
Washington University in St. Louis
Washington University Open Scholarship

All Theses and Dissertations (ETDs)

Summer 9-1-2014

Real-Time Wireless Sensor-Actuator Networks for
Cyber-Physical Systems
Abusayeed Saifullah
Washington University in St. Louis

Follow this and additional works at: http://openscholarship.wustl.edu/etd

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All
Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact
digital@wumail.wustl.edu.

Recommended Citation
Saifullah, Abusayeed, "Real-Time Wireless Sensor-Actuator Networks for Cyber-Physical Systems" (2014). All Theses and Dissertations
(ETDs). 1341.
http://openscholarship.wustl.edu/etd/1341

http://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fetd%2F1341&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F1341&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F1341&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/etd/1341?utm_source=openscholarship.wustl.edu%2Fetd%2F1341&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

Washington University in St. Louis

School of Engineering and Applied Science

Department of Computer Science and Engineering

Dissertation Examination Committee:
Chenyang Lu, Chair

Kunal Agrawal
Yixin Chen

Christopher Gill
Humberto Gonzalez

Jie Liu

Real-Time Wireless Sensor-Actuator Networks for Cyber-Physical Systems

by

Abusayeed Saifullah

A dissertation presented to the Graduate School of Arts and Sciences
of Washington University in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

August 2014
Saint Louis, Missouri

c© 2014, Abusayeed Saifullah

Contents

List of Figures . viii

List of Tables . xi

Acknowledgments . xii

Abstract . xiv

1 Introduction . 1

2 Real-Time Wireless: Dynamic Scheduling 3

2.1 Introduction . 3

2.2 WirelessHART Network Model . 5

2.3 Problem Formulation . 7

2.4 Necessary Condition for Schedulability . 9

2.5 Optimal Branch-and-Bound Scheduling . 12

2.6 Conflict-aware Least Laxity First . 14

2.7 Evaluation . 18

2.7.1 Simulations with Random Topologies 19

2.7.2 Simulations with Testbed Topologies 22

2.8 Related Works . 24

2.9 Summary . 25

3 Real-Time Wireless: Delay Analysis for Fixed Priority Scheduling . . . 26

3.1 Introduction . 26

3.2 Related Works . 28

3.3 Network Model . 29

3.4 End-to-End Scheduling Problem . 31

3.5 End-to-end Delay Analysis . 34

ii

3.5.1 Delay due to Channel Contention . 34

3.5.2 Delay due to Transmission Conflicts 37

3.5.3 A Tighter Bound on Conflict Delay 40

3.5.4 End-to-End Delay Bound . 44

3.6 Delay Analysis in Polynomial Time . 48

3.7 Extending to Graph Routing Model . 49

3.8 Evaluation . 50

3.8.1 Simulation Setup . 52

3.8.2 Simulations with Testbed Topologies 54

3.8.3 Simulations with Random Topologies 57

3.9 Summary . 59

4 Real-Time Wireless: Delay Analysis for Reliable Graph Routing 60

4.1 Introduction . 60

4.2 Related Work . 63

4.3 System Model . 64

4.3.1 Network Model . 64

4.3.2 Flow Model . 65

4.4 Fixed Priority Scheduling . 66

4.5 Delay Analysis under Reliable Graph Routing 69

4.5.1 Problem Formulation . 69

4.5.2 Transmission Conflict Delay under Graph Routing 70

4.5.3 Channel Contention Delay under Graph Routing 75

4.5.4 End-to-End Delay Bound . 78

4.6 A Probabilistic End-to-End Delay Analysis 79

4.7 Experiment . 82

4.7.1 Testbed Experiment . 82

4.7.2 Simulation . 83

4.8 Summary . 87

5 Real-Time Wireless: Priority Assignment for Fixed Priority Scheduling 88

5.1 Introduction . 89

5.2 WirelessHART Network Model . 90

5.3 Problem Definition . 92

iii

5.4 End-to-End Delay Analysis . 94

5.4.1 Class-1 Schedulability Test . 94

5.4.2 Class-2 Schedulability Test . 96

5.5 Priority Assignment Using Local Search . 96

5.5.1 Upper Bound of Worst Case End-to-End Delay 98

5.5.2 Lower Bound of Worst Case End-to-End Delay 101

5.5.3 Local Search Framework . 103

5.5.4 Analysis . 106

5.6 Priority Assignment Using Heuristic Search 107

5.7 Performance Evaluation . 108

5.7.1 Simulations with Testbed Topologies 109

5.7.2 Simulations with Random Topologies 111

5.8 Related Works . 113

5.9 Summary . 113

6 Near Optimal Rate Selection for Wireless Control Systems 115

6.1 Introduction . 116

6.2 Related Works . 118

6.3 Control Network Model . 120

6.4 Control Loop Model . 121

6.5 Formulation of the Rate Selection Problem 123

6.6 Subgradient Method for Rate Selection . 125

6.7 Greedy Heuristic for Rate Selection . 127

6.8 Rate Selection Using a penalty approach with simulated annealing 129

6.9 Rate Selection Through Convex Optimization 131

6.9.1 Gradient Descent Method . 136

6.9.2 Interior Point Method . 137

6.10 Evaluation . 138

6.10.1 Simulation Setup . 139

6.10.2 Performance Study of Four Methods 140

6.10.3 SA based Constant Factor Penalty Method Versus Adaptive Penalty

Method . 144

6.10.4 Evaluating the Interior Point Method 145

6.11 Summary . 147

iv

7 Distributed Channel Allocation Protocols for Wireless Sensor Networks 150

7.1 Introduction . 151

7.2 Related Work . 153

7.3 Network Model . 155

7.4 Problem Formulation . 156

7.5 Interference-free Channel Allocation . 159

7.5.1 Receiver-based Channel Allocation 159

7.5.2 Link-based Channel Allocation . 162

7.6 MinMax Channel Allocation . 165

7.7 Distributed Link Scheduling . 168

7.8 Evaluation . 170

7.8.1 Interference-free Channel Allocation 171

7.8.2 MinMax Channel Allocation . 172

7.8.3 Latency under MinMax Channel Allocation 174

7.8.4 Channel Allocation Message Overhead 176

7.9 Summary . 177

8 CapNet: A Real-Time Wireless Management Network for Data Center

Power Capping . 178

8.1 Introduction . 178

8.2 The Case for Wireless DCM (CapNet) . 181

8.2.1 Cost Comparison with Wired DCM 181

8.2.2 Choice of Wireless - IEEE 802.15.4 182

8.2.3 Radio Environment inside Racks . 182

8.3 CapNet Design Overview . 185

8.3.1 The Power Capping Problem . 185

8.3.2 Power Capping over Wireless DCM 187

8.3.3 A Naive Periodic Protocol . 188

8.3.4 Event-Driven CapNet . 188

8.4 Power Capping Protocol . 189

8.4.1 Detection Phase . 191

8.4.2 Aggregation Phase . 192

8.4.3 Control Phase . 192

8.4.4 Latency Analysis . 193

v

8.5 Experiments . 194

8.5.1 Implementation . 194

8.5.2 Workload Traces . 195

8.5.3 Experimental Setup . 195

8.5.4 Power Peak Analysis of Data Centers 197

8.5.5 Power Capping Results . 200

8.6 Discussions and Future Work . 209

8.7 Related Work . 209

8.8 Summary . 210

9 Multi-core Real-Time Scheduling for Generalized Parallel Task Models 211

9.1 Introduction . 212

9.2 Parallel Synchronous Task Model . 214

9.3 Task Decomposition . 217

9.3.1 Terminology . 217

9.3.2 Decomposition . 218

9.3.3 Density Analysis . 227

9.4 Global EDF Scheduling . 229

9.5 Partitioned Deadline Monotonic Scheduling 232

9.5.1 FBB-FFD based Partitioned DM Algorithm for Decomposed Tasks . 232

9.5.2 Analysis for the FBB-FFD based Partitioned DM Algorithm 235

9.6 Generalizing to a Unit-node DAG Task Model 239

9.7 Evaluation . 240

9.7.1 Task Generation . 240

9.7.2 Simulation Setup . 241

9.7.3 Simulation Results . 242

9.8 Related Work . 247

9.9 Summary . 249

10 Parallel Real-Time Scheduling of DAGs . 250

10.1 Introduction . 251

10.2 Related Work . 253

10.3 Parallel Task Model . 255

10.4 Task Decomposition . 256

vi

10.4.1 Terminology . 258

10.4.2 Decomposition Algorithm . 259

10.4.3 Density Analysis after Decomposition 268

10.4.4 Implementation Considerations . 270

10.5 Preemptive EDF Scheduling . 271

10.6 Non-Preemptive EDF Scheduling . 274

10.7 Evaluation . 278

10.7.1 Task and Task Set Generation . 278

10.7.2 Experimental Methodology . 280

10.7.3 Results . 281

10.8 Summary . 285

11 Conclusion . 286

References . 289

vii

List of Figures

2.1 Reduction from edge-coloring . 8

2.2 Scheduling with the B&B and C-LLF under varying network sizes 17

2.3 Schedulable ratio of C-LLF and baselines . 19

2.4 Comparison under varying network sizes . 20

2.5 Execution time of C-LLF under varying number of routes (γ) 21

2.6 Scheduling by C-LLF under varying network sizes 22

2.7 The testbed topology with a transmission power of 0 dBm 23

2.8 Scheduling with the B&B, C-LLF, and baselines under varying number of

sources and destinations . 23

2.9 Schedulable ratio under different power level 24

3.1 An example when Fk can be delayed by Fi 39

3.2 Schedulability without retransmission on testbed topology 51

3.3 Pessimism ratio without retransmission on testbed topology 53

3.4 Schedulability with retransmission on testbed topology 55

3.5 Pessimism ratio with retransmission on testbed topology 57

3.6 Schedulability with retransmission and redundant routes on testbed topology 58

3.7 Schedulability on random topology . 58

3.8 Schedulability with retransmission and redundant routes on random topology 59

4.1 Routing in the sensing phase of Fi and Fh (the numbers beside each link

indicate the time slots allocated to the link.) 68

4.2 Testbed topology (access points are colored in blue) 81

4.3 Delay and reliability on testbed . 81

4.4 Worst case delay analysis performance in simulation 84

4.5 Acceptance rate under probabilistic delay bound 86

4.6 Pessimism ratio for 30 flows under probabilistic bound 86

viii

5.1 Priority assignment f at a node . 98

5.2 Performance under varying deadlines . 110

5.3 Performance under varying number of sources and destinations 111

5.4 Performance under varying network sizes . 112

6.1 Surface of the dual function in 6.6 . 127

6.2 End-to-end delay bounds on testbed topology 134

6.3 Surface of the primal function of Problem in 6.8 135

6.4 Testbed topology at transmission power of -5 dBm (the gateway is colored in

blue) . 139

6.5 Performance comparison on topology at transmission power -5 dBm 140

6.6 Performance comparison on topology at transmission power -3 dBm 141

6.7 Performance comparison on topology at transmission power -1 dBm 142

6.8 Performance comparison on topology at transmission power 0 dBm 143

6.9 Performance comparison of Adaptive Vs Constant Penalty SA 144

6.10 Interior Point Method versus Gradient Method for Convex Optimization . . 146

6.11 Interior Point Method versus Adaptive Penalty Method 148

7.1 IC graph and receiver-based conflict graph 160

7.2 Link-based channel allocation . 163

7.3 Link-based conflict graph GL of G . 164

7.4 IC graph and schedule conflict graph . 169

7.5 Channel allocation on testbed topologies to remove all interferences 171

7.6 MinMax channel allocation on testbed topology with -5 dBm Tx power . . . 172

7.7 MinMax channel allocation on random topologies 173

7.8 Network performance on testbed topology at -5 dBm 174

7.9 Network performance on random topology of 400 sensor nodes 175

7.10 Comparison of message cost for channel allocation and one round of data

collection . 176

8.1 Mote placed in bottom sled . 183

8.2 Downward signal strength and PRR in bottom sled 184

8.3 The trip curve of Rockwell Allen-Bradley 1489-A circuit breaker at 40◦C [23].

X-axis is oversubscription magnitude. Y-axis is trip time. 186

8.4 Wireless DCM architecture . 187

ix

8.5 CapNet’s event-driven protocol flow diagram 190

8.6 60 Servers on Rack R1 in Cluster C1 . 198

8.7 Power characteristics (2 month data) . 198

8.8 Correlations among servers, racks, and clusters 199

8.9 Performance of Event-Driven protocol on 60 servers (4 weeks) 201

8.10 CDF of LB slack under various numbers of servers (4 weeks) 204

8.11 Deadline (trip time) miss rate and false alarm rate under varying α 204

8.12 Multi-iteration capping under event-driven protocol (4 weeks) 205

8.13 Capping under different caps on 120 servers (4 weeks) 207

8.14 Capping for 480 servers under interfering cluster 208

9.1 A parallel synchronous task τi . 215

9.2 Conversion of a segment with unequal-length threads to segments with equal-

length threads in a synchronous parallel task 216

9.3 An example of decomposition . 226

9.4 Unit-node DAG to parallel synchronous model 238

9.5 Schedulability on a 20-core processor. 243

9.6 Schedulability on a 40-core processor . 244

9.7 Schedulability on a 80-core processor . 245

10.1 A parallel task τi represented as a DAG . 256

10.2 τ∞i and τ syn
i of DAG τi (of Figure 10.1) . 257

10.3 Decomposition of τi (shown in Figure 10.1) when Ti = 21 267

10.4 Scheduler components . 271

10.5 Failure ratio in preemptive EDF on 32 cores under different edge probability 282

10.6 Failure ratio in preemptive EDF on different numbers of cores 283

10.7 Failure ratio in non-preemptive EDF on 8 cores under different non-preemption

overhead . 283

10.8 Required speed in non-preemptive EDF on different numbers of cores with

increasing non-preemption overhead . 284

x

List of Tables

2.1 Notations . 17

4.1 Notations . 67

5.1 Notations used in evaluation . 109

7.1 Channels selected in different rounds by the receiver nodes in Receiver-based

channel assignment . 161

7.2 Channels selected in different rounds by the sender nodes in Link-based chan-

nel assignment . 165

7.3 Channels selected in different rounds by the sender nodes in MinMax channel

assignment when m = 2 . 167

8.1 System cost (in US Dollar) comparison and scalability 181

10.1 Number of tasks per task set . 280

xi

Acknowledgments

From the beginning of my PhD to the end, I owe an immense debt of gratitude to my advisor,

Prof. Chenyang Lu, for his invaluable advice and careful guidance. Without his propitious

co-operation, time, ideas, and advice, I doubt my PhD should ever have seen the end.

My heartiest gratitude goes to Prof. Yixin Chen, Prof. Kunal Agrawal, and Prof. Christo-

pher Gill whose collaboration has made my PhD experience productive and stimulating. I

extend my deepest appreciation to Dr. Jie Liu for supervising me during my internship at

Microsoft Research, and for continued collaboration on data center and white space sensor

networking research. This work has become an important part of the dissertation. My

heartiest gratitude goes to Dr. Ranveer Chandra and Dr. Bodhi Priyantha from Microsoft

Research, and Sriram Sankar from Microsoft Corporation who have contributed significantly

in this collaborative work. I extend my thanks to Eric Rotvold from Emerson, Inc. for

providing us with valuable industrial insights that have motivated my research.

I would be remiss without mentioning the friendly hands of my fellow labmates in the

CPS Lab who have contributed immensely to my personal and professional time at Wash U

through stimulating discussions and collaboration. I would like to thank my parents foremost

who contributed to enlightening the way of my learning with endless love. Special thanks

go to my wife, Farida Akter, who was always with me through the good times and bad.

Finally, I acknowledge the financial support from Prof. Chenyang Lu and the Department of

Computer Science and Engineering in the form of research assistantship through NSF grants.

I am greatly indebted also to all the faculty members and the office staff of the department

whose helpful and efficient hands were with me in every step along the journey. Last but

not the least, I thank all committee members for their time, suggestions, and service.

Abusayeed Saifullah

Washington University in Saint Louis

August 2014

xii

Dedicated to my parents.

xiii

ABSTRACT OF THE DISSERTATION

Real-Time Wireless Sensor-Actuator Networks for Cyber-Physical Systems

by

Abusayeed Saifullah

Doctor of Philosophy in Computer Science

Washington University in St. Louis, August 2014

Professor Chenyang Lu, Chair

A cyber-physical system (CPS) employs tight integration of, and coordination between com-

putational, networking, and physical elements. Wireless sensor-actuator networks provide

a new communication technology for a broad range of CPS applications such as process

control, smart manufacturing, and data center management. Sensing and control in these

systems need to meet stringent real-time performance requirements on communication la-

tency in challenging environments. There have been limited results on real-time scheduling

theory for wireless sensor-actuator networks. Real-time transmission scheduling and analysis

for wireless sensor-actuator networks requires new methodologies to deal with unique char-

acteristics of wireless communication. Furthermore, the performance of a wireless control

involves intricate interactions between real-time communication and control. This thesis re-

search tackles these challenges and make a series of contributions to the theory and system for

wireless CPS. (1) We establish a new real-time scheduling theory for wireless sensor-actuator

networks. (2) We develop a scheduling-control co-design approach for holistic optimization

of control performance in a wireless control system. (3) We design and implement a wireless

xiv

sensor-actuator network for CPS in data center power management. (4) We expand our

research to develop scheduling algorithms and analyses for real-time parallel computing to

support computation-intensive CPS.

xv

Chapter 1

Introduction

A cyber-physical system (CPS) employs a tight integration of, and coordination between

the system’s computational, networking, and physical elements. Wireless sensor-actuator

networks (WSANs) provide a new communication technology for a broad range of CPS ap-

plications such as process control, smart manufacturing, and data center management. A

WSAN involves feedback control loops between sensors and actuators through a wireless

mesh network. The sensors measure process variables, and deliver to a controller through

the network. The controller sends control commands to the actuators, which then operate

the control and safety components to adjust physical processes so the system’s performance

is optimized for efficiency and safety. Sensing and control in these systems need to meet

stringent real-time performance requirements on communication latency in challenging envi-

ronments. Violation of these requirements may result in plant shutdown or accidents causing

deaths or significant economic or environmental cost.

While the reliability and real-time requirements are critical for wireless control applications,

industry settings pose a harsh environment for wireless communication due to unpredictable

channel conditions, limited bandwidth, physical obstacle, multi-path fading, and interference

from coexisting wireless devices, causing frequent transmission failures [166]. Addressing this

limitation, industrial wireless standards such as WirelessHART [22] mitigate frequent trans-

mission failures through multi-channel communication and graph routing where a packet

is transmitted through multiple paths and multiple channels. Real-time communication in

these wireless networks pose new and important challenges. Unlike real-time wired networks,

there have been limited results on real-time scheduling theory for wireless networks. Real-

time transmission scheduling and analysis for wireless sensor-actuator networks requires new

1

methodologies to deal with unique characteristics of wireless communication. In addition,

the performance of a wireless control system induces a complicated problem involving multi-

ple interrelated objectives (e.g., reliability, real-time performance, control performance) and

interdependent decision variables (e.g., transmission schedule, routes, sampling rates), requir-

ing a scheduling-control co-design approach that has witnessed little progress for WSANs

till date due to its inherent challenges and interdisciplinary nature.

In this thesis research, we tackle the above challenges and make a series of contributions

to the theory and system for wireless CPS. First, we establish a new real-time scheduling

theory for WSANs by bridging wireless mesh network and real-time scheduling domain. Sec-

ond, we develop a scheduling-control co-design approach for holistic optimization of control

performance in a wireless control system. Our technical approach hinges on a novel inte-

gration of real-time scheduling theory, wireless networking, optimization theory, and control

theory in a unified framework. Third, we design and implement a wireless sensor-actuator

network for CPS in data center power management. Finally, we expand our research to

develop scheduling algorithms and analyses for real-time parallel computing to enable the

forthcoming generation of computation-intensive CPS.

The thesis is organized as follows. Chapters 2, 3, 4, and 5 concentrate to developing real-

time scheduling theories for WSANs by bridging real-time scheduling theory and wireless

networking. Chapter 6 presents the proposed scheduling-control co-design approach for holis-

tic optimization in multi-hop wireless control systems. Chapter 7 presents a set of distributed

channel allocation algorithms for wireless sensor networks. Chapter 8 presents the design

and implementation of a wireless sensor-actuator network for CPS in data center power

management. Chapters 9 and 10 extend our research and present scheduling algorithms and

analyses for real-time parallel computing to support computation-intensive CPS.

2

Chapter 2

Real-Time Wireless: Dynamic

Scheduling

WirelessHART is an open wireless sensor-actuator network standard for industrial process

monitoring and control that requires real-time data communication between sensor and ac-

tuator devices. Salient features of a WirelessHART network include a centralized network

management architecture, multi-channel TDMA transmission, redundant routes, and avoid-

ance of spatial reuse of channels for enhanced reliability and real-time performance. This

paper makes several key contributions to real-time transmission scheduling in WirelessHART

networks: (1) formulation of the end-to-end real-time transmission scheduling problem based

on the characteristics of WirelessHART; (2) proof of NP-hardness of the problem; (3) an

optimal branch-and-bound scheduling algorithm based on a necessary condition for schedula-

bility; and (4) an efficient and practical heuristic-based scheduling algorithm called Conflict-

aware Least Laxity First (C-LLF). Extensive simulations based on both random topologies

and real network topologies of a physical testbed demonstrate that C-LLF is highly effective

in meeting end-to-end deadlines in WirelessHART networks, and significantly outperforms

common real-time scheduling policies.

2.1 Introduction

Wireless Sensor-Actuator Networks (WSANs) are emerging as a new generation of commu-

nication infrastructure for industrial process monitoring and control [56]. Feedback control

loops in industrial environments impose stringent end-to-end latency requirements on data

3

communication. To support a feedback control loop, the network periodically delivers data

from sensors to a controller and then delivers its control input data to the actuators within

an end-to-end deadline. The direct effects of deadline misses in data communication may

range from production inefficiency, equipment destruction to irreparable financial and envi-

ronmental impacts. For instance, real-time monitoring of level measurement and control are

required to avoid overfilling of oil tanks that may lead to serious economic loss and envi-

ronmental threats. Moreover, stringent regulations for Health, Safety, and the Environment

(HSE) are now being enforced in many countries [1]. HSE regulations require continuous

monitoring of safety (shower, corrosive chemicals, and safety instrumentation) for workers

around the plant so that help can be dispatched on time.

WirelessHART [22] has recently been developed as an open standard for WSANs for process

industries. The standard has been instrumental in the adoption and deployment of wireless

network technology in the field of process monitoring and control [167]. Drawing upon the

insights and lessons learned from real-world industrial applications, WirelessHART has the

following salient features specifically designed to meet the stringent real-time and reliability

requirements of process monitoring and control: centralized network management architec-

ture, multi-channel Time Division Multiple Access (TDMA), avoidance of spatial reuse of

channels [56], and redundant routes. The unique characteristics of WirelessHART introduce

a challenging real-time transmission scheduling problem.

In this paper, we study the real-time transmission scheduling problem of a set of periodic

data flows with end-to-end deadlines from sensors to actuators in a WirelessHART network.

This paper makes the following key contributions to address this problem:

• We formulate the real-time transmission scheduling problem based on the characteris-

tics of WirelessHART networks and prove that it is NP-hard.

• We derive a necessary condition for schedulability in WirelessHART networks which

can be used to effectively prune the search space for an optimal solution as well as to

provide the insight for an efficient heuristic-based solution.

• We propose an optimal scheduling algorithm based on a branch-and-bound technique.

4

• We design a practical heuristic-based algorithm called Conflict-aware Least Laxity

First (C-LLF) that is efficient and, hence, can be used to handle dynamic changes of

network topology and workloads.

The algorithms are evaluated using extensive simulations based on both random network

topologies and real network topologies of a physical indoor testbed. Our results demon-

strate that C-LLF is highly effective in meeting end-to-end communication deadlines in

WirelessHART networks, while significantly outperforming the existing real-time schedul-

ing policies. Moreover, it incurs minimal computational overhead and buffer space in the

field devices, thereby making it a practical and effective solution for real-time transmission

scheduling in WirelessHART networks.

The rest of the paper is structured as follows. The WirelessHART network model is presented

in Section 2.2. Section 2.3 presents the problem formulation and the proof of NP-hardness.

We derive the necessary condition for schedulability in Section 2.4. Section 2.5 presents the

optimal scheduling based on branch-and-bound. C-LLF scheduling algorithm is presented

in Section 2.6. Section 2.7 shows the simulation results. Section 2.8 discusses related work.

Section 2.9 is the conclusion.

2.2 WirelessHART Network Model

We consider a WirelessHART network consisting of field devices, one gateway, and a cen-

tralized network manager. The gateway provides the host system with access to network

devices. Scheduling of transmissions is performed centrally at the network manager con-

nected to the gateway which uses the network routing information in combination with

communication requirements of the devices and applications. The network manager, then,

distributes the schedules among the devices. The salient features of WirelessHART which

make it particularly suitable for process industries are as follows:

Limiting Network Size. Experiences in industrial environments have shown daunting

challenges in deploying large-scale WSANs. Typically, 80-100 field devices comprise a Wire-

lessHART network with one gateway. The limit on the network size for a WSAN makes the

5

centralized management practical and desirable, and enhances the reliability and real-time

performance. Large-scale networks can be organized using multiple gateways or as hierar-

chical networks that connect small WSANs through traditional resource-rich networks such

as Ethernet and 802.11 networks.

Time Division Multiple Access (TDMA). Compared to CSMA/CA mechanism, TDMA

protocols can provide predictable communication latencies making them an attractive ap-

proach for real-time communication. In WirelessHART networks, time is synchronized and

slotted, and the length of a time slot allows exactly one transmission and its associated

acknowledgement between a device pair.

Route and Spectrum Diversity. Spatial diversity of routes allows messages to be routed

through multiple paths in order to mitigate physical obstacles, broken links, and interference.

Spectrum diversity gives the network access to all 16 channels defined in IEEE 802.15.4

physical layer and allows per time slot channel hopping in order to avoid jamming and

mitigate interference from coexisting wireless systems. Besides, any channel that suffers from

persistent external interference is blacklisted and not used. The combination of spectrum and

route diversity allows a packet to be transmitted multiple times, over different channels over

different paths, thereby handling the challenges of network dynamics in harsh and variable

environments at the cost of redundant transmissions and scheduling complexity.

Handling Internal Interference. Due to difficulty in detecting interference between nodes

and the variability of interference patterns, WirelessHART allows only one transmission

in each channel in a time slot across the entire network, effectively avoiding the spatial

reuse of channels [56] to avoid transmission failure due to interference between concurrent

transmissions. Thus, the maximum number of concurrent transmissions in the entire network

at any slot cannot exceed the number of available channels [56]. This design decision improves

the reliability at the potential cost of reduced throughput. The potential loss in throughput

is also mitigated due to the small size of network.

Based on the above features, a WirelessHART network forms a mesh network modeled as

a graph G = (V,E), where the nodes V represent the network devices and E is the set of

edges between the devices. That is, the set V consists of the gateway and the field devices.

Every field device is either a sensor node, or an actuator, or both. An edge e = (u, v) exists

in the graph if and only if nodes u and v can communicate reliably with each other. Each

6

u ∈ V is able to send and receive packets, and to route packets for other network devices.

For a transmission τi =
→
uv happening along an edge (u, v), device u is designated as the

sender and device v the receiver.

A device cannot both transmit and receive at the same time slot. Two transmissions with the

same intended receiver at a slot interfere each other. Hence, two transmissions τi =
→
uv and

τj =
→
wz are conflicting and cannot be scheduled in the same slot, if (u = w)∨ (u = z)∨ (v =

w) ∨ (v = z). A set of transmissions is mutually exclusive if every pair of transmissions in

the set is conflicting.

2.3 Problem Formulation

In the real-time scheduling for a WirelessHART network G = (V,E), we consider N end-to-

end flows F = {F1, F2, · · · , FN}. Each flow Fi ∈ F periodically generates a packet that

originates at a network device u ∈ V , called the source of the packet, passes through the

gateway, and ends at a network device v ∈ V − {u}, called the destination of the packet,

within a deadline. The source and destination are characterized to be a sensor node and an

actuator, respectively. From a source to a destination, there may exist more than one route,

and the packet is delivered to the destination through each of these routes. The release time

of a packet is the earliest time slot when it is ready to be scheduled. For a packet released at

slot k and delivered to a destination at slot j through a route, its end-to-end latency through

this route is j − k + 1. For flow Fi, its end-to-end latency Li is the maximum end-to-end

latency among all the packets generated by Fi.

Each flow Fi is, thus, characterized by a period Pi, a deadline Di where Di ≤ Pi, and a set

of routes Φi. A packet generated by Fi is routed through each φ ∈ Φi that connects the

source node to a destination node through the gateway. Thus, given the set of flows F , our

objective is to schedule all transmissions in m channels such that Li ≤ Di, ∀Fi ∈ F .

For the above problem, a scheduling algorithm A is called optimal, if A can schedule all

transmissions whenever a feasible schedule (where no deadline is missed) exists. In the

following, we prove that the problem is NP-hard by proving that its decision version is

NP-complete.

7

ba

d c

a b

cd

Color 1

Color 2

Color 3

Reduction

'

v1v2

v3

v0

v3,1

v3,2

v2,1

r

Figure 2.1: Reduction from edge-coloring

Theorem 1. Given a real-time scheduling problem for a WirelessHART network, it is NP-

complete to decide whether it is schedulable or not.

Proof. Given an instance of the real-time scheduling problem for a WirelessHART network

with N flows, we can verify in O(N) time whether all the flows meet their deadlines. Hence,

the problem is in NP. To prove NP-hardness, we reduce an arbitrary instance < G, k > of the

graph edge-coloring problem to an instance S of the real-time scheduling for a WirelessHART

network and show that graph G is k edge-colorable if and only if S is schedulable (Figure 2.1).

Let G = (V,E) has n nodes. We create a depth-first search tree of G rooted at an arbitrary

node r ∈ V. For every u ∈ V− {r}, a tree edge is directed from u to its parent; and zero or

more ancestors connected by a non-tree edge directed from u are its virtual parents. Every

node in V−{r} is given a unique label vi, where 1 ≤ i ≤ n− 1. Create a node v0. For every

node vi, 1 ≤ i ≤ n − 1, add i − 1 additional nodes vi,1, vi,2, · · · , vi,i−1 and connect v0 to vi

through these nodes (i.e., create v0 − vi,1 − vi,2 − · · · − vi,i−1 − vi path). Now, following is

an instance S of the real-time scheduling for a WirelessHART network. The reduced graph

G′ = (V′,E′) is a network with n+ 1 + (n−2)(n−1)
2

nodes. Node v0 is the gateway. The parent

and the virtual parents of every node vi, 1 ≤ i ≤ n− 1, are the destination nodes, and v0 is

a source node. For every vi, 1 ≤ i ≤ n− 1, a flow Fi periodically generates a packet starting

at (n− i)-th slot at v0 and follows the route v0− vi,1− vi,2− · · · − vi and is, then, forwarded

by vi to its parent and every virtual parent. For simplicity, we consider only the first packet

8

of every flow Fi. For Fi, the release time and the absolute deadline of this packet are n− i
and n − 1 + k, respectively. All flows have the same period ≥ n − 1 + k. The number of

channels is n− 1. This reduction runs in O(n2) time.

Let G is edge-colorable using k colors. Let Q be the set of all last one-hop transmissions

in G′. These transmissions involve edges E ⊂ E′, one transmission per edge. Using all

n − 1 channels, we can complete all transmissions in G′ except those in Q in first n − 1

slots. Since the transmissions along the edges having the same color can be scheduled on

the same slot, all transmissions in Q can be scheduled in next k slots. Hence, all packets

meet the deadline. Now, let S is schedulable by an algorithm A. If A uses all channels, then

all but the transmissions in Q are completed in first n− 1 slots. Hence, all transmissions in

Q are schedulable using next k slots. For transmissions that happen on the same slot, the

corresponding edges can be given the same color. Hence, graph G is k edge-colorable. If A
does not use all channels, then no transmission in Q can happen in first n−1 slots. Let there

are t slots starting from the earliest slot at which some transmission in Q can be scheduled

to the latest slot by which all transmissions in Q must be scheduled. Since all packets meet

the deadline, t ≤ k. The value of t is the smallest when we can schedule all non-conflicting

transmissions in Q on the same slot. That is, the smallest value of t is the edge chromatic

number χ of G. Thus, χ ≤ t ≤ k. Since G is χ edge-colorable, it is k edge-colorable also.

2.4 Necessary Condition for Schedulability

In this section, we establish a necessary condition for schedulability. This condition can

be used to effectively prune the search space in a branch-and-bound algorithm. It also

provides the key insights for efficient heuristic scheduling policies. In a WirelessHART

network, the conflicting transmissions play a major role in the communication delays and

the schedulability of the flows. The delays caused by conflicting transmissions are especially

high near the gateway where all the flows converge creating a hot spot.

We first define some terminologies used in the necessary condition analysis. For the given

set of flows, let T be the hyper-period, i.e., the least common multiple of the periods of flows.

It is sufficient to find a schedule for transmissions of packets generated no later than slot T .

9

We use pi,j to denote the j-th packet, 0 ≤ j < T/Pi, generated by flow Fi. For packet pi,j,

its release time Ri,j = Pi ∗ j + 1, and the absolute deadline Di,j = Ri,j +Di − 1.

From the release time and deadline of a packet, we can also derive a deadline and an an-

ticipated release time for every transmission of the packet. For packet pi,j, let τk =
→
uv

be a transmission of pi,j through a route connecting its source to a destination such that

the destination is postk hops away from node v. Since Di,j is the deadline of packet pi,j,

transmission τk needs to happen no later than slot Di,j−postk. Therefore, we can define the

deadline of transmission τk as dk = Di,j−postk. At a time slot s, let packet pi,j requires prek,s

transmissions before transmission τk =
→
uv can happen. That is, packet pi,j is prek,s hops

away from node u on its route at slot s. At slot s, a transmission is said to be released and,

hence, is ready to be scheduled, if its preceding transmission is already scheduled before slot

s. Therefore, unlike a packet, the exact release time of a transmission cannot be determined

in advance (except for a packet’s first hop transmission). Instead, at time slot s, we define

the anticipated release time of transmission τk as rk = Ri,j + prek,s +max(s−Ri,j, 0).

Now we analyze the time demand of a packet for scheduling its transmissions in different

time windows. For transmission τk of packet pi,j, we call the time window [rk, dk] the lifetime

of transmission τk meaning that τk can happen no earlier than slot rk and no later than slot

dk. Therefore, in window [rk, dk], packet pi,j must need at least one time slot. If prek,s > 0 at

slot s, then the lifetime of pi,j’s transmission that must precede τk is [rk−1, dk−1]. Similarly,

if postk > 0, then the lifetime of pi,j’s transmission that is preceded by τk is [rk + 1, dk + 1].

Thus, at any time slot s, we can conclude that packet pi,j needs at least: (a) 1 slot in window

[rk, dk]; (b) 2 slots in window [rk − 1, dk], if prek,s > 0; (c) 2 slots in window [rk, dk + 1], if

postk > 0; (d) 3 slots in window [rk − 1, dk + 1], if prek,s > 0 and postk > 0. For τk, these

time windows are denoted by:

Ω(τk) = {[rk − β1, dk + β2] | 0 ≤ β1, β2 ≤ 1} (2.1)

Let Γ be the set of transmissions of all the packets released no later than slot T (hyper-

period). At slot s, Γs ⊆ Γ denotes the set of unscheduled transmissions. Considering a

transmission τk ∈ Γs of packet pi,j, we know a lower bound of the time demand of pi,j in

every window in Ω(τk) from the above analysis. Again, a window [a, b] ∈ Ω(τk) may contain

another window [a′, b′] ∈ Ω(τk′) (i.e., a ≤ a′ and b′ ≤ b) of another transmission τk′ . Taking

10

into account the lower bounds of time demand of every packet in window [a, b] ∈ Ω(τk) yields

a tighter lower bound of the number of transmissions by the packets in window [a, b]. Since,

the total number of transmissions that can be accommodated in a time window is limited by

the conflicting transmissions as well as the number of available channels, this time window

analysis leads to a necessary condition for the schedulability. Intuitively, analyzing the lower

bound of time demands in all windows [x, y], 1 ≤ x ≤ y ≤ T will lead to a strong necessary

condition. But there are O(T 2) such windows, thereby making the analysis computationally

very expensive. However, a time window that does not contain any transmission’s lifetime

is useless in the analysis. Besides, the number of transmissions in a window is finite. As a

result, the larger the numbers β1 and β2 are, the less effective the window [rk − β1, dk + β2]

is for necessary condition analysis. To balance between the complexity and effectiveness, we

limit our analysis to β1 ≤ 1 and β2 ≤ 1 (in Equation 2.1).

We now derive the necessary condition for schedulability. Let ψka,b be the number of trans-

missions in the largest set of mutually exclusive transmissions containing transmission τk

such that the lifetime of each of these transmissions is contained in window [a, b]. Let qa,b

be the total number of transmissions whose lifetimes are contained in [a, b]. For window[a, b]

and a transmission τk whose lifetime is contained in [a, b], we define ∆k
a,b as follows:

∆k
a,b = (b− a+ 1)−max(ψka,b,

⌈qa,b
m

⌉
) (2.2)

Let µ(τk) be the minimum ∆k
a,b among all [a, b] ∈ Ω(τk).

µ(τk) = min({∆k
a,b | [a, b] ∈ Ω(τk)}) (2.3)

Based on above time window analysis, Theorem 2 establishes a strong necessary condition

for schedulability.

Theorem 2. For a set of flows F , let Γs be the set of unscheduled transmissions at slot s.

If these transmissions are schedulable, then min({µ(τk)|τk ∈ Γs}) ≥ 0.

Proof. Let S be a feasible schedule of these transmissions where all the flows meet their

deadlines. Time window [a, b] can accommodate at most b− a+ 1 mutually exclusive trans-

missions, irrespective of how many channels are available. Again, time window [a, b] can

11

accommodate at most m ∗ (b − a + 1) transmissions in total. But, for qa,b transmissions

that must happen in window [a, b], at least d qa,b
m
e time slots are required. Again, for every

transmission τk among these, there are ψka,b transmissions each of which must be scheduled

on a different time slot. That is, at least max(ψka,b, d
qa,b
m
e) time slots are required to accom-

modate the transmissions in window [a, b]. At any time slot s, the laxity of a packet pi,j

can be defined as (Di,j − s + 1) − hi,j, where hi,j is the remaining number of transmissions

of pi,j through its route. The Laxity of schedule S is the minimum laxity among all packets.

The value µ(τk) = min({∆k
a,b| [a, b] ∈ Ω(τk)}) is an upper bound of the schedule laxity of S.

Thus, min({µ(τk)|τk ∈ Γs}) indicates a tighter upper bound. Since S is a feasible schedule,

min({µ(τk)|τk ∈ Γs}) ≥ 0.

2.5 Optimal Branch-and-Bound Scheduling

In this section, we present a scheduling algorithm based on branch-and-bound (B&B). Our

B&B scheduling algorithm exploits the necessary condition established in Theorem 2 to

effectively discard infeasible branches in the search space. It is optimal and complete in that

it guarantees to find a schedule whenever a feasible one exists. The optimal B&B uses a

search tree, where every node corresponds to a partial schedule that may or may not lead

to a complete feasible schedule. For decision making at every node, the algorithm estimates

an upper bound of the laxity of the schedule that the node may lead to. The laxity of

a packet is its remaining time slots minus its remaining number of transmissions, and the

laxity of a schedule is the minimum laxity among all packets. According to Theorem 2, for

transmissions Γs to be scheduled on or after slot s, following is an upper bound (UB) of its

schedule’s laxity:

UB = min({µ(τk)|τk ∈ Γs}) (2.4)

The search globally maintains a lower bound (LB) of schedule laxity as 0. Computing UB

at a node (using Equation 2.4) gives one of these two decisions: unschedulable or may be

schedulable. Specifically, if UB <LB at a node, it is guaranteed that this node will not lead

to any feasible schedule and, hence, is discarded without further consideration. In contrast,

if UB ≥LB, then this node may lead to a feasible solution and, hence, is expanded further.

The algorithm terminates as soon as it finds a feasible complete schedule that meets all

12

Algorithm 1: Optimal B&B Scheduling Algorithm
Step 0. Γ= set of all transmissions. LB ← 0;

Step 1. Compute UB for Γ. If UB < LB then stop since the given instance is unschedulable. Otherwise,
create an empty schedule. Call this node the parent node. Find the released transmissions.

Step 2. For every valid subschedule of released transmissions, create a new child node. For each node,
append the subschedule to the parent schedule and create new set of released transmissions. Compute UB
for this node.

Step 3. If steps 4 and 5 have been performed for all childnodes then close the parent and go to step 6,
otherwise, select the next child.

Step 4. If no unscheduled transmission is left, then stop, a feasible solution has been found.

Step 5. If UB < LB, then close this child node. Otherwise, create next released set of transmissions. Go
to Step 2.

Step 6. Select a node among the open nodes. Call this node the parent node and go to step 2.

deadlines. If the original problem is infeasible, the algorithm will also terminate as soon as

it determines that this is the case.

The search tree has as its root node an empty schedule along with all unscheduled trans-

missions. If it turns out that UB < LB at the root, then we terminate immediately with

unschedulable decision. Otherwise, we determine the released transmissions at the first slot.

For every valid subschedule of the released transmissions, we create a successor node that

appends its subschedule to the schedule determined at the parent. By a valid subschedule we

mean a subset of released transmissions that can be scheduled in current slot. Considering

all unscheduled transmissions, the algorithm computes UB at this node to decide whether

they are unschedulable or may be schedulable. If UB < LB, then this child is closed. Oth-

erwise, we calculate the transmissions that are to be released for the next slot and the node

is expanded further. We continue to create new nodes in the search tree until we either find

a feasible solution, or until there exists no unexpanded node for which UB ≥ LB. In the

latter case, no feasible valid solution exists. The steps of our optimal B&B are presented as

Algorithm 1.

13

2.6 Conflict-aware Least Laxity First

While the B&B algorithm presented in Section 2.5 is optimal, its execution time may limit its

applicability to dynamic environments where network topology changes frequently requiring

the schedule to be recomputed quickly. In this section, we present a simple and efficient

scheduling policy that is suitable for dynamic environments.

While the traditional real-time scheduling policies such as Least Laxity First (LLF) have

been effective in end-to-end real-time scheduling over wired networks, such traditional poli-

cies do not deal with conflicts between transmissions in wireless networks. Since conflicting

transmissions must be scheduled in different time slots, transmission conflicts contribute

significantly to the communication delays in wireless networks. In WirelessHART networks,

transmission conflicts can play a major role in schedulability even for moderate workloads

due to the high degree of conflicts near the gateway. Moreover, different nodes experi-

ence different degree of conflicts as different nodes have different number of neighbors in

a routing graph. The gateway and the nodes with high connectivity in the routing graph

tend to experience significantly higher degrees of conflicts. Hence, scheduling algorithms for

WirelessHART networks must be cognizant of conflicts between transmissions.

Based on this key insight into the WirelessHART networks, we present an efficient scheduling

policy called Conflict-aware Least Laxity First (C-LLF). It uses conflict-aware laxity of every

released transmission as the decision variable. The conflict-aware laxity of a transmission is

determined by considering the length of time windows in which the transmission must be

scheduled as well as the potential conflicts that the transmission may experience in these

windows. That is, the approach combines LLF and the degree of conflicts associated with

a transmission. Thus, it can schedule a transmission while the remaining ones are likely to

retain the necessary condition established in Theorem 2. Specifically, the algorithm identifies

some critical time windows in which too many conflicting transmissions have to be scheduled,

thereby determining the criticality of each released transmission. Criticality of a transmission

is quantified by its conflict-aware laxity. Transmissions exhibiting lower conflict-aware laxity

are assessed to be more critical. C-LLF gives the highest priority to the transmissions

exhibiting lower conflict-aware laxity.

14

Now, for a transmission τk =
→
uv at slot s, we derive an expression (Equation 6.11) to compute

its conflict-aware laxity denoted by λsk. The transmissions whose lifetimes intersect with τk’s

lifetime are the potential sources of conflict while trying to schedule τk. We consider a subset

of these transmissions to compute λsk efficiently and effectively for transmission τk =
→
uv. The

subset consists of the transmissions that involve node u. Since we have to consider these

transmissions until they are scheduled or until their deadlines are past, we consider the time

windows that start at current slot and ends at their deadlines. For transmission τk =
→
uv, let

Λu
k be the set of deadlines of transmissions that involve node u and whose lifetimes intersect

with the lifetime of τk, i.e.,

Λu
k = {dj|τj =

→
uz or

→
zu, rk ≤ rj ≤ dk} (2.5)

Since conflicting transmissions have to be scheduled on different slots, at slot s, we assess

the criticality of window [s, b], for every b ∈ Λu
k , by the difference δs,b between its length and

the considered number of conflicts in it. That is,

δs,b = (b− s+ 1)− σus,b, for b ∈ Λu
k (2.6)

with σus,b being the number of transmissions that involve node u in time window [s, b]. That

is, σus,b counts every transmission τj =
→
uz or

→
zu with s ≤ rj and dj ≤ b, where [rj, dj] is the

lifetime of τj.

Now according to Equation 2.6, a smaller value of δs,b indicates that transmission τk will

be conflicting with too many transmissions in a short time window. Therefore, the conflict-

aware laxity λsk of transmission τk =
→
uv at slot s is defined as the minimum δs,b over all

b ∈ Λu
k as follows:

λsk = min({δs,b|b ∈ Λu
k}) (2.7)

Therefore, the smaller the value of λsk is, the more critical transmission τk is.

At every time slot s, C-LLF computes the conflict-aware laxity λsk for every released trans-

mission τk. Once it is calculated for every released transmission, the transmission with the

smallest conflict-aware laxity is scheduled first. If there is a tie, then the transmission (among

those having the smallest conflict-aware laxity) that has the earliest deadline is selected to

15

schedule on an available channel. Any further tie is broken arbitrarily. Every released trans-

mission that conflicts with the scheduled one cannot be scheduled in this slot. If there

remains an unassigned channel, then the transmission with the next smallest conflict-aware

laxity among the remaining released transmissions is picked. Similarly, the tie is broken

first by the earliest deadline and then arbitrarily, and the transmissions conflicting with the

scheduled one are no more considered for current slot. For the current slot, the same thing

is repeated until no free channel is available, or no ready transmission is conflict-free with

the scheduled ones in this slot, or there is no released transmission unscheduled. Then the

schedule is performed for the next slot in the same way.

Algorithm 2: C-LLF Scheduling Algorithm
Input: Γ← transmissions of packets released no later than hyper-period T ; m← total channels;
Output: S[1 · · ·T][0 · · ·m− 1]; /* schedule */

s← 1; /* initialize time slot */

Γs ← Γ; /* Unscheduled transmissions */

while (Γs 6= ∅) do
Released(s)← set of released transmissions at slot s;
ch← 0; /* initialize channel offset */

for (each τk ∈ Released(s)) do Compute λsk ;
while (ch < m) do

B ← transmissions with the smallest λ in Released(s);
τ∗ ← a transmission with the shortest deadline among B;
if (τ∗ misses deadline) then return unschedulable; ;
S[s][ch]← τ∗; Γs = Γs − {τ∗}; ch← ch+ 1;
Remove from Released(s) every transmission conflicting with τ∗;

end
s← s+ 1; /* go to next slot */

end

As shown in the pseudo code (Algorithm 2), C-LLF outputs the schedule as a 2-dimensional

array S[1 · · ·T][0 · · ·m − 1]. The algorithm terminates with the unschedulable decision if,

for a transmission τk with deadline dk, it determines that s > dk at any slot s. When a

transmission τ ∗ is assigned slot s and a channel offset ch, 0 ≤ ch < m, the schedule is

recorded as S[s][ch] = τ ∗. In WirelessHART, the channel offset is then mapped to a physical

channel for slot s.

Complexity analysis. C-LLF is a pseudo-polynomial time algorithm as analyzed below.

There can be at most O(N) released transmissions at a time slot considering a constant

number of routes for every flow. At slot s, to calculate the conflict-aware laxity λsk for a

transmission τk, we need to consider all packets released within window [rk, dk] (lifetime of

16

20 25 30 35 40 45 50
0

20

40

60

80

100

Number of nodes (n)

S
c
h

e
d

u
la

b
le

 r
a

ti
o

UP

Optimal

C−LLF

(a) Schedulable ratio

20 30 40 50

0

100

200

300

Number of nodes (n)

E
x
e

c
.

ti
m

e
 (

s
e

c
o

n
d

s
)

Optimal

C−LLF

ρ = 40%

m = 8

θ = 80%

γ = 1

P~ = 2
5~7

α = 0.75

(b) Execution time

Figure 2.2: Scheduling with the B&B and C-LLF under varying network sizes

τk). Therefore, the number of transmissions that should be considered for calculating λsk is

upper bounded by O(N.H.D/P), where H is the maximum length among all routes, D is the

maximum relative deadline and P is the minimum period among all flows. Since at most two

transmissions of a packet can involve a node in any direction (sensor to gateway or gateway

to actuator) on a route, calculating λsk takes O(N.H.D/P) time. The time for calculating

the conflict-aware laxities for all released transmissions and sorting them is O(N2.H.D/P).

Since the schedule has to be calculated only up to the hyper-period T , the complexity of

C-LLF is thus O(N2.T.H.D/P).

n : Number of nodes of a network
m : Number of channels
ρ : Edge-density of a network
θ : Fraction of sources and destinations
γ : Number of routes between every source and destination
P∼ : Period range
α : Maximum route length≤deadline≤ α∗period

Table 2.1: Notations

17

2.7 Evaluation

Baselines. We compare our algorithms against several well-known real-time scheduling

policies: (a) Deadline Monotonic (DM) schedules using the relative deadline of the flows;

transmission that belongs to the flow with the smallest relative deadline being scheduled first;

(b) Earliest Deadline First (EDF) schedules a transmission based on its packet’s absolute

deadline; (c) Proportional Deadline monotonic (PD) schedules a transmission based on

its packet’s relative subdeadline defined as the relative deadline (of its flow) divided by the

total number of transmissions along its route; (d) Earliest Proportional Deadline first (EPD)

schedules a transmissiont based on its packet’s absolute subdeadline defined, at every slot, as

its remaining time divided by the remaining number of transmissions; (e) Least Laxity First

(LLF) schedules a transmission based on its packet’s laxity defined as its remaining time

minus its remaining number of transmissions.

Metrics. Following metrics are used for performance analysis. (a) Schedulable ratio is

measured as the percentage of test cases for which an algorithm is able to find a feasible

schedule. (b) Buffer size is the maximum number of packets buffered at a node when trans-

missions are scheduled. (c) Execution time is the total time required to create a schedule for

packets generated within the hyper-period. We plot the average execution time (along with

the 95% confidence interval) of the schedulable cases out of 100 runs.

Simulation Setup. A fraction (θ) of nodes is used as sources and destinations of the flows.

The sets of sources and destinations are disjoint. The node with the highest number of

neighbors is the gateway. The reliability of a link is represented by the packet reception ratio

(PRR) along it. The most reliable route connecting a source to a destination is determined.

For additional routes, we choose the next most reliable route that excludes the links of any

existing route between the same source and destination. The periods of flows are harmonic

and are generated randomly in a given range denoted by P∼ = 2i∼j, i ≤ j. The relative

deadline of a flow Fi with period Pi is generated randomly in the range between Hi and

α ∗ Pi, for 0 < α ≤ 1, with Hi being the maximum length among the routes associated

with Fi. In every figure, we show the parameter setups of the corresponding experiment.

The algorithms have been written in C and the tests have been performed on a Mac OS X

18

1 2 3
0

20

40

60

80

100

Number of routes (γ)

S
c
h
e
d
u
la

b
le

 r
a
ti
o

UP

C−LLF

DM

PD

EDF

EPD

LLF

n = 50

ρ = 40%

m = 8

θ = 80%

α = 0.50

P~ = 2
5~10

(a) Varying number of routes (γ)

0.50 0.75 1.00
0

10

20

30

40

50

α

S
c
h
e
d
u
la

b
le

 r
a
ti
o

UP

C−LLF

DM

PD

EDF

EPD

LLF

n=50 ρ=40%

m=8 θ=80%

γ=2 P~=2
5~10

(b) Varying α

6~9 5~10 4~11
0

10

20

30

40

50

60

 Period range (P~)

S
c
h
e
d
u
la

b
le

 r
a
ti
o

UP

C−LLF

DM

PD

EDF

EPD

LLF

n=50 ρ=40%

m=8 θ=80%

γ=2 α=0.75

22 2

(c) Varying periods (P∼)

Figure 2.3: Schedulable ratio of C-LLF and baselines

machine with 2.4 GHz Intel Core 2 Duo processor. The notations used in this section are

summarized in Table 2.1.

2.7.1 Simulations with Random Topologies

Generating networks. Given the number of nodes (n) and edge-density (ρ), we generate

random networks. A network with n nodes and i% edge-density has a total of (n(n − 1) ∗
i)/(2∗100) bidirectional edges. The edges are chosen randomly and assigned PRR randomly

in the range 0.80 ∼ 1.0. We keep regenerating a network until the required number of routes,

denoted by γ, between every source and destination pair are found.

19

20 30 40 50 60 70 80
0

20

40

60

80

100

Number of nodes (n)

S
c
h

e
d

u
la

b
le

 r
a

ti
o

UP

C−LLF

EDF

EPD

LLF

(a) Schedulable ratio

20 40 60 80
0

0.5

1

1.5

2

2.5

Number of nodes (n)

E
x
e

c
.

ti
m

e
 (

s
e

c
o

n
d

s
)

C−LLF

EDF

EPD

ρ=40% m=8

θ=80% γ=2

α=0.75 P~=2
5~10

(b) Execution time

Figure 2.4: Comparison under varying network sizes

Optimal B&B and C-LLF. We evaluate the tightness of our necessary condition based on

the percentage of test cases that pass the necessary condition but are found to be unschedu-

lable under the B&B. The percentage of test cases that pass the condition is denoted by UP

and it indicates an upper bound of schedulable ratio. Figure 2.2 shows the performance of

the B&B, C-LLF, and the tightness of our necessary condition using 8 channels in different

sized networks of 40% edge-density with γ = 1 and θ=80%. θ=80% implies that 40% of the

total nodes are sources while another 40% are destinations of flows. Figure 2.2(a) shows that

the number of test cases that satisfy necessary condition but are not schedulable by the B&B

is less than 3%. It indicates that the necessary condition in Theorem 2 is highly effective

for pruning the search space in the B&B. Figure 2.2(a) also shows that C-LLF is highly

competitive against the B&B in terms of schedulable ratio. As shown in Figure 2.2(b), while

the B&B incurs reasonable execution times for 20 and 30 nodes, its execution time increases

dramatically as the number of nodes increases. Its average execution time is 247 seconds

for 50 nodes, making it less desirable for relatively larger networks with frequent topology

changes. In contrast, C-LLF remains highly efficient for varying network sizes and maintains

an average execution time of 0.06 seconds for 50-node networks. This result indicates that

C-LLF can be used as an effective online scheduling algorithm in face of dynamic network

topologies.

Comparison with real-time heuristics. Now we compare our algorithm with the

baselines. As the B&B has significantly longer execution time, we exclude the B&B in this

set of simulations. As the last set of simulations showed that the necessary condition is fairly

20

1 2 3
0

1

2

3

4

Number of routes (γ)
E

x
e
c
.
ti
m

e
 (

s
e
c
o
n
d
s
) n=50 ρ=40%

m=8 θ=80%

α=0.75 P~=2
5~10

Figure 2.5: Execution time of C-LLF under varying number of routes (γ)

tight in practice, we plot UP as a conservative upper bound for the schedulable ratio under

any scheduling algorithm. Figures 2.3(a), 2.3(b), and 2.3(c) show the schedulable ratios

achieved by C-LLF and the baselines under varying γ, α, and periods, respectively, in 50-

node networks. C-LLF consistently outperforms all baselines under all tested configurations.

Moreover, its schedulable ratio remains close to UP.

Since the performances of PD and DM are less competitive, we no more present them.

Figure 2.4 shows the performance of C-LLF against the baselines under varying number

of nodes in the network. Figure 2.4(a) indicates that the schedulable ratio of C-LLF is

higher than those of the baselines and is close to UP even when the number of nodes is 80.

Figure 2.4(b) shows that the baselines are much faster than C-LLF. However, for 80 nodes,

the average time of C-LLF is less than 2.5 seconds which is a reasonable time for computing

schedules for WirelessHART networks.

Scalability of C-LLF. Figure 2.5 shows that the execution time of C-LLF increases

sharply with the increase of γ. This is reasonable since increasing γ increases the workload

significantly. However, in less than 3 seconds, can it complete scheduling when γ = 3. No

feasible solution is found if we further increase γ. Figure 2.6 shows the scalability of C-

LLF under increasing number of nodes and with different values of α when γ = 2. The

Figure 2.6(a) shows that the schedulable ratio of C-LLF remains close to UP even with

tighter deadlines (i.e., with lower α) in different sized networks. For 20, 70, and 80 nodes,

C-LLF performs like an optimal algorithm as it achieves schedulable ratio equal to UP

when α ≥ 0.75. Figure 2.6(b) shows the maximum buffer size required at a node when

transmissions are scheduled under C-LLF. The maximum number packets buffered at a

21

20 30 40 50 60 70 80
0

20

40

60

80

100

Number of nodes (n)

S
c
h
e
d
u
la

b
le

 r
a
ti
o

UP

α = 1.00

α = 0.75

α = 0.50

(a) Schedulable ratio

20 30 40 50 60 70 80
0

2

4

6

8

10

12

Number of nodes (n)

M
a
x
.
b
u
ff
e
r

(n
u
m

b
e
r

o
f
p
a
c
k
e
ts

)

α = 1.00

α = 0.75

α = 0.50

(b) Maximum buffer

Figure 2.6: Scheduling by C-LLF under varying network sizes

node is 12 for a 80-node network. It indicate that buffer size required at a node does not

dramatically increase with the increase of network size.

2.7.2 Simulations with Testbed Topologies

Network Topology. We evaluate our algorithms on the network topologies of a physical

indoor testbed [2] (in Bryan Hall of Washington University in St Louis) consisting of 45

TelosB motes equipped with Chipcon CC2420 radios which are compliant with the IEEE

802.15.4 standard. At each transmission power level, every node broadcasts 50 packets while

its neighbors record the sequence numbers of the packets they receive. After a node completes

sending its 400 packets, the next sending node is selected in a round-robin fashion. This

cycle is repeated giving each node 5 rounds to transmit 400 packets in each round. Figure 2.7

shows the network topology with transmission power of 0 dBm. Every link with a higher

than 80% packet reception ratio is considered a reliable link and drawn in Figure 2.7. We

test the algorithms on the topologies at 4 different power levels.

Scheduling performance. For the network topology at 0 dBm, Figure 3.7 shows the per-

formances of C-LLF, the B&B, and the baseline heuristics under varying θ. In Figure 2.8(a),

we see that the schedulable ratio of C-LLF is close to that of the B&B and is better than

those of the baselines. It also shows that UP and the schedulable ratio of B&B are very

close. Figure 2.8(b) shows that the average execution time of the B&B is 33 seconds while

it is close to 0 seconds for C-LLF and the baselines when θ = 80%. Figure 2.9 shows the

22

Figure 2.7: The testbed topology with a transmission power of 0 dBm

40% 50% 60% 70% 80%
0

20

40

60

80

100

Fraction of source and destination nodes (θ)

S
c
h

e
d

u
la

b
le

 r
a

ti
o

UP

Optimal

C−LLF

EDF

EPD

LLF

(a) Schedulable ratio

40% 50% 60% 70% 80%

0

10

20

30

40

Fraction of source and destination nodes (θ)

E
x
e

c
.

ti
m

e
 (

s
e

c
o

n
d

s
)

Optimal

C−LLF

EDF

EPD

LLF

m = 8

γ = 1

P~ = 2
5~7

α = 0.75

Power = 0 dBm

(b) Execution time

Figure 2.8: Scheduling with the B&B, C-LLF, and baselines under varying number of sources
and destinations

23

−15 −7 −3 0
0

10

20

30

40

50

60

70

Transmission power (dBm)
S

c
h
e
d
u
la

b
le

 r
a
ti
o

UP

Optimal

C−LLF

EDF

EPD

LLF

m=8 θ=80%

α=0.75 γ=1

P~= 2
5~7

Figure 2.9: Schedulable ratio under different power level

performance comparison under different power levels. As expected, the schedulable ratios

of all algorithms slightly decrease when the transmission power level decreases. However,

at every power level, we can see that the schedulable ratio of C-LLF is close to that of the

B&B as well as UP which demonstrates the effectiveness of C-LLF in meeting deadlines in

WirelessHART networks.

2.8 Related Works

Although real-time transmission scheduling in wireless networks has been studied in the

literature [170], few of previous works are applicable to WirelessHART networks. Several

papers [101, 102, 116, 128, 176] proposed scheduling based on CSMA/CA MAC protocols.

In contrast, WirelessHART adopts a TDMA-based approach to achieve predictable latency

bounds. Several others developed TDMA scheduling algorithms [55,60,87,123], but did not

consider multi-channel communication supported by WirelessHART.

Scheduling for WirelessHART networks has been investigated recently since the standard was

ratified in 2007. Convergecast scheduling has been studied for simplified network models

such as linear [189] and tree networks [165] with depth no greater than the number of

channels. There are several fundamental differences between our work and these previous

studies. First, we consider the general WirelessHART network model. Our algorithms

support multi-path routing, whereas the previous research only considered a single route for

each node. Besides, our algorithms can deal with arbitrary network topologies without any

24

constraint on the length of routes. Second, our scheduling algorithms support real-time flows

for feedback control loops, whereas previous research only considered data collection to the

gateway. Finally and importantly, our algorithms aim to meet end-to-end deadlines which

may differ based on the requirements of flows, while previous research focused on minimizing

data collection latencies. Our research, therefore, addresses a more complicated scheduling

problem suitable for process control in WirelessHART networks.

2.9 Summary

In this paper, we make key contributions to real-time transmission scheduling in Wire-

lessHART networks: (1) formulation of the end-to-end real-time transmission scheduling

problem based on the characteristics of WirelessHART, (2) proof of NP-hardness of the

problem, (3) an optimal branch-and-bound scheduling algorithm based on a strong necessary

condition, and (4) an efficient and practical heuristic-based algorithm called Conflict-aware

Least Laxity First (C-LLF). The key insight underlying C-LLF is that it is important to

incorporate transmission conflicts in scheduling policies for WirelessHART networks. Simu-

lations based on both random and real network topologies demonstrate that C-LLF signifi-

cantly outperforms the traditional real-time scheduling policies and that it is highly effective

in meeting end-to-end communication deadlines.

Acknowledgement

This research was supported by NSF under grants CNS-0448554 (CAREER), CNS-0627126

(NeTS-NOSS), CNS-1017701 (NeTS), and CNS-0708460 (CRI).

25

Chapter 3

Real-Time Wireless: Delay Analysis

for Fixed Priority Scheduling

WirelessHART is a new standard specifically designed for real-time and reliable communi-

cation between sensor and actuator devices for industrial process monitoring and control

applications. End-to-end communication delay analysis for WirelessHART networks is re-

quired to determine the schedulability of real-time data flows from sensors to actuators for

the purpose of acceptance test or workload adjustment in response to network dynamics. In

this paper, we consider a network model based on WirelessHART, and map the scheduling of

real-time periodic data flows in the network to real-time multiprocessor scheduling. We then

exploit the response time analysis for multiprocessor scheduling and propose a novel method

for the delay analysis that establishes an upper bound of the end-to-end communication delay

of each real-time flow in the network. Simulation studies based on both random topologies

and real network topologies of a 74-node physical wireless sensor network testbed demon-

strate that our analysis provides safe and reasonably tight upper bounds of the end-to-end

delays of real-time flows, and hence enables effective schedulability tests for WirelessHART

networks.

3.1 Introduction

Wireless Sensor-Actuator Networks (WSANs) are an emerging communication infrastruc-

ture for monitoring and control applications in process industries. In a feedback control

system where the networked control loops are closed through a WSAN, the sensor devices

26

periodically send data to the controllers, and the control input data are then delivered to the

actuators through the network. To maintain the stability and control performance, industrial

monitoring and control applications impose stringent end-to-end delay requirements on data

communication between sensors and actuators [56]. Real-time communication is critical for

process monitoring and control since missing a deadline may lead to production inefficiency,

equipment destruction, and severe economic and/or environmental threats. For example, in

oil refineries, spilling of oil tanks is avoided by monitoring and control of level measurement

in real-time.

WirelessHART [22] has been designed as an open WSAN standard to address the challenges

in industrial monitoring and control. To meet the stringent real-time and reliability require-

ments in harsh and unfriendly industrial environments, the standard features a centralized

network management architecture, multi-channel Time Division Multiple Access (TDMA),

redundant routes, and channel hopping [56]. These unique characteristics introduce unique

challenges in end-to-end delay analysis for process monitoring and control in WirelessHART

networks.

In this paper, we address the problem of end-to-end delay analysis for periodic real-time

flows from sensors to actuators in a network that is modeled based on WirelessHART (simply

named WirelessHART network throughout the paper). We derive upper bounds of the end-

to-end delays of the flows under fixed priority scheduling where the transmissions associated

with each flow are scheduled based on the fixed priority of the flow. Fixed priority scheduling

is a common class of real-time scheduling policies in practice.

Analytical delay bounds can be used to test, both at design time and for online admission

control, whether a set of real-time flows can meet all their deadlines. Compared to extensive

testing and simulations, an end-to-end delay analysis is highly desirable in process monitoring

and control applications that require real-time performance guarantees. It can also be used

for adjusting the workload in response to network dynamics. For example, when a channel

is blacklisted or some routes are recalculated, the delay analysis can be used to promptly

decide whether some flow has to be removed or some rate has to be updated.

A key insight underlying our analysis is to map the real-time transmission scheduling in

WirelessHART networks to real-time multiprocessor scheduling. This mapping allows us

to provide a delay analysis of the real-time flows in WirelessHART networks by taking an

27

analysis approach similar to that for multiprocessor scheduling. By incorporating the unique

characteristics of WirelessHART networks into the state-of-the-art worst case response time

analysis for multiprocessor scheduling [88], we propose a novel end-to-end delay analysis for

fixed priority transmission scheduling in WirelessHART networks. The proposed analysis

calculates a safe and tight upper bound of the end-to-end delay of every real-time periodic

data flow in pseudo polynomial time. Furthermore, we extend the pseudo polynomial time

analysis to a polynomial time method that provides slightly looser bounds but can calculate

the bounds more quickly.

We evaluate our analysis through simulations based on both random network topologies

and the real network topologies of a wireless sensor network testbed consisting of 74 TelosB

motes. The simulation results show that our delay bounds are safe and reasonably tight.

The proposed analysis, hence, enables an effective schedulability test for WirelessHART

networks.

In the rest of the paper, Section 3.2 reviews related works. Section 3.3 presents the network

model. Section 3.4 defines the scheduling problem. Section 3.5 presents the mapping and

the end-to-end delay analysis. Section 3.6 extends our delay analysis to a polynomial time

method. Section 3.7 shows how our analysis can be extended for graph routing. Section 3.8

presents evaluation results. Section 3.9 concludes the paper.

3.2 Related Works

Real-time transmission scheduling in wireless networks has been widely studied in previous

works [170]. However, very few of those are applicable to WirelessHART networks. Schedul-

ing based on CSMA/CA protocols has been studied in [94,100–102,116,128,176]. In contrast,

WirelessHART adopts a TDMA-based protocol to achieve predictable latency bounds. Al-

though TDMA-based scheduling has been studied in [55, 87, 123], these works do not focus

on schedulability or delay analysis. The authors in [25] propose a schedulability analysis for

wireless sensor networks (WSNs) by upper bounding the real-time capacity of the network.

However, in their model, taking the advantage of TDMA or frequency division has no effect.

The schedulability analysis for WSNs has also been pursued in [60, 99, 159]. But these are

28

designed only for data collection through a routing tree using single channel, and do not

address multi-channel communication or multi-path routing supported by WirelessHART.

For WirelessHART networks, routing [93], schedule modeling [32], real-time transmission

scheduling [156, 157], and rate selection [154] have been studied recently. Our work in [157]

proves the NP-hardness of the optimal real-time transmission scheduling in a WirelessHART

network. It also presents an optimal scheduling algorithm based on branch-and-bound and a

heuristic policy. Neither algorithm employed fixed priority. Moreover, no efficient worst-case

delay analysis was provided for either algorithm. We studied priority assignment in [156] and

rate selection methods in [154] for real-time flows in WirelessHART networks, both of which

leverages worst-case delay analysis which is the focus of this paper. To summarize, none of

our previous works addresses worst-case delay analysis. In contrast, this paper presents an

end-to-end delay analysis that is suitable for any fixed priority scheduling policy. Instead

of devising a new real-time transmission scheduling algorithm, the key contribution of this

paper is an efficient analysis for deriving the worst case delay bounds for real-time flows that

are scheduled based on fixed priority. An efficient delay analysis is particularly useful for

online admission control and adaptation (e.g., when network route or topology changes) so

that the network manager is able to quickly reassess the schedulability of the flows.

3.3 Network Model

We consider a network model inspired by WirelessHART. A WirelessHART network con-

sisting of a set of field devices and one gateway. These devices form a mesh network that

can be modeled as a graph G = (V,E), where V is the set of nodes (i.e., field devices and

the gateway), and E is the set of communication links between the nodes. A field device is

either a sensor node, an actuator or both, and is usually connected to process or plant equip-

ment. The gateway connects the WirelessHART network to the plant automation system,

and provides the host system with access to the network devices. For any link e = (u, v) in

E, devices u ∈ V and v ∈ V can communicate with each other. For a transmission, denoted

by
→
uv, that happens along link (u, v), device u is designated as the sender and device v the

receiver. All network devices (i.e., field devices and the gateway) are able to send, receive,

and route packets.

29

For process control, the controllers are installed in control hosts connected to the gateway

through the plant automation network. The sensor devices deliver their sensor data to the

gateway. The control messages from the gateway are then delivered to the actuators through

the wireless mesh network. The unique features that make WirelessHART particularly suit-

able for industrial process control are as follows [22,56].

