VELopt B to end of the cone depicting VelObτ A|B . 

 

From the geometric description of ORCAτ A|B and ORCAτ B|A, we see that VelObτ A|B is 

symmetric towards origin. Suppose the velocities with which A and B are moving around 

is in VEL opt A and VELopt B and that they are going to collide in time τ. This can be 

represented as  

                          VEL opt A – VEL opt B Є VelObτ A|B ,                                             (12) 

 

Assume that u be the vector from VEL opt A – VELopt B to the nearest point on the 

bounding area of VelObτ A|B,then 
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  u = (argmin VEL Є ∂ VelObτ A|B ||VEL – (VEL opt A – VEL opt B)-( VEL opt A – VEL opt B)     

(13)                               

Now, if n is the outward normal of the boundary of VelObτ A|B at point (VELopt A – VEL 

opt B) + u. In order to avoid collision within the given time window, τ then u is the minute 

adjustment applied to relative velocities of A and B so that they would avoid colliding 

with each other. As the responsibility is equally shared between the two to avert collision, 

A alters it’s by velocity by (1/2) u and also expects B to take care of its velocity the same 

way. From the figure, ORCAτ A|B is the obtained half plane that begins at point VEL opt A 

+ ½ u that is in the direction of n. 

 

Mathematically representing, 

    ORCAτ 
A|B = {VEL | (VEL-(VELopt A+ ½ u)).n >= 0},                                           (14) 

 

If A and B are not going to collide with each other, that is if  

VELopt A – VEL opt B ∉ VelObτ A|B  , even then the optimized velocities selected would 

still enable them to remain on a collision free trajectory. 

 

4.4 n-Body Reciprocal Collision Avoidance 
 

Moving further, the objective is to obtain a decentralized approach for multiple robots 

to avoid colliding with each in the same environment. In order to achieve the same, each 

of them preforms a continuous cycle of sensing and reacting so that it would be able to 

successfully reach the target point. As is the case of two robots, the set of permissible 

velocities is obtained for A with respect to B is ORCAτ 
A|B. On the basis of this inference, 
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then the intersection of half planes of n robots contains the set of allowed velocities for A 

to attain a collision free trajectory with respect to n robots around. This concept can be 

further represented as, 

                     ORCAτ
 A = D(0, VEL max A) ∩ ∩ B≠A ORCAτ 

A|B
                        (15)  

Another important observation from the above representation is that the maximum 

velocity allowed also comes into play. This constraint is to ensure that when linear 

programming is applied, any kind of unacceptable values for velocity is not used for the 

selection of optimal velocity. Now, VELpref A is the preferred velocity defined for A and 

VEL A new has to be selected in such that it lies within the region of permitted velocities. 

 

         VEL new A = argmin VEL Є ORCAτ A|B  || VEL– VELpref A||                                 (16) 

Now, the robot has to move to the next point with new obtained velocity, thereby in order 

to calculate the same, 

            POSA new = POS A +VELnew A ∆t,                                                             (17)  

 As observed in certain scenarios, the robots would be headed in different directions. This 

presents a challenge to find the right set of optimal velocities that would allow the 

respective robot to avoid colliding with all of them but also reaches its target position 

without deviating from the same. 
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Figure 4-5 Robots around A are moving in different directions. Here the aim is to find a unique path 
to the target position without bumping into the rest of the robots around. In order to find the set of 
optimal velocities, we would have to combine the velocity obstacle of A with respect to every other 

robot.  

 

Thus for the robot to continuously calculate the optimal velocities, a consistent 

optimization approach is required. As we move ahead, in order to carry out such an 

exhaustive approach, linear programming is applied to obtain the ORCA region of a robot 

with respect to the rest of robots, which is elaborated in the subsequent chapter.   
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Chapter 5 
 

 Optimization Algorithm 
 

The main reason to use an optimization algorithm after obtaining ORCA lines of 

each robot corresponding to the rest is to choose the optimal velocity so that the robots 

can avoid each other. The set ORCA contains velocities that would allow each one to 

move away from each other.  As there are many ways for a robot to move around other 

obstacles in, it can be frustrating to find the most optimal route. In many applications like 

mechanics and engineering, economics, mathematical and management science, there 

always arises the need to find the most desirable solution iteratively.  In such scenarios, 

there would be a maximizing or minimizing optimization function that would enable us 

to find the best alternative from the continuously obtained solutions.    

In a multi-robot system, there is continuous redundancy and cooperativeness 

expected throughout so that each of them fulfills their respective duties. Since the 

collision avoidance velocities are obtained throughout in the form of linear constraints, 

the linear programming method in [38] was found to be appropriate to the requirements 

of our system. As the robots continuously obtain velocity and position of other robots, 

using the RCAA method constraints would be updated for each time frame to ensure 

collision avoidance. Even though a number of alternate velocities are computed through 

the ORCA set, an optimal would be to find the velocity that is closest to the preferred 

velocity but at the same time doesn’t come in the colliding path of any other robot around 

the respective one. 

