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ABSTRACT OF THE DISSERTATION
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Gregory W. Hackmann
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Washington University in St. Louis, August 2011

Research Advisor: Professor Chenyang Lu

Wireless Sensor Networks (WSNs) consist of tens or hundreds of small, inexpensive

computers equipped with sensors and wireless communication capabilities. Because

WSNs can be deployed without fixed infrastructure, they promise to enable sens-

ing applications in environments where installing such infrastructure is not feasible.

However, the lack of fixed infrastructure also presents a key challenge for applica-

tion developers: sensor nodes must often operate for months or years at a time from

fixed or limited energy sources. The focus of this dissertation is on reusable power

management techniques designed to facilitate sensor network developers in achieving

their systems’ required lifetimes.

Broadly speaking, power management techniques fall into two categories. Many power

management protocols developed within the WSN community target specific hard-

ware subsystems in isolation, such as sensor or radio hardware. The first part of this

dissertation describes the Adaptive and Robust Topology control protocol (ART),

a representative hardware-specific technique for conserving energy used by packet

transmissions.
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In addition to these single-subsystem approaches, many applications can benefit

greatly from holistic power management techniques that jointly consider the sens-

ing, computation, and communication costs of potential application configurations.

The second part of this dissertation extends this holistic power management ap-

proach to two families of structural health monitoring applications. By applying a

partially-decentralized architecture, the cost of collecting vibration data for analysis

at a centralized base station is greatly reduced.

Finally, the last part of this dissertation discusses work toward a system for clinical

early warning and intervention. The feasibility of this approach is demonstrated

through preliminary study of an early warning component based on historical clinical

data. An ongoing clinical trial of a real-time monitoring component also provides

important guidelines for future clinical deployments based on WSNs.
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Chapter 1

Introduction

Wireless Sensor Networks (WSNs) consist of tens or hundreds of small, inexpensive

computers equipped with sensors and wireless communication capabilities. Because

WSNs can be deployed without fixed infrastructure, they promise to enable sensing

applications in environments where installing such infrastructure is not feasible. Ex-

amples of early successful WSN deployments include monitoring environmental con-

ditions on the Great Duck Island [56], tracking the migration of Kenyan zebras [96],

and monitoring the structural health of the historical Torre Aquila tower [16].

However, the lack of fixed infrastructure also presents a key challenge for application

developers: sensor nodes must often operate for months or years at a time from fixed

or limited energy sources. With all of the sensors’ hardware components activated all

of the time, a typical node will have a lifetime of less than a week when powered by AA

batteries. Energy consumption has proved a significant challenge in real deployments

even when the nodes are powered by renewable energy sources [96] or large battery

arrays [42].

The main contribution of this dissertation is the development of reusable power man-

agement techniques which will facilitate other sensor network developers in achieving

their systems’ required lifetimes. Broadly speaking, these techniques fall into two

categories. First, power management techniques may be applied to specific hardware

subsystems; these techniques target a narrow portion of the application stack, but

are generally applicable across many classes of application. Examples of hardware-

specific techniques include low-power MAC layers [61, 93] and hardware drivers with

integrated energy management [44]. In addition to these single-subsystem approaches,

many applications can benefit greatly from holistic power management techniques

1



that jointly consider the sensing, computation, and communication costs of poten-

tial application configurations. Such techniques can have a profound effect on the

efficiency of a class of applications, but may have limited applicability to others.

In this dissertation, I discuss my work on four WSN projects, spanning both classes of

power management techniques. Chapter 2 describes the Adaptive and Robust Topol-

ogy control (ART) algorithm, which aims to conserve energy at the network stack

across a variety of applications. Chapter 3 discusses the application of holistic power

management techniques to structural health monitoring applications, specifically fo-

cusing on the Damage Localization Assurance Criterion (DLAC) algorithm. I then

discuss an evolution of this approach, using a family of numerical techniques known as

flexibility-based damage identification, in Chapter 4. Chapter 5 describes early steps

in an ongoing effort toward applying energy-efficient WSNs to clinical early warning

and real-time event detection. Finally, I conclude in Chapter 6.
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Chapter 2

Robust Topology Control for

Indoor Wireless Sensor Networks

Topology control is an example of an effective hardware-specific technique for con-

serving energy in low-power wireless networks. Topology control aims to reduce power

consumption and channel contention in wireless sensor networks by adjusting the ra-

dio hardware’s transmission power according to wireless link characteristics. However,

topology control for wireless sensor networks faces significant challenges, especially

in indoor environments where wireless characteristics are extremely complex and dy-

namic. Wireless links have highly irregular and probabilistic properties. Furthermore,

link quality can vary significantly over time, especially in indoor environments due to

human activity and multi-path effects. Topology control algorithms must therefore

deal with changes in link quality at different power levels using online measurements.

To facilitate efficient link profiling, commodity radios [78, 79] commonly provide in-

stantaneous link quality indicators such as the Receiver Signal Strength Indicator

(RSSI) and Link Quality Indicator (LQI). Unfortunately, the correlation of these in-

dicators with link quality (i.e., packet reception rate (PRR)) is highly sensitive to

the environment. For example, RSSI is shown to have a good correlation to PRR in

some outdoor and indoor environments [53, 76], while other studies indicate the op-

posite [72]. A practical topology control algorithm must therefore be robust against

environmental and workload changes while introducing minimal communication, pro-

cessing, and memory overhead.

This chapter presents an extensive empirical study performed in an office building

and provides key insights on the design of robust topology control algorithms in such

environments. Based on the results of this study, we present the Adaptive and Robust

Topology control (ART) algorithm, a practical topology control protocol algorithm

3



designed for complex and dynamic environments. ART has the following salient

features. (1) ART is designed to be robust; design assumptions are minimized and

validated through empirical studies. (2) ART is an adaptive topology control protocol

that adapts the transmission power in response to variations in link quality triggered

by either environmental changes (e.g., changes in signal or noise levels) or varying

degrees of network contention. (3) ART is efficient, introducing zero communication

overhead for applications which already use packet acknowledgements.

We have implemented ART in a topology layer between the MAC and routing layers

in TinyOS, adding only 392 bytes of RAM and 1.5 kilobytes of ROM and requiring

minimal changes to upper-layer routing protocols. We assess the performance of ART

on a 28-node indoor testbed through micro- and macrobenchmarks. The microbench-

marks demonstrate that ART can lower the energy consumption of individual links

by an average of 15% with no loss in link quality. The macrobenchmarks show that

ART’s performance meets that of a representative topology control algorithm, PCBL,

without introducing PCBL’s bootstrapping cost. We also show that ART can improve

energy efficiency by up to 40% under heavy contention.

2.1 Related Work

In this section, we describe existing studies into the impact of various environmental

and spatial factors on the performance of wireless sensor network links. We also

discuss state-of-the-art topology control algorithms that attempt to select the proper

power setting for wireless links in the face of the complex behavior observed in these

studies.

2.1.1 Empirical Link Studies

A significant number of existing link quality studies [49, 67, 76, 87, 98] evaluate link

performance at a single, fixed power setting. More closely related to the work in this

chapter are empirical link studies which explore the properties of wireless links at

varying power levels. [30,97] observe that radio ranges are highly irregular and do not

fit circular radio models in practice. [72] finds a temporal impact on link quality with

the Chipcon CC1000 radio [79] in an indoor testbed environment and notes that some

4



middling-quality links can be converted to good-quality links with small changes in

transmission power. [53] notes a strong correlation between RSSI and PRR on the

Chipcon CC2420 radio [78], independent of time or transmission power, in three

different environments; it also shows a strong correlation between transmission power

and RSSI which varies across links and across time.

The link quality study discussed in Section 2.2 builds on these existing studies and is

complementary to this work. These experiments are carried out on a complex indoor

testbed of motes equipped with 802.15.4-compliant Chipcon CC2420 radios; previous

studies consider older, proprietary radios [30,72,97] or were carried out in a simplified

indoor environment [53]. The study also provides new insights into several areas of

interest to topology control algorithms, such as the impact of transmission power on

contention; whether link indicators are robust indoors; and whether links which are

high-quality over the short term remain high-quality over the long term.

2.1.2 Topology Control Schemes

We discuss here a number of existing topology control algorithms. We begin by

examining a class of theoretical algorithms that have been evaluated only in software

simulations. We will then describe two state-of-the-art topology control algorithms,

which are based on extensive link quality studies and have been deployed on real

sensor networks. Throughout this section, we highlight several key assumptions made

by these algorithms; Section 2.2 evaluates the robustness of these assumptions as part

of the empirical study.

Theoretical Model-Based Algorithms

Traditionally, topology control schemes have been built on simplified theoretical radio

models (such as graph-based connectivity) and tested in simulation environments.

However, these traditional topology control schemes are not always appropriate for

wireless sensor networks. These topology schemes make simplifying assumptions such

as circular radio range [51, 52] or uniform node distribution [9] which are unrealistic

in many wireless sensor network applications. Moreover, a typical wireless sensor

node has limited computational power and storage capacity, which mandate topology

control algorithms with low processor overhead and memory consumption.

5



A more recent trend in theory-based topology control is to quantify the interference of

a network graph and explicitly consider this metric when selecting a network topology.

Theoretical models that consider interference represent a more accurate view of real-

world wireless sensor network environments than those that do not. Nevertheless,

existing interference-based algorithms still make unrealistic simplifying assumptions

such as circular radio range [14], global knowledge [10], or the ability to perform

complex computations online [33]. These assumptions limit the applicability of these

algorithms for real sensor network deployments.

LMST [52] is a representative theoretical model-based algorithm which is specifically

designed to fit the communication and computational constraints of wireless sensor

networks. LMST computes a reduced-power network topology by constructing a min-

imum spanning tree over the network in a fully-distributed fashion. The transmission

power of each link in this topology is shrunk according to the observed path loss.

When computing the network’s MST, LMST assigns a cost to each link proportional

to its physical length. However, existing studies have found a much more complex

relationship between link length and link quality [30,72,97]. LMST also requires that

all nodes know the physical distance to their neighbors in order to operate in a truly

decentralized fashion.

PCBL

PCBL [72] is one of the first topology control algorithms to be deployed in a real-

world sensor network testbed. Using extensive empirical data collected from an indoor

testbed of PC104 motes, the authors observe that high-quality links also tend to be

highly stable. Specifically, they note that links with a PRR above 98% during a seven-

day experiment had a standard deviation of 2.2%, while links with a PRR above 90%

had a standard deviation of 19.8%. Based on these observations, the authors proposed

that PCBL maintain two separate bounds on link quality. Links which fall below the

lower PRR bound at all power levels are considered unreliable and blacklisted (i.e.,

never used for transmissions). Links which achieve the upper PRR bound at some

power setting are considered highly reliable, and their power is shrunk to the lowest

such setting. Finally, links which fall between these two extremes are considered

reliable enough to use, but only at maximum power.
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It is impractically expensive to maintain comprehensive PRR data over all power

levels at runtime, since this would require PCBL to continuously probe a node’s

neighbors at all power levels. Instead, the basic PCBL algorithm approximates this

behavior by extensively probing links once at all power settings and then freezing

this link quality data. The intuition behind this approximation is that high-quality

links are also highly stable, so PCBL will inherently favor links which are resilient to

changes in network conditions.

[72] suggests that PCBL’s runtime overhead could be lowered by initially collecting

link statistics at maximum power, allowing the routing layer to bootstrap and select its

neighbors, and then only tuning the transmission power over those links actually used

for routing. This lowered overhead would allow PCBL to bootstrap more frequently

and hence be even more resilient against link quality fluctuations. However, this

approach would conflict with highly-dynamic routing engines like TinyOS’s Collection

Tree Protocol [34] which continuously send beacons during the application’s lifetime

to discover less-expensive routes.

ATPC

ATPC [53] is designed to avoid costly link probing by using an instantaneous link qual-

ity metric as a proxy for PRR. The authors gathered RSSI, LQI, and PRR statistics

in three different environments: a parking lot, a grassy field, and an office building.

They discovered a strong correlation between RSSI and PRR (and between LQI and

PRR) along a monotonically-increasing curve. The shape of this curve varied for each

environment but was consistent across all links, power settings, and times within a

given environment. Once the authors collected enough data offline to construct this

curve, they were able to convert a lower-bound on PRR into a corresponding lower

bound on RSSI or LQI.

The authors also noted a linear correlation between transmission power level and

RSSI/LQI readings at the receiver. Unlike the RSSI-to-PRR curve, this parameters of

this line varied across links and over time. ATPC estimates the slope and Y-intercept

of this line at runtime for each link and dynamically adjusts this model using a closed

feedback loop. Using this model, ATPC selects the proper transmission power to

achieve the necessary lower bound on RSSI and, by proxy, the lower bound on PRR.
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2.2 Empirical Study

This section present an empirical study which considers four questions at the core

of topology control algorithms: (1) is topology control beneficial?; (2) what is the

impact of transmission power on contention?; (3) is it necessary to dynamically adapt

transmission power online?; and (4) are instantaneous indicators of link quality (such

as RSSI and LQI) robust in indoor environments? In answering these questions, we

provide guidelines for the development of topology control algorithms, which we apply

to the design of the ART algorithm in Section 2.3.

The results presented in this section are complementary to the empirical power con-

trol studies presented in [53,72]. The empirical results presented in [72] were obtained

using the CC1000 radio platform; the experiments in this section are performed on

Chipcon CC2420 radios, which comply to the IEEE 802.15.4 physical layer specifi-

cation. The two radio platforms are significantly different [78, 79]: they operate in

different frequency domains and use different modulation schemes. The empirical re-

sults in [53] were also obtained using the CC2420 radio; however, they considered only

simple network layouts where nodes have line-of-sight communication. In contrast,

the deployment used in this study spans a floor of an entire building; a significant

number of links are also formed between nodes without line-of-sight.

The empirical study presented here validates many of the findings of previous studies.

Moreover, we also provide important new insight into the impact of transmission

power on contention. In particular, we find that some assumptions underlying the

design of PCBL and ATPC do not hold on our testbed. These discrepancies are caused

by the different radio platforms and environments in which the experiments were

performed. These observations served as the foundation for developing a topology

control algorithm that is robust in different indoor environments.

2.2.1 Experimental Setup

All experiments are performed on a testbed consisting of 28 TelosB motes equipped

with CC2420 radios using Tiny-OS 2.x’s default CSMA/CA MAC layer. Each node

is connected to a central server using a wired USB and Ethernet backbone. This

backbone is used as a back-channel to issue commands to the motes and collect

experimental results without interfering with ongoing wireless transmissions.

8



The CC2420 radio chip can be programmed to operate at 8 different power levels1

with output power ranging from −25 dBm to 0 dBm and current consumption ranging

from 8.5 mA to 17.4 mA [78]. The CC2420 radio also provides an RSSI reading and

LQI reading embedded in the metadata of all incoming packets. The RSSI reading

represents a sampling of the signal strength (transmission + background noise) taken

at the beginning of the packet reception, while the LQI reading represents the average

symbol correlation value over the packet’s first eight symbols. In order to estimate

background noise, applications may sample the CC2420’s RSSI register when the

radio is idle. The CC2420 may be programmed to operate on different frequencies;

all experiments here are performed on a channel that does not overlap with the

building’s 802.11g network.

2.2.2 Is Topology Control Beneficial?

Topology control is an attractive mechanism because it can simultaneously improve

energy efficiency and network performance. Here, we evaluate the potential benefits

of topology control in our indoor testbed.

To isolate the impact of topology control on link quality and energy savings, we per-

formed an experiment in which there is no network contention. Each node broadcasts

50 packets while its neighbors record the sequence number, RSSI reading, and LQI

reading of all packets that they receive. The node repeats this procedure at each

of the CC2420’s eight discrete power levels for a total of 400 packets. After a node

completes sending its 400 packets, the next sending node is selected in a round-robin

fashion. This cycle repeated for 24 hours, giving each node 49 rounds to transmit 400

packets each.

During the course of the experiment, at least one successful packet transmission was

recorded on 524 of the network’s 756 possible unidirectional links. Figure 2.1 shows

the network topology during this experiment at three different power levels, where

line thickness is proportional to the packet reception ratio (PRR). The topology at

maximum power (0 dBm) and medium power (−5 dBm) are fairly similar, both in

terms of connectivity and link quality. In contrast, the minimum power (−25 dBm)

topology has partitioned the network into clusters of mostly high-quality links. These

1Though the CC2420’s transmission power register can be set between 0–31, the CC2420
datasheet only defines output power information for 8 of these 32 settings.
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Figure 2.1: The testbed topology when transmitting at 0 dBm, −5 dBm, and −25
dBm

figures highlight the potential benefits of assigning non-uniform transmission powers

to different nodes: it is sufficient to transmit at −25 dBm to reach nearby nodes, but

other links require higher transmission powers to achieve connectivity. This confirms

experiments carried out in [72] and [53] showing that uniform power settings across

the network lead to non-uniform behavior.
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Figure 2.2: A significant fraction of poor quality links may be transformed into high
quality links through topology control

To better understand the benefits of tuning the transmission power, we computed the

PRR of each link during the entire benchmark run; the CDF of link PRRs is shown

Figure 2.2(a). Changing the transmission power can affect a large fraction of the

links in the testbed: for example, 368 links (70.2%) have a PRR of 0 at −25 dBm,

compared to 82 (15.6%) at −5 dBm. Figure 2.2(b) shows a similarly dramatic effect,

where three links selected from our testbed go from unusable at -10 dBm to medium

quality at -5 dBm. This confirms the results in [72] which indicate that transmission
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power can transform a significant number of poor quality links into good quality links.

We also note that a slightly higher proportion of links have poor link quality at 0

dBm than at −5 dBm in Figure 2.2(a). A handful of nodes performed worse when

transmitting at 0 dBm than at lower power settings, which we believe is caused by

multi-path effects that are more pronounced at maximum power. This phenomenon

may also be seen in Figure 2.2(b) for link 104→ 105.

