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Abstract 

 Over the past few years automotive and technology companies have made significant 

advances in what has been traditionally a completely human function: driving. Crash avoidance 

features such as lane departure warning and forward collision warning are becoming increasingly 

more common and cheaper to obtain, even on non-luxury vehicles. Technology companies and 

auto manufacturers have announced plans to have self-driving vehicles ready for public use as 

early as 2020. The mass adoption of automated vehicles (AVs) could significantly change 

surface transportation as we know it today. This thesis is intended to provide a technical analysis 

of the potential impacts of AVs on current light-duty vehicle miles traveled (VMT) and parking 

decisions, the economic desirability of widespread deployment of partially automated 

technologies, and methods for existing roadways to transition to connected and automated 

vehicle (CAV) transportation, so that policymakers can make more informed decisions during 

the transition to CAVs. This work takes a look at AVs from a point in time where vehicles are 

equipped with driver assistance systems (Level 1) to a point in time where AVs are driverless 

(Level 5) and can self-park. 

 The results of this work indicate that the fleet-wide adoption of partially automated crash 

avoidance technologies could provide net-benefit of about $4 billion at current system 

effectiveness and could provide an annual net-benefit up to $202 billion if all relevant crashes 

could be prevented. About 25% of all crashes could be addressed by the crash avoidance 

technologies examined in this dissertation. Over time, as technologies become more effective 

and cheaper due to economies of scale, greater benefits than the $4 billion could be realized.  

 As automated technologies become more advanced and widespread, existing roadways 

will need to be able to accommodate these vehicles. This work investigates the effects of a 

dedicated truck platoon lane on congestion on the Pennsylvania Turnpike and provides a method 

for existing roadways and highways to determine viable platoon demonstration sites. The initial 

results suggest that there are several sections of turnpike that could serve as commercial truck 

platoon demonstration site while still providing a high LOS to all other vehicles. 

 Once AVs can safely and legally drive unoccupied, vehicles will no longer be limited to 

their driver’s destination and can search for cheaper parking in more distant parking locations. 

This work simulates a fleet of privately owned vehicles (POVs) in search of cheaper parking in 

Seattle, using a rectangular grid throughout the study area. Model results indicate that we are not 
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likely to see significant increase in vehicle miles traveled (VMT) and energy use from cars 

moving from downtown parking lots to cheaper parking in distance locations but at higher 

penetration rates, parking lot revenues could likely decline to the point where operating a lot is 

unsustainable economically, if no parking demand management policies are implemented.  

 Driverless vehicles also promise to increase mobility for those in underserved 

populations. This work estimates bounds on the potential increases in travel in a fully automated 

vehicle environment due to an increase in mobility from the non-driving and senior populations 

and people with travel-restrictive medical conditions. Three demand wedges were established in 

order to conduct a first-order bounding analysis. The combination of the results from all three 

demand wedges represents an upper bound of 295 billion miles or a 14% increase in annual 

light-duty VMT for the US population 19 and older. AV technology holds much promise in 

providing a more accessible and safe transportation system. This thesis can help policymakers 

and stakeholders maximize the benefits and minimize the challenges. 
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Chapter 1: Introduction 

 

1.1 General Motivation 
 

Modern economies rely heavily on transportation systems. Sustainable and efficient 

operation of our nation’s transportation system significantly contributes to the economic and social 

well-being of our society. Because our roadways are human developed systems and are occupied 

and currently utilized by human drivers, there are a number of negative impacts such as congestion 

and crashes. The National Highway Traffic Safety Administration (NHTSA) reported that there 

were about 35,000 road fatalities in 2015, the largest increase in traffic deaths in the past 50 years 

(NHTSA 2016b). Crashes contribute significantly to congestion, which costs Americans about 

$124 billion annually with about $78 billion resulting from time and fuel wasted in traffic and $45 

billion from indirect costs passed onto American consumers (Guerrine 2014). In addition, many 

Americans have difficulty traveling freely and independently and spend large amounts of time 

searching for parking in dense urban areas (Anderson et al. 2014). 

Automated vehicle technologies have the potential to greatly improve travel by reducing 

congestion, travel times, crashes, and potentially energy consumption, as well as enabling 

greater mobility for the disabled and elderly (Anderson et al. 2014; Harper et al. 2016b; a; Levin 

and Boyles 2015; Mersky and Samaras 2016; Wadud et al. 2016). Ride-sharing services could 

lead to a shift from personal car ownership to shared mobility (Schiller 2016), while driverless 

parking technologies could lead to significant changes in land use and urban form due to reduced 

parking demand in downtown and dense urban areas where parking costs are relatively high 

(Anderson et al. 2014). Some architectural companies are already preparing for for a future with 

self-driving cars by building parking structures that can be easily converted into an office or 

work space (Findling 2017). In addition, this technology could change the value of travel time 

for both passengers and “drivers” by shifting the burden of driving on the car so that users can 

now work on their laptops, eat a meal, or call family and friends, safely, on their way to work 

and other destinations. 

Automated vehicle (AV) technologies are advancing rapidly and highly automated 

vehicles could be on streets and highways within the next decade. Many automakers are already 

marketing cars with some automated features such as adaptive cruise control and active lane 
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keeping technologies (Newcomb and Colon 2017) and are progressively working to develop 

more highly automated and self-driving vehicles. Tesla motors has been equipping every new 

Model S sedan and Model X SUV with the necessary technology for full self-driving capability, 

in exchange for about $8,000 (Stewart 2017). Ride-sharing company Uber has deployed a fleet 

of self-driving cars in Pittsburgh, Pennsylvania and several other cities, and has offered some 

customers the option of riding in these vehicles, with human drivers present to take control when 

the AV encounters difficulties (Brian 2016; Zurschmeide 2016). In September of 2016 the 

United States Department of Transportation (USDOT) released a federal policy on AVs, which 

provides guidelines to manufacturers and other entities in the safe design, development, testing, 

and deployment of highly automated vehicles (HAVs) (NHTSA 2016a). The mass adoption of 

AVs could significantly change surface transportation as we know it today. 

Although AVs possess many advantages, there are still many barriers that stand in the way 

of transitioning to a fully automated light-duty vehicle fleet. Cybersecurity concerns associated 

with highly automated vehicles still exist, as outlined in the National Highway Safety 

Administration’s (NHTSA) Preliminary Statement of Policy Concerning Automated Vehicles 

(NHTSA 2013a). At both the state and federal levels there are currently no regulations established 

beyond testing purposes for AVs. Furthermore, how insurance company business models and 

liability laws will be affected by this technology are unclear at this point. To aid the development 

of effective policies and legislation, transportation researchers and professionals must first assess 

the safety, infrastructure, and environmental implications of AVs. 

This thesis focuses on several analyses, assessing how connected and automated vehicles 

could impact parking and travel demand as well as the number of crashes that occur each year so 

that policymakers can plan for a smooth transition to a highly automated light-duty vehicle fleet. 

It also outlines recommendations for policymakers at the state and federal government levels so 

they can accommodate and further encourage populations with historically lower mobility to use 

shared mobility services. In order to conduct these analyses, we use various transportation datasets, 

which provide us with the best information to bound the future of vehicle automation. To date, 

there has not been significant sector-specific research done exploring the policy and economic 

implications of this revolutionary technology, which is necessary for policymakers to make 

effective policies. This work is meant to aid policymakers in making more informed decisions and 

ensuring socially optimal outcomes during the transition to CAVs. In addition, I hope that this 
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research serves as a foundation for impactful research in the future.  

 

1.2 Research Topics & Automated Vehicle Level Definitions 
 

This dissertation research examines the likely implications of AVs through a four-part 

assessment, as follows:  

 

 Project 1: Potential Economic and Safety Impacts of Driver Assistance Systems 

 Project 2: Transitioning to Connected and Automated Vehicle Transportation 

 Project 3: An Agent-Based Driverless Vehicle Parking Decision Model, and  

 Project 4: Potential Travel Demand impacts from New Demand from New Users 

 

Project 1 examines the costs (technology purchasing costs) and benefits (less severe and 

prevented crashes) of fleet-wide deployment of driver assistance systems or Level 1 AV 

technologies. This chapter explores the economic feasibility of equipping the light-duty vehicle 

fleet with crash avoidance technologies and discusses the potential impacts this could have on 

the number of crashes that occur annually. A version of this chapter (Harper et al. 2016a) has 

been published in the peer-reviewed journal, Accident Analysis and Prevention, and presented 

at the 96th Annual Transportation Research Board Meeting. 

Project 2 characterizes near and long-term scenarios for existing roadways to begin 

transitioning to an automated highway system and focuses on commercial truck platooning 

(Level 3 and above). Specific recommendations for potential platoon demonstration sites and 

characteristics are identified. This set of chapters also assesses the economic and highway 

capacity implications of the proposed changes. We use the Pennsylvania Turnpike as a case 

study for this analysis but the results and recommendations found within this chapter could be 

applied to other existing roadways as well. A version of this section will be submitted for review 

for presentation in the 97th annual Transportation Research Board Meeting. 

Project 3 of this work transitions from partially automated to driverless vehicles (Level 

5) and offers a detailed look into the parking decisions of AVs that are no longer limited to their 

driver’s destination. This chapter uses Seattle parking lot information to investigate the potential 

travel, economic, and energy implications of changes in parking decisions due to vehicle 

automation (focuses on personally owned vehicles). This work assumes a rectangular gridded 
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network with perfect connectivity. This work captures market penetration rates from the point 

in time where AVs have only been partially adopted by those in higher income households to a 

point in time where AVs transition from high-income early adopters to total market penetration 

and varies base-parameter settings to understand how they impact performance outcomes. A 

version of this section is under review for publication in Transportation Research Part C: 

Emerging Technologies. 

Project 4 is a bounding exercise looking at how driverless vehicles could increase 

mobility for those in underserved populations. This chapter presents an overview of the current 

travel characteristics for the elderly, non-drivers, and those with medical conditions. By creating 

three-demand wedges we are able to conduct a first-order bounding analysis in order to estimate 

the upper bound increase in vehicle miles traveled (VMT) for underserved populations. The 

bounding estimate is meant to identify which demographics could increase their travel the most 

and highlight those age groups and genders within each population that will contribute most to 

the increases. A version of this section (Harper et al. 2016b) has been published in the peer-

reviewed journal, Transportation Research Part C: Emerging Technologies, and presented at 

the 94th Transportation Research Board Meeting.  

In September 2016, the United States Department of Transportation (USDOT) 

announced that it now uses Society of Automotive Engineer’s (SAE) six level of automation in 

its Federal Automated Vehicles Policy report (NHTSA 2016a; SAE International 2016). Figure 

1.1 (shown below) provides a visual representation of SAE’s six levels of automation definitions 

using emojis. The following automation levels summarize the SAE definitions:  

 

Level 0: No Automation. The full-time performance by the human driver of all aspects of the 

dynamic driving task, even when enhanced by warning or intervention systems 

 

Level 1: Driver Assistance. The driving mode-specific execution by a driver assistance system 

of either steering or acceleration/deceleration using information about the driving environment 

and with the expectation that the human driver performs all remaining aspects of the dynamic 

driving task. 
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Level 2: Partial Automation. The driving mode-specific execution by one or more driver 

assistance systems of both steering and acceleration/deceleration using information about the 

driving environment and with the expectation that the human driver performs all remaining 

aspects of the dynamic driving task. 

 

Level 3: Conditional Automation. The driving mode-specific performance by an Automated 

Driving System of all aspects of the dynamic driving task with the expectation that the human 

driver will respond appropriately to a request to intervene. 

 

Level 4: High Automation. The driving mode-specific performance by an Automated Driving 

System of all aspects of the dynamic driving task, even if a human driver does not respond 

appropriately to a request to intervene.  

 

Level 5: Full Automation. The full-time performance by an Automated Driving System of all 

aspects of the dynamic driving task under all roadway and environmental conditions that can be 

managed by a human driver. 
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Figure 1.1 Society of Automotive Engineer International’s Six Levels of Automation Depicted 

Using Emojis1 
 

These levels of automation provide consistent terminology for use by transportation 

professionals, policymakers and researchers. While the National Highway Traffic Safety 

Administration (NHTSA) has developed an alternative 5-level (0-4) framework of driving 

automation for on-road vehicles (NHTSA, 2013), all discussions used in this document will refer 

to SAE’s definitions. 

 

1.3 Research Background 

 

1.3.1  Safety 

The number of road fatalities in the US has increased over the past two years. From 2014 

to 2015 the total number of traffic deaths has increased from 32,500 to approximately 35,100, 

translating to a one year increase of about 7%. NHTSA along with the National Safety Council 

(NSC) are projecting that this trend will continue in 2016 (National Safety Council 2017; NHTSA 

                                                            
1 Samaras, Constantine (@CostaSamaras). “For my talk today at Berkeley on safety & energy 

futures with robocars, I'm using emojis to describe the six levels of vehicle automation.” 

February 17, 2017. Tweet.  



7 
 

2017). Figure 1.2 below shows the trend in traffic deaths per 100 million VMT from 1975-2015. 

The rate of crash deaths per 100 million miles traveled increased from an all-time low of 1.08 in 

2014 to 1.12 in 2015 (IIHS 2016b). 

 

 

Figure 1.2 Motor Vehicle Crash Deaths and Deaths per 100 Million Miles, 1975-2015 
 

Connected and automated vehicles could improve road safety by reducing the number 

crashes that result from human error (Harper et al. 2016a). Driver error is the primary cause of 

about 90% of all road crashes (Olarte 2011). Drunk driving, distracted driving, failure to stay in 

travel lane and failing to yield the right of way contribute to high number of crashes that occur 

each year. The Insurance Institute for Highway Safety (IIHS) estimates that if all vehicles had been 

equipped with forward collision warning (FCW) there would be about 700,000 fewer police 

reported crashes annually (IIHS 2016a). FCW is an example of a level 1 vehicle automation, since 

this technology assists in monitoring the roadway by providing an alert to the driver if there is an 

impending rear-end collision. The crash reduction potential of automation increases at each 

automation level, with the greatest reduction in crashes being at level 5 or driverless automation, 

where the car is in complete control of all driving functions. Chapter 2 explores the costs and 

benefits of fleet-wide partial automation and provides estimates on the number of crashes that 

could be made less severe or prevented if equipped on all light-duty vehicles. 
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1.3.2  Platooning 

 The trucking industry could greatly benefit from a more efficient commercial vehicle fleet. 

The average per mile cost of driving a heavy duty vehicle (HDV) is about $1.68 in $2013, with 

fuel accounting for about 38% of the total per mile cost followed by driver wages and benefits, 

which collectively account for about 33% of the total cost (Torrey and Murray 2015). Combination 

trucks comprise about 4% of the total number of registered highway vehicle in the US (Bureau of 

Transportation Statistics 2016), but account for approximately 23% of the total energy consumed 

by the transportation sector, in large part due to low fuel efficiency and the large amount of miles 

a truck travels annually to deliver goods (Energy Information Administration 2016). Looking into 

the future, trucking is likely to continue to have play a large role in energy use and GHG emissions 

for the transportation sector as truck transport is growing at more rapidly and this trend is likely to 

continue (Energy Information Administration 2014). According to the 2013 Pennsylvania 

Department of Transportation Statewide crash dataset, there were about 1,500 crashes that 

occurred on the Pennsylvania Turnpike in 2013. Out of these 1,500 crashes about 240 or 17% of 

crashes involved at least one HDV, including 3 fatal and 88 injury crashes. CAVs can potentially 

help reduce energy consumption and GHG emissions from the transportation sector as well as 

provide safety benefits in the form of prevented and less severe crashes. Platooning is a promising 

CAV technology that could experience widespread adoption over the next 5 to 10 years.  

Platoons are groups of vehicles following closely behind one another at high speeds and 

communicate through connectivity. The first truck in the platoon serves as the lead vehicle with 

each successive vehicle in the platoon following the lead vehicle.  Level 3 automation can permit 

platooning without driver intervention. Heavy duty vehicles traveling in a platoon can reduce fuel 

consumption anywhere between 4.5%-8%, depending on the time gap and travel speed, by 

reducing the drag force experienced by the trucks (Alam et al. 2010). This decrease in fuel 

consumption could reduce emissions from truck travel and save truck companies considerable 

amounts of money. Peloton, a CAV technology company, is currently testing its truck platooning 

technologies on the Ohio Turnpike (Christ 2017). In the future there could be dedicated lanes for 

truck platooning and special electronic passes to gain entry to these lanes. Although a dedicated 

platoon lane could provide fuel cost savings and crash prevention benefits, there could be adverse 

impacts on congestion. As a result, proper congestion impact analyses should be conducted before 

implementation. Chapter 3 focuses on the role of truck platooning in commercial trucks and the 



9 
 

congestion implications of a dedicated truck platoon lane.  

 

1.3.3 Parking  

Parking in downtown urban areas can be a difficult experience for many drivers. The 

downtown lots and garages are usually relatively expensive and curb-parking while usually 

cheaper is usually overcrowded, which leads to large amounts of congestion from drivers cruising 

for parking to avoid paying for off-street parking. Shoup (2006) estimates that about 30% cars in 

our downtown urban areas are cruising for parking and argues that better management of our on-

street parking could alleviate a lot of congestion that occurs from drivers looking for cheap parking 

(Shoup 2006). The city of San Francisco implemented a variable-rate parking program where on-

street parking prices are adjusted based on demand to better ensure that there is always a space 

available, and also to reduce the amount of time spent searching for a parking space (San Francisco 

Municipal Transportation Agency 2014).  

 Although variable demand based parking is an important near-term step, level 5 or 

driverless AVs could eliminate the burdens and high costs associated with parking. We expect in 

an automated vehicle environment for AVs to be able to drop passengers off at his or her 

destination, park in a cheaper more distant cheaper parking location, and return to pick up the 

driver when ready. The cost of driving is inexpensive (AAA 2013) and could become cheaper as 

we transition to fully electric vehicles. Reducing parking demand in urban areas could change land 

use as garages and lots go out of business and are repurposed for other purposes, such as a store 

front, office space, or park (Findling 2017). Chapter 4 assesses the economic and travel demand 

implications of personally owned vehicles moving from the downtown parking lots and garages to 

cheaper more distant parking locations. 

 

1.3.4 Mobility for Underserved Populations 

Today’s elderly and non-driving populations as well as those with medical conditions have 

trouble traveling freely and independently. The 2009 NHTS reports that out of 22 million adult 

non-drivers, approximately 9 million reports having a medical condition that makes it hard to travel 

and because of this condition about 8 out of the 9 million have reduced their day-to-day travel. In 

comparison, there are about 200 million adult drivers in the U.S. and out of this population about 

14.7 million people report having a medical condition that makes it hard to travel and because of 
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this medical condition 11.7 million have reduced their day-to-day travel. Figure 1.3 illustrates the 

percent of observed drivers 19 and older with travel-restrictive medical conditions with respect to 

the number of miles driven annually. In comparison to elderly drivers without any medical 

conditions, drivers with medical conditions travel far less. Close to 33% of the people within this 

population drive anywhere between 0-2,000 miles annually, while 65% of the population drives 

less than 8,000 miles annually. People within this population on average drive about 6,400 miles 

annually. 

 

 

Figure 1.3 Distribution of the Percentage of Observed Elderly Drivers without Medical 

Condition Population Vehicle Miles Traveled 

 

 Level 5 vehicle automation could increase transportation access and mobility across a 
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Metropolitan Area Transit Authority (WMATA) devotes about 20% or $93 million of its budget 

on paratransit services, which are high in cost because they require a trained and salaried driver to 

provide services (WMATA 2017). In an automated vehicle environment driverless shared-rides 

could supplement expensive paratransit services, especially for trips with medical purposes. The 

economic advantage of shared automated vehicles (SAVs) not only increases transportation 

accessibility but also social welfare as driver costs are eliminated and the cost of a trip is drastically 

reduced. In addition, access to more transportation options could provide access to better jobs and 

economic opportunities especially for those in populations with historically lower mobility (Shen 

1998). SAVs could improve public transportation accessibility by providing first and last mile 

services to transit stops at a subsidized cost to users, but with cheaper SAV rides some users may 

substitute bus and rail trips with light-duty travel. Chapter 5 estimates bounds on the potential 

increases in travel in a fully automated vehicle environment due to an increase in mobility from 

populations with historically lower mobility. 
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Chapter 2: Cost and Benefit Estimates of Fleet-Wide Deployment of Partially 

Automated Crash Avoidance Technologies2 
 
 

Many light-duty vehicle crashes occur due to human error and distracted driving. Partially-

automated crash avoidance features offer the potential to reduce the frequency and severity of 

vehicle crashes that occur due to distracted driving and/or human error by assisting in maintaining 

control of the vehicle or issuing alerts if a potentially dangerous situation is detected. This chapter 

evaluates the benefits and costs of fleet-wide deployment of blind spot monitoring, lane departure 

warning, and forward collision warning crash avoidance systems within the US light-duty vehicle 

fleet. The three crash avoidance technologies could collectively prevent or reduce the severity of 

as many as 1.3 million U.S. crashes a year including 133,000 injury crashes and 10,100 fatal 

crashes. For this chapter we made two estimates of potential benefits in the United States: 1) the 

upper bound fleet-wide technology diffusion benefits by assuming all relevant crashes are avoided 

and 2) the lower bound fleet-wide benefits of the three technologies based on observed insurance 

data. This latter represents a lower bound as technology is improved over time and cost reduced 

with scale economies and technology improvement. All three technologies could collectively 

provide a lower bound annual benefit of about $18 billion if equipped on all light-duty vehicles.  

With 2015 pricing of safety options, the total annual costs to equip all light-duty vehicles with the 

three technologies would be about $13 billion, resulting in an annual net benefit of about $4 billion 

or a $20 per vehicle net benefit. By assuming all relevant crashes are avoided, the total upper 

bound annual net benefit from all three technologies combined is about $202 billion or an $861 

per vehicle net benefit, at current technology costs. The technologies we are exploring in this 

chapter represent an early form of vehicle automation and a positive net benefit suggests the fleet-

wide adoption of these technologies would be beneficial from an economic and social perspective. 

 

 

 

 

                                                            
2The results of this chapter have been published as: Harper, C. D., Hendrickson, C. T., & 

Samaras, C. (2016). Cost and Benefit Estimates of Partially-Automated Vehicle 

Collision Avoidance Technologies. Accident Analysis & Prevention, 95, 104-115. 
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2.1  Introduction 

Many light-duty vehicle crashes occur due to human error and distracted driving. The 

National Highway Traffic Safety Administration (NHTSA) reports that ten percent of all fatal 

crashes and seventeen percent of injury crashes in 2011 were a result of distracted driving, while 

close to ninety percent of all crashes occur in part due to human error (National Highway Traffic 

Safety Administration 2013; Olarte 2011). Recent naturalistic driving data has confirmed the large 

prevalence of distracted driving and other driver-related factors in crashes (Dingus et al. 2016). 

Crash avoidance features offer the potential to substantially reduce the frequency and severity of 

vehicle crashes and deaths that occur due to distracted driving and/or human error by assisting in 

maintaining control of the vehicle or issuing alerts if a potentially dangerous situation is detected.  

As the automobile industry transitions to partial vehicle automation, newer crash avoidance 

technologies are beginning to appear more frequently in non-luxury vehicles such as the Honda 

Accord and Mazda CX-9. The availability of Forward Collision Warning (FCW), Lane Departure 

Warning (LDW), and Blind Spot Monitoring (BSM) technologies could reach 95% of the 

registered vehicle fleet anywhere between the years 2032 and 2048 (HLDI 2014). The market 

penetration rate of these technologies depends on government mandates that could speed up 

implementation by up to 15 years (HLDI 2014). Automated vehicle technologies could have 

significant economic net benefits due to crash reduction (including direct cost savings and 

associated roadway congestion), enabling greater mobility for the disabled and elderly, and 

improved fuel economy due to more efficient driving  (Anderson et al., 2014).  

This chapter estimates the costs and benefits of fleet-wide deployment of BSM, LDW, and 

FCW crash avoidance systems within the U.S. light-duty vehicle fleet. Two estimates are made to 

provide insight on current trends and technology potential. First, an upper bound of relevant U.S. 

crashes that potentially could be avoided or made less severe by the three technologies is estimated, 

assuming 100% technology effectiveness. Next, a lower bound in U.S. crash reduction is estimated 

using current changes in observed insurance collision claim frequency and severity (average loss 

payment per claim) in motor vehicles with these technologies. After these estimates are made, an 

annualized cost to equip each vehicle with the technologies enables a cost benefit analysis for the 

lower bound and upper bound estimates of net benefits in the U.S. The technologies we are 

exploring in this chapter represent an early form of vehicle automation as defined by NHTSA 

(NHTSA, 2013b) and the estimates in this chapter can help inform near-term decisions during the 
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transition to automation.  

