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ABSTRACT OF THE DISSERTATION 

 
 

Practical Approaches to Biological Network Discovery 

by 

Brian Clifton Haynes 

Doctor of Philosophy in Science in Computer Science 

Washington University in St. Louis, 2012 

Research Advisor:  Professor Michael Brent 

 
 

This dissertation addresses a current outstanding problem in the field of systems biology, which is to 

identify the structure of a transcriptional network from high-throughput experimental data. 

Understanding of the connectivity of a transcriptional network is an important piece of the puzzle, 

which relates the genotype of an organism to its phenotypes. An overwhelming number of 

computational approaches have been proposed to perform integrative analyses on large collections of 

high-throughput gene expression datasets to infer the structure of transcriptional networks.  I put forth 

a methodology by which these tools can be evaluated and compared against one another to better 

understand their strengths and weaknesses.  Next I undertake the task of utilizing high-throughput 

datasets to learn new and interesting network biology in the pathogenic fungus Cryptococcus 

neoformans. Finally I propose a novel computational method for mapping out transcriptional 

networks that unifies two orthogonal strategies for network inference. I apply this method to map out 

the transcriptional network of Saccharomyces cerevisiae and demonstrate how network inference 

results can complement chromatin immunoprecipitation (ChIP) experiments, which directly probe the 

binding events of transcriptional regulators. Collectively, my contributions improve both the 

accessibility and practicality of network inference methods. 
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Chapter 1 
 
Introduction 
 

Living organisms respond to their environment through complex networks of 

molecular interactions that regulate gene transcription.  Identifying the structure and 

logic of these networks is paramount to obtaining a systems level understanding of 

cellular behavior and disease. Genome wide expression profiling over hundreds of 

genetic backgrounds and growth conditions is now possible due to the rapidly falling 

cost of high-throughput sequencing.   

 

As a result of this massive growth in the availability of genomics data, the weakest 

link in the biological discovery pipeline has increasingly become the process of 

analyzing and integrating evidence across datasets to hypothesize models of gene 

regulation. The development of algorithms for analyzing large compendia of gene 

expression data to predict the structure of transcriptional regulatory networks has 

been a hotbed of research for the past decade, but in spite of this intense effort these 

tools are not yet widely adopted.  Instead, conventional analyses such as clustering 

and differential expression analysis continue to be applied.  
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This dissertation addresses the current disconnect in the field of network biology 

between the bench scientist and the computer scientist. I focus on bridging this 

divide by bringing to bear greater standards of evaluation to current tools that will 

enable biologists to better understand their capabilities.  I experience the process of 

working out a biological pathway first hand and in doing so identify ways in which 

network inference tools can be altered to better suit the needs of bench scientists.  

Specifically, I unify two strategies used to work out transcriptional networks under a 

single framework and demonstrate the advantages of combining these 

complementary approaches. Each chapter of this dissertation is organized as a self-

contained unit with its own background, related work, results and discussion 

sections.   

 

Chapter 2 addresses a need in the field of network biology to standardize the 

evaluation of network inference algorithms. One of the key impediments to the 

adoption of network inference tools is lack of systematic evaluations on realistic 

benchmarks.  The lack of such evaluation makes it unclear to potential users which 

tool is the best to apply to a given dataset.  It also leaves uncertainty regarding the 

expected accuracy. In response to this need, I present GRENDEL, a tool for 

benchmarking network inference algorithms. GRENDEL is unique in that it is the 

first benchmarking tool to generate in-silico networks that have biologically realistic 

topologies and kinetic parameterizations. I evaluate several network inference 

algorithms using this tool and demonstrate how performance can vary greatly based 

on the nature of the experiments from which the gene expression data was obtained. 
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These findings underscore the need to understand when to apply specific inference 

algorithms in practice. 

 

In chapter 3 I assume the role of a bench scientist and apply conventional analyses of 

high-throughput gene expression datasets to the study of Cryptococcus neoformans, 

an opportunistic fungal pathogen.  I focus on characterizing a pathway that regulates 

the size of the cryptococcal capsule (a virulence factor) in response to its 

environment. I use gene expression data and quantitative phenotypic data to identify 

novel regulators of capsule induction.  Next, using strains in which individual 

transcription factors have been disrupted, I contextualize a novel regulator of 

capsule, Ada2, in the broader pathway of capsule regulation.  This was a rewarding 

process that not only yielded new insights into the biology of C. neoformans but also 

shaped my thinking moving forward with regard to developing network inference 

algorithms tailored to application to individual pathways with a limited number of 

gene expression measurements. 

 

Based in part on the experience of applying conventional approaches to working out 

a biological pathway in chapter 3, I developed a new algorithm for network inference 

that I describe in chapter 4. The inspiration for this algorithm is based on the desire 

to more effectively utilize measurements from genetically perturbed strains, which 

are often available in gene expression datasets. Before large compendia of gene 

expression data could be produced, pathways were worked out by performing 

simple, two-sample comparisons to identify genes that respond significantly to 
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genetically perturbed regulators. To my surprise, most network inference algorithms 

do not make use of such information and instead rely solely on compendium-wide 

statistical relationships between genes identified through regression based analyses.  

I address this by developing a new inference algorithm, NetProphet, which combines 

differential expression analysis with LASSO regression.  I apply this algorithm to 

map out the transcriptional network of Saccharomyces cerevisiae, demonstrating the 

advantages of integrating these two network inference strategies. 

 

Contributions: I list the 6 main contributions of this dissertation and briefly 

summarize each. 

1. GRENDEL: a novel benchmarking suite for network inference. I present 

GRENDEL, a method for generating in-silico transcriptional networks that 

possess biologically realistic topology and kinetic parameterizations. This 

contribution is presented in chapter 2. 

 

2. An evaluation of network inference algorithms using GRENDEL. I apply 

GRENDEL to examine the effects of experimental design and technical noise 

on network inference algorithms. This contribution is presented in chapter 2. 

 

3. A transcriptional signature of capsule induction in the pathogenic fungus 

Cryptococcus neoformans. I identify a set of genes whose expression pattern 

correlates with capsule radius. This signature contains many genes already 

phenotypically implicated in capsule formation as well as many 
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uncharacterized transcriptional regulators. This contribution is presented in 

chapter 3. 

 

4. An integrated model of cryptococcal capsule regulation. I identify a new 

transcriptional regulator of cryptococcal capsule induction, Ada2, and 

contextualize it in the capsule induction pathway. This contribution is 

presented in chapter 3. 

 

5. NetProphet: a novel algorithm for mapping transcriptional networks. I 

present an algorithm for inferring transcriptional network structure from gene 

expression data that includes measurements for strains in which 

transcriptional regulators have been genetically perturbed. This contribution 

is presented in chapter 4. 

 

6. An application of NetProphet to infer the transcriptional network of 

Saccharomyces cerevisiae. I demonstrate how NetProphet can complement 

ChIP experiments in resolving transcriptional network structure. This 

contribution is presented in chapter 4. 
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Chapter 2 
 
Evaluating Transcriptional Network  
Inference 
 

Brian C. Haynes and Michael R. Brent 
Published in Bioinformatics. (2009) 

 

Abstract 

Over the past decade, the prospect of inferring networks of gene regulation from 

high throughput experimental data has received a great deal of attention. In contrast 

to the massive effort that has gone into automated deconvolution of biological 

networks, relatively little effort has been invested in benchmarking the proposed 

algorithms. The rate at which new network inference methods are being proposed far 

outpaces our ability to objectively evaluate and compare them.   This is largely due 

to a lack of fully understood biological networks to use as gold standards. We have 

developed the most realistic system to date that generates synthetic regulatory 

networks for benchmarking reconstruction algorithms. The improved biological 

realism of our benchmark leads to conclusions about the relative accuracies of 

reconstruction algorithms that are significantly different from those obtained with A-

BIOCHEM, an established in-silico benchmark. The synthetic benchmark utility and 
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the specific benchmark networks that were used in our analyses are at: 

http://mblab.wustl.edu/software/grendel/ 

2.1     Background 

High throughput assays for mRNA expression have paved the way for computational 

methods that aim to reverse engineer the control architecture of gene regulation. 

Technologies such as spotted microarrays [1] and oligonucleotide chips [2] have 

allowed for genome wide expression profiling. More recently, short read sequencing 

has shown promise for even more precise quantification of mRNA [3,4].  Initially, 

analyses of high throughput expression data focused on clustering the data in order to 

identify coregulated genes whose products might take part in a shared biological 

process [5]. Shortly thereafter, algorithms were developed to reconstruct the 

underlying regulatory network that best accounts for the expression data. These 

algorithms differ in the level of detail at which they reconstruct networks.  Some 

output an undirected graph where edges do not indicate which gene is the regulator 

[6]; others specify the regulator with directed edges [7], and a few even label the 

edges with kinetic parameters [8]. 

 

Improvement and adoption of network reconstruction algorithms has been impeded 

by the difficulty of objectively assessing their accuracy. Evaluation is difficult 

primarily because there are very few, if any, fully understood biological networks to 

use as gold standards. The adoption of standard benchmarks is further complicated 

by the fact that some inference algorithms require steady state expression data while 

http://mblab.wustl.edu/software/grendel/�
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others require time courses, some require genetic perturbations while others do not, 

and so on.  Currently, there is no generally accepted substrate on which to compare 

network reconstruction algorithms. 

 

The most important property of network reconstruction benchmarks is sufficient 

biological realism to predict accuracy in practical applications. Benchmarks should 

also provide a sizable population of distinct networks and a range of network sizes, 

from small pathways to genome scale networks. Without a sufficient number of 

networks it is impossible to assess the statistical significance of accuracy differences. 

An ideal benchmark should be flexible enough to render different types of simulated 

expression data for the same network structure.  As we will show, the accuracy of a 

reconstruction algorithm is strongly determined by the design of gene expression 

experiments from which the data were generated.  A flexible benchmarking system 

can be used to guide both the development of reconstruction systems and the design 

of expression experiments aimed at generating data for them. 

 

2.2 Related Work 

Several approaches to evaluating reconstruction algorithms have been explored.  One 

approach assumes genes that share common Gene Ontology (GO) categories [9] are 

more likely to be in a regulatory relationship than those that do not.  However, many 

genes without a direct regulatory relationship also share GO terms.  Predictions have 

also been evaluated on well studied pathways from model organisms, such as the cell 
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cycle pathway in Saccharomyces cerevisiae [10]. However, there are still 

uncertainties about these networks, so novel predictions could be mistaken as false 

positives. Another approach to benchmarking is to synthesize a small biological 

network through genetically engineering cells  

[11].  Advantages of this approach are that the true network structure is known and 

gene expression is measured in a real biological system.  However, this is feasible 

only for small networks and cannot generate enough different networks to provide 

the statistical power needed to conclude that one algorithm is more accurate than 

another. 

 

In-silico benchmarks address the need for statistical power because they can run 

multiple independent trials generated from the same topological and kinetic 

distributions. They also provide a flexible, low cost method of comparing a wide 

variety of experimental designs for obtaining gene expression data.  However, if in-

silico benchmarks are not realistic they may provide a misleading estimate of the 

reconstruction accuracy in real applications. 

 

Several in-silico regulatory networks have been proposed as benchmarks [12,13], but 

these are single instances of small, hand built networks and cannot provide robust 

estimates of expected accuracy. Systems for generating populations of artificial 

regulatory networks have also been developed.  A-BIOCHEM [14] is a system that 

can generate networks according to several topological (in-degree and out-degree) 

distributions, such as Erdos-Renyi and power-law. However, the network generating 
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software is not public, and only a limited collection of networks is made available. 

Another limitation is that the kinetic parameters are arbitrary and the resulting 

networks do not conform to the timescale of a real biological system. Furthermore, 

translation is not modeled: mRNA acts as a surrogate for active protein product.  

SynTReN [15] makes the same assumptions about kinetics, but generates more 

realistic topologies by sampling subgraphs of known transcriptional networks. This 

approach has the advantage of capturing features beyond degree distribution, such as 

clustering coefficients, modularity and enrichment of biological network motifs. The 

downside of this sampling approach is that the networks generated may not be 

probabilistically independent, since they can contain overlapping pieces of the 

known networks, and this problem gets worse as the size of the benchmark networks 

increases. This lack of independence limits the potential for testing the statistical 

significance of differences between reconstruction algorithms. 

 

To address these limitations, we have developed a publicly available, synthetic 

benchmarking system that is more biologically realistic than previous methods. It 

uses network topologies that closely reflect those of known transcriptional networks 

and kinetic parameters from genome wide measurements of protein and mRNA half-

lives, translation rates, and transcription rates in S. cerevisiae. We compared our 

method to an established in-silico benchmark, A-BIOCHEM [14].  Using these 

benchmarks, we evaluated the accuracy of four network reconstruction algorithms, 

most of which have not been directly compared before: ARACNE [6], CLR [16], 

Symmetric-N [17,18] and DBmcmc [7]. Our results show that the increased realism 
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of our simulations leads to conclusions that are significantly different from those 

indicated by the more established A-BIOCHEM benchmark. 

 

2.3     Approach 

In order to provide a more realistic synthetic benchmark to users and developers of 

network reconstruction systems, we have built an open and extensible software 

toolkit, Gene REgulatory Network Decoding Evaluations tooL (GRENDEL).  

GRENDEL generates random gene regulatory networks according to user defined 

constraints on the network topology and kinetics. It then simulates the state of each 

regulatory network under various user defined conditions (the experimental design) 

and produces simulated gene expression data, including experimental noise at a user 

defined level. Figure 2.1 shows an overview of the workflow we use to generate and 

simulate regulatory networks. 

 

 

Figure 2.1. The basic workflow we are using to generate an in-silico regulatory 

network and produce simulated expression data from it.  The user inputs are shown 

above each step of the process.  
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The artificial networks generated by GRENDEL are continuous-time dynamical 

systems with three independent types of molecular species: mRNAs, proteins, and 

environmental stimuli (e.g. extracellular glucose or iron).  To our knowledge, all 

other in-silico benchmarks use the mRNA concentration as a proxy for active protein 

product.  This eliminates the decorrelation of a gene's mRNA and protein 

concentrations that arises during condition shifts in real systems. 

 

Figure 2.2 shows an example of mRNA-protein decorrelation in our system.  In real 

networks, the relationship between a gene's mRNA and protein concentrations has 

been shown to be crucial for determining biologically relevant dynamics, as in 

certain oscillators [19]. 

 

Figure 2.2. A time course plot showing the dynamics of the three molecular species 

in our simulation: mRNAs, proteins, and external signals.  In this simulation, the 

signal represses transcription of a gene.  Note the decorrelation of mRNA and 

protein following the condition shifts. 
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Environmental stimuli, or signals, were included for the purpose of supporting time 

courses.  Signals are different than mRNAs and proteins in that they are driven by 

external rules and are independent of the concentrations of mRNAs and proteins.  

Signal transduction happens on a much faster timescale than transcription, so we can 

approximate it as being instantaneous.  Using this approximation, the signal controls 

transcription in the same way a transcription factor does, simplifying the 

transduction cascade.  

 

Computationally generating random biological networks involves two modular steps: 

topology generation and kinetic parameterization.  The topology generation step 

defines the reagents, catalysts and products of each reaction. In our implementation 

the topology is represented by a directed graph with nodes representing signals and 

genes.  An edge from node A to B in the network indicates that A regulates the 

transcription of B, where A is either a gene or a signal and B is a gene. After 

generating a graph indicating which genes regulate which other genes, GRENDEL 

chooses parameters for the differential equations that determine the concentration of 

each protein and each mRNA. These parameters allow for the simulation of both a 

network's responses to environmental changes and the effects of genetic 

interventions on those responses. 

 

After generating a network, GRENDEL exports it in Systems Biology Markup 

Language (SBML) [20], a versatile representation that is becoming a standard for 
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communicating biochemical models. Networks specified in SBML can be simulated 

by using one of several SBML integration programs, including COPASI [21], 

CellDesigner [22], and SBML ODE Solver Library (SOSlib) [23].  Our software 

uses SOSlib to deterministically integrate the ODEs that define the dynamical 

system, resulting in noiseless expression data.  Simulated experimental noise is then 

added to the data according to a log normal distribution, with user defined variance. 

Biological noise is not considered here, but the networks our method produces could 

be simulated with biological noise by using an SBML-based stochastic integrator 

[24]. 

 

2.4     Results 

We set out to evaluate the utility of synthetic benchmarks for two applications: 

assessing the performance of network reconstruction methods relative to one another 

and supporting cost-benefit analysis of designs for gene expression experiments. To 

accomplish this, we carried out three sets of computational experiments. The first set 

examines how the design of a steady-state gene expression experiment affects the 

performance of network inference methods. The second set investigates the effects of 

technical noise on the quality of network inference from steady state data. The third 

set explores the effects of sampling frequency on network reconstruction from time 

course data.  
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Throughout, we compared the results obtained with our benchmarking suite, 

GRENDEL, to those obtained with A-BIOCHEM [14], a benchmark that has been 

used in several previous studies [25,26,6]. The reconstruction algorithms we 

evaluated are: ARACNE [6], CLR [16], Symmetric-N [17,18] and DBmcmc [7].  

ARACNE, CLR, and Symmetric-N are applied to steady-state expression data; 

Symmetric-N and DBmcmc are applied to time course data. To evaluate an inference 

method, we compared each edge it inferred to the known network structure.  To 

facilitate comparison among inference algorithms the gold standard network was 

first converted to an undirected network. For each inferred network, we calculated 

precision (NTP / (NTP + NFP)), recall (NTP / ( NTP + NFN

 

 )), and the area under the 

precision-recall curve. 

2.4.1     Experiment 1: Experimental design comparison 

We analyzed the effects of experimental design by using a set of networks generated 

by GRENDEL and a set of networks (Century-SF) provided by A-BIOCHEM.  We 

wanted to test whether the degree distributions of our networks and those of and the 

CenturySF networks might lead to differing conclusions about experimental design. 

To isolate the effects of network topology, the kinetic parameters, such as 

transcription and mRNA degradation rates for every gene in the system, are the same 

for both sets of networks.  

 

Using these networks, we generated simulated data from five experimental designs: 
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• Diverse: 300 measurements from a diverse population 

• Knockouts: 100 measurements knocking out each gene 

• Overexpression: 100 measurements overexpressing each gene 

• Knockouts + overexpression: 200 measurements knocking out and 

overexpressing each gene 

• Knockouts + 2 overexpressions: 300 measurements knocking out each gene 

and overexpressing at two levels 

 

The Diverse data set was generated for comparison to [6], who used it to model 

samples from a genetically and phenotypically diverse population, such as samples 

from tumors found in different individuals. In their model, every sample has the 

same network topology but completely independent, randomly chosen kinetic 

parameters for all genes. For each simulated measurement Mk, we set Ti
M′ = σi,k Ti

M 

and Di
M′ = τi,k Di

M for each gene, where σi,k and τi,k are random variables chosen 

from the uniform distribution [0.0, 2.0].  For each gold standard network topology, 

all of these parameters were randomly selected 300 times, creating 300 

independently parameterized networks.  Figure 2.3 shows the precision-recall curves 

for ARACNE, CLR and Symmetric-N on this data set. ARACNE is clearly the 

method of choice in the A-BIOCHEM network topologies, recovering close to 50% 

of the true edges in the network before acquiring many false edges. Using the 

GRENDEL network topology, the estimated accuracies of all methods were lower, 

but their relative accuracies were about the same as on the A-BIOCHEM topologies. 
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Figure 2.3. Precision recall curves for network inference from the Diverse design.  

The precision recall curves that are shown reflect the median performance, ranked 

according to AUC-PR. Panel A, A-BIOCHEM topology; Panel B, GRENDEL 

topology. 

 

In the Knockouts design, for each steady state measurement Mi, a single gene was 

knocked out by setting Ti
M′=0.  The expression level of every gene was measured 

100 times, with a different gene knocked out each time.  The Overexpression design 

was analogous, but each gene was overexpressed rather than being knocked out. 

Constitutive overexpression from a plasmid was modeled by adding to the system an 

additional term that produced the mRNA at a constant rate.  The  Knockouts + 

overexpression design combines the measurements from Knockouts and 

Overexpression for a total of 200 observations.  Knockouts + 2 overexpressions 

augments the data from Knockouts + overexpressions with another 100 
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measurements in which each gene is expressed at twice the concentration of the first 

overexpression. 

 

Figure 2.4 shows the results in terms of area under the precision recall curve (AUC-

PR). The error bars represent the standard error of the mean.  For the Diverse 

experiment, ARACNE outperforms the other methods when inferring the A-

BIOCHEM networks, but for the GRENDEL networks, CLR does slightly better. 