Similarly, reducing a link’s transmission power can result in significant energy savings.

To quantify these savings, we inspected the traces collected during the previous ex-

periment. For each link, we computed the PRR for each round using the max-power

data, and then selected the lowest power level for each round that had no degradation

in PRR compared to max-power (i.e., the power setting that a topology control algo-

rithm with perfect knowledge would have picked). When the maximum transmission

power is used, a node would draw 17.4 mA, compared to an average current draw of

11.4 mA under an ideal power assignment.

Insight 1: Transmission power should be set on a per-link basis to improve link

quality and save energy.
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Figure 2.3: Effect of transmission power on contention

2.2.3 What is the Impact of Transmission Power on Con-

tention?

While increasing transmission power improves the quality of individual links, its also

may result in increased contention. To understand the impact of transmission power

on contention, we performed the following experiment. Ten links (selected at random
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from the testbed) simultaneously transmit packets as fast as possible for 24 hours.

Each node transmits 200 packets, after which the power level is changed. Figure

2.3 plots the average PRR over all links as transmission power is increased from

−25 dBm to 0 dBm. Increasing the transmission power up to −7 dBm has a posi-

tive effect on link quality; however, increasing the power further results in decreased

PRR. This happens because the benefits of increased transmission power are offset by

higher contention, increasing packet collisions and decreasing throughput. The data

indicates that power control is an effective mechanisms for controlling the degree of

network contention. Moreover, robust topology control cannot be performed without

accounting for this link quality/contention tradeoff.

Insight 2: Robust topology control algorithms must avoid increasing contention un-

der heavy network load.

2.2.4 Is Dynamic Power Adaptation Necessary?

One important consideration for topology control protocol design is the rate at which

their power decisions need to be re-evaluated. If the rate of change in link quality

is sufficiently low, then it is feasible to make infrequent decisions that incur high

communication or computational overhead. To address this question, we ran a long-

term experiment on a few links to determine the time-scale of link variations. The

setup for this experiment is identical to that in Section 2.2.2, except it was carried out

over only 3 links with 100 packets per power level per round. By reducing the number

of links profiled and increasing the number of packets per link, the experimental traces

capture a fine-grained view of how link quality varies over time. We remind the reader

that we select a radio frequency for these experiments with little background noise.

However, the nodes also sample 50 signal strength readings in the beginning of each

round when no node is transmitting, to validate that the background noise does not

vary significantly over the duration of the experiment.

Figure 2.4 shows the PRR, RSSI, and background noise for one of the sampled links;

the other measured links had similar results. Figure 2.4 indicates a correlation be-

tween RSSI and human activity: during work hours, from 8:00 to 18:00, there is

a significant reduction in RSSI along with an increase in its variation; in contrast,

during the night, the link is significantly more stable.
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Figure 2.4: The PRR, mean signal strength, and background noise collected over link
110 → 139
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A similar correlation may be observed for PRR, which is more pronounced for lower

transmission powers. This correlation is expected because even small noise variations

may cause packets transmitted at lower power levels to be corrupted. The trace

shows that in order to maximize energy savings, the transmission power must be

tuned dynamically based on environmental conditions.

Apart from one outlying data point, the background noise on the wireless channel

is stable during the entire benchmark run, suggesting that increased activity on the

wireless spectrum during the workday was not responsible for this cyclical link quality

fluctuation. The sharp variations in link quality may be attributed to people walking

around the building during the daytime; similar results were observed on the CC1000

radio [72]. These results indicate that topology control schemes must frequently

adapt link transmission power over time in order to avoid significant variations in

link quality.
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Figure 2.5: The relationship between overall PRR and standard deviation in PRR

An important characteristic of high-quality links is that they have high PRR and low

standard deviation. This assumption has been validated on long-term experiments

on the CC1000 radio [17, 72]. Protocol developers use this assumption to argue in

favor of performing a bootstrapping phase in which such high quality links are identi-

fied. Unfortunately, based on the data collected in Section 2.2.2, a strong correlation

cannot be established between PRR and standard deviation without collecting an

impractically large amount of PRR data. Figure 2.5 plots the relationship between

each link’s overall standard deviation in PRR (i.e., its actual stability over the entire

benchmark) against the PRR calculated by looking at the first data round (50 pack-

ets/link), 12 hours’ worth of link data (1000 packets/link), and the entire benchmark

dataset (1950 packets/link). Links with an overall PRR of 98% or higher during the

full 24-hour dataset indeed have low standard deviation (right). However, looking

at links with a 98% PRR within the first round of data (left) results in a 6.8-fold

increase in standard deviation. Even selecting links with ≥ 98% PRR over 12 hours’
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of data (center) would result in a 3.2-fold increase in standard deviation compared to

the full dataset. This indicates that, in some environments, even many hours’ worth

of bootstrapping data is insufficient to properly predict a link’s long-term behavior.

PCBL [72] suffers from this design pitfall, because a short bootstrapping phase is

used to predict the long-term link quality.

Insight 3: Robust topology control algorithms must adapt their transmission power

in order to maintain good link quality and save energy.

2.2.5 Are Link Indicators Robust Indoors?

Commodity radios generally provide per-packet link quality indicators, such RSSI and

LQI. Because these metrics are instantaneous and inexpensive to collect, they are an

attractive proxy for more expensive link quality indicators such as PRR. The relative

benefits of these metrics are still a subject of debate in sensor network community: for

example, [76] advocates measuring link quality using RSSI over LQI, while [53] reports

that both RSSI and LQI are good indicators of link quality. This subsection present

an empirical study designed to understand if either RSSI or LQI are always good

indicators of link quality in complex indoor environments. To this end, we performed

an experiment which transmitted 50 packets over each pairwise link in our testbed at

maximum power. Each time a packet was received, the recipient logged the packet’s

sequence number, RSSI reading, and LQI reading. By restricting experiments to a

single power level, 672 rounds of data were collected over a period of 32 hours.

If there exists some critical RSSI or LQI threshold which separates “good” (high PRR)

links from “bad” (low PRR) links, then these inexpensive metrics could be used as

good indicators of PRR. Using several different PRR thresholds to define “good”

links, we aimed to find these critical RSSI and LQI thresholds in the experimental

collected data collected above. These critical thresholds should represent the best

compromise between false positives (i.e., links above the LQI/RSSI threshold but

below the PRR threshold) and false negatives (i.e., links above the PRR threshold

but below the LQI/RSSI threshold). For the purpose of brevity, the results for two

links are presented here at PRR thresholds of 80% and 90%.

Figure 2.6(a) shows the results for link 106→ 129. Each point in the scatter plots rep-

resents the relationship between mean RSSI/LQI and PRR for one 50-packet round.
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50 60 70 80
0

0.2

0.4

0.6

0.8

1

LQI

PR
R

50 60 70 80
0

0.2

0.4

0.6

0.8

1

LQI

Fa
ls

e 
ne

ga
tiv

es
/p

os
iti

ve
s

 

 

fp, prr=.90
fn, prr=.90
fp, prr=.80
fn, prr=.80

−90 −88 −86 −84 −82 −80
0

0.2

0.4

0.6

0.8

1

RSSI

PR
R

−90 −88 −86 −84 −82 −80
0

0.2

0.4

0.6

0.8

1

RSSI

Fa
ls

e 
ne

ga
tiv

es
/p

os
iti

ve
s

 

 

fp, prr=.90
fn, prr=.90
fp, prr=.80
fn, prr=.80

(b) Link 104→ 105

Figure 2.6: Quality of RSSI and LQI as instantaneous indicators of link quality

The graphs seem to indicate a correlation between the instantaneous link estimators

and PRR. When setting the PRR threshold to 90%, the best trade-off between false

positive and false negative rates is at LQI = 76. At this threshold, the false positive

and false negative rates are at 18% and 16% respectively. RSSI yields similar results,

with a false positive rate of 6% and false negative rate of 8% at the critical RSSI

threshold of 86 dBm. The results when reducing the PRR threshold to 80% are sim-

ilar. These results indicate that both LQI and RSSI are good indicators of this link’s

quality.

Figure 2.6(b) shows the results for link 104→ 105. The scatter graphs indicate that

the correlation between link indicators and PRR is worse than that observed on the

previous link. Indeed, when setting the PRR threshold to 90%, the optimal LQI

threshold of 70 has a false positive rate of 30% and a false negative rate of 36%.

RSSI performs even more erratically, with the optimal threshold being at either -85

dBm or -84 dBm. At an RSSI threshold of -85 dBm, the false positive rate is 4%

while the false negative rate is 62%; increasing the RSSI threshold to -84 dBm causes

these rates to jump to 66% and 6% respectively. This sharp transition indicates that

RSSI would be an unstable estimator of this link’s quality, while LQI would have a

significant fraction of false negatives and positives. Similar behavior is observed with

a PRR threshold of 80%.

This set of experiments demonstrate that, although there are links for which LQI and

RSSI are good link quality indicators, there are others for which they are both poor
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indicators. Accordingly, neither LQI nor RSSI may be used for developing robust

topology control algorithms.

ATPC [53] relies on RSSI as an indicator of link quality. Since RSSI is not always a

good indicator of high quality links, we do not expect ATPC to be sufficiently robust

for operating in all indoor environments.

Insight 4: Instantaneous LQI and RSSI are not robust estimators of link quality in

all environments.

2.3 The ART Algorithm

This section presents the design of a new topology control algorithm, Adaptive and

Robust Topology control (ART). ART is designed based on the key observations in the

previous section and has the following salient features. (1) ART is designed to be a

robust topology control algorithm: it does not use indirect measurements of link qual-

ity because they are not sufficiently robust in different indoor environments. (2) ART

is an adaptive algorithm, in that it changes the transmission power of a link based

on its observed PRR. Moreover, ART employs a lightweight adaptation mechanism

and does not employ prolonged bootstrapping phase for link profiling. (3) ART can

dynamically adapt the transmission power in response to high channel contention.

(4) ART is specifically designed to be efficient, so that it can be realistically deployed

on memory-constrained wireless sensor platforms with low runtime overhead.

2.3.1 ART Algorithm Description

ART individually tunes the transmission power over each of a node’s outgoing links.

A link is initially set to transmit at its maximum power. ART monitors all outgo-

ing packet transmissions and keeps a record of whether each transmission failed or

succeeded in a sliding window of size w. While the window is filling, a link is said

to be “initializing”. When the sliding window is full, ART compares the number of

recorded transmission failures to two thresholds d and d′, where d > d′. The link

remains in this “steady” state as long as the number of failures is between these two

thresholds.
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If the recorded number of failures is above d, then ART adjusts the link power to im-

prove its quality. ART may raise the link’s transmission power to improve its quality

under low contention, but may lower its transmission power under high contention.

As detailed in Section 2.3.3, ART uses a simple gradient-based mechanism to detect

high contention based on recent history. After selecting a new power setting, ART

will flush the transmission window and re-enter the initializing state.

If the number of failures is below d′, then ART will enter a “trial” state where it

temporarily lowers the power by one level. If the link experiences d′ more transmission

failures at any time while in the trial state, then it returns to the previous power level,

flushes its transmission window, and goes back to the initializing state. If the link’s

window fills with fewer than d′ recorded transmission failures, then the new power

setting is made permanent and the link goes back to the steady state.

This algorithm has several salient features worth emphasizing. First, it makes its deci-

sions by monitoring traffic already being generated by the upper layers, and therefore

introduces no communication overhead apart from packet acknowledgements2. Sec-

ond, the largest component of its memory overhead is a sliding window of one bit

per entry, which in practice can be as small as 20 to 50 entries per link. Third,

ART makes no computationally-complex decisions, and hence can be implemented

with minimal ROM and CPU overhead. Finally, ART does not always assume that

increasing transmission power will improve link quality, since this is not always the

case under high contention and interference (see Section 2.2.3).

INITIALIZING STEADY

TRIAL

window full

failed > d

failed < d'

window fullfailed = d'

Figure 2.7: ART state transition diagram

Figure 2.7 summarizes the ART algorithm as a state diagram. We will now discuss

in further detail the intuition behind this algorithm.

2Because packet acknowledgements are needed for reliable data transmission and part of many
routing protocols, in practice ART will often receive these acknowledgements “for free”.
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2.3.2 Link Quality Thresholds

The most straightforward indicator of a link’s quality is its PRR. ART is therefore

designed to lower the link’s power while still maintaining an application-specified

target PRR. Consider an application that specifies a target PRR of p. ART can

inexpensively track the link’s recent behavior by creating a sliding window of w bits,

where each bit represents a single transmission and indicates whether it was ACKed

by the recipient. A link meets a target PRR p if there are d = w ·(1−p) or fewer failed

transmissions in its window at any given time. Each link’s power should therefore be

tuned to the lowest power that can keep d or fewer failures in the link’s window.

However, a link’s transmission power cannot necessarily be lowered each time it is

within its upper-bound on failures. Because of the bimodal relationship between

transmission power and PRR observed in Section 2.2.2, this might result in an actual

PRR much lower than p. After the link changes power, it must flush its packet

window to reflect the potential change in link quality. The application must therefore

transmit an entire window of w packets over the link before ART can detect that its

link quality has degraded. If the link’s previous power was at the critical threshold

between a high-quality link and a low-quality link, there may be more than d failures

at its new power state. In the worst case, the link may alternate between two power

states in which d− 1 transmissions fail in one window, followed by all w in the next

window.

ART therefore incorporates two policies to address this problem. First, an entire

window does not need to be filled to detect link failure. As soon as there are d

delivery failures in the window, it is impossible to meet the target PRR p once the

window is full. Thus, links are first moved into a “trial” state, where they transmit

packets at a lower power setting but immediately return to a higher power level if too

many failures are detected. Links which successfully pass the trial with a full window

are moved back into the “steady” state at the reduced power.

Second, we create another PRR threshold to accommodate the potential transmission

failures in this “trial” state. Specifically, we want to select a second PRR threshold p′

and a corresponding failure threshold d′ = w · (1−p′). We select p′, d′ such that a link

may lose up to d′ = w · (1 − p′) packets during a w-packet window, allowing it trial

to a lower power; fail up to d′ packets at the lower power level, forcing it back to its

original power level; and still achieve a PRR of p. In the worst case, this is satisfied by
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failing d′ = w · (1− p′) out of w transmissions at the current power level, then failing

all d′ = w · (1− p′) out of the next d′ at a lower power; i.e., w·(1−p′)+w·(1−p′)
w+w·(1−p′) ≤ 1− p.

This inequality holds when p′ ≤ 2p
p+1

, and hence we choose d′ = 2p
p+1
· w.

2.3.3 Handling High Contention

Consider the case when a link fails, i.e., it falls below its PRR threshold of p by

accumulating more than d transmission failures in its window. As noted in Section

2.2.3, increasing transmission power can in fact decrease overall link quality, due

to contention and interference from other nodes. ART addresses this problem by

maintaining a flag which indicates whether to increase or decrease transmission power

on link failure. This flag is initially set so that ART responds to link failure by

increasing its transmission power by one level.

Each link also maintains a one-element history recording the number of transmission

failures in its window the last time that the link failed. When ART determines that

a link has failed, it compares the current failure count against this history. If the

current failure count is higher (i.e., increasing the power made things worse), then

ART inverts this flag. In effect, this flag allows ART to track the “gradient” of its

current position on the power/PRR curve without maintaining a full multi-window

history.

Rather than devising a complex scheme for detecting congestion or coordinating the

power decisions across nodes, ART uses this “gradient” solution due to its simplicity

and elegance: (1) minimal state is required for maintaining the gradient; (2) there is

no significant processing overhead; and (3) it introduces no additional communication

overhead. Macrobenchmarks presented in Section 2.5 show the effectiveness of the

proposed solution.

2.3.4 Handling Broadcast Traffic

Throughout this section, we have assumed that the radio is sending traffic in a strictly

unicast fashion. However, broadcast traffic is frequently used in sensor network ap-

plications for disseminating information to multiple neighbors in the node’s one-hop

neighborhood. It is important to note that there are actually two distinct types of
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broadcast traffic as far as topology control is concerned: true broadcast data, and

multicast data.

Multicast data packets are those which need to be distributed to all (or some subset)

of neighbors in the node’s neighbor table. For example, data dissemination packets

may fall under this category. For these packets, ART transmits with the maximum

power setting among all the node’s one hop neighbors. This policy ensures that all

neighbors can receive the message, but that the node may still be able to transmit

below maximum power if it has good-quality links to all of its neighbors.

True broadcast packets, on the other hand, should be sent to all one-hop neighbors

including those that are not in the node’s neighbor list. Routing-layer beacon pack-

ets are a good example of this kind of traffic: lowering the power setting to cover

the known neighborhood is counter-productive, since the routing layer intends to dis-

cover neighbors that it does not already know about. ART handles this traffic by

broadcasting it at maximum power.

2.3.5 Overhead Analysis

We note that ART generally introduces no communication overhead aside from packet

acknowledgements, since it operates solely on data packets being sent by the upper

layers. ART also has very low memory overhead: it needs a single bit to track the

contention “gradient”; one byte to track the broadcast power; three bytes per link

to track its state, transmission power, and last packet failure count; w bits per link

to store its PRR window data; and 2 logw bits per link to store its window size and

position. As demonstrated by measurements in Section 2.5.1, this RAM requirement

is well within the capabilities of existing sensor network hardware.

In networks with sporadic traffic patterns, there may not be enough data packets for

ART to keep its sliding window up-to-date. There should be at least w packets sent

within the time that it takes for links’ quality to fluctuate (which is dependent on

network properties). ART could be augmented to deal with low-traffic workloads by

injecting beacon packets into the network when the transmission rate over a link falls

below this lower bound. Note that, because ART operates below the routing and link

layers, it can often leverage these layers’ control packets to update its sliding window

even in the absence of application-layer transmissions.
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2.3.6 Energy Efficiency

As a topology control algorithm, ART is designed to minimize the transmission power

of individual links. In many sensor network applications, it is important to reduce

the total energy consumption, since it has a direct impact on sensor lifetime.