The optimization algorithm that is used for the selection of velocities for each 

robot that is on its collision path with the nearest robot around is the Polygonal Sweep 
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Algorithm [38]. An efficient algorithm was required for working out an optimized 

velocity so that when each robot tries to adopt collision free velocity; there is systematic 

efficiency throughout the time frame. Polygonal Sweep Algorithm is actually a modified 

version of the Line Sweep Algorithm that is applied on a set of lines to check the number 

of intersection points of the lines with respect to each other. Similarly the polygonal 

sweep algorithm is applied to check the intersection of any two planes. The obtained 

ORCA lines are envisioned as planes with feasible region drawn in the respective 

direction using the ORCA approach. In the optimization approach, the intersecting planes 

are checked for their feasible region and thus a common region is acquired. The obtained 

common polygon is used for further processing and the rest of the insignificant region is 

discarded. 

As discussed above, it is evident that there would be a finite number of ORCA 

lines that would be generated for every robot with respect to another robot. In such a 

circumstance, it is important that we have a cohering linear programming solution that 

would help us in finding a reliable solution with respect to a collection of line segments. 

Hence we approached the problem by considering each line segment to be a linear 

constraint.  Initially a boundary was set that would help us converge to a solution at the 

earliest. Thus, considering all the logistics that were being used, an R2 plane was 

initialized with preset values. The objective here was to obtain a favorable region within 

a desired range. As the ORCA lines are continuously generated within each time window, 

it is important to enclose them on a common workspace so that a desirable solution is 

found all the times. For the same reason a rectangle was constructed with the constraints 

of the robot as dimensions in order to find the feasible region. 
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For example,  

                     P1= [0,0,0,100,100,100,100,0];                                                         (18) 

where an array is used to store the enclosing boundary values. 

 

Figure 5-1 ORCA Lines for a robot are generated consecutively as and when other robots are on its 
path.  Hence in order to find the most desirable velocity to avoid the multiple robots on its way, one 
would have to find the feasible region that satisfies all the constraints as shown in the figure. In the 

figure we see the multiple ORCA lines enclosed within the defined boundary as defined by the 
optimization algorithm and also the favorable region in between. The objective would be to find the 

minimal point that is close to the preferred velocity of the robot so that it does not deviate completely 
from its path and eventually reaches its target position. 

 

Now let  

                                                   L= { l1,l2…….ln }                                                (19) 

Here L be the set of linear constraints, that could be represented in the form of  

                                                           aix + biy <= ci                                               (20)                     
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Here ai,bi,ci are constants and at least one of ai and bi is non-zero.  The purpose here is to 

render each line segment as a constraint and also that it will just intersect the set plane in 

two distinct points such that in the process, we geometrically obtain a probable region 

which would contain the collection of points: 

                                                        (x,y) Є R2
                                                                                  (21) 

The respective aggregations of points are those that would satisfy the n constraints. In 

order to obtain the set of favorable points, it is obvious that once all the constraints are 

obtained with respect to each robot one would need to obtain the feasible region first. As 

there would be a number of line segments intersecting the preset boundary, it is important 

that we obtain the smallest common region with respect to the intersection points of the 

lines with respect to the initial set plane. Furthermore the prior step to finding the feasible 

region would be to obtain all the intersection points of all the constraints. As there would 

be a considerable number of intersecting points, we required an algorithm that would take 

as much of less computation time. Thus considering the large number of iteration and 

steps that were required in the procedure the Line Sweep Algorithm was studied in depth. 

 

5.1 Plane Sweep Algorithm 
 

Computation of intersection of line segment with respect to other line segments 

holds a lot of practical applications. As discussed in [38] layout of networks, railroad, 

rivers and roads are stored as curves, which can be subsequently approximated as line 

segments. The problem that is in consideration here is to compute the intersection point 

of one line segment with respect to all other line segments that are present in the other 

group. This is mainly because the line segments represent the orientation of velocity of 
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one robot with respect to all other robots that are present. Therefore with the objective to 

find a favorable velocity that would avoid collision with each other, linear programming 

is applied to find the favorable set of velocities. 

Using the traditional approach to obtain intersection point of one segment with 

another would require O(n2) time. In the current scenario the demand is for an algorithm 

that is continuously iterative and also at the time consumes minimal resources. Also, the 

output is dependent not only on the number of line segments but also on the number of 

intersection points that are acquired in the process. Such algorithms are output sensitive 

or intersection sensitive since the running time is dependent on the size of output, which 

is the number of intersection points. Observing the nature of the lines segments one can 

infer if they would intersect or not. For instance, line segments that are parallel would not 

intersect at all, however some of them would be coincident on each other. In such cases, 

each and every point on the line segment can be considered as intersection point. 

Therefore the following algorithm has been formulated similar to [38].  

Consider   

                  S = { S1, S2, S3, S4………………………………….. , Sn}                         (22) 

to be the collection of line segments, for which the number of intersection points are to be 

obtained. 
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Figure 5-2 In the figure there are multiple sets of intersection of line segments. In order to find all the 
intersecting segments points, a line l is moved across the line segments from one end point to another. 
Each intersection point is referred to as event point. Line Sweep Algorithm is used here to detect all 

the event points in the given set. 