Centralized Management. A WirelessHART network is managed by a centralized network

manager installed in the gateway. The network manager collects the network topology

information, and determines the routes. It then creates the schedule of transmissions, and

distributes the schedules among the devices. Large-scale networks can be organized using

multiple gateways or as hierarchical networks.

Time Division Multiple Access (TDMA). In WirelessHART networks, time is syn-

chronized, and communication is TDMA-based. A time slot is 10ms long, and allows exactly

one transmission and its associated acknowledgement between a device pair. For transmis-

sion between a receiver and its senders, a time slot can be either dedicated or shared. In a

dedicated time slot, only one sender is allowed to transmit to the receiver. In a shared slot,

more than one sender can attempt to transmit to the same receiver. Since collisions may

occur within a shared slot, a transmission within a shared slot may be successful only when

other senders do not need to send.

Route Diversity. To enhance the end-to-end reliability, both upstream and downstream

communications are scheduled based on graph routing. A routing graph between two devices

is a directed list of paths that connect two devices, thereby providing redundant paths

between them. On one path from the source to the destination, the scheduler allocates a

dedicated slot for each en-route device starting from the source, followed by allocating a

second dedicated slot on the same path to handle a retransmission. Then, to offset failure

of both transmissions along a primary link, the scheduler again allocates a third shared slot

on a separate path to handle another retry.

Spectrum Diversity. Spectrum diversity gives the network access to all 16 channels de-

fined in IEEE 802.15.4 and allows per time slot channel hopping in order to avoid jamming

and mitigate interference from coexisting wireless systems. Besides, any channel that suffers

30

from persistent external interference is blacklisted and not used. Due to difficulty in detect-

ing interference between nodes and the variability of interference patterns, WirelessHART

networks typically avoid spatial reuse of a channel within the same time slot. Thus all trans-

missions in a time slot use different channels. This strategy effectively avoids transmission

failure due to interference between concurrent transmissions, thereby providing a high degree

of reliability for critical process monitoring and control applications. Henceforth we assume

there is no spatial reuse of channels in this work.

Each device is equipped with a half-duplex omnidirectional radio transceiver and, hence,

cannot both transmit and receive in the same time slot. In addition, two transmissions

that have the same intended receiver interfere each other. Therefore, two transmissions
→
uv

and
→
ab are conflicting and, hence, are not scheduled in the same slot if (u = a) ∨ (u =

b) ∨ (v = a) ∨ (v = b). Since different nodes experience different degrees of conflict during

communication, transmission conflicts play a major role in analyzing the end-to-end delays

in the network.

Simplifying assumptions. As the first step toward a real-time schedulability analysis for

WirelessHART networks, we make some simplifying assumptions on routing. Instead of a

general graph routing, we assume a multi-path routing between every source and destination

pair where the number of routes between each pair is a small constant (typically 1 or 2). To

simplify the analysis further, we also assume that the packets are scheduled using dedicated

slots only. The simplifying assumption facilitates the development of the first end-to-end

delay analysis based on real-time scheduling theory. While our analysis leverages these

simplified assumptions, it provides fundamental building blocks for the analysis based on

general graph routing. Section 3.7 shows how our results can be extended to the analysis for

general graph routing.

3.4 End-to-End Scheduling Problem

We consider a WirelessHART network G = (V,E) with a set of end-to-end flows denoted by

F. Each flow Fj ∈ F is characterized by a period Pj, a deadline Dj where Dj ≤ Pj, and a

set of one or more routes Φj. Each φ ∈ Φj is a route from a network device Sourcej ∈ V ,

called the source of Fj, to another network device Destinationj ∈ V , called the destination

31

of Fj, through the gateway. Each flow Fj periodically generates a packet at period Pj which

originates at Sourcej and has to be delivered to Destinationj within deadline Dj. For flow

Fj, if a packet generated at slot r is delivered to Destinationj at slot f through a route

φ ∈ Φj, its end-to-end delay through φ is defined as Lj(φ) = f − r + 1.

A flow Fj may need to deliver its packet through more than one route in Φj. If the delivery

through a route fails, the packet can still be delivered through another route in Φj. Therefore,

in a TDMA schedule, for a flow Fj, time slots must be reserved for transmissions through

each route in Φj for redundancy. Hence, for end-to-end delay analysis purpose, through

each of its routes flow Fj is treated as an individual flow Fi with deadline and period equal

to Fj’s deadline and period, respectively. That is, Fj is now considered |Φj| individual

flows, each with a single route. Therefore, from now onward the term ‘flow’ will refer to an

individual flow through a route. We denote this set of flows by F = {F1, F2, · · · , FN}.
Thus, associated with each flow Fi, 1 ≤ i ≤ N, are a period Pi, a deadline Di, a source node

Sourcei, a destination node Destinationi, and a route φi from Sourcei to Destinationi.

For each flow Fi, if every transmission is repeated χ times to handle retransmission on a

single route, then the number of transmissions required to deliver a packet from Sourcei to

Destinationi through its route φi is Ci = length(φi) ∗ χ, where length(φi) is the number of

links on φi. Thus, Ci is the number of time slots required by flow Fi.

Fixed priority scheduling. For fixed priority scheduling, each flow Fi has a fixed priority.

We assume that all flows are ordered by priorities. Flow Fi has higher priority than flow Fj

if and only if i < j. We use hp(Fi) to denote the set of flows whose priorities are higher than

that of flow Fi. That is, hp(Fi) = {F1, F2, · · · , Fi−1}. In practice, priorities may be assigned

based on deadlines, rates, or the criticality of the real-time flows. Priority assignment policies

are not the focus of this paper, and our delay analysis can be applied to any fixed priority

assignment. Under a fixed priority scheduling policy, the transmissions of the flows are

scheduled in the following way. Starting from the highest priority flow F1, the following

procedure is repeated for every flow Fi in decreasing order of priority. For current priority

flow Fi, the network manager schedules its transmissions along its route (starting from the

source) on earliest available time slots and on available channels. A time slot is available if

no conflicting transmission is already scheduled in that slot. In a WirelessHART network,

the complete schedule is divided into superframes. A superframe represents transmissions

32

in a series of time slots that repeat infinitely and represent the communication pattern of a

group of devices.

Problem formulation. Transmissions are scheduled using m channels. The set of flows F

is called schedulable under a scheduling algorithm A, if A is able to schedule all transmissions

in m channels such that no deadline is missed, i.e., Li ≤ Di, ∀Fi ∈ F , with Li being the

end-to-end delay of Fi. For A, a schedulability test S is sufficient if any set of flows deemed

schedulable by S is indeed schedulable by A. To determine schedulability of a set of flows, it

is sufficient to show that, for every flow, an upper bound of its worst case end-to-end delay

is no greater than its deadline. Thus, given the flows F and a fixed priority algorithm A,

our objective is to decide schedulability of F based on end-to-end delay analysis. As proven

in [157] that it is NP-complete to decide the schedulability of a set of periodic real-time

flows in a WirelessHART network for both dynamic priority and fixed priority scheduling,

an exact schedulability analysis (i.e., both sufficient and necessary) is an NP-hard problem.

We therefore pursue an end-to-end delay analysis which serves only as a sufficient condition

for schedulability.

Uses of a sufficient analysis. An end-to-end delay analysis can be used as a schedulability

test for real-time flows in practice. Since the delay analysis provides upper bounds of the

delays, a set of flows is guaranteed to be schedulable if their delay bounds meet the respective

deadlines. On the other hand, since the bounds can be pessimistic, it is possible for a set of

flows to be actually schedulable when their delay bounds exceed the deadlines. In this case, a

conserve but safe approach is not to admit all the flows since a schedulability guarantee is not

assured. Since creating a complete schedule for all flows requires exponential time in general

(as it has to be created up to the hyper-period of all flows), such a sufficient schedulability

analysis is more efficient and suitable for networks that need to decide schedulability quickly,

e.g., in response to network changes at run time. For real-time flows in industrial process

control applications that require hard real-time guarantees, a sufficient analysis can thus be

used for online admission control and to adjust workload in response to network dynamics.

For example, when a channel is blacklisted or some routes are recalculated, the network

manager can execute our sufficient analysis to verify whether the current set of flows remain

schedulable. If the analysis cannot guarantee the schedulability of all the flows, the network

manager may remove a subset of the flows (e.g., based on criticality) or reduce the data rates

of some of the flows so that the new set of flows becomes schedulable under our analysis.

33

3.5 End-to-end Delay Analysis

In this section, we present an end-to-end delay analysis for the real-time flows in a Wire-

lessHART network. An efficient end-to-end delay analysis is particularly useful for online

admission control and adaptation to network dynamics so that the network manager is able

to quickly reassess the schedulability of the flows (e.g., when network route or topology

changes, or some channel is blacklisted). In analyzing the end-to-end delays, we observe two

reasons that contribute to the delay of a flow. A lower priority flow can be delayed by higher

priority flows (a) due to channel contention (when all channels are assigned to transmissions

of higher priority flows in a time slot), and (b) due to transmission conflicts (when a trans-

mission of the flow and a transmission of a higher priority flow involve a common node).

At first, we analyze each delay separately. We, then, incorporate both types of delays into

our analysis and end up with an upper bound of the end-to-end delay for every flow. A

holistic approach that can analyze two types of delays combining into a single step might

lead to tighter delay bound, but we opt for the divide-and-conquer approach to simplify the

theoretical analysis of the safety of the bound. If every transmission is repeated χ times to

handle retransmission on a single route, then every time slot is simply multiplied by χ in

delay calculation. For simplicity of presentation we use retransmission parameter χ = 1.

3.5.1 Delay due to Channel Contention

Observations between Transmission Scheduling and Multiprocessor CPU Schedul-

ing

A key insight in this work is that we can map the multi-channel fixed priority transmission

scheduling problem for WirelessHART networks to the fixed priority real-time CPU schedul-

ing on a global multiprocessor platform. Towards this direction, we make the following

observations between these two domains.

In a WirelessHART network, each channel can accommodate one transmission in a time

slot across the entire network. Thus, a flow executing for one time unit on a CPU of

a multiprocessor system is equivalent to a packet transmission on a channel which takes

exactly one time slot in a WirelessHART network. That one flow cannot be scheduled on

34

different processors at the same time is similar to the fact that one flow cannot be scheduled

on different channels at the same time. In addition, flows executing on multiprocessor

platform are considered independent while the flows being scheduled in a WirelessHART

network are also independent. Again, execution of flows on a global multiprocessor platform

is equivalent to switching of a packet to different channels at different time slots due to

channel hopping1. Finally, completing the execution of a flow on a CPU is equivalent to

completing all transmissions of a packet from the source to the destination of the flow.

Thus, in absence of conflicts, the worst case response time of a flow in a multiprocessor

platform is equivalent to the upper bound of its end-to-end delay in a WirelessHART network.

Therefore, to analyze the delay due to channel contention, we can map the transmission

scheduling in a WirelessHART network to global multiprocessor CPU scheduling.

Mapping to Multiprocessor CPU Scheduling

Based on the observations discussed above, the mapping from multi-channel transmission

scheduling in a WirelessHART network to multiprocessor CPU scheduling is as follows.

• Each channel is mapped to a processor. Thus, m channels correspond to m processors.

• Each flow Fi ∈ F , is mapped to a task that executes on multiprocessor with period Pi,

deadline Di, execution time Ci, and priority equal to the priority of flow Fi.

While the proposed mapping allows us to potentially leverage the rich body of literature on

real-time CPU scheduling, the end-to-end delay analysis for WirelessHART networks remains

an open problem. An important observation is that we must consider transmission conflicts

in the delay analysis. Note that transmission conflict is a distinct feature of wireless networks

that does not exist in traditional real-time CPU scheduling problems. A key contribution

of our work, therefore, is to incorporate the delays caused by transmission conflicts into

the end-to-end delay analysis. By incorporating the delay due to these conflicts into the

1Since a flow is not restricted to be scheduled on a specific channel, partitioned or semi-partitioned
approach does not fit for our network model. Instead, global scheduling is a suitable real-time scheduling
approach for the transmission scheduling problem.

35

multiprocessor real-time schedulability analysis, we establish an upper bound of the end-to-

end delay of every flow in a WirelessHART network.

In the proposed end-to-end delay analysis, we first analyze the delay due to channel con-

tention between the flows. Whenever there is a channel contention between two flows, the

lower priority flow is delayed by the higher priority one. Based on the above mapping, the

analysis for the worst case delay that a lower priority flow experiences from the higher pri-

ority flows due to channel contention in a WirelessHART network is similar to that when

the flows are scheduled on a multiprocessor platform. Therefore, instead of establishing a

completely new analysis for the delay due to channel contention, the proposed mapping al-

lows us to exploit the results of the state-of-the-art response time analysis for multiprocessor

scheduling [88].

Response Time Analysis for Multiprocessor

To make our paper self-contained, here we present the results of the state-of-the-art response

time analysis for multiprocessor scheduling proposed by Guan et al. [88]. Assuming that the

flows are executed on a multiprocessor platform, they have observed that a flow experiences

the worst case delay when the earliest time instant after which all processors are occupied by

the higher priority flows occurs just before its release time. Therefore, for flow Fk, a level-k

busy period is defined as the maximum continuous time interval during which all processors

are occupied by flows of priority higher than or equal to Fk’s priority, until Fk finishes its

active instance. We use the notation BP(k, t) to denote a level-k busy period of t slots. The

delay that some higher priority flow Fi ∈ hp(Fk) will cause to Fk depends on the workload

of all instances of Fi during a BP(k, t). Flow Fi has carry-in workload in a BP(k, t), if it has

one instance with release time earlier than the BP(k, t) and deadline in the BP(k, t). When

Fi has no carry-in, an upper bound W nc
k (Fi, t) of its workload in a BP(k, t), and an upper

bound Inc
k (Fi, t) of the delay it can cause to Fk are as follows.

W nc
k (Fi, t) =

⌊
t

Pi

⌋
. Ci + min(t mod Pi, Ci) (3.1)

Inc
k (Fi, t) = min

(
W nc
k (Fi, t), t− Ck + 1

)
(3.2)

36

When Fi has carry-in, an upper bound W ci
k (Fi, t) of its workload in a BP(k, t), and an upper

bound Ici
k (Fi, t) of the delay that it can cause to Fk are as follows.

W ci
k (Fi, t) =

⌊
max(t− Ci, 0)

Pi

⌋
. Ci + Ci + µi (3.3)

Ici
k (Fi, t) = min

(
W ci
k (Fi, t), t− Ck + 1

)
(3.4)

where carry-in µi = min
(

max
(
λ− (Pi −Ri), 0

)
, Ci − 1

)
; λ = max(t− Ci, 0) mod Pi; with

Ri being the worst case response time of Fi.

With the observation that at most m − 1 higher priority flows can have carry-in, an upper

bound Ωk(t) of the total delay caused by all higher priority flows to an instance of Fk during

a BP(k, t) is

Ωk(t) = Xk(t) +
∑

Fi∈hp(Fk)

Inc
k (Fi, t) (3.5)

with Xk(t) being the sum of the min(|hp(Fk)|,m − 1) largest values of the differences

Ici
k (Fi, t)− Inc

k (Fi, t) among all Fi ∈ hp(Fk).

3.5.2 Delay due to Transmission Conflicts

Now we analyze the delay that a flow can experience due to transmission conflicts. Whenever

two transmissions conflict, the transmission that belongs to the lower priority flow must be

delayed, no matter how many channels are available. Since different transmissions experi-

ence different degrees of conflict during communication, these conflicts play a major role in

analyzing the end-to-end delays in the network. In the following discussion, we derive an

upper bound of the delay that a lower priority flow can experience from the higher priority

ones due to conflicts.

Two flows Fk and Fi are said to be conflicting when a transmission of Fk conflicts with a

transmission of Fi, i.e., their transmissions involve a common node. When Fk and Fi ∈
hp(Fk) conflict, Fk has to be delayed due to having lower priority. Intuitively, the amount of

delay depends on how their routes intersect. A transmission
→
uv of Fk is delayed at most by ω

slots by an instance of Fi, if Fi has ω transmissions that involve node u or v. For example, in

37

Figure 7.1, a transmission
→
uv or

→
vw of Fk has to be delayed at most by 2 slots by an instance

of Fi. Let Q(k, i) be the total number of Fi’s transmissions that share nodes on Fk’s route.

Since two routes can intersect arbitrarily, in the worst case, flow Fk may conflict with each

of these Q(k, i) transmissions of Fi. As a result, Q(k, i) represents an upper bound of the

delay that Fk can experience from an instance of Fi due to conflicts.

Q(k, i) often overestimates the delay because when there is “too much” overlap between the

routes of Fi and Fk, Fi will not necessarily cause “too much” delay to Fk. We define ∆(k, i)

as a more precise upper bound of the delay that Fk can experience from an instance of Fi due

to transmission conflicts. In Figure 7.1, an instance of Fk can be delayed by an instance of Fi

at most by 5 slots since Q(k, i) = 5, but in Figure 7.4, Fk can be delayed by an instance of Fi

at most by 3 slots while Q(k, i) = 8. To obtain a value of ∆(k, i), we introduce the concept

of a maximal common path (MCP) between Fk and Fi defined as a path v1 → v2 → · · · → vh,

where vl 6= vq for l 6= q (where 1 ≤ l, q ≤ h), on Fi’s route such that v1 → v2 → · · · → vh

or vh → vh−1 → · · · → v1 is a path on Fk’s route and it is maximal, i.e., no such longer

path contains it (Figure 7.4). On an MCP between Fk and Fi, denoted by Mj(k, i), Fk can

be directly delayed by Fi at most by 3 slots, no matter how long the MCP is. For Mj(k, i),

we define its length βj(k, i) as the total number of Fi’s transmissions along it. That is, for

Mj(k, i) = v1 → · · · → vh, if there exist u,w ∈ V such that u→ v1 → · · · → vh → w is also

on Fi’s route, then βj(k, i) = h+ 1. If only u or only w exists, then βj(k, i) = h. If neither u

nor v does exist, then βj(k, i) = h−1. During the time when Fi executes these transmissions

(i.e.,
−→
uv1,

−→
v1v2, · · · ,

−→
vhw), it can cause delay to Fk at most by 3 of these transmissions. Thus,

Lemma 3 establishes a value of ∆(k, i).

Lemma 3. Let β′j(k, i) denote the length of an MCP M ′
j(k, i) between Fk and Fi ∈ hp(Fk)

with length at least 4. If there are total σ(k, i) MCPs between Fk and Fi each with length at

least 4, then

∆(k, i) = Q(k, i)−
σ(k,i)∑
j=1

(
β′j(k, i)− 3

)
(3.6)

Proof. Let an MCP M ′
j(k, i) be v1 → · · · → vh. Let there exist u and w such that the path

u → v1 → · · · → vh → w is on Fi’s route. Now, either v1 → · · · → vh or vh → · · · → v1

must lie on Fk’s route (Figure 7.4). If v1 → · · · → vh is on Fk’s route, then a transmission
−→
vlvl+1, 1 ≤ l < h, of Fk on this path shares node with at most 3 transmissions of Fi on

38

v

w
F
i

F
k

Route for F
i

 Route for F
k

u

Gateway

Edges on a route

are directed from

sender to receiver

(a) Q(k, i) = 5 and ∆(k, i) = 5

u

Route for F
i

Route for F
k

Gateway

V1

w

Vh

u

V1

w

Vh

Gateway

(b) Two scenarios where routes of Fk and Fi overlap with Q(k, i) = 8, but ∆(k, i) ≤ 3

Figure 3.1: An example when Fk can be delayed by Fi

39

u → v1 → · · · → vh → w. Similarly, if vh → · · · → v1 is on Fk’s route, then a transmission
−→
vlvl−1, 1 < l ≤ h, of Fk on this path shares node with at most 3 transmissions of Fi on

u → v1 → · · · → vh → w. Therefore, in either case, a transmission of Fk on M ′
j(k, i) can

be delayed by the transmissions of Fi on M ′
j(k, i) at most by 3 slots. Again, in either case,

once the delayed transmission of Fk is scheduled, the subsequent transmissions of Fk and Fi

on M ′
j(k, i) do not conflict and can happen in parallel. That is, for any M ′

j(k, i) with length

at least 4, at least β′j(k, i) − 3 transmissions will not cause delay to Fk. But Q(k, i) counts

every transmission of Fi on M ′
j(k, i). Therefore, Q(k, i)−

∑σ(k,i)
j=1

(
β′j(k, i)−3

)
represents the

bound ∆(k, i).

According to Lemma 3, we need to look for an MCP only if Q(k, i) ≥ 4 and at least 4

consecutive transmissions of Fi share nodes on Fk’s route. This is because in such cases

looking for an MCP will no longer reduce the bound as the delay is (already) at most 3 (as

Q(k, i) is at most 3). Again, when β′j(k, i) is calculated for an M ′
j(k, i), we look for the next

MCP only if Q(k, i)− β′j(k, i) ≥ 4.

The number of instances of flow Fi ∈ hp(Fk) that contribute to the delay of an instance of

flow Fk during a time interval of t slots is upper bounded by d t
Pi
e. Hence, the total delay that

an instance of Fk can experience from flow Fi is at most
⌈
t
Pi

⌉
∆(k, i). An upper bound of

the total delay that flow Fk can experience from all higher priority flows due to transmission

conflicts during a time interval of t slots is denoted by Θk(t) and can thus be expressed as

Θk(t) =
∑

Fi∈hp(Fk)

⌈
t

Pi

⌉
. ∆(k, i) (3.7)

3.5.3 A Tighter Bound on Conflict Delay

The upper bound derived in Equation 3.7 for the transmission conflict delay experienced by

a flow is based on pessimistic assumptions that will result in overestimate of the end-to-end

delay of the flow. In this subsection, we avoid the pessimistic assumptions, and establish a

tighter bound on the delay of a flow that occurs due to transmission conflict.

To determine Θk(t) in Equation 3.7, we assumed that

40

1. The lower priority flow Fk is delayed by every instance of the higher priority flow Fi

that is released within the time interval of t slots, and

2. The lower priority flow Fk is delayed by ∆(k, i) time slots by every instance of Fi.

In a real scheduling sequence, as we present in the next discussion, not every instance of a

higher priority flow Fi can cause delay by ∆(k, i) time slots on Fk, thereby making the above

assumptions highly pessimistic. The delay due to transmission conflicts plays a major role

in the end-to-end delay of a flow. Overestimate in conflict delay may result in significant

pessimism in the end-to-end delay analysis. In the rest of this subsection, we provide critical

observations to avoid these pessimistic assumptions, and establish a more precise bound on

conflict delay, that results in an improved schedulability test.

The pessimistic assumptions are due to the fact that the analysis for determining Θk(t) in the

previous subsection does not exclude Fk’s transmissions that have already been scheduled into

the consideration for calculating the future delay on Fk. In other words, some transmissions

of Fk that have already been scheduled are still considered to be subject to delay by Fi,

which clearly should not be the case.

Since a flow is a chain of transmissions from a source to a destination, in considering the

conflict delay caused by multiple instances of Fi on flow Fk, we observe that at the time when

a transmission of Fk conflicts with some transmission of Fi, the preceding transmissions on

Fk are already scheduled. These already scheduled transmissions of Fk are no longer subject

to delay by the subsequent instances of Fi. For example, in Figure 7.1 let us consider that

one instance of Fi is conflicting and causing delay on Fk’s transmission
→
vw. This implies

that Fk’s transmission
→
uv is already scheduled (since transmission

→
vw can be ready only

after transmission
→
uv is scheduled). Hence, the next instance of Fi must not cause delay

on transmission
→
uv (since this transmission is already scheduled). That is, in calculating

Θk(t) for Fk, only the transmissions that have not yet been scheduled should be considered

for conflict delay by the subsequent instances of Fi (that will be released in future in the

considered time interval). These observations lead to Lemma 4, and then to Theorem 5 to

upperbound the total delay (due to transmission conflict) caused on Fk by all instances of

Fi.

41

Lemma 4. Let us consider any two instances of a higher priority flow Fi such that each

causes conflict delay on a lower priority flow Fk in a time interval. Then, there is at most

one common transmission on Fk that can be delayed by both instances.

Proof. Let these two instances of Fi be denoted by Fi,1 and Fi,2, where Fi,1 is released before

Fi,2. Suppose to the contrary, both of these instances cause delay on two transmissions, say

τj and τr, of the lower priority flow Fk. Without loss of generality, we assume that τj precedes

τr on the route of flow Fk. Fi,1 causes delay on τr because τr is ready to be scheduled. This

implies that τj has already been scheduled. Hence, Fi,2 which releases after Fi,1 cannot cause

any delay on τj, thereby contradicting our assumption.

Based on Lemma 4, we can now determine a tight upper bound of the conflict delay caused

by multiple instances of Fi on Fk in any case. To do so, we introduce the notion of a

bottleneck transmission (of Fk with respect to Fi) which is the transmission of Fk that may

face the maximum conflict delay from Fi. An upper bound of the conflict delay caused by

one instance of Fi on Fk’s bottleneck transmission is denoted by δ(k, i), and is determined

in the following way. For every transmission τ of Fk, we count the total number of Fi’s

transmissions that share a node with τ . Then, the maximum of these values (among all

transmissions of Fk) is determined as δ(k, i). In other words, there are at most δ(k, i)

transmissions of (one instance of) Fi such that each of them share a node (and hence may

conflict) with the same transmission of Fk. By Lemma 4, for any two instances of Fi, Fk

has at most one transmission on which both instances can cause delay. In the worst case,

the bottleneck transmission of Fk can be delayed by multiple instances of Fi. Hence, the

value of δ(k, i) plays a major role in determining the delay caused by Fi on Fk as shown in

Theorem 5.

Theorem 5. In a time interval of t slots, the worst case conflict delay caused by a higher

priority flow Fi on a lower priority flow Fk is upper bounded by

∆(k, i) +
(⌊ t

Pi

⌋
− 1
)
.δ(k, i) + min

(
δ(k, i), t mod Pi

)
Proof. For the case when t < Pi, there is at most one instance of Fi in a time interval of

t slots. Hence, the total conflict delay caused by Fi on Fk is at most ∆(k, i) which clearly

follows the theorem. We consider the case with t ≥ Pi for the rest of the proof.

42

There are at most d t
Pi
e instances of Fi in a time interval of t slots. Let the set of transmissions

of Fi which cause conflict delay on Fk be denoted by Γ. When one instance Fi,1 of Fi causes

conflict delay on Fk, a subset Γ1 of Γ causes the delay. Now consider a second instance Fi,2

of Fi. For Fi,2, another subset Γ2 of Γ causes delay on Fk. When all subsets Γ1,Γ2, · · · ,Γd t
Pi
e

are mutually disjoint, by the definition of ∆(k, i), the conflict delay caused by Γ on Fk is at

most ∆(k, i). Hence, the total conflict delay caused by all Γ1,Γ2, · · · ,Γd t
Pi
e in this case is at

most ∆(k, i). That is, the total conflict delay on Fk caused by Fi is at most ∆(k, i).

Now let us consider the case when the subsets Γ1,Γ2, · · · ,Γd t
Pi
e are not mutually disjoint,

i.e., there is at least one pair Γj,Γh such that Γj ∩ Γh 6= ∅, where 1 ≤ j, h ≤ d t
Pi
e. Let the

total delay caused by all instances of Fi on Fk is ∆(k, i) + Z(k, i), i.e., the delay is higher

than ∆(k, i) by Z(k, i) time slots. The additional delay (beyond ∆(k, i)) happens because

the transmissions that are common between Γj and Γh cause both instances of Fi to create

delay on Fi. By Lemma 4, for any two instances of Fi, Fk has at most one transmission

on which both instances can cause delay. If there is no transmission of Fk that is delayed

by both the p-th instance and the p + 1-th instance of Fi, then no transmission of Fk is

delayed by both the p-th instance and the q-th instance of Fi, for any q > p + 1, where

1 ≤ p < d t
Pi
e. Thus, Z(k, i) is maximum when for each pair of consecutive instances (say,

the p-th instance and p+1-th instance, for each p, 1 ≤ p < d t
Pi
e) of Fi, there is a transmission

of Fk that is delayed by both instances. Hence, at most d t
Pi
e − 1 instances contribute to

this additional delay Z(k, i), each instance causing some additional delay on a transmission.

Since one instance of Fi can cause delay on a transmission of Fk at most by δ(k, i) slots,

Z(k, i) ≤ (d t
Pi
e − 1)δ(k, i). Since the last instance may finish after the considered time

window of t slots, the delay caused by it is at most min(δ(k, i), t mod Pi) slots. Taking this

into consideration, Z(k, i) ≤ (b t
Pi
c − 1)δ(k, i) + min(δ(k, i), t mod Pi). Thus, the total delay

caused on Fk by all instances of Fi is at most

∆(k, i) + Z(k, i) ≤ ∆(k, i) + (b t
Pi
c − 1).δ(k, i) + min(δ(k, i), t mod Pi)

From Theorem 5, now Θk(t) (i.e., an upper bound of the total delay flow Fk can experience

from all higher priority flows due to transmission conflicts during a time interval of t slots)

43

is calculated as follows.

Θk(t) =
∑

Fi∈hp(Fk)

(
∆(k, i) +

(⌊ t
Pi

⌋
− 1
)
.δ(k, i) + min

(
δ(k, i), t mod Pi

))
(3.8)

Since usually δ(k, i) � ∆(k, i), the above value of Θk(t) is significantly smaller than that

derived in Equation 3.7. Our simulation results (in Section 3.8) also demonstrate that the

above bound is a significant improvement over the bound derived in Equation 3.7.

3.5.4 End-to-End Delay Bound

Now we consider both types of delays together to develop an upper bound of the end-to-

end delay of every flow. For a flow, we first derive an upper bound of its end-to-end delay

assuming that it does not conflict with any higher priority flow. We then incorporate its worst

case delay due to conflict into this upper bound. This is done for every flow in decreasing

order of priority starting with the highest priority flow as explained below.

For Fk, we use Rch,con
k to denote an upper bound of the worst case end-to-end delay consider-

ing delays due to both channel contention and conflicts between flows. We use the following

two steps to estimate Rch,con
k for every flow Fk ∈ F in decreasing order of priority starting

with the highest priority flow.

Step 1

First, we calculate a pseudo upper bound (i.e., not an actual upper bound), denoted by Rch
k ,

of the worst case end-to-end delay of Fk assuming that Fk is delayed by the higher priority

flows due to channel contention only. That is, we assume that Fk does not conflict with any

higher priority flow. This calculation is based on the upper bounds Rch,con of the worst case

end-to-end delays of the higher priority flows which are already calculated considering both

types of delay. Based on our discussion in Subsection 3.5.1, to determine Rch
k , the worst

case delay that flow Fk will experience from the higher priority flows can be calculated using

Equation 3.5. The amount of delay that a higher priority flow Fi will cause to Fk depends

on Fi’s workload during a BP(k, x) (i.e., a level-k busy period of x slots). Note that, in

Equations 3.1 and 3.3, the workload bound of Fi was derived in absence of conflict between

44

the flows. Now we first analyze the workload bound of Fi ∈ hp(Fk) in the network where

both channel contention and transmission conflicts contributed to the worst case end-to-end

delay of Fi.

From Equation 3.1, if flow Fi does not have carry-in, its workload W nc
k (Fi, x) during a

BP(k, x) does not depend on its worst case end-to-end delay. Therefore, if Fi has no carry-

in, W nc
k (Fi, x) during a BP(k, x) still can be calculated using Equation 3.1, no matter what

the worst case end-to-end delay of Fi is. That is,

W nc
k (Fi, x) =

⌊
x

Pi

⌋
. Ci + min(x mod Pi, Ci) (3.9)

Now Inc
k (Fi, x) is calculated using Equation 4.5.3 and is guaranteed to be an upper bound

of the delay that Fi ∈ hp(Fk) can cause to Fk due to channel contention.

From Equation 3.3, when flow Fi has carry-in, its workload W ci
k (Fi, x) during a BP(k, x)

depends on its worst case response time Ri. Equation 3.3 also indicates that W ci
k (Fi, x) is

monotonically nondecreasing in Ri. Now, in the WirelessHART network, an upper bound

of the end-to-end delay of Fi must be no less than Ri since both channel contention and

transmission conflicts contribute to its end-to-end delay. That is, Rch,con
i ≥ Ri. Therefore, if

we replace Ri with Rch,con
i in Equation 3.3, W ci

k (Fi, x) is guaranteed to be an upper bound

of Fi’s workload during a BP(k, x). Thus,

W ci
k (Fi, x) =

⌊
max(x− Ci, 0)

Pi

⌋
. Ci + Ci + µi (3.10)

where µi = min
(

max
(
λ− (Pi −Rch,con

i), 0
)
, Ci − 1

)
and λ = max(x−Ci, 0) mod Pi. Sim-

ilarly, Ici
k (Fi, x) calculated using Equation 3.4 is guaranteed to be an upper bound of the

delay that Fi can cause to Fk due to channel contention.

Once the bounds Inc
k (Fi, x) and Ici

k (Fi, x) of the delay from every higher priority flow Fi ∈
hp(Fk) are calculated, the total delay Ωk(x) that an instance of Fk experiences from all higher

priority flows during a BP(k, x) due to channel contention is calculated using Equation 3.5.

Now assuming that Fk does not conflict with any higher priority flow, an upper bound of its

end-to-end delay can be found using the same iterative method that is used for multiprocessor

scheduling [88]. Since there are m channels, the pseudo upper bound Rch
k of the worst

45

case end-to-end delay of Fk can be obtained by finding the minimal value of x that solves

Equation 3.11.

x =

⌊
Ωk(x)

m

⌋
+ Ck (3.11)

Equation 3.11 is solved using an iterative fixed-point algorithm starting with x = Ck. This

algorithm either terminates at some fixed-point x∗ ≤ Dk that represents the bound Rch
k or

x will exceed Dk eventually. In the latter case, this algorithm terminates and reports the

instance as “unschedulable”.

Effect of Channel Hopping. To every transmission, the scheduler assigns a channel

offset between 0 and m − 1 instead of an actual channel, where m is the total number of

channels. Any channel offset c (i.e., 1, 2, · · · ,m − 1) is mapped to different channels at

different time slots s as follows.

channel = (c+ s) mod m

That is, although the physical channels used along a link changes (hops) in every time slot,

the total number m of available channels is fixed. The scheduler only assigns a fixed channel

index to a transmission which maps to different physical channels in different time slots,

keeping the total number of available channels at m always, and scheduling each flow on

at most one channel at any time. Hence, channel hopping does not have effect on channel

contention delay.

Step 2

Once the value of Rch
k is computed, we incorporate the transmission conflict delay into it

to obtain the bound Rch,con
k . Namely, for flow Fk, the bound Rch

k has been derived in Step

1 by assuming that Fk does not conflict with any higher priority flow. Therefore, in this

step, we take into account that Fk may conflict with the higher priority flows and, hence,

can experience further delay from them. An upper bound Θk(y) of the total delay that

an instance of Fk can experience due to conflicts with the higher priority flows during a

time interval of y slots is calculated using Equation 3.8. Note that when Fk conflicts with

some higher priority flow it must be delayed, no matter how many channels are available.

Therefore, we add the delay Θk(y) to the pseudo upper bound Rch
k to derive an upper bound

46

of Fk’s worst case end-to-end delay. Thus, the minimal value of y that solves the following

equation gives the bound Rch,con
k for Fk that includes both types of delay:

y = Rch
k + Θk(y) (3.12)

Equation 3.12 is solved using an iterative fixed-point algorithm starting with y = Rch
k . Like

Step 1, this algorithm also either terminates at some fixed-point y∗ ≤ Dk that is considered

as the bound Rch,con
k or terminates with an “unschedulable” decision when y > Dk. Thus,

termination of the algorithm is guaranteed.

Theorem 6. For every flow Fk ∈ F , let Rch
k be the minimal value of x ≥ Ck that solves

Equation 3.11, and Rch,con
k be the minimal value of y ≥ Rch

k that solves Equation 3.12. Then

Rch,con
k is an upper bound of the worst case end-to-end delay of Fk.

Proof. Flows are ordered according to their priorities as F1, F2, · · · , FN with F1 being the

highest priority flow. We use mathematical induction on priority level k, 1 ≤ k ≤ N . When

k = 1, i.e., for the highest priority flow F1, Equations 3.11 and 3.12 yield Rch,con
1 = C1, where

C1 is the number of transmissions along F1’s route. Since no flow can delay the highest

priority flow F1, the end-to-end delay of F1 is always C1. Hence, the upper bound calculated

using Equation 3.12 holds for k = 1. Now let the upper bound calculated using Equation 3.12

holds for flow Fk, for any k, 1 ≤ k < N . We have to prove that the upper bound calculated

using it also holds for flow Fk+1.

To calculate Rch,con
k+1 in Step 2, we initialize y (in Equation 3.12) to Rch

k+1. Note that Rch
k+1 is

computed in Step 1 for flow Fk+1. In Step 1, Rch
k+1 is computed considering upper bounds

Rch,con
h of the worst case end-to-end delays of all Fh with h < k+1 which are already computed

considering both types of delay. Equation 3.11 assumes that Fk+1 does not conflict with any

higher priority flow. This implies that the minimal solution of x, i.e., Rch
k+1 is an upper bound

of the worst case end-to-end delay of Fk+1, if Fk+1 is delayed by the higher priority flows

due to channel contention only. If Fk+1 conflicts with some higher priority flow, then it can

be further delayed by the higher priority flows at most by
∑

Fh∈hp(Fk+1)d
y
Ph
e∆(k+ 1, h) slots

during any time interval of length y. Equation 3.12 adds this delay to Rch
k+1 and establishes

the recursive equation for y. Therefore, the minimal solution of y, i.e., Rch,con
k+1 is guaranteed

to be an upper bound of the worst case end-to-end delay of Fk+1 that includes the worst

case delays both due to channel contention and due to conflicts between flows.

47

The end-to-end delay analysis procedure calculates Rch,con
i , for i = 1, 2, · · · , N (in decreasing

order of priority level), and decides the flow set to be schedulable if, for every Fi ∈ F ,

Rch,con
i ≤ Di. According to Equations 3.11 and 3.12, each Rch,con

i can be calculated in

pseudo polynomial time for every Fi. The correctness of this upper bound of the worst case

end-to-end delay follows from Theorem 6.

Note that our above analysis has been derived considering the retransmission parameter

χ = 1. If every transmission is repeated χ times to handle retransmission on a single route,

then every time slot is simply multiplied by χ in delay calculation. Hence, to adopt the

above delay analysis for any general value of χ, we simply replace the values of Ci,∆(k, i),

and δ(k, i) with Ci.χ, ∆(k, i).χ, and δ(k, i).χ, respectively. Our model is motivated by

WirelessHART [22] that uses a fixed number of retransmissions for all links. It is trivial

from the above analysis to handle varying the number of transmissions for different links

based on link qualities. Specifically, instead of multiplying the above values by a uniform

value of χ, we have to consider different values for different links.

3.6 Delay Analysis in Polynomial Time

We now extend the pseudo polynomial time analysis to a polynomial time method. While

this may provide comparatively looser bounds, it can calculate the bounds more quickly, and

hence is more suitable for online use when time efficiency is critical.

Exploiting the same mapping presented in Section 3.5, we can use the polynomial time

response time analysis for global multiprocessor scheduling proposed in [45] to calculate

the channel contention delays. In particular, using this analysis, the maximum channel

contention delay, denoted by Ωk(Dk), that a flow Fk can experience during its lifetime from

the higher priority flows can be expressed as follows.

Ωk(Dk) =
∑

Fi∈hp(Fk)

min(Wk(i), Dk − Ck + 1), (3.13)

where Wk(i) =

⌊
Dk +Di − Ci

Pi

⌋
.Ci + min

(
Ci, Dk +Di − Ci −

⌊
Dk +Di − Ci

Pi

⌋
.Pi

)

48

Therefore, similar to Equation 3.11, Rch
k of Fk (i.e., the worst case end-to-end delay of Fk

assuming that it is delayed by the higher priority flows due to channel contention only) can

be calculated as follows.

Rch
k =

⌊
Ωk(Dk)

m

⌋
+ Ck (3.14)

To calculate the conflict delay of Fk in polynomial time, we can estimate the maximum delay

in an interval of Dk slots from Equation 3.8 as follows.

Θk(Dk) =
∑

Fi∈hp(Fk)

(
∆(k, i) +

(⌊Dk

Pi

⌋
− 1
)
.δ(k, i) + min

(
δ(k, i), Dk mod Pi

))
(3.15)

Like Equation 3.12, the worst case end-to-end delay Rch,con
k of flow Fk considering both

channel contention delay and transmission conflict delay is calculated as

Rch,con
k = Rch

k + Θk(Dk) (3.16)

The above analysis does not require calculating the worst case end-to-end delays of the flows

in order of their priorities. Since the lower priority flows have the higher chances of missing

deadlines, the above analysis allows us to calculate the end-to-end delays of the lower priority

flows first, thereby getting a quicker decision on the schedulability of the flows.

3.7 Extending to Graph Routing Model

Now we show that our analysis based on simplified assumptions provides the theoretical

foundation for more practical analysis based on graph routing. For end-to-end communi-

cation based on graph routing between a source and destination pair in a WirelessHART

network, a packet is scheduled on each link on each path in the routing graph between the

pair for redundancy. The convention is to allocate one link for each en-route device starting

from the source, followed by allocating a second dedicated slot on the same path to han-

dle a retransmission, and then to allocate a third shared slot on a separate path to handle

another retry. For example, if a transmission is successful in the first attempt, two other

redundant time slots allocated for this transmission remain unused. Hence, although the

49

packet is scheduled on each path, only one path will be chosen by the packet based on link

conditions. In other words, the packet is always directed through one single route in the

routing graph. Hence if we analyze the end-to-end delay for the packet through each single

route in the routing graph, the maximum delay among these paths represents the packet’s

worst case end-to-end delay.

Based on the above observation, using our current analysis we can determine the end-to-end

delay through each path in a routing graph. Note that, in graph routing, some links on a path

may be scheduled using shared time slots. Since the links scheduled for shared slots do not

need to wait for dedicated slots, the delay bound through these paths may be shorter than

those determined by our current method for the same paths. As a result, our method will

provide pessimistic upper bounds of end-to-end delays for graph routing. Another issue is

the efficiency in terms of time complexity. A routing graph can have many single routes, and

analyzing the delay through each single route may not be an efficient method. Leveraging

our current result based on simplified assumptions, our future work will investigate efficient

delay analysis based on graph routing.

3.8 Evaluation

We evaluate our end-to-end delay analysis through simulations based on both random topolo-

gies and a real wireless sensor network testbed topologies. Evaluations are performed in terms

of acceptance ratio and pessimism ratio. Acceptance ratio is the proportion of the number

of test cases deemed schedulable by the delay analysis method to the total number of test

cases. For each flow, pessimism ratio is quantified as the proportion of the analyzed theoreti-

cal bound to its maximum end-to-end delay observed in simulation. In particular, pessimism

ratio quantifies our overestimate in the analytical delay bounds. Due to this overestimate

in the delay bounds, some test case that is schedulable may be determined as unschedu-

lable by our conservative delay analysis, and hence is rejected by admission control based

on our analysis. The impact of a sufficient delay analysis on the pessimism of admission

control is quantified by the acceptance ratio metric. The higher the acceptance ratio, the

less pessimistic (i.e., more effective) the delay analysis.

50

10 15 20 25 30 35
0.4

0.6

0.8

1

Number of flows

A
c
c
e

p
ta

n
c
e

 r
a

ti
o

Simulation
Analysis−PP+
Analysis−P+
Analysis−PP

Total nodes: 74
Total channels: 12

Period: 2
5 ∼10

(a) Topology at -1 dBm Tx power

10 15 20 25 30 35
0.2

0.4

0.6

0.8

1

Number of flows

A
c
c
e

p
ta

n
c
e

 r
a

ti
o

Simulation
Analysis−PP+
Analysis−P+
Analysis−PP

(b) Topology at -3 dBm Tx power

10 15 20 25 30 35
0.2

0.4

0.6

0.8

1

Number of flows

A
c
c
e

p
ta

n
c
e

 r
a

ti
o

Simulation
Analysis−PP+
Analysis−P+
Analysis−PP

(c) Topology at -5 dBm Tx power

Figure 3.2: Schedulability without retransmission on testbed topology

51

There is no baseline to compare the performance of our analysis which, to our knowledge, is

the first delay analysis for real-time flows in WirelessHART networks. Hence, we evaluate

the performance of our delay analysis by observing the delays through simulations of the

complete schedule of all flows released within the hyper-period. In the figures in this section,

“Simulation” denotes the fraction of test cases that have no deadline misses in the simu-

lations. This fraction indicates an upper bound of acceptance ratio for any delay analysis

method. The analyses evaluated in this section are named as follows.

Analysis-PP is the pseudo polynomial time analysis without considering the improved

conflict delay bound of Section 3.5.3. Namely, it calculates the end-to-end delay bound

using Equation 3.12 where the conflict delay is calculated based on Equation 3.7.

Analysis-PP+ is the pseudo polynomial time analysis by considering the tighter conflict

delay bound of Section 3.5.3. That is, Analysis-PP+ calculates the end-to-end delay bound

using Equation 3.12 where the conflict delay is calculated based on Equation 3.8.

Analysis-P+ is the polynomial time analysis derived in Section 3.6. It calculates the delay

bounds using Equation 3.16 based on the tighter conflict delay bound.

3.8.1 Simulation Setup

A fraction of nodes is considered as sources and destinations. The sets of sources and

destinations are disjoint. The reliability of a link is represented by the packet reception

ratio (PRR) along it. The node with the highest number of neighbors is designated as the

gateway. Since all flows pass through the gateway, we determine routes between the sources

and destinations that include the gateway. Routes are determined based on link reliabilities.

The most reliable route connecting a source to a destination is determined as the primary

route. For additional routes, we choose the next most reliable route that excludes the links

of any existing route between the same source and destination. Each flow is assigned a

harmonic period of the form 2a time slots, where a > 1. The deadline of each flow is set

equal to its period. The priorities of the flows are assigned based on deadline monotonic

policy that assigns priorities according to relative deadlines.

52

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

Test case no.

P
e

s
s
im

is
m

 r
a

ti
o

(a) Analysis-PP

1 2 3 4 5 6 7 8
1

1.5

2

Test case no.

P
e

s
s
im

is
m

 r
a

ti
o

(b) Analysis-PP+

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

Test case no.

P
e

s
s
im

is
m

 r
a

ti
o

(c) Analysis-P+

Figure 3.3: Pessimism ratio without retransmission on testbed topology

53

3.8.2 Simulations with Testbed Topologies

Due to large impact of transmission conflicts on the end-to-end delay of a flow, the delay

analysis largely depends on the topology of the network since transmission conflicts depend

on how the links or routes intersect (as seen in Sections 3.5.2 and 3.5.3). Therefore, first we

conduct simulation results based on real network topologies. These are the topologies of a

wireless sensor network testbed, and are generated using various transmission power levels of

its nodes since the network connectivity (hence the topology) varies as we vary transmission

powers. Our testbed consists of 74 TelosB motes each equipped with Chipcon CC2420 radios

which are compliant with IEEE 802.15.4 (WirelessHART’s physical layer is also based on

IEEE 802.15.4). It is deployed in two buildings of Washington University [2]. Setting the

same transmission (Tx) power at every node, each node (in a round-robin fashion) broadcasts

50 packets while its neighbors record the sequence numbers of the packets they receive. This

cycle is repeated giving each node 5 rounds to transmit 50 packets in each round. Every

link with a higher than 80% PRR is considered a reliable link to derive the topology of

the testbed. We collected topologies at 3 different Tx power levels (-1 dBm, -3 dBm, -5

dBm). We generate different flows in these topologies by randomly selecting the sources

and destinations. Their periods are randomly generated in the range 25∼10 time slots. We

generate 100 test cases considering these topologies.

Figure 3.2 shows the acceptance ratios of our delay analysis methods without considering

retransmission and without redundant routes. According to Figure 3.2(a), when the number

of flows N < 25 in the topology with Tx power of -1 dBm, Analysis-PP+ has an acceptance

ratio of 1.0, which means that all test cases that are indeed schedulable are also deemed

schedulable by our analysis. When N = 30, the value of “Simulation” is 0.99 while the

acceptance ratio of Analysis-PP+ is 0.95 which indicates that the analysis is highly efficient.

After that, the acceptance ratios of our analysis decreases with the increase in N . However,

the difference between its acceptance ratio and the value of “Simulation” always remains

strictly less than 0.24. Therefore, the acceptance ratios are always tight for any (moderate

or severe) overload in the testbed topology. Besides, the acceptance ratio of Analysis-PP+ is

always a lot higher than that of Analysis-PP. This happens because the delay bounds calcu-

lated in Analysis-PP+ are significantly tighter than those in Analysis-PP. Analysis-P+ which

determines looser bounds in polynomial time is highly competitive against Analysis-PP. This

happens because Analysis-P+ determines the conflict delay based on the improvement made

54

10 15 20 25 30 35
0.2

0.4

0.6

0.8

1

Number of flows

A
c
c
e

p
ta

n
c
e

 r
a

ti
o

Simulation
Analysis−PP+
Analysis−P+
Analysis−PP

Total nodes: 74
Total channels: 12

Period: 2
5 ∼10

(a) Topology at -1 dBm Tx power

10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Number of flows

A
c
c
e

p
ta

n
c
e

 r
a

ti
o

Simulation
Analysis−PP+
Analysis−P+
Analysis−PP

(b) Topology at -3 dBm Tx power

10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Number of flows

A
c
c
e

p
ta

n
c
e

 r
a

ti
o

Simulation
Analysis−PP+
Analysis−P+
Analysis−PP

(c) Topology at -5 dBm Tx power

Figure 3.4: Schedulability with retransmission on testbed topology

in Equation 3.8. Figures 3.2(b) and 3.2(c) show the similar results for the topology with Tx

power of -3 dBm and -5 dBm, respectively.

Now we analyze our results to evaluate the tightness of the delay bounds in terms of pes-

simism ratios. Among 100 test cases, each consisting of 25 flows from the above experiment

we randomly select 8 test cases that are schedulable under all 3 analyses, and plot the

distributions of pessimism ratios as box plots in Figure 3.3. The figures indicate that the

end-to-end delay bounds calculated in Analysis-PP+ are tighter than those calculated in

Analysis-PP since the former uses a tighter bound of conflict delay. Specifically, the results

show that the 75th percentiles of the pessimism ratios are no greater than 1.75, 2.2, and

2.25 for Analysis-PP+, Analysis-PP, and Analysis-P+, respectively. This indicates that the

delay bounds derived in our new analysis (Analysis-PP+) are much tighter than those in

the original analysis (Analysis-PP). Even the polynomial time analysis Analysis-P+ that

uses our improved conflict delay analysis is highly competitive against Analysis-PP that

55

is a pseudo polynomial-time analysis. These results thus indicate that incorporating our

improved conflict delay analysis into the original analysis significantly tightens the delay

bounds. In addition, if we look back to Figure 3.2 for acceptance ratio, our algorithms are

effective for admission control (in term of acceptance ratio) despite the (high) pessimism

ratio.

Figure 3.4 shows the acceptance ratios by considering retransmissions but without redundant

routes. In this case, the acceptance ratios are a lot lower than those in Figure 3.2. This

is reasonable because we have to schedule each transmission in two time slots, and due

to limited bandwidth the schedulable cases (observed in simulation) are also lower than

those in Figure 3.2 (wthout retransmission). However, these results also indicate that the

acceptance ratio of Analysis-PP+ is always higher than that of Analysis-PP. For the same 8

test cases selected in Figure 3.3, we now draw the pessimism ratios in Figure 3.5 considering

retransmissions. Figure 3.5 indicates that the pessimism ratios increase in some cases but do

not vary a lot compared to the case without retransmission. The pessimism ratios increase

in some cases but do not vary significantly compared to the case without retransmission.

Since both the analytical delay (x) and the delay observed in simulations (y) increase under

retransmissions, the pessimism ratios (x
y
) do not vary significantly compared to the case

without retransmission.

We now determine the schedulability considering both retransmissions and redundant routes.

That is, for each transmission along the primary route between a sources and destination is

scheduled on 2 time slots. In addition, each packet is also scheduled along each redundant

route. Figure 3.6 shows how the schedulability changes with the increase of number of routes

considering 25 flows in the topology with −1 dBm Tx power. When there is no redundant

route, the value of ”Simulation” is 0.96 while the acceptance ratio under Analysis-PP+ is

0.9. As the number of redundant routes increases, the schedulable cases as well as acceptance

ratios decrease sharply. However, at least 50% of the total schedulable cases are determined

as schedulable by Analysis-PP+ as long as the number of redundant routes is no greater

than 2. When there are 3 redundant routes, the value of ”Simulation” is 0.15 and the

acceptance ratio under Analysis-PP+ is 0.05. This decrease in acceptance ratio is because

many redundant links need to be scheduled.

56

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

Test case no.

P
e

s
s
im

is
m

 r
a

ti
o

(a) Analysis-PP

1 2 3 4 5 6 7 8
1

1.5

2

2.5

Test case no.

P
e

s
s
im

is
m

 r
a

ti
o

(b) Analysis-PP+

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

Test case no.

P
e

s
s
im

is
m

 r
a

ti
o

(c) Analysis-P+

Figure 3.5: Pessimism ratio with retransmission on testbed topology

These results demonstrate that the improved analysis (derived in Subsection 3.5.3) of trans-

mission conflict delay is highly effective in reducing the pessimism of the analysis. It also

shows that the polynomial-time analysis is reasonably tight when compared against the

original pseudo polynomial time analysis.

3.8.3 Simulations with Random Topologies

We test the scalability of our algorithms in terms of number of flows on random topologies of

larger number of nodes. Given the number of nodes and edge-density, we generate random

networks. A network with n nodes and ρ% edge-density has a total of (n(n−1)∗ρ)/(2∗100)

bidirectional edges. The edges are chosen randomly and assigned PRR randomly in the

range [0.80, 1.0]. Then we generate different number of flows in 400-node networks of 40%

edge-density. For every different number of flows, we generate 100 test cases. The periods

57

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Redundant routes
A

c
c
e

p
ta

n
c
e

 r
a

ti
o

Simulation
Analysis−PP+
Analysis−P+
Analysis−PP

Total nodes: 74
Total channels: 12

Period: 2
5 ∼10

Tx power: −1 dBm

Figure 3.6: Schedulability with retransmission and redundant routes on testbed topology

40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Number of flows

A
c
c
e

p
ta

n
c
e

 r
a

ti
o

Simulation
Analysis−PP+
Analysis−P+
Analysis−PP

Total nodes: 400
Total channels: 12

Period: 2
6 ∼12

(a) Without retransmission

40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Number of flows

A
c
c
e

p
ta

n
c
e

 r
a

ti
o

Simulation
Analysis−PP+
Analysis−P+
Analysis−PP

(b) With retransmission

Figure 3.7: Schedulability on random topology

are considered harmonic and are randomly generated in the range 26∼12 time slots. Larger

periods (compared to the case with testbed topologies) are used to accommodate large

networks and a large number of flows.

The acceptance ratios of our analyses in 400-node network are shown in Figure 3.7. Fig-

ure 3.7(a) shows that without retransmission the acceptance ratio of Analysis-PP+ is equal

to the value of “Simulation” as long as the number of flows is no greater than 60. As the

number of flows increases, the difference between the acceptance ratios of Analysis-PP+ and

the value of “Simulation” increases but always remains less than 0.33. Figure 3.7(b) shows

the results considering retransmissions along the primary route but no redundant routes. In

this case acceptance ratios in all methods are lower since the total number of actual schedu-

lable cases are lower. However, the acceptance ratio of Analysis-PP+ is always higher than

that of Analysis-PP, and Analysis-P+ is competitive against Analysis-PP.

58

0 1 2 3
0

0.2

0.4

0.6

0.8

Redundant routes
A

c
c
e

p
ta

n
c
e

 r
a

ti
o

Simulation
Analysis−PP+
Analysis−P+
Analysis−PP

Total nodes: 400
Total flows: 80
Total channels: 12

Period: 2
6 ∼12

Figure 3.8: Schedulability with retransmission and redundant routes on random topology

Figure 3.8 shows the results for 80 flows in the 400-node network under retransmissions and

varying number of redundant routes. Similar to our results with testbed topology here also

we observe that both the value of ”Simulation” and the acceptance ratios of our analyses

decrease sharply with the increase in the number of redundant routes.

In every setup, we have observed that the acceptance ratios of our analysis are close to

those of simulation which indicates that not many schedulable cases are rejected by our

analysis. All test cases accepted by our analysis meet their deadlines in the simulations which

demonstrates that the estimated bounds are safe. The results demonstrate that our analysis

can be used as an acceptance test for real-time flows under various network configurations.

3.9 Summary

In this paper, we have mapped the transmission scheduling of real-time data flows between

sensors and actuators in a WirelessHART network to real-time multiprocessor scheduling.

Based on the mapping, we have presented an end-to-end delay analysis to determine the

schedulability of real-time data flows in WirelessHART networks. Through simulation stud-

ies, we have demonstrated that our analysis enables effective schedulability tests for Wire-

lessHART networks.

59

Chapter 4

Real-Time Wireless: Delay Analysis

for Reliable Graph Routing

Wireless sensor-actuator networks are gaining ground as the communication infrastructure

for process monitoring and control. Industrial control applications demand a high degree

of reliability and real-time guarantees in communication between sensors and actuators.

Because wireless communication is susceptible to transmission failures in industrial envi-

ronments, industrial wireless standards such as WirelessHART adopt reliable graph routing

to handle transmission failures through retransmissions in dedicated and shared time slots

and route diversity. While these mechanisms are critical for reliable communication, they

introduce substantial challenges in analyzing the schedulability of real-time flows. This pa-

per presents the first worst-case end-to-end delay analysis for periodic real-time flows under

reliable graph routing. The proposed delay analysis can be used to quickly assess the schedu-

lability of real-time flows with stringent requirements on both high reliability and network

latency. We have implemented and experimented our analytical results on a wireless testbed

of 69 nodes. Both experimental results and simulations show that our delay bounds are safe

and enable effective schedulability tests under reliable graph routing.

4.1 Introduction

Wireless sensor-actuator networks (WSANs) are gaining ground as the communication in-

frastructure for industrial process monitoring and control systems. To support monitoring

and control, a WSAN periodically delivers data from sensors to a controller and then delivers

60

its control input data to the actuators through the multi-hop mesh network. Wireless control

in process industries demands a high degree of reliability and real-time guarantees in commu-

nication [166]. Failures in wireless transmissions are prevalent in industrial environments due

to channel noise, power failure, physical obstacle, multi-path fading, and interference from

co-existing wireless systems. Industrial wireless standards such as WirelessHART [22] adopt

a reliable graph routing approach to handle transmission failures through retransmissions

and route diversity.

Reliable graph routing [22] employs the following mechanisms to recover from transmission

failures. A routing graph is constructed as a directed list of paths between two devices,

thereby providing redundant routes for real-time flows between sensors and actuators. For

each flow, the network handles transmission failures by allocating a dedicated time slot (i.e.,

a time slot when at most one transmission is scheduled to a receiver) for each node on a

path from the source, followed by allocating a second dedicated slot on the same path for

a retransmission, and then by allocating a third shared slot (i.e., a time slot when multiple

nodes may contend to send to a common receiver) on a separate path for another retrans-

mission [22]. While highly effective in achieving reliable communication, this fault-tolerant

mechanism introduces significant challenges in worst-case delay analysis for real-time flows

in a WSAN. For industrial wireless control applications with stringent requirements on both

high reliability and network latency, an efficient worst-case delay analysis is of utmost im-

portance to quickly assess the schedulability of real-time flows for the purpose of online

admission control or workload adjustment in response to network dynamics.

In this paper, we propose the first worst-case end-to-end delay analysis for periodic real-time

flows under reliable graph routing. Specifically, we consider periodic real-time flows whose

transmissions are scheduled based on fixed priority. In a fixed priority scheduling policy, all

transmissions of a flow are scheduled based on the fixed priority of the flow. While delay

analyses for single or independent routes have been proposed in the literature [25, 60, 99,

155, 159], an efficient delay analysis under reliable graph routing in a WSAN represents a

challenging open problem. Since a routing graph for a flow can consist of an exponential

(in number of nodes) number of routes between its source and destination, determining

an effective delay bound for a flow by enumerating all of these paths is time consuming,

making it unsuitable for WSANs subject to frequent changes to link and channel conditions

61

in industrial environments. We address this challenge and propose an end-to-end delay

analysis without enumerating all the paths.

In a WSAN under multi-channel graph routing, a flow may be delayed by higher priority

flows due to channel contention (when all channels are assigned to the higher priority flows

in a time slot) and due to transmission conflicts (when a transmission of the lower priority

flow and a transmission of a higher priority flow involve a common node). We use an efficient

method based on depth-first search to determine an upper bound of transmission conflict

delay of each flow. This bound holds for all paths in the flow’s routing graph and is computed

without requiring the enumeration of all the paths. We then analyze the properties of graph

routing and exploit an observation that, unlike single or independent routes, transmission

conflict may increase channel contention in graph routing. Through an analysis of the worst-

case scenario for transmission conflict and the worst-case scenario for channel contention in

the presence of transmission conflict, we determine the worst-case end-to-end delay bounds

of the flows. Moreover, we propose a probabilistic end-to-end delay bound that represents a

safe upper bound with high probability.

We have implemented and experimented graph routing and fixed priority transmission schedul-

ing on a wireless testbed of 69 nodes, where we have seen that our worst case bounds are

at most 2.68 times that observed in the experiments we have performed. We have also

performed trace-driven simulations on real network topologies. Both experimental results

and simulations show that our delay bounds are safe in practice and the probabilistic delay

bounds represent safe upper bounds with probability ≥ 0.90. The worst-case and prob-

abilistic bounds can be used in different application scenarios depending on the level of

predictability required. Our analysis hence can be used for effective schedulability test and

admission control of real-time flows in WSANs under reliable graph routing.

Section 4.2 reviews related work. Section 4.3 describes the system model and graph routing

mechanisms. Section 4.4 provides an overview of fixed priority scheduling for real-time flows

in a WSAN under graph routing. Section 4.5 presents the delay analysis under reliable

graph routing. Section 4.6 presents the probabilistic delay analysis. Section 4.7 presents the

experimental results. Section 4.8 concludes the paper.

62

4.2 Related Work

Real-time scheduling for wireless networks has been explored in many early [170] and recent

works [55,87,94,100,101,116,123,128,139,176]. However, these works do not focus on efficient

worst-case delay analysis in the network. Other works [25, 60, 99, 139, 159] have researched

delay analysis in wireless sensor networks. These works focus on data collection through a

routing tree [60, 159] and/or do not consider multiple channels [25, 60, 99]. In contrast, we

consider a WSAN based on multiple channels and reliable graph routing of WirelessHART.

Besides, our analysis is targeted for real-time flows between sensors and actuators for process

control purposes, and is not limited to data collection towards a sink.

Real-time scheduling for WSANs based on WirelessHART has received considerable attention

in recent works [93,154–157,195]. The works presented in [93] and [195] address graph routing

algorithm and localization, respectively, in WirelessHART networks. None of these concerns

delay analysis. Our earlier work proposed delay analysis [155]. As a first step in establishing

a delay analysis for WSANs, this earlier effort is based on single-route routing instead of

reliable graph routing, which are important for reliable communication in process control

applications. We have also studied priority assignment policies in [156] and rate selection

algorithms in [154] for real-time flows. Our work in [157,179] also considered dynamic priority

scheduling. However, none of our earlier work considers delay analysis under reliable graph

routing.

This paper presents the first delay analysis for WSANs under reliable graph routing. Since

industrial applications impose stringent requirements on both real-time performance and

reliability in hash environments with frequent transmission failures, the delay analysis rep-

resents an important contribution to real-time scheduling for real-world WSANs. Efficient

delay analysis is particularly useful for online admission control and adaptation (e.g., when

network route, topology, or channel condition change) so that the network manager can

quickly reassess the schedulability of the flows.

63

4.3 System Model

4.3.1 Network Model

Because of the world-wide adoption of WirelessHART in process monitoring and control, we

consider a wireless sensor-actuator network (WSAN) model inspired by the WirelessHART

standard [22]. This WSAN is a multi-hop mesh network consisting of a Gateway, a set of

field devices, and several access points. A centralized network manager and the controllers

are connected to the Gateway. The network manager is responsible for managing the entire

network such as routing and transmission scheduling. The field devices are wirelessly net-

worked sensors and actuators. Access points are wired to the Gateway to provide redundant

paths between the wireless network and the Gateway. The sensor devices periodically de-

liver sample data to the controllers (through the access points wired to the Gateway), and

the control messages are then delivered to the actuators. The network manager creates the

routes and schedules of transmissions.

To achieve high reliability, WirelessHART employs a number of mechanisms to handle trans-

mission failures. Transmissions are scheduled based on multi-channel TDMA (Time Division

Multiple Access). Each time slot is of fixed length (10 ms), and each transmission needs one

time slot. A transmission and its acknowledgement (ACK) are scheduled in the same slot

using the same channel. For transmission between a receiver and its sender, a time slot can

be either dedicated or shared for the link between the sender and the receiver, and the link

is called a dedicated link or a shared link, respectively. In a time slot, when a link is used as a

dedicated link, only one sender is allowed to transmit to the receiver. In a time slot, a shared

link associated with a receiver indicates that multiple senders can attempt to send to the

common receiver in that slot. The network uses the channels defined in IEEE 802.15.4, and

adopts channel hopping in every time slot. Any excessively noisy channel is blacklisted not

to be used. Each receiver uses a distinct channel for reception in any time slot. As a result,

there are at most m successful transmissions in a time slot, where m is the total number of

channels. This design decision prevents potential interference between concurrent transmis-

sions in a dedicated slot and trades network throughput for a higher degree of predictability

and reliability that is essential for industrial applications.

64

WirelessHART supports two types of routing approaches: source routing and graph routing.

Source routing provides a single route for each flow. The delay analysis for source routing has

been addressed in the literature [155]. The focus of this paper is to develop new delay analysis

for graph routing that achieves a higher degree of reliability by providing multiple paths for

each flow. In graph routing, a routing graph is a directed list of paths that connect two

devices. Packets from all sensor nodes are routed to the Gateway through the uplink graph.

For every actuator, there is a downlink graph from the Gateway through which the Gateway

delivers control messages. The end-to-end communication between a source (sensor) and

destination (actuator) pair happens in two phases. In the sensing phase, on one path from

the source to the Gateway in the uplink graph, the scheduler allocates a dedicated slot for

each device starting from the source, followed by allocating a second dedicated slot on the

same path to handle a retransmission. The links on this path are dedicated links. Then,

to offset failure of both transmissions along a primary link, the scheduler allocates a third

shared slot on a separate path to handle another retry. The links on these paths are shared

links. Then, in the control phase, using the same way, the dedicated links and shared links

are scheduled in the downlink graph of the destination.

Each node is equipped with a half-duplex omnidirectional radio transceiver that cannot both

transmit and receive at the same time and can receive from at most one sender at a time.

Two transmissions along links u → v (u is the sender and v is the receiver) and a → b are

called conflicting if (u = a) ∨ (u = b) ∨ (v = a) ∨ (v = b). Two conflicting transmissions

cannot be scheduled in the same dedicated slot. However, two transmissions having the

same receiver can be scheduled in a shared slot even though they are conflicting. Therefore,

collision may occur in a shared slot (although with a low probability because a shared link is

used only if the corresponding dedicated link fails in two dedicated slots). The transmitters

employ a CCA (Clear Channel Assessment) check before transmitting in a shared slot to

avoid/reduce conflict.

4.3.2 Flow Model

A periodic end-to-end communication between a source (sensor) and a destination (actuator)

is called a flow. We consider there are n real-time flows denoted by F1, F2, · · · , Fn in the

network. The source and the destination of flow Fi are denoted by si and di, respectively.

65

The subgraph of the uplink graph that si uses to deliver sensor data to the Gateway is

denoted by UGi. The downlink graph for di is denoted by DGi. The graph consisting of

UGi and DGi is the routing graph of Fi, and is denoted by Gi. The period and the deadline

of flow Fi are denoted by Ti and Di, respectively. Time slots are used as time units. We

assume Di ≤ Ti, ∀i.

Each flow Fi, 1 ≤ i ≤ n, has a fixed priority. Transmissions of a flow are scheduled based

on the priority of the flow. In practice, flows may be prioritized based on deadlines, rates,

or criticality. We assume that the priorities are already assigned using any algorithm, and

that F1, F2, · · · , Fn are ordered by priorities. Flow Fh has higher priority than flow Fi if

and only if h < i. All notations are summarized in Table 4.1.

4.4 Fixed Priority Scheduling

In this section, we provide an overview of the fixed priority transmission scheduling algo-

rithm under reliable graph routing for which our delay analysis is developed. Due to its

simplicity, fixed-priority scheduling is a commonly adopted policy in practice for real-time

CPU scheduling, Control-Area Networks, and also for WirelessHART networks. In a fixed

priority scheduling policy, each flow has a fixed priority, and its transmissions are scheduled

based on this priority. The schedule is created by resolving the transmission conflicts and

considering the limited number of channels. The complete schedule is split into superframes.

A superframe is a series of time slots that repeat at a constant rate and represents the

communication pattern of a set of flows.

We first describe how transmissions are scheduled using graph routing to account for failures.