Outside of the Diverse regime, the outcome is dramatically different: the other 

systems consistently outperform ARACNE. 

 

Figure 2.4. Effects of different experimental designs on reconstruction accuracy. 

Panel A, A-BIOCHEM topology; Panel B, GRENDEL topology. 

 

On the A-BIOCHEM benchmark, CLR performs slightly better on Knockouts than 

on Diverse, but on the GRENDEL benchmark it performs much worse on Knockouts 

than on Diverse. Similarly, A-BIOCHEM suggests that knock-outs are more 
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informative to CLR than overexpressions, whereas GRENDEL shows the opposite to 

be true. When using the GRENDEL benchmark, the estimated accuracies of all 

methods were lower than with A-BIOCHEM. GRENDEL thus appears to provide a 

tighter upper bound on how well these methods would perform on a real biological 

system similar to the yeast transcriptional network. 

 

2.4.2     Experiment 2: Effects of Technical Noise 

In a follow-up experiment, we wanted to investigate the effects of experimental noise 

on inference accuracy. The log2 signal intensity ratio of technical replicates in oligo 

and spotted arrays has been shown to follow a normal distribution whose standard 

deviation ranges from 0.1 to 0.5 [27].  We therefore examined three levels of 

simulated noise: low (s.d.=0.1), medium (s.d.=0.25), and high (s.d.=0.5), and a 

noise-free baseline condition.  To simulate technical noise, we perturbed the noise 

free data for each gene by a multiplicative factor independently chosen from the 

specified log2

 

-normal distribution. 

Figure 2.5 shows the impact of noise on reconstruction of networks with the A-

BIOCHEM and GRENDEL topologies using simulated data from the Knockouts + 

2 overexpression design.  In both benchmarks CLR was the least sensitive to noise 

followed by Symmetric-N and ARACNE. For all three algorithms, the effects of 

noise were not as strong on the GRENDEL networks compared to the A-BIOCHEM 

networks. Upon further examination, we found that the effect of noise was the most 
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pronounced on genes with fewer than three regulators, which account for 55% of 

edges in A-BIOCHEM compared to 20% in GRENDEL.  However, that does not 

account for the entire effect: the loss in accuracy in A-BIOCHEM is higher than 

GRENDEL even when in-degree is held constant.  This suggests that global 

topological features may also have an effect. 

 

 

Figure 2.5. Knockouts + 2 Overexpressions revealing the effects of technical noise 

on network reconstruction accuracy. Panel A, A-BIOCHEM topology; Panel B, 

GRENDEL topology. 

 

2.4.3     Experiment 3: Time course data 

To isolate the effects of using realistic parameters for half-lives, transcription rates, 

and translation rates, we created two sets of networks using GRENDEL. In one set, 

kinetic parameters were drawn from genome wide measurements in S. cerevisiae. In 
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the second set, the kinetic parameters were as in the A-BIOCHEM benchmark -- all 

degradation, transcription and translation rate constants were set to 1.0.  Each set 

contained 250 simulated networks, each with 20 genes and two external signals.  For 

each network we simulated a time course experiment in which gene expression was 

measured at fixed intervals for approximately 33.3 hours. During this time each 

system underwent 4 condition shifts: 2 where each environmental signal was 

perturbed and 2 when each signal was restored to its original state.  

 

The times at which each signal was perturbed and restored were chosen at random. 

We varied the sampling interval from 60 minutes to 2 minutes. For each interval, we 

evaluated DBmcmc and Symmetric-N on the arbitrary and realistically 

parameterized networks. 

 

Figure 2.6 (Panel A) shows the accuracy of DBmcmc as a function of sampling 

frequency. As the sampling frequency increases, so does the accuracy, but not by 

very much. As the sampling interval decreases from 1 hr to 10 minutes, the modest 

accuracy improvement begins right away when benchmarking on networks with 

realistic parameters. On arbitrarily parameterized networks, however, the 

improvement is even smaller, and it does not begin until the sampling frequency 

reaches 5 minutes. A possible reason for this is that the networks with arbitrary 

parameters reached steady state much more quickly than those with the realistic 

parameters, so there is a greater chance that multiple cascading regulatory events will 

occur between sampling intervals. The networks with realistic parameters respond 
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more slowly, so they have a reduced chance of multiple regulatory events occurring 

between sampling intervals. 

 

Figure 2.6. Evaluating the performance of DBmcmc and Symmetric-N comparing 

arbitrary kinetic parameterizations against realistic ones on a 20 gene network with 2 

external signals over varying sampling frequencies (x-axis). Panel A, DBmcmc; 

Panel B, Symmetric-N. 

 

For Symmetric-N, the arbitrary and realistic parameterizations cause the 

performance to trend quite differently than with DBmcmc, see Figure 2.6 (Panel B). 

For the arbitrary parameterization, performance actually benefited from sampling at 

longer intervals. For the realistic parameterization, performance improved as the 

sampling interval decreased, reaching a plateau at approximately 10 minute intervals. 

Symmetric-N did very well on some of the random networks and very poorly on 

others, with few networks yielding intermediate accuracy (data not shown). This was 

true for all sampling intervals and both kinetic parameterizations.  The fact that the 
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performance distribution of Symmetric-N was bimodal underscores the need to test 

reconstruction algorithms over a large population of networks as opposed to a single 

network instance. 

 

2.5     Discussion 

One of the benefits of using simulated networks to evaluate reconstruction 

algorithms is the statistical power one gets from being able to generate many 

networks sampled from the same distribution.  If an algorithm performs very poorly 

at reconstructing a specific subset of networks, the ability to generate large 

populations of networks enables developers to identify the weaknesses of their 

method. In-silico benchmarks also allow for properties of regulatory networks, such 

as degree distributions, experimental noise, biological noise, and network size, to be 

varied independently of one another. This helps to identify the properties that 

contribute most to reconstruction error. 

 

Simulated networks also have great potential as cost effective tools for determining 

the optimal experimental design to use with a given network reconstruction method.  

We have demonstrated the use of simulated networks in determining the optimal 

sampling interval for a time course experiment. For steady state data, we have shown 

they can provide hints about how many samples should be taken to achieve the 

desired level of accuracy, and whether gene knockouts or overexpressions are more 

useful.  Being able to simulate experiments will likely reduce the cost of network 
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reconstruction, improve its accuracy, and set expectations appropriately.  However, 

the results obtained with simulated networks are only a first step in evaluation that 

must ultimately be followed by application to real biological systems. At present, 

simulated networks are rough approximations that omit many important aspects of 

biological systems, including localization and post-translation modifications. 

 

GRENDEL is an extensible, open source toolkit that provides greater flexibility and 

realism than previously published synthetic benchmarks.  GRENDEL's more realistic 

network topologies not only lead to lower accuracy estimates for all algorithms 

tested, but they also change estimates of which algorithms are more accurate under 

different experimental designs.  We believe that GRENDEL will be useful both to 

experimentalists designing gene expression studies and algorithm developers 

implementing and testing new computational approaches. We hope that, through 

both of these avenues, it will help to advance the useful application of algorithms for 

reconstructions of gene regulatory networks. 

 

2.6     Methods 

2.6.1     Topology Selection 

In a regulatory network, the out-degree of a gene represents the number of genes it 

regulates, while the in-degree represents the number of genes that regulate it. 

Biological networks are often described as being scale free, meaning that their 
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degree distributions follow a power-law [28]. However, the evidence suggests that 

only the out-degree distribution is scale-free. The in-degree distribution is compact 

(concentrated around its mean) [29,30]. To generate random networks with these 

characteristics, we developed a new algorithm. Our algorithm extends the 

preferential attachment model of [31], to support directed graphs with distinct in-

degree and out-degree distributions. 

 

The preferential attachment model starts from an empty graph and incrementally 

adds nodes.  Newly added nodes are connected to an existing node selected 

according to a distribution favoring nodes that already have many connections. In 

our extension of this model, newly added nodes form multiple directed connections: 

• Start with a graph containing signal nodes and k genes, but no edges. These 

initial nodes, which are called seeds, will have no incoming edges, so they 

will be unregulated. The number of seeds, k, is a user-selected parameter.  

• For each non-seed gene gj

o Assign g

,  

j an in-degree I[gj

o Add g

] according to the user-specified in-degree 

distribution. 

j to the network by choosing  I[gj

Z
aB

aP
N

n ni
ji

∑ =
+

== 1 ,
, )1(

] existing network nodes as 

parents (regulators) according to the following distribution: 

 

where aij is an element of the adjacency matrix for the network under construction, B 

is a user-defined constant that determines the power of the power-law distribution, 
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and Z is a normalizing constant obtained by summing the numerator over all possible 

parents -- i.e. all nodes currently in the network.  The probability of selecting each 

node in the network as a parent is proportional to its current out-degree plus the 

constant B. In our current implementation k is set to 0 if there are signals and 1 if 

there are not (the number of signals is a user-selectable parameter). 

 

This algorithm produces a network in which the out degree distribution follows a 

power-law and the in-degree can follow any specified distribution from which 

sampling is possible. In an analysis of the yeast transcriptional network [32], a 

power-law was fit to the empirical out-degree distribution: x-0.6919, and an 

exponential was fit to the empirical in-degree distribution: e-0.3852x

 

. GRENDEL 

generates networks using our extended preferential attachment algorithm with out 

and in-degrees that match these empirical distributions. 

To get a clearer picture of the networks generated by our algorithm, we compared 

their degree distributions to those of the A-BIOCHEM CenturySF networks.  This 

collection consists of 50 networks, each containing 100 genes with an average of 200 

edges per network.  The networks are scale free: both in and out-degree distributions 

can be approximated by a power-law.  We generated an analogous set of 50 networks 

each with 100 genes, where both in and out-degree distributions were set to match 

the yeast network, as described above (no signals were used in this set of networks). 

We noted that the out-degree distributions of the GRENDEL networks have much 

longer tails, corresponding to the presence of larger hubs.  For in-degree 
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distributions, the A-BIOCHEM networks follow a power-law, while GRENDEL 

networks are exponential.  The tail lengths are the same, with the most highly 

regulated gene in each set of networks having 22 regulators, but the A-BIOCHEM 

networks have an under representation of genes with three or more regulators. When 

comparing two representative networks from each benchmark (see Figure 2.7) clear 

differences beyond degree distribution are evident. Unlike GRENDEL, the A-

BIOCHEM network contains no single-input modules (SIMs) -- a network motif 

where a single gene exclusively regulates a set of genes [30]. A likely reason for the 

lack of SIMs in the A-BIOCHEM networks is that each gene has a total degree of 

two or more.  As a result of this artifact, any gene that does not act as a transcription 

factor must itself be regulated at least two other genes.  

 

Figure 2.7. Representative 100-gene networks from the A-BIOCHEM and 

GRENDEL benchmarks with the SIM network-motif shown in bold. Panel A, A-

BIOCHEM; Panel B, GRENDEL. 
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2.6.2     Kinetic Parameterization 

Before the behavior of a randomly generated network can be simulated, parameters 

must be chosen for the differential equations that determine the concentration of each 

protein (pi) and each mRNA (mi

i
P
iii

i pDmT
t
p

−=
δ
δ

). The equation for the change in concentration of 

protein i is 

 

which requires two parameters: the protein's translation (Ti
P) and degradation (Di

P

i
M
ii

i mDRS
t

m
−= )(

δ
δ

) 

rate constants. The equation for the change in concentration of mRNA i is 

 

where Di
M is the degradation rate constant of the mRNA, R is a vector of regulator 

concentrations (signals and proteins), and Si

 

 maps regulator concentrations to the 

transcription rate of gene i. 

Similar to other approaches, we use a transcriptional rate law, Si

nn

n

KR
KnKRF
+

=),,(

(R), that models Hill 

kinetics [33,34]. We begin by defining a repression function for a single regulator: 

 

where, R is the concentration of the repressor, K is the binding affinity of the 

repressor, and n is the Hill-coefficient that controls the sigmoidicity of F. When the 

regulator concentration is zero, F(R, K, n) is one (no repression). As the regulator 
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concentration increases without limit, F(R, K, n) tends toward zero (total repression). 

The corresponding activation function is   

1),,( +
+

= nn

n

KR
RnKRG  

where R represents the activator concentration. G(R,K,n) is one when the activator is 

absent and tends toward two as activator concentration increases without limit.  The 

effects of these activation and repression functions on the transcription rate are 

defined by:  

( )( ) ( ) M
iIR ijijjAR ikikkii TnKRFnKRGZRS

ijik
××−+= ∏∏ ∈∈

),,(1),,()( β  

where Ii is the set of regulators acting as repressors of gene i, Ai is the set of 

regulators that act as activators of gene i, and R is a vector of regulator 

concentrations. Ti
M is the maximum transcription rate, βi defines the basal 

transcription rate of gene i, and ranges from 0 to 1, Z is a normalization factor that 

forces the activation term to lie between βi

12
1

−

−
=

iA
iZ β

 and 1.  

 

When βi

 

  is equal to 0.5, our transcriptional regulation function is equivalent to the 

A-BIOCHEM transcriptional rate law described in [14]. Once a network topology 

has been defined, each regulator is designated as either a repressor or an activator for 

each gene. 
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The novelty of our kinetic model lies in its use of more realistic parameters. The 

parameter selection process begins by randomly pairing each gene in the synthetic 

network with a real gene from S. cerevisiae. The synthetic network's gene is assigned 

the translation rate, protein decay rate, mRNA decay rate, and mRNA transcription 

rate of the real gene, which are available from high throughput studies [35–38]. In 

this way, our synthetic networks should behave on the same timescale as a real 

biological system. The parameters that are not available for large numbers of real 

genes are the Hill coefficients nik, binding affinities Kik and βi.  To facilitate direct 

comparisons with A-BIOCHEM, we set these parameters in order to achieve 

equivalence as follows: nik=1.5, Kik= 0.01 / max(Rk) where max(Rk) is the saturating 

concentration of regulator R and βi

 

=0.5. 
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Abstract 

Cryptococcus neoformans is an opportunistic fungal pathogen that causes serious 

human disease in immunocompromised populations. Its polysaccharide capsule is a 

key virulence factor which is regulated in response to growth conditions, becoming 

enlarged in the context of infection. We used microarray analysis of cells stimulated 

to form capsule over a range of growth conditions to identify a transcriptional 

signature associated with capsule enlargement.  The signature contains 880 genes, is 

enriched for genes encoding known capsule regulators, and includes many 

uncharacterized sequences. One uncharacterized sequence encodes a novel regulator 

of capsule and of fungal virulence. This factor is a homolog of the yeast protein 

Ada2, a member of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex that 

regulates transcription of stress response genes via histone acetylation. Consistent 

with this homology, the C. neoformans null mutant exhibits reduced histone H3 
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lysine 9 acetylation. It is also defective in response to a variety of stress conditions, 

demonstrating phenotypes that overlap with, but are not identical to, those of other 

fungi with altered SAGA complexes. The mutant also exhibits significant defects in 

sexual development and virulence. To establish the role of Ada2 in the broader 

network of capsule regulation we performed RNA-Seq on strains lacking either Ada2 

or one of two other capsule regulators: Cir1 and Nrg1. Analysis of the results 

suggested that Ada2 functions downstream of both Cir1 and Nrg1 via components of 

the high osmolarity glycerol (HOG) pathway. To identify direct targets of Ada2, we 

performed ChIP-Seq analysis of histone acetylation in the Ada2 null mutant. These 

studies supported the role of Ada2 in the direct regulation of capsule and mating 

responses and suggested that it may also play a direct role in regulating capsule-

independent antiphagocytic virulence factors. These results validate our experimental 

approach to dissecting capsule regulation and provide multiple targets for future 

investigation. 
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3.1     Background 

Cryptococcus neoformans is an opportunistic fungal pathogen [39]. The disease it 

causes, cryptococcosis, is contracted by inhalation of infectious particles (spores [40] 

or dessicated cells), which initiate a pulmonary infection. In the setting of immune 

compromise the fungus disseminates, with particular predilection for the central 

nervous system where it can cause a fatal meningoencephalitis. In otherwise healthy 

hosts, the infection may remain latent for extended periods, emerging in the event of 

immune compromise [41]. The impact of the disease is significant, especially in 

populations with limited access to health care, leading to an estimated 600,000 

deaths per year [42].  

 

A variety of factors have been implicated in cryptococcal virulence. These include 

melanin synthesis [43]; urease and phospholipase secretion [44,45]; titan cell 

formation [46,47]; and the ability to survive at host body temperature. Additionally, 

the main feature that distinguishes C. neoformans from other pathogenic fungi is an 

extensive polysaccharide capsule that surrounds the cell wall and is required for 

virulence [48]. Capsule size varies tremendously with growth conditions, becoming 

particularly large during mammalian infection [49]. Capsule expansion can be 

induced in vitro by mimicking aspects of the host environment such as low iron 

availability, the presence of mammalian serum, and physiological concentrations of 

carbon dioxide [50–52]. Strain virulence correlates with capsule size in vivo [53], 
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implicating the regulation of capsule formation as a critical factor in the 

pathophysiology of cryptococcal disease.  

 

3.2 Related Work 

Our current knowledge of capsule regulation derives primarily from studies where 

mutations of specific genes yield cells with abnormal capsules. A variety of readily 

assayed phenotypes that are related to the size or nature of the capsule (including cell 

sedimentation behavior [54], antibody reactivity [55], India ink staining, and colony 

morphology) has enabled the identification of a wide array of such mutants. Most of 

these have reduced virulence, emphasizing the central role of the cryptococcal 

capsule in pathogenesis. 

 

Capsule size is regulated by distinct and overlapping signaling pathways, including 

those typically associated with stress response. The best-characterized of these, the 

cAMP pathway, responds to amino acid starvation, low glucose, and elevated carbon 

dioxide [56]. Stimulation of this pathway leads to high intracellular cAMP levels, 

which activate the kinase Pka1 [57]. This enzyme in turn activates the C2H2 zinc 

finger transcription factor Nrg1, leading to the transcriptional induction of genes that 

are directly involved in capsule assembly [58]. Pka1 also activates another 

transcription factor, Rim101, which is necessary for capsule enlargement. 

Interestingly, activation of Rim101 requires elements of both the cAMP pathway and 
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the pH-responsive Rim signaling pathway [59]. Deletion of the genes encoding Pka1, 

Nrg1, or Rim101 leads to reduced capsule size. 

 

Iron sensing mechanisms also influence capsule formation. Transcription factors 

Hap3 and Hap5 are involved in both iron homeostasis and capsule regulation; 

deletion of the corresponding genes leads to a reduction in capsule size [60]. In 

addition to Hap3 and Hap5, the iron responsive transcription factor Cir1 also 

regulates capsule [61], in part by transcriptionally regulating the cAMP pathway. 

Recently, ChIP-chip studies revealed that Cir1 is directly regulated by another 

transcription factor, Gat201 [62]. Strains lacking either Cir1 [61] or Gat201 are 

hypocapsular [63].  

 

Capsule regulation is also influenced by the HOG pathway. Several proteins in this 

pathway (including Hog1, Pbs2, and Ssk2) negatively regulate capsule size [64]. 

Epistasis analysis shows that the cAMP pathway is required for this HOG-dependent 

influence on capsule, but the mechanism of the cross-talk between these two central 

signaling pathways is unknown. Normal capsule formation also requires proteins in 

pathways related to temperature sensing [65], sexual development [66], and cell wall 

integrity [67]. 

 

More broadly, chromatin remodeling has been implicated in capsule regulation, by 

the observation that cells lacking the histone acetyltransferase Gcn5 are 

hypocapsular [68]. Gcn5 is a member of the well-conserved SAGA complex, which 
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acts in transcriptional regulation from fungi to humans [69]. Sequence analysis 

suggests that other SAGA proteins are present in C. neoformans, but Gcn5 is the best 

conserved and the only one that has been characterized [68]. 

 

Over 60 genes have been identified as important players in capsule formation due to 

the effects of their deletion on capsule structure or morphology; we refer to such 

genes as ‘capsule-implicated’.  However, because the majority of cryptococcal 

transcription factors and signaling proteins are uncharacterized, it is likely that 

important elements of the capsule regulatory network are missing from this group. 

Furthermore, some capsule-implicated genes may be required for other primary 

functions, such as cell wall synthesis, that have incidental effects on capsule 

formation. 

 

As reviewed above, components of several known signaling pathways are required 

for capsule formation, but there is no model that accounts for the integration of these 

pathways to regulate capsule growth. To begin constructing such a model, we have 

identified genes whose RNA levels are correlated with capsule size over a range of 

in vitro conditions. We term this set of genes the transcriptional signature of capsule. 