 

2.2 Literature Review 

Several researchers have analyzed the effectiveness of crash avoidance technologies in 

reducing crashes and severity. For example, Jermakian (2011) estimates that side-view assist and 

FCW systems could potentially prevent or reduce the severity of as many as 395,000 and 1.2 

million crashes involving passenger vehicles annually, respectively, using crash records from the 

2004-2008 National Automotive Sampling System (NASS) General Estimate System (GES) and 

Fatality Analysis Reporting System (FARS) databases (Jermakian 2011). Kuehn et al. (2009) used 

insurance collision claims data along with human factors research and determined that equipping 

all cars with a forward collision warning and lateral guidance system that was 100% effective, 

could prevent up to 25% of all crashes (Kuehn et al. 2009). Sugimoto and Sauer (2005) estimated 

that a FCW system with autonomous braking could reduce the probability of a fatality in a rear 

end collision by as much 44% (Sugimoto and Sauer 2005).  A 2012 study concluded that Blind 

Spot Monitoring (BSM) systems could potentially prevent or reduce the severity of 22,000 

combination tractor-trailer crashes annually (Jermakian 2012). Kusano et al. (2014) developed a 

crash and injury simulation model in which each crash was simulated twice- once as it occurred 

and once as if the driver had a LDW system-and determined that a LDW system could potentially 

prevent up to 29.4 percent of all road departure crashes (Kusano et al. 2014). Blower (2013) used 

simulations and operational field tests to develop a range of estimates on the effectiveness of ESC, 

LDW, and FCW systems in reducing target crash types (Blower 2014). The American Automobile 

Association (AAA) along with the MIT AgeLab conducted a study in which they assessed and 

provided ratings for both the potential and real world benefits of LDW, FCW, ESC, and other 

crash avoidance technologies based on data gathered from published literature (Mehler et al. 2014). 

Blanco et al. (2016) estimated and compared crash risks for self-driving and national crash rates 

using data from Google’s Self-Driving Car program and the Second Strategic Highway Research 

Program (SHRP 2) Naturalistic Driving Study. This study suggests that less-severe crashes may 

happen a much lower crash rate for self-driving cars (5.6 per million) when compared to the 

national crash rate (14.4 per million) (Blanco et al. 2016). The Insurance Institute for Highway 

Safety (IIHS) estimates that forward collision systems with automatic braking could reduce rear-

end crashes by about 40% while standalone FCW could reduce these crashes by about 23% (IIHS 
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2016a). 

Researchers have also attempted to estimate the economic benefit of crash avoidance 

technology systems. For a consistent comparison, we used the consumer price index (CPI) to 

convert all benefits in previous literature to $2012 (Bureau of Labor Statistics 2015). One 

prediction comes from Murray et al. (2009) who found that a FCW system in large trucks could 

provide a benefit ranging from $1.42 to $7.73 for every dollar spent on the system (Murray et al. 

2009). This estimate is based on different vehicle miles traveled (VMTs), system efficacies, and 

technology purchase prices. Batelle (2007) reports that equipping all large trucks with a FCW 

system could have a negative net benefit approximately anywhere between -$66 and -27$ billion, 

depending on the cost of system and driver reaction time (Batelle 2007). In that study, crash 

reduction frequencies for a FCW system were derived from statistical modeling. Another study 

found that at a 90 percent market penetration rate  FCW along with adaptive cruise control could 

provide considerable safety benefits- $52 billion in economic costs (lost productivity, travel delay, 

etc.) and 497,100 functional person-years (Li and Kockelman 2016). This chapter makes a 

contribution to the literature by estimating the economic net benefits of three crash avoidance 

technologies in light-duty vehicles based on changes in observed insurance collision claim 

frequency and severity for vehicles with BSM, LDW, and FCW crash avoidance systems. We 

extrapolate the observed insurance data to estimate a lower bound of fleet-wide deployment 

benefits. It represents a lower bound because technology cost and performance are likely to 

improve, and additional benefits are likely as deployment increases. To estimate an upper bound, 

we assume the three crash avoidance technologies examined are 100% effective in preventing 

relevant crashes. 

 

2.3 Background on Datasets and Data Selection Methodology 

To compute the upper bound annual net benefit of equipping all light-duty vehicles with 

BSM, LDW, and FCW systems, we first need to identify which types of crashes could potentially 

be prevented or made less severe by each technology. The primary sources of data used are the 

2012 GES which provides information on crashes of all severities, the 2012 FARS which provides 

information on fatal crashes, and insurance data from various reports written by the Highway Loss 

Data Institute (HLDI). Table 2.1 (shown below) provides an overview of the primary data sources 

for this analysis and their use. 
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Table 2.1 Overview of Primary Data Sources and Their Use 

Data Source  Use Source 

2012 National Automotive Sampling 

System (NASS) General Estimate System 

(GES) 

Estimate Relevant Non-Fatal 

Crashes 

NHTSA 

2012 Fatality Analysis Reporting System 

(FARS) 

Estimate Relevant Fatal Crashes NHTSA 

The 2010 Economic and Societal Impact of 

Motor Vehicle Crashes Report 

Estimate Crash Cost NHTSA 

Basav et al. (2003) Analysis of Lane 

Change Crashes Report 

Identify Lane Change Crashes in 

FARS and GES 

NHTSA 

Gordon et al. (2010) Safety Impact 

Methodology for Lane Departure Warning 

Report 

Identify Lane Departure Crashes 

in FARS and GES 

NHTSA 

A Collection of Collision Avoidance 

Reports 

Estimate Changes in Crash 

Frequency and Severity 

Highway Loss 

Data Institute 

(HLDI) 

 

2.3.1  Overview of Crash Avoidance Systems   

As mentioned earlier, the crash avoidance systems we focus on for this chapter are FCW, 

LDW, and BSM. FCW systems are intended to detect objects ahead that are stationary or moving 

at a slower speed and issue a warning to the driver if his or her closing speed represents risk of an 

impending collision. LDW systems monitor the lane markings in the roadway and alerts the driver 

if they are drifting out of their own lane. BSM systems monitor the blind spots to the rear and sides 

of the car and issues a warning if a car enters the driver’s blind spot. While these sensors serve the 

same purpose from vehicle to vehicle, their location on the vehicle could differ by manufacturer. 

For example, Honda's FCW system is located behind the windshield while Mercedes' and Acura's 

are located in the front bumper. Similarly, Mazda's BSM system is located in the rear bumpers, 

while Buick’s system is located behind each rear quarter panel. Figure 2.1 illustrates how the three 

crash avoidance systems interact with the roadway. 
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Figure 2.1 Lane Departure Warning (LDW), Forward Collision Warning (FCW), and Blind Spot 

Monitoring Roadway (BSM) Interaction 

 

2.3.2  Background on the General Estimate System (GES) and Fatality Analysis Reporting 

System (FARS) 

NHTSA annually collects information on both fatal and non-fatal motor vehicle crashes in 

the United States in order to aid researchers and other transportation professionals in evaluating 

the number of different crashes involving all types of vehicles and any relevant information 

regarding the crash that could be used to find and diagnose problems within traffic safety. Along 

with accident data, the 2012 GES and FARS datasets also include person and vehicle level data.   

The 2012 GES attempts to represent the crash characteristics of the United States 

population on a national level and includes accidents of all severities. A weighting factor is 

provided for each person, vehicle, and accident included in the datasets.  This weighting factor is 

the computed inference factor, which is intended to represent the total population from which the 

sample was drawn. The system has a population sample of about 62 thousand accidents that is 

representative of about 5.6 million crashes nationwide. All of the results presented in this report 

for non-fatal accidents were found using the full sample weights for the 2012 GES.   

The 2012 FARS data contains information on every fatal crash occurring on a public 

roadway in the year 2012. In order for a crash to be included in the FARS dataset, the crash must 

FCW 

LDW 

BSM 
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result in the death of an occupant of a vehicle or a pedestrian within thirty days of the crash due to 

injuries suffered from the accident. Unlike the GES database, the FARS dataset does not include 

any weighted estimates since each fatal accident that meets the criteria outlined above is included 

in the dataset.  All of the results presented in this reported related to fatal accidents were found 

using the 2012 FARS.  

 

2.3.3  Data Selection Methodology 

The 2012 NASS GES and FARS vehicle dataset contains information on in-transport 

vehicles and passengers. For all crash types, collisions that involved at least one light-duty 

passenger vehicles in the 2012 NASS GES and FARS files were used while all other crashes were 

truncated from the dataset.  One and two vehicle crashes make up close to 94% of all vehicle 

crashes; evaluating three or more vehicle crashes adds complexity to the analysis for a small 

percentage of accidents, and as a result these were not considered.  Crashes in the GES that were 

coded as fatal were excluded from the analysis since we were only interested in examining injury-

related crashes from this dataset. In order to account for any missing data in the vehicle files, 

imputed data were used where available.   

 Target crash populations for each technology were established in order to sort crashes into 

identifiable categories, making it easier to estimate the relevant number crashes for each 

technology. For this analysis the three target populations are: lane-change crashes, lane-departure 

crashes, and rear-end collisions, which are most closely related to BSM, LDW, and FCW, 

respectively. These crash technologies are functional at certain speeds depending on the 

automaker.  In order to identify vehicles that were traveling at a speed greater than or equal to the 

functional speed of the technologies in the vehicle file, the vehicle speed was taken into account. 

In cases where the vehicle speed was unknown, the roadway speed limit was considered due to the 

large percentage of unreported travel speeds.  If the vehicle speed was unreported it is assumed 

that when the crash occurred, the vehicles involved were traveling at a speed greater than or equal 

to the reported speed limit. The functional speeds established for this analysis are 20, 40, and 20 

miles per hour (MPH) for BSM, LDW, and FCW, respectively (HLDI 2011a, 2012a). 
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2.3.3.1 Blind Spot Monitoring 

BSM systems are designed to alert the driver when a vehicle encroaches into their blind 

spot by using cameras or sensors to monitor areas to the side of a vehicle. BSM would be most 

useful in preventing or reducing the severity of lane change crashes. A lane-change crash was 

defined as where two vehicles were initially traveling along parallel paths in the same direction 

and the encroachment of one vehicle into the travel lane of another vehicle, was the primary reason 

for the crash occurring. The method used to identify lane-change crashes is outlined in Table 2..2, 

and a similar method was used for lane departure and rear-end crashes. Crashes that occurred off-

road and crashes involving loss of control were not included in the target crash population, since 

we are only concerned with crashes that occur on a roadway that are not a result of loss of traction 

due to wet surface, etc. Additionally, in cases where it was not clear whether or not two vehicles 

were traveling in the same or opposite direction, or if it appears two vehicles were initially 

traveling in the same lane, these entries were eliminated from the dataset. System limitations that 

could affect the operation of BSM were also taken into account. BSM systems use sensors and 

cameras to detect nearby vehicles and could become unreliable in inclement weather (rain, sleet, 

snow). As a result, crashes that occurred in inclement weather were not considered. The filtering 

of the lane-change crashes was done by using the pre-crash movement, critical event, accident 

type, and vehicle speed variables. This target crash population includes only two-vehicle crashes. 

BSM may have avoided some of these omitted crashes, hence as a result the BSM savings estimate 

provided here is more conservative.  More information regarding lane-change crashes can be found 

in NHTSA’s analysis conducted by Basav et al. Analysis of Lane Change Crashes report (Basav 

et al. 2003).  
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Table 2.2 Methods Used to Identify Lane Change Crashes in GES 

Filter # SAS Code to Identify Description 

1 
Identify which crashes involve at least 

one passenger car 

Analysis concerned with crashes 

involving at least one passenger car. 

2 
if 44<= acc_typ<=49 or 

70<=acc_typ<=75 and veh_invl=2 

Selects accident types that a lane 

change crash could fall under and 

crashes that involved two vehicles 

3 if not 1<= p_crash2 <=09  
Eliminates Crashes involving loss of 

control. 

4 if not 80<=p_crash2<=  92  

Eliminates crashes involving 

pedestrians and pedal cyclists, animals, 

or other objects.  

5 if not p_crash2= 54 62, 63, 67, 71, or 72 

Eliminates crashes involving vehicles 

initially traveling or turning in the 

opposite direction.  

6 if not p_crash2 = 59, 68, 73, or 78 

Eliminates crashes where it is not clear 

if vehicles were initially traveling in 

same or opposite direction. 

7 
if not  (acc_typ = 75 or 76 and p_crash2= 

15 or 16) or (p_crash1 = 10 or 11) 

Eliminates crashes that do not conform 

to the definition of lane change crashes. 

8 

if not p_crash2 = 50, 51, or 52 for one 

vehicle, and p_crash2 = 18 or 53 for the 

other vehicle 

Eliminates crashes in which it appears 

the vehicles were initially traveling in 

the same lane are eliminated. 

9 
if 20<= speed <=151 or (speed=997) or 

(speed=998 or 999 and 20 <= spdlim) 

Functional speed of Blind Spot 

Information 20+ mph. 

10 if not weather ≠ 2,3,or 4  
Eliminates crashes that took place in 

inclement weather 

Source: Adopted from Basav et al.’s Analysis of Lane Change Crashes report (Basav et al. 2003).  
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2.3.3.2 Lane-Departure Warning 

 The crashes included in the lane-departure crash target population are assumed to be 

situations where a LDW system would be active.  As a result, lane-departure crashes are defined 

as one where the vehicle inadvertently departs its travel lane and the driver of the vehicle is not 

actively maneuvering the vehicle other than the general intent of lane keeping. This target crash 

population includes both single and two-vehicle crashes. The crash scenarios examined for this 

analysis in which LDW would issue a warning are:  prior lane keeping, lane departure and single-

vehicle lane departure. The critical events that would correspond to a lane or road departure are: 

“vehicle traveling over left of lane”, "vehicle traveling over the right lane line", "vehicle off the 

edge of the road on the left side" and "vehicle off the edge of the road on the right side". “Going 

straight” and “negotiating a curve” were the pre-crash movements chosen for the lane departure 

scenario: prior lane-keeping, lane departure, where the vehicle was going straight or negotiating a 

curve (pre-crash movement) and at some point departed its lane (critical event). In addition to the 

pre-crash maneuvers of the vehicle, target crashes were also identified by looking at other factors 

such as whether the vehicle was involved in the first harmful event and its accident type, and the 

speed at which the vehicle was traveling. Because LDW uses cameras to monitor the vehicle’s 

position within the lane markers, crashes that occurred while there was snow on the roadway were 

filtered from the dataset. While LDW (similarly to BSM) warn of sideswipe crashes, the FARS 

and GES datasets do not indicate the driver’s intention (drift out of lane or active lane change), 

and as a result crashes with the pre-crash movement: “changing lanes” were not considered for the 

lane departure crash population. More information regarding LDW system crashes can be found 

in Gordon et al.’s Safety Impact Methodology for Lane Departure Warning report (Gordon et al. 

2010). 

 

2.3.3.3 Forward Collision Warning 

FCW systems are designed to prevent or reduce the severity of  rear-end collisions by using 

a camera or radar to detect whether a vehicle is approaching another object-vehicle, bicycle, or 

pedestrian- at an unsafe speed and issues alerts to the driver. In addition to FCW systems, some 

vehicles also include crash imminent braking (CIB) systems that apply autonomous braking to the 

vehicle after a warning has been issued. Rear-end collisions were identified in both the FARS and 

GES data sets by referring to the accident type variable. Accident type variable codes in GES 20-
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29 correspond to a rear-end collision and were used to filter out accidents in which FCW systems 

would be active. Once the crashes that met the desired accident types listed above were identified, 

vehicle speed, pre-crash movement, and critical event were then taken into account. In cases where 

a lane change or merge occurred directly before the crash, these entries were eliminated since it is 

not clear whether or not a FCW system would have been effective in these scenarios. Crashes that 

occurred during inclement weather were filtered from the target crash population, since rain, snow, 

etc. could hinder the performance of the system.  The pre-crash scenarios examined in this chapter 

that could lead to a rear-end crash are: the lead vehicle stopped, lead vehicle decelerating, and lead 

vehicle moving at lower constant speed. The rear-end collision target crash population only 

includes two-vehicle crashes. 

 

2.3.4  Estimation of Crash Frequency and Crash Cost Reduction 

To estimate the existing effectiveness of each technology, insurance data on changes in 

collision claim frequencies and severity (average loss payment per claim) were gathered from the 

HLDI (HLDI 2011b; c; a, 2012a; b, 2014). The HLDI derives its data by comparing the insurance 

records of vehicles with crash avoidance features against vehicles of the same model year and 

series assumed not to have any features. 

First, it is assumed that a change (positive or negative) in collision claim frequency is the 

equivalent change in crash frequency for single and multiple-vehicle accidents. While not all 

accidents are reported to insurance companies and collision claim frequency does not mirror crash 

frequency, there is a relationship between the two statistics. Second, it is assumed that a change in 

collision claim severity is the equivalent change in crash cost for related accidents that are not 

prevented. Crash avoidance technologies could reduce crash severity, which should in turn reduce 

crash costs, as supported by the observed data. 

The HLDI reports the number of insured years for each technology (blind spot monitoring, 

etc.) by vehicle make. To convert all reported values into a single value for each technology, a 

weighted average was calculated based on the total vehicle exposure. Specifically, the collision 

claim frequency of a technology by make with a higher exposure was weighted greater than those 

with a lower exposure. For example, if Hondas with FCW have a total exposure of 28,000 insured 

vehicle years and Volvos with FCW have a total exposure of 15,000 insured vehicle years, the 

change in collision insurance claim frequency for Hondas FCW system would contribute more to 
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the final weighted average claim frequency for FCW than would that of Volvo. It should be noted 

that some of the insurance data reported by the HLDI for some vehicles are not statistically 

significant. Most crash avoidance technologies are fairly new and it is expected that they will 

improve with time. 

 

2.4  Benefit Cost Analysis 

  The annual net benefit of crash avoidance systems is the difference between the total annual 

benefits and total annual costs and is expressed in Eq. (2.1): 

 
𝑁𝐵 = 𝑇𝐵 − 𝑇𝐶                                                                                                                                          (2.1) 

 

where NB is the annual net benefit, TB the total annual benefits, and TC is the total annual costs.  

The total annual benefits are the savings that result from a reduction in crash frequency and 

crash costs due to the deployment of BSM, LDW, and FCW crash avoidance systems throughout 

the light-duty vehicle fleet. The total annual benefits of crash avoidance technologies for single 

and multiple-vehicle accidents are expressed in Eq. (2.2):  

 

𝑇𝐵 = 𝐶𝑆𝐶𝑃 + 𝐶𝑆𝐿𝑆                                                                                                                                   (2.2) 

 

where TB is the total annual benefit of equipping all light-duty vehicles with crash avoidance 

technologies, CSCP the cost savings from crash prevention, CSLS the cost savings from less severe 

crashes.  

The total annual costs are the incremental annualized costs associated with equipping all 

light-duty vehicles in the vehicle fleet with the technologies. So the total costs can be expressed in 

Eq. (2.3): 

 

𝑇𝐶 = 𝑇𝑃𝐶                                                                                                                                                     (2.3) 

 

where TC is the total annual costs of equipping all light-duty vehicles in vehicle fleet with BSM, 

LDW, and FCW crash avoidance systems, TPC is the technology purchasing cost. Figure 2.2 

(shown below) shows the processes and steps taken to estimate the technology purchasing costs, 

and upper and lower bound benefits and net benefits.  
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Figure 2.2 Flow Chart of Cost and Benefit Estimates Process for Costs and Benefits 

 

2.4.1  Total Annual Benefits 

The annual benefits of equipping all light-duty vehicles with the technologies come from 

a reduction in crash frequency and severity. Upper bound annual fleet-wide technology diffusion 

benefits are estimated by assuming all relevant crashes are avoided. Lower bound annual fleet-

wide benefits are projected using crash frequency and severity reduction from current insurance 

data and estimated by applying observed changes in crash frequency to the total number of crashes 

that occurred in 2012 and changes in crash severity to relevant crashes not avoided.  

Using the 2012 GES and FARS, we can generate estimates of relevant crashes for the 

technologies under consideration, and descriptive statistics about the sample sizes. We estimated 

that approximately 24 percent of the 5.6 million police reported crashes are relevant to at least one 

of the following three crash avoidance technologies: BSM, LDW, and FCW. With 100% 

effectiveness and deployment, the combination of all three technologies could prevent or reduce 

the severity of as many as 1.3 million crashes annually, including 133,000 injury crashes and 

10,100 fatal crashes (See Table 2.3). Of the three technologies examined in in this chapter, FCW 

has the greatest potential to prevent or reduce the severity of the largest number of crashes overall. 

This technology could prevent or reduce the severity of close to 800,000 crashes or 14% of all 
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crashes. The technology that could affect the largest number of fatal crashes is a LDW system, 

which has the potential to prevent or reduce the severity of up to 9,020 fatal crashes or 29% of all 

fatal crashes. BSM addresses the second most crashes of any severity out of all three technologies.  

There are about 267,000 crashes including 17,000 injury crashes and 280 fatal crashes, relevant to 

this technology. The standard errors of the estimates for non-fatal crashes are listed in Table 2.3. 

The dataset used to estimate fatal crashes for this analysis, FARS, contains data on each police 

reported fatal crash, and as a result has no standard error associated with its estimate. Standard 

errors for non-fatal crashes were estimated using NHTSA’s 2013 Traffic Safety Facts Report 

(NHTSA 2014b).  

 

Table 2.3 Relevant Crashes from the 2012 GES and FARS Data, Which Represent the Upper 

Bound that Potentially could be Prevented or Made Less Severe Annually by Crash Avoidance 

Technologies Given System Limitations 

Technology All Crashes  
Injury Crashes 

(A or B) 

Fatal 

Crashes 

Non-Fatal Crash 

Standard Error 

Blind Spot Monitoring 267,000 17,200 280 19,927 

Lane Departure Warning 262,000 58,100 9,000 18,944 

Forward Collision Warning 795,000 58,000 750 58,706 

    
 

Total 1,320,000 133,000 10,100 99,678 

Percent of Total Crashes 23.58% 8.16% 32.63% N/A 

Source: The 2012 National Automotive Sampling Survey General Estimate System and Fatality 

Analysis Reporting System Accident & Vehicle File, U.S. Department of Transportation. 

Note: A or B refers to incapacitating and non-incapacitating injuries, respectively, as defined by 

the KABCO injury scale. 
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To estimate a lower bound fleet-wide reduction in crashes and severity, we use current 

insurance data for vehicles with these technologies and project the savings across assumed fleet-

wide technology diffusion. Table 2.4 summarizes the change in crash frequency and severity for 

each crash avoidance technology from current insurance data. Vehicles with a FCW system show 

the greatest reductions in both collision claim frequency and severity. Collision claim frequency 

and severity for vehicles with this technology were reduced by about 4 percent and $225, 

respectively. BSM lowers collision claim frequency and severity by about 0.5 percent and $80, 

respectively. Vehicles with a BSM system have the lowest reduction in both collision claim 

frequency and severity. LDW has second highest reduction in both categories out of all three crash 

avoidance systems. This technology reduces both collision claim frequency and severity by about 

1.2 percent and $155, respectively. Table 2.4 lists the exposure, measured in terms of insured years 

by technology for collision coverage. This statistic is intended to give the reader an idea of the 

total length of time the vehicles with the crash avoidance features examined in this study were 

insured under a given coverage type. The exposure for the control group, vehicles without any 

features, are not easily discernable from the data available online, and as a result are not reported 

in this chapter. 
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Table 2.4 Observed Changes in Crash Frequency and Cost and Collision Exposure By Crash 

Avoidance Technology ($2012) 

Crash Avoidance 

Technology 

Change in Collision 

Claim Frequencya 

Change in Collision 

Claim Severitya 
Collision Exposurec 

Blind Spot Monitoring -0.53% -$80 439,600 

Forward Collision 

Warningb 
-3.97% -$221 272,900 

Lane Departure Warning -1.21% -$147 229,900 

Average -1.90% -$149 N/A 

Source: A collection of Collision Avoidance Reports written by the Highway Loss Data Institute 

(HLDI, 2014b, 2012a, 2012b, 2011a, 2011b, 2011c). 

aWeighted Average Based on Vehicle Exposure  

bSome of the vehicles included in this estimate had a forward collision warning system that 

includes autonomous emergency braking 

cThis column represents total exposure for each technology, measured in terms of insured vehicle 

years. 

 

In 2010 there were approximately 5.4 million crashes that resulted in about 1.5 million 

injuries and 30,196 fatalities. The economic toll and societal harm of motor vehicle crashes that 

year totaled about $836 billion, which includes $242 billion in economic costs and $594 billion 

due to loss of life and decreased quality of life from injuries (Blincoe et al. 2015). This would 

result in each crash costing close to $154,000 in $2010. Because the crash data used for this chapter 

is from the year 2012, the Consumer Price Index (CPI) was used to find the total cost of a crash in 

2012 dollars, which is approximately $162,400 or $47,021 in economic costs and $115,414 in 

quality-adjusted life years (QALYs) cost. Private Insurers cover $25,391 or about 16 percent of 

the total cost of a crash, while about 7 percent or $10,815 is paid by households. Third parties 

(uninvolved motorists in congestion, charities, etc.) pay about 5 percent or $7,523 of the total cost 

and public revenues pay about 2 percent or $3,291. The remaining 71% comes from costs 

associated with lost QALYs from injuries or fatalities.  