Figure 4.1(a) shows UGh (the subgraph of the uplink graph used by Fh) for flow Fh. In the

figure, the dedicated links used by Fh in the sensing phase are shown in solid lines while the

dotted lines indicate the shared links used by Fh. Considering that Fh is not delayed by any

other flow, the time slots in which a link is activated are shown beside the links (starting from

slot 1). The first (starting from the source node sh) dedicated link sh → u is scheduled first

at slot 1. Then to handle the transmission failure of slot 1, time slot 2 is also allocated for this

link. Then, the next dedicated link u→ v is allocated time slots 3 and 4. Similarly, the next

dedicated link v → a is allocated time slots 5 and 6. Thus, if the first transmission (scheduled

66

m total number of available channels in the network
n total number of flows
Fi a flow with priority i
si source (sensor) of Fi
di destination (actuator) of Fi
Ti period of Fi
Di deadline of Fi
Ri an upper bound of end-to-end delay of Fi
UGi subgraph of the uplink graph used by Fi
DGi downlink graph of Fi
Gi routing graph of Fi (consists of UGi and DGi)
Ei total number of dedicated links of flow Fi
Si total number of shared links of flow Fi
Lsen
i worst-case time requirement of Fi in sensing phase

Lcon
i worst-case time requirement of Fi in control phase

Li worst-case time requirement of Fi, i.e., Lsen
i + Lcon

i

Ωi(x) channel contention delay suffered by Fi in an interval of x time slots

λh,sen
i maximum conflict delay caused by one instance of Fh

along the bottleneck sensing path of Fi
λh,con
i maximum conflict delay caused by one instance of Fh

along the bottleneck control path of Fi
δhi maximum conflict delay caused by one instance of Fh along the bottleneck link of Fi
∆h
i maximum conflict delay that one instance of higher priority

flow Fh can cause on Fi’s bottleneck path

δ′hi maximum conflict delay caused by one instance of Fh along
the bottleneck link of Fi’s dedicated path

∆′hi maximum conflict delay that one instance of higher priority
flow Fh can cause on Fi’s dedicated path

Table 4.1: Notations

on slot 5) along v → a succeeds (given at least one transmission along sh → u and at least

one transmission along u→ v succeeded), then the packet will reach the access point a in 5

time slots. If the first transmission (scheduled on slot 5) along v → a fails but the second one

(scheduled on slot 6) along that link succeeds, then the packet will reach the access point a in

6 time slots. For every link starting from the source, to handle failure of both transmissions

along the link, the scheduler again allocates a third shared slot on a separate path to handle

another retry. There can be situations when the second transmission on a dedicated link,

say sh → u, succeeds but the ACK gets lost. As a result, sh retransmits the packet along

the shared link sh → y on the third slot (as sh is unaware of the successful transmission on

67

shared link

dedicated link
u

v

a

y

z

w
x

1, 2

3, 4

5, 6

access point

3

4

5

8

7, 9

5

7

sh
L h = 8

sen

(a) UGh for Fh

u

v

a

y

z

w
x

1, 2

3, 4

5, 6

sh

access point

3

4

5

8

7, 9

5

7

si

(b) UGi and UGh

Figure 4.1: Routing in the sensing phase of Fi and Fh (the numbers beside each link indicate
the time slots allocated to the link.)

the dedicated link) while the packet at u is transmitted through the subsequent links. Thus

a packet can be duplicated and delivered through multiple routes. We call this problem

ACK-lost problem. To handle ACK-lost problem, we avoid conflicts among the duplicated

packets while scheduling on a routing graph, except the case that transmissions along the

shared links having the same receiver are allowed to schedule in the same slot. Thus, the

links on paths sh → y → z → w → a are scheduled on slots 3, 4, 5, and 7. Then the links

on path u → x → a are scheduled on slots 5 and 7. Then the links on path v → w → a

are scheduled on slots 8 and 9. Thus the packet can take at most 9 slots to reach the access

point (along sh → u→ v → w → a).

Under fixed priority scheduling, the transmissions of the flows are scheduled in the following

way. Starting from the highest priority flow F1, the following procedure is repeated for every

flow Fi in decreasing order of priority. For current priority flow Fi, the network manager

schedules its dedicated links and shared links on UGi in its sensing phase on earliest available

time slots and on available channels. It then schedules the dedicated links and shared links

on DGi in the control phase following the same way. A time slot is available if no conflicting

transmission is already scheduled in that slot except the case that transmissions along the

68

shared links having the same receiver are allowed to schedule in the same slot. Thus a

packet is scheduled on multiple paths along the routing graph. When there is no ACK-

lost problem, a packet is delivered through one path in the routing graph. In presence of

ACK-lost problem, a packet can be duplicated and thus delivered through multiple paths.

Note that we do not propose any new algorithm for real-time transmission scheduling or any

new fault tolerance mechanism for WirelessHART networks. Instead, the key contribution

of our work is an efficient analysis for deriving the worst case delay bounds in a WSAN

under graph routing, which is applicable for any existing fixed-priority scheduling policy for

real-time flows in WSANs. The delay bound provided by our analysis is applicable only to

the packets that are successfully delivered to the destination using existing graph routing

mechanisms in WirelessHART.

4.5 Delay Analysis under Reliable Graph Routing

We first formulate the problem of worst-case delay analysis for real-time flows in a WSAN.

We then present the delay analysis for any given fixed priority scheduling policy.

4.5.1 Problem Formulation

For each flow Fi, the sensor (si) periodically generates data at a period of Ti which has to

be delivered to the Gateway (through an access point) in the sensing phase, and then the

control message has to be delivered to the actuator (di) in the control phase. The total

communication delay in two phases is called an end-to-end delay of Fi. The flows are called

schedulable under a given fixed priority scheduling algorithm A, if A is able to schedule the

transmissions where no deadline will be missed. A schedulability test S is sufficient if any set

of flows deemed schedulable by S is indeed schedulable. To determine the schedulability of a

set of flows, it is sufficient to show that, for every flow, an upper bound of its worst case end-

to-end delay is no greater than its deadline. Our objective is to determine an upper bound

Ri of the end-to-end delay of each flow Fi. The end-to-end delay analysis will determine the

flows to be schedulable if Ri ≤ Di, ∀i.

69

Note that creating a complete schedule for all flows requires an exponential time since the

schedule has to be created up to the hyper-period of the flows. Compared to extensive

testing and simulations of the entire schedule, analytical delay bounds are highly desirable

in process monitoring and control applications that require real-time performance guarantees.

An efficient end-to-end delay analysis can also be used for online admission control and to

quickly adjust the workload in response to network dynamics. For example, when a channel

is blacklisted or some routes are recalculated, the analysis can be used to promptly decide

whether some flow has to be removed or some rate has to be updated to meet deadlines.

In transmission scheduling, a lower priority flow may be delayed by higher priority flows

due to (a) transmission conflicts (when a transmission of the lower priority flow and a

transmission of a higher priority flow involve a common node) and (b) channel contention

(when all channels are assigned to the transmissions of higher priority flows in a time slot).

For each kind of delay we first separately analyze how reliable graph routing in WSANs affect

it. We then incorporate each component of the delays into one analysis that provides an

upper bound of a flow’s end-to-end delay taking into account the fault-tolerant mechanisms.

4.5.2 Transmission Conflict Delay under Graph Routing

First we analyze the delay that a flow can experience due to transmission conflicts only

under graph routing. Whenever two transmissions conflict, the one that belongs to the lower

priority flow needs to be delayed. The term ‘delay’ used in this subsection will refer to ‘only

transmission conflict delay’.

First we determine the conflict delay that one higher priority flow Fh may cause on a lower

priority flow Fi. Under multi-path graph routing, a transmission of Fh along a link `h and

a transmission of Fi along a link `i may be conflicting in 4 ways as follows when these two

links involve a common node:

1. Type 1: `h is a dedicated link and `i is a shared or dedicated link.

2. Type 2: `h is a shared link and `i is a dedicated link.

70

3. Type 3: `h is a shared link and `i is a shared link, and the receiver nodes of the two

links are different.

4. Type 4: `h is a shared link and `i is a shared link, and the receiver nodes of the two

links are the same. In this case, the transmission of Fi is not delayed.

In the first 3 cases the transmission of Fi is delayed while for Type 4 conflict it will not be

delayed. Therefore, the total delay caused by Fh on Fi depends on how their dedicated and

shared links intersect in the routing graphs. Now we will first upperbound the conflict delay

that one instance of a higher priority flow Fh may cause on Fi. To determine this, in the

next discussion we limit our attention only to Fh and Fi.

In the routing graph Gi (consisting of UGi and DGi) of flow Fi which involves Ni nodes,

there can be O(N2
i) directed end-to-end paths from its source si to destination di. If every

node in the routing graph has to make the first two tries along a dedicated link and then

to make a third retransmission along a shared link, then this number of paths can be 2Ni .

Among these end-to-end paths, the one that experiences the maximum conflict delay from

Fh is called the bottleneck path with respect to Fh. The conflict delay caused by Fh along

Fi’s bottleneck path represents the upper bound of the conflict delay that Fh may cause on

Fi. Let ∆h
i be an upper bound of conflict delay that one instance of Fh may cause along the

bottleneck path of Fi. We determine ∆h
i in an efficient way without requiring to find the

bottleneck path or without enumerating all end-to-end paths in Gi as described below.

Let us call the bottleneck path (with respect to Fh) in UGi the bottleneck sensing path of Fi.

Let an upper bound of conflict delay caused by Fh on Fi’s bottleneck sensing path be λh,sen
i . A

value of λh,sen
i can be efficiently calculated without enumerating all paths in UGi as explained

below. Let us consider a particular path p in UGi. The total number of transmissions of

(one instance of) Fh that may have Type 1, 2, or 3 conflict on p represents a value of conflict

delay along p caused by one instance of Fh. To illustrate this, in Figure 4.1(b), with flow

Fh, we also show UGi for flow Fi. The figure shows links si → z, z → v, and v → a

as dedicated links in UGi while the corresponding shared links are si → y, z → w, and

v → w, respectively. In Figure 4.1(b), Fh has 9 transmissions that may cause delay along

p = si → z → w → a of Fi. (Note that this is the delay along p considering links si → z,

z → v, z → w, and w → a of Fi. Link z → v is considered because z → w is scheduled

only after scheduling z → v.) Now the path in UGi whose delay (calculated using the above

71

Algorithm 3: Finding conflict delay on Fi caused by Fh
Procedure FindConflict(UGi, r) /* r is a node in UGi */

for each node u in UGi do
status(u):=undiscovered; λhi (u) := 0;

end
DFSearch(r); /* start search at node r */

return λhi (r); /* λhi in subtree rooted at r */

end Procedure

Procedure DFSearch(r)
status(r):=discovered; /* node r is now discovered */

for each v ∈ children(r, UGi) do
if status(v)=undiscovered; then DFSearch(v);

end

λhi (r) := max{λhi (v)|v ∈ children(r, UGi)};
x(r) := new conflict delay on Fi by Fh observed at node r;
λhi (r) := λhi (r) + x(r);

end Procedure

method) is maximum is the bottleneck sensing path, and its delay represents λh,sen
i . Such a

value of λh,sen
i is determined quickly by exploring each link on UGi once based on a depth-first

search on UGi. The method is shown as Algorithm 3, and λh,sen
i is determined by calling

λh,sen
i = FindConflict(UGi, si);

In Algorithm 3, we use children(u, UGi) to denote the set of nodes to which node u transmits

in UGi for flow Fi. (For example, in Figure 4.1(a), node sh has children u and y.) The search

starts at node si. In this method, when the search backtracks at a node u, we use λhi (u) to

denote the maximum conflict delay along a path among all the paths in the subtree (induced

by depth first search) rooted at u. The value of λhi (u) is calculated by taking the maximum

of the values from u’s children and then by adding the new conflict delay that we observe at

node u, when the search finishes node u. Note that we do not need to execute Algorithm 3

for every distinct Fh to determine λh,sen
i . Instead, we need to execute Algorithm 3 only once

for all h < i to determine λh,sen
i for flow Fi, making our approach highly efficient.

Similarly, let λh,con
i be the conflict delay along the bottleneck control path. The value of

λh,con
i is also determined using Algorithm 3 on DGi and starting the search at an access point

a, i.e., by calling

λh,con
i = FindConflict(DGi, a);

72

Based on these values, Lemma 7 provides a bound of ∆h
i .

Lemma 7. For a higher priority flow Fh and a lower priority flow Fi, ∆h
i ≤ λh,seni + λh,coni .

Proof. Since the control phase of Fi starts after its sensing phase is complete, the bottleneck

path between si and di consists of its bottleneck sensing path and the bottleneck control

path. Hence, λh,sen
i + λh,con

i is an upper bound of conflict delay caused by one instance of Fh

along Fi’s bottleneck path.

Note that ∆h
i is an upper bound of delay that one instance of Fh can cause along Fi’s

bottleneck path. Now we will upperbound the total delay caused by all instances of Fh.

In considering the delay caused by multiple instances, we observe that at the time when a

transmission on a directed path p in Gi conflicts with some transmission of Fh, the preceding

transmissions on p are already scheduled. These already scheduled transmissions on p are

no more subject to delay by the subsequent instances of Fh. For example, in Figure 4.1(b)

let us consider the path si → y → z → v → w → a in UGi of Fi. If some instance of Fh

conflicts and causes delay on Fi’s transmission along v → w, the next instance of Fh must

not delay Fi’s transmissions along links si → y, y → z, and z → v on this path since these

are already scheduled. Thus only the transmissions that are not yet scheduled along path p

will be considered for conflict delay by the subsequent instances of Fh. These observations

lead to Lemma 8, and then to Theorem 9 to upperbound the total delay (due to transmission

conflict) caused on Fi by all instances of Fh.

Lemma 8. Let us consider any two instances of a higher priority flow Fh such that each

causes conflict delay on a directed path p in Gi of a lower priority flow Fi in a time interval.

Then, there is at most one common transmission on p that can be delayed by both instances.

Proof. Let these two instances of Fh be denoted by Fh,1 and Fh,2, where Fh,1 is released before

Fh,2. Suppose to the contrary, both of these instances cause delay on two transmissions, say

τj and τr, on directed path p of Fi. Without loss of generality, we assume that τj precedes

τr on p. Fh,1 causes delay on τr because τr is ready to be scheduled. This implies that τj has

already been scheduled. Hence, Fh,2 which releases after Fh,1 cannot cause any delay on τj,

thereby contradicting our assumption.

73

By Lemma 8, for any two instances of Fh, any directed path in Gi of Fi has at most one

transmission on which both instances can cause delay. Let the link on Gi that may have

maximum conflict delay of Type 1, 2, or 3 with Fh be called the bottleneck link of Fi (with

respect to Fh). That is, a transmission of Fi along this link may face the highest conflict

with Fh. Let δhi denote the maximum conflict delay along the bottleneck link. (For example,

considering only UGi in Figure 4.1(b), we can see that δhi = 7, since a link of Fi can have

conflict with at most 7 transmissions of Fh. Here, z → v is Fi’s bottleneck link.) In the worst

case, the transmission along the bottleneck link of Fi (with respect to Fh) can be delayed by

multiple instances of Fh. Hence, the value of δhi plays a major role in determining the worst

case delay caused by Fh on Fi as shown in Theorem 9.

Theorem 9. In a time interval of t slots, the worst case conflict delay caused by a higher

priority flow Fh on a lower priority flow Fi is upper bounded by

∆h
i +

(⌊ t

Th

⌋
− 1
)
.δhi + min

(
δhi , t mod Th

)

Proof. There are at most d t
Th
e instances of Fh in a time interval of t slots. We consider a

particular directed path p in Gi of Fi. Let the set of transmissions of Fh which cause conflict

delay along p be denoted by Γ. When one instance Fh,1 of Fh causes conflict delay on p,

a subset Γ1 of Γ causes delay on p. Now consider a second instance Fh,2 of Fh. For Fh,2,

another subset Γ2 of Γ causes delay on p. When all subsets Γ1,Γ2, · · · ,Γd t
Th
e are mutually

disjoint, by the definition of ∆h
i , the conflict delay caused by Γ on p is at most ∆h

i . Hence,

the total conflict delay caused by all Γ1,Γ2, · · · ,Γd t
Th
e in this case is at most ∆h

i . That is,

the total conflict delay on p caused by Fh is at most ∆h
i .

Now let us consider the case when the subsets Γ1,Γ2, · · · ,Γd t
Th
e are not mutually disjoint,

i.e., there is at least one pair Γj,Γk such that Γj ∩ Γk 6= ∅, where 1 ≤ j, k ≤ d t
Th
e. Let

the total delay caused by all instances of Fh on p in such case be ∆h
i + Zh

i , i.e., the delay

is higher than ∆h
i by Zh

i time slots. The additional delay (beyond ∆h
i) happens because

the transmissions that are common between Γi and Γj cause both instances of Fh to create

delay along p. By Lemma 8, for any two instances of Fh, p has at most one transmission

on which both instances can cause delay. If there is no transmission of p that is delayed

by both the k-th instance and the (k + 1)-th instance of Fh, then no transmission of p

is delayed by both the k-th instance and the q-th instance of Fh, for any q > (k + 1),

74

where 1 ≤ k < d t
Th
e. Thus, Zh

i is maximum when for each pair of consecutive instances

(say, the k-th instance and k + 1-th instance, for each k, 1 ≤ k < d t
Th
e) of Fh, there is

a transmission of p that is delayed by both instances. Hence, at most d t
Th
e − 1 instances

contribute to this additional delay Zh
i , each instance causing some additional delay on a

transmission. Since one instance of Fh can cause delay on a transmission of p at most by

δhi slots, Zh
i ≤ (d t

Th
e − 1)δhi . Since the last instance may finish after the considered time

window of t slots, the delay caused by it is at most min(δhi , t mod Th) slots. Taking this into

consideration, Zh
i ≤ (b t

Th
c − 1)δhi + min(δhi , t mod Th). Thus, the total delay caused on p by

all instances of Fh is at most

∆h
i + Zh

i ≤ ∆h
i + (

⌊
t

Th

⌋
− 1).δhi + min(δhi , t mod Th)

Since the above bound is true for any path in Gi (of Fi), it is true for the bottleneck path in

Gi. Since the conflict delay along the bottleneck path represents the conflict delay caused

on Fi by Fh, the theorem follows.

From Theorem 9, now an upper bound of the total delay that flow Fi can experience from

all higher priority flows due to transmission conflicts during a time interval of t slots is

calculated as follows.∑
h<i

(
∆h
i +

(⌊ t

Th

⌋
− 1
)
.δhi + min

(
δhi , t mod Th

))
(4.1)

4.5.3 Channel Contention Delay under Graph Routing

In this section, we analyze the channel contention delay caused by one higher priority flow

Fh to a lower priority one Fi under reliable graph routing. First we analyze the delay without

considering channel hopping. Later, we will analyze the effect of channel hopping.

Let Eh and Sh denote the total number of dedicated links and total number of shared links

of flow Fh, respectively. Since every dedicated link is scheduled on 2 dedicated slots, there

are 2Eh + Sh assignments of channels for flow Fh.

75

Note that a packet is scheduled on multiple paths in its routing graph for fault tolerance.

While a natural approach to analyzing channel contention delay of a flow under this scenario

is to consider it as a parallel task, we observe that the scheduling on routing graphs experi-

ences only a little parallelism making it more closer to sequential task scheduling due to the

following two problems:

• ACK-lost problem: Assuming no packet duplication, we could schedule the link w → a

for delivery through paths sh → y → z → w → a on slot 6, ignoring the fact that

link v → a is already scheduled on slot 6 because the packet will be delivered through

one path only (Figure 4.1(a)). But, in presence of ACK-lost problem, to avoid conflict

among the duplicate packets (of the same packet), we cannot schedule link w → a on

slot 6. Thus the two links v → a and w → a are scheduled sequentially, on slot 6 and

slot 7, respectively.

• Impact of transmission conflict on channel contention delay: The second reason is

that channel contention delay and transmission conflict delay are often correlated.

Specifically, channel contention delay can increase when a flow experiences transmission

conflict delay. Let us consider links z → w and u → x (in Gh) that can be scheduled

on slot 5 when there are no other higher priority flow (Figure 4.1). In the presence

of higher priority flows, if any of transmissions z → w and u → x in Fh is delayed,

for example by 1 slot, due to transmission conflict with a higher priority flow, while

the other can happen at slot 5, then these two transmissions have to be scheduled

sequentially (instead of scheduling in parallel). Therefore, even though scheduling of

Fh has some parallelism, in the worst case in presence of transmission conflict, it can

cause channel contention delay on its lower priority flows like a flow that happens like

a sequential task with execution requirements of 2Eh + Sh slots.

Based on the above observations, the analysis for upper bounding the channel contention

delay reduces to that for a set of flows where each flow Fi has the worst-case time requirement

of ei slots through a single path route, where

ei = 2Ei + Si

76

Hence, we leverage our result in [155] whose analysis was given for flows with single-path

routes to find the channel contention delay caused by Fh on Fi. Using that result, in any

time interval of x slots, there are at most m − 1 higher priority flows each flow Fh among

which can cause at most Ihi (x) delay on Fi as expressed below

Ihi (x, ei) = min

(
x− ei + 1,

⌊
x− eh
Th

⌋
eh + eh+

min

(
eh − 1,max

(
(x− eh) mod Th − (Th −Rh), 0

)))

where Rh is the worst-case end-to-end delay of Fh. Each other higher priority flow Fh can

cause at most Jhi (x, ei) delay on Fi, where

Jhi (x, ei) = min
(
x− ei + 1,

⌊
x

Th

⌋
eh + min

(
x mod Th, eh

))

Thus, considering a total of m channels, an upper bound Ωi(x) of the channel contention

delay caused by all higher priority flows on Fi in any time interval of x slots is derived as

follows.

Ωi(x, ei) =

⌊
1

m

(
Zi(x, ei) +

∑
h<i

Jhi (x, ei)

)⌋
(4.2)

with Zi(x, ei) being the sum of the min(i−1,m−1) largest values of the differences Ihi (x, ei)−
Jhi (x, ei) among the higher priority flows Fh, h < i.

Effect of Channel Hopping. To every transmission, the scheduler assigns a channel

offset between 0 and m − 1 instead of an actual channel, where m is the total number of

channels. All devices in the network maintain an identical list of available channels. At any

time slot t, a channel offset c (i.e., 1, 2, · · · ,m− 1) maps to a channel that is different from

the channel used in slot t− 1 as follows.

channel = (c+ t) mod m (4.3)

Both the sender and the receiver of the corresponding transmission link switches to the new

channel. As can be seen from Equation 4.3, at every time slot any 2 different channel offsets

77

always map to 2 different channels. The scheduler assigns at most one channel offset to a

link at any time which maps to different physical channels in different time slots, keeping

the total number of available channels at m always, and scheduling each link on at most one

channel at any time. Hence, channel hopping does not have effect on channel contention

delay.

4.5.4 End-to-End Delay Bound

Now both types of delays are incorporated together to develop an upper bound of the end-

to-end delay of every flow. This is done for every flow in decreasing order of priority starting

with the highest priority flow. Theorem 10 provides an upper bound Ri of end-to-end delay

for every flow Fi.

Considering no delay from higher priority flows, let the worst-case time requirement of Fh

in the sensing phase be denoted by Lsen
h . For example, in Figure 4.1(a), Lsen

h = 9 slots (as

described in Section 4.4). A similar scheduling is followed in the control phase also. Similarly,

considering no delay from higher priority flows, let the worst-case time requirement of Fh in

the control phase be denoted by Lcon
h . Thus, considering no delay from higher priority flows,

the time requirement through a critical path denoted by Li, of flow Fi is

Li = Lsen
i + Lcon

i (4.4)

Theorem 10. Let x∗i be the minimum value of x ≥ Li that solves Equation 4.5 using a

fixed-point algorithm.

x = Ωi(x, ei) + Li (4.5)

Then the end-to-end delay bound Ri of flow Fi is the minimum value of t ≥ x∗i that solves

Equation 4.6 using a fixed-point algorithm.

t = x∗i +
∑
h<i

(
∆h
i +

(⌊ t

Th

⌋
− 1
)
.δhi + min

(
δhi , t mod Th

))
(4.6)

Proof. According to Equation 4.2, x∗i is calculated considering Rh (i.e., the end-to-end delay

bound of Fh considering both channel contention delay and conflict delay) of each higher

78

priority flow Fh. According to Equation 4.2, Ωi(x, Li) is the channel contention delay caused

by all higher priority flows on Fi in any time interval of x slots. Hence x∗i is the bound

of the end-to-end delay of Fi when it suffers only from channel contention delay caused by

higher priority flows (and no conflict delay). Equation 4.1 provides the bound of transmission

conflict delay of Fi. Hence, adding this value to x∗i must be an upper bound of Fi’s end-to-end

delay under both channel contention and transmission conflict.

Thus we can determine Ri for every flow Fi in decreasing order of priority starting with the

highest priority flow using Theorem 10. In solving Equations 4.5 and 4.6, if x or t exceeds Di,

then Fi is decided to be “unschedulable”. Thus, the worst-case time required to determine

Ri can be O(Di) which implies a pseudo polynomial time complexity.

4.6 A Probabilistic End-to-End Delay Analysis

Graph routing provides a very conservative approach to scheduling transmissions in a Wire-

lessHART network. In the scheduling used in the previous sections, there is a synchronization

at the access points in the sense that the scheduling in the downlink graph of a flow (the

control phase) is started after all links in its uplink subgraph are scheduled. However, there

is high probability that a packet will be delivered through the dedicated path only because

each link on the path is dedicated and scheduled twice. Therefore, whenever the gateway

receives a sensor packet through the dedicated link, the corresponding control message can

be calculated and delivered through the downlink graph’s dedicated link in the next available

slot avoiding synchronization at the access points. The corresponding retry on the shared

slot can be scheduled only after all links on the uplink subgraph of the flow are scheduled.

The advantage of such a scheduling policy is that the actual end-to-end delay in most cases

will be substantially shorter since a packet follows the dedicated links in most cases. Under

this scheduling, we can determine a probabilistic delay bound that is tighter than the bound

derived in the last section but represents a bound with high probability.

Considering the dedicated route has Ei links, and pk as the probability of a successful trans-

mission along link k, the probability of being successful upon 2 transmissions through link

k is 1 − (1 − pk)
2. Therefore, the probability that a packet will be delivered through the

79

dedicated links is
Ei∏
k=1

(
1− (1− pk)2

)
(4.7)

Let, in Gi, the path consisting of all dedicated links be called dedicated path. Let ∆′hi denote

the total number of transmissions of (one instance of) Fh that share a node on the dedicated

path of Fi. Similarly, let δ′hi denote the maximum conflict delay caused by one instance of

Fh on the bottleneck link on Fi’s dedicated path (i.e., a link on Fi’s dedicated path can share

a node with at most δ′hi transmissions of Fh). Corollary 1 now follows from Theorem 10.

Corollary 1. Let x∗i be the minimum value of x ≥ 2Ei that solves Equation 4.8 using a

fixed-point algorithm.

x = Ωi(x, 2Ei) + 2Ei (4.8)

Then the minimum value of t ≥ x∗i that solves Equation 4.9 using a fixed-point algorithm is

the worst-case end-to-end delay bound of flow Fi with a probability of at least
Ei∏
k=1

(
1 − (1 −

pk)
2
)

.

t = x∗i +
∑
h<i

(
∆′

h
i +

(⌊ t

Th

⌋
− 1
)
.δ′

h
i + min

(
δ′
h
i , t mod Th

))
(4.9)

Proof. By Equation 4.2, Ωi(x, 2Ei) represents the channel contention delay on the dedicated

path of Fi. Following Theorem 10, the minimum value of t ≥ x∗i that solves Equation 4.9

is the worst case delay bound for the dedicated route. The proof follows since a packet has
Ei∏
k=1

(
1− (1− pk)2

)
probability of being delivered through the dedicated route.

80

Figure 4.2: Testbed topology (access points are colored in blue)

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Flow ID (ordered by priority)

D
e
liv

e
ry

 r
a
ti
o
 (

%
)

(a) Delivery ratio

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

Flow ID (ordered by priority)

W
o

rs
t

c
a

s
e

 d
e

la
y
 (

m
s
)

 Experiment
 Analytical

(b) Delay

Figure 4.3: Delay and reliability on testbed

81

4.7 Experiment

4.7.1 Testbed Experiment

Implementation

We evaluate our delay analysis on an indoor wireless testbed deployed in two buildings at

Washington University [2]. The testbed consists of 69 TelosB motes, each equipped with

Chipcon CC2420 radios compliant with the IEEE 802.15.4 standard. Note that the physical

layer of WirelessHART is also based on IEEE 802.15.4. We implement a network protocol

stack on the testbed which consists of a multi-channel TDMA MAC protocol with channel

hopping based on Equation 4.3 and a routing protocol. The uplink and downlink graphs

are generated using the graph routing algorithms presented in [93]. Time is divided into

10 ms slots and clocks are synchronized across the entire network using the Flooding Time

Synchronization Protocol (FTSP) [131].

Experimental Setup

To avoid channels occupied by the campus Wi-Fi, we use IEEE 802.15.4 channels 11 to 14 in

our experiments. For each link in the testbed, we measured its packet reception ratio (PRR)

by counting the number of received packets among 250 packets transmitted on the link.

Following the practice of industrial deployment, we only consider links with PRR higher

than 90% on every channel to determine the testbed topology. Figure 4.2 is a topology of

the testbed showing the node positions on the two buildings’ floor plan. We use two nodes

(colored in blue in the figure) as access points, which are physically connected to a root

server (Gateway). The Network Manager runs on this root server. The rest of motes work

as field devices.

We experiment by generating 10 flows on our testbed. The period of each flow is picked

up from the range of [10 ∗ 28, 10 ∗ 211]ms. The relative deadline of each flow equals to its

period. All flows are schedulable based on our delay analyses. Priorities of the flows are

assigned based on Deadline Monotonic (DM) policy, a widely used scheduling policy in CPU

82

scheduling and in control area networks. DM assigns priorities to flows according to their

relative deadlines; the flow with the shortest deadline being assigned the highest priority.

Results

We run our experiments long enough so that each superframe is run for at least 20 cycles.

Based on our experimental results, we evaluate our proposed approaches in terms of reliability

and delay. We use delivery ratio to measure reliability. The delivery ratio of a flow is defined

as percentage of packets that are successfully delivered to destination. Then, we compare

the worst case end-to-end delay observed in experiments with our analytical delay bounds.

Figure 4.3 shows our results. Figure 4.3(a) shows the delivery ratios of all 10 flows. As the

figure shows, one flow has a delivery ratio of 95% while all other flows have 100% delivery

ratio. This is reasonable as graph routing is designed for such a high degree of reliability

through route, channel, and time diversity. This high delivery ratio demonstrates the effec-

tiveness of graph routing. Figure 4.3(b) plots the maximum end-to-end delay observed in

our experiments and the end-to-end delay bounds derived through our delay analysis. As the

figure shows, our analytical delay bounds are no less than the experimental worst case delays,

demonstrating that our delay analysis provides safe upper bounds of the actual delays. For

this particular experiments, the bounds are at most 2.68 times that observed in experiments.

Note that our analytical delays are the worst case delays while the longest delays observed

in the experiments are not the worst-case delays as our testbed is not deployed in industrial

environments. Hence, this ratio of 2.68 is expected to be smaller should the experiments be

performed in an industrial environment.

4.7.2 Simulation

For more extensive evaluation, we now use the same testbed topology and evaluate the

results in simulations. We generate flows by randomly selecting sources and destinations,

and simulate their schedules in these topologies. Two nodes in the topology are selected as

access points. The uplink and downlink graphs are generated using the same graph routing

algorithms as the one we used in testbed experiment. The periods of the flows are considered

83

20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Total number of flows

A
c
c
e
p
ta

n
c
e
 r

a
ti
o

Simulation
Analytical

(a) Acceptance ratio

1 2 3 6 7 8

1

1.5

2

2.5

3

3.5

Test case #

P
e
s
s
im

is
m

 r
a
ti
o
 w

.r
.t
.
w

o
rs

t
d
e
la

y

(b) Pessimism ratios

Figure 4.4: Worst case delay analysis performance in simulation

harmonic and are randomly generated in the range [10 ∗ 25, 10 ∗ 213]ms. In default settings,

the deadlines are considered equal to periods. Later we decrease the deadlines. Priorities of

the flows are assigned based on DM policy. In all cases, we use 12 channels for scheduling.

We evaluate our analysis in terms of the following metrics. (a) Acceptance ratio defined as

the proportion of the number of test cases deemed to be schedulable to the total number

of test cases. (b) Pessimism ratio defined, for a flow, as the proportion of the analyzed

theoretical upper bound to its maximum end-to-end delay observed in simulations.

Performance Analysis of the Worst Case Delay Analysis

Since there exists no prior work on delay analysis under reliable graph routing of Wire-

lessHART, we analyze the effectiveness of our analysis by simulating the complete schedule

of transmissions of all flows released within the hyper-period. In the figure, “Simulation”

indicates the fraction of test cases that have no deadline misses in the simulations, and

“Analytical” indicates the acceptance ratio of our delay analysis.

Figure 4.4(a) shows the acceptance ratios for 1000 test cases under varying number of flows.

As the figure shows, for 20 flows, 986 test cases among 1000 are schedulable through sim-

ulations while our analysis has determined 818 cases as schedulable as its acceptance ratio

is 0.818. For 30 flows 862 cases are schedulable through simulations among which 419 cases

are deemed schedulable by our analysis, which is almost 50% of the total schedulable cases.

84

The acceptance ratios decrease sharply with the increase in the number of flows as the net-

work becomes congested. However, in most cases, at least 50% of all schedulable cases are

accepted.

Figure 4.4(b) plots the pessimism ratios of the flows under our analysis for randomly selected

8 test cases each consisting of 30 flows. The figure plots pessimism ratios w.r.t. the worst case

possible delay (i.e. the ratio of analytical delay to worst case possible delay in simulation).

It indicates that the 75th percentile of the pessimism ratios is less than 2.5 in all but one

test case where it is below 2.7 and the median is below 2.6. These results indicate that our

delay bounds are not overly pessimistic for the particular cases we have tested.

In every setup, we have observed that the acceptance ratios of our analysis are close to those

of simulation. In addition, all test cases accepted by our analysis meet their deadlines in the

simulations which demonstrates that the bounds are safe. Our analysis hence can be used

as an effective schedulability test for real-time flows under reliable graph routing.

Performance Analysis of the Probabilistic Delay Analysis

Now we analyze the performance of our probabilistic analysis (Section 4.6). We show the

acceptance ratios under the probabilistic delay bound in Figure 4.5. Figure 4.5(a) shows

that the acceptance ratio is always close to that of simulation under various number of

flows. For 30 flows, Figure 4.5(b) shows acceptance ratios under varying deadlines, where a

flow’s deadline is varied as period ∗(deadline factor). Restoring the base deadlines (equal to

period), Figure 4.5(c) shows acceptance rates under varying sampling rates, where a flow’s

rate is varied as (old rate) ∗ (rate factor). The results show that probabilistic delay bounds

allow to accept more test cases, since these bounds are tighter than the worst case bounds.

Figure 4.6 plots the distribution of pessimism ratios for 30-flows in 8 test cases by restoring

the original rates of the flows. Compared to the ratios under the worst-case delay analysis (of

Figure 4.4), these ratios are higher because here pessimism ratios are the ratio of analytical

delay bound to the actual observed delay in simulation. Since most of the times a packet

is delivered through dedicated routes, the actual delay is lot shorter than the worst case

possible delay.

85

20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Total number of flows

A
c
c
e
p
ta

n
c
e
 r

a
ti
o

 Simulation
 Analytical

(a) Under varying number of flows (n)

0.6 0.7 0.8 0.9 1.0
0

0.2

0.4

0.6

0.8

1

Deadline factor

A
c
c
e
p
ta

n
c
e
 r

a
ti
o

 Simulation
 Analytical

(b) Under varying deadlines when n = 30

0.25 0.5 1.0 2.0 4.0
0

0.2

0.4

0.6

0.8

1

Rate factor

A
c
c
e
p
ta

n
c
e
 r

a
ti
o

 Simulation
 Analytical

(c) Under varying rates when n = 30

Figure 4.5: Acceptance rate under probabilistic delay bound

1 2 3 6 7 8

1

2

3

4

5

Test Case #

P
e
s
s
im

is
m

 r
a
ti
o

Figure 4.6: Pessimism ratio for 30 flows under probabilistic bound

86

Based on PRR, for each flow, the probability of delivering through the dedicated route was

at least 0.90 (based on Equation 4.7). Therefore, the results suggest that the probabilistic

delay bounds represent safe upper bounds with probability ≥ 0.90. Since graph routing in a

WSAN is a conservative way of scheduling transmissions to ensure reliability at the cost of a

high degree of redundancy, the worst case delay bound can be naturally pessimistic in many

set ups. Hence, the probabilistic delay bound can be used as an alternative with the bounds

being upper bound with high probability for soft real-time flows for which probabilistic

bounds are sufficient.

4.8 Summary

Industrial wireless sensor-actuator networks must support reliable and real-time communi-

cation in hash environments. Industrial wireless standards such as WirelessHART adopt

a reliable graph routing approach to handle transmission failures through retransmissions

and route diversity. These mechanisms introduce substantial challenges in analyzing the

schedulability of real-time flows. We have presented the first worst-case delay analysis under

reliable graph routing. We have also proposed a probabilistic delay analysis that provides

delay bounds with high probability. Experiments based on a wireless testbed of 69 nodes and

simulations show that our analytical delay bounds are safe, and can be used as an effective

schedulabity test for real-time flows under reliable graph routing.

87

Chapter 5

Real-Time Wireless: Priority

Assignment for Fixed Priority

Scheduling

WirelessHART is a new wireless sensor-actuator network standard specifically developed

for process industries. A key challenge faced by WirelessHART networks is to meet the

stringent real-time communication requirements imposed by process monitoring and con-

trol applications. Fixed-priority scheduling, a popular scheduling policy for real-time net-

works, has recently been shown to be an effective real-time transmission scheduling policy

in WirelessHART networks. Priority assignment has a major impact on the schedulability

of real-time flows in these networks. This paper investigates the open problem of priority

assignment for periodic real-time flows in a WirelessHART network. We first propose an

optimal priority assignment algorithm based on local search for any given worst case delay

analysis. We then propose an efficient heuristic search algorithm for priority assignment.

We also identify special cases where the heuristic search is optimal. Simulations based on

random networks and the real topology of a physical sensor network testbed showed that

the heuristic search algorithm achieved near optimal performance in terms of schedulabil-

ity, while significantly outperforming traditional priority assignment policies for real-time

systems.

88

5.1 Introduction

Wireless Sensor-Actuator Networks (WSANs) represent a new generation of communication

technology for industrial process control. A feedback control system in process industries

(e.g., oil refineries) is implemented in a WSAN for process monitoring and control applica-

tions. Networked control loops impose stringent reliability and real-time requirements for

communication of sensors and actuators [166]. To meet these requirements in harsh industrial

environments, WirelessHART has been developed as an open WSAN standard with unique

features such as centralized network management and scheduling, multi-channel TDMA, re-

dundant routes, and channel hopping [22, 56]. With the adoption of WirelessHART, recent

years have seen successful real-world deployment of WSANs for process monitoring and con-

trol [56]. As they continue to evolve in process industries, real-time transmission scheduling

issues are becoming increasingly important for WirelessHART networks.

In this paper, we consider a WirelessHART network that supports feedback control loops

through periodic real-time data flows from sensors to controllers and then to actuators. We

focus on priority assignment for real-time flows whose transmissions are scheduled based

on a fixed priority policy. Due to its simplicity and efficiency, fixed priority scheduling is

a commonly adopted real-time scheduling policy in CPU scheduling and traditional real-

time networks (e.g., Control-Area Networks). Recent study has shown that fixed priority

scheduling is an effective policy for real-time flows in WirelessHART networks and developed

worst case delay analysis to be used for efficient schedulability test [155]. Priority assignment

has a significant impact on the schedulability of real-time flows. However, optimal priority

assignment for WirelessHART networks is a challenging and open problem that has not been

addressed in the literature. An ideal priority assignment should not only enable real-time

flows to meet their deadlines, but also work synergistically with real-time schedulability

tests to support effective network capacity planning and efficient online admission control

and adaptation.

For a given schedulability test, a priority assignment algorithm is optimal if it can find a

priority ordering under which a set of flows is deemed schedulable by the test whenever there

exists any such priority ordering. Since an optimal priority assignment is NP-hard for all

but a few special cases, simple heuristics such as Deadline Monotonic and Rate Monotonic

policies are commonly adopted in practice in real-time networks [122]. However, as shown

89

in our simulation results presented in this paper, the effectiveness of these heuristics in

WirelesHART networks is far from the optimal.

This paper is the first to address the optimal priority assignment problem for real-time flows

in WirelessHART networks. Specifically, our key contributions are four-fold: (1) We design a

local search algorithm for priority assignment that is optimal for any given schedulability test

based on worst case delay analysis; (2) We propose an efficient heuristic search algorithm for

priority assignment; (3) We identify special cases where the heuristic search is optimal; (4) We

present simulation results based on both random networks and the real topology of a physical

sensor network testbed. Our results showed that the heuristic search algorithm achieved near-

optimal performance in terms of schedulability, while significantly outperforming traditional

real-time priority assignment policies.

In the rest of this paper, Section 5.2 describes the WirelessHART network model. Section 5.3

defines the priority assignment problem. Section 5.4 reviews existing schedulability tests and

identifies the key insights underlying the priority assignment approach. Sections 5.5 and 5.6

present the optimal local search and the heuristic search algorithms, respectively. Section 5.7

presents the simulation results. Section 5.8 reviews the related works. Section 5.9 concludes

the paper.

5.2 WirelessHART Network Model

We consider a WirelessHART network consisting of field devices, a gateway, and a centralized

network manager. A field device is a sensor, an actuator or both, and is usually connected

to process or plant equipment. The gateway provides the host system with access to the

network devices. The network manager is located at the gateway and has the complete

information of the network. It creates schedules, and distributes among the devices. The

unique features that make WirelessHART particularly suitable for industrial process control

are as follows.

Limiting Network Size. Experiences in process industries have shown the daunting chal-

lenges in deploying large-scale WSANs. The limit on the network size for a WSAN makes

90

the centralized management practical and desirable, and enhances the reliability and real-

time performance. Large-scale networks can be organized by using multiple gateways or as

hierarchical networks that connect small WSANs through traditional resource-rich networks

such as Ethernet and 802.11 networks.

Time Division Multiple Access (TDMA). In contrast with CSMA/CA protocols, TDMA

protocols provide predictable communication latencies, thereby making themselves an attrac-

tive approach for real-time communication. In WirelessHART networks, time is synchronized

and slotted. The length of a time slot allows exactly one transmission and its associated

acknowledgement between a device pair.

Route and Spectrum Diversity. Spatial diversity of routes allows messages to be routed

through multiple paths to mitigate physical obstacles, broken links, and interference. Spec-

trum diversity gives the network access to all 16 channels defined in IEEE 802.15.4 physical

layer and allows per time slot channel hopping to avoid jamming and mitigate interference

from coexisting wireless systems. Besides, any channel that suffers from persistent external

interference is blacklisted and not used. The combination of spectrum and route diversity

allows a packet to be transmitted multiple times, over different channels over different paths,

thereby handling the challenges of network dynamics in harsh and variable environments at

the cost of redundant transmissions and scheduling complexity.

Handling Internal Interference. Due to difficulty in detecting interference between nodes

and the variability of interference patterns, WirelessHART allows only one transmission in

each channel in a time slot across the entire network, thereby avoiding spatial reuse of

channels [56]. Thus, there are at most m concurrent transmissions across the network at

any slot, with m being the number of channels. This design decision effectively avoids

transmission failure due to interference between concurrent transmissions, and improves the

reliability at the potential cost of reduced throughput. The potential loss in throughput is

also mitigated due to small size of network.

With the above features, WirelessHART forms a mesh network modeled as a graph G =

(V,E), where the node-set V consists of the gateway and field devices, and the edge-set

E is the set of communication links between the nodes. A node can send, receive, and

route packets but cannot both send and receive in the same time slot. In addition, two

91

transmissions that have the same intended receiver interfere each other. A transmission

involves exactly one pair of devices connected by an edge. Therefore, two transmissions that

happen along edges uv and cd, respectively, are conflicting if (u = c) ∨ (u = d) ∨ (v = c) ∨
(v = d). Since conflicting transmissions cannot be scheduled in the same slot, transmission

conflicts significantly contribute to communications delays.

5.3 Problem Definition

Real-time flows. We consider a WirelessHART network with a set of end-to-end flows.

Associated with every flow are a sensor node called the source, an actuator called the des-

tination of the flow, and one or more routes connecting its source to destination through

the gateway (where controllers are located). Each flow periodically generates a packet at its

source which has to be delivered to its destination within a deadline. A flow may need to

deliver its packet through multiple routes. If the delivery through a route fails or some link

on a route is broken, the packet can still be delivered through another route. In a schedule,

time slots must be reserved for transmissions through each route associated with a flow for

redundancy. For schedulability test and priority assignment purposes, through each of its

associated routes a flow is treated as an individual flow with the same deadline and period.

Therefore, from now onward the term ‘flow’ will refer to flow through a single route. That

is, an original flow with φ routes is considered φ flows each with a single route. Thus, we

consider there are n flows denoted by the set F . Each flow b ∈ F is characterized by a period

Tb, a deadline Db ≤ Tb, a source, a destination, and a route from its source to destination

through the gateway. For each flow b ∈ F , the number of transmissions required to deliver

a packet through its route is denoted by Cb. Thus, Cb is the number of time slots required

by flow b ∈ F .

End-to-end delay. For a flow, if a packet generated at slot r is delivered to its destination

at slot d then its end-to-end delay for this packet is defined as d − r + 1. The worst case

end-to-end delay of flow b ∈ F is denoted by Lb.

Fixed priority scheduling. In a fixed priority scheduling policy, each flow has a fixed

priority. At any time slot, among all ready transmissions that do not conflict with the

92

transmissions already scheduled in the same slot, the transmission of the highest priority

flow is scheduled on an available channel.

Schedulability. Transmissions are scheduled using m channels. The set of periodic flows F

is called schedulable under a scheduling algorithm A, if A is able to schedule all transmissions

in m channels such that no deadline is missed, i.e., Lb ≤ Db, ∀b ∈ F .

Schedulability test. For A, a schedulability test S is sufficient if any set of flows deemed

schedulable by S is indeed schedulable by A. S is necessary if any set of flows deemed

unschedulable by S is indeed unschedulable by A. S is exact if it is both sufficient and

necessary. For a set of flows, an end-to-end delay analysis provides a sufficient schedulability

test by showing that, for every flow, an upper bound of its worst case end-to-end delay is no

greater than its deadline.

Priority assignment. In priority assignment, our objective is to assign a distinct priority

to every flow. Given set F of n flows, we have priority levels 1 to n denoted by set P =

{1, 2, · · · , n}. Any priority assignment or ordering is, thus, a one-to-one function f : P → F ,

where f(i) = b if and only if the priority of flow b ∈ F is i ∈ P . A priority level i is higher

than another priority level j if and only if i < j. Given a priority assignment, hp(b) denotes

the set of flows whose priorities are higher than that of flow b.

Optimal priority assignment algorithm. For a schedulability test S, a priority assign-

ment is called acceptable if under that assignment all flows are guaranteed to meet their

deadlines according to S. For flow b ∈ F , let Rb denote its worst case end-to-end delay

according to S. A priority assignment is acceptable denoted by f opt : P → F if it satisfies S,

i.e., Rb ≤ Db, ∀b ∈ F . For a schedulability test S, a priority assignment algorithm is called

optimal if it can find an acceptable priority assignment whenever there exists any acceptable

assignment. That is, if there exists any priority assignment under which S will determine

the flows as schedulable, then an optimal algorithm is able to find that priority assignment.

93

5.4 End-to-End Delay Analysis

In this section, we analyze some properties of the existing schedulability tests for real-time

flows in WirelessHART networks. These properties provide key insights for an optimal

priority assignment algorithm, and intuition for efficient heuristics. We focus on worst case

delay analysis (known as response time analysis in CPU scheduling), a common approach

for schedulability tests in CPU scheduling [45,88] and WirekessHART networks [155]. These

tests are based on efficient but pessimistic analysis of end-to-end delays, that provide a

sufficient but not necessary condition for schedulability.

To find an optimal priority assignment policy for a schedulability test, the idea is to start

from the lowest priority level, and to upper bound and lower bound the end-to-end delays of

the flows according to the test, thereby avoiding unnecessary options for priority assignment

at higher levels. To estimate these bounds, we identify a class of schedulability tests, named

Class-1, in which the worst case end-to-end delay of a flow depends on the worst case end-to-

end delays of higher priority flows. The other class of tests in which the worst case end-to-end

delay of a flow is independent of the worst case end-to-end delays of higher priority flows

is named as Class-2. Our proposed algorithms work with both classes of schedulability

tests. While Class-1 tests are usually more precise than Class-2, Class-2 tests provide the

advantages of simplifying the search for priority assignment. In the following, we analyze

this using one representative schedulability test of each class.

5.4.1 Class-1 Schedulability Test

An example of a Class-1 schedulability test for real-time flows in WirelessHART networks

was proposed in [155]. Given the fixed priorities of the flows, a lower priority flow can be

delayed by the higher priority ones due to (a) channel contention (when all channels are

assigned to transmissions of higher priority flows in a slot), and (b) transmission conflicts

(when a transmission of the flow and a transmission of a higher priority flow conflict). ∆(b, a)

denotes an upper bound of the delay that flow b can experience from a flow a ∈ hp(b) due to

transmission conflicts. Ωb(x) denotes the total delay (in an interval of x slots) caused by all

higher priority flows on b due to channel contention. According to this test, the worst case

94

end-to-end delay Rb of flow b is the minimum value of y ≥ x∗ that solves Equation 5.1, where

x∗ is the minimum value of x ≥ Cb that solves Equation 5.2 using a fixed-point algorithm.

If x or y exceeds Db, then b is decided to be “unschedulable”.

y = x∗ +
∑

a∈hp(b)

⌈
y

Ta

⌉
. ∆(b, a) (5.1)

x =

⌊
Ωb(x)

m

⌋
+ Cb (5.2)

∆(b, a) is calculated by finding the possible conflicting transmissions of a and b by comparing

their routes. For b,
∑

a∈hp(b)d
y
Ta
e∆(b, a) is an upper bound of its total delay (in an interval of

y slots) due to transmission conflicts with hp(b). Ωb(x) is calculated based on a mapping of

the transmission scheduling in a WirelessHART network to the multiprocessor scheduling.

Specifically, Ωb(x) is the delay of b when the flows are executed on multiprocessor, and is

analyzed using the response time analysis considering each Ra as the worst case response time

of a ∈ hp(b). The authors used the state-of-the-art response time analysis for multiprocessor

scheduling [88] as a representative method to calculate Ωb(x). Since schedulability test is not

the focus of our work, we skip its details and refer to [155]. We point out our observations

on this test.

In this test, when set hp(b) is known for b, the term
∑

a∈hp(b)d
y
Ta
e∆(b, a) can be calculated.

But Ωb(x) depends on Ra of every a ∈ hp(b) and, hence, is different for different priority

ordering among hp(b). Therefore, Ωb(x) cannot be calculated if we know only set hp(b).

Thus, the bounds of Rb depend on the bounds of Ωb(x). Ωb(x) non-decreases with the

increase of Ra, and non-increases with the decrease of Ra of a ∈ hp(b). Hence, a lower

bound and an upper bound of Ωb(x) can be derived when it is calculated with a lower bound

and upper bound, respectively, of Ra for every a ∈ hp(b). Note that
∑

a∈hp(b)d
y
Ta
e∆(b, a) is

a dominating term in Rb due to high degree of conflicts in the network specially near the

gateway (since all flows pass through the gateway). Therefore, our calculated bounds for

Rb, for any b ∈ F , are tight even if we set Ωb(x) to 0 to find a lower bound, or to maximum

channel contention delay to find an upper bound of Rb.

95

5.4.2 Class-2 Schedulability Test

Now we present a schedulability test of Class-2. An optimal priority assignment policy for

this test is comparatively easier since the worst case end-to-end delay of a flow can be derived

whenever its higher priority flows are known. Such an observation has been made previously

in [68,70] for priority assignment in multiprocessor scheduling by exploiting the analogy with

that in uniprocessor scheduling [35].

When Rb is calculated using the fixed-point algorithm in Equation 5.2 for flow b, x∗ represents

the worst case response time of b when the flows are executed on multiprocessor. Now, to

determine Rb using Equation 5.2, x∗ for flow b ∈ F is calculated based on the polynomial-time

response time analysis for multiprocessor proposed in [45] as follows.

x∗ = Cb +

 1

m

∑
a∈hp(b)

min(Wb(a), Db − Cb + 1)

 (5.3)

where Wb(a) = λb(a).Ca+min(Ca, Db +Da − Ca − λb(a).Ta); and λb(a) = bDb+Da−Ca

Ta
c.

Here x∗ for flow b is a function of Cb, Db, and of Ca, Ta, and Da of every a ∈ hp(b), which

remain unchnaged over every priority ordering among hp(b). Hence, Rb can be found using

Equations 5.1 and 5.3 when the set hp(b) is known. This test, hence, represents Class-2

schedulability tests.

5.5 Priority Assignment Using Local Search

In this section, we exploit the observations made in Section 5.4 on the classification of

schedulability tests and develop an optimal priority assignment algorithm based on local

search (LS). Given a schedulability test S and set F of n flows, if there exists any acceptable

priority assignment, then the optimal algorithm is able to find that assignment. If no ac-

ceptable assignment exists, then it returns a priority assignment that is likely to be good for

schedulability of the flows. The proposed algorithm is compatible to any Class-1 and Class-2

96

schedulability test (Section 5.4). We also analyze some special cases where the algorithm

runs in pseudo polynomial time.

The idea underlying local search is to lower bound and upper bound the worst case end-to-

end delay according to S of every flow in an acceptable priority assignment. Starting from

the lowest priority level, the algorithm explores different options, in the form of a search tree,

for assigning priorities at higher levels. For a possible acceptable assignment in a subtree,

if, for every flow, an upper bound of its worst case end-to-end delay according to S happens

to be no greater than its deadline, then the subtree is a sufficient branch and all other

branches are discarded. Upper bounding the delays, thus, provides a sufficient condition

that guarantees that an acceptable assignment can be found in a branch. For a possible

acceptable assignment in a subtree, if, for every flow, a lower bound of its worst case end-to-

end delay according to S is no greater than its deadline, then the subtree is designated as

a necessary branch. Thus, lower bounding the delays provides a necessary condition. Any

branch that dissatisfies this condition is guaranteed not to lead to an acceptable assignment,

and is discarded as an unnecessary branch.

Having the above idea, the search starts from any initial priority assignment f : P → F .

If an acceptable priority assignment exists, then it can be found by reordering f . Every

node in the tree performs a reordering of the priorities, thereby representing a new priority

assignment. Specifically, the search starts reordering from the lowest priority level n. When

it reaches priority level l ≥ 1, a node has l − 1 options to assign priority l − 1. For every

option, it generates a child node. The branches in the subtree rooted at each child node

represent different reordering from level 1 to l− 1. Considering f as the priority assignment

at a node, we introduce the following notations to establish the bounds in its subtree:

• Ropt
f(i): denotes the worst case end-to-end delay of f(i) according to S in an acceptable

priority assignment f opt.

• Rub
f(i): denotes an upper bound of Ropt

f(i).

• Rlb
f(i): denotes a lower bound of Ropt

f(i).

• fl,k: denotes the priority assignment from level l to k in f , where 1 ≤ l ≤ k ≤ n

(Figure 5.1). In f , a partial priority assignment fl,k is called acceptable if fl,k = f opt
l,k ,

97

i.e., the assignment from priority level l to k in f is the same as that in an acceptable

priority assignment.

n1 2 l-1 l k k+1.

f
1,l-1 f

l,k
f
k+1,n

Figure 5.1: Priority assignment f at a node

• R∞f(i): denotes an upper bound of the end-to-end delay of f(i) under infinite number

of channels, i.e., when f(i) experiences no channel contention and is delayed only due

to transmission conflicts with the higher priority flows. Therefore, for flow f(i), R∞f(i)

is calculated using Equation 5.1 with x∗ being replaced by Cf(i).

5.5.1 Upper Bound of Worst Case End-to-End Delay

The upper bounds are calculated based on the observations made in Section 5.4. Specifically,

an upper bound of the worst case end-to-end delay of a flow is determined by considering

the upper bounds of its higher priority flows.

In a priority assignment f , let the assignment fk+1,n from level k + 1 (≤ n) to n has been

decided to be in an acceptable assignment. To decide whether the assignment fl,k from

level l (≤ k) to k is also in that acceptable assignment, the upper bound Rub
f(i) for every

f(i), l ≤ i ≤ k, is calculated as follows.

• The set {f(j)|1 ≤ j < l} is considered as the set of higher priority flows of f(l). When

l = 2, Rub
f(1) for flow f(1) is set to Cf(1). When l > 2, Rub

f(j) of every flow f(j), 1 ≤ j < l,

is set to its deadline Df(j).

• If l ≤ m, flow f(i), l ≤ i ≤ m, does not experience any channel contention, and hence

Rub
f(i) = R∞f(i). For every other flow f(i), m < i ≤ k, Rub

f(i) is calculated according to

schedulability test S using Rub
f(j) as the worst case end-to-end delay of f(j) for every

j < i.

98

• If l > m, then for every flow f(i), l ≤ i ≤ k, Rub
f(i) is calculated according to S using

Rub
f(j) as the worst case end-to-end delay of f(j) for every j < i.

The upper bound calculation is shown as Procedure Sub(f, l, k). In this procedure, S(f(i))

returns f(i)’s worst case end-to-end delay according to S using Rub
f(j) as the worst case end-

to-end delay of f(j) for every j < i. Sub(f, l, k) returns false if the upper bound is greater

than deadline for any flow f(i), l ≤ i ≤ k. Otherwise, it returns true. Thus, if Sub(f, l, k)

returns true, then it is a guarantee that there exists a priority assignment among the flows

{f(j)|1 ≤ j < l} such that using that assignment (from priority level 1 to l − 1), and

the current assignment fl,k (from level l to k), the resulting assignment from level 1 to

k is the same as that in an acceptable assignment. Sub(f, l, k) thus provides a sufficient

condition to determine if reordering f1,l−1 can guarantee an acceptable assignment. Any

partial assignment fl,k is said to satisfy Sub(f, l, k), if Sub(f, l, k) returns true.

Procedure Sub(f, l, k): Upper Bound Calculation

bool Sub(f, l, k)
begin

if l = 2 then Rub
f(1) ← Cf(1);

;
else

for j = 1 to l − 1 do Rub
f(j) ← Df(j); ;

end
if l ≤ m then

l′ = min(m, k);
for i = l to l′ do

Rub
f(i) ← R∞f(i); /* Exact value */

if Rub
f(i) > Df(i) then return false; ;

end
l← l′ + 1;

end
for i = l to k do

Rub
f(i) ← S(f(i)); /* Using test S */

if Rub
f(i) > Df(i) then return false; ;

end
return true;

end

99

From our discussions in Section 5.4, in the above upper bound calculation, Rub
f(i) for every

f(i), l ≤ i ≤ k, includes its exact delay due to transmission conflicts (according to S). This

delay is a dominating term in the worst case end-to-end delay of a flow due to high degree

of conflicts in the network specially near the gateway (since all the flows pass through the

gateway). As a result, our upper bound estimation becomes precise, thereby making the

sufficient condition strong.

Theorem 11. Let f : P → F be any priority assignment. If there exists an acceptable

priority assignment fopt
1,l−1, 2 ≤ l ≤ n+1, among flows {f(i)|1 ≤ i < l}, then, for fl,k, l ≤ k ≤

n, Rub
f(i) calculated in Procedure Sub(f, l, k) is an upper bound of Ropt

f(i) for every f(i), l ≤ i ≤ k.

Proof. First, let S be a Class-2 schedulability test (Section 5.4). For each flow f(i), l ≤ i ≤ k,

we know its higher priority flows, and Rub
f(i) does not depend on any Rub

f(j) where j < i. Hence,

Rub
f(i) = Ropt

f(i).

Now, let S be a Class-1 schedulability test (Section 5.4). For any i, l ≤ i ≤ k, such that

i ≤ m, flow f(i) does not experience any channel contention. Hence, Rub
f(i) = R∞f(i) = Ropt

f(i)

holds. For any i, l ≤ i ≤ k, such that i > m, Procedure Sub(f, l, k) computes Rub
f(i) for flow

f(i) according to S by considering the upper bounds Rub
f(j) for every higher priority flow f(j)

where j < i. Hence, based on our observations in Section 5.4, Rub
f(i) is an upper bound of

Ropt
f(i).

Theorem 12. Let there exists an acceptable priority assignment fopt : P → F . Let f : P →
F be any priority assignment such that fk+1,n satisfies Sub(f, k+ 1, n). Then fk+1,n = fopt

k+1,n,

i.e., priority assignment from level k+ 1 to level n in f is the same as that in an acceptable

assignment. In other words, there is an ordering of priorities from level 1 to k in f that will

give an acceptable priority assignment.

Proof. Assume to the contrary that there exists no priority ordering among the flows {f(j)|1 ≤
j ≤ k} for which fk+1,n is a part of an acceptable priority assignment. Therefore, there must

be at least one flow f(j), 1 ≤ j ≤ k, that cannot be assigned any priority from level 1 to

k. This implies that we must be able to assign some priority j′, where k < j′ ≤ n, to this

particular flow f(j) since there exists an acceptable priority assignment. But its worst case

end-to-end delay at a lower priority level j′ must be no less than that at the higher priority

100

level j. That is, if f(j) is schedulable at the lower priority level j′, it must be schedulable

at the higher priority level j which contradicts our assumption.

Lemma 13. Let there exists an acceptable priority assignment fopt : P → F . Let f : P → F

be any priority assignment such that fk+1,n = fopt
k+1,n, 0 ≤ k < n. Now if fl,k, 1 ≤ l ≤ k

satisfies Sub(f, l, k), then fl,n = fopt
l,n .

Proof. By Theorem 11, Rub
f(i) ≤ Df(i), l ≤ i ≤ k. Having assignment fk+1,n, Rub

f(i) will not

change since each f(i′) with i′ > k is a lower priority flow of f(i), l ≤ i ≤ k. By Theorem 12,

fl,k is in an acceptable assignment. Hence, fl,n = f opt
l,n .

5.5.2 Lower Bound of Worst Case End-to-End Delay

Similar to upper bound calculation, a lower bound of the worst case end-to-end delay of a

flow is determined by considering the lower bounds of its higher priority flows.

In a priority assignment f , let the assignment fk+1,n from level k + 1(≤ n) to n has been

decided to be in an acceptable assignment. To decide whether the assignment fl,k from

level l(≤ k) to k is also in that acceptable assignment, the lower bound Rlb
f(i) for every

f(i), l ≤ i ≤ k, is calculated as follows.

• The set {f(j)|1 ≤ j < l} is the set of higher priority flows of f(l). Rlb
f(j) of every flow

f(j), 1 ≤ j < l, is set to its number of transmissions Cf(j).

• If l ≤ m, then flow f(i), l ≤ i ≤ m, does not experience any channel contention and,

hence, Rlb
f(i) = R∞f(i). For every other flow f(i), m < i ≤ k, Rlb

f(i) is calculated according

to schedulability test S using the Rlb
f(j) as the worst case end-to-end delay of f(j) for

every j < i.

• If l > m, then for every flow f(i), l ≤ i ≤ k, Rlb
f(i) is calculated according to S using

the Rlb
f(j) as the worst case end-to-end delay of f(j) for every j < i.

The procedure for calculating the lower bounds is shown as Procedure Slb(f, l, k). In this

procedure, S(f(i)) returns f(i)’s worst case end-to-end delay according to S using Rlb
f(j) as

101

the worst case end-to-end delay of f(j) for every j < i. Slb(f, l, k) returns false if the lower

bound is greater than deadline for any flow f(i), l ≤ i ≤ k. Otherwise, it returns true. Thus,

if Slb(f, l, k) returns false, it is a guarantee that no ordering of flows {f(j)|1 ≤ j < l} can be

in an acceptable assignment. Slb(f, l, k) thus provides a necessary condition to determine

if reordering f1,l−1 can guarantee an acceptable assignment. Any partial assignment fl,k is

said to satisfy Slb(f, l, k), if Slb(f, l, k) returns true.

Procedure Slb(f, l, k): Lower Bound Calculation

bool Slb(f, l, k)
begin

for i = 1 to l − 1 do Rlb
f(i) ← Cf(i); ;

if l ≤ m then
l′ = min(m, k);
for i = l to l′ do

Rlb
f(i) ← R∞f(i); /* Exact value */

if Rlb
f(i) > Df(i) then return false; ;

end
l← l′ + 1;

end
for i = l to k do

Rlb
f(i) ← S(f(i)); /* Using test S */

if Rlb
f(i) > Df(i) then return false; ;

end
return true;

end

From our discussions in Section 5.4, Rlb
f(i) for every f(i), l ≤ i ≤ k, includes its exact delay

due to transmission conflicts (according to S). This delay is a dominating term in the worst

case end-to-end delay of a flow due to high degree of conflicts in the network specially near

the gateway (since all the flows pass through the gateway). As a result, like the upper

bounds, our lower bound estimation also becomes precise, thereby making the necessary

condition strong.

Theorem 14. Let f : P → F be any priority assignment. Let fopt be an acceptable priority

assignment such that there exists an ordering among flows {f(j)|1 ≤ j < l} which is also in

fopt. Then, for fl,k, l ≤ k ≤ n, Rlb
f(i) calculated in Slb(f, l, k) is a lower bound of Ropt

f(i) for

every f(i), l ≤ i ≤ k.

102

Proof. Similar to Theorem 11, Rlb
f(i) = Ropt

f(i) for every f(i), l ≤ i ≤ k, when S is a Class-2

schedulability test. When S is Class-1 schedulability test, the proof is similar to Theorem 11.

Corollary 2 follows from Theorem 14.

Corollary 2. For any given priority ordering f : P → F , if fl,k, l ≤ k ≤ n, does not

satisfy Slb(f, l, k), then no acceptable priority assignment can be found from f by reordering

the flows from level 1 to l − 1.

5.5.3 Local Search Framework

Now we structure the search for an acceptable priority assignment into a local search (LS)

framework. Starting from an initial assignment, the algorithm performs a reordering of the

priorities at every node of its search tree, thereby creating a new assignment. Specifically,

the search starts from the lowest priority level and investigates if any flow that has higher

priority in current assignment can be assigned this lower priority and generates a child node

representing this new assignment. The branches are discarded or explored based on the lower

bounds and upper bounds calculated for a branch.

The search tree has as its root node a Deadline Monotonic (DM) priority ordering. It

has a maximum of n + 1 levels with the root being at level n + 1. If the DM priority

assignment is acceptable, then the algorithm terminates. Otherwise, the search branches

down by creating new nodes. Every node represents a complete priority assignment a part

of which is guaranteed to be in an acceptable assignment. Therefore, besides the priority

assignment f , every node has two attributes l and k, where 1 ≤ l ≤ n, l ≤ k ≤ n + 1

(Figure 5.1). In priority assignment f at a node, its part fk+1,n is guaranteed to be in an

acceptable assignment; fl,k is not guaranteed but may be in an acceptable assignment; and

f1,l−1 is yet undecided. Thus, k is the level on the path from root to this node such that

every node on this path from level n to k+ 1 has satisfied the sufficient condition. The steps

of the search are:

1. The root starts with l = n+ 1 and k = n since no part of its assignment is yet final.

103

2. For the undecided part f1,l−1 of priority assignment f at a node at tree-level l, the

node creates a child node at tree level l − 1 for every i, 1 ≤ i ≤ l − 1, by exchanging

the priorities between f(i) and f(l − 1).

3. If a child node created in Step 2 satisfies the sufficient condition, then its k becomes 1

less than its l meaning that fk+1,n is now guaranteed to be in an acceptable assignment

(according to Theorem 12 and Lemma 13). Hence, all other branches are discarded.

This child is expanded further by going to Step 2.

4. If a child node created in Step 2 cannot satisfy the necessary condition, it is closed

(according to Corollary 2). Otherwise, it is expanded further by going to Step 2.

5. The search continues creating new nodes until it reaches a node at tree level 1 where

k becomes 0 which indicates that an acceptable assignment has been found or until

there exists no unexpanded node for which neither the necessary nor the sufficient

condition is satisfied. In the latter case, no acceptable assignment is found and the

priority assignment of the current node is returned.

The pseudo code is shown as LS Priority Assignment Algorithm. If DM priority assignment

f is acceptable, then Procedure S(f, 1, n) returns true. Otherwise, the root with f , l =

n + 1, and k = n expands by calling procedure LS(root). The attributes l, k, and the

priority assignment f at any node nd in the search tree is denoted by nd.l, nd.k, and nd.f ,

respectively. In LS(Node nd), if nd.k = 0 for current node nd, then the search terminates by

returning nd.f as an acceptable assignment f ∗. Otherwise, for every flow nd.f(i) starting

from i = l−1 to 1, it generates a child node ch with ch.k = nd.k at level ch.l = nd.l−1, and

SwapPriority(ch.f(i), ch.f(ch.l)) exchanges the priorities between ch.f(i) and ch.f(ch.l). If

Sub(ch.f, ch.l, ch.k) returns true, then ch.k is updated to ch.l − 1, and all other branches

are discarded, and only this child is expanded as a sufficient branch by calling LS(ch). If

Slb(ch.f, ch.l, ch.k) returns false, then ch is closed. Otherwise, it is expanded as a necessary

branch. If the tree cannot expand any more and k > 0 at every node, then no acceptable

assignment exists, and f of current node is returned as f ∗.

Theorem 15. For a given set F of n flows and a schedulability test S, there exists an

acceptable priority assignment of F if and only if the priority assignment f ∗ returned by the

LS algorithm is acceptable.

104

Procedure LS(Node nd): Local Search

bool LS(Node nd)
begin

if nd.k = 0 then
f ∗ ← nd.f ; return true; /* Acceptable */

end
for i = nd.l − 1 down to 1 do

Create a Child Node ch;
ch.f ← nd.f ; ch.l← nd.l − 1; ch.k ← nd.k;
SwapPriority(ch.f(i), ch.f(ch.l));
if Sub(ch.f, ch.l, ch.k) = true then

ch.k ← ch.l − 1; /* Sufficient */

if LS(ch) = true then /* branch */

return true; /* found */

break; /* Cut other branches */

end
if Slb(ch.f, ch.l, ch.k) = false then

continue; /* Close this child */

else if LS(ch) = true then
return true; /* Necessary branch */

end

end
f ∗ ← nd.f ; /* No acceptable */

return false; /* assignment exists */

end

Algorithm 4: Algorithm: LS Priority Assignment

input : Set F of n flows, and schedulability test S
output: f ∗ : P → F , where P = {1, 2, · · · , n}
f ←Deadline Monotonic priority assignment;
if S(f, 1, n) = true then /* DM satisfies S */

f ∗ ← f ; return “acceptable assignment found”;
end
Create a Node root with attributes f, l, k;
root.f ← f ; root.l← n+ 1; root.k ← n;
if LS(root) = true then

return “acceptable assignment found”;
else

return “no acceptable assignment exists”;

105

Proof. Let there exists an acceptable priority assignment of F . By Theorem 12 and Lemma 13,

if the search stops with k = 0 at a node, then the priority assignment of that node must be

acceptable. Suppose to the contrary the search has stopped at a node nd with k > 0 and

priority assignment f . Since an acceptable priority assignment exists, by Theorem 12, there

must exist a priority ordering f ′1,k among flows {f(i)|1 ≤ i ≤ k} in f such that f ′1,k and the

current assignment in f from level k + 1 to n will give an acceptable assignment. Hence, at

least one necessary branch must reach level 1 from nd, and at least one such branch that

reaches a node nd′ at level 1 must correspond to f ′1,k. Node nd′ must satisfy the sufficient

condition and its k′ is updated to 1− 1 = 0 which contradicts our assumption. To prove in

the other direction, let f ∗ returned by the algorithm is considered acceptable. This implies

that the search has stopped with k = 0. By Theorem 12 and Lemma 13, f ∗ must satisfy

S.