This signature includes previously capsule-implicated genes as well as multiple 

uncharacterized genes encoding putative regulatory factors. We chose to analyze one 

uncharacterized gene, ADA2, which encodes a putative DNA-binding protein. We 

now show that Ada2 is a novel regulator of capsule and of other virulence-related 

features of Cryptococcus. Analysis of downstream targets of Ada2 and other capsule 
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regulators by RNA-Seq and ChIP-Seq suggests the context of Ada2 in the capsule 

regulatory network and illustrates the effectiveness of this approach in unraveling 

complex regulatory networks. 

 

3.3     Results 

3.3.1     Identifying the Transcriptional Signature of 

Capsule 

We reasoned that the transcript abundance of many genes involved in the regulation 

and synthesis of capsule would correlate with capsule size across multiple growth 

conditions. To test this hypothesis, and potentially identify capsule regulatory genes 

beyond those previously reported, we cultured the C. neoformans serotype A 

reference strain H99 in four conditions known to stimulate capsule formation to 

varying degrees. For each condition, we also cultured the cells in a similar medium 

that stimulates capsule formation to a lesser extent. The eight conditions used were 

low iron medium (LIM) with and without the chelating agent 

ethylenediaminetetraacetic acid (EDTA); phosphate-buffered saline (PBS) with and 

without fetal bovine serum (FBS); Dulbecco's Modified Eagle's Medium (DMEM) in 

room air (RA) or in 5% CO2; and Littman's medium (LIT) with two concentrations 

of thiamine (LO-THI / HI-THI). After 24 h the average capsule radius in each culture 

was assessed by light microscopy. The remaining cells were used to isolate total 
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RNA for hybridization against a C. neoformans serotype A/D microarray 

(http://gtac.wustl.edu/services/microarray/rna-analysis/cryptococcus-

neoformans.php). To identify genes whose transcript abundance correlated with 

capsule size, we compared the transcription profiles over all eight conditions to the 

quantitative measurements of capsule radius (Figure 3.1). 

 

 

Figure 3.1. The transcriptional signature of capsule induction. Shown is a heat map 

of gene expression (blue, low expression; yellow, high expression) for the 880 genes 

whose expression, as assessed by microarray analysis, trends with capsule size. Cell 

growth conditions (see section 3.5) for each column are indicated below the heat 

http://gtac.wustl.edu/services/microarray/rna-analysis/cryptococcus-neoformans.php�
http://gtac.wustl.edu/services/microarray/rna-analysis/cryptococcus-neoformans.php�
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map and average capsule radius is plotted above (gray bars). The correlation of gene 

expression and capsule size is plotted at the right. 

 

 

Our analysis revealed 880 genes whose transcript abundance correlated significantly 

with capsule size, which we considered the transcriptional signature of capsule 

induction. Within this set, we identified 316 genes whose transcription correlated 

positively with capsule radius and 564 genes whose transcription correlated 

negatively. Among the positively correlated genes, most are involved in responses to 

stress, including DNA damage repair, trehalose biosynthesis and sugar transport. In 

contrast, many of the negatively correlated genes are involved in mitochondrial 

function and ribosome biogenesis.  

 

We expected that some of the genes in the transcriptional signature would 

specifically influence the formation of capsule (see section 3.4). Consistent with this 

hypothesis, the set of genes whose RNA levels correlated positively with capsule 

size was enriched for capsule-implicated genes (p < 0.02; see section 3.5); no such 

enrichment was observed among genes that correlated negatively. Positively 

correlated genes that are capsule-implicated included the genes encoding regulatory 

proteins Cir1, Hap5 [60], and Ste20 [70] and the phosphodiesterases Pde1 and Pde2 

[71] (see section 3.4).  
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The transcriptional signature of capsule included previously uncharacterized genes 

that encode putative transcription factors, signaling proteins, and sugar transporters. 

It is likely that many of these genes are involved in capsule regulation and assembly. 

We were particularly interested in one previously uncharacterized gene, 

CNAG_01626, which encodes a putative DNA binding protein. Expression of 

CNAG_01626 correlated positively with capsule size (Figure 3.2). For comparison, 

Figure 3.2 also shows the correlations obtained for two cryptococcal transcriptional 

regulators, CIR1 and SSN801, whose roles in capsule regulation have previously 

been demonstrated. CIR1 showed significant positive correlation with capsule size, 

consistent with the hypocapsular phenotype of cir1∆ mutants [61], while SSN801 

exhibited a negative correlation with capsule size, consistent with the hypercapsular 

phenotype of the corresponding deletion mutant [63].  
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Figure 3.2. Correlation of gene expression and capsule size for selected genes. Data 

is shown for three genes that demonstrate correlation between gene expression and 

capsule size. 
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Given the strong correlation of CNAG_01626 transcription with capsule size, we 

suspected that the corresponding gene product was a regulator of capsule formation. 

Because this gene encodes multiple putative DNA-binding domains (Myb-like and 

SWIRM), we further expected that it might act at a transcriptional level. This 

hypothesis was supported by the 33% homology we noted between the amino acid 

sequence predicted for CNAG_01626 and that of the Saccharomyces cerevisiae 

Ada2 protein. In S. cerevisiae, Ada2 is a member of the Spt-Ada-Gcn5 

Acetyltransferase (SAGA) complex that mediates histone acetylation [72]. Within 

SAGA, Ada2 is required for proper catalytic activity of the acetyltransferase Gcn5 

[73]. Based on the homology between the cryptococcal gene and S. cerevisiae ADA2, 

we decided to refer to CNAG_01626 as ADA2. 

 

3.3.2     Cryptococcal Ada2 Influences Capsule Formation 

Since transcription of the cryptococcal ADA2 gene positively correlates with capsule 

size, we hypothesized that deleting ADA2 would yield hypocapsular cells. To assess 

the role of this putative transcriptional regulator in capsule formation, we replaced 

the ADA2 genomic coding sequence with a nourseothricin-resistance marker (NAT) 

in the serotype A strain KN99α, derived from the serotype A reference strain H99 

[74]. We then incubated ada2∆ mutant cells under capsule-inducing conditions and 

examined capsule size by negative staining with India ink. Consistent with the 

microarray analysis (Figure 3.2), ada2∆ mutant cells had dramatically reduced 

capsule compared to wild type (Figure 3.3). This phenotype was reversed by 
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complementation with the ADA2 genomic coding sequence (ada2∆::ADA2; see 

section 3.5). 

 

 

Figure 3.3. Cells lacking ADA2 display reduced capsule size under inducing 

conditions. Panel A, negative staining with India ink of KN99α cells (WT), the 

indicated deletion strains, and the complemented ada2∆ mutant (ADA2). All images 

are at the same magnification. Scale bar, 5 µm. Panel B, histogram of capsule size 

for the ada2∆ mutant (red) and WT (black) populations.  Capsule radius is 

represented in microns. 

 

To facilitate comparison of ada2∆ to strains lacking other capsule regulators, we also 

deleted CIR1, NRG1, and SSN801 in KN99α (see section 3.5). Consistent with 

earlier reports, the ssn801∆ capsule was enlarged, while the cir1∆ and nrg1∆ 

capsules were reduced, similar to the capsule produced by ada2∆ (Figure 3.3, panel 

A). 
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3.3.3     Cryptococcal Ada2 Is Localized to the Nucleus and 

Is Involved in Histone Acetylation 

Having demonstrated that cryptococcal Ada2 influences capsule expansion, we 

proceeded to further investigate its role. Given the function of the SAGA complex in 

histone acetylation in S. cerevisiae [72], we expected that cryptococcal Ada2 would 

reside in the nucleus. To test our hypothesis, we integrated a hemagglutinin (HA) 

epitope-tag sequence at the 3' end of the ADA2 genomic coding sequence and 

examined the localization of the tagged protein (Ada2-HA) by immunofluorescence 

microscopy. Consistent with the nuclear role of Ada2 in S. cerevisiae, the tagged 

cryptococcal protein colocalizes with nuclear DNA (Figure 3.4). 

 

 

Figure 3.4. Cryptococcal Ada2 is localized to the nucleus. Wild type cells (WT) and 

cells modified to express HA epitope-tagged Ada2 from the native locus (ADA2-HA) 

were labeled with an antibody against HA (αHA, red), and counter-stained with 

DAPI (blue) to show the location of chromatin. All images were acquired at the same 

settings and are shown at the same magnification. Scale bar, 1 µm. 
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In S. cerevisiae, the SAGA complex activates transcription of stress-responsive 

genes by acetylating specific lysine residues at the N-terminal tails of histones H2B 

and H3 [72,75]. One of these modifications is the acetylation of lysine 9 of histone 

H3 (H3K9). To assess whether Ada2 is involved in similar histone acetylation in C. 

neoformans, we analyzed the abundance of acetylated H3K9 in the ada2∆ mutant by 

immunofluorescence microscopy using an antibody specific for this modification. 

We found that the fluorescence intensity of mutant cell nuclei was reduced by at 

least 50% compared to nuclei of both wild type and complemented cells (Figure 3.5), 

a result we confirmed on the population level by immunoblotting with the same 

antibody (not shown). In contrast, H4 acetylation, which is not SAGA specific 

[76,77], showed no difference between the ada2∆ mutant and either the wild type or 

complemented strains (not shown). These results demonstrate the role of 

CNAG_01626 in histone acetylation, likely in the context of C. neoformans SAGA, 

and strongly support our identification of this novel capsule regulator as the 

cryptococcal homolog of the S. cerevisiae ADA2. 
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Figure 3.5. Histone acetylation is markedly reduced in the absence of Ada2. Shown 

are immunofluorescence micrographs of wild type (WT), ada2∆, and complemented 

ada2∆ (ADA2) cells grown in capsule inducing conditions for 90 min and then 

probed with antibody to H3K9 (αH3-K9). All images were acquired at the same 

settings and are shown at the same magnification; scale bar, 1 µm. 

 

3.3.4     Ada2 Functions in a Subset of Stress Response 

Pathways and in Mating 

In S. cerevisiae and other fungi, the SAGA complex regulates the response to stress 

conditions such as elevated temperature, high salt concentration, and oxidative 

damage [78,79]. We found that the ada2∆ mutant grew normally compared to wild 

type on rich medium (YPD) at 30 °C (Figure 3.6). However, the mutant exhibited a 
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subtle growth impairment at 37 °C, and a moderate attenuation of growth at 39 °C. 

In all cases, the complemented strain behaved like wild type (Figure 3.6).  

 

Figure 3.6. Ada2 is required for growth under certain stress conditions. Ten-fold 

serial dilutions of the indicated strains were grown in the conditions shown (see 

section 3.5 for details). Top panel, growth on rich medium (YPD) at the temperatures 

indicated above the images; middle panels (four rows of images), growth on YPD 

with the indicated stressor at the temperatures shown at the right; bottom panel (two 

rows of images), growth on minimal medium (YNB) or YNB with the indicated 

stressor at the temperatures shown at the right. 
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To further compare the phenotype of ada2∆ to known fungal SAGA mutants, we 

next tested a panel of stress conditions for their effect on growth of the wild type, 

mutant, and complemented strains at both 30 and 37 °C (Figure 3.6). We found that 

mutant cells were highly sensitive to alkaline pH, with no growth at pH 8.8 at 37 °C, 

while growth at physiological or acidic (5.5) pH was like that of wild type (not 

shown). Growth of ada2∆ at 37 °C was also abolished when 6% ethanol was 

included in the medium, in notable contrast to the growth of wild type cells under 

this condition, and was impaired at 0.4 M CaCl2

 

. Conditions that challenge cell 

integrity, including media containing calcofluor white (0.2%), congo red (0.5%), low 

levels of SDS (0.01%), or high sorbitol (2 M), had no effect on mutant growth (not 

shown). Similarly, KCl (1.2 M) and NaCl (0.4 M) did not alter growth (not shown), 

although high NaCl concentrations (1.2 M) did reduce growth at 37 °C compared to 

wild type (Figure 3.6). The ada2∆ mutant also showed enhanced growth on caffeine 

and LiCl at 30 °C, although this difference was not observed at the higher 

temperature tested (see section 3.4). 

The ability of C. neoformans to withstand nitrosative and oxidative stress is required 

for the virulence of this yeast [80,81]. We therefore tested the effect of Ada2 absence 

on cryptococcal sensitivity to compounds that induce such stress. Growth of the 

ada2∆ mutant was not affected by NaNO2 (0.5 mM) at 30 °C but exhibited a 

significant defect at 37 °C. The mutant was highly sensitive to oxidative stress (0.5 

mM H2O2), with growth attenuated at 30 °C and absent at 37 °C. (Figure 3.6). We 

also examined the ability of this mutant to produce melanin, a feature of C. 
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neoformans that is associated with virulence [43]. We observed no difference in 

melanin production on medium containing L-3,4-dihydroxyphenylalanine (L-DOPA; 

not shown). 

 

Finally, we tested the sensitivity of the ada2∆ strain to several pharmacological 

agents. These included fluconazole, amphotericin B, and flucytosine, all antifungal 

compounds used to treat cryptococcal infections. Growth in all cases was 

comparable to that of wild type, in contrast to the increased fluconazole sensitivity 

observed upon deletion of ADA2 in Candida albicans [77]. We also tested the 

sensitivity of ada2∆ to FK506, a compound that inhibits calcineurin signaling. A C. 

neoformans gcn5∆ strain has been shown to be FK506 sensitive, suggesting a defect 

in this pathway [68] (see section 3.4); ada2∆ cells were even more sensitive to this 

compound (data not shown).  

 

While back-crossing the ada2∆ mutant, we noticed that this strain was slow to 

filament. To investigate the potential role of Ada2 in cryptococcal sexual 

development, we crossed mating type a and α cells bearing the ada2∆ mutation to 

KN99a and KN99α cells and to each other (Figure 3.7). Deletion of ADA2 in either 

mating type dramatically impaired the formation of dikaryotic filaments in unilateral 

crosses between the mutant and wild type. A bilateral cross between two ada2∆ 

mutants of opposite mating type showed no visible hyphal development even after 

13 days, while the complemented strain behaved identically to wild type. 
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Figure 3.7. Ada2 is required for normal hyphal development. Wild type (no strain 

designation), ada2∆, and complemented ada2∆ (ADA2) strains of opposite mating 

type were mixed and grown under conditions that induce mating (see section 3.5). 

Patches were imaged after 13 days. 

 

3.3.5     Cryptococcal Ada2 is Essential for C. neoformans 

Virulence 

The ada2∆ mutant displays a smaller capsule, demonstrates reduced resistance to 

oxidative and nitrosative stress, and grows more slowly at 37ºC compared to wild 

type. Based on these characteristics, we hypothesized that the mutant would also be 

attenuated for virulence. Indeed, we found that pulmonary growth of the ada2∆ 

mutant was impaired by almost 100-fold compared to the wild type and 

complemented strains in an inhalational mouse model of cryptococcosis (Figure 3.8, 

panel A), although it did grow slightly better than a completely acapsular mutant 

(cap59∆). To pursue this observation, we conducted a survival study with the same 
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four strains. By three weeks post-inoculation, all mice infected with the wild type 

and complemented strains had succumbed to the infection (Figure 3.8, panel B). In 

contrast, mice infected with the ada2∆ or cap59∆ mutants remained healthy 

throughout the study, confirming the requirement for Ada2 in the virulence of this 

yeast. 

 

Figure 3.8. Ada2 is required for growth and virulence in mice. Panel A, C57Bl/6 

mice were intranasally inoculated with 1.25 × 104 cells of the indicated strains, and 

total colony forming units (CFU) were isolated from the lungs after one hour (black 

bars) or one week (gray bars). The mean ± maximum and minimum is shown. Panel 

B, survival curve of A/Jcr mice that were similarly inoculated with 105

 

 cells of wild 

type (black), ada2∆ (red), or complemented ada2∆ (gray). Like those infected with 

ada2 Δ, all mice that were infected in the same study with cap59 survived the entire 

period (not shown). 
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3.3.6     Cryptococcal Ada2 Transcriptionally Regulates 

Genes Required for Host Adaptation 

To identify the genes and processes regulated by Ada2, we used RNA-Seq to 

perform transcriptome analysis of the ada2∆ mutant and wild type cells cultured in 

either capsule-inducing or capsule non-inducing conditions (see section 3.5). The 

majority (92%) of the resulting short reads mapped to the C. neoformans serotype A 

reference sequence [82], indicating the excellent quality of the data. The average 

300-fold coverage of the cryptococcal transcripts we obtained in these studies 

allowed confident sequence identification, and will help improve annotation of the C. 

neoformans genome. 

 

Gene expression analysis revealed 460 genes that were differentially expressed in the 

ada2∆ mutant compared to wild type under the capsule inducing condition; 675 

genes were differentially expressed between the two strains under the capsule non-

inducing condition. We examined the genes whose expression was significantly 

affected in one or both conditions. Most of these (73%) were regulated in a sign 

consistent manner in the two conditions (e.g. if gene expression was reduced in the 

ada2∆ mutant in non-inducing conditions it was also reduced in the mutant in 

inducing conditions), although the magnitude of changes did vary.  Gene ontology 

(GO) analysis (see section 3.5) indicated that processes significantly enriched in the 

response to loss of Ada2 included ribosomal protein synthesis, sugar transport, and 

carbohydrate metabolism. 
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Consistent with the filamentation defect we observed in the ada2∆ mutant (Figure 

3.7), we noted several genes downstream of Ada2 that are involved in cryptococcal 

sexual development (Table 3.1). Two mating type-specific genes (encoding the 

homeodomain regulator, Sxi1α, and the pheromone receptor, Ste3α) showed 

decreased expression in the ada2∆ mutant. A variety of genes that are independent of 

mating type but are implicated in the pheromone response pathway were also found 

to respond to loss of Ada2 (Table 3.1). 

 

Our initial interest in Ada2 was stimulated by its importance in capsule synthesis. In 

the ada2∆ mutant, we observed a reduction in transcript abundance for a number of 

genes that, when deleted, yield small capsules (Table 3.1). These observations are 

consistent with the hypocapsular and avirulent phenotypes of the ada2∆ mutant. The 

ada2∆ mutant also showed reduced expression for genes involved in oxidative stress; 

this agrees with the hypersensitivity to oxidative stress observed in the mutant and 

may also contribute to the avirulent phenotype. Expression of two genes (BLP1 and 

GAT204), which have recently been implicated in capsule-independent mechanisms 

of cryptococcal virulence [62], was also reduced in the ada2∆ mutant (see section 

3.4).  
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Fold change (log2) 

  
Gene Name 

 
ada2∆ vs WT 

  Broad ID C. neo S. cer Description uninduced induced 

Mating CNAG_06808 STE3 STE3 pheromone receptor Ste3 -5.35 -7.71 

  CNAG_03137   SGV1 Ste11 protein kinase 3.63 -0.86 

  CNAG_04323   PRM10 DUF1212 family protein -0.89 -0.73 

  CNAG_06814 SXI1   Sxi1 -0.79 -0.49 

  CNAG_04755   BCK1 Ste/Ste11 protein kinase -0.59 -0.23 

  CNAG_03706   GLC7 phosphatase PP1 -0.32 -0.14 

  CNAG_02981   SIN3 Sin3 protein 0.47 0.46 

  CNAG_02375   FIG4 phosphatase 0.84 0.46 

  CNAG_05752   KAR3 kinesin 0.81 0.56 

Capsule CNAG_03644 CAS3   Cas3 -4.21 -7.69 

  CNAG_05264 NSTA YJL216C alpha-amylase AmyA -2.06 -1.97 

  CNAG_03438 HXT1 HXT2 hexose transporter -1.15 -1.35 

  CNAG_02797 CPL1   pria protein -1.01 -0.65 

  CNAG_07937 CAS1   O-acetyltransferase -0.60 -0.41 

  CNAG_04312 MAN1 PMI40 mannose-6-phosphate isomerase -0.57 -0.28 

  CNAG_07554 CAP10   capsule associated protein 0.43 -0.15 

  CNAG_00124 CAS32   Cas32 -0.50 0.19 

  CNAG_05581 CHS3 CHS3 chitin synthase 4 0.15 0.61 

  CNAG_05139 UGT1   Ugt1 0.36 0.73 

  CNAG_02138 CAS4 DNA2 DNA replication helicase dna2 0.64 1.40 

Oxidation CNAG_05265   RCK1 hypothetical protein 2.28 -5.91 

  CNAG_04415   YJR096W oxidoreductase -0.76 -3.82 

  CNAG_05027   FMS1 amine oxidase -0.64 -3.81 

  CNAG_04508   GRX4 conserved hypothetical protein -2.21 -3.64 

  CNAG_03848   GRX7 glutathione transferase -3.21 -2.18 

  CNAG_03199   GRX3 oxidoreductase superfamily -0.14 -1.26 

  CNAG_03936   PST2 cytoplasmic protein -0.71 -0.74 

  CNAG_01005   GRX1 glutathione transferase -0.80 -0.46 

  CNAG_00581   PEP4 endopeptidase -0.30 -0.44 

  CNAG_02859   POS5 NADH kinase -4.08 -0.13 

Antiphagocytosis CNAG_06762 GAT204 GAT2 conserved hypothetical protein -1.28 -1.44 

  CNAG_06346 BLP1   conserved hypothetical protein -2.70 -0.86 

 

Table 3.1. Genes downstream of Ada2 implicated in processes related to mating or 

virulence. Genes listed were identified by differential expression analysis of mutant 
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versus wild type and found to be significantly changed in either capsule non-

inducing or inducing conditions. Fold change of mutant versus wild type is indicated 

in the rightmost columns; bold font indicates statistically significant change. Yellow 

indicates a positive fold change relative to wild type; blue indicates a negative fold 

change. 