Because ART is designed to minimize the transmission power of a link without vio-

lating the user-specified PRR bound, its energy efficiency depends the user selecting

an appropriate PRR threshold for their application. For example, a threshold of 50%

may not be appropriate for an application which requires 100% end-to-end reliable

data transmission, because ART may cause nodes to spend more energy on retrans-

missions than is saved by reducing the radio power. A threshold of 95% would be

more appropriate for this environment, since a 5% retransmission overhead would

likely be offset by similar or larger reductions in transmission power. (For example,

on the CC2420 radio, even reducing the output power level from 0 dBm to −1 dBm

will reduce the radio’s current consumption by over 5%.) As shown in Section 2.5,

ART is able to reduce transmission power with proportionally smaller drops in PRR.

In addition, because of ART’s contention-handling optimization, it is sometimes able

to increase the PRR while reducing the transmission power. These benchmarks

demonstrate that ART is energy-efficient in practice.

2.4 Implementation

In this section, we present our implementation of ART for the TinyOS 2.1 operating

system [1]. ART is implemented on top of the component-based MAC Layer Ar-

chitecture (MLA) [43]. MLA augments TinyOS’s low-level radio drivers to provide

the hardware-independent interfaces required by timing sensitive power management

protocols. By leveraging these pre-existing interfaces, we are able to implement ART

as platform-independent components within MLA. MLA also includes components

that represent common MAC functionality and implements several optional power-

saving MAC layers; we used a MAC layer which implements TinyOS 2.1’s default

CSMA/CA logic.

In this section, we discuss two major aspects of the implementation effort. First, we

discuss the design of a new topology control layer on top of MLA. Second, we describe
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changes to TinyOS’s Collection Tree Protocol (CTP) [34] routing layer to allow it to

modularly support a variety of underlying topology control schemes.

2.4.1 Interfacing with MLA

To implement ART, we used the existing MLA codebase and inserted a topology

control layer into the radio driver architecture above the existing MAC layer, as shown

in Figure 2.9. In keeping with the MLA design goals, we wished to design the topology

control layer in a hardware-independent fashion, allowing it to be plugged into future

MLA-supported radio stacks with little or no additional effort. We found that TinyOS

and MLA already included platform-independent interfaces for the majority of the

radio functionality needed by topology control schemes. However, there were two

specific radio features for which we needed to create platform-independent hooks:

adjusting the radio power and getting the signal strength of incoming packets.

To allow the topology control layer to adjust the radio power, we created the

PacketPower interface:

interface PacketPower {

async command uint8_t getPower(msg);

async command void setPower(msg, power);

async command uint8_t minimum();

async command uint8_t maximum();

}

The getPower() and setPower() commands respectively get and set fields in the

packet metadata corresponding to the power level at which the radio should trans-

mit the packet. These commands are taken from TinyOS’s CC2420Packet interface,

where the 8-bit power value is mapped directly onto the format of the CC2420’s

5-bit PA LEVEL register. We therefore adjusted the semantics of the PacketPower

interface to be more radio-independent. We added minimum() and maximum() com-

mands to represent the range of the radio output power, and defined the behavior

of the getPower() and setPower() commands so that all discrete values between

minimum() and maximum() inclusive are mapped to radio-supported settings. As

noted in Section 2.2, the CC2420 datasheet only defines the power output behavior
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for 8 of the possible 32 PA LEVEL settings: 3, 7, 11, etc. We therefore modified the

CC2420 stack to present its power range to the application layer as the contiguous

range 0 . . .7, which it maps internally to supported PA LEVEL settings.

The PacketQuality interface contains a single getRssi command, which returns the

signal strength of an incoming packet3:

interface PacketQuality {

async command int8_t getRssi(msg);

}

Like the getPower() and setPower() commands, we extracted the existing

getRssi() command from TinyOS’s CC2420Packet interface but modified its se-

mantics to be radio-independent. The CC2420Packet interface directly returns the

RSSI reading provided by the CC2420 radio chip, which is ∼45 dBm above the actual

signal strength [78]. We redefined getRssi() to return the actual signal strength of

the packet in dBm, and correspondingly modified the CC2420 stack to subtract 45

from RSSI readings provided to the application layer. While the ART algorithm does

not use this functionality, other topology control algorithms (such as ATPC) require

RSSI readings to select the appropriate output power level.

We also observed that the current CC2420 radio stack leaves the radio’s PA LEVEL

register set according to the most recent data packet transmitted. This behavior has

a subtle implication for ACK packets: they will be transmitted at whatever power

setting the last data packet was transmitted at, even if the ACK is being sent to a

different neighbor. Because the CC2420 radio automatically generates ACK packets

in hardware, we cannot instrument the CC2420 stack to set the optimal power setting

of these ACK packets according to the topology layer’s decision. Instead, we reset

the PA LEVEL register to the maximum power after transmitting each data packet, so

that all subsequent ACKs will be sent at max power.

2.4.2 Interfacing with CTP

The tree-based CTP routing protocol is the default routing protocol in TinyOS 2.x.

CTP designates one or more nodes in the network as sink nodes. All other nodes in

3PacketQuality does not include a corresponding getLqi() command since LQI only applies to
physical layers based on the 802.15.4 specification.
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Figure 2.8: CTP’s original organization and architecture

the network recursively form routing trees which are each rooted at one of these sink

nodes. Nodes periodically broadcast beacon packets which serve two purposes. First,

they contain a sequence number field which TinyOS’s link estimator component uses

to compute the Estimated Transmission Count (ETX, roughly 1
PRR

) to each node’s

one-hop neighbors. Second, nodes embed in these advertisements an estimate of the

total cost (initially 0 for sink nodes and∞ for all other nodes) of routing a data packet

to the sink through them. Non-sink nodes then select a parent on a routing tree by

collecting their advertised routing costs, adding their one-hop ETX, and selecting

the neighbor with the lowest total routing cost. Because CTP sends these beacons

periodically, nodes can dynamically change their parents as link quality fluctuates.

The topology control layer is largely agnostic to the routing and application layers

sitting on top of it: it only requires an external neighbor table for storing its own link

quality data at runtime. We discovered that CTP’s default implementation is poorly-

suited to allow other components to embed data in its neighbor table. As shown

in Figure 2.8, TinyOS does not provide a single shared neighbor table component.

Instead, TinyOS’s link estimator component (which computes the ETX across one-

hop links to neighbors) and the CTP routing component (which computes the ETX

across paths going through neighbors) maintain separate tables for their respective
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link quality data. This design choice increases the complexity of both components,

since they must each include code to manage their own neighbor tables and to keep the

two tables coherent. It also forces the LinkEstimator interface to include additional

commands and events for the sole purpose of keeping the two tables coherent. As a

result, although CTP and the beaconing link estimator are nominally independent

components, as currently implemented they are tightly coupled.

We determined that extending this approach to include a third neighbor table (for

the topology control layer) would be too clumsy. Instead, we extracted the neighbor

table management code from CTP and the link estimator and used it to create a

separate NeighborTableC component. Each entry in the table is now split into three

“columns”: one each for the link estimator, routing engine, and topology control. To

flexibly support different link estimator, routing, and topology control components,

each component defines a nesC struct type representing its own data (link estim-

ator data t, etc.) which the neighbor table treats as a black box.

We extracted all of the neighbor table management functionality from the

LinkEstimator interface and moved it into a new NeighborTable interface, which

simplified wiring and provided a better separation-of-concerns. The resulting archi-

tecture is shown in Figure 2.9; the link estimator, routing components, and topology

control layer are now decoupled. The only significant inter-component dependency is

26



that CTP’s forwarding engine uses the simplified LinkEstimator interface to query

the link estimator component.

As discussed in Section 2.3.4, ART should send CTP’s broadcast beacons at maximum

power. Because TinyOS does not differentiate between multicast and broadcast traffic

at the radio layer, the ART implementation instead approximates the desired behavior

by treating CTP control packets as a special case and transmitting them at maximum

power. While this approximation is specific to CTP, note that it does not introduce a

compile-time dependency between CTP and ART: ART simply looks for a well-known

constant in the TinyOS packet header which represents CTP control traffic.

Using this architecture, we implemented PCBL and ART as self-contained, platform-

independent topology control layers. We also implemented a default topology control

layer which simply passes through all packets untouched. Because these layers are

self-contained, it is possible to interchange them at compile time using a compiler

switch.

2.5 Experimental Results

In this section, we present an empirical evaluation of ART on our testbed of TelosB

motes. We first measure the ROM and RAM overhead of our implementation of

ART within TinyOS. We then evaluate ART’s performance at the link level, and then

compare ART’s performance against PCBL in a data collection scenario4. Finally, we

evaluate the effectiveness of ART’s optimization for handling contention under heavy

load.

Throughout this section, ART is deployed with a target PRR of 95% and a window

size of 50 packets. Where not otherwise specified, the implementation of ART includes

the contention-handling optimization described in Section 2.3.3. We use a neighbor

table size of 32 entries in all experiments. Note that NeighborTableC includes code

to evict old neighbor table entries, which was extracted from TinyOS’s link estimator.

Therefore in practice, the CTP default of 10 neighbors should be sufficient for most

applications; we increased the table size to 32 rows for the purposes of this benchmark

4We did not include ATPC in this performance comparison, because the codebase used in [53]
is not publicly available as of this writing, and ATPC’s relative complexity made it impractical to
reimplement.
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ROM RAM
Max Power 17794 4614
ART 19376 5006

Table 2.1: The RAM and ROM overhead (bytes) of ART

in order to isolate the topology control layers’ behavior from that of the eviction

routine.

2.5.1 Memory Footprint

A primary goal of ART is to provide a robust topology control algorithm which can

realistically be deployed on hardware-constrained sensor hardware. It is therefore

important that ART can be implemented with realistically-low overhead on RAM

and ROM consumption.

Table 2.1 compares the ROM and RAM usage statistics for the benchmark application

described in Section 2.5.2 when compiled for the TelosB motes, with and without

ART; these statistics are generated by the TinyOS toolchain. There is a 392-byte

difference in RAM consumption between ART and the default (max power) topology

layer. 384 of these bytes can be attributed to the 12-byte topology control data column

stored in the 32-row neighbor table. As noted above, most applications will not need

a neighbor table of this size and will see a proportionally smaller memory overhead.

The ROM overhead is larger at 1582 bytes, which is insignificant when compared to

the ROM size of representative sensor hardware (e.g., 48 KB for TelosB).

2.5.2 Link-Level Performance

To examine the impact of ART on a per-link basis, we performed the following bench-

mark. 29 links are selected at random from the 524 links detected in the testbed during

Section 2.2.2. A benchmark application cycled through these links round-robin, send-

ing 100 packets over the one-hop link each time it was selected. Since the benchmark

transmits only over a single link at a time, there is minimal contention. This cycle

repeated for 150 rounds over the course of 24 hours. We performed this benchmark

with no topology control (i.e., maximum power) and with the ART topology control

layer; both benchmark runs used the same 29 links.
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PRR Avg. Current
Max Power 56.7% (σ = 2.5%) 17.4 mA (σ = 0)
ART 58.3% (σ = 2.1%) 14.9 mA (σ = 0.32)

Table 2.2: The link-level performance of max-power and ART

Table 2.2 presents the overall results. Max-power and ART have an insignificant

difference in PRR results, demonstrating that ART indeed selects power levels equiv-

alent in PRR to the maximum power setting. (Because there is minimal contention

in this benchmark, ART cannot achieve a significant increase in PRR against max-

power.) ART achieves this with a 15% average reduction in current consumption over

max-power.
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Figure 2.10: The PRR distribution under max-power and ART

ART’s overall PRR of 56.7% is significantly lower than this target PRR of 95%.

This occurs because, even at maximum power, there is a bimodal distribution of link

qualities (shown in Figure 2.10). For example, 15 of the 29 links in this experiment

achieve a PRR ≥ 90%, while 9 of the 29 links achieve a PRR ≤ 10%. Note that ART

and max-power have similar PRR distributions, again indicating that ART achieves

similar PRR to max-power even on links where it is unable to meet its target.

We now take a closer look at the ART’s behavior over one interesting link in the

testbed, which is generally high-quality but still shows some link quality fluctuation.

The PRR and average current consumption of this link are shown in Figure 2.11.

We see that ART is able to lower the link’s current consumption by an average of

2.3 mA, responding to link quality fluctuations by tuning the power level accordingly.

Of particular interest is ART’s behavior during round 10 and rounds 120–140, when

link quality sharply drops and ART attempts to salvage the link by quickly going

to maximum power. As a result, ART achieves an overall PRR of 93.7% across this
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Figure 2.11: The behavior of link 129 → 106 under ART

link, close to the target PRR of 95%. ART performs slightly below the target overall

because of these two temporary but sharp drops in link quality.

2.5.3 Data Collection

We evaluated the performance of ART against max-power PCBL on a multi-hop

data collection application built on top of the CTP [34] routing library. To get

a better understanding of the link-layer packet loss, we disabled CTP’s automatic

packet retransmission routine. The application designated a particular node in the

testbed as the tree’s root, and then waited 5 minutes for the routing layer to bootstrap.

It then selected one node from the testbed and instructed it to send 200 data packets

to the sink node, which recorded the sequence number and hop count of all packets

it received. After the sender was finished with its 200 packets, another sender node

was selected in a round robin fashion. We performed this experiment for 9 rounds

over 4 hours at max-power, and then repeated the experiment with PCBL and ART.

We reimplemented PCBL using the architecture described in Section 4.3. We config-

ured PCBL to use the thresholds of 90% and 98% identified in [72]; similar thresholds

were found in our own testbed (see Section 2.2.4). To simplify PCBL’s implemen-

tation, we performed its bootstrapping procedure offline using 200 packets per node

per power level.
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Figure 2.12: The end-to-end delivery rate of max-power, PCBL, and ART under low
contention

Figure 2.12 shows the end-to-end delivery rate under these three schemes. Both

ART and PCBL achieve good PRR in this experiment, outperforming the max-power

scheme by 6.4% and 5.1%, respectively. PCBL collects a large amount of link quality

data up-front, allowing it to blacklist poor-quality links and prevent CTP from ever

considering them. ART achieves comparable performance to by reducing transmission

power, which reduces intra-path contention even when there is only one node sending

at a time. It is worth emphasizing that ART achieves this PRR without the need for

PCBL’s extensive bootstrapping phase. Also note that 75% of the sources achieve a

delivery rate of 90% or higher under ART, compared to 61% under max-power and

46% under PCBL.

Looking closely at the distribution of PRRs among the senders, max-power has

starved three of the senders with the highest average hop-counts (see Figure 2.13).

This occurs because, although there is only one node producing data at a time, CTP

will allow the application to produce a new packet as soon as the previous packet is

one hop away from the sender. Therefore, a single sender may contend with its own

packets which are still traversing a multi-hop path to the sink. This self-contention
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Figure 2.13: The relationship between PRR and hop count under max-power, PCBL,
and ART

effect is the most pronounced when all packets are sent as maximum power, result-

ing in starved nodes. This finding underscores the importance of transmission power

control, especially in multi-hop networks.
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Figure 2.14: The energy consumption of max-power, PCBL, and ART under low
contention

Figure 2.14 illustrates the total energy consumed by packet transmissions during

each of these benchmark runs, normalized to the max-power energy consumption.

ART has an energy consumption 6.6% higher than that of the max-power topology.

This increase in power consumption occurs because for two reasons. First, ART

has a 6.4% higher PRR than max-power and therefore transmits proportionally more

packets through intermediate nodes. Second, as shown in Figure 2.13, max-power has

starved the three nodes with the most expensive paths to the sink, which decreases

total energy consumption at the expense of these senders.
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Excluding its bootstrapping cost, PCBL achieves the lowest energy consumption, with

a reduction of 17% compared to max-power. PCBL’s bootstrapping cost constitutes a

60% energy overhead in this benchmark; the relative overhead will decrease the longer

the application remains active without rebooting PCBL. We project that PCBL would

have achieved equal energy consumption to ART if the benchmark were extended to

8 hours and link conditions remained stable. Note also that rebooting PCBL can

disrupt the network for extended periods of time: the bootstrapping phase took over

2 hours to complete in our testbed.

2.5.4 Handling High Contention

To explore the impact of ART’s contention handling optimization, we performed

an experiment similar to that in Section 2.2.3. Ten links selected at random from

the testbed simultaneously sent data in batches of 200 packets; this procedure was

repeated for 30 minutes. (The same set of ten links was used throughout all bench-

mark runs; in the interest of fairness to PCBL, we verified that none of the ten

links had been blacklisted.) We performed this experiment under the max-power,

PCBL, and ART topology control schemes. In order to isolate the effect of ART’s

contention-handling “gradient” optimization, we also repeated the benchmark with

this optimization disabled.

Since we also wished to capture the effect of dynamic workload changes on PCBL’s be-

havior, we reused the PCBL bootstrapping data collected for the previous experiment.

Accordingly, we do not include PCBL’s bootstrapping overhead when calculating en-

ergy efficiency.

Figure 2.15 shows the PRR of these benchmark runs. The difference in PRR between

max-power (83.6%) and the unoptimized ART (83.9%) is insignificant. This occurs

because the packet loss is too high for the unoptimized ART to ever leave the maxi-

mum power setting, and so its behavior is essentially identical to that of max-power.

As shown in Figure 2.16, the unoptimized ART achieves only 5.1% energy savings

over max-power for similar reasons.

