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ABSTRACT OF THE DISSERTATION

Real-Time Virtualization and Cloud Computing

by

Sisu Xi

Doctor of Philosophy in Computer Science

Washington University in St. Louis, August 2014

Professor Chenyang Lu, Chair

Professor Christopher D. Gill, Co-Chair

In recent years, we have observed three major trends in the development of complex real-

time embedded systems. First, to reduce cost and enhance flexibility, multiple systems are

sharing common computing platforms via virtualization technology, instead of being deployed

separately on physically isolated hosts. Second, multi-core processors are increasingly being

used in real-time systems. Third, developers are exploring the possibilities of deploying

real-time applications as virtual machines in a public cloud. The integration of real-time

systems as virtual machines (VMs) atop common multi-core platforms in a public cloud

raises significant new research challenges in meeting the real-time latency requirements of

applications.

In order to address the challenges of running real-time VMs in the cloud, we first present RT-

Xen, a novel real-time scheduling framework within the popular Xen hypervisor. We start

with single-core scheduling in RT-Xen, and present the first work that empirically studies

and compares different real-time scheduling schemes on a same platform. We then introduce

x



RT-Xen 2.0, which focuses on multi-core scheduling and spanning multiple design spaces,

including priority schemes, server schemes, and scheduling policies. Experimental results

demonstrate that when combined with compositional scheduling theory, RT-Xen can deliver

real-time performance to an application running in a VM, while the default credit scheduler

cannot. After that, we present RT-OpenStack, a cloud management system designed to

support co-hosting real-time and non-real-time VMs in a cloud. RT-OpenStack studies the

problem of running real-time VMs together with non-real-time VMs in a public cloud. Lever-

aging the resource interface and real-time scheduling provided by RT-Xen, RT-OpenStack

provides real-time performance guarantees to real-time VMs, while achieving high resource

utilization by allowing non-real-time VMs to share the remaining CPU resources through a

novel VM-to-host mapping scheme. Finally, we present RTCA, a real-time communication

architecture for VMs sharing a same host, which maintains low latency for high priority

inter-domain communication (IDC) traffic in the face of low priority IDC traffic.
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Chapter 1

Introduction

With the recent advent of virtualization technology, complex systems are being deployed as

virtual machines (VMs) running simultaneously on a single host. A virtual machine monitor

(VMM) maintains each VM’s resource isolation and reduces the whole system’s size, weight,

and power consumption. Building on virtualization, cloud computing and other techniques

allow developers to deploy VMs in a public cloud for flexible management. Furthermore, with

more advanced VM capabilities, such as cloning, template-based deployment, check-pointing,

and live migration, developers can easily scale their applications in the cloud according to

the demand. As a result, real-time applications – that is, applications whose performance

not only depends on the correctness of the results, but also on latency – are increasingly

being deployed in a virtualized environment or even in the cloud.

One reason to combine real-time applications and virtualization is system consolidation.

Real-time applications are widely used in embedded systems, in which the system’s power

consumption, size, and weight are critical. Embracing virtualization technology can po-

tentially reduce all these, and make the VMs easy to operate and maintain. As a result,

avionics [4], shipboard computing [26], and automotive computing [5] are all developing

standards to integrate existing systems with virtualization.

Another important motivation for running real-time applications in a virtualized environment

is the computing power provided by the cloud, which makes cloud computing an attractive

choice for hosting computation-intensive real-time tasks, such as object recognition and

tracking, high-definition video and audio stream processing, and feedback control loops in

general. For example, a GPS device can offload its computation to the cloud to boost its

battery life [58], and a gaming console can use the computing power in the cloud to provide

1



better image quality to the end users [17]. Another example is the Firefly feature in the

Amazon Fire Phone [2], which sends images to the cloud and recognizes over 70 million

products including books, DVDs and more. Prolonged latency for such applications often

leads to frustrating or unacceptable experience to end users.

Many real-time applications can be modeled as a collection of real-time tasks, and each

real-time task is a sequence of jobs that are released periodically. Each job is associated

with a deadline and needs to finish before it. Scheduling real-time tasks on a single host

without virtualization has been studied extensively both theoretically and empirically, while

scheduling them in a virtualized environment remains an open question. The goal of this

dissertation is to determine how such tasks should be supported in a virtualized environment,

or even in a public cloud. In particular, the research presented here focuses on four questions

fundamental to combining real-time applications and virtualization:

Q1: What is an appropriate interface to provide resource guarantees for a real-time VM?

Q2: How do various scheduling algorithms perform in practice?

Q3: How to integrate real-time virtualization with cloud computing?

Q4: How to support real-time communication between different VMs?

To motivate the research, we begin by illustrating why current virtualization technologies

and cloud computing are not suitable for running real-time applications.

1.1 The Challenge: Combining Real-Time and Virtu-

alization

By nature, virtualization allows multiple VMs to run simultaneously on the same hardware,

and needs to maintain resource isolation between VMs by providing a resource interface. In

the virtual machine monitor (VMM), there is a scheduler responsible for scheduling multiple

VMs. For example, the default credit scheduler in Xen (a widely used open-source VMM)

allows a VM to configure only its proportional share relative to other VMs. While this is

2



suitable for throughput-oriented applications, real-time applications usually have a timing

requirement of milliseconds, which cannot be satisfied by current virtualization technology.

In cloud gaming for example, which offloads computation to servers in the cloud, a 50 fps

(frame-per-second) rate is required for high quality videos, which means the server VM needs

to get the CPU resources every 20 ms to process a frame. For a first-person shooter game,

the delay between server and client must be less than 100 ms [41]. If a VM can configure

only its relative share, it can be blocked for a long time. An ad-hoc solution is to dedicate a

subset of cores to a real-time VM, so it can get the computation resources whenever it wants

them. However, this solution sacrifices the benefit of system consolidation.

When it comes to public cloud computing, the resource interfaces are even more limited.

Most of them allow users to specify only the number of Virtual CPUS (VCPUs) associated

with a VM, and provide sparse information about the VCPU. For example, the CPU re-

sources in the Amazon EC2 [1] are described in numbers of ECUs (Elastic Compute Units),

simply explained as “one ECU has the equivalent CPU capacity of a 1.0 - 1.2 GHz 2007

Opteron or 2007 Xeon processor”. Furthermore, most cloud management systems oversub-

scribe the system to better utilize the resources. As a result, as long as one of the co-locating

VMs consumes lots of resources, all other VMs on that host suffer performance degrada-

tion, known as the “noisy neighbor” [23] problem in cloud computing. The lack of system

support for latency guarantees has forced cloud providers and users to develop proprietary

application-level solutions to cope with the resource uncertainty. For example, Netflix, which

runs its services in Amazon EC2, constantly monitors the resources used by each VM. If a

VM cannot meet its performance requirement (usually due to a co-located noisy neighbor),

Netflix shuts down the VM and restarts it on another host, hoping that the newly located

host is less crowded [27]. Moreover, Netflix developed a tool called “chaos monkey” [6],

which introduces artificial delays to simulate service degradation and then measures if the

application can respond appropriately. An alternative solution is to pay for dedicated hosts

for running real-time applications, which usually results in resource under-utilization and is

not cost-effective.

The lack of appropriate resource interfaces and the underlying real-time scheduling services

lead to poor real-time performance in a virtualized environment, and over-subscribing re-

sources in cloud computing makes it worse. The integration of real-time systems as virtual

machines on a common computing platform brings significant challenges in simultaneously

3



meeting the real-time performance requirements of multiple systems. This in turn requires

fundamental advances in the underlying VM scheduling framework at the VMM level and

also changes to the cloud management system.

1.2 Contributions

My research bridges the gap between real-time applications and virtualization through three

projects: (1) RT-Xen, a real-time scheduling framework for the popular Xen hypervisor; (2)

RT-OpenStack, a cloud management system designed to support co-hosting real-time and

non-real-time VMs in a public cloud; and (3) RTCA, a real-time communication architecture

for VMs sharing a same host.

1.2.1 RT-Xen

The key component of this dissertation is RT-Xen [21], an open-source real-time VM schedul-

ing framework in Xen [33], a VMM that has been widely adopted in both embedded sys-

tems [25] and cloud computing [24]. Built on compositional real-time scheduling theory [45,

75], RT-Xen realizes a suite of real-time schedulers spanning the design space, including

global and partitioned multi-core scheduling, fixed and dynamic priority policies, and differ-

ent budget management schemes. RT-Xen provides a platform for researchers and integrators

to develop and evaluate real-time scheduling techniques, which to date have been studied

predominately via analysis and simulation. Work is underway to incorporate RT-Xen into

the Xen mainstream distribution.

1.2.2 RT-OpenStack

While RT-Xen focuses on providing real-time performance guarantees on a single host, RT-

OpenStack integrates RT-Xen with a popular cloud management system, OpenStack [19].

In particular, we focus on the problem of co-hosting real-time (RT) VMs with non-real-

time VMs problem in a cloud. The salient feature of RT-OpenStack is to provide real-time
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performance to real-time VMs, while allowing non-real-time VMs to share the remaining

CPU resources without interfering with the real-time performance of RT VMs. Specifically,

the RT-OpenStack System entails three contributions: (1) integration of RT-Xen and a

cloud management system through real-time resource interfaces; (2) extension of RT-Xen

to allow non-real-time VMs to share hosts without reducing the real-time performance of

RT VMs; and (3) a VM-to-host mapping strategy that provides real-time performance to

RT VMs while allowing effective resource sharing by non-real-time VMs. RT-OpenStack

represents a promising step towards real-time cloud computing for latency-sensitive real-

time applications.

1.2.3 RTCA

Both RT-Xen and RT-OpenStack focus on the CPU resources, while RTCA (real-time com-

munication architecture) focuses on providing low latency for inter-domain communications

(IDC) between high-priority domains sharing a same host. We first studied the limitations of

the existing Xen communication architecture, then found that both the VMM scheduler and

the manager domain can significantly reduce IDC performance under different conditions.

Experimental results show that improving the VMM scheduler alone via RT-Xen cannot

effectively prevent priority inversion for local IDC. To address these limitations, we have

developed RTCA to maintain low latency between high priority domains in the face of in-

terference from low priority domains. By combining RTCA with RT-Xen, our experimental

results show that the latency between high priority domains can be improved dramatically,

from ms to µs, in the presence of heavy low priority inter-domain communication traffic.

1.3 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we present RT-Xen

1.0, which focuses on single-core scheduling. Chapter 3 details RT-Xen 2.0, a multi-core real-

time scheduling framework for Xen. Chapter 4 introduces our work on RT-OpenStack, along

with its integration with RT-Xen. Chapter 5 presents RTCA, a real-time communication
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architecture for Xen. Finally, Chapter 6 summarizes our results, raises open questions, and

discusses future work.
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Chapter 2

RT-Xen 1.0: Single-core Real-Time

Virtualization

In this chapter, we present RT-Xen 1.0, which focuses on single-core, fixed priority scheduling.

In Section 2.1, we review the Xen virtualization architecture, its scheduling framework,

and its default schedulers. In Section 2.2, we discuss our task model and our guest OS

configuration. Thereafter, in Section 2.3, we summarize real-time hierarchical scheduling

theories, which provide guidelines for designing and implementing RT-Xen. In Section 2.4,

we present the design and implementation of RT-Xen 1.0, followed by its extensive evaluation

in Section 2.5. After that, we introduce two enhanced periodic servers in Section 2.6, and

compare them with the original periodic server in Section 2.7.

2.1 Xen Architecture

Xen [33] is a popular open-source virtualization platform that has been developed over the

past decade. It provides a layer called the virtual machine monitor (VMM) that allows

multiple domains (VMs) to run different operating systems and to execute concurrently on

shared hardware. In virtualization, a virtual machine is referred to as a domain, and from

a scheduling perspective, it contains multiple virtual CPUs. In the rest of this dissertation,

we use domain to refer to a virtual machine, virtual CPU (VCPU) to refer to a virtual core

in a domain, and use physical CPU (PCPU) and core interchangeably to refer to an actual

physical core. In order to achieve close to native performance, Xen adopts para-virtualization

technology, where a guest domain knows that it runs on a virtualized environment and
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Figure 2.1: Xen Architecture

optimizes itself for better performance. At boot time, Xen creates a special domain called

domain 0, which is responsible for managing the other guest domains. Figure 2.1 illustrates

the architecture for Xen with three domains running, each with multiple VCPUs on a multi-

core platform.

Due to the clear separation between VMM and domain 0, Xen is also referred to as a type-1

standalone hypervisor. Another virtualization technology is KVM [14], which integrates the

VMM into the host OS. This dissertation focuses on using Xen as the underlying VMM, but

its insights and ideas can be easily applied to other virtualization technologies as well.

2.1.1 Xen Scheduling Framework

Xen schedules VCPUs just like the Linux scheduler schedules tasks. A VCPU can have two

scheduling states: runnable (has tasks running) and non-runnable (blocked by IO or just

idle). When there are no qualified VCPUs to run, Xen schedules an idle VCPU, which works

like the idle task in Linux. By default, Xen boots one idle VCPU per PCPU.

Xen also provides a well-defined scheduling framework, where different VMM schedulers can

focus on implementing scheduler-dependent functions and share other parts. Among these

functions, the most important ones for real-time performance are
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• do schedule:This function decides which VCPU should be running next, then returns

its identity along with the amount of time for which to run it.

• wake: When a domain receives a task to run, the wake function is called; usually

it will insert the VCPU into the CPU’s RunQ (a queue containing all the runnable

VCPUs). If it has higher priority than the currently running one, an interrupt triggers

the do schedule function to perform the context switch.

• pick cpu: According to the domain’s VCPU settings, this function chooses on which

physical core the VCPU should be running. If it is different from the current one, a

VCPU migration is triggered.

• sleep: This function is called when any guest OS is paused, and removes the VCPU

from the RunQ.

Additional functions exist for initializing and terminating domains and VCPUs, querying

and setting parameters, logging, etc. Another scheduler-independent function is the con-

text switch, which is triggered after the do schedule to switch the context.

2.1.2 Xen Default Schedulers

Three schedulers are distributed with Xen: credit, credit2, and simple earliest deadline first

(SEDF). The Credit scheduler is used by default from Xen 3.0 onward, and provides a form

of proportional share scheduling. In the Credit scheduler, every physical core has one Run

Queue (RunQ), which holds all the runnable VCPUs (VCPU with a task to run). Each

domain contains two parameters: weight and cap. Weight defines the domain’s proportional

share, and cap defines the upper limit of its received CPU resources. At the beginning of

an accounting period, each domain is given credit according to its weight, and the domain

distributes the credit to its VCPUs. VCPUs consume credit as they run, and are divided

into three categories when on the RunQ: BOOST, UNDER, and OVER. A VCPU is put

into the BOOST category when it performs I/O, UNDER if it has remaining credit, and

OVER if runs out of credit. The scheduler picks VCPUs in the order of BOOST, UNDER,

and OVER. Within each category, it is important to note that VCPUs are scheduled in a

round robin fashion. By default, when picking a VCPU, the scheduler allows it to run for
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30 ms, and then triggers the do schedule function again to pick the next one. This quantum

involves trade offs between real-time performance and throughput. A large quantum may

lead to poor real-time performance due to coarse-grained scheduling.

The credit2 scheduler presents the same interface to the system integrator as the credit

scheduler – each domain is given a weight that determines its proportional share – but it

differs from the credit scheduler in that it uses a global run queue per CPU chip (instead

of one run queue per core in credit) to optimize system performance. However, the credit2

scheduler does not support caps and is not CPU-mask aware. As a result, it cannot limit

each domain’s CPU resource, nor can it dedicate cores to domains.

Xen also ships with a SEDF scheduler, in which every VCPU has three parameters: slice

(equals budget in our RT-Xen scheduler), period, and extra time (whether or not a VCPU

can continue to run after it runs out of its slice). The SEDF scheduler consumes a VCPU’s

slice when it is running, preserves the slice when not running, and sets the slice to full when

the next accounting period comes. Every physical core also has one RunQ containing all the

runnable VCPUs with positive slice values. VCPUs are sorted by their relative deadlines,

which are equal to the ends of their current periods. Right now, SEDF supports only single-

core scheduling; it is no longer in active development and will be phased out in the near

future [8]. We are actively working with Xen developers to integrate RT-Xen into the Xen

mainstream to replace the legacy SEDF scheduler.

2.2 Task Model and Guest Scheduler Configuration

As depicted in Figure 2.1, from a scheduling perspective, a virtualized system has at least

a two-level hierarchy, where the VMM scheduler schedules guest operating systems, and

each guest OS in turn schedules tasks. We now focus on a typical real-time task model,

and how to configure it in Linux as the guest OS. Each guest OS runs a set of periodic

real-time tasks. Every task has a period, which denotes the job release interval, and a cost,

which indicates the worst case execution time to finish a job. Each task has a relative

deadline that is equal to its period. In this work, we focus on soft real-time applications,

in which a job continues to execute until it finishes, even if its deadline has passed, because

deadline misses represent degradation in quality of service instead of failure. As a starting
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point for demonstrating the feasibility and efficacy of real-time virtualization in Xen, we

assume a relatively simple task model, where tasks are independent and CPU-bound, with

no blocking or resource sharing between jobs. Such task models are also consistent with

existing hierarchical real-time scheduling algorithms and analysis [43,55,65].

Each guest OS is responsible for scheduling its task sets. To be consistent with existing

hierarchical scheduling analysis [43], in this chapter we use the preemptive fixed-priority

scheduling class in Linux to schedule the tasks. We focus on single-core scheduling here, and

allocate one VCPU for each guest OS. To minimize interferences from domain 0, we allocate

a dedicated core to it, and run all guest OS on another separate core. Multi-core scheduling

will be introduced in Chapter 3.

2.3 Single-Core Hierarchical Scheduling Theories

Scheduler 

VMM 

Root Component 

Components 

Scheduler 

Resource Interface 

Scheduler 

Resource Interface 

Task Task Task Task Task Task 

Figure 2.2: Compositional Scheduling Architecture

We observe that there is a natural mapping from a virtualized system to a two-level com-

positional scheduling model [65, 66]. For example, a virtual machine corresponds to a unit

of composition, i.e., an elementary component. The root component corresponds to a com-

position of multiple elementary components (VMs) scheduled by a single virtual machine

monitor. Figure 2.2 demonstrates a two-level compositional scheduling architecture: the

system consists of a set of components, where each component is composed of either a set

of subcomponents or a set of tasks. Each component is defined by C = (W,Γ, A), where
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W is a workload, i.e., a set of tasks or components; Γ is a resource interface; and A is a

scheduling policy used to schedule W . All tasks are periodic, where each task Ti is defined

by a period (and deadline) pi and a worst-case execution time ei, with pi ≥ ei > 0 and

pi, ei ∈ Integers. Interface Γ is a periodic resource model, where the scheduling policy can

be either static priority (rate monotonic, RM) or dynamic priority (earliest deadline first,

EDF). There are competing theories for single-core hierarchical scheduling [43, 44, 55, 57].

They all share the same CPU resource interface as compositional scheduling theory, but

differ in the resource models (also referred to as server mechanisms). We will introduce

different server mechanisms in Section 2.4.

2.4 RT-Xen 1.0: Design and Implementation

This section presents the design and implementation of RT-Xen, which is shaped by both

theoretical and practical concerns. Section 2.4.1 describes the four fixed-priority schedulers

in RT-Xen, and section 2.4.2 describes the VMM scheduling framework within which different

root schedulers can be configured for scheduling guest operating systems.

2.4.1 VMM Scheduling Strategies

In this chapter, we consider four servers: deferrable server [69], sporadic server [67], periodic

server, and polling server [64]. These server schemes have all been studied in the recent

literature on hierarchical fixed-priority real-time scheduling [43, 55, 65]. For all of these

schedulers, a server corresponds to a VCPU, which in turn appears as a physical core in

the guest OS. Each VCPU has three parameters: budget, period, and priority. As Davis

and Burns showed in [42], server parameter selection is a holistic problem, and RM does

not necessary provide the best performance. Thus we allow developers to assign arbitrary

priorities to the server, giving them more flexibility. When a guest OS executes, it consumes

its budget. A VCPU is eligible to run if and only if it has positive budget. Different server

algorithms differ in the way the budget is consumed and replenished, but each schedules

eligible VCPUs based on preemptive fixed-priority scheduling.
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• A deferrable server is invoked with a fixed period. If the VCPU has tasks ready, it

executes them either until the tasks complete or the budget is exhausted. When the

guest OS is idle, its budget is preserved until the start of its next period, when its

budget is replenished.