 

3.3.7     RNA-Seq Analysis Suggests New Relationships in 

Capsule Regulation 

To place Ada2 in the context of the broader capsule regulation network, we 

performed RNA-Seq analysis on mutants that lack the transcriptional regulators Cir1 

and Nrg1. We chose these transcription factors because, like the ada2∆ mutant, both 

the cir1∆ and the nrg1∆ mutants are hypocapsular, demonstrate attenuated 

avirulence, and exhibit defects in mating. We identified 1265 genes that were 

differentially expressed in the nrg1∆ mutant compared to wild type under the capsule 

inducing condition and 1084 under the non-inducing condition. For the cir1∆ mutant 

these values were 1257 and 529, respectively. 

 

Cryptococcal sexual development is regulated by Cir1 and Nrg1 [61,58], as well as 

by Ada2 (Figure 3.7). To identify common regulatory targets shared by these three 

transcription factors, we examined the gene expression data from the ada2∆, cir1∆, 

and nrg1∆ mutants. Among genes previously implicated in cryptococcal sexual 

development, we found that only SXI1α was downstream of all three regulators, with 
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its transcription reduced in nrg1∆ and ada2∆ but increased in cir1∆.  Transcription 

of the pheromone receptor STE3α was similarly reduced in ada2∆ and elevated in 

cir1∆ although it was not significantly changed in nrg1∆. Genes regulated by Nrg1 

included the cell type-specific p21-activated protein kinase STE20α, as well as other 

mating type-independent genes that are involved in sexual development, but these 

were not regulated by Ada2 or Cir1. 

 

By comparing mutants generated in the same strain background and grown in the 

same conditions, we were able to confidently identify capsule-implicated genes that 

are downstream of Cir1 or Nrg1, some of which are also regulated by Ada2. For 

example, Nrg1 and Ada2 share downstream targets that include CAS4, CAS32, 

CPL1, MAN1, NSTA, and CHS3. Similarly, CAP10, CAS1, CAS4, and CPL1 are all 

downstream of both Cir1 and Ada2.  Notably, CAS4 and CPL1 are shared targets of 

all three regulators (Ada2, Nrg1 and Cir1).  

 

In addition to genes that are likely to be directly involved in capsule biosynthesis, we 

found many genes whose expression was affected by the loss of Cir1 or Nrg1 that are 

involved in regulating capsule formation. For example, the nrg1∆ mutant showed 

altered transcription of genes in the cAMP pathway, including increased 

transcription of RIM101 and decreased transcription of PKA2 and PDE2. Consistent 

with previous reports [60], we also observed altered transcript levels in the cir1∆ 

mutant that correspond to a number of pH-specific pathway genes, including RIM9 
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and RIM20. The latter gene product is involved in proteolytic activation of Rim101 

[59].  

 

Finally, we discovered that Cir1 and Nrg1 regulate the expression of two HOG 

pathway genes: absence of either protein led to reduced transcription of HOG1 and 

increased transcription of PBS2. Additionally, both Cir1 and Nrg1 appeared to 

enhance the expression of TUP1 [83], which encodes a regulator that may operate in 

the HOG pathway. Interestingly, data from a previous microarray study indicated 

that ADA2 (at that time uncharacterized) increased in expression upon deletion of 

HOG pathway members (HOG1 or SSK1) [84] (see section 3.4). 

 

3.3.8     ChIP-Seq Indicates Genes Directly Regulated by 

Ada2-dependent Histone Acetylation 

Ada2 is required for the majority of H3K9 acetylation in C. neoformans (Figure 3.5 

and immunoblotting data not shown). We reasoned that localizing Ada2-dependent 

occurrences of this modification would lead us to genes that are directly regulated by 

Ada2. We therefore used chromatin immunoprecipitation (ChIP) to isolate DNA 

directly associated with acetylated H3K9 in ada2∆ and wild type cells that we could 

analyze by short read sequencing (ChIP-Seq).  

 

We obtained 84 million short reads from our ChIP-Seq studies, which we aligned to 

the serotype A reference sequence and analyzed to identify genomic regions with 
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statistically significant coverage (“peaks”) in IP samples compared to input DNA. 

From triplicate experiments, we identified an average of 2014 peaks in wild type 

cells, compared to only 364 in ada2∆. This 82% reduction is consistent with our 

earlier observations on the Ada2-dependence of most H3K9 modification (Figure 

3.5). Consistent with H3K9 acetylation in S. cerevisiae [85,86], the majority of the 

peaks identified in wild type (75%) were within 500 bp of at least one transcription 

start site (TSS) as annotated [82]. Most peaks in wild type were also located in the 5’ 

region immediately downstream of the TSS, with a strong depletion near the TSS 

and a modest enrichment upstream of the TSS (Figure 3.9, black bars in panel A). In 

contrast, only 28% of peaks in ada2∆ were within 500 bp of a TSS and almost none 

of these were downstream of the TSS (Figure 3.9, red bars in panel A). Thus, not 

only is histone acetylation in this mutant depleted throughout the genome, the pattern 

of acetylation is also changed, with the most dramatic depletion occurring in the 

region immediately downstream of the transcription start site. 
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Figure 3.9. Ada2-dependent acetylation of H3K9 is enriched near gene transcription 

start sites. ChIP-Seq was performed on wild type (WT) and the ada2∆ mutant to 

identify genes located in the proximity of acetylated H3K9. Panel A, a histogram of 

peaks that occur within 500 bp of the transcription start site of all identified genes 

[82]. Panel B, an example of ChIP-Seq data aligned to a gene model of GAT204, 

which was identified as Ada2-dependent by both ChIP-Seq and RNA-Seq. The y-

axis represents normalized coverage (reads per million mapped) for samples defined 

in the text. Coverage is shown for 2 standard deviations above the mean input sample 

coverage and above. Note that the input DNA profiles are similar for WT and mutant 

cells, while specific H3K9 associated sequences show TSS-associated peaks only in 

the WT. 

 

The loss of histone acetylation in ada2∆ cells suggested Ada2-dependent 

transcriptional activation at specific loci (see example in Figure 3.9, panel B). We 

anticipated that some of these genes would also show reduced transcription by RNA-
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Seq in the ada2∆ mutant; this was indeed the case (p < 0.003). In contrast, we found 

no such relationship for genes with increased transcription in ada2∆ (i.e., genes that 

are directly or indirectly repressed by Ada2; p > 0.99), consistent with the generally 

activating function of the SAGA complex. Overall, we found that genes 

differentially expressed in the ada2∆ deletion strain that also lost histone acetylation 

near the TSS were twice as likely to exhibit reduced transcriptional abundance as 

genes that did not lose histone acetylation (Figure 3.10). 

 

Figure 3.10. Ada2-dependent loss of H3-K9 acetylation is associated with activation. 

The ratio of Ada2 activated to Ada2 repressed genes (y-axis) is determined by an 

analysis of differential gene expression from RNA-Seq data comparing ada2∆ and 

wild type strains.  The cutoff to be counted as differentially expressed is varied from 

0 fold to ~12 fold (x-axis). Ada2 activated genes exhibit a negative fold change 

greater than the cutoff and Ada2 repressed genes exhibit a positive fold change 

greater than the cutoff.  Genes that lose neighboring H3-K9 acetylation near their 
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TSS in the ada2∆ mutant are shown in red, genes that shown unchanged H3-K9 

acetylation are shown in black. 

 

We were particularly interested in genes that were activated by Ada2 according to 

our RNA-Seq analysis and also showed Ada2 dependent H3K9 acetylation in our 

ChIP-seq analysis. This set is significantly enriched for genes that are directly 

regulated by Gat201 (p < 0.0001), including BLP1 and GAT204 [62]. The genes 

implicated by both RNA-seq and ChIP-seq also include a number with known 

capsule phenotypes, such as CPL1, HXT1, STE3α, and UGT1 (see section 3.4).  

 

3.4     Discussion 

We analyzed gene expression in C. neoformans yeast cells cultured over a diverse set 

of growth conditions that stimulate capsule production to varying degrees and 

identified a transcriptional signature of capsule formation. Gene ontology (GO) 

analysis shows that this signature is enriched for genes involved in stress response, 

as expected from the conditions we used to induce capsule formation. The signature 

also contains a significant number of genes that have previously been implicated in 

capsule regulation; the expression of most of these correlates with capsule in a 

manner consistent with the null phenotype. The phosphodiesterases Pde1 and Pde2 

are exceptions to this pattern: their transcript levels correlated positively with capsule 

size, while their disruption increases capsule size [71]. Pde1 and Pde2 hydrolyze 

cAMP to AMP and thereby inhibit the cAMP-dependent activation of regulators 



 

  62 
 

known to stimulate capsule formation. Elevated levels of cAMP occurring under 

capsule inducing conditions may lead to elevated transcription of PDE1 and PDE2, 

which would ultimately attenuate the cAMP signal. Feedback inhibition of cAMP 

signaling via post-translational activation of phosphodiesterases has been 

documented in both S. cerevisiae and C. neoformans [87,71].  

 

One sequence in the transcriptional signature that correlated significantly with 

capsule size (Figure 3.2) encoded the putative transcriptional regulator, Ada2. This 

protein has been characterized most extensively for its role within the SAGA 

complex, which broadly regulates the transcription of genes involved in stress 

response and development in multiple organisms [69].  This pattern holds true for C. 

neoformans, based on the increased sensitivity of mutants that lack either ADA2 (this 

work) or GCN5 [68] to reactive oxygen species, ethanol, alkaline pH, elevated 

temperature, and CaCl2

 

 (Figure 3.6).  All of these sensitivities are shared by S. 

cerevisiae SAGA mutants [79,88], and the last two also are shared by SAGA 

mutants in other fungi including C. albicans, S. pombe and S. kluyveri [77,79]. 

Despite many conserved functions of the SAGA complex across fungal species, 

several phenotypes of ada2 mutants in C. neoformans differ markedly from those 

observed in other fungi, perhaps reflecting the specific evolutionary pressures of the 

cryptococcal niche.  Whereas ada2 mutants in C. neoformans display increased 

caffeine resistance (Figure 3.6), for example, disruption of SAGA components in S. 

cerevisiae, S. pombe and S. kluyveri has the opposite effect. Also, ada2 mutants in C. 
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neoformans show an increase in LiCl resistance but no change in KCl resistance 

(Figure 3.6), while other fungi defective in SAGA typically exhibit normal growth in 

LiCl but are KCl sensitive relative to wild type [79]. Interestingly, ada2 mutants in 

C. neoformans have wild type sensitivity to fluconazole in contrast to ada2 mutants 

in C. albicans, which have increased sensitivity [77]. Finally, C. neoformans ada2∆ 

differs from other fungi in its regulation of sexual development. In S. pombe, the 

ada2∆ mutant is enhanced for mating, probably through a mechanism that does not 

directly involve histone acetylation [89]. In the C. neoformans ada2∆ strain, we 

instead found dramatically decreased sexual development (Figure 3.7), reduced 

transcript abundance of the pheromone receptor STE3α, and loss of H3K9 

acetylation at the STE3α promoter. These results suggest that these two fungi differ 

in both the direction and the mechanism of Ada2’s influence on sexual development. 

 

Recently, another component of the SAGA complex, Gcn5, was shown to play a role 

in capsule formation and virulence in C. neoformans [68]. H99 cells lacking Gcn5, 

like our mutant lacking Ada2, are hypocapsular and hypovirulent. To compare the 

roles of these proteins, we examined genes that are differentially expressed by ada2∆ 

and gcn5∆ upon growth in DMEM, using our RNA-Seq data for ada2∆ and 

published microarray data sets for gcn5∆ [68].  We found a significant overlap in the 

sets of genes whose expression is affected by each mutation (p < 1e-5), supporting 

the idea that some genes are jointly regulated by Gcn5 and Ada2, probably due to the 

coordinated role of these proteins in SAGA-mediated histone acetylation.  
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In addition to shared characteristics, we observed important differences between the 

ada2∆ and gcn5∆ mutants at both the phenotypic and transcriptional levels. The 

ada2∆ mutant is more resistant to high temperature, showing ~10-fold growth 

inhibition on rich medium at 39 °C compared to wild type (Figure 3.6), a condition 

where gcn5∆ does not grow at all [68]. In contrast, ada2∆ is more sensitive than 

gcn5∆ to the calcineurin inhibitor FK506. (The minimal inhibitory concentration 

(MIC) for gcn5∆ is 10-fold below that of its H99 parent [68], while the MIC for 

ada2∆ (performed as in [68]) is at least 67-fold below that of KN99α; data not 

shown.).  We also found that expression of both STE3α and SXI1α responds to the 

loss of Ada2 (Table 3.1), whereas no sexual development genes have been reported 

to be downstream of Gcn5 [68]. Consistent with this difference, ada2∆ is severely 

defective in filamentation (Figure 3.7) while gcn5∆ filaments normally (T. R. 

O’Meara and J. A. Alspaugh, personal communication). Furthermore, two genes 

involved in the recently described ‘antiphagocytic response’ [62], GAT204 and 

BLP1, showed a loss of both H3K9 acetylation (Figure 3.9, panel B) and expression 

(Table 3.1) in ada2∆ but no change in expression in gcn5∆ [68]. It will be interesting 

to determine whether these transcriptional differences manifest phenotypically. 

 

The phenotypic differences between ada2∆ and gcn5∆ may be due to Gcn5-

independent functions of Ada2 in C. neoformans. Acetylation at some loci may rely 

on Ada2 partnering with a histone acetyltransferase (HAT) other than Gcn5, or it 

may be that the regulation of these loci is independent of acetylation altogether. For 

example, in S. cerevisiae Ada2 regulates gene silencing by preventing the spread of 
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repressive chromatin [90]. Such mechanisms remain to be investigated in C. 

neoformans. Given the importance of SAGA in virulence, the roles of Ada2, Gcn5 

and other SAGA subunits in C. neoformans biology are worthy of further 

investigation. 

 

After identifying Ada2 as a novel regulator of capsule, we sought to identify 

elements downstream of it in the capsule regulatory network.  To do this, we 

performed RNA-Seq on the ada2∆ mutant and wild type strains, considering genes 

differentially expressed between these two strains to be downstream of Ada2.  To 

identify probable direct

 

 targets of Ada2, we performed ChIP-Seq using antibodies 

specific for H3K9 acetylation, comparing the ada2∆ mutant and wild type strains.  

We reasoned that genes that lose histone acetylation near their transcription start 

sites in the ada2∆ mutant are likely direct targets of Ada2 via the SAGA complex or 

another histone acetyltransferase (HAT) complex involving Ada2.  

The ada2∆ mutant strain revealed a dramatically altered landscape of H3K9 

acetylation compared to the wild type, with more than an 80% reduction in 

acetylated sites across the genome and even greater reduction around transcription 

start sites (Figure 3.9).  This nearly total loss of H3K9 acetylation in the ada2∆ 

mutant is consistent with the established global HAT activity of SAGA in S. 

cerevisiae [91,92].  In contrast to its broad histone modification activity, SAGA only 

influences expression of 10% of S. cerevisiae genes [76].  RNA-Seq analysis of the 

ada2∆ mutant strain revealed that Ada2 influences transcription of 14% of the genes 
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in C. neoformans, indicating that the transcriptional regulatory role of SAGA in C. 

neoformans is also locus specific.  ChIP-Seq data further suggest that Ada2 exerts 

the minority of its influence through direct regulation: only 3% of cryptococcal 

genes exhibit both altered H3K9 acetylation and expression in ada2∆ cells, while 

11% exhibit altered expression only.  This large indirect response could be mediated 

in part via the 8 putative transcription factors that Ada2 directly regulates as 

evidenced by our studies. 

 

Consistent with the activating role of SAGA, the set of genes with reduced 

expression in ada2Δ was significantly enriched for those that lost H3K9 acetylation. 

(In contrast, genes with increased

 

 expression in ada2 Δ showed no significant 

overlap with those that lost H3K9 acetylation.) Some genes, including the capsule-

implicated gene UGT1, showed increased expression together with loss of H3K9 

acetylation in the ada2∆ mutant, perhaps because H3K9 acetylation at certain loci 

makes repressor binding sites more accessible. Alternatively, these genes may be 

directly activated by Ada2 through H3K9 acetylation yet also indirectly repressed by 

Ada2, which could yield net repression. 

We observed phenotypic changes in the ada2∆ mutant in sexual development, 

capsule formation, stress response, and virulence; we also found genes with known 

roles in these processes to be directly regulated by Ada2 as evidenced by ChIP-Seq 

and RNA-Seq.  For example, we found that Ada2 directly regulates genes encoding 

proteins implicated in capsule formation, including HXT1 [93], CPL1 [63], and 
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UGT1 [94], consistent with the capsule defect of the ada2∆ mutant (Fig 3). We also 

identified the gene encoding pheromone receptor Ste3 as a direct target of Ada2 in 

the mating type α (MATα) cells used in these studies, consistent with the observed 

filamentation defect in ada2∆ (Figure 3.7). Ste3 has also been implicated in mating 

in MATa [66]. Ste3a has further been shown to regulate virulence factors including 

titan cell [46] and capsule formation [66], although no such relation has been 

reported for Ste3α. If Ada2 also regulates Ste3a then it may additionally influence 

capsule via this pathway in MATa cells. Future studies of MATa ada2∆ mutants will 

be needed to address this possibility. 

 

Gat201 is a GATA family transcription factor reported to act as a positive regulator 

of capsule [63]. Interestingly, we observe a significant overlap in the genes that are 

directly activated by Ada2 (as shown by ChIP-Seq) and those that are direct targets 

of Gat201 (by ChIP-chip [62]), including the antiphagocytic genes BLP1 and 

GAT204. Since the SAGA complex typically works in concert with other 

transcription factors, this suggests that Ada2 may work with Gat201 to activate 

transcription. It may be that Gat201 recruits Ada2 in the context of SAGA for these 

purposes. Alternatively, another factor may recruit the SAGA complex, which then 

enables Gat201 to bind. 

 

To explore the interplay between regulatory pathways we considered two 

transcription factors, Cir1 [61] and Nrg1 [58], which like Ada2 enhance both capsule 

and mating responses.  In the set of genes regulated by Cir1 and Nrg1, we identified 
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two that encode proteins in the HOG pathway, Hog1 and Pbs2; both Cir1 and Nrg1 

transcriptionally repress Pbs2 and activate Hog1. Cells lacking either Pbs2 or Hog1 

show increased capsule formation and sexual development [64].  Furthermore, both 

ADA2 and GCN5 were shown in earlier work to be transcriptionally repressed by 

Hog1 under nutrient rich conditions [84]. This observation, in conjunction with our 

data, suggests that the HOG pathway may regulate capsule and mating via Ada2 

(Figure 3.11).    Our transcriptional analysis suggests that Nrg1 and Cir1 operate on 

the HOG pathway through a shared incoherent feed-forward loop, by 

transcriptionally activating Hog1 and simultaneously repressing Pbs2.  In nutrient 

rich conditions, Hog1 is constitutively phosphorylated by Pbs2 and represses mating 

and capsule.  The logic of this circuit implies that in capsule inducing conditions 

Cir1 and Nrg1 repress transcription of PBS2; this leads to reduced levels of 

phosphorylated Hog1, thus derepressing ADA2 transcription and enhancing capsule 

formation.  Simultaneously transcription of HOG1 is increased, leading to an even 

greater abundance of unphosphorylated Hog1. This increase in Pbs2 substrate may 

allow rapid restoration of the transcriptional repression of Ada2 once the 

environmental cues for capsule induction are no longer present. Although transcript 

levels of ADA2 were not significantly altered in the nrg1∆ and cir1∆ mutants at the 

90-minute time point that we tested, ADA2 expression may be affected by these 

mutations at later time points. Future studies will also be needed to determine 

whether the influences of Cir1 and Nrg1 on PBS2 and HOG1 result from direct or 

indirect regulation, and to better characterize the exact structure and function of this 
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hypothesized regulatory circuit.  This model, rich in testable hypotheses, illustrates 

the power of combining RNA-Seq and ChIP-Seq data in an integrated analysis. 