5.5.4 Analysis

Now we analyze the LS Algorithm for some special cases where it runs in pseudo polynomial

time.

Case 1. According to Section 5.4, when S is a Class-2 schedulability test, both the lower

bound and the upper bound calculated for a flow are its exact worst case end-to-end delay

according to S. That is, both the necessary condition and the sufficient condition become

exact. As a result, the search tree consists of just one path. If there exists an acceptable

assignment, then the path reaches level 1. Otherwise, it stops at some level where no flow

can be assigned that priority. In either case, the search always has l = k and, at every level

l (≤ n + 1), it tests at most l − 1 flows. Thus the algorithm runs in O(n2t) time, where

t is the time to calculate the worst case end-to-end delay of a flow using S and is pseudo

polynomial.

Case 2. Based on our observations in Section 5.4, when m ≥ n, there is no channel

contention and, hence, R∞f(i) is the worst case end-to-end delay for every flow f(i). Hence,

similar to Case 1, both the sufficient condition and the necessary condition are exact, and

the algorithm runs in O(n2t) time. When n > m, the same thing happens when the value

of k becomes no greater than m during the search.

106

Case 3. If the DM priority assignment is acceptable, then the search stops immediately and

returns that ordering. Assigning DM priorities takes O(n log n) time, and to verify if it is

acceptable by S, we need O(nt) time. Hence, the algorithm runs in O(n log n+ nt) time.

5.6 Priority Assignment Using Heuristic Search

While the proposed LS algorithm is optimal and runs efficiently in most cases (as shown in

simulation in Section 5.7), a faster execution time cannot be guaranteed theoretically for all

the time. Therefore, in this section, we propose an efficient near-optimal heuristic search. It

is also based on the similar strategy but is forced to discard many branches by expanding

only the branches deemed good. Hence, it runs much faster at the cost of loosing the optimal

behavior in some cases.

The LS algorithm can take longer time mostly when it is hard to find a sufficient branch.

The key idea behind the heuristic search (HS), therefore, is to loose this condition for faster

execution. To determine whether the subtree rooted at a node ch is sufficient, the LS

algorithm calls Procedure Sub(ch.f, ch.l, ch.k). The procedure determines the branch as

sufficient only if the upper bound of the worst case end-to-end delay of every flow ch.f(i),

l ≤ i ≤ k, is no greater than its deadline. Since this is an overestimate, the HS algorithm

instead checks only for current level ch.l. That is, only if the upper bound of the worst

case end-to-end delay of flow ch.f(ch.l) is no greater than its deadline, it discards all other

branches and expands only this branch. Note that such a branch is still good (but not

guaranteed to be the best as the new condition is not sufficient) since every node from level

n to ch.l on this branch has either satisfied this new condition or the necessary condition

which we have previously argued to be a strong condition because of precise lower bound

estimation.

The HS algorithm considers every level from ch.l to ch.k in Procedure Slb(ch.f, ch.l, ch.k) as

the necessary condition. Since the new condition Sub(ch.f, ch.l, ch.l) = true does not mean

that fl,n is acceptable, the search updates k as long as the new condition is satisfied on a

root to leaf path, and stops updating it after the first time the new condition is violated

on that path. That is, ch.k is updated only if ch.k ≥ ch.l − 1. The HS algorithm is, thus,

pseudo coded by making two changes in Procedure LS(Node nd) of the LS algorithm:

107

1. Replace the condition Sub(ch.f, ch.l, ch.k) = true with Sub(ch.f, ch.l, ch.l) = true.

2. Before the statement ch.k ← ch.l − 1, add the check if(ch.k ≥ ch.l − 1).

By Theorem 12, the partial priority assignment fk+1,n of f at a node of the search tree in

the HS algorithm is still guaranteed to be a part of an acceptable assignment (if there exists

one at all). However, when the algorithm terminates at a node nd, some node on a level

from nd.k to nd.l (when nd.k 6= nd.l) on the path from the root to nd may have violated

the sufficient condition which the HS algorithm is not aware of. In that case, the algorithm

is not optimal. However, our simulation studies have shown that such cases hardly happen

in practice.

Analysis. In Case 1 and Case 2 (Subsection 5.5.4), the optimal LS algorithm always

maintains l = k. Hence, the new condition used in the HS algorithm becomes a sufficient

condition. Case 1 and Case 2, thus, hold for the HS algorithm. That is, if m ≥ n or S is a

Class-2 schedulability test, then it is optimal and runs in O(n2t) time, where t is the time

to calculate the worst case end-to-end delay of a flow using S. Besides, Case 3 always holds

for it. It trivially dominates DM in that whenever the DM priority assignment is acceptable

the HS algorithm also determines that assignment as acceptable and runs in O(n log n+ nt)

time. In other cases for Class-1 tests, although the execution time of the HS algorithm is

theoretically exponential, it can be guaranteed to run faster in practice. A long execution

time can happen if the new condition is hardly satisfied or the necessary condition cannot

discard enough branches. Note that the new condition is hardly satisfied when the flows

have very tight deadlines. However, in this case, the necessary condition will discard many

branches. Again, the necessary condition may not discard enough branches if the deadlines

are not tight. In this case, the new condition is easily satisfied to discard all other branches,

thereby making the search faster.

5.7 Performance Evaluation

We evaluate our priority assignment algorithms through simulations based on both random

topologies and the real topology of a physical testbed. We compare the heuristic search

(HS) with the optimal local search (LS) algorithm and the following priority assignment

108

policies: (a) Deadline Monotonic (DM) assigns priorities to flows according to their relative

deadlines; (b) Proportional Deadline monotonic (PD) assigns priorities to flows based on

relative subdeadline defined for a flow as its relative deadline divided by the total number of

transmissions along its route.

Metrics. We evaluate the algorithms in terms of the following metrics. (a) Acceptance

ratio: fraction of the test cases deemed schedulable according to the schedulability test

used. (b) Execution time: average execution time (with the 95% confidence interval)

needed to generate a priority assignment.

Simulation Setup. A fraction (θ) of nodes is considered as sources and destinations. A

node with the highest degree is selected as the gateway. The reliability of a link is represented

by the packet reception ratio (PRR) along it. The most reliable route connecting a source to

a destination is selected as the first route. For additional routes (for redundancy) between

the same pair, we exclude the links used by existing routes between the pair and select the

next most reliable route. Period Tb of every flow b is generated randomly in a range denoted

by T∼ = 2i∼j slots, i ≤ j. The relative deadline Db of every flow b is randomly generated in

a range between Cb and α ∗ Tb slots, for 0 < α ≤ 1. The algorithms have been implemented

in C and tested on a Macbook Pro laptop. Table 5.1 summarizes the notations used in this

section.

N : Number of nodes in the network
m : Number of channels
ρ : Edge-density of the network
θ : Fraction of total nodes that are source or destination
γ : Number of routes between every source and destination
T∼ : Period range
α : Deadline parameter (e.g., Cb ≤ Db ≤ α ∗ Tb, for flow b)

Table 5.1: Notations used in evaluation

5.7.1 Simulations with Testbed Topologies

We evaluate our algorithms on the topology of a physical indoor testbed in Bryan Hall of

Washington University [2]. The testbed consists of 48 TelosB motes each equipped with

a Chipcon CC2420 radio compliant with IEEE 802.15.4. At transmission power of 0 dBm,

109

every node broadcasts 50 packets in a round-robin fashion. The neighbors record the sequence

numbers of the packets they receive. This cycle is repeated for 5 rounds. Then every link

with a higher than 80% PRR is considered reliable and used as a link of the topology. Using

12 channels, we compare HS, LS, DM, and PD considering the Class-1 schedulability test

presented in Section 5.4 on this topology.

Varying deadlines. We generate flows in the network by randomly selecting the sources

and destinations considering θ = 80% (i.e., 40% of the total nodes are sources while another

40% are destinations). The periods of the flows are randomly generated in range 26∼9 time

slots. We generate 100 test cases and plot the acceptance ratios in Figure 5.2 by varying the

deadlines of the flows (by changing α). For γ = 1 (Figure 5.2(a)), when α = 0.4, there are

acceptable assignments in 55% test cases but PD is able to find an acceptable assignment

only in 18% cases. Thus, the difference between the acceptance ratios of LS and PD is 0.37

when α = 0.4. For any α ≥ 0.4, the difference remains at least 0.14. For DM, this difference

is 0.10 to 0.15. When γ = 2 (Figure 5.2(b)), the differences are 0.23 to 0.45 for PD, and 0.17

to 0.31 for DM. HS performs almost like an optimal algorithm in this setup since it selects

good branches and uses a strong necessary condition to discard unnecessary branches (as

explained in Section 5.6).

0.2 0.4 0.6 0.8 1
0

0.5

1

α

A
c
c
e
p
ta

n
c
e
 r

a
ti
o

LS
HS
DM
PD

Setup:
m=12

θ=80%

T~=2
6~9

(a) Acceptance ratio when γ = 1

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

α

A
c
e
p
ta

n
c
e
 r

a
ti
o

LS
HS
DM
PD

Setup:
m=12

θ=80%

T~=2
6~9

(b) Acceptance ratio when γ = 2

Figure 5.2: Performance under varying deadlines

Varying sources and destinations. Now we vary θ resulting in different numbers of

flows in the network. Since PD performs worst, we omit any further comparison with PD.

For every θ, we generate 100 test cases and show the performances in Figure 5.3. Since

110

we use a sufficient schedulability test, there are cases when a priority assignment is not

acceptable by the test but the flows may meet their deadlines if they are scheduled using

that priority assignment. Therefore, every priority assignment generated by an algorithm is

tested in simulation by scheduling all flows within their hyper-period. In the figure, each

curve “sim” shows the fractions of test cases that have no deadline misses in simulations.

When γ = 1 (Figure 5.3(a)), the difference between the acceptance ratios of LS and DM is

always 0.02 to 0.11. Their difference in simulation is 0.02 to 0.05 when θ ≥ 60%. When

γ = 2 (Figure 5.3(b)), their difference is 0.11 to 0.23 in acceptance ratio, and 0.02 to 0.16

in simulation. Here, HS performs like LS when γ = 1. When γ = 2, its acceptance ratio is

0.01 to 0.02 less than that of LS, if θ ≥ 80%.

40 60 80 100
0.8

0.85

0.9

0.95

1

% Source or destination nodes (θ)

A
c
c
e
p
ta

n
c
e
 r

a
ti
o

LS(sim)
LS
HS(sim)
HS
DM(sim)
DM

Setup:

α=1.0

m=12

T~=2
6~9

(a) Acceptance ratio when γ = 1

40 60 80 100
0

0.5

1

% Source or destination nodes (θ)

A
c
c
e
p
ta

n
c
e
 r

a
ti
o

LS(sim)
LS
HS(sim)
HS
DM(sim)
DM

Setup:

α=1.0

m=12

T~=2
6~9

(b) Acceptance ratio when γ = 2

Figure 5.3: Performance under varying number of sources and destinations

5.7.2 Simulations with Random Topologies

We test the scalability of our algorithms on random topologies of different number of nodes

(N). For every N , we generate 100 random networks, each with an edge-density (ρ) of 40%,

i.e., with N(N − 1)40/200 edges. PRR of each edge is randomly assigned between 0.80 and

1.0. In this setup, periods are in range 26∼11 slots to accommodate large networks. Here,

we consider both the Class-1 schedulability test (Test 1) and the Class-2 schedulability test

(Test 2) presented in Section 5.4. Starting with N = 30, we increase N as long as HS can

find acceptable assignments and plot the performances in Figure 5.4.

111

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Number of nodes (N)

A
c
c
e
p
ta

n
c
e
 r

a
ti
o

LS−Test 1(sim)
LS−Test 1
HS−Test 1(sim)
HS−Test 1
LS−Test 2(sim)
LS−Test 2

Setup:

α=1.0 ρ=40%

m=12 θ=80%

T~=2
6~11

(a) Acceptance ratio when γ = 1

50 100 150
0

0.2

0.4

0.6

0.8

1

Number of nodes (N)

A
c
c
e
p
ta

n
c
e
 r

a
ti
o

LS−Test 1(sim)
LS−Test 1
HS−Test 1(sim)
HS−Test 1
LS−Test 2(sim)
LS−Test 2

Setup:

α=1.0 ρ=40%

m=12 θ=80%

T~=2
6~11

(b) Acceptance ratio when γ = 2

50 100 150 200
0

10

20

30

40

50

Number of nodes (N)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

LS−Test 1(γ=2)

LS−Test 1(γ=1)

HS−Test 1(γ=2)

HS−Test 1(γ=1)

LS−Test 2(γ=2)

LS−Test 2(γ=1)

Setup:

α=1.0 ρ=40%

m=12 θ=80%

T~=2
6~11

(c) Execution time

Figure 5.4: Performance under varying network sizes

For γ = 1 (Figure 5.4(a)), HS is able to find an acceptable assignment in every case when

N ≤ 110. When N > 110, there is a difference from 0.01 to 0.02 between LS and HS in

both acceptance ratio and simulation. For γ = 2 (Figure 5.4(b)), the difference in both

acceptance ratio and simulation is 0.01 to .02 when N > 50. The figures also indicate that

the acceptance ratio with Test 2 is much lower than that with Test 1. For Test 2 in this

set up, there exists an acceptable assignment when N ≤ 150 and γ = 1 (Figure 5.4(a)),

and when N ≤ 90 and γ = 2 (Figure 5.4(b)). This is because Test 2 is a less effective

schedulability test compared to Test 1. However, both LS and HS are optimal for Test 2

(and we plot it only for LS).

We abort LS if it cannot complete any test case in 10 minutes. Using Test 1, we have been

able to record its performance when N ≤ 150 for γ = 1, and N ≤ 90 for γ = 2. With γ = 1,

its average execution time remains within 5s when N ≤ 100, and increases sharply to 36s

112

for N = 150 (Figure 5.4(c)). In contrast, HS takes 14s on average when N = 230 and γ = 1.

When γ = 2, its average execution time is 15s when N = 150. If N > 150, HS cannot find

an acceptable priority assignment for any test case. Using Test 2, the execution time of LS

remains less than 5s (as long as there exists an assignment acceptable by Test 2). These

results indicate that HS is an effective priority assignment algorithm as it is near-optimal

and scales better than LS.

5.8 Related Works

For transmission scheduling in wireless sensor networks, schedulability analysis has been ad-

dressed in previous works [25,60] considering the fixed priorities as given. For WirelessHART

networks, convergecast scheduling for linear and tree [165,188,189] topologies, and real-time

flow scheduling for arbitrary topologies [157] have been addressed in recent works. The

schedulability analysis proposed in [155] assumes that the priorities of flows are given. None

of these works addresses the priority assignment for real-time flows. Complementary to these

works on scheduling for WirelessHART networks, we propose an optimal and a near-optimal

priority assignment algorithm for real-time flows with fixed priorities.

Alur et al. [32] have proposed a mathematical framework to model and analyze schedules

using automata for WirelessHART networks. But their formal method approach can be com-

putationally expensive making it suitable only for offline design. In contrast, our heuristic

search is suitable for online admission control and adaptation, which is needed to handle

both dynamic workloads and topology changes common in wireless networks. Moreover,

our approach is tailored for fixed priority scheduling that is commonly adopted in real-time

networks due to its simplicity and efficiency.

5.9 Summary

WirelessHART is an important standard for wireless sensor-actuator networks that have

increasing adoption in process industries. This paper is the first to address the priority

assignment for real-time flows in WirelessHART networks. We have proposed an optimal

113

algorithm based on local search and an efficient heuristic for priority assignment. Simula-

tions on random networks and a sensor network testbed topology showed that the heuristic

achieved near-optimal performance in terms of schedulability, while significantly outperform-

ing traditional priority assignment policies for real-time systems.

Acknowledgement

This research was supported by NSF under grants CNS-0448554 (CAREER), CNS-1017701

(NeTS), and CNS-0708460 (CRI).

114

Chapter 6

Near Optimal Rate Selection for

Wireless Control Systems

With the advent of industrial standards such as WirelessHART, process industries are now

gravitating towards wireless control systems. Due to limited bandwidth in a wireless network

shared by multiple control loops, it is critical to optimize the overall control performance. In

this paper, we address the scheduling-control co-design problem of determining the optimal

sampling rates of feedback control loops sharing a WirelessHART network. The objective

is to minimize the overall control cost while ensuring that all data flows meet their end-to-

end deadlines. The resulting constrained optimization based on existing delay bounds for

WirelessHART networks is challenging since it is non-differentiable, non-linear, and not in

closed-form. We propose four methods to solve this problem. First, we present a subgradient

method for rate selection. Second, we propose a greedy heuristic that usually achieves low

control cost while significantly reducing the execution time. Third, we propose a global

constrained optimization algorithm using a simulated annealing (SA) based penalty method.

We study SA method under both constant factor penalty and adaptive penalty. Finally, we

formulate rate selection as a differentiable convex optimization problem that provides a quick

solution through a convex optimization technique. This is based on a new delay bound that is

convex and differentiable, and hence simplifies the optimization problem. We study both the

gradient descent method and the interior point method to solve it. We evaluate all methods

through simulations based on topologies of a 74-node wireless sensor network testbed. The

subgradient method is disposed to incur the longest execution time as well as the highest

control cost among all methods. Among the SA based constant penalty method, the greedy

heuristic, and the gradient descent method, the first two represent the opposite ends of the

115

tradeoff between control cost and execution time, while the third one hits the balance between

the two. We further observe that the SA based adaptive penalty method is superior to the

constant penalty method, and that the interior point method is superior to the gradient

method. Thus the interior point method and the SA based adaptive penalty method are

the two most effective approaches for rate selection. While both methods are competitive

against each other in terms of control cost, the interior point method is significantly faster

than the penalty method. As a result, the interior point method upon convex relaxation is

more suitable for online rate adaptation than the SA based adaptive penalty method due to

their significant difference in run-time efficiency.

6.1 Introduction

With the advent of industrial wireless standards such as WirelessHART [22], recent years

have seen successful real-world deployments of process control systems over wireless sensor-

actuator networks (WSANs). In a wireless control system, the control performance not only

depends on the design of control algorithms, but also relies on real-time communication over

the shared wireless network. The choice of sampling rates of the feedback control loops

must balance between control performance and real-time communication. A low sampling

rate usually degrades the control performance while a high sampling rate may cause exces-

sive communication delays causing degraded performance. The coupling between real-time

communication and control requires a scheduling-control co-design approach to optimize the

control performance subject to stringent bandwidth constraints of the wireless network.

In this paper, we address the sampling rate optimization problem for multiple feedback

control loops sharing a WirelessHART network. A feedback control loop periodically delivers

data from sensors to the controller, and then delivers the control messages to the actuators

through the network. We consider a wireless control system wherein transmissions over a

multi-hop WSAN are scheduled based on fixed priorities. The objective is to determine the

optimal sampling rates of the feedback control loops to minimize their total control cost,

subject to the constraints that their end-to-end network delays are within their respective

sampling periods. To our knowledge, this is the first work on scheduling-control co-design

for WirelessHART networks.

116

We formulate the sampling rate optimization problem based on existing end-to-end delay

bounds [155, 158] for data flows in multi-hop WirelessHART mesh networks. The resulting

constrained non-linear optimization problem is challenging because the existing delay bounds

are non-differentiable and not in closed-form. To address this difficult scheduling-control co-

design problem in wireless control systems based on WirelessHART networks, we study and

propose four methods:

• First, to handle non-differentiability and non-convexity of the delay bounds, we develop

a subgradient based method to find sampling rates through Lagrangian relaxation.

• Second, we propose a time-efficient greedy heuristic that usually achieves low control

cost, and is suitable for large-scale WSANs and online rate selection.

• Third, we propose a global constrained optimization algorithm that adopts a penalty

approach based on simulated annealing (SA). We study SA method under both con-

stant factor penalty and adaptive penalty.

• Finally, we derive a convex and differentiable delay bound by relaxing an existing delay

bound. Then, we formulate the co-design as a differentiable convex optimization prob-

lem that can be quickly solved using any traditional convex optimization technique.

We study both the gradient descent method and the interior point method to solve it.

We evaluate the proposed algorithms through simulations based on the real network topolo-

gies of a wireless sensor network testbed of 74 TelosB motes. Our evaluations have been

performed in three different ways:

• In the first case, we use the constant factor penalty method for SA. To solve the reduced

convex optimization problem, we use a gradient descent method as a widely used convex

optimization technique. The results demonstrate that, among all methods, SA achieves

the least control cost while requiring the longest execution time. In contrast, the greedy

heuristic runs faster but leads to higher control cost. The gradient descent method

based on the new delay bound hits the balance between control cost and execution

time. Interestingly, due to high nonlinearity and existence of a large number of local

extrema, the subgradient method is both ineffective and inefficient.

117

• In the second case, we study SA method under two different scenarios: under the

constant factor penalty method and under the adaptive penalty method. Our studies

indicate that the adaptive penalty method on average outperforms the constant factor

penalty method in terms of execution time.

• Finally, we compare the performance of the gradient descent method and the interior

point method to solve the reduced convex optimization problem. We observe that

the interior point method significantly outperforms the gradient descent method. Our

results indicate that the SA based adaptive penalty method and the interior point

method are the two most effective approaches for solving our co-design problem, and

hence we compare the performances of these two methods. Our results indicate that

both methods are competitive against each other in terms of control cost, the interior

point method is significantly faster than the penalty method. As a result, the interior

point method upon convex relaxation is more suitable for online rate adaptation than

the SA based adaptive penalty method due to their significant difference in run-time

efficiency.

In the rest of the paper, Section 6.2 reviews related works. Section 6.3 presents the network

model. Section 6.4 describes the control loop model. Section 6.5 formulates the rate selection

problem. Sections 6.6, 6.7, and 6.8 present the subgradient method, the greedy heuristic

method, and the SA based penalty method, respectively, for rate selection. Section 6.9

derives a convex delay bound and presents the gradient descent method and the interior point

method for rate selection. Section 6.10 presents evaluation results. Section 6.11 concludes

the paper.

6.2 Related Works

There have been extensive studies on real-time CPU scheduling and control co-design in

single-processor systems (see survey [182]). Some notable works [49, 160, 161] among them

address rate selection under schedulability constraints. However, these works do not apply

for networked control systems since network induced delays have significant effects on control

118

performance, and the schedulability analysis through the network is usually more compli-

cated than CPU scheduling. Following the seminal work on integrated communication and

control [90], a number of works [50,66,82,117,118,132,190] have treated the co-design in net-

worked control systems. However, these works have not been designed for wireless networks

where end-to-end delay analysis introduces challenging non-linear optimization problems.

For wireless control system, a conceptual study of a wireless real-time system dedicated

for remote sensor/actuator control in production automation has been presented in [109].

Wireless control co-design has been studied in [125,126,183]. But these works do not consider

multi-hop wireless networks. The rate selection under schedulability constraints for multi-

hop wireless sensor network (WSN) has been studied in [127,163]. But these works consider

a simplified network model where a WSN is cellular with a base station functioning as a

router at the center of each cell. An inner cell is surrounded by 6 cells. The base station in

a cell uses 7 orthogonal channels for communication with 6 surrounding cells, periodically

enabling transmission in each direction. The utilization based analysis used for this model

does not apply for common WSANs based on industrial standards such as WirelessHART. To

our knowledge, there exists no utilization based schedulability analysis for multi-hop wireless

networks. This lack of simple analytical model to efficiently analyze real-time performance

excludes the use of scheduling-control co-design approaches developed for CPU scheduling

or wired networks.

As WirelessHART networks [22,56] are becoming the mainstream for wireless control systems

in process industries, recent works have focused on control and scheduling issues in Wire-

lessHART networks [32, 93, 140, 155–157, 165, 188]. However, these works have addressed

either scheduling [140, 156, 157, 165, 188], routing [93], delay analysis [155], or framework to

model schedules [32], and have not considered the scheduling-control co-design problems such

as rate selection. In contrast, we have developed the co-design approach to determine near

optimal sampling rates of the feedback control loops which minimize their overall control

cost and ensure their real-time schedulability. To our knowledge, this paper is the first to

address scheduling-control co-design for WirelessHART networks.

119

6.3 Control Network Model

We consider a wireless control system where feedback control loops are closed over a Wire-

lessHART network. The WirelessHART standard [22, 56] has been specifically designed

to meet the critical needs for industrial process monitoring and control. We consider a

WirelessHART network consisting of a set of field devices (sensors and actuators) and one

gateway. A WirelessHART network is characterized by small size and a centralized network

manager installed in the gateway. The network manager determines the routes, and schedule

of transmissions. The controllers for feedback control loops are installed in the gateway. The

sensor devices deliver their sensor data to the controllers, and the control messages are then

delivered to the actuators through the network.

Time is synchronized, and transmissions happen based on TDMA. A time slot is 10ms long,

and allows exactly one transmission and its acknowledgement between a device pair. In a

dedicated slot, there is only one sender for each receiver. In a shared slot, more than one

sender can attempt to transmit to the same receiver. The network uses 16 channels defined

in IEEE 802.15.4 and allows per time slot channel hopping. Each transmission in a time

slot happens on a different channel. A device cannot both transmit and receive at the same

time; nor can it receive from more than one sender at the same time. Two transmissions

conflict when they involve a common node.

A directed list of paths that connect a source and destination pair is defined as a routing

graph. For communication between a pair, transmissions are scheduled on the routing graph

by allocating one link for each en-route device starting from the source, followed by allocating

a second dedicated slot on the same path to handle a retransmission, and then by allocating

a third shared slot on a separate path to handle another retry. This conservative practice

leaves a huge number of allocated time slots unused since only one route is chosen based on

network conditions, thereby degrading the schedulability. To address this, existing end-to-

end delay analysis [155, 158] considers only collision-free schedule based on dedicated slots.

Since delay analysis is not the focus of this paper, we use existing end-to-end delay bounds.

If, in the future, any delay bound is derived by considering shared time slots, that bound

can be applied to define the constraints in our co-design problem.

120

6.4 Control Loop Model

The wireless control system consists of n feedback control loops, each denoted by Fi, 1 ≤
i ≤ n. Associated with each control loop are a sensor node and an actuator. In each loop,

the dynamics of the plant is described as a Linear Time Invariant (LTI) system and can be

written as

.
x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

where x(t) is the plant state, u(t) is the controller output, y(t) is the system output. A,

B, C are constant matrix describing the system dynamics. Although we assume LTI in this

work, the framework proposed can be extended to time-varying and/or non-linear systems.

For each loop, we consider the state feedback controller:

u(t) = Lx(t)

where L is control gain designed by the control theory. The quality of control (QoC) of each

loop is measured by the following performance index function [160]:

J(u) = lim
H→∞

∫ H

0

(
xT (t)Qx(t) + uT (t)Wu(t)

)
dt

Where Q and W are quadratic weight matrix representing the importance of deviation of

control objective x(t) and control effort u(t)2. H is the time horizon during which the cost

function is calculated. A great value of J(u) thus indicates either a great deviation of the

desired state or a great control effort to bring the state to its reference value. An optimal

control theory, such as Least Quadratic Regulator (LQR), solves the optimization problem:

J∗(u) = minimize J(u)

to derive an optimal controller. Although J(u) is often related to an optimal control problem,

it can be used as a general control performance index not limited to some specific controller.

2We assume the system converges to the origin.

121

Considering the digital implementation of a control loop Fi, the optimal control performance

may deviate from its continuous counterpart J∗i respecting the sampling frequency fi (Hz).

Usually, there is complicated interaction between the deviation and the sampling frequency.

However, similar to [160], the deviation with respect to the sampling frequency can be

approximated as follows

Ji = J∗D,i − J∗i = αie
−βifi (6.1)

where J∗D,i is the optimal control performance of the digital implementation, αi is the mag-

nitude coefficient, and βi is the decay rate.

Each control loop Fi maintains a minimum required frequency of fmin
i Hz and a maximum

allowable frequency of fmax
i Hz. To maintain an acceptable control performance, the end-to-

end communication (sensor-controller-actuator) delay for every sensor data and its associated

control message must remain within the sampling period Ti. For any control loop Fi, we

express its sampling period Ti in terms of time slots. Since 1 slot=10ms, its sampling rate

or frequency is

fi =
100

Ti
Hz

Transmissions are scheduled on m channels, and using rate monotonic policy where a loop

with higher rate has higher priority, breaking ties arbitrarily. The set of control loops

F = {F1, F2, · · · , Fn} will always be assumed to be ordered by priorities. Fh has higher

priority than Fi if and only if h < i. That is, each Fh, 1 ≤ h ≤ i−1, is a higher priority loop

of Fi. In a fixed priority scheduling policy, among all transmissions that can be scheduled in

a time slot, the one belonging to the highest priority control loop is scheduled on an available

channel first. The complete schedule is divided into superframes. A superframe represents

transmissions in a series of time slots that repeat infinitely and represent the communication

pattern of a group of devices. In rate monotonic scheduling, flows having the same period

are assigned in the superframe of length equal to their period. We will use Ci to denote

the number of transmissions (i.e., time slots) required by Fi for end-to-end communication.

The end-to-end delay for Fi is denoted by Ri (time slots). The set of control loops F is

schedulable, if Ri ≤ Ti, ∀1 ≤ i ≤ n.

122

6.5 Formulation of the Rate Selection Problem

In this section, we formulate the rate selection problem as a constrained non-linear optimiza-

tion problem. The objective is to minimize the overall control cost of the feedback control

loops subject to their real-time schedulability constraints. Based on the selected rates, the

control loops are scheduled using rate monotonic policy.

In order to capture the online interaction between control algorithms and the scheduler, a

number of issues must be considered. It must be possible to dynamically adjust the control

loop parameters, e.g., their rates, in order to compensate for changes in the workload. It

can also be advantageous to view this parameter adjustment strategy in the scheduler as a

controller. Control design methods must also take the schedulability constraints into account

to guarantee real-time communication through the network. Besides, it should be possible

to compensate for wireless deficiencies (e.g., lossy links). Briefly, there are three main factors

that affect coupling between the control system and wireless network: (1) the rates of the

control loops, (2) the end-to-end delays, and (3) the packet loss. As explained in Section 6.3,

a packet delivery in WirelessHART networks achieves high degree of reliability through route

and spectrum diversity. As a consequence, the probability of packet loss is very low [56].

Therefore, our co-design approach focuses on rates and end-to-end delays.

We use the end-to-end delay bounds derived in [158] which are an improved and extended

analysis proposed in [155]. In fact, the analysis in [158] has two ways to derive a delay

bound: in pseudo-polynomial time and in polynomial time. Note that a pseudo-polynomial

time bound makes the schedulability constraints extremely expensive to check at every step

of optimization in the co-design, thereby making a non-linear optimization approach almost

impractical. Therefore, in this section, we formulate the problem using the polynomial-time

delay bounds that are somewhat less precise than pseudo-polynomial ones. In the polynomial

time analysis, the worst case end-to-end delay Ri of Fi is determined as follows

Ri =

⌊
1

m

i−1∑
h=1

Ωh
i

⌋
+

i−1∑
h=1

Θh
i + Ci (6.2)

123

Where m denotes the total number of channels; Ωh
i is the delay that a higher priority loop

Fh causes on Fi due to channel contention, and is determined as follows

Ωh
i = min

(
Ti − Ci + 1,

⌊
Ti + Th − Ch

Th

⌋
Ch

+ min
(
Ch, Ti + Th − Ch −

⌊
Ti + Th − Ch

Th

⌋
Th
))

And Θh
i is the delay that a higher priority loop Fh can cause on Fi due to transmission

conflict, and is determined as follows

Θh
i = ∆h

i +
(⌊ Ti

Th

⌋
− 1
)
δhi + min

(
δhi , Ti −

⌊
Ti
Th

⌋
Th

)

where δhi denotes the maximum delay that a single transmission of Fi can suffer from Fh,

and ∆h
i denotes the total maximum delay that all transmissions of Fi can suffer from Fh,

1 ≤ h < i, due to transmission conflict. These values are calculated based on how the routes

of Fi and Fh intersect each other. For any given routes of Fi and Fh, δ
h
i and ∆h

i are constant,

and their derivation can be found in [155,158].

We now define the performance index of the control system that can describe how the

control performance depends on the rates and delays of the control loops. Note that, when

the controller is implemented, the system performance will deviate from the ideal value of the

performance measure attained using continuous-time control, and the deviation will depend

on the sampling rate. As mentioned in Equation 6.1 like [160], we quantify this deviation

by defining the control cost for every control loop Fi by a monotonic and convex function

Ji = αie
−βifi (6.3)

where αi is the magnitude co-efficient, βi is the decay rate, fi (in Hz) is the rate of Fi.

Considering wi as the weight of Fi, for a set of chosen rates f = {f1, f2, · · · , fn}, where fi is

the rate of Fi, the total control cost of the system stands

J(f) =
n∑
i=1

wiαie
−βifi (6.4)

124

Function J(f) describes how the control performance depends on the rates (i.e., frequencies)

and delays of the control loops. Namely, the higher the rates, the better the performance.

However, a too high rate of some loop may cause congestion in the network, resulting in a

very low rate for some other loop, thereby degrading the performance. Therefore, we choose

the total control cost J(f) as the performance index. As can be seen in Equation 6.4, the

weight wi of any control loop Fi indicates its relative importance to the user in terms of

the control cost, and hence impacts the overall control cost. A higher weight indicates a

more important control loop to the user. The weights are application specific and can be

assigned based on the importance of different control loops to the user. Our work is not

concerned with determining the weights, and simply considers that the weights are given as

input parameters for control loops.

We can now formulate the scheduling-control co-design as a non-linear constrained optimiza-

tion problem, where our objective is to determine the optimal sampling rates that minimize

the total control cost. The co-design must guarantee that the end-to-end delay Ri of every

loop Fi is within its deadline Ti. Besides, every control loop Fi must maintain its minimum

required rate of fmin
i Hz and the maximum allowable rate of fmax

i Hz for an acceptable control

performance. In the scheduling-control co-design, our objective thus boils down to finding

rates f = {f1, f2, · · · , fn} so as to

minimize J(f)

subject to Ri ≤ Ti, ∀1 ≤ i ≤ n

fi ≥ fmin
i , ∀1 ≤ i ≤ n

fi ≤ fmax
i , ∀1 ≤ i ≤ n

(6.5)

where fi = 100/Ti Hz, and Ri is as defined in Equation 6.2, ∀1 ≤ i ≤ n.

6.6 Subgradient Method for Rate Selection

Subgradient based methods are an established and standard approach for nonlinear optimiza-

tion. In this section, we develop a subgradient based approach to determine the sampling

125

rates for control cost optimization in the scheduling-control co-design formulated in the

previous section.

In the optimization problem defined in (6.5) for co-design, the objective function J(f) :

Rn → R is convex while the non-linear constraints Ri ≤ Ti, ∀1 ≤ i ≤ n, are not convex.

This optimization problem is challenging since the constraints Ri ≤ Ti are not differentiable,

making any traditional gradient-based optimization unsuitable. To generate approximate

solutions to the primal problem defined in 6.5, we consider approximate solutions to its

dual problem. Here, the dual problem is the one arising from Lagrangian relaxation of the

inequality constraints Ri ≤ Ti, and is given by

maximize L(f, λ)

subject to λ ≥ 0
(6.6)

where L(f, λ) is the Lagrangian dual function defined by

L(f, λ) = inf{J(f) +
n∑
i=1

λi(Ri − Ti)}

such that fmin
i ≤ fi ≤ fmax

i , ∀1 ≤ i ≤ n

Here λ ∈ Rn is the vector of Lagrange multipliers.

Figure 6.1 shows the surface of the dual problem in (6.6) for changing the rates of 2 control

loops (and keeping all other loops’ rates unchanged) considering data flows of 12 control

loops simulated on our WSN testbed topology (shown in Figure 6.4). The figure shows that

L(f, λ) is highly nonlinear in rates. This implies the difficulty of the problem. Besides,

the function L(f, λ) is not differentiable everywhere. Therefore, traditional optimization

approaches based on gradient calculation cannot be applied directly to solve it. Hence, we

first adopt a subgradient optimization method to determine the rates. Note that f belongs

to a finite range. Steps of the subgradient method are presented as Algorithm 5.

126

Figure 6.1: Surface of the dual function in 6.6

Thus, the scheduling-control co-design defined in (6.5) can be solved using any existing sub-

gradient solver (e.g., SSMS [18]). Both the speed of convergence and the quality of solution

largely depend on the step size selection. As a traditional subgradient method, Algorithm 5

is guaranteed to converge under any diminishing step size or dynamically adjusted step size

such as Polyak step size [142].

6.7 Greedy Heuristic for Rate Selection

While a subgradient method is a standard approach for non-linear optimization, it can run

very slowly for many practical problems that have too many local extrema and are highly

non-linear. Due to a large number of local extrema and complicated subgradient direction in

our optimization problem, the subgradient based method proposed in the previous section

for rate selection may turn out to be not quite efficient. Therefore, in this section, we propose

a simple intuitive greedy heuristic that can run very fast and scale very well.

127

Algorithm 5: Subgradient Method for Rate Selection

Input: [fmin
i , fmax

i], wi, αi, βi ∀Fi, 1 ≤ i ≤ n;
Output: fi,∀Fi, and total control cost J ;
fi ← fmin

i , ∀Fi, 1 ≤ i ≤ n; /* validity check */

Assign priorities using rate monotonic policy;
if ∃Fi such that Ri > Ti then return unschedulable; ;

Step 0: Set time t = 0. Choose initial Lagrange multipliers λt = 0. Let f t be the primal variables
corresponding to Lagrange multipliers λt.

while stop condition not true do
Step 1: Determine the rate monotonic priorities of the loops under current f . Solve the Lagrangian
subproblem L(f, λ). That is, given the dual variables λt, determine the primal variables f t as follows

f t ∈ arg min{J(f) +

n∑
i=1

λi(Ri − Ti)}

such that fmin ≤ f t ≤ fmax

This gives a subgradient st = Rt−T t at λt. If st = 0, then stop. The algorithm has converged. Current
λt gives the optimal value of the dual, and current f t gives an approximated value of the primal.

Step 2: Compute the Lagrange multipliers for next time as follows

λt+1 = max{0, λt + γtst}

where γt is the step size.

Step 3: Update t = t+ 1 and go to Step 1.
end

The greedy heuristic starts by selecting a rate of fmin
i for each control loop Fi. Note that,

for valid rate ranges [fmin
i , fmax

i], the control loops should be schedulable when each loop Fi

selects a rate of fmin
i . Otherwise, the test case is simply rejected since no rate selection exists

that can satisfy the schedulability constraints. For valid rate ranges, the algorithm has the

highest control cost in the beginning. Therefore, it will keep decreasing the cost as long

the loops are schedulable. This is done by increasing the sampling rates of the loops. The

algorithm selects one control loop to increase the rate in each step, and uses a step size of µ

by which the rate is increased. For loop Fi, the decrease in control cost due to an increase

in current rate fi by µ is determined as

wiαie
−βifi − wiαie−βi(fi+µ)

In every step, the greedy heuristic increases the rate of the control loop that decreases

the control cost most while satisfying the schedulability constraints of the loops. It keeps

128

Algorithm 6: Greedy Heuristic

Input: [fmin
i , fmax

i], wi, αi, βi ∀Fi, 1 ≤ i ≤ n, and a step size µ;
Output: fi,∀Fi, and total control cost J ;
fi ← fmin

i , ∀Fi, 1 ≤ i ≤ n; /* initialize rates */

Assign priorities using rate monotonic policy;
if ∃Fi such that Ri > Ti then return unschedulable; ;
while true do

max← 0; /* maximum control cost decrease */

k ← null; /* index of the best control loop */

for each Fi, i = 1, 2, · · · , n such that fi can further increase do
Jold
i ← wiαie

−βifi ; /* current cost of Fi */

fi ← fi + µ; /* increase rate by µ */

Reassign priorities using rate monotonic policy;
if Rj ≤ Tj , ∀1 ≤ j ≤ n then /* if schedulable */

Jnew
i ← wiαie

−βifi ; /* new cost of Fi */

if Jold
i − Jnew

i ≥ max then
max← Jold

i − Jnew
i ;

k ← i; /* Fk is the best candidate */

end

end
fi ← fi − µ; /* put back Fi’s rate */

end
if max=0 then /* no fi can further increase */

return current fi,∀Fi, and total control cost J
end
fk ← fk + µ; /* increase rate of loop Fk */

end

increasing the rates in this way as long as some loop’s rate can be increased while keeping all

loops schedulable. When no loop’s rate can be increased anymore, the algorithm terminates,

and returns the current control cost J , and the selected rates. The pseudo code of the greedy

heuristic method is presented as Algorithm 6.

6.8 Rate Selection Using a penalty approach with sim-

ulated annealing

The greedy heuristic proposed in the previous section can execute very fast and, in some

cases, may significantly minimize the control cost. But due to complicated nonlinear con-

straints, in many cases, it can get stuck in local extrema and, hence, its performance (in

129

terms of control cost) may not be guaranteed. Therefore, in this section, we explore a global

optimization framework based on simulated annealing that can handle non-differentiability

and escape local extrema. In particular, we propose a method that extends the standard

simulated annealing through a penalty approach to address the constraints for rate selection.

Simulated annealing (SA) is a global optimization framework that is suitable for problems

where gradient information is not available. It uses a global parameter called temperature

to control the probability of accepting a new solution that is worse than the current one.

The temperature decreases gradually as the algorithm gradually converges. SA is proven to

be able to achieve global optimality under certain theoretical conditions. SA is particularly

suitable for our problem since it does not require differentiability of functions, and it employs

stochastic global exploration to escape from local minima.

However, while the original SA is designed for unconstrained optimization, our co-design

problem is a constrained optimization problem. To find a feasible solution using SA for our

co-design problem, we use a `1− penalty method [58]. In this method, we introduce a new

objective function

g = J(x) + pV (x),

where J is the control cost, V = max{0, Ri − Ti|i = 1 · · ·n} is the violation of schedulability

constraints, and p > 0 is the penalty factor. The penalty method starts with a low penalty

0.25 and an initial temperature set to 1000*n, where n is the number of control loops.

At each iteration, we use SA to minimize g under a fixed p. If it cannot find a feasible

solution with that setting, we increase the penalty p and temperature and start over the

SA algorithm. We call this method the constant factor penalty method. Theoretically, such

a penalty method can find the constrained global optimal solution when the unconstrained

optimization is optimal and p is large enough. The new penalty at the ith iteration is

calculated by multiplying p at the (i − 1)th iteration by four, and the new temperature is

calculated by multiplying the original temperature by the iteration number i. This process

is continued until we find a feasible solution or the maximum number of iteration is reached.

The maximum number of iteration is currently set to 100. In all SA experiments, we set the

final temperature and total number of steps to be 0.01 and 200,000, respectively.

130

SA based adaptive penalty method. While the constant factor penalty method can find

the constrained global optimal solution, it may require a long time to run. In contrast, the

execution time can be reduced significantly using an adaptive penalty method. Intuitively,

the adaptive penalty method increases the penalty when the current solution is far away

from the optimal one, and decreases the penalty otherwise. For our rate selection problem,

we measure the constraint violation at the current solution point, and use it as a penalty

parameter. In the constant factor penalty method, the previous step’s penalty is multiplied

by a constant c1 to get a new penalty. In contrast, in the adaptive penalty method, the

constraint violation,after multiplying by a constant c2, is added to the previous step’s penalty

to get a new one.

6.9 Rate Selection Through Convex Optimization

Since the co-design problem in (6.5) is non-differentiable and non-convex, we have adopted

subgradient method and simulated annealing to solve it. In this section, we derive a differen-

tiable and convex delay bound by relaxing the pseudo-polynomial time delay bound proposed

in [155,158]. Then, we formulate the rate selection problem as a convex optimization prob-

lem. Since the new convex delay bounds can be more pessimistic than the original delay

bounds, there can be cases where, for any set of selected rates, the constraints based on the

original delay bounds are satisfied, but those based on the new delay bounds are not satisfied.

To satisfy the constraints in the new (convex) formulation, we may need to decrease some

rates, thereby increasing the control cost. Therefore, the control cost obtained upon solving

the new problem can be worse than that obtained based on original delay bounds. However,

the main advantage of the new formulation is that it can be solved quickly using any existing

convex optimization technique (e.g., gradient descent method or interior point method). A

quick solution is specially preferred, when the network condition changes frequently, and the

network manager needs to recalculate the rates quickly in response to network dynamics.

For each loop Fi, we derive a differentiable and convex delay bound Rcvx
i as follows. Based

on the pseudo-polynomial time analysis in [155,158], if loop Fi has an end-to-end delay of x

time slots, the channel contention delay Ωh
i that a higher priority loop Fh can cause on Fi is

131

bounded as follows

Ωh
i ≤

⌊
x

Th

⌋
Ch + Ch + (Ch − 1) ≤ x

Th
Ch + 2Ch − 1

Similarly, the transmission conflict delay Θh
i that a higher priority loop Fh can cause on Fi

is bounded as follows

Θh
i = ∆h

i +
(⌊ x

Th

⌋
− 1
)
δhi + min

(
δhi , x−

⌊
x

Th

⌋
Th

)
≤ ∆h

i +
(x
Th
− 1
)
δhi + δhi = ∆h

i +
x

Th
δhi

Note that the above upper bounds of Θh
i and Ωh

i are both differentiable and continuous. If a

control loop Fi has an end-to-end delay of x time slots, then using the above upper bounds

of Θh
i and Ωh

i , the end-to-end delay bound x can be written similar to Equation 6.2 as follows

x =
1

m

i−1∑
h=1

(x
Th
Ch + 2Ch − 1

)
+

i−1∑
h=1

(
∆h
i +

x

Th
δhi

)
+ Ci

=
x

m

i−1∑
h=1

Ch
Th

+
1

m

i−1∑
h=1

(
2Ch − 1

)
+

i−1∑
h=1

∆h
i + x

i−1∑
h=1

δhi
Th

+ Ci

⇔ x

(
1− 1

m

i−1∑
h=1

Ch
Th
−

i−1∑
h=1

δhi
Th

)
=

1

m

i−1∑
h=1

(
2Ch − 1

)
+

i−1∑
h=1

∆h
i + Ci

Thus,

x =

1
m

i−1∑
h=1

(
2Ch − 1

)
+

i−1∑
h=1

∆h
i + Ci

1− 1
m

i−1∑
h=1

Ch

Th
−

i−1∑
h=1

δhi
Th

= Rcvx
i (6.7)

Lemma 16. For any control loop Fi, the end-to-end delay bound Rcvx
i derived in Equation 6.7

is convex in f .

132

Proof. Note that Rcvx
i is twice-differentiable. Hence Rcvx

i is convex iff its Hessian matrix is

positive semidefinite. Let the constant (the numerator in Rcvx
i): 1

m

i−1∑
h=1

(
2Ch − 1

)
+

i−1∑
h=1

∆h
i +

Ci = Qi. Using Ti = 100/fi the denominator of Rcvx
i : 1 − 1

100m

i−1∑
h=1

fhCh − 1
100

i−1∑
h=1

fhδ
h
i = Zi.

Letting Ch

100m
+

δhi
100

= qh, for h = 1, 2, · · · , i− 1, the gradient is given by

∇Rcvx
i (f1, f2, · · · , fi−1) =

Qi

Z2
i
q1

Qi

Z2
i
q2

...
Qi

Z2
i
qi−1

The Hessian matrix H is given by: H =

2Qi

Z3
i
q2

1 2Qi

Z3
i
q1q2 2Qi

Z3
i
q1q3 · · · 2Qi

Z3
i
q1qi−1

2Qi

Z3
i
q2q1 2Qi

Z3
i
q2

2 2Qi

Z3
i
q2q3 · · · 2Qi

Z3
i
q2qi−1

2Qi

Z3
i
q3q1 2Qi

Z3
i
q3q2 2Qi

Z3
i
q2

3 · · · 2Qi

Z3
i
q3qi−1

...
...

...
...

...

2Qi

Z3
i
qi−1q1 2Qi

Z3
i
qi−1q2 2Qi

Z3
i
qi−1q3 · · · 2Qi

Z3
i
q2
i−1

Note that Qi

Zi
> 0, qh > 0,∀h. Now the leading principal minors of H:

∣∣∣ 2Qi

Z3
i
q2

1

∣∣∣ > 0,

∣∣∣∣∣ 2Qi

Z3
i
q2

1 2Qi

Z3
i
q1q2

2Qi

Z3
i
q2q1 2Qi

Z3
i
q2

2

∣∣∣∣∣ = 0,

∣∣∣∣∣∣∣∣
2Qi

Z3
i
q2

1 2Qi

Z3
i
q1q2 2Qi

Z3
i
q1q3

2Qi

Z3
i
q2q1 2Qi

Z3
i
q2

2 2Qi

Z3
i
q2q3

2Qi

Z3
i
q3q1 2Qi

Z3
i
q3q2 2Qi

Z3
i
q2

3

∣∣∣∣∣∣∣∣ = 0, · · · ,
∣∣∣ H ∣∣∣ = 0.

Thus all leading principle minors become non-negative. Therefore, Hessian matrix H is

positive semidefinite. Hence, Rcvx
i is convex in f .

133

5 10 15 20 25 30
0

50

100

150

200

250

Control Loop Priority

W
o
rs

t
C

a
s
e
 D

e
la

y
 (

x
1
0
m

s
)

Simulation

Pseudo polynomial
R

i

R
cvx

i

Figure 6.2: End-to-end delay bounds on testbed topology

Figure 6.2 shows how (pessimistic) the derived convex bound Rcvx
i is for a test case on our

WSN testbed topology (Figure 6.4). The simulation generates data flows for 30 control loops

in the network and randomly assigns, for each loop, a harmonic period that is also a multiple

of 10ms (i.e., 1 time slot) in a range [320ms, 5120ms]. The loops are assigned rate monotonic

priority, and are sorted along the X-axis from the highest to the lowest priority. Using 12

channels, the delay bounds Ri (Equation 6.2), Rcvx
i , and the delay bound based on the

pseudo-polynomial time analysis in [158] are shown in the figure for each loop Fi. The loops

are scheduled up to their hyper-period, and for each loop, its maximum end-to-end delay

observed in simulations (marked by ‘simulation’) is also shown. The figure indicates that Rcvx
i

overestimates the delay at most 2 times that estimated by the pseudo-polynomial analysis.

Rcvx
i is also highly competitive against the polynomial time delay bound Ri. Since, neither

Rcvx
i nor Ri dominates the other, we study the results under both bounds. The advantage

with Rcvx
i is that the co-design problem can be formulated as a convex optimization problem

that can be solved quickly using any existing convex optimization technique (e.g., gradient

descent method or interior point method).

134

Now we reformulate the optimization problem in (6.5) using above expression of Rcvx
i as

follows. Here, we have to select rates f = {f1, f2, · · · , fn} so as to

minimize J(f)

subject to Rcvx
i ≤ Ti, ∀1 ≤ i ≤ n

fi ≥ fmin
i , ∀1 ≤ i ≤ n

fi ≤ fmax
i , ∀1 ≤ i ≤ n

(6.8)

where fi = 100/Ti Hz, and Rcvx
i is as defined in Equation 6.7, ∀1 ≤ i ≤ n.

Figure 6.3: Surface of the primal function of Problem in 6.8

The above formulated problem is a convex optimization problem. Figure 6.3 indicates the

smoothness of the function in Problem 6.8 for changing the rates of 2 control loops (and

keeping all other loops’ rates unchanged) considering data flows of 12 control loops simulated

on a testbed topology (shown in Figure 6.4).

135

6.9.1 Gradient Descent Method

First we adopt a gradient descent method for solving the above convex optimization problem.

To find a solution to the primal problem, we consider solutions to its dual problem. Here

also, the dual problem is formed through Lagrangian relaxation of inequality constraints

Rcvx
i ≤ Ti, and is given by

maximize L(f, λ)

subject to λ ≥ 0

Where L(f, λ) is the Lagrangian dual function defined by

L(f, λ) = inf{J(f) +
n∑
i=1

λi(R
cvx
i − Ti)}

such that fmin
i ≤ fi ≤ fmax

i , ∀1 ≤ i ≤ n

Here λ ∈ Rn is the vector of Lagrange multipliers. In the dual, L(f, λ) is differentiable

and, hence, the classical approach of maximizing the function would be the steepest descent

method that computes a sequence of iterations to update the multipliers as follows

λt+1 = λt + γt∇L(f, λ)

Note that at every step, the priorities of the control loops are updated according to rate

monotonic policy based on new updated rates to calculate Rcvx
i . In solving the dual function,

we follow the gradient at the current position, with a specified step size γ, to reach points

with a higher function value. Unlike Algorithm 5, now we have unique subgradient (which

is the gradient) at the current position. In our case, this evaluates to

λt+1 = λt + γt(Rcvx − T)

Any traditional step size rule (either vanishing or dynamic) can be applied to reach the

solution in a gradient descent way. Also, the solution can be found simply by using any

standard convex optimization tool such as CVX [86].

136

6.9.2 Interior Point Method

The interior point method is a deterministic algorithm for solving nonlinear optimization

problems, and often becomes a faster approach for many convex optimization problems.

Hence, in addition to the gradient descent method, we adopt the interior point method for

solving the above convex optimization problem. This method uses a self-concordant barrier

function to encode the convex set. It reaches an optimal solution by traversing the interior

of the feasible region. Since our new formulation is a convex optimization problem, it can be

transformed into minimizing the objective function over a convex set. The idea is to encode

the feasible set using a barrier function.

For the interior point method, the logarithmic barrier function associated with our convex

optimization problem in (6.8) is given by

B(f, µ) = J(f)− µ(
n∑
i=1

ln(Ti −Rcvx
i) +

n∑
i=1

ln(fi − fmin
i) +

n∑
i=1

ln(fmax
i − fi)) (6.9)

where µ is a small positive scalar called the barrier parameter. As µ converges to zero, the

minimum of B(f, µ) should converge to a solution of (6.8).

The barrier function gradient is given by

gb = g − µ
k∑
j=1

1

cj(f)
5 cj(f), (6.10)

where g is the gradient of the original function J(f) and 5cj(f) is the gradient of cj(f).

Here, cj(f) stands for the j-th constraint in the problem formulation (6.8) and k equals to

3n. Considering λ ∈ Rk as Lagrange multipliers, the perturbed complementarity condition is

λjcj(f) = µ,∀i = 1, . . . ,m (6.11)

137

We try to find those (xµ, λµ) which turn the gradient of the barrier function to zero. Applying

(6.11) to (6.10), we get the equation for gradient as follows.

g − ATλ = 0 (6.12)

where A is Jacobian matrix of the constraint c(f).

The intuition behind (6.12) is that the gradient of J(f) should lie in the subspace spanned by

the constraints’ gradients. The perturbed complementarity with small µ can be understood

as the condition that the solution should either lie near the boundary cj(f) = 0 or that

the projection of the gradient g on the constraint component cj(f) normal should be almost

zero. Applying Newton’s method to (6.11) and (6.12), we get an equation for (pf , pλ), the

search direction in the (f, λ) space at each iteration:

(
W −AT

ΛA C

)(
pf

pλ

)
=

(
−g + ATλ

µ1− Cλ

)
,

where W is the Hessian matrix of J(f) and Λ is a diagonal matrix of λ. The condition λ ≥ 0

should be enforced at each step. This can be done by choosing an appropriate step size α:

(f, λ)→ (f + αpf , λ+ αpλ).

6.10 Evaluation

In this section, we evaluate the proposed algorithms for near optimal rate selection for

feedback control loops in wireless control systems. We evaluate the algorithms through

simulations based on the real topologies of a WSN testbed. Our WSN testbed is deployed

in two buildings (Bryan Hall and Jolley Hall) of Washington University in St Louis [2]. The

testbed consists of 74 TelosB motes each equipped with Chipcon CC2420 radios compliant

with the IEEE 802.15.4 standard (WirelessHART is also based on IEEE 802.15.4).

138

Figure 6.4: Testbed topology at transmission power of -5 dBm (the gateway is colored in
blue)

6.10.1 Simulation Setup

We simulate the networked control loops by generating data flows in our testbed topologies.

The topologies are determined in the following way. Setting the same transmission power at

every node, a node broadcasts 50 packets while its neighbors record the sequence numbers

of the packets they receive. After a node completes sending its 50 packets, the next sending

node is selected in a round-robin fashion. This cycle is repeated giving each node 5 rounds

to transmit 50 packets in each round. Every link with a higher than 80% packet reception

ratio (PRR) is considered a reliable link to derive the topology of the testbed. Figure 6.4

shows the network topology (embedded on the floor plans of two buildings) when each node’s

transmission power is set to −5 dBm. We have tested our algorithms using the topologies

at 4 different transmission power levels: 0 dBm, −1 dBm, −3 dBm, −5 dBm.

In each topology, the node with the highest number of neighbors is designated as the gateway.

A set of nodes is considered as sources (sensors), while another set as destinations (actuators).

We select the same source and destination pairs in each topology. The most reliable routes

(based on PRR) are used for data flow between source and destination pairs. Each data

flow is associated with a control loop. The weight of each control loop is set to 1. The

139

5 10 15 20 25 300

5

10

15

20

25

30

 C
on

tr
ol

 C
os

t

 Number of Control Loops

 Greedy Heuristic
 Subgradient
 Gradient
 Simulated Annealing

(a) Control cost

5 10 15 20 25 300

0.5

1

1.5

2

2.5

3

3.5x 104

 E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

 Number of Control Loops

 Greedy Heuristic
 Subgradient
 Gradient
 Simulated Annealing

(b) Execution time

Figure 6.5: Performance comparison on topology at transmission power -5 dBm

decay rate (β) and magnitude coefficient (α) of the loops have been assigned according to

those used for bubble control systems in [160]. The penalty based simulated annealing has

been implemented based on Python Simulated Annealing Module [144]. For interior point

method, we have used IPOPT [96] solver. All other algorithms have been implemented in

MATLAB. The tests have been performed on a Mac OS X machine with 2.4 GHz Intel Core

2 Duo processor.

6.10.2 Performance Study of Four Methods

We first evaluate the subgradient method, the greedy heuristic, the SA based constant factor

penalty method, and the gradient descent method in terms of achieved control cost and

execution time. For SA, in the first case, we use the constant factor penalty method. The

maximum number of iterations is set to 2, 00000. For the reduced convex optimization

problem, we use the gradient descent method. We perform the simulations using 12 channels.

Figures 6.5 shows the results for 30 control loops simulated on the testbed topology when

every node’s transmission power is set to −5 dBm. Figure 6.5(a) indicates that the control

cost in the simulated annealing (SA) based penalty method is consistently a lot less than

all other methods. The control cost in the gradient method is larger but very close to that

of SA, and a lot less than the greedy heuristic and the subgradient method. The greedy

140

5 10 15 20
0

2

4

6

8

10

12

14

16

18

 C
o

n
tr

o
l

C
o

s
t

 Number of Control Loops

 Greedy Heuristic

 Subgradient

 Gradient

 Simulated Annealing

(a) Control cost

5 10 15 20
0

200

400

600

800

1000

1200

1400

1600

1800

 E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
o

n
d

s
)

 Number of Control Loops

 Greedy Heuristic

 Subgradient

 Gradient

 Simulated Annealing

(b) Execution time

Figure 6.6: Performance comparison on topology at transmission power -3 dBm

heuristic is always achieving control cost higher than the gradient method, but less than the

subgradient method when number of loops is more than 25. Similar results are observed in

Figures 6.6 for the testbed topology with transmission power −3 dBm.

Figure 6.7 shows the results for 30 control loops on the testbed topology with transmission

power −1 dBm. Figure 6.7(a) indicates that the control cost in SA is consistently a lot less

than all other methods. The control cost in the gradient method is at most 1.2 times that

of SA, and is a lot less than the greedy heuristic and the subgradient method. The greedy

heuristic is always achieving control cost higher than the gradient method, but less than

the subgradient method. The subgradient method takes a long execution time. According

to Figure 6.7(b), its time increases exponentially with the number of loops. The gradient

method runs faster than SA when the number of loops is increased beyond 10 but does not

become larger than 20.

Figure 6.8 shows the results for 30 control loops simulated on the testbed topology when

every node’s transmission power is set to 0 dBm. Figure 6.8(a) indicates that the control

cost in the simulated annealing (SA) based penalty method is consistently a lot less than

all other methods. The control cost in the gradient method is very close to that of SA for

each number of loops. The control cost in the gradient method is at most 1.12 times that

of SA, and is a lot less than the greedy heuristic and the subgradient method. The greedy

heuristic is always achieving control cost higher than the gradient method, but less than the

141

5 10 15 20 25 30
0

5

10

15

20

25

30

 C
o

n
tr

o
l

C
o

s
t

 Number of Control Loops

 Greedy Heuristic

 Subgradient

 Gradient

 Simulated Annealing

(a) Control cost

5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

 E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
o

n
d

s
)

 Number of Control Loops

 Greedy Heuristic

 Subgradient

 Gradient

 Simulated Annealing

(b) Execution time

Figure 6.7: Performance comparison on topology at transmission power -1 dBm

subgradient method when number of loops is more than 5. The subgradient method takes

a long execution time, and we were not able to get its results for more than 10 loops. For

more than 20 loops, we have also observed that the gradient method takes a longer execution

time (Figure 6.8(b)). The gradient method turns out to be a better option for a moderate

number loops. According to Figure 6.8(b), the execution time of SA increases exponentially

with the number of loops, but always remains less than the subgradient method. The simple

greedy heuristic is a lot faster than other methods.

The results demonstrate that, among all methods, SA achieves the least control cost while

requiring the longest execution time. The subgradient method turns out to be worse than all

other algorithms both in terms of execution time and in terms of control cost. This is quite

reasonable as our optimization problem is highly nonlinear and there exist a large number of

local extrema. The subgradient direction becomes highly complicated and therefore both its

execution time and control cost get worse. The greedy heuristic incurs control cost at most

2.67 times that of SA, while keeping the execution time very low. The gradient based descent

method incurs control cost at most 1.35 times that of SA, while keeping the execution time

less than SA in most cases. Therefore, to get near optimal results at the cost of longer

execution time, SA turns out to be a prominent method. To get results very quickly and

for scalability with a moderate control cost, the greedy heuristic turns out to be the best

option. To achieve moderate control cost (not as high as greedy and not as low as SA) within

142

5 10 15 20 25 30
0

5

10

15

20

25

30

 C
o

n
tr

o
l

C
o

s
t

 Number of Control Loops

 Greedy Heuristic

 Subgradient

 Gradient

 Simulated Annealing

(a) Control cost

5 10 15 20 25 30
0

500

1000

1500

2000

2500

 E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
o

n
d

s
)

 Number of Control Loops

 Greedy Heuristic

 Subgradient

 Gradient

 Simulated Annealing

(b) Execution time

Figure 6.8: Performance comparison on topology at transmission power 0 dBm

a reasonable time (not as fast as greedy, not as slow as SA), the gradient descent method

appears to be a promising approach.

In Figures 6.5, 6.6, 6.7, and 6.8, we observe a small variation in control cost and execution

time for the same method in different topologies. In particular, there is a small increase in

control cost when the transmission power is reduced. In these tests only the transmission

power is changed, while all other setups are the same. The topology of the network changes

as the transmission power is changed. Usually, at the highest transmission power (0 dBm),

the network has very high connectivity, while the connectivity usually decreases with the

decrease in the transmission power. Therefore, at a low transmission power, the routes

between a source (sensor) and a (destination) pair can be longer than those between the

same pair at a higher transmission power. This may lead to the selection of lower sampling

rates for some control loops, thereby increasing the overall control cost. The change in

network topology also causes some differences in execution times for the same method under

different transmission powers.

143

(a) Control cost (b) Execution time

(c) Penalty

Figure 6.9: Performance comparison of Adaptive Vs Constant Penalty SA

6.10.3 SA based Constant Factor Penalty Method Versus Adap-

tive Penalty Method

We now study the SA based penalty method further. This study has been performed using

12 channels and the topology collected at transmission power −5 dBm. Here, we study SA by

setting the maximum number of iterations to a smaller value. In particular, the maximum

number of iterations is set to 2, 0000. Note that this setting reduces the execution time

significantly. This is what we observe in Figure 6.9 also. In addition, we can see that the

control cost under our settings is not significantly higher than that in the previous test with

a larger maximum number of iterations.

144

Here we compare the SA based adaptive penalty method, and the constant factor penalty

method. Figure 6.9 plots the average execution time and the average objective function

value (control cost) of five different runs as it seems that one method was better than other

in some cases. The adaptive method outperforms constant factor method on average. In

constant factor penalty method, the previous step’s penalty is multiplied by four to get a new

penalty. In the adaptive method, the constraint violation,after multiplying by a constant

10, is added to the previous step’s penalty to get a new one. The running time of both

methods were almost the same for small numbers of flows, but the running time of adaptive

method was around 70% less than that of constant factor method for larger numbers of flows

(Figure 6.9(b)) while the control cost remains close between the two methods (Figure 6.9(a)).

Figure 6.9(c) shows the penalties at different iterations in these two methods. It indicates

that the adaptive penalty sharply increases the penalty in initial iterations and then reduces

the penalty as the solution approaches the final solution. These results indicate that SA

based adaptive penalty method is superior to SA based constant factor penalty method.

6.10.4 Evaluating the Interior Point Method

We now solve the reduced convex optimization problem using the interior point method.

We have used the IPOPT solver [96] for interior point method, while for gradient descent

method we have implemented the optimizer in MATLAB. In this section, we perform the

evaluation based on the topology at transmission power of -5 dBm.

Interior Point Method versus Gradient Descent Method

We have compared the performances of the interior point method and the gradient descent

method using 12 channels. The results in Figure 6.10 indicates that the interior point method

is superior to the gradient descent method. Its execution time is significantly less than the

gradient method. In particular, the execution time for interior point method is no more

than 1 second for each case. These results indicate that the interior method is much more

efficient than the gradient method in solving the relaxed convex optimization problem while

also outperforming the gradient method in terms of control cost.

145

5 10 15 20 25 30
0

5

10

15

20

25

Number of Control Loops

C
o

n
tr

o
l
C

o
s
t

Gradient
Interior Point

(a) Control cost

5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

Number of Control Loops

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Gradient
Interior point

(b) Execution time

Figure 6.10: Interior Point Method versus Gradient Method for Convex Optimization

Interior Point Method versus the SA based Adaptive Penalty Method

Using the topology at transmission power of -5 dBm, we now compare the performances of

the interior point method and the SA based adaptive penalty method as these two seem to

be the most competitive and effective approaches for our co-design problem. We test the

results under different numbers of channels. Figure 6.11 shows the results under these two

methods when the number of channels are 4, 8, 12, and 16.

Surprisingly, in the figure, we notice that the control cost does not decrease significantly

as we increase the number of channels. This happens because the end-to-end delays of the

control loops through the network are dominated by transmission conflicts instead of the

number of channels. Namely, for our small network topology, many channels remain unused

as many transmissions cannot be scheduled simultaneously due to transmission conflict.

Therefore, adding channels does not necessarily increase the schedulability of the control

loops as two conflicting transmissions cannot be scheduled in the same time slot, no matter

how many channels are available. (Note that this is a significant difference between multi-

processor scheduling and transmission scheduling in wireless networks. In the former case,

the schedulability increases as the number of processor increases, while in the latter case the

schedulability is determined by both the number of channels and the degrees of conflict in

the network.)

146

Figure 6.11 also indicates that the interior point method runs significantly faster than SA

based adaptive penalty method, but the control cost incurred in the latter is slightly less

than that in the former. As a result, these two methods represent the opposite ends of

the tradeoff between control cost and execution time, while the interior method is likely

the most effective approach in practice due to its run time efficiency. Specifically, as seen

in the results in Figures 6.11(a), 6.11(c), 6.11(e), and 6.11(g), SA based adaptive penalty

method and the interior point method incur almost the same control cost which results from

similar configurations of sampling rates under both methods. Therefore both methods are

competitive against each other in terms of control performance. The execution time is also

an important metric in wireless control systems because the wireless networks in industrial

environments are subject to network dynamics and frequent topology changes. The network

manager may need to recalculate the sampling rates frequently in response to dynamics.

As can be seen the execution times of the two methods in Figures 6.11(b), 6.11(d), 6.11(f),

and 6.11(h), the interior point method is significantly faster than SA based adaptive penalty

method. As a result, the interior point method is more suitable for online rate adaptation

than the adaptive penalty method due to their significant difference in run-time efficiency.

6.11 Summary

Recent industrial standards such as WirelessHART have enabled real-world deployment of

wireless control systems. Due to limited bandwidth in wireless sensor-actuator networks,

it is important to optimize the control performance through a wireless-control co-design

approach. This paper addresses the problem of determining the optimal sampling rates of

feedback control loops sharing a WirelessHART network. The objective is to minimize the

overall control cost while ensuring that all data flows meet their end-to-end deadlines. The

resulting constrained optimization problem based on existing delay bounds for data flows

in WirelessHART networks is difficult since it is non-differentiable, non-linear, and not in

closed-form. We propose four approaches to solve this challenging problem: (1) a subgradient

method, (2) a simulated annealing (SA) based penalty method, (3) a time-efficient greedy

heuristic method, and (4) a convex optimization method based on a new delay bound that

is convex and differentiable. We study SA method under both constant factor penalty and

147

(a) Control cost (using 4 channels) (b) Execution time (using 4 channels)

(c) Control cost (using 8 channels) (d) Execution time (using 8 channels)

(e) Control cost (using12 channels) (f) Execution time (using 12 channels)

(g) Control cost (using 16 channels) (h) Execution time (using 16 channels)

Figure 6.11: Interior Point Method versus Adaptive Penalty Method
148

adaptive penalty. To solve the reduced convex optimization problem, we study both the

gradient descent method and the interior point method.