The optimized ART achieves lower PRR (66.1%) than max-power, indicating that it

cannot locate the optimal transmission power. This happens because there are many

nodes which are rapidly sending packets and dynamically adjusting their transmission
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Figure 2.15: The PRR of max-power, PCBL, and ART under high contention
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Figure 2.16: The energy consumption and efficiency of max-power, PCBL, and ART
under high contention
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powers, both of which have a significant effect on the effective link quality. ART’s slid-

ing window mechanism cannot effectively track such rapid link quality fluctuations.

Nevertheless, as shown in Figure 2.16, the optimized ART consumes only 47.4% that

of max-power’s energy. As a result, ART’s energy efficiency (i.e., the average cost of

successfully transmitting one packet) is 40.0% better than max-power.

PCBL achieves the lowest PRR (45.1%) and lowest energy consumption (26.5% that

of max-power) among all four schemes. While this makes PCBL 50.9% more energy

efficient than max-power and 18% more energy efficient than the optimized ART,

it does so at the expense of starving four of the ten links. These four links had

very good link quality during the bootstrapping phase, and so PCBL assigned them

low transmission powers (two were assigned the lowest possible setting, while the

other two were assigned the third-lowest setting). Under high-contention workloads,

receiver nodes will overhear transmissions from nearby high-power transmitters and

be unable to receive packets from these low-power transmitters.
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Chapter 3

Decentralized Structural Damage

Localization

The deterioration of our civil infrastructure is a growing problem both in the US

and around the world. For example, during their lifetimes, bridges suffer from envi-

ronmental corrosion, persistent traffic and wind loading, extreme earthquake events,

material aging, etc., which inevitably result in structural deficiencies. According to

the American Society for Civil Engineers 2009 Report Card for America’s Infrastruc-

ture, “more than 26%, or one in four, of the nation’s bridges are either structurally

deficient or functionally obsolete” [5]. Due to the expense of retrofitting a structure

with a wired sensor infrastructure, most of these structures are not currently being

continuously monitored.

Structural Health Monitoring (SHM) aims to determine the condition of a civil struc-

ture, provide spatial and quantitative information regarding structural damage, or

predict the performance of the structure during its lifecycle. Recent years have seen

growing interest in SHM based on wireless sensor networks (WSNs) due to their poten-

tial to monitor a structure at unprecedented temporal and spatial granularity. WSNs

permit a dense deployment of measurement points on an existing structure, facilitat-

ing accurate and fault-tolerant damage identification techniques without the need to

install a fixed wired infrastructure [62]. Indeed, numerous SHM systems have been

proposed in literature which leverage WSNs to collect raw sensor data [16,18,42,90].

These systems are generally designed to support traditional centralized SHM meth-

ods, with special consideration to the limited bandwidth and energy supplies that are

not present under a traditional system of wired sensors.
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However, by treating SHMs as a simple data collection devices for supporting central-

ized SHM methods, the resulting systems inherently suffer from high energy consump-

tion and prolonged detection latencies. For example, a state-of-art system deployed

at the Golden Gate Bridge required 9 hours to collect a single round of data from 64

sensors, resulting in a system lifetime of 10 weeks when using four 6V lantern bat-

teries as a power source [64]. This system’s high latency and relatively short lifetime

arose from the fact that the underlying SHM method was designed separately from

the WSN system. Specifically, the SHM method required the WSN to reliably deliver

the entire raw sensor dataset to the base station for centralized processing, inherently

placing a high network burden on the WSN system.

What is needed is a fundamentally different co-design approach which considers

both the constraints of the underlying WSN system and the SHM requirements in

its numerical approach. This can be achieved by leveraging the increasingly pow-

erful processing capability of wireless sensor “motes” to partially process locally-

collected data, extracting (and subsequently exchanging) only the important features

relevant for SHM. Several recent studies demonstrate the potential for distributed

SHM approaches to significantly reduce energy cost through localized data process-

ing [15,62,99].

In this chapter, I discuss my work on a decentralized SHM system based on the Dam-

age Localization Assurance Criterion (DLAC) algorithm [59, 60]. In contrast to cen-

tralized approaches that require transporting large amounts of sensor data to a base

station, the system discussed here pushes the execution of portions of the damage

localization algorithm onto each sensor. This in-situ processing results in significant

reductions in communication overhead and energy consumption, while consuming

only a small fraction of resources available on the off-the-shelf Intel Imote2 [26] sen-

sor platform. This chapter discusses the following specific contributions:

1. a damage localization system that integrates a decentralized computing archi-

tecture optimized for the DLAC algorithm;

2. a proof-of-concept implementation of the DLAC-based design using the TinyOS

operating system [1]; and

3. empirical results and analysis that demonstrate that DLAC can accurately de-

tect and localize damage on a simple beam structure and on a complex truss
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structure, while significantly outperforming a centralized approach in terms of

latency, energy efficiency, and system lifetime.

This DLAC-based system represents the first step toward a co-design approach to

cyber-physical system (CPS) design for SHM. In Chapter 4, I discuss a further evo-

lution of this co-design approach, based on a more powerful numerical approach sup-

ported by a hierarchical network architecture.

3.1 Related Work

A UC Berkeley project to monitor the Golden Gate Bridge [42] represents one of

the first large-scale deployments of smart sensor networks for SHM purposes. Vi-

bration data is collected and aggregated at a base station under a centralized net-

work architecture, where frequency domain analysis is used to perform modal con-

tent extraction. However, it took nearly a full day to transmit sufficient data for

such computations. Similarly, researchers at Clarkson University have implemented

a wireless sensor system for modal identification of a full-scale bridge structure in

New York [31]. Battery-powered wireless sensor nodes equipped with accelerometers

and strain transducers are used, having a high wireless data transmission rate. The

entire network is polled by a master computer that collects acceleration and strain

data. Both modal identification and quantification of static responses are performed

using a centralized network architecture. Wisden [90] provides services for reliable

multi-hop transmission of raw sensor data, using run-length encoding to compress

the data before transmission. These centralized approaches suffer from two funda-

mental limitations. First, data may only be collected from a limited number of nodes

in a reasonable time frame, which would allow the system to only detect the most

severe (and probably visually apparent) damages. Second, such systems are inade-

quate for timely detection of structural failures resulting from extreme events (e.g.,

earthquakes) due to the prolonged time needed for collecting and analyzing data.

BriMon [18] partially addresses the communication bottleneck by sampling data at

400 Hz and averaging this data over 40 Hz windows. The data resolution and network

size (a maximum of 12 nodes per span) supported by BriMon may not be fine-grained

enough for damage detection and localization on complex structures. A deployment
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in the Torre Aquila heritage building [16] uses lossless compression to deliver het-

erogeneous sensor data to sink node. The network burden of this deployment was

eased by the specific kinds of data needed to monitor the building’s health: only three

acceleration sensors were required, while the environmental and deformation sensors

produced only 1–10 readings every 10 minutes.

The above limitations motivate the need for a co-design approach which addresses

both the SHM and WSN concerns in a holistic manner. An integral part of such

a solution is the adoption of distributed SHM solutions [55, 75]. Researchers at the

University of Illinois at Urbana-Champaign have experimentally validated a SHM

system that employs a smart sensor network deployed on a scale three-dimensional

truss model [62,74]. Results demonstrate that the adopted SHM system is effective for

damage identification and localization; however, significant communication is involved

in performing data cross-correlation, which results in significant energy consumption.

[84] implemented a low-cost and rapid-to-deploy wireless structural monitoring sys-

tem on a long-span cable-stayed bridge in Taiwan. The full-scale test was conducted

by collecting ambient vibration data of the bridge and analyzing it in situ by two

modal identification methodologies, the stochastic subspace identification method

(SSI) and frequency domain decomposition method (FDD). Modal ID results led to

the determination of a total of 10 modal frequencies and corresponding mode shapes

within a frequency range of 0–7 Hz. [94] also implemented an automated modal iden-

tification by optimizing output-only modal methods (FDD with peak-picking) for a

distributed wireless sensor network. The distributed implementation, tested in a bal-

cony of a theater, used a parallel data processing and reduced communication scheme

to ensure scalability and power efficiency in the WSN. In their implementation, three

network topologies are proposed to yield a two-node based data sharing chain. This

implies the partial mode shape identified from each pair of nodes has to be recombined

to recreate the complete mode shape necessary for damage detection. However, this

strategy would potentially amplify the recombination error, if any one of the sensor

nodes is unreliable.

3.2 Design and Implementation

In this section, we describe the design of an SHM system based on the DLAC al-

gorithm. We first summarize the DLAC algorithm, focusing on features that make
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it a compelling candidate for decentralized processing on wireless sensors. We then

describe a decentralized architecture specifically optimized for this damage localiza-

tion algorithm. A salient feature of this architecture is the partitioning of the damage

localization algorithm between the wireless sensors and the base station, which signif-

icantly reduces the sensors’ communication load and energy consumption in exchange

for moderate processing costs on each sensor. Finally, we discuss an implementation

of this architecture on top of the TinyOS [1] operating system.

3.2.1 Damage Localization Algorithm

The decentralized system described in this chapter is based on the Damage Localiza-

tion Assurance Criterion (DLAC) technique [59, 60], which analyzes data collected

at each sensor to detect and localize structural damage. This subsection provides

an overview of the DLAC algorithm, focusing on the details that motivate its use

for a codesigned SHM system. The DLAC algorithm itself is existing work from the

structural engineering field, and is not part of this dissertation’s contribution.

The DLAC algorithm is especially well-suited for a decentralized WSN system [15,22],

because it performs damage localization based on post-processed natural frequency

data rather than raw vibration data. As discussed below, this natural frequency data

is computed from each node’s raw vibration data (i.e., accelerometer readings). More-

over, nodes do not need to correlate individual sensor readings to compute this natural

frequency data, which would require precise time synchronization across nodes.

The damage localization process includes an offline phase and an online phase. In the

offline phase, the system identifies the natural frequencies of the healthy structure,

using observed vibration (acceleration) data and a series of transformations described

below. Because these natural frequencies change in response to structural damage,

they are an effective “signature” of the structure’s health. (The natural frequen-

cies are uniform throughout the entire structure, and so even localized damage will

produce a global change in the frequency content.) Additionally, as required by the

DLAC technique, an analytical model of the structure and the estimation of its nat-

ural frequencies using purely numerical techniques are performed. By comparing the

observed natural frequencies against those estimated by the numerical model, we are

effectively able to capture the numerical errors generated by the imperfect model.
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Figure 3.1: Raw vibration readings taken after exciting a steel beam with a hammer

In the system’s online phase, it periodically samples new vibration data. An example

of a raw sensor reading, taken during the experiment described in Section 3.3.1, is

shown in Figure 3.1. The natural frequency identification procedure is repeated on

this newly-collected data. In the final stage of the algorithm, this new frequency

data and the structure’s analytical model enable the DLAC algorithm to localize the

damage to discrete locations on the structure.
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Figure 3.2: The online phase of damage localization

The online phase of our system can be decomposed into four stages, which are summa-

rized in Figure 3.2. Steps (1)-(3) are used to compute the current natural frequencies

of the structure based on collected vibration data, which are then input into the

DLAC algorithm in Step (4).
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(1) The raw sensor readings are converted from time domain data to frequency domain

data using a Fast Fourier Transform (FFT). This produces a series of complex

numbers as output, represented as an array of floating point numbers twice the length

of the original input (one real and one imaginary part per input). A property of

the FFT output data is that its magnitudes are symmetric. To save memory and

computation in later stages, the mote discards the redundant half of this frequency

domain data, resulting in a final output the same length as the input.
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Figure 3.3: Power spectrum analysis results of raw vibration data, with the redundant
upper half already removed

(2) The FFT’s output is fed into a power spectrum analysis routine, which calcu-

lates the squared magnitude of each complex value in the FFT output data. Figure

3.3 demonstrates the output of power spectrum analysis over the previous raw sensor

data trace.

(3) The natural frequencies in this power spectrum data are identified by performing

polynomial curve fitting. The goal of this process is to identify the frequency values

associated with the peaks in the power spectrum curve for each mode. Empirical study

has shown that the Fractional Polynomial Curve-Fitting (FPCF) technique is reliable

for identifying a structure’s modal frequencies in an automated manner. FPCF fits

the power spectrum data to a polynomial function in the form of Equation 3.1, with

the order of its denominator proportional to the number of frequencies we wish to

locate. This function was identified in [50] to extract features from system transfer

functions, and represents both a smoothing and an interpolation of the raw power

spectrum data.
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Figure 3.4: Polynomial curve fit to the power spectrum analysis data

H(s) =
B(s)

A(s)
=
b1s

m + b2s
m−1 + . . .+ bm+1

a1sn + a2sn−1 + . . .+ an+1

(3.1)

Figure 3.4 illustrates the results of fitting a 2nd-order curve near each separate peak

in the power spectrum data discussed above. Note that, as in Figure 3.4, the fitted

curve does not necessarily match the amplitude (Y-axis) of the power spectrum data

at all of the peaks. The goal of this step is to obtain the imaginary parts of the roots

of Equation 3.1’s denominator, which correspond to the frequencies of the structure

(X-axis); the amplitude of the fit is therefore irrelevant.

For the purposes of implementation and analysis, the identification of natural frequen-

cies may be subdivided into two steps: (3a) coefficient extraction, which represents

the curve-fitting problem as a series of matrices; and (3b) equation solving, which

applies the matrix operations necessary to determine the roots of the denominator

polynomial.

(4) Finally, once the structure’s natural frequencies have been identified, they are

used as input into the DLAC algorithm, which ultimately detects and localizes dam-

age to the structure. The DLAC algorithm also uses the structure’s numerical model

to simulate damage at discrete locations along the structure, providing an estimate

of how the natural frequencies would change in response to damage at each of these

locations. Finally, DLAC uses the structure’s healthy frequency data (both the ob-

served and predicted values) to capture and accommodate errors in the numerical
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Figure 3.5: DLAC results representing the correlation of damage to 20 discrete loca-
tions along a steel beam; higher numbers represent a greater likelihood of damage

model. Based on these inputs, DLAC yields a vector of numbers in the range [0, 1],

representing the correlation factors to damage at various discrete locations along the

structure. In Figure 3.5, we plot DLAC for a steel beam that has been subdivided

into 20 discrete regions; relatively high DLAC values concentrated around X = 5

indicate a strong correlation with damage at the fifth region.

3.2.2 Decentralized Architecture

We have developed a decentralized computing architecture specifically optimized for

the damage localization procedure presented in Section 3.2.1. Our structural health

monitoring system consists of low-power sensor motes and a base station connected by

a wireless network. Due to the difficulty of replacing batteries for sensors embedded

in a structure, the sensors’ energy efficiency is a critical concern for SHM systems. In

contrast, the base station (typically a PC) is connected to a wired power source and

has significantly more resources than the sensors. Each mote collects raw vibration

data from an attached accelerometer and performs parts of the damage localization

procedure. The motes transmit their partial results wirelessly to the base station,

which completes the damage localization procedure.
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With the advance of sensor hardware, commercial sensor platforms such as the Imote2

are capable of moderate amounts of in-network processing. Our decentralized archi-

tecture exploits these processing capabilities to reduce the communication and energy

costs of damage localization. Because portions of the damage localization procedure

described in Section 3.2.1 (e.g., the DLAC algorithm) involve complicated optimiza-

tion routines, it is impractical to perform damage localization entirely on the motes.

However, offloading too much computation onto the base station would require trans-

mitting large amounts of data, on the order of thousands of floating-point numbers.

An important design goal of our system was therefore to find the proper balance

between the time and energy spent on computations on the motes, and the time and

energy spent sending partial results to the base station.

To identify the optimal partitioning between the motes and the base station, we an-

alyze here the data flow between stages of the damage localization procedure. We

validate our analysis through a comprehensive empirical measurement of different

partitioning strategies in Section 3.4. As shown in Figure 3.2, we parameterize this

analysis by the number of samples being collected, D, and the number of frequen-

cies to identify, P (D � P ). The FFT stage consumes D integer sensor readings

as input, and produces D floating-point values as output. Power spectrum analysis

transforms these D floating-point values into D
2

floating-point magnitudes. The coef-

ficient extraction portion of the curve-fitting routine represents the power spectrum

data as 5P floating-point coefficients; applying the equation solver reduces this to P

floating-point values.

As shown by the detailed empirical evaluation in Section 3.4, partitioning between the

curve fitting and DLAC stages results in an optimal energy efficiency and latency. The

curve fitting routine results in significant reduction in the amount of data that must be

transferred to the next stages, from the hundreds or thousands of collected vibration

samples to a single vector of size P . For a typical setup of D = 2048, P = 5, 16-bit

accelerometer readings, and single precision (32-bit) float types, the stages before

curve fitting generate from 4 KB to 16 KB of data; in comparison, curve fitting outputs

only 20 B. In practice, the relatively complex equation solving substage of the curve

fitting routine may be impractical to implement on some sensor network platforms.

The system may alternatively be partitioned between the coefficient extraction and

equation solving substages of the curve fitting routine, which outputs 5P matrix

coefficients (100 B of data under the setup described above). Based on our detailed

empirical analysis described in Section 3.4, the in-situ processing performed before
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either partitioning point reduces the communication latency so that the raw data

collection stage dominates the algorithm’s running time. Similarly, the radio’s energy

consumption is then dwarfed by the cost of idle sleeping when either partitioning point

is selected, and represents 0.98% or less of the system’s total energy budget. This

partitioning of the damage localization procedure between the motes and the central

base station highlights the importance of an integrated design for the computing

architecture and the damage localization techniques.

3.2.3 Implementation

This architecture is implemented as a proof-of-concept SHM system containing two

major software packages, which are available as open-source software at [2]. The first

package is implemented on top of the TinyOS 1.1 operating system, and is deployed

on the Imote2 hardware platform. The Imote2 motes are equipped with 32 MB of

RAM, XScale CPUs capable of running at speeds up to 614 MHz, and add-on sensor

boards with integrated accelerometers [25].