 

 Consider an imaginary line segment l that is sweeping through the entire set of 

segments known as the sweep line. Here the nature of line segments with respect to each 

other need to be also considered while applying the optimization algorithm. The 

movement of the line segment is stored in a queue known as the event queue. The 

approach here is to deliberate on the orthogonal projection of y axis of either line 

segments. If at some point, the projections are found to intersect then one can say that the 

line segments do intersect at some point. As the sweep line is moved through the entire 
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plane of line segments, the algorithm therefore came to be known as the Plane Sweep 

Algorithm. 

 

 

 

Figure 5-3  Here there are a number of intersection points in the provided scenario. The objective 
here is to find the order of intersection points among different groups of intersection points using the 

sweep line l. In the specific plane as indicated, it is vital to find every intersection point and record 
them in the queue in the right order. 

 

As we go into the detail of the algorithm, the first step would be the starting point of the 

sweep line. As the sweep line encounters each and every, event it is important that each 
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one of them is recorded and thereby the status is updated. As the sweep line start moving 

downward, the upper endpoint would be an event, as the adjoining neighbors need to be 

tested (refer Figure 5-3). Several actions are required to modify the placement of the line 

segments and thus save the intersection points. Another interesting observation here is 

that after modification it is possible that the nature of the line segment with respect to 

each may change and thus there might be a probability that two line segments, which may 

have been far away from one another, may be now lying adjacent to each other. Thus the 

algorithm is iterative with respect to the fact that until the last event point is sustained 

upon, each and every occurrence needs to be considered. 

The pseudo code for the algorithm is given below: 

INPUT: S //set of line segments 

FOR each event E 

IF E is not empty 

 PT=ComputeEvent (E)  

ComputeEvent containts Sub_line_l(p), Sub_line_u(p), Sub_line_i(p)  

STAT=Select S ε PT  

IF Sub_line_l(p) ∪ Sub_line_u(p) ∪ Sub_line_i(p) 

 Intersection_Point = PT 

END IF 

IF Sub_line_l(p) ∪ Sub_line_i(p) 

 Delete(Intersection_Point) 

END IF 

IF Sub_line_u(p) ∪ Sub_line_i(p) 
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 Compute Sleft and Sright 

END IF  

Intersection_Points = Intersection_Point  //storing all intersection points 

 END IF 

END FOR 

 

In case of handling of each case after Sub_line_u(p) ∪ Sub_line_i(p) is found not to be 

empty then each and every intersection point with respect to the left and right neighbors 

need to be computed and thus the order needs to be changed and modified until there no 

longer exists any more event points. 

The running time of the algorithm has found to be O(n+I)logn where I represents the 

number of Intersection points. The queue is assumed to be in in the form of a binary tree 

and that is found to take O(nlogn) time. Handling all the events that include insertions, 

deletions and finding adjacent lines takes O(logn) time each. If the total number of line 

segments when calculated linearly is m(p), then the running time is found to be 

O(mlogn). As and when the line segments are detected and removed, using graph theory 

with Euler’s formula it is found to be O(n+I), as the intersction point of two segments 

must be deleted when they stop being adjacent in which case the total time is calculated 

to be O(nlogn)+O(Ilogn). 

 

5.2 Half Plane Intersection 
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As elaborated previously, the aim is to find a point lying on the feasible region in 

conjunction with all the lines. Now, instead of considering each boundary as lines, it is 

important to consider them as planes with a directional vector. In accordance with the 

directional vector the feasible region with respect to a plane would therefore be the right 

side of the respective planes. In order to find a point that would satisfy n constraints at the 

same time, it is expected to be in the bounding line of some plane. The common feasible 

region would contain the point on any of the bounding lines. The following figure (Figure 

5-4) depicts the different types of intersection planes that are being explained here. The 

polygonal region obtained by intersection of the edges is found to be convex with respect 

to the constraints used. 

  

                                                   

                    

Figure 5-4 Examples [38] showing the feasible region among half plane intersection 
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We proceed to solve the problem of intersection of n half planes and then finding 

the point on minimum. After studying the problem in depth and by looking to the 

examples above, it can be concluded that in order to apply an algorithm, the region 

obtained can be open or that all the planes can converge to a single region. However as 

we saw that the algorithm elaborated above is Plane Sweep Algorithm that allows us to 

find all the intersecting points when a number of planes intersect each other. In this case 

as we only require the one point on the minimum side of the common feasible region, the 

above algorithm needs to be modified in such a case.  