• A periodic server is also invoked with a fixed period. In contrast to a deferrable server,

when a VCPU has no task to run, its budget idles away, as if it had an idle task

that consumed its budget. Details about how to simulate this feature are discussed in

Section 2.4.2.

• A polling server is also referred to as a discarding periodic server [43]. Its only difference

from a periodic server is that a polling server discards its remaining budget immediately

when it has no tasks to run.

• A sporadic server differs from the other servers in that it is not invoked with a fixed

period, but rather its budget is continuously replenished as it is used. We implement

the enhanced sporadic server algorithm proposed in [68]. Implementation details again

can be found in Section 2.4.2.

2.4.2 VMM Scheduling Framework

As we described in Section 2.1.1, to add a new scheduler in Xen, a developer must implement

several important functions, including do schedule, wake, and sleep. We now describe how

the four RT-Xen schedulers (deferrable server, periodic server, polling server, and sporadic

server) are implemented.

We assume that every guest OS is equipped with one VCPU, and all the guest OS are pinned

on one specific physical core. Since the deferrable, periodic, and polling servers all share the

same replenishment rules, we can implement them as one subscheduler, and have developed

a tool to switch between them on the fly. The sporadic server is more complicated and is

implemented individually.

In all four schedulers in RT-Xen, every physical core is equipped with three queues: a Run

Queue (RunQ), a Ready Queue (RdyQ), and a Replenishment Queue (RepQ). The RunQ

and RdyQ are used to store active VCPUs. Recall that RunQ always contains the IDLE
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Figure 2.3: Scheduler Queues in RT-Xen 1.0

VCPU, which always has the lowest priority and is put at the end of the RunQ. Figure 2.3

illustrates the three different queues, as well as how a VCPU migrates between the RunQ

and the RdyQ.

• The RunQ holds VCPUs that have tasks to run (regardless of budget), sorted by

priority. Every time do schedule is triggered, it inserts the currently running VCPU

back into the RunQ or RdyQ, then picks the highest priority VCPU with a positive

budget from the RunQ, and runs it for one quantum (we choose the quantum to be

1ms, based on our evaluation in Section 2.5).

• The RdyQ holds all VCPUs that have no task to run. It is designed especially for

periodic server to mimic “as if budgets are idled away” behavior. When the highest

VCPU becomes IDLE and still has budget to run, we schedule the IDLE VCPU on

the RunQ and consume the VCPU’s budget. This requires us to store VCPUs even

if they have no task to run, and to compare their priority with the ones on RunQ to

decide whether to schedule the IDLE VCPU or not.

• The RepQ stores replenishment information for all the VCPUs on that physical core.

Every entry in RepQ contains three elements: the VCPU to replenish, the replenish-

ment time, and the replenishment amount to perform. A tick function is triggered every

scheduling quantum to check the RepQ, and if necessary, perform the corresponding

replenishment. If the replenished VCPU has higher priority than the currently running

one, an interrupt is raised to trigger the do schedule function, which stops the current

VCPU and picks the next appropriate one to run. Note here that in sporadic server,

a VCPU can have multiple replenishments pending, so the RepQ is necessary.
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Since the four different scheduling strategies share common features, we first describe how

to implement deferrable server, and then describe additional extensions for the other three

schedulers.

Algorithm 1 Scheduler Function For Deferrable Server

1: consume current running VCPU’s budget
2: if current VCPU has tasks to run then
3: insert it into the RunQ according to its priority
4: else
5: insert it into the RdyQ according to its priority
6: end if
7: pick highest priority VCPU with budget from RunQ
8: remove the VCPU from RunQ and return it along with one quantum of time to run

As is shown in line 5 of Algorithm 1, when the VCPU is no longer runnable, its budget

is preserved and the VCPU is inserted into the RdyQ. The polling server differs from the

deferrable server in that in line 5, the VCPU’s budget is set to 0. For the periodic server,

in line 1, if the current running VCPU is the IDLE VCPU, it would consume some of the

budget of the highest priority VCPU with a positive budget on the RdyQ; in line 7, it would

compare the VCPUs with a positive budget on both RunQ and RdyQ: if RunQ one had

higher priority, it would return it to run; otherwise, it would return the IDLE VCPU to run.

Sporadic server is more complicated in its replenishment rules. We use the corrected version

of sporadic server described in [68], which showed that the POSIX sporadic server specifi-

cation may suffer from three defects: Budget Amplification, Premature Replenishments, and

Unreliable Temporal Isolation. Since we are implementing the sporadic server in the VMM

level, the Budget Amplification and Unreliable Temporal Isolation problems do not apply

because we allow each VCPU to run only up to its budget time, and we do not have to set

a sched ss low priority for each VCPU. To address the Premature Replenishments problem,

we split the replenishment as described in [68]. Our sporadic server implementation works

as follows: each time the do schedule function is called, if the chosen VCPU is different from

the currently running one, the scheduler records the current VCPU’s budget consumed since

its last run, and registers a replenishment in the RdyQ. In this way, the replenishment is

correctly split and a higher priority VCPU will not affect the lower priority ones. Interested

readers are directed to [68] for details.
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For all four schedulers, whenever the wake function is called and the target VCPU is on the

RdyQ, it is migrated to the RunQ within the same physical core. If its priority is higher

than the currently running VCPU, a scheduling interrupt is raised.

2.5 RT-Xen 1.0: Evaluation

This section describes our evaluation of the RT-Xen 1.0 scheduling framework. First, we

measured real-time performance with different scheduling quanta, ranging from 1 millisecond

down to 10 microseconds. Based on the results, we chose 1 millisecond as the scheduling

quantum. Second, a detailed overhead measurement was performed for each of the four

schedulers. Third, we studied the impact of an overloaded domain on both higher and lower

priority ones. Finally, we empirically evaluated the soft real-time performance under different

system loads.

2.5.1 Experiment Setup

Platform

We performed our experiments on a Dell Q9400 quad-core machine without hyper-threading.

SpeedStep was disabled by default and each core ran at 2.66 GHz. The 64-bit version of

Fedora 13 with para-virtualized kernel 2.6.32.25 was used in domain 0 and all guest operating

systems. The most up-to-date Xen version 4.0 was used. Domain 0 was pinned to core 0 with

1 GB memory, while the guest operating systems were pinned to core 1 with 256 MB memory

each. Data were collected from the guest operating systems after the experiments were

completed. During the experiments, the network service and other inessential applications

were shut down to avoid interference.
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Implementation of Tasks on Linux

We now describe how we implemented real time tasks atop the guest operating systems. The

implementations in the hypervisor and Linux are separate and independent from each other.

The modifications to the hypervisor included the server-based scheduling algorithms. We

did not make any changes to the Linux kernel (other than the standard paravirtualization

patch required by Xen), but used its existing APIs to trigger periodic tasks and assign thread

priorities (based on the rate monotonic scheme) at the user level. Currently, the scheduling

tick (jiffy) in Linux distributions can be configured at a millisecond level. This quantum was

used as a lower bound for our tasks. We first calibrated the amount of work that requires

exactly 1 ms on one core (using native Linux), and then scaled it to generate any workload

specified in millisecond resolution. As we noted in Section 2.4, the workload is independent

and CPU intensive. Using the well-supported POSIX interfaces on Linux, every task was

scheduled using SCHED FIFO, and the priority was set inversely to its deadline: the shorter

the deadline, the higher the priority. With this setting, the Linux scheduler performs as a

rate monotonic scheduler. We used POSIX real time clocks to generate interrupts to release

each job of a task, and recorded the first job release time. Recall that we assume we are

dealing with soft real time systems, so that even if a job misses a deadline, it still continues

executing, and the subsequent jobs will queue up until their predecessors complete. When

each job finished, its finish time was recorded using the RDTSC instruction, which provides 1

nano-second precision with minimal overhead. After all tasks finished, we used the first job’s

release time to calculate every job’s release time and deadline, and compared each deadline

with the corresponding job finish time. In this way, we could count the deadline miss ratio

for each individual task. All the information was stored in locked memory to avoid memory

paging overhead. Based on the collected data, we calculated the total number of jobs that

missed their deadlines within each OS. Dividing by the total number of jobs, we obtained

the deadline miss ratio for each domain.

2.5.2 Impact of the Scheduling Quantum

In this experiment our goal was to find an appropriately fine-grained scheduling quantum

involving acceptable overhead. We defined the scheduling quantum to be the time interval
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at which do schedule is triggered, which represents the precision of the scheduler. While a

finer grained quantum allows more precise scheduling, it also may incur larger overhead. We

defer a more detailed overhead measurement to Section 2.5.3.

We varied the scheduling quantum from 1 millisecond down to 10 microseconds to measure

its effects. Two domains were configured to run with different priorities. The high priority

one, configured as domain 1, was set up with a budget of 1 quantum and a period of 2 quanta

(a share of 50 %). To minimize the guest OS scheduling overhead, domain 1 ran a single

real time task with a deadline of 100 ms, and its cost varied from 1ms to 50ms. For each

utilization, we ran the task with 600 jobs, and calculated how many deadlines are missed.

The low priority domain was configured as domain 2, with a budget of 2 quanta and period

of 4 quanta. It ran a busy loop to generate the most possible interference for domain 1. Note

that under this setting, whenever domain 1 had a task to run, it would encounter a context

switch every scheduling quantum, generating the worst case interference for it. In real world

settings, a domain would have larger budgets and would not suffer this much interference.

Since we ran only a single task within domain 1, and the task’s deadline was far larger than

the domain’s period, the choice of scheduler did not matter, so we used deferrable server as

the scheduling scheme.
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Figure 2.4: Performance under Different Scheduling Quanta

Figure 2.4 shows the results for scheduling quanta varying from 1 ms to 10 µs. From this

figure, we see a deadline miss starting at 48% for 1 ms, 44% for 100 µs, and 30% for 10 µs.

When 1 µs was chosen, the overhead was so large that guest OS cannot even be booted.

Based on these results, we chose 1 ms as our scheduling quantum since it suffers only 4%

loss (50%−48%
50%

), and provides enough precision for the upper level tasks. Recall that this is
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the worst case interference. Under the schedulability test below, we apply a more realistic

setting, in which the interference is much less.

2.5.3 Overhead Measurement

The focus of this work is fixed-priority preemptive hierarchical scheduling, within which we

can compare different server schemes. Therefore we consider the forms of overhead which are

most relevant to fixed-priority scheduling schemes: scheduling latency and context switches.

• scheduling latency : the time spent in the do schedule function, which inserts the current

VCPU back into the RunQ or the RdyQ, picks the next VCPU to run, and updates

the corresponding status.

• context switch: the time required to save the context for the currently running VCPU

and to switch to the next one.

The scheduler first decides which VCPU to run next, and if necessary, performs a context

switch. Other sources of overhead such as migration, cache effects and bus contention, are

independent of different server schemes, and therefore we defer investigation of their effects

to future work.

Five domains were configured to run under the four schedulers in RT-Xen, using the “even

share” configuration as in Section 2.5.5, Table 2.3. The total system load was set to 70%,

and each domain ran five tasks. For completeness, we ran the same workload under the

credit and SEDF schedulers and measured their overheads as well. For the credit scheduler,

we kept weight the same for all the domains (because they have the same share ( budget
period

)),

and set cap to 0 by default. Recall that we changed the quantum to 1 ms resolution to give

a fair comparison (the original setting was 30ms). For the SEDF scheduler, the same (slice,

period) pair was configured as (budget, period) for each domain, and extratime was disabled.

Each experiment ran for 10 seconds. To trigger recording when adjusting parameters for

domain 0, a timer in scheduler.c was set to fire 10 seconds later (giving the system time

to return to a normal running state). When it fired, the experiment began to record the
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time spent in the do schedule function, and the time spent in each context switch. After 10

seconds, the recording finished and the results were collected.

Table 2.1: Overhead Measurement for 10 Seconds

Deferrable Periodic Polling Sporadic Credit SEDF
total time in do schedule 1,435 µs 1,767 µs 1,430 µs 1,701 µs 216 µs 519 µs

total time in context switch 19,886 µs 20,253 µs 19,592 µs 22,263 µs 4,507 µs 8,565 µs
total time combined 21,321 µs 22,020 µs 21,022 µs 23,964 µs 4,722 µs 9,084 µs

percentage of time loss in 10 seconds 0.21% 0.22% 0.21% 0.23% 0.04% 0.09%
do schedule overhead (max) 5,642 ns 461 ns 370 ns 469 ns 382 ns 322 ns

do schedule overhead (median) 121 ns 159 ns 121 ns 150 ns 108 ns 130 ns
99% quantile values in do schedule 250 ns 328 ns 252 ns 303 ns 328 ns 192 ns

number of do schedule called 10,914 10,560 10,807 10,884 1,665 4,126
context switches overhead (max) 12,456 ns 13,528 ns 8,557 ns 11,239 ns 8,174 ns 8,177 ns

context switches overhead (median) 1,498 ns 1,555 ns 1,513 ns 1,569 ns 2,896 ns 2,370 ns
99% quantile values in context switches 3,807 ns 3,972 ns 3,840 ns 3,881 ns 3,503 ns 3,089 ns
number of context switches performed 3,254 3,422 2,979 4,286 1,665 3,699

We make the following observations from the results shown in Table 2.1:

• The four fixed-priority schedulers do encounter more overhead than the default credit

and SEDF ones. This can be attributed to their more complex RunQ, RdyQ, and

RepQ management. However, the scheduling and context switch overheads of all the

servers remain moderate (totaling 0.21 - 0.23% of the CPU time in our tests). These

results demonstrate the feasibility and efficiency of supporting fixed-priority servers in

a VMM.

• Context switch overhead dominates the scheduling latency overhead, as a context

switch is much more expensive than an invocation of the scheduler function. Context

switch overhead therefore should be the focus of future optimization and improvements.

• The different server schemes do have different overheads. For example, as expected,

sporadic server has more overhead than the others due to its more complex budget

management mechanisms. However, the differences in their overheads are insignificant

(ranging from 0.21% to 0.23% of the CPU time).

We observed an occasional spike in the duration measured for the deferrable server, which

may have been by an interrupt or cache miss. It occurred very rarely, as the 99% quantile

value shows, which may be acceptable for many soft real-time systems. The credit and SEDF

schedulers return a VCPU to run for up to its available credits or slices, and when an IDLE

VCPU is selected, the scheduler will return it to run forever until interrupted by others. As

a result, the number of times that the do schedule function is triggered is significantly fewer

than in the other four schedulers.
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2.5.4 Impact of an Overloaded Domain

To deliver desired real-time performance, RT-Xen also must be able to provide fine grained

controllable isolation between guest operating systems. Even if a system developer mis-

configures tasks in one guest OS, that should not affect other guest operating systems. In

this experiment, we studied the impact of an overloaded domain under the four fixed-priority

schedulers and the default ones. 1

The settings introduced in Section 2.5.3 were used with only one difference: we overloaded

domain 3 by “misconfiguring” the highest priority task to have a utilization of 10%. Domain

3’s priority is intermediate, so we can study the impact on both higher and lower priority

domains. We also ran the experiment with the original workload, which is depicted as the

normal case. The performance of the credit and SEDF schedulers are also reported for the

same configuration described in Section 2.5.3. Every experiment ran for two minutes, and

based on the recorded task information, we calculated the deadline miss ratio, which is the

percentage of jobs that miss their deadlines, for each domain.

Table 2.2: Isolation with RT-Xen, Credit, and SEDF

Domain 1 2 3 4 5

N
or

m
al

Sporadic 0 0 0 0 0
Periodic 0 0 0 0 0
Polling 0 0 0 0 0

Deferrable 0 0 0 0 0
Credit 96% 0.1% 0 0 0
SEDF 0 0 0 0 0

O
ve

rl
oa

d
ed

Sporadic 0 0 49.8% 0 0
Periodic 0 0 48.9% 0 0
Polling 0.08% 0 49.7% 0.28% 0

Deferrable 0 0 48% 0 0
Credit 100% 0 1.6% 0 0
SEDF 0 0 0 0.08% 0

Table 2.2 shows the results: under the normal case, all four fixed-priority schedulers and

SEDF meet all deadlines, while in the credit scheduler, domain 1 misses nearly all deadlines.

There are two reasons for this.

1The default credit scheduler also provides isolation for longer periods, but not shorter ones.
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• All five VCPUs are treated equally, so the credit scheduler picks them in a round robin

fashion, causing domain 1 to miss deadlines. However, in the fixed-priority schedulers

it has the highest priority, and would always be scheduled first until its budget was

exhausted.

• Domain 1 has the smallest period, and the generated tasks also have the relatively

tightest deadlines, which makes it more susceptible to deadline misses.

Under the overloaded case, the sporadic, periodic, and deferrable servers provided good

isolation of the other domains from the overloaded domain 3. For polling server and SEDF,

we see deadline misses in domain 1 and domain 4, but only in less than 0.3 % of all cases.

We think this is tolerable for soft real-time systems running atop an off-the-shelf guest

Linux on top of the VMM, since interrupts, bus contention, and cache misses may cause

such occasional deadline misses. Although credit scheduler met most of its deadlines in the

overloaded domain 3 (benefiting from system idle time with a total load of 70%), domain

1 again was severely impacted, missing all deadlines. These results illustrate that due to a

lack of finer grained scheduling control, the default credit scheduler is obviously not suitable

for delivering real time performance, while all four fixed-priority scheduler implementations

in RT-Xen are suitable.

2.5.5 Soft Real-Time Performance

Table 2.3: Budget, Period and Priority for Five Domains

Domain 1 2 3 4 5
Priority 1 2 3 4 5
Budget 2 4 6 8 10

Period
Decreasing 4 20 40 80 200

Even 10 20 30 40 50
Increasing 40 40 40 40 20

This set of experiments compared the soft real-time performance of different servers. Note

that our study differs from and complements previous theoretical comparisons which focus on

the capability to provide hard real-time guarantees. To assess the pessimism of the analysis,
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we also compared the actual real-time performance against an existing response time analysis

for fixed-priority servers.

The experiments were set up as follows: five domains were configured to run, with budget

and priority fixed, but period varied to represent three different cases: decreasing, even, and

increasing share (share is defined as the ratio of budget to period). All five domains’ shares

add up to 100%, as shown in Table 2.3. Note that the shares do not represent the real system

load on the domain.

Task sets were randomly generated following the steps below. A global variable α was

defined as the total system load. It varied from 30% to 100%, with steps of 5%. For each

α, we generated five tasks per domain, making 25 in total. Within each domain, we first

randomly generated a cost between 5 ms and 10 ms for each of the five tasks (using α as a

random seed), then randomly distributed the domain’s share times α (which represents the

real domain load) among the five tasks. Using every task’s cost and utilization, we could

easily calculate its deadline. Note that all costs and deadlines were integers, so there was

some reasonable margin between the real generated system load and the α value.

We can see that the task’s period is highly related to the domain’s period and share. The

decreasing share case is the “easiest” one to schedule, where domain 1 has the largest share

and highest priority, so a large number of tasks are scheduled first. Even share is the

“common” case, where every domain has the same share and we can see the effects of

different priorities and periods. Increasing share is the “hardest” case, where the lowest

priority domain holds the largest number of tasks. Also note that the increasing share case

is the only one that does not correspond to RM scheduling theory at the VMM level.

For completeness, we again include results for the same workload running under the credit

and SEDF schedulers as well. For the credit scheduler, the scheduling quantum was con-

figured at 1 ms. The weight was assigned according to the domain’s relative share. For

example, if a domain’s share was 20%, its weight took 20% of the total weight. The cap was

set to 0 as in the default setting, so each domain would take advantage of the extra time.

For the SEDF scheduler, we configured the same (slice, period) pair as (budget, period) for

each domain, and again disabled extratime.
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Each experiment ran for five minutes. Figure 2.5 shows the results for all three cases. When

the system load was between 30% and 50%, all deadline miss ratios were 0%. We omitted

these results for a better view of the remaining data. Note that the Y axis ranges from 0%

to 80%. The four solid lines represent our four fixed-priority schedulers, and the two dashed

lines represent the default credit and SEDF schedulers.