The current implementation assumes that sensors are within a single hop from the

base station, as the focus of this work is on decentralized processing rather than

network protocols. However, it can easily be extended to support multi-hop networks

by incorporating existing multi-hop data collection protocols [34, 42]. Section 3.4.4

discusses the implications of multi-hop networking on system lifetime.

The second software package consists of a Java application and MATLAB scripts run-

ning on the base station PC. A GUI allows users to set the algorithm’s parameters,

initiate data collection and aggregation on individual motes, and collect the partial

curve fitting results computed by the motes. Once the application receives partial

results from a mote, it completes the curve fitting procedure using an equation solver

written in Java. The results of this equation solver are then processed using a MAT-

LAB script that implements the DLAC algorithm. For debugging purposes, the last

set of raw sensor readings may be retrieved from individual motes; this feature is not

used under normal operations.

To simplify the implementation, the SHM algorithm is currently invoked only when

requested by the PC-side GUI. The motes currently keep their radio on to listen for

these control messages, which can rapidly deplete their batteries. We emphasize that
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Figure 3.7: Cantilever beam finite ele-
ment model

there is nothing inherent in our decentralized approach that prohibits performing

autonomous readings at prescheduled intervals and/or managing the radio power,

e.g., by using existing power-efficient MAC protocols. Section 3.4.4 discusses these

options in greater detail.

3.3 Evaluation: Damage Localization

In this section, we present an evaluation of our SHM system’s numerical perfor-

mance, discussing our system’s ability to localize damage on two sample structures.

The two structures’ different physical properties serve as good indicators of DLAC’s

performance under ideal and complex conditions, respectively.

3.3.1 Beam

To validate our damage localization system, we first performed a series of experiments

on a steel cantilever beam in the Structural Control and Earthquake Engineering

Lab at Washington University in St. Louis. The beam, depicted in Figure 3.6, is

2.75 m long, 7.6 cm wide, and 0.6 cm thick and fixed to the ground to approximate a

cantilever support. Damage along the beam can be simulated at three distances from

the beam support by attaching a 1.5 kg steel bar. Because this beam has relatively

simple structural properties, it serves as a test of our system under ideal conditions.
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Mode 1 2 3 4 5
Measured 0.5381 4.0240 11.4705 22.5506 37.4316
Analytical 0.6564 4.1133 11.5180 22.5710 37.3160

Table 3.1: Measured and analytical natural frequencies for the healthy beam

Mode 1 2 3 4 5
Analytical 0.6555 4.0105 10.6192 20.8768 36.1469
Sensor 1 0.5506 3.9043 10.2473 20.7641 36.6415
Sensor 2 0.5374 3.8902 10.2779 20.8069 36.6396
Sensor 3 0.5402 3.8977 10.2714 20.7964 36.6048
Sensor 4 0.5316 3.8564 10.2744 20.8470 36.6785
Sensor 5 0.5371 3.7678 10.0707 20.4038 36.9797
Sensor 6 0.5427 3.8488 10.3217 20.7546 36.5919
Sensor 7 0.5392 3.9012 10.2533 20.7751 36.6570

Table 3.2: Analytical and identified natural frequencies for the damaged beam

We collected data about the beam’s healthy state by attaching seven Imote2 wireless

sensors at equidistant intervals along the beam. Each mote was equipped with a

Crossbow ITS400 sensor board with embedded 3-axis accelerometers; tests on a shake

table confirmed that these accelerometers are sufficiently accurate for DLAC purposes

within their saturation range of ±2.0g. After exciting the beam with a hammer, we

collected vibration data from each mote. Using this data, we determined the beam’s

healthy natural frequencies offline, as shown in Table 3.1.

A corresponding 2D Bernoulli beam model was generated in MATLAB, which subdi-

vided the beam into 20 elements with 42 global degrees of freedom (Figure 3.7). As

shown in Table 3.1, the first natural frequency predicted by the model is within 22%

of the experimental value, while the other predicted frequencies fall within 2% of the

experimental data. These discrepancies can be explained by simplifying assumptions

in the model; e.g., the Imote2 nodes were not included in the model. We remind

the reader that the DLAC algorithm uses both measured data and analytical data as

inputs, thus accounting for such discrepancies.

We then tested our system’s ability to detect and localize damage along the beam

structure. Using the procedure described in Section 3.2, we collected and analyzed

vibration data at 280 Hz, both in its healthy condition and with the steel bar attached

at each of the three damage locations shown in Figure 3.6. We added an arbitrary

amount of mass at each position in our analytical model to develop the matrix of

damage cases for computation of the correlation factors. The amount of mass that

48



 

               

               

            

                

             

            

               

            

              

            

              

             

              

              

             

            

           

           

               

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

 

0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1

X = 5

Y = 0.94

DLAC WS1

Element Position

0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X = 5

Y = 0.971

DLAC WS2

Element Position

0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X = 5

Y = 0.972

DLAC WS3

Element Position

0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1

X = 5

Y = 0.955

DLAC WS4

Element Position

0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1

X = 5

Y = 0.964

DLAC WS5

Element Position

0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1

X = 5

Y = 0.965

DLAC WS6

Element Position

0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X = 5

Y = 0.97

DLAC WS7

Element Position

Figure 3.8: DLAC results for the beam damaged at element 5

we added to the model intentionally did not match the steel bar’s actual mass. We

included this discrepancy to reflect the fact that the amount of damage to a structure

is not known ahead-of-time, and to illustrate that DLAC will still adequately localize

damage as long as a reasonable guess is used.

For the sake of brevity, we present here only the results for the first scenario, which

simulates damage at the beam’s fifth element. As shown in Table 3.2, the natural

frequencies measured by each of the 7 sensor nodes closely match those predicted by

the “damaged” analytical model. Each node therefore correctly predicts structural

damage at the beam’s fifth element with a correlation of 94% or higher (Figure 3.8).

We observed similar results during the other two damage scenarios, with the nodes

consistently localizing the damage at the correct element with correlations of 90% or

higher.

3.3.2 Truss

To evaluate our system under more complex structural configurations, we then per-

formed tests on a 5.6 m steel truss structure [21] at the Smart Structure Technology

Laboratory (SSTL) at the University of Illinois at Urbana-Champaign (see Figure

3.9). 11 Imote2 sensors were deployed on the frontal panel of the truss, as shown in

Figure 3.10; USB cabling was deployed to power the motes, but all communication
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Figure 3.9: 3D truss test structure

Wireless Sensor
Truss Frontal Panel

Figure 3.10: Truss experimental setup; highlighted elements were replaced to simulate
damage
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Mode 1 2 3 4 5
Measured 20.65 41.49 64.59 69.41 95.51
Analytical 19.88 38.31 66.26 67.17 92.25

Table 3.3: Measured and analytical natural frequencies for the healthy truss

occurred over their wireless radios. The truss consists of fourteen 0.4 m-long bays and

sits on four rigid supports. Different structural configurations and damage scenarios

can be emulated by removing or replacing the truss’s members and its supports.

Figure 3.11: Truss finite element model

As with the beam, we used data collected from the healthy truss and a MATLAB

model to compute the natural frequencies in the truss’s healthy state. We collected the

data by vertically exciting the truss structure using a magnetic shaker. (To ensure

a consistent mass distribution with later experiments, the Imote2 motes were left

installed but were not activated.) A force transducer was used to measure the input

force, and six wired sensors were used to measure the vibrations at different points

on the truss’s frontal panel. A corresponding numerical finite element model with

160 beam elements and 336 global degrees of freedom (Figure 3.11) was generated in

MATLAB. As shown in Table 3.3, the natural frequencies predicted by this model are

within 2–7% of the experimental data. Again, these discrepancies can be explained by

simplifying assumptions in the model and are accommodated by the DLAC algorithm.

To simulate damage along the truss structure, we replaced the beam elements of

the third bay (highlighted in Figure 3.10) with smaller elements. Specifically, two

diagonal elements were reduced in cross-sectional area by 52.7%, and two bottom

elements were reduced in cross-sectional area by 63.7%. We simulated damage to the

truss’s numerical model by reducing the model’s corresponding beam elements.
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Mode 1 2 3 4 5
Analytical 19.19 38.35 63.58 66.30 90.96
Sensor 1 20.27 41.37 63.04 67.79 94.89
Sensor 2 20.28 41.40 63.17 67.89 95.08
Sensor 3 20.20 41.29 63.01 67.67 94.82
Sensor 4 20.17 41.23 63.05 67.68 94.73
Sensor 5 20.31 41.30 63.10 67.73 94.89
Sensor 6 20.23 41.29 63.02 67.68 94.81

Table 3.4: Analytical and identified natural frequencies for the damaged truss
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Figure 3.12: DLAC results for the damaged truss

We then excited the “damaged” truss structure and used the Imote2 nodes to collect

vibration data. Because the truss has more complex behavior than the beam, we

increased the sampling frequency to 560 Hz. To reduce noise, we also averaged the

power spectrum results over five consecutive readings. 6 of the 11 sensors reported

enough vibration data5 to compute natural frequencies with a DLAC correlation of

85%. The natural frequency data and DLAC results are shown in Table 3.4 and

Figure 3.12, respectively. The DLAC results strongly predict damage in the third

bay, which is where the elements were replaced.

5While running the experiment, we discovered that the ITS400 sensorboard driver would occa-
sionally deadlock while reading data; thus, nodes would fail frequently during experiments involving
large amounts of data. A new sensorboard is now commercially available [68] and does not suffer
from this deadlocking problem.
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3.4 Evaluation: Computational Performance

We now evaluate the computational performance of our codesigned SHM system.

First, we validate the optimal partitioning of the decentralized algorithm proposed

in Section 3.2.2, by showing that it outperforms other potential partitioning points

in terms of latency and energy consumption. Second, we demonstrate that our

optimally-partitioned system significantly outperforms a centralized approach in

terms of system lifetime.

This section considers five different configurations of our system. Four of these five

configurations represent different partitionings of the decentralized algorithm dis-

cussed in Section 3.2.2: they respectively perform up to (and including) the FFT,

power spectrum analysis, coefficient extraction, and equation solving stages on the

mote before transmitting their partial results to the base station. The fifth configu-

ration performs no computations and transmits its raw sensor data back to the base

station, representing the behavior of a fully centralized application.

0 50000 100000 150000 200000 250000
ROM usage (bytes)

Raw Data
Collection

FFT

Power
Spectrum

Coefficient
Extraction

Equation
Solving

Figure 3.13: The ROM footprint of different SHM system configurations

3.4.1 Memory

Figure 3.13 presents the ROM consumption of five different configurations of our SHM

system. The onboard FFT routine has the largest impact on footprint, increasing the

size of the application from 228748 bytes to 247748 bytes (8.3%), while the other

routines add between 264 bytes (1.1%) and 424 bytes (1.7%) each. We see a larger

difference in RAM consumption as we increase the amount of onboard computation,

as shown in Figure 3.14. The FFT routine again increases the footprint the most,
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Figure 3.14: The RAM footprint of different SHM system configurations

from 47460 bytes of RAM to 63844 bytes (34.5%). The remaining routines require

an additional 166 bytes (0.2%) to 4864 bytes (7.1%).

In absolute terms, this footprint fits well within the hardware capabilities of the

current-generation sensor hardware. Indeed, on platforms such as the Imote2 (which

is equipped with 32 MB each of flash ROM and SDRAM) this application would

significantly underutilize the hardware capabilities. As shown above, the incremental

cost of adding each additional onboard computation is also small in relative terms.

Nevertheless, the memory consumption of our system could be further reduced by

two straightforward optimizations, which could potentially expand the number of

platforms which our system could be deployed on.

First, because our application was designed for the relatively resource-rich Imote2

platform, the codebase was not written with RAM conservation in mind. Specifically,

the application retains copies in RAM of the raw sensor data and the output of

intermediate computations. This decision simplifies the implementation and allows

users to retrieve these intermediate values for debugging purposes. On more RAM-

constrained devices, the application could be altered to keep only a single memory

buffer and perform all computations in-place on this single buffer.

Second, the beta Imote2 toolchain for TinyOS 1.1 tends to greatly inflate the footprint

of compiled applications compared to other platforms. The Wasabi GCC compiler

used by this toolchain will crash unless the toolchain is invoked in debug mode, which

disables nesC’s aggressive inlining optimizations and inserts debugging symbols into

the binary. Also, because binary size is not generally a concern on the Imote2,

the toolchain automatically includes complex subsystems (such as a USB debugging
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console) which contribute to the size of the binary. For comparison, a simple test

application included in TinyOS (CntToRfm) consumes 195052 bytes of ROM and 18532

bytes of RAM on the Imote2 platform compared to 11234 bytes of ROM and 371 bytes

of RAM for the TelosB platform. We anticipate that deploying our application with a

different toolchain (whether a different platform or the more modern, stripped-down

Imote2 toolchain used by TinyOS 2.1) would therefore achieve a significant footprint

reduction.

3.4.2 Latency

To evaluate the latency of a single round of damage detection, we timed the execu-

tion of its constituent steps: collecting the raw sensor data from the accelerometer,

performing onboard computations on the data, and transmitting the computed re-

sults back to the base station. Again, because the computation and communication

latency of our SHM system depends greatly on how much computation is performed

onboard, we present this data for the five different system configurations. Where pos-

sible, these latencies were measured using the Imote2’s onboard microsecond timer,

and are the mean of 50 rounds. Because the Imote2’s onboard radio interferes with

the hardware microsecond timer, the data transmission latencies (with the exception

of the FFT configuration6) were collected over 10 rounds using an oscilloscope. The

discussion here focuses on the latencies incurred by on-board processing and com-

munication, excluding processing at the base station. It it is worth noting that this

decision benefits the fully centralized approach, which pays a comparatively higher

processing cost at the base station.

Figure 3.15 presents the average latency for each of these five configurations. All

five schemes incur a mean cost of 3772 ms (σ = 0.80 ms) to collect raw sensor data.

This closely matches the 2048
560Hz

≈ 3.7 s needed to collect 2048 samples, with some

additional overhead to copy the sensor data into a local buffer. The cost of all

the onboard computations is relatively small: the FFT, power spectrum analysis,

coefficient extraction, and equation solving routines consume 566.8 ms (σ = 2.78

ms), 17.1 ms (σ = 2.78 ms), 97.2 ms (σ = 0.01 ms), and 27.1 ms (σ = 0.26 ms)

respectively.

6The oscilloscope used for these measurements did not have a large enough data buffer to reliably
measure the time spent transmitting the FFT data. For this configuration, it was instead measured
by instrumenting the PC base station software; these results are expected to be within one packet
RTT of the actual time spent transmitting.
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Figure 3.15: The latency of sensor data collection and processing

These latter two computations reduce the data to be transmitted by 98.8% and 99.8%

respectively, from 2048 data points to 25 and 5. Therefore, these two configurations

take only 271 ms (σ = 11 ms) and 142 ms (σ = 16 ms) respectively to transmit

their results to the base station, compared to the 9638 ms (σ = 28 ms) to transmit all

raw data in the fully-centralized case. By performing computation and an appropriate

amount of processing on the nodes, very little system overhead is incurred on current-

generation sensor hardware. 79.8% to 81.6% of the system’s time is spent collecting

data; only 20.1% or less of the latency represents reducible overhead. In comparison,

the centralized approach spends 71.9% of its time transmitting data to the base

station. As a result, the decentralized system can achieve latencies up to 65.5% lower

than those of a centralized algorithm. It is also worth noting that delegating the

equation solving substage to the base station incurs only a 2.2% performance penalty

compared to doing the entire curve-fitting routine onboard, because both approaches

are dominated by the time spent collecting raw sensor data. Therefore, transmitting

the partial curve-fitting results is an acceptable alternative on systems where the

equation solving routine cannot realistically be implemented.

Notably, performing the power spectrum analysis onboard does not reduce latency

at all, and performing FFT onboard is actually counterproductive: it takes 22206 ms

(σ = 133 ms) to transmit the FFT results and 9668 ms (σ = 28 ms) to transmit

the power spectrum data to the base station. This phenomenon validates the data

flow analysis in Section 3.2.1 (note that the single-precision floating-point values in

the FFT and power spectrum data are twice the width of the 16-bit sensor readings).

These findings also highlight the importance of a systematic evaluation for identifying
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the optimal configuration of decentralized systems through data-flow analysis and

empirical benchmarks.

3.4.3 Energy Consumption

The SHM system used during the experiments performs only limited power manage-

ment, since the drivers for the Imote2 available at the time did not put all of the

hardware to sleep when deactivated7. Nevertheless, we can estimate the energy con-

sumption of a fully power-managing SHM system. For this analysis, an oscilloscope

was used offline to measure the power draw of each of the application’s hardware

states (sampling, computation, and communication). These costs are then multiplied

by the latency statistics given above to estimate the total energy consumption of each

stage.

Figure 3.16: The energy consumption of sensor data collection and aggregation

Figure 3.16 shows the energy cost of a single round of SHM data collection. Perform-

ing the entire curve-fitting routine onboard compared to a fully centralized approach

significant reduces the energy consumption, from 5.41 J to 1.95 J. This reduction

is mainly due to the expense of sending raw sensor readings to the base station.

A configuration which performs the curve-fitting routine onboard consumes 0.285 J

(402 mW for 708 ms) to perform its computations. However, these computations save

the node an average of 3.75 J during transmission, since it reduces the time that the

radio is active and transmitting by 9.5 s. Again, offloading the equation solving por-

tion of this routine to the base station has a minimal effect on energy consumption.