An approximate divide-conquer concept needs to be applied in case of n 

constraints and also to take care of the special case as elucidated above. The algorithm 

pseudo code is given below: 

INPUT: H //set of n half planes 

IF  card (H) =1 

 C= SelectUnique(H) //function to select unique half plane from H 

ELSE 

 (H1, H2) = Split(H) //into H1 and H2 of size ┌ n/2 ┐and └ n/2 ┘ 

 C1=H1 

 C2=H2 

 C=Intersect(C1,C2) //intersecting regions of C1 and C2 

END IF 

 

The INTERSECT CONVEX REGIONS is the algorithm that is explained above 

in the pseudo code. The Plane Sweep Algorithm finds all the intersection points within all 
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the planes using a binary tree search. So, applying the same analogy the aim is to find 

intersection point within two edges in C1 and C2 by recursion and then procure the point 

at minimum that satisfies all constraints.  So finally the computation of intersection of C1 

and C2 takes O(nlogn) time where its assumed that it would be an intersection of n half 

planes and therefore has at most n edges and vertices. Since now we know as to what 

time the computation would take, the next step is to obtain the recurrence for the total 

running time. It has been found to be T(n)=O(nlog2n). Another important hypothesis here 

is that the polygonal regions are assumed to be convex. The next step in consideration is 

the representation of the convex polygonal region in order to compute the intersection 

region. In order to do the same, an organized list is maintained for the left and the right 

side of the intersecting plane. This explains as to why the regions C1 and C2 are 

considered to be convex, as this would allow us to store the edges in simple data 

structures rather than in complex ones. As there as to be 4 sides, its further elaborated as 

left_edge_C1, right_edge_C1, left_edge_C2 and right_edge_C2. The basic approach in 

such a scenario would be to make use of a pointer. However, since the platform here is 

MATLAB there is an initial set boundary of 4 edges and with each intersecting orca line. 

Each edge of the boundary is stored as a matrix. As each ORCA line intersects the 

boundary, the subsequent feasible edges are found and thereby the region is modified. 

As we have seen before in the identification of feasible regions, there can be cases where 

there the ORCA line and the set boundary do not have feasible regions. Such a case can 

be referred to as the global deadlock where the robot is expected to stay with velocity 

zero as the movement in any direction can cause collision. Hence the plane sweep 
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algorithm has been modified with limitations in order to satisfy the requirement for 

finding a consistent optimal velocity for multi robots.  
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Chapter 6 
 

 Selection of Optimization Velocity 
 

For setting optimization velocities of the robots, there are various options with 

respect to each scenario. There can be situations where Vopt A can be set to zero or Vopt A 

is Vpref A. In this section, we elaborate on the various choices that would be available 

according to the orientation of ORCA half plane and also on the basis of the current 

positions of A and B.   The first scenario is where Vopt A would be set to zero when 

ORCA is not empty. It would set a velocity for all robots around A that would make sure 

that all of it is on a collision free path for time τ. On observing the Figure 6-1 we see that 

robot A is surrounded by B, C and D. In this situation it might be more apt for A to 

remain in its position and wait for others to move away. However, for all other robots the 

point 0 always lies outside the VOA|B. Another important observation to be noted here is 

that the line delimiting ORCAA|B is perpendicular to the line connecting the current 

positions of A and B. One of the disadvantages of selecting velocity as zero in such cases 

is that in cases of dense scenarios then it could result in global deadlock. Another 

instance is where is the optimized velocity is set as VELpref A. Ideally this should work in 

case the preferred velocity is set to an optimal velocity. On the contrary in high-density 

conditions, the preferred velocity would be set to a high magnitude, which would make 

the linear program infeasible. As a result of which there would unreliable navigation of 

the robots in the current environment. There is also a probability of the same situation 

happening in medium populated environment. 
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Figure 6-1  Robot A is placed in between three other robots. All of the robots are found to be heading 
towards A. In such an instance an optimal velocity should be found for A that would allow it to move 

without colliding with any of the surrounding robots. 

Another option is to set the optimal velocity as the current velocity, which would 

characteristically point to the facts discussed earlier that all the robots would 

automatically adjust to the situation. This is mainly because all of them would be moving 

in the desired velocity through a collision free trajectory. Another issue rampantly 

observed is that there would be still infeasible regions (refer Figure 6-1 and Figure 6-2) 

selected and thereby results in the velocity being set to zero in crowded scenarios. This is 

where the term “safest possible velocity” comes into prominence. As it can clearly seen 

in Figure 6-1 choosing VELopt might not always be the best option. So instead of 

choosing a velocity that conforms to all the conditions with respect to the surrounding 

environment, the better option is one that minimally commits to the constraints instilled 

by the rest of robots. Such a velocity is known as safest possible velocity which is 
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selected based on the minimum distance   to the boundary of the plane ORCA τ A|B. 

Suppose the current velocity lies within ORCA τ A|B, the Euclidean distance is found to be 

negative. The mathematical representation is  

  VELnew A = arg min vel Є D(0,VEL max A) max B ≠ A dist A|B(VEL)                (15) 

The inspiration for the minimal distance comes as a result of the objective that this could 

easily be extended to three-dimensional linear program. Similar to finding a minimum 

distance here, the point (VEL*,dist) with minimum distance above the plane is selected. 

The running time is expected to be O(n). An important observation to be made here is 

that the selection of velocities for robots is more or less dependent on the surrounding 

robots and thereby enables the entire environment to remain consistent.  