We evaluated different schedulers based on two criteria: (1) At what load does the scheduler

see a “significant” deadline miss ratio? Since we are dealing with soft real-time systems,

we consider a 5% miss ratio as significant, and define the maximum system load without

significant deadline miss to be the soft real-time capacity of the scheduler. (2) What is the

scheduler’s performance under the overloaded situation (e.g., 100%)?
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Figure 2.5: Deadline Miss Ratio under Different Shares

From Figure 2.5, we can see several things:
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• The default credit scheduler performs poorly in terms of capacity, even when configured

at a 1ms resolution.

• The SEDF scheduler maintains a good capacity of almost 90%. With respect to its

overload behavior, it is comparatively worse than the fixed-priority schedulers in most

cases.

• The deferrable server scheduler generally performs well among RT-Xen schedulers.

It has equally good capacity, and the best overload behavior under all three cases,

indicating that its budget preservation strategy is effective in delivering good soft real-

time performance in a VMM. Note that while it is well known that deferrable server

can suffer from the “back-to-back” preemption effect in terms of worst-case guarantees,

such effects rarely happen in real environments.

• Among RT-Xen schedulers, the periodic server scheduler performs worst in the over-

loaded situation. As we discussed in Section 2.4, to mimic the “as if budget is idled

away” behavior, when a high priority VCPU has budget to spend even if it has no work

to do, periodic server must run the IDLE VCPU and burn the high priority VCPU’s

budget. During this time, if a low priority VCPU with a positive budget has work to

do, it must wait until the high priority VCPU exhausts its budget. While this does not

hurt the hard real-time guarantees, the soft real-time performance is heavily impacted,

especially under the overloaded situation, due to the non-work-conserving nature of

the periodic server.

Table 2.4: Theoretical Guaranteed Schedulable System Load (Percentage)

deferrable server periodic server
Decreasing 30-45% 30-50%, 60-75%

Even 30-45% 30-50%, 60-75%
Increasing 30-45% 30-50%, 60-75%

Since we used the same settings as in [43], we also applied that analysis to the task parameters

for comparison. Note that all the tasks were considered “unbound” because the task periods

were generated randomly, and we assumed the overhead was 0. Table 2.4 shows the results,

where under deferrable and periodic server the task set should be schedulable. Clearly,

when theory guarantees the tasks are schedulable, they are indeed schedulable using those
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schedulers in RT-Xen. These results also show the pessimism of the theory, where with

deferrable server, for all three cases, theory guarantees it is schedulable only if total system

load is under 45 %, while in reality it is schedulable up to nearly 85 %.

2.6 Improving Periodic Servers

A key observation from the evaluation results in Section 2.5 is that due to non-work-

conserving behavior, the periodic server performs worst among RT-Xen servers in an over-

loaded situation. Specifically, when a higher-priority component has no work to do, it simply

idles away its budget while lower-priority components are not allowed to run. Our imple-

mentation emulates this feature by scheduling the idle VCPU to run while a high-priority

domain idles away its budget. This scenario arises when a high-priority domain under-utilizes

its budget, e.g., due to an interface overhead or an over-estimation of task execution times

when configuring the domains’ budgets. We refer to this approach as the purely time-drive

periodic server. While the non-work-conserving approach does not affect the worst-case

guarantees, it wastes CPU cycles and increases the response times of low-priority domains.

This is particularly undesirable for soft real-time systems, as well as many hard real-time

systems where short response times are also beneficial.

Based on this observation, we present two enhanced variations of the purely time-driven

periodic server to optimize run-time performance and resource-use efficiency, namely the

work-conserving periodic server and the capacity-reclaiming periodic server. These variations

differ in how a server budget changes when the server has remaining budget but is idle (i.e.,

has no unfinished jobs), or when it is non-idle but has no budget left. Recall that in the

classical purely time-driven periodic server, a server’s budget is replenished to full capacity

every period. The server is eligible for execution only when it has non-empty budget, and its

budget is always consumed at the rate of one execution unit per time unit, even if the server

is idle. In the work-conserving periodic server variant, whenever the currently scheduled

server is idle, the VMM’s scheduler lets another lower-priority non-idle server run; thus, the

system is never left idle if there are unfinished jobs in a lower-priority domain. Finally,

the capacity-reclaiming periodic server variant further utilizes the unused resource budget of

an idle server to execute jobs of any other non-idle servers, effectively adding extra budget
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to the non-idle servers. Both servers preserve the conservative compositional schedulability

analysis, while yielding substantial improvements in observed response times and resource

utilization, which are desirable for not only soft real-time applications but also many classes

of hard real-time applications.

Purely Time-driven Periodic Server (PTPS). As mentioned above, the budget of a

PTPS is replenished at every period, and its budget is always consumed whenever it is ex-

ecuted. As Xen is an event-triggered virtual platform, we introduce a mechanism to allow

this time-driven budget replenishment and scheduling approach. Note that the PTPS ap-

proach is not work-conserving since the system resource is always left unused if the currently

scheduled server (Xen domain) is idle.

Work-Conserving Periodic Server (WCPS). The budget of a WCPS is replenished in

the same fashion as that of a PTPS. However, if the currently scheduled server (CH) is idle,

the scheduler picks a lower-priority non-idle server to execute, according to the following

work conserving rules:

CH Budget

Execution of tasks in CH

Task release

Task completion

time

t
!

Execution of tasks in CL

CL Budget

Figure 2.6: Execution of Servers in the WCPS Approach

(1) Choose a lower-priority server, CL, with the highest priority among all non-idle lower-

priority servers.

(2) Start executing CL and consuming the budgets of both CL and CH , each at the rate of

one unit per time unit.
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(3) Continue running CL until one of the following occurs:

• (a) CL has no more jobs to execute;

• (b) CL has no more budget;

• (c) Some jobs in CH become ready and CH has remaining budget;

• (d) CH has no more budget.

In the case of (a) or (b), the scheduler goes back to step 1 where it selects another lower-

priority non-idle server. In the case of (c), CL immediately stops its execution and budget

consumption, whereas CH resumes its execution. In the case of (d), CL immediately stops

its execution and budget consumption; a new server will be chosen for execution by the

scheduler.

Figure 2.6 illustrates a general scenario under the work conserving rule. In this scenario, CH

becomes idle at time t, and thus a lower-priority server CL is selected for execution. At time

t + ∆, some jobs in CH become ready (i.e., case (c) in step 3); therefore CH preempts CL

and resumes its execution. By allowing CL to run (if CH is idle) and maintaining the same

execution for CH , the WCPS achieves shorter overall response times for tasks than PTPS,

while preserving conservative compositional scheduling analysis.

Capacity Reclaiming Periodic Server (CRPS). Like the WCPS, the CRPS is also

work conserving, and the budget of a server is replenished to full capacity every period.

However, the CRPS improves task response times by allowing the idle time of the currently

running server to be utilized by any other server (including higher-priority ones). Specifically,

we define the residual capacity of a server to be the time interval during which the server

consumes its budget but is idle (e.g., CH has a residual capacity of [t, t+∆] in Figure 2.6). At

run time, the server budget is modified using the following capacity-reclaiming rule: during

a residual capacity interval of a server CH , the resource budget of CH is re-assigned to any

other non-idle server CL, and only this budget is consumed (e.g., the budget of CL remains

intact).
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2.7 Evaluation of Improved Periodic Servers

This section presents our evaluation of the PTPS, WCPS, and CRPS approaches that are

implemented in RT-Xen. We focus on the run-time performance of real-time tasks, consid-

ering the following two evaluation criteria: (1) responsiveness, which is the ratio of a job’s

response time to its relative deadline; and (2) deadline miss ratio. Our evaluation consists

synthetic workloads.

2.7.1 Experiment Setup

We assume all tasks are CPU intensive and independent of each other. Every task is charac-

terized by three parameters: worst case execution time (WCET), period (equals deadline),

and execution time factor (ETF). Here, the ETF represents the variance of each job’s actual

execution time (uniformly distributed in the interval (WCET ∗ETF,WCET )). An ETF of

100% indicates that every job of the task takes exactly WCET units of time to finish. The

task model fits typical soft real-time applications (e.g., multimedia decoding applications

where frame processing times are varied but are always below an upper limit).

In the rest of the chapter, UW denotes the total utilization of all tasks in the system (utiliza-

tion of the workload), URM denotes the total bandwidth of interfaces (utilization of resource

models), URM − UW denotes the interface overhead.

Real-time scheduling of domains. We first determined the domains’ resource needs by

computing an optimal PRM interface for each domain. These interfaces were implemented

as PTPS, WCPS, or CRPS variants of periodic servers, which were then scheduled by the

VMM. For the workloads, we applied the compositional scheduling theory to compute the

optimal integer-valued PRM interfaces for the domains. We computed optimal rational-

valued interfaces, and then rounded up the budgets to the closest integer values. Although

the integer-valued interfaces may have interface overheads of zero, rounding may introduce

additional overheads, effectively allocating extra budget to the corresponding domains. For

each workload and corresponding interface obtained above, we repeated the experiment and

evaluated the respective performances of the system when setting the hypervisor scheduler

to be WCPS, CRPS, and the baseline PTPS.
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This set of experiments compared the soft real-time performance of the three different pe-

riodic servers. The PTPS, WCPS, and CRPS servers differ primarily in how idle time is

utilized within the system. The idle time comes from two main sources: the interface over-

head due to theoretical pessimism, and over-estimation of tasks’ execution times (also called

slack). Hence, we designed two sets of experiments to show the effect of different idle times:

(1) The range for the workload periods was varied to create different interface overheads,

and (2) The ETF for the jobs was varied so that if a job executes in less than its WCET, it

could potentially give some slack to other domains.

For soft real-time systems, we are interested not only in schedulable situations but also in

overloaded situations. As a result, we ranged the UW from 0.7 to 1.0, with steps of 0.1, to

create different UW conditions.

All the experiments were conducted as follows. We first defined a particular UW , and then

generated tasks (with utilization uniformly distributed between 0.2% and 5%) until the UW

was reached. The distributions of execution times were typically application dependent; here,

we used the uniform distribution, which has been commonly used in the real-time scheduling

literature [31, 38]. Using this generation method, the generated UW is usually larger than

the desired one, but would only be 0.05 more in the worst case. After all the tasks were

generated, we randomly distributed the tasks among the five domains.

We ran each experiment for 5 minutes, and then calculated the ResponseT ime
Deadline

for all the task

sets within each domain of the experiment. For clarity of presentation, any job whose
ResponseT ime

Deadline
was greater than 3 was clipped at 3.

Impact of Task Period. We varied the task period range in this experiment to create

different interface overheads, and then evaluated the three schedulers for the generated task

sets. For each different UW (from 0.7 to 1.0), we generated three different task sets whose

periods were uniformly distributed between 550-650 ms, 350-850 ms, and 100-1100 ms, re-

spectively. From the calculated interfaces, the 350-850 ms task period range gives the most

interface overhead, followed by 100-1100 ms, and then 550-650 ms. For all the experiments,

the ETF value was set to 100%. In other words, we let all jobs execute at their worst case

execution times, so that the idle time came only from the interface overheads. Note that

when the UW was the same, we scheduled different task sets under different task periods.
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Figure 2.7 shows the results for all domains under UW = 0.9, where DMR means Deadline

Miss Ratio. This UW (= 0.9) represents a typical heavily overloaded situation; other cases

include those either guaranteed to be schedulable theoretically and incurring only negligible

deadline miss (UW = 0.7), not heavily overloaded (UW = 0.8), or too overloaded to be

schedulable (UW = 1.0).
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Figure 2.7: CDF Plot of ResponseT ime
Deadline

for All Tasks in Five Domains(UW = 0.9)
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Figure 2.8: CDF Plot of ResponseT ime
Deadline

for Tasks in the Lowest Priority Domain (UW = 0.9)

Since we are using rate monotonic scheduling, the higher priority domains have shorter peri-

ods, and thus have a larger number of jobs. The data in Figure 2.7 are therefore dominated

by the results for higher priority domains. Lower priority domains, though having fewer jobs,

suffer most from the overloaded situation. Thus, we plot the data for the lowest priority do-

main (domain 5) in Figure 2.8 with the interface parameters given in the format of (period,

budget). Figure 2.7 and Figure 2.8 clearly show that the CRPS outperforms the WCPS,

which in turn outperforms the PTPS. Notably, with an interface overhead of 24% (Fig-

ure 2.8c), while all jobs miss their deadlines under the PTPS (ResponseT ime
Deadline

> 1), 60.5% and

6.2% of the jobs in domain 5 miss their deadlines under the WCPS and CRPS, respectively.

These results demonstrate the effectiveness of the work-conserving and capacity-reclaiming
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mechanisms in exploiting the interface overhead to improve the performance of low-priority

domains. The CRPS is the most effective of these approaches for implementing the resource

interfaces calculated by compositional scheduling analysis.

Impact of the Execution Time Factor (ETF). In real-time applications such as mul-

timedia frame decoding, every frame may take a different amount of time to finish. Tradi-

tionally, the WCET is used to represent every task’s execution time. This usually results in

a relatively large interface, giving more idle time for the domain.

In this set of experiments, the same UW ranging from 0.7 to 1.0 were used. Under each UW ,

we generated only one task set. Then, for each particular task set, three ETF values (100%,

50%, and 10%) were configured for the three highest priority domains, while leaving the two

low priority ones with an ETF of 100%. A lower ETF value means a lower “actual” UW for

that domain; for example, if an ETF of 10% is applied, all jobs’ execution time is uniformly

distributed between 10% and 100% of WCET. On average, the actual UW is 55% (100%+10%
2

).

All task periods were uniformly distributed between 550 ms and 650 ms. We note that the

idle time came not only from the interface overhead but also from the over-estimation of job

execution times.
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Figure 2.9: Box Plot of ResponseT ime
Deadline

for Tasks in the Lowest Priority Domain under Different
UW and ETF Values

Figure 2.9 shows box plot results for all UW for the lowest priority domain. Results for all

domains exhibit the same behavior. On each box, the central mark represents the median

value, whereas the upper and lower box edges show the 25th and 75th percentiles separately.

If the data values are larger than q3 + 1.5∗ (q3− q1) or smaller than q1−1.5∗ (q3− q1) (where
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q3 and q1 are the 75th and 25th percentiles, respectively), they are considered outliers and

plotted via individual markers. Within each subfigure, the boxes are divided into three sets,

from left to right, corresponding to the results under the ETFs of 100%, 50%, and 10%,

respectively.

As shown in Figure 2.9, the CRPS again outperforms the WCPS and PTPS. In Figure 2.9c,

the deadline miss ratio under the PTPS stays constant when the ETF is varied (26.9%,

27.3%, and 27.3% respectively), while performance improvement is seen under the WCPS

(11.7%, 8.51%, and 0.49%) and CRPS (0.02%, 0%, and 0%). In an extremely overloaded

situation (Figure 2.9d), all jobs missed their deadlines under the PTPS, whereas (75.6%,

32.7%, and 31.3%) of jobs missed their deadlines under the WCPS, and (36.1%, 0%, and 0%)

of jobs missed their deadlines under the CRPS. This again demonstrates that the WCPS and

the CRPS benefit from the idle time introduced by interface overheads and over-estimations

of jobs’ execution times.

2.8 Summary

RT-Xen 1.0 represents the first hierarchical real-time scheduling framework for Xen, a widely

used open-source virtual machine monitor. RT-Xen bridges the gap between real-time

scheduling theory and Xen, whose wide-spread adoption makes it an attractive virtualiza-

tion platform for soft real-time and embedded systems. RT-Xen also provides an open-source

platform for researchers to develop and evaluate real-time scheduling techniques. Extensive

experimental results demonstrate the feasibility, efficiency, and efficacy of fixed-priority hi-

erarchical real-time scheduling in the Xen VMM.

RT-Xen differs from prior efforts in real-time virtualization in several important aspects.

A key technical contribution of RT-Xen is the instantiation and empirical study of a suite

of fixed-priority servers (Deferrable Server, Periodic Server, Polling Server, and Sporadic

Server) within a VMM.

Our empirical study represents the first comprehensive experimental comparison of these

algorithms in the same virtualization platform. Our study shows that while more complex

33



algorithms do incur higher overhead, the overhead differences among different server algo-

rithms are insignificant. However, in terms of soft real-time performance, deferrable server

generally performs well, while periodic server performs worst under overloaded situations.

Based on this observation, we present two enhanced variations of the purely time-driven

periodic server to optimize run-time performance and resource-use efficiency, namely the

work-conserving periodic server and the capacity-reclaiming periodic server. Both servers

preserve the conservative compositional schedulability analysis, while yielding substantial

improvements in observed response times and resource utilization, which are desirable for

not only soft real-time applications but also many classes of hard real-time applications.
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Chapter 3

RT-Xen 2.0: Multi-Core Real-Time

Virtualization

Chapter 2 studied different server schemes under single-core scheduling with fixed priority.

For this chapter, we further explore the effect of different priority schemes and scheduling

policies on multi-core platform. We first review the multi-core hierarchical scheduling theo-

ries in Section 3.1, then introduce RT-Xen 2.0 in Section 3.2. In Section 3.3 we present an

extensive evaluation both theoretically and experimentally, and we summarize in Section 3.4.

3.1 Multi-Core Hierarchical Scheduling Theories

In a single-core hierarchical scheduling theory, the VCPUs’ resource interface is captured by

budget and period, and different theories applied in several resource models (server mecha-

nisms). For multi-core hierarchical scheduling theory, besides the resource model, there are

also different ways to distribute the budget among multiple VCPUs. In RT-Xen 2.0, we focus

on using compositional scheduling analysis [45], which represents the resource requirements

of each domain as a multiprocessor periodic resource (MPR) interface, µ = 〈Π,Θ,m′〉, which

specifies a resource allocation that provides a total of Θ execution time units in each period

of Π time units, with a maximum level of parallelism m′.

Other theories differ in the distribution of the budget among multiple VCPUs, and also in

whether to use a uniform period or not. We designed the interface of RT-Xen 2.0 to be

compatible with most of them, which is discussed in the next Section.
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3.2 RT-Xen 2.0: Design and Implementation

In this section, we first describe the design principles behind the multi-core real-time schedul-

ing framework of RT-Xen 2.0, and then we discuss our implementation in detail.

3.2.1 Design Principles

To leverage multi-core platforms effectively in real-time virtualization, we designed RT-Xen

2.0 to cover three dimensions of the design space: global and partitioned scheduling, dynamic

and static priority schemes, and two server schemes (deferrable and periodic) for running

the VMs. In summary, RT-Xen 2.0 supports:

• a scheduling interface that is compatible with a range of resource interfaces used in

compositional schedulability theory (e.g., [36, 45,75]);

• both global and partitioned schedulers, called rt-global and rt-partition, respectively;

• EDF and DM priority schemes for both schedulers; and

• for each scheduler, a choice of either a work-conserving deferrable server or a periodic

server.

Figure 3.1: Design Space of RT-Xen Scheduling Framework.

We next discuss each dimension of the design space, focusing on how theory and platform

considerations influenced our design decisions.
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Scheduling interface. In RT-Xen 2.0, the scheduling interface of a domain specifies the

amount of resource allocated to the domain by the VMM scheduler. In a single-core virtu-

alization setting, each domain has only one VCPU, and thus its scheduling interface can be

defined by a budget and a period [56]. In contrast, each domain in a multi-core virtualization

setting can have multiple VCPUs. As a result, the scheduling interface needs to be suffi-

ciently expressive to enable resource allocation for different VCPUs at the VMM level. At

the same time, it should be highly flexible to support a broad range of resource interfaces,

as well as different distributions of interface bandwidth to VCPUs (to be scheduled by the

VMM scheduler), according to the compositional scheduling theory.

Accordingly, RT-Xen 2.0 defines the scheduling interface of a domain to be a set of VCPU

interfaces, where each VCPU interface is represented by a budget, a period, and a cpu mask

(which gives the subset of PCPUs on which the VCPU is allowed to run), all of which can be

set independently of other VCPUs. This scheduling interface has several benefits: (1) it can

be used directly by the VMM scheduler to schedule the VCPUs of the domains; (2) it can be

configured to support different resource interfaces from the compositional scheduling analysis

literature, such as MPR interfaces [45], deterministic MPR interfaces [75], and multi-supply

function interfaces [36]; (3) it is compatible with different distributions of interface bandwidth

to VCPU budgets, such as one that distributes budget equally among the VCPUs [45], or

one that provides the maximum bandwidth (equal to 1) to all but one VCPU [75]; and finally

(4) it enables the use of CPU-mask-aware scheduling strategies, such as one that dedicates

a subsets of PCPUs to some VCPUs and schedules the rest of the VCPUs on the remaining

PCPUs [75].