The direct benefits of equipping all light-duty vehicles with crash avoidance technologies 

consist of the cost savings from crash prevention and less severe crashes. Indirect benefits include 
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savings from increased QALYs from more people living healthier lives from avoided crashes. The 

economic savings from crash prevention explain that private insurers, households, third-parties, 

and public-revenue sources saved money since each crash avoidance technology prevents a 

number of crashes. If these crashes had occurred each entity would need to pay a percentage of the 

cost of each crash. The lower bound fleet-wide annual accident prevention cost savings is shown 

in Table 2.5. The values in this table were estimated by using the using the average change in 

collision claim frequency and severity from Table 2.3 along with the total number of crashes that 

occurred in the year 2012. Total crash prevention cost savings are the sum of the economic cost 

savings and the cost savings from increased QALYs. The calculation of the total lower bound 

annual crash prevention cost savings is based on the following formula: 

 

                                  𝑡𝑜𝑡𝑎𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑟𝑎𝑠ℎ 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 

                                               = 𝑁𝐶 × 𝐶𝐹 × 𝑆𝐶 

                                               = 5.6 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 × 1.90% × $162,400 𝑝𝑒𝑟 𝑐𝑟𝑎𝑠ℎ  

                                               = 106,872 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 × $162,400 𝑝𝑒𝑟 𝑐𝑟𝑎𝑠ℎ 

                                               = $17.4 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 

 

𝑤ℎ𝑒𝑟𝑒, 

𝑁𝐶 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑜𝑐𝑐𝑢𝑟𝑒𝑑 𝑖𝑛 2012 

𝐶𝐹 = 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑐𝑙𝑎𝑖𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑟𝑒𝑒 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑒𝑠  

(𝑙𝑖𝑠𝑡𝑒𝑑 𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 2 𝑜𝑓 𝑇𝑎𝑏𝑙𝑒 2.4) 

𝑆𝐶 = 𝑠𝑜𝑐𝑖𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎 𝑐𝑟𝑎𝑠ℎ 

 

Less severe crash cost savings describe the savings to private insurers due to lower collision 

claim loss amounts. Because this chapter uses a bounding assumption on 100% effectiveness and 

deployment of crash avoidance technologies it is assumed that all relevant crashes not prevented 

will have a reduction in average severity. The calculation of the total lower bound annual cost 

savings from less severe crashes is based on the following formula: 
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𝑡𝑜𝑡𝑎𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 𝑓𝑟𝑜𝑚 𝑙𝑒𝑠𝑠 𝑠𝑒𝑣𝑒𝑟𝑒 𝑐𝑟𝑎𝑠ℎ𝑒𝑠  

                            = 𝑁𝑂 × 𝐶𝑃 

                            = (1.3 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 − 106,478 𝑐𝑟𝑎𝑠ℎ𝑒𝑠) × $149 𝑝𝑒𝑟 𝑐𝑟𝑎𝑠ℎ 

                            = 1.2 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 × $149 𝑝𝑒𝑟 𝑐𝑟𝑎𝑠ℎ 

                            = $181 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 

 

𝑤ℎ𝑒𝑟𝑒, 

𝑁𝑂 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑠𝑡𝑖𝑙𝑙 𝑜𝑐𝑐𝑢𝑟 𝑓𝑟𝑜𝑚 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 

𝐶𝑃 =  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑐𝑙𝑎𝑖𝑚 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑟𝑒𝑒 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑒𝑠  

(𝑙𝑖𝑠𝑡𝑒𝑑 𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 3 𝑜𝑓 𝑇𝑎𝑏𝑙𝑒 2.4) 

 

The total annual benefits (TB) from cost savings due to less severe and prevented crashes 

were estimated using Eq. (2.2). As presented in Table 2.5, the total lower bound annual benefits 

are approximately $18 billion. It is shown that the most important sources of benefits are cost 

savings from crash prevention ($17 billion), and less severe crashes ($180 million). In this 

estimation, cost savings from people living healthier lives are only based on crashes that were 

prevented by the crash avoidance technologies, since we are not aware of how each technology 

impacts injury severity if a crash does occur. Although, more crashes are assumed to have a 

reduction in average severity than prevented, crash prevention provides a far greater benefit since 

the cost savings from less severe crashes is very small compared to the cost savings from avoiding 

a crash. 

In order to estimate an upper bound fleet-wide benefit from the three technologies we will 

assume that each technology is 100% effective in preventing crashes from their respective target 

crash population. The calculation of the total upper bound annual crash prevention cost savings is 

based on the following formula: 
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𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑐𝑟𝑎𝑠ℎ 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 

                                             =𝑀 × 𝑆𝐶 

                                            = 1.3 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 × $162,400 𝑝𝑒𝑟 𝑐𝑟𝑎𝑠ℎ 

                                            = $215 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 

Where, 

𝑀 = 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑡ℎ𝑎𝑡 𝑐𝑜𝑢𝑙𝑑 𝑏𝑒 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑒𝑑 𝑜𝑟 𝑚𝑎𝑑𝑒 𝑙𝑒𝑠𝑠 𝑠𝑒𝑣𝑒𝑟𝑒 𝑏𝑦  

𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑒𝑠 (𝑙𝑖𝑠𝑡𝑒𝑑 𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 2 𝑜𝑓 𝑇𝑎𝑏𝑙𝑒 2) 

𝑆𝐶 = 𝑆𝑜𝑐𝑖𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑎 𝐶𝑟𝑎𝑠ℎ 

 

Table 2.5 shows the upper bound benefit from equipping all light duty vehicles with FCW, 

LDW, and BSM. If each technology could prevent all crashes from their respective target crash 

populations, they would collectively provide an annual benefit of $215 billion. The most 

significant cost saving technology is FCW, which could provide an annual benefit of up to $129 

billion or 60% of the total upper bound benefit. The large potential economic benefit from this 

technology can be attributed to the high number of rear-end collisions that occur annually. BSM 

and LDW systems could provide an upper bound annual benefit of about $43 and $42 billion, 

respectively. The upper bound benefit is representative of what may be achievable from an 

economic perspective as these technologies become more effective and widespread. It should be 

noted that the upper bound annual benefit does not consider less severe crashes since all relevant 

crashes are assumed to be prevented. 
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Table 2.5 Estimation of Lower and Upper Bound Annual Benefits from Fleet-wide Deployment 

of Crash Avoidance Technologies in Light-Duty Vehicles 

Item of Benefits 
Monetary value of the benefits   

(Billion $2012) 

Crash Prevention Cost Savings 
Lower Bound 

Benefits 

Upper Bound 

Benefits 

    Private Insurers $2.90  $35 

    Households $1.40  $17 

    Third-Parties $0.78  $10 

    Public Revenue $0.50  $6.2 

    QALYs $12  $147 

Total cost savings from Crash Prevention 

(CSCP) 
$17  $215 

Cost savings from Less Severe Crashes (CSLS) $0.18  $0 

   

Total annual benefits of fleet-wide deployment 

of crash avoidance technologies in light-duty 

vehicles (TB)  

$18  $215 

Note: Figures may not sum exactly due to rounding. 

 

By using Bureau of Transportation Statistics (BTS) data of the number of light-duty 

vehicles in the US in 2012, the annual upper and lower bound per vehicle benefits of fleet-wide 

deployment can be estimated. BTS estimates that there were approximately 234 million registered 

highway vehicles in the US in 2012 (Bureau of Transportation Statistics 2015). By dividing the 

number of light-duty vehicles by the total annual lower and upper bound benefits, we estimate a 

lower and upper bound per vehicle benefit of roughly $76 and $918, respectively. 

 

2.4.2  Total Annual Costs 

The total direct costs (TC) of fleet-wide crash avoidance technology deployment are the 

technology purchasing costs associated with purchasing a BSM, LDW, and FCW system for a 
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bounded estimation where the entire light-duty vehicle fleet was equipped with these technologies, 

as shown in Eq. (3). This cost is annualized over the average lifetime of a vehicle in order to 

compare annual fleet-wide costs and benefits. Changes in car sales and travel lengths over time 

were not taken into account for this analysis. Most manufacturers offer the customer the option of 

adding a safety package onto higher model vehicles. When the three technologies were not a 

standard option, it is assumed for this analysis that the cost to add BSM, LDW, and FCW 

technologies to a vehicle is about $600, which is reflective of the current price drop in vehicle 

safety packages from Toyota (Lienert 2015). If the same technology was available in 2012 the 

price would have been about $582. While most other manufacturers offer the same safety package 

for around $2,100 we assume that they too will eventually decrease the price of their safety features 

in order to remain competitive. Since this chapter evaluates the annual net benefit, the total unit 

technology cost was converted to an equivalent uniform annual cost (EUAC) by assuming a 

vehicle lifetime of 14 years and an average car loan interest rate of 4.46% (Andriotis 2013; Ford 

2012; Tuttle 2012). The total annual cost assumes that this equipment is placed on new vehicles 

and the cost to purchase the technologies is annualized over the lifetime of the vehicle. This would 

be the total annual cost to purchase the technologies if all of today’s light-duty vehicles were 

replaced with new cars equipped with these three technologies. This resulted in an annualized cost 

of approximately $57 for each light-duty vehicle. The calculation of the total annual technology 

purchasing costs is based on the following formula: 

 

         𝑡𝑜𝑡𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 

          = 𝐿𝐷𝑉 × 𝑉𝑇 × [𝑟 1 − (1 + 𝑟)−𝑛⁄ ] 

          = 234 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 × $582 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 × 4.46% 1 − (1 + 4.46%)−14⁄  

          = 234 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 × $582 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 × 0.098 

          = 234 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 × $57 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒  

          = $13 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 in total costs to equip LDV fleet with these technologies (TPc)  

𝑤ℎ𝑒𝑟𝑒, 

𝐿𝐷𝑉 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡 𝑏𝑎𝑠𝑒 𝑎𝑛𝑑 𝑙𝑜𝑛𝑔 𝑏𝑎𝑠𝑒 𝑙𝑖𝑔ℎ𝑡 𝑑𝑢𝑡𝑦 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 

𝑉𝑇 = 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 

𝑟 = 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 
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 According to the Bureau of Transportation Statistics, in 2012 there were approximately 

234 million registered highway light-duty vehicles in the United States, which excludes 

motorcycles, buses, truck combinations, and single-unit trucks (Bureau of Transportation 

Statistics, 2015). The results above show that the total annual technology purchasing costs are 

about $13 billion.  

 

2.4.3  Comparison of Benefits and Costs 

In order to analyze the current economic feasibility, the annual net benefit (NB) was 

estimated from Eq. (2.1). The total annual benefits (TB) are the benefits that we would expect to 

accrue each year the vehicle is in operation from prevented and less severe crashes. The equivalent 

uniform annual costs (TC) are the total fleet-wide technology purchasing costs annualized over the 

lifetime of a vehicle. The annual net benefit is the difference between these two annual values.  

It is shown in Figure 2.3 that the current lower bound annual net benefit of fleet-wide 

deployment of crash avoidance technologies in light-duty vehicles is positive, which means that 

the benefits currently exceed the costs. In monetary value, the lower bound annual expected net 

benefit of equipping all light-duty vehicles with a BSM, LDW, and FCW system is about $4 

billion. When we compare annualized per vehicle cost and lower bound per vehicle benefits, the 

annual lower bound per vehicle net benefit is approximately $20. The positive net benefit can be 

largely attributed to the low cost of the technologies. The lower bound annual net benefit is 

assumed to be the lowest net benefit achievable by these technologies since technology cost and 

performance are likely to improve, and additional benefits are likely as deployment increases. 
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Figure 2.3 Approximately $4 Billion Annual Lower Bound Net Benefit of Fleet-wide Deployment 

of Crash Avoidance Technologies in Light-Duty Vehicle Fleet 

 

Similarly to the lower bound annual net benefit, the upper bound annual net benefit is 

positive since the upper bound annual benefits far exceed current annualized technology costs. As 

shown in Figure 2.4, the upper bound annual net benefit from all three technologies collectively at 

current technology prices, is about $202 billion or an $861 per vehicle net benefit.  The upper 

bound annual net benefit is assumed to be the highest net benefit achievable, depending on the 

current price of the crash avoidance technologies. 
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Note: Upper bound annual net benefit represents an upper bound that is dependent on the current 

price of crash avoidance technologies. 

Figure 2.4 Approximately $202 Billion Annual Upper Bound Net Benefit of Fleet-wide 

Deployment of Crash Avoidance Technologies in Light-Duty Vehicle Fleet 

 

2.4.4  Sensitivity Analysis 

The current annual net benefit shown above are based on a variety of assumptions, the most 

significant being the annualized technology purchasing cost and the effectiveness of each 

technology in reducing crash frequency and severity.  Improvements in all three categories could 

result in a higher annual net benefit.  As shown, it is economically feasible to equip the entire light-

duty vehicle fleet with the three crash avoidance technologies examined in this chapter. Higher 

annual net benefits can still be achieved either by lowering the cost of purchasing the technologies 

and/or making the technologies more effective in preventing and reducing the severity of crashes. 

In order to evaluate the impact other scenarios would have on the annual net benefit, two-way 

sensitivity analyses were conducted to examine how changes in the number of crashes prevented 

or a change in crash cost from less severe crashes  along with the annualized technology cost per 

vehicle, would impact the annual net benefit.  
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 Table 2.6 displays the sensitivity of the current annual net benefit to the annualized 

technology cost and the percentage of crashes prevented. A first prospective technology scenario, 

with conservative changes to the base case assumptions -annualized technology cost per vehicle 

of $40 and 10% reduction in crash frequency-would result in an annual net benefit of about $82 

billion. A second prospective technology scenario with more aggressive changes to the base case 

assumptions-annualized technology cost per vehicle of $20 and 20% reduction in crash frequency-

would result in an annual net benefit of about $178 billion.  

 

Table 2.6 Annual Fleet-Wide Net Benefit from Changes in Crash Frequency and Technology 

Purchasing Costs (Billion $2012) 

    Annualized Technology Cost per Vehicle ($2012) 
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2% $18 $13 $8 $3 -$1 -$6 -$11 

5% $46 $41 $36 $32 $27 $22 $18 

10% $91 $87 $82 $77 $73 $68 $63 

15% $137 $132 $128 $123 $118 $114 $109 

20% $182 $178 $173 $168 $164 $159 $154 

24%a $215 $210 $206 $201 $196 $192 $187 

Note: Areas shaded green indicate a positive annual net benefit whereas areas shaded yellow 

indicate a negative annual net benefit. 

aUpper bound percentage of crashes that can be prevented, collectively by Lane Departure 

Warning, Forward Collision Warning, and Blind Spot Monitoring. 

 

At low cost savings from less severe crashes, the annual net benefit is positive at most 

technology costs.  At much higher technology costs than those assumed for the base case analysis, 

the net benefit remains positive at high crash prevention cost savings, but is negative at lower cost 

savings. While there are a much larger number of crashes assumed to be less severe than prevented, 

less severe crashes have a smaller impact on the net benefit. The sensitivity of the annual net 

benefit to the annualized technology cost and cost savings from less severe crashes is shown in 

Table 2.7. 
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Table 2.7 Annual Fleet-Wide Net Benefit from Changes in Crash and Technology Purchasing 

Costs (Billion $2012) 

    Annualized Technology Cost per Vehicle ($2012) 
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$0  $18  $13  $8  $4  -$1 -$6 -$11 

$2  $20  $15  $10  $6  $1 -$4 -$8 

$4  $22  $18  $13  $8  $4 -$1 -$6 

$6  $25  $20  $15  $11  $6 $1 -$3 

$8  $27  $22  $18  $13  $8 $4 -$1 

$10  $29  $25  $20  $16  $11  $6  $1  

$12  $32  $27  $23  $18  $13  $9  $4  

$14  $34  $30  $25  $20  $16  $11  $6  

Note: Areas shaded green indicate a positive annual net benefit whereas areas shaded yellow 

indicate a negative annual net benefit. 

 

2.5  Discussion 

In this chapter a cost-benefit analysis of equipping the entire U.S. light-duty vehicle fleet 

with crash avoidance technologies is carried out based on the best available information about 

changes in collision insurance claim frequency and severity for vehicles with crash avoidance 

technologies. Insurance data was obtained from the HLDI and relevant crash data were from the 

2012 FARS and GES datasets.  

Approximately 24 percent of all crashes are relevant to one of the three crash avoidance 

technologies: blind spot monitoring, lane departure warning, and forward collision warning. All 

three technologies could collectively prevent or reduce the severity of as many as 1.3 million 

crashes a year including 133,000 injury crashes and 10,100 fatal crashes. FCW systems would 

address the greatest number of crashes overall and injury crashes, while a LDW could affect the 

largest number of fatal crashes. 

In order to conduct a net benefit analysis to evaluate the economic feasibility of crash 

avoidance systems in light-duty vehicles, it was assumed crash frequency and crash cost mirrored 

changes in collision claim frequency and severity, respectively. If all three crash avoidance 

technologies were equipped on all light-duty vehicles, this would provide a lower bound annual 
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benefit of about $18 billion with private insurers, households, and third-parties receiving annual 

benefits of about $2.9, $1.4, and $0.78 billion, respectively, from prevented and less severe 

crashes. Most of the benefit can be attributed to prevented crashes that accounts for almost 98% 

of the total benefit although a very small percentage of crashes are assumed to be prevented as 

opposed to less severe. With 2015 pricing safety options, the total annual cost to purchase all three 

technologies for the entire light-duty vehicle fleet would be about $13 billion-resulting in an annual 

lower bound net benefit of approximately $4 billion or a $20 per vehicle net benefit. The 

technologies we explore in this chapter represent an early form of vehicle automation and a 

positive net benefit suggests the fleet-wide adoption of these technologies would be beneficial 

from an economic and social perspective. Since the annual cost to purchase the crash avoidance 

technologies would come from household expenditures, all benefits to private insurers, third-

parties, and public revenue sources should be realized when only considering technology 

purchasing costs.  

 If all three technologies could prevent all crashes in their respective target crash 

populations this would provide an upper bound annual benefit of about $215 billion. Of the three 

crash avoidance technologies examined in this chapter, FCW could provide the greatest annual 

benefit. This technology could provide an upper bound annual benefit of up to $129 billion or a 

per vehicle benefit of up to $551, due to the relatively large number of crashes this technology 

addresses. At 2015 technology costs, the upper bound annual net benefit is approximately $202 

billion or an $816 per vehicle net benefit. According to the GES and FARS datasets, in 2012 

collectively there were about 5,000 and 125,000 pedestrian and pedalcyclist fatalities and injuries, 

respectively, from crashes involving motor vehicles. While these crashes were not considered for 

this analysis, FCW could have considerable additional benefits by potentially reducing the 

frequency and severity of these crashes, resulting in higher economic benefits, which further 

supports the case that these technologies would provide a benefit if equipped on all vehicles. 

The crash avoidance technologies examined in this chapter are fairly new and have only 

recently begun to appear in non-luxury cars. The HLDI estimates that in 2013 the three crash 

avoidance technologies examined in this chapter each came standard on about 2% of new car 

models. As a result, this is only a preliminary cost analysis as we expect the technologies to 

improve, costs decline, and diffusion increase - resulting in potentially higher changes in collision 

claim frequency and severity. In addition, some of the system limitations assumed for the current 
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technologies in this analysis may not exist in the future and as result these technologies could 

become more effective in circumstances such as inclement weather, which would increase the 

number of relevant accidents, ultimately providing a larger benefit. One policy option for insurance 

companies would be to provide insurance premium discounts as an incentive to encourage drivers 

to adopt these technologies. As autonomous technology diffuses and starts to improve safety, there 

is the potential risk of an enhanced immunity fallacy (Will 2005; Will and Geller 2004), where 

occupants perceive a false sense of immunity from risk for injury in crashes. This could result in 

reduced use of seat belts or child restraints, which is not commensurate with the reduced risks. In 

the transition to partial vehicle automation, regulators take best practices from the risk perception 

literature should build upon previous efforts (Will 2005) to enhance risk communication. 

While the results from net benefit analysis offer a new understanding of the economic 

benefits and costs of equipping the entire light-duty vehicle fleet with three crash avoidance 

technologies, there are several opportunities for improvement. Rather than calculating benefits for 

crash prevention solely on a per crash basis, future cost analyses should take crash severity in 

account.  Changes to market penetration rates and VMT could also be incorporated, to reflect the 

influence that consumer demand and VMT could have on the net benefit. Different system 

efficacies could be taken into account in order to better model a real transportation system where 

crash avoidance technologies do not work perfectly and could be potentially disabled by the user 

of the vehicle.  
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Chapter 3: Investigating the Effects of Reserved Lanes for Commercial Truck 

Platooning on Congestion: Pennsylvania Turnpike Case Study 
 

The previous chapter discussed the economic feasibility of equipping all light-duty vehicles 

with forward collision warning, blind spot monitoring, and lane departure warning crash avoidance 

technologies. This chapter explores methods to determine initial platoon testing areas on highways 

and investigates the effects of a dedicated truck platoon lane on congestion.  

Traffic safety remains a significant issue on today’s public roadways. In addition to safety 

concerns, traffic congestion continues to be a problem for everyday commuters who are likely to 

encounter high levels of traffic when going to and from work. Connected and automated vehicles 

(CAVs) have the potential to provide a safer and more cost-effective, and efficient transportation 

system. This chapter outlines a method to determine feasible platoon demonstration sites and 

investigates the impacts of a dedicated truck platoon lane on peak hour traffic flow on the 

Pennsylvania Turnpike. The Pennsylvania Turnpike contains 12 sections where there are at 3 lanes 

in at least one direction for greater than 2 miles, that could be used as platoon demonstration sites. 

We chose this as our filtering criteria because we do not think it is feasible to dedicate a lane to 

platooning if there are only 2 travel lanes available and a test section of greater than 2 miles would 

be needed for calibration and robust results. Our results suggest that the five and six lane segments 

in Western and Central Pennsylvania could be viable options for a platoon site demonstrations 

because these areas have relatively low peak hour traffic and a high proportion of vehicles traveling 

on these road segments are commercial trucks. As a result, high Level of Service is maintained 

even at low platoon penetration rates. The 5 and 6 lane road segments located in Eastern 

Pennsylvania, near Philadelphia, contain road segments that have relatively high peak hour traffic 

flows and the majority of vehicles traveling on this sections of road are passenger cars. Therefore, 

dedicating a lane to platooning on these sections would result in additional congestion during peak 

hour travel times. Our results also suggest that platoon lane based time of day and day of week 

restrictions should be considered. 
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3.1 Introduction 

Traffic safety and congestion remain significant issues on today’s public roadways. The 

National Highway Traffic Safety Administration (NHTSA) reports that in 2012 there were a total 

of 5.6 million crashes including, 33,000 fatal crashes and 2.3 million injury crashes, the majority 

of which occurred due to human error (NHTSA 2014a; Olarte 2011). In addition to safety 

concerns, traffic congestion continues to be a problem for everyday commuters who are likely to 

encounter high levels of traffic when going to and from work (Ohnsman 2017). Connected and 

automated vehicles (CAVs) have the potential to provide a safer, more cost-effective, and efficient 

transportation system (Anderson et al. 2014). In this chapter we focus on truck platooning, which 

could experience widespread adoption in the next 5 to 10 years (Christ 2017). Trucks are ideal 

applications for platooning since these vehicles could enhance fuel economy through drag 

reduction, as well as drive for long distances along the same route, often concentrated in few 

corridors. The study investigates the effects of reserved lanes for truck platooning on congestion. 

We use hourly traffic flow data from the Pennsylvania Turnpike to estimate how peak hour level 

of service (LOS) could change with a dedicated truck platoon lane. From these results, we discuss 

the potential safety benefits of a truck platooning and provide recommendations to the Turnpike 

on feasible platoon demonstration sites. 

Platoons are groups of vehicles that follow closely behind one another at high speeds and 

communicate through connectivity. The first truck in the platoon serves as the lead vehicle with 

each successive vehicle in the platoon following the lead vehicle with limited driver intervention. 

Platoons have the opportunity to reduce energy consumption resulting from aerodynamic drag. For 

example, HDVs traveling in a platoon can reduce fuel consumption anywhere between 4.5%-8%, 

depending on the time gap and travel speed of the vehicles in the platoon (Alam et al. 2010). This 

decrease in fuel consumption could reduce emissions from truck travel and save truck companies 

considerable amounts of money, as fuel costs are about 1/3 of the total per mile cost to operate a 

HDV (Torrey and Murray 2015). HDVs, while only comprising about 4% of the total number of 

registered highway vehicle in the US (Bureau of Transportation Statistics 2016), account for about 

23% of the total energy consumed by the transportation sector, in large part due to the low fuel 

efficiency of these trucks and the large amount of miles a truck travels annually to deliver goods 

(Energy Information Administration 2016).  In the U.S. truck transport is growing at a rapid pace 

and this trend is likely to continue into the future (Energy Information Administration 2014). 
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This chapter characterizes near and long-term scenarios for the Pennsylvania Turnpike to 

begin accommodating connected and automated vehicle technologies. Specific recommendations 

for potential platoon demonstration sites and characteristics are identified. For this project we use 

hourly traffic flow data from the Pennsylvania Turnpike and estimate changes in peak hour LOS 

if a dedicated truck platoon lane were implemented on selected segments of this road. We use the 

Pennsylvania Turnpike as a case study for this analysis but the results and recommendations found 

within this chapter could be applied to other existing roadways as well.  