 

Figure 3.11. A model of Ada2 within the broader network of capsule, mating, and 

antiphagocytic responses. Links from Cir1 and Nrg1 are supported by RNA-Seq data 

presented here. Links from Hog1 and Pbs2 are supported by published microarray 

data [84]; links from Gat201 are supported by published data from microarrays and 

ChIP-chip [62]; and links from Ada2 are supported by RNA-Seq and ChIP-chip data 

presented here. Red ovals, transcription factors; blue rounded rectangles, signaling 

proteins; green rounded rectangles, other proteins; green lines, stimulation of 
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transcription; red lines, inhibition of transcription; solid black arrow, 

phosphorylation; P, phosphate; dashed arrow, catalysis by Pbs2. 

 

Our identification of Ada2 in the capsule transcriptional network validates our 

strategy for probing capsule regulation and suggests that it may be valuable in 

studying the regulation of other processes that are important in microbial 

pathogenesis. These studies also lead in numerous exciting directions for the future. 

Our parallel comparison of multiple mutants in the same strain background and 

growth conditions has allowed us to identify previously unobserved relationships 

among capsule regulators, which we look forward to testing. Our analysis of the 

transcriptional signature of capsule induction also suggests multiple potential 

transcription factors that can be pursued to further probe the complex confluence of 

pathways that lead to capsule synthesis, and our implementation of ChIP-Seq in C. 

neoformans demonstrates a high-resolution way for differentiating direct from 

indirect regulatory relationships. Overall, our work highlights the power of 

integrative transcriptome analysis to dissect regulatory networks in C. neoformans 

and beyond. 
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3.5     Materials and Methods 

3.5.1     Ethics Statement 

All animal studies were reviewed and approved by the Animal Studies Committee of 

Washington University School of Medicine and conducted according to the National 

Institutes of Health guidelines for housing and care of laboratory animals. 

 

3.5.2     Materials 

All chemicals were from Sigma, primers were from Invitrogen, and restriction 

enzymes were from New England Biolabs unless otherwise noted. All kits and 

enzymes were used according to manufacturer recommendations unless otherwise 

specified. 

 

3.5.3     Strains and Growth Conditions 

All strains used in this study are capsule serotype A, which causes the majority of 

illness in immunocompromised patients [95]. Microarray experiments to identify the 

transcriptional signature of capsule were performed with C. neoformans H99 and 

mutants were constructed in C. neoformans KN99. All cells were grown with 

continuous shaking (230 rpm) at 30°C in YPD medium (1% w/v yeast extract, 2% 

w/v peptone, 2% w/v glucose), or at 30ºC on agar plates (YPD medium with 2% w/v 
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agar). As appropriate, media were supplemented with either 100 µg/ml of 

nourseothricin (from Werner BioAgents) or 100 µg/ml of Geneticin (G418; from 

Invitrogen). Genetic crosses were performed at room temperature (RT) in the dark on 

V8 agar plates (5% v/v V8 juice, 0.05% w/v KH2PO4 pH 5, 4% w/v agar) as 

described [74]. To induce expression of genes involved in capsule formation, cells 

cultured overnight in YPD were collected by centrifugation, washed in DMEM, and 

adjusted to 4 × 107 cells/ml in DMEM. This cell suspension was first incubated at 

30ºC in room air for 2 hr, then shifted to 37ºC with 5% CO2

 

 for 1.5 hr. Conditions 

used for phenotypic testing of mutants are detailed in Text S1. 

3.5.4     RNA Isolation 

Approximately 2 × 108

 

  cells were collected by centrifugation, suspended in TRIzol 

reagent (from Invitrogen), and subjected to mechanical lysis by bead beating at 4ºC 

with 0.5-mm glass beads for 1 min, followed by a 2-min rest, for a total of 5 cycles. 

Following lysis, total RNA was extracted according to the manufacturer’s 

instructions. Residual DNA was removed from the RNA preparation by treatment 

with the Turbo DNA-free kit (from Ambion) according to the manufacturer’s 

instructions. 
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3.5.5     Microarray Experiments 

H99 cells were cultured overnight at 37ºC in the following eight conditions: low iron 

medium with or without both 500 mM ethylenediaminetetraacetic acid (EDTA) and 

10 mM bathophenanthroline disulfonate (BPDS); phosphate-buffered saline (PBS) 

with or without 10% v/v fetal bovine serum; Dulbecco's Modified Eagle's Medium 

(from Sigma) in room air or 5% CO2

 

; and Littman's medium [51] with either 0.01 

µg/ml or 1 µg/ml thiamine. All experiments were performed in triplicate. Total RNA 

was isolated from each culture and hybridized to a C. neoformans serotype A/D 

microarray against a shared reference pool of RNA as described [96]. Slides were 

scanned on a Perkin-Elmer ScanArray Express HT scanner to measure Cy3 and Cy5 

fluorescence as described [96]. Normalization of the raw spot intensities was 

performed using LIMMA [97]. Normalization was performed using normexp with an 

offset of 50 followed by Loess and values for replicate probes on the array were 

averaged to represent expression of the associated gene. The correlation between 

gene expression and capsule radius (which was measured for each sample at the time 

of RNA isolation) was assessed using SAM [98] and statistical significance was 

calculated using a false discovery threshold of 5%.  A hypergeometric test was 

applied to determine the enrichment of capsule-implicated genes (genes whose 

mutation yields an alteration in capsule size or morphology) in the positively and 

negatively correlating sets of genes. The complete array data set is available at GEO 

accession number GSE31911. 
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3.5.6     Strain Construction 

The C. neoformans H99 reference sequence was accessed through the Fungal 

Genome Initiative database at the Broad Institute of MIT and Harvard available at 

http://www.broadinstitute.org/science/projects/projects. Cryptococcal genomic DNA 

was isolated as described [99] and a split-marker approach [100] was used to replace 

each genomic coding sequence of interest with a nourseothricin resistance marker 

(NAT) by homologous recombination. Each mutant was also labeled with a unique 

signature tag by incorporating a 13-bp tag sequence and an 18-bp priming site (5' - 

AGAGACCTCGTGGACATC - 3') immediately downstream of NAT. We also used 

the split-marker gene replacement approach to introduce a single copy of the 

hemagglutinin (HA) epitope-tag sequence at the 3' end of the ADA2 genomic coding 

sequence. 

 

3.5.7     Capsule Induction and Quantitation of Capsule Size 

Cells cultured in YPD were washed extensively in DMEM, then adjusted to 106 

cells/ml in DMEM and incubated for 24 hours at 37ºC with 5% CO2

 

. Capsules were 

visualized by negative staining with India ink, and a minimum of 100 randomly 

chosen cells were imaged with identical acquisition settings on a Zeiss Axioskop 2 

MOT Plus wide-field fluorescence microscope. Capsule radius was calculated as half 

the difference between the capsule diameter and the diameter of the cell body. 
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3.5.8     Immunofluorescence Microscopy 

Cells were cultured overnight in YPD, and the expression of genes involved in 

capsule formation was induced as described above. Cells were then collected by 

centrifugation, washed in PBS, adjusted to 3 × 108 cells/ml in 4% w/v formaldehyde 

buffered in PBS, and incubated for 1 hr with rotation. Fixed cells were collected by 

centrifugation (1 min, 400 × g), washed extensively in PBS, adjusted to 3 × 108

 

 

cells/ml in Lysis Buffer (50 mM sodium citrate pH 6.0, 1 M sorbitol, 35 mM β-

mercaptoethanol) plus 25 mg/ml Lysing Enzymes (from Trichoderma harzianum), 

and incubated for 1 hr at 30°C. Digested cells were collected by centrifugation (3 

min, 400 × g), washed with HS Buffer (100 mM HEPES pH 7.5, 1 M sorbitol), and 

resuspended in 100-200 µl of HS Buffer. The cell suspension was spotted in 20-µl 

aliquots on a glass microscope slide coated with 0.1% w/v poly-L-lysine and 

incubated for 20 min at RT. 

All subsequent treatments and washes were performed by the application of 20-µl 

volumes and incubation at RT, and were followed by aspiration. The slides were first 

treated with HS Buffer containing 1% v/v Triton X-100 and incubated for 10 min; 

they were then washed with PBS and treated with Blocking Buffer (5% v/v goat 

serum, 0.02% v/v Tween-20 in PBS) for 1 hr. Cells were next labeled with either a 

high-affinity rat anti-HA monoclonal antibody (0.2 µg/ml in Blocking Buffer; from 

Roche), a rabbit anti-acetyl-Histone H3 polyclonal antibody (0.5 µg/ml in Blocking 

Buffer; from Millipore), a rabbit anti-acetyl-Histone H4 polyclonal antibody (1 



 

  76 
 

µg/ml in Blocking Buffer; from Millipore), or Blocking Buffer alone overnight in a 

moist chamber at 4ºC. Cells were then washed with Blocking Buffer, and treated for 

1 hr in the dark with either Alexa Fluor 594 goat anti-rat IgG or Alexa Fluor 594 

goat anti-rabbit IgG (2 µg/ml in Blocking Buffer; from Invitrogen). Next, cells were 

again washed with Blocking Buffer, counterstained with 4',6-diamidino-2-

phenylindole (DAPI; 5 µg/ml in PBS) for 20 min in the dark, washed with PBS, 

allowed to air-dry, and mounted in Prolong Gold (from Invitrogen). Brightfield and 

fluorescence images were acquired simultaneously on a Zeiss Axioskop 2 MOT Plus 

wide-field fluorescence microscope. All samples were imaged with identical 

acquisition settings. 

 

3.5.9     Growth and Virulence in Mice 

Two types of animal studies were performed, both in compliance with all 

institutional guidelines for animal experimentation. For a short term model of fungal 

survival in the mouse lung, strains to be tested were cultured overnight in YPD 

medium, collected by centrifugation, washed in PBS, and diluted to 2.5 × 105 

cells/ml in PBS. For each strain, eight 4-6 week-old female C57Bl/6 mice (from 

Jackson Laboratories) were anesthetized with a combination of ketaset-HCl and 

xylazine, and inoculated intranasally with 50 µl of the prepared yeast suspension. 

Three animals from each cohort were sacrificed at 1 hr post-inoculation; the 

remaining five were sacrificed after 7 days. Lungs were harvested following 

sacrifice, and homogenized in PBS. Serial dilutions of the homogenate were plated 
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on YPD agar for determination of colony-forming units (CFU). Initial inocula were 

also plated to confirm CFU. 

 

To assess longer-term affects of cryptococcal infection, each strain was cultured and 

prepared as above, with the exception that the cells were diluted to 2 × 106

 

 cells/ml 

in PBS. Ten 4-6 week-old female A/Jcr mice (from the National Cancer Institute) 

were anesthetized as described above and inoculated intranasally with 100 µl of the 

prepared cell suspension. The animals were weighed within 1 hr post-inoculation, 

and subsequently on every other day. Mice were sacrificed if weight decreased to a 

value less than 80% of peak weight (an outcome which in this protocol precedes any 

signs of disease) or upon completion of the study. Initial inocula were plated to 

confirm CFUs. 

3.5.10     RNA-Seq 

Cells were cultured overnight in YPD, and grown for 90 minutes in either capsule-

inducing (DMEM, 37 °C, 5% CO2) or capsule non-inducing (DMEM, 30 °C, room 

air) conditions prior to isolation of total RNA. A minimum of two biological 

replicates were performed for each mutant (ada2∆, nrg1∆ and cir1∆) and four for 

wild type. PolyA+ RNA was purified from total RNA using the Dynabeads mRNA 

Purification Kit according to the manufacturer’s instructions (from Invitrogen). Each 

sample was resuspended in 2 µl of 100 mM zinc acetate and heated at 60°C for 3 

minutes to fragment the RNA by hydrolysis. The reaction was quenched by the 
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addition of 2 µl volumes of 200 mM EDTA and purified with an Illustra Microspin 

G25 column (from GE Healthcare). First strand cDNA was made using hexameric 

random primers and SuperScript III Reverse Transcriptase (from Invitrogen) 

according to the manufacturer recommendations, and the product was treated with E. 

coli DNA ligase, DNA polymerase I, and RNase H to prepare double stranded cDNA 

using standard methods. The cDNA libraries were end-repaired with a Quick 

Blunting kit (from New England BioLabs) and A-tailed using Klenow exo- and 

dATP. Illumina adapters with four base barcodes were ligated to the cDNA and 

fragments ranging from 150-250 bp in size were selected using gel electrophoresis as 

recommended by the manufacturer. The libraries were enriched in a 10-cycle PCR 

with Phusion Hot Start II High-Fidelity DNA Polymerase (from Finnzymes 

Reagents) and pooled in equimolar ratios for multiplex sequencing. Single read, 36-

cycle runs were completed on the Illumina Genome Analyzer IIx.  

 

Sequenced reads were aligned to the C. neoformans H99 reference sequence [82] 

using Tophat [101]. Reads that aligned uniquely to the reference sequence were 

considered for gene expression quantification with Cufflinks [102] using the current 

genome annotation provided by the Broad institute. Gene expression was normalized 

using the Cufflinks provided option for quartile normalization. Differential 

expression analysis comparing mutant to wild type was performed with LIMMA [97] 

and ELNN [103] using a 5% false discovery rate. Genes whose expression was 

found to be significantly changed by either analysis method were counted as 
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differentially expressed. RNA-Seq data is available at GEO accession number 

GSE32049. 

 

3.5.11     Gene Ontology (GO) Enrichment 

GO enrichment analysis was performed by assigning GO categories to each gene 

according to the Broad Institute’s PFAM annotations using the mapping provided by 

the Gene Ontology project (http://www.geneontology.org/external2go/pfam2go).  A 

hypergeometric test was applied for each GO category, the resulting p-values were 

corrected for multiple hypothesis testing, and a cutoff of 0.05 was used to determine 

significance. 

 

3.5.12     Chromatin Immunoprecipitation (ChIP) 

Wild type and ada2∆ cells were cultured in triplicate overnight in YPD, and grown 

in capsule-inducing conditions (DMEM, 37 ºC, 5% CO2) for 90 minutes.  Cells were 

then fixed for 5 min in 1% (v/v) formaldehyde, and the reaction quenched with a 

final concentration of 125 mM glycine. Fixed cells were collected by centrifugation, 

washed with PBS, and resuspended in Buffer A (50 mM HEPES pH 7.5, 140 mM 

NaCl, 1 mM EDTA, 1% v/v Triton X-100, 0.1% w/v sodium deoxycholate) 

supplemented with protease inhibitors and 20 mM sodium butyrate (a histone 

deacetylase inhibitor). The cell suspension was subjected to mechanical bead-beating 

with 0.5-mm zirconium silicate beads for 2 min at 4ºC, followed by a 2-min rest, for 
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a total of 10 cycles. Chromatin was then sheared by sonicating the lysate for 30 sec 

at 40% power output, followed by a 1-min rest on ice, for a total of 40 cycles, and 

the lysate clarified by centrifugation.  A fraction of the sheared chromatin was 

reserved as an input sample and the remainder was used for immunoprecipitation. 

Acetylated histone H3 was immunoprecipitated overnight with anti-acetyl-H3 (K9) 

antibody (from Millipore) tethered to protein-A sepharose (10 ml in a total volume of 

700 ml). The beads were next washed sequentially in Buffer A, Buffer B (50 mM 

HEPES pH 7.5, 500 mM NaCl, 1 mM EDTA, 1% (v/v) Triton X-100, 0.1% (w/v) 

sodium deoxycholate), Buffer C (10 mM Tris-HCl pH 8.0, 250 mM LiCl, 1 mM 

EDTA, 0.5% (v/v) NP-40, 0.5% w/v sodium deoxycholate), and Buffer D (10 mM 

Tris, 1 mM EDTA), and immunoprecipitated protein was eluted with Buffer E (50 

mM Tris pH 8.0, 10 mM EDTA, 1% (w/v) SDS). Crosslinked DNA  from input and 

IP samples was released by incubating the eluate at 65ºC overnight, and extracted 

with a solution of phenol/chloroform/isoamyl alcohol (25:24:1) prior to ethanol 

precipitation and resuspension in water. Mock IP reactions with no antibody yielded 

no measurable product (not shown) and were not quantified further. 

 

ChIP-DNA for input and IP samples was end-repaired with Klenow DNA 

Polymerase and the DNA was purified with AMPure XP System beads (Beckman 

Coulter Genomics) and modified with A-tails using Klenow exo- before ligation to 

adapters to incorporate 7-base index sequences using T4 DNA ligase (Enzymatics).  

Adapter addition was confirmed on an Agilent 2100 bioanalyzer, and the DNA was 

PCR-amplified and then gel purified to remove adapter dimers and select sizes 
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optimal for high-throughput sequencing (150 to 300 bp).  Libraries were 12-way 

multiplexed on an individual lane of an Illumina Hi-Seq 2000 flow cell, resulting in 

approximately 7 million 42-bp single ended reads per sample. 

 

Reads generated from the input and IP samples were aligned to the C. neoformans 

serotype A reference sequence [82] using Bowtie [104]. Reads that mapped to 

multiple genomic loci were discarded. Peak calling was performed using MACS 

[105] with a significance threshold of 1 × 10-10

 

. To assess gross differences between 

the mutant and wild type, the average number of peaks over the three biological 

replicates of each strain was compared. Peaks were associated with specific genes if 

the peak center fell within 500 bp of the gene transcription start site according to the 

current annotation by the Broad Institute [82]. (For genes with unannotated 5’-UTRs 

this may correspond to the translation start site.) Ada2-dependent peak loss was 

identified by cases where a gene in two of the three wild type biological replicates 

possessed a neighboring peak and no peak was found to neighbor the gene in any of 

the three ada2∆ mutant replicates. ChIP-Seq data is available at GEO accession 

number GSE32075. 
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Chapter 4 
 
NetProphet: A practical method for 
mapping transcriptional regulatory 
networks  
 

Abstract 

Deriving models of transcriptional networks from compendia of gene expression 

data has been a long standing goal of systems biology.  Here we present a new 

algorithm, NetProphet, which integrates two network inference strategies: regression 

and differential expression.  Regression analysis identifies predictive relationships 

between transcription factors and their potential targets.  Differential expression 

analysis of transcription factor deletions relative to a wild type strain identifies genes 

downstream of the transcription factor in the network.  By integrating these two 

analyses we achieve inference accuracy superior to that of either analysis alone.  We 

compare our approach to other network inference algorithms on the DREAM4 in-

silico benchmarks and on the complete transcriptional network of Saccharomyces 

cerevisiae. The latter comparison uses gene expression profiles of strains carrying 

transcription factor deletions and evaluates predicted networks by comparison to 

binding evidence from hundreds of chromatin immunoprecipitation on chip (ChIP-

chip) experiments. NetProphet is substantially more accurate than alternative 
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algorithms in both evaluations. Finally we use the transcriptional network inferred by 

our algorithm to complement the ChIP-chip evidence by identifying novel protein-

DNA interactions that are supported by both functional annotation and sequence 

affinity evidence. 

 

4.1     Background 

A major goal of systems biology is to develop predictive network models of the 

emergent behaviors of living cells. Such models can serve as hypothesis generators, 

guiding experimentation, and as a basis for engineering new functions. Microarray 

technology and high throughput sequencing of cDNA (RNA-seq) have given us an 

increasingly lucid window into the transcriptional states of cells. Analyses of these 

data have begun to shed light on the transcriptional networks that coordinate gene 

regulatory responses. Cells respond to environmental stimuli through signaling 

cascades that affect transcription via the network of transcription factors and their 

direct targets. By profiling cells over a range of growth conditions, a large 

compendium of gene expression data can be collected which represents the potential 

states of the transcriptional network. The response of the transcriptional network to 

precise molecular manipulations, such as gene disruption, RNA interference, and 

overexpression can also be measured.  Network inference analyses that integrate a 

large collection of transcriptional profiles have the potential to predict the structure 

of transcriptional networks, thereby complementing evidence of protein-DNA 

interactions from experiments (e.g. ChIP-chip [106] or ChIP-seq [107]). 
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4.2 Related Work 

4.2.1 Regression based approaches to network inference 

One general strategy used to infer a transcriptional network from a collection of gene 

expression profiles is to use some form of regression analysis, wherein each gene’s 

expression is predicted as a function of the expression of other genes that encode 

transcriptional regulators.  The idea behind this strategy is that a regulator’s 

expression profile will be predictive of its targets’ expression profiles. 