Global vs. partitioned schedulers. Different multi-core schedulers require different im-

plementation strategies and provide different performance benefits. A partitioned scheduler

schedules VCPUs only in its own core’s run queue and hence is simple to implement; in con-

trast, a global scheduler schedules all VCPUs in the system and thus is more complex but

can provide better resource utilization. We support both by implementing two schedulers in

RT-Xen 2.0: rt-global and rt-partition.2 The rt-partition scheduler uses a partitioned queue

scheme, whereas the rt-global scheduler uses a global shared run queue that is protected

2In our current platform, all cores share an L3 cache, thus limiting the potential benefits of cluster-based
schedulers; however, we plan to consider cluster-based schedulers in our future work on new platforms with
multiple multi-core sockets.
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by a spinlock. An alternative approach to approximating a global scheduling policy is to

employ partitioned queues that can push/pull threads from each other [34] (as adopted in

the Linux Kernel). We opt for a simple global queue design because the locking overhead

for the shared global queue is typically small in practice, since each host usually runs only

relatively few VMs. For each scheduler, users can switch between dynamic priority and static

priority schemes on the fly.

Server mechanisms. Each VCPU in RT-Xen 2.0 is associated with a period and a budget,

and is implemented as a server: the VCPU is released periodically and its budget is replen-

ished at the beginning of every period. It consumes its budget when running, and it stops

running when its budget is exhausted. Different server mechanisms provide different ways to

schedule the VCPUs when the current highest priority VCPU is not runnable (i.e., has no

jobs to execute) but still has unused budget. For instance, when implemented as a deferrable

server, the current VCPU defers its unused budget to be used at a later time within its

current period if it becomes runnable, and the highest-priority VCPU among the runnable

VCPUs is scheduled to run. In contrast, when implemented as a periodic server, the current

VCPU continues to run and consume its budget (as if it had a background task executing

within it). As shown by our experimental results in Section 3.3.5, results can be quite differ-

ent when different servers are used, even if the scheduler is the same. We implemented both

rt-global and rt-partition as deferrable servers, and can configure them as periodic servers

by running a lowest priority CPU-intensive task in a guest VCPU.

3.2.2 Implementation

We first introduce the run queue structure of the rt-global scheduler, followed by that of the

rt-partition scheduler, which has a simpler run queue structure. We then describe the key

scheduling functions in both schedulers.

Run queue structure. Figure 3.2 shows the structure of the global run queue (RunQ)

of the rt-global scheduler, which is shared by all physical cores. The RunQ holds all the

runnable VCPUs, and is protected by a global spin-lock. Within this queue, the VCPUs are

divided into two sections: the first consists of the VCPUs with a nonzero remaining budget,

and the second consists of VCPUs that have no remaining budget. Within each section,
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Figure 3.2: rt-global run queue structure

the VCPUs are sorted based on their priorities (determined by a chosen priority assignment

scheme). We implemented both EDF and DM priority schemes in RT-Xen 2.0. A RunQ of

the rt-partition scheduler follows the same structure as the RunQ in rt-global, except that it

is not protected by a spinlock, and the rt-partition scheduler maintains a separate run queue

for each core.

Scheduling functions: The scheduling procedure consists of two steps: first, the scheduler

triggers the scheduler-specific do schedule function to make scheduling decisions; then, if

necessary, it triggers the context switch function to switch the VCPUs, and after that, a

context saved function to put the currently running VCPU back into the run queue (only in

shared run queue schedulers).

Algorithm 2 shows the pseudo-code of the do schedule function of the rt-global scheduler

under an EDF priority scheme (i.e., gEDF). In the first for loop (Lines 5–10), it replenishes

the budgets of the VCPUs and rearranges the VCPUs in the RunQ appropriately. In the

second for loop (Lines 11–18), it selects the highest-priority runnable VCPU (snext) that

can be executed. Finally, it compares the deadline of the selected VCPU (snext) with that

of the currently running VCPU (scurr), and returns the VCPU to be executed next (Lines

19–24).

There are two key differences between RT-Xen 2.0 and the single-core scheduling algorithm

in RT-Xen [73]: (1) the second for loop (Lines 11–18) guarantees that the scheduler is

CPU-mask aware; and (2) if the scheduler decides to switch VCPUs (Lines 22–24), the

currently running VCPU (scurr) is not inserted back into the run queue; otherwise, it could

be grabbed by another physical core before its context is saved (since the run queue is shared

among all cores), which would then make the VCPU’s state inconsistent. For this reason,

Xen adds another scheduler-dependent function named context saved, which is invoked at
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the end of a context switch to insert scurr back into the run queue if it is still runnable. Note

that both do schedule and context saved need to grab the spin-lock before running; since

this is done in the Xen scheduling framework, we do not show this in Algorithm 2.

Algorithm 2 do schedule function for rt-global under EDF.

1: scurr ← the currently running VCPU on this PCPU
2: idleVCPU ← the idle VCPU on this PCPU
3: snext← idleVCPU
4: burn budget(scurr)
5: for all VCPUs in the RunQ do
6: if VCPU’s new period starts then
7: reset VCPU.deadline, replenish VCPU.budget
8: move VCPU to the appropriate place in the RunQ
9: end if

10: end for
11: for all VCPUs in the RunQ do
12: if VCPU.cpu mask & this PCPU 6= 0 then
13: if VCPU.budget > 0 then
14: snext← VCPU
15: break
16: end if
17: end if
18: end for
19: if

(
snext = idleVCPU or snext.deadline > scurr.deadline

)
and (scurr 6= idleVCPU) and (scurr.budget > 0)
and vcpu runnable(scurr) then

20: snext← scurr
21: end if
22: if snext 6= scurr then
23: remove snext from the RunQ
24: end if

25: return snext to run for 1 ms

Another essential function of the scheduler is the wake up function, which is called when

a domain receives a packet or a timer fires within it. In the wake up function of the rt-

global scheduler, we issue only an interrupt if there is a currently running VCPU with a

lower priority than the domain’s VCPUs, so as to reduce overhead and to avoid priority

inversions. We also implemented a simple heuristic to minimize the cache miss penalty due

to VCPU migrations: whenever there are multiple cores available, we assign the previously

scheduled core first.
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The do schedule function of the rt-partition scheduler is similar to that of the rt-global

scheduler, except that (1) it does not need to consider the CPU mask when operating on

a local run queue (because VCPUs have already been partitioned and allocated to PCPUs

based on the CPU mask), and (2) if the scheduler decides to switch VCPUs, the currently

running VCPU scurr will be immediately inserted back into the run queue. In addition, in

the wake up function, we compare only the priority of the VCPU that is being woken up to

the priority of the currently running VCPU, and we perform a switch if necessary.

We implemented both rt-global and rt-partition schedulers in C. We also patched the Xen tool

for adjusting the parameters of a VCPU on the fly. Our modifications were done solely within

Xen. The source code of RT-Xen 2.0 and the data used in our experiments are both available

on-line via the RT-Xen website: https: // sites. google. com/ site/ realtimexen .

3.3 RT-Xen 2.0: Evaluation

In this section, we present our experimental evaluation of RT-Xen. We have five objectives

for our evaluation:

• (1) to evaluate the scheduling overhead of the rt-global and rt-partition schedulers

compared to the default Xen credit scheduler;

• (2) to experimentally evaluate the schedulability of the system under different combi-

nations of schedulers at the guest OS and VMM levels;

• (3) to evaluate the real-time system performance under RT-Xen schedulers in overload

situations;

• (4) to compare the performance of the deferrable server scheme and the periodic server

scheme;

• (5) to evaluate the impact of cache on global and partitioned schedulers.
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3.3.1 Experiment Setup

We performed our experiments on an Intel i7 x980 machine, with six cores (PCPUs) running

at 3.33 GHz. We disabled hyper-threading and SpeedStep to ensure constant CPU speed,

and we shut down all other non-essential processes during our experiments to minimize

interference. The scheduling quantum for RT-Xen was set to 1 ms. Xen 4.3 was patched

with RT-Xen and installed with a 64-bit Linux 3.9 kernel as domain 0, and a 64-bit Ubuntu

image with a para-virtualized Linux kernel as the guest domain. For all experiments, we

booted domain 0 with one VCPU and pinned this VCPU to one core; the remaining five

cores were used to run the guest domains. In addition, we patched the guest OS with

LITMUSRT [16] to support EDF scheduling.

For the partitioned scheduling policy at the guest OS level and the VMM level, we used

a variant of the best-fit bin-packing algorithm for assigning tasks to VCPUs and VCPUs

to cores, respectively. Specifically, for each domain, we assigned a task to the VCPU with

the largest current bandwidth3 among all existing VCPUs of the domain that could feasibly

schedule the task. Since the number of VCPUs of the domain was unknown, we started

with one VCPU for the domain, and added a new VCPU when the current task could not

be packed into any existing VCPU. At the VMM level, we assigned VCPUs to the available

cores in the same manner, except that (1) in order to maximize the amount of parallelism

available to each domain, we tried to avoid assigning VCPUs from the same domain to the

same core, and (2) under an overload condition, when the scheduler determined that it was

not feasible to schedule the current VCPU on any core, we assigned that VCPU to the core

with the smallest current bandwidth, so as to balance the load among cores.

We performed the same experiments as above using the credit scheduler, with both the weight

and the cap of each domain configured to be the total bandwidth of its VCPUs. (Recall that

the bandwidth of a VCPU is the ratio of its budget to its period.) The CPU-mask of each

VCPU was configured to be 1-5 (the same as in the rt-global scheduler).

3The maximum bandwidth of a VCPU is 1, since we assume that it can execute on only one core at a
time.
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3.3.2 Workloads

In our experiments, tasks were created based on the base task provided by LITMUSRT. To

emulate a desirable execution time for a task in RT-Xen, we first calibrated a CPU-intensive

job to take 1 ms in the guest OS (when running without any interference), then scaled it to

the desirable execution time. For each task set, we ran each experiment for 60 seconds, and

recorded the deadline miss ratio for each task using the st trace tool provided by LITMUSRT.

Following the methodology used in [35] to generate real-time tasks, our evaluation used

synthetic real-time task sets. The tasks’ periods were chosen uniformly at random between

350-850 ms, and the tasks’ deadlines were set equal to their periods. The tasks’ utilizations

followed the medium bimodal distribution, where the utilizations are distributed uniformly

over [0.0001, 0.5) with a probability of 2/3, or [0.5, 0.9] with a probability of 1/3. Since there

were five cores for running the guest domains, we generated task sets with total utilizations

ranging from 1.1 to 4.9, with a step of 0.2. For a specific utilization, we first generated tasks

until we exceeded the specified total task utilization, then we discarded the last generated

task and used a “pad” task to make the task set utilization exactly match the specified

utilization. For each of the 20 task set utilizations, we used different random seeds to

generate 25 task sets. In total, there were 20 (utilization values) × 25 (random seeds) = 500

task sets in our experiments.

Each generated task was then distributed into four different domains in a round robin fashion.

We applied compositional scheduling analysis to compute the interface of each domain, and

to map the computed interface into a set of VCPUs to be scheduled by the VMM scheduler.

In our evaluation, we used harmonic periods for all VCPUs. We first evaluated the real-time

schedulers using CPU-intensive tasks in the experiments, followed by a study on the impacts

of cache on the different real-time schedulers using cache-intensive tasks with large memory

footprints (Section 3.3.6).

3.3.3 Scheduling Overhead

In order to measure the overheads for different schedulers, we booted four domains, each with

four VCPUs. We set each VCPU’s bandwidth to 20%, and distributed the VCPUs to five
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PCPUs for the rt-partition scheduler in a round robin fashion; for the rt-global and credit

schedulers, we allowed all guest VCPUs to run on all five PCPUs. We ran a CPU-intensive

workload with a total utilization of 3.10. We used the EDF scheme in both rt-global and

rt-partition schedulers, as the different priority schemes differ only in their placement of a

VCPU in the RunQ. In the Xen scheduling framework, there are three key functions related

to schedulers, as described in Section 3.2.2. We measured the overheads of the time spent

in the do schedule function as scheduling latency, the time spent in the context switch, and

the time spent in the context saved. Note that context saved is necessary only in rt-global

schedulers, as they have shared queues. For rt-partition and credit schedulers, the running

VCPU is inserted back to run queue in do schedule function. To record these overheads, we

modified xentrace [50] and used it to record data for 30 seconds.
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Figure 3.3: CDF Plot for Scheduling Overhead for Different Schedulers over 30 Seconds

Figure 3.3 shows CDF plots of the time spent in the three functions for different schedulers.

Since 99% of the values are smaller than 3 microseconds (except for rt-global in the con-

text switch function, which is 3.266 microseconds), we cut the X-axis at 3 microseconds for

a clearer view, and included the 99% and maximum values in the legend for each scheduler.

We observe the following:

First, as is shown in Figure 3.3a, the rt-global scheduler incurred a higher scheduling latency

than the rt-partition scheduler. The rt-global scheduler experienced the overhead to grab

the spinlock, and it had a run queue that was five times longer than that of the rt-partition

scheduler. The credit scheduler performed better than the rt-global scheduler in the lower

60%, but performed worse in the higher 40% of our measurements. We attribute this to the

load balancing scheme in the credit scheduler, which must check all other PCPUs’ RunQs

to “steal” VCPUs.
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Second, Figure 3.3b shows that the context switch overheads for all three schedulers were

largely divided into two phases: approximately 50% of the overhead was around 200 nanosec-

onds, and the remaining half was more than 1500 nanoseconds. We find that the first 50%

(with lower overhead) ran without actually performing context switches, since Xen defers

the actual context switch until necessary: when the scheduler switches from a guest VCPU

to the IDLE VCPU, or from the IDLE VCPU to a guest VCPU with its context still in-

tact, the time spent in the context switch function is much shorter than a context switch

between two different guest VCPUs. We can also observe that context switch in rt-global

has a higher overhead. We attribute this to the global scheduling policy, where the VMM

scheduler moves VCPUs around all PCPUs, which would cause more preemptions than a

partitioned scheduling policy like rt-partition.

Third, Figure 3.3c shows the time spent in the context saved function for the rt-global sched-

uler. Recall that this function is NULL in the rt-partition and credit schedulers, since the

current VCPU is already inserted back into the run queue by the do schedule function. We

observe that, for the rt-global scheduler, around 90% of the overhead was 200 nanoseconds or

less, and the 99% value was only 1224 nanoseconds. We attribute this to the extra overhead

of grabbing the spinlock to access the shared run queue in the rt-global scheduler.

Overall, in 99% of the cases, the overhead of all three functions (do schedule, context switch,

and context saved) for all schedulers was smaller than four microseconds. Since we use a 1

ms scheduling quantum for both the rt-global and the rt-partition schedulers, an overhead

of four microseconds corresponds to a resource loss of only 1.2% per scheduling quantum.

Notably, in contrast to an OS scheduler – which is expected to handle a large number of

tasks – the VMM scheduler usually runs fewer than 100 VCPUs, as each VCPU typically

demands much more resources than a single task. As a result, the run queue is typically

much shorter, and the overhead for grabbing the lock in a shared run queue is typically

smaller than in an OS scheduler.

Summary: Both rt-global and rt-partitioned schedulers incur moderate over-

head.
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3.3.4 Multi-Core Real-Time Performance of Credit Scheduler

We conducted experiments to compare the real-time performance of the default credit sched-

uler in Xen and our RT-Xen schedulers. All guest domains ran the pEDF scheduler in the

guest OS. For the credit scheduler, we configured each domain’s weight and cap as the sum

of all its VCPU’s bandwidths, as described in Section 3.3.1. For comparison, we also plotted

the results for the gEDF and gDM schedulers in RT-Xen using a periodic server.
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Figure 3.4: Credit vs. RT-Xen schedulers

Figure 3.4 shows the results. With the credit scheduler, even when the total workload

utilization is as low as 1.1 (22% of the CPU capacity), 10 % of the task sets experienced

deadline misses, which clearly demonstrates that the credit scheduler is not suitable for

scheduling VMs that contain real-time applications. In contrast, our real-time VM schedulers

based on the gEDF and gDM policies can meet the deadlines of all task sets at utilizations as

high as 3.9 (78% of the CPU capacity). This result highlights the importance of incorporating

real-time VM schedulers in multi-core hypervisors such as Xen. In the following subsections,

we compare different real-time VM scheduling policies in RT-Xen.

Summary: Credit scheduler cannot deliver the real-time performance to VMs,

while RT-Xen can reach a CPU capacity as high as 78%.
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3.3.5 Comparison of Real-Time Scheduling Policies

We now evaluate different real-time VM scheduling policies supported by RT-Xen. We first

compare their capability to provide theoretical schedulability guarantees based on compo-

sitional scheduling analysis. We then experimentally evaluate their capability to meet the

deadlines of real-time tasks in VMs on a real multi-core machine. This approach allows us to

compare the theoretical guarantees and experimental performance of real-time VM schedul-

ing, as well as the real-time performance of different combinations of real-time scheduling

policies at the VMM and guest OS levels. In both theoretical and experimental evaluations,

we used the medium-bimodal distribution, and we performed the experiments for all 25 task

sets per utilization under the rt-global and rt-partition schedulers.

Theoretical guarantees. To evaluate the four scheduling policies at the VMM level,

we fixed the guest OS scheduler to be either pEDF or gEDF, and we varied the VMM

scheduler among the four schedulers (pEDF, gEDF, pDM and gDM). For each configuration,

we performed the schedulability test for every task set.

Performance of the four schedulers at the VMM level: Figures 3.5(a) and 3.5(b) show the

fraction of schedulable task sets for the four schedulers at the VMM level with respect to

the task set utilization when fixing pEDF or gEDF as the guest OS scheduler, respectively.

The results show that, when we fix the guest OS scheduler, the pEDF and pDM schedulers

at the VMM level can provide theoretical schedulability guarantees for more task sets than

the gDM scheduler, which in turn outperforms the gEDF scheduler, for all utilizations. Note

that the fraction of schedulable task sets of the pEDF scheduler is the same as that of the

pDM scheduler. This is because the set of VCPUs to be scheduled by the VMM is the

same for both pDM and pEDF schedulers (since we fixed the guest OS scheduler), and these

VCPUs have harmonic periods; as a result, the utilization bounds under both schedulers are

both equal to 1. The results also show that the partitioned schedulers usually outperformed

the global schedulers in terms of theoretical schedulability.

Combination of EDF schedulers at both levels: Figure 3.5(c) shows the fraction of schedulable

task sets for each task set utilization under four different combinations of the EDF priority

assignment at the guest OS and the VMM levels. The results show a consistent order among
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Figure 3.5: Theoretical Results: Schedulability of Different Schedulers.
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(a) Guest OS with pEDF
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(b) Guest OS with gEDF
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Figure 3.6: Experimental vs. Theoretical Results: Schedulability of Different Schedulers.

the four combinations in terms of theoretical schedulability (from best to worst): (pEDF,

pEDF), (gEDF, pEDF), (pEDF, gEDF), and (gEDF, gEDF).

Experimental evaluation on RT-Xen. From the above theoretical results, we observed

that pEDF and gEDF have the best and the worst theoretical performance at both levels.

Henceforth, we focus on EDF results in the experimental evaluation. We have not observed

statistically distinguishable differences between DM and EDF scheduling in their empirical

performance, and the DM results follows similar trends to EDF scheduling. We include the

DM results in the appendix for completeness.

Experimental vs. theoretical results: Figures 3.6(a) and 3.6(b) show the fractions of schedu-

lable task sets that were predicted by the compositional scheduling analysis and that were

observed on RT-Xen for the two EDF schedulers at the VMM level, when fixing pEDF or

gEDF as the guest OS scheduler, respectively. We examine all 25 task sets for each level of

system, and we find that whenever a task set used in our evaluation is schedulable according

to the theoretical analysis, it is also schedulable under the corresponding scheduler on RT-

Xen in our experiments. In addition, for both pEDF and gEDF schedulers, the fractions of
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schedulable task sets observed on RT-Xen are always larger than or equal to those predicted

by the theoretical analysis. The results also show that, in contrast to the trend predicted in

theory, the gEDF scheduler at the VMM level can often schedule more task sets empirically

than the pEDF scheduler. We attribute this to the pessimism of the gEDF schedulability

analysis when applied to the VMM level, but gEDF is an effective real-time scheduling policy

in practice due to its flexibility to migrate VMs among cores.