 

3.2 Literature Review  

Several researchers have proposed steps towards transitioning to connected and automated 

vehicle transportation. For example, Shladover (2000) suggests deployment steps by first defining 

a set of principles to govern platoon based highway system deployment strategies and proposing 

a deployment sequence-beginning with adaptive cruise control, transitioning to implementing 

protected lanes, and ending with the addition of a link and network layer (Shladover 2000). 

Bayouth and Koopman (1998) propose a set of functional evolution reference models for highways 

to accommodate connected and automated vehicle transportation: vehicle automation, the addition 

of inter-vehicle communications, and the addition of infrastructure support (Bayouth and 

Koopman 1998). The three-staged reference evolution model presented by the authors starts with 

first automating in-vehicle functions and then adding vehicle communications and infrastructure 

support as later additions. Tsao (1995) identifies barriers for the deployment of a platoon based 

highway system and proposes steps for transitioning toward CAV transportation, beginning with 

an automated shuttle in mixed traffic supervised by a professional driver, followed by the 

construction of a high-occupancy vehicle (HOV) highway-to-highway connecter ramps and 

equipping HOV lanes for automated driving (Tsao 1995). Chen et al. (2017) developed a 

formulation to examine feasible lane policies to accommodate AVs such as exclusive AV lanes or 

mixed-traffic lanes and found that the most capacity effective lane policy is highly dependent on 

the AV penetration rate (Chen et al. 2017).   

Traffic flows along with long-held assumptions about maximum roadway capacity and 

volume-delay functions could change with automation. Equipping vehicles with automated 

technologies will likely reduce crashes and in turn decrease non-recurrent congestion. According 

to the Federal Highway Administration (FHWA) close to 60% off all road congestion is caused by 
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crashes, construction, or emergencies, which suggests that a more coordinated vehicle fleet could 

substantially reduce travel times and delay (FHWA 2014). By reducing the average safe inter-

vehicle distance between vehicles, highway capacity could increase by as much as 273% when 

using both sensors and vehicle-to-vehicle communication technologies (Tientrakool et al. 2011). 

Milanés et al. (2014) presents the design, development, implementation, and testing of a 

cooperative adaptive cruise control (CACC) systems, which were implemented into four 

production Infiniti M56s (Milanés et al. 2014). The authors concluded that by introducing vehicle 

to vehicle (V2V) to cars with adaptive cruise control (ACC) systems enables significant reductions 

in intervehicular gaps. VanderWerf et al. (2002) concluded that increases in highway capacity 

increase quadratically with CACC market penetration (Vander Werf et al. 2002). Lioris et al. 

(2017) estimates that platooning can increase saturation flow rates by a factor as large as two or 

three (Lioris et al. 2017). The authors focused on a road network near Los Angeles and utilized a 

discrete event simulation to estimate their results. Researchers at Carnegie Mellon University 

evaluated the impacts of automated vehicles on 24-hour road volumes on the Parkway East (I-

376). They find that automation could increase 24-hour road volumes along this road up to 10% 

and that reducing lateral lane sizes could increase roadway capacity by allowing for additional 

lanes to be constructed (Hendrickson et al. 2014). Using simulation, Talebpour et al. (2017) 

examined the impacts of reserving a lane for AVs on congestion and travel time. It was found that 

increase throughput at AV penetration rates above 50% and 30% on two and four lane highways, 

respectively (Talebpour et al. 2017).  

This chapter makes a contribution to the literature by using the Pennsylvania (PA) 

Turnpike’s hourly traffic flow data, which provides information on traffic volumes by vehicle 

class, to identify potential platoon demonstration sites and to estimate how implementing a truck 

platoon lane on these portions of the roadway could impact current LOS. This chapter has a 

different objective than previous platooning studies. In particular, this study should enable 

stakeholders and other organizations to understand the impacts and feasibility of dedicating a lane 

on existing road networks to truck platooning and presents a method to determine initial testing 

areas. 
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3.3 Methods & Data 

To assess the changes in LOS from reserving a lane for truck platooning, we first need to 

identify those portions of the Pennsylvania Turnpike that could be suitable to launch potential 

platoon demonstrations. Once these sections are identified we can then estimate peak hour LOS 

and how this could change if we reserve a lane for truck platooning. The primary source of data 

for this project are hourly Traffic Flow Reports of the Pennsylvania Turnpike from Monday, May 

1, 2017 to Friday, May 5, 2017.  The dataset, which was obtained through a “Right to Know” 

request, contains traffic flow data on both electronic toll collection (ETC) and non-ETC traffic for 

all 24 hours of the day arranged by vehicle classification type, direction (East/North or 

West/South), and turnpike interchange.  

The Pennsylvania Turnpike has a number of roadway sections that could potentially be 

converted into platoon demonstration sites. We develop a sample set of potential platoon 

demonstration sites by identifying those portions on the Turnpike with at least 3 lanes in one 

direction for greater than 2 miles, as shown in Figure 3.1. We chose this as our filtering criteria 

because we do not think it is feasible to dedicate a lane to platooning if there are only 2 travel lanes 

available and think that a section of at least 2 miles would be required for a robust demonstration.  

Each entrance and exit interchange combination along the roadway has a separate hourly traffic 

flow rate. Because we are interested in vehicular volumes, if an identified 5 or 6 lane portion of 

the roadway was continuous and intersects more than one interchange combination, this larger 

section was divided up into smaller sections representative of the changes in traffic flow rates. For 

example, Sections 11, and 12, both located in eastern Pennsylvania, are collectively, a continuous 

6 lane segment of the PA Turnpike that spans about 10 miles, but were divided into 2 different 

segments to capture the changes traffic flow rates along this section of the roadway.  
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Figure 3.1 Five and Six Lane Sections of the Pennsylvania Turnpike Greater than 2 Miles in 

Distance 

 

The ideal platooning site would be one that maximizes the potential fuel saving benefits of 

platooning, while minimizing the impacts to the current level of service provided to passenger car 

and light and medium-truck traffic. Out of the 12 potential platoon demonstration sites identified, 

half of them have 6 total lanes, 3 lanes in both the east and west directions, while the other half 

have a total of 5 lanes, with only 3 lines in one direction. Seven sites are located in Western and 

Central Pennsylvania, respectively, while the remaining 5 sites are located in Eastern Pennsylvania 

near Philadelphia. Platoon site 7, located in in northern Franklin County, is the longest potential 

platoon site on the Turnpike, followed by Platoon Site 4, located in Westmoreland County. In 

comparison, the overall average annual daily traffic (AADT), is about 5% higher at Platoon Site 7 

than Platoon Site 4, with truck traffic being about the same at both sites. Platoon Site 12 has the 
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highest AADT in both directions. Platoon sites 11, 12, and 13, all located in Montgomery County, 

have both the highest AADT and the lowest proportion of truck traffic, when compared to all of 

the other potential platoon sites. There are about 108,000 total vehicles that travel on platoon site 

12 throughout the course of the day, while there are about 92,000 vehicles that travel on platoon 

site 13 each day. Platoon site 11 has the highest AADT when compared to the other sites, there are 

about 120,000 total traveling on this platoon site each day but only about 14,000 or 11% of these 

vehicles are trucks. Platoon site 7, has the highest proportion of truck traffic, with trucks making 

up about 30 and 33 percent of vehicles traveling in the east and westbound directions, respectively. 

In addition, platoon sites 3, 4, 5, and 6 all have a relatively high proportion of trucks traveling on 

these sections on the turnpike. Overall, eastbound traffic flow rates are slightly higher than those 

in the westbound direction, but there are a slightly higher proportion of trucks traveling westbound. 

The location and length of each potential platoon site is outlined in Table 3.1, which provides 

information on AADT and truck traffic for each platoon site for both east and west directions. The 

AADT values (shown below in Figure 3.2) provide a simple and useful measurement of how busy 

each platoon site is over the course of a typical day. In the next section we will discuss how we 

convert hourly traffic volume to a passenger car unit to assess the peak hour traffic flow and LOS 

at each platoon site.  
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Table 3.1 Five and Six Lane Sections of Pennsylvania Turnpike Location and Length 

Information by Platoon Site 

 

Platoon 

Site # 

No. 

Lanes 

3 Lane 

Direction Interchange Interchange  County 

Length 

(miles) 

1 6 Both Warrendale Butler Valley Allegheny 6.2 

2 6 Both Irwin New Stanton Westmoreland  7.3 

3 5 East/North New Stanton Donegal Westmoreland 7.9 

4 5 East/North Donegal Somerset Westmoreland 9.4 

5 5 West/South Somerset Bedford Somerset 5.0 

6 5 East/North Breezewood Fort Littleton Fulton 3.4 

7 5 West/South Willow Hill 

Blue 

Mountain Franklin 10.5 

8 6 Both Valley Forge Norristown Montgomery  5.9 

9 5 West/South Mid-County  Lansdale Montgomery  6.0 

10 6 Both Mid-County  

Fort 

Washington Montgomery  4.1 

11 6 Both 

Fort 

Washington Willow Grove Montgomery  2.6 

12 6 Both Willow Grove Bensalem Montgomery  7.8 

Note: Each 5 and 6 lane road segment is designated a number starting from the left of the Figure 

1 and increases as you move east along the Turnpike. 
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(a) 

 
(b) 

Source: Pennsylvania Turnpike Monthly Traffic Flow Reports from January, 2016 to December, 

2016.  

Note: % Trucks includes Light (>7,000 lbs.), Medium, and Heavy duty trucks; no passenger cars 

are included in this estimate. 

Figure 3.2 (a) Pennsylvania Turnpike Average Annual Daily Traffic and Proportion of Trucks in 

Eastbound Direction by Platoon Site. (b) Pennsylvania Turnpike Average Annual Daily Traffic 

and Proportion of Trucks in Westbound Direction by Platoon Site 
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As mentioned previously, the PA Turnpike reports its traffic flow data by vehicle 

classification group. The Turnpike does not follow the Federal Highway Administration’s 

(FHWA) 13 category vehicle group classification (Hallenback et al. 2014). Instead, the PA 

Turnpike follows a 9-category vehicle group classification system (Pennsylvania Turnpike 

Commission 2017), for the purposes of calculating toll rates, as shown below in Table 3.2. The 

turnpike arranges all passenger cars into one group, with the other 8 classes grouped in terms of 

vehicle weight. In the state of Pennsylvania, a commercial motor vehicle is defined as a single-

vehicle with a gross vehicle weight of 26,001 or more pounds (Pennsylvania Department of 

Transportation 2015). Since we are interested in estimating the congestion impacts of devoting a 

lane for commercial truck or heavy duty vehicle platooning, we focus on those trucks in vehicle 

class groups 5 to 9 for the remainder of this analysis. Although class group 4 does contain some 

commercial trucks by definition, non-commercial trucks are also grouped into this category. Since 

there is no way to distinguish non-commercial and commercial trucks in class group 4 from the 

data given, we treat all vehicles in this group as non-commercial vehicles for the purpose of this 

analysis.  

 

Table 3.2 Pennsylvania Turnpike Vehicle Class Definitions 

Class Group Class Definition 

1 Passenger Car 

2 7,001 to 15,000 lbs. 

3 15,001 to 19,000 lbs. 

4 19,001 to 30,000 lbs. 

5 30,001 to 45,000 lbs. 

6 45,001 to 62,000 lbs. 

7 62,001 to 80,000 lbs. 

8 80,001 to 100,000 lbs. 

9 100,001 lbs. and over 

Source:  Pennsylvania Turnpike Commission. Toll Schedule 2017. Harrisburg, 

PA, 2017. 
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The PA Turnpike’s hourly traffic flow data tells us the number of vehicles that pass 

between two successive interchanges in each direction during each hour of the day. The presence 

of heavy vehicles in the traffic stream decreases the free flow speed (FFS) as these vehicles take 

up more roadway space and behave differently than a passenger car would under certain conditions 

(weather, steep road grades, etc.). In order to assess the overall effect of each vehicle type on traffic 

operations, the hourly traffic volumes were converted to an equivalent flow rate expressed in terms 

of passenger cars units (pcu). For simplicity, we assumed that each platoon site has a rolling terrain 

and that there is no single grade at any platoon site that has a significant impact on traffic 

operations. The pcu conversion factor for trucks and buses on extended general highway segments 

on rolling terrains, as defined by the Highway Capacity Manual (HCM) (Transportation Research 

board 2010), was applied to all vehicles outside of class group 1 and summed together to estimate 

the passenger car equivalent traffic (pce) volume during peak hour traffic. The 2010 HCM provides 

pce values for trucks and recreational vehicles (RVs) as a function of terrain (grade and length of 

grade), but does not provide pce equivalent estimates as a function of vehicle weight. Some of the 

vehicles included in classes 2-4 may be RVs or U-Hauls, hence as a result the pce estimate 

provided here is more conservative. We choose to focus on peak hour traffic for this analysis since 

this is the time of day that a dedicated truck platoon lane could have the most significant impact 

on traffic operations. The eastbound peak hour traffic volume, expressed in passenger cars per 

hour (pcu/hr) is the sum of the number of passenger cars and the pce number of trucks and is 

expressed in Eq. (3.1): 

 

𝑉𝑜𝑙𝐸𝑎𝑠𝑡𝑖
= [𝑃𝐶𝐸𝑎𝑠𝑡𝑖

+ (𝑅 × 𝑇𝑟𝑢𝑐𝑘𝑠𝐸𝑎𝑠𝑡𝑖
)]                                                                                       (3.1)  

 

where 𝑉𝑜𝑙𝐸𝑎𝑠𝑡𝑖
 is the total eastbound peak hour traffic volume (pcu/hr) at platoon site 𝑖, 

𝑃𝐶𝐸𝑎𝑠𝑡𝑖
 is the eastbound peak hour passenger car traffic volume at platoon site 𝑖,  𝑅 is the passenger 

car equivalent conversion factor trucks and buses for extended general highway segments on 

rolling terrains (𝑅 = 2.5), 𝑇𝑟𝑢𝑐𝑘𝑠𝐸𝑎𝑠𝑡𝑖
 is the number of light (>7,000 lbs.), medium, and heavy 

duty trucks traveling on platoon site 𝑖 during peak hour traffic in the eastbound direction. The 

traffic flow rate (pc/hr/ln) can be estimate by dividing the passenger equivalent traffic volume by 

the number of lanes, which in each case is 3. Once we estimate the traffic flow rate, we refer to 

the 2010 HCM Basic Freeway Segments Speed-Flow Curve and using a free flow speed of 70 mi/h 
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estimate peak hour LOS.  A similar method can be followed to estimate peak hour passenger car 

equivalent traffic flow rate in the westbound direction.  

Each potential platoon site has at least 3 lanes in one direction and travel in any of these 

lanes is not restricted by time of day, vehicle class group or occupancy. In order to estimate 

changes in peak hour LOS, we repurpose one lane at each platoon site where originally any car 

could travel and restrict travel in this lane to commercial trucks with platoon capabilities, which 

we will refer to as the dedicated truck platoon lane. All passenger cars, vehicles in class groups 1 

through 4, commercial trucks without platooning capabilities are now only permitted to travel in 

the “non-dedicated lanes” and are restricted to two lanes of travel instead of three. In this model, 

platoon penetration rates determine the number of connected and automated commercial trucks 

that will make use of the dedicated platoon lane, which we assume to be uniform across each 

platoon site on the turnpike. For example, a platoon penetration rate of 25% means that 25% of all 

commercial trucks at each platoon site are now assumed to have platooning capabilities and will 

choose to use the dedicated platoon lane. The estimated peak hour LOS when there is a dedicated 

truck platoon lane, refers to the quality of traffic service in the non-dedicated platoon lanes; the 

traffic operations in the dedicated truck platoon lane are assumed to be free flow at high traffic 

density. Peak hour traffic volumes for each vehicle class are assumed to remain constant for the 

purpose of this analysis. The eastbound peak hour traffic flow rate when there is a dedicated 

platoon lane is estimated using the following method, expressed in Eq. (3.2):  

 

𝑉𝑜𝑙𝑃𝑙𝑎𝑡𝑜𝑜𝑛−𝐸𝑎𝑠𝑡𝑖
=  𝑉𝑜𝑙𝐸𝑎𝑠𝑡𝑖

× [1 − (𝐶𝐸𝑎𝑠𝑡𝑖
 × 𝐴𝑉)]                                                                          (3.2) 

 

where 𝑉𝑜𝑙𝑃𝑙𝑎𝑡𝑜𝑜𝑛−𝐸𝑎𝑠𝑡𝑖
 is the eastbound peak hour traffic volume (pcu/hr) when there is a 

dedicated platoon lane at platoon site 𝑖, 𝑉𝑜𝑙𝐸𝑎𝑠𝑡𝑖
 is the total eastbound peak hour traffic volume 

(pcu/hr) at platoon site 𝑖 and is expressed on Eq. (3.1),  𝐶 is the proportion of commercial trucks 

traveling during peak hour on platoon site 𝑖, 𝐴𝑉 is the commercial truck platoon penetration rate, 

which is assumed to be uniform at all platoon sites. The traffic flow rate (pcu/hr/ln) when there is 

a dedicated platoon lane can be estimated by diving the peak hour traffic volume by the number 

of non-dedicate lanes, which in each case is 2. Once we estimate the traffic flow rate, we refer to 

the 2010 HCM Basic Freeway Segments Speed-Flow Curve and using a free flow speed of 70 mi/h 

estimate peak hour LOS. A similar method can be followed to estimate peak hour passenger car 
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equivalent traffic flow rate, when there is a dedicated platoon lane in the westbound direction.  

 

3.4  Results 

An objective of this chapter is to estimate how implementing a platoon lane on existing 

highways could impact traffic conditions. We start by estimating the impacts from a point in time 

where platooning technologies have only been partially adopted and are only implemented on 

brand new trucks to a point in time where the truck industry transitions to total market penetration. 

From these results, we discuss how the Pennsylvania Turnpike and other existing roadways could 

begin to transition towards CAV transportation.  

 

3.4.1  Peak Hour Level of Service on Pennsylvania Turnpike 

There are several potential platoon sites on the Turnpike where there is free flow (LOS A) 

and reasonable free-flow (LOS B) traffic during peak hour travel times. At each potential platoon 

site, passenger cars make up the majority of vehicles traveling during peak hour traffic in both 

directions. In the eastbound direction peak hour tends to occur during the early evenings, between 

4PM and 5PM, most commonly on Thursdays and Fridays. In comparison, peak hour travel in the 

westbound direction tends to occur in the mornings, between 6AM and 8AM, most commonly on 

Tuesdays and Fridays. In the eastbound direction, platoon sites 2, 3, 4, and 6 operate at LOS A 

during peak hour traffic, which means that vehicles are unimpeded in their ability to maneuver 

within the traffic stream. Platoon site 1 operates at LOS B in the eastbound direction, which 

indicates that vehicles traveling during peak hour are almost completely unimpeded in their ability 

to move within the traffic stream. In the westbound direction, platoon sites 1, 2, 5, 7, and 8 all 

operate at LOS A during peak hour traffic, while the remaining sites operate at LOS D or below, 

which indicates that maneuverability is low and traffic operations are approaching capacity. In 

both directions, platoon sites 9, 10, 11, 12, and 13 have the highest peak hour traffic volumes and 

the lowest LOS grades when compared to the other platoon sites, and have relatively low amounts 

of commercial truck traffic. For example, there are about 6,400 passenger car equivalent vehicles 

traveling from the Fort Washington to Mid-County interchange (Platoon site 10) during peak hour 

travel with 90 and 6 percent of these vehicles being passenger cars and commercial trucks, 

respectively. Platoon sites 7 has a relatively low peak hour traffic volumes, but a very high 

proportion of vehicles traveling through this section are commercial trucks. Tables 3.3 and 3.4 
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show the east and westbound peak hour traffic volumes in terms of passenger car units, as well as 

the peak hour flow rate, expressed in terms of passenger cars per hour per lane (pcu/ln/hr), and 

LOS for each potential platoon site. 

 

Table 3.3 Peak Hour Level of Service on Pennsylvania Turnpike by Platoon Site in the 

Eastbound Direction 

Platoon 

Site # Day of Week 

Eastbound Peak 

Hour 

Eastbound 

Peak Hour 

Traffic 

Volume 

(pcu/hr) 

% 

Commercial 

Trucksa  

Peak Hour 

Traffic Flow 

Rate 

(pcu/ln/hr) LOS 

1 Thursday 4PM-5PM 2,500 16% 840 B 

2 Friday 4PM-5PM 2,300 12% 760 A 

3 Friday 11AM-12PM 2,200 26% 730 A 

4 Friday 12 PM- 1PM 2,000 27% 680 A 

5 na na na na na na 

6 Friday 11AM-12PM 2,000 26% 650 A 

7 na na na na na na 

8 Friday 1PM-2PM 4,700 4% 1,600 C 

9 Thursday 4PM-5PM 4,200 10% 1,400 C 

10 Friday 3PM-4PM 6,400 6% 2,100 E 

11 Friday 4PM-5PM 6,000 6% 2,000 D 

12 Thursday 4PM-5PM 5,700 6% 1,900 D 

Note: pcu= Passenger Car Units ; NA= Not Applicable 

aWeighted percentage based on passenger car equivalence. 

Note: Values only reported for those potential platoon sites that have 3 lanes in eastbound direction. 

Note: The number of total travel lanes for each potential platoon site is 3. 

Note: Posted speed limit is 70 miles per hour (MPH) at each platoon site.  
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Table 3.4 Peak Hour Level of Service on Pennsylvania Turnpike by Platoon Site in the 

Westbound Direction 

Platoon 

Site # 

Day of 

Week 

Westbound 

Peak Hour 

Westbound 

Peak Hour 

Traffic 

Volume 

(pcu/hr) 

% 

Commercial 

Trucksa 

Flow Rate 

(pcu/ln/hr) 
LOS 

1 Tuesday 7AM-8AM 2,100 22% 710 A 

2 Friday 7AM-8AM 2,000 16% 670 A 

3 na na na na na na 

4 na na na na na na 

5 Friday 1PM-2PM 2,100 27% 700 A 

6 na na na na na na 

7 Friday 2PM-3PM 1,100 48% 370 A 

8 Tuesday 7AM-8AM 5,300 8% 1,800 D 

9 Tuesday 6AM-7AM 4,100 11% 1,400 D 

10 Friday 6AM-7AM 7,100 7% 2,400 E 

11 Friday 6AM-7AM 6,000 11% 2,000 D 

12 Thursday 6AM-7AM 5,600 12% 1,900 D 

Note: pcu= Passenger Car Units ; na= Not Applicable 

aWeighted percentage based on passenger car equivalence. 

Note: Values only reported for those potential platoon sites that have 3 lanes in eastbound 

direction. 

Note: The number of total travel lanes for each potential platoon site is 3. 

Note: Posted speed limit is 70 miles per hour (MPH) at each platoon site.  

 

3.4.2  Level of Service on Turnpike with Dedicated Truck Platoon Lane 

The Pennsylvania Turnpike has several sections where implementing a commercial truck 

platoon demonstration site could be a viable option. At very low penetration rates, the LOS 

decreases the at most platoon sites, with the exception of platoon site 7 going westbound, which 

never experiences a decrease in LOS at any penetration rate, even if there were no trucks 
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platooning during peak hour traffic. This is most likely due to the relatively low peak hour traffic 

volume and high proportion of commercial trucks traveling on this roadway section during peak 

hour travel. Sections 1, 2, 3, and 4 could also be viable options for implementing a platoon lane 

even at low penetration rates and in both directions. While, LOS does decrease during peak hour 

traffic, the current LOS in these sections are already high so motorists still have a high level of 

physical and psychological comfort and are able to travel at the posted speed even with a dedicated 

platooning lane. The LOS on these sections never reach free flow, even when all commercial trucks 

are diverted to the dedicated platoon lane, because of the high volume of passenger cars and non-

commercial trucks traveling on this road during peak hour traffic. The only way to achieve LOS 

A would be to construct another non-dedicated lane for travel. On the other hand, Platoon sites 8 

through 13, currently have low LOS and proportionally low truck traffic during peak hour travel 

in both directions, so reserving a lane for platooning only decreases the LOS to the point where all 

passenger cars and trucks without platooning capabilities traveling on these portions of the 

turnpike move in lockstep with the vehicle in front of it, with frequent slowing required. Tables 

3.5 and 3.6 display how LOS on the turnpike changes with a dedicated platoon lane.  
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Table 3.5 Eastbound Level of Service with Dedicated Platoon Lane by Platoon Penetration Rate 

Platoon 

Site # 

% 

Commercial 

Trucksa 

Current 

Peak Hour 

Traffic 

Flow Rate 

(pcu/ln/hr) 

Peak 

Hour 

LOS 

 Commercial Truck Platoon 

Penetration Rate 

0% 5% 25% 50% 75% 100% 

1 16% 840 B C C B B B B 

2 12% 760 A B B B B B B 

3 26% 730 A B B B B B B 

4 27% 680 A B B B B B A 

5 na na na na na na na na na 

6 26% 650 A B B B B B A 

7 na na na na na na na na na 

8 4% 1,600 C E E E E E E 

9 10% 1,400 C D D D D D D 

10 6% 2,100 E F F F F F F 

11 6% 2,000 D F F F F F F 

12 6% 1,900 D F F F F F F 

aWeighted percentage based on passenger car equivalence. 