In the case of static obstacles there cannot be division of responsibility to avoid 

collisions. To move through collision free trajectory around a static obstacle within τ 

time, 

   VelOb τ A|O = {VEL| ∃t Є [0,τ] :: t    VEL Є O ⊕ - D(POSA, rad A)}               (16) 

 

 Here O is the set of line segments modeled based on the static obstacle and the velocity 

needs to selected that would be outside VelOb τ A|O and thereby selecting a point inside 

the complement of VelOb τ A|O should help us attain our objective. On the contrary this 

would not be a convex region on which applying the linear program would be difficult. 

Hence it would be appropriate to set the velocity to zero. In crowded conditions 

increasing the value of τ(refer Figure 6-3) would help as it almost makes the robots to 

move towards the obstacle so as to not come in the way of other robots. However this is 

in lieu that the robots remain within the tough constraints as computed through the 
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algorithm. Instead of the robots moving in all directions around the obstacle they do 

move to their respective target position as their trajectory is continuously computed.                       

 

 

Figure 6-2  If no optimal velocity can be computed for robot A then empty set is obtained.  In such a 
case there would be collision within the defined time frame.     
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Figure 6-3  Feasible region is obtained once the time window is increased and thereby an optimal 
velocity can be obtained from the feasible region.  
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Chapter 7 
 

 Collision Avoidance with Particle Filtering 
 

7.1 Problem Definition 

The main objective of the problem is to redefine the assumptions as already 

proposed by the existing ORCA algorithm. Perfect sensing was one of the main 

assumptions put forward by the ORCA algorithm. In real-life scenarios, this is not always 

the case as there is always a high probability of obtaining inaccurate measurements from 

the sensors. In order to address such issue and thereby make the algorithm more effective 

for real platforms, a filtering approach was introduced with uncertainty in measurements 

of velocity. 

 

7.2 Applying Particle Filter to collision avoidance 

A majority of the applications in robotics require estimation of the system 

accurately over a period of time. Most of the current research problems would require the 

dynamic system model to process the data as and when the sensors acquire measurements 

[38]. Obtaining the measurements and at the same time computation for the specific 

model is significant as the system has to be calibrated with respect to the new data that 

the sensors are collecting over the period of time.  

Particle Filters are sequential Monte Carlo methods that comprise of approximate 

techniques to calculate posterior densities, which are basically point-based distribution. 

As far as our system is concerned, it is mainly a dynamic model that keeps rapidly 

changing over the period of time. The progression of the system would be best described 

with a discrete time approach since the measurements of the data are collected at distinct 
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cycles. Furthermore the system would be modeled on a state space approach, as it would 

also need to keep track of the noisy measurements that are also obtained with respect to a 

time series model.  Also the prime advantage of the state space approach is that it allows 

flexibility in handling linear as well as nonlinear systems.  

One of the things to consider while conceiving a dynamic system model is that it 

needs to be broken down into two main models. Initially a model needs to be generated 

that would illustrate the development of the state with respect to time: System Model. 

Also another model that is to be considered based on the noisy measurement of the state: 

Measurement Model. In order to determine the Probability Density Function (PDF), the 

formula given helps in giving an insight for an unknown time varying function. 

                     p(xt|Yt) =p(yt|xt)p(xt|Yt-1)/p(yt|Yt-1)                                                    (17) 

 

Here PDF of the state at time t based on previous measurements Yt = {y1,y2,y3……yt}. 

 

  A main assumption while applying a Bayesian approach is that the probabilistic 

forms of the model also need to be contemplated.  During the process of elaborating the 

PDF of the dynamic model in consideration, all the available data are encapsulated so 

that an optimal estimate of the state may be obtained. Also one another important 

measure that needs to be calculated is that accuracy of the state. During most of the 

instances, when such an approximation needs to be made a recursive filter is used in 

which rather than accumulating all the data and then computing, here the process is 

carried out as and when the data arrive in each cycle. Recursive Filter fundamentally 

contains two main phases: Prediction and Update. The Prediction stage with respect to 
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the dynamic model that is being discussed here would essentially predict the next state 

PDF for the consecutive cycle of measurements. As the random noise is also been taken 

into account, the prediction phase would also transform the PDF with respect to the noise 

in the measurement. The prediction stage is followed by the update stage where the 

anticipated PDF is to be altered according to the latest measurement obtained. In order to 

ascertain the values for the expected PDF there is a high amount of computation power 

required for parallel applications, ([39]) in order to implement Monte Carlo Methods. On 

the basis of weighted sum computed using the delta functions, particle filters approximate 

the PDF. Considering the target space, {wt (r)  t-1,x (r) t-1} for  r = 1….N that would 

showcase the samples based on the targeted PDF.  

                            p(x t-1 |Y t-1) ≈ ∑ Ns r=1 w r k-1 δ(x t-1 – x r t-1)                (18) 

 

Here w r t-1 is the weight with respect to the rth observation point and also ∑ Ns r=1 w r 

k-1 =1. As discussed above the particle filtering approach is spread over two steps. 

Initially, all the points obtained by the updated system at time t-1 are transformed to the 

cluster of points that would describe the predicted density, p(x t-1 |Y t-1).  So now the next 

step would be to update the group of particles obtained through the propagated density, 

{w (i) t-1, x(i) t} ~ p(xt|Yt) to the set of particles that contain the updated weights. Such a 

procedure is known as sampling and here the aim is to approximate the incognito updated 

density. In order to simulate from such a distribution, we sample the points from the 

available distribution and assign the weights to them so that sample can be simulated 

from the unknown distribution.   