Combination of EDF schedulers at both levels: Figure 3.6(c) shows the fraction of empirically

schedulable task sets at different levels of system utilization under four different combinations

of EDF policies at the guest OS and VMM levels. The results show that, at the guest OS

level, the pEDF scheduler always outperform the gEDF scheduler. Further, if we fix pEDF

(gEDF) for the guest OS scheduler, the gEDF scheduler at the VMM level can often schedule

more task sets than the pEDF scheduler.
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Figure 3.7: Average Total VCPU Bandwidth Comparison.

To explain the relative performance of pEDF and gEDF in a two-level scheduling hierarchy,

we investigated the corresponding set of VCPUs that are scheduled by the VMM when

varying the guest OS scheduler. For the same task set, the VCPUs of a domain under the

pEDF and gEDF schedulers can be different; hence, the set of VCPUs to be scheduled by

the VMM can also be different. Figure 3.7 shows the total bandwidth of all the VCPUs

that are scheduled by the VMM – averaged across all 25 task sets – at each level of system

utilization for the pEDF and gEDF schedulers at the guest-OS level. The horizontal line

represents the total available resource bandwidth (with 5 cores).
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The figure shows that gEDF as the guest OS scheduler results in a higher average total

VCPU bandwidth than pEDF; therefore, the extra resource that the VMM allocates to the

VCPUs (compared to that actually required by their tasks) is much higher under gEDF.

Since the resource that is unused by tasks of a higher priority VCPU cannot be used by

tasks of lower-priority VCPUs when VCPUs are implemented as periodic servers, more re-

sources were wasted under gEDF. In an overloaded situation, where the underlying platform

cannot provide enough resources at the VMM level, the lower-priority VCPUs will likely

miss deadlines. Therefore the poor performance of gEDF at the guest OS level results from

the combination of pessimistic resource interfaces based on the compositional scheduling

analysis and the non-work-conserving nature of periodic server. We also study deferrable

server, a work-conserving mechanism for implementing VCPUs.

In contrast, when we fix the guest OS scheduler to be either pEDF or gEDF, the set of VCPUs

that is scheduled by the VMM is also fixed. As a result, we observe that more VCPUs are

schedulable on RT-Xen under the gEDF scheduler than under the pEDF scheduler at the

VMM level (c.f., Figure 3.6(c)). This is consistent with our earlier observation, that the

gEDF scheduler can often schedule more task sets than the pEDF scheduler empirically

because of the flexibility to migrate VMs among cores.

Comparison between periodic server and deferrable server: As observed in the last set of

experiments, realizing VMs as periodic servers suffers from the non-work-conserving nature

of the periodic server algorithm. A deferrable server, on the other hand, implements VMs

in a work-conserving fashion.4 Thus, we repeat the experiments in Section 3.3.5 with a

deferrable server configuration.

Figure 3.8a and Figure 3.8b show the fraction of schedulable task sets with the periodic

server and with the deferrable server, respectively. It can be observed that, when pEDF is

used in the guest OS (Figure 3.8a), the two servers are incomparable in terms of the fraction

of schedulable task sets. There is little slack time in each VCPU’s schedule (recall from

Figure 3.7 that the total VCPU bandwidth for pEDF in the guest OS is close to the actual

4Theoretically, it is well known that the deferrable server scheme can suffer from back-to-back effects, in
which a higher-priority server executes back to back, causing lower-priority servers to miss deadlines. While
the back-to-back effect affects deferrable server’s capability to provide theoretical schedulability guarantees,
in practice the back-to-back effect happens infrequently, and its negative impacts are often offset by the
benefits of the work-conserving property of deferrable server, as shown in our experimental results.
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(a) Guest OS with pEDF
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(b) Guest OS with gEDF
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(c) Deferrable Server’s Performance

Figure 3.8: Fraction of Schedulable Task Sets (EDF in RT-Xen)
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(b) Guest OS with gEDF
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(c) Deferrable Server’s Performance

Figure 3.9: Fraction of Schedulable Task Sets (DM in RT-Xen)

task set utilization) and thus a deferrable server behaves almost like a periodic server. In

contrast, when the guest OS is using gEDF (Figure 3.8b), using gEDF in the VMM with a

deferrable server clearly outperforms the other three combinations. We attribute this to the

work-conserving behavior of the deferrable server, which can take advantage of the available

slack time at runtime to improve the system schedulability. We also plotted the results for

DM priority schemes in RT-Xen in Figure 3.9, and the conclusions are similar to the ones

using EDF priority scheme.

Another interesting observation is that, when pEDF is used in RT-Xen, the difference be-

tween the performance of the two servers is not obvious. We attribute this to the VCPU

parameters calculated based on compositional scheduling analysis: The computed bandwidth

of a VCPU is often larger than half of the available bandwidth of a PCPU. As a result, when

a partitioned scheduler is used in RT-Xen, every PCPU is either able to feasibly schedule

all tasks (if it executes only one VCPU) or is heavily overloaded (if it executes two or more

VCPUs). In the former case, there is no deadline miss on the PCPU under either server; in

the latter, using deferrable server cannot help improve the deadline miss ratio much, since

there is often no slack available when the PCPU is heavily overloaded.
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Finally, Figure 3.8c shows four configurations of the gEDF and pEDF scheduling policies with

a deferrable server. We can observe that generally global scheduling in VMM outperforms

partitioned scheduling empirically. Further, for the same VMM scheduler, using pEDF in

the guest OS results in better performance than using gEDF.

Summary: gEDF combined with deferrable server delivers the best real-time

performance among all RT-Xen schedulers.

3.3.6 Experimental Results for Cache Intensive Workloads

Our previous experiments use CPU-intensive workloads with small memory footprints. In

comparison, due to cache penalty, a memory-intensive workload may be more affected by

VCPU migrations caused by a global VM scheduler. To study the impacts of cache effects, we

conducted a new empirical comparison between rt-global and rt-partition schedulers using a

memory-intensive workload. The Intel i7 processor used in this set of experiments contained

6 cores. Each core owned dedicated L1 (32KB data, 32KB instruction) and L2 (256KB

unified) caches, while all cores shared a unified 12MB L3 cache. The last-level cache is

inclusive [12], which means the data that is in a PCPU’s L2 cache must also be in the shared

L3 cache. Therefore, the cache penalty of a VCPU migration is usually associated with

latency difference between core-specific private caches (L1 or L2) and the shared L3 cache.

On the i7 processor, the latency difference between the L2 and L3 cache is 18 cycles [13],

about 5 nano-seconds per cache line (64B). The local L2 cache size is 256 KB (4096 cache

lines), therefore, a VCPU migration may result in a cache penalty as high as 4096 x 5 ns =

20 µs. However, due to the widely used cache pre-fetch technology, the observed migration

penalty is usually much less than the worst case. In comparison to a VMM scheduling

quantum of 1 ms, we hypothesize that the VCPU migration would not incur a significant

performance penalty. 5

To create a significant cache penalty from VCPU migrations, we designed the memory access

pattern of our tasks as follows. We allowed each task to access a fixed sized array within the

L2 cache. The access pattern was one element per cache line, and we stored the next element’s

5This analysis is valid only for processors with a shared last-level cache. For platforms where the last-level
cache is not shared, global scheduler can cause last-level cache miss and result a higher penalty, as shown in
an earlier study on global scheduling at the OS level [35].
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index in the current element, so that it was data dependent and the improvement from cache

pre-fetch could be mitigated. Recent work in compositional scheduling theory also considers

cache impact [75], but assumes there is no shared cache. Therefore, we kept the other

parameters of the task sets the same as in our previously generated workload. The impact

of cache has received significant attention in the context of one level scheduling [30, 59, 76];

we defer integrating these insights into a two-level hierarchal scheduling to future work.
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Figure 3.10: Cache-Intensive Workloads (guest OS with pEDF)

We used pEDF in the guest OS so that the cache penalties were attributed only to the

VMM-level schedulers. We compared the real-time performance of the gEDF and pEDF

VMM schedulers. As shown in Figure 3.10, gEDF again outperforms pEDF despite the

cache penalty. This confirms that the benefits of a global scheduling policy outweighs the

cache penalty caused by the VCPU migration on a multi-core platformed with shared last-

level cache.

Summary: Benefit of global scheduling dominate migration cost on a shared

L3-cache platform.

3.4 Summary

RT-Xen 2.0 realizes global and partitioned VM schedulers, and each scheduler can be con-

figured to support dynamic or static priorities, and to run VMs as periodic or deferrable
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servers. Through a comprehensive experimental study, we show that both global and parti-

tioned VM scheduling can be implemented in the VMM at moderate overhead. Moreover,

at the VMM scheduler level, in compositional schedulability theory pEDF is better than

gEDF in schedulability guarantees, but in our experiments their actual performances are

reversed in terms of the fraction of workloads that meet their deadlines on virtualized multi-

core platforms. At the guest OS level, pEDF requests a smaller total VCPU bandwidth

than gEDF based on compositional schedulability analysis, and therefore using pEDF in the

guest OS level leads to more schedulable workloads on a virtualized multi-core processor.

The combination of pEDF in guest OS and gEDF in the VMM therefore resulted the best

experimental performance. Finally, on a platform with a shared last-level cache, the benefits

of global scheduling outweigh the cache penalty incurred by VM migration.
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Chapter 4

RT-OpenStack: Real-Time Cloud

Computing

Chapters 2 and 3 focus on real-time virtualization using RT-Xen on a dedicated host. While

RT-Xen can deliver the required real-time performance to VMs, it has two drawbacks in

supporting real-time VMs in a cloud. First, RT-Xen employs compositional scheduling anal-

ysis [45,75] to compute the resource interfaces of VCPUs needed to guarantee the real-time

performance of applications running in the VMs. While compositional analysis provides

the theoretical foundation for providing real-time guarantees on RT-Xen, the resource in-

terfaces computed based on the compositional analysis are often conservative. As a result,

provisioning CPU resources based on the resource interfaces may lead to significant CPU

underutilization (around 60% in our previous experiments, see Figure 3.5 in Chapter 3).

Second, there is no differentiation between real-time and non-real-time VMs. Both real-

time and non-real-time VMs are scheduled using the same type of resource interface, and

the non-real-time VMs must be incorporated into the underlying compositional scheduling

analysis even though they do not require any latency guarantees. Therefore, if we directly

apply RT-Xen 2.0 in a cloud, the host will be underutilized, and the non-real-time VMs will

further reduce the resource utilization.

This chapter presents RT-OpenStack, which provides a holistic solution for co-hosting real-

time VMs with non-real-time VMs in a cloud. We first introduce background information

on OpenStack and its limitations for supporting real-time VMs in Section 4.1. We then

describe the design and implementation of RT-OpenStack in Section 4.2 and present our

experimental evaluation in Section 4.3. Finally, we summarize this chapter in Section 4.4.
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4.1 OpenStack and its Limitations

OpenStack [19] was developed in 2010 by Rackspace and NASA, and has quickly became

a popular cloud management software (used in production by RackSpace [20] and HP-

Cloud [11]). It adopts a centralized architecture and consists of interrelated modules that

control pools of CPU, memory, networking, and storage resources of a cluster of hosts. When

integrated with Xen, a special agent domain is created on each host to support these resource

management functions in co-ordination with domain 0 of the host.

We now review three aspects of OpenStack that are critical for managing the real-time

performance of VMs. (1) the resource interface that specifies the resource management of

a VM; (2) an admission control scheme for each host to avoid overload situation; and (3) a

VM allocation scheme that maps VMs to hosts.

Resource Interface: The resource interface in OpenStack is represented by a pre-set type

(called a “flavor”). The cloud manager can configure the number of VCPUs, memory size,

and disk size. The user can also pass other information, such as the VM-to-VM affinity, to

the cloud manager.

Admission Control: The admission control in OpenStack is referred to as “filtering”.

OpenStack provides a framework where users can plug in different filters. By default, there

are more than ten filters provided, which focus on checking for enough memory, storage,

and VM image compatibility. Two of the filters are related to the CPU resources: (1) core

filter, which uses a VCPU-to-PCPU ratio to limit the maximum number of VCPUs per host.

By default, this ratio is set to 16:1, which means if there are 4 PCPUs in a host, the filter

can accept up to 64 VCPUs; (2) max VM filter, which limits the maximum number of VMs

per host. By default, this value is set to 50. Clearly, these filters cannot provide real-time

performance guarantees to real-time VMs allocated to a host, given the coarse-grained nature

of the heuristics used.

VM Allocation: After the filtering process, OpenStack needs to select one host for the

VM. This is referred to as “weighing”. By default, OpenStack uses a worst-fit algorithm

based on the amount of free memory on each host.
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While OpenStack is widely used in the cloud, it cannot support real-time VMs demanding

latency guarantees. First, the resource interface is inadequate. Users can configure only

the number of VCPUs, but they cannot specify the resource and timing granularity needed

to achieve real-time performance guarantees. Second, the VM allocation heuristics ignore

real-time requirements and allocate VMs based on coarse-grained metrics that are insuffi-

cient for provisioning real-time performance guarantees. In the filter stage, OpenStack uses

heuristics to decide whether a host is suitable for the VM. In the weighing stage, the current

scheme is based on memory and ignores the CPU resources demand for meeting the latency

requirements of applications within the VMs.

4.2 RT-OpenStack: Design and Implementation

A real-time cloud management system for co-hosting real-time and non-real-time VMs should

have the following characteristics:

• It should provide a real-time resource interface for the VMs that includes the resources

needed to ensure timing guarantees of the applications running within the VMs, such

as the number of VCPUs required by each VM and their specifications (e.g., budget

and period for each VCPU).

• It should deliver the resources according to the specification to the real-time VMs. To

achieve this, a real-time VMM scheduler at the host level is required.

• It should perform an appropriate VM-to-Host mapping, which maintains the schedu-

lability of real-time VMs without overloading the hosts.

• It should be able to co-host non-real-time VMs with real-time VMs.

• It should be work-conserving and maintain a high CPU utilization at each host.

We have designed RT-OpenStack, a cloud management system designed to support co-

hosting real-time and non-real-time VMs in a cloud. On a single host level, we designed

RT-Xen 2.1 to support co-hosting real-time and non-real-time VMs. It allows the non-

real-time VMs to share the remaining CPU resources without interfering with the real-time
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performance of RT VMs. On the cloud management level, we have designed an RT-Filter

that works as admission control on each host for real-time VMs, and an RT-Weigher that

allocates real-time VMs based on CPU resources. We now discuss them one by one.

4.2.1 Co-Scheduling real-time and non-real-time VMs on a Host

Recall in RT-Xen that the resource interface of a real-time VM is computed using compo-

sitional scheduling analysis theory [36, 45, 75], which ensures that if the host has sufficient

resources to feasibly schedule the VCPUs specified by the interfaces, then all applications

running within the VMs are schedulable. We add one field called “rt” for each VM, and

re-order the run queue based on this value, as shown in Figure 3.1.

Figure 4.1: Run Queue Architecture in RT-Xen 2.1

The key difference between Figure 4.1 and Figure 3.2 in Chapter 3 is that real-time VMs’

VCPUs always have higher priority then non-real-time VMs’ VCPUs. Therefore, the non-

real-time VMs do not affect the compositional schedulability analysis of the real-time VMs.

At the same time, they can utilize the remaining CPU resources.

4.2.2 Co-Hosting real-time and non-real-time VMs in a Cloud

Recall that OpenStack lacks an adequate resource interface for VMs, and the existing VM-

to-host mapping ignores real-time scheduling analysis. We now discuss these concerns one

by one.

Resource Interface: Now that each host runs with the RT-Xen 2.1 scheduler, we still need

a method to pass the real-time specification to the cloud manager when creating a VM. We
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can create various VM template “flavors” with different pre-defined values, but that would

be too rigid. In contrast, we use the existing flavors which, includes the number of VCPUs,

and pass information to OpenStack via the scheduler hint: rt, whether this VM is a real-

time VM or not; budget, the total budget for all VCPUs; and period, the shared period for

all VCPUs. When there are multiple VCPUs in the flavor, we distribute the total budget

evenly among them.

For a non-real-time VM, a system manager usually does not know the workload characteristic

ahead. Since it will not affect the real-time VMs’ performance, we set the budget to be

the same as its period for non-real-time VCPUs, so that they can use the remaining CPU

resources whenever available. We also configure the same period value for all non-real-time

VMs’ VCPUs, so they always have the same deadline in EDF scheduling. When multiple

VCPUs share the same deadline, RT-Xen 2.1 uses a round robin scheduling scheme among

them. As a result, the non-real-time VMs share the remaining CPU resources evenly. Note

here that for a non-real-time VM, a user can also specify its budget to be less than its period,

which limits the CPU resources to the non-real-time VM. Exploration of this option is left

to future work. There are other approaches to integrating non-real-time tasks with real-time

tasks [32, 37], but either they require the non-real-time tasks to follow the same task model

as real-time tasks, or they treat non-real-time tasks as real-time ones, which further reduces

the utilization bound.

RT-Filter: In addition to the existing filters in the OpenStack scheduler, we implemented

an RT-Filter for RT VMs. It acts as an admission control for real-time VMs on each host.

When a real-time VM creation request is submitted, the RT-Filter is triggered on each

host. RT-Filter reads the already accepted real-time VMs’ information on the host, and

together with the new request, it performs the schedulability test to get the minimal number

of PCPUs to schedule those VCPUs. If the required number of PCPUs is larger than the

available PCPUs, it rejects the request; otherwise, it accepts the request. Note that the RT-

Filter is applied only for real-time VM requests, and it considers only the real-time VMs’

information when performing the compositional scheduling analysis. In this way, we can

maintain the real-time VMs’ performance by not overloading the host, while being able to

accept non-real-time VMs to fully utilize the underlying CPU resources.
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RT-Weigher: For the VM allocation (weighing) process, we face the problem of considering

at least two resources: CPU and memory. We focus on the CPU resources for real-time

VMs in this chapter, and use a worst-fit allocation scheme for real-time VMs, based on

CPU resources. We have designed and implemented an RT-Weigher into the OpenStack

scheduling framework. The RT-Weigher works very similar to RT-Filter, but instead of

returning a value that indicates whether the VM is accepted or not, RT-Weigher returns the

remaining CPU capacity on the host. It also considers only real-time VMs when performing

the compositional schedulability analysis. For the non-real-time VMs, we fall back to the

default worst-fit allocation scheme based on memory.

Table 4.1: RT-OpenStack for real-time and non-real-time VMs

Resource Interface Admission Control VM Allocation
Real-time VM Compositional Sched Existing Filters + RT-Filter RT-Weigher

Non-real-time VM Full CPU Existing Filters Memory Weigher

Table 4.1 summarizes the differences in treating real-time and non-real-time VMs in RT-

OpenStack. In summary, we consider only existing real-time VMs’ information for RT VMs,

and fall back to the default schemes for non-real-time VMs.

We implemented RT-Xen 2.1 in C. We also extended the RT-Xen tool for including the

rt parameters. The RT-Filter and RT-Weigher are implemented in Python. Both RT-Xen

2.1 and RT-OpenStack are open source and can be downloaded at https://sites.google.

com/site/realtimexen.

4.3 RT-OpenStack: Evaluation

We now present our experimental evaluation of RT-OpenStack for co-hosting real-time VMs

with non-real-time VMs. We first evaluate RT-Xen 2.1 on a single host to demonstrate that

non-real-time VMs cannot affect the performance of real-time VMs. We then conduct a

study on a seven host cluster to demonstrate that RT-OpenStack can satisfy real-time VMs’

resource requirement, while keeping hosts fully utilized.
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4.3.1 Experimental Setup

Our testbed contains seven multi-core machines, named from host 0 to host 6. For the CPU

resources, host 2 has 6 cores, while all other 5 hosts have 4 cores; for the memory resource,

host 0 and 1 have 8 GB memory, host 2 has 12 GB memory, and hosts 3 to 6 have 16

GB memory each. Host 0 is configured as the controller, and it can also run guest VMs.