Note: pcu= Passenger Car Units ; na= Not Applicable 

Note: Values only reported for those potential platoon sites that have 3 lanes in eastbound 

direction. 

Note: Posted speed limit is 70 miles per hour (MPH) at each platoon site. 
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Table 3.6 Westbound Level of Service with Dedicated Platoon Lane by Platoon Penetration Rate 

Platoon 

Site # 

% 

Commercial 

Trucksa 

Current 

Peak Hour 

Traffic 

Flow Rate 

(pcu/ln/hr) 

Current 

Peak 

Hour 

LOS 

 Commercial Truck Platoon 

Penetration Rate 

0% 5% 25% 50% 75% 100% 

1 22% 707 A B B B B B B 

2 16% 672 A B B B B B B 

3 na na na na na na na na na 

4 na na na na na na na na na 

5 27% 696 A B B B B B A 

6 na na na na na na na na na 

7 48% 370 A A A A A A A 

8 8% 1,769 D F F F F F F 

9 11% 1,382 C D D D D D D 

10 7% 2,352 E F F F F F F 

11 11% 1,986 D F F F F F F 

12 12% 1,877 D F F F F F F 

aWeighted percentage based on passenger car equivalence. 

Note: pcu=Passenger Car Units; na= Not Applicable 

Note: Values only reported for those potential platoon sites with at least 3 lanes in the westbound 

direction. 

Note: Posted speed limit is 70 miles per hour (MPH) at each platoon site.  

 

3.5  Discussion 

 Connected and automated vehicles are expected to improve safety, congestion, emissions, 

and energy consumption and address the growing need for mobility in our transportation system. 

In proportion to the number of registered highway vehicles, heavy-duty vehicles consume a 

disproportionately high proportion of energy consumed by the transportation sector, which leads 

to high operating expenses for trucking companies. Platooning has the potential to provide 

significant fuel cost saving benefits and reduce HDV emissions by increasing the density of trucks 
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on the road, which reduces the aerodynamic drag. This chapter presents a method to determine 

viable platoon demonstration sites on highways. In particular, this chapter identifies those five and 

six lane portions of the Pennsylvania Turnpike where a lane could be reserved for a platoon 

demonstration site and estimates how current LOS at these potential platoon sites could be 

impacted at different penetration rates, using the best available traffic information about the 

passenger cars and trucks traveling on this highway. The main dataset used for this chapter was 

the Pennsylvania Turnpike’s hourly traffic flow reports from May 1, 2017 to May 5, 2017, which 

contains vehicle class group level data of the traffic flow between interchanges for each hour of 

the day over the course of 5 days. For this chapter we focus on commercial trucks since these 

vehicles drive for long distances along the same route, often concentrated in few corridors and 

could benefit greatly from platooning due to their low fuel efficiency. 

 In order to determine feasible testing areas on the Pennsylvania Turnpike we first identify 

those portions of the highway that have a total of five, 3 lanes in one directions, or six lanes, 3 

lanes in both direction, for greater than 2 miles as we do not think it is reasonable to dedicate a 

lane to platooning if there are only 2 lanes available and do not think sections shorter than 2 miles 

provide are long enough in length to hold a demonstration. There are a total of 12 sections on the 

turnpike where a potential platoon demonstration site could take place. Out of these 12 sites, six 

have three lanes in both directions and six have three lanes in only one direction. Seven are located 

in Western and Central Pennsylvania, collectively, while the remaining five are located in Eastern 

Pennsylvania near Philadelphia. 

Our results suggest that those five and six lane segments in Western and Central 

Pennsylvania could be viable options for a platoon site demonstrations because these areas have 

relatively low peak hour traffic and a high proportion of vehicles traveling on these road segments 

are commercial trucks. The longest potential platoon demonstration site, platoon site 7, is located 

in Northern Franklin County, PA, between the Willow Hill and Blue Mountain Interchange, but 

has 3 lanes only in the westbound direction. This platoon site also has the lowest peak hour traffic 

flow rate and has the highest proportion of commercial truck traffic when compared to the other 

platoon sites, and operates at LOS A during peak hour traffic. This is the only site observed in the 

analysis that does not experience a decline in peak hour LOS from reserving a lane for platooning, 

regardless of the commercial truck platoon penetration rate. In the eastbound direction, the longest 

platoon site, platoon site 4, is about 9.5 miles in length and is located in Westmoreland County, 
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between the Donegal and Somerset interchanges. There is a relatively high proportion of 

commercial trucks traveling on this platoon site during peak hour traffic. While the LOS does 

decline with the implementation of a platoon demonstration site, cars should still be able to travel 

with spacing between vehicles adequate enough to maintain a high level of physical and 

psychological comfort for motorists. Platoon sites 1 and 2 have three lanes in both directions and 

are about 6 and 7 miles in length, respectively. Platoon site 1 is located in Allegheny County, 

between the Warrendale and Butler Valley interchanges, while platoon site 2 is located in 

Westmoreland County between Irwin and New Stanton. The LOS are likely to decline these areas 

if a platoon lane is reserved but similarly to platoon site 4, vehicles should still be able to travel at 

reasonably free flow. There is a trade-off between safety and capacity so the Turnpike may be 

willing to consider these section, since drivers will still be able to travel at free flow speeds and 

the likelihood of a crash between passenger cars and commercial trucks would decrease. The 

recommended platoon demonstration sites are shown in Table 3.7. 

 

Table 3.7 Recommended Platoon Demonstration Sites on Pennsylvania Turnpike 

Plato

on 

Site # 

No. 

Lan

es 

3 Lane 

Directio

n 

County 

Leng

th 

(mile

s) 

Eastbou

nd Peak 

Hour 

Level of 

Service 

%Commer

cial Trucks 

Eastbounda 

Westbo

ud Peak 

Hour 

Level 

of 

Service 

%Commer

cial Trucks 

Westbound
a 

1 6 Both Allegheny 6.2 B 16% A 22% 

2 6 Both 
Westmorel

and  
7.3 A 12% A 16% 

3 5 
East/Nor

th 

Westmorel

and 
7.9 A 26% NA NA 

4 5 
East/Nor

th 

Westmorel

and 
9.4 A 27% NA NA 

5 5 
West/So

uth 
Somerset 5 NA NA A 27% 

6 5 
East/Nor

th 
Fulton 3.4 A 26% NA NA 

7 5 
West/So

uth 
Franklin 10.5 NA NA A 48% 

aWeighted percentage based on passenger car equivalence. 

Note: pcu= Passenger Car Units ; NA= Not Applicable 

Note: Level of service only reported for those directions with 3 travel lanes  
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 Although there are some viable options to launch a platoon demonstration site there are 

also areas of the turnpike where reserving a lane could have detrimental impacts on traffic flow 

and LOS. Platoon sites 8 through 12, all located in Montgomery County, PA, currently have a 

lower LOS than the other platoon sites and a very low proportion of vehicles traveling on these 

sections are commercial trucks. For example, if we take a look at platoon site 8, 4 and 8 percent 

of vehicles traveling on this road segment during peak hour in the eastbound and westbound 

directions, respectively, are commercial truck, out of 12,000 total vehicles. If we dedicate a lane 

to platooning, there are not much trucks traveling in this direction and passenger cars are now 

limited to travel in two lanes, which could result in a constant traffic jam where vehicles traveling 

on these sections move in lockstep with the vehicle in front of it, with frequent slowing required. 

Regardless of the commercial truck platoon penetration rate, LOS during peak hour traffic remains 

at an F grade at these 4 sites.  

 Time of day and day of week restrictions could be considered when choosing a platoon 

demonstration site, to better ensure that the LOS on the turnpike is minimally impacted. In the 

eastbound direction, the highest traffic flow rates most commonly occur on Thursday and Fridays 

from the early afternoon to the early evening. In comparison, peak hour traffic usually occurs in 

the westbound direction on Mondays and Tuesdays in the morning to the early afternoon. Setting 

up platoon demonstrations on off-peak days and hours would provide trucks with potential fuel 

savings benefits, while still allowing all other vehicles to travel at or near free flow. The 

Pennsylvania Turnpike would also need to consider how to control access to these platoon lanes. 

Trucks with platooning capabilities entering the turnpike could be required to have a special E-

ZPass that would provide it with access to the platoon lane, while keeping all other vehicles in 

their respective lanes. Non-commercial trucks or commercial trucks without platooning 

capabilities that decide to enter the platoon lane could be issued a ticket or fine using the E-ZPass 

system. Similarly to dedicated bus lanes, a dedicated platoon lane could provide numerous social 

and economic benefits. Dedicated platoon lanes separate commercial trucks from mixed traffic, 

allowing commercial trucks to travel more quickly through the turnpike. In addition, dedicated 

platoon lanes reduce interaction between commercial trucks and other vehicles, minimizing the 

risk for traffic crashes.  

The platoon demonstration could be an on-road Level 3 automated truck demonstration 

pilot between commercial trucks that are connected by Vehicle to Vehicle (V2V) communications. 



61 
 

The lead driver controls the acceleration and braking of all of the trucks in the platoon, while the 

drivers in the successive or trailing vehicles are present but aren’t required to steer or control 

vehicle speed, but must respond appropriately in a request to intervene. This demonstration could 

be done in two phases. In phase one there could be a dedicated lane for platoon demonstrations. In 

phase two there will no longer be a dedicated protected lane and all platoons will travel in mixed 

traffic situations. The purpose of both phases would be to identify any risks or hazards, conduct a 

before and after analysis on truck travel times, fuel consumption, and congestion, compare results 

between phases, and provide a smoother transition to CAV transportation. Data should be collected 

on vehicle speed and acceleration, brake pressure, and spacing between vehicles at both constant 

and varying lead vehicle speeds. Demonstrations should be done in inclement (rain, sleet, snow, 

and fog) and non-inclement weather and artificial work zones (i.e. jersey barriers) could also be 

implemented to assess traffic operations and safety. The demonstrations would take place for a 

limited time frame and eventually all AVs and platoons will travel in general traffic.  

 According to the 2013 Pennsylvania Department of Transportation Statewide crash dataset, 

there were about 1,500 crashes that occurred on the Pennsylvania Turnpike in 2013. Out of these 

1,500 crashes about 240 or 17% of crashes involved at least one HDV, including 3 fatal and 88 

injury crashes. According to the National Highway Safety Administration (NHTSA), the cost of a 

crash (Blincoe et al. 2015) is close to $154,000 in $2010. Because the crash data is from the year 

2013, the Consumer Price Index (CPI) was used to find the total cost of a crash in 2013 dollars, 

which is approximately $163,700 or $47,400 in economic costs and $116,340 in quality-adjusted 

life years (QALYs) cost. This would result in an annual loss of about $39 million or $11 million 

in economic costs and $28 million in QALYs cost, from crashes involving heavy duty vehicles on 

the Turnpike. Accommodating CAVs on the turnpike could aid in reducing the frequency and 

severity of crashes involving HDVs, which could result in economic benefits to household, public 

revenues, and private insurers. For example, if 25% of all HDV crashes on the turnpike were 

avoided, this would provide an annual benefit of about $10 million. If all HDV crashes could be 

avoided this would result in an upper bound annual benefit of about $39 million. Greater benefits 

could be realized as more roadways transition to CAV transportation. Automobile manufacturers 

and automated and connected vehicle technology companies are investing millions of dollars to 

make CAVs vehicles a reality. Policymakers, engineers, as well as turnpike commissions should 

begin to consider ways how mixed-traffic could impact congestion, safety, energy use, and traffic 
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operations so that we may have a smooth transition and minimize any negative consequences on 

our way to a fully automated light and heavy-duty vehicle fleet.  
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Chapter 4: Exploring the Economic, Environmental, and Travel Implications 

of Changes in Parking Choices due to Driverless Vehicles  

 

 The previous chapter investigated the effects of a dedicated platoon lane on congestion and 

outlined a method that could be used to determine viable platoon demonstration sites, using the 

Pennsylvania Turnpike as a case study. This chapter explores the economic, environmental, and 

travel implications of AVs moving away from downtown parking lots to more distant, cheaper 

parking locations.  

Automobile commuters in urban areas often use downtown parking garages and are 

charged relatively high daily parking prices. Fully driverless automated vehicles (AV) could 

significantly alter the proximity value of parking, due to an AV’s ability to drop passengers off at 

their destination, search for cheaper parking, and return to pick up their occupants when needed. 

This study estimates the potential impact of driverless vehicles on vehicle miles traveled (VMT), 

energy use, emissions, parking revenue, and daily parking cost savings in the city of Seattle, 

Washington from changes in parking decisions using an agent-based simulation model. Each AV 

considers the operational cost to drive to each parking spot, the associated daily parking cost, the 

parking availability at each location, and ranks each choice in terms of economic cost. The 

simulation results indicate that VMT and energy use could increase by as much as 2.5 and 2.1 

percent, respectively, with each AV willing to travel a relatively far distance to obtain free parking. 

Annual parking cost savings are estimated to be about $4,500 for each driverless vehicle, which 

represents about $18 per work day. The results also suggest that as AV penetration rates increase, 

parking lot revenues decrease significantly and could likely decline to the point where operating a 

lot is unsustainable economically, if no parking demand management policies are implemented. 

This could lead to changes in land use as amount of parking needed in urban areas is reduced and 

cars move away from the downtown area for cheaper parking in more satellite locations. The initial 

results suggest driverless valet vehicles will considerably alter the economics of parking, which 

will affect energy, emissions, VMT, and urban form in cities. 
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4.1  Introduction 

Automated vehicle (AV) technologies are advancing rapidly and highly automated vehicles 

could be on streets and highways within the next decade. Many automakers are already marketing 

cars with some automated features such as adaptive cruise control and active lane keeping 

technologies (Newcomb and Colon 2017) and are progressively working to develop more highly 

automated and self-driving vehicles. Tesla motors has been equipping every new Model S sedan 

and Model X SUV with the necessary technology for full self-driving capability, in exchange for 

about $8,000 (Stewart 2017). Ride-sharing company Uber has deployed a fleet of self-driving cars 

in Pittsburgh, Pennsylvania and several other cities, and has offered some customers the option of 

riding in these vehicles (Brian 2016; Zurschmeide 2016). In September of 2016 the United States 

Department of Transportation (USDOT) released a federal policy on AVs, which provides 

guidelines to manufacturers and other entities in the safe design, development, testing, and 

deployment of highly AVs (NHTSA 2016a). This technology has the potential to greatly improve 

travel by reducing congestion, travel times, crashes, and potentially energy consumption, as well 

as enabling greater mobility for the disabled and elderly (Anderson et al. 2014; Brown et al. 2014; 

Harper et al. 2016b; a; Levin and Boyles 2015; Mersky and Samaras 2016; Wadud et al. 2016). 

There are six levels of automation, from “no automation” (level 0) to “full automation” (level 5), 

as defined by the Society of Automotive Engineers (SAE) (SAE 2016). Level 5 AVs or fully 

driverless cars could change parking patterns and decrease the need for proximity parking, which 

could lead to AVs parking further away in more satellite locations (Anderson et al. 2014). The 

purpose of this study is to assess how changes in parking choices due to driverless vehicles could 

impact vehicle miles traveled (VMT), parking revenues, daily parking cost savings, energy, and 

emissions. We construct an agent-based model to simulate AVs and parking choices in a case study 

using data from Seattle, Washington. From these results, we discuss the safety and land use 

implications of driverless vehicles in an urban environment.  

Automobile commuters in urban areas often use downtown parking garages and are 

charged relatively high daily parking prices. Street parking, while cheaper, is usually scarce in 

dense urban areas and requires drivers to spend time cruising in search of an available curb space, 

which tends to create large amounts of congestion (Liu and Geroliminis 2016; Shoup 2006). In 

many cities, parking facilities tend to occupy considerable amounts of land that if not occupied for 

parking could be used for other purposes such as parks, office space, or dedicated bike lanes. Shoup 
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(2005) estimates that about 5 to 8 percent of urban land is devoted to curb parking. Manville & 

Shoup (2005) estimated that the parking coverage -the ratio of parking area to land area- in 

Downtown LA and Houston are about 81 and 57 percent, respectively, if each parking space- curb 

parking, surface lots, and parking structures- were spread horizontally over a surface lot (Manville 

and Shoup 2005). Driverless cars could enable avoiding the garage charges, since these vehicles 

could self-park in cheaper, more distant parking locations (Anderson et al. 2014).  

Fully automated (Level 5) vehicles could significantly alter the proximity value of parking, 

due to the ability of an AV to drop its passengers off at their destination, search for cheaper parking, 

and return to pick up their passengers when needed (referred to as driverless valet parking 

throughout this chapter). As the automobile industry begins to transition towards partial vehicle 

automation, “limited” self-parking technologies are beginning to appear on the market in vehicles 

such as the Tesla X and BMW 7-series (D’Orazio 2016; Gorzelany 2016). In light of continued 

advancements in AV technologies, driverless valet parking systems could be on the market as soon 

as 2020 (Tilley 2016), although there remains uncertainty on when Level 5 technology will be 

ready for commercial implementation. Due to the large amount of land used by both curb parking 

and parking garages in dense urban areas, it is important for urban planners and transportation 

professionals to begin exploring the implications of driverless vehicles on travel patterns, parking 

revenues, as well as impacts from driverless trips (Stephens et al. 2016).  

This chapter investigates the economic, energy, environmental, and travel implications of 

driverless vehicles by estimating changes in parking revenues and daily parking cost savings, 

greenhouse gas (GHG) emissions, and VMT from changes in parking choices in Seattle, 

Washington. These estimates are based on an agent-based model of driverless vehicles in Seattle 

with constructed grid network of .07 mile street segments. The model uses parking data from the 

2013 Puget Sound Regional Council (PSRC) Parking Inventory and simulates changes in parking 

decisions. Each AV selects a parking spot based on economic cost, which includes the operational 

cost of driving (maintenance, tires, fuel) to the parking spot, increased depreciation from the extra 

travel, as well as the associated daily parking cost. In addition, the AV also considers parking 

availability at each location. Within the models we vary influential parameters such as the cost of 

driving and AV penetration rates. The results indicate that paid public parking lot and garage 

revenues and occupancy rates are likely to be impacted and travel patterns could change from 

driverless and empty vehicle travel. The estimates in this chapter are meant to provide discussion 
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on the potential impact of AVs on the built environment and can help inform near- and long-term 

decisions during the transition to automation.  

 

4.2 Existing Literature 

There have been many studies that discuss parking economics and choice. Hess (2001) 

investigated the impacts of free parking on mode choice using a multinomial logit model. This 

study concluded that approximately 78% of commuters would commute to work by light-duty 

vehicle if parking was free; this number dropped significantly, to 50% if there was a $6 daily 

parking charge (Hess 2001). Waraich and Axhausen (2012) constructed an agent-based model 

traffic simulation model that focused on parking choice and reducing traffic volumes by reducing 

parking supply in a central location in Zurich (Waraich and Axhausen 2012). The authors focused 

on four different parking scenarios (public, reserved, private, and preferred parking) and set static 

prices for both garage and on-street paid parking. Bonsall and Palmer (2004) developed models 

based on data from a parking simulator to determine how factors such as parking price, walk, 

queuing and drive time influence parking choice (Bonsall and Palmer 2004). Willson and Shoup 

(1990) reviewed previous studies of how employer-paid parking influences travel choice and 

conclude that somewhere between 19 to 81 percent fewer employees drive to work when they do 

not receive any parking subsidies (Willson and Shoup 1990). Pierce and Shoup (2013) evaluate 

the impacts of demand-based on-street parking prices on demand. This study estimates that a -

$0.50 and $0.25 change in parking price have price demand elasticities of -0.82 and -0.71, 

respectively (Pierce and Shoup 2013). Ottosson eat al. (2013) used the 2010 Seattle parking 

inventory dataset to estimate the elasticity of on-street parking demand in response to a change in 

pricing, modified by time of day and neighborhood characteristics (Ottosson et al. 2013). Qian and 

Rajagopal (2014) investigate how parking demand could be managed by dynamic parking pricing 

and conclude that parking price and provision of parking information serve as effective ways of 

managing traffic (Qian and Rajagopal 2014). 

  In comparison, the available literature that addresses the implications of AVs on parking 

demand is limited. Fagnant and Kockelman (2015) estimate approximately $250 in parking 

savings per new AV could be realized through reallocating parking from Central Business Districts 

(CBD) to less dense areas and car-sharing (Fagnant and Kockelman 2015). Fagnant and 

Kockleman assume that AVs could save $1 in daily parking cost per work day. Zhang et al. (2015) 
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investigated the impact of shared autonomous vehicles (SAV) on urban parking demand using an 

agent-based model simulation, conducted on a 10 x 10 mile grid-based hypothetical city. The main 

source of data for that study was the 2009 National Household Transportation Survey, which is 

used to assign departure and trip length for each trip generated in this model. Their study results 

indicate that SAVs could eliminate up to 90% of daily parking demand for clients who choose to 

adopt the system, at low penetration rates (Zhang et al. 2015). However, Zhang et al.’s study 

suggests that a reduction in parking demand comes at a cost, with significant increases in VMT 

due to empty vehicle cruising. Zakharenko (2016) developed a model to estimate the impacts of 

AVs on urban land use. Their study suggests that vehicle automation could cause cities to shrink 

by reducing the demand for parking land (Zakharenko 2016). Zakharenko assumes that there is a 

fixed amount of space for each resident and AVs return home for parking. Fagnant and Kockleman 

(2014) explore the travel and environmental implications of SAVs using agent-based model 

scenarios and estimate that daily VMT could increase by about 11% from vehicles relocating to 

new zones when unoccupied (Fagnant and Kockelman 2014).  

This chapter makes a contribution to the literature by using Seattle parking lot price and 

daily occupancy data to develop an agent-based model that simulates changes in parking choices 

in the Seattle region due to vehicle automation. This chapter evaluates different scenarios than 

previous agent-based AV studies. In particular, this is the first study we are aware of that quantifies 

the changes in travel demand, energy use, and parking revenues, when privately owned vehicles 

(POV) that currently park in downtown garages and lots become driverless and could self-park in 

cheaper more distant parking locations. There are already several studies that estimate the travel, 

parking, and environmental implications of shared AV use at different penetration rates, so we 

chose to focus on POVs for this study. This analysis provides a discussion on how urban form as 

well as the expected number of crashes could change as we advance towards a fully automated 

light-duty vehicle fleet based on the results from this simulation. It is still unclear how much 

parking occupancy and revenue is likely to be impacted due to this technology as well as the 

impacts of certain policies on AV parking decisions. This chapter fills this gap through a simulation 

model, which is developed to estimate the potential impact of driverless valet systems on parking 

demand in Seattle’s downtown area. 
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4.3   Data 

The data for this project were obtained from the Puget Sound Regional Council (PSRC) 

2013 Parking Inventory, which includes off- street parking data or public garages and surface lots 

located in the King, Kitsap, Pierce, and Snohomish Counties of Washington State. Each lot was 

surveyed during one morning (between the hours of 9:30 a.m. and 11:30 a.m.) and one afternoon 

period (between the hours of 1:30 p.m. and 3:30 p.m.). Each parking lot was coded to the 2010 

census block-level in which it was located. The information collected includes the total number of 

parking lots and stalls and average daily occupancy rates, as well as average hourly and daily 

parking price. The entire Puget Sound Region consists of 2,443 parking lots including 569 lots that 

are located in downtown Seattle. Of these 569 lots, approximately 365 have daily parking costs 

recorded in the dataset, while other lots may be free short-term parking reserved for customers of 

restaurants or convenience stores, are reserved for employee parking, or do not have recorded daily 

parking cost information.  

Since we are interested in exploring the changes in parking choice and urban form in dense 

urban areas due to driverless vehicles, we only consider parking lots located in downtown Seattle, 

while all other paid parking lots located outside of these areas were not considered. Seattle has 

about 270 paid parking garages and lots, with about 70% of these lots located in the downtown 

area. Entries with morning, afternoon, or average daily occupancy rates greater than 100% were 

disregarded from the dataset. Similarly, entries that report daily occupancy rates of 0%, were not 

considered. Entries with missing occupancy, daily parking rate, and/or total stalls data were 

truncated from the dataset. Some of the daily lot revenues and occupancy rates were unrealistically 

low for the purpose of our analysis. For example, there are several census blocks that have average 

daily parking occupancy rates below 5% and/or total daily parking revenues below $100. Entries 

with estimated total daily lot revenues3 below $250 or per lot occupancy rates below 10% were 

removed from the dataset. A report done by the city of Seattle estimates that it costs about $190 a 

day in $2002 to operate a staffed surface lot facility with 100 stalls in the city of Seattle when 

considering operating costs such as labor, accounting, and utility costs (City of Seattle 2002). 