Implementations of this strategy can be as simple as measuring the correlation or 

mutual information [108,16] between the expression profiles of regulatory genes and 

potential target genes.  More complex implementations employ a multivariate 

predictor function, where multiple regulators’ gene expression profiles are taken 

together to predict a target gene’s expression [109,110].  To account for uncertainty 

in model selection and noise in the measurements, probabilistic approaches such as 

Bayesian networks have been applied [111].  

 

In regression-based network inference strategies, each gene’s potential regulators are 

ranked based on their ability to predict the target gene’s expression.  A specific 

network can be derived from such a ranking by including regulators whose rank 

exceeds a certain threshold. The predictive relationship that regression reveals 

suggests the potential for a direct interaction, in which the transcription factor binds 
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the promoter of the target and by doing so impacts the target’s transcription. 

However, the regression approach has encountered several problems. First, 

expression of one gene may be predictive of another gene’s expression for reasons 

other than direct regulatory interaction. For instance, the two may be co-regulated by 

a third factor. Second, in most regression based analyses measurements from 

genetically perturbed samples are inappropriately treated as equivalent to 

measurements from varying growth conditions.  In fact, measurements from 

genetically perturbed backgrounds (e.g. single gene disruptions) are profiles of an 

altered system in which an individual gene’s expression has been forced to zero. 

Causal Bayesian networks [112–114] offer one way of addressing this type of 

measurement, however their treatment of these measurements primarily assists with 

edge orientation rather than edge inclusion. 

 

4.2.2 Inferring Network Structure with Differential 

Expression Evidence 

A complementary strategy based on differential expression (DE) analysis relies on 

single-gene perturbations for both edge orientation and edge inclusion. In this 

approach, DE analysis is applied to transcription factor deletion strains, thereby 

identifying the genes downstream of the deleted factor. Hu et al. (2007) and Pinna et 

al. (2010) constructed networks with edges from each TF to all the genes that were 

differentially expressed (above some significance threshold) when the TF was 

deleted [115,116]. These networks, which contain a mixture of direct and indirect 
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interactions, are then refined by pruning edges that are less likely to be direct. This 

pruning step removes the lower confidence legs of feed-forward loops (FLLs) in the 

network, essentially retaining the most confident path between two genes to explain 

the effect of a perturbation. While these refinement approaches make explicit use of 

single-gene perturbations, they cannot use other sources of data such as 

environmental perturbations and time-course measurements. They can only identify 

targets of regulators that have been individually perturbed.  

 

Surprisingly, there have been few comparisons of the accuracy of the two major 

approaches to network inference from gene expression data -- differential expression 

and regression. As a result, it is unclear which strategy is better in practice. 

 

4.2.3 Inferring network structure by integrating analyses 

It has been observed that combining multiple inference algorithms over the same 

compendia of expression data can yield more accurate results than relying on a single 

algorithm [110,117].  This improvement relies in part on the individual algorithms 

making different types of systematic errors.  Given that regression and differential 

expression based strategies are such orthogonal approaches to network inference, 

they make prime candidates for integration.  Combining regression and differential 

expression for network inference has been proposed [118], where regression is 

applied to time-course data and DE analysis is applied to gene knockout data. 

However this approach was intentionally biased toward the DE analysis. 
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Furthermore, the combined approach showed little or no benefit over the DE alone 

[118].  Regression and DE analyses were also combined in the context of the 

Inferelator algorithm [109,119,120].  Inferelator combines three analyses (LASSO 

regression, mutual information and differential expression) using an arithmetic 

averaging scheme that gives each analysis equal influence. Combining regression 

and DE in this way did show a benefit over the individual analyses. This result 

inspired us to search for even better ways of combining LASSO regression with DE 

analysis.  

 

4.2.4 Initial Approaches for Integrating Differential 

Expression Evidence with Regression 

Before developing our current algorithm, NetProphet, we investigated other 

approaches to network inference that we will discuss briefly.  The overarching theme 

of these earlier attempts was the same: to make better use of measurements from 

genetically perturbed strains. 

 

Initially, we took a Bayesian approach in which we modeled a transcriptional 

network as a probability distribution over a system of ordinary differential equations 

(ODEs) such as those described in section 2.6.2. The probability distribution was 

defined as P(M|D) where M was the model (network structure and parameters) and D 

contained the gene expression measurements. The model was the structure and 
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parameterization of the network, which we encoded using ODEs which expressed 

the rate of mRNA changes as a function of TF concentrations. P(M|D) can be 

expressed as the product of the likelihood function P(D|M) and a prior P(M). In our 

implementation, the likelihood function encoded the agreement between the system 

of ODEs and the measurements, D according to a normal error distribution. The 

model prior P(M) encoded our prior beliefs about the structure of the model based on 

DE analysis of single gene perturbations in the data.  The probability distribution on 

the model structure and parameters was learned using a Markov chain Monte Carlo 

approach to sample the model structure. We derived our confidence of edges being 

present in the model structure based on their expected probabilities obtained during 

sampling. In addition to assessing the expectation that a particular edge will be 

present in the model, we also obtained the expected outcomes for genetic 

perturbations on the system. We achieve this by integrating the genetically perturbed 

form of the system over the course of sampling using the wild type expression state 

as the initial condition. 

 

We tested two forms of the prior P(M), both of which followed a Laplace 

distribution.  The first form encoded prior knowledge about reachability between two 

genes in the directed graph structure that defined the transcriptional network.  This 

prior knowledge was based on differential expression evidence which we interpreted 

as follows: if gene A responds significantly to a gene B deletion, then there exists a 

path from B to A in the transcriptional network.  There were several problems with 
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incorporating differential expression evidence in this way.  While interpreting that 

differential expression is indicative of a path in the network is perhaps the most 

conservative treatment of the evidence, we found that it does not sufficiently 

constrain the space of potential networks.  We also encountered extreme 

computational overhead in implementing this prior, which required computing the 

transitive closure of the network structure over the course of sampling.  Overall we 

found that the benefits in accuracy when using this approach did not warrant the 

effort. 

 

In the second form of the model prior P(M) that we examined, we made a stronger 

assertion regarding the differential expression evidence: that more significantly 

differentially expressed genes are more likely to be direct targets of the perturbed 

gene in the transcriptional network.  The accuracy results we obtained with this 

implementation were encouraging, but there were a few issues that eventually made 

us abandon this strategy.  First, the cost of sampling networks using MCMC made 

predicting genome scale network structure prohibitive.  The limit in terms of network 

size that we could reasonably approach was roughly 500 genes.  A second problem 

we found with this algorithm was that based on the influence of the prior, P(M), 

edges would be included in the model but the parameters associated with those edges 

would be very close to zero resulting in no regulatory influence. Often times these 

edges would be correct based on the known network structure, but not predictive in 

the of the target’s expression.   
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 Now, we propose our current approach, NetProphet, which combines the regression 

and differential expression strategies in a novel way.  A comparison of NetProphet to 

alternative algorithms such as GENIE3 [121] and Inferelator [120] reveals 

substantial accuracy improvements both on the DREAM4 in-silico benchmark and 

on reconstruction of the Saccharomyces cerevisiae transcriptional network from 

empirical gene expression data. Finally, we demonstrate how network inference can 

complement ChIP experimental studies by identifying many novel protein-DNA 

interactions in yeast that are supported by functional annotation and sequence 

affinity evidence. 

 

4.3     Approach 

Our approach for inferring a transcriptional network from a compendium of gene 

expression data is to combine the predictions from two independent analyses. The 

first analysis uses all of the expression data to learn a sparse linear model that 

predicts the expression of each gene as a function of the expression of regulatory 

genes (transcription factors and cofactors).  The second analysis assesses differential 

expression on each expression profile in the compendium in which a specific 

regulatory gene has been perturbed (via knockout, knockdown, or overexpression) 

compared to wild type control in the same growth condition.  Each analysis scores 

the potential regulatory interactions of the system (regulator, target gene pairs).  The 

scores of the two analyses are combined through a model averaging scheme.  Simple 
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averaging can be extended with a weighting scheme that favors predicted 

interactions for which the regression and differential expression evidence agree on 

the sign of regulation (activation or repression).   

 

4.4     Results 

4.4.1     In-silico evaluation 

In order to compare NetProphet to other methods, we started with in-silico gene 

networks, which allow network inference algorithms to be evaluated in a controlled 

manner [122,123].  Widely used benchmark networks are provided by the DREAM 

(Dialog for Reverse Engineering Assessments) consortium [124].  

 

We compared NetProphet’s accuracy on the DREAM4 in-silico networks to that of 

other network inference algorithms, including GENIE3 [121], Inferelator 

[109,125,120], and 19 anonymous algorithms that were included in the DREAM4 

inference evaluation.  Inferelator was a top performer for DREAM3 and DREAM4 

network inference challenges.  We used the version described in [120] that integrates 

three different analysis types (differential expression, LASSO regression and mutual 

information) to infer regulatory network structure. GENIE3 was the best performer 

for DREAM4 for the multi-factorial network inference challenge and was the best 

performer overall for DREAM5.  In all of the in-silico comparisons we used the 

unweighted version of NetProphet (see section 4.6.4 for data handling details). 
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The DREAM4 in-silico network benchmark consists of 5 independent networks, 

each containing 100 simulated genes, generated by the GeneNetWeaver tool [126]. 

The network structures are graphs with edges directed from regulators to their direct 

targets; post-transcriptional regulation is not modeled. The structure of each network 

is a subgraph of the transcriptional network of either S. cerevisiae or E. coli.  Gene 

expression datasets are generated from each network using stochastic differential 

equations that reflect the regulatory interactions in the network.  Simulations of both 

steady state and time course measurements are included. The steady state 

measurements are of the wild-type network, each single-gene knockout, and each 

single-gene knockdown.  

 

First, we compared the ranking accuracy of NetProphet to that of the two baseline 

methods that it integrates: LASSO regression and differential expression analysis 

(DE Rank).  Figure 4.1 shows the precision-recall curves [127] for a single, 

representative DREAM4 network. These curves reveal that NetProphet produced a 

ranking superior to either of the individual analyses it integrates. NetProphet 

recovered over 40% of the true network structure before making a single error while 

each baseline method recovered less than 10%.  This suggests that the baseline 

methods are making errors on distinct sets of edges and that averaging their scores 

tends to neutralize these errors. 
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Figure 4.1. Precision-recall curves for DREAM 4 network 1; Netprophet (black); 

LASSO (green); DE Rank (red). 

 

Averaging over all five DREAM4 networks, we calculated the area under the 

precision recall curves for NetProphet, DE Rank, LASSO, Inferelator, GENIE3 and 

19 anonymous entrants in DREAM4 (Figure 4.2). NetProphet yielded an average 

area under the precision recall curve (AUC-PR) of 0.54 while the baseline analyses 

LASSO and DE Rank yielded AUC-PR of 0.36 and 0.35, respectively.  NetProphet 

was also more accurate than Inferelator, GENIE3 and the 19 anonymous methods. 

Inferelator showed the second best performance amongst all methods.  GENIE3’s 

performance was much lower than we had expected, given its dominance in the 

DREAM4 multifactorial network challenge and later success in DREAM5. The 

performance of GENIE3 relative to Inferelator and NetProphet on these networks 

may in part be explained by the lack of multifactorial perturbations (broad treatments 

that influence the basal transcription rates of many genes) in these datasets. GENIE3 
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may rely on this measurement type for more accurate inference.  These clear results 

encouraged us to perform an evaluation in the model organism Saccaromyces 

cerevisiae. 

 

 

Figure 4.2. Average area under the precision recall curves for all 5 DREAM4 

networks. NetProphet (black); Inferelator (teal); LASSO (green); DE Rank (salmon); 

GENIE3 (purple); anonymous methods (grey). 

 

4.4.2     Evaluation in S. cerevisiae 

To evaluate inference algorithms on the yeast transcriptional network, we applied 

them to a microarray dataset that includes profiles of 269 transcription factor 

deletion strains grown in rich medium [115].  The microarray data were normalized 

by the method described in [128] with minor differences described in Supplemental 

Methods.  The network structure inferred by each algorithm was compared to a gold 

standard for protein-DNA interactions that we created by combining ChIP-chip 
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evidence from Tnet [129,32] and Yeastract [130–132].  Yeastract contains many 

other interactions that are not supported by ChIP evidence but these were omitted.  

Our gold standard for the yeast protein-DNA interaction network consists of 30094 

protein-DNA interactions for 188 transcription factors (TFs). 

 

We conducted DE analysis on the normalized gene expression data using LIMMA 

and converted the resulting log-odds scores into signed significance scores Dij (see 

section 4.6.2).  To validate this analysis, we compared the p-values assigned by 

LIMMA [97] for each gene to the p-values published by [128] and found the ranking 

orders to be nearly identical (data not shown).  We then performed LASSO 

regression (see section 4.6.1) on the normalized gene expression data to learn 

coefficients Bij for a sparse linear model. DE and LASSO displayed a striking 

concordance on the regulatory influence (activating or repressing) of each 

transcription factor on its predicted gene target (Figure 4.3). The regulatory 

relationships that received a positive score in both analyses (activation, Figure 4.3 

region I) or a negative score in both (repression, region III) outnumbered those that 

received a positive score in one analysis and a negative score in the other (regions II 

and IV). Furthermore, the scores in regions I and III were significantly greater (p<1e-

15) than the scores in regions II and IV (LASSO mean scores: 0.058 versus 0.045; 

DE mean scores 0.026 versus 0.013). Finally, there was substantial enrichment for 

interactions supported by ChIP-chip in region I (2-fold enriched; p < 1e-154) and 

region III (1.5 fold enriched; p < 1e-68). Enrichment in other regions was slight. 
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Figure 4.3. Comparison of LASSO and DE concordance and ChIP enrichment by 

corcordance in S. cerevisiae. Panel A, Density plot of the normalized LASSO 

coefficients: Bij (x-axis) plotted against signed DE scores: Dij

 

 (y-axis); Darker color 

indicates greater score density. Panel B, Scatterplot of ChIP enrichment by LASSO 

and DE concordance; black regions are not enriched for ChIP supported interactions, 

and green regions are enriched relative to background. 

Next, we made predictions for the structure of the yeast transcriptional network using 

both weighted and unweighted versions of NetProphet.  For the unweighted version 

we combined the confidence scores from LASSO regression and DE analysis as 

described (see section 4.6.3).  For the weighted version, we estimated optimal region 

weights by performing cross-validation over the training data (interactions labeled as 

true or false by ChIP evidence), selecting weights that maximized the average AUC-

PR (see section 4.6.5).  
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Of interactions ranked in the top 1000 by the unweighted model, 52% fell into region 

III followed by 40% in region I; less than 8% of the interactions were found outside 

of regions I and III. In the ranking produced by the weighted model, approximately 

60% of the top 1000 interactions were in region I and 20% in region III. The 

remaining 20% were those that showed evidence of differential expression but were 

not included in the LASSO model (Figure. 4.4, region D). Thus, the weight 

estimation algorithm determined that the most accurate predictions were those in 

which both analyses agreed on the sign of regulation (activating or repressing).  

Furthermore, activating interactions were found to be even more accurate than 

repressing interactions (see section 4.5).  Finally, differential expression alone was 

more reliable than either LASSO alone or LASSO with a sign opposite that of 

differential expression.  

 

 

Figure 4.4. Cumulative region representation by interaction rank; Panel A: 

NetProphet (unweighted). Panel B: NetProphet weighted. 
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We compared the precision-recall curves of unweighted NetProphet against weighted 

NetProphet, LASSO, DE Rank, GENIE3, and Inferelator (Figure 4.5).  As in the in-

silico comparison, NetProphet was more accurate than the base-line methods 

(LASSO and DE Rank).  Interestingly, DE Rank revealed a distinct advantage over 

LASSO. This advantage which was not seen in the in-silico network evaluation, 

suggests that LASSO regression is not as informative for inferring real regulatory 

networks as it is for artificial networks.  Weighted NetProphet was the most accurate 

algorithm, followed by unweighted NetProphet.  For the 5 top ranked predictions, 

Inferelator demonstrated near equal performance with NetProphet, but accuracy 

rapidly diverged for less highly ranked interactions. 

 

 

Figure 4.5. Precision-recall for the transcriptional network of S. cerevisiae. 

Unweighted NetProphet (black); weighted NetProphet (grey dash);  LASSO (green); 
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DE Rank (red); GENIE3 (purple); Inferelator (teal). The X-axis represents the 

number of ChIP supported interactions recovered. 

 

Next, we performed a regulator-centric evaluation that considers the accuracy with 

which the targets of a randomly selected regulator can be predicted. This metric 

more closely reflects the typical application of a network prediction algorithm, in 

which investigators seek novel targets of regulators relevant to a specific biological 

process. Global accuracy is less predictive of an algorithm’s usefulness in this 

application, since it can be dominated by a small number of regulators that have 

many targets. Here we calculate the fraction of transcriptional regulators in S. 

cerevisiae for which each algorithm identifies at least one true target in the top k 

predictions, for k from 1 to 10 (Figure 4.6). Only the 187 transcriptional regulators 

for which we have ChIP evidence are included. For 17% of those regulators, the 

target ranked most highly by unweighted NetProphet was correct; for weighted 

NetProphet this fraction increased to 20%.  The baseline analyses DE Rank and 

LASSO identified the correct target for 15% and 13% of regulators respectively, 

with Inferelator identifying correct targets for 9% and GENIE3 for 6%. This analysis 

demonstrates that NetProphet is not only inferring the transcriptional network with 

greater accuracy, it is also accurately identifying the targets of more regulators.  

Thus, if one is interested in a specific transcriptional regulator, NetProphet is more 

likely to identify its targets than the alternative algorithms. 

 



 

  100 
 

 

Figure 4.6. Evaluation of methods against the global transcriptional network of S. 

cerevisiae. Percentage of transcription factors (y-axis) for which a ChIP-supported 

interaction was identified in top K predictions (x-axis).  NetProphet (black); 

NetProphet weighted (grey dash); LASSO (green); DE Rank (red); GENIE3 

(purple); Inferelator (teal). 

 

4.4.3     Refining the transcriptional network of S. cerevisiae 

Although ChIP evidence may be the best available standard by which to evaluate 

network inference algorithms, it does not definitively identify the true transcriptional 

network of an organism.  Detection of DNA-binding events by ChIP-chip or ChIP-

seq is subject to statistical error and experimental bias, which will admit a certain 

fraction of false positive interactions.  Furthermore, some true binding events are 

non-functional or spurious in nature [133], leading to an inflated number of 

interactions many of which do not play significant role in the regulation of gene 
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expression. Conversely, ChIP may fail to detect true interactions for the same 

statistical and experimental reasons.  True interactions can also be missed because 

ChIP of cells grown in one condition may not reflect the binding events of a different 

growth condition.  

 

Gene-expression based network-inference algorithms have the potential to 

complement ChIP studies in refining transcriptional network models. Here, we 

explore this potential by examining the network inferred by weighted NetProphet. 

We focus on the interactions ranked above a threshold that we set so that 30% of the 

predictions were ChIP positive. Only TFs for which there was ChIP data were 

considered when setting this threshold, but the threshold did admit a number of 

predictions involving TFs that had not been chipped. This threshold yielded 955 

predicted interactions including 106 different regulators and 561 different target 

genes.  ChIP experiments were available for 64 of the 106 regulators, and of the 64 

regulators tested by ChIP-chip, 60 had known position weight matrices that specified 

their sequence affinity.  We obtained these position weight matrices (PWMs) from 

ScerTF, which is a compilation of the most trusted position weight matrices for yeast 

transcription factors [134]. 