XenServer 6.2 patched with RT-Xen 2.1 is installed on all machines. On each machine,

domain 0 is configured with 1 VCPU, 1 GB memory, and is pinned to core 0; the agent VM

is configured with 1 VCPU, 3 GB memory, and is also pinned to core 0. The XenServer

takes another 200 MB extra memory on each machine. The remaining cores and memory

are used to run the guest VMs. We used gEDF scheduler with deferrable server on each

machine, as it was shown to work best in Chapter 3. We disabled the dynamic frequency

scaling, turbo boost, and hyper-threading so that the PCPU worked at a constant speed.

All other unnecessary services were turned off during the experiment.

4.3.2 Impact of non-real-time VMs on real-time VMs

RT VM’s reservation on single core

We first demonstrate that the non-real-time VM cannot affect the CPU resources allocated

to an RT VM. We focus on the single-core case, and set up the experiment as follows: We ran

the experiment on a single host, boot one real-time VM and five competing non-real-time

VM (named VM1 to VM5). They have one VCPU each, and were all pinned to a single core

(through cpumask). The RT VM was configured with a budget of 4 and period of 10, and

the non-real-time VM’s budget was set to be equal to its period. All VMs ran a CPU busy

program to take as much CPU resources as possible. We started with only one real-time VM

running, then gradually enable the CPU busy program in non-real-time VMs, and record

the CPU resources received them.

Table 4.2 shows the results. We observe that the RT VM’s performance is not affected by

non-real-time VMs, even under stress testing. We also notice that non-real-time VMs share

the remaining CPU resources, as expected. Another observation is that all CPU utilizations

add to at least 99.5%, which demonstrates our efficient implementation of RT-Xen 2.1.

61



Table 4.2: CPU Utilization Test on a Single Core

RT VM 40.3% 40.2% 40.2% 40.2% 40.2% 40.2%
VM 1 - 59.5% 29.8% 19.9% 14.9% 11.9%
VM 2 - - 29.8% 19.8% 14.8% 11.9%
VM 3 - - - 19.9% 14.9& 12.0%
VM 4 - - - - 14.8% 12.0%
VM 5 - - - - - 12.0%
Total 40.3% 99.7% 99.8% 99.8% 99.6% 100%

Note here that for the default credit scheduler, a system administrator can adjust each

VCPU’s weight to make the real-time VM receive a certain amount of resources. However,

this requires a global knowledge of all the running domains, and also needs re-adjustment

whenever there is a change in the number of VMs. In contrast, when a system administrator

allocates a certain amount of CPU resources to a real-time VM in RT-Xen 2.1, it will not

change, regardless of the number of non-real-time VMs.

Schedulability test for RT VM

This experiment demonstrates that RT-Xen 2.1 can provide CPU resources to the real-

time VMs at the right time to meet the real-time application’s deadlines. We set up this

experiment as follows: Each RT VM contained two real-time tasks, with period randomly

selected from 20 ms to 33 ms, and execution time randomly selected from 10 ms to 20 ms.

For the underlying VCPU parameters, we iterated all periods that were less than 30 ms, then

used the compositional scheduling analysis [45, 75] to generate the required budget for each

VCPU. After getting all the combinations, we used the one with the minimal total VCPU

bandwidth.

We ran the experiments with three PCPUs as the constraint, and generated two real-time

VMs: the actual total task utilization was 2.03, while the total VCPU bandwidth was 2.93,

and they required three full PCPU to schedule the two real-time VMs. We then booted up

two non-real-time VMs, and configured the cpu test program in sysbench [22] to run in them.

The program kept calculating prime numbers until a predefined threshold, then started from

2 again. It reported the number of rounds achieved during a given time. The real-time task
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and the sysbench are all configured to run for 1 minutes, and we record the results. We also

repeated the experiment with the credit scheduler.

Table 4.3: Schedulability Test on Multi-Core

Deadline Miss Ratio Number of Rounds Calculating Primes
RT VM 1 RT VM 2 Non-real-time VM 1 Non-real-time VM 2

RT-Xen
2.1

0% 0% - -
0% 0% 1929 -
0% 0% 1280 1266

Credit
0.01% 0.5% - -
3.4% 15.3% 2596 -
73.7% 40.7% 1941 1736

Table 4.3 shows the results. We observe that under all cases, RT-Xen 2.1 can meet the

deadline requirements for real-time VMs, and evenly distribute the remaining resources for

non-real-time VMs. In sharp contrast, using credit scheduler experienced light deadline

misses (0.01% and 0.5%) for both real-time VMs even when there was no interference, and

the deadline miss ratio grew up to 73.5% for RT VM 1 when there are were non-real-time

VMs running. We also observe that when there are multiple non-real-time VMs configured

with same weight, the CPU resources they get are not equal. We attribute this to the nature

of partitioned scheduling in the credit scheduler, and to its heuristic load-balancing scheme.

Summary: On a single host, RT-Xen 2.1 can maintain real-time VMs’ perfor-

mance while keeping the host utilization high by running non-real-time VMs.

4.3.3 RT-OpenStack on a Cluster

This experiment was set up to evaluate RT-OpenStack on a cluster. All seven hosts were

used as a cloud. Both real-time and non-real-time VMs were running in the cloud. In each

real-time VM, we emulated a cloud gaming server described in [52], where there are two

real-time tasks: a video encoder and a audio encoder. We randomly chose each task’s period

in the range between 20 ms to 33 ms, to emulate different frame rates between 30 fps and

50 fps. Each task’s execution time was randomly ranged from 10 ms to 20 ms, to represent

different games, resolutions, and settings. We applied the LitmusRT [16] patch for the RT

VM and used the gEDF scheduler to schedule real-time tasks. Compositional scheduling
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theory [45,75] was used to generate the VCPU parameters for the RT VM. All the non-real-

time VM were configured to be a hadoop cluster, and we ran the standard pi program to

test its performance as a whole. The hadoop program requires all non-real-time VMs in the

cluster to finish; as a result, if any of them does not get enough CPU resources, the total

finish time will be affected.

The VM booting sequence was as follows: We first kept creating real-time VMs until rejected.

Each RT VM was configured with 1.75 GB memory. After that, we kept booting non-real-

time VMs with 2 VCPUs and 3.75 GB memory each until rejected. Eventually, eleven

real-time VMs and nine non-real-time VMs were accepted.
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Figure 4.2: RT-OpenStack VM Allocation
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Figure 4.2 shows the VM allocation scheme for RT-OpenStack. We can see that the RT

VMs are evenly distributed among seven hosts, and the non-real-time VMs are booted on

hosts with enough memory to take advantage of the remaining CPU resources. Because we

configured each non-real-time VM’s VCPU’s budget to be the same as its period so they can

fully use the CPU resources, we do not show their CPU allocation in the Figure 4.2a.
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Figure 4.3: OpenStack VM Allocation

We repeated the same booting sequence using the default OpenStack, and Figure 4.3 shows

the results. As expected, a worst-fit algorithm based on memory is used, and the first eleven

real-time VMs are located hosts 3-6. We draw a dashed line in Figure 4.3 for the limit on
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CPU resources on hosts 4 to 6. As we can see, the CPU resources are overloaded on these

three hosts.

After all the VMs were ready, we ran the hadoop workload in the non-real-time VMs, and at

the same time started the real-time tasks in RT VMs. When the hadoop workload finished,

we manually terminated the real-time task in each RT VM and recorded its deadline miss

ratio. For both RT-OpenStack and OpenStack allocation schemes, we ran the experiments

with RT-Xen scheduler and credit scheduler on each host.

Table 4.4: Cluster Performance Comparison

RT-OpenStack+RT-Xen RT-OpenStack+Credit OpenStack+RT-Xen OpenStack+Credit

D
ea

d
li
n
e

M
is

s
R

at
io

RT 1 0% 3% 9% 37%
RT 2 0% 1% 0% 31%
RT 3 0% 54% 0% 61%
RT 4 0% 35% 0% 13%
RT 5 0% 21% 2% 75%
RT 6 0% 14% 0% 29%
RT 7 0% 0% 0% 30%
RT 8 0% 0% 0% 36%
RT 9 0% 51% 41% 73%
RT 10 0% 35% 11% 47%
RT 11 0% 0% 0% 32%

Hadoop finish time 435 s 254 s - 314 s

Table 4.4 shows the results. The RT-OpenStack + RT-Xen configuration experienced no

deadline miss in all 11 RT VMs, and finished the hadoop task in 435 seconds. In contrast,

using the same RT-OpenStack allocation scheme but with the credit VMM scheduler, eight

out of eleven RT VMs experienced deadline misses, and two of them have deadline miss

ratio larger than 50% (RT VM 3 and 9). However, the hadoop tasks finished in 254 seconds,

which is 3 minutes faster than the RT-Xen scheduler. This was expected because in credit

scheduler, the non-real-time VMs get more resources. When using the OpenStack allocation

schemes with the RT-Xen scheduler, the hadoop made no progress at all. So we terminated

the experiments at five minutes and report the deadline miss ratio in all real-time VMs. Four

out of eleven RT VMs experienced deadline misses, we further examined the allocation and

found three of them were allocated on the same host (host 6). This finding shows that RT-

Xen can prioritize the CPU resources to RT VMs, however, due to the allocation scheme,

on host 6 there are not enough CPU resources. The OpenStack + Credit combination
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experienced the worst deadline miss ratio for all real-time VMs. This again demonstrated

that the default allocation scheme ignores the CPU resource requirement, and the underlying

credit scheduler cannot deliver real-time performance. We also observe that its hadoop task

finished 1 minute later than the RT-OpenStack + credit combination, which we attribute to

the CPU overloading on hosts 3-6.
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Figure 4.4: Actual CPU Resource Usage for RT-OpenStack

Since the hadoop program took the longest to finish in the RT-OpenStack + RT-Xen setup,

we were also interested in whether the hosts are fully utilized or not. We repeated the

experiment and recorded each domain’s actual CPU consumption for 10 seconds. Figure 4.4

shows the results, we exclude core 0 which runs domain 0 and the agent VM. We also draw

a dashed line to represent the CPU resource limit on each host. Comparing the actual

allocation with the claimed CPU resources by real-time VM in Figure 4.2a, we have the

following insights: (1) although the claimed CPU resources almost reached the limit, the

actual CPU consumption by RT VM was much less than claimed, which further proves the

pessimism of the hierarchical scheduling theory, and motivates us to co-host real-time VM

with non-real-time VMs; (2) on hosts 3 to 6, the actual total CPU utilization has already

reached the limit, which means any improvement on the hadoop program will affect the

real-time performance of RT VMs. On host 2, the actual CPU allocation for non-real-time

VMs reached 200%, which is the upper limit for 2 VCPUs.
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Summary: RT-OpenStack can provide real-time performance to real-time VMs,

while allowing non-real-time VMs to share the remaining CPU resources with-

out interfering with the performance of real-time VMs.

4.4 Summary

This chapter presents RT-OpenStack, a cloud management system that can co-host real-

time VMs with non-real-time VMs. RT-OpenStack makes three main contributions: (1) the

integration of a real-time hypervisor (RT-Xen) and a cloud management system (OpenStack)

through real-time resource interface; (2) RT-Xen 2.1 scheduler to allow non-real-time VMs

to share hosts with real-time VMs without jeopardizing the real-time performance of RT

VMs; and (3) a VM-to-host mapping strategy that provides real-time performance to RT

VMs while allowing effective resource sharing among non-real-time VMs. Our experimental

results demonstrate that RT-OpenStack can support latency guarantees for real-time VMs,

and at the same time let the non-real-time VMs fully utilize the remaining CPU resources.
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Chapter 5

RTCA: Real-Time Communication

Architecture

RT-Xen and RT-OpenStack focus on CPU resources to provide real-time guarantees, which is

adequate for computation-intensive applications. However, multiple network communication

can also introduce a significant amount of delay. A modern virtualized systems may seat

as many as 40 to 60 VMs per physical host [60], and with the increasing popularity of 32-

core and 64-core machines [38], the number of VMs per host is likely to keep growing. As

a result, a significant amount of network communication may become local inter-domain

communication (IDC) within the same host. When multiple domains co-exist on a same

host, it is important to properly schedule the processing of local communication to achieve

latency differentiation among VMs with different priorities and quality of service (QoS)

requirements.

This chapter presents RTCA, a novel real-time communication architecture for Xen to pre-

server the low inter-domain communication latency between high-priority domains in face

of low priority domain’s traffic. We review the background of Xen communication architec-

ture in Section 5.1, then closely examine the latency of IDC flows in Xen and point out its

key limitations that can cause significant priority inversion in IDC in Section 5.2. We show

experimentally that improving the VMM scheduler along cannot achieve latency differentia-

tion for IDC due to significant priority inversion in the domain 0. To address this problem,

we have designed and implemented RTCA, which is described in detail in Section5.4 and

Section 5.5. We summarize in Section 5.6.
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5.1 Background

This section provides background information about the key communication architecture

components in Xen.

5.1.1 Xen Communication Architecture

Figure 5.1 gives an overview of the communication architecture in Xen. For IDC, domain

0 contains a netback driver that coordinates with a netfront driver in each guest domain.

For example, the upper connecting lines in Figure 5.1 show the inter-domain communication

for application A from domain 1 to domain 2. Application A first sends packets to the

netfront driver in domain 1; the netfront driver delivers the packets to domain 0; domain 0

examines each packet, determines it is for a local domain, delivers it to domain 2 and notifies

the VMM scheduler; when domain 2 gets scheduled, its netfront driver send each packet to

application A. Note that the applications running atop the guest domains are not aware of

this para-virtualization, so no modification to them is needed. Another approach for IDC

is to use shared memory to exchange data between domains [53, 54, 70, 77], thus avoiding

the involvement of domain 0 to obtain better performance. However, the shared memory

approach requires modifications to the guest domain besides the well supported Xen patch,

and may even require modifying the applications as well. domain 0 also contains a NIC

driver, and if a packet is for another host, it directs the packet to the NIC driver, which

in turn sends it out via the network. Improving the real-time performance of inter-host

communication is outside the scope of this chapter and will be considered as future work.

As Figure 5.1 illustrates, in IDC two mechanisms play important roles: (1) the VMM sched-

uler, which needs to schedule the corresponding domain when it has pending/coming packets;

and (2) the netback driver in domain 0, which needs to process packets according to their

QoS requirements.
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Figure 5.1: Xen Communication Architecture Overview

5.1.2 IDC in Domain 0

To explain how IDC is performed in domain 0, we now describe how Linux processes packets,

how the softirqs and kernel threads behave, and show how Xen hooks its netfront and netback

drivers into that execution architecture to process packets.

When a guest domain sends a packet, an interrupt is raised to notify domain 0. To reduce

context switching which can produce receive livelock [61], Linux 2.6 and later versions have

used the New API packet reception mechanism [63]. The idea is that only the first packet

raises a NET RX SOFTIRQ, and after that the interrupt is disabled and all the following

packets are queued without generating interrupts. The softirqs are scheduled by a per-CPU

kernel thread named ksoftirq. Also, a per-CPU data structure called softnet data is created

to hold the incoming packets.
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Figure 5.2: Xen Communication Architecture in Domain 0
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As shown in Figure 5.1, Xen uses the netfront and netback drivers to transmit packets

between guest and manager domains. Figure 5.2 illustrates in detail how domain 0 works,

with the source domains on the left sending packets to the destination domains on the right.

When domain 0 boots up, it creates as many netback devices as it has VCPUs (here we

consider only the single core case, with a single netback device in domain 0). The netback

device maintains two queues: a TX Queue for receiving packets from all guest domains, and

an RX Queue for transmitting packets to all guest domains. They are processed by a single

kernel thread in Linux 3.4. The kernel thread always performs the net rx action function

first to process the RX Queue, and then performs the net tx action function to process the

TX Queue. When a guest domain boots up, it creates a netif device in domain 0 and links

it to the netback device. 6

Within the domain 0 kernel, all the netback devices are represented by one backlog device

and are treated the same as any other device (e.g., a NIC). As can be seen from Figure 5.2,

when an IDC flow goes through domain 0, there are three queues involved, which we now

consider in order by where the packets are processed.

Netback TX Queue: The netback device maintains a schedule list of all the netif devices

that have pending packets. When the net tx action function is processed, it picks the first

netif device in the list, processes one packet, and if it still has pending packets, puts the

netif device at the end of the list, which results in a round robin transmission order with

a quantum of 1. In one round, it processes up to a certain number of packets, which is

related to the page size on the machine: on our 64-bit Linux machine, that number is 238.

If there are still packets pending after a round, it notifies the scheduler to schedule the

kernel thread again later. Xen by default adopts a server-based algorithm [29] to achieve

rate limiting for each domain within this stage; if a netif device has pending packets but

exceeds the rate limit, Xen instead picks the next one. In this chapter, we leave the rate

control default (unlimited) as it is and instead change the order of pending packets. RTCA

can be seamlessly integrated with default or improved rate control mechanisms [39].

Softnet Data Queue: All the packets dequeued from the TX Queue are enqueued into a

single softnet data queue. domain 0 processes this queue when responding to the NET RX SOFTIRQ.

6Linux (version 2.4 and after) provides a traffic control tool [15]. A priority qdisc can be used to prioritize
packets. However, the priority qdisc works only within one device, while in the IDC, traffic belonging to
different domains has already been delivered to different netif devices.
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A list of all active devices (usually NIC and backlog) is maintained, and domain 0 processes

up to 64 packets for the first device, puts it at the end of the list, and then processes the

next one, also resulting in a round robin order with a quantum of up to 64. In one round,

the function quits after either a total of 300 packets is processed or 2 jiffies have passed. If

there are still pending packets at the end of a round, another NET RX SOFTIRQ is raised.

When processing a packet, if domain 0 finds that its destination is a local domain, it bridges

the packet to the RX Queue in the corresponding netback device; if it is processing the first

packet, it also notifies the scheduler to schedule the kernel thread. Note that by default 1000

packet limit applies for the backlog device [62]. We consider only IDC in this chapter and

defer integration with the NIC as future work.

Netback RX Queue: Similar to the TX Queue, the netback driver also has an RX Queue

(associated with a function net rx action) that contains packets whose destination domain’s

netif is associated with that netback device. All the packets in this case are processed in

FIFO order and are delivered to the corresponding netif device. Note that processing of this

queue also has a limit (238) for one round, and after that, if there are still packets pending,

it tells the scheduler to schedule them later.

5.2 Limitations of the Communication Architecture

As Figure 5.1 shows, both the VMM scheduler and domain 0 can impact IDC performance.

This section describes qualitatively the limitations of both the VMM scheduler and domain 0

for prioritized IDC. The next section will present an empirical study to quantify the impacts

of their limitations on the performance of prioritized IDC flows.

5.2.1 Limitations of the VMM Schedulers

The default Credit scheduler has two major problems when handling prioritized traffic: (1)

it schedules VCPUs with outgoing packets in a round robin fashion, and (2) for incoming

packets, it applies a general boost to a blocked VCPU regardless of its priority. Note that
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boosting the priority of a low priority VCPU to receive a packet can introduce priority

inversion when a high priority VCPU is running.

The RT-Xen scheduler [56, 73] applies a strict priority policy to schedule VCPUs for both

outgoing and incoming packets, and thus can prevent interference from lower priority do-

mains within the same core. However, it uses 1 ms as the scheduling quantum, and when

a domain executes for less than 0.5 ms, its budget is not consumed. On a typical machine,

however, the time for a domain to send a packet to another local domain is less than 10 µs.

Consider a case where one packet is bouncing between two domains on the same core: if these

two domains run no other tasks, the RT-Xen scheduler would switch rapidly between these

two domains, with each executing for only about 10 µs. As a result, neither domain’s budget

will be consumed, resulting in a 50% share for each, regardless of their budget and period

configuration. This clearly violates the resource isolation property of the VMM scheduler.

We address this limitation by providing dual time resolutions: µs for CPU time accounting,

and ms for VCPU scheduling. The dual resolution provides better resource isolation, while

maintaining 1ms as an appropriate scheduling quantum for real-time applications. For all

the evaluations in this chapter we use this improved version of the RT-Xen scheduler.