We then perform a simulation study of the different approaches based on real testbed topolo-

gies and simulated control systems. Interestingly, while subgradient methods are commonly

adopted to solve non-linear constrained optimization problems, it leads to the highest control

cost and significant computation times in solving our optimization problem. We found that

it is due to a large number of local minima and high nonlinearity of our problem. Among the

SA based constant penalty method, the greedy heuristic, and the gradient descent method,

the first one consistently achieves the minimum control cost while incurring the longest ex-

ecution time. Conversely, the second one results in higher control cost using the shortest

execution time. The third one that solves our reduced convex optimization problem based

on our new delay bound hits the balance between control cost and execution time.

We further observe that the SA based adaptive penalty method is superior to the constant

penalty method, and that the interior point method is superior to the gradient method.

Thus the interior point method and the SA based adaptive penalty method are the two most

effective approaches for rate selection. While these two methods are competitive against

each other in terms of control cost, the interior point method is significantly faster than

the penalty method. The execution time is an important metric in wireless control systems

because the wireless networks in industrial environments are subject to network dynamics,

and the network manager may need to recalculate the sampling rates frequently. As a

result, the interior point method upon convex relaxation is more suitable than the SA based

adaptive penalty method due to their significant difference in run-time efficiency, especially

for online rate adaptation in response to changes in the workload and wireless conditions.

Our results represent a promising step towards wireless-control co-design involving complex

interactions between control performance and real-time communication.

Acknowledgements

This research was supported by NSF under grants CNS-1144552 (NeTS), CNS-1035773

(CPS), CNS-1017701 (NeTS), CNS-0708460 (CRI), a Microsoft Research New Faculty Fel-

lowship, and a Sloan-Kettering Center grant.

149

Chapter 7

Distributed Channel Allocation

Protocols for Wireless Sensor

Networks

Interference between concurrent transmissions can cause severe performance degradation in

wireless sensor networks (WSNs). While multiple channels available in WSN technology such

as IEEE 802.15.4 can be exploited to mitigate interference, channel allocation can have a sig-

nificant impact on the performance of multi-channel communication. This paper proposes a

set of distributed protocols for channel allocation in WSNs with theoretical bounds. We first

consider the problem of minimizing the number of channels needed to remove interference

in a WSN, and propose both receiver-based and link-based distributed channel allocation

protocols. Then, for WSNs with an insufficient number of channels, we formulate a fair chan-

nel allocation problem whose objective is to minimize the maximum interference (MinMax)

experienced by any transmission link in the network. We prove that MinMax channel alloca-

tion is NP-hard, and propose a distributed link-based MinMax channel allocation protocol.

Finally, we propose a distributed protocol for link scheduling based on MinMax channel

allocation that creates a conflict-free schedule for transmissions. The proposed decentralized

protocols are efficient, scalable, and adaptive to channel condition and network dynamics.

Simulations based on the topologies and data traces collected from a WSN testbed of 74

TelosB motes have shown that our channel allocation protocols significantly outperform a

state-of-the-art channel allocation protocol.

150

7.1 Introduction

Interference between concurrent transmissions can cause severe performance degradation in

wireless sensor networks (WSNs). Multi-channel communication is an attractive approach

to reducing interference and enhancing spatial reuse. Since channels are a scarce resource in

a WSN, channel allocation significantly influences the performance of multi-channel WSNs.

It is particularly important in Time Division Multiple Access (TDMA) based WSNs where

interfering transmissions scheduled at the same time slot must be assigned different channels.

It is, therefore, important to allocate the channels to reduce interference and increase the

number of concurrent transmissions.

Channel allocation has been widely studied for wireless ad-hoc networks. These protocols

are not applicable to WSNs since the applications, routing, node resources, and network

structure in WSNs are quite different from traditional ad-hoc networks. While channel

allocation has also been studied for WSNs, most of them focus on simple heuristics [106,113,

114] without any performance guarantee for channel hopping or just focus on centralized

solutions [84, 175].

In this paper, we formulate optimal channel allocation as constrained optimization problems,

and propose a set of distributed channel allocation protocols with theoretical bounds for

WSNs. We first consider the problems of minimizing the number of channels needed to

remove interference in a WSN for both receiver-based and link-based channel allocation. A

receiver-based channel allocation is suitable for both CSMA/CA and TDMA protocols. A

link-based channel allocation allows better spatial reuse due to the flexibility in assigning

different channels to different senders, but it is more suitable for TDMA protocols under

which the receiver can switch to channels according to the expected sender scheduled in

each time slot. We present distributed protocols for both receiver-based and link-based

channel allocation.

WSNs usually have a moderate number of channels (e.g., 16 channels specified IEEE 802.15.4),

and noisy environments may further reduce the number of available channels due to black-

listing [22]. Therefore, there may not exist enough channels to remove all interference.

Existing works on channel allocation with an insufficient number of channels usually con-

sider receiver-based allocation and propose centralized heuristics [84, 175, 184]. A recently

151

proposed distributed protocol for channel allocation in WSNs has addressed receiver-based

allocation to minimize total interference suffered by all receivers [187]. In contrast, we formu-

late a link-based fair channel allocation problem whose objective is to minimize the maximum

interference (MinMax) experienced by any transmission link in a WSN. The key advantage

of the MinMax objective is that it can mitigate bottlenecks in a WSN where a node or link

experiences excessive interference. We prove that MinMax channel allocation is NP-hard,

and propose a distributed MinMax channel allocation protocol. Furthermore, since channel

allocation cannot always resolve all transmission conflicts due to an insufficient number of

channels, it is complemented by a time slot assignment algorithm to create a conflict-free

schedule. We propose a distributed protocol for link scheduling based on MinMax channel

allocation. Our contributions are:

• We present distributed protocols for both receiver-based and link-based interference-

free minimum channel allocation.

• We formulate a link-based fair channel allocation problem, called MinMax channel

allocation, whose objective is to minimize the maximum interference experienced by

any transmission link in a WSN, and prove it to be NP-hard.

• We propose a distributed protocol for MinMax channel allocation in WSN.

• We propose a distributed protocol for link scheduling based on MinMax channel allo-

cation.

The proposed algorithms are efficient, scalable, and adaptive to channel condition and net-

work dynamics. We provide the time complexity and performance bound of each algorithm.

Simulations using the real topologies and data traces collected from a WSN testbed have

shown that our protocols significantly outperform a state-of-the-art protocol [187].

In the rest of this paper, Section 7.2 reviews related work. Section 7.3 describes the net-

work model. Section 7.4 formulates the problems. Sections 7.5 and 7.6 present the proof of

NP-hardness and the distributed protocols for interference-free and MinMax channel allo-

cation, respectively. Section 7.7 presents the link scheduling protocol. Section 7.8 presents

evaluation results. Section 7.9 concludes the paper.

152

7.2 Related Work

Multi-channel MAC protocols have been extensively studied for wireless ad-hoc network [26,

30, 31, 37, 46, 47, 59, 67, 72, 83, 89, 107, 111, 121, 133–135, 137, 146, 147, 149–151, 162, 164, 171–

173,180,185,186]. However, there are some key differences between these existing protocols

for traditional wireless ad-hoc network and the channel allocation protocols proposed in this

paper for WSN as detailed below.

First, the protocols in [26,31,59,67,72,83,107,111,121,135,137,146,147,151,162,173,180,185,

186] assume that the hardware is able to listen to multiple channels simultaneously. But each

sensor device is usually equipped with a single radio transceiver (e.g., TelosB mote [19] with

Chipcon CC2420 radio) that cannot transmit and receive at the same time, and cannot oper-

ate on different channels simultaneously. Second, the protocols in [30,31,89,107,133,146,151]

involve heavy centralized computation such as linear programming [31, 107], mixed integer

linear programming [30], and subgradient method [89, 133]. But a WSN has limited band-

width (e.g. 250kbps in 802.15.4 network), and each sensor device has limited memory (e.g.

10KB in TelosB motes [19]) and limited processing power (8MHz MSP430 microcontroller

in TelosB motes), making a WSN unsuitable for such heavy-weight computations. Third,

the protocols in [37,149,164,171] use RTS/CTS for channel negotiation. But, due to limited

bandwidth in WSNs, the MAC layer packet size in WSNs is much smaller (typically 30∼50

bytes) than that of general ad hoc networks (typically 512+ bytes). Hence, RTS/CTS control

packets result in significant overhead for WSN, thereby making these protocols unsuitable

for WSN.

Graph theory based multi-channel protocols for wireless ad-hoc networks studied in [46, 47,

72, 83, 134, 135, 150, 172, 186] are most related to our work. The protocols in [72, 83, 134,

135, 150, 186] are distributed but assume that each node can listen to multiple channels

simultaneously (as already discussed), while those in [46, 47] are based on single radio in

each node but consider centralized solutions. The work in [172] that uses a distributed

approach considering single radio in each node, and the work in [83] that uses a game

theoretic approach are particularly related to our work. But, both works focus on maximizing

link data rate instead of interference-free minimum channel allocation or minimizing the

maximum interference, which are our focus.

153

In summary, none of the above protocols is applicable for WSNs since the applications, rout-

ing, and network structure in WSNs are quite different from traditional ad-hoc networks. For

example, in contrast to traditional ad hoc networks designed to support general communica-

tion patterns and routes, WSNs are typically involved in monitoring applications requiring

data collection with unique communication patterns and routing structures. Sensor nodes

are prone to failures, and the network topology changes more frequently. Besides, sensor

nodes mainly use broadcast communication paradigms whereas most traditional ad-hoc net-

works are based on point-to-point communications. In a WSN, nodes are usually densely

deployed, and the number of nodes can be several orders of magnitude higher than that in

a traditional wireless ad-hoc network.

Channel allocation has also been studied for WSN in recent years. MMSN [193] is an early

multi-channel protocol proposed for WSN. MMSN ignores routing information for chan-

nel allocation. In contrast, we propose routing-aware channel allocation protocols that do

not assign channels to the links not involved in traffic. Tree-based Multi-Channel Protocol

(TMCP) proposed in [181] uses the distance-based interference model which does not hold

in practice as shown by recent empirical studies [184]. TMCP has been extended in [184]

to employ inter-channel RSS models for interference assessment in channel allocation [184].

All these protocols are centralized, and lack any performance bound. The protocols pro-

posed in [106, 113, 114] use simple heuristics for channel hopping. These protocols do not

address interference-free minimum channel allocation or minimizing the maximum interfer-

ence, which are the focus of our work in this paper.

Interference-aware channel allocation based on graph-theory has been studied in [63,84,175]

for WSN. But the work in [63] is designed for unit-disk graph. The work in [175] as-

signs a channel to each flow. The work in [84] shows that minimizing schedule length for

multi-channel arbitrary network is NP-hard, and presents a constant factor approximation

algorithm for unit-disk graph [84]. These algorithms are centralized. Due to frequent topol-

ogy changes, distributed protocols are more suitable for WSNs. A distributed game theory

based protocol has been proposed in [187] for channel allocation in WSN. It addresses only

receiver-based allocation, and minimizes total interference suffered by all receivers.

In contrast to existing channel allocation protocols for WSNs, we present distributed pro-

tocols for both receiver-based and link-based interference-free minimum channel allocation.

154

The key novelty of our work lies in formulating a link-based fair channel allocation problem,

called MinMax channel allocation, whose objective is to minimize the maximum interfer-

ence experienced by any transmission link in a WSN. In addition, we prove that an optimal

MinMax channel allocation is NP-hard. Furthermore, we propose a distributed protocol for

MinMax channel allocation based on heuristic. We also propose a distributed protocol for

link scheduling based on MinMax channel allocation. The key advantage of the MinMax

objective is that it can mitigate bottlenecks in a WSN where a node or link experiences

excessive interference.

7.3 Network Model

A WSN consists of a set of sensor nodes. A node, called the base station, serves as the sink

of the network. A communication link e = (u, v) indicates that the packets transmitted by

node u may be received by v. We assume that every communications link is symmetric.

This assumption holds for WSNs relying on acknowledgement for reliable communication

(e.g., WirelessHART networks [22] based on IEEE 802.15.4). An interference link e =

(u, v) indicates that u’s transmission interferes with any transmission intended for v even

though u’s transmission may not be successfully received by v. Thus, any two concurrent

transmissions that happen on the same channel are conflicting if there is an interference

link from one’s sender to the other’s receiver. Several practical protocols [124, 129] exist

that model interference in WSNs using Signal-to-Noise plus Interference Ratio (SNIR). A

set of transmissions on the same channel is conflict-free if the SNIR of all receivers exceeds

a threshold. For example, RID [192] is a distributed protocol for determining interference

links in a WSN based on Received Signal Strength (RSS) measurements.

We model a WSN as an Interference-Communication (IC) graph, a notion introduced in [61].

In the IC graph G = (V,E), V is the set of sensor nodes (including the sink s); E is the set

of communication or interference links between the nodes. A subset of the communication

links forms the routing tree that is used for data collection at the sink. Let ET ⊆ E denote

the set of links in the routing tree. Any link e = (u, v) in ET indicates that v is the parent of

u. For any node u, we use pu to denote its parent in the routing tree. Since the transmissions

along non-tree links do not aim at the receiver, every non-tree link (that is not a part of the

155

routing tree) is an interference link. EI = E −ET is the set of all interfering links in the IC

graph. Any link e = (u, v) in EI indicates an interference link from u to v. A node cannot

both send and receive at the same time, nor can it receive from more than one sender at the

same time. The set of channels available in the WSN is denoted by M . We use m to denote

|M | i.e. the total number of channels. The channels are numbered through 1 to m. In this

work, we particularly focus on TDMA based WSN.

7.4 Problem Formulation

In receiver-based channel allocation, each sensor node is assigned a fixed channel to receive

message; the neighbors which have messages to deliver to it should use this channel to send.

In this allocation, the leaves (i.e., nodes without children) in the routing tree do not receive

any message, and hence are not assigned any channel. Let the nodes that receive message

(i.e., the nodes other than leaves) be denoted by R ⊂ V . Therefore, the receiver-based

channel allocation is a function f : R 7→M , where M is the set of channels.

In link-based channel allocation, every link e ∈ ET is assigned a channel so that every

transmission along that link happens on that channel. In contrast to receiver-based channel

allocation, here for the same receiver, different senders can use different channels, thereby

providing more flexibility in avoiding interference. Any link-based assignment is a function

f : ET 7→ M . Since every node has unique sending link, a link-based channel assignment

function can also be defined as f : V − {s} 7→ M , where s is the root (i.e., the sink) of the

routing tree and it does not send to anyone. Thus every sender in the network is assigned a

channel. For reception, the receiver uses the same channel that the sender uses to transmit.

Interference caused by siblings (in the routing tree) to each other cannot be resolved by

channel assignment because the shared parent cannot receive from more than one of them at

the same time. This can be resolved through a time-slot assignment. Therefore, for channel

allocation purpose, we are concerned only about interference through non-tree links EI (that

are not parts of the routing tree), and simply use the term ‘conflict’ to denote the interference

through these links. In the worst-case, the maximum number of transmissions that can be

conflicting through interference links with a transmission along link (u, v) is equal to the

total number of incoming interference links of v and outgoing interference links of u. Thus,

156

we define conflict of transmission link (u, v) or conflict of node u as the maximum number of

transmissions that can be conflicting through interference links with a transmission of node

u. For a node u, in a channel assignment f , we use C(u, f) to denote its conflict, and define

as follows (where pu is the parent of u):

C(u, f) =
∣∣{z|((z, pu) ∈ EI ∨ (u, pz) ∈ EI

)
∧ f(z) = f(u)}

∣∣
That is, C(u, f) counts the total number of nodes that use the same channel as u’s and that

has either an outgoing interfering link to the parent of u or an incoming interfering link to

its parent from u. The interference a node receives is not only decided by the number of

interference sources, but also by the strengths of interfering signals. However, to develop

an efficient and distributed approach, we consider the metric C(u, f) as the signals can be

determined based on a threshold on signal strength. C(u, f) is an effective metric and can be

used for effective channel allocation because the total number of interfering signals has strong

correlations with transmission failures and retries. The higher the value of C(u, f), the more

transmissions that u’s transmission may conflict with. Namely, the more interfering links a

receiver hears, the more retries a message needs to be successfully received by that receiver,

thereby incurring longer delay. For example, in [187], the total number of interfering links

a receiver hears was shown to be approximately linear with the total number of retries a

message needs to be successfully received by that receiver.

Problem 1: Receiver-based interference-free channel allocation. The number

of channels is usually fixed and limited in practice. Our first objective is to minimize the

total number of channels to remove all interferences in the IC graph G = (V,E). Let f(R)

denote the range of function f : R 7→ M , i.e., the set of channels used in f . In receiver-

based interference-free channel allocation, our objective is to determine a channel assignment

f : R 7→M so as to

Minimize |f(R)|

subject to C(u, f) = 0, ∀(u, v) ∈ ET

Problem 2: Link-based Interference-free channel allocation. While receiver-based

channel allocation is simple in the sense that a receiver can avoid switching to different

157

channels for different senders, it can end up with extra interference for some transmission

link, thereby limiting the communication possibilities for some nodes. Such a limitation

of receiver-based channel allocation can be significantly overcome by adopting link-based

allocation. In link-based interference-free channel allocation, our objective is to determine a

channel assignment f : V − {s} 7→M to

Minimize |f(V − {s})|

subject to C(u, f) = 0, ∀u ∈ V − {s}

Problem 3: Minimizing Maximum interference (MinMax) channel allocation.

The number of channels required to remove all interference may be greater than the total

available channels. Therefore, when the available channels are not sufficient to remove all

interference, a fair channel allocation is the one that minimizes the maximum interference

experienced by any transmission link in G. Since link-based channel allocation allows better

spatial reuse of channels, we use link-based allocation for MinMax objective. In MinMax

channel allocation, our objective is to determine a link-based channel assignment f : V −
{s} 7→M so as to

Minimize max{C(u, f)|u ∈ V − {s}}

subject to f(u) ∈M, ∀u ∈ V − {s}

Problem 4: Link scheduling. After MinMax channel allocation, a conflict-free schedule

is required to avoid transmission conflicts through both tree (transmission) links and the

residual interference links. This needs to be resolved through time slot assignment. That

is, after channel allocation in phase 1, we consider the link scheduling in phase 2. While

it may be possible to combine two phases into one, such an approach complicates the op-

timization problem as the solution space becomes larger. Instead, decoupling it into two

phases simplifies the optimization problem for conflict resolution. Hence, in our solution

approach, channel allocation is done in the first phase, which is followed by a time slot as-

signment in the second phase. In TDMA, a transmission needs one time slot, and a sequence

of time slots forms a frame. The frame is repeated continuously. Every link is assigned a

relative time slot within a frame and it is activated at that slot of the frame. Therefore, here

158

our objective is to schedule all links to minimize the frame length. Thus, for link schedul-

ing, after MinMax channel allocation, our objective is to determine a time slot assignment

g : ET 7→ {1, 2, 3, · · · } so as to

Minimize |g(ET)|

7.5 Interference-free Channel Allocation

7.5.1 Receiver-based Channel Allocation

We first consider receiver-based channel allocation to minimize the number of channels to

eliminate all interference. This problem has been proven to be NP-hard in [84]. In the

following, we provide a distributed algorithm based on vertex-coloring for this problem.

Two receivers are called interfering if the transmission of some child of one receiver is in-

terfered by the transmission of some child of the other receiver. In order to eliminate all

interference, every receiver must be assigned a channel that is different from all of its in-

terfering receivers’ channels. Therefore, for the given IC graph G = (V,E), we can assume

a receiver-based conflict-graph, denoted by GR = (R,ER), that consists of all receivers R

as nodes, and an edge (in ER) between every interfering receiver pair. For example, Fig-

ure 7.1(b) shows the receiver-based conflict-graph of the IC graph of Figure 7.1(a). In an

IC graph, we use dotted lines and solid lines to indicate interference links and transmission

links, respectively. Considering every channel as a color, vertex-coloring of GR provides the

solution for receiver-based interference-free channel allocation in G to minimize the number

of channels (colors). To construct the conflict graph, each node needs to know the channel

conditions between itself and other nodes. This requirement can be met in practice, even in

scenarios with fast channel fading or network dynamics, since the fast-fading and fluctuating

channels can be blacklisted at deployment time and infrequent maintenance cycles in wire-

less sensor networks, e.g., as specified in the WirelessHART standard for industrial wireless

sensor networks [22]. Our approach can leverage existing algorithms specifically designed to

detect conflict graphs efficiently in wireless sensor networks [124, 192]. These methods use

RSS measurements and determine and store conflict graphs in a distributed fashion: a node

159

c

y

z

b

w x

a

u v

d

s

(a) IC graph G

c

b

a

s

(b) Conflict graph GR

Figure 7.1: IC graph and receiver-based conflict graph

only knows its incoming/outgoing communication and interference edges based on SNIR.

Hence, conflict graph construction method is distributed and efficient in practice.

For vertex-coloring in distributed manner, the best known deterministic algorithm [40] em-

ploys D1+O(1) colors, where D is the maximum degree of the given graph. The distributed

methods for vertex-coloring available in the literature of theoretical computer science [40]

involve multiple phases. A phase starts only after its previous phase converges. Since the

WSN devices are characterized by low power and resources, these algorithms are too heavy-

weight for WSNs. Here we present a simple and deterministic distributed protocol suitable

for WSNs, which can employ at most ∆R + 1 channels, with ∆R being the degree of the

receiver-based conflict graph.

Let NR(u) denote the neighbors of node u in GR. In our distributed method, every node

u ∈ R has to communicate with its neighbors NR(u) in GR. Note that two neighbors u

and v in GR may not be one-hop away from one another in IC graph G. In such cases, u

and v communicate with one another by increasing their transmission power like what is

done in [61, 192]. If this is not possible, communication between u and v is done through

the end-to-end route between u and v. Channel allocation is done iteratively and every

round consists of communication between the neighbors in GR. In every communication

round, all nodes use the same channel. Once the algorithm converges, every node uses

the channel determined by the algorithm for subsequent communication. The distributed

160

receiver-based interference-free channel allocation protocol consists of the following steps

comprising a procedure that is invoked iteratively:

1. In the beginning, every node u ∈ R is assigned channel 1 (the smallest numbered

channel). In every round, each node u ∈ R broadcasts a message containing its ID and

chosen channel to its neighbors NR(u).

2. Considering the current channel allocation among neighbors NR(u), every node u re-

peatedly switches to the smallest channel not used by any of its neighbors. Two neigh-

bors cannot switch channels simultaneously. If two neighbors in GR want to switch

at the same time, the node with the smallest ID wins (as a local agreement among

neighbors) and switches channel.

3. After choosing the channel, each node u broadcasts its chosen channel in a message

(that also contains its ID) to its neighbors NR(u) in GR.

4. The procedure is repeated until every node has chosen a channel different from its

neighbors in GR and cannot choose a channel that is smaller than its current channel.

As stated before, two neighbors in GR do not execute the procedure simultaneously.

PPPPPPPPPtime
node

a b c s

Round 1 1 1 1 1
Round 2 2 1 1 2
Round 3 2 3 1 2

Table 7.1: Channels selected in different rounds by the receiver nodes in Receiver-based
channel assignment

The above algorithm converges when every node in GR has chosen a channel different from

those of its neighbors NR(u), and cannot switch to a smaller channel. In every round, the

total number of messages that are sent or received by a node u is O(|NR(u)|). Theorem 17

proves the convergence of the algorithm. Theorem 18 shows that the algorithm requires at

most ∆ + 1 channels, where ∆ is the maximum degree of G. For the network shown in

Figure 7.1(a), the channels selected by the nodes in different rounds (up to the convergence)

of Receiver-based channel assignment are shown in Table 7.1 for any m > 3.

161

Theorem 17. Receiver-based interference-free channel allocation algorithm converges in |EI |
rounds, where |EI | is the total number of interfering links in G.

Proof. Until the algorithm converges, in every round at least one node switches its channel

that is different from its neighbors in the receiver-based conflict graph GR. If a node u

switches to a channel that is different from its neighbors’ channels, the interference links

between u and its neighbors NR(u) are removed. Since no two neighbors in GR switch

channels in the same round, at least one interfering link in G is removed in every round. Since

the total interfering links in G is |EI |, the algorithm converges in at most |EI | rounds.

Theorem 18. Receiver-based interference-free channel allocation algorithm requires at most

∆ + 1 channels, where ∆ is the maximum degree in G.

Proof. Let ∆R be the maximum degree of GR. The channels are numbered 1,2, · · · in

increasing order. Every node initially has channel 1. Every time a node switches channel,

it switches to the smallest channel not used by the neighbors. Hence, the largest possible

channel to which a node can switch is ∆R + 1, which happens if all first ∆R channels are

chosen by its neighbors in GR. Hence, the algorithm employs at most ∆R+1 channels. Since

∆ ≥ ∆R, the theorem follows.

7.5.2 Link-based Channel Allocation

Receiver-based allocation can end up with extra interference for some transmission link,

thereby limiting the communication possibilities for some nodes. As a result, when all

transmission conflicts are completely resolved through a time slot assignment phase, the

schedule length becomes longer if a receiver-based allocation is adopted. This limitation can

be significantly overcome by adopting a link-based allocation since it allows better spatial

reuse. This is illustrated in Figure 7.2 through a simple example considering m= 2. The

number in the rectangle beside every receiver shows its assigned channel. Under this receiver-

based allocation, every time node w transmits, none of a’s children should transmit. This

problem can be avoided using a link-based channel allocation instead (as shown beside the

links) by assigning channel 1 to node w, and channel 2 to node x.

162

c

y z

communication

link

interference

link

b

w x

a

u vd

2 2 1

2
2

2
1

2 11

Figure 7.2: Link-based channel allocation

A reduction similar to the one used in [84] (that proves that receiver-based interference-free

channel assignment is NP-hard) can also be used to prove that link-based interference-free

channel allocation is NP-hard as shown in Theorem 19.

Theorem 19. Given a routing tree T on an IC graph G = (V,E), and a total of m channels,

it is NP-complete to decide whether there exists some channel allocation f to the links in T

such that G becomes interference-free.

Proof. The problem is in NP since, given an instance of the problem, we can verify in O(|E|)
time whether the network is interference-free. Following reduction from vertex-coloring

implies NP-hardness. Given any instance 〈G, k〉 of the vertex-coloring problem in graph

G = (V,E), we create a sink node s as the parent of every u ∈ V, and create a child for every

u. Now for every edge (u, v) ∈ E, we create an interfering link between u’s child and v (or

between v’s child and u). This constructs an IC graph G = (V,E). A channel allocation f

uses the color of u ∈ V as the channel of u’s child, and uses any channel c, 1 ≤ c ≤ k, for u

in G. Thus, G can be vertex-colored with k colors if and only if f can remove all interference

links from G using k channels.

Now we present a distributed algorithm for link-based channel allocation to minimize the

number of channels in order to eliminate all interfering links. This approach is also simi-

lar to the distributed vertex-coloring adopted for receiver-based allocation in the previous

subsection.

Two senders in G are called interfering if one’s transmission is interfered by the other.

In order to eliminate all interference, every sender’s transmission link must be assigned a

163

c

y

z

b

w

x

a

u

v

d

Figure 7.3: Link-based conflict graph GL of G

channel that is different from those of its interfering senders. Therefore, for the IC graph

G = (V,E), we can assume a link-based conflict-graph, denoted by GL = (V − {s}, EL),

that consists of all senders V − {s} as nodes, and an edge (in EL) between every interfering

sender pair. For example, Figure 7.3 shows the link-based conflict-graph of the IC graph

of Figure 7.1(a). Considering every channel as a color, vertex-coloring of GL provides the

solution for link-based interference-free channel allocation in G to minimize the number of

channels (colors).

Using the same distributed algorithm as the one used for receiver-based channel allocation

in the preceding subsection, we now vertex color graph GL. As stated before, two neighbors

in GL do not execute the algorithm simultaneously. If two neighbors in GL want to execute

simultaneously, the node with the smallest ID wins (as a local agreement among neighbors)

and executes to switch its channel. When the entire distributed algorithm converges, every

sender (i.e., every sender’s transmission link) is assigned a channel that is different from any

interfering sender’s channel. This algorithm converges within |EI | rounds, and employs at

most ∆L + 1 channels, where ∆L is the maximum degree in GL (proofs are similar to those

of Theorems 17 and 18). For the network shown in Figure 7.1(a), the channels selected by

the nodes in different rounds (up to the convergence) of Link-based channel assignment are

shown in Table 7.2 for any m > 3.

164

PPPPPPPPPtime
node

a b c d u v w x y z

Round 1 1 1 1 1 1 1 1 1 1 1
Round 2 2 2 2 2 2 2 1 1 1 1
Round 3 2 2 2 2 2 2 1 3 1 1

Table 7.2: Channels selected in different rounds by the sender nodes in Link-based channel
assignment

7.6 MinMax Channel Allocation

Note that WSNs usually have a moderate number of channels (e.g., 16 channels for WSNs

based on IEEE 802.15.4), and noisy environments may further reduce the number of avail-

able channels due to blacklisting [22]. Therefore, there may not exist enough channels to

remove all interference using the algorithms presented in the previous section. In such a sit-

uation, we adopt MinMax channel allocation whose objective is to minimize the maximum

interference experienced by any transmission link across the network. Since receiver-based

allocation may not minimize the maximum interference experienced by a transmission link

(Subsection 7.5.2), we follow a link-based approach for MinMax channel allocation.

We first prove that MinMax allocation is NP-hard by showing that its decision version is

NP-complete.

Theorem 20. Given a routing tree T on an IC graph G = (V,E), m channels, and an

integer k, it is NP-complete to decide if there exists a channel allocation f to the links in T

such that the maximum conflict in G is at most k.

Proof. When k = 0, the decision problem of the theorem represents a decision version of the

link-based interference-free channel allocation (Problem 2) that has been proved to be NP-

complete in Theorem 19. Thus, this decision problem is a generalization of that of Problem

2 and, hence, is NP-complete.

Now we present a distributed algorithm for MinMax channel allocation. In the protocol,

every node needs to communicate with its neighbors in link-based conflict graph GL (see

Subsection 7.5.2 and Figure 7.3 for GL) to compute its conflict. For any node u, the set

165

of its neighbors in GL is denoted by NL(u). Communication in the neighborhood in GL is

done based on the same approach presented in the previous section. Distributed MinMax

algorithm consists of the following procedure that is invoked iteratively:

1. Before the invocation of the procedure, every node u ∈ V − {s} is assigned a random

channel in the range between 1 and m. Every node u ∈ V −{s} broadcasts a message

containing its ID and channel to its neighbors NL(u) in GL.

2. Considering the current channel allocation among the neighbors in GL, every node

calculates its conflict C(u, f) and broadcasts again to the neighbors NL(u).

3. For each node u, once it receives the message containing C(v, f) from each neighbor

v in GL, node u calculates its conflict C(u, f) on every channel. Any channel used by

a neighbor v with C(v, f) > C(u, f) is considered unavailable at u. That is, node u

excludes all channels used by the neighbors with higher conflicts in the current round.

This is done because switching to such a channel increases the neighbor’s conflict which

may increase the maximum conflict in the network. Among the available channels, node

u switches to the channel that results in the smallest C(u, f), breaking ties arbitrarily.

Two neighbors cannot switch channels simultaneously. If two neighbors want to switch

at the same time, the node with the smallest ID wins.

4. After choosing the channel, every node broadcasts its chosen channel to its neighbors

in GL.

5. The procedure repeats as long as some node u can decrease C(u, f) using its available

channels.

As stated before, two neighbors in GL do not execute the procedure simultaneously. If two

neighbors in GL want to execute simultaneously, the node with the smallest ID wins (as a

local agreement among neighbors) and executes to switch its channel.

In each communication round, all nodes use the same channel for communication. Once the

algorithm converges, every node uses the channel determined by the algorithm for subsequent

communication. Each node u needs to send or receive O(|NL(u)|) messages in a round. The

algorithm converges when no node can decrease its conflict using its available channels.

166

PPPPPPPPPtime
node

a b c d u v w x y z

Round 1(random) 2 1 2 1 1 1 2 1 1 1
Round 2 2 2 2 1 1 2 2 1 1 1

Table 7.3: Channels selected in different rounds by the sender nodes in MinMax channel
assignment when m = 2

Theorem 21 proves its convergence. For the network shown in Figure 7.1(a), the channels

selected by the nodes in different rounds (up to the convergence) of Link-based channel

assignment are shown in Table 7.3 considering m = 2.

Theorem 21. MinMax Channel Allocation converges in |EI | rounds, where |EI | is the total

number of interfering links in G.

Proof. Since MinMax algorithm is repeated as long as some node u can decrease its C(u, f)

using its available channels, in every round at least one node switches its channel. Assuming

the neighbors of u in GL keep their channels unchanged, changing the channel of u that

decreases C(u, f) implies that the total number of interference links between u and its

neighbors decreases. Since no two neighbors in GL switch channel simultaneously, at least

one interfering link in G is removed in every round. Hence, similar to Theorem 17, the

algorithm converges in at most |EI | rounds.

Theorem 22. Upon MinMax Channel Allocation, the maximum conflict in G is at most

bCmax

m
c, where Cmax is the maximum conflict in G under single channel.

Proof. Let d(u) denote the degree of node u in link-based conflict graph GL of G. The value

d(u) is equal to the conflict of u under single channel. We first prove that, when MinMax

Algorithm converges, at most bd(u)
m
c neighbors in GL can have the same channel as the one

assigned to u, for any node u. Suppose to the contrary, after the algorithm converges, there

exists some node v such that bd(v)
m
c+ 1 of its neighbors in GL have the same channel as the

one assigned to v. Let c be the channel assigned to v, and Z ⊆ NL(v) be the neighbors

of v in GL that have been assigned channel c. Now according to the pigeon-hole principle,

there must be at least one channel c′ 6= c such that at most bd(v)
m
c neighbors of v have been

assigned channel c′. If ∃z ∈ Z such that C(v, f) ≤ C(z, f), then z will switch to channel c′

167

since it can decrease its C(z, f). If C(z, f) ≤ C(v, f), then v will switch to channel c′ since

it can decrease its C(v, f). Both cases contradict with the hypothesis that the algorithm has

converged. Therefore, when MinMax Algorithm converges, at most bd(u)
m
c neighbors in GL

can have the same channel as the one assigned to u, for any node u. Since Cmax is equal to

the maximum degree in GL, the theorem follows.

The key advantage of the MinMax objective is that it can mitigate bottlenecks in a WSN

where a node or link experiences excessive interference. The simulation results (presented in

Section 7.8) indicate that the MinMax objective is more effective than minimizing the total

interference in the network in terms of critical network metrics such as latency.

7.7 Distributed Link Scheduling

Note that channel allocation cannot resolve all transmission conflicts in a WSN due to two

reasons. First, the number of available channels is limited and may not suffice to remove all

interference. Second, each WSN device is equipped with a half-duplex radio that prevents

a node from both transmitting and receiving at the same time, and also prevents reception

from two senders simultaneously. Therefore, a channel allocation is complemented by a time

slot assignment. Namely, any two conflicting transmissions are assigned different time slots.

While this can be achieved through a joint channel allocation and time slot assignment,

performing channel allocation and time slot assignment in two different phases simplifies

this optimization problem. In this section, we present a distributed algorithm for time slot

assignment after MinMax channel allocation. Namely, we first perform MinMax channel

allocation. Then, we perform a time slot assignment that avoids transmission conflicts

through both tree links and the residual interference links to create a conflict-free schedule.

In the time slot assignment algorithm, every link is assigned a relative time slot in a frame,

and the link is activated at that slot of the frame. The frame is repeated continuously. Note

that, after MinMax channel allocation, the network can still be considered as a new IC graph

with reduced interference. Therefore, a proof similar to Theorem 19 implies that scheduling

all links to minimize the frame length is NP-hard. We provide a distributed method for time

slot assignment that minimizes the frame length.

168

c

y

z

b

w x

a

u v

d

s

22
2

2

1
1

1

1
2 1

(a) G

c

y

z

b

w x

a

u

v

d

(b) Schedule conflict graph GS

Figure 7.4: IC graph and schedule conflict graph

To resolve the conflict through both tree links and residual interference links after MinMax

channel allocation, we determine a schedule conflict graph GS of IC graph G as follows:

• Ignore all interfering links that are removed by MinMax channel allocation.

• Add links between siblings. The links between parent and children remain unchanged.

• For every interfering link (u, v) from u to v that still exists after channel allocation f ,

add a link from u to every child z of v with f(z) = f(u).

For the IC graph G shown in Figure 7.1(a), let Figure 7.4(a) shows the channel allocation,

where the number beside a sender shows its assigned channel. Then Figure 7.4(b) shows

its schedule conflict graph GS. In a TDMA schedule, any two nodes that are neighbors in

GS must be scheduled on different time slots. We use the same distributed algorithm as the

one used for interference-free channel allocation. We run the algorithm considering schedule

conflict graph GS. Now, instead of channel, we allocate a time slot to every node in GS.

Every node starts with slot 1. In each round, the nodes switch to the smallest slot not

assigned to any neighbor in GS. The maximum time slot assigned to a node indicates the

length of the frame, since the frame will repeat after this slot.

Theorem 23. The frame length determined by the distributed link scheduling algorithm is

at most bCmax

m
c + ∆T + 1, where Cmax is the maximum conflict in G under single channel,

∆T is the maximum degree of the routing tree.

169

Proof. According to Theorem 18, the total time slots used in the frame is at most ∆S + 1,

where ∆S is the maximum degree in GS. After MinMax channel allocation, ∆S ≤ bCmax

m
c+

∆T . Hence, the bound follows.

7.8 Evaluation

We evaluate our channel allocation and link scheduling protocols on the topologies of an

indoor WSN testbed [2] spread over two buildings (Bryan Hall and Jolley Hall) of Washington

University in St louis. The testbed consists of 74 TelosB motes each equipped with a Chipcon

CC2420 radio compliant with IEEE 802.15.4. We have developed a discrete-event simulator

that operates based on interference data traces collected from the testbed. The traces were

obtained by having each node in the testbed take turns broadcasting a sequence of 50 packets.

All nodes operated on channel 26 of IEEE 802.15.4. While the application transmits packets

as soon as possible, the MAC layer applied for each transmission a randomized back-off

uniformly distributed in the interval [10ms, 170ms]. The batch of 50 packets takes 4.5s on

average to transmit. The remainder of the nodes recorded the Received Signal Strength

(RSS) of the packets they receive. The short delay between the transmissions of packet

pertaining to the same batch allows us to capture the short-term variability of RSS. We

have collected 7 sets of data traces at 7 transmission (Tx) power levels: −15, −10, −7,

−5, −3, −1, 0 dBm. Collecting the data traces over three consecutive days captured the

long-term variability. RSS traces collected from the 74-node testbed are used to configure

the simulations.

The network topologies used in the simulations are based on RSS traces collected from the

testbed. We determine the communication and interference links between nodes as follows.

A node A may communicate with a node B if node B’s RSS average during A’s transmissions

exceeds a threshold of -85 dBm. Prior empirical studies have shown that links with RSS

above this threshold typically have high packet reception rate (PRR) [168]. Interference

links are determined based on RID protocol [192]. RID models interference as a graph that

is constructed as follows. To determine whether the transmissions of other nodes can interfere

with a communication link (A,B), RID calculates the Signal to Noise Plus Interference Ratio

(SNIR) at node B for each set of k senders (k = 3 in our setup) assuming they transmit

170

−15 −10 −7 −5 −3 −1 0
0

5

10

15

Transmission power (dBm)

N
u

m
b

e
r

o
f

c
h

a
n

n
e

ls

Bound
Dis Receiver−based
Cen LDF

(a) Receiver-based allocation

−15 −10 −7 −5 −3 −1 0
0

5

10

15

Transmission power (dBm)

N
u

m
b

e
r

o
f

c
h

a
n

n
e

ls

Bound/4
Dis Link−based
Cen LDF

(b) Link-based allocation

Figure 7.5: Channel allocation on testbed topologies to remove all interferences

simultaneously as A transmits to B. For each set of senders S(B), RID computes the SNIR

at B when A and the set of senders S(B) transmit simultaneously. The RSS of a link is

computed as the average of the four 50 packet batches collected from the testbed. The RSS

of missing packets is overestimated to equal the receiver sensibility of CC2420 (-90 dBm). If

the computed SNIR is below a threshold a link from each node in S(B) to B is added as an

interference link. The SNIR threshold was set to 5 dB consistent with empirical studies that

showed that meeting this threshold is usually sufficient for correctly decoding packets in the

presence of interference [184, 192]. The routing tree on a topology is constructed based on

high quality links.

We also evaluate scalability of our protocols using random topologies. A random network is

generated with an edge-density of 50%, i.e. with n(n− 1)50/200 edges for a network with n

nodes. Packet reception rate (PRR) along a link is assigned randomly in a range [0.60, 1.0].

A node with the highest degree is selected as the sink. A subset of links forms the routing

tree. All other links are interference links.

7.8.1 Interference-free Channel Allocation

Figure 7.5 shows the number of channels required in our interference-free channel allocation

(1 run) on testbed topologies at different Tx power. For receiver-based channel allocation

(Figure 7.5(a)), our protocol requires no more than 6 channels (marked as ‘Dis Receiver-

based’ in the figure) in every topology, and these values are less than the theoretical upper

171

2 3 4 5 6
0

5

10

15

20

25

Number of channels
C

o
n

fl
ic

t

Max: GBCA
Max: MinMax
Max: Greedy
Avg: GBCA
Avg: MinMax
Avg: Greedy

Figure 7.6: MinMax channel allocation on testbed topology with -5 dBm Tx power

bound. We compare the results against a well-known centralized heuristic, called Largest

Degree First (LDF) [84] (where a node is assigned the first available frequency in non-

increasing order of degrees). While LDF is inherently more effective at the cost of centralized

behavior, the figure indicates that the numbers of channels required by the centralized LDF

and that by our distributed protocol vary at most by 1. For the link-based allocation

(Figure 7.5(b)), the number of channels required by our protocol is much less than its

theoretical bound.

7.8.2 MinMax Channel Allocation

Now we evaluate the MinMax algorithm. We plot the maximum conflict among all trans-

mission links and the average conflict per transmission link after channel allocation. Each

data point is the average of 5 runs. We compare the results with that of GBCA [187],

the only known distributed protocol that minimizes the total interferences in the network

in a receiver-based allocation. We also compare the performance with a centralized greedy

approach that works as follows. Every time it determines the link that experiences the

maximum conflict. If there exists a link such that switching its channel to a different one

decreases the maximum conflict, then it switches to that channel. Any sender that does not

affect the maximum conflict switches to the channel that results in maximum decrease in its

own conflict.

Figure 7.6 shows the performance of MinMax protocol on the testbed topology with -5 dBm

Tx power under varying number of channels. It shows that the maximum conflict in GBCA

172

100 200 300 400 500 600 700
0

100

200

300

400

500

Number of nodes

C
o

n
fl
ic

t

Max: GBCA
Max: MinMax
Max: Greedy
Avg: GBCA
Avg: MinMax
Avg: Greedy

(a) Conflict using 2 channels

100 200 300 400 500 600 700
0

50

100

150

200

250

Number of nodes

C
o

n
fl
ic

t

Max: GBCA
Max: MinMax
Max: Greedy
Avg: GBCA
Avg: MinMax
Avg: Greedy

(b) Conflict using 4 channels

100 200 300 400 500 600 700
0

20

40

60

80

100

Number of nodes

C
o

n
v
e

rg
e

n
c
e

 t
im

e
 (

s
)

m=2
m=4
m=8

(c) Convergence time

Figure 7.7: MinMax channel allocation on random topologies

using 2 channels is 27 while that in MinMax is only 13. The average conflict per link is 4.55 in

GBCA, and 2.87 in MinMax. The centralized greedy heuristic results in a maximum conflict

of 11, and an average of 2.85 per link. Both maximum and average conflict in GBCA are

higher than those in MinMax allocation since GBCA does not aim to minimize the maximum

conflict.

Figure 7.7 shows the performance of MinMax protocol on random topologies with different

number of nodes. Figure 7.7(a) shows that the performance gap between GBCA and MinMax

increases with the increase of network size. In a 700-node network with 2 channels, the

maximum conflicts in GBCA, MinMax, and centralized greedy heuristic are 470, 246, and

240, respectively; the average conflicts per link in GBCA, MinMax, and centralized greedy

heuristic are 183, 123, and 120, respectively. Figures 7.7(b) shows the similar results using

4 channels. The results show that MinMax protocol is highly effective in minimizing the

maximum interference. It also results in less (compared to GBCA) average conflict which

173

40 50 60 70
0

10

20

30

40

Number of flows

D
e

la
y
 (

s
)

Max: MinMax
Max: GBCA
Avg: MinMax
Avg: GBCA

(a) Delay using 2 channels

40 50 60 70
0

10

20

30

Number of flows

D
e

la
y
 (

s
)

Max: MinMax
Max: GBCA
Avg: MinMax
Avg: GBCA

(b) Delay using 3 channels

40 50 60 70
0

10

20

30

Number of flows

D
e

la
y
 (

s
)

Max: MinMax
Max: GBCA
Avg: MinMax
Avg: GBCA

(c) Delay using 4 channels

Figure 7.8: Network performance on testbed topology at -5 dBm

is very close to that of the centralized greedy algorithm. The MinMax protocol converges

in 39s when the number of nodes is no greater than 300 (Figures 7.7(c)). For a 700-node

network with 4 channels, it converges in 87s.

7.8.3 Latency under MinMax Channel Allocation

Here we implement our distributed link scheduling protocol after both MinMax and GBCA

channel allocation. We consider TDMA with each time slot of 10ms (similar to Wire-

lessHART [22] based on 802.15.4). For scheduling, each node periodically generates a packet

resulting in a flow to the sink. All node have the same period. We record the maximum

packet delay and the average packet delay in both protocols. The delay of a packet is counted

as the difference between the time when it is delivered to the sink and the time when it was

174

100 200 300 400
0

200

400

600

Number of flows

D
e

la
y
 (

s
)

Max: MinMax
Max:GBCA
Avg: MinMax
Avg: GBCA

(a) Delay using 2 channels

100 200 300 400
0

200

400

600

Number of flows

D
e

la
y
 (

s
)

Max: MinMax
Max: GBCA
Avg: MinMax
Avg: GBCA

(b) Delay using 4 channels

100 200 300 400
0

100

200

300

400

500

Number of flows

D
e

la
y
 (

s
)

Max: MinMax
Max: GBCA
Avg: MinMax
Avg: GBCA

(c) Delay using 8 channels

Figure 7.9: Network performance on random topology of 400 sensor nodes

released at its source. In every run, a set of source nodes is selected randomly. Each data

point is the average of 5 runs.

Figure 7.8 shows the delays under different number of flows on the testbed topology at -5

dBm Tx power. Figure 7.8(a) shows that the maximum delay among 70 flows under GBCA

using 2 channels is 40.65s while that under MinMax allocation is only 34.40s. The average

delay per packet is 8.60s under GBCA, and 7.24s under MinMax. In every setup, the 95%

confidence interval remains within ±1.7s for maximum delay, and within ±0.43s for average

delay for each protocol. The performance difference between GBCA and MinMax increases

in larger networks as shown for random topologies of 400 nodes in Figure 7.9. For 400 flows

and 2 channels (Figure 7.9(a)), the maximum delay is 692.61s under GBCA, and 526.68s

under MinMax; the average delay per packet is 155.18s under GBCA, and 117.04s under

MinMax. In every setup, the 95% confidence interval remains within ±16.7s for maximum

175

100 200 300 400
0

500

1000

1500

2000

Number of nodes
T

o
ta

l
n

u
m

b
e

r
o

f
m

e
s
s
a

g
e

s

MinMax Channel Allocation
Link Scheduling
Data Collection

Figure 7.10: Comparison of message cost for channel allocation and one round of data
collection

delay, and within ±4.65s for average delay for each protocol. The results indicate that

MinMax allocation is more effective in terms of packet latency.

7.8.4 Channel Allocation Message Overhead

Figure 7.10 shows the total number of messages used in MinMax channel allocation and link

scheduling along with the total number of data transmissions. We used a setup similar to

the preceding experiment. We consider networks with 101, 201, 301, and 401 nodes where in

each case 1 node serves as the sink while all the other nodes are the sources of data. Every

source node periodically generates a packet, all nodes having the same period. We compare

the message overhead with the number of data messages in one cycle of data collection. Note

that realistically channel allocation will be needed after multiple rounds of data collection.

This result shows that even when compared to one cycle of data collection, channel allocation

and link scheduling have lower message overhead. For example, the proportion of the total

data transmissions to the total messages needed for channel allocation and link scheduling

is 0.7 for 1 cycle of data collection in a network of 400 nodes. For c cycles of data collection,

this fraction becomes 0.7
c

. Usually, upon channel allocation once, a multi-channel application

(such as data collection) can run continuously based on that allocation until some network

condition changes. For example, the message overhead will be below 3% of the data load if

data allocation and scheduling are performed once every 25 rounds of data collection. The

message overhead is therefore acceptable in many deployment scenarios.

176

7.9 Summary

We have proposed a set of distributed protocols for channel allocation in WSNs. For WSNs

with an insufficient number of channels, we have proposed a fair channel allocation protocol

that minimizes the maximum interference experienced by any transmission link. In the

future, we plan to design traffic-aware protocol, and implement the results on testbeds.

177

Chapter 8

CapNet: A Real-Time Wireless

Management Network for Data

Center Power Capping

Data center management (DCM) is increasingly becoming a significant challenge for enter-

prises hosting large scale online and cloud services. Machines need to be monitored, and the

scale of operations mandates an automated management with high reliability and real-time

performance. Existing wired networking solutions for DCM come with high cost. In this

paper, we propose a wireless sensor network as a cost-effective networking solution for DCM

while satisfying the reliability and latency performance requirements of DCM. We have de-

veloped CapNet, a real-time wireless sensor network for power capping, a time-critical DCM

function for power management in a cluster of servers. CapNet employs an efficient event-

driven protocol that triggers data collection only upon the detection of a potential power

capping event. We deploy and evaluate CapNet in a data center. Using server power traces,

our experimental results on a cluster of 480 servers inside the data center show that CapNet

can meet the real-time requirements of power capping. CapNet demonstrates the feasibility

and efficacy of wireless sensor networks for time-critical DCM applications.

8.1 Introduction

The continuous, low-cost, and efficient operation of a datacenter heavily depends on its

management network and system. A typical data center management (DCM) system handles

178

physical layer functionality such as powering on/off a server, motherboard sensor telemetry,

cooling management, and power management. Higher level management capabilities such as

system re-imaging, network configuration, (virtual) machine assignments, and server health

monitoring [29, 97] depend on DCM to work correctly. DCM is expected to function even

when the servers do not have a working OS or the data network is not configured correctly [3].

Today’s DCM is typically designed in parallel to the production data network (in other

words, out of band), with a combination of Ethernet and serial connections for increased

redundancy. There is a cluster controller for a rack or a group of racks, which are connected

through Ethernet to a central management server. Within the clusters, each server has a

motherboard microcontroller (BMC - Baseboard Management Controller) that is connected

to the cluster controller via point-to-point serial connections. For redundancy reasons, every

server is typically connected to two independent controllers on two different fault domains, so

there is at least one way to reach the server under any single point of failure. Unfortunately,

this architecture does not scale. The overall cost of management network increases super-

linearly with the number of servers in a data center. At the same time, massive cabling across

racks increases the chance for human errors and prolongs the server deployment latency.

This paper presents a different approach to data center management network at the rack

granularity, by replacing serial cable connections with low cost wireless links. Low power

wireless sensor network technology such as IEEE 802.15.4 has intrinsic advantages in this

application.

• Cost: Low-power radios (i.e., IEEE 802.15.4) are cheaper individually than wired al-

ternatives and the cost scales linearly with the number of servers.

• Embedded: These radios can be physically small and be integrated onto motherboard

to save precious rack space.

• Reconfigurability: Wireless sensor networks can be self-configuring and self-repairing

with the broadcast media to prevent human cabling error.

• Low power: With a small on-board battery, the DCM based on wireless can continue to

function on batteries providing monitoring capabilities even when the rack experiences

a power supply failure.

179

However, whether a wireless DCM can meet the high reliability requirement for data center

operation is not obvious for several reasons. The amount of sheet metals, electronics, and

cables may completely shield RF signal propagation within racks. Furthermore, although

typical traffic on a DCM is low, emergency situations might need to be handled in real time,

which could require the design of new protocols.

Power capping is an example of emergency event that imposes real-time requirements. Today,

data center operators commonly oversubscribe the power infrastructure by installing more

servers to an electric circuit than it is rated. The rationale is that servers seldom reach their

peak at the same time. By over-subscription, the same data center infrastructure can host

more servers than otherwise. In the rare event when the aggregate power consumption of all

servers exceeds the circuit’s power capacity, some servers must be slowed down (i.e. power

capped), through dynamic frequency and voltage scaling (DVFS) or CPU throttling, to

prevent the circuit breaker from tripping. Every magnitude of oversubscription is associated

with a trip time which is a deadline by which power capping must be performed to avoid

circuit breaker tripping.

This paper studies the feasibility and advantages of using low-power wireless for DCM. In two

data centers, we empirically evaluate IEEE 802.15.4 link qualities in server racks to show that

the overall packet reception rate is high. We further dive into the power capping scenario and

design CapNet, a wireless Network for power Capping, that employs an event-driven real-

time control protocol for power capping over wireless DCM. The protocol uses distributed

event detection to reduce the overhead of regularly polling all nodes in the network. Hence,

the network throughput can be used by other management tasks when there is no emergency.

When a potential power surge is detected, the controller uses a sliding window and collision

avoidance approach to gather power measurements from all servers, and then issues power

capping commands to a subset of them. We deployed and evaluated CapNet in a data

center. Using server power traces, our experimental results on a cluster of 480 servers in

the data center show that CapNet can meet the real-time requirements of power capping. It

demonstrates the feasibility and efficacy in power capping like wired DCM with a fraction

of the cost..

180

8.2 The Case for Wireless DCM (CapNet)

Typical wired DCM solutions in data centers scale poorly with increase in number of servers.

The serial-line based point-to-point topology incurs additional costs as we connect more of

them together. Here, we compare the costs of the wired DCM to our proposed wireless based

solution (CapNet) by considering the cost of the management network, and by measuring

the quality of in-rack wireless links.

8.2.1 Cost Comparison with Wired DCM

To compare the hardware cost, we consider the cost of the DiGi switches ($3917/48port [4]),

controller cost (approx. $500/rack [5]), cable cost ($2/cable [6]) and additional management

network switches ($3000/48port on average [7]). We do not include the labor or management

costs for cabling for simplicity of costing model, but note that these costs are also significant

with wired DCMs. We assume that there are 48 servers per rack, and there can be up to

100,000 servers that need to be managed, which are typical for large data centers. For the

wireless DCM based CapNet solution, we assume IEEE 802.15.4 (ZigBee) technologies for

its low cost benefits. The cost of network switches at the top level layer stays, but the cost of

DiGi can be significantly reduced. We assume $10 per wireless controller, which is essentially

an Ethernet to ZigBee relay. For wireless receivers on the motherboard, we assume $5 per

server for the RF chip and antenna as the motherboard controller is already in place [8].

of servers Wired-N Wired-2N CapNet-N CapNet-2N
10 7450 14900 3060 6070
100 16560 33120 3530 6560
1000 98820 197640 8210 11420
10000 980780 1961560 79090 108180
100000 9772280 19544560 781840 1063680

Table 8.1: System cost (in US Dollar) comparison and scalability

We develop a simple cost model based on these individual costs and compute the total

devices needed for implementing management over number of servers ranging from 10 to

100,000 (in order to capture how cost scales with the number of servers). We consider

solutions across two dimensions 1) Wired vs Wireless, and 2) N-redundant vs 2N-redundant

181

(A 2N redundant system consists of two independent switches, DiGis and paths through the

management system). Table 8.1 shows the cost comparison across these solutions. We see

that a wired N-redundant DCM solution (Wired-N) for 100,000 servers is 12.5× the cost

of a wireless N-redundant DCM solution (CapNet-N). If we increase the redundancy of the

management network to 2N, the cost of a wired solution (between Wired-2N and Wired-

N) doubles. In contrast, the cost of a wireless solution increases only by 36% (due to 2N

controllers and 2N switches at the top level). The resulting cost of Wired-2N is 18.4× that

of CapNet-2N. Given the significant cost difference between wired DCM and CapNet, we

next explore whether wireless is feasible for communication within racks.

8.2.2 Choice of Wireless - IEEE 802.15.4

We are particularly interested in low bandwidth wireless like IEEE 802.15.4 instead of IEEE

802.11 for a number of reasons. First, the payload size for data center management is small

and hence a ZigBee (IEEE 802.15.4) network bandwidth is sufficient for control plane traffic.

Second, in WiFi (IEEE 802.11) there is a limit on how many nodes an access point can

support in the infrastructure mode since it has to maintain an IP stack for every connection,

and this impacts scalability in a dense deployment. Third, to support management features,

the data center management system should still work when the rack is unpowered. A small

backup battery can power ZigBee longer at much higher energy efficiency. Finally, ZigBee

communication stack is simpler than WiFi so the motherboard (BMC controller) microcon-

troller can remain simple. Although we do not rule out other wireless technologies, we chose

to prototype with ZigBee in this paper.

8.2.3 Radio Environment inside Racks

We did not find any previous study that evaluated the signal strength within the racks

through servers and sheet metal. The sheet metals inside the enclosure are known to weaken

radio signal, giving a harsh environment for radio propagation inside racks. RACNet [119]

studied wireless characteristics in data centers, but only across racks when all radios are

mounted at the top of the rack. Therefore, we first perform an in-depth 802.15.4 link layer

182

Figure 8.1: Mote placed in bottom sled

measurement study based on in-rack radio propagation inside a data center of Microsoft

Corporation.

Setup. The data center used for measurement study has racks that consist of multiple

chassis in which servers are housed. A chassis is organized into two columns of sleds. In all

experiments, one TelosB mote is placed on top of the rack (ToR), inside the rack enclosure.

The other motes are placed in different places in a chassis in different experiments. Figure 8.1

shows the placement of 8 motes inside a bottom sled (which is open in the figure but was

closed during the experiment). While measuring the downward link quality, the node on

ToR is the sender and the nodes in the chassis receive. Then we reverse the sender and the

receiver to measure the upward link quality. In each setup, the sender transmits packets at

4Hz. The payload size of each packet is 29 bytes. Through a week-long test capturing the

long-term variability of links, we collected signal strengths and packet reception rate (PRR).

Results. Figure 8.2(a) shows the cumulative distribution function (CDF) of Received Signal

Strength Indicator (RSSI) values at a receiver inside the bottom sled for 1000 transmissions

183

−80 −75 −70 −65 −60 −55
0

0.2

0.4

0.6

0.8

1

RSSI (dBm)

C
D

F
 o

f
R

S
S

I

 0dBm

−3dBm

−7dBm

−15dBm

(a) RSSI when Tx power varies (channel 26)

−90 −80 −70 −60 −50 −40 −30
0

0.2

0.4

0.6

0.8

1

RSSI (dBm)

C
D

F
 o

f
R

S
S

I

Channel 26
Channel 20
Channel 15
Channel 11

(b) RSSI on various channels (Tx power -3dBm)

26 20 15 11
0

20

40

60

80

100

Channel

P
R

R
 (

%
)

 0dBm
−3dBm
−7dBm
−15dBm

(c) PRR at a receiver

Figure 8.2: Downward signal strength and PRR in bottom sled

184

from the node on ToR for different transmission (Tx) power using IEEE 802.15.4 channel

26. For -7dBm or higher Tx power, RSSI is greater than -70dBm in 100% cases. RSSI values

in ZigBee receivers are in the range [−100, 0]. Previous study [169] on ZigBee shows that

when the RSSI is above −87dBm (approx.), PRR is at least 85%. As a result, we see that

signal strength at the receiver in bottom sled is quite strong. Figure 8.2(b) shows the CDF

of RSSI values at the same receiver for 1000 transmissions from the node on ToR on different

channels at Tx power of -3dBm. Both figures indicate a strong signal strength, and in each

experiment the PRR was at least 94% (Figure 8.2(c)). We observed similar results in all

other setups of the measurement study, and omit those results.

The measurement study reveals that low-power wireless, such as IEEE 802.15.4, is viable for

communication within data center racks and can be reliable for telemetry purpose. We now

focus on the power capping scenario and CapNet design for real-time power capping over

wireless DCM.

8.3 CapNet Design Overview

8.3.1 The Power Capping Problem

Power infrastructure bears huge capital investment for a data center, up to 40% of the total

cost of a large data center that can cost hundreds of millions of US Dollars [91]. Hence, it is

desirable to use the provisioned infrastructure to its maximum rated capacity. The capacity

of a branch circuit is provisioned during design time, based on upstream transformer capac-

ity during normal operation or UPS/Generator capacity when running on backup power.

To improve data center utilization, a common practice in enterprise data centers is to do

oversubscription [75, 81, 120, 138]. This method allocates servers in a circuit exceeding the

rated capacity (i.e. cap), since not all servers reach their maximum power consumption at

the same time. Hence, there is a circuit breaker (CB) that trips to protect expensive equip-

ment. The peak power consumption above the cap has a specified time limit, called a trip

time, depending on the magnitude of over-subscription (as shown in Figure 8.3 for Rockwell

Allen-Bradley 1489-A circuit breaker). If the over-subscription continues for longer than the

185

!"##

$%#

%

#&$

$ % ! ' $# %#

(
)*
+
,-
*.
/
,0
1
/
2
3

45))/6-,67).89*:/;,-7,)8-/;,25))/6-

Not Tripped

Tripped

Long-delay

Conventional
Tripping

Short Circuit

%$

!

(79/)862/,<86;

Figure 8.3: The trip curve of Rockwell Allen-Bradley 1489-A circuit breaker at 40◦C [23].
X-axis is oversubscription magnitude. Y-axis is trip time.

trip time, the CB will trip and cause undesired server shutdowns and power outages disrupt-

ing data center operation. Power capping is the mechanism to bring the aggregate power

consumption back to the cap. An overload condition under practical current draw trips the

CB on a time scale from several hundred milliseconds to hours, depending on the magnitude

of the overload [23]. These trip times are the deadlines for the corresponding oversubscrip-

tion magnitudes within which power capping must be done to prevent CB tripping to avoid

power loss or damage to expensive equipment.

To enable power capping for a rack or cluster, a power capping manager (also called con-

troller) collects all servers’ power consumption and determines the cluster-level aggregate

power consumption. If the aggregate consumption is over the cap, the manager generates

control messages asking a subset of the servers to reduce their power consumptions through

CPU frequency modulation (and voltage if using DVFS) or utilization throttling. The appli-

cation level quality of service may require different servers to be capped at different levels.

So the central controller needs all individual server readings. In some graceful throttling

policies, the control messages are delivered by the BMC Controller to the host OS or VMs,

which introduce additional latency due to OS stack [48, 120]. To avoid abrupt changes to

186

Server
with

wireless

Rows of racks in data center

ToR

A cluster of
3 racks

A cluster of 3 racks

ToRToR

Wireless power
capping manager

Figure 8.4: Wireless DCM architecture

application performance, the controller may change the power consumption incrementally

and require multiple iterations of the feedback control loop before the cluster settles down

to below the power cap [120, 177]. These control policies have been studied extensively by

previous work and are out of the scope of this paper.

8.3.2 Power Capping over Wireless DCM

Servers in a data center are stacked and organized into racks. One or more racks can

comprise a power management unit, called a cluster. Figure 8.4 shows the wireless DCM

architecture inside a data center. All servers in a cluster incorporate a wireless transceiver

that connects to the BMC microcontroller. Each server is capable of measuring its own power

consumption. A cluster power capping manager can either directly measure the total power

consumption using a power meter, or, to achieve fine-grained power control, aggregates the

power consumption from individual servers. We focus on the second case due to its flexibility.

When the aggregate power consumption approaches the circuit capacity, the manager issues

capping commands over wireless links to individual servers. The main difference compared

to a wired DCM is the broadcast wireless media and challenge of scheduling communication

to meet the real-time demands.

To reduce extra coordination and to enable spatial spectrum reuse, we assume a single IEEE

802.15.4 channel for communication inside a cluster. Using multiple channels, multiple

187

clusters can run in parallel. Channel allocation can be done using existing protocols that

minimize inter-cluster interference, and is not the focus of our paper. For protocol design,

we focus on a single cluster of n servers.

8.3.3 A Naive Periodic Protocol

A naive approach for a fine-grained power capping policy is to always monitor the servers by

periodically collecting the power consumption readings from individual servers. The manager

periodically computes the aggregate power. Whenever the aggregate power exceeds the cap,

it generates a control message. Upon finishing the aggregation and control in η iterations,

it resumes the periodic aggregation again.

8.3.4 Event-Driven CapNet

Oversubscribing data centers may provision for the 95-th (or more) percentile of the peak

power, and require capping for 5% (or less) of the time, which may be an acceptable hit on

performance in relation to cost savings [48]. Thus power capping is a rare event, and the naive

periodic protocol is an overkill as it saturates the wireless media by always preparing for the

worst case. Other delay-tolerant telemetry messages cannot get enough network resources.

An ideal wireless protocol should generate significant traffic only when a significant power

surge occurs. Therefore, CapNet employs an event-driven policy that is designed to trigger

power capping control operation only when a potential power capping event is predicted.

Due to the rareness and emergency nature of power surge, the network can suspend other

activities to handle power capping. It provides real-time performance and a sustainable

degree of reliability without consuming much network resource. The details of the protocol

is explained in the next section.

188

8.4 Power Capping Protocol

We design a distributed event detection policy, where we assign local caps to each individual

server from their global (cluster-level) cap. When a server observes a local power surge

based on its own power reading, it can trigger the collection of the power consumption of

all the servers to detect a potential surge in the aggregate power consumption of cluster.

If a cluster-level power surge is detected, the system initiates a power capping action. As

many servers can simultaneously exceed their local caps, a standard CSMA/CA protocol can

suffer from significant packet loss due to excessive contention and collisions. Similarly, a slot

stealing TDMA (Time Division Multiple Access) protocol such as Z-MAC [152] would suffer

from the same problem as those servers will try to steal slot simultaneously. Furthermore,

pure TDMA based protocols do not fit well for our problem since they need to have a

predefined communication schedule for all nodes. Finally, as power aggregate consumption

can be quite dynamic, it may be infeasible to predict an upcoming power peak based on

historical readings. This observation leads us to avoid a predictive protocol that proactively

schedule data collection based on historical power readings.

While a global detection is possible by just monitoring at the branch circuit level, say using a

power meter, it cannot support fine-grained and flexible power capping policies such as those

based on individual server-priority or reducing powers of individual servers based on their

power consumptions. Also, a centralized measurement introduces a single point of failure.

That is, if the power meter fails, power oversubscription will fail also. In contrast, our

distributed approach is more resilient to failure. If individual measurement fails, the system

can always assume a maximum power consumption at that server and keep the whole cluster

going.

The event-driven protocol runs in 3 phases as illustrated in Figure 8.5: detection, aggre-

gation, and control. The event detection phase generates alarms based on local power

surges. Upon detecting a potential event, CapNet runs the second phase which invokes a

power aggregation protocol. False detection may happen when some servers generate alarms

exceeding the local caps, but the aggregate value is still under the cap. This is corrected in

the aggregation phase, where the controller determines the aggregate power consumption.

The impact of a false positive case is that the system runs into the aggregation phase which

incurs additional wireless traffic. The control phase is executed only if the alarms are true.

189

Aggregation
phase

collect all
server readings

Control
phase

control();
k++;

k < ηpagg > c

Cond (1)

satisfied in this

interval?

The manager sends heartbeat
after each detection interval

 server i sends alarm

at i-th slot of detection

interval, if pi > local cap

Detection phase

false alarm

k=0;
yesno

yes

no

Start
Each server is given
a unique ID i=1, ..., n

no

yes

Figure 8.5: CapNet’s event-driven protocol flow diagram

We normalize each server’s power consumption value between 0 and 1 by dividing its instan-

taneous power consumption by the maximum power consumption of an individual server.

This normalized power consumption value of server i is denoted by pi, where 0 ≤ pi ≤ 1,

and is used in this paper as a server’s power consumption. The cap of a cluster of n servers

is denoted by c, and the total power consumption of n servers is considered as the aggregate

power consumption and is denoted by pagg.

Assigning local cap. If pagg > c, a necessary condition is that some servers’ (at least one)

individual power consumption values locally exceed the value c
n
. Therefore, a possible way is

to assign c
n

as each server’s local cap. However, there can be situations where only one server

exceeds c
n

while all other servers are under c
n
, thereby triggering an aggregation phase upon

a single server’s alarm. As a result, this policy will generate many false alarms. Therefore,

to suppress false alarms, we assign a slightly smaller local cap, and consider alarms from

multiple servers before aggregation phase. Thus we use a value 0 < α ≤ 1 close to 1 and

assign αc
n

as the local cap for each server. A server i reports alarm if pi >
αc
n

.

Each server is assigned a unique ID i, where i = 1, 2, · · · , n. The manager broadcasts

a heartbeat packet at every h time units called detection interval. The detection interval

of length h is slotted among n slots, with each slot length being
⌊
h
n

⌋
. The value of h is

selected in a way so that a slot is long enough to accommodate one transmission and its

acknowledgement. After receiving the heartbeat message, the server clocks are synchronized.

190

8.4.1 Detection Phase

Each node i, 1 ≤ i ≤ n, takes its sample (i.e., power consumption value pi) at the i-th slot

in the detection phase. If its reading is over the cap i.e. pi >
αc
n

, it generates an alarm

and sends the reading (pi) to the manager as an acknowledgement of the heartbeat message.

Otherwise, it ignores the heartbeat message, and does nothing. If an alarm is received at the

s-th slot, the manager determines, based on whether the network is reliable or not, whether

an aggregation phase has to be started. Let the servers who have sent alarms in the current

detection window so far be denoted by A.