7A redesigned driver stack with power management functionality has since been made available
through [3].
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The node would save 0.011 J on computation costs but would expend an additional

0.051 J on communication, representing an increase of 2.1% compared to performing

the equation solving onboard. The energy consumption of either of these two de-

centralized approaches is dominated by the cost of collecting raw sensor data (80.9%

and 82.5% of the total energy consumption), whereas the fully centralized approach

spends 70.3% of its energy transmitting the sensor readings back to the base station.

We again find that performing any fewer stages of computation onboard is counter-

productive. Performing the FFT and power spectrum analysis locally incurs a com-

putational overhead of 0.235 J but does not affect the amount of data being sent back

to the base station. As a result, this approach incurs a 4.6% energy penalty compared

to the fully centralized approach. Computing only the FFT data onboard performs

even worse, since its output is double the size of its input. This approach therefore

increases the energy consumption by 95.8% over the fully centralized case.

The memory, latency, and energy consumption benchmarks demonstrate that the op-

timal partitioning point indeed occurs after the curve-fitting routine, as indicated by

the data-flow analysis in Section 3.2.2. These results also validate that, on systems

where the full curve-fitting routine cannot realistically be implemented, even im-

plementing a portion of this routine provides substantially better performance than

simply sending the raw sensor data to the base station for processing. Again, the per-

formance of the FFT and power spectrum routines highlight the importance of data-

flow analysis in decentralized application design: in terms of RAM, ROM, latency,

and energy consumption, both partially-decentralized approaches perform worse than

a fully centralized approach.

3.4.4 Projected Lifetime

System lifetime depends on a number of factors including network configuration,

duty cycle, type of power supply, and the minimum voltage at which the sensors

can operate. Nevertheless, it is useful to have an approximate sense for how a SHM

deployment’s lifetime may be impacted by our decentralized design. Hence, in this

subsection, two simplifying assumptions are made for the purposes of analysis. First,

we assume a fixed energy supply of 20,250 J (the theoretical supply of 3x 1.5V,

1250 mAh AAA batteries). Second, we approximate the cost of placing the Imote2
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into its deep sleep mode based on its datasheet8 and a fixed voltage of 4.5V, since

the cost is too low to measure experimentally with our oscilloscope.

Figure 3.17: System lifetime under different usage patterns

Figure 3.17 presents the estimated system lifetime when the Imote2 is under this

configuration. In the interest of reducing clutter, only the fully-centralized case (i.e.,

where no processing is performed onboard) and the most decentralized case (where

all computations prior to the final DLAC stage are performed onboard) are presented

here. As noted above, performing only the FFT or power spectrum analysis onboard

would in fact reduce the node’s lifetime, and running only part of the curve-fitting

onboard has similar performance to the fully-decentralized case.

If the system remains asleep between periodic readings, then the decentralized ap-

proach achieves a projected lifetime of 82 days, even at a relatively aggressive hourly

schedule. In contrast, the centralized approach achieves a lifetime of 49 days at an

hourly schedule, though it stays within 0.6% of the decentralized approach’s lifetime

at lower frequencies. The sharp drop in the centralized system’s lifetime occurs be-

cause sleeping dominates the system’s energy cost at lower frequencies, while the high

communications costs dwarf the sleeping cost at an hourly frequency. As a result,

in-situ processing enables more frequent monitoring than is realistically possible for

a centralized scheme.

8Specifically, 382 µA for the Imote2 [26] plus 15 µA for the accelerometer [77]
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In practice, a SHM system may not be able to behave autonomously: its deployers

may want some kind of manual control (e.g., to perform on-demand readings after a

natural disaster). This can be achieved by having the nodes listen for radio trans-

missions between readings. Keeping the CPU and radio active at 100% duty cycles

would reduce the node lifetime to only 14 hours. However, power-saving MAC layers

like SCP [93] can achieve duty cycles as low as 0.1% with reasonable responsiveness

tradeoffs. As shown in Figure 3.17, this would have a fairly low impact on system

lifetime (a 12.2%–18.7% reduction in the decentralized case).

Figure 3.18: System lifetime with hourly readings and 0.1% radio duty cycle, under
various network configurations

The difference in communication costs between a centralized approach and our decen-

tralized approach are amplified under a multi-hop network configuration. This kind

of network configuration is necessary for monitoring many real-world structures, since

the structure’s length will exceed the motes’ communication range. For example, [42]

required a 46-hop network to span the Golden Gate Bridge, and [18] estimates that

3–4 hops will be needed to span small bridges. The nodes closest to the sink suffer

the most from communication overhead, since they must receive and relay packets

from all of the nodes further away from the sink. If nodes are configured in an n-hop

line, as in [42], then the node closest to the sink will have to receive n−1 sets of data

and transmit n sets each time damage detection is performed.

As shown in Figure 3.18, under the centralized approach this node’s lifetime will drop

dramatically as the number of hops increases. The mote must keep its radio active
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for an extra 19.3 seconds for each additional hop, transmitting during half of this

time and receiving during the other half. This quickly depletes the mote’s battery

power, decreasing the network’s lifetime from 85 days in a single-hop configuration to

77 days under a 4-hop network, and to 35 days under a 46-hop network. In contrast,

the decentralized approach transmits a much smaller amount of data, so that the cost

of idle sleeping still dwarfs the communication cost under any realistic hop count. A

4-hop network will reduce the decentralized system’s lifetime by 3 hours, and a 46-hop

network will reduce the lifetime from 86 days to 84 days. Our decentralized approach

therefore represents a 9.6% increase in lifetime under a 4-hop network compared to a

centralized scheme, and a 144% increase with a larger 46-hop network.

As observed in [42], reliably transporting large amounts of data over lossy links is

challenging. The lifetimes of both approaches will be reduced compared to those

projected here, due to packet retransmissions. However, packet retransmissions will

have a significantly higher impact on a centralized system’s lifetime, since its com-

munication costs represent a much higher proportion of the total energy budget.

61



Chapter 4

Cyber-Physical Codesign of

Distributed Structural Health

Monitoring

Chapter 3 presents a distributed approach to SHM based on the Damage Location

Assurance Criterion (DLAC) method. This proof-of-concept system based on DLAC

represents an important first step toward deploying robust, long-lived SHM applica-

tions on real-world structures. However, DLAC has several intrinsic limitations in its

SHM capabilities. First, DLAC requires the user to pre-specify the damage patterns

that it should try to identify and localize. Second, DLAC is not sensitive to small

damages in a structure because it only monitors the structure’s natural frequencies,

and because it does not correlate readings across sensors. Finally, DLAC can only

properly localize damage to asymmetric structures. These limitations occur because

there is effectively no collaboration among sensors under DLAC: each sensor’s read-

ings are handled independently, and are only combined at the very end to compensate

for node failures and sensor noise. Alleviating these limitations requires a fundamen-

tally new architecture which leverages collaboration among sensors to enhance the

damage identification and localization results.

In this chapter, I present a hierarchical decentralized SHM system that implements

a flexibility-based damage identification and localization method. This system rep-

resents an evolution of the co-design approach explored in the DLAC-based system,

where the numerical approach is designed with both the cyber requirements (WSN

hardware constraints) and physical requirements (damage detection performance) in

mind. In contrast to the DLAC-based method, flexibility-based methods explicitly
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correlate data across multiple sensors, allowing them to accurately identify and lo-

calize damage on a wider range of structures. The hierarchical system discussed here

organizes nodes into clusters using a novel multi-level search approach that incre-

mentally activates sensors in the damaged regions, allowing much of the network to

remain asleep. This implementation again takes advantage of the Imote2 platform’s

computational power to perform in-network processing wherever possible; thus, nodes

further save energy and bandwidth by only transmitting the intermediate results re-

lated to the flexibility calculation.

Specifically, this chapter presents the following contributions:

1. a cyber-physical architecture which efficiently maps flexibility-based damage

identification and localization methods onto a distributed WSN;

2. an implementation of this architecture on top of the TinyOS operating sys-

tem [1] and ISHMP services toolsuite [3]; and

3. empirical evaluation of this implementation on simulated and real truss struc-

tures.

Experimental results demonstrate that this flexibility-based approach can successfully

localize damage on both structures to the resolution of a single element. Latency and

power consumption data collected during these experiments also demonstrate the

energy efficiency of this codesign approach.

∆1

∆2

L

θ

Figure 4.1: Structural deflection

4.1 Damage Localization Approach

This section introduces the physical (structural engineering) aspects of our decen-

tralized damage localization system. This system is based on a family of damage
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localization techniques collectively known as flexibility based algorithms. The intu-

ition behind these methods is that structures will flex slightly when a force is applied,

as shown in Figure 4.1. As a structure weakens, its stiffness decreases, and thus its

flexibility changes. Changes in structural flexibility over a structure’s lifetime can be

used to identify and localize damage [65].

This subsection provides a brief background on two particular flexibility-based meth-

ods used within the decentralized system. While flexibility-based methods are well-

known in structural engineering literature, the existing research generally deals with

algorithmic issues (i.e., selecting the best numerical methods for damage identifica-

tion and localization) rather than efficiently deploying these methods on a distributed

architecture for WSNs. As with DLAC, the underlying numerical methods discussed

in this subsection are existing work which are not part of this dissertation’s contribu-

tion. I focus here on the details of these algorithms that are most relevant to system

design; more mathematical details can be found in [28,91].

Flexibility-based methods are executed in two stages. When the system is first turned

on, a baseline structural modal identification is performed. The sensors simultane-

ously collect vibration data. Multiple sensors’ data are correlated to identify the

structure’s modal parameters (natural frequencies and mode shapes). The modal

parameters are then further processed to compute the structure’s flexibility matrix.

Online, the data collection and processing phases above are repeated, and the base

station produces a new flexibility matrix. By subtracting the new flexibility matrix

from the stored one, the base station can determine if the structure is damaged (and

if so, identify the damaged region).

1) Sensor Data 2) FFT 3) Power Spectrum

Frequency 
Domain 

Decomposition

Flexibility-Based 
Method

4) Cross Spectral 
Density

5) Singular Value 
Decomposition

Natural frequencies
 + mode shapes

D
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2×D
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D
floats

D
floats

Figure 4.2: The data flow of a traditional flexibility-based method

The main components of flexibility-based methods are illustrated in Figure 4.2. The

structure’s modal parameters are identified using Frequency Domain Decomposition
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(FDD), an existing structural engineering technique which can be decomposed into

several stages. Traditionally, FDD is executed as follows. (1) All the nodes in a

cluster simultaneously collectD vibration samples using their onboard accelerometers.

The size of D depends on structural properties (like its complexity and material) as

well as the modes we are interested in, and is typically hundreds or thousands of

samples. (2–3) Each node independently performs an FFT and power spectrum

analysis on the vibration data, transforming it into magnitudes in the frequency

domain. (4) D magnitudes collected from each node are correlated to compute a

Cross Spectral Density (CSD) matrix. (5) A Singular Value Decomposition (SVD) is

performed on the CSD matrix at each of D discrete frequencies. The singular value

in each singular value matrix is collected to form a vector, and the structure’s P

lowest natural frequencies are identified as the peaks in this vector. The mode shapes

corresponding to the natural frequencies can be estimated from the first column of

the corresponding left SVD matrix.

The FDD output is then input into a flexibility-based method. The system described

in this chapter uses two specific flexibility-based methods: the Angles-Between-String-

and-Horizon flexibility-based method (ASHFM) [28] and the Axial Strain flexibility-

based method (ASFM) [91]. These two methods are particularly compelling because

they can localize damage down to a resolution of a specific element on beam-like

and truss-like structures, respectively. Most other flexibility-based methods localize

damage only to less specific regions of the structure, while [8] achieves similar damage

localization resolution at a much higher computational cost.

Figure 4.3: Example ASHFM damage indicator output; shaded dots correspond to
damaged elements
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ASHFM measures the flexibility of a beam-like structure as the angle θ in Figure 4.1.

The FDD output data is used to calculate θ at each of the structure’s modes, produc-

ing a flexibility matrix F . The difference ∆F =
∣∣F b − F

∣∣ can be used to localize the

changes in flexibility to locations along the beam, where F b is the flexibility matrix

calculated during the baseline phase. Specifically, the maximum absolute values of

the components in each column or diagonal of ∆F are extracted as damage indicators.

When a location on the structure is damaged, it will appear as as “step and jump”

in the plot of damage indicators, as shown in Figure 4.3. In this example, the large

jumps in the ASHF damage indicator surrounding the shaded points reflect damage

in the corresponding structural elements.

ASFM achieves damage localization at a similar resolution to ASHFM, except on

truss-like rather than beam-like structures. At a high level, ASFM localizes damage

in much the same way as ASHFM. The main differences are that ASFM requires

vibration data taken simultaneously in multiple directions, and that the two methods

have different formulations for computing F .

4.2 Distributed Architecture

The numerical methods discussed above have been designed with centralized networks

in mind, where sensors are used as simple data collection devices that can stream large

data sets to a central server over a wired backbone. Under a WSN, this approach is

inappropriate because of the nodes’ limited network and energy resources. However,

in order to design an efficient decentralized architecture, we can leverage a particularly

powerful feature of these flexibility-based methods. Specifically, they enable a tradeoff

between energy consumption and localization resolution: the more nodes that are

activated, the finer-grained the damage localization.

We leverage this feature to construct an energy-efficient, multi-level damage local-

ization system which selectively activates additional sensors at each level in order to

more precisely localize structural damage. In the common case that the structure is

not damaged at all, only a minimal subset of nodes are enabled, considerably reducing

the system’s energy and bandwidth consumption. This approach naturally maps to a

hierarchical, cluster-based distributed network architecture. In addition, to promote

a more efficient mapping onto our distributed system, we leverage an existing peak

picking technique to reduce the data flow among sensors participating in each cluster.
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4.2.1 Multi-Level Damage Localization

Although adding more sensors can improve a flexibility-based method’s localization

results, only a handful of sensors are needed to accurately identify damage. In the first

stage of the multi-level search, this minimal number of sensors are enabled, forming

a single cluster. Damage identification and localization is performed using this small

subset of sensors. In the common case that no damage is identified, the search ends

and all the nodes return to sleep.

In the event that damage is identified, the flexibility-based method will also output

coarse-grained damage localization. For example, ASHFM will identify two adjacent

sensors surrounding each damage location on the structure. In the next round of the

multi-level search, the system activates additional sensors in the region of interest and

repeats the entire procedure, including collecting new vibration data. This second

round subsequently localizes the damage to a smaller region than the first round. The

system may repeat this drill-down procedure to achieve even finer grained results until

the desired resolution is reached.

The key feature of this approach is that it does not activate the entire sensor network

at once. Instead, relatively few sensors are used to identify damage; and when damage

is identified, only those sensors in the area of interest are incrementally added to the

search. As a result, many nodes are able to remain asleep for part or all of the

multi-level search. This approach will also scale to larger structures, since the cost

of the search is no longer proportional to the size of the structure. As discussed in

Section 4.3.2, the reduced energy burden can also be distributed across the network

by activating different subsets of the network at different times.
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Figure 4.4: Sensor Roles in the System
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4.2.2 Network Hierarchy

Once the nodes participating in this multi-level search are selected, they are each

assigned one of three different roles: cluster member, cluster head, and base station. A

node’s role determines what data it handles as well as its level in the network hierarchy,

as shown in Figure 4.4. To allow the system to better scale to large structures, the

nodes may be organized into multiple independent clusters. Each cluster operates as

an independent unit, with the cluster head coordinating nodes within its cluster and

ultimately transmitting the cluster’s (relatively small) mode shape data to the base

station for final processing.

Based on these roles, the system operates as follows. The cluster members collect raw

vibration samples from their onboard accelerometers. They then carry out an FFT

to transform the vibration response into frequency domain data, followed by a power

spectrum analysis.

The cluster head nodes aggregate the extracted power spectrum data from the cluster

members beneath them in the hierarchy. There, the CSD and SVD are carried out

to extract the structure’s mode shape vector.

The cluster heads then transmit the mode shapes to a single base station node, which

calculates the structure’s flexibility. The flexibility is then used to identify and localize

any structural damage.

4.2.3 Enhanced FDD

Efficiently implementing this architecture for a flexibility-based system is challenging

because there are no obviously “best” places to introduce network communication:

the CSD and SVD routines are necessarily computed on a single node with access to

all the other cluster members’ data, and the prior steps all have very large outputs

(hundreds or thousands of points). In order to achieve truly energy-efficient behavior,

we must optimize the FDD algorithm’s data flow to promote an efficient mapping onto

wireless sensor networks.

We leverage an optimization proposed in [84,99] that adds a new peak picking stage to

FDD. To illustrate how this optimization works, note that most of the computations

in the FDD routine do not contribute to the final results. As described in Section 4.1,
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the CSD step normally requires the cluster head to pool D data points from each of

its cluster members. This data is processed into D CSD matrices, which the SVD

routine further processes into D outputs and discards all but the P corresponding

to the structure’s natural frequencies (note that P � D). A key observation about

this procedure is that the ith CSD matrix is only constructed using the ith power

spectrum data point from each cluster member. Moreover, only the P CSD matrices

corresponding to the structural’s natural frequencies contribute to the FDD stage’s

final output.

The peak picking routine allows each node to independently identify these P natural

frequencies solely from local data. Hence, only those P relevant data points are passed

onto the CSD stage, which in turn passes only the relevant P matrices onto the SVD

stage. In this way, both the computational and communication cost of identifying

modal parameters are reduced considerably. Again, the data which the nodes withheld

would not have contributed to the final flexibility computation. Hence, even though

significantly fewer data are transmitted and processed, there is no loss in damage

identification or localization performance.

4.3 Implementation

We have built a proof-of-concept implementation of our system on top of the

Imote2 [26] sensor platform using the TinyOS operating system [1]. This implemen-

tation utilizes the ISHMP services toolsuite [3] developed by the Illinois Structural

Health Monitoring Project (ISHMP), which provides subsystems for sensor data ac-

quisition, reliable data transmission, remote procedure calls, and time synchronization

based on the FTSP protocol [58].