Because the parking inventory data used for this chapter is from the year 2013, the Consumer Price 

Index (CPI) was used to convert all daily operating costs to 2013 dollars, which is approximately 

                                                            
3 𝐸𝑠𝑖𝑚𝑎𝑡𝑒𝑑 𝐷𝑎𝑖𝑙𝑦 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝐴𝑣𝑔. 𝐷𝑎𝑖𝑙𝑦 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑅𝑎𝑡𝑒 × 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑎𝑙𝑙𝑠 𝑝𝑒𝑟 𝑙𝑜𝑡 ×
𝐷𝑎𝑖𝑙𝑦 𝑃𝑎𝑟𝑘𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒 
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$250, which is why this value was chosen as our truncation point (Bureau of Labor Statistics 2017). 

 Table 4.1 lists descriptive statistics for surveyed off-street parking in downtown Seattle at 

the census block-level. There are about 47,000 total daily parking stalls in our sample. The average 

daily rate to park in an off-street parking facility in downtown Seattle is about $19. On average 

each census block in the downtown area that has a daily parking lot, generates about $3,500 in 

total daily parking revenue and the garages in these census blocks have an average occupancy rate 

of about 68% throughout the day. Each census block generates about $12.70 in daily revenue per 

stall and in most cases contains about 1 or 2 lots with each lot having about 250 total parking 

spaces. 

  

Table 4.1 Summary Statistics of Puget Sound Regional Council Parking Inventory Census 

Block-Level Attributes 

Statistic Mean SD Min Max 

Census Block Records (n=192)   
     Daily Occupancy Rate  68% 16% 13% 100% 

     Total Daily Revenue ($2013)  $3,500  $4,121  $260  $21,000  

     Daily Price  $19  $7  $7  $42.00  

     Daily Revenue Per Stall  $13  $6  $1.5  $35  

     Total Stalls 250 260 20 1,500 

     No. of Lots1 1.50 0.80 1 5 

Note: SD=standard deviation; min=minimum; max=maximum 

1Descriptive Statistics for paid surface lots and parking garages with daily parking at the census 

block-level. 

 

Although, some employers currently subsidize employee parking downtown, it is possible 

in a fully automated vehicle environment for employers to instead reimburse travel cost for 

parking. The data does not specify what percentage of cars in each individual garage are there for 

shopping, entertainment, leisure, or are commuters. In addition, the level of subsidy varies from 

employer to employer and it is not certain as to how employers will handle parking subsidies in a 

fully AV environment where distant parking is now possible. As a result, we assume that all drivers 

parked in the downtown garages and lots currently pay the total daily parking cost and that each 

AV will make a decision based on this cost. 
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4.4  Methods 

To simulate how driverless valet parking could change parking choices we first identify 

those areas in Seattle with free or unpaid parking. We model unrestricted parking in ArcGIS by 

creating sample zones throughout Seattle where AVs can park during the day with no parking 

restrictions. We then develop our agent-based model, assuming a gridded network, where agent 

AVs search for cheaper parking and make decisions based on parking availability as well as cost. 

The simulation ignores the actual roadway geometry and assumes a rectangular grid throughout 

the entire study area.  

 

4.4.1  Estimation of Unrestricted Parking Spaces in Seattle 

Seattle has free, available parking spaces that outnumber paid garage spaces. According to 

the 2013 PSRC Parking Inventory, there are about 30,000 cars parked in downtown Seattle 

throughout a typical day. Seattle is estimated to have about 500,000 curb parking spots with about 

470,000 and 12,000 total unrestricted and paid street parking spots, respectively, while the 

remaining parking spots are restricted parking spots (e.g. residential parking zones) that require a 

permit to park. We developed a sample set of unrestricted street parking zones close to downtown 

by identifying those portions of Seattle with abundant amounts of unrestricted parking available, 

using data from the Seattle Department of Transportation (SDOT), as shown in Figure 4.1. SDOT 

has street block face data available that contains parking information for each block face in the 

city of Seattle. This dataset contains estimates on the number of unrestricted, paid, and residential 

parking spots as well as their locations. Seattle defines unrestricted parking as a type of on-street 

parking where there are no signs restricting the time or type of vehicle that can park there (Seattle 

Department of Transportation 2016a). The City of Seattle estimates the total number of parking 

spots on each block face by assuming that 30% of the road segment is occupied by driveways and 

alleys and that the size of a standard parking spot along curb is 17.5ft (Seattle Department of 

Transportation 2016b) (Seattle Department of Transportation, 2016b), and we used these 

assumptions in estimating the number of unrestricted parking spaces in the sample zones. Our 

sample unrestricted parking zones consist of about 67,000 total parking spaces, and we assumed 

about 33,000 of these parking spaces to be available on a typical day. These zones represent about 

14% of the total unrestricted curb parking in the city.  



71 
 

  

Figure 4.1 Seattle’s Sample Unrestricted Parking Zones (numbered 1-14) and Downtown Daily 

Parking Lots and Garages  

Note: Each unrestricted parking zone is designated a number that starts from the top left corner 

of the figure and increases clockwise. 

 

The total number of unrestricted spots on each block are estimated in the dataset by 

subtracting the number of time limit, residential parking, and no parking spaces from the total 

number of spaces. Although, the city of Seattle estimates the total number of unrestricted parking 

spots on each block, most of these parking spots are located in residential areas and could be 

occupied by cars during course of the day. The number of available parking spaces (Table 4.2 

column 7) is the product of the total number of unrestricted parking spaces in zone and the 
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percentage of occupied parking and is expressed in Eq. (4.1): 

 

𝐴𝑆 = 𝑈𝑆 × 𝑃𝑂𝑆                                                                                                                                          (4.1) 

  

Where 𝐴𝑆 is the total number of available unrestricted parking spaces in each zone, 𝑈𝑆 is the total 

number of unrestricted parking spaces and 𝑃𝑂𝑆 is the percentage of parking spots assumed to be 

already occupied by cars; for each zone we assume 50%.  

The number of parking spots in each sample unrestricted parking zone (UPZ) is shown in 

Table 4.2. UPZ 14, located in west Seattle, has the largest number of available parking spaces, 

followed by UPZ 1, located in the northwest Seattle neighborhood, Magnolia.  In comparison, the 

parking density, number of unrestricted parking spots per acre of land, is about 30 percent higher 

in UPZ 1 than UPZ 14. UPZ’s 2 and 3, both located in Queen Anne, a neighborhood just north of 

downtown Seattle, have the least amount of parking when compared to the other zones. UPZ 2 has 

about 1,000 total unrestricted parking spots, while UPZ 3 has about 900 total unrestricted parking 

spots. Although, UPZ 3 has the least amount of total unrestricted parking spots when compared to 

the other zones, the parking density in this zone is the highest at 17 parking spots for each acre of 

land.  
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Table 4.2 Unrestricted Parking Information by Sample Zone 

Sample 

Unrestricted 

Parking 

Zone  

# (UPZ) 

Neighborhood 
Area 

(acres) 

Total 

Unrestricted 

Parking Curb 

Miles 

Total No. of 

Unrestricted 

Parking 

Spots 

No. of 

Available 

Parking 

Spotsa 

Parking 

Densityb 

1 Magnolia 1,200 88 16,000 8,000 14 

2 Queen Anne 80 6 1,100 500 13 

3 Queen Anne 50 5 900 400 17 

4 Wallingford 230 18 2,900 1,500 13 

5 Capitol Hill 100 9 1,600 800 14 

6 
Central Area, 

Capitol Hill 
210 14 2,600 1,300 13 

7 Central Area 150 13 2,400 1,200 15 

8 Central Area 130 11 1,900 1,000 15 

9 Central Area 260 21 3,800 1,900 15 

10 Beacon Hill 90 8 1,500 700 16 

11 Rainer Valley 80 7 1,300 700 16 

12 Rainer Valley 170 14 2,700 1,400 16 

13 Seward Park 200 17 3,200 1,600 14 

14 West Seattle 2,100 130 24,000 12,000 11 

Total na 5,100 360 66,000 33,000 na 

 Note: numbers may not sum exactly due to rounding. 

a50% of Total Unrestricted Parking spots assumed to be occupied by cars in each zone. 

b Total No. of unrestricted parking spots/acres of land. 
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4.4.2  Model Parameters and Specifications 

This simulation is conducted on a 6.5 × 6.5 mile grid based on the city of Seattle. The 

resolution of the grids is 0.07 miles, representative of the average city block length in Seattle’s 

downtown area, which was estimated using ArcGIS. The agents in this model are empty AVs 

starting in downtown Seattle in search of cheaper parking. AV penetration rates vary between each 

scenario, from a single driverless vehicle making parking choices in the initial scenario to all cars 

being fully automated in the highest AV penetration scenario. AVs are deployed randomly from 

each downtown parking lot and the simulation continues to run until all AVs have selected a 

parking spot. The model assumes that each driver’s final destination is within comfortable walking 

distance (1/4 mile) of their parking location. As a result, we use the parking lot where the driver is 

initially parked as a proxy for the AVs starting location. We believe that starting the AVs at the 

downtown parking location is within the bounds of existing uncertainty for this model. Each AV 

selects a parking spot based on economic cost, which includes the roundtrip operational cost of 

driving to the parking spot, increased depreciation from extra travel, as well as the associated daily 

parking cost; in addition, the AV must also consider parking availability at each location. Before 

an AV makes a parking decision it first considers all of its parking choices and ranks them in terms 

of economic cost. If parking is not available at the parking spot with the lowest cost, the AV then 

considers the parking option with the second lowest associated cost and so forth until an available 

parking spot is found. Once the AV determines the most economical parking location with an 

available space, the AV reserves this parking space and the model estimates the increases in travel, 

energy use, and emissions from this parking decision. The model does not allow for more than one 

AV to compete for the same parking spot. Instead, once one AV decides to travel to and reserves 

a parking space, this space is no longer available to the other AVs. The model does not allow for 

the number of AVs traveling to a parking location to be greater than the parking availability at this 

location. AVs estimate the distance from their starting location to each available parking spot using 

the sum of the absolute value of the difference between the x and y coordinates or the Manhattan 

distance. 

This analysis assumes that the existing Seattle light-duty vehicle fleet, comprised of 

passenger cars, pickup trucks, and SUVs and minivans, will be replaced with conventionally fueled 

fully automated mid-sized sedans. This model assumes that vehicle ownership remains constant 

and drivers do not shift to shared mobility. This analysis is only focused on simulating changes in 
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parking decisions for AVs, and as a result all non-AVs in this model are assumed to start and end 

the day at its original parking location and have no changes in parking decisions. The operational 

per mile cost of driving a medium-sized sedan, which includes maintenance, tires, depreciation, 

and fuel, as well as increased depreciation costs from extra travel are assumed to be about 25 cents 

per mile and obtained from the 2013 AAA Your Cost of Driving report (AAA 2013).  To formulate 

our optimization problem, we first define a set of decision variables: 

 

𝐷𝑖𝑠𝑡𝑖𝑗

= 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖 (𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ) 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑗 (𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛) 

𝐷𝑟𝑖𝑣𝑒 =  per − mile operational cost of driving a medium sized sedan   

𝐷𝑎𝑖𝑙𝑦𝑗 =  is the cost to park at node j    

 

The objective function and constraints for the agents in this model are expressed in Eq. (4.2) and 

Eq. (4.3), respectively: 

 

             min                𝑇𝐶𝑖𝑗 = min [2 × (𝐷𝑖𝑠𝑡𝑖𝑗 × 𝐷𝑟𝑖𝑣𝑒) + 𝐷𝑎𝑖𝑙𝑦𝑗] ,    ∀ 𝑖, ∀𝑗                              (4.2) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜               𝐴𝑣𝑎𝑖𝑙𝑗 ≥ 1   𝑓𝑜𝑟 𝑗 = 1, … , 𝑚                                                                             (4.3) 

 

where, min 𝑇𝐶𝑖𝑗, the minimum total cost from your starting point (denoted as i) to your 

parking destination (denoted as j), is the sum of  the round-trip operational cost of driving from 

your starting point to your parking destination  and the daily cost to park at your parking 

destination. Your decision variables are as follows: 𝐷𝑖𝑠𝑡𝑖𝑗 is the Manhattan distance from node 𝑖 

to node 𝑗, 𝐷𝑟𝑖𝑣𝑒 is the per-mile operational cost of driving a medium sized sedan in 2013, 𝐷𝑎𝑖𝑙𝑦𝑗 

is the cost to park at node 𝑗 for the duration of the day, and 𝐴𝑣𝑎𝑖𝑙𝑗  is the parking availability at 

node 𝑗, which is meant to ensure that there is at least one parking spot available at the desired 

parking spot.  

 The chapter assumes a connected, automated environment where vehicles can 

communicate with each other, as well as with infrastructure and city networks, which is one 

proposed system architecture for driverless vehicles. In this system, the location and status of all 
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current parking spaces is known, and demand can be assigned by a parking system operator for all 

vehicles communicating with the system once the vehicle begins a journey. Even non-autonomous 

but connected vehicles could participate in this system, and any deviations where a non-connected 

car occupied a reserved space, the next closest space would automatically be found and the 

driverless car routed to it by the system operator. Each AV in this model is hence assumed to be 

fully autonomous and connected and have perfect information of the locations and parking 

occupancy of each parking garage and UPZ in Seattle, and do not spend time cruising or searching 

for available parking. The implications of this assumption are discussed in the Sensitivity Section. 

Whenever an AV chooses to move to a parking spot, we estimate the roundtrip distance 

traveled by the empty AV, the loss in downtown parking revenue, energy used, GHGs emissions 

emitted, and the change in parking occupancy. These increases are summed and used to determine 

how changes in parking choices could change light-duty VMT and emissions and parking revenue 

in the city of Seattle. By the end of the simulation, parking occupancy will be estimated for each 

census block that contains a daily parking garage in downtown Seattle. The total GHG emissions 

generated from extra travel for parking is expressed in Eq. (4.4):  

 

𝐸 = ∑[(𝐶𝑂2 𝑔𝑎𝑙)⁄ × (𝑔𝑎𝑙 𝑚𝑖𝑙𝑒)⁄ × 𝑉𝑀𝑇𝑖]

𝑛

𝑖

                                                                                    (4.4) 

 

where 𝐸 is the total GHG emissions emitted from empty AVs traveling longer distances 

for more economical parking, 𝐶𝑂2/𝑔𝑎𝑙 is the amount of direct CO2 in a gallon of gasoline (8,890 

g), 𝑔𝑎𝑙/𝑚𝑖𝑙𝑒 is the average fuel consumption for passenger cars in the city of Seattle for the year 

2014 (
1 𝑔𝑎𝑙

23 𝑚𝑖𝑙𝑒𝑠
), and  𝑉𝑀𝑇𝑖 is the additional roundtrip travel miles from empty vehicle 𝑖, and 

(Seattle Office of Sustainability and Environment 2016). As the fleet of driverless vehicles are 

likely to have higher fuel economy and/or increasingly be electrified vehicles in the future, our per 

mile results represent an upper bound. Using 127.109 MJ/gallon (Energy Information 

Administration 2016; NHSTA 2010), we also estimate energy use from the additional travel. 

The simulation model is programmed in Python with the data visualization done in ArcGIS. 

In this model, AV penetration rates determine the amount of AVs in search of cheaper parking, 

which we assume to be uniform across the parking lots and garages in downtown Seattle. For 

example, an AV penetration rate of 10% means that 10% of the cars in each downtown parking lot 
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are now assumed to be driverless and can now search for parking elsewhere in the city. This model 

simulates AV parking decisions based on cost and parking availability and estimates the increases 

in VMT, emissions, and energy use from this extra travel. The extra VMT from AVs in this model 

would be traveling in the opposite direction of most traffic, as well as benefit from the congestion 

reducing features of AVs and a connected, vehicle to infrastructure environment. Therefore, any 

additional congestion impacts from AVs are assumed to be negligible. The AV considers and ranks 

all available parking choices in our parking sample, both free and paid, and chooses the parking 

spot that minimizes cost to the user and has at least one available parking spot.  The reference point 

from which we estimate distance, travel cost, and emissions for AV parking decisions, is the 

centroid coordinates of the census blocks that contain a daily parking lot. For the unrestricted 

parking zones we use the centroid coordinate of the most centrally located census block as a 

reference point from which we calculate distance, emissions, and associated travel costs for the 

entire zone. The centroid of each census block included in this analysis is assigned to the node on 

the grid closest in proximity.  

 

4.5  Results 

To model potential travel, economic, and environmental impacts due from changes in 

parking choices due to AVs, we placed a single driverless vehicle in downtown Seattle and 

increased the AV penetration rate until all parked cars became fully driverless. The following 

sections describe the results from which we estimate changes in the impacts mentioned above, 

discuss the results, and provide guidance for other regions interested in planning for automated 

vehicle futures. The model simulates individual parking choices based on economic feasibility and 

parking availability. Inputs to the model include the operational cost of driving, AV market 

penetration rates, the amount of unoccupied parking in each unrestricted zone, and vehicle fuel 

efficiency. These scenarios explore how driverless cars can influence parking choices, parking 

revenues, and travel demand impacts from empty vehicle trips.  

 

4.5.1  Single Driverless Vehicle in Downtown Seattle 

We start by placing a single driverless vehicle in downtown Seattle and ranking the 

potential parking choices in the city, which allows for an understanding of the decision process 

that an AV agent uses when selecting a parking location as well as the potential cost savings from 
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driverless valet parking systems. In this scenario, one non-autonomous vehicle in a downtown 

Seattle area parking lot is replaced by a driverless vehicle that is now in search of cheaper parking. 

The AV considers the cost to travel and park at each UPZ and downtown parking lot in Seattle, 

ranks these choices in terms of cost, and calculates the cost savings as well as the emissions and 

VMT generated from this one trip.  

 Given the relatively high cost of parking in and around downtown Seattle and the low cost 

of driving, a single driverless vehicle can minimize daily parking costs by traveling to free parking. 

In order to visually demonstrate the parking decisions made by AVs in this model, we position a 

single driverless vehicle in the largest census block (in terms of area) in downtown Seattle with at 

least one public daily parking garage. This census tract and block is located in north downtown 

Seattle and contains 3 daily parking lots with approximately 100 stalls each and average daily 

parking prices and occupancies of $12.70 and 36%, respectively. The most economical parking 

spot from this starting location is a free parking space located about 1 mile away and if parking is 

available could save each driver about $12 in daily parking costs, when only considering the round 

trip operational cost of driving. If parking is not available at the parking spot with the lowest cost, 

the AV then considers the parking option with the second lowest associated cost and so forth until 

an available parking spot is found. The second and third most economical parking spots are 1.5 

and 2.5 miles away, respectively, from this starting point and parking at one of these parking zones 

could reduce daily parking costs by about $11. Figure 4.2 (shown below) displays the top three 

most economical parking locations in Seattle respective to the AV’s starting location in this 

example. 
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Figure 4.2 Top Three Parking Choices to Minimize Daily Costs for a Single Driverless Vehicle 

Starting in Downtown Seattle 
 

AV parking choices are shown below in Table 4.3 and ranked in ascending order in terms 

of economic cost. Free parking could range anywhere between 1 and 7 miles away from the starting 

location and could save the vehicle owner considerable amounts of money. As expected, the farther 

away from the AV moves from downtown area, the more free parking becomes available. There 

are about 1,100 more parking spots in the fifth ranked parking choice, which is about 3 miles away 

when compared to top ranked parking choice, which is only about a mile away. While the fifth 

most economical parking is not close to the AV’s starting location, parking here would only cost 

Starting Point 
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the vehicle about $1.60 in daily parking costs. Even if the AV decided to travel to the farthest UPZ 

for an available parking space, which is located about 7.5 miles away from the starting location, 

this round-trip would only cost the vehicle about $4.00 in daily parking costs. Although, AVs have 

the ability to park in cheaper, more distant parking locations, this added VMT could generate 

emissions and energy use that would otherwise not occur. For example, if this AV traveling to its 

first or third ranked parking choice, would generate about 0.80 kg or 1.90 kg of CO2, respectively. 

While, this added emissions to the Seattle region may have insignificant impacts on total GHG at 

low AV penetration rates, this could begin to cause environmental concerns at higher penetration 

rates, which will be explored further in the next section. We do not explore the impacts of 

conventional air pollutants from tailpipes in this study, which requires a higher resolution localized 

analysis in future work. 

 

Table 4.3 Ranked Parking Choices for a Single Driverless Vehicle Starting in Downtown Seattlea 

Parking 

Choice 

Rankb 

No. of 

Available 

Parking 

Spots 

Round-Trip 

Distance 

(miles) 

Round-Trip 

Travel and 

Parking Cost 

Round-Trip 

Emissions  (k

g CO2) 

Round-

Trip 

Energy 

Use (MJ) 

Daily 

Cost  

Savings 

1 400 2.1 $0.55  0.80 12 $12 

2 500 3.1 $0.80  1.20 17 $12 

3 800 5.0 $1.30  1.90 28 $11 

4 1,200 5.7 $1.50  2.20 32 $11 

5 1,500 6.0 $1.60  2.30 33 $11 

n … … … …  … 

206 200 1.4 $42 0.60 15 -$30 

Note: Results will vary by starting location of driverless vehicle. 

Note: It is assumed that driverless vehicle will drop-of and pick passenger up at starting location. 

aDriverless vehicle was positioned to start at Tract 7001 and Block 2001. 

bParking choices are ranked in ascending order based on economic costs.  

 

4.5.2  Market Penetration Rate of Fully Automated Vehicles in Downtown Seattle Increases 

In order to assess the travel, environmental, and economic implications of driverless 

vehicles we increase the market penetration rate of AVs in the downtown Seattle area in search of 

parking. This captures market penetration rates from the point in time where AVs have only been 

partially adopted by those in higher income households to a point in time where AVs transition 
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from high-income early adopters to total market penetration. The model will continue to replace 

human-driven cars parked in daily parking lots in the downtown Seattle area with driverless 

vehicles that now have the ability to search for more economical parking elsewhere. The number 

of AVs from each parking lot in search of parking is dependent on the market penetration rate. For 

example, a 5% market penetration rate means that 5% of the cars that were originally parked in 

each respective parking lot are driverless and will now choose parking based on cost and 

occupancy instead of proximity to destination. It is assumed that each AV will start and end in the 

same position of the parking lot where it was originally parked. AVs are deployed randomly from 

each parking lot to search for parking and will continue until each AV has chosen a parking spot.  

Seattle has about 47,000 total paid garage parking spaces in its downtown area. According 

to the 2013 Seattle Parking Inventory, on average about 65% or 30,000 of these parking spaces are 

occupied by cars at any time during the day. Total daily parking garage revenue for the downtown 

Seattle region is about $666,000; this would equal about $170 million in total annual parking 

revenue from drivers parking in downtown Seattle on weekdays. On-road GHG comprise about 

66% of Seattle’s emissions. Total emissions in the transportation sector have been decreasing as 

recent advances in technology have increased the average fuel economy for cars in Seattle from 

21 miles per gallon of fuel in 2008 to about 23 miles per gallon in 2014. Currently, the annual 

emissions from the transportation sector total about 2.34 million metric tons CO2e with passenger 

cars comprising about 75% or 1.77 million metric tons CO2e of all transportation emissions in the 

city (Seattle Office of Sustainability and Environment 2016). In order to estimate the total annual 

average weekday VMT for the city of Seattle we use the trip dataset from the 2014 PSRC 

Household Activity Travel Survey. From this survey we estimate that light-duty vehicles travel 

about 10.3 million miles daily in the city of Seattle (see Table 4.4). This is the total VMT from all 

light-duty vehicles traveling starting in and/or ending in Seattle in 2014 and was estimated by 

counting 100% of trips contained within Seattle, 50% of trips with an origin or destination in 

Seattle, and 0% of trips that both start and end outside Seattle, towards the daily VMT total. This 

process is very similar to that used in the 2014 Seattle Community Greenhouse Gas Emissions 

Inventory report to calculate 2011 VMT. In this scenario we vary the penetration rates to estimate 

how the number of AVs searching for parking could impact VMT, emissions, and parking 

occupancy and revenue in the Seattle region.    
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Table 4.4 Total Daily Light-Duty Vehicle Miles Traveled in City of Seattle by Destination and 

Origin (million miles) 

    Destination 

    Seattle Outside Seattle 

O
ri

g
in

 

Seattle 4.1 3.2 

Outside Seattle 3.1 na 

Source: The 2014 Puget Sound Regional Council Household Travel Survey, Daily Trip and 

Vehicle File, Puget Sound Regional Council. 

 

 VMT and energy use increase as the AV penetration rate goes up, but we do not see 

significant increases due to the relatively low number of cars parking in the daily parking lots and 

garages, when compared to the total number cars making trips in and out of Seattle during the day. 