 

We were interested in identifying protein-DNA interactions predicted by NetProphet 

that were not supported by ChIP-chip but were supported by the presence of binding 

sites in the promoter region of the target gene.  To establish binding site evidence for 

an interaction we scanned the PWMs over the yeast promoters using FIMO [135].  
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We defined a gene’s promoter region to be 800 bases upstream of the transcription 

start site (TSS) excluding sequence from neighboring open reading frames (ORFs) 

and 200 bases downstream of the TSS. For a given transcription factor we 

considered two models of binding. We considered a protein-DNA interaction to be 

supported by the strong-site model if the target promoter’s most significant binding 

site is in the 90th percentile of strength among all promoters that contain a significant 

(p< 0.005) binding site for the given regulator. Thus, by definition, only 10% of the 

promoters with significant hits could be considered to have strong sites. We consider 

a protein-DNA interaction to be supported by the weak-site model if the sum of the 

negative log p-values for all significant sites in the promoter is in the 90th

 

 percentile 

among all promoters that contain a significant (p< 0.005) binding site for the given 

factor. This threshold could admit up to another 10% of promoters with significant 

sites, although in practice many of these are the same promoters that satisfy the 

strong site model. We say a protein-DNA interaction has evidence of binding 

potential if it is supported by either the strong- or the weak-site model. 

Next, we investigated the overlap among interactions predicted by NetProphet, 

interactions supported by ChIP-chip, and interactions supported by the strong-site or 

weak-site binding models. Only predicted interactions whose regulator has been 

ChIPed are considered in this analysis. Predicted interactions that were ChIP-positive 

overlapped significantly with those that were supported by both the strong-site model 

(p < 1e-53) and the weak-site model (p < 1e-15).  Predicted interactions that were 

ChIP-negative also overlapped significantly with those that were supported by both 
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the strong-site model (p < 1e-12) and the weak-site model (p < 1e-6).  Of the 

predicted interactions that were ChIP-negative, 36% were supported by evidence of 

binding potential (Figure 4.7); of those that were ChIP-positive 74% were. If the 

fraction of correct predictions supported by binding evidence is independent of ChIP 

support then 49% of the ChIP-negative predictions are correct.  

 

 

Figure 4.7. Classification of confidently identified interactions. Interactions 

identified at a confidence level that yielded 30% precision (omitting pseudo genes 

and interactions originating from transcription factors whose targets are unknown by 

ChIP). 

 

The complete network of predicted interactions that are ranked above threshold and 

supported by either ChIP or binding potential is shown in Figure 4.8.  We found 

several interactions that were not supported by the ChIP studies we used but were 

confirmed by other sources.  For example, we predicted Gal80 directly represses 

GAL2 expression, which is known to be true by a well studied mechanism in which 

Gal80 forms a complex with transcriptional activator Gal4, which inhibits Gal4 from 
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activating the transcription of many genes involved in galactose uptake and 

metabolism including GAL2 [136]. 

 

 

Figure 4.8. Interactions predicted by NetProphet that are supported by ChIP (grey) or 

unsupported by ChIP but supported by sequence affinity evidence (green); 

interactions unsupported by either are not shown.  Genes which are the targets of 

novel interactions are also colored green (grey otherwise).  Regulators with more 

than three predicted interactions are labeled. All predictions are ranked above a 

threshold at which 30% are ChIP-positive.  Edge width indicates the magnitude of 

the score assigned by NetProphet. 

 

NetProphet also predicted that Leu3, the master regulator of leucine biosynthesis, 

directly activates expression of DIC1, which encodes a mitochondrial dicarboxylate 
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carrier. This interaction was not detected by the original ChIP studies performed on 

Leu3 [137].  However, a later ChIP-chip experiment [138] hinted that Leu3 does 

bind the DIC1 promoter and this was later confirmed by Calling Card-Seq [139]. 

Most of the novel NetProphet predictions that showed significant binding potential 

were consistent with the function of the regulator and its known targets. For 

example, NetProphet predicted that Ace2, which is known to regulate genes involved 

in daughter cell fate determination, directly activates DSE3, a gene which encodes a 

daughter cell specific protein.  In addition to DSE3, Ace2 was predicted to regulate 

daughter cell specific genes DSE1, DSE2 and DSE4, all of which are supported by 

ChIP evidence. A later ChIP study confirmed Ace2 does in fact bind the DSE3 

promoter and is required for its expression [140]. NetProphet also predicts several 

novel targets for two key transcriptional regulators of sporulation: Ume6 and Sum1. 

Ume6 represses genes involved in early meiosis in the presence of a fermentable 

carbon source.  NetProphet predicts that Ume6 represses SPO1, HOP2, CTF19, and 

ADY2 all of which are required for sporulation but remain undetected by ChIP 

studies of Ume6.  Additionally NetProphet predicts that Ume6 represses 5 of the 13 

genes in the DUP380 gene family: COS1, COS2, COS3, COS4 and COS8.  This 

family contains subtelomerically encoded proteins of unknown function, but our 

prediction suggests that they may be involved in early meiosis. We also identified 

many novel targets of Sum1, a transcription factor that represses genes involved in 

mid-phase meiosis.  We predict Sum1 directly represses GAS4, SPR1 and SPO21, all 

of which are known to be involved in ascospore wall formation.  We also predict 
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Sum1 represses two genes of unknown function, YAL018C and YAL047C, suggesting 

that they may also be involved in sporulation.  

 

Many predictions involve regulators for which no sequence preference is known and 

no ChIP studies have been performed.  We found the majority of these predictions to 

be for proteins involved in chromatin remodeling, such as members of complexes 

including Tup1/Cyc8, Swi/Snf, SAGA and Rpd3/Sin3. Tup1 is inferred to directly 

regulate 126 genes.  Tup1 is predicted to repress roughly half of its targets and 

activate the other half, consistent with Tup1’s known role of acting as both a 

repressor and activator of gene expression [141,142].  Of the genes Tup1 is predicted 

to repress, the PAU gene family is significantly represented with 18 of the 23 

members accounted for (hypergeometric p < 1e-30).  These genes are 

subtelomerically encoded and expressed during fermentative growth, although their 

function is not well understood.  Tup1’s role in the regulation of this gene family has 

been previously reported [143,144].  In addition to its repressing role, we predict 

Tup1 activates expression of 71 genes, including 47 retrotransposable elements.  

This is consistent with the phenotype of the TUP1 null mutant, which exhibits 

decreased transposition of these elements [145]. 

 

We predict 129 genes to be transcriptionally regulated by the Swi/Snf complex 

(subunits Swi3, Snf2, Snf5, and Snf6).  Consistent with the general role of this 

complex as a positive regulator of transcription [146], 91% of the predicted 

interactions are activating.  A large fraction of the target genes are functionally 
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involved in amino acid biosynthesis and transport and glucose metabolism.  For 

SAGA, a different complex involved in transcriptional activation, we identified 17 

targets (for subunits Spt3, Spt20, and Hfi1).  Consistent with the general activating 

role of this complex, all targets were predicted to be activated.  There was good 

overlap amongst the predicted target genes of different SAGA subunits, with 7 of the 

17 targets sharing two of the three regulatory subunits.  This was not the case for the 

Rpd3/Sin3 deacetylase complex -- we predicted a total of 89 targets for two subunits, 

Sin3 and Sds3, with only three targets in common: STE2, SST2 and PHO12.  The 

non-overlapping target sets for Sin3 and Sds2 may indicate divergent roles for these 

two proteins. 

 

4.5     Discussion 

We developed a novel algorithm, which we call NetProphet, to predict regulatory 

protein-DNA interactions from gene expression profiles of strains in which specific 

transcription factors have been perturbed.  Evaluations using in silico networks from 

DREAM4 and genomic data from S. cerevisiae both indicated that previous 

algorithms did not exploit deletion-strain profiles as effectively as NetProphet. One 

likely reason is that many previous algorithms, exemplified by GENIE3, treat 

expression data from TF deletion strains as generic samples of possible cellular 

states; no special treatment is applied to the perturbed TF gene. As a result, the 

perturbed gene is ignored as a cause of observed changes and, worse, the algorithms 
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attempt to manufacture a regulatory explanation for its externally perturbed 

expression. 

 

A second likely reason for NetProphet’s greater accuracy is that previous algorithms 

have combined differential expression (DE) analysis with regression (or regression-

like) analysis in a suboptimal way.  For example, Inferelator ranks potential 

interactions by DE significance, but it combines this ranking with a regression-based 

ranking in a way that does not penalize disagreement as much as NetProphet does. 

Specifically, NetProphet combines scores by applying a geometric-like mean, where 

Inferelator uses an arithmetic-like mean.  Another approach to combining DE and 

regression is to discard interactions that are not supported by DE; those that are 

supported by DE are then ranked only by regression [119]. Our findings reveal that 

ranking by DE significance is at least as good as ranking by regression and ranking 

by both is better still. 

 

The idea for a weighted version of NetProphet arose from examining the plot in 

Figure 4.3, which revealed that predicted interactions for which both DE and 

regression agree are the most likely to be ChIP supported. Further analysis of plot 

regions I-IV and axes D and B revealed that the predictions identified as activating 

by both analyses are most likely to be correct (region I). The next best groups, with 

roughly equal accuracy, are those that are called repressing by both analyses (region 

III) and those that are detected by DE but not by regression (axis D, excluding the 

origin). The least ChIP-supported groups are those that are called activating by one 
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analysis and repressing by the other (regions II and IV) along with those that show 

no evidence of differential expression (axis B, including the origin). Although these 

observations were based on microarray data on S. cerevisiae, we see no reason to 

doubt that they would apply generally to other types of cells and expression profiling 

technologies. Thus, while a slight advantage might be gained by re-estimating 

weights for a new data set, using the weights derived here is likely to provide an 

improvement over the unweighted algorithm when re-estimation is not practical.  

One property that we observed in the yeast transcriptional network inferred by 

NetProphet was the striking consistency in the sign (activating or repressing) of all 

interactions predicted for a given regulator (Figure 4.8). No formal constraint was 

made to bias the inferred network to have this property.  Moreover, the sign of 

regulation for a given regulator was generally consistent with the known role of the 

regulator as a repressor or activator (or both).  For example, all inferred targets of 

Ume6 are predicted to be repressed which is consistent with the role of Ume6 as a 

repressor of early meiosis genes in the presence of glucose. For regulators that are 

known to function as both activators and repressors, such as Tup1, we predicted a 

mixture of repressing and activating interactions.  This property may be useful in 

post-analysis of inferred networks to hypothesize the function of an uncharacterized 

regulator or to identify the most trusted novel targets for a regulator whose function 

is known. 

 

NetProphet’s ChIP-supported predictions were not limited to a few regulators with 

many targets. For 20% of the regulators, the top ranked prediction was ChIP-
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supported, and for more than 40% of the regulators at least one the top 10 predictions 

was ChIP-supported (Figure 4.6). We believe this to be quite good, considering that 

many transcriptional regulators may not even be active in the growth conditions used 

for these experiments (rich media). Furthermore, it is known that many S. cerevisiae 

regulators have paralogs that can compensate for their absence, thus masking the 

effect of gene deletions [147].  In spite of this, NetProphet was able to identify 

genuine targets for a broad swath of the yeast transcriptional regulators using 

expression data from single-gene deletion strains. 

 

In addition to the predicted interactions that are supported by ChIP evidence, many 

interactions are not detected by ChIP but are likely to be real. Evidence for this 

includes high functional coherence among the predicted targets of most regulators. In 

addition, predicted targets of a regulator that are not supported by ChIP are 

nonetheless hugely enriched for genes whose promoters have exceptional potential 

for binding the regulator. Several of these novel interactions were confirmed by 

experimental datasets not included in the major ChIP-chip compendium. 

To date, network reconstruction algorithms have been applied in only a limited way, 

typically in projects that are not focused on specific regulators or biological 

phenomena. We developed NetProphet in response to a perceived need for 

algorithms that can be applied to the investigation of specific biological phenomena.  

For example, we are investigating the network by which Cryptococcus neoformans, 

an opportunistic fungal pathogen, regulates the polysaccharide capsule it must 

deploy to grow in a human host [148]. We have found it much easier to generate 
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high quality expression data on tens of TF deletion strains than to generate high 

quality ChIP-seq data for the same TFs. Even when a TF has been successfully 

ChIPed, many questions remain. For example, ChIP hits are based on identification 

of clear peak signatures in a promoter that stand out from the background tag density 

in the surrounding region [105]. If a TF regulates a gene by binding a large number 

weak sites scattered throughout the promoter, the ChIP signal may be 

indistinguishable from background noise. It has been reported that ChIP-Seq tag 

density is a good predictor of a transcription factor’s sequence affinity for a given 

site [149], suggesting that strong binding sites would be easier to distinguish from 

background than weaker sites. Indeed, our analysis of promoter sequences suggests 

that promoters with an exceptional number of weak sites for a TF are less likely to 

show a ChIP hit, even if one considers only targets that show differential expression 

when the TF is deleted. NetProphet predicts many of these functional targets with an 

exceptional number of weak sites, even though it does not consider sequence at all in 

making its predictions. Successfully carrying out ChIP is more difficult than 

perturbing TFs and profiling their expression, but even for TFs that have been 

ChIPed, NetProphet appears to provide additional functional targets that are not 

detected by ChIP. 

 

The gold standard for validating predicted functional TF binding sites is comparison 

of expression from the wild-type promoter to expression from the same promoter 

carrying a point mutation in the TF binding site. The wild-type and mutated 

promoters should show differential expression in wild type cells but not in cells 
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lacking the TF that is thought to bind the site (and it’s backups, if any). One can 

imagine validating a large number of binding sites that lack ChIP support in this 

way, but only if sites can be predicted with sufficient accuracy to warrant the effort 

of validation. Based on the results presented here, it appears that NetProphet has 

approached, perhaps even crossed, this accuracy threshold. We can therefore see a 

path to a future where we will no longer have to accept the false negatives and false 

positives of ChIP; instead, we will have recourse to predictions that are accurate 

enough to warrant the definitive test for functional regulatory binding. 

 

4.6     Methods 
4.6.1     Sparse regression for network inference 

Sparse linear models have been applied to the network inference problem for some 

time now [150,109,151]. The network inference problem requires fitting a large 

number of parameters (one for each possible interaction) to relatively few 

measurements. Thus over fitting, in which parameter values are heavily influenced 

by non-representative characteristics of the small data sample, is a major challenge. 

Regression using sparse linear models controls over fitting by producing minimally 

complex networks in which most parameters are set to zero.  LASSO is an L1 

constrained regression technique for parameterizing sparse linear models [152]. 

Computationally efficient implementations of LASSO are available, enabling 

genome scale network inference problems to be approached. 
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We apply LASSO regression to learn a sparse linear model that encodes the 

transcriptional network.  We formulate our model as: 

∑∑ ∑ +
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Where Yjk is the value of the jth gene’s expression in measurement k and Xik is the 

expression value of the ith regulator in the kth measurement. In other words, the Xik 

are the subset of the Yjk for which gene i encodes a TF. Bij is the coefficient that the 

LASSO procedure learns to describe the influence of regulator i on gene j. Ө is a 

weight that scales the L1 parameter penalty relative to the sum of squared prediction 

errors.  When Ө is 0, the optimization of B is equivalent to ordinary least squares 

regression.  As Ө grows, components of B are forced to zero, yielding a sparser 

solution.  In this application we disallow auto regulation by prohibiting Bij from 

becoming non-zero when regulator i is encoded by gene j. We handle gene 

perturbations in the regression by omitting measurements in which gene j has been 

perturbed when fitting the coefficients Bij

 

.  

To select a model, optimal parameters are learned over a range of Ө values, each 

representing a different degree of model complexity.  Each model is assessed for its 

predictive error by performing 10-fold cross-validation on the gene expression data. 

The value of Ө which minimizes predictive error is selected as defining the 

appropriate model complexity.  The final model is selected by learning a solution 

using all of the expression data (no longer cross-validating) using the optimal value 

of Ө, which was learned during cross validation.  We use a least angle regression 
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[153] implementation to efficiently learn the values of B that minimize the predictive 

error.  To produce a ranking of potential regulator-target interactions, the Bij values 

are ranked according to their magnitude, where the largest |Bij

 

| value indidates 

regulator i has the greatest influence on gene j. 

4.6.2     Differential expression analysis 

Differential expression (DE) analysis is used to characterize the responsiveness of 

genes to a perturbation relative to an unperturbed control condition.  For the purpose 

of resolving transcriptional network structure, we are interested in identifying genes 

that show significantly different expression in strains where a particular 

transcriptional regulator has been disrupted.  We use DE analysis to rank potential 

regulator-target interactions based on the estimated probability that each gene 

changes expression in response to the regulator deletion.  The observed difference 

for gene j in the wildtype relative to a strain that lacks regulator i is defined as 

follows: 

))((log))((log)( 22 jEjEjF iWTi ∆∆ −=  

FΔi(j) is the log2-fold change of gene j in the wildtype relative to a Δi background.  

EΔi(j) is the mean expression of gene j in a Δi background, and EWT
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expression of gene j in the wild type background.  We define the log-odds that gene j 

is differentially expressed in the Δi background as: 
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We compute LΔi



 >⋅

= ∆∆∆

otherwise0
0)())(sgn()( jLjFjL

D iii
ij

(j) using LIMMA, which estimates the posterior log odds score by 

way of a moderated t-statistic in which gene specific variances are shrunk toward a 

common value (see [97] for details).  A signed confidence score is assigned to each 

potential regulator-target interaction as follows: 

 

Dij represents the signed confidence score that regulator i directly regulates gene j.  

The sign of Dij indicates whether regulator i is repressing or activating gene j.  When 

it is more likely that gene j’s expression is unchanged in the Δi background (i.e. 

LΔi(j) < 0), the interaction is assigned a confidence score of 0. If the gene expression 

compendium contains no measurements for the Δi strain, Dij is set to zero for all j.  

The Dij

 

 values are ordered according to their magnitude thus defining a ranking of 

hypothesized interactions from the ith regulator to the jth gene. 

4.6.3     Model integration 

We integrate the sparse regression and DE analyses using a model averaging scheme.  

Before combing the score matrices B (from regression) and D (from differential 

expression), each matrix is normalized such that its values lie on the interval [-1,1].  

This is done by dividing each element in B by max(|Bij

( ) ( )dijbijij cDcBM +⋅+=   

|) and similarly for D.  After 

normalization the combined scores are computed as follows: 
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Where cb and cd are offset constants to prevent Mij from becoming zero when only 

one of the two individual scores are zero; both cb and cd are set to 0.01. Mij 

We also report on a weighted extension of this model, which can be used with the 

weights reported here or trained for each new organism for which known protein-

DNA interactions are available. The learning algorithm weights the combined 

confidences scores M

is the 

combined confidence score for the interaction from regulator i to target gene j. 

ij according to the sign of the two scores Bij and Dij
















≠=
=≠
<>
<<
><
>>

=

0 ;0
0 ;0
0 ;0
0 ;0
0 ;0
0 ;0

),(

ijij

ijij

ijij

ijij

ijij

ijij

ijij

DBD
DBB
DBIV
DBIII
DBII
DBI

DBR

. We define 

6 regions based on the paired signs of the two scores as follows: 

 

The regions define the consensus (or non-consensus) of the signs of the two scores. 

Regions I and III represent consensus between the two scores for activation and 

repression respectively. Regions II and IV represent disagreement about the sign of 

regulation, and regions B and D represent cases where one analysis detects evidence 

of the interaction and the other does not.  Possible interactions that are not detected 

by either analysis are excluded from further consideration.  The weights applied to 

these regions are represented by a vector of positive numbers denoted ω.  In the 

weighted model, the combined score for the regulation of gene j by regulator i is: 

( ) ( ) ),(  
ijij DBRdijbijij cDcBM ω⋅+⋅+=  
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where R(Bij, Dij) is the subscript for the region corresponding to the regression 

coefficient Bij and the DE weight Dij. In the weighted model, the offset coefficients 

cb and cd 

 

and the weight vector ω are learned by cross-validation on the training data 

(labeled interactions), maximizing the area under the precision recall curve. 

4.6.4 Analysis of DREAM4 expression data 

Inference of the DREAM4 networks was performed using our method, 

NetProphet, and publicly available versions of Inferelator 

(http://err.bio.nyu.edu/inferelator/) and GENIE3 

(http://www.montefiore.ulg.ac.be/~huynh-thu/software.html).  Datasets for the 

DREAM4 in-silico 100 networks were obtained from 

http://wiki.c2b2.columbia.edu/dream/index.php/D4c2. These datasets covered 5 

networks each containing 100 genes.  The individual datasets for each network 

contained single measurements for wild type, all single knockouts, all single 

knockdowns (50% expression) and 10 time courses (each with 21 time points), for a 

total of 411 measurements.  All expression data is provided in a normalized format 

such that each gene’s expression lies on the interval [0,1].  We applied Inferelator to 

this dataset as described in [120], using the CLR + Inferelator + MCZ pipeline .  

Similarly for GENIE3 we inferred the network structure using the GENIE3 

functions: read.expr.matrix and get.weight.matrix and their default 

parameterizations.  