Reliable Network. Let an alarm be generated in the s-th slot of a detection interval.

Considering a reliable network we can consider that no server message was lost. Therefore,

each of the other s− |A| servers among the first s servers has a power consumption reading

of at most αc
n

as it has not generated an alarm. Each of the remaining n− s servers can have

a power consumption value of at most 1. Thus based on the alarm at s-th slot, the manager

can estimate an aggregate power of
∑

j∈A pj + (s − |A|)αc
n

+ (n − s). Hence, if an alarm is

generated at the s-th slot, the manager will start aggregation phase if∑
j∈A

pj + (s− |A|)αc
n

+ (n− s) > c (8.1)

Unreliable Network. Now we consider a scenario where some server alarms were lost. As

a result, if an alarm is generated in the s-th slot of a detection window, each of the other

s− |A| servers among the first s servers may have a power consumption reading of at most

1 as its alarm is assumed to be lost. Therefore, each of the n − |A| servers can have power

consumption of at most 1, making an estimated aggregate power of
∑

j∈A pj + (n − |A|).
Thus, if an alarm is generated in the s-th slot, the manager will start aggregation phase if∑

j∈A

pj + (n− |A|) > c (8.2)

If there are no alarms in the detection phase or all alarm messages were lost due to trans-

mission failure, the controller resumes the next detection phase (to detect the surges again

using the same mechanism) when the current phase is over.

191

8.4.2 Aggregation Phase

To minimize aggregation latency, CapNet adopts a sliding window based protocol to deter-

mine aggregate power consumption denoted by pagg. The controller uses a window of size ω.

At anytime, it selects ω servers (or, if there are fewer than ω servers whose readings are not

yet collected, then selects all of them) in a round-robin fashion who will send their readings

consecutively in the next window. These ω server IDs are ordered in a message. In the

beginning of the window, the controller broadcasts this message, and starts a timer of length

τd+ωτu after the broadcast, where τd denotes the maximum downward communication time

(i.e., the maximum time required for a controller’s packet to be delivered to a server) and

τu denotes the maximum upward communication time (server to controller). Upon receiving

the broadcast message, any server whose ID is in order i, 1 ≤ i ≤ ω, in the message transmits

its reading after (i−1)τu time. Other servers ignore the message. If the timer fires or packets

from all ω nodes are received, the controller creates the next window of ω servers that are

yet to be scheduled or whose packets were missed (in the previous window). A server is

scheduled in at most γ consecutive windows to handle transmission failures, where γ is the

worst-case ETX (expected number of transmissions for a successful delivery) in the network.

The procedure continues until all server readings are collected or there is no server that was

retried γ times.

8.4.3 Control Phase

Upon finishing the aggregation phase, if pagg > c, where c is the cap, it starts the control

phase. The control phase generates a capping control command using a control algorithm,

and then the controller broadcasts the message requesting a subset of the servers to be

capped. To handle broadcast failures, it repeats the broadcast γ times (since the broadcast

is not acknowledged). The servers react to the capping messages by DVFS or CPU throttling

that incurs an operating system (OS) level latency as well as a hardware-induced delay [48].

If the control algorithm requires η-iteration, then after the capping control command is

executed in the first round, the controller will again run the aggregation phase to reconfirm

that capping was done correctly. The procedure iterates up to (η − 1) more iterations.

192

Upon finishing the control, or after the aggregation phase upon a false alarm, it resumes the

detection phase.

Given the time criticality for power capping, it is important for CapNet to achieve bounded

latency. In the following subsection, we provide an analytical upper bound for the total

latency required for power capping by CapNet. The analysis can be used by system admin-

istrators to configure the cluster to ensure power capping meets the timing constraints.

8.4.4 Latency Analysis

Given the time criticality for power capping, it is important for CapNet to achieve bounded

latency. Here, we provide an analytical latency upper bound for CapNet’s power capping

latency that consists of detection phase latency, aggregation latency, OS level latency, and

hardware latency. In practice, the actual latency is usually lower than the bound. The

analysis can be used by system administrators to configure the cluster to ensure power

capping meets the timing constraints.

Aggregation latency. For n servers in the cluster, the total aggregation delay Lagg under

no transmission failure can be upper bounded as follows. Note that each window of ω

transmissions can take at most (τuω + τd) time units. There can be at most
⌊
n
ω

⌋
windows

where in each window ω servers transmit. Then, the last window will take only (n mod ω+τd)

time to accommodate the remaining (n mod ω) servers. Hence,

Lagg ≤ (τuω + τd)
⌊n
ω

⌋
+ (n mod ω + τd)

Considering γ as the worst-case ETX in the network,

Lagg ≤
(

(τuω + τd)
⌊n
ω

⌋
+ (n mod ω + τd)

)
γ (8.3)

The above value is only an analytical upper bound, and in practice the latency can be a lot

shorter.

Latency in detection phase. The time spent in the detection phase is denoted by Ldet.

In a detection window the protocol never will need the readings from the last bcc− 1 servers

193

as an aggregation phase must start before this should a power capping needed (assuming

that not all alarms were lost). Therefore the alarms generated within the first (n− bcc+ 1)

slots must trigger aggregation phase. Hence,

Ldet ≤
⌊
h

n

⌋
(n− bcc+ 1) (8.4)

Total power capping latency. To handle a power capping event, a detection phase and

an aggregation phase are followed by a control message that is broadcasted γ times and takes

τdγ time. In addition, once the control message reaches a server, there is an operating system

level latency, and after processor frequency changes, there is a hardware-induced delay. Let

the OS level latency and the hardware level latency in the worst case be denoted by Los and

Lhw, respectively. Thus, the total power capping latency in one iteration, denoted by Lcap,

is bounded as

Lcap ≤ Ldet + Lagg + τdγ + Los + Lhw

A η-iteration control means that once power capping command is executed, the controller

will again need to collect all readings from servers, and reconfirm that capping was done

correctly in (η − 1) more iterations. Therefore, for η-iteration control, the above bound is

given by

Lcap ≤ Ldet + (Lagg + τcγ + Los + Lhw)η (8.5)

8.5 Experiments

In this section, we present the experimental results of CapNet. The objective is to evaluate

the effectiveness and robustness of CapNet in meeting the real-time requirements of power

capping under data center realistic settings.

8.5.1 Implementation

The wireless communication side of CapNet is implemented in NesC on TinyOS [20] platform.

To comply with realistic data center practices, we have implemented the control management

194

at the power capping manager side. In our current implementation, wireless devices are

plugged to the servers directly through their serial interface.

8.5.2 Workload Traces

We use workload demand traces from multiple geo-distributed data centers run by a global

corporation over a period of six consecutive months. Each cluster consists of several hundreds

of servers that span multiple chassis and racks. These clusters run a variety of workloads

including Web-Search, Email, Map-Reduce jobs, and cloud applications, catering to millions

of users around the world. Each cluster uses homogeneous hardware, though there could be

differences across clusters. We use workload traces of 2 representative server clusters: C1

and C2. In both clusters each individual server has CPU utilization data of 6 consecutive

months in every 2 minutes interval. While we recognize that full system power is composed

of storage, memory and other components, in addition to CPUs, several previous works show

that a server’s utilization is roughly linear to its power consumption [57,62,76,148]. Hence,

we use server’s CPU utilization as a proxy for power consumption in all experiments.

8.5.3 Experimental Setup

Experimental Methodology

We experiment with CapNet using TelosB motes for wireless communication. First we

deployed 81 motes (1 for manager, 80 for servers) in Microsoft’s data center in Redmond,

WA. When we experiment with more than 80 servers to test scalability, one mote emulates

multiple servers and communicates for them. For example, when we experiment for 480

servers, mote 1 works for first 6 servers, then mote 2 works for next 6 servers, and so on.

We place all 80 motes in racks. The manager node is placed on ToR and connected through

its serial interface to a PC that works as the manager. No mote in the rack has direct line

of sight with the manager. Using the workload demand traces, CapNet is run in a trace-

driven fashion. For every server the reading at a time stamp sent from its corresponding

wireless mote is taken from these traces at the same time stamp. While the data traces are

195

of 6-month long, our experiment does not run for actual 6-month. When we take a subset

of those traces, say for 4 weeks, the protocols skip the long time intervals where there is no

peak. For example, when we know (looking ahead into the traces) there is no peak between

time t1 and t2, the protocols skip the times between t1 and t2. Thus our experiments finish

in several days instead of 4 weeks.

Oversubscription and Trip Time

We use the trip times from Figure 8.3 as the basis, in order to determine the different caps

required in various experiments. X-axis shows the ratio of current draw to the rated current

and is the magnitude of oversubscription. Y-axis shows the corresponding trip time. The

trip curve is shown as a tolerance band. The upper curve of the band indicates upper bound

(UB) trip times above which is the tripped area, meaning that the circuit breaker will trip

if the duration of the current is longer than the UB trip time. The lower curve of the

band indicates lower bound (LB) trip times under which is the not-tripped area. This band

between 2 curves is the area where it is non-deterministic if the circuit breaker will trip.

LB trip time is a very conservative bound. In our experiments we use both LB and UB of

conventional trip times to verify the robustness of CapNet.

CapNet Parameters

For all experiments, we use channel 26 and Tx power of -3dBm. The payload size of each

packet sent from the server nodes is 8 bytes, which is enough for sending power consumption

reading. The maximum payload size of each packet sent from the manager is 29 bytes,

the maximum default size in IEEE 802.15.4 radio stack for TelosB motes. This payload

size is set large to contain the schedules as well as control information. For aggregation

protocol, window size ω is set to 8. A larger window size can reduce aggregation latency, but

requires the payload size of the manager’s message to be larger (since the packet contains

ω node IDs indicating the schedule for next window). In the aggregation protocol both τd

and τu were set to 25ms. The manager sets its timeout using these values. These values are

relatively larger compared to the maximum transmission time between two wireless devices.

The time required for communication between two wireless devices is in the range of several

196

milliseconds. But in our design the manager node is connected through its serial interface to

a PC. The TelosB’s serial interface does not always incur a fixed latency for communication

between PC and the mote through serial. Upon experimenting and observing a wide variation

of this time, we have set τd and τu to 25ms.

Control Emulation

In our experiments, we emulate the final control action since we use workload traces. We

assume that one packet is enough to contain the entire control message. To handle control

broadcast failure, we repeat control broadcast γ = 2 times. Our extensive measurement

study through data center racks indicated that this is also the maximum ETX for any

link between two wireless motes. Upon receiving the control broadcast message, the nodes

generate an OS level latency and hardware level latency. We use the maximum and minimum

OS level and hardware level time required for power capping experimented on three servers

with different processors: Intel Xeon L5520 (frequency 2.27GHz, 4 cores), Intel Xeon L5640

(frequency 2.27GHz, dual socket, 12 cores with hyper-threading), and an AMD Opteron

2373EE (frequency 2.10GHz, 8 cores with hyper-threading), each running Windows Server

2008 R2 [48]. The ranges of OS level and hardware level latencies are in the range of 10-

50ms and 100-300ms, respectively [48]. We generate OS and hardware level latencies using

a uniform distribution in this range.

8.5.4 Power Peak Analysis of Data Centers

We first analyze whether CapNet protocol is consistent with the data center power behavior

leveraging our data traces. For brevity, we present the trace analysis results of 3 racks:

Racks R1 and R2 from Cluster C1, and Rack R3 from Cluster C2.

To give an idea on how power consumption varies over time in a data center, Figure 8.6(a)

shows the aggregate power of 60 servers on RACK R1 in cluster C1 for 2 consecutive months

which is zoomed in for 6 consecutive days in Figure 8.6(b). For each rack, we use the 95-th

percentile of aggregate power over 2 consecutive months as the power cap.

197

0 1 2 3 4

x 10
4

0

10

20

30

40

50

Time

A
g
g
re

g
a
te

 p
o
w

e
r

(a) Aggregate power (2 Months)

0 1000 2000 3000 4000
0

10

20

30

40

50

Time

A
g
g
re

g
a
te

 p
o
w

e
r

(b) Aggregate power (1st 6 days zoomed-in)

Figure 8.6: 60 Servers on Rack R1 in Cluster C1

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

Interval between 2 peaks (minutes)

C
D

F

Rack R3−C2
Rack R2−C1
Rack R1−C1

(a) Time interval between 2 peaks

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Power jump

C
D

F

Rack R3−C2
Rack R2−C1
Rack R1−C1

(b) Power jump

Figure 8.7: Power characteristics (2 month data)

198

180 servers (5040 reading per server)

R
3
 C

lu
s
te

r
C

2

 |
 R

2
 C

lu
s
te

r
C

1
 |

R

1
 C

lu
s
te

r
C

1

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

−0.2

0

0.2

0.4

0.6

0.8

1
Rack R1 Cluster C1 Rack R2 Cluster C1 Rack R3 Cluster C2

(a) Correlations among 180*180 server pairs in 3
racks in 2 clusters

25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

Number of servers over cap

C
D

F

Rack R3−C2
Rack R2−C1
Rack R1−C1

(b) Total number (out of 60) of servers that exceed
local cap c

60

Racks in Cluster C2

R
a
c
k
s
 i
n
 C

lu
s
te

r
C

1

1 2 3 4 5

1

2

3

4

5

0

1

2

3

4

5

x 10
−3

(c) Probability of simultaneous peak between two
different clusters

Figure 8.8: Correlations among servers, racks, and clusters

We first explore the power dynamics of the servers and the unpredictability of power capping

events. Using 2-month long data, Figure 8.7 shows that the time intervals between two

consecutive peaks can range between few minutes to several hundred hours. We define

power jump as the difference between the power that exceeds the cap and the preceding

measurement that is below the cap. As Figure 8.7(b) shows that power jumps can vary

between 0 to 51 for 60 servers in each rack (while their aggregate power is in range [0, 60]).

This result shows the motivation for an event-driven protocol.

Figure 8.8 illustrates the correlations across 180 servers from different racks and clusters us-

ing their raw power consumption data over 1 week. The image is a visualization of a 180×180

matrix, indexed by the server number. That is, the entry indexed at [i, j] in this matrix is the

correlation coefficient of the values (5040 samples) between the i-th and the j-th server. We

can clearly see that the servers in the same rack are strongly positively correlated, and those

199

in the same cluster are also positively correlated. But the servers between clusters are less

or negatively correlated. This usually happens because the servers in the same cluster hosts

similar workloads leading to synchronous power characteristics [57]. We further assume a

local cap of c
60

(considering α = 1) for each individual server, and show in Figure 8.8(b) the

CDF of the number of servers that exceed local caps when the cluster level aggregate power

exceeds cap c. The figure shows that in 80% cases when the rack level aggregate power

exceeds cap c, the numbers of servers (among 60 servers per rack) that are over the local cap

are 43, 55, and 50 for Rack R3, R1, and R2, respectively. The strong intra-cluster synchrony

in power surge suggests the feasibility of detecting a cluster-level power surge based on local

server-level measurements. Figure 8.8(c) shows probabilities of different racks in 2 clusters

to be at peak simultaneously. The entry indexed at [i, j] in this 2D matrix is the probability

that the i-th rack in cluster 1 and the j-th rack in cluster 2 are at peak simultaneously. The

probabilities were found in the range [0, 0.0056]. This strong inter-cluster asynchrony im-

plies that using an event-driven protocol (that performs wireless communications only upon

detecting an event) significantly minimizes inter cluster interference caused by transmissions

generated by the event-driven CapNet in different clusters.

We observe strong synchrony in power behavior among the servers in the same cluster and

strong asynchrony among between different clusters. The major implication of the trace

analysis is that CapNet protocol is consistent with real data center power behavior. As the

intra-cluster synchrony suggests the potential efficacy of a local event detection policy, our

protocol is particularly effective in the presence of strong intra-cluster synchrony that exists

in enterprise data centers as observed in our trace analysis. However, in absence of intra-

cluster synchrony in power peaks, CapNet will not cause unnecessary power capping control

or more wireless traffic than a periodic protocol. The synchrony only enhances CapNet’s

performance.

8.5.5 Power Capping Results

Now we present our experimental results with CapNet’s event-driven protocol. First we

compare its performance with the periodic protocol and a representative CSMA/CA protocol.

We then analyze its scalability in terms of number of servers. First we experiment only for

the simple case, where a single iteration of control loop can settle to a sustained power level,

200

3 4 5 6 7 8 9

x 10
4

0

0.2

0.4

0.6

0.8

1

Lower bound slack value (ms)

C
D

F
 o

f
L

B
 s

la
c
k
 v

a
lu

e
s

Periodic
Event−driven

(a) CDF of lower bound slack

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Detection slot in detection phase

C
D

F

(b) CDF of detection slots in detection phase

1 2 3 4 5 6
0

20

40

60

80

100

Power capping event #

P
a
c
k
e
t
lo

s
s
 r

a
te

 (
%

)

BoxMAC
Event−driven

(c) Packet Loss Rate

Figure 8.9: Performance of Event-Driven protocol on 60 servers (4 weeks)

201

and then we also analyze scalability in terms of number of control iterations, where multiple

iterations are needed to settle to a sustained power level. We have also experimented it

under different caps and in presence of interfering clusters. In all experiments, detection

phase length, h, was set to 100 ∗ n ms, where n is the number of servers. We set this value

because this makes each slot in the detection phase equal to 100ms, which is enough for

receiving one alarm as well as for sending a message from the manager to the servers. Setting

a larger value reduces the number of cycles of detection phase, but reduces the granularity

of monitoring. For assigning a local cap of αc
n

to the servers, we first experiment with α = 1.

Later, we experiment under different values of α. Condition 8.1 is used for detection and

starting an aggregation phase. In the results, slack is defined as the difference between the

trip time (i.e. deadline) and the total latency required for power capping. That is, a negative

value of slack implies a deadline miss. We use LB slack and UB slack to define the slack

calculated considering LB trip time and UB trip time, respectively. In our results, in cases

timing requirement can be loose, while there are cases where these are very tight, and the

results are shown for all cases. We particularly care for tight deadlines, and want to avoid

any deadline misses.

Performance Comparison with Base Lines

Figure 8.9 presents the results using 60 servers on one rack for single-iteration control loop.

We used 4 weeks long data traces for this rack. We set the 95-th percentile of all aggregate

powers values of all data points in every 2-minute interval as its cap c. For assigning local

cap we use α = 1. In running the protocols using these traces, the protocols observe all

peaks. The upper bound of aggregation latency (Lagg) given in (8.3) in Section 8.4.4 was set

as the period of the periodic protocol. Figure 8.9(a) shows the LB slacks for both the event-

driven protocol and the periodic one. The figure only plots the CDF for the cases where the

magnitude of oversubscription was above 1.5 for better resolution as the slack was too big

for a smaller magnitudes (which are not of interest). Since UB trip times are easily met,

we also omit those results. The non-negative LB slack values for each protocol indicate that

it easily meets the trip times. Hence there is no benefit in using non-stop communications

(i.e., the naive periodic protocol).

202

While the slacks in event-driven protocol are shorter than those in the periodic protocol

because the former spends some time in the detection phase, in 80% cases event-driven

protocol can provide a slack of more than 57.15s while the periodic protocol provides 57.88s.

The difference is not significant because as shown in Figure 8.9(b) in 90% cases among all

power capping events the detection happened in the first slot of the detection cycle. Only

in 10% cases, it was after the first slot of the detection phase, and all detection happened

within the 6-th slot, although the phase had a total of 60 slots (for 60 servers, one slot per

server). These results indicate that CapNet’s local detection policy can quickly determine

the events. This is also an implication that experimental values of power capping latencies

are quite different (or shorter) from the pessimistic analytical values derived in (8.5) in

Section 8.4.4. Also, in this experiment, 94.16% of the total detection phases did not have

any transmission from the servers. Therefore, if we compare with the periodic protocol that

needs to continue communication always in the network, the event-driven protocol suppresses

transmissions at least by 94.16% while the real-time performance of two protocols are similar.

We also evaluate the performance when BoxMAC (the default CSMA/CA based protocol

in TinyOS [20]) is used for power capping communication for up to first 6 capping events

in the data traces. Figure 8.9(c) shows that it experiences packet loss rate over 74% while

performing communication for a power capping event. This happens because all 60 nodes

try to send at the same time, and the back-off period in 802.15.4 CSMA/CA under default

setting is too short, which leads to frequent repeated collisions. Since we lose most of the

packets, we do not consider latency under CSMA/CA. Increasing the back-off period reduces

collisions but results in long communication delays. In subsequent experiments, we exclude

CSMA/CA as it does not fit for power capping.

Scalability in Terms of Number of Servers

In our data traces each rack has at most 60 active servers. To test with more servers,

we combine multiple racks in the same cluster since they have similar pattern of power

consumption (as we have already discussed in Subsection 8.5.4). For sake of experimentation

time, in all subsequent experiments we set cap at 98-th percentile (that would result in

a smaller number of capping events). The lower bound slack distribution are shown in

Figure 8.10 for 120, 240, and 480 servers by merging 2, 4, and 8 racks, respectively (for

203

0 2 4 6 8 10

x 10
5

0

0.2

0.4

0.6

0.8

1

Lower bound slack values (ms)

C
D

F

120 servers

240 servers

480 servers

Figure 8.10: CDF of LB slack under various numbers of servers (4 weeks)

0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

α

R
a

te
 (

%
)

 False alarm rate

 Miss rate

Figure 8.11: Deadline (trip time) miss rate and false alarm rate under varying α

single iteration capping). Hence, for single iteration, the deadlines are easily met for even

480 servers (since in each setup, 100% of all slack values are positive).

Experiments under Varying α

Now we experiment with different values of α for assigning a local cap of αc
n

to the servers

using 480 servers. The results in Figure 8.11 show the

tradeoff between false alarm rate and power capping latency under varying α. As we decrease

the value of α from 1 to 0.80, the false alarm rate decreases from 45% to 2%. This happens

because with decreased value of α, CapNet considers multiple alarms before detecting a

potential event. Note that this alarm rate is very small compared to the whole time window

since power capping happens in at most 5% cases. Therefore alarms are also generated rarely.

Since waiting for multiple alarms increases the latency in detection, the total power capping

latency increases as the value of α decreases. However, as this latency increase happens only

204

−1.5 −1 −0.5 0 0.5 1

x 10
6

0

0.2

0.4

0.6

0.8

1

LB slack (ms)

C
D

F

4 iterations
8 iterations
16 iterations

(a) LB slack for 120 servers

−1 −0.5 0 0.5 1

x 10
6

0

0.2

0.4

0.6

0.8

1

LB slack (ms)

C
D

F

4 iterations
8 iterations
16 iterations

(b) LB slack for 480 servers

0 5 10 15
0

5

10

15

20

25

30

35

Number of control iterations

L
B

 t
ri
p
 t
im

e
 m

is
s
 r

a
te

 (
%

)

120 servers
240 servers
480 servers

(c) Miss rate (LB trip time)

Figure 8.12: Multi-iteration capping under event-driven protocol (4 weeks)

in the detection phase which is negligible compared to the total capping latency, there is

hardly any impact on deadline miss rates. The figure shows a deadline miss rate of 0 under

varying α.

Scalability in Number of Control Iterations

Now we consider a conservative case where multiple iterations of control loop are required

to settle to a sustained power level [48, 120, 177]. The number of iterations required for the

rack-level loop as experimented in [177] can be up to 16 in the worst case (which happens

very rarely). Hence, we now conduct experiments considering multiple numbers of control

iterations (up to 16 assuming a pessimistic scenario). We plot the results in Figure 8.12 for

various numbers of servers under various number of iterations. As shown in Figure 8.12(a),

for 120 servers under 16-iteration case, we have 13% cases with negative slack meaning that

the LB trip times were missed. However, the UB trip times were met in 100% cases. Note

that we have considered a quite pessimistic set up here because using 16-iteration as well

205

as trying to meet the lower bound of trip times are both very conservative considerations.

For 120 servers under 8 iterations, in 0.13% cases slacks were negative. However, in 80%

cases the slacks were 92.492s, 66.694s, and 22.238s for 4, 8, and 16 iterations, respectively

indicating that the trip times were easily met, and the system could oversubscribe safely.

For 4-iteration, the minimum slack was 23.2s. To preserve figure resolution, we do not

show the UB slacks since they were all positive. For 480 servers (Figures 8.12(b), 8.12(c)),

98.95%, 97.86%, 94.93%, and 67.2% LB trip times were met for 2, 4, 8, and 16 iterations,

respectively. For 240 nodes, we miss deadlines in 5% cases under 8-iteration and 13.94%

cases under 16-iteration.

For all cases we met UB trip times in 100% cases. Note that assuming 16-iteration and

considering the LB trip times are very conservative assumption as it can rarely happen.

Hence, the above results show that, even for 480 servers, the latencies incurred in CapNet

for power capping remain within even the conservative latency requirements in most cases.

Experiments under Varying Caps

In all experiments we have performed so far, CapNet was able to meet UB trip times. Now

we make some setup changes to encounter some scenario where UB trip times can be smaller,

by making oversubscription magnitude higher. For this purpose, we now decrease the cap

to decrease the trip times so as to make scenarios to miss upper bound trip times to see the

robustness of the protocol. Now again we set the 95-th percentile of aggregate power as the

cap. This would give the previous capping events shorter deadlines since a smaller cap implies

a larger magnitude of oversubscription. For the sake of experiment time, we only tested with

120 servers and their 4 week data traces. Figure 8.13 shows that we now miss more LB

trip times and miss some UB trip times as well since the deadlines now become shorter.

However, UB trip times are missed only in 0.11% and 1.02% cases under 8 and 16 iterations,

respectively, while LB deadlines were missed in 2.14%, 6.84%, and 26.56% cases under 4, 8,

and 16 iterations, respectively. All deadlines were met for up to 3 iterations (and not shown

in the figures). We have shown the results only for higher number of iterations that rarely

happen. These results demonstrate the robustness for larger magnitude of oversubscription

in that even when we use 16-iteration only 1.02% UB trip times are missed.

206

−2 0 2 4 6 8

x 10
6

0

0.2

0.4

0.6

0.8

1

Slack (ms)

C
D

F

UB Trip time (8 iterations)
LB Trip time (8 iterations)
UB Trip time (16 iterations)
LB Trip time (16 iterations)

(a) CDF of slack values (Cap: 95-th percentile)

4 8 16
0

5

10

15

20

25

30

Number of iterations

M
is

s
 r

a
te

 (
%

)

Cap: 95−th percentile
Cap: 98−th percentile

(b) LB trip time miss rate

4 8 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of iterations

M
is

s
 r

a
te

 (
%

)

Cap: 95−th percentile
Cap: 98−th percentile (values are 0 here)

(c) UB trip time miss rate

Figure 8.13: Capping under different caps on 120 servers (4 weeks)

Experiments in Presence of Multiple Clusters

We have shown through data center trace analysis in Figure 8.8(c) in Section 8.5.4 that the

probability that two clusters are over the cap simultaneously is no greater than 0.0056. Yet,

in this section we perform some experiment from a pessimistic point of view. In particular,

we perform an experiment and see the performance of CapNet under an interfering cluster.

We mimic an interfering cluster of 480 servers in the following way. We select a nearby

cluster and place a pair of motes in the rack: one at the ToR and the other inside the rack.

We set their Tx power at maximum (0dBm). The mote at the ToR represents its manager

and carries on a pattern of communication like a real manager to control 480 servers. The

mote inside the rack responds as if it were connected to each of 480 servers. Specifically,

the manager executes a detection phase of 100 ∗ 480ms, and the node in the rack randomly

selects a slot between 1 and 480. On that slot, it generates an alarm with probability 5%

since capping happens in no more than 5% cases. Whenever the manager receives the alarm,

207

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2
x 10

5

Capping event #

L
a

te
n

c
y
 (

m
s
)

1 interfering cluster
No interfering cluster

(a) Capping latency

4 8 16
0

10

20

30

40

50

Number of iterations

M
is

s
 r

a
te

 (
%

)

LB Trip time (No interfering cluster)
LB Trip time (1 interfering cluster)
UB Trip time (No interfering cluster)
UB Trip time (1 interfering cluster)

(b) Miss rate

Figure 8.14: Capping for 480 servers under interfering cluster

it generates a burst of communication in the pattern like what it would have done for 480

servers. After finishing this pattern of communication it resumes the detection phase.

We run the main cluster (system used for experiment) using 4 weeks data traces, and plot

the results in Figure 8.14. Figure 8.14(a) shows the latencies for different capping events

in 4 weeks data both under interference and without interference (when there was no other

cluster). Under interfering cluster, the delays mostly increase. This happens because the

event-driven protocol experiences packet loss and uses retransmission for those, thereby

increasing network delays. While the maximum increase was 124.63s, in 80% cases the

increase was less than 15.089s. We noticed that such big increase happened due to the loss

of alarms in a detection phase that resulted in a detection in the next phase (i.e., while

the phase length is 48s). Still power capping was successful in all cases but those when

the control broadcast was lost. Among 375 events, 4 broadcasts were lost at some server

even after 2 repeatations, resulting in control failure in 1.06% cases. This value became

0 in multi-iteration cases. For multi-iteration cases, at least one control broadcasts was

successful that resulted in no capping failure for control message loss. However, as the delay

due to transmission failure and recovery increased in detection phase, we experienced capping

failure. For 16-iteration, we missed the upper bound of trip time in 40.27% cases and lower

bound of trip times in 32.08% cases. However, we use a conservative assumption here. For 4

iteration miss rate was 5.06% and 8.26% only. And for 2-iteration they are only 2.13% and

2.4% which are very marginal. The result indicates that even under interference, CapNet

demonstrates robustness in meeting the real-time requirements of power capping.

208

8.6 Discussions and Future Work

While our paper addresses feasibility, protocol design and implementation, several engineer-

ing challenges such as security, EMI and fault tolerance needs to be addressed.

Fault Tolerance. One important challenge is handling the failure of power capping manager

in a cluster. To address this, power capping managers can be connected among themselves

either through a different band or through a wired backbone. As a result, when some manager

fails, a nearby one can take over its servers. This paper focuses on communication within

a single cluster. DCM fault detection, isolation, and node migration need to be studied in

future work.

Security. Another challenge is the security of the management system itself. Since the

system relies on wireless control, someone might be able to maliciously tap into the wireless

network and take control of the data center. There are two typical approaches to handle this

security issue: First, the signal itself should be attenuated by the time it reaches outside the

building. We can identify secure locations inside the data center from which the controller

can communicate, and identify a signature for the controllers which would be known to the

server machines. Second, it is possible to encrypt wireless messages, for example, using

MoteAODV (+AES) [36]. We can also use shielding within the data center to keep the RF

signals contained within the enclosed region.

EMI & Compliance. While less emphasized in research studies, a practical concern of in-

troducing wireless communications in data centers is that they do not adversely impact other

devices. There are FCC certified IEEE 802.15.4 circuit design available(e.g. [9]). Previous

work has also used WiFi and ZigBee in live data centers for monitoring purposes [119].

8.7 Related Work

In order to reduce the capital spending on data centers, enterprise data centers use an

over-subscription approach as studied in [75, 81, 120, 138], which is similar to over-booking

in airline reservations. Server vendors and data center solutions providers have started to

209

offer power capping solutions [15,16]. Power capping using feedback control algorithms [178]

has been studied for individual servers. In contrast, the study of this paper concentrates

to coordinated power capping which is more desirable in data centers as it allows servers

to exploit power left unused by other servers. While such power capping has been studied

before [77, 108, 120, 145, 177, 191], all existing solutions rely on wired network for controller-

server communication. In contrast, we focus on wireless networking for power capping. We

have outlined the advantages of wireless management in Section 8.2.

Previous work on using wireless network in data centers exists on applications to high band-

width (e.g. with 60GHz radio) production data network [194]. In contrast, CapNet is

targeted at data management functions that have much lower bandwidth requirement while

demanding real-time communication through racks. RACNet [119] is a passive monitoring

solution in the data center that monitors temperature or humidity across racks where all

radios are mounted at the top of the rack. Our solution enables active control and requires

communication through racks and server enclosures, and hence encounters fundamentally

different challenges. Also, RACNet also does not have real-time features, while CapNet is

designed to meet the real-time requirements in power capping.

8.8 Summary

Power capping is a time-critical management operation for data centers that commonly over-

subscribe power infrastructure for cost savings. In this paper, we have designed CapNet, a

low-cost, real-time wireless management network for data centers and validated its feasibility

for power capping. We deployed and evaluated CapNet in an enterprise data center. Using

server power traces, our experimental results on a cluster of 480 servers inside the data center

show that CapNet can meet the real-time requirements of power capping. CapNet represents

a promising step towards applying low power wireless networks to time-critical, close-loop

control in DCM.

210

Chapter 9

Multi-core Real-Time Scheduling for

Generalized Parallel Task Models

Multi-core processors offer a significant performance increase over single-core processors.

They have the potential to enable computation-intensive real-time applications with strin-

gent timing constraints that cannot be met on traditional single-core processors. However,

most results in traditional multiprocessor real-time scheduling are limited to sequential pro-

gramming models and ignore intra-task parallelism. In this paper, we address the problem

of scheduling periodic parallel tasks with implicit deadlines on multi-core processors. We

first consider a synchronous task model where each task consists of segments, each segment

having an arbitrary number of parallel threads that synchronize at the end of the segment.

We propose a new task decomposition method that decomposes each parallel task into a set

of sequential tasks. We prove that our task decomposition achieves a resource augmentation

bound of 4 and 5 when the decomposed tasks are scheduled using global EDF and partitioned

deadline monotonic scheduling, respectively. Finally, we extend our analysis to a directed

acyclic graph (DAG) task model where each node in the DAG has a unit execution require-

ment. We show how these tasks can be converted into synchronous tasks such that the same

decomposition can be applied and the same augmentation bounds hold. Simulations based

on synthetic workload demonstrate that the derived resource augmentation bounds are safe

and sufficient.

211

9.1 Introduction

In recent years, multi-core processor technology has improved dramatically as chip manu-

facturers try to boost performance while minimizing power consumption. This development

has shifted the scaling trends from increasing processor clock frequencies to increasing the

number of cores per processor. For example, Intel has recently put 80 cores in a Teraflops

Research Chip [10] with a view to making it generally available, and ClearSpeed has devel-

oped a 96-core processor [11]. While hardware technology is moving at a rapid pace, software

and programming models have failed to keep pace. For example, Intel [10] has set a time

frame of 5 years to make their 80-core processor generally available due to the inability of

current operating systems and software to exploit the benefits of multi-core processors.

As multi-core processors continue to scale, they provide an opportunity for performing more

complex and computation-intensive tasks in real-time. However, to take full advantage of

multi-core processing, these systems must exploit intra-task parallelism, where parallelizable

real-time tasks can utilize multiple cores at the same time. By exploiting intra-task paral-

lelism, multi-core processors can achieve significant real-time performance improvement over

traditional single-core processors for many computation-intensive real-time applications such

as video surveillance, radar tracking, and hybrid real-time structural testing [95] where the

performance limitations of traditional single-core processors have been a major hurdle.

The growing importance of parallel task models for real-time applications poses new chal-

lenges to real-time scheduling theory that had previously mostly focused on sequential task

models. The state-of-the-art work [112] on parallel scheduling for real-time tasks with

intra-task parallelism analyzes the resource augmentation bound using partitioned Deadline

Monotonic (DM) scheduling. A resource augmentation under a scheduling policy quantifies

processor-speed up factor (how much we have to increase the processor speed) with respect

to an optimal algorithm to guarantee the schedulability of a task set under that policy. The

state-of-the-art work [112] considers a synchronous task model, where each parallel task con-

sists of a series of sequential or parallel segments. We call this model synchronous, since

all the threads of a parallel segment must finish before the next segment starts, creating a

synchronization point. However, that task model is restrictive in that, for every task, all

the segments have an equal number of parallel threads, and the execution requirements of

212

all threads in a segment are equal. Most importantly, in that task model, the number of

threads in every segment is no greater than the total number of processor cores.

While the work presented by [112] represents a promising step towards parallel real-time

scheduling on multi-core processors, the restrictions on the task model make the solutions

unsuitable for many real-time applications that often employ different numbers of threads in

different segments of computation. In addition, it analyzes the resource augmentation bound

under partitioned DM scheduling only, and does not consider other scheduling policies such

as global EDF. In this work, we consider real-time scheduling on multi-core processors for a

more general synchronous task model. Our tasks still contain segments where the threads

of each segment synchronize at its end. However, in contrast to the restrictive task model

addressed in [112], for any task in our model, each segment can contain an arbitrary number

of parallel threads. That is, different segments of the same parallel task can contain different

numbers of threads, and segments can contain more threads than the number of processor

cores. Furthermore, the execution requirements of the threads in any segment can vary. This

model is more portable, since the same task can be executed on machines with small as well

as large numbers of cores. Specifically, our work makes the following new contributions to

real-time scheduling for periodic parallel tasks.

• For the general synchronous task model, we propose a task decomposition algorithm

that converts each implicit deadline parallel task into a set of constrained deadline

sequential tasks.

• We derive a resource augmentation bound of 4 when these decomposed tasks are sched-

uled using global EDF scheduling. To our knowledge, this is the first resource aug-

mentation bound for global EDF scheduling of parallel tasks.

• Using the proposed task decomposition, we also derive a resource augmentation bound

of 5 for our more general task model under partitioned DM scheduling.

• Finally, we extend our analyses for a Directed Acyclic Graph (DAG) task model where

each node in a DAG has a unit execution requirement. This is an even more general

model for parallel tasks. Namely, we show that we can transform unit-node DAG

tasks into synchronous tasks, and then use our proposed decomposition to get the

same resource augmentation bounds for the former.

213

We evaluate the performance of the proposed decomposition through simulations based on

synthetic workloads. The results indicate that the derived bounds are safe and sufficient.

In particular, the resource augmentations required to schedule the decomposed tasks in

our simulations are at most 2.4 and 3.4 for global EDF and partitioned DM scheduling,

respectively, which are significantly smaller than the corresponding theoretical bounds.

In the rest of the paper, Section 9.2 describes the parallel synchronous task model. Section 9.3

presents the proposed task decomposition. Section 9.4 presents the analysis for global EDF

scheduling. Section 9.5 presents the analysis for partitioned DM scheduling. Section 9.6

extends our results and analyses for unit-node DAG task models. Section 9.7 presents the

simulation results. Section 9.8 reviews related work. Finally, we conclude in Section 9.9.

9.2 Parallel Synchronous Task Model

We primarily consider a synchronous parallel task model, where each task consists of a

sequence of computation segments, each segment having an arbitrary number of parallel

threads with arbitrary execution requirements that synchronize at the end of the segment.

Such tasks are generated by parallel for loops, a construct common to many parallel lan-

guages such as OpenMP [17] and CilkPlus [12].

We consider n periodic synchronous parallel tasks with implicit deadlines (i.e. deadlines are

equal to periods). Each task τi, 1 ≤ i ≤ n, is a sequence of si segments, where the j-th

segment, 1 ≤ j ≤ si, consists of mi,j parallel threads. First we consider the case when, for

any segment of τi, all parallel threads in the segment have equal execution requirements.

For such τi, the j-th segment, 1 ≤ j ≤ si, is represented by 〈ei,j,mi,j〉, with ei,j being the

worst case execution requirement of each of its threads. When mi,j > 1, the threads in

the j-th segment can be executed in parallel on different cores. The j-th segment starts

only after all threads of the (j − 1)-th segment have completed. Thus, a parallel task τi in

which a segment consists of equal-length threads is shown in Figure 9.1, and is represented

as τi : (〈ei,1,mi,1〉, 〈ei,2,mi,2〉, · · · , 〈ei,si ,mi,si〉) where

• si is the total number of segments in task τi.

214

• In a segment 〈ei,j,mi,j〉, 1 ≤ j ≤ si, ei,j is the worst case execution requirement of each

thread, and mi,j is the number of threads. Therefore, any segment 〈ei,j,mi,j〉 with

mi,j > 1 is a parallel segment with a total of mi,j parallel threads, and any segment

〈ei,j,mi,j〉 with mi,j = 1 is a sequential segment since it has only one thread. A task τi

with si = 1 and mi,si = 1 is a sequential task.

…

1
e
i,1

2
e
i,1

3
e
i,1

m
i,1

e
i,1

1
ei,2

ei,2

1

ei,si

2
ei,si

ei,si
m
i,2

m
i,si〈e

i,1
, m

i,1
〉 〈e

i,2
, m

i,2
〉 〈e

i,si
, m

i,si
〉..

.

..

.

start end

Figure 9.1: A parallel synchronous task τi

Now, we consider the case when the execution requirements of parallel threads in a segment

of τi may differ from each other. An example of such a task is shown in Figure 9.2(a), where

each horizontal bar indicates the length of the execution requirement of a thread. As the

figure shows, the parallel threads in the third segment have unequal execution requirements.

By adding a new synchronization point at the end of each thread in a segment, any segment

consisting of threads of unequal length can be converted to several segments each consisting

of threads of equal length as shown in Figure 9.2(b). Specifically, for the task with unequal-

length threads in a segment shown in Figure 9.2(a), Figure 9.2(b) shows the corresponding

task in which each segment consists of equal-length threads. Thus, in any synchronous

parallel task, any segment consisting of threads of different execution requirements can be

converted to several segments each consisting of threads of an equal execution requirement

without changing any task parameter such as period, deadline, or execution requirement. It

is worth noting that such a conversion is not entirely loss-less since it adds additional syn-

chronization points. It is entirely possible that some task system that would be schedulable

215

with another transformation might not be schedulable with our proposed one. However,

since the execution requirements do not change, it has no effect on the utilization of the

system, and our bounds depend on the utilization of the system. Hence, we concentrate only

to the task model where each segment in a task consists of equal-length threads (such as the

one shown in Figure 9.1).

start end

vertical bar after a
segment indicates
where threads of
the segment
synchronize

segment with 4
parallel threads of
equal length

thread

segment with 4 parallel
threads of unequal length

thread

segment with
3 parallel
threads of
equal length

thread

segment with 1 thread

(a) A synchronous task with unequal-length threads in a segment

start end

thread

new
segment

thread

thread

new
segment

new
segment

thread thread

(b) The corresponding synchronous task with equal-length threads in each segment (each dotted vertical line
indicates a newly added synchronization point at the end of a thread)

Figure 9.2: Conversion of a segment with unequal-length threads to segments with equal-
length threads in a synchronous parallel task

Therefore, considering a multi-core platform consisting of m processor cores, we focus on

scheduling n parallel tasks denoted by τ = {τ1, τ2, · · · , τn}, where each τi is represented as

τi : (〈ei,1,mi,1〉, 〈ei,2,mi,2〉, · · · , 〈ei,si ,mi,si〉) (as the one shown in Figure 9.1). The period

of task τi is denoted by Ti. The deadline Di of τi is equal to its period Ti. Each task

τi generates (potentially) an infinite sequence of jobs, with arrival times of successive jobs

separated by Ti time units. Jobs are fully independent and preemptive: any job can be

216

suspended (preempted) at any time instant, and is later resumed with no cost or penalty.

The task set is said to be schedulable when all tasks meet their deadlines.

9.3 Task Decomposition

In this section, we present a decomposition of the parallel tasks into a set of sequential

tasks. In particular, we propose a strategy that decomposes each implicit deadline parallel

task (like the one shown in Figure 9.1) into a set of constrained deadline (i.e. deadlines are no

greater than periods) sequential tasks by converting each thread of the parallel task into its

own sequential task and assigning appropriate deadlines to these tasks. This strategy allows

us to use existing schedulability analysis for multiprocessor scheduling (both global and

partitioned) to prove the resource augmentation bounds for parallel tasks (to be discussed

in Sections 9.4 and 9.5). Here, we first present some useful terminology. We then present

our decomposition and a density analysis for it.

9.3.1 Terminology

Definition 1. The minimum execution time (i.e. the critical path length) Pi of task τi on

a multi-core platform where each processor core has unit speed is defined as

Pi =

si∑
j=1

ei,j

Observation 1. On a unit-speed multi-core platform, any task τi requires at least Pi units

of time even when the number of cores m is infinite.

On a multi-core platform where each processor core has speed ν, the critical path length of

task τi is denoted by Pi,ν and is expressed as follows.

Pi,ν =
1

ν

si∑
j=1

ei,j =
Pi
ν

217

Definition 2. The maximum execution time (i.e. the work) Ci of task τi on a multi-core

platform where each processor core has unit speed is defined as

Ci =

si∑
j=1

mi,j.ei,j

That is, Ci is the execution time of τi on a unit-speed single core processor if it is never

preempted. On a multi-core platform where each processor core has speed ν, the maximum

execution time of task τi is denoted by Ci,ν and is expressed as follows.

Ci,ν =
1

ν

si∑
j=1

mi,j.ei,j =
Ci
ν

(9.1)

Definition 3. The utilization ui of task τi, and the total utilization usum(τ) for the set of n

tasks τ on a unit-speed multi-core platform are defined as

ui =
Ci
Ti

; usum(τ) =
n∑
i=1

Ci
Ti

Observation 2. If the total utilization usum is greater than m, then no algorithm can schedule

τ on m identical unit speed processor cores.

Definition 4. The density δi of task τi, the maximum density δmax(τ) and the total density

δsum(τ) of the set of n tasks τ on a unit-speed multi-core platform are defined as follows:

δi =
Ci
Di

; δsum(τ) =
n∑
i=1

δi; δmax(τ) = max{δi|1 ≤ i ≤ n}

For an implicit deadline task τi, δi = ui.

9.3.2 Decomposition

Following is the high-level idea of the decomposition of a parallel task τi.

218

1. In our decomposition, each thread of the task becomes its own sequential subtask.

These individual subtasks are assigned release times and deadlines. Since each thread

of a segment is identical (with respect to its execution time), we consider each segment

one at a time, and assign the same release times and deadlines to all subtasks generated

from threads of the same segment.

2. Since a segment 〈ei,j,mi,j〉 has to complete before segment 〈ei,j+1,mi,j+1〉 can start, the

release time of the subtasks of segment 〈ei,j+1,mi,j+1〉 is equal to the absolute deadline

of the subtasks of segment 〈ei,j,mi,j〉.

3. As stated before, we analyze the schedulability of the decomposed tasks based on

their densities. The analysis is largely dependent on the total density (δsum) and the

maximum density (δmax) of the decomposed tasks. Therefore, we want to keep both

δsum and δmax bounded and as small as possible. In particular, we need δmax to be at

most 1, and we want δsum over all tasks to be at most usum after decomposition. To

do so, usually we need to assign enough slack among the segments. It turns out to be

difficult to assign enough slack to each segment if we consider unit-speed processors.

However, we can increase the available slack by considering higher speed processors.

In particular, we find that decomposing on speed 2 processors allows us enough slack

to decompose effectively, keeping both δsum and δmax at desired levels. Decomposing

on processors of higher speed is also possible but leads to lower efficiency. On the other

hand, decomposing on speed 1 processors would be clearly non-optimal (in terms of the

availability of slack). In particular, if we do the decomposition with α-speed processor,

where α ≥ 1, then the best value of α to minimize both δsum and δmax becomes 2.

Therefore, in the remainder of the paper we restrict ourselves to decomposition on 2-

speed processors. Thus, the slack for task τi, denoted by Li, that is distributed among

the segments is its slack on speed 2 processors, given by

Li = Ti − Pi,2 = Ti −
Pi
2

(9.2)

This slack is distributed among the segments according to a principle of “equitable

density” meaning that we try to keep the density of each segment approximately rather

than exactly equal by maintaining a uniform upper bound on the densities. To do this,

219

we take both the number of threads in each segment and the computation requirement

of the threads in each segment into consideration while distributing the slack.

In order to take the computation requirement of the threads in each segment into considera-

tion, we assign proportional slack fractions instead of absolute slack. We now formalize the

notion of slack fraction, fi,j, for the j-th segment (i.e. segment 〈ei,j,mi,j〉) of task τi. Slack

fraction fi,j is the fraction of Li (i.e. the total slack) to be allotted to segment 〈ei,j,mi,j〉
proportionally to its minimum computation requirement. Each thread in segment 〈ei,j,mi,j〉
has a minimum execution time of

ei,j
2

on 2-speed processor cores, and is assigned a slack

value of fi,j
ei,j
2

. Each thread gets this “extra time” beyond its execution requirement on

2-speed processor cores. Thus, for each thread in segment 〈ei,j,mi,j〉, the relative deadline

is assigned as

di,j =
ei,j
2

+ fi,j.
ei,j
2

=
ei,j
2

(1 + fi,j) (9.3)

Equation 9.3 shows how a thread’s deadline di,j is calculated based on its assigned slack

fraction fi,j. For example, if a thread has ei,j = 4 and it is assigned a slack fraction of

fi,j = 1.5, then its relative deadline is 2(1+1.5) = 5. That is, the thread has been assigned a

slack value of di,j − ei,j
2

= 5− 4
2

= 3 (or, equivalently fi,j
ei,j
2

= 3) on 2-speed cores. Similarly,

the value of 0 of fi,j implies that the thread has been assigned no slack on 2-speed processor

cores. Note that since the slack fraction and hence the slack can not be negative, the density

of a segment is at least 1. Therefore, in order to satisfy our maximum density requirement

— that δmax is at most 1 after decomposition on speed-2 processors — we must ensure that

the slack fraction is never negative.

Since a segment cannot start before all previous segments complete, the release offset of a

segment 〈ei,j,mi,j〉 is assigned as

φi,j =

j−1∑
k=1

di,k (9.4)

Thus, the density of each thread in segment 〈ei,j,mi,j〉 on 2-speed cores is

ei,j
2

di,j
=

ei,j
2

ei,j
2

(1 + fi,j)
=

1

1 + fi,j

220

Since a segment 〈ei,j,mi,j〉 consists ofmi,j threads, the segment’s density on 2-speed processor

cores is
mi,j

1 + fi,j
(9.5)

Note that to meet the deadline of the parallel task on 2-speed processor cores, the segment

slack should be assigned so that

fi,1.
ei,1
2

+ fi,2.
ei,2
2

+ fi,3.
ei,3
2

+ · · ·+ fi,si .
ei,si
2
≤ Li.

In our decomposition, we always assign the maximum possible segment slack on 2-speed

processor cores and, therefore, for our decomposition, the above inequality is in fact an

equality.

Since after assigning slack, we want to keep the density of each segment about equal, we must

take the number of threads of the segment into consideration while assigning slack fractions.

As stated before, we need to keep the sum of densities bounded on speed-2 processors after

decomposition. To determine whether slack assignment to a segment is critical or not, we

calculate a threshold based on task parameters. The segments whose number of threads

is greater than this threshold are computation intensive, and hence assigning slack to such

segments is critical. The remaining segments are deemed to be less computation intensive,

and hence assigning slack to such segments is less critical. Hence, to calculate segment

slack according to equitable density, we classify segments into two categories based on their

computation requirements and slack demand:

• Heavy segments are those which have mi,j >
Ci,2

Ti−Pi,2
. That is, they have many parallel

threads, and hence are computation intensive.

• Light segments are those which have mi,j ≤ Ci,2

Ti−Pi,2
. That is, these segments are less

computation intensive.

The threshold
Ci,2

Ti−Pi,2
is chosen to ensure that no thread is assigned any negative slack on

2-speed processor cores. We later (in Subsection 9.3.2) prove that every thread is indeed

assigned a non-negative slack which, in fact, guarantees that its density is at most 1 on

2-speed processor cores.

221

Using the above categorization, we also classify parallel tasks into two categories: tasks that

have some or all heavy segments versus tasks that have only light segments, and analyze

them separately as follows.

Tasks with some (or all) heavy segments

For the tasks which have some heavy segments, we treat heavy and light segments differently

while assigning slack. In particular, we assign no slack to the light segments; that is, segments

with mi,j ≤ Ci,2

Ti−Pi,2
of τi are assigned fi,j = 0. The total available slack Li is distributed

among the heavy segments (segments with mi,j >
Ci,2

Ti−Pi,2
) in such a way that each of these

segments has the same density.

For simplicity of presentation, we first distinguish notations between the heavy and light seg-

ments. Let the heavy segments of τi be represented as {〈ehi,1,mh
i,1〉, 〈ehi,2,mh

i,2〉, · · · , 〈ehi,shi ,m
h
i,shi
〉},

where shi ≤ si (superscript h standing for ‘heavy’). Then, let

P h
i,2 =

1

2

shi∑
j=1

ehi,j; Ch
i,2 =

1

2

shi∑
j=1

mh
i,j.e

h
i,j (9.6)

The light segments are denoted as {〈e`i,1,m`
i,1〉, 〈e`i,2,m`

i,2〉, · · · , 〈e`i,s`i ,m
`
i,s`i
〉}, where s`i = si−shi

(superscript ` standing for ‘light’). Then, let

P `
i,2 =

1

2

s`i∑
j=1

e`i,j; C`
i,2 =

1

2

s`i∑
j=1

m`
i,j.e

`
i,j (9.7)

Now, the following equalities must hold for task τi.

Pi,2 =
Pi
2

= P h
i,2 + P `

i,2; Ci,2 =
Ci
2

= Ch
i,2 + C`

i,2 (9.8)

Now we calculate slack fraction fhi,j for all heavy segments (i.e. segments 〈ehi,j,mh
i,j〉, where

1 ≤ j ≤ shi and mh
i,j >

Ci,2

Ti−Pi,2
) so that they all have equal density on 2-speed processor cores.

222

That is,

mh
i,1

1 + fhi,1
=

mh
i,2

1 + fhi,2
=

mh
i,3

1 + fhi,3
= · · · =

mh
i,shi

1 + fh
i,shi

(9.9)

In addition, since all the slack is distributed among the heavy segments, the following equality

must hold.

fhi,1.e
h
i,1 + fhi,2.e

h
i,2 + fhi,3.e

h
i,3 + · · ·+ fhi,shi

.ehi,shi
= 2.Li (9.10)

It follows that the value of each fhi,j, 1 ≤ j ≤ shi , can be determined by solving Equations 9.9

and 9.10 as shown below. From Equation 9.9, the value of fhi,j for each j, 2 ≤ j ≤ shi , can

be expressed in terms of fhi,1 as follows.

fhi,j = (1 + fhi,1)
mh
i,j

mh
i,1

− 1 (9.11)

Putting the value of each fhi,j, 2 ≤ j ≤ shi , from Equation 9.11 into Equation 9.10:

2Li = fhi,1e
h
i,1 +

shi∑
j=2

((
(1 + fhi,1)

mh
i,j

mh
i,1

− 1
)
ehi,j

)

= fhi,1e
h
i,1 +

shi∑
j=2

(
mh
i,j

mh
i,1

ehi,j + fhi,1
mh
i,j

mh
i,1

ehi,j − ehi,j

)

= fhi,1e
h
i,1 +

1

mh
i,1

shi∑
j=2

mh
i,je

h
i,j +

fhi,1
mh
i,1

shi∑
j=2

mh
i,je

h
i,j −

shi∑
j=2

ehi,j

From the above equation, we can determine the value of fhi,1 as follows.

223

fhi,1 =

2Li +
shi∑
j=2

ehi,j − 1
mh

i,1

shi∑
j=2

mh
i,je

h
i,j

ehi,1 + 1
mh

i,1

shi∑
j=2

mh
i,je

h
i,j

=

2Li + (
shi∑
j=2

ehi,j + ehi,1)− (ehi,1 + 1
mh

i,1

shi∑
j=2

mh
i,je

h
i,j)

ehi,1 + 1
mh

i,1

shi∑
j=2

mh
i,je

h
i,j

=

2Li +
shi∑
j=1

ehi,j

ehi,1 + 1
mh

i,1

shi∑
j=2

mh
i,je

h
i,j

− 1

In the above equation, replacing
∑shi

j=1 e
h
i,j with 2P h

i,2 from Equation 9.6, we get

fhi,1 =
2Li + 2P h

i,2

ehi,1 + 1
mh

i,1

shi∑
j=2

mh
i,je

h
i,j

− 1 =
mh
i,1(2Li + 2P h

i,2)

mh
i,1e

h
i,1 +

shi∑
j=2

mh
i,je

h
i,j

− 1

Similarly, in the above equation, replacing (mh
i,1e

h
i,1 +

∑shi
j=2m

h
i,je

h
i,j) with 2Ch

i,2 from Equa-

tion 9.6, the value of fhi,1 can be written as follows.

224

fhi,1 =
mh
i,1(2Li + 2P h

i,2)

2Ch
i,2

− 1 =
mh
i,1(Li + P h

i,2)

Ci,2 − C`
i,2

− 1 (From 9.8)

=
mh
i,1((Ti − Pi,2) + P h

i,2)

Ci,2 − C`
i,2

− 1 (From 9.2)

=
mh
i,1(Ti − (P h

i,2 + P `
i,2) + P h

i,2)

Ci,2 − C`
i,2

− 1 (From 9.8)

=
mh
i,1(Ti − P `

i,2)

Ci,2 − C`
i,2

− 1

Now putting the above value of fhi,1 in Equation 9.11, for any heavy segment 〈ehi,j,mh
i,j〉, we

get

fhi,j =
mh
i,j(Ti − P `

i,2)

Ci,2 − C`
i,2

− 1 (9.12)

Intuitively, the slack never should be negative, since the deadline should be no less than the

computation requirement of the thread. Since mh
i,j >

Ci,2

Ti−Pi,2
, according to Equation 9.12, the

quantity
mh

i,j(Ti−P `
i,2)

Ci,2−C`
i,2

> 1. This implies that fhi,j > 0. Now, using Equation 9.5, the density

of every segment 〈ehi,j,mh
i,j〉 is

mh
i,j

1 + fhi,j
=

mh
i,j

1 +
mh

i,j(Ti−P `
i,2)

Ci,2−C`
i,2
− 1

=
Ci,2 − C`

i,2

Ti − P `
i,2

(9.13)

Figure 9.3 shows a simple example of decomposition for a task τi consisting of 3 segments.

Tasks with no heavy segments

When the parallel task does not contain any heavy segments, we just assign the slack pro-

portionally (according to the length of ei,j) among all segments. That is,

fi,j =
Li
Pi,2

(9.14)

225

2

2

2

2

1

1

〈2,5〉
3

3
2

〈3,2〉 〈1,2〉Deadline Di = Ti = 15

Pi,2= (2+3+1)/2=3; Ci,2= (5*2+2*3+2*1)/2=9

 P
l

i,2= 0; C
l

i,2=0 (since 9/(15-3)=3/4)

start
end

From Eqn. 8:

From Eqn. 7:

(a) A parallel synchronous task τi

2

2

2

1

13
2

f
i,1

= 5*(5/3)-1

d
i,1
= 25/3

fi,3= 2*(5/3)-1

di,3= 5/3

f
i,2
= 2*(5/3)-1

d
i,2
= 5

offset Φi,2=25/3
offset Φi,3=40/3

3
2

start
end

From Eqn. 4:

From Eqn. 3:

From Eqn. 12:

(b) Decomposed task τdecomi

Figure 9.3: An example of decomposition

226

By Equation 9.5, the density of each segment 〈ei,j,mi,j〉 is

mi,j

1 + fi,j
=

mi,j

1 + Li

Pi,2

= mi,j
Pi,2

Li + Pi,2
= mi,j

Pi,2
Ti

(9.15)

9.3.3 Density Analysis

Once the above decomposition is done on task τi: (〈ei,1,mi,1〉, · · · , 〈ei,si ,mi,si〉), each thread

of each segment 〈ei,j,mi,j〉, 1 ≤ j ≤ si, is considered as a sequential multiprocessor subtask.

We use τdecom
i to denote task τi after decomposition. That is, τdecom

i denotes the set of

subtasks generated from τi through decomposition. Similarly, we use τdecom to denote the

entire task set τ after decomposition. That is, τdecom is the set of all subtasks that our

decomposition generates. Since fi,j ≥ 0, ∀1 ≤ j ≤ si, ∀1 ≤ i ≤ n, the maximum density

δmax,2 of any subtask (thread) among τdecom on 2-speed processor core is

δmax,2 = max{ 1

1 + fi,j
} ≤ 1 (9.16)

We must now bound δsum. Lemma 24 shows that the density of every segment is at most
Ci/2

Ti−Pi/2
for any task with or without heavy segments.

Lemma 24. After the decomposition, the density of every segment 〈ei,j,mi,j〉, where 1 ≤
j ≤ si, of every task τi on 2-speed processor cores is upper bounded by Ci/2

Ti−Pi/2
.

Proof. First, we analyze the case when the task contains some heavy segments. According

to Equation 9.13, for every heavy segment 〈ei,j,mi,j〉, the density is

Ci,2 − C`
i,2

Ti − P `
i,2

≤ Ci,2
Ti − P `

i,2

(since C`
i,2 ≥ 0)

≤ Ci,2
Ti − Pi,2

(since Pi,2 ≥ P `
i,2)

=
Ci/2

Ti − Pi/2

227

For every light segment 〈ei,j,mi,j〉 (i.e., a segment with mi,j ≤ Ci,2

Ti−Pi,2
), the slack fraction

fi,j = 0. That is, its deadline is equal to its computation requirement
ei,j
2

on 2-speed processor

cores. Therefore, its density, by definition, is

mi,j

1 + fi,j
= mi,j ≤

Ci,2
Ti − Pi,2

=
Ci/2

Ti − Pi/2

For the case when there are no heavy segments in τi, for every segment 〈ei,j,mi,j〉 of τi,

mi,j ≤ Ci,2

Ti−Pi,2
. Since Ti ≥ Pi,2 (Observation 1), the density of each segment 〈ei,j,mi,j〉

(Equation 9.15) of τi:

mi,j
Pi,2
Ti
≤ mi,j ≤

Ci,2
Ti − Pi,2

=
Ci/2

Ti − Pi/2

Hence, follows the lemma.

Thus, our decomposition distributes the slack so that each segment has a density that is

bounded above. Theorem 25 establishes an upper bound on the density of every task after

decomposition.

Theorem 25. The density δi,2 of every τdecom
i , 1 ≤ i ≤ n, (i.e. the density of every task τi

after decomposition) on 2-speed processor cores is upper bounded by Ci/2
Ti−Pi/2

.

Proof. After the decomposition, the densities of all segments of τi comprise the density of

τdecom
i . However, no two segments are simultaneous active, and each segment occurs exactly

once during the activation time of task τi. Therefore, we can replace each segment with the

segment that has the maximum density. Thus, task τdecom
i can be considered as si occurences

of the segment that has the maximum density, and therefore, the density of the entire task

set τdecom
i is equal to that of the segment having the maximum density which is at most

Ci/2
Ti−Pi/2

(Lemma 24). Therefore, δi,2 ≤ Ci/2
Ti−Pi/2

.

Lemma 26. If τdecom is schedulable, then τ is also schedulable.

Proof. For each τdecom
i , 1 ≤ i ≤ n, its deadline and execution requirement are the same

as those of original task τi. Besides, in each τdecom
i , a subtask is released only after all its

preceding segments are complete. Hence, the precedence relations in original task τi are

228

retained in τdecom
i . Therefore, if τdecom is schedulable, then a schedule must exist for τ where

each task in τ can meet its deadline.

9.4 Global EDF Scheduling

After our proposed decomposition, we consider the scheduling of synchronous parallel tasks. [112]

show that there exist task sets with total utilization slightly greater than (and arbitrarily

close to) 1 that are unschedulable with m processor cores. Since our model is a generalization

of theirs, this lower bound still holds for our tasks, and conventional utilization bound ap-

proaches are not useful for schedulability analysis of parallel tasks. Hence, we (like [112]) use

the resource augmentation bound approach, originally introduced in [141]. We first consider

global scheduling where tasks are allowed to migrate among processor cores. We then analyze

schedulability in terms of a resource augmentation bound. Since the synchronous parallel

tasks are now split into individual sequential subtasks, we can use global Earliest Deadline

First (EDF) scheduling for them. The global EDF policy for subtask scheduling is basically

the same as the traditional global EDF where jobs with earlier deadlines are assigned higher

priorities.

Under global EDF scheduling, we now present a schedulability analysis in terms of a resource

augmentation bound for our decomposed tasks. For any task set, the resource augmentation

bound ν of a scheduling policy A on a multi-core processor with m cores represents a

processor speedup factor. That is, if there exists any (optimal) algorithm under which a task

set is feasible on m identical unit-speed processor cores, then A is guaranteed to successfully

schedule this task set on a m-core processor, where each processor core is ν times as fast as

the original. In Theorem 28, we show that our decomposition needs a resource augmentation

bound of 4 under global EDF scheduling.

Our analysis uses a result for constrained deadline sporadic sequential tasks on m processor

cores proposed in [41] as re-stated here in Theorem 27. This result is a generalization of the

result for implicit deadline sporadic tasks proposed in [85].

229

Theorem 27. [41] Any constrained deadline sporadic sequential task set π with total density

δsum(π) and maximum density δmax(π) is schedulable using global EDF strategy on m unit-

speed processor cores if

δsum(π) ≤ m− (m− 1)δmax(π)

Since we decompose our synchronous parallel tasks into sequential tasks with constrained

deadlines, this result applies to our decomposed task set τdecom. If we can schedule τdecom,

then we can schedule τ (Lemma 26).

Theorem 28. If there exists any way to schedule a synchronous parallel task set τ on m

unit-speed processor cores, then the decomposed task set τdecom is schedulable using global

EDF on m processor cores each of speed 4.

Proof. Let there exist some algorithm A under which the original task set τ is feasible on

m identical unit-speed processor cores. If τ is schedulable under A, the following condition

must hold (by Observation 2).
n∑
i=1

Ci
Ti
≤ m (9.17)

We decompose tasks considering that each processor core has speed 2. To be able to schedule

the decomposed tasks τdecom, suppose we need to increase the speed of each processor core

ν times further. That is, we need each processor core to be of speed 2ν.

According to the definition of density, if a task has density x on a processor system S, then

its density will be x
ν

on a processor system that is ν times as fast as S. On an m-core

platform where each processor core has speed 2ν, let the total density and the maximum

density of task set τdecom be denoted by δsum,2ν and δmax,2ν , respectively. From 9.16, we have

δmax,2ν =
δmax,2

ν
≤ 1

ν
(9.18)

The value δsum,2ν turns out to be the total density of all decomposed tasks. A task has a

density of at most Ci/2
Ti−Pi/2

on 2-speed processor cores after decomposition. Therefore, its

density on 2ν-speed cores is at most
Ci/2

Ti−Pi/2

ν
= Ci/2ν

Ti−Pi/2
, where we cannot replace Pi/2 with

Pi/2ν. Although the critical path length on 2ν-speed cores is Pi/2ν, our decomposition

230

was performed on 2-speed cores where critical path length was Pi/2. By Theorem 25 and

Equation 9.1, the density of every task τdecom
i on m identical processors each of speed 2ν is

δi,2ν ≤
Ci

2ν

Ti − Pi

2

≤
Ci

2ν

Ti − Ti
2

(since Pi ≤ Ti)

=
Ci

2ν
Ti
2

=
1

ν
.
Ci
Ti

Thus, from 9.17,

δsum,2ν =
n∑
i=1

δi,2ν ≤
1

ν

n∑
i=1

Ci
Ti
≤ m

ν
(9.19)

Note that, in the decomposed task set, every thread of the original task is a sequential

task on a multiprocessor platform. Therefore, δsum,2ν is the total density of all threads (i.e.

subtasks), and δmax,2ν is the maximum density among all threads. Thus, by Theorem 27,

the decomposed task set τdecom is schedulable under global EDF on m processor cores each

of speed 2ν if

δsum,2ν ≤ m− (m− 1)δmax,2ν (9.20)

Now using the values of δsum,2ν (Equation 9.19) and δmax,2ν (Equation 9.18) into Condition

(9.20), task set τdecom is schedulable if

m

ν
≤ m− (m− 1)

1

ν

⇔ 1

ν
+

1

ν
− 1

mν
≤ 1 ⇔ 2

ν
− 1

mν
≤ 1

From the above condition, τdecom must be schedulable if

2

ν
≤ 1 ⇔ ν ≥ 2 ⇔ 2ν ≥ 4

Hence follows the theorem.

231

9.5 Partitioned Deadline Monotonic Scheduling

Using the same decomposition described in Section 9.3, we now derive a resource augmen-

tation bound required to schedule task sets under partitioned Deadline Monotonic (DM)

scheduling. Unlike global scheduling, in partitioned scheduling, each task is assigned to a

processor core. Tasks are executed only on their assigned processor cores, and are not al-

lowed to migrate among cores. We consider the FBB-FFD (Fisher Baruah Baker - First-Fit

Decreasing) partitioned DM scheduling [80] which the previous work on parallel task schedul-

ing [112] also uses as the scheduling strategy for parallel tasks in a more restricted model.

In fact, the FBB-FFD Algorithm was developed for periodic tasks without release offsets

while our decomposed subtasks have offsets. Therefore, first we present how the FBB-FFD

Algorithm should be adapted to partition our subtasks with offsets, and then we analyze the

resource augmentation bound.

9.5.1 FBB-FFD based Partitioned DM Algorithm for Decomposed

Tasks

The original FBB-FFD Algorithm [80] is a variant of the first-fit decreasing bin-packing

heuristic, and hinges on the notion of a request-bound function for constrained deadline

periodic sequential tasks. For a sequential task πi with execution requirement ei, utilization

ui, and deadline di, its request-bound function RBF(πi, t) for any time interval of length t is

the largest cumulative execution requirement of all jobs that can be generated by πi to have

their arrival times within a contiguous interval of length t. In the FBB-FFD Algorithm,

RBF(πi, t) is approximated as

RBF∗(πi, t) = ei + uit (9.21)

Let the processor cores be indexed as 1, 2, · · · ,m, and Πq be the set of tasks already assigned

to processor core q, where 1 ≤ q ≤ m. Considering the tasks in decreasing DM-priority order

and starting from the highest priority task, the FBB-FFD algorithm assigns a task πi to the

232

first processor core q, 1 ≤ q ≤ m, that satisfies the following condition

di −
∑
πj∈Πq

RBF∗(πj, di) ≥ ei (9.22)

If no processor core satisfies the above condition for some task, then the task set is decided

to be infeasible for partitioning.

To partition our decomposed subtasks based on the FBB-FFD algorithm, we need to adopt

Condition (9.22) for decomposed subtasks. In τdecom
i , let any subtask that belongs to the k-th

segment in τi be denoted by τi,k. Let the deadline and the worst case execution requirement

of τi,k be denoted by di,k and ei,k, respectively. We need to update the expression of RBF∗

in Condition (9.22) by taking into account the release offsets. The RBF∗ of the subtasks

of τdecom
j that are assigned to processor core q for any interval of length t is denoted by

RBF∗q(τ
decom
j , t). Note that any two subtasks of τdecom

j having different offsets belong to

different segments in original task τj and hence are never active simultaneously. Therefore,

the calculation of RBF∗q(τ
decom
j , di,k) in Condition (9.22) when j 6= i is different from that

when j = i.