Parking lot revenues decline to the point where owning a parking lot or garage would no longer be 

feasible from an economic perspective. At low penetration rates AVs are usually able to obtain 

their top ranked parking choice, which in most cases is the free parking zone closest to their starting 

location and as a result the increase in VMT and emissions per AV at a 5% penetration rate is the 

lowest. At this penetration rate each vehicle would increase their daily travel by about 3.6 miles 

and due to the low penetration rate would have negligible impacts on light-duty VMT and 

emissions in the Seattle region. At a 75% penetration rate each AV travels about twice as much on 

average as they did at the 5% penetration rate. This indicates that AVs would rather travel longer 

distances for free parking than to park close by in a paid parking garage or lot due to savings in 

cost. If 75% of all cars parked in the downtown Seattle region had the ability to park in cheaper, 

more distant parking locations, this would only increase daily light-duty VMT and emissions in 

Seattle by 1.4% and 1.3%, respectively. Even at a 100% penetration rate daily light-duty VMT and 

emissions would only increase by about 2.5% and 2.1%, respectively, with each AV traveling 

about 8 additional miles each day. In this simulation parking lot revenue loss is equivalent to the 

AV penetration rate since it is currently cheaper to travel to park in an unrestricted parking zone 

than to park in a garage downtown for the day. The least expensive daily parking spot in downtown 

Seattle cost about $7, which is still more expensive than a car traveling the length of the grid (6.5 

miles) to obtain a free parking spot. On average, each AV saves users about $18 in daily parking 
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costs from choosing more distant, cheaper parking. Estimates of changes in VMT and emissions 

in the city of Seattle is shown below in Table 4.5. 

The low increases in VMT and emissions at high penetration rates can be attributed to the 

fact that there are much more cars making trips in, out, and around Seattle than there are cars 

parked in the paid lots and garages in downtown Seattle during the day. There are a total of about 

30,000 passenger cars and trucks parked in the paid parking garages within downtown Seattle 

during the day, while there are about 456,000 non-commercial passenger cars and trucks registered 

in Seattle ZIP codes (Balk 2014). If we assume that all of the cars parked in Seattle’s downtown 

parking lots are registered in Seattle ZIP codes, only about 7% of these cars are now in search of 

parking, resulting in relatively low increases in VMT and emissions. In addition, this model only 

considers cars parked in lots and garages in downtown Seattle that have paid daily parking, so cars 

parked in employee or customer parking lots, cars occupying paid on-street parking spaces, or cars 

parked in paid garages and lots outside of downtown Seattle are not accounted for in this model. 

As fuel economy increases and/or cars become electrified, the relative emissions and energy 

impacts would decrease further. 
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Table 4.5 Changes in Vehicle Miles Traveled, Emissions, and Energy Use from Changes in 

Parking Choices in the City of Seattle 

AV 

Penetratio

n Rate 

Number 

of AVsa 

Total 

Increase 

in Daily 

VMT 

% 

Increase 

in Total 

Daily 

Seattle 

VMT 

Total Increase 

in Daily 

Emissions  (met

ric tons CO2) 

Total 

Increase in 

Daily 

Energy 

Use  (GJ) 

% Increase in 

Total Daily 

Seattle 

Emissions 

and Energy 

Useb 

5% 1,600 5,500 0.05% 2 30 0.05% 

25% 8,000 32,000 0.30% 10 180 0.25% 

50% 16,000 90,000 0.90% 30 500 0.80% 

75% 23,000 170,000 1.70% 60 940 1.40% 

100% 31,000 260,000 2.50% 90 1,400 2.10% 

Note: AV is automated vehicle  

aColumn represents the number of automated vehicles now in search of cheaper parking at each 

penetration rate.  

bPercent increase in total daily emissions and energy use are identical. 

 

An objective of this chapter is to estimate the changes in parking occupancy as the market 

penetration rate of AVs increases. Table 4.6 displays the changes in the parking occupancy rates 

of the census blocks located within the downtown Seattle area with daily parking garages or lots 

as AV penetration rates increases. When there are no AVs in the downtown Seattle area, 

approximately 50% and 35% of the census blocks contain paid parking lots and garages with 

parking occupancy rates between 51%-75% and 76%-100%, respectively. At the 5% penetration 

rate, the number of census blocks with greater than 75% occupancy rates drops by about 30% 

while the number of  census blocks with occuppancy rates between 51%-75% increases by about 

16%. As the penetration rate increases to 75% just about all the occupancy rates drop below 25% 

and at 100% AV market penetration all cars would have shifted from paid parking to more distant, 

cheaper parking. The changes in parking occupancy for both paid and urestricted parking are 

illustrated below in Figures 4.3, 4.4, 4.5, 4.6, and 4.7. It should be noted thast this analysis assumes 

that all cars are willing to travel for cheaper parking and that the only determinants for a parking 
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decision are economic costs and availability.  At 50% AV penetration we begin to see noticeable 

increases the number of parking garages and lots with very low occupancy rates, between 1% and 

25%. There is a direct relationship between the daily parking occupancy rate and daily parking 

revenue, and at 50% AV penetration and higher we could begin to see an increasing number of 

paid parking lots become unprofitable.  

 

Table 4.6 Downtown Seattle Daily Paid Parking Lot and Garage Parking Occupancy Rates from 

Increased AV Penetration Rates 

    AV Penetration Rates 

    0% 5% 25% 50% 75% 100% 

P
ar

k
in

g
 O

cc
u
p
an

cy
 R

at
e 

0% 0% 0% 0% 0% 0% 100% 

1%-25% 2% 3% 4% 13% 100% 0% 

26%-50% 11% 12% 38% 87% 0% 0% 

51%-75% 51% 59% 58% 0% 0% 0% 

76%-100% 36% 26% 0% 0% 0% 0% 
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Figure 4.3 Parking Occupancy Rates in Seattle at 0% Driverless Vehicle Penetration 
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Figure 4.4 Parking Occupancy Rates in Seattle at 25% Driverless Vehicle Penetration 
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Figure 4.5 Parking Occupancy Rates in Seattle at 50% Driverless Vehicle Penetration 
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Figure 4.6 Parking Occupancy Rates in Seattle at 75% Driverless Vehicle Penetration 
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Figure 4.7 Parking Occupancy Rates in Seattle at 100% Driverless Vehicle Penetration 
   

 

4.5.3  Sensitivity Analysis 

The increases in VMT and emissions as well as the changes in parking occupancy rates are 

based on a variety of assumptions, the most significant being the AV penetration rate and the cost 

of driving. Changes in both categories could result changes in the parking decisions made by AVs. 

As shown, it is currently more economical for AVs to travel longer distances to obtain free parking 

than to park downtown in a paid parking lot. Different parking decisions could be made with a 
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higher cost of driving and/or by enforcing parking restrictions in the UPZ. Our base case 

assumption for the cost of driving is about 25 cents per mile. In order to evaluate the impact other 

scenarios would have on the VMT as well as the parking occupancy rates in the downtown Seattle 

area, two-way sensitivity analyses were conducted to examine how changes in the cost of driving 

could impact AV parking decisions and travel patterns in Seattle. The range in the cost of driving 

represents the uncertainty associated with driverless vehicle technology costs, changes in fuel 

economy, changes in fuel prices, congestion/parking fees, emissions fees, or other internalized 

social costs. 

Table 4.7 displays the sensitivity of Seattle’s daily light-duty VMT to the AV penetration 

rate and per-mile cost of driving. At the 5 and 25 percent AV penetration rates, the increases in 

daily VMT are similar at most price points, which indicates unless there are significant increases 

in the cost of driving (either because of technology or policy), most AVs will choose to leave the 

downtown area and search for cheaper parking elsewhere at low penetration rates. This is due to 

the fact that at low AV penetration rates AVs are able to obtain their first ranked parking choice, 

which are usually relatively close to the downtown area. At the 50 and 75 percent penetration rates, 

the AV’s decision to park away from the downtown area does not change until the per-mile cost 

of driving reaches $1.50 and $1.00, respectively. Similarly, at the 100% AV penetration rate AVs 

are less willing to travel far distances for free parking as the per-mile cost of driving increases. 

Although the per-mile operational cost of driving itself is not likely to reach above $1 even in a 

fully AV environment, if Seattle chooses to implement a parking tax for AVs choosing to leave 

the downtown area for parking this would have an impact on parking decisions. 
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Table 4.7 Percent Increases in Seattle Daily Light-Duty VMT from changes in AV Penetration 

Rates and the Per-Mile Cost of Driving 

    AV Penetration Rate 

    5% 25% 50% 75% 100% 

C
o
st

 o
f 

D
ri

v
in

g
 (

$
/m

il
e)

  $0.25a 0.05% 0.30% 0.90% 1.70% 2.50% 

$0.50 0.05% 0.30% 0.90% 1.70% 2.50% 

$1.00 0.05% 0.30% 0.91% 1.60% 2.33% 

$1.50 0.05% 0.30% 0.68% 1.19% 1.73% 

$2.00 0.05% 0.28% 0.56% 0.63% 0.80% 

$2.50 0.05% 0.25% 0.42% 0.48% 0.57% 

Note: Areas shaded green indicate the price point at which AVs begin to make parking decisions 

different to those in the base case. 

a Current per mile operational cost of driving a mid-sized sedan. 

 

In addition, there is uncertainty associated with the model’s assumption of perfect 

information of parking space status. The additional VMT associated with cruising for parking is 

known (e.g Shoup et al. 2006), has a spatial and temporal component (Van Ommeren et al., 2012), 

and even moderate information or pricing provisions can reduce search time (e.g. Qian and 

Rajagopal, 2014; Wang and He, 2011) (Qian and Rajagopal 2014; Wang and He 2011). Hence the 

likely upper bound of the uncertainty would be additional VMT from existing cruising for parking 

estimates, while in actuality the system would perform much closer to how we described in the 

chapter due to parking system operator model. It is important to note that incorporating parking 

decision uncertainty in our model will not likely change the conclusions of this chapter. If every 

single car parked in the downtown parking lots and garages became driverless and could self-park 

then we will see relatively small impacts to travel demand and energy use, in large part due to the 

relatively small number of cars parked in the downtown parking garages lots compared to the total 

number of cars making trips in, out, and around Seattle each day. Any additional cruising because 

of parking space uncertainty in the model is unlikely to affect the magnitude of the estimate, in a 

connected, automated vehicle environment. 
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4.6  Conclusions 

This study developed a simulation to evaluate the potential impact of driverless vehicles 

on VMT, emissions, parking revenues, and daily parking cost savings due to changes in parking 

decisions, based on the best available information about the paid parking lots and garages in 

Seattle. The main dataset used for this chapter was the 2013 PSRC Parking Inventory, which 

contains census block-level data of off-street parking lots and garages in King, Kitsap, Pierce, and 

Snohomish Counties of Washington State. For this chapter we focus on the downtown area of 

Seattle as this is a dense area where people must often pay for garage parking due to lack of curb 

or customer parking close to shops, restaurants, etc.  

 This model first simulates the decision process that an AV could go through when deciding 

where to park by placing a single driverless vehicle in downtown Seattle, ranking all of its parking 

choices based on economic cost, and calculating VMT, energy, emissions, and cost savings for 

each possible choice. The results indicate that AVs could substantially reduce daily parking costs 

by choosing to travel, sometimes far distances, to obtain cheaper parking instead of remaining in 

the downtown area and parking in a paid garage or lot. On average, each AV saves drivers 

approximately $4,500 in annual parking costs, which represents about $18 per work day. In 

comparison, as AV penetration rates increase and cars begin to leave the downtown parking lots 

for cheaper parking outside of the CBD, parking revenues decrease significantly, which means 

that operating and owning a parking garage or lot would likely become unsustainable from an 

economic perspective. 

As the AV penetration rate increases, VMT and energy use in the city of Seattle increases 

slightly. At low penetration rates AVs are usually able to obtain a higher ranked parking choice 

and as a result we see relatively small increases in VMT and GHG emissions. Even if all cars were 

driverless, the increase in VMT from cars leaving the downtown area to park in more distant 

parking locations is relatively small when compared to Seattle’s total daily light-duty VMT. Our 

simulation estimates that at 100% AV penetration, Seattle’s daily light-duty VMT and GHG 

emissions would increase by approximately 2.5 and 2.1 percent, respectively. However, cars are 

willing to travel far distances to obtain cheaper parking - with each AV traveling about 7.5 extra 

miles per day. The congestion that is generated from this extra travel is dependent on the time of 

day these trips are taking place and the corridors used to travel to parking destinations. Instead of 

congestion occurring from drivers cruising in search of an available parking spot in dense urban 
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areas with scarce amount of parking, congestion could occur during peak hours in the opposite 

direction of traditional traffic flow, from increased AVs on roadways traveling to distant parking 

locations. While the technology features of automated vehicles and connected infrastructure 

should alleviate some of this congestion, policy makers should plan for alleviating additional 

congestion from AVs.  

Over the course of a year driverless vehicles could increase Seattle light-duty VMT by as 

much as 95 million miles. According to the National Highway Traffic Safety Administration 

(NHTSA) the crash rate per 100 million VMT is about 200, with about 77 of these crashes resulting 

in injury (NHTSA 2015). If AVs perform as safe as human-driven cars, this could result in as much 

as 190 or 1.6 percent more crashes including 75 more injury crashes in the city of Seattle (Seattle 

Department of Transportation 2015). Less than one percent of these crashes would involve a non-

occupant (pedestrian or pedalcyclist). However, we expect driverless cars to be much safer (Blanco 

et al. 2016; Harper et al. 2016a) and as a result would consider this an upper bound increase in 

crashes that could occur due to this added VMT. 

 According to the 2013 PSRC Parking Inventory, there are about 47,000 off-street parking 

stalls within the paid daily parking garages and lots in Downtown Seattle. Many of the parking 

spaces in CBDs are in vertical or underground structures, but as an illustration we estimate how 

much land Seattle’s parking garage and lot spaces would occupy if they were spread horizontally 

over a surface lot. Curb parking typicaly takes up about 160 feet per curb space while a parking 

off-street parking space in a lot or garage reqiuires about twice that area (Durning 2013). Curb 

parking usually requires less land than off-street parking spaces since the traffic lanes serve as 

driveway and manuevering room. The 47,000 garage spaces in the downtown Seattle region would 

cover 400 acres of land, or 28% of the total downtown area, if we assume that these parking spots 

are spread out at ground level. This ratio, of parking area to land area, can be called the “parking 

coverage” rate, and to some extent speaks to the amount of space devoted to the car in downtown 

Seattle. At level 5 vehicle automation, an AV could drop its passenger off and park in a satellite 

parking location, significantly cutting parking costs and reducing the amount of parking needed in 

dense urban areas. At 50% vehicle automation we begin to see relatively significant increases 

parking lots with very low occupancy rates, which could lead to space that was once devoted to 

parking storage used for another purpose. In addition, AV technology could lead to drivers 

switching from personal vehicle ownership to shared mobility services, further reducing the 
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demand for parking (Fagnant and Kockelman 2014; Greenblatt and Saxena 2015; Zhang et al. 

2015). Shared automated vehicles (SAVs) could reduce the number of cars on the road and after 

completing a trip would proceed to pick up the next passenger, instead of parking.  

Although our simulation model adds understanding of how driverless cars may influence 

future urban parking and travel demand, the proposed AV parking model can be further improved 

from several perspectives. This study assumes that all AVs are aware of the amount of available 

parking in each UPZ and garage and lot, but this may not always be the case. Future modeling 

efforts should consider this and incorporate how AVs searching for cheaper parking without 

perfect information could impact VMT and emissions. Rather than using a gridded network to 

generate results, a more realistic road network could be incorporated to better capture the travel 

demand effects of these changes in parking decisions. While, this study assumes that all cars that 

traditionally park in downtown Seattle will search for cheaper parking if available, this may not 

always be the case. For example, users could deploy their cars for ridesharing during the day- 

picking people up and dropping them off- instead of searching for parking and vehicle ownership 

rates may change as drivers switch from personal to shared mobility. This study assumes that each 

AV adds 2 extra trips a day (traveling to and from a satellite parking location), but cars that act as 

shared mobility providers are likely to take more trips and travel more during the course of a day. 

Shared AVs could reduce energy use and emissions when compared to current light-duty vehicles 

by having the ability to right-size and reducing the number of vehicles on the road, but could likely 

increase VMT from the additional trips generated (Fagnant and Kockelman 2014; Greenblatt and 

Saxena 2015). Some users may also decide to continue to pay the higher parking price of parking 

in downtown garages due to the fact that curb parking does not provide shelter your car from 

inclement weather (rain, sleet, or snow) and extreme temperatures and sunlight. This analysis 

assumes that all cars are conventionally fueled, but in a fully AV environment many cars are likely 

to be electric vehicles (EVs), which means that the energy, emissions, and operational cost of 

driving (fuel and maintenance) could be further reduced.  Downtown garages are likely to adjust 

their daily parking prices as customers begin to leave lots for cheaper parking, which is not 

accounted for in this analysis, but should be considered in future modeling efforts. If parking lots 

adjust their prices to compete with unrestricted parking this could lead to induced travel demand 

as some users who usually bike or use public transportation to commute to and from work, may 

begin to drive. Future analyses should also consider how increases in travel demand could impact 
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travel time and congestion, especially at higher AV penetration rates where there is a mixed traffic 

flow. Regardless, our initial results suggest driverless valet vehicles will considerably alter the 

economics of parking, which will affect energy, emissions, VMT, and urban form in cities. 

Stakeholders could institute dynamic parking or roadway pricing policies to minimize extra VMT 

from AVs travelling outside of downtown to outer zones (and potentially back to the owner’s 

home) for cheaper parking. Automobile manufacturers and ridesharing companies are investing 

millions of dollars to make self-driving vehicles a reality. Policymakers, engineers, as well as 

urban planners should begin to consider the impacts of this technology on land and energy use, 

parking decisions, as well as public revenues so that we may have a smooth transition and 

minimize any negative consequences.     
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Chapter 5: Estimating Potential Increases in Travel with Autonomous 

Vehicles for the Non-Driving, Elderly and People with Travel-Restrictive 

Medical Conditions4 

 

The previous chapter explored the economic, environmental, and travel Implications of 

changes in parking choices due to driverless vehicles. This chapter presents a bounding exercise 

that estimates the upper bound increase in potential travel from populations with historically lower 

mobility in a fully automated vehicle environment.  

Automated vehicles represent a technology that promises to increase mobility for many 

groups, including the senior population (those over age 65) but also for non-drivers and people 

with medical conditions. This chapter estimates bounds on the potential increases in travel in a 

fully automated vehicle environment due to an increase in mobility from the non-driving and 

senior populations and people with travel-restrictive medical conditions. In addition, these 

bounding estimates indicate which of these demographics could have the greatest increases in 

annual vehicle miles traveled (VMT) and highlight those age groups and genders within these 

populations that could contribute the most to the VMT increases. The data source is the 2009 

National Household Transportation Survey (NHTS), which provides information on travel 

characteristics of the U.S. population. The changes to light-duty VMT are estimated by creating 

and examining three possible travel demand wedges. In demand wedge one, non-drivers are 

assumed to travel as much as the drivers within each age group and gender. Demand wedge two 

assumes that the driving elderly (those over age 65) without medical conditions will travel as much 

as a younger population within each gender. Demand wedge three makes the assumption that 

working age adult drivers (19-64) with medical conditions will travel as much as working age 

adults without medical conditions within each gender, while the driving elderly with medical any 

travel-restrictive conditions will travel as much as a younger demographic within each gender in 

a fully automated vehicle environment. The combination of the results from all three demand 

wedges represents an upper bound of 295 billion miles or a 14% increase in annual light-duty 

                                                            

 
4 The results of this chapter have been published as: Harper, C. D., Hendrickson, C. T., 

Mangones, S., & Samaras, C. (2016). Estimating Potential Increases in Travel with Autonomous 

Vehicles for the Non-driving, Elderly and People with Travel-restrictive Medical Conditions. 

Transportation Research Part C: Emerging Technologies, 72, 1-9. 
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VMT for the US population 19 and older. Since traveling has other costs besides driving effort, 

these estimates serve to bound the potential increase from these populations to inform the scope 

of the challenges, rather than forecast specific VMT scenarios. 

 

5.1 Introduction 

Many seniors (those over age 65) and people with medical conditions often face challenges 

traveling freely and independently and must rely on family, friends, government, or other providers 

to meet their basic mobility needs. Automated vehicles represent a pathway that could increase the 

mobility, and hence the vehicle miles traveled (VMT), of the senior and disabled populations by 

decreasing human involvement during driving (Anderson et al. 2014). The objective of this chapter 

is to estimate bounds on the impact of a fully automated vehicle environment based on VMT by 

the current U.S. population 19 and older due to new demand from currently underserved 

populations. The results from this analysis are intended to provide insight on the magnitude of 

potential future increases in total travel demand from these underserved populations under vehicle 

automation. In addition, this bounding analysis presents the current basic travel characteristics of: 

adult non-drivers, the elderly (those over age 65) without medical conditions, and adults with a 

travel restrictive medical condition, and determines which of these three demographics could 

increase there VMT the most in magnitude due to vehicle automation. Within each of these 

underserved populations, we also highlight the age group and gender combinations that could 

contribute the most to these increases in total light-duty VMT. We also highlight the data, results, 

and assumptions of previous studies that have estimated how VMT could change due to vehicle 

automation. Although travel from working age drivers (ages 19-64) without medical conditions 

could either increase due to easier travel from automated vehicles or decrease due to various effects 

from car-sharing, urban density, and VMT rebound (Anderson et al. 2014), this chapter is only 

concerned with changes in the travel patterns of the elderly, non-driving populations, and those 

with a travel restrictive medical condition relative to current conditions. This provides a bound to 

help understand the magnitude of the benefits and challenges of a transition to vehicle automation. 

The primary source of data for this project is the 2009 National Household Transportation Survey 

(NHTS), which provides information on current travel characteristics of the U.S. population 

(USDOT 2011).  

According to the Current Population Survey (CPS), there were about 34.2 million people 
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in the U.S. age 65 and older in 2003 (U.S. Census Bureau 2003).  From 2003 to 2013 the senior 

population has increased by about 27% to almost 43.3 million people (U.S. Census Bureau 2003, 

2013)In the U.S. and other industrialized nations, the senior population is expected to continue to 

grow in both absolute terms and relative to the rest of the population. By 2030 it is projected that 

there will be roughly 74 million seniors living in the United States that will represent close to 26% 

of the total US population (Rosenbloom and Winsten-Bartlett 2002).  

 A large increase in the travel of seniors would result in many current transportation 

systems facing challenges in providing efficient and reliable service to users. Among today’s 

senior population, driving by car is still the most common mode of transportation. About 89% of 

all trips made by seniors are by automobile, and 80% of all trips made by those with a medical 

condition are by automobile. Very few older Americans rely on walking, biking, or transit to make 

trips and this trend is likely to continue (Santos et al. 2011).  For example, working adults who 

used public transit for non-work trips before retirement, tend to rely on an automobile for these 

same trips once they enter retirement. Although older adults depend heavily on light-duty vehicles 

(LDV) for the large majority of trips, the percentage of trips made as drivers declines with age and 

this trend is especially evident within the older female population who often stop driving at an 

earlier age than their male counterparts (Reimer 2014). With autonomous vehicles, these groups 

could continue to use LDVs, either as self-driving taxis or private vehicles.  

While issues related to mobility exist within the senior population due to reduced cognitive 

abilities and increased medical issues or disabilities, there are indications that today’s senior 

population is healthier and possesses more disposable income than their previous senior cohort 

(Currie and Delbosc 2010; Cutler 2001). Due to the increasing size, overall wealth, and life 

expectancy of the senior population, advancements in personal mobility will inevitably become 

more important. Páez et al. (2012) found that people with disabilities who have used a car within 

the past 12 months are about 28% more likely to desire more leisure activities compared to those 

who have not (Páez and Farber 2012). 

Many companies have announced plans to develop self-driving vehicles, and twelve 

companies have applied to test self-driving cars in California as of 2016 (Chew 2016). Vehicle 

automation has the potential to greatly improve travel by reducing congestion, travel times, 

crashes, and potentially energy consumption (Anderson et al. 2014; Brown et al. 2014; Harper et 

al. 2016a; Levin and Boyles 2015; Mersky and Samaras 2016; Wadud et al. 2016). The ability for 
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smart vehicles to interact with smartphones and act as a taxi service to transport people to their 

destinations also serves as an advantage, reducing travel costs by almost 75 percent (Litman 2013). 

This technology could also potentially have large environmental benefits by reducing energy 

consumption and greenhouse gas emissions (GHGs) from the ability to deploy vehicles according 

to each trip’s occupancy (right-sizing) (Greenblatt and Saxena, 2015). Fully self-driving Level 4 

automated vehicle technologies, as defined by the National Highway Traffic Safety Administration 

(NHTSA) (NHTSA 2013b), will likely promote an increase in per capita VMT within the elderly, 

disabled, and non-driving populations due to their potential latent demand and since they would 

rely less on walking, public transit, or family members and friends for daily travel. At high market 

penetration rates, automated vehicles could increase accessibility to jobs, leisure, and resources 

for both low and high-income groups (Childress et al. 2015). Higher accessibility to jobs for low-

income groups would likely increase employment, provide better job opportunities, and increase 

disposable income along with travel (Ihlanfeldt and Sjoquist 1990; Shen 1998). 