 

http://err.bio.nyu.edu/inferelator/�
http://www.montefiore.ulg.ac.be/~huynh-thu/software.html�
http://wiki.c2b2.columbia.edu/dream/index.php/D4c2�


 

  118 
 

To properly handle the time course data, a spline was fit to the expression 

values for each gene.  For each time point the derivative of the spline was used to 

estimate the rate of change for each gene, and the transcription rate of each gene was 

estimated by adding the gene’s concentration to the rate of change at each time point 

(assuming a unit degradation rate constant).  These estimated transcription rates were 

used instead of the expression measurements as the response matrix, Y, for LASSO 

regression.  Note that a mixture of steady state and time course measurements in the 

response matrix is compatible under this formulation, because steady state 

concentrations are equal to transcription rates assuming a unit degradation rate 

constant.  In addition to modifying the response variable to allow for a mixing of 

steady state and time course data, the covariate matrix, X, is also modified.  Gene 

expression measurements for time course measurements in the covariate matrix are 

replaced with protein concentration estimates for each time point (which are 

effectively lagged expression measurements).  We estimated a gene’s protein 

concentrations using the spline fit to mRNA measurements, and integrated an ODE 

which defines a protein's rate of change as a function of the mRNA concentration, 

minus the protein concentration times a degradation rate constant.  The degradation 

rate constant which we set to 0.01 for all genes defines the lag between the mRNA 

and protein species to be roughly one time point. Finally, a log2

 

 transformation was 

performed on both the response matrix Y and covariate matrix X before applying 

LASSO regression. 
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Differential expression analysis of the knockout measurements was used to compute 

the DE rank scores Dij

 

.  LIMMA was used to compute these scores by comparing 

each knockout (which consisted of a single measurement) to 11 measurements of 

wild type (one for each time 0 point of the 10 time courses, which was a steady state 

wild type measurement, and one which was provided separate of the time courses). 

4.6.5 Analysis of S. cerevisiae Microarray Data 

The microarray data used for the inference of the yeast transcriptional 

network was originally published in Hu et al., 2007, and later reanalyzed in Reimand 

et al., 2010.  Our normalization of this data largely follows the scheme described in 

Reimand et al., 2010. Briefly, we downloaded the raw GenePix files for each of the 

588 microarrays from the Longhorn Microarray Database [154]. Normalization of 

the raw spot intensities was performed using Linear Models for Microarray Data, 

LIMMA [97]. Three different array platforms were used in this study. To ensure for 

meaningful print-tip correction, samples were imported in three batches according to 

their platform membership.  For each batch, background correction was performed 

using the LIMMA function backgroundCorrect with the method type normexp and 

an offset of 50.  Print-tip loess normalization was performed using the LIMMA 

function normalizeWithinArrays.  After print-tip correction, all batches were merged 

into a single MAList object, and treated in a platform independent manner. For each 

array, M and A values for duplicate probes were averaged.  Individual mutants were 

hybridized against one of three wild type RNA samples (2 from BY4741 and 1 from 
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S288C). Each mutant had a minimum of two biological replicates, although the 

replicates were often hybridized against different wild type samples.  We handle this 

differently than Reimand et al 2010 by constructing a linear model which relates all 

mutants to one of the BY4741 samples using the LIMMA functions modelMatrix 

and lmFit.  The coefficients returned by lmFit, which correspond to the log-ratio of 

each gene’s expression in each mutant relative to the wild type strain, were saved as 

the table of gene expression used by all subsequent network inference analyses. 

Differential expression of each deletion strain was assessed relative to the wild type 

strain (BY4741) using an empirical Bayesian moderated t-test [97] implemented 

with the LIMMA function eBayes.  Log-odds scores returned by this function 

correspond to the values LΔi

 

(j) described in section 4.5.2.  

Subsequent inference of the yeast transcriptional network was performed using 

Inferelator, GENIE3 and our method NetProphet.  We used the same Inferelator 

pipeline ( CLR + Inferelator +MCZ ) that was applied to the DREAM4 data to infer 

the yeast transcriptional network. This pipeline was modified to restrict the set of 

allowed regulators to be transcription factors.  Additionally, given the absence of 

time course data in the yeast dataset, regular CLR was used instead of mixed CLR.  

For GENIE3 and Inferelator, the table of expression data for all mutants was moved 

out of log2-space by raising each value to the power of 2, and each gene’s expression 

was normalized to lie in the interval [0,1] by dividing by its maximum expression 

value over all measurements. The data was treated this way to maintain conformance 

with the DREAM4 data standards on which Inferelator and GENIE3 were originally 
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tested.  For NetProphet, the values were left as log ratios and the data was 

normalized such that the standard deviation of each gene over all measurements was 

clamped (so as not to exceed 1 standard deviation from the mean of all genes’ 

original standard deviations).  The normalization was performed in this way for the 

LASSO regression so that genes with low variance would be given less priority but 

genes with exceptionally high variance would not dominate the solution.  We 

originally tested GENIE3 and Inferelator using log-ratio expression values but found 

the accuracy to be better when applying the DREAM4 normalization standard 

(unlogged expression values on the interval [0,1]).   

 

For the weighted version of NetProphet, we estimated optimal region weights using 

five rounds of two-fold cross validation, partitioning the training data (interactions 

labeled as true or false by ChIP evidence) by regulator, and an additional five rounds 

of two-fold cross validation partitioning the training data by target.  The region 

weights ω were allowed to take on the following values: [1e-3, 1e-2, 1e-1, 1, 2, 3]. 

The offset coefficients cb and cp were allowed to take on the values: [1e-2, 1e-1, 1]. 

Weights and offsets were selected so as to maximize the average AU-PRC (area 

under the precision recall curve) over all rounds of cross validation.  The weights 

selected by cross-validation were: ω I = 3, ω II = 1, ωIII = 1, ω IV = 1, ωB = 2, ωD = 2; 

and the offset coefficients were cb = 0.1 and cd 

 

= 0.01. 
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Chapter 5 
 
Discussion 
 

5.1 Future Directions 

An inherent limitation of inferring transcriptional networks from gene expression 

(transcriptomics) data alone is that the activity levels of transcription factors do not 

necessarily correlate with the factor’s mRNA abundance. The prospect of measuring 

transcription factor activity on a genome scale is currently infeasible, and thus any 

method that wishes to model transcription factor activity independently from 

transcription factor mRNA concentration must resort to some scheme that attempts 

to infer the activity levels from the gene expression data potentially combined with 

prior knowledge, such as protein-protein interaction data. Often, when working out 

the details of a specific pathway, qualitative knowledge of relevant signaling 

pathways and protein-protein complexes is known. For example, if two transcription 

factors are known to form a stable complex it may prove more advantageous to 

combine their expression levels into a single covariate which represents the complex. 

In addition to incorporating prior knowledge of protein-protein interactions it may 

also prove useful to allow the activity levels of the transcription factors themselves 

be treated as latent variables to be inferred or marginalized over.  An interesting task, 
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which turns the network inference problem on its head, is: given the structure of a 

transcriptional network and a compendium of gene expression data, infer the activity 

levels of the transcription factors in the network for each measurement.  Future 

approaches to network inference will need to identify better ways of handling the 

latent activity levels of regulators than approximating them with the mRNA levels of 

the respective regulator.  

5.2 Conclusion 

Identifying the structure transcriptional networks and the cis-regulatory logic that 

governs their behavior is a key step in linking the genotype of an organism to its 

phenotypes. Our ability to experimentally interrogate the molecular state of a cell’s 

regulatory network has improved dramatically in the past decade with new 

experimental approaches such as RNA-Seq and ChIP-Seq, which take advantage of 

the falling cost of high-throughput sequencing. A key determinant of the future 

success of the network biology enterprise lies in its ability to bring forth new 

computational approaches that integrate multiple experimental lines of evidence into 

testable models of biological systems. This dissertation examines and applies 

strategies for mapping out biological pathways and ways in which these strategies 

can be improved. 

 

In chapter 2, I identified a lack of rigorous standardized testing of the computational 

methods that were being proposed for predicting network structure from gene 

expression measurements. To address this I proposed GRENDEL, a tool for 
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generating in-silico networks that possess biologically realistic network topologies 

and kinetic parameterizations. I evaluated several widely used network inference 

algorithms using GRENDEL and revealed that the relative accuracy of the 

algorithms was dataset dependent. 

 

In chapter 3, I focused on elucidating a pathway in the fungal pathogen 

Cryptococcus neoformans that regulates capsule size in response to its surrounding 

environment. I applied conventional analyses to high throughput datasets to identify 

a missing regulator of this response, Ada2. Ada2 was discovered by identifying a 

transcriptional signature that contains genes whose expression significantly 

correlated with the capsule radius over a range of growth conditions. I then used 

phenotypic analysis, RNA sequencing, and chromatin-immunoprecipitation 

sequencing (ChIP-Seq) to situate Ada2 in the complex network of genes that regulate 

capsule and other cryptococcal virulence factors.  

 

In chapter 4 I presented a novel computational method, NetProphet, which was 

designed to analyze a large compendium of gene expression measurements from 

cells in which individual transcription factors have been genetically removed. I 

demonstrated this computational approach by applying it to map out the 

transcriptional network of Saccharomyces cerevisiae. By comparing against 

hundreds of ChIP-chip experiments that directly probe the structure of the 

transcriptional network we found that NetProphet achieves accuracy superior to 

alternative network inference algorithms. In addition, NetProphet identified hundreds 
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of novel interactions that were not detected in previous experiments. We presented 

compelling evidence that many of these novel interactions are likely to be real due to 

their functional context and support by evidence based on the sequence specificity of 

the transcription factor. 

 

Taken together, these three chapters represent a major step towards making network 

inference algorithms both accessible and practical for widespread use. I believe 

future work in this area will continue to adopt the theme of integrating analyses 

within and between experimental data types to synthesize more accurate and 

comprehensive renderings of biological networks. 
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Appendix A 
 

Effects of translational inhibition on capsule 
synthesis 

 

The cryptococcal capsule becomes enlarged during infection.  This response is 

mediated by signaling pathways that sense the host environment and detect nutrient 

limitation, increases in temperature and CO2

 

.  These signaling pathways post 

translationally regulate the activity levels of transcription factors that initiate a 

transcriptional program, which culminates in capsule synthesis and exocytosis.  This 

program likely has multiple layers forming a transcriptional cascade. The genes that 

are direct targets of transcription factors whose activity is post-translationally 

regulated by the upstream signaling pathways we refer to as the first responders.  

Altered expression levels of genes in the set of first responders that code for 

transcription factors would in turn impact their direct targets (the second responders) 

and so on. 

The goal of this experiment was to identify the first responders by measuring the 

transcriptional response to capsule induction while blocking the translational 

machinery. By blocking the translational machinery, all of the observed responses to 

capsule induction would be caused by proteins which were produced prior to 

translational inhibition.  Thus, the cascade of responses which occur as a result of 
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capsule induction would effectively be halted at the first stage in which expression of 

first responders would be altered, but not second or third responders. 

 

First we conducted 24 hour growth curves of H99 cells incubated with varying 

concentrations of cycloheximide (CHX), a translational inhibitor, to identify 

concentrations at which cells did not grow.  Cells were inoculated from an overnight 

culture in 50 ml of YPD at 0.1 OD/ml.  The following concentrations of CHX were 

tested: 10, 12.5, 25, 50, 100, 200 µg/ml.  It was found that concentrations of 100 to 

200 ug/ml were completely fungistatic and even concentrations down to 10 ug/ml of 

CHX cells showed less than 1 division over 24 hours. To assess viability, cells were 

washed twice in H2

 

O and spotted on YPD agar.  Cells were viable at all tested 

concentrations of CHX. 

Next we examined the effect of CHX on capsule formation. Overnight H99 cells 

were inoculated at 1 OD/ml in 10 ml of DMEM + 20 ul of CHX stock (10mg/ml in 

H2O) in aerated tissue culture flasks.  4 cultures were prepared in this experiment: 

CHX (-/-), CHX (-/+), CHX (+/-) and CHX(+/+), where x/y indicates the treatment 

for the first 9 hours of growth (x) and last 17 hours (y); + indicates with CHX and – 

indicates without.  After 9 hours of growth at 37ºC + 5% CO2 all cultures were 

washed twice and resuspended in their respective treatment. Figure A.1 reveals 

capsule size of each culture after 26 hours.  Cells grown continuously in the presence 

of CHX (+/+) formed no detectable capsule whereas cells grown continuously 

without CHX (-/-) presented normal capsule sizes, confirming that inhibition of 
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translation is sufficient to block capsule formation.  Cells grown without CHX then 

with (-/+) revealed a capsule size intermediate to that of (-/-) and (+/+).  Most 

interestingly, cells which were grown for the first 9 hours in the presence of CHX 

and then transferred to CHX free DMEM (+/-) produced extremely large capsules, 

nearly twice the size of cells grown continuously without CHX. 

 

 

 

Figure A.1 H99 cells grown for 9 hours with or without cycloheximide (CHX) then 

washed and grown for another 17 hours with or without CHX. 

 

Next, we transcriptionally profiled cells before and after capsule induction with or 

without CHX by RNA-Seq.  Cells were taken from an overnight culture and 

inoculated in 4 separate aerated tissue culture flasks with 80 ml DMEM at 1 OD/ml.  

Cultures were grown at 30ºC for two hours.  After two hours, 40 ul of CHX at 

10mg/ml was added to two cultures (CHX+).  All cultures were incubated at 30ºC 

for another 30 minutes.  Next, one CHX- and one CHX+ culture were grown at 37ºC, 

5% CO2 and the other two were grown at 30ºC for 90 minutes. Samples were spun 

down for 5 minutes and cell pellets were frozen in a methanol dry ice bath.  Total 

RNA was isolated by lyophilyzation followed by vortexing with glass beads and 
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Trizol extraction.  Total RNA was prepared into an Illumina library and sequenced 

resulting in 4 million reads per sample.  Sequenced reads were aligned to the H99 

reference sequence and differential expression was assessed by fold change in 

transcript coverage (after normalizing by sample sequencing depth).   

 

The differential expression analysis comparing non-induced versus induced cells 

identified 442 genes upregulated and 311 down-regulated.  The same comparison for 

cells treated with CHX revealed 230 genes up-regulated and 271 down-regulated.  

The intersection of these two differentially expressed sets (with and without CHX 

inhibition), which represents the first responders, was 33 genes up-regulated and 70 

genes down-regulated.  No previously capsule implicated genes were identified as 

first responders. Putative transcriptional regulators identified as first responders 

included CNAG_04093, CNAG_04345 and CNAG_04837, all of which were down 

regulated.  Examining the effects of CHX in both inducing and non-inducing 

conditions we found large similar (77% overlap) transcriptional responses with 3141 

genes differentially expressed at 30ºC and 2585 at 37ºC + 5% CO2

 

.  Genes repressed 

in the presence of CHX were functionally representative of proteolytic processes and 

genes that were activated were heavily involved in ribosome biogenesis.  This 

response suggests a reaction to the presence of CHX that attempts to extend the life 

of existing proteins and produce more ribosomes to cope with inability to synthesize 

new proteins. 
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Overall we found the set of first responders to be quite small and contained no genes 

which were previously implicated in capsule formation.  It is possible that the 

treatment by cycloheximide produces such a dramatic response relative to the cells 

reaction to growth in capsule inducing conditions that the first responders are not 

adequately detected.  

 

Preliminary evaluation of RNA-Seq in 
Cryptococcus neoformans 

 
To evaluate the ability of RNA-Seq to accurately and reproducibly quantify gene 

expression in the fungal pathogen Cryptococcus neoformans, we performed RNA-

Seq on  KN99α cells grown in capsule non-inducing (DMEM, 30ºC) and inducing 

(DMEM, 37ºC, 5% CO2) conditions on three separate days.  Cells for each day of 

induction were prepared independently starting from freezer stocks and grown on 

YPD agar for approximately 7 days.  For each day, cells were inoculated in triplicate 

from an overnight culture into 20 ml DMEM in an aerated tissue culture flask.  6 

cultures grown for 90 minutes in non-inducing and inducing conditions and total 

RNA was isolated using the Trizol extraction protocol.  Illumina libraries were 

prepared from total RNA in two separate batches.  In library 1, days 1 and 2 were 

prepared and in library 2, days 2 and 3 were prepared.  Thus, the same total RNA 

from day 2 (6 samples) was prepared in two separate libraries.  The 24 samples were 

pooled and sequenced yielding approximately 12 +/- 6 million reads per sample. 
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Sequences were aligned against the H99 reference sequence and quantified using 

Tophat and Cufflinks. 

 

An analysis of the coefficient of variation for each of the cryptococcal genes was 

performed for each set of 3 biological replicates revealing a median coefficient of 

variation of 0.12 for most sets of biological replicates.  We performed a clustergram 

analysis using Matlab, and determined that the top-level grouping neatly separates 

the samples by treatment (inducing vs non-inducing).  Beyond this top-level 

grouping there was no preference to group samples by library prep or day of growth. 

 

Next, we performed a comparison of RNA-Seq expression levels to those of 

Nanostring when quantifying the same samples.  25 genes were selected to be 

measured by Nanostring according to estimates from initial RNA-Seq experiments of 

their CoV.  The set of 25 genes was selected to span the range from high to low 

CoV, with the genes of highest CoV being genes with little to no expression.  Within 

this set of 25 genes, two housekeeping genes were selected: ACT1 and PDA1.  

Nanostring quantifications were taken from the same lysates as the RNA-Seq 

samples by reserving a fraction of the upper aqueous phase of each Trizol extraction.  

The expression values of the Nanostring quantifications were compared against 

RNA-Seq after normalizing by the arithmetic mean of the two housekeeping genes 

PDA1 and ACT1.  This normalization seemed to be necessary for Nanostring but not 

RNA-Seq, when using the quartile normalization option for Cufflinks.  Figure A.2 

shows that that overall the Nanostring and RNA-Seq are in agreement about the 
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relative abundances levels of all 25 genes over these samples.  However for 

individual genes, only 5 genes revealed an R2 greater than 0.75 between the two 

technologies.  These 5 genes were also clearly differentially expressed between the 

inducing and non-inducing conditions, showing the largest fold changes of all genes 

identified as differentially expressed by either technology.  The remaining 20 genes 

include the housekeeping genes and other genes which showed little variation, genes 

which were not reliably detected by Nanostring and genes which appear to be 

differentially expressed according to Nanostring but not by RNA-Seq (about 5 

genes).  One gene which is quantified well above the negative controls for 

Nanostring is clearly differentially expressed by RNA-Seq, but not Nanostring.  This 

suggests that that for large changes, both technologies are able to detect the 

differences but for smaller differences in gene  expression, one technology may be 

able to detect better than the other (for reasons unknown) and this does not appear to 

be one sided (ie each technology can reliably detect differences that the other 

cannot). 
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Figure A.2 A scatter plot of normalized RNA-Seq expression values against 

Nanostring expression values for 25 measured genes over 18 samples.  The red line 

denotes the coverage level of negative control probes for Nanostring, measurements 

below this line are considered undetected by Nanostring. 

 

Comparing the coefficient of variation for the 25 genes quantified by both 

measurement technologies, we found that on average, Nanostring produces a slightly 

smaller CoV (Figure A.3).  Additionally, comparing CoV  for genes from across the 

two conditions they are somewhat preserved within a technology, suggesting there is 

something intrinsic about the gene, independent of these two conditions that causes 

its CoV to be systematically higher (or lower). 
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Figure A.3 CoV comparison of RNA-Seq and Nanostring over 25 measured genes in 

capsule non-inducing (top) and inducing (bottom) conditions.  Gene names appear at 

the bottom of the bars with blanks for unnamed genes. 

 

Finally we performed differential expression analysis using Cuffdiff of inducing 

versus non-inducing conditions within 3 independent growth days and the technical 

replicate of the library prep for growth day 2, resulting in 4 sets of differentially 

expressed genes (Figure A.4).  Interestingly, sets 1_1 and 2_2 have roughly the same 

number of genes in common as sets 2_1 and 2_2.  Given that sets 2_1 and 2_2 were 

prepared from the same total RNA this suggests that the principle source of noise is 

library prep specific and not due to biological differences between days of induction 

or technical variation in the RNA isolation. 
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Figure A.4 Differentially expressed gene set comparison.  Differentially expressed 

gene sets are denoted as salmon circles labeled at X_Y, with X representing the day 

of growth and Y representing the library prep.  The number of genes within each set 

is represented at the bottom of each circle and the boxes contain the percent overlap 

between each set pair as a fraction of the smaller set. 
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