Hence the required weights for the updated points are : 
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      w(r) t = (w (r) t-1 p(yt|xt (r))/ ∑ N l = 1 w(l) t-1 p(yt|x(l) t)                        (19) 

 

where p(yt|xt (r)) is the measurement likelihood function that would showcase the target 

state with the rth particle x (r) t. Another issue found in such systems is degeneracy. One 

needs to ensure that the equal weights are assigned and not one particle stands out with a 

high weight number assigned to the same. In such situations the only solution is to 

resample the points and thus obtain particles with equal weights.  

Although there are various filtering approaches that would cater to the 

requirement, a particle filter was considered the best one to use. Since the system that is 

in consideration is a dynamic system, a particle filter was considered, as it would allow 

one to use a complex model and thus obtain approximate measurements instead of 

accurate ones. Using a Particle filter, a collective set of best estimates of velocity of the 

current body is obtained. The set of velocities can be regarded as virtual set of bodies that 

are moving in different directions with respect to another body. 
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Chapter 8  
 

Experiments and Results 
 

The simulation environment is defined in the form of a square within which the 

robots are expected to move around. To implement Reciprocal Collision Avoidance 

Algorithm, robots are designed in the form of circles in the respective simulation 

environment. The simulation environment is implemented in MATLAB on Windows 7 

with 64 bit OS and 4GB RAM. In order to implement all the dimensions of the algorithm, 

the process has to be broken down into several steps. Initially the simulation environment 

had to be set up within which the robots should be able to move smoothly. Another 

module had to be set up within which the velocity obstacle is worked out, which would 

give us the set of collision avoiding velocities. After obtaining the set of collision 

avoiding velocities, the next step is to select the optimal velocity. In order to do the same, 

linear programming model is developed, that adds ORCA planes continuously and 

simultaneously calculates the feasible region. Once all the modules are set up, test cases 

are developed that would showcase different scenarios. Each of the sections is elaborated 

below. 

 

8.1 Setup the simulation environment 

The first step is to set up a defined boundary and have the robots navigate 

randomly within the set boundary. The robots are constructed with a definite radius and 

initialized with current positions as shown in Figure 8-1. The positions of each robot are 
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continuously updated but still ensured that they stay within the boundary.  Here the 

expected movement is in the form of bouncing motion among the robots. 

 

 

Figure 8-1 Simulation set up with positions updated continuously (horizontal axis: Vx, vertical axis: 
Vy) 

 
8.2   Obtain the Velocity Obstacle of one robot with respect to each other 

After the movement of the robots is worked out, the next step is to compute and 

calculate the velocity obstacle between two robots. In order to geometrically depict the 

velocity obstacle between two robots, we first need to obtain test cases where the robots 

are expected to collide within the next time frame. To achieve this, the robots have to be 
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moved towards a target position and test cases have to be obtained such that one would 

come in the path of each other as shown in Figure 8-2.  

 

 

Figure 8-2 The velocity obstacle is obtained when a robot A is expected to collide with robot B. In the 
above snapshot ORCA lines are being constructed as and when the robots are close to each other. 
The velocity obstacle is constructed with the specific parameters according to RCAA. The closest 

point to the boundary is obtained with which the ORCA lines are constructed. 

 

8.3   Implementing the optimization algorithm for velocity selection  

Once the velocity obstacle is obtained, selection of appropriate velocity has to be 

made from the ORCA lines. Choosing the velocity has to be made appropriately such that 

robot is made to deviate only so that it avoids collision but it reaches the target position.  

A desirable solution is found using a linear programming approach and is shown in 

Figure 8-3 and Figure 8-4. The ORCA planes contain alternate velocities that would 

avoid collision between the two bodies.  To select a velocity that is close to the preferred 
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velocity, the minimal point is found. The right side of each ORCA plane is treated as a 

feasible region.  The computed ORCA plane is made to intersect the boundary. Hence, 

minimal point is found by taking the shortest distance to the preferred velocity.  

 

Figure 8-3 Snapshot of the Test case where A is expected to be collided by B and C in time t. At such 
an instance the set boundary is intersected by two ORCA planes of A with respect to B and C. 

Applying linear programming, the feasible region is computed (horizontal axis: Vx, vertical axis: Vy) 

 

 

Figure 8-4 Snapshot of the Test case where one of the ORCA plane lies completely outside the set 
boundary. In such an instance, the favorable plane selected is as to whichever lies on the right side 

(horizontal axis: Vx, vertical axis: Vy) 

 

Here the aim is to iteratively add the ORCA lines generated by the robots with respect to 

each other and thereby find the feasible region from which the minimum is found. As the 
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robots keep moving it is important to simultaneously obtain the velocity obstacle and 

thereby calculate the optimal velocity within the time frame. 