5.2.2 Limitations of Domain 0

Domain 0 also has major limitations in terms of real-time IDC performance. As was discussed

in Section 5.1.2, the TX, softnet data, and RX queues are shared by all guest domains,

resulting in a round robin scheduling policy with a quantum of 1, regardless of the domain’s

priority. We show that even under a light interference workload from other cores (which

cannot be prevented by any VMM scheduler), the IDC latency for high priority domains

is severely affected. Another limitation is that the TX, softnet data, and RX queues are

processed in a fixed order, regardless of the priority of the current processing packets. Before

Linux 3.0, TX and RX processing was executed by two TASKLETs in an arbitrary order.

As a result, the “TX - softnet data - RX” stage could be interrupted by the RX processing

for previous packets and by the TX processing for future packets. Linux 3.0 (and later

versions) switched to using one kernel thread to process both TX and RX queues, with

the RX Queue always being processed first. This change introduces another problem: the

higher priority packets may need to wait until a previous lower priority one has finished
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transmission. Finally, the priority inversion is exacerbated by large and mismatched queue

sizes. The TX and RX queues have total processing sizes of 238, with a quantum of 1 for

each domain, while the softnet data queue has a total processing size of 300, with a quantum

of 64 for each device. These large and mismatched sizes make timing analysis difficult and

may degrade performance. For example, under a heavy IDC workload where a NIC also is

doing heavy communication, the softnet data queue (total size of 300) is equally shared by

backlog and NIC devices. Every time the TX Queue delivers 238 packets to the softnet data

queue, the softnet data queue is able to process only 150 of them, causing the backlog queue

to become full and to start dropping packets when its limit of 1000 packets is reached.

5.3 Quantifying the Effects of the VMM Scheduler and

Domain 0

We ran a series of experiments to evaluate the impacts of the VMM scheduler and domain 0 on

IDC performance. The experiments were performed on an Intel i7-980 six core machine with

hyper-threading disabled. SpeedStep was disabled by default, and each core ran at 3.33 GHz

constantly. We installed 64-bit CentOS with para-virtualized kernel 3.4.2 in both domain 0

and the guest domains, together with Xen 4.1.2 after applying the RT-Xen patch. We focused

on the single-core case with every domain configured with one VCPU, and we dedicated core

0 to domain 0 with 1 GB memory. Dedicating a separate core to handle communication

and interrupts is a common practice in multi-core real-time systems research [38]. It is

also recommended by the Xen community to improve I/O performance [72]. During all

experiments we disabled the NIC and configured all the guest domains within a local IP

address, focusing on IDC only. We also shut down all other unnecessary services to minimize

incidental sources of interference. Domain 0 does not itself run other tasks that might

interfere with its packet processing.
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5.3.1 Effect of the VMM Scheduler: Credit vs. RT-Xen

The experiment presented in this section examines the effect of the VMM scheduler when

all interference is coming from the same core. We booted ten domains and pinned all of

them to core 1 (domain 0 still owns core 0). Each guest domain had 10% CPU share, which

was achieved via the -c parameter in the Credit scheduler, and by configuring a budget of 1

ms and a period of 10 ms in the RT-Xen scheduler. We configured domain 1 and domain 2

with highest priority and measured the round-trip time between them: domain 1 sent out 1

packet every 10 ms, and domain 2 echoed it back. The rdtsc command was used to measure

time. For each experiment, we recorded 5,000 data points. We configured the remaining

eight domains to work in four pairs and constantly bounced a packet between each pair.

Note that all 10 domains were doing IDC in a blocked state, and thus they would all be

boosted by the Credit scheduler. As expected, when domain 1 or domain 2 was inserted at

the end of the BOOST category, the queue already had a long backlog, with eight interfering

domains, thus creating a priority inversion. In contrast, the RT-Xen scheduler would always

schedule domains based on their priorities.
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Figure 5.3: Effect of the VMM Scheduler: Credit VS. RT-Xen

Figure 5.3 shows a CDF plot of the IDC latency between the pair of high priority domains,

with a percentile point every 5%. The solid lines show the results using the RT-Xen scheduler,

and the dashed lines represent the Credit scheduler. The lines with diamond markers were

obtained using the original kernel, and the lines with circles were obtained using a modified

domain 0 with our new RTCA, which will be discussed in Sections 5.4 and 5.5.1. We can
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clearly see that due to the general boost, the IDC latency between the high priority domains

under the Credit scheduler is severely affected by the interfering IDC between low priority

domains, growing from around 80 µs to around 160 µs at 30%, and further extending to 250

µs at 90%. In contrast, the RT-Xen scheduler can limit the latency to within 100 µs until

the 95th percentile. We also noticed that when we were doing experiments, domain 0’s CPU

utilization stayed around 60%, indicating it was more than capable of processing the IDC

load it was given.

5.3.2 The VMM Scheduler is Not Enough

We have shown that scheduling VCPUs based on priorities can deliver better IDC perfor-

mance for high priority domains. The experiment presented in this subsection shows that

domain 0 can also become a bottleneck when processing IDC, especially when significant

contention from low priority domains exists.

In this experiment, we again pinned domain 0 to core 0, and dedicated core 1 and core 2 to

domain 1 and domain 2, respectively, so the VMM scheduler would not matter. The same

workload still ran between domain 1 and domain 2, and we measured the round trip times.

For the remaining three cores, we booted three domains on each core, with all of them doing

intensive IDC, creating a heavy load on domain 0.
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Figure 5.4: Bottleneck in Domain 0
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Figure 5.4 shows a CDF plot of the results, with a sampling point every 5th percentile.

Please note the larger x axis range in this figure, compared to Figure 5.3. The IDC latency

between the high priority domains grows from the µs level to more than 6 ms. Since all the

interference occurs within domain 0, any improvement to the VMM scheduler thus cannot

help. Therefore, it is important to introduce prioritized IDC packet processing in domain

0.

5.4 RTCA: Design and Implementation

To address the limitations of domain 0, this section presents a new RTCA for domain 0. The

goal of the RTCA is to support packet processing based on domain priorities, while reducing

priority inversion. The priorities are based on domains instead of flows because the domain

is the unit provided to the end customer.
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Figure 5.5: RTCA: Real-Time Communication Architecture

Figure 5.5 shows the RTCA in domain 0. We now discuss the changes made to each of the

three queues.

Netback TX Queue: Algorithm 3 describes how we process the packets in the net tx action

function. Instead of a round robin policy, we now fetch packets according to their priorities,

one at a time. Within one round, we fetch up to a batch size number of packets, and we

also make the batch size tunable to make IDC QoS more configurable for different system

integrators. A counter is initialized to 0 and used to keep track of how many packets are pro-

cessed within one round. Packets are processed one at a time because during the processing

of lower priority domains, a higher priority domain may become active and dynamically add
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its netif to the schedule list. Making a prioritized decision at each packet thus minimizes

priority inversion. Note that due to other information kept separately in the netback driver

about the packet order, neither splitting the queue nor simply reordering it is easily achiev-

able without causing a kernel panic7. As a result, the TX Queue is dequeued in FIFO order.

However, whenever a higher priority domain arrives in one round, we reset the counter so

that the performance for higher priority domains will not be affected. Section 5.5 shows that

with a batch size of 1, the system achieves suitable IDC latency and throughput for high

priority domains, as a result of the longer blocking time for each packet when the batch size

increases. If a batch size of 1 is used, the total size limit of 238 is unlikely to be reached,

and so the total number of packets for a high priority domain is unlikely to be limited by

the previously processed lower priority domains.

Algorithm 3 net tx action function

1: cur priority = highest active netif priority
2: total = 0
3: counter = 0
4: while schedule list not empty &&

counter < batch size && total < round limit do
5: fetch the highest priority active netif device
6: if its priority is higher than cur priority then
7: reset counter to 0
8: reset current priority to its priority
9: end if

10: enqueue one packet
11: counter++, total++
12: update information including packet order, total size
13: if the netif device still has pending packets then
14: put the netif device back into the schedule list
15: end if
16: end while
17: dequeue from TX Queue to softnet data queue

raise NET RX SOFTIRQ for first packet
18: if schedule list not empty then
19: notify the scheduler
20: end if

7As future work, we plan to examine how to address this remaining limitation.
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Softnet Data Queue: Since the packets coming from the TX Queue can be from different

domains, we split the queue by priorities, and process only the highest priority one within

each NET RX SOFTIRQ. The batch size is also a tunable parameter for each queue. More-

over, under a heavy overload, the lower priority queues can easily be filled up, making the

total size limit for all the softnet data queues easily reached. Therefore, we eliminate the

total limit of 1000 packets for all domains, and instead set an individual limit of 600 for each

softnet data queue. Note that this parameter is also tunable by system integrators at their

discretion.

Netback RX Queue: As the packets coming from the softnet data queue are only from one

priority level, there is no need to split this queue. Moreover, by appropriately configuring

the batch size for the softnet data queue (making it less than 238), the capacity of the RX

Queue will always be enough. For these reasons, we made no modification to the net rx action

function. Please note that both the softnet data and RX Queues are non-preemptable: even

for the lower priority domains, once the kernel begins processing them, an arriving higher

priority domain packet can only notify the kernel thread and has to wait until the next round

to be processed.

Notably, without changing the fundamental architecture of domain 0, we keep the benefits

of compatibility with the original Xen features (for example, the existing rate control mech-

anism can be seamlessly integrated with RTCA), while improving the IDC latency between

high priority domains (as shown in Section 5.5) by an order of magnitude, resulting in µs

level timing that is suitable for many soft real-time systems. Therefore, while the RTCA

does not completely eliminate priority inversion, it can be highly effective in improving IDC

prioritization for soft real-time applications.

Examples for Packet Processing

To better illustrate how RTCA works, we show the packet processing order both in RTCA

(Figure 5.6b) and in the original kernel (Figure 5.6a), assuming that the guest domains

always get the physical CPU when they need it (e.g., via a perfect VMM scheduler). Both

examples use the same task set, where three domains (T3, T2, and T1, with increasing

priority) are trying to send three individual packets successively, starting from time 1, 2,
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and 3. The lowest line of each figure shows the processing order for each domain, and the

corresponding upper lines show the processing order for individual packets in each domain.

To better illustrate preemption in the TX Queue, all three domains are configured with a

batch size of 2 in the TX and softnet data queues. The upper arrow shows the release of the

packet, and the number above the arrow shows the response time for each packet.
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Figure 5.6: Packet Processing Illustration

Several key observations can be made here:

• RTCA effectively reduces the IDC latency of the packets between the higher priority

domains (from 19, 21, and 23 to 5, 5, and 3, respectively). Since (unmodified) Xen
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processes packets in a round robin order and uses a relatively large batch size for

all three queues, the response time is identical for each domain; in contrast, RTCA

prioritizes the processing order and imposes a smaller batch size, resulting in faster

IDC for higher priority domains.

• Whenever the batch size is reached and there are still pending packets, or when the

first packet arrives, either a softirq is raised or the scheduler is notified (points 1, 2, 3,

and 4 in Figure 5.6b; points 1 and 2 in Figure 5.6a).

• In RTCA, TX Queue processing is pre-emptive, and every time a high priority domain

packet arrives, the counter is reset (point 5 in Figure 5.6b).

• The softnet data and RX Queue processing is non-pre-emptive: if higher priority tasks

are released during their processing, the scheduler is only notified but no preemption

occurs (point 6 in Figure 5.6b).

5.5 RTCA: Evaluation

This section focuses on comparing the original domain 0 kernel and RTCA. As we discussed

in Section 5.4, RTCA can be configured with different batch sizes, which we address here.

We first repeat the experiments in Section 5.3.1 to see the combined effect of the VMM

scheduler and domain 0 kernel. After that, we focus on domain 0 only and show the latency

and throughput under four levels of interference workload. Finally, we use an end-to-end task

set to evaluate the combined effect of the VMM scheduler and domain 0 on the end-to-end

performance of IDC. All the experiments use the same setup as in Section 5.3.

5.5.1 Interference within the Same Core

We repeated the experiments in Section 5.3.1 with RTCA, using a batch size of 1 (which

as later experiments show, gives better latency performance). For brevity and ease of com-

parison, we plotted the results in Figure 5.3, where the lines marked by circles show results

obtained using RTCA. A key observation is that the difference between the two dashed lines
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(and similarly, between the two solid lines) is small. This indicates that when domain 0 is

not busy, the VMM scheduler plays a more important role, which is to be expected since the

RT-Xen scheduler can effectively prevent priority inversion within the same core, and thus

the interference from other VCPUs is much less.

Summary: When domain 0 is not busy, the VMM scheduler dominates the

IDC performance for higher priority domains.

5.5.2 Interference from Multiple Cores

The subsequent experiments focused on showing the effect of domain 0 when it becomes the

performance bottleneck. We use Original to represent the default communication architec-

ture in contrast to RTCA in domain 0.
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Figure 5.7: Experiment with Interference from Multiple Cores

Figure 5.7 shows the setup, with three cores dedicated to domain 0 and the two highest

priority domains, respectively, so they always get the CPU when needed, thus emulating

the best that a VMM scheduler can do. On each of the remaining three cores, we booted

up three interference domains, and gave each domain 30% of the CPU share. They all

performed intensive IDC (constantly sending UDP packets to other domains). Interference

was generated at four levels in different experiments, with Base being no interference, Light

being only one active domain per core, Medium being two active domains per core, and

Heavy having all three of them active.
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As we discussed earlier, the batch size can affect the performance of RTCA. Therefore, we

examined three batch sizes: 1, as it represents the most responsive domain 0; 64, as this

would be the default batch size for the softnet data queue; and 238, as this is the maximum

batch size for the TX and RX Queues on our hardware. For the Original case, we kept

everything as defaulted (process 64 packets per device per time, and 300 packets per round).

Latency

Table 5.1: Effect of Interference from Multiple Cores: Latency

Median (µs) 75th percentile (µs) 95th percentile (µs)

domain 0 Original
RTCA

Original
RTCA

Original
RTCA

1 64 238 1 64 238 1 64 238

Base 68 70 71 71 69 72 72 72 71 74 74 74
Light 5183 60 64 64 5803 61 115 90 6610 66 261 324

Medium 9621 61 216 2421 9780 63 272 2552 11954 68 363 3404
Heavy 9872 69 317 3661 10095 71 347 4427 11085 76 390 4643

Similar to the experiments in Section 5.3.1, the same periodic workload was used to measure

the round-trip time between the two high priority domains, domain 1 and domain 2. Table 5.1

shows the median, 75%, and 95% values among 5000 data points. All values larger than 1000

µs (1 ms) are made bold for ease of comparison.

From those results, several key observations can be made:

• With the Original kernel, even under Light interference, the latency increases from

about 70 µs to over 5 ms.

• In contrast, RTCA performs well for soft real-time systems: except for a batch size

of 238, 95% of the data points are under 500 µs. This indicates that by prioritizing

packets within domain 0, we can greatly reduce the IDC latency between high priority

domains under interfering IDC from low priority domains.

• The smaller the batch size, the better and less varied the results. Using a batch size

of 1 results in around 70 µs round trip times for all cases; with a batch size of 64,

the latency grows to around 300 µs under interference; and with a batch size of 238 it
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reaches to above 3 ms. This trend is due to the increasing blocking times caused by

priority inversion in all three queues, as discussed in Section 5.2. As a result, using a

batch size of 1 makes the system most responsive to high priority IDC.

Summary: By reducing priority inversion in domain 0, RTCA can effectively

mitigate impacts of low priority traffic on the latency of high priority IDC.

Throughput

The previous experiment shows that using a batch size of 1 results in the best latency.

However, a smaller batch size also means more frequent context switches, resulting in larger

overhead and potentially reduced throughput. This experiment measures throughput under

the same settings.

We kept the interference workload used in Section 5.5.2, and used iperf [51] (which is widely

used in networking evaluations) in domain 1 and domain 2 to measure the throughput. Do-

main 2 ran the iperf server, while domain 1 ran the iperf client using the default configuration

for 10 seconds. For each data point, the experiments were repeated 10 times, and we plotted

the mean value. For completeness, results using the original kernel are also included in.
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Figure 5.8: Interference from Multiple Cores: Throughput

As expected, in Figure 5.8, under the Base case, the original kernel and RTCA perform about

the same, at 11.5 Gb/s. When there is interference, the throughput of high priority IDC
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with the original kernel drops dramatically, to less than 1 Gb/s, due to priority inversions in

domain 0. The RTCA with batch size 1 provides steady performance as the blocking time

due to priority inversion stays relatively constant regardless of the interference level. This

also indicates that in local IDC, the context switching time is insignificant. The size 64 and

size 238 curves overlap each other, and all performed at about 8.3 Gb/s under interference.

The reason is a larger batch size enables lower priority domains to consume more time in

domain 0, making high priority IDC performance worse.

Summary: A small batch size leads to significant reduction in high priority

IDC latency and improved IDC throughput under interfering traffic.

5.5.3 End-to-End Task Performance

The previous experiments used micro benchmarks to evaluate both the original domain 0

and RTCA in terms of latency and throughput. However, in typical soft real-time systems,

a domain runs both computation and communication workloads. This section studies the

combined effects of the VMM schedulers and the domain 0 communication architecture on

end-to-end tasks.
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Figure 5.9: Experiment with End-to-End Tasks

Figure 5.9 shows the setup. domain 0 runs on a dedicated core. domain 1 and domain 2

are given the highest priority and are pinned to cores 1 and 2, respectively, each with 60%

of the CPU share. Task T1 is an end-to-end task consisting of three subtasks, T11 and

T13 in domain 1 and T12 in domain 2. A new instance of T1 is released every 10 ms. For
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each instance, T11 first ran for 2 ms and sent a packet to T12 in domain 2. Once domain

2 received that packet, T12 ran for 2 ms and sent a packet back to domain 1. T13 received

the packet and ran for 2 ms and completed the job of an end-to-end task. domain 1 also

contains a local periodic task T2, and domain 2 contains two local periodic tasks, T3 and

T4. To simulate interference within the same core, we booted four pairs of other domains,

with each pair bouncing packets between each other. Each of the eight interfering domains

was given 10% CPU share and assigned a lower priority. On the remaining three cores, a

similar setup to that in Section 5.5.2 was used to generate IDC interference from multiple

cores. For RTCA, since the results given in Section 5.5.2 already showed that using a batch

size of 1 resulted in the best performance, we did not try other batch sizes. Each experiment

ran for 10 seconds.
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Figure 5.10: Box Plot of Normalized Latency for Task T1

We use a metric called the normalized latency, defined as the ratio between the response

time of a task to its deadline. A task meets its deadline if its normalized latency is within 1;

otherwise it misses its deadline. Figure 5.10 shows a box plot of the normalized latency for

the end-to-end task T1 under different interference levels, with B indicating the Base case,

L the Light case, M the Medium case, and H the Heavy case. On each box, the central mark

represents the median value, whereas the upper and lower box edges show the 25th and 75th

percentiles separately. If the data values are larger than q3 + 1.5 ∗ (q3 − q1) or smaller than

q1 − 1.5 ∗ (q3 − q1) (where q3 and q1 are the 75th and 25th percentiles, respectively), they

are considered outliers and plotted via individual markers. For clarity of presentation, any
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job whose normalized latency is greater than 2 is not shown here (note here as well that if

normalized latency is larger than 1, it means the job has missed its deadline).

Starting from the left, the “RT-Xen+RTCA” combination consistently meets its deadline,

with the median normalized latency below 0.6. This shows that by combining the two im-

proved subsystems, we can effectively alleviate interference both from the same core and

from other cores. The “RT-Xen+Original” combination misses deadlines under heavy inter-

ference. The results confirm that when IDC is involved, domain 0 cannot be simply treated

as a black box, due to the possible priority inversion within its communication subsystem.

The “Credit+RTCA” combination performs slightly better than the second combination,

but still incurs a large number of deadline misses (denoted as outliers in Figure 5.10) even

under the Base case. This is due to the BOOST contention from domain 3 through domain

10. The “Credit+Original” combination performs the worst, as T1 suffers interference from

all the other domains.

Summary: By combining the RT-Xen VMM scheduler and RTCA domain 0

kernel, we can deliver end-to-end real-time performance to tasks involving both

computation and communication, even under interference from low-priority

IDC flows.