4.3.1 Hardware Platform

The Imote2 is an advanced wireless sensor node platform built around the low-power

PXA271 XScale processor and 802.15.4-compliant radio hardware (Chipcon CC2420)

with a built-in 2.4GHz antenna. While distributed architecture discussed in this

chapter is not inherently tied to a particular platform, the Imote2 offers several salient
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improvements over previous generation WSN platforms that are particularly useful

for our application.

First and foremost, the PXA271 CPU has 256 KB of embedded SRAM and can

address 32 MB of on-board SDRAM, providing copious space for computations. In

contrast, platforms such as the TelosB [66] and MICA [23, 24] family have access

to only 4–10 KB of RAM, which would not even be enough to store the entire raw

sensor reading dataset. Accordingly, such platforms would either be restricted to

purely streaming computations or would have to swap data in and out of onboard

flash, a potentially expensive operation.

Second, the PXA271 CPU can be dynamically clocked from 13 – 416 MHz, allowing

nodes to increase their CPU speed when needed (e.g., while collecting high-resolution

sensor data) and decrease its speed at other times to save energy. Third, the Imote2

is a modular stackable platform which can be expanded with extension boards to

customize the system to a specific application. The SHM-A [68] sensor board provides

an add-on accelerometer which we have confirmed to be sufficiently accurate for our

SHM application. Fourth, the Imote2 is equipped with 32 MB of flash memory,

which allows us to deploy the entire application on all nodes in the network. We take

advantage of this capability to dynamically reconfigure the network without having

to re-flash the nodes with new software, as discussed below.

4.3.2 Software Platform

As described above, the system is implemented in the nesC programming language

on top of the TinyOS 1.1 operating system. Several major components from UIUC’s

ISHMP Toolsuite 3.0 were leveraged to ease implementation. Specifically, ISHM’s

RemoteCommand RPC subsystem is used to reliably coordinate motes and collect

partial results, and the SensingUnit components are used to start data collection

simultaneously across all the participating motes.

Figure 4.5 illustrates the network configuration process. At the start of the procedure,

the base station constructs a configuration packet containing information about the

cluster division and the assignment of roles within each cluster. The base station

disseminates this packet to the cluster head, which in turn disseminates it to the

other cluster members. Because the Imote2 platform is equipped with copious flash
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memory, all nodes are programmed with the code for all roles. Thus, nodes can handle

the reconfiguration message by simply changing their configuration parameters in

RAM.

After all nodes are configured, the base station disseminates a control packet into the

network to start data collection; this message propagates to the cluster heads and

cluster members in a similar fashion to the configuration packet. After completing

data collection and computation, cluster members deliver the partial results to the

cluster heads. Similarly, the cluster heads deliver mode shape data to the base station

after completing their computations. Rather than implementing the complex final

damage calculations directly on the base station, the base station outputs the cluster

heads’ data over its serial port. This output is collected at a PC attached to the

mote, and the final computations are performed in MATLAB. If damage is identified,

more fine-grained damage localization may be triggered as discussed in Section 4.2.

Due to time constraints, the current implementation is not yet fully automated. The

user must manually trigger each level in the multi-level search, inputting the desired

network configuration based on the previous level’s damage detection results. More-

over, the base station does not currently allow users to configure networks containing

more than one cluster. These are not fundamental limitations of the architecture,

and could be lifted with additional base station code.

4.4 Evaluation

To validate our system, we implemented and deployed our multi-level damage localiza-

tion system on a simulated steel truss structure, which presents a challenging scenario
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for damage localization due to its structural complexity. Experimental results demon-

strate that our system is able to accurately localize damage at the member-level to

both structures. Moreover, latency and energy consumption data collected during

the truss structure experiment illustrate the efficiency of our decentralized approach.

Preliminary results also validate the approach on a real truss structure.

4.4.1 Simulated Truss

Where not otherwise noted, the experiments in this section involve simulated sen-

sor data from a 5.6 m steel truss structure [21] at the Smart Structure Technology

Laboratory (SSTL) at the University of Illinois at Urbana-Champaign. In order to

accommodate the truss’s increased structural complexity, we increased the sampling

frequency to 560 Hz, the record length to 18,432 data points, and the FFT size to

4096 points. We attempted to carry out the experiment using an earlier implementa-

tion of the damage localization system based on the Crossbow ITS400 sensorboard.

However, as noted earlier in Section 3.3.2, the ITS400 sensor subsystem contains a

serious deadlocking bug which prevented us from collecting sufficient vibration data

to perform our experiments on the real truss.

Instead, we produced two sets of simulated data traces using a finite element model

of the truss in MATLAB, with additional measurement noise added to simulate noisy

sensor readings. The first set represents the truss in its intact case, providing a base-

line flexibility measurement. The second set was generated with simulated damage

to three members of the left side of the truss and four members to the right side of

the truss.

For the truss experiments, we wished to evaluate our system’s damage localization

performance as well as its energy consumption. Thus, we made two augmentations

to our nesC code for this set of experiments. First, we added a “fake” sensor driver

which replayed sensor data traces from the motes’ flash memory, allowing us to inject

our simulated traces into live experiments. Second, we collected timestamping data

at key points in our code in order to measure the latency and energy consumption of

each major component of our system.
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(c) level-2 localization (right)

Figure 4.6: Damage localization results on the simulated truss

Damage Localization

To evaluate our system’s damage localization performance, we performed three dif-

ferent experiments with nine Imote2 motes. In our first configuration, we injected

simulated sensor data collected at uniform points along the truss’s length. This

configuration represents the “level 1” damage identification phase. The damage in-

dicators computed during this experiment are plotted in Figure 4.6(a). Based on the

step-and-jump surrounding bays 4 and 10 (shown as the two peaks in Figure 4.6(a)),

our system correctly identified damage on both halves of the truss.

In our second and third configurations, we used simulated sensor data collected at a

greater density on the truss’s left and right halves, respectively. This configuration

represents the more fine-grained “level 2” damage localization phase. As shown in

Figures 4.6(b) and 4.6(c), our system indeed correctly localized the three damaged

members on the left side of the structure and the four damaged members on the right

side.

Energy Consumption

During the experiments described above, we collected timestamp data from the motes

in order to directly measure the latency of each major stage in the experiment. We also

performed a separate set of experiments to measure the latency of time-synchronizing

the motes and collecting 18,432 data samples (since the previous truss experiments

used replayed data traces). Tables 4.1 and 4.2 present the average latencies for the

cluster member and cluster head nodes, respectively. Offline, we measured the power
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draw of each stage using an oscilloscope, which we used to estimate the total energy

consumption of each stage in the experiment.

State Latency (s) Energy (J)
Synchronization 30.00 12.06
Sensing 53.80 22.96
Compute FDD 21.47 9.28
Transmit FDD 0.21 0.08

Table 4.1: Mean latency and energy cost at cluster member

State Latency (s) Energy (J)
Synchronization 40.35 16.23
Sensing 49.68 21.20
Compute own FDD 18.19 7.86
Receive other FDD 0.56 0.23
Compute mode shapes 1.52 0.66
Transmit mode shapes 1.35 0.53

Table 4.2: Mean latency and energy cost at cluster head

Several important observations can be made from this data. First, our decentralized

architecture is indeed effective at dramatically reducing the amount of bandwidth and

energy consumed in exchanging data among nodes. Our decentralized architecture

spends an average of 0.21 s per cluster member exchanging FDD results, plus an

average of 1.35 s per cluster head transmitting the mode shape results to the base

station. In contrast, based on the analysis in Section 3.4, we estimate that it would

have taken 87 s per sensor to reliably transmit the 18,432 raw sensor readings to the

base station for centralized processing.

Second, our efficient architecture incurs relatively little overhead on the Imote2 hard-

ware. On the cluster member nodes, as much as 79.4% of the latency and 78.9% of

the energy consumption can be attributed to synchronizing the nodes and collecting

data. Only 21.1% of the energy consumption represents reducible overhead. The

cluster head nodes incur similarly low overheads, with only 20.4% of the latency and

19.1% of the energy consumption attributable to processing and data transmission.

Third, this low overhead leads to low total energy consumption in absolute terms.

On average, the cluster member and cluster head nodes consume a total of 44.4 J and

46.7 J, respectively. A typical power supply of 3x 1.5V, 1250 mAh AAA batteries

delivers a theoretical energy supply of 20,250 J. Thus, with proper duty cycling, we
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anticipate that each node could perform damage localization hundreds of times before

depleting its energy supply.

4.4.2 Real Truss

Since the simulated truss experiments, we have reimplemented the system using a

newer version of the ISHMP library and the SHM-A sensorboard (which, crucially,

does not suffer from the deadlocking bug experienced with the ITS400 sensorboard).

Using this new implementation, we have carried out preliminary experiments of two-

level damage localization on a full-scale (17.04m L × 1.83m W × 1.98m H) steel

highway truss at Purdue University.

Truss Back Panel

Wireless Sensor

Level 1

Level 2

Figure 4.7: Truss experimental setup; highlighted element was damaged by cutting
halfway through
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(b) Level 2 damage localization results

Figure 4.8: Damage localization results on the real truss

We obtained mode shapes from the truss in different configurations, while varying the

level of damage and the number of damage locations. Figure 4.8 presents the output
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from a successful experimental run, corresponding to the configuration illustrated in

Figure 4.7. After collecting data from the intact truss, the truss was damaged by

cutting halfway through a diagonal beam on the back panel of the truss’s ninth bay.

For the first level of damage localization, twelve sensors were deployed along the top

of the truss’s back panel. Each sensor collected 65,536 data points at a frequency

of 280 Hz; aggregated data were collected at the base station, where ASHFM was

employed to localize damage to the resolution of a bay. These level 1 results, plotted

in Figure 4.8(a), correctly identify damage at the ninth bay.

Based on these results, ten sensors were redeployed on the bottom of the truss’s back

panel, along with two on the top surrounding the damaged bay. New data were

collected at the same sampling rate and size for a second level of damage localization,

and ASFM was used at the base station to localize damage to a specific element.

These level 2 results, plotted in Figure 4.8(b), correctly localize damage to element 42.

Both levels of damage localization match simulation results and the actual damage

scenario, validating both the numeric approach and its distributed implementation.

Although these results validate the underlying numerical and computational methods,

the complexities of real structures still pose significant system challenges. Inconclu-

sive results may result when noise in the raw sensor data is not averaged out, or when

the damage level is very small. Simulation in MATLAB has shown that intermediate

averaging of the results can effectively improve the data’s signal-to-noise ratio. Fur-

ther examination of the data will be performed to better understand the limitations

and capabilities of the damage detection technique for this particular structure.
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Chapter 5

Clinical Early Warning and

Real-Time Event Detection

Within the medical community, there has been significant research into preventing

clinical deterioration among hospital patients. Clinical study has found that 4–17% of

patients will undergo cardiopulmonary or respiratory arrest while in the hospital [80].

Early detection and intervention are essential to preventing these serious, often life-

threatening events. Indeed, early detection and treatment of patients with sepsis has

already shown promising results, resulting in significantly lower mortality rates [39].

Two distinct approaches have emerged to support these early detection efforts. First,

existing electronic medical records may be processed using machine learning tech-

niques to identify early warning signs of clinical deterioration [81]. Second, real-time

data collection systems based on WSN technologies have been proposed to collect

vital sign data at a high granularity [20,46]; in turn, this data may be used as inputs

to automated scoring systems [41].

The application of either approach in isolation has significant limitations. Early warn-

ing systems based on existing medical records suffer from the sparseness of measure-

ments: in general hospital units, patients’ vital signs are typically collected manually

by a nurse, at a granularity of only a handful of readings per day. While real-time

monitoring systems fill the gap in measurements, it is nevertheless impractical to

intensively monitor all patients in general hospital units. Such an approach would

introduce issues of scalability and complexity; it would also inconvenience many pa-

tients, who would be asked to wear sensors even if they were not necessary.

This chapter presents work towards a novel two-tier system for clinical early warning

and intervention. This system combines the two approaches in order to achieve the
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benefits of both (identifying clinical events) while avoiding their individual shortcom-

ings. At the first tier, advanced machine learning techniques are used to identify

at-risk patients from real-time data in existing electronic medical records. At the

second tier, these at-risk patients are provided WSN-based monitoring devices which

collect high-fidelity vital sign data in real time. These tiers are joined by a predictive

algorithm which scores a patient’s predicted outcome based on both real-time vital

sign data and the coarser-grained data found in electronic medical records.

The envisioned two-tier system is a long-term, multidisciplinary effort with many

open research problems beyond the scope of this dissertation. This chapter discusses

my contributions to two components of this effort. Section 5.2 describes a recent

study which applied machine-learning techniques to historical clinical data, in order

to identify patients most at risk of being transferred to the ICU. The results of this

study represent a proof-of-concept for the first tier of the envisioned system, and are

currently being used to select candidates for a year-long clinical trial of real-time vital

sign monitoring at Barnes-Jewish Hospital. Section 5.3 discusses the ongoing clinical

trial in further detail, focusing on the important lessons learned while deploying a

WSN for clinical monitoring at this scale. The data collected during this study will

ultimately be used to guide the development of the system’s second tier.

5.1 Related Work

Numerous projects in existing literature propose using inexpensive wireless hardware

to assist in healthcare. Most closely related are CodeBlue [54], Alarm-NET [88],

MEDiSN [46], and a pilot deployment at Barnes-Jewish Hospital [20], which deploy

WSN-based devices for real-time patient monitoring. A common theme among these

systems is that they focus primarily on systems issues related to collecting raw sensor

data in a wireless sensor network: hardware design, network protocols, and system

reliability. This chapter discusses work towards a complete system for clinical event

detection; real-time vital sign data would be mined along with existing electronic

medical records to predict patient outcome. The real-time data collection component

of this system leverages the contributions made by these prior studies. Moreover, the

experiences discussed in Section 5.3 provide unique insights into deploying large-scale

data collection systems in a clinical setting.
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The development of algorithms for detecting clinical deterioration has a long tradi-

tion in medical literature. Two types of algorithms for detecting clinical deterioration

may be distinguished: algorithms that rely on medical knowledge and general ma-

chine learning techniques that do not require domain knowledge. A number of scoring

systems that use medical knowledge exist for various medical conditions. For exam-

ple, Yandiola [92] evaluates the effectiveness of Severe Community-Acquire Pneumo-

nia (SCAP) and Pneumonia Severity Index (PSI) in predicting outcomes in patients

with pneumonia. Similarly, outcomes in patients with renal failure may be predicted

using the Acute Physiology Score (12 physiologic variables), Chronic Health Score

(organ dysfunction), and agE (APACHE) score [45]. However, these algorithms are

best suited for specialized hospital units. In contrast, the detection of clinical dete-

rioration on general hospital units requires more general algorithms. For example,

the Modified Early Warning Score (MEWS) [41] uses systolic blood pressure, pulse

rate, temperature, respiratory rate, age, and BMI to predict clinical deterioration.

These physiological and demographic parameters may be collected at bedside, mak-

ing MEWS suitable for general hospital units.

An alternative to algorithms that use medical knowledge is to adopt standard machine

learning techniques. This approach has two important advantages over traditional

rule-based algorithms. First, it allows us to consider a larger number of parameters

during the prediction of patient outcomes. Second, since they do not use a small

set of rules for predicting outcomes, it is possible for machine learning approaches

to achieve improve accuracy. Learning techniques such as decision trees [81], neural

networks [95], and logistic regression [35] have been used to identify clinical deterio-

ration.

5.2 Early Warning System Design

The first step in providing early intervention lies in determining which patients are

most at risk of clinical deterioration and who would most benefit from more intensive

monitoring. In order to make this decision, our proposed system will leverage existing

data from electronic medical record systems. As hospitals transition to electronic

record-keeping, their databases are aggregating an increasing wealth of information

about a patient’s history and current condition: demographic data, the results of lab

tests, information about prescriptions, low-granularity vital sign data, etc.
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The challenge lies in determining how all the factors represented in this data may

serve as potential warnings of clinical deterioration. We envision the use of advanced

machine-learning techniques to find correlations between medical data and the pa-

tient’s future outcome. These correlations can then be used to identify at-risk patients

based on the data contained in their medical records.

In order to demonstrate the feasibility of an Early Warning System component, we

applied logistic regression [37] techniques to predict patients’ outcomes (specifically,

whether or not they would be transferred to the ICU) on a historical dataset. This

dataset cataloged 28,927 hospital visits from 19,116 distinct patients between July

2007 and January 2010. It contained a wide array of demographic and medical data

for each of the visits, such as age, manually-collected vital sign data, pharmacy data,

and whether or not the patient was transferred to the ICU. All data contained in this

dataset were taken from historical EMR databases, and reflects the kinds of data that

would realistically be available at the first tier of our proposed clinical warning system.

This study serves as a proof-of-concept for our vision of using machine learning to

identify at-risk patients and (ultimately) to perform real-time event detection.

Another important challenge in implementing clinical early warning is generating a

manageable number of alarms. If alarms are too frequent, clinicians may be more

inclined to ignore them. A key feature of logistic regression is that it allows a trade-

off between sensitivity and alarm rate which may be adjusted in deployment. As

discussed below, performance results show that this approach achieves acceptable

predictive performance even under low alarm rates.