 

8.4 ORCA applied to one robot among n-robots 

Initially ORCA is only applied to one robot and not to other robots. A trail path 

was constructed, so as to trace its trajectory. The test case was used where the two robots, 

shown below are going to collide in time t. A case was developed (shown in Figure 8-5) 

where they would swap positions with each other. One of the robots is expected to sense 

the incoming obstacle and deviate enough to avoid and then get back to its original path. 

 

Figure 8-5 Snapshot of the Test case where the robots are moving towards its target position and 
expected to collide in time t.  ORCA only applied to robot A and not B. Here only one of them 

changes the path when they are switching positions with each other (horizontal axis: Vx, vertical 
axis: Vy) 

After testing with two robots, slowly the number of surrounding robots was 

increased so to observe the behavior with different time windows and increasing number 
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of robots. Here all the robots are assigned initial and target positions, however the ORCA 

algorithm is only applied to one of them.  The aim of the robot A was to sense all the 10 

robots and deviate to avoid collision but eventually reach its target position. The test case 

was set up such that all the robots were moving towards A. This is shown in Figure 8-6.  

 

 

Figure 8-6 Snapshot of the ORCA only applied to robot A and not to other 10 robots. Only the 
respective robot change path without colliding with the rest of the robots (horizontal axis: Vx, 

vertical axis: Vy) 

 

8.5 ORCA applied to n robots  

The next functionality of ORCA to be tested was applying the algorithm on all the 

robots moving in the simulation environment. The responsibility was expected to be 

shared between the two robots. A test case was set up similarly where two robots are 

swapping positions with each other and a collision was expected in the time t. As shown 
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in the snapshots below both are moving towards their target position but are expected in 

collide in the next time frame. Due to the application of the collision avoidance 

algorithm, both the robots deviate from the path to avoid collision but finally reach the 

target point. This case is shown in Figure 8-7.  

 

 

Figure 8-7 ORCA applied to robot A and B. The robots are moving towards each other but move 
away from their original path to avoid hitting each other. After deviating from its original path, it 

moves back into its initially calculated trajectory to reach its target point (horizontal axis: Vx, 
vertical axis: Vy) 

 
 
8.6 ORCA applied to robots with Particle Filter  

To test our proposed approach Particle filter was applied to velocity estimate. 

Applying particle filter to the velocity provided a wider range of velocities to be selected 

from for collision avoidance. After calculating the preferred velocity, using a generic 

particle filter, velocity was estimated. Further after calculating velocity obstacle and 
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using linear programming optimal velocity was obtained. The snapshots of the test cases, 

after applying particle filter to the existing collision avoidance approach are shown below 

in Figure 8-8, Figure 8-9 and Figure 8-10.   

 

 

Figure 8-8 ORCA applied to robot A and not B with particle filter sampling. Here the velocity is 
estimated using particle filter approach. Once there are more velocities to select from, a more 

controlled and streamlined motion is observed.  Here robot A and B are switching positions with 
each other (horizontal axis: Vx, vertical axis: Vy) 
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Figure 8-9 ORCA applied to robot A and B with particle filter sampling. Here robot A and B are 
switching positions with each other (horizontal axis: Vx, vertical axis: Vy) 
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Figure 8-10 ORCA applied to robot A only with particle filter sampling. Here the velocity of A is 
estimated based on the defined sampling rate. The other robots are moving towards its target 

position but are placed such that all of them are moving towards A. The objective of A is to avoid 
each of it and move towards its target position (horizontal axis: Vx, vertical axis: Vy) 

 

As we see from the above figures after applying particle filter there is more streamlined 

motion and better avoidance. One limitation while applying ORCA was that the 

algorithm was found to fail in with a very small time frame. In order to counter such 

situations particle filter was applied and concrete results were obtained were it was found 

to work in such situations. In the following snapshots (Figure 8-11 and Figure 8-12), the 

results have been elaborated.  
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Figure 8-11 ORCA applied to robot A only with particle filter sampling. A very small time window is 
applied within which it was found to collide when only ORCA was applied. However after particle 

filter was applied it was seen that one robot was able to avoid colliding with the other robot. 
(horizontal axis: Vx, vertical axis: Vy) 

Similarly ORCA was applied on all the robots to cases where it was found to fail with a 

small time window. In such cases applying particle filter enabled robots to avoid each 

other. This is because in the existing approach without particle filter, small time windows 



64 

(0.05 to 0.35) were too less for the robots to use the velocity to process the collision 

avoiding velocity profile. Using particle filter in such instances gave flexibility to select 

alternate velocities and perform collision avoidance. In those cases where the ORCA 

approach was only applied to a single robot in the system, the robot was able to detect the 

incoming obstacle and steer away itself to avoid collision. In cases where the approach 

was applied to all the robots with particle filter, one of the robots was able to estimate the 

velocity earlier and deviates itself enough to avoid the incoming robot. Since each of the 

robots is an intelligent decision-making entity, as one of the robots moved away before, 

the other robot doesn’t detect any robot in its trajectory. Therefore the robot does not 

sense the need to take a detour unnecessarily. Hence the robot moves along its expected 

trajectory and eventually reaches its destination point. Another observation during testing 

was that while applying the existing approach and the trajectory was being traced out 

without particle filter, there were break points seen during collision avoidance. However 