5.6 Summary

This chapter addresses the open problem of supporting local inter-domain communication

(IDC) within the same host. It examines the IDC performance of Xen, a widely used open-

source virtual machine monitor that recently has been extended to support real-time domain

scheduling. We show through both analysis and experiments that improving the VMM

scheduler alone cannot achieve effective latency differentiation for IDC, due to significant

priority inversion with the manager domain. To address this limitation, we have designed

and implemented a Real-Time Communication Architecture (RTCA) within the manager

domain to achieve effective prioritization among IDC flows. Empirical results demonstrate

that combining RTCA and a real-time VMM scheduler can reduce the latency of high priority

IDC significantly in the presence of heavy low priority traffic by effectively mitigating priority

inversion within the manager domain.
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Chapter 6

Conclusion

This dissertation seeks to answer the following questions, posed in Chapter 1:

Q1: What is an appropriate interface to provide resource guarantees for a real-time VM?

Q2: How do various scheduling algorithms perform in practice?

Q3: How to integrate real-time virtualization with cloud computing?

Q4: How to support real-time communication between different VMs?

With regards to Q1 and Q2, we have built RT-Xen, a real-time scheduling framework for Xen.

We have conducted evaluations comparing different scheduling policies, server mechanisms,

and priority schemes. For Q3, we presented RT-OpenStack, which integrates RT-Xen into

the OpenStack and provides an RT-filter and RT-weigher for VM-to-host mapping. For Q4,

we have developed RTCA, a real-time communication architecture which can maintain low

latency between high priority domains under heavy interference traffic.

In Section 6.1, we first summarize all results. Then we address future work and open ques-

tions in Section 6.2, and conclude in Section 6.3.

6.1 Summary of Results

We briefly recap the key points of Chapters 2-5 here.

89



6.1.1 Real-Time Virtualization

In recent years, real-time systems have been evolving from being deployed on a single host

towards running in a virtualized environment, or even in the cloud. The combination of

real-time performance and virtualization raises significant research challenges in meeting the

real-time performance requirement. We developed RT-Xen, which focuses on providing CPU

resources to the VMs, with timing guarantees.

Resource Interfaces

We observe that there is a natural mapping between a virtualized environment and a two-level

hierarchical scheduling model (described in Chapter 2); therefore, we used budget and period

as the resource interface for a VCPU for a VM (in Chapter 2). Most single-core hierarchical

scheduling theory assumes the same interface, but differs in the underlying different server

mechanisms for budget management.

In a multi-core environment, where a VM can have multiple VCPUs, the interface in RT-Xen

was changed a set of VCPUs, where each VCPU can have its own budget, period, and cpu-

mask (in Chapter 3). As a result, RT-Xen is compatible with multiple multi-core hierarchical

scheduling theories [36, 45,75].

Empirical Comparison of Scheduling Algorithms

Three key factors decide a scheduling algorithm in a hierarchical scheduling environment:

scheduling policies, server mechanisms, and priority schemes (in Chapter 3). We now recap

the insights from our experiments.

Scheduling policies: We considered global scheduling and partition scheduling in this dis-

sertation. While partitioned scheduling provides higher schedulability guarantees according

to compositional scheduling analysis, in our experiments global scheduling outperformed

partition scheduling in terms of the fraction of workloads that met their deadlines. We also

found that on a platform with a shared last-level cache, the work-conserving benefits of

global scheduling outweighed the cache penalty incurred by VM migration.
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Server mechanisms: We considered six servers in the single core case (Chapter 2), and

focused on comparing deferrable server and periodic server in the multi-core case (Chapter

3). On a single core platform, while in theory periodic server is superior and deferrable

server performed the worst, in our experiments deferrable server generally performs well

due to its work-conserving nature, while periodic server performed worst under overloaded

circumstances. We then proposed two enhanced periodic servers to improve task response

time while maintaining the theoretical schedulability of the original periodic server. In a

multi-core environment, we found that deferrable server again outperformed periodic server

due to its work-conserving nature.

Priority schemes: We considered earliest deadline first (EDF) and deadline monotonic

(DM) priority schemes in this dissertation. In theory, EDF outperformed DM in parti-

tioned scheduling, but underperformed DM in global scheduling. In our experiments, EDF

outperformed DM under both partitioned and global scheduling.

Overall, our experiments study showed that the combination of gEDF with deferrable server

in the VMM resulted in the best experimental performance. We are in the process of pushing

this scheduling design into the mainstream distribution of Xen.

6.1.2 Real-Time Cloud Computing

We have developed RT-OpenStack, a cloud management system for co-hosting real-time

VMs with non real-time VMs in a cloud computing environment. The salient feature of

RT-OpenStack is to provide real-time performance to real-time VMs, while allowing non-

real-time VMs to share the remaining CPU resources without interfering with the real-time

performance of RT VMs.

6.1.3 RTCA

We addressed the problem of prioritizing local inter-domain communication in a virtualized

host. We found that both the VMM scheduler and the manager domain can significantly

impact latency under different conditions; therefore, improving the VMM scheduler along
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with using RT-Xen could not effectively prevent priority inversion. To address this limita-

tion, we developed the real-time communication architecture (RTCA) within the manager

domain to achieve effective prioritization among flows. Experimental results showed that a

combination of RTCA and RT-Xen could deliver end-to-end real-time performance to tasks

involving both computation and communication, in the face of interfering requests for both

CPU and network resources.

6.2 Open Questions and Future Work

The work presented in this dissertation represents a promising step towards real-time virtu-

alization and cloud computing. Our work can be extended in the following aspects.

6.2.1 Real-Time Virtualization

Task model: The task sets evaluated in RT-Xen have two assumptions: sequentiality and

independence. Therefore, the work can be extended by challenging these two assumptions:

considering parallel tasks and tasks with dependency. In both cases, multiple VCPUs can

have dependencies between each other, and the VMM scheduler needs to consider these

constraints, as observed in [47]. Further research is needed to address this requirement in a

virtualized environment.

Multiple last-level caches: We briefly studied the cache effect on a shared last-level

cache platform in Chapter 3. When the underlying hardware platform has separate last-

level caches, the cache-miss caused by VCPU migration can cause a dramatic increase in

task execution time. As an earlier study on native OS-level scheduling [35] shows, a cluster

scheduler achieves the best performance. In future work, it will be interesting to evaluate a

cluster VMM scheduler by conducting a comprehensive study on cache effects on virtualized

real-time systems under different cache architectures.

Co-locating the manager domain: In our experiments, we always dedicated one PCPU

to the manager domain and ran guest VMs on the remaining cores. Co-scheduling guest VM
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with the manager domain has been studied in [46] for the SEDF scheduler for a single core.

Further research is needed to study this problem in a multi-core environment with RT-Xen.

Other scheduling algorithms: We covered global and partitioned scheduling policies,

EDF and DM priority schemes, and multiple server mechanisms (deferrable, periodic, polling,

sporadic, work-conserving periodic, and capacity-stealing periodic servers). There are other

scheduling algorithms to consider: for example, cluster scheduler, job-level priority schemes,

and constant bandwidth server. RT-Xen provides a scheduling framework to implement all

these different algorithms, and it will be beneficial to the community to further study more

of them.

6.2.2 Real-Time Cloud Computing

VM live migration: We considered the initial VM placement problem in RT-OpenStack.

Another important function of the cloud management system is VM live migration, which

raises significant research challenges in meeting real-time VM performance. Further research

is needed to address the VM live migration problem.

Integration with real-time communication: Network latency is also important for a

real-time application, especially when it is running in the cloud. It would be interesting to

explore the integration of RT-OpenStack with a real-time communication architecture.

6.2.3 RTCA

Multicore manager domain: We assumed there is only one VCPU for the manager

domain, and designed RTCA for the single VCPU situation. When the manager domain has

multiple VCPUs, further research is needed to adapt RTCA accordingly.

NIC traffic: We considered only local inter-domain communication in this dissertation.

It would be interesting to integrate NIC traffic into RTCA and still maintain the priority

scheme.
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6.3 Closing Remarks

Virtualization technologies are becoming ubiquitous in modern computer systems. They en-

able easy composition and effective isolation of independently developed applications. How-

ever, for a real-time application whose performance depends not only on the correctness of

the results, but also on latency, the existing virtualization technology cannot satisfy real-

time requirements, which fundamentally requires changes in both the VMM scheduler and

the manager domain.

In this dissertation, we have presented three projects – RT-Xen, RT-OpenStack, and RTCA

– to support real-time applications in virtualized environments. Furthermore, our work

studies different scheduling algorithms and compares them in both theory and practice. Our

system and experimental studies also bridge the critical gap between compositional real-time

scheduling theory and practical virtualization platforms. This dissertation work therefore

represents a promising step towards real-time virtualization and real-time cloud computing.

94



References

[1] Amazon EC2 Instance Types. http://wiki.xensource.com/xenwiki/

CreditScheduler.

[2] Amazon Fire Phone. http://www.amazon.com/Fire_Phone_13MP-Camera_32GB/dp/

B00EOE0WKQ#firefly.

[3] ARINC 653 and Virtualization Solutions, Architectures and Partitioning. .

[4] ARINC Standards. http://www.aviation-ia.com/standards/index.html.

[5] AUTomotive Open System ARchitecture (AUTOSAR). http://www.autosar.org/.

[6] Chaos Monkey Released Into the Wild. http://techblog.netflix.com/2012/07/

chaos-monkey-released-into-wild.html.

[7] CloudStack: Open Source Cloud Computing. https://www.cloudstack.apache.org.

[8] Credit Scheduler. http://wiki.xen.org/wiki/Credit_Scheduler.

[9] Eucalyptus: Open Source Private Cloud Software. https://www.eucalyptus.org.

[10] Fiasco micro-kernel. http://os.inf.tu-dresden.de/fiasco/.

[11] HP Public Cloud - Enterprise Public Cloud Products. http://www.hpcloud.com/.

[12] Intel 64 and IA-32 Architectures Optimization Reference Manual. http:

//www.intel.com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-optimization-manual.pdf.

[13] Intel Ivy Bridge 7-Zip LZMA Benchmark Results. http://www.7-cpu.com/cpu/

IvyBridge.html.

[14] Kernel Based Virtual Machine. http://www.linux-kvm.org.

[15] Linux Advanced Routing and Traffic Control. http://www.lartc.org/.

[16] LITMUS-RT. http://www.litmus-rt.org/.

95



[17] Microsoft Shows Off ”Power of the Cloud” With Azure
Servers. http://www.forbes.com/sites/davidthier/2014/04/04/

microsoft-shows-off-power-of-the-cloud-for-xbox-one/.

[18] OpenNebula: Flexible Enterprise Cloud Made Simple. https://www.opennebula.org.

[19] OpenStack: Open Source Software for Building Private and Public Clouds. https:

//www.openstack.org.

[20] Rackspace: The Leader in Hybrid Cloud. http://www.rackspace.com/.

[21] RT-Xen: Real-Time Virtualization Based on Compositional Scheduling. https://

sites.google.com/site/realtimexen/.

[22] Sysbench benchmark. http://sourceforge.net/projects/sysbench.

[23] The Problem with Noisy Neighbors in the Cloud. http://allthingsd.com/20130225/
the-problem-with-noisy-neighbors-in-the-cloud/.

[24] The Xen Project is Built for Cloud Computing. http://www.xenproject.org/users/
cloud.html.

[25] The Xen Project’s Hypervisor for the ARM architecture. http://www.xenproject.

org/developers/teams/arm-hypervisor.html.

[26] Total Ship Computing Environment. http://www.raytheon.com/capabilities/

products/ddg_1000/tech/tsce/index.html.

[27] Understanding CPU Steal Time - When should you be wor-
ried? http://blog.scoutapp.com/articles/2013/07/25/

understanding-cpu-steal-time-when-should-you-be-worried.

[28] Xen Credit2 Scheduler. http://wiki.xen.org/wiki/Credit2_Scheduler_

Development.

[29] Xen Network Configuration. http://xenbits.xen.org/docs/unstable/misc/

xl-network-configuration.html.

[30] Sebastian Altmeyer, Robert I Davis, and Claire Maiza. Improved cache related pre-
emption delay aware response time analysis for fixed priority pre-emptive systems. Real-
Time Systems, 48(5):499–526, 2012.

[31] Theodore P Baker. A comparison of global and partitioned edf schedulability tests for
multiprocessors. In In International Conf. on Real-Time and Network Systems. Citeseer,
2005.

96



[32] Scott Banachowski, Timothy Bisson, and Scott A Brandt. Integrating best-effort
scheduling into a real-time system. In Real-Time Systems Symposium, 2004. Proceed-
ings. 25th IEEE International, pages 139–150. IEEE, 2004.

[33] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. ACM
SIGOPS Operating Systems Review, 37(5):164–177, 2003.

[34] Sanjoy Baruah and Bjorn Brandenburg. Multiprocessor feasibility analysis of recur-
rent task systems with specified processor affinities. In Real-Time Systems Symposium
(RTSS), 2013 IEEE 34th, pages 160–169. IEEE, 2013.

[35] Andrea Bastoni, Björn B Brandenburg, and James H Anderson. An empirical compar-
ison of global, partitioned, and clustered multiprocessor edf schedulers. In Real-Time
Systems Symposium (RTSS), 2010 IEEE 31st, pages 14–24. IEEE, 2010.

[36] Enrico Bini, Giorgio Buttazzo, and Marko Bertogna. The multi supply function ab-
straction for multiprocessors. In Embedded and Real-Time Computing Systems and Ap-
plications, 2009. RTCSA’09. 15th IEEE International Conference on, pages 294–302.
IEEE, 2009.

[37] Björn B Brandenburg and James H Anderson. Integrating hard/soft real-time tasks
and best-effort jobs on multiprocessors. In Real-Time Systems, 2007. ECRTS’07. 19th
Euromicro Conference on, pages 61–70. IEEE, 2007.

[38] Björn B Brandenburg and James H Anderson. On the implementation of global real-
time schedulers. In Real-Time Systems Symposium, 2009, RTSS 2009. 30th IEEE, pages
214–224. IEEE, 2009.

[39] Luwei Cheng, Cho-Li Wang, and Sheng Di. Defeating network jitter for virtual machines.
In Utility and Cloud Computing (UCC), 2011 Fourth IEEE International Conference
on, pages 65–72. IEEE, 2011.

[40] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines.
In Proceedings of the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2, pages 273–286. USENIX Association, 2005.

[41] Mark Claypool and Kajal Claypool. Latency and player actions in online games. Com-
munications of the ACM, 49(11):40–45, 2006.

[42] Rob Davis, Alan Burns, et al. An investigation into server parameter selection for
hierarchical fixed priority pre-emptive systems. In 16th International Conference on
Real-Time and Network Systems (RTNS 2008), 2008.

97



[43] Robert I Davis and Alan Burns. Hierarchical fixed priority pre-emptive scheduling.
In Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE International, pages
10–pp. IEEE, 2005.

[44] Zhong Deng and Jane W-S Liu. Scheduling real-time applications in an open environ-
ment. In Real-Time Systems Symposium, 1997. Proceedings., The 18th IEEE, pages
308–319. IEEE, 1997.

[45] Arvind Easwaran, Insik Shin, and Insup Lee. Optimal virtual cluster-based multipro-
cessor scheduling. Real-Time Systems, 43(1):25–59, 2009.

[46] Sriram Govindan, Arjun R Nath, Amitayu Das, Bhuvan Urgaonkar, and Anand Siva-
subramaniam. Xen and co.: communication-aware cpu scheduling for consolidated xen-
based hosting platforms. In Proceedings of the 3rd international conference on Virtual
execution environments, pages 126–136. ACM, 2007.

[47] Zonghua Gu and Qingling Zhao. A state-of-the-art survey on real-time issues in em-
bedded systems virtualization. Journal of Software Engineering & Applications, 5(4),
2012.

[48] Ajay Gulati, Anne Holler, Minwen Ji, Ganesha Shanmuganathan, Carl Waldspurger,
and Xiaoyun Zhu. Vmware distributed resource management: Design, implementation,
and lessons learned. VMware Technical Journal, 1(1):45–64, 2012.

[49] Ajay Gulati, Ganesha Shanmuganathan, Anne Holler, and Irfan Ahmad. Cloud-scale
resource management: challenges and techniques. In Proceedings of the 3rd USENIX
conference on Hot topics in cloud computing, pages 3–3. USENIX Association, 2011.

[50] Diwaker Gupta, Rob Gardner, and Ludmila Cherkasova. Xenmon: Qos monitoring and
performance profiling tool. Hewlett-Packard Labs, Tech. Rep. HPL-2005-187, 2005.

[51] Chung-Hsing Hsu and Ulrich Kremer. Iperf: A framework for automatic construction
of performance prediction models. In Workshop on Profile and Feedback-Directed Com-
pilation (PFDC), Paris, France. Citeseer, 1998.

[52] Chun-Ying Huang, Cheng-Hsin Hsu, Yu-Chun Chang, and Kuan-Ta Chen. Gamin-
ganywhere: An open cloud gaming system. In Proceedings of the 4th ACM multimedia
systems conference, pages 36–47. ACM, 2013.

[53] Wei Huang, Matthew J Koop, Qi Gao, and Dhabaleswar K Panda. Virtual machine
aware communication libraries for high performance computing. In Proceedings of the
2007 ACM/IEEE conference on Supercomputing, page 9. ACM, 2007.

98



[54] Kangho Kim, Cheiyol Kim, Sung-In Jung, Hyun-Sup Shin, and Jin-Soo Kim. Inter-
domain socket communications supporting high performance and full binary compat-
ibility on xen. In Proceedings of the fourth ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, pages 11–20. ACM, 2008.

[55] Tei-Wei Kuo and Ching-Hui Li. A fixed-priority-driven open environment for real-time
applications. In Real-Time Systems Symposium, 1999. Proceedings. The 20th IEEE,
pages 256–267. IEEE, 1999.

[56] Jaewoo Lee, Sisu Xi, Sanjian Chen, Linh TX Phan, Chris Gill, Insup Lee, Chenyang
Lu, and Oleg Sokolsky. Realizing compositional scheduling through virtualization. In
Real-Time and Embedded Technology and Applications Symposium (RTAS), 2012 IEEE
18th, pages 13–22. IEEE, 2012.

[57] Giuseppe Lipari and Enrico Bini. Resource partitioning among real-time applications. In
Real-Time Systems, 2003. Proceedings. 15th Euromicro Conference on, pages 151–158.
IEEE, 2003.

[58] Jie Liu, Bodhi Priyantha, Ted Hart, Heitor S Ramos, Antonio AF Loureiro, and Qiang
Wang. Energy efficient gps sensing with cloud offloading. In Proceedings of the 10th
ACM Conference on Embedded Network Sensor Systems, pages 85–98. ACM, 2012.

[59] Will Lunniss, Sebastian Altmeyer, Claire Maiza, and Robert I Davis. Integrating cache
related pre-emption delay analysis into edf scheduling. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2013 IEEE 19th, pages 75–84. IEEE,
2013.

[60] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and Scott
Shenker. Extending networking into the virtualization layer. In Hotnets, 2009.

[61] KK Ramakrishnan. Performance considerations in designing network interfaces. Selected
Areas in Communications, IEEE Journal on, 11(2):203–219, 1993.

[62] Khaled Salah and A Qahtan. Implementation and experimental performance evaluation
of a hybrid interrupt-handling scheme. Computer Communications, 32(1):179–188, 2009.

[63] Jamal Hadi Salim, Robert Olsson, and Alexey Kuznetsov. Beyond softnet. In Proceed-
ings of the 5th annual Linux Showcase & Conference, volume 5, pages 18–18, 2001.

[64] Lui Sha, John P Lehoczky, and Ragunathan Rajkumar. Solutions for some practical
problems in prioritized preemptive scheduling. In RTSS, volume 86, pages 181–191,
1986.

[65] Insik Shin and Insup Lee. Periodic resource model for compositional real-time guar-
antees. In Real-Time Systems Symposium, 2003. RTSS 2003. 24th IEEE, pages 2–13.
IEEE, 2003.

99



[66] Insik Shin and Insup Lee. Compositional real-time scheduling framework. In Real-Time
Systems Symposium, 2004. Proceedings. 25th IEEE International, pages 57–67. IEEE,
2004.

[67] Brinkley Sprunt. Aperiodic task scheduling for real-time systems. PhD thesis, Citeseer,
1990.

[68] Mark Stanovich, Theodore P Baker, An-I Wang, and Michael González Harbour. Defects
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