In this section, we first provide a background description of the logistic regression

approach used in this study. We then describe the performance of this approach under

two different scenarios: a retrospective analysis where each patient is assigned a single

score, and a real-time simulator where patient scores are continually recomputed as

new EMR data is entered.
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5.2.1 Algorithm Overview

Background

At a high level, logistic regression predicts an outcome y from a vector of input

variables x1, x2, . . . , xk. Each element in the vector x represents one reading of a

particular kind; for example, x1 may indicate a patient’s blood oxygen saturation

while x2 may be the patient’s temperature. The predicted outcome y ∈ (0, 1) indi-

cates the likelihood of some event occurring based on the input variables. y values

near 1 represent a strong prediction of the event occurring (e.g., the patient being

admitted to the ICU), while values near 0 represent a high likelihood of the event not

occurring. The variable y is discretized using a simple thresholding procedure. The

threshold controls the trade-off between false positive and false negative rates (i.e.,

higher thresholds decrease false positives but increase false negatives).

In order to compute predictions, a set of weights β1, β2, . . . , βk are used to determine

the importance of each parameter that is part of vector x. Large positive β values

indicate that a particular variable is highly predictive of an outcome of interest,

while large negative β values indicate that a variable is highly protective against this

outcome. For example, when x1 represents a patient’s blood oxygen saturation, a

large negative β1 would indicate that patients with higher blood oxygenation levels

are less likely to be ultimately admitted to the ICU.

The logistic equation is formally defined as follows. For each case (hospital visit), we

have an input vector x1, x2, . . . , xk. We also have a set of coefficients β1, β2, . . . , βk

and an intercept value β0 which are constant across all cases. From these inputs, we

may compute

z = β0 +
k∑

i=1

βixi

for each case. The output z is in the range (−∞,∞). We then confine the prediction

to the range (0, 1) by computing

y =
1

1 + e−z

The vector β is produced offline from a training (historical) dataset. Each case in

the training dataset has both an input vector x and a known outcome y. Since the
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outcome is discrete and known, y may only take the values of 1 (positive outcome) or

−1 (negative outcome). β may then be fitted to the training dataset using standard

techniques, such as least-squares.

Time Division

By itself, logistic regression does not operate on time-series data. That is, each

variable input to the logistic equation corresponds to exactly one data point: e.g., a

blood pressure variable would consist of a single blood pressure reading. In a clinical

application, however, it is important to capture unusual changes in vital sign data

over time. Such changes may precede clinical deterioration by hours [13], providing

a chance to intervene if detected early enough. In addition, not all readings in time-

series data should be treated equally; the value of some kinds of data may change

depending on its age. For example, a patient’s condition may be better reflected by a

blood-oxygenation reading collected one hour ago than a reading collected 12 hours

ago.

To capture the temporal effects in our data, we retain a sliding window of all the

collected data points within the last 24 hours. We then subdivide this data into a

series of n equally-sized buckets (e.g., 6 sequential buckets of 4 hours each). In order

to capture variations within a bucket, we compute three values for each bucket: the

minimum, maximum, and mean data points9. Each of the resulting 3n values are

input to the logistic regression equation as separate variables.

Handling Missing Data

A complication of using clinical data is that not all patients will have values for

all variables. Many types of clinical data involve lab tests that are not routinely

performed on all patients. This problem is compounded by dividing time into buckets:

even when a patient has had a particular lab test, it will only provide a data point

for one bucket.

9We attempted to add a fourth value for standard deviation, but found that our historical data
set was too sparse to calculate σ for nearly all buckets. We are considering other ways to measure
variability as future work.
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To deal with missing data points, we first “carry over” historical values. Specifically,

when a bucket is empty, we insert the patient’s most recent reading from any time

earlier in the dataset, possibly going all the way back to the beginning of the hospital

stay. To handle cases where a patient had no previous data for a particular variable,

we also calculate the mean value for each variable over the entire historical dataset.

These mean values are used as a fallback when the carrying-over procedure cannot

find any data to carry over.

5.2.2 Performance Results

Retrospective Analysis

After implementing the above algorithm in MATLAB, we evaluated its accuracy over

the historical dataset. Specifically, logistic regression was used to predict whether the

patient was admitted to the ICU.

For the purposes of training, we looked at a single 24-hour window of data from each

patient. For patients admitted to ICU, this window consisted of 26 hours – 2 hours

prior to ICU admission; for all other patients, this window consisted of the first 24

hours’ of their hospital stay. We subdivided this 24-hour window into 6 contiguous

windows of 4 hours each.

Variable Coefficient
Respirations (bucket 6 max) 4.45
Oxygen Saturation, pulse oximetry (bucket 6 min) −4.22
Shock Index (bucket 6 max) 4.01
Respirations (bucket 6 mean) 3.41
BP, Systolic (bucket 6 min) −2.96
Coagulation modifiers (bucket 1) 2.70
Pulse (bucket 6 max) 2.55
Respirations (bucket 6 min) 2.51
BP, Diastolic (bucket 6 max) 2.48
Oxygen Saturation, pulse oximetry (bucket 6 mean) −2.44

Table 5.1: The 10 highest-weighted variables from the training dataset

As noted above, the logistic model requires training data to fit the unknown β values

from known data and outcomes. We divided the dataset into two halves; the first

half was used to train the model. The dataset’s 36 categories were then divided into
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buckets and min/mean/max features wherever applicable, resulting in 398 variables.

Table 5.1 provides a sample of output from the training process, listing the 10 highest-

weighted variables and their coefficients; all 398 variables were used to predict patient

outcomes. We then used the second half of the dataset as testing data. We generated

a predicted outcome for each case in the testing data, using the β weights derived

from the training data. As noted above, we then applied various thresholds to convert

these predictions into binary values, and compared the results against the ground-

truth ICU outcome.
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Figure 5.1: ROC curve of logistic model’s predictive performance under retrospective
analysis.

Figure 5.1 plots the ROC curve of the model’s performance under a range of thresh-

olds. The X axis plots 1 - the specificity for a given threshold. The Y axis plots the

corresponding sensitivity at the same threshold. Both performance metrics are im-

portant from a clinical perspective. Higher X values correspond to a larger number of

false alarms. Higher Y values correspond to more patients correctly being identified

for early intervention.

Based on these results, a threshold of y = 0.9323 was chosen to achieve a specificity

close to 95%. This specificity value was chosen in turn to generate only a manageable

number of alerts per hospital floor per day. Even at this relatively high specificity,

the logistic regression approach achieves a sensitivity of 48.8%. Table 5.2 summarizes

the performance at this cutpoint under several common statistical metrics.
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Area under curve 0.8834
Specificity 0.9500
Sensitivity 0.4877
Positive predictive value 0.3138
Negative predictive value 0.9753
Accuracy 0.9292

Table 5.2: The predictive performance of logistic regression at a chosen cutpoint
under retrospective analysis

Real-Time Simulation

In order to train the logistic model, our retrospective analysis looked at only a single

24-hour window of data for each patient. In a system that predicts patients’ outcomes

in real time, their scores would be recomputed each time new data is entered into the

EMR database. Hence, each patient will effectively have a series of scores over the

length of their hospital stay, and an alarm will be triggered when any one of these

scores is above the threshold.

To better understand the model’s performance under these circumstances, we devel-

oped a real-time simulator which “replays” each patient’s EMR data in chronological

order over their entire hospital stay. For each entry in the EMR dataset, the simulator

collects all the patient’s data over a 24-hour window ending at the new entry, and

computes a new score for the patient (using the β values fitted during the retrospec-

tive study). ICU admission is predicted if any one of the patient’s scores exceed a

given threshold.

For this real-time simulation, we replayed a smaller, more recent data set cataloging

1,284 hospital visits from 1,204 distinct patients between October 2010 and December

2010. Figure 5.2 plots the corresponding ROC curve of the model’s performance.

Area under curve 0.7293
Specificity 0.9492
Sensitivity 0.4127
Positive predictive value 0.2955
Negative predictive value 0.9691
Accuracy 0.9229

Table 5.3: The predictive performance of logistic regression at a chosen cutpoint
under real-time simulation
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Figure 5.2: ROC curve of logistic model’s predictive performance under real-time
simulation.

As with the retrospective study, we chose a threshold to achieve a specificity close to

95%, yielding a cutpoint of y = 0.9987. At a specificity of 94.9%, the model achieves a

sensitivity of 41.3%. Table 5.3 summarizes the model’s performance at this cutpoint.

5.3 Real-Time Data Collection System

Real-time data collection forms a key component of the two-tiered clinical early warn-

ing system described in this chapter. The long-term goal for this component is to

collect vital sign data from patients in real time, and combine this real-time data

with existing electronic medical records to better predict the patient’s outcome.

In this section, we discuss an ongoing clinical trial of a WSN-based monitoring system.

The trial, deployed on four wards on three floors of Barnes-Jewish Hospital, uses

WSN-based devices to collect pulse and blood-oxygenation data from patients in real

time. The data collected is not yet being analyzed in real time, but rather will form

a dataset for designing such a real-time clinical event detection component. This

section will focus on important new lessons learned while deploying a trial of this

scale, to serve as guidelines for future clinical trials based on WSN technology.
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5.3.1 Background

The hardware and software system used in this clinical trial are based on an earlier

pilot study performed in a step-down unit at Barnes-Jewish Hospital [20]. Enrolled

patients are provided devices which periodically collect pulse and blood oxygenation

level data, and route the data to a wired access point using an onboard radio based

on the IEEE 802.15.4 radio standard. WSN network coverage is achieved by plugging

additional TelosB nodes into electrical outlets in patients’ rooms and in the hallway.

These relay nodes form a dedicated routing infrastructure, which patient nodes locate

using the Dynamic Relay Association Protocol (DRAP) protocol [19].

The Collection Tree Protocol (CTP) [34] is employed on relay nodes to establish a

data collection tree rooted at a wired base station. Once data reaches a base station,

it is logged in a local PostgreSQL database. In addition to patient data, relay nodes

send “beacon” packets to the closest base station at a rate of one packet per minute.

These beacons provide diagnostic information about the network’s operation even

when no patients are enrolled in the study.

There are two important differences between the earlier pilot study and the ongoing

clinical trial described in this section. First, the pilot study was generally isolated from

the BJC network. Vital sign data was kept locally on the base station; the building’s

wireless network was used only for remote administration of the base station. Under

the clinical trial, the base stations use BJC’s internal network to connect to a central

EMR database. Second, the clinical trial operates at a much larger scale than the

pilot study. The pilot study deployed 18 relay nodes and one base station in one

step-down unit. The clinical trial was initially deployed with 30 relay nodes and two

base stations across two wards, and was expanded to 59 relay nodes and four base

stations across three floors. Although these differences are subtle, they have both led

to significant deployment challenges discussed below.

5.3.2 Deployment Challenges

The increased scale of the clinical trial, and its interaction with external database

systems, have had significant effects on its reliability. In this subsection, we discuss

some of the unique challenges faced during the first months of the clinical trial. We

discuss preliminary solutions to these challenges in the following subsection.
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Sensing reliability. Sensing reliability posed a significant challenge during the earlier

pilot study, with an average reliability of 80.85% (compared to a network reliability

of 99.68%). The pilot study recommended combating the low sensing reliability by

sending a “disconnection alarm” if long-lived sensor failures are encountered. This

recommendation was implemented for the clinical trial. Nevertheless, sensor reliability

was even worse at the beginning of the clinical trial: out of 9 patients, sensor reliability

had a mean of 33.84% and median value of 27.95%.

Equipment disconnection. Over the first 3 months of the deployment, 12 relay nodes

(out of the initial 30 deployed) disappeared from the network. Several of these nodes

were found physically unplugged from the wall, while the others have still not been

located. 11 of these disconnections occurred in a short period of time, taking down

a critical part of the WSN infrastructure. During this time, one of the two base

stations’ 802.15.4 interface was also found unplugged, sitting on top of the laptop’s

lid; without the interface, the base station could no longer collect data from the

WSN. Combined, these disconnections effectively cut off most of the relay network

from both base stations.

Unpowered patient devices. Study nurses must install batteries into the patient device

when a new patient is enrolled. However, the nurses were not initially given clear

instructions on how to install batteries, and the patient devices gave no obvious

feedback that they were powered on. As a result, patients enrolled during the study’s

first two weeks were provided devices which did not power up, resulting in total data

loss until the problem was identified.

Unexpected software interactions. Three of the four base stations were provided by

BJC, and were prepared with a standard Windows XP laptop image. This image

included a backup utility configured to automatically run backups two nights a week.

During the clinical trial, it was discovered that this utility would lock files while

backing them up, causing the base stations’ PostgreSQL server instances to crash.

Hence, the first weeks of the deployment were plagued with unexplained base station

crashes until the backup schedule was discovered and disabled.

Moreover, the standard laptop image includes remote administration software that

allows IT to push out critical security updates, in turn requiring monthly reboots.

The data collection software ran as an ordinary user-level application and was not

designed to automatically restart after a reboot, resulting in data loss until the reboots

were discovered and the software was manually restarted. The rebooting issue was
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compounded by the full-disk encryption included in the image. After rebooting, the

base stations prompted for a passphrase to unlock the Windows partition, requiring

physical access to the machine.

5.3.3 Lessons Learned

Education and training. Many of the early reliability problems with the study

stemmed from insufficient education about the equipment used in the study. We

initially treated sensor reliability as an unavoidable problem which could only be

combated through oversampling and disconnection alarms. When both techniques

failed to improve reliability, a team member persistently contacted the pulse-ox sen-

sor’s vendor; he eventually received specific recommendations on sensor placement

and maintenance, which were not all intuitive from the sensor labeling. After training

the study nurse with the vendor’s recommendations, sensing reliability has improved

dramatically.

Better training of the study nurses would also have prevented the first patient devices

being deployed without properly-installed batteries.

Equipment labeling. The relay devices and base station were initially deployed without

any labels indicating that they were part of a clinical monitoring system. Although

most of the disconnected devices have not yet been found, it seems likely that some

were unplugged and set aside out of curiosity or suspicion; we fielded many questions

about the devices from curious nurses, doctors, and cleaning staff passing by the

deployment, including a nurse who asked if a relay device was a bomb. We also

believe that some devices may have been unplugged by cleaning staff who needed the

power outlets, since there was no indication that the device was important.

New relay devices are now deployed with laminated labels, with clear instructions that

they should not be unplugged (and should be returned to the nurses’ station if found

disconnected). The label is also designed to conceal the relay nodes’ exposed circuit

board, making them appear less suspicious. No new disconnections have occurred

since adding the labels.

Equipment feedback. After discovering the battery installation issue, patient devices

were programmed with a new firmware that lit the sensor’s LED for 30 seconds

after being turned on. This change provided visual feedback to the study nurse that
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the device was functioning, eliminating the possibility of more patients being given

powered-down devices.

Infrastructure monitoring. When the system was initially deployed, there was no

automated process in place to ensure that the base stations were still running. Hence,

base station downtimes often went undiscovered for many days, and were only noticed

when new patients were enrolled. Since the initial deployment, we have modified the

base station software to E-mail nightly diagnostic reports, providing feedback that

they are still operational.

For similar reasons, relay node disconnections often went unnoticed until they began

to affect network performance. Labeling the equipment has so far prevented the

problem from recurring. In case the problem recurs, we are exploring adding backup

battery power to the relay nodes, and sending alerts to the base station when they

switch over to battery power.

Base station design. Many of the reliability issues at the base station stemmed from

the base station software being built as an ordinary user-level application on top of

a standard Windows XP image. The XP image was designed for laptops which may

hold confidential data and are prone to theft and data loss, and where routine reboots

are acceptable. In retrospect, deploying the base station software on top of a minimal

Linux or Windows Server installation would have eliminated these problems from the

outset.

We have since worked around many of these issues by removing the backup and

full-disk encryption software, and modifying the base station software to run as a

system-level service. While this solution does not eliminate the monthly reboots, it

eliminates the manual intervention needed to bring the base stations back up after a

reboot.
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Chapter 6

Conclusions

This dissertation discussed four different efforts in designing energy-efficient WSNs.

ART, discussed in Chapter 2, is a representative approach targeted at a specific part

of the hardware stack (specifically, the radio subsystem). ART reduces the energy

consumed by packet transmissions by an average of 15% with no loss in link quality,

and up to 40% under heavy contention. Moreover, ART is largely agnostic to the

routing and application layers which sit on top of it, making it broadly applicable to a

wide range of applications. Chapters 3 and 4 cover two distributed WSN architectures

designed specifically to improve the lifetime of structural health monitoring applica-

tions. In contrast to ART, the techniques in these chapters are targeted specifically

to a particular application (decentralized SHM) but offer even greater opportunity

for energy savings. By leveraging the motes’ onboard computational power, data

transmissions are reduced by up to 99.8% with no loss in damage identification or

localization performance.

Finally, Chapter 5 described my work toward a real-time clinical monitoring and

event detection system. The logistic regression study serves as a proof-of-concept

for clinical event detection, while also identifying candidate patients for an ongoing

clinical trial. More generally, the lessons learned during the clinical trial may also

guide future trials of clinical WSNs.

Looking ahead, the lessons learned in applying holistic codesign to SHM may also

become an important part of future real-time clinical monitoring systems. At an

architectural level, the monitoring system currently under trial at BJH resembles a

centralized SHM system. After patient devices receive a valid reading from the sensor,

this data is relayed to the base station and processed in a centralized fashion. This

simple approach works well for a pulse-ox sensor, where we collect only one reading
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(consisting of a few bytes of data) per minute and hence transmission costs are not a

major issue.

However, other kinds of sensors or sensing modes may require higher data rates which

are impractical to support in a centralized system. For example, ECG sensors may

be used to noninvasively estimate heart-rate variability (HRV), which may act as an

early indicator of serious medical conditions [12, 35, 85]. Measuring HRV requires

sampling the ECG continuously over a long time window, which would be impracti-

cally expensive to send back to a base station. Alternatively, a holistically codesigned

system could exploit the patient devices’ onboard processing capabilities to analyze

HRV onboard, and then only relay data to the base station when the HRV is ab-

normal. Similar approaches have been highly effective at reducing data transmission

costs in SHM applications, making a compelling argument for its use in future clinical

monitoring systems as well.
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