while applying particle filter, the trail was seen without any breakpoint indicating there 

was streamlined motion during navigation. 
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Figure 8-12: ORCA applied to all the robots only with particle filter sampling. Due to particle filter 
sampling, one of the robots would be able to sense and estimate a better velocity while the other robot 

was only required to deviate minutely from its path A very small time window is applied within 
which it was found to collide when only ORCA was applied. Better results were obtained with more 

than two robots as well (horizontal axis: Vx, vertical axis: Vy) 
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In order to further elaborate the results, statistics was obtained in the form of collision 

percentages. This was calculated based on the proximity between the two robots. First the 

distance between the centers of the robots was obtained. This is then compared to see if 

the distance was less than the combined radii between them. If it is then the robots have 

overlapped with each other and this is considered as collision in our experiments. Testing 

was done on a system with more than two robots and collisions were compared with and 

without appending particle filter. The percentage of robots colliding with each other in 

these approaches was compared. The collision percentage was obtained for a wide range 

of test cases with each time window. Anywhere between four to six robots were used in 

each of these test cases. In addition, the test cases were required to apply ORCA alone 

and with particle filter on one robot and multiple robots. Then the average collision 

percentage was calculated for each case with and without particle filter. This is presented 

in Figure 8-13 and Figure 8-14, which clearly prove that the collision percentage is 

significantly reduced using our method than with going with just ORCA. Not only this, 

ORCA is only applied on one robot in a system of robots.  
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Figure 8-13: In this graph x axis represents the time window that is used and the y axis shows the 
collision percentage achieved. Here the green color represents the collision percentage obtained after 

applying particle filter with the collision avoidance approach. However the red bars represent the 
high percentage of collision with just the collision avoidance approach. This data is with respect to 
various test cases when ORCA is applied to one robot against all other robots. A more consistent 

result was found in this case as opposed to ORCA applied to more robots 
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Figure 8-14 In this graph x axis represents the time window that is used and the y axis shows the 
collision percentage achieved. Here the green color represents the collision percentage obtained after 

applying particle filter with the collision avoidance approach. However the red bars represent the 
high percentage of collision with just the collision avoidance approach. This data is with respect to 

various test cases when ORCA is applied to all robots. 

 

Also the sampling rate done between 10 and 30 resulted in no significant difference on 

the results. Stress testing was done on specific test cases with very small time window 

where the collision approach was not found to work. In such instances using particle filter 

made the system more stable and there was a lesser probability for collision to occur. 

Also in some instances imaginary values or empty set were assigned for velocities, with 

just collision avoidance approach.  Applying particle filter gave a broader spectrum to 

select velocities.  
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Chapter 9 
 

 Summary 
 
 
9.1 Conclusions 

          One of the main assumptions for ORCA [1] algorithm is that there is always 

perfect sensing for all robots when the algorithm is applied on the robots all the time. 

However in order to implement this approach more realistically, we have introduced 

particle filters. This would allow resampling of velocities and thus provide more scope 

for selection. One of the main improvements seen is that there was less oscillation 

observed in robot navigation thus providing more stability for the system.  Also the 

number of collisions seen among large number of robots was less with particle filter. 

Furthermore, using a rectangular boundary for linear optimization provided more scope 

in various time windows. Applying a modified approach provided a more consistent 

breadth for the ORCA planes with respect to alternative velocities for collision 

avoidance.  Another capability added here that was not present is adding an error 

percentage to the measurement which would allow one to translate this concept easily on 

a real platform. In order to get more room for alternative paths for robots not to come in 

the way of each other in a crowded scenario, efficient and consistent solutions are 

developed to ensure continuous smooth movement of robots.  

 Through this thesis, we have enhanced our understanding of the domain and have 

made contributions to this research domain through our simulation program and 

improving collision avoidance by introducing the particle filtering approach.  

 

9.2 Future Work 
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Also this technique has been now just tested with a simple generic filter. Moving 

forward an improvement in this direction would be to apply real time adaptive particle 

filters. This would provide a more consistent and rigorous methodology for collision 

avoidance among n-robots. One of the issues while applying the generic particle filter is 

that it is computationally expensive in the current platform. Also, the application has only 

been tested with 2D environment and simple kinematic constraints. Furthermore using 

more efficient particle filters with a larger scope of constraints with respect to 3 D 

surrounding would provide more avenues in this direction.  

There would be considerable challenges while implementing the approach on a 

real platform. As the mobile robots are assigned tasks that are to be performed while they 

in motion, it would be interesting to see as to what kind of behavior is exhibited by the 

robots in such a scenario. Coupling the decentralized collision avoidance approach with 

another assigned task like collection of data for ecological study is sure to raise a number 

of real time control issues. These may be related to sensing and processing of that 

information in real-time and their uncertainties and relaying the feedback such that the 

robot is able to react in the shortest possible time. The main technical concerns seen 

during distributed sensing and network control need to be evaluated and appropriate 

measures have to be taken. Also another issue that needs to be addressed is system 

stability, which is if one of the robots fail, then the tasks have to be rescheduled 

efficiently.  
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