To calculate RBF∗q(τ
decom
j , di,k) when j = i, we only need to calculate RBF∗ of all subtasks

in the k-th segment that are assigned to processor core q, and call it RBF∗ of that segment

(of τi) on core q. Since the subtasks of τdecom
i that are in different segments will never

be released and executed simultaneously, the sum of RBF∗ among all subtasks of the k-th

segment assigned to core q is the RBF∗q(τ
decom
i , di,k). Let mi,k,q be the number of subtasks

of τdecom
i that belong to the k-th segment in τi and have already been assigned to processor

core q. Thus,

RBF∗q(τ
decom
i , di,k) = RBF∗(τi,k, di,k).mi,k,q (9.23)

To calculate RBF∗q(τ
decom
j , di,k) when j 6= i, we need to consider the worst case RBF∗ of a

segment execution sequence starting from subtasks of any segment of task τj that are assigned

to processor core q. Let RBF∗q(τ
+
j,l, di,k) be the RBF∗ of the segment execution sequence

τ+
j,l starting from subtasks of the l-th segment (of task τj) on core q. Since subtasks of

τdecom
j that are from different segments are never simultaneously active, we need to consider

this in calculating RBF∗q(τ
+
j,l, di,k), where j 6= i. To do so, the approximation of uidi,k

(considering t = di,k) in Equation (9.21) is modified to the sum of utilization of all the

233

segments that have been assigned to core q, while the approximation of ei is limited to the

real possible interference starting from the l-th segment to the following segments that could

be released before time (di,k mod Tj). Let rj,p be the release time of the p-th segment of

task τj, determined by our decomposition. Note that the first segment will be executed after

the last segment in the same task, for at least one period after its last release time. So the

relative release time of the p-th segment, given that the l-th segment starts at relative time

zero, will be (rj,p + Tj − rj,l) mod Tj. As long as the relative release time is no greater than

deadline di,k, the segment will be executed before the execution of the k-th segment, which

is released at relative time zero. Hence, RBF∗q(τ
+
j,l, di,k) is expressed as follows.

RBF∗q(τ
+
j,l, di,k) =

∑
τj,p∈Πq ,(rj,p+Tj−rj,l) mod Tj≤di,k

ej,p.mj,p,q +
∑

τj,p∈Πq

uj,p.mj,p,q.di,k (9.24)

Considering all possible segment execution sequences of task τj, the maximum RBF∗ on core

q is an upper bound of RBF∗q(τ
decom
j , di,k). We simply use this upper bound for the value of

RBF∗q(τ
decom
j , di,k), where j 6= i in the FBB-FFD Algorithm. Thus,

RBF∗q(τ
decom
j , di,k) = max

{
RBF∗q(τ

+
j,l, di,k)

∣∣1 ≤ l ≤ si

}
(9.25)

Now the decomposed subtasks are partitioned based on the FBB-FFD Algorithm in the

following way. Recall that di,j is the deadline and ei,j is the execution requirement of subtask

τi,j (a subtask from the j-th segment of task τi). Let us consider Πq to be the set of

decomposed tasks τdecom
i whose (one or more) subtasks have been assigned to processor core

q. To assign a subtask to a processor core, the FBB-FFD based partitioned DM Algorithm

sorts the unassigned subtasks in non-increasing DM-priority order. Let at any time τi,j be

the highest priority subtask among the unassigned ones. Then the algorithm performs the

following assignments. Subtask τi,j is assigned to the first processor core q, 1 ≤ q ≤ m, that

satisfies the following condition

di,j −
∑

τdecomk ∈Πq

RBF∗q(τ
decom
k , di,j) ≥ ei,j (9.26)

234

If no such q, 1 ≤ q ≤ m, exists that satisfies the above condition for τi,j, then the task set is

determined to be infeasible for partitioning. Note that RBF∗ is calculated using Equation

(9.23) if k = i, and using Equation (9.25), otherwise.

From our above discussions, the value of
∑

τdecomk ∈Πq
RBF∗q(τ

decom
k , di,j) used in Condition

(9.26) is no less than the total RBF∗ of all subtasks assigned to processor core q. Since any

task for which processor core q satisfies Condition (9.22) is DM schedulable on q (according

to the FBB-FFD Algorithm), any subtask τi,j for which processor core q satisfies Condition

(9.26) must be DM schedulable on q.

9.5.2 Analysis for the FBB-FFD based Partitioned DM Algorithm

We use an analysis similar to the one used in [112] to derive the resource augmentation

bound as shown in Theorem 29. The analysis is based on the demand bound function of the

tasks after decomposition.

Definition 5. The demand bound function (DBF), originally introduced in [44], of a task

τi is the largest cumulative execution requirement of all jobs generated by τi that have both

their arrival times and their deadlines within a contiguous interval of t time units. For a

task τi with a maximum computation requirement of Ci, a period of Ti, and a deadline of Di,

its DBF is given by

DBF(τi, t) = max

(
0,
(⌊t−Di

Ti

⌋
+ 1
)
Ci

)

Definition 6. Based upon the DBF function, the load of task system τ , denoted by λ(τ), is

defined as follows.

λ(τ) = max
t>0

n∑
i=1

DBF(τi, t)

t

235

From Definition 5, for a constrained deadline task τi:

DBF(τi, t) ≤ max

(
0,
(⌊t−Di

Di

⌋
+ 1
)
Ci

)
≤
⌊
t

Di

⌋
Ci ≤

t

Di

.Ci = δi.t

Based on the above analysis, we now derive an upper bound of DBF for every task after

decomposition. Every segment of task τi consists of a set of constrained deadline subtasks

after decomposition and, by Lemma 24, the total density of all subtasks in a segment is at

most Ci/2
Ti−Pi/2

. The constrained deadline subtasks are offset to ensure that those belonging to

different segments of the same task are never simultaneously active. That is, for each task

τi, each segment (and each of its subtasks) happens only once during the activation time

of τi. Therefore, for decomposed task τdecom
i , considering the segment having the maximum

density in place of every segment gives an upper bound on the total density of all subtasks

of τdecom
i . Since, the density δi,j of any j-th segment of τdecom

i is at most Ci/2
Ti−Pi/2

, the DBF of

τdecom
i over any interval of length t is

DBF(τdecom
i , t) ≤ Ci/2

Ti − Pi/2
.t

The load of the decomposed task system τdecom is

λ(τdecom) = max
t>0

n∑
i=1

DBF(τdecom
i , t)

t

 ≤ n∑
i=1

Ci/2

Ti − Pi/2
(9.27)

Theorem 29. If there exists any (optimal) algorithm under which a synchronous parallel

task set τ is schedulable on m unit-speed processor cores, then its decomposed task set τdecom

is schedulable using the FBB-FDD based partitioned DM Algorithm on m identical processor

cores each of speed 5.

Proof. [80] proves that any constrained deadline sporadic task set π with total utilization

usum(π), maximum density δmax(π), and load λ(π) is schedulable by the FBB-FFD Algorithm

236

on m unit-speed processor cores if

m ≥ λ(π) + usum(π)− δmax(π)

1− δmax(π)

Using the same method used in [80] for proving the above sufficient schedulability condition,

it can be shown that our decomposed (sub)tasks τdecom are schedulable by the FBB-FFD

based partitioned DM scheduling (presented in Subsection 9.5.1) on m unit-speed processor

cores if

m ≥ λ(τdecom) + usum(τdecom)− δmax(τdecom)

1− δmax(τdecom)
(9.28)

where δmax(τdecom), usum(τdecom), and λ(τdecom) denote the maximum density, total utiliza-

tion, and load, respectively, of τdecom on unit-speed processor cores.

We decompose tasks considering that each processor core has speed 2. To be able to schedule

the decomposed tasks τdecom, suppose we need to increase the speed of each processor core

ν times further. That is, we need each processor core to be of speed 2ν. Let the maximum

density, total utilization, and load of task set τdecom be denoted by δmax,2ν , usum,2ν , and λ2ν

respectively, when each processor core has speed 2ν. Using these notations in Condition

(9.28), task set τdecom is schedulable by the FBB-FFD based partitioned DM Algorithm on

m identical processor cores each of speed 2ν if

m ≥ λ2ν + usum,2ν − δmax,2ν

1− δmax,2ν

(9.29)

From Equation 9.1:

usum,2ν =
n∑
i=1

Ci

2ν

Ti
=

1

2ν

n∑
i=1

Ci
Ti

=
usum

2ν
(9.30)

From Equations 9.1 and 9.27:

λ2ν ≤
n∑
i=1

Ci

2ν

Ti − Pi

2

≤
n∑
i=1

Ci

2ν

Ti − Ti
2

=
1

ν

n∑
i=1

Ci
Ti

=
usum
ν

(9.31)

237

Using Equations 9.31, 9.30, 9.18 in Condition (9.29), task set τdecom is schedulable if

m ≥
usum
ν

+ usum
2ν
− 1

ν

1− 1
ν

If the original parallel task set τ is schedulable by any algorithm on m unit-speed processor

cores, then usum ≤ m. Therefore, τdecom is schedulable if

m ≥
m
ν

+ m
2ν
− 1

ν

1− 1
ν

⇐ 2ν − 2 ≥ 3 ⇔ 2ν ≥ 5

Hence follows the theorem.

a

w

c

b

e

d

x

z

y

(a) Unit-node DAG

a

w

b

c

d x

y

z

e

Segment
3

Segment
1

Segment
4

Segment
2

(b) Parallel synchronous model

Figure 9.4: Unit-node DAG to parallel synchronous model

238

9.6 Generalizing to a Unit-node DAG Task Model

In the analysis presented so far, we have focused on synchronous parallel tasks. That is,

there is a synchronization point at the end of each segment, and the next segment starts

only after all the threads of the previous segment have completed. In this section, we show

that even more general parallel tasks that can be represented as directed acyclic graphs

(DAGs) with unit time nodes can be easily converted into synchronous tasks. Therefore, the

above analysis holds for these tasks as well.

In the unit-node DAG model of tasks, each job is made up of nodes that represent work, and

edges that represent dependencies between nodes. Therefore, a node can execute only after

all of its predecessors have been executed. We consider the case where each node represents

unit-time work. Therefore, a unit-node DAG can be converted into a synchronous task by

simply adding new dependence edges as explained below.

If there is an edge from node u to node v, we say that u is the parent of v. Then we calculate

the depth, denoted by h(v), of each node v. If v has no parents, then it is assigned depth 1.

Otherwise, we calculate the depth of v as

h(v) = max
u parent of v

h(u) + 1

Each node with depth j is assigned to segment j. Then every node of the DAG is considered

as a thread in the corresponding segment. The threads in the same segment can happen

in parallel, and the segment is considered as a parallel segment of a synchronous task. If

there are k > 1 consecutive segments each consisting of just one thread, then all these k

segments are considered as one sequential segment of execution requirement k (by preserving

the sequence). Figure 9.4 shows an example, where a DAG in Figure 9.4(a) is represented

as a synchronous task in Figure 9.4(b). This transformation is valid since it preserves all

dependencies in the DAG, and in fact only adds extra dependencies .

Upon representing a unit-node DAG task as a synchronous task, we perform the same de-

composition proposed in Section 9.3. The decomposed task set can be scheduled using either

global EDF or partitioned DM scheduling. Note that the transformation from a DAG task

τi to a synchronous task preserves the work Ci of τi. Hence, the condition
∑
Ci/Ti ≤ m used

239

in our analysis still holds. Besides, the transformation preserves the critical path length Pi

of τi and, hence, the rest of the analysis also holds. Therefore, a set of unit-node DAG tasks

can be scheduled with a resource augmentation bound of 4 under global EDF scheduling,

and of 5 under partitioned DM scheduling.

9.7 Evaluation

In this section, we evaluate the proposed decomposition through simulations. We randomly

generate synchronous parallel tasks, decompose them, and simulate their schedules under

global EDF and partitioned DM policies considering multi-core processors with different

number of cores. We validate the derived resource augmentation bounds by considering

different speeds of the processor cores.

9.7.1 Task Generation

In our simulation studies, parallel synchronous task sets are generated in the following way.

The number of segments of each task is randomly selected from the range [10, 30]. The

number of threads in each segment is randomly selected from the range [1, 90]. The execution

requirements of the threads in a segment are selected randomly from the range [5, 35]. Each

task is assigned a valid harmonic period (i.e. period is no less than its critical path length)

of the form 2k, where k is chosen from the range [6, 13]. We generate task sets considering

m = 20, 40, and 80 (i.e. for 20-core, 40-core, and 80-core processors). For each value of m,

we generate 1000 task sets.

We want to evaluate our scheduler on task sets that an optimal scheduler could schedule

on 1-speed processors. However, as we cannot compute this ideal scheduler, we assume

that an ideal scheduler can schedule any task set that satisfies two conditions: (1) total

utilization is no greater than m, and (2) each individual task is schedulable in isolation, that

is, the deadline is no smaller than the critical path length. The second condition is implicitly

satisfied by the way we assign period (which is the same as the deadline for our tasks) to

tasks. Therefore, in our experiments, to generate a task set for each value of m (m being the

240

number of processor cores), we keep adding tasks to the set as long as their total utilization

does not exceed m but is at least 98% of m, thereby (almost) fully loading a machine of

speed 1 processors. Since a system with a larger value of m is able to schedule a task set with

higher utilization, the task sets generated for different values of m are different. According

to above parameters, the generated task sets for 20-core, 40-core, and 80-core processors

have the average number of tasks per task set of 4.893, 6.061, and 8.791, respectively, and

the average ratios for total utilization to the number of cores are 99.3%, 99.2%, and 99.1%

respectively.

9.7.2 Simulation Setup

The tasks generated for a particular value of m are decomposed using our proposed decom-

position technique. The decomposed tasks are then scheduled by varying the speed of the

cores on a simulated multi-core platform. We evaluate the performance in terms of failure

ratio defined as the proportion of the number of unschedulable task sets to the total num-

ber of task sets attempted. We consider partitioned DM and two versions of global EDF

scheduling policies. Note that under partitioned DM (P-DM), to make the analysis work,

segments cannot be released before the decomposed release offsets, while under global EDF

a segment can either wait till its relative release time, or start as soon as its preceding seg-

ments complete. Our analysis holds for both versions of the global EDF policies, and here we

evaluate both of them to understand if they perform differently in simulations. The policy

where subtasks wait until their release offset is called standard global EDF (G-EDF) and

the policy where tasks are released as soon their dependences are satisfied is called greedily

synchronized global EDF (GSG-EDF).

For all three methods, two kinds of failure ratios are compared. For the first kind marked

with “simu”, we measure the actual failure ratio in that a task-set is considered unschedulable

if any task in the task set misses its deadline. For the other kind marked with “test”, a task

set is considered unschedulable if any subtask (some thread in a decomposed segment) misses

its deadline. Note that the overall task may still be scheduled successfully if a subtask misses

deadlines. Therefore, “test” failure ratios are always no better (and generally worse than)

than “simu” ones. Since subtask deadlines are assigned by the system and do not represent

241

real constraints, a subtask deadline miss is not important to a real system. However, we

include this result in order to throughly investigate the safety of our analytical bounds.

Note that only the “simu” results reflect the job deadline misses, which can be compared with

other methods without any decomposition. Besides all the simulation results, for P-DM, we

also include the failure ratio of the analysis. The failure ratio marked by “P-DM-analysis”

indicates the ratio of the number of task sets that the offset-aware FBB-FFD Algorithm failed

to partition with guaranteed schedulability to the total number of task sets attempted. Note

that since this partitioning algorithm is also pessimistic, there are some task sets that the

algorithm can not guarantee, but in simulation all their deadlines are met anyway. Therefore,

this failure ratio is generally worse than P-DM-test.

In Figures 9.5, 9.6, and 9.7, the failure ratios under G-EDF, GSG-EDF, and P-DM are

compared on 20, 40 and 80 core machines, respectively. All cores always have the same

speed, and we increase the speed gradually until all task sets are schedulable. In particular,

we start by setting a speed of 1 (i.e. unit-speed) at every processor core. Then we keep

increasing the speed of each core by 0.2 in every step, and schedule the same set of tasks

using the increased speed.

9.7.3 Simulation Results

In the first set of simulations, we evaluate the schedulability of 1000 task sets generated for

a 20-core processor. According to Figure 9.5, when each core has speed 1, the failure ratio

under G-EDF-test is 0.988 and under G-EDF-simu is 0.27. That is, out of 1000 test cases,

988 cases of decomposed task sets are not schedulable (having at least one segment deadline

miss in simulation), and 270 cases have at least one job deadline miss. As we gradually

increase the speed of each core, the failure ratios for G-EDF-test decrease slowly and are

much higher than those of G-EDF-simu. For example, when each core has speed of 1.2, 1.4,

1.6, and 1.8, the failure ratios for G-EDF-test are 0.969, 0.935, 0.9, and 0.849, respectively,

while for G-EDF-simu the ratios are 0.169, 0.119, 0.097, and 0.084, respectively. When each

core has speed 2.4 or more, all task sets are schedulable. Thus, the resource augmentation

required for the tasks we have evaluated under G-EDF is only 2.4 for this simulation setting.

242

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.2

0.4

0.6

0.8

1

Processor speed

F
a

ilu
re

 r
a

ti
o

G−EDF−test
G−EDF−simu
P−DM−analysis
P−DM−test
P−DM−simu
GSG−EDF−test
GSG−EDF−simu

Figure 9.5: Schedulability on a 20-core processor.

Note one interesting fact about these figures. When speed is increased from 1.8 to 2, we

observe a very sharp decrease in failure ratios of G-EDF-test. Specifically, at speeds 2 and

2.2, only one task set is unschedulable. This sharp decrease happens due to the following

reason. In our method, the original decomposition occurs on speed-2 processors. Therefore,

some (sub)tasks may have density greater than 1 on processors of speeds smaller than 2,

meaning that these subtasks can never meet their deadlines at speed lower than 2. Since the

decomposition guarantees that the maximum density among all (sub)tasks is at most 1 at

speed 2, many task sets that were unschedulable at speed 1.8 become schedulable at speed

2.

Unlike G-EDF, GSG-EDF with greedy synchronization does not wait for any segment release

time. It can utilize the slack from the decomposed task sets and hence has better performance

than G-EDF. The failure ratios in GSG-EDF-test are 0.37, 0.193, 0.135, 0.117 and 0.101 at

speed 1, 1.2, 1.4, 1.6, and 1.8, respectively. It is slightly worse than that of G-EDF-simu,

and is much better than those of G-EDF-test. Out of 1000 cases in GSG-EDF-simu, there

are only 86 and 4 job deadline misses at speed 1 and 1.2, respectively, and no deadline misses

when speed is greater than 1.2. Note that “test” of GSG-EDF also has a decrease at speed 2

for the same reason as G-EDF. However, GSG-EDF-simu (unlike G-EDF-test, G-EDF-simu,

or GSG-EDF-test) does not experience this sharp decrease caused by decomposition process

243

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.2

0.4

0.6

0.8

1

Processor speed

F
a

ilu
re

 r
a

ti
o

G−EDF−test
G−EDF−simu
P−DM−analysis
P−DM−test
P−DM−simu
GSG−EDF−test
GSG−EDF−simu

Figure 9.6: Schedulability on a 40-core processor

considering speed 2 processors. We speculate the reason is the following. The “simu” results

basically measure if the last segment of the task misses a deadline. In the case of GSG-

EDF, by the time the last segment comes around, the task has accumulated enough slack by

starting the prior segments early. Therefore, even though the last segment’s density may be

larger than 1 (if it was released at its decomposed release time), it is released early enough

that it can still generally meet its deadline.

Note that there are no theoretical guarantees about the comparison of job deadline misses

between greedily synchronized global EDF for decomposed task sets and global EDF for

original task sets. However, as we observe in practice, the resource augmentation required

for the tasks we have evaluated under GSG-EDF is only 2.2, compared with 2.4 of G-EDF

for the same 1000 task sets, suggesting that greedy synchronization provides some advantage

over the standard version.

Besides G-EDF, Figure 9.5 also plots the failure ratios under P-DM (based on the offset-

aware FBB-FFD Algorithm) on a 20-core processor. When each core has speed 1, all the

1000 test cases are unschedulable in both analysis and simulation under P-DM. With the

increase in speed to 1.8, the failure ratios of P-DM-analysis and P-DM-test decrease slowly,

while P-DM-simu decreases sharply. However, the result of P-DM-simu is not stable. A

task set, which has no job deadline miss at certain speed, may result in job deadline misses

244

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.2

0.4

0.6

0.8

1

Processor speed

F
a

ilu
re

 r
a

ti
o

G−EDF−test
G−EDF−simu
P−DM−analysis
P−DM−test
P−DM−simu
GSG−EDF−test
GSG−EDF−simu

Figure 9.7: Schedulability on a 80-core processor

even when the speed increases. This is because the partitioning results for the same task

set under different processor speed are different. Since for P-DM, the segment release time

must be followed, the job deadlines are just part of the overall segment deadlines. With

different partitioning results, different parts of segment deadlines may be missed. Therefore,

the job deadline misses of the same task set under different processor speed are not stable.

The failure ratio of P-DM-test decreases sharply when reaching the speed 1.8 and the P-

DM-analysis decreases sharply when reaching 2. At speed 2.4, only one task set cannot be

scheduled according to the analysis while all can be scheduled in simulation, demonstrating

a resource augmentation of 2.4 for this specific simulation setting which is smaller than our

theoretical bound of 5 for P-DM.

These results seem to indicate that the global EDF with greedy synchronization is slightly

better than standard global EDF which is slightly better than P-DM. Note that we should

only care about the “simu” results when comparing across policies.

Similar experiments for 40 and 80 cores are shown in Figures 9.6 and 9.7 respectively. Note

that these task sets are different from those generated for the previous set of simulations,

and have higher total utilization (as these are generated for a higher number of cores). The

curves follow similar trends. Namely, here also the “test” results are generally worse than the

245

corresponding “simu” results, the P-DM-analysis results are slightly pessimistic and GSG-

EDF is slightly better than G-EDF which is better than P-DM. On 40-core machines, the

resource augmentation required by GSG-EDF, G-EDF and P-DM is 2.2, 2.6 and 2.6 respec-

tively for these experiments. For 80 core machines, the respective resource augmentation

requirements are 2.0, 2.4 and 3 respectively.

It is difficult to compare the results of the 20-core experiment with those of the 40-core and

80-core experiments since the task sets used in different experiments are different. There is

no way of knowing if the differences we observe are due to the increase in the number of cores

or because we happened to generate task sets of more or less inherent difficulty. However,

the general trend (with the exception of GSG-EDF-simu when we go from 40 to 80 cores)

seems to be that it is more difficult to schedule on a larger number of cores. This may be

due to the fact that as the number of cores increases, we have a larger number of tasks and

subtasks, increasing the number of deadlines, thereby increasing the chance of the event that

a segment or job deadline miss occurs in a task set.

These results indicate that our theoretical bounds may be pessimistic for the particular cases

we have experimented, since global EDF needs augmentation of at most 2.6 (in contrast to

the analytical bound of 4) and P-DM needs augmentation of at most 3 (in contrast to the

analytical bound of 5). Since the analytical bounds are guaranteed for any task set and for

any number of processor cores, the results from our experiments indeed do not guarantee

whether these bounds are very loose or tight in general, since the worst case task sets might

have not appeared in our experiments. In addition, we have observed that the resource

augmentation requirement slightly increases with the increase in the number of cores (and

keeping the system almost fully loaded). Hence, it is conceivable that for thousands of

processor cores and for very adversarial task sets, one might need an augmentation of 4 and

5 for global EDF and partitioned DM policies, respectively. This suggests some potential

research direction towards exploring both better (smaller) augmentation bounds and tighter

lower bounds.

246

9.8 Related Work

There has been extensive work on traditional multiprocessor real-time scheduling [69]. Most

of this work focuses on scheduling sequential tasks on multiprocessor or multi-core systems.

There has also been extensive work on scheduling of one or more parallel jobs on multipro-

cessors [27, 34, 39, 51, 53, 54, 71, 73, 74, 143]. However, the work in [27, 34, 39, 71, 73, 74, 143]

does not consider task deadlines, and that in [51, 53, 54] considers soft real-time scheduling.

In contrast to the goal (i.e. to meet all task deadlines) of a hard real-time system, in a soft

real-time system the goal is to meet a certain subset of deadlines based on some application

specific criteria.

There has been little work on hard real-time scheduling of parallel tasks. Anderson et al. [33]

propose the concept of a megatask as a way to reduce miss rates in shared caches on multicore

platforms, and consider Pfair scheduling by inflating the weights of a megatask’s component

tasks. Preemptive fixed-priority scheduling of parallel tasks is shown to be NP-hard by Han

et al. [92]. Kwon et al. [110] explore preemptive EDF scheduling of parallel task systems

with linear-speedup parallelism. Wang et al. [174] consider a heuristic for nonpreemptive

scheduling. However, this work focuses on metrics like makespan [174] or total work that

meets deadline [110], and considers simple task models where a task is executed on up to a

given number of processors.

Most of the other work on real time scheduling of parallel tasks also address simplistic task

models. Jansen [98], Lee et al. [115], and Collette et al. [64] study the scheduling of malleable

tasks, where each task is assumed to execute on a given number of cores or processors and this

number may change during execution. Manimaran et al. [130] study non-preemptive EDF

scheduling for moldable tasks, where the actual number of used processors is determined

before starting the system and remains unchanged. Kato et al. [103] address Gang EDF

scheduling of moldable parallel task systems. They require the users to select at submission

time the number of processors upon which a parallel task will run. They further assume

that a parallel task generates the same number of threads as processors selected before the

execution. In contrast, the parallel task model addressed in this paper allows tasks to have

different numbers of threads in different stages, which makes our solution applicable to a

much broader range of applications. For parallel tasks, Nelissen et al. [136] has studied

real-time scheduling to minimize the required number of processors. In contrast, we study

247

schedulability of parallel tasks in terms of processor speed-up factor. Recently, processor

speed up factor for a task represented as a DAG has been addressed by Baruah et al. [43].

But this work considers scheduling of a single task. In contrast, we consider scheduling a set

of parallel tasks on multi-core platform.

Our work is most related to, and is inspired by, the recent work of Lakshmanan et al. [112] on

real-time scheduling for a restrictive synchronous parallel task model. In their model, every

task is an alternate sequence of parallel and sequential segments. All the parallel segments

in a task have an equal number of threads, and that number cannot exceed the total number

of processor cores. They also convert each parallel task into a set of sequential tasks, and

then analyze the resource augmentation bound for partitioned DM scheduling. However,

their strategy of decomposition is different from ours. They use a stretch transformation

that makes a master thread of execution requirement equal to the task period, and assign

one processor core exclusively to it. The remaining threads are scheduled using the FBB-

FDD algorithm. Unlike ours, their results do not hold if, in a task, the number of threads

in different segments vary, or exceed the number of cores. In addition, tasks that can be

expressed as a DAG of unit time nodes cannot be converted to their task model in a work

and critical path length conserving manner. Therefore, unlike ours, their analysis does not

directly apply to these more general task models.

Our work in this paper has two major extensions beyond our previous work that appears as

a conference version [153]. First, we have added a detailed description of how the FBB-FFD

partitioned deadline monotonic scheduling policy should be adopted for decomposed tasks

with offsets. The conference version of the paper provided a resource augmentation bound for

the FBB-FFD algorithm, and did not provide the detailed procedure for partitioning of the

tasks with offsets. Note that the FBB-FFD algorithm, by default, is not offset-aware. Hence,

we have provided a modified version of this algorithm to make it offset-aware. Second, we

have provided evaluation results based on simulations. The conference version of the paper

did not provide any evaluation result. In addition, we have presented how our results will

hold for task models where a synchronous task may have some segment containing threads

of different execution requirements. The conference version of the paper considered the

synchronous task model where each segment in a task consists of equal-length threads.

248

9.9 Summary

With the advent of the era of multi-core computing, real-time scheduling of parallel tasks is

crucial for real-time applications to exploit the power of multi-core processors. While recent

research on real-time scheduling of parallel tasks has shown promise, the efficacy of existing

approaches is limited by their restrictive parallel task models. To overcome these limitations,

in this paper we have presented new results on real-time scheduling for generalized parallel

task models. First, we have considered a general synchronous parallel task model where

each task consists of segments, each having an arbitrary number of parallel threads. Then

we have proposed a novel task decomposition algorithm that decomposes each parallel task

into a set of sequential tasks. We have derived a resource augmentation bound of 4 under

global EDF scheduling, which to our knowledge is the first resource augmentation bound

for global EDF scheduling of parallel tasks. We have also derived a resource augmentation

bound of 5 for partitioned DM scheduling. Finally, we have shown how to convert a task

represented as a Directed Acyclic Graph (DAG) with unit time nodes into a synchronous

task, thereby holding our results for this more general task model.

Through simulations, we have observed that bounds in practice are significantly smaller than

the theoretical bounds. These results suggest many directions of future work. First, we can

try to provide better bounds and/or provide lower bound arguments that suggest that the

bounds are in fact tight. In the future, we also plan to consider even more general DAG

tasks where nodes have arbitrary execution requirements, and to provide analysis requiring

no transformation to synchronous model. We also plan to address system issues such as

cache effects, preemption penalties, and resource contention.

Acknowledgements

This research was supported by NSF under grants CNS-0448554 (CAREER) and CCF-

1136073.

249

Chapter 10

Parallel Real-Time Scheduling of

DAGs

Recently, multi-core processors have become mainstream in processor design. To take full ad-

vantage of multi-core processing, computation-intensive real-time systems must exploit intra-

task parallelism. In this paper, we address the problem of real-time scheduling for a general

model of deterministic parallel tasks, where each task is represented as a directed acyclic

graph (DAG) with nodes having arbitrary execution requirements. We prove processor-speed

augmentation bounds for both preemptive and non-preemptive real-time scheduling for gen-

eral DAG tasks on multi-core processors. We first decompose each DAG into sequential

tasks with their own release times and deadlines. Then we prove that these decomposed

tasks can be scheduled using preemptive global EDF with a resource augmentation bound

of 4. This bound is as good as the best known bound for more restrictive models, and is the

first for a general DAG model. We also prove that the decomposition has a resource aug-

mentation bound of 4 plus a constant non-preemption overhead for non-preemptive global

EDF scheduling. To our knowledge, this is the first resource augmentation bound for non-

preemptive scheduling of parallel tasks. Finally, we evaluate our analytical results through

simulations that demonstrate that the derived resource augmentation bounds are safe in

practice.

250

10.1 Introduction

As the rate of increase of clock frequencies is leveling off, most processor chip manufacturers

have recently moved to increasing performance by increasing the number of cores on a chip.

Intel’s 80-core Polaris [10], Tilera’s 100-core TILE-Gx, AMD’s 12-core Opteron [13], and

ClearSpeed’s 96-core processor [11] are some notable examples of multi-core chips. With the

rapid evolution of multi-core technology, however, real-time system software and program-

ming models have failed to keep pace. Most classic results in real-time scheduling concentrate

on sequential tasks running on multiple processors [69]. While these systems allow many

tasks to execute on the same multi-core host, they do not allow an individual task to run

any faster on it than on a single-core machine.

To scale the capabilities of individual tasks with the number of cores, it is essential to develop

new approaches for tasks with intra-task parallelism, where each real-time task itself is a

parallel task that can utilize multiple cores at the same time. Here, we take autonomous

vehicle [104] as a motivating example. Such a system consists of a myriad of real-time tasks

such as motion planning, sensor fusion, computer vision, and decision making algorithms

that exhibit intra-task parallelism. For example, the decision making subsystem processes

massive amounts of data from various types of sensors, where the data processing on different

types of sensors can run in parallel. Such intra-task parallelism may enable timing guarantees

for many complex real-time systems requiring heavy computation, whose stringent timing

constraints are difficult to meet on traditional single-core processors.

There has been some recent work on real-time scheduling for parallel tasks, but it has been

mostly restricted to the synchronous task model [78, 112, 153]. In the synchronous model,

each task consists of a sequence of segments with synchronization points at the end of each

segment. In addition, each segment of a task contains threads of execution that are of equal

length. For synchronous tasks, the result in [78,153] proves a resource augmentation bound

of 4 under global earliest deadline first (EDF) scheduling. A resource augmentation bound

ν of a scheduling policy A indicates that if there is any way to schedule a task set on m

identical unit-speed processor cores, then A is guaranteed to successfully schedule it on m

cores with each core being ν times as fast as the original.

251

While the synchronous task model represents the tasks generated by the parallel for loop

construct common to many parallel languages such as OpenMP [17] and CilkPlus [12], most

parallel languages also have other constructs for generating parallel programs, notably fork-

join constructs. A program that uses fork-join constructs will generate a non-synchronous

task, generally represented as a directed acyclic graph (DAG), where each thread (sequence

of instructions) is a node, and the edges represent dependencies between the threads. A

node’s execution requirement can vary arbitrarily, and different nodes in the same DAG can

have different execution requirements.

Another limitation of the state-of-the-art is that all prior work on parallel real-time tasks

considers preemptive scheduling, where threads are allowed to preempt each other in the

middle of execution. While this is a reasonable model, preemption can be a high-overhead

operation since it often involves a system call and a context switch. An alternative scheduling

model is to consider node-level non-preemptive scheduling (called non-preemptive scheduling

in this paper), where once the execution of a particular node (thread) starts it cannot be

preempted by any other thread. Most parallel languages and libraries have yield points

at the end of threads (nodes of a DAG), allowing low-cost, user-space preemption at these

yield points. For these languages and libraries, schedulers that switch context only when

threads end can be implemented entirely in user-space, and therefore have low overheads. In

addition, fewer switches imply lower caching overhead. In this model, since a node is never

preempted, if it accesses the same memory location multiple times, those locations will be

cached, and a node never has to restart on a cold cache.

This paper addresses the hard real-time scheduling of a set of generalized DAGs sharing a

multi-core machine. We generalize the previous work in two important directions. First, we

consider a general model of deterministic parallel tasks, where each task is represented by a

general DAG in which nodes can have arbitrary execution requirements. Second, we address

both preemptive and non-preemptive scheduling. In particular, we make the following new

contributions.

• We propose a novel task decomposition to transform the nodes of a general DAG into

sequential tasks. Since each node of the DAG becomes an individual sequential task,

these tasks can be scheduled either preemptively or non-preemptively.

252

• We prove that any set of parallel tasks of a general DAG model, upon decomposition,

can be scheduled using preemptive global EDF with a resource augmentation bound

of 4. This bound is as good as the best known bound for more restrictive models [153]

and, to our knowledge, is the first bound for a general DAG model.

• We prove that our decomposition requires a resource augmentation bound of 4 + 2ρ

for non-preemptive global EDF scheduling, where ρ is the non-preemption overhead of

the tasks. To our knowledge, this is the first bound for non-preemptive scheduling of

parallel real-time tasks.

• We implement the proposed decomposition algorithm, and evaluate our analytical re-

sults for both preemptive and non-preemptive scheduling through simulations. The

results indicate that the derived bounds are safe, and reasonably tight in practice,

especially under preemptive EDF that requires a resource augmentation of 3.2 in sim-

ulation as opposed to our analytical bound of 4.

Section 10.2 reviews related work. Section 10.3 describes the task model. Section 10.4

presents the decomposition algorithm. Sections 10.5 and 10.6 present analyses for preemp-

tive and non-preemptive global EDF scheduling, respectively. Section 10.7 presents the

simulation results. Section 10.8 offers conclusions.

10.2 Related Work

There has been a substantial amount of work on traditional multiprocessor real-time schedul-

ing focused on sequential tasks [69]. Scheduling of parallel tasks without deadlines has been

addressed in [27, 28, 34, 71, 73, 143]. Soft real-time scheduling, (where the goal is to meet a

subset of deadlines based on some application-specific criterion) has been studied for various

parallel task models and optimization criteria such as cache misses [33,52], makespan [174],

and total work done within the deadlines [110].

An exact (i.e., both sufficient and necessary) schedulability analysis under hard real-time

system (where the goal is to meet all task deadlines) is intractable for most cases of parallel

tasks [92]. Early works on hard real-time parallel scheduling make simplifying assumptions

253

about task models. For example, the study in [103,130] considers EDF scheduling of parallel

tasks where the actual number of processors used by a particular task is determined before

starting the system, and remains unchanged.

Recently, preemptive real-time scheduling has been studied [78, 112, 153] for synchronous

parallel tasks with implicit deadlines. In [112], every task is an alternate sequence of parallel

and sequential segments with each parallel segment consisting of multiple threads of equal

length that synchronize at the end of the segment. All parallel segments in a task have an

equal number of threads which cannot exceed the number of processor cores. Each thread

is transformed into a subtask, and a resource augmentation bound of 3.42 is claimed under

partitioned Deadline Monotonic (DM) scheduling. This result was later generalized for

synchronous model with arbitrary numbers of threads in segments, with bounds of 4 and 5

for global EDF and partitioned DM scheduling, respectively [153], and also to minimize the

required number of processors [136].

Our earlier work [153] has proposed a simple extension to a synchronous task scheduling ap-

proach that handles unit-node DAG where each node has unit execution requirement. The

work in [78] is a system implementation of our work in [153]. Our approach in [153] con-

verts each task to a synchronous task allowing direct application of the approach designed

for synchronous tasks. While it simplifies the resource augmentation analysis, the assump-

tion that each node has unit execution requirement is highly restrictive and does not hold

in general since this model does not represent a parallel task that most parallel languages

generate. Most parallel languages that use fork-join constructs generate a non-synchronous

task, generally represented as a DAG where each node’s execution requirement can vary

arbitrarily, and different nodes in the same DAG can have different execution requirements.

While the proposed decomposition in this paper and that in [153] have similarity in that

both decompose a parallel task into sequential subtasks by distributing the available slack

among the subtasks, the decomposition in [153] for restrictive model is not applicable for

general DAG. If it is extended to general DAG, it may split each node of a DAG into mul-

tiple subtasks, thereby disallowing node-level non-preemptive scheduling. Also, it will make

preemptive scheduling inefficient and costly due to excessive numbers of contexts switches

due to node splitting and artificially increased synchronization.

254

Scheduling and analysis of general DAGs introduces a challenging open problem. For this

general model, an augmentation bound has been analyzed recently in [43], but it considers a

single DAG on a multi-core machine with preemption. In this paper, we investigate the open

problem of scheduling and analysis for a set of any number of general DAGs on a multi-core

machine. We consider both preemptive and non-preemptive real-time scheduling of general

DAG tasks on multi-core processors, and provide resource augmentation bound under both

policies.

10.3 Parallel Task Model

We consider n periodic parallel tasks to be scheduled on a multi-core platform consisting of m

identical cores. The task set is represented by τ = {τ1, τ2, · · · , τn}. Each task τi, 1 ≤ i ≤ n,

is represented as a Directed Acyclic Graph (DAG), where the nodes stand for different

execution requirements, and the edges represent dependencies between the nodes.

A node in τi is denoted by W j
i , 1 ≤ j ≤ ni, with ni being the total number of nodes in τi.

The execution requirement of node W j
i is denoted by Ej

i . A directed edge from node W j
i to

node W k
i , denoted as W j

i → W k
i , implies that the execution of W k

i cannot start until W j
i

finishes. W j
i , in this case, is called a parent of W k

i , while W k
i is its child. A node may have 0

or more parents or children, and can start execution only after all of its parents have finished

execution. Figure 10.1 shows a task τi with ni = 10 nodes.

The execution requirement (i.e., work) Ci of task τi is the sum of the execution requirements

of all nodes in τi; that is, Ci =
∑ni

j=1E
j
i . Thus, Ci is the maximum execution time of τi if it

was executing on a single processor of speed 1. For task τi, the critical path length, denoted

by Pi, is the sum of execution requirements of the nodes on a critical path. A critical path

is a directed path that has the maximum execution requirement among all other paths in

DAG τi. Thus, Pi is the minimum execution time of τi meaning that it needs at least Pi

time units on unit-speed processor cores even when the number of cores m is infinite. The

period of task τi is denoted by Ti and the deadline Di of each task τi is considered implicit,

i.e., Di = Ti. Since Pi is the minimum execution time of task τi even on a machine with an

infinite number of cores, the condition Ti ≥ Pi must hold for τi to be schedulable (i.e. to

255

The same node in all figures
have the same color and shade

W
i

1

W
i

4

W
i

10

W
i

2

W
i

7

W
i

8
W

i

9

W
i

3

W
i

5

W
i

6

Figure 10.1: A parallel task τi represented as a DAG

meet its deadline). A task set is said to be schedulable when all tasks in the set meet their

deadlines.

10.4 Task Decomposition

We schedule parallel tasks by decomposing each parallel task into smaller sequential tasks.

The main intuition for decomposing a parallel task into a set of sequential tasks is that the

scheduling of parallel task reduces to the scheduling of sequential tasks, thereby allowing us

to exploit the rich literature on the latter. In particular, this strategy allows us to leverage

existing schedulability analysis for traditional multiprocessor scheduling, both preemptive

and non-preemptive, of sequential tasks. In this section, we present a decomposition tech-

nique for a parallel task under a general DAG model. Upon decomposition, each node of

a DAG becomes an individual sequential task, called a subtask, with its own deadline and

with an execution requirement equal to the node’s execution requirement. We will use the

terms ‘subtask’ and ‘node’ interchangeably. All nodes of a DAG are assigned appropriate

deadlines and release offsets such that when they execute as individual subtasks all depen-

dencies among them in the original DAG are preserved. The deadlines of the subtasks of

a DAG are assigned by splitting the DAG’s deadline. The decomposition will ensure that

if the subtasks of a DAG are schedulable, then the DAG must be schedulable. Thus, an

256

start end

the earliest time when
can start when

the earliest time when
can finish when

The same node in each figure has the same color and shade

W
i

1
W

i

4

W
i

2

W
i

7

W
i

8

W
i

3

W
i

5
W

i

6

E
i

1
=

E
i

2
= 2

E
i

3
= "

E
i

4
=

E
i

6
= 4E

i

5
= 3

E
i

7
= 2

m = ∞

m = ∞

E
i

9
=1W

i

9

E
i

10
=1W

i

10E
i

8
= 4

The length of each node is proportional to its execution requirement

W
i

8

W
i

8

T
i
= 21

Ci = E i

j

j=1

10

∑ = 30

P
i
= 4 � � 4 � =

(a) τ∞i : a timing diagram for when τi executes on an infinite number of processor cores

 Vertical bar where a node starts or ends

e
i

1
= 2 e

i

2
= 2 e

i

3
=1 e

i

4
= 2 e

i

5
= 2

m
i

1
= 3 m

i

2
= 3

m
i

3
= 2

m
i

4
= 3 m

i

5
= 2

m
i

7
= 2

start end

T
i
= 21

e
i

7
=1e

i

6
= 4

segment 6 is a light segment

θ
i
=

C
i

2T
i
− P

i

=
30

42 −14
=1.07

m
i

6
=1segment 6 with

Since m
i

6
=1≤ θ

i
,

segment
7 with

segment 1 with segment 2 with segment
3 with

segment 4 with segment 5 with

(b) τ syni

Figure 10.2: τ∞i and τ syn
i of DAG τi (of Figure 10.1)

implicit deadline DAG is decomposed into a set of constrained deadline (i.e. deadline is no

greater than period) sequential subtasks with each subtask corresponding to a node of the

DAG.

Our schedulability analysis for parallel tasks entails deriving a resource augmentation bound [112,

153]. In particular, our result aims at procuring the following claim: If an optimal algorithm

can schedule a task set on a machine of m unit-speed processor cores, then our algorithm

can schedule this task set on m processor cores, each of speed ν, where ν is the resource

augmentation factor. Since an optimal algorithm is unknown, we pessimistically assume that

an optimal scheduler can schedule a task set if each task of the set has a critical-path length

no greater than its deadline, and the total utilization of the task set is no greater than m.

No algorithm can schedule a task set that does not meet these conditions. Our resource

257

augmentation analysis is based on the densities of the decomposed tasks, where the density

of any task is the ratio of its execution requirement to its deadline. We first present ter-

minology used in decomposition. Then, we present the proposed decomposition technique,

followed by a density analysis of the decomposed tasks.

10.4.1 Terminology

Our proposed decomposition technique converts each implicit deadline DAG task into a set

of constrained deadline sequential tasks, and is based on the following definitions that are

applicable for any task, not limited to just parallel tasks.

The utilization ui of a task τi, and the total utilization usum(τ) for any task set τ of n tasks

are defined as

ui =
Ci
Ti

; usum(τ) =
n∑
i=1

Ci
Ti

If the total utilization usum is greater than m, then no algorithm can schedule τ on m identical

unit-speed processor cores.

The density δi of any task τi, and the total density δsum(τ) and the maximum density δmax(τ)

for any set τ of n tasks are defined as follows.

δi =
Ci
Di

; δsum(τ) =
n∑
i=1

δi; δmax(τ) = max{δi|1 ≤ i ≤ n} (10.1)

The demand bound function (DBF) of task τi is the largest cumulative execution requirement

of all jobs generated by τi that have both arrival times and deadlines within a contiguous

interval of t time units. For any task τi, the DBF is given by

DBF(τi, t) = max

(
0,
(⌊t−Di

Ti

⌋
+ 1
)
Ci

)
(10.2)

258

Based on the DBF, the load, denoted by λ(τ), of any task set τ consisting of n tasks is

defined as follows.

λ(τ) = max
t>0

n∑
i=1

DBF(τi, t)

t

 (10.3)

10.4.2 Decomposition Algorithm

The decomposition algorithm converts each node of a DAG into an individual sequential

subtask with its own execution requirement, release offset, and a constrained deadline. The

release offsets are assigned so as to preserve the dependencies of the original DAG, namely, to

ensure that a node (subtask) can start after the deadlines of all the parent nodes (subtasks).

That is, a node starts after its latest parent finishes. The (relative) deadlines of the nodes

are assigned by splitting the task deadline into intermediate subdeadlines. The intermediate

subdeadline assigned to a node is called node deadline.

Note that once task τi is released, it has a total of Ti time units to finish its execution. The

proposed decomposition algorithm splits this deadline Ti into node deadlines by preserving

the dependencies in τi. For task τi, the deadline and the offset assigned to node W j
i are

denoted by Dj
i and Φj

i , respectively. Once appropriate values of Dj
i and Φj

i are determined

for each node W j
i (respecting the dependencies in the DAG), task τi is decomposed into

nodes. Upon decomposition, the dependencies in the DAG need not be considered, and each

node can execute as a traditional sequential multiprocessor task. Hence, the decomposition

technique for τi boils down to determining Dj
i and Φj

i for each node W j
i as presented below.

The presentation is accompanied by an example using the DAG τi from Figure 10.1. For

the example, we assign execution requirement of each node W j
i as follows: E1

i = 4, E2
i = 2,

E3
i = 4, E4

i = 5, E5
i = 3, E6

i = 4, E7
i = 2, E8

i = 4, E9
i = 1, E10

i = 1. Hence, Ci = 30,

Pi = 14. Let period Ti = 21.

To perform the decomposition, we first represent DAG τi as a timing diagram τ∞i (Fig-

ure 10.2(a)) that shows its execution time on an infinite number of unit-speed processor

cores. Specifically, τ∞i indicates the earliest start time and the earliest finishing time (of the

worst case execution requirement) of each node when m =∞. For any node W j
i that has no

259

parents, the earliest start time and the earliest finishing time are 0 and Ej
i , respectively. For

every other node W j
i , the earliest start time is the latest finishing time among its parents,

and the earliest finishing time is Ej
i time units after that. For example, in τi of Figure 10.1,

nodes W 1
i , W 2

i , and W 3
i can start execution at time 0, and their earliest finishing times are

4, 2, and 4, respectively. Node W 4
i can start after W 1

i and W 2
i complete, and finish after 5

time units at its earliest, and so on. Figure 10.2(a) shows τ∞i for DAG τi. Next, based on

τ∞i , the calculation of Dj
i and Φj

i for each node W j
i involves the following two steps. In Step

1, for each node, we estimate the time requirement at different parts of the node. In Step 2,

the total estimated time requirements at different parts of the node is assigned as the node’s

deadline.

As stated before, our resource augmentation analysis is based on the densities of the de-

composed tasks. As density of any task is the ratio of its execution requirement to its

deadline, density of a sequential task is directly related to scheduling difficulty. The smaller

the density, the looser the deadline, and hence is easier to schedule the task. Since, upon

decomposition, we have a set of sequential subtasks, we analyze their schedulability based

on their densities. The efficiency of the analysis is largely dependent on the total density

(δsum) and the maximum density (δmax) of the decomposed tasks. Namely, we need to keep

both δsum and δmax bounded and as small as possible to minimize the resource augmentation

requirement. Therefore, the objective of the decomposition algorithm is to split the entire

task deadline into node deadlines and to keep their densities small so that each node (sub-

task) has enough slack. The slack of any task represents the extra time beyond its execution

requirement and is defined as the difference between its deadline and execution requirement.

Estimating Time Requirements of the Nodes

In DAG τi, a node can execute with different numbers of nodes in parallel at different times.

Such a degree of parallelism can be estimated based on τ∞i . For example, in Figure 10.2(a),

node W 5
i executes with W 1

i and W 3
i in parallel for the first 2 time units, and then executes

with W 4
i in parallel for the next time unit. In this way, we first identify the degrees of

parallelism at different parts of each node. Intuitively, the parts of a node that may execute

with a large number of nodes in parallel demand more time. Therefore, different parts of

a node are assigned different amounts of time considering these degrees of parallelism and

260

execution requirements. Later, the total time of all parts of a node is assigned to the node

as its deadline.

To identify the degree of parallelism for different portions of a node based on τ∞i , we assign

time units to a node in different (consecutive) segments. In different segments of a node, the

task may have different degrees of parallelism. In τ∞i , starting from the beginning, we draw

a vertical line at every time instant where a node starts or ends (as shown in Figure 10.2(b)).

This is done in linear time using a breadth-first search over the DAG. The vertical lines now

split τ∞i into segments. For example, in Figure 10.2(b), τi is split into 7 segments (numbered

from left to right).

Once τ∞i is split into segments, each segment consists of an equal amount of execution by

the nodes that lie in the segment. Parts of different nodes in the same segment can now

be thought of as threads of execution that run in parallel, and the threads in a segment can

start only after those in the preceding segment finish. We denote this synchronous form

of τ∞i by τ syn
i . We first allot time to the segments, and finally add all times allotted to

different segments of a node to calculate its deadline. Note that τi is never converted to a

synchronous model; the procedure only identifies segments to estimate time requirements of

nodes, and does not decompose τi in this step.

We split Ti time units among the nodes based on the number of threads and execution

requirement of the segments where a node lies in τ syn
i . We first estimate time requirement

for each segment. Let τ syn
i be a sequence of si segments numbered as 1, 2, · · · , si. For any

segment j, we use mj
i to denote the number of threads in the segment, and eji to denote the

execution requirement of each thread in the segment (see Figure 10.2(b)). Since τ syn
i has the

same critical path and total execution requirements as those of τi,

Pi =

si∑
j=1

eji ; Ci =

si∑
j=1

mj
i .e

j
i

For any segment j of τ syn
i , we calculate a value dji , called the segment deadline, so that

the segment is assigned a total of dji time units to finish all its threads. Now we calculate

the value dji that minimizes both thread density and segment density that would lead to

minimizing δsum and δmax upon decomposition.

261

Since segment j consists of mj
i parallel threads, with each thread having an execution re-

quirement of eji , the total execution requirement of segment j is mj
ie
j
i . Thus, the segments

with larger numbers of threads and with longer threads are computation-intensive, and de-

mand more time to finish execution. Therefore, a reasonable way to assign the segment

deadlines is to split Ti proportionally among the segments by considering their total execu-

tion requirement. Such a policy assigns a segment deadline of Ti
Ci
mj
ie
j
i to segment j. Since

this is the deadline for each parallel thread of segment j, by Equation (10.1), the density of

a thread becomes Ci

mj
iTi

which can be as large as m. Hence, such a method does not minimize

δmax, and is not useful. Instead, we classify the segments of τ syn
i into two groups based on

a threshold θi on the number threads per segment: each segment j with mj
i > θi is called a

heavy segment, and each segment j with mj
i ≤ θi is called a light segment. Among the heavy

segments, we allocate a portion of time Ti that is no less than that allocated among the light

ones. Before assigning time among the segments, we determine a value of θi and the fraction

of time Ti to be split among the heavy and light segments.

We show below that choosing θi = Ci

2Ti−Pi
helps us keep both thread density and segment

density bounded. Therefore, each segment j with mj
i >

Ci

2Ti−Pi
is classified as a heavy segment

while other segments are called light segments. Let Hi denote the set of heavy segments, and

Li denote the set of light segments of τ syn
i . This raises three different cases: when Li = ∅ (i.e.,

when τ syn
i consists of only heavy segments), when Hi = ∅ (i.e., when τ syn

i consists of only

light segments), and when Hi 6= ∅, Li 6= ∅ (i.e., when τ syn
i consists of both light segments

and heavy segments). We use three different approaches for these three scenarios.

Case 1: when Hi = ∅. Since each segment has a smaller number (≤ Ci

2Ti−Pi
) of threads, we

only consider the length of a thread in each segment to assign time for it. Hence, Ti time

units is split proportionally among all segments according to the length of each thread. For

each segment j, its deadline dji is calculated as follows.

dji =
Ti
Pi
eji (10.4)

Since the condition Ti ≥ Pi must hold for every task τi to be schedulable,

dji =
Ti
Pi
eji ≥

Ti
Ti
eji = eji (10.5)

262

Hence, the maximum density of a thread in any segment is at most 1. Since a segment has

at most Ci

2Ti−Pi
threads, and Ti ≥ Pi, the segment’s density is at most

Ci
2Ti − Pi

≤ Ci
2Ti − Ti

=
Ci
Ti

(10.6)

Case 2: when Li = ∅. All segments are heavy, and Ti time units is split proportionally

among all segments according to the work (i.e. total execution requirement) of each segment.

For each segment j, its deadline dji is given by

dji =
Ti
Ci
mj
ie
j
i (10.7)

Since for every segment j, mj
i >

Ci

2Ti−Pi
, we have

dji =
Ti
Ci
mj
ie
j
i >

Ti
Ci

Ci
2Ti − Pi

eji =
2Ti

2(2Ti − Pi)
eji ≥

eji
2

(10.8)

Hence, the maximum density of any thread is at most 2. The total density of segment j is

at most
mj
ie
j
i

dji
=

mj
ie
j
i

Ti
Ci
mj
ie
j
i

=
Ci
Ti

(10.9)

Case 3: when Hi 6= ∅ and Li 6= ∅. The task has both heavy segments and light segments.

A total of (Ti − Pi/2) time units is assigned to heavy segments, and the remaining Pi/2

time units is assigned to light segments. (Ti−Pi/2) time units is split proportionally among

heavy segments according to the work of each segment. The total execution requirement of

heavy segments of τ syn
i is denoted by Cheavy

i , defined as

Cheavy
i =

∑
j∈Hi

mj
i .e

j
i

For each heavy segment j, the deadline dji is

dji =
Ti − Pi

2

Cheavy
i

mj
ie
j
i (10.10)

263

Algorithm 7: Decomposition Algorithm
Input: a DAG task τi with period and deadline Ti, total execution requirement Ci, critical path length Pi;
Output: deadline Dj

i , offset Φji for each node W j
i of τi;

for each node W j
i of τi do Φji ← 0; Dj

i ← 0; end;
Represent τi as τ syni ;
θi ← Ci/(2Ti − Pi); /* heavy or light threshold */

total heavy ← 0; /* total heavy segments */

total light← 0; /* total heavy segments */

Cheavy
i ← 0; /* total work of heavy segments */

P light
i ← 0; /* light segments’ critical path length */

for each j-th segment in τ syni do

if mj
i > θi then /* it is a heavy segment */
total heavy ← total heavy + 1;
Cheavy
i ← Cheavy

i +mj
ie
j
i ;

else /* it is a light segment */
total light← total light+ 1;
P light
i ← P light

i + eji ;
end

end
if total heavy = 0 then /* all segments are light */

for each j-th segment in τ syni do dji = Ti

Pi
eji ;;

else if total light = 0 then /* all seg. are heavy */

for each j-th segment in τ syni do dji = Ti

Ci
mj
ie
j
i ;;

else /* τ syni has both heavy and light segment */

for each j-th segment in τ syni do

if mj
i > θi then /* for heavy segment */

dji = Ti−Pi/2

Cheavy
i

mj
ie
j
i ;

else /* for light segment */

dji = Pi/2

P light
i

eji ;

end

end

end
/* Remove segments. Assign node deadlines */

for each node W j
i of τi in breadth-first search order do

if W j
i belongs to segments k to r in τ syni then

Dj
i = dki + dk+1

i + · · ·+ dri ; /* node deadline */

Φji ← max{Φli +Dl
i|W l

i is a parent of W j
i };

end

264

Since for each heavy segment j, mj
i >

Ci

2Ti−Pi
, we have

dji =
(Ti − Pi

2
)mj

ie
j
i

Cheavy
i

>
(Ti − Pi

2
) Ci

2Ti−Pi
eji

Cheavy
i

≥ eji
2

(10.11)

Hence, maximum density of a thread in any heavy segment is at most 2. As Ti ≥ Pi, the

total density of a heavy segment becomes

mj
ie
j
i

dji
=

mj
ie
j
i

Ti−
Pi
2

Cheavy
i

mj
ie
j
i

=
Cheavy
i

Ti − Pi

2

≤ Ci

Ti − Ti
2

=
2Ci
Ti

(10.12)

Now, to distribute time among the light segments, Pi/2 time units is split proportionally

among light segments according to the length of each thread. The critical path length of

light segments is denoted by P light
i , and is defined as follows.

P light
i =

∑
j∈Li

eji

For each light segment j, the deadline dji is

dji =
Pi

2

P light
i

eji (10.13)

The density of a thread in any light segment is at most 2 since

dji =
Pi

2

P light
i

eji ≥
Pi

2

Pi
eji =

eji
2

(10.14)

Since a light segment has at most Ci

2Ti−Pi
threads, and Ti ≥ Pi, the total density of a light

segment is at most
2Ci

2Ti − Pi
≤ 2Ci

2Ti − Ti
=

2Ci
Ti

(10.15)

265

Calculating Deadline and Offset for Nodes

We have assigned segment deadlines to (the threads of) each segment of τ syn
i in Step 1 (Equa-

tions (10.4), (10.7), (10.10), (10.13)). Since a node may be split into multiple (consecutive)

segments in τ syn
i , now we have to remove all segment deadlines of a node to reconstruct

(restore) the node. Namely, we add all segment deadlines of a node, and assign the total as

the node’s deadline.

Now let a node W j
i of τi belong to segments k to r (1 ≤ k ≤ r ≤ si) in τ syn

i . Therefore, the

deadline Dj
i of node W j

i is calculated as follows.

Dj
i = dki + dk+1

i + · · ·+ dri (10.16)

Note the execution requirement Ej
i of node W j

i is

Ej
i = eki + ek+1

i + · · ·+ eri (10.17)

Node W j
i cannot start until all of its parents complete. Hence, its release offset Φj

i is

determined as follows.

Φj
i =

0; if W j
i has no parent

max{Φl
i +Dl

i|W l
i is a parent of W j

i }; otherwise.

Now that we have assigned an appropriate deadline Dj
i and release offset Φj

i to each node

W j
i of τi, the DAG τi is now decomposed into nodes. Each node W j

i is now an individual

(sequential) multiprocessor subtask with an execution requirement Ej
i , a constrained deadline

Dj
i , and a release offset Φj

i . Note that the period of W j
i is still the same as that of the

original DAG which is Ti. The release offset Φj
i ensures that node W j

i can start execution

no earlier than W j
i time units following the release time of the original DAG. Our method

guarantees that for a general DAG no node is split into smaller subtasks to ensure node-

level non-preemption. Thus, the (node-level) non-preemptive behavior of the original task

is preserved in scheduling the nodes as individual tasks, where nodes of the DAG are never

266

 e
i

1
= 2 e

i

2
= 2 e

i

3
=1 e

i

4
= 2 e

i

5
= 2

m
i

1
= 3 m

i

2
= 3 m

i

3
= 2 m

i

4
= 3 m

i

5
= 2 m

i

7
= 2m

i

6
=1

T
i
= 21

e
i

7
=1e

i

6
= 4

Since segment 6 is the only light segment,

d
i

1

d
i

2

d
i

3
d
i

4
d
i

!
d
i

6

d
i

7

Ci

heavy
= E i

j

j∈H i

∑ = 26

Pi
light

= 4

slack

=42/13

=
T
i
− Pi / 2

Ci

heavy
mi

1
ei
1

=42/13 =14/13 =42/13 =28/13 =14/13
= i / 2

Pi
light

ei
7
=
14 / 2

4
4 = 7

(a) Calculating segment deadlines of τ syni

T
i
= 21

Φ
i

1
= 0

D
i

1
= d

i

1
" d

i

2

D
i

!
= d

i

3
� d

i

4
� d

i

5

D
i

�
= d

i

6
D
i

10
= d

i

#

Φ
i

�
= D

i

1 Φ
i

�
=Φ

i

4
�D

i

4

Φ
i

10
=Φ

i

�
�D

i

�

E
i

1
= e

i

1
� e

i

2
= E

i

4
= e

i

3
� e

i

4
� e

i

5
= 5 E

i

	
= e

i

6
= E

i

10
= e

i

=1

E
i

9
= e

i

7
=1E

i

2
= e

i

1
= 2

E
i

3
= e

i

1
� e

i

2
= 4

E
i

5
= e

i

2
� e

i

3
= 3

E
i

7
= e

i

4
= 2

E
i

6
= e

i

4
 e

i

5
= 4

= 84/13 = 84/13

= 84/13

=7

= 168/13

= 14/13

= 259/13

D
i

2
= d

i

1

D
i

5
= d

i

2
� d

i

3

D
i

6
= d

i

4
� d

i

5

= 42/13 = 56/13
= 70/13 D

i

9
= d

i

7

= 14/13

Φ
i

2
= 0 Φ

i

6
=Φ

i

5
�D

i

5
Φ

i

5
= D

i

2
= 42/13 = 98/13

Φ
i

9
=Φ

i

8
�D

i

8

Φ
i

3
= 0

D
i

3
= d

i

1
� d

i

2

D
i

7
= d

i

4

Φ
i

7
=Φ

i

5
�D

i

5

= 98/13

= 42/13= 84/13

Segment deadlines assigned in different segments
of a node in the previous step are now removed,
and their sum is assigned as the node's deadline

slack slack slack

slackslack

slack

slack

slack

slack

slack

= 259/13

(b) Removing segment deadlines, and calculating node deadlines and offsets

Figure 10.3: Decomposition of τi (shown in Figure 10.1) when Ti = 21

preempted. The entire decomposition method is presented as Algorithm 7 which runs in

linear time (in terms of the DAG size i.e., number of nodes and edges). Figure 10.3 shows

the complete decomposition of τi.

267

10.4.3 Density Analysis after Decomposition

After decomposition, let τdec
i denote all subtasks (i.e., nodes) that τi generates. Note that

the densities of all such subtasks comprise the density of τdec
i . Now we analyze the density

of τdec
i which will later be used to analyze schedulability.

Let node W j
i of τi belong to segments k to r (1 ≤ k ≤ r ≤ si) in τ syn

i . Since W j
i has been

assigned deadline Dj
i , by Equations (10.16) and (10.17), its density δji after decomposition

is

δji =
Ej
i

Dj
i

=
eki + ek+1

i + · · ·+ eri
dki + dk+1

i + · · ·+ dri
(10.18)

By Equations (10.5), (10.8), (10.11), (10.14), dki ≥
eki
2

, ∀i, k. Hence, from (10.18),

δji =
Ej
i

Dj
i

≤ 2eki + 2ek+1
i + · · ·+ 2eri

eki + ek+1
i + · · ·+ eri

= 2 (10.19)

Let τdec be the set of all generated subtasks of all original DAG tasks, and δmax be the

maximum density among all subtasks in τdec. By Equation (10.19),

δmax = max
{
δji
∣∣1 ≤ j ≤ ni, 1 ≤ i ≤ n

}
≤ 2 (10.20)

We use Dmin to denote the minimum deadline among all subtasks in τdec. That is,

Dmin = min
{
Dj
i

∣∣1 ≤ j ≤ ni, 1 ≤ i ≤ n
}

(10.21)

Theorem 30. Let a DAG τi, 1 ≤ i ≤ n, with period Ti, critical path length Pi where Ti ≥ Pi,

and maximum execution requirement Ci be decomposed into subtasks (nodes) denoted τ deci

using Algorithm 7. The density of τ deci is at most 2Ci

Ti
.

Proof. Since we decompose τi into nodes, the densities of all decomposed nodes W j
i , 1 ≤

j ≤ ni, comprise the density of τdec
i . In Step 1, every node W j

i of τi is split into threads in

different segments of τ syn
i , and each segment is assigned a segment deadline. In Step 2, we

remove all segment deadlines in the node, and their total is assigned as the node’s deadline.

268

If τi is scheduled in the form of τ syn
i , then each segment is scheduled after its preceding

segment is complete. That is, at any time at most one segment is active. By Equations

(10.6), (10.9), (10.12), (10.15), a segment has density at most 2Ci

Ti
(considering Ti ≥ Pi).

Hence, the overall density of τ syn
i never exceeds 2Ci

Ti
. Therefore, it is sufficient to prove that

removing segment deadlines in the nodes does not increase the task’s overall density. That is,

it is sufficient to prove that the density δji (Equation (10.18)) of any node W j
i after removing

its segment deadlines is no greater than the density δj,syn
i that it had before removing its

segment deadlines.

Let node W j
i of the original DAG task τi be split into threads in segments k to r (1 ≤ k ≤

r ≤ si) in τ syn
i . Since the total density of any set of tasks is an upper bound on its load (as

proven in [79]), the load of the threads of W j
i must be no greater than the total density of

these threads. Since each of these threads is executed only once in the interval of Dj
i time

units, based on Equation (10.2), the DBF of the thread, threadli, in segment l, k ≤ l ≤ r, in

the interval of Dj
i time units is expressed as

DBF(threadli, D
j
i) = eli

Therefore, using Equation (10.3), the load, denoted by λj,syn
i , of the threads of W j

i in τ syn
i

for interval Dj
i is

λj,syn
i ≥ eki

Dj
i

+
ek+1
i

Dj
i

+ · · ·+ eri
Dj
i

=
Ej
i

Dj
i

= δji

Since δj, syn
i ≥ λj, syn

i , for any W j
i , we have δj, syn

i ≥ δji .

Let δsum be the total density of all subtasks τdec. Since, from Theorem 30, the density of

each τdec
i is at most 2Ci

Ti
where Ti ≥ Pi,

δsum ≤
n∑
i=1

2Ci
Ti

= 2
n∑
i=1

Ci
Ti

(10.22)

269

10.4.4 Implementation Considerations

This paper provides the algorithmic foundation for building a real-time parallel scheduler

for parallel tasks. We now provide a sketch (Figure 10.4) on how it be implemented on a

real system. In principle, one can use any parallel language such as OpenMP [17] and Cilk-

Plus [12] that provides parallel programming support through library routines and directives.

For example, OpenMP directives are compiler pragma statements that indicate where and

how parallelization can occur within a program. One such directive converts a regular for

loop to a parallel-for loop, by prefacing the loop with #pragma omp parallel for. The

programmer can specify their task set as a set of parallel programs written in some such

parallel language. To make these tasks real-time tasks, the programmer must also specify

task deadlines and periods. We assume that these things are specified using a separate task

specification file that is also an input to the scheduler. In addition, the decomposition algo-

rithm also needs the execution requirements of each node in task, which can also be either

specified in the task specification file, or measured using a profiler.

Using the task specification file and the task set, the scheduler computes the intermediate

deadlines and release times for each node. In addition, the compiler decomposes the task

into individual nodes/subtasks. Once the intermediate deadlines are known, we can use

a global priority queue to keep the subtasks sorted by priorities according to EDF. Now

at runtime, the scheduler schedules these subtasks on m processors using OS support for

scheduling priorities, runtime preemption, and synchronization. When a subtask becomes

available, if a worker is free, it is simply scheduled on this worker. If no worker is free,

it is added to the priority queue. In the preemptive scheduler, we can use Linux support

for preemption to preempt tasks with lower priorities when a high-priority task becomes

available. For non-preemptive scheduling, we disable preemption and add yield points after

each node3. When a subtask yields at its yield point, the scheduler can schedule the highest

priority task that is available in the priority queue.

3Most parallel languages already have this support, since this is when control returns to the scheduler.
For others, these can be added by the compiler.

270

Compile-time decomposition

Parallel

Task set

Compute intermediate

deadlines

in

OpenMP

CilkPlus

Assign node deadlines

and offsets

Run-time scheduler

Priority queue

Worker 1

Worker 2

Worker 3

Add yield points after

nodes for non-

preemptive scheduling

Task-set

specification

Worker m

...

Subtasks sorted

based on EDF

Figure 10.4: Scheduler components

10.5 Preemptive EDF Scheduling

Once all DAG tasks are decomposed into nodes (i.e., subtasks), we consider scheduling

the nodes. Since every node after decomposition becomes a sequential task, we schedule

them using traditional multiprocessor scheduling policies. In this section, we consider the

preemptive global EDF policy.

Lemma 31. For any set of DAGs τ = {τ1, · · · , τn}, let τ dec be the decomposed task set. If

τ dec is schedulable under some preemptive scheduling, then τ is preemptively schedulable.

Proof. In each τdec
i , a node is released only after all of its parents finish execution. Hence,

the precedence relations in original task τi are retained in τdec
i (that represent all subtasks of

τi). Besides, the time by which the last subtask of τdec
i has to finish is equal to the deadline of

the original task τi, and the sum of the execution requirements of these subtasks is equal to

the execution requirement of the original task τi. Hence, if τdec is preemptively schedulable,

a preemptive schedule must exist for τ where each task in τ meets its deadline.

To schedule the decomposed subtasks τdec, the EDF policy is the same as the traditional

global EDF policy where jobs with earlier absolute deadlines have higher priorities. Due to

the preemptive policy, a job can be suspended (preempted) at any time by arriving higher-

priority jobs, and is later resumed with (in theory) no cost or penalty. Under preemptive

271

global EDF, we now present a schedulability analysis for τdec in terms of a resource augmen-

tation bound which, by Lemma 31, is also a sufficient analysis for the original DAG task set

τ . For a task set, a resource augmentation bound ν of a scheduling policy A on an m-core

machine is a processor speed-up factor. That is, if there exists any way to schedule the task

set on m identical unit-speed processor cores, then A is guaranteed to successfully schedule

it on an m-core processor with each core being ν times as fast as the original.

Our analysis hinges on a result (Theorem 32) for preemptive global EDF scheduling of

constrained deadline sporadic tasks on a traditional multiprocessor platform [41]. This result

is a generalization of the result for implicit deadline tasks [85].

Theorem 32. (From [41]) Any constrained deadline sporadic sequential task set π with

total density δsum(π) and maximum density δmax(π) is schedulable using preemptive global

EDF policy on m unit-speed processor cores if

δsum(π) ≤ m− (m− 1)δmax(π)

Note that τdec consists of constrained deadline (sub)tasks that are periodic with offsets.

If they do not have offsets, then the above condition directly applies. Taking the offsets

into account, the execution requirement, the deadline, and the period (which is equal to

the period of the original DAG) of each subtask remains unchanged. The release offsets

only ensure that some subtasks of the same original DAG are not executed simultaneously

to preserve the precedence relations in the DAG. This implies that both δsum and δmax of

the subtasks with offsets are no greater than δsum and δmax, respectively, of the same set of

tasks with no offsets. Hence, Theorem 32 holds for τdec. We now use the results of density

analysis from Subsection 10.4.3, and prove that τdec is guaranteed to be schedulable with a

resource augmentation of at most 4 in Corollary 3 that follows Theorem 33. The proof of

Theorem 33 in this paper is similar to the proof used in [153] since both papers use the same

prior result [41] to schedule the sequential subtasks. Note that our key contribution lies in

decomposing DAGs to subtasks, not in scheduling of subtasks.

Theorem 33. For any set of DAGs τ = {τ1, τ2, · · · , τn}, let τ dec be the decomposed task set.

If every DAG τi satisfies the condition Ti ≥ Pi, and the DAG set τ satisfies the condition∑n
i=1

Ci

Ti
≤ m on m identical unit-speed processor cores, then the decomposed task set τ dec

272

is guaranteed to be schedulable under preemptive global EDF on m processor cores, each of

speed 4.

Proof. If each DAG τi satisfies the condition Ti ≥ Pi, then the total density δsum of the

decomposed task set τdec is at most 2
∑n

i=1
Ci

Ti
(Equation (10.22)), and the maximum density

δmax of τdec is at most 2 (Equation (10.20)) on unit-speed processors. To be able to schedule

the decomposed tasks τdec, let each processor core be of speed ν, where ν > 1. On an m-core

platform where each core has speed ν, let the total density and the maximum density of task

set τdec be denoted by δsum,ν and δmax,ν , respectively.

Considering that the condition
∑n

i=1
Ci

Ti
≤ m holds for τ , the total density of decomposed

tasks τdec from Equation (10.22) is derived as follows on ν-speed cores.

δsum,ν =
δsum

ν
≤ 2

n∑
i=1

Ci

ν

Ti
=

2

ν

n∑
i=1

Ci
Ti
≤ 2m

ν
(10.23)

On ν-speed cores, the maximum density of τdec is derived from Equation (10.20) as follows.

δmax,ν =
δmax

ν
≤ 2

ν
(10.24)

Using Conditions (10.24) and (10.23) in Theorem 32, τdec is schedulable under preemptive

EDF policy on m processor cores each of speed ν if

2m

ν
≤ m− (m− 1)

2

ν
⇔ 4

ν
− 2

mν
≤ 1

From the above condition, τdec must be schedulable if

4

ν
≤ 1 ⇔ ν ≥ 4.

Corollary 3. For any set of DAGs τ = {τ1, τ2, · · · , τn}, let τ dec be the decomposed task set.

If there exists any algorithm that can schedule τ on m unit-speed processor cores, then the

decomposed task set τ dec is guaranteed to be schedulable under preemptive global EDF on m

cores, each of speed 4.

273

Proof. If there exists any algorithm that can schedule τ on m unit-speed processor cores,

then the following two conditions must hold.

n∑
i=1

Ci
Ti
≤ m (10.25)

Ti ≥ Pi, for each τi (10.26)

If the above two conditions hold, then by Theorem 33 the decomposed task set τdec must

be schedulable under preemptive global EDF on m cores, each of speed 4. Therefore, the

corollary holds.

Since Theorem 33 holds, we have the following straightforward schedulability test based

on the resource augmentation bound of 4 for any set of DAGs: For any set of DAGs

τ = {τ1, τ2, · · · , τn}, if the total utilization usum(τ) ≤ m
4

and every DAG τi individually

satisfies condition Pi ≤ Ti
4

, then the task set is schedulable under preemptive EDF policy

upon decomposition.

10.6 Non-Preemptive EDF Scheduling

We now address non-preemptive global EDF scheduling considering that the original task set

τ is scheduled based on node-level non-preemption. In node-level non-preemptive scheduling,

whenever the execution of a node in a DAG starts, the node’s execution cannot be preempted

by any task. Most parallel languages and libraries have yield points at the ends of threads

(nodes of the DAG), where they allow low cost, user-space preemption. For these languages

and libraries, schedulers that switch context only when threads end (i.e. where threads do

not preempt each other) can be implemented entirely in user-space (without interaction with

the kernel), and hence have low overheads.

The decomposition converts each node of a DAG to a traditional multiprocessor (sub)task.

Therefore, we consider fully non-preemptive global EDF scheduling of the decomposed tasks.

Namely, once a job of a decomposed (sub)task starts execution, it cannot be preempted by

any other job.

274

Lemma 34. For any set of DAGs τ = {τ1, · · · , τn}, let τ dec be the decomposed task set. If

τ dec is schedulable under some fully non-preemptive scheduling, then τ is schedulable under

node-level non-preemption.

Proof. Since the decomposition converts each node of a DAG to an individual task, a fully

non-preemptive scheduling of τdec preserves the node-level non-preemptive behavior of task

set τ . The rest of the proof follows from Lemma 31.

Under non-preemptive global EDF, we now present a schedulability analysis for τdec in

terms of a resource augmentation bound which, by Lemma 34, is also a sufficient analysis

for the DAG task set τ . This analysis exploits Theorem 35 for non-preemptive global EDF

scheduling of constrained deadline periodic tasks on traditional multiprocessor. The theorem

is a generalization of the result for implicit deadline tasks [42].

For a task set π, let Cmax(π) and Dmin(π) be the maximum execution requirement and the

minimum deadline among all tasks in π. In non-preemptive scheduling, Cmax(π) represents

the maximum blocking time that a task may experience, and plays a major role in schedu-

lability. Hence, a non-preemption overhead, defined in [42], for the task set π is given by

ρ(π) = Cmax(π)
Dmin(π)

. The value of ρ(π) indicates the added penalty or overhead associated with

non-preemptivity. In other words, since preemption is not allowed, the capacity of each pro-

cessor is reduced (at most) by a factor of ρ(π). In non-preemptive scheduling, this capacity

reduction is recompensed by reducing the cost associated with context-switch, saving state

etc.

Theorem 35. (From [42]) Any constrained deadline periodic task set π with total density

δsum(π), maximum density δmax(π), and a non-preemption overhead ρ(π) is schedulable using

non-preemptive global EDF on m unit-speed cores if

δsum(π) ≤ m
(
1− ρ(π)

)
− (m− 1)δmax(π)

Let Emax and Emin be the maximum and minimum execution requirement, respectively,

among all nodes of all DAG tasks. That is,

Emax = max
{
Ej
i

∣∣1 ≤ j ≤ ni, 1 ≤ i ≤ n
}

(10.27)

275

Emin = min
{
Ej
i

∣∣1 ≤ j ≤ ni, 1 ≤ i ≤ n
}

(10.28)

In node-level non-preemptive scheduling of the DAG tasks, the processor capacity reduction

due to non-preemptivity is at most Emax

Emin
. Hence, this value is the non-preemption overhead

of the DAG tasks, and is denoted by ρ 4:

ρ =
Emax

Emin

(10.29)

Theorem 36 derives a resource augmentation bound of 4+2ρ for non-preemptive global EDF

scheduling of the decomposed tasks.

Theorem 36. For DAG model parallel tasks τ = {τ1, · · · , τn}, let τ dec be the decomposed

task set with non-preemption overhead ρ. If there exists any way to schedule τ on m unit-

speed processor cores, then τ dec is schedulable under non-preemptive global EDF on m cores,

each of speed 4 + 2ρ.

Proof. After decomposition, Dmin (Equation (10.21)) is the minimum deadline among all

subtasks in τdec. Since Emax (Equation (10.27)) represents the maximum blocking time that

a subtask may experience, the non-preemption overhead of the decomposed tasks is Emax

Dmin
.

From Equations (10.19) and (10.29), the non-preemption overhead of the decomposed tasks

Emax

Dmin

≤ Emax

Emin/2
=

2Emax

Emin

= 2ρ (10.30)

Similar to Theorem 33 and Corollary 3, suppose we need each processor core to be of speed ν

to be able to schedule the decomposed tasks τdec. From Equation (10.30), the non-preemption

overhead of τdec on ν-speed cores is

Emax/ν

Dmin

≤ 2ρ

ν
(10.31)

Considering a non-preemption overhead of at most 2ρ
ν

on ν-speed processor cores, and using

Equations (10.24) and (10.23) in Theorem 35, τdec is schedulable under non-preemptive EDF

4Unfortunately, Dmin is not an input parameter in our case as its value is only known upon decomposition.
Instead, the value of Emin is known from input, and hence we use this in defining ρ.

276

on m cores each of speed ν if

2m

ν
≤ m(1− 2ρ

ν
)− (m− 1)

2

ν
⇔ 4 + 2ρ

ν
− 1

mν
≤ 1

From the above condition, task set τdec is schedulable if

4 + 2ρ

ν
≤ 1 ⇔ ν ≥ 4 + 2ρ.

A Tighter Bound for Non-Preemptive EDF:

A resource augmentation of 4 + 2ρ for non-preemptive EDF is relatively looser than the

corresponding bound of 4 for preemptive EDF. This is mainly because non-preemptivity can

cause processor capacity reduction of up to ρ. Due to decomposition, this value increases

to 2ρ (see Equation (10.30)). However, we can express the augmentation bound in a tighter

form by using a tighter bound on non-preemption overhead. As shown in Equation (10.30)

the non-preemption overhead of the decomposed task is indeed at most Emax

Dmin
. But we used

a pessimistic upper bound of this value by replacing Dmin with Emin as the value of Dmin is

unknown before decomposition. Emin is a lower bound of Dmin and is known (from input)

before decomposition. Therefore, if we define the bound upon decomposition, we can use Emax

Dmin

as the maximum non-preemption overhead. Using this value of non-preemption overhead in

Theorem 36, our bound will be 4 + Emax

Dmin
which is a lot smaller than 4 + 2ρ.

Notably, the work in [24] has identified a large class of applications such as high-performance

web and data-servers that consist of many real-time tasks, called liquid tasks, in which the

smallest deadline of any job in the system is orders of magnitude greater than the largest

execution requirement of any job. Upon decomposing the liquid tasks, the value of Dmin can

be very close to Emax. Thus the value of Emax

Dmin
approaches 1, and a resource augmentation of

4 + Emax

Dmin
is tight and quite useful in scheduling liquid parallel tasks. Our result provides the

first such bound for non-preemptive real-time scheduling of parallel tasks, and provides the

basis for future directions to derive tighter bounds for all classes of real-time tasks.

277

10.7 Evaluation

The derived resource augmentation bounds provide a sufficient condition for schedulability.

Namely, if a set of DAG tasks is schedulable on a unit-speed m-core machine by a (po-

tentially non-existing) ideal scheduler, then the tasks upon our proposed decomposition are

guaranteed to be schedulable under global EDF on an m-core machine where each core has

a speed of 4 (with preemption) or 4 + 2ρ (without preemption).

In this section, we evaluate our scheduler using simulations. We simulate the execution of a

set of parallel tasks under scheduling algorithms to observe deadline misses. We developed

a simple event-driven simulator where task executions are simulated in parallel as if they

executed on m cores. We first randomly create tasks and then calculate subtask deadlines

using our proposed decomposition method. We then simulate the execution of these subtasks.

The environment consists of m cores and a global priority queue which keeps subtasks in the

order of priorities based on EDF. An event occurs when a subtask is released or completed.

When a subtask t is released, a preemptive and non-preemptive schedulers behave differently.

In a non-preemptive scheduler, two things can occur: (i) If a core is free, then t is scheduled

on that core; (ii) If all cores are busy, then the task is added to the priority queue. On

a preemptive scheduler, if all cores are busy, but another subtask s with a deadline later

than t’s deadline is executing, then s is preempted and placed in the priority queue, and t

is scheduled instead of s. When a subtask completes, the highest priority subtask from the

queue is executed on the core that has just become free. This is a simple simulator which

only simulates the task executions and ignores overheads due to migration, cache misses,

preemption, and synchronization.

10.7.1 Task and Task Set Generation

We want to evaluate our scheduler using task sets that an optimal scheduler could schedule

on 1-speed processors. However, as we cannot determine this ideal scheduler, we assume that

an ideal scheduler can schedule any task set whose total utilization is no greater than m, and

that each individual task is schedulable in isolation (i.e. its critical path length is no greater

than its deadline). Therefore, in our experiments, for each value of m (i.e. the number

278

of cores), we generate task sets whose utilization is exactly m, fully loading a machine of

1-speed processors.

We use the Erdös-Rényi method G(ni, p) [65] as presented below to generate task sets for

evaluation.

Number of nodes. To generate a DAG τi, we pick the number of nodes ni uniformly at

random in range [50, 350]. These values would allow us to generate varied task sets within a

reasonable amount of time.

Adding edges. We add edges to the graph using the Erdös-Rényi method G(ni, p) [65]. We

scan all the possible edges directing from lower node id to higher node id to avoid introducing

a cycle into the graph. For each possible edge, we generate a random value in range [0, 1]

and add the edge only if the generated value is less than a predefined probability p. (We will

vary p in our experiments to explore the effect of changing p.) Finally, we add an additional

minimum number of edges so that each node (except the first and the last node) has at least

one incoming and one outgoing edge in order to make the DAG weakly connected. Note that

the critical path length of a DAG generated using the pure Erdös-Rényi method increases

as p increases. Since our method is slightly modified, the critical path is also large when p is

small. Hence, as p increases, the critical path first decreases up to a certain value of p and

then increases again.

Execution time of nodes. We assign every node an execution time chosen randomly from

a specified range. The range is based on the value and type (continuous or discrete) of the

non-preemption overhead ρ (explained in the next subsection).

At this point, we have the DAG structure and the execution times for its nodes. For each

DAG τi, we now assign a period Ti that is no less than the critical path length Pi. We

consider two types of task sets:

Task sets with harmonic periods. These deadlines are carefully picked so that they are

multiples of each other, so as to ensure that we can run our experiments up to the hyper-

period of the task sets. In particular, we pick deadlines that are powers of two. We find the

smallest value a such that Pi ≤ 2a, and randomly set Ti to be one of 2a, 2a+1, or 2a+2. We

choose such periods because we want some high utilization tasks and some low utilization

279

tasks. The ratio Pi/Ti of the task is in the range [1, 1/2], (1/2,1/4], or (1/4, 1/8], when its

period Ti is 2a, 2a+1, or 2a+2, respectively.

Task sets with arbitrary periods. We first generate a random number Gamma(2, 1) using

the gamma distribution [14]. Then we set period Ti to be (Pi+
Ci

0.5m
)∗(1+0.25∗Gamma(2, 1)).

We choose this formula for three reasons. First, we want to ensure that the assigned value

is a valid period, i.e., Pi ≤ Ti. Second, we want to ensure that each task set contains a

reasonable number of tasks even when m is small. At the same time, with more cores, we

do not want to limit average DAG utilization to a certain small value. Hence the minimum

period is a function of m. Third, while we want the average period to be close to the

minimum valid period (to have high utilization tasks), we also want some tasks with large

periods. Table 10.1 shows the average number of DAGs per task set achieved by the random

period generation process.

HH
HHHHm

p
0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4 4 4 4 4 4 4 5 6 6 7 7 8 8 8
8 4 4 4 4 5 5 7 8 9 10 11 12 13 14
16 4 5 5 6 6 7 10 12 15 17 19 20 22 24
32 5 6 7 8 9 11 17 22 26 30 34 37 41 45

Table 10.1: Number of tasks per task set

To create a task set we combine individual DAGs as follows. We add DAGs to the task set

until the total utilization of the set exceeds m. We then remove the last generated DAG.

Thus, at this point, the total utilization is smaller than m. To make the total utilization

exactly m, we add small DAGs with long periods (i.e., of small utilization). We stop adding

small DAGs when the total utilization is larger than 99% of m.

10.7.2 Experimental Methodology

We experiment by varying the following 4 parameters.

Harmonic vs. arbitrary periods. We want to evaluate whether arbitrary periods are

better or worse than harmonic ones. For harmonic period task sets, we run simulation up

280

to their hyper-period. For arbitrary period task sets, the hyper-period can be too long to

simulate, and hence we run simulation up to 20 times the maximum period.

Number of cores (m). We want to evaluate if parallel scheduling is easier or harder as

the number of cores increases. We run experiments on m: 4, 8, 16, and 32.

Probability of an edge (p). As stated before, p affects the critical path length, the density,

and the structure of the DAG. We test using 14 values of p: 0.01, 0.02, 0.03, 0.05, 0.07, 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

Non-preemption overhead (ρ). This is the ratio of the maximum node execution length

to the minimum node execution length. For non-preemptive EDF scheduling, the resource

augmentation bound increases as ρ increases. We want to evaluate whether the effect of

increased ρ is really that severe in practice. For all of our experiments, we set the minimum

node execution requirement to be 50, and vary the maximum execution requirement. To get

ρ = 1, 2, 5, and 10, the maximum execution requirements are chosen to be 50, 100, 250, and

500, respectively. In addition, when we evaluate the performance of non-preemptive EDF,

we want to maximize the influence of ρ. Therefore, besides using uniformly generated node

execution time between maximum and minimum (called continuous ρ), we also generate by

choosing from discrete values 50, 2 ∗ 50, · · · , ρ ∗ 50 (called discrete ρ).

In all experiments, we simulate 1000 task sets. For each task set, we start by simulating its

execution on 1-speed processors, and increase the speed by 0.1 intervals until all task sets

are schedulable. Using these different task sets, we conduct two sets of experiments. In our

first set, we evaluate the scheduler under preemptive global EDF. Hence, we vary the types

of period, m and p, but keep ρ constant at 2, leading to 112 combinations. In the second

set, we evaluate under non-preemptive global EDF by varying all four factors, leading to 896

combinations.

10.7.3 Results

Of the 896 combinations of parameters (each having 1000 task sets) we have tested, preemp-

tive EDF has the maximum required speed of 3.2 to meet all deadlines (this data point is not

281

1 1.5 2 2.5
10

−4

10
−3

10
−2

10
−1

10
0

Processor speed

L
o

g
a

ri
th

m
ic

 s
c
a

le
 o

f
fa

ilu
re

 r
a

ti
o

p = 0.01
p = 0.05
p = 0.1
p = 0.2
p = 0.4
p = 0.6
p = 0.8

Figure 10.5: Failure ratio in preemptive EDF on 32 cores under different edge probability

shown in figures for better resolution), which is close to our analytical resource augmenta-

tion bound of 4. In contrast, among the combinations of parameters with ρ = 1, 2, 5, 10, the

maximum required speed for non-preemptive EDF are 4.0, 5.8, 8.6, and 12.6, respectively,

which look much smaller than the analytical bound of 6, 8, 14, and 24, respectively. These

issues are discussed upon presenting the results. For brevity, we present only a subset of the

experimental results.

Effect of harmonic vs. arbitrary periods. We find that it is slightly harder to

schedule harmonic period tasks using preemptive EDF, and vice-versa for non-preemptive

EDF. However, the difference is minor, and the trends are very similar under both. Here we

will only show the experiments for arbitrary periods.

Effect of p in preemptive scheduling. For each value of p, Figure 10.5 shows the failure

ratio defined as the ratio of the number of task sets where some task missed a deadline to

the total number of task sets (which is 1000 in our experiment) attempted to be scheduled.

To preserve resolution of the figure, we show the results for only 7 (out of 14) values of p.

In these experiments, ρ = 2, m = 32. Note that the failure ratio increases as p increases

from 0.01 to 0.1, and then falls again. As we explained in Section 10.7.1, as p increases, the

critical-path length first decreases (making the tasks more “parallel” or “DAG-like”) and

then increases again (making the tasks more sequential). Therefore, for both small and large

p, the tasks are largely sequential. These results seem to conform to our intuition that, in

282

1 1.5 2 2.5
10

−4

10
−3

10
−2

10
−1

10
0

Processor speed

L
o

g
a

ri
th

m
ic

 s
c
a

le
 o

f
fa

ilu
re

 r
a

ti
o

4 cores
8 cores
16 cores
32 cores

Figure 10.6: Failure ratio in preemptive EDF on different numbers of cores

general, parallel tasks are more difficult to schedule than sequential ones. The results for 4,

8, and 16 cores also follow this trend, and hence are omitted.

Effect of m in preemptive scheduling. Figure 10.6 shows the failure ratio in logarithmic

scale for each value of m, when p = 0.2 and ρ = 2. The failure ratio increases as m increases,

indicating that it is harder to schedule on larger numbers of cores. The trend is similar for

different values of p, and hence is not shown.

1 2 3 4 5 6 7 8
10

−4

10
−3

10
−2

10
−1

10
0

Processor speed

L
o

g
a

ri
th

m
ic

 s
c
a

le
 o

f
fa

ilu
re

 r
a

ti
o

NP overhead (ρ) = 1

NP overhead (ρ) = 2

NP overhead (ρ) = 5

NP overhead (ρ) = 10

Figure 10.7: Failure ratio in non-preemptive EDF on 8 cores under different non-preemption
overhead

Effect of ρ in non-preemptive scheduling. The most important factor to evaluate is

the effect of ρ. Figure 10.7 shows the failure ratio for discrete ρ for each value of ρ, with

283

fixed p = 0.2, m = 8. With the increase in ρ, the failure ratio becomes much higher, which

is expected. However, this trend is not quite strong for continuous ρ, and we omit plotting

those results. Following may be the reason for this anomaly. The maximum value of ρ

only affects the schedule if a node having the maximum execution interferes with a node

having the minimum execution. Since ρ is continuous, a node’s execution requirement is

assigned from many different values. This causes only a small number of nodes to be at

these extremes, thereby reducing the chances of such interference.

2 4 6 8 10
2

4

6

8

10

NP overhead (ρ)

P
ro

c
e

s
s
o

r
s
p

e
e

d

4 cores
8 cores
16 cores
32 cores

Figure 10.8: Required speed in non-preemptive EDF on different numbers of cores with
increasing non-preemption overhead

Effect of m in non-preemptive scheduling. Figure 10.7 shows the required speed for

each combination of m and ρ, with p = 0.2. This figure is different from the previous ones

in that it only shows the speed at which all task sets become schedulable. We can see that

for each value of m, when ρ increases, the required speed increases, which is expected. This

trend is less visible when m increases. One possible reason is that when there are more cores,

the overhead from interference between executing low priority subtask and a newly released

higher priority subtask will, on average, be smaller. This happens because the overhead is

the minimum remaining work of all m running lower priority subtasks, instead of the average

or worst case subtask execution time. When m is higher, the minimum will be much smaller

than average, making the system much less influenced when ρ increases.

The simulation results show a maximum speed requirement of 3.2 for preemptive EDF sug-

gesting that our analytical resource augmentation bound of 4 is reasonably tight. The corre-

sponding bounds for non-preemptive EDF sound relatively looser in our simulation results.

284

This is because, as stated in Section 10.6, non-preemptivity can cause processor capacity

reduction of up to ρ in the worst case. However, as our bound holds for all task sets, some

task sets are likely to exist for which a bound of 4 + 2ρ may still be tight, but our simula-

tion does not encounter those tasks. In other words, our results may be an artifact of our

experimental set up and random task generation that is unlikely to generate the worst-case

task set.

10.8 Summary

As multi-core technology becomes mainstream in processor design, real-time scheduling of

parallel tasks is crucial to exploit its potential. In this paper, we consider a general task

model and through a novel task decomposition we prove a resource augmentation bound

of 4 for preemptive EDF, and 4 plus a non-preemption overhead for non-preemptive EDF

scheduling. To our knowledge, these are the first bounds for real-time scheduling of general

DAG model tasks. Through simulations, we have observed that the required augmentation

bounds are safe in practice. Our results suggest several possible directions of future work.

One direction is to provide better bounds and/or provide lower bound arguments to argue

that the bounds are in fact tight. Another possible direction is to study the effect of caches

on scheduling overhead. While non-preemption mitigates this problem to some extent, more

can be done to optimize cache-locality. Finally, we can generalize our results to models that

take into account the effects of non-deterministic synchronization such as locks.

285

Chapter 11

Conclusion

Wireless sensor-actuator networks represent a new communication infrastructure for wireless

cyber-physical systems (CPS). Sensing and control in these systems need to meet stringent

real-time performance requirements on communication latency in challenging environments

for a large class of CPS applications such as process control, smart manufacturing, and data

center management. Real-time transmission scheduling and analysis for wireless sensor-

actuator networks requires new methodologies to deal with unique characteristics of wireless

communication. Furthermore, the performance of a wireless control involves intricate inter-

actions between real-time communication and control. In this thesis, we have addressed these

challenges and made a series of contributions to the theory and system for wireless CPS. (1)

We have established a new real-time scheduling theory for wireless sensor-actuator networks.

(2) We have developed a scheduling-control co-design approach for holistic optimization of

control performance in a wireless control system. (3) We have designed and implemented a

wireless sensor-actuator network for CPS in data center power management. (4) We have

expanded our research to develop scheduling algorithms and analyses for real-time parallel

computing to support computation-intensive CPS.

This thesis research has made important contribution towards, and impacts on the field.

It has provided the first set of results on real-time wireless networks, and has kicked off a

research domain towards the evolution of wireless CPS. Our work on parallel computing

for computation intensive CPS is regarded as one of the pioneering works in the literature

of Real-Time Parallel Computing. This research has inspired many follow-up works. The

CapNet implementation provides the first proof of concept design for using low cost wireless

286

for CPS in data center power capping. This thesis also opens a number of future research

problems. Specifically, we will address the following research agenda in our future work.

Many wireless CPS may tolerate a certain degree of packet loss or deadline misses at the cost

of degraded performance. Hence, we plan to incorporate packet loss, latency, and deadline

misses in co-design optimization for CPS. We will make the solutions scalable through local

adaptation or hierarchical networking, and closely integrate theoretical research and system

experimentation on testbeds. We will also work on multi-core systems which will be heavily

exploited by the future CPS. In addition to aggressively utilizing a multi-core, it is critical

to ensure efficiency in terms of memory and resource sharing. Hence, in the future, we will

consider parallel computing by taking into account cache effects on scheduling overhead (e.g.,

by optimizing cache-locality), and by considering non-deterministic synchronization such as

locks.

Emerging large-scale wireless CPS (e.g., process control, civil structure control) will require

many sensors and actuators connected over long distances. With current short-range wireless

(e.g., IEEE 802.15.4, 802.11), these applications form many-hop mesh networks and address

significant engineering challenges in scalability, time synchronization, and protocol design.

For example, the emerging wireless control networks may have tens of thousands of field

devices [21] which will require significant wiring to integrate numerous small networks in a

large deployment, significantly reducing the benefit of wireless. Similarly, due to short radio

range, the current structural monitoring wireless sensor network deployed on Golden Gate

Bridge [105] forms a 46-hop network that cannot collect sensor data in real-time. Due to

long communication range, using TV spectrum white spaces (i.e., allocated but unused TV

spectrum [38,38]) can overcome these limitations and simplify network design.

While the potential of white spaces is mostly being tapped into for wireless broadband access,

we will research on exploiting these for CPS applications that involve wide-area sensing and

control. Federal Communications Commission poses strict rules on the white spaces usage

policy to ensure no interference with the primary users (TV, wireless microphones). Long

ranges also bring forth brand new challenges in energy efficiency, resource contention, and

network management for sensor networking, requiring the development of new energy efficient

MAC protocols. Another class of challenges rises in spectrum management as the spectrum

availability changes with time and geographic location. How often to perform spectrum

287

sensing and how to share the duty among sensor nodes to sense spectrum availability is an

interesting research question. Since a white space network must vacate a channel as soon as

a primary user occupies it, new protocols must be developed to handle temporal disruptions

in real-time sensor networking. Another challenge lies in handling node joining process

as the channel availability at one node is unknown to the other end. Developing efficient

protocols to handle mobility also brings new challenges. We will tackle these challenges in

our future research. Our vision is to engender White Space Sensor Networking that can

eventually supersede current wireless sensor network technology for wide-area sensing and

control applications

288

References

[1] http://www.hse.gov.uk/pubns/regindex.htm.

[2] http://mobilab.wustl.edu/testbed.

[3] Private communication with data center operators.

[4] http://www.cdwg.com/shop/products/Digi-Passport-48-console-server/

1317701.aspx.

[5] http://www.cdwg.com/shop/search/Servers-Server-Management/Servers/

x86-Based-Servers/result.aspx?w=S62&pCurrent=1&p=200008&a1520=002200.

[6] http://www.cdwg.com/shop/search/Cables/Networking-Cables/

Category-5-TP-Cables-Ethernet/result.aspx?w=B25&pCurrent=1&ctlgfilter=

&key=rj45+cable&searchscope=All&sr=1&x=0&y=0#Brand.

[7] http://www.cdwg.com/shop/search/Networking-Products/Ethernet-Switches/

Fixed-Managed-Switches/result.aspx?w=N11&MaxRecords=25&SortBy=

TopSellers.

[8] http://www.digikey.com/us/en/techzone/wireless/resources/articles/

comparing-low-power-wireless.html.

[9] http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en535967.

[10] http://en.wikipedia.org/wiki/Teraflops_Research_Chip.

[11] www.clearspeed.com.

[12] http://software.intel.com/en-us/articles/intel-cilk-plus.

[13] www.amd.com/us/products/server/processors.

[14] http://en.wikipedia.org/wiki/Gamma_distribution.

[15] HP power capping and HP dynamic power capping for ProLiant servers. Technology
brief, 2nd edition. http://h20000.www2.hp.com/bc/docs/support/SupportManual/
c01549455/c01549455.pdf.

289

http://www.hse.gov.uk/pubns/regindex.htm
http://mobilab.wustl.edu/testbed
http://www.cdwg.com/shop/products/Digi-Passport-48-console-server/1317701.aspx
http://www.cdwg.com/shop/products/Digi-Passport-48-console-server/1317701.aspx
http://www.cdwg.com/shop/search/Servers-Server-Management/Servers/x86-Based-Servers/result.aspx?w=S62&pCurrent=1&p=200008&a1520=002200
http://www.cdwg.com/shop/search/Servers-Server-Management/Servers/x86-Based-Servers/result.aspx?w=S62&pCurrent=1&p=200008&a1520=002200
http://www.cdwg.com/shop/search/Cables/Networking-Cables/Category-5-TP-Cables-Ethernet/result.aspx?w=B25&pCurrent=1&ctlgfilter=&key=rj45+cable&searchscope=All&sr=1&x=0&y=0#Brand
http://www.cdwg.com/shop/search/Cables/Networking-Cables/Category-5-TP-Cables-Ethernet/result.aspx?w=B25&pCurrent=1&ctlgfilter=&key=rj45+cable&searchscope=All&sr=1&x=0&y=0#Brand
http://www.cdwg.com/shop/search/Cables/Networking-Cables/Category-5-TP-Cables-Ethernet/result.aspx?w=B25&pCurrent=1&ctlgfilter=&key=rj45+cable&searchscope=All&sr=1&x=0&y=0#Brand
http://www.cdwg.com/shop/search/Networking-Products/Ethernet-Switches/Fixed-Managed-Switches/result.aspx?w=N11&MaxRecords=25&SortBy=TopSellers
http://www.cdwg.com/shop/search/Networking-Products/Ethernet-Switches/Fixed-Managed-Switches/result.aspx?w=N11&MaxRecords=25&SortBy=TopSellers
http://www.cdwg.com/shop/search/Networking-Products/Ethernet-Switches/Fixed-Managed-Switches/result.aspx?w=N11&MaxRecords=25&SortBy=TopSellers
http://www.digikey.com/us/en/techzone/wireless/resources/articles/comparing-low-power-wireless.html
http://www.digikey.com/us/en/techzone/wireless/resources/articles/comparing-low-power-wireless.html
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en535967
http://en.wikipedia.org/wiki/Teraflops_Research_Chip
www.clearspeed.com
http://software.intel.com/en-us/articles/intel-cilk-plus
www.amd.com/us/products/server/processors
http://en.wikipedia.org/wiki/Gamma_distribution
http://h20000.www2.hp.com/bc/docs/support/SupportManual/c01549455/c01549455.pdf
http://h20000.www2.hp.com/bc/docs/support/SupportManual/c01549455/c01549455.pdf

[16] Intelligent power optimization for higher server density racks a baidu case study
with intel intelligent power technology. http://www.intel.com/content/dam/doc/

case-study/data-center-efficiency-xeon-baidu-case-study.pdf.

[17] OpenMP. http://openmp.org.

[18] Subgradient solver: SSMS. http://www.searching-eye.com/sanjeevsharma/

matlab_solver/subgradient_solver/.

[19] TelosB. http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/

TelosB_Datasheet.pdf.

[20] TinyOS Community Forum. http://www.tinyos.net/.

[21] WirelessHART system engineering guide. http://www2.emersonprocess.

com/siteadmincenter/PM%20Central%20Web%20Documents/EMR_WirelessHART_

SysEngGuide.pdf.

[22] WirelessHART, 2007. http://www.hartcomm2.org.

[23] Rockwell Automation Inc Bulletin 1489 circuit breakers selection guide,
2010. http://literature.rockwellautomation.com/idc/groups/literature/

documents/sg/1489-sg001_-en-p.pdf.

[24] T. Abdelzaher, B. Andersson, J. Jonsson, V. Sharma, and M. Nguyen. The aperiodic
multiprocessor utilization bound for liquid tasks. In RTAS ’02.

[25] Tarek F. Abdelzaher, Shashi Prabh, and Raghu Kiran. On real-time capacity limits of
multihop wireless sensor networks. In RTSS ’04.

[26] A. Adya, P. Bahl, J. Padhye, A. Wolman, and Lidong Zhou. A multi-radio unification
protocol for ieee 802.11 wireless networks. In BroadNets ’04.

[27] Kunal Agrawal, Yuxiong He, Wen Jing Hsu, and Charles E. Leiserson. Adaptive task
scheduling with parallelism feedback. In PPoPP ’06.

[28] Kunal Agrawal, Charles E. Leiserson, Yuxiong He, and Wen Jing Hsu. Adaptive work-
stealing with parallelism feedback. ACM Trans. Comput. Syst., 26(3), 2008.

[29] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity
data center network architecture. In Proceedings of the ACM SIGCOMM 2008 con-
ference on Data communication, SIGCOMM ’08, pages 63–74, New York, NY, USA,
2008. ACM.

[30] Mansoor Alicherry, Randeep Bhatia, and Li (Erran) Li. Joint channel assignment
and routing for throughput optimization in multi-radio wireless mesh networks. In
MobiCom ’05.

290

http://www.intel.com/content/dam/doc/case-study/data-center-efficiency-xeon-baidu-case-study.pdf
http://www.intel.com/content/dam/doc/case-study/data-center-efficiency-xeon-baidu-case-study.pdf
http://openmp.org
http://www.searching-eye.com/sanjeevsharma/matlab_solver/subgradient_solver/
http://www.searching-eye.com/sanjeevsharma/matlab_solver/subgradient_solver/
http://www.xbow.com/Products/Product_pdf_files/Wireless_ pdf/TelosB_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_ pdf/TelosB_Datasheet.pdf
http://www.tinyos.net/
http://www2.emersonprocess.com/siteadmincenter/PM%20Central%20Web%20Documents/EMR_WirelessHART_SysEngGuide.pdf
http://www2.emersonprocess.com/siteadmincenter/PM%20Central%20Web%20Documents/EMR_WirelessHART_SysEngGuide.pdf
http://www2.emersonprocess.com/siteadmincenter/PM%20Central%20Web%20Documents/EMR_WirelessHART_SysEngGuide.pdf
http://www.hartcomm2.org
http://literature.rockwellautomation. com/idc/groups/literature/documents/sg/ 1489-sg001_-en-p.pdf
http://literature.rockwellautomation. com/idc/groups/literature/documents/sg/ 1489-sg001_-en-p.pdf

[31] Mansoor Alicherry, Randeep Bhatia, and Li (Erran) Li. Joint channel assignment
and routing for throughput optimization in multi-radio wireless mesh networks. In
MobiCom ’05.

[32] R. Alur, D’Innocenzo, Johansson, Pappas, and G. Weiss. Modeling and analysis of
multi-hop control network. In RTAS ’09.

[33] James Anderson and John Calandrino. Parallel real-time task scheduling on multicore
platforms. In RTSS ’06.

[34] Nimar Arora, Robert Blumofe, and C Plaxton. Thread scheduling for multipro-
grammed multiprocessors. In SPAA ’98.

[35] N. C. Audsley. On priority assignment in fixed priority scheduling. Information Pro-
cessing Letters, 79(1), 2001.

[36] Werner Backes and Jared Cordasco. Moteaodv – an aodv implementation
for tinyos 2.0. In Proceedings of the 4th IFIP WG 11.2 international conference on
Information Security Theory and Practices: security and Privacy of Pervasive Systems
and Smart Devices, WISTP ’10, 2010.

[37] Paramvir Bahl, Ranveer Chandra, and John Dunagan. SSCH: slotted seeded channel
hopping for capacity improvement in ieee 802.11 ad-hoc wireless networks. In MobiCom
’04.

[38] Paramvir Bahl, Ranveer Chandra, Thomas Moscibroda, Rohan Murty, and Matt
Welsh. White space networking with Wi-Fi like connectivity. In SIGCOMM ’09.

[39] Nikhil Bansal, Kedar Dhamdhere, Jochen Konemann, and Amitabh Sinha. Non-
clairvoyant scheduling for minimizing mean slowdown. Algorithmica, 40(4):305–318,
2004.

[40] Leonid Barenboim and Michael Elkin. Deterministic distributed vertex coloring in
polylogarithmic time. In PODC ’10.

[41] Sanjoy Baruah. Techniques for multiprocessor global schedulability analysis. In RTSS
’07.

[42] Sanjoy Baruah. The non-preemptive scheduling of periodic tasks upon multiprocessors.
Real-Time Syst., 32:9–20, 2006.

[43] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Leen Stougie, and
Andreas Wiese. A generalized parallel task model for recurrent real-time processes. In
RTSS ’12.

291

[44] Sanjoy Baruah, A.K. Mok, and L.E. Rosier. Preemptively scheduling hard-real-time
sporadic tasks on one processor. In RTSS ’90.

[45] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability analysis of global scheduling
algorithms on multiprocessor platforms. Parallel and Dist. Sys., IEEE Transactions
on, 20(4):553 –566, 2009.

[46] V. Bhandari and N.H. Vaidya. Capacity of multi-channel wireless networks with ran-
dom (c, f) assignment. In MobiHoc ’07.

[47] V. Bhandari and N.H. Vaidya. Connectivity and capacity of multi-channel wireless
networks with channel switching constraints. In INFOCOM ’07.

[48] Arka A. Bhattacharya, David Culler, Aman Kansal, Sriram Govindan, and Sriram
Sankar. The need for speed and stability in data center power capping. In IGCC ’12.

[49] E Bini and A Cervin. Delay-aware period assignment in control systems. In RTSS ’08.

[50] M.S. Branicky, S.M. Phillips, and Wei Zhang. Scheduling and feedback co-design for
networked control systems. In the 41st IEEE Conference on Decision and Control,
2002.

[51] John Calandrino and James Anderson. Cache-aware real-time scheduling on multicore
platforms: Heuristics and a case study. In ECRTS ’08.

[52] John Calandrino and James Anderson. On the design and implementation of a cache-
aware multicore real-time scheduler. In ECRTS ’09.

[53] John Calandrino, James Anderson, and Dan Baumberger. A hybrid real-time schedul-
ing approach for large-scale multicore platforms. In ECRTS ’07.

[54] John Calandrino, Dan Baumberger, Tong Li, Scott Hahn, and James Anderson. Soft
real-time scheduling on performance asymmetric multicore platforms. In RTAS ’07.

[55] T. W. Carley, M. A. Ba, R. Barua, and D. B. Stewart. Contention-free periodic message
scheduler medium access control in wireless sensor/actuator networks. In RTSS ’03.

[56] D Chen, M Nixon, and A Mok. WirelessHARTTMReal-Time Mesh Network for Indus-
trial Automation. Springer, 2010.

[57] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao, and Feng
Zhao. Energy-aware server provisioning and load dispatching for connection-intensive
internet services. In Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, NSDI ’08, 2008.

292

[58] Yixin Chen and Minmin Chen. Extended duality for nonlinear programming. Comput.
Optim. Appl., 47:33–59, 2010.

[59] Wei Cheng, Xiuzhen Cheng, T. Znati, Xicheng Lu, and Zexin Lu. The complexity of
channel scheduling in multi-radio multi-channel wireless networks. In INFOCOM ’09.

[60] Octav Chipara, Chenyang Lu, and Gruia-Catalin Roman. Real-time query scheduling
for wireless sensor networks. In RTSS ’07.

[61] Octav Chipara, Chenyang Lu, and John Stankovic. Dynamic conflict-free query
scheduling for wireless sensor networks. In ICNP ’06.

[62] Jeonghwan Choi, S. Govindan, B. Urgaonkar, and Anand Sivasubramaniam. Profil-
ing, prediction, and capping of power consumption in consolidated environments. In
MASCOTS ’08.

[63] K.R. Chowdhury, P. Chanda, D.P. Agrawal, and Qing-An Zeng. Dca-a distributed
channel allocation scheme for wireless sensor networks. In PIMRC ’05, volume 2,
pages 1297 –1301, sept. 2005.

[64] Sébastien Collette, Liliana Cucu, and Joël Goossens. Integrating job parallelism in
real-time scheduling theory. Inf. Process. Lett., 106(5):180–187, 2008.

[65] Daniel Cordeiro, Grégory Mounié, Swann Perarnau, Denis Trystram, Jean-Marc Vin-
cent, and Frédéric Wagner. Random graph generation for scheduling simulations. In
SIMUTools ’10.

[66] Shi-Lu Dai, Hai Lin, and Shuzhi Sam Ge. Scheduling-and-control codesign for a collec-
tion of networked control systems with uncertain delays. IEEE Transaction on Control
Systems Tech., 18(1):66 –78, 2010.

[67] Arindam K. Das, Hamed M. K. Alazemi, Rajiv Vijayakumar, and Sumit Roy. Opti-
mization models for fixed channel assignment in wireless mesh networks with multiple
radios. In SECON ’05.

[68] R I Davis and A Burns. Priority assignment for global fixed priority pre-emptive
scheduling in multiprocessor real-time systems. In RTSS ’09.

[69] Robert Davis and Alan Burns. A survey of hard real-time scheduling for multiprocessor
systems. ACM Comp. Surv., 43, 2011.

[70] Robert I. Davis and Alan Burns. Improved priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems. Real-Time Syst., 47:1–40,
January 2011.

293

[71] Xiaotie Deng, Nian Gu, Tim Brecht, and KaiCheng Lu. Preemptive scheduling of
parallel jobs on multiprocessors. In SODA ’96.

[72] Aditya Dhananjay, Hui Zhang, Jinyang Li, and Lakshminarayanan Subramanian. Prac-
tical, distributed channel assignment and routing in dual-radio mesh networks. In
SIGCOMM ’09.

[73] Maciej Drozdowski. Real-time scheduling of linear speedup parallel tasks. Inf. Process.
Lett., 57(1):35–40, 1996.

[74] Jeff Edmonds, Donald D. Chinn, Timothy Brecht, and Xiaotie Deng. Non-clairvoyant
multiprocessor scheduling of jobs with changing execution characteristics. Journal of
Scheduling, 6(3):231–250, 2003.

[75] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning for a
warehouse-sized computer. In ISCA ’07.

[76] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning for a
warehouse-sized computer. In ISCA ’07, 2007.

[77] M. E. Femal and V. W. Freeh. Boosting data center performance through non-uniform
power allocation. In ICAC ’05.

[78] D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C. Gill, and C. Lu. A real-time scheduling
service for parallel tasks. In RTAS’13.

[79] Nathan Fisher, Theodore P. Baker, and Sanjoy Baruah. Algorithms for determining
the demand-based load of a sporadic task system. In RTCSA ’06.

[80] Nathan Fisher, Sanjoy Baruah, and Theodore P. Baker. The partitioned scheduling of
sporadic tasks according to static-priorities. In ECRTS ’06.

[81] Xing Fu, Xiaorui Wang, and Charles Lefurgy. How much power oversubscription is
safe and allowed in data centers? In ICAC ’11.

[82] M.E.M.B. Gaid, A. Cela, and Y. Hamam. Optimal integrated control and scheduling
of networked control systems with communication constraints: application to a car
suspension system. IEEE Transactions on Control Systems Technology, 14(4):776 –
787, 2006.

[83] Lin Gao and Xinbing Wang. A game approach for multi-channel allocation in multi-hop
wireless networks. In MobiHoc ’08.

[84] A. Ghosh, O. Durmaz Incel, V.S. Anil Kumar, and B. Krishnamachari. Multi-channel
scheduling for fast aggregated convergecast in wireless sensor networks. In MASS ’09.

294

[85] Joël Goossens, Shelby Funk, and Sanjoy Baruah. Priority-driven scheduling of periodic
task systems on multiprocessors. Real-Time Syst., 25(2-3):187–205, 2003.

[86] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex pro-
gramming. http://cvxr.com/cvx/.

[87] Yu Gu, Tian He, Mingen Lin, and Jinhui Xu. Spatiotemporal delay control for low-
duty-cycle sensor networks. In RTSS ’09.

[88] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. New response time bounds for fixed
priority multiprocessor scheduling. In RTSS ’09.

[89] M. Hajiaghayi, Min Dong, and Ben Liang. Optimal channel assignment and power
allocation for dual-hop multi-channel multi-user relaying. In INFOCOM ’11.

[90] Y. Halevi and H. Ray. Performance analysis of integrated communication and control
system networks. J. Dyn. Syst. Meas. Control, 112:365 – 372, 1990.

[91] Hamilton. Cost of power in large-scale data centers, 2008. http://perspectives.

mvdirona.com.

[92] C.-C. Han and K.-J. Lin. Scheduling parallelizable jobs on multiprocessors. In RTSS
’89.

[93] Song Han, Xiuming Zhu, and Aloysius K. Mok. Reliable and real-time communication
in industrial wireless mesh networks. In RTAS ’11.

[94] Tian He, Brian M. Blum, Qing Cao, John A. Stankovic, Sang H. Son, and Tarek F.
Abdelzaher. Robust and timely communication over highly dynamic sensor networks.
Real-Time Syst., 37(3), 2007.

[95] Huang-Ming Huang, Terry Tidwell, Christopher Gill, Chenyang Lu, Xiuyu Gao, and
Shirley Dyke. Cyber-physical systems for real-time hybrid structural testing: a case
study. In ICCPS ’10.

[96] IPOPT. Interior point optimizer, 2011. https://projects.coin-or.org/Ipopt.

[97] Michael Isard. Autopilot: automatic data center management. Operating Systems
Review, 41:60–67, 2007.

[98] Klaus Jansen. Scheduling malleable parallel tasks: An asymptotic fully polynomial
time approximation scheme. Algorithmica, 39(1):59–81, 2004.

[99] Petr Jurćık, Ricardo Severino, Anis Koubâa, Mário Alves, and Eduardo Tovar. Real-
time communications over cluster-tree sensor networks with mobile sink behaviour. In
RTCSA ’08.

295

http://cvxr.com/cvx/
http://perspectives.mvdirona.com
http://perspectives.mvdirona.com
https://projects.coin-or.org/Ipopt

[100] V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and E. Knightly. Distributed multi-hop
scheduling and medium access with delay and throughput constraints. In MobiCom
’01.

[101] Kyriakos Karenos and Vana Kalogeraki. Real-time traffic management in sensor net-
works. In RTSS ’06.

[102] Kyriakos Karenos, Vana Kalogeraki, and Srikanth V. Krishnamurthy. A rate control
framework for supporting multiple classes of traffic in sensor networks. In RTSS ’05.

[103] S. Kato and Y. Ishikawa. Gang EDF scheduling of parallel task systems. In RTSS ’09.

[104] Junsung Kim, Hyoseung Kim, Karthik Lakshmanan, and Ragunathan Rajkumar. Par-
allel scheduling for cyber-physical systems: Analysis and case study on a self-driving
car. In ICCPS ’13.

[105] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory Fenves, Steven
Glaser, and Martin Turon. Health monitoring of civil infrastructures using wireless
sensor networks. In IPSN ’07.

[106] Youngmin Kim, Hyojeong Shin, and H Cha. Y-MAC: An energy-efficient multi-channel
MAC protocol for dense wireless sensor networks. In IPSN ’08.

[107] M. Kodialam and T. Nandagopal. Characterizing the capacity region in multi-radio
multi-channel wireless mesh networks. In MobiCom ’05.

[108] Vasileios Kontorinisy, Liuyi Eric Zhangy, Baris Aksanliy, and Jack Sampson. Managing
distributed UPS energy for effective power capping in data centers. In ISCA ’12.

[109] H.-J. Korber, H. Wattar, and G. Scholl. Modular wireless real-time sensor/actuator
network for factory automation applications. IEEE Trans. on Industrial Informatics,
3(2):111–119, 2007.

[110] O Kwon and Kyung Chwa. Scheduling parallel tasks with individual deadlines. Theor.
Com. Sc., 215:209–223, 1999.

[111] Pradeep Kyasanur, N. Vaidya, and M. Zorzi. Capacity of multichannel wireless net-
works: Impact of number of channels and interfaces. In MobiCom ’05.

[112] Karthik Lakshmanan, Shinpei Kato, and Ragunathan (Raj) Rajkumar. Scheduling
parallel real-time tasks on multi-core processors. In RTSS ’10.

[113] Hieu Le, Henriksson, and Tarek Abdelzaher. A practical multi-channel media access
control protocol for wireless sensor networks. In IPSN ’08.

296

[114] Hieu Khac Le, Dan Henriksson, and Tarek Abdelzaher. A control theory approach to
throughput optimization in multi-channel collection sensor networks. In IPSN ’07.

[115] Wan Yeon Lee and Heejo Lee. Optimal scheduling for real-time parallel tasks. IEICE
Trans. Inf. Syst., E89-D(6):1962–1966, 2006.

[116] Huan Li, Prashant Shenoy, and Krithi Ramamritham. Scheduling messages with dead-
lines in multi-hop real-time sensor networks. In RTAS ’05.

[117] Feng-Li Lian, J. Moyne, and D. Tilbury. Network design consideration for distributed
control systems. IEEE Transactions on Control Systems Technology, 10(2):297 –307,
2002.

[118] Feng-Li Lian, J. Yook, P. Otanez, D. Tilbury, and J. Moyne. Design of sampling and
transmission rates for achieving control and communication performance in networked
agent systems. In ACC ’03.

[119] Chieh-Jan Mike Liang, Jie Liu, Liqian Luo, Andreas Terzis, and Feng Zhao. RACNet:
a high-fidelity data center sensing network. In SenSys ’09, 2009.

[120] Harold Lim, Aman Kansal, and Jie Liu. Power budgeting for virtualized data centers.
In USENIXATC ’11.

[121] Xiaojun Lin and S. Rasool. A distributed joint channel-assignment, scheduling and
routing algorithm for multi-channel ad-hoc wireless networks. In INFOCOM ’07.

[122] Jane W.S. Liu. Real-time Systems. Prentice Hall, 2000.

[123] Ke Liu, Nael Abu-Ghazaleh, and Kyoung-Don Kang. JiTS: Just-in-time scheduling
for real-time sensor data dissemination. In PERCOM ’06.

[124] S Liu, G Xing, H Zhang, J Wang, J Huang, M Sha, and L Huang. Passive interference
measurement in wireless sensor networks. In ICNP’10.

[125] Xiangheng Liu and A. Goldsmith. Wireless network design for distributed control. In
43rd IEEE Conference on Decision and Control, 2004.

[126] Xiangheng Liu and Andrea J. Goldsmith. Cross-layer design of distributed control over
wireless network. In Systems and Control: Foundations and Applications, Birkhauser,
2005.

[127] Xue Liu, Qixin Wang, Wenbo He, Marco Caccamo, and Lui Sha. Optimal real-time
sampling rate assignment for wireless sensor networks. ACM Trans. Sen. Netw., 2:263–
295, 2006.

297

[128] Chenyang Lu, Brian M. Blum, Tarek F. Abdelzaher, John A. Stankovic, and Tian He.
RAP: A real-time communication architecture for large-scale wireless sensor networks.
In RTAS ’02.

[129] R. Maheshwari, S. Jain, and S. R. Das. A measurement study of interference modeling
and scheduling in low-power wireless networks. In SenSys ’08.

[130] G. Manimaran, C Murthy, and Krithi Ramamritham. A new approach for scheduling
of parallelizable tasks in real-time multiprocessor systems. Real-Time Syst., 15(1),
1998.

[131] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The flooding time
synchronization protocol. In SenSys ’04.

[132] P. Marti, J. Yepez, M. Velasco, R. Villa, and J.M. Fuertes. Managing quality-of-control
in network-based control systems by controller and message scheduling co-design. IEEE
Transactions on Industrial Electronics, 51(6):1159 – 1167, 2004.

[133] S. Merlin, N. Vaidya, and M. Zorzi. Resource allocation in multi-radio multi-channel
multi-hop wireless networks. In INFOCOM ’08.

[134] Arunesh Mishra, Vivek Shrivastava, Dheeraj Agrawal, Suman Banerjee, and Samrat
Ganguly. Distributed channel management in uncoordinated wireless environments.
In MobiCom ’06.

[135] Anjum Naveed, Salil S. Kanhere, and Sanjay K. Jha. Topology control and channel
assignment in multi-radio multi-channel wireless mesh networks. In MASS ’07.

[136] Geoffrey Nelissen, Vandy Berten, J Goossens, and Dragomir Milojevic. Techniques
optimizing the number of processors to schedule multi-threaded tasks. In ECRTS ’12.

[137] S. Pediaditaki, P. Arrieta, and M.K. Marina. A learning-based approach for distributed
multi-radio channel allocation in wireless mesh networks. In ICNP ’09.

[138] Steven Pelley, David Meisner, Pooya Zandevakili, Thomas F. Wenisch, and Jack Un-
derwood. Power routing: Dynamic power provisioning in the data center. In ASPLOS
’10.

[139] N. Pereira, B. Andersson, E. Tovar, and A. Rowe. Static-priority scheduling over
wireless networks with multiple broadcast domains. In RTSS ’07.

[140] Joonas Pesonen, Haibo Zhang, Pablo Soldati, and Mikael Johansson. Methodology
and tools for controller-networking co-design in WirelessHART. In EFTA ’09.

298

[141] Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical
scheduling via resource augmentation (extended abstract). In STOC ’97: Proceedings
of the 29th annual ACM symposium on Theory of Computing, pages 140–149, 1997.

[142] B.T. Polyak. Introduction to Optimization. 1987.

[143] Constantine Polychronopoulos and David Kuck. Guided self-scheduling: A practical
scheduling scheme for parallel supercomputers. IEEE Trans. on Comp., C-36(12):1425–
1439, 1987.

[144] Python. Python simulated annealing module, 2009. http://www-personal.umich.

edu/~wagnerr/PythonAnneal.html.

[145] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang, and
Xiaoyun Zhu. No power struggles: coordinated multi-level power management for the
data center. In ASPLOS ’08.

[146] K. N. Ramachandran, E. M. Belding, K. C. Almeroth, and M. M. Buddhikot.
Interference-aware channel assignment in multi-radio wireless mesh networks. In IN-
FOCOM ’06.

[147] Bhaskaran Raman. Channel allocation in 802.11-based mesh networks. In INFOCOM
’06.

[148] Parthasarathy Ranganathan, Phil Leech, David Irwin, Jeffrey Chase, and Hewlett
Packard. Ensemble-level power management for dense blade servers. In ISCA ’06.

[149] A. Raniwala and T. Chiueh. Architecture and algorithm for an ieee 802.11-based
multi-channel wireless mesh network. In INFOCOM ’05.

[150] Ashish Raniwala and Tzi-cker Chiueh. Architecture and algorithms for an ieee 802.11-
based multi-radio wireless mesh networks. In INFOCOM ’05.

[151] Ashish Raniwala, Kartik Gopalan, and Tzi-cker Chiueh. Centralized channel assign-
ment and routing algorithms for multi-channel wireless mesh networks. Mob. Comput.
Commun. Rev., 2004.

[152] Injong Rhee, Ajit Warrier, Mahesh Aia, and Jeongki Min. Z-MAC: a hybrid MAC for
wireless sensor networks. In SenSys ’05, 2005.

[153] Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Multi-core
real-time scheduling for generalized parallel task models. In RTSS ’11.

[154] Abusayeed Saifullah, Chengjie Wu, Paras Tiwari, You Xu, Yong Fu, Chenyang Lu,
and Yixin Chen. Near optimal rate selection for wireless control systems. In RTAS
’12.

299

http://www-personal.umich.edu/~wagnerr/PythonAnneal.html
http://www-personal.umich.edu/~wagnerr/PythonAnneal.html

[155] Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. End-to-end delay anal-
ysis for fixed priority scheduling in WirelessHART networks. In RTAS ’11.

[156] Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. Priority assignment for
real-time flows in WirelessHART networks. In ECRTS ’11.

[157] Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. Real-time scheduling
for WirelessHART networks. In RTSS ’10.

[158] Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. End-to-end communica-
tion delay analysis in industrial wireless networks. IEEE Transactions on Computers,
2012.

[159] Jens B. Schmitt and Utz Roedig. Sensor network calculus - A framework for worst
case analysis. In DCOSS ’05.

[160] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. On task schedulability in real-time
control systems. In RTSS ’96.

[161] L. Sha, X. Liu, M. Caccamo, and G. Buttazzo. Online control optimization using load
driven scheduling. In CDC ’00.

[162] Minho Shin, Seungjoon Lee, and Yoo ah Kim. Distributed channel assignment for
multi-radio wireless networks. In MASS ’06.

[163] Weihuan Shu, Xue Liu, Zonghua Gu, and Sathish Gopalakrishnan. Optimal sampling
rate assignment with dynamic route selection for real-time wireless sensor networks.
In RTSS ’08.

[164] Jungmin So and Nitin H. Vaidya. Multi-channel MAC for ad hoc networks: handling
multi-channel hidden terminals using a single transceiver. In MobiHoc ’04.

[165] Pablo Soldati, Haibo Zhang, and Mikael Johansson. Deadline-constrained transmission
scheduling and data evacuation in WirelessHART networks. In ECC ’09.

[166] J. Song, A. K. Mok, D. Chen, and M. Nixon. Challenges of wireless control in process
industry. In Workshop on Research Directions for Security and Net. in Critical Real-
Time and Embed. Sys., 2006.

[167] Jianping Song, Song Han, A.K. Mok, Deji Chen, M. Lucas, and M. Nixon. Wire-
lesshart: Applying wireless technology in real-time industrial process control. In RTAS
’08: IEEE Real-Time and Embedded Technology and Applications Symposium, pages
377–386, April 2008.

[168] K Srinivasan and P Levis. RSSI is under appreciated. In EmNets ’06.

300

[169] K Srinivasan and P Levis. RSSI is under appreciated. In EmNets ’06.

[170] J.A. Stankovic, T.E. Abdelzaher, Chenyang Lu, Lui Sha, and J.C. Hou. Real-time
communication and coordination in embedded sensor networks. Proceedings of the
IEEE, 91(7):1002–1022, 2003.

[171] A. Tzamaloukas and J. G.-Luna-Aceves. A receiver-initiated collision-avoidance pro-
tocol for multi-channel networks. In INFOCOM ’01.

[172] Ramanuja Vedantham, Sandeep Kakumanu, Sriram Lakshmanan, and Raghupathy
Sivakumar. Component based channel assignment in single radio, multi-channel ad
hoc networks. In MobiCom ’06.

[173] J. Wang, Y. Fang, and D. Wu. A power-saving multi-radio multi-channel mac protocol
for wireless local area networks. In INFOCOM ’06.

[174] Qingzhou Wang and Kam Hoi Cheng. A heuristic of scheduling parallel tasks and its
analysis. SIAM J. Comput., 21(2), 1992.

[175] Xiaodong Wang, Xiaorui Wang, X Fu, G Xing, and N Jha. Flow-based real-time
communication in multi-channel wireless sensor networks. In EWSN ’09.

[176] Xiaodong Wang, Xiaorui Wang, Xing Fu, Guoliang Xing, and Nitish Jha. Flow-based
real-time communication in multichannel wireless sensor networks. In EWSN ’09.

[177] Xiaorui Wang, Ming Chen, C. Lefurgy, and T.W. Keller. SHIP: A scalable hierarchical
power control architecture for large-scale data centers. IEEE Transactions on Parallel
and Distributed Systems, 23, 2012.

[178] Z Wang, C McCarthy, X. Zhu, P. Ranganathan, and V Talwar. Feedback control
algorithm for power management of servers. In ASPLOS ’08.

[179] Chengjie Wu, Mo Sha, Dolvara Gunatalika, Abusayeed Saifullah, Chenyang Lu, and
Yixin Chen. Analysis of EDF scheduling for wireless sensor-actuator networks. In
IWQoS 14.

[180] D. Wu and P. Mohapatra. From theory to practice: Evaluating static channel assign-
ments on a wireless mesh network. In INFOCOM ’10.

[181] Yafeng Wu, J.A. Stankovic, He, and Lin. Realistic and efficient multi-channel commu-
nications in wireless sensor networks. In INFOCOM ’08.

[182] Feng Xia and Youxian Sun. Control-scheduling codesign: A perspective on integrating
control and computing. Dynamics of Cont., Discr. and Impulsive Syst., 13:1352–1358,
2008.

301

[183] Lin Xiao, Mikael Johansson, Haitham Hindi, Stephen Boyd, and Andrea Goldsmith.
Joint optimization of wireless communication and networked control systems. Lecture
Notes in Computer Science, 3355:248–272.

[184] Guoliang Xing, Mo Sha, Jun Huang, Gang Zhou, Xiaorui Wang, and Shucheng Liu.
Multi-channel interference measurement and modeling in low-power wireless networks.
In RTSS ’09.

[185] Kai Xing, Xiuzhen Cheng, Liran Ma, and Qilian Liang. Superimposed code based
channel assignment in multi-radio multi-channel wireless mesh networks. In MobiCom
’07.

[186] Dejun Yang, Xi Fang, and Guoliang Xue. Channel allocation in non-cooperative multi-
radio multi-channel wireless networks. In INFOCOM ’12.

[187] Qing Yu, Jiming Chen, Yanfei Fan, Xuemin Shen, and Youxian Sun. Multi-channel
assignment in wireless sensor networks: A game theoretic approach. In INFOCOM
’10.

[188] Haibo Zhang, Fredrik Osterlind, Pablo Soldati, Thiemo Voigt, and Mikael Johansson.
Rapid convergecast on commodity hardware: Performance limits and optimal policies.
In SECON ’10.

[189] Haibo Zhang, Pablo Soldati, and Mikael Johansson. Optimal link scheduling and
channel assignment for convergecast in linear WirelessHART networks. In WiOpt ’09.

[190] Lei Zhang and Dimitrios Hristu-Varsakelis. Communication and control co-design for
networked control systems. Automatica, 42(6):953 – 958, 2006.

[191] Yanwei Zhang, Yefu Wang, and Xiaorui Wang. Capping the electricity cost of cloud-
scale data centers with impacts on power markets. In HPDC ’11.

[192] G. Zhou, T. He, J. A. Stankovic, and T. F. Abdelzaher. RID: radio interference
detection in wireless sensor networks. In INFOCOM ’05.

[193] G. Zhou, C. Huang, T. Yan, T. He, J. A. Stankovic, and T. F. Abdelzaher. MMSN:
Multi-frequency media access control for wireless sensor networks. In INFOCOM ’06.

[194] Xia Zhou, Zengbin Zhang, Yibo Zhu, Yubo Li, Saipriya Kumar, Amin Vahdat, Ben Y.
Zhao, and Haitao Zheng. Mirror mirror on the ceiling: flexible wireless links for
data centers. In Proceedings of the ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer communication, SIGCOMM ’12,
pages 443–454, New York, NY, USA, 2012. ACM.

[195] Xiuming Zhu, Pei-Chi Huang, Song Han, A.K. Mok, Deji Chen, and M. Nixon. Roam-
ingHART: A collaborative localization system on WirelessHART. In RTAS ’12.

302

	Washington University in St. Louis
	Washington University Open Scholarship
	Summer 9-1-2014

	Real-Time Wireless Sensor-Actuator Networks for Cyber-Physical Systems
	Abusayeed Saifullah
	Recommended Citation

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Real-Time Wireless: Dynamic Scheduling
	Introduction
	WirelessHART Network Model
	Problem Formulation
	Necessary Condition for Schedulability
	Optimal Branch-and-Bound Scheduling
	Conflict-aware Least Laxity First
	Evaluation
	Simulations with Random Topologies
	Simulations with Testbed Topologies

	Related Works
	Summary

	Real-Time Wireless: Delay Analysis for Fixed Priority Scheduling
	Introduction
	Related Works
	Network Model
	End-to-End Scheduling Problem
	End-to-end Delay Analysis
	Delay due to Channel Contention
	Delay due to Transmission Conflicts
	A Tighter Bound on Conflict Delay
	End-to-End Delay Bound

	Delay Analysis in Polynomial Time
	Extending to Graph Routing Model
	Evaluation
	 Simulation Setup
	Simulations with Testbed Topologies
	Simulations with Random Topologies

	Summary

	Real-Time Wireless: Delay Analysis for Reliable Graph Routing
	Introduction
	Related Work
	System Model
	Network Model
	Flow Model

	Fixed Priority Scheduling
	Delay Analysis under Reliable Graph Routing
	Problem Formulation
	Transmission Conflict Delay under Graph Routing
	Channel Contention Delay under Graph Routing
	End-to-End Delay Bound

	A Probabilistic End-to-End Delay Analysis
	Experiment
	Testbed Experiment
	Simulation

	Summary

	Real-Time Wireless: Priority Assignment for Fixed Priority Scheduling
	Introduction
	WirelessHART Network Model
	Problem Definition
	End-to-End Delay Analysis
	Class-1 Schedulability Test
	Class-2 Schedulability Test

	Priority Assignment Using Local Search
	Upper Bound of Worst Case End-to-End Delay
	Lower Bound of Worst Case End-to-End Delay
	Local Search Framework
	Analysis

	Priority Assignment Using Heuristic Search
	Performance Evaluation
	Simulations with Testbed Topologies
	Simulations with Random Topologies

	Related Works
	Summary

	Near Optimal Rate Selection for Wireless Control Systems
	Introduction
	Related Works
	Control Network Model
	Control Loop Model
	Formulation of the Rate Selection Problem
	Subgradient Method for Rate Selection
	Greedy Heuristic for Rate Selection
	Rate Selection Using a penalty approach with simulated annealing
	Rate Selection Through Convex Optimization
	Gradient Descent Method
	Interior Point Method

	Evaluation
	Simulation Setup
	Performance Study of Four Methods
	SA based Constant Factor Penalty Method Versus Adaptive Penalty Method
	Evaluating the Interior Point Method

	Summary

	Distributed Channel Allocation Protocols for Wireless Sensor Networks
	Introduction
	Related Work
	Network Model
	Problem Formulation
	Interference-free Channel Allocation
	Receiver-based Channel Allocation
	Link-based Channel Allocation

	MinMax Channel Allocation
	Distributed Link Scheduling
	Evaluation
	Interference-free Channel Allocation
	MinMax Channel Allocation
	Latency under MinMax Channel Allocation
	Channel Allocation Message Overhead

	Summary

	CapNet: A Real-Time Wireless Management Network for Data Center Power Capping
	Introduction
	The Case for Wireless DCM (CapNet)
	Cost Comparison with Wired DCM
	Choice of Wireless - IEEE 802.15.4
	Radio Environment inside Racks

	CapNet Design Overview
	The Power Capping Problem
	Power Capping over Wireless DCM
	A Naive Periodic Protocol
	Event-Driven CapNet

	Power Capping Protocol
	Detection Phase
	Aggregation Phase
	Control Phase
	Latency Analysis

	Experiments
	Implementation
	Workload Traces
	Experimental Setup
	Power Peak Analysis of Data Centers
	Power Capping Results

	Discussions and Future Work
	Related Work
	Summary

	Multi-core Real-Time Scheduling for Generalized Parallel Task Models
	Introduction
	Parallel Synchronous Task Model
	Task Decomposition
	Terminology
	Decomposition
	 Density Analysis

	Global EDF Scheduling
	Partitioned Deadline Monotonic Scheduling
	FBB-FFD based Partitioned DM Algorithm for Decomposed Tasks
	Analysis for the FBB-FFD based Partitioned DM Algorithm

	Generalizing to a Unit-node DAG Task Model
	Evaluation
	Task Generation
	Simulation Setup
	Simulation Results

	Related Work
	Summary

	Parallel Real-Time Scheduling of DAGs
	Introduction
	Related Work
	Parallel Task Model
	Task Decomposition
	Terminology
	Decomposition Algorithm
	Density Analysis after Decomposition
	Implementation Considerations

	Preemptive EDF Scheduling
	Non-Preemptive EDF Scheduling
	Evaluation
	Task and Task Set Generation
	Experimental Methodology
	Results

	Summary

	Conclusion
	References