There have been several researchers who have estimated how VMT could change in the 

future due to automated vehicles, and each result depends on the data and assumptions used. 

Wadud et al. (2016) estimates that vehicle automation could increase VMT anywhere between 

2%-10% from increased travel due to new user groups. As an upper bound, the authors assumed 

that everyone aged 62 and above will travel as much as a person 62 years of age. Fagnant and 

Kockelman (2015) assumes that vehicle miles traveled (VMT) per automated vehicle is 20% 

higher than a non-automated vehicle at a 10% market penetration rate and 10% higher at a 90% 

market penetration rate, resulting in an increase in total VMT of 2% and 9%, respectively (Fagnant 

and Kockelman 2015). A recent agent-based analysis of shared autonomous vehicles estimated 

overall emissions benefits through vehicle replacement, but individual trips were longer (Fagnant 

and Kockelman 2014). Another bounding study assumed autonomous cars are directed to pick up 

other household members for trips, resulting in a 75% increase in annual mileage per vehicle and 

a reduction in vehicle ownership of 43% (Schoettle and Sivak 2015). Childress et al. (2015) used 

Seattle region’s activity model to estimate how changes in the value of travel time, road capacity, 

parking costs, and per mile driving costs could change VMT. One of the scenarios examined in 

this analysis assumed road capacity will increase by 30% while the value of travel times and 

parking costs will decrease by 65% and 50%, respectively, resulting in a 20% increase in VMT. 

Brown et al. (2014) estimated that new demand from underserved populations could increase VMT 
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by as much as 40%, using the 2009 NHTS and the 2003 “Freedom of Travel” study. This upper 

bound is estimated by assuming that each population segment from age 16 to 85 begins to travel 

as much as the top decile or travelers. This chapter takes a different first-order analysis approach 

by bounding future VMT based on three possible demand wedges, which could cause an increase 

in VMT due to vehicle automation.  

 

5.2  Data and Methods 

The U.S. Department of Transportation (USDOT) periodically releases information on the 

travel and transportation characteristics of the United States by conducting a representative 

nationwide survey, in order to assist policymakers and transportation planners in quantifying travel 

behavior and analyzing changes in travel characteristics over time. The 2009 National Household 

Travel Survey is the most recent national survey and contains significantly more data than any 

previous survey in the NHTS series, which allows for an expanded assessment of the travel 

behaviors in the United States. Specifically, the 2009 NHTS dataset contains a large sample size 

of 150,147 households for the U.S. Along with any household information, the 2009 NHTS dataset 

also includes person, vehicle and daily (travel day) trip level data.   

The 2009 NHTS attempts to represent the travel characteristics of the United States 

population on a national level. A weighting factor is provided for each person, household, trip, and 

vehicle included in the datasets. This weighting factor is the computed inference factor, which is 

intended to represent the total population from which the sample was drawn. The survey’s sample 

population only includes people from ages 5 to 88 inclusively and up to age 92. As a result, the 

total weighted person estimate from survey comprises approximately 94% of the total U.S. 

population in 2009. Collectively, more than 99% of all adult respondents 19 and older who 

participated in the survey provided a response to driver status or whether or not they have a medical 

condition. All of the mean estimates presented in this report were found using the full sample 

weights, while the standard error estimates were found using the replicate weights for the 2009 

NHTS. More information regarding the datasets or survey methodology and procedures for the 

2009 NHTS can be found in the 2009 NHTS User guide (USDOT 2011). 

According to the NHTS, there were about 201 million drivers and 20.1 million non-drivers 

19 and older in the U.S in 2009. Non-drivers are defined in the NHTS as those who cannot drive 

for physical, legal, or financial reasons or because they do not possess a driver’s license. Within 
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the senior population in the NHTS there were approximately 30 million drivers and 7.8 million 

non-drivers who make up about 15% of the adult (ages 19+) driving population and 35% of the 

adult non-driving population, respectively. There were close to 14.7 million adult drivers, who 

have a medical condition that makes it difficult to travel (7.3% of the total driving population), 

and almost 9.6 million (69%) within this population are between the ages of 19 and 64. The NHTS 

reports that approximately 11% of all senior drivers have a medical condition that affects their 

ability to travel and out of this population, about 82% have reduced their day-to-day travel and 

about 11% have given up driving altogether because of this medical condition. On the other hand, 

there were approximately 186.2 million adult drivers without a medical condition and out of this 

population there were about 25.7 million seniors.   

In order to estimate an upper bound of the increase in annual light-duty VMT due to greater 

mobility from vehicle automation from these underserved populations, we first created several 

demand wedges that assumes that each person within the elderly and non-driving populations and 

those with medical conditions, will increase their VMT to a certain threshold. Once the demand 

wedges are established, we then decided which data to include and exclude in order to complete 

our analysis using the 2009 NHTS data. 

 

5.2.1 Estimating Demand Wedges from the Elderly Population and People with Travel-

Restrictive Medical Conditions 

Loss in one’s ability to drive due to old age or a disability results in both restrictions of 

personal mobility and the reliance on others to help meet basic daily needs (Marottoli et al., 1997). 

The 2009 NHTS reports that about 25% of the elderly population and about 35% of people with 

travel-restrictive medical conditions spend their day in the same place. Fully autonomous (self-

driving) vehicles can have profound impacts on daily travel by reducing driver stress and providing 

independent mobility for non-drivers (Anderson et al. 2014). As a result of these potential benefits, 

populations that have legal or personal restrictions on travel could have increased independent 

mobility and accessibility. This increased demand would result in more travel than would 

otherwise occur. In order to set a range of the possible increase in VMT, the following demand 

wedges (demand wedge one, two, and three) were developed:  

 Demand Wedge 1: Non-drivers 19 and older will begin to travel as much as the drivers 

within each age group and gender. 
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 Demand Wedge 2: Elderly Drivers without any travel-restrictive medical condition in the 

youngest elderly cohort (65-74) will begin to travel as much as working age adults (19-64) within 

each gender.  While, elderly drivers without any medical condition in the middle (75-84) and oldest 

elderly (85+) cohort will travel as much as a person 65 years of age within each gender.  

 Demand Wedge 3: Working age adult drivers (19-64) with a medical condition that makes 

it hard to travel will begin to travel as much as working age adults without medical conditions in 

each gender. Elderly drivers with travel restrictive medical conditions in the youngest elderly 

cohort (65-74) will begin to travel as much as working age adults (19-64) within each gender. 

Elderly drivers with a medical condition in the middle (75-84) and oldest elderly (85+) cohort will 

travel as much as a person 65 years of age within each gender. 

To form an upper bound for VMT from underserved groups due to vehicle automation, we 

made assumptions regarding the travel characteristics of the populations in demand wedges 1, 2, 

and 3. With the advent of autonomous vehicles, we assumed that each person within these 

populations will increase their annual VMT to a threshold similar to that of a younger or 

comparable population that currently drives more. As automobile travel becomes more efficient 

and travel times are reduced, people are likely to take more trips and travel longer distances, as 

opposed to reducing the time they spend traveling, (van Wee et al. 2006; Zahavi and James 1980). 

Of course, demand wedges two and three are unlikely to occur even in a fully automated vehicle 

environment due to differences in age and employment, but this represents an upper bound increase 

in VMT from the driving senior population to help policymakers understand the potential 

magnitude. 

Annual vehicle miles driven (VMD) per person or per capita VMT were calculated for each 

of the three demand wedges defined above using the person and daily trip files from the 2009 

NHTS. VMT for each trip was computed by processing the TRPMILE and DRVR_FLG variables 

in the daily trip dataset. The daily trip file is a person trip file, which means that if two household 

members went somewhere together by LDV, that trip is reflected by two separate entries in the 

daily trip dataset. In order to ensure that each trip is counted as a vehicle trip, the driver’s record 

was used.  

The populations included in each wedge were made exclusive in order to develop an upper 

bound estimate of VMT increase by combining results from all three wedges. Wedge one only 

includes all non-driving adults 19 and older. Wedge two includes only elderly drivers without 
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travel-restrictive medical conditions but does not include any of the non-driving population 

regardless of age or medical condition, drivers with medical conditions, or the non-senior 

population. Wedge three includes only drivers with a travel-restrictive medical condition. The non-

elderly who are drivers and have no travel-restrictive medical condition were excluded from all 

three wedges.  

 

5.2.2   Data Selection Methodology 

The 2009 NHTS daily trip dataset contains information for every trip taken by each 

household member during their randomly assigned “travel day.” Respondents were assigned travel 

days for all seven days of the weeks over the course of a 10-month period including holidays, in 

an attempt to accurately represent the daily travel patterns of the United States. This resulted in a 

final sample size of approximately 1.1 million daily trips. In addition to trip data, households also 

provided information regarding the persons living in the households. Detailed information 

regarding trip or person level data can be found in (USDOT 2011). 

For our analysis we considered all trips made by a household LDV (car, van, SUV, pickup 

truck) while all other modes of transportation defined in the NHTS day trip file were excluded in 

this study. The NHTS does not report VMT for non-personally owned LDVs and as a result VMT 

from taxis are not included in this analysis. Less than 1% of all LDV trips made by adults 19 and 

older in the US are by taxi. We included the U.S. population 19 years of age and older, while trip 

and person data from respondents 18 and younger are omitted. For demand wedge one, if a 

respondent did not provide a yes or no answer regarding his or her driver status the entry was 

disregarded in both the person and daily trip file. Similarly, for demand wedges two and three if a 

respondent did not provide a yes or no answer regarding whether or not he or she has a medical 

condition that makes it difficult to travel, the entry was not considered. Some of the trip distances 

reported by respondents were unrealistically long for the purpose of our analysis, so trip distances 

greater than 500 miles were truncated from the dataset. In cases where there is more than one 

person riding in a vehicle during a trip, the trip distance would only count towards the total VMT 

of the driver’s population, in order to ensure that a trip is only counted once. For example, if a 

younger driver was driving an older passenger (e.g. a parent or other elderly relative) to the older 

passenger’s destination, the VMT from this trip would be attributed to the driver. The filtering of 

the dataset and attribution of VMT from the 2009 NHTS is solely to calculate current per capita 
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VMT, while estimations of increases in future VMT come from the demand wedges outlined in 

section 5.2.1. 

We also grouped the population by age: working age adults are defined to be those 

individuals between the ages of 19 and 64 inclusively while older adults are individuals 65 and 

older. In order to better analyze the travel characteristics of the elderly, the senior population was 

broken down into three separate groups: the youngest senior cohort (65-74), middle senior cohort 

(75-84), and the oldest senior cohort (85+). 

 

5.3  Demand Wedge Results 

Once the annual per capita VMT were computed and analyzed for drivers, non-drivers, the 

elderly and those with and without a travel-restrictive medical condition, the estimated changes in 

total light-duty VMT due to changes in travel patterns from the demand wedges defined in section 

2.1 can be quantified. Table 5.1 (shown below) shows the total increase in annual light-duty VMT 

from each demand wedge and age group for this bounding analysis. The standard errors reported 

in Table 5.1 come from the NHTS and can be used to construct a 95 percent confidence interval 

around the mean for uncertainty due to sampling. For example,  the interval 6,866 miles to 10,367 

miles is the 95% confidence interval of estimated annual per capita VMT for drivers with medical 

conditions ages 19-64 that would have been obtained if a complete census of households were 

conducted using the same procedures outlined in the 2009 NHTS. 

In demand wedge one, the assumption is made that non-drivers would travel as much as 

drivers within each age group and gender in a fully automated vehicle environment. If this 

occurred, the total annual light-duty VMT for the U.S. population 19 and older would increase by 

194 billion miles, which is equivalent to about a 9% increase in total light-duty VMT. The biggest 

increase in VMT would come from both males and females 19-64, which can be attributed to their 

relatively large non-driving populations and the substantial difference in VMT between drivers 

and non-drivers within this age group. Working age adults would contribute about 80% of the 

VMT increase by increasing their current VMT by 154 billion miles or by about 8%. The young, 

middle, and oldest senior cohort populations would increase their VMT by about 12%, 25%, and 

85%, respectively, but make up a much smaller portion of the projected total increase in VMT for 

this demand wedge. Females would contribute the most between the two sexes overall, making up 

almost 53% of the VMT increase for demand wedge one. 
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Demand wedge two assumes that the young elderly cohort without medical conditions will 

travel as much as working age adults within each gender, while those in the middle and elderly 

cohorts will travel as much as a person 65 years of age in a fully automated vehicle environment. 

The total increase in VMT for the U.S. population 19 and older for demand wedge two would be 

about 46 billion miles or a 2% increase in total annual light-duty VMT. The oldest senior cohort 

would increase their VMT by 83% or 7 billion miles and make up 15% of the increase in VMT for 

this demand wedge. The middle senior cohort would travel about 21% more miles annually, 

contributing to 27% of the VMT increase. The youngest senior cohort would drive 17% more miles 

annually, making up about 58% of the VMT increase for demand wedge two. 

Demand wedge three follows the assumption that working age adult drivers with a medical 

condition will travel as much as working age adults without medical conditions within each gender 

in a fully automated vehicle environment Similarly to demand wedge two, demand wedge three 

assumes that young elderly drivers with a medical condition will began to travel as much as 

working age adults within each gender, while drivers with a medical condition in the middle and 

elderly cohorts will travel as much as a person 65 years of age in a fully automated vehicle 

environment. This would result in the U.S. population 19 and older traveling about 55 billion miles 

more annually, which would be equivalent to about a 2.6% increase in light-duty VMT. Males 

would contribute slightly more overall to the VMT increase than females in this demand wedge. 

Working age adult males and females would contribute most individually to the VMT increase for 

both sexes. The large increase in VMT by working age adult males and females is greater than that 

of their respective elderly cohorts, mainly because the number of male drivers with a travel-

restrictive medical condition in the working age adult population far exceeds those in the other age 

groups and within this age group exists the largest difference in VMT between drivers with medical 

conditions and those without. Working age adults would make up about 56% of the VMT increase 

for demand wedge three and increase the total VMT for this age group by 1.6% overall. Males and 

females in the oldest senior cohort have a minimal impact on increasing the annual VMT, mainly 

because of the relatively small population size of drivers with medical conditions over age 85. The 

youngest and middle senior cohort populations would increase their VMT by about 8% and 15%, 

respectively.  
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Table 5.1 Annual Vehicle Miles Currently Driven and Possible Increases in Vehicle Miles 

Automatically Driven for Demand Wedges One, Two, and Three 

Demand Wedge Age Group Male 
Standard 

Error 
Female 

Standard 

Error 

Total 

Increase 

in VMT 

(Billion 

Miles) 

% 

Increase 

in Total 

VMTc 

Demand Wedge 1: 

Adult Non-

Driversa 

19-64 0 0 0 0 154 7.20% 

65-74 0 0 0 0 18 0.80% 

75-84 0 0 0 0 15 0.70% 

85+ 0 0 0 0 7 0.30% 

Demand Wedge 2: 

Elderly Drivers 

Without a Medical 

Condition 

65-74 11,259 455 6,076 241 27 1.30% 

75-84 8,879 524 3,944 259 12 0.60% 

85+ 4,561 509 3,752 549 7 0.30% 

Demand Wedge 3: 

Adult Drivers 

With a Medical 

Conditionb  

19-64 8,970 706 6,184 700 31 1.40% 

65-74 6,818 945 4,306 654 12 0.60% 

75-84 5,224 1,125 1,804 198 9 0.40% 

85+ 4,073 1,262 1,528 393 3 0.10% 

Source: The 2009 National Household Transportation Survey, Daily Trip & Person File, U.S.     

Department of Transportation. 

Note: Vehicle Miles Traveled (VMT) and Vehicle Miles Driven (VMD) are equivalent for this 

analysis 

a According to the 2009 National Household Transportation Survey non-drivers do not drive and 

as a result have an annual per capita vehicle miles traveled of zero.  

b Survey Respondents were asked if they had a medical condition that made it hard to travel 

outside the home. It is important to note that this is a self-reported medical condition, and does 

not correspond to the Americans with Disabilities Act of 1990 or any other formalized 

definitions of a person with a disability. 

c Total annual light-duty vehicle miles traveled for adults 19 and older is about 2,138 billion 

miles. 
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If all three demand wedges were combined and assumed to take place simultaneously, total 

annual light-duty VMT by the U.S population 19 and older would increase by about 14% or 295 

billion miles. Our study, estimated that non-drivers could increase total light-duty VMT by as 

much as 194 billion miles (9%) while elderly drivers and those with medical conditions could 

increase light-duty VMT by as much as 46 billion miles (2.2%), and 55 billion miles (2.6%), 

respectively, as shown in Figure 5.1 (below). This chapter makes a contribution to the literature 

by presenting the current travel characteristics of the non-driving and elderly populations and those 

with medical conditions by gender and age groups, and assessing how new demand from these 

populations due to easier driving and increased accessibility from vehicle automation could 

increase VMT. In addition, this chapter also highlights those age groups and genders within these 

underserved populations that could have the greatest increases in travel. 

 

 
a Non-Drivers 19 and older 

b Elderly Drivers Without a Medical Condition 

c Drivers 19 and Older With a Medical Condition 

Figure 5.1 Annual Billion Vehicle Miles Automatically Driven Increases for Demand Wedges 
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5.4  Summary of Previous Studies  

While each of the estimates in previous studies depend on the data and assumptions used, 

our estimate is close to Wadud et al.’s (2016), who estimated an upper bound increase in travel 

due to new demand from user groups by assuming that everyone above age 62 will travel as much 

as a person 62 years of age. Their estimate is based on the assumption that automation could 

address the natural rate of decline of travel needs that typically occurs starting at age 44, then 

declines steadily through age 62 and more steeply after. Wadud et al. (2016) concluded that annual 

VMT could rise as much as 10% from increased travel due to new users. Brown et al. (2014) 

estimated that underserved populations traveling more due to vehicle automation could increase 

VMT by as much as 40% using the 2009 NHTS along with the 2003 “Freedom of Travel” study. 

The authors estimated this upper bound by assuming that the population segments from 16 to 85 

would begin to travel as much as the top decile.  

Other studies have estimated how VMT per vehicle and daily VMT could change as a result 

of automation. Schoettle and Sivak (2015) estimated that VMT per automated vehicle could 

increase by as much as 75% due to a reduction in vehicle ownership rates, while Fagnant and 

Kockelman. (2015) estimates that VMT per automated vehicle could increase 20% and 10% at a 

10% and 90% market penetration rate, respectively. Table 5.2 summarizes the changes in VMT 

due to vehicle automation that are estimated in the literature. 
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Table 5.2 Literature Estimates of Changes in Vehicles Miles Traveled (VMT) Due to Vehicle 

Automation 

Study Data  Method Estimate 

Source(s) of Increase 

or Decrease in VMT 

Brown et al. 

(2014) 

2009 NHTS 

and 2003 

Freedom of 

Travel study 

Additional 

miles if all 

people over 

16 had VMT 

of highest 

demographic 

Upper bound annual 

VMT: +40% 

New demand from 

underserved 

populations (youth, 

disabled, and elderly) 

Childress et 

al. (2015) 
 Activity-

Based Model 

Daily VMT: -35% to 

20%  

Changes in value of 

travel time, road 

capacity, parking 

costs and per mile 

driving costs.  

Faganant 

and 

Kockleman 

(2014) 

2009 NHTS 
Agent-Based 

Model 
Daily VMT: +11% 

Relocation of 

unoccupied 

autonomous taxis. 

Faganant 

and 

Kockleman 

(2015) 

 

Assumptions 

based on 

published 

literature 

VMT per AV: +10% 

to +20%a 
Induced Demand 

Schoettle 

and Sivak 

(2015) 

2009 NHTS 

Developed 

trip overlap 

and household 

requirements 

in an AV 

environment 

Upper Bound VMT 

per AV: +75% 

Reductions in 

household vehicle 

ownership 

Wadud et al. 

(2016) 
2009 NHTS 

Assumptions 

based on 

natural 

declines in 

travel due to 

age 

Upper Bound Annual 

VMT: +10%  

New demand from 

new user groups 

This study 2009 NHTS 
Demand 

Wedges 

Upper Bound Annual 

VMT: +14% 

New demand from 

underserved 

populations 

Note: AV is automated vehicle  
aThis estimate assumes that at a 10% market penetration rate VMT per AV increases 20% and at 

a 90% market penetration rate VMT per AV increases 10%. 
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5.5 Discussion 

Vehicle automation can increase the mobility of currently underserved populations: non-

drivers, those with travel-restrictive medical conditions, and seniors. In this chapter, we 

characterize each of these populations as a demand wedge and used U.S. travel survey data from 

the NHTS to estimate bounds on how VMT from these demand wedges could change with 

autonomous vehicles. The travel behavior between younger and older adults in the U.S. are quite 

different, although both populations rely heavily on automobiles to meet their daily transportation 

needs. Older adults tend to drive less than their younger cohorts and in proportion to their each 

cohorts population size, the percentage of overall VMT decreases with age.  Elderly women in 

particular show a substantial reduction in VMT and at a much earlier age than men.  This is very 

evident in the young senior cohort age group where women begin to drive about 6,000 miles 

annually while males in the same age group drive close to 11,000 miles annually. The United 

States Census Bureau projects that the senior population in the U.S. will increase by about 71% 

by the year 2030 (U.S. Census Bureau 2014). In 2013 there were about 43 million seniors in the 

U.S. (U.S. Census Bureau 2013); if this increase occurred the senior population would increase to 

about 74 million by 2030. If we assume that senior drivers in 2030 continue to travel as much as 

senior drivers today, the population increase alone would result in a 201 billion miles or a 9.4% 

increase in light-duty VMT relative to 2013. 

The largest difference in travel behavior exists between drivers and non-drivers who, due 

to their inability to drive, travel far less than their counterparts within all age groups. The 2009 

NHTS reports that out of 22 million adult non-drivers, approximately 9 million reports having a 

medical condition that makes it hard to travel and because of this condition about 8 million have 

reduced their day-to-day travel. In comparison, there are about 200 million adult drivers in the 

U.S. and out of this population about 14.7 million people report having a medical condition that 

makes it hard to travel and because of this medical condition 11.7 million have reduced their day-

to-day travel.  In proportion to their total populations only about 6% of drivers have reduced their 

day-to-day travel because of a medical condition compared to 37% of non-drivers who have. If all 

three of the demand wedges we analyzed were combined and assumed to occur simultaneously, 

total annual light-duty VMT by the U.S population 19 and older would increase by about 14% or 

295 billion miles. Females would make up most of this increase and the oldest senior cohort would 

have the largest percent increase in VMT. Working age (19-64) adults would have the lowest 
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percent increase in VMT of all age groups but would increase their VMT the most overall in 

magnitude by almost 185 billion miles annually, while non-drivers could increase total VMT more 

than any other demand wedge. The combination of the of the three demand wedges represents an 

upper bound for underserved populations since it assumes 100% autonomous vehicle adoption by 

the elderly and people with a travel-restrictive medical condition and that each person within these 

populations would increase their VMT to a certain threshold. The effects of VMT on the broader 

population are highly uncertain, and an important subject for continued research as automated 

vehicles enter the market. Vehicle automation could either result in a net increase or decrease in 

VMT depending on policy, technology, adoption, and consumer preferences about time and price 

(Anderson et al., 2014). As mentioned above, it is unlikely that the elderly begin to travel as much 

as young adults even in a fully automated vehicle environment due to differences in age and 

employment, but this does represent an upper bound increase in VMT from the driving senior 

population relative to current patterns. This provides policymakers insight into the scale of some 

of the benefits and challenges associated with automated vehicles.  

In this estimate we account for driver condition, age, gender, and driver status when 

analyzing mobility patterns. Other variables such as work status or income can be accounted for 

in future research. Only VMT from household-based LDVs are reported in the 2009 NHTS and as 

a result VMT from taxis were not included in the analysis. Trips from other forms of public 

transportation such as bus or rail are also not included in this analysis but the people who usually 

use these forms of transportation were included in the bounding of the increase in VMT. This 

bounding exercise is intended to inform policymakers and transportation professionals of how 

autonomous vehicles could affect VMT from populations currently underserved due to age and 

medical conditions, as well as highlight those age groups and genders within these populations 

that could have the greatest increases in light-duty VMT. Although, fully automated vehicles could 

also increase the VMT for those ages below the age of 19, we believe the changes in travel patterns 

for teenagers are highly uncertain at this time and deserve separate, lengthier treatment. 

It is also important to note the effect of vehicle automation on the travel characteristics of 

the elderly and those with a travel-restrictive medical condition will highly depend on the cost of 

an automated vehicle and their willingness to adopt the new technology (Bansal et al., 2016)   It 

will also depend on the time of day and location that new demand from these populations is 

generated. In addition, in a fully automated environment comprising mostly of taxis, there would 
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be additional VMT when the vehicles have no occupants. Although, the elderly and people with a 

travel-restrictive medical condition would greatly benefit from autonomous vehicles by being able 

to independently travel, an increase in VMT would likely result in higher roadway repair and 

maintenance costs, higher energy use and emissions, and potentially other impacts of 

transportation than would otherwise occur.  Also, the increase in VMT could conceivably result in 

transportation expenses comprising a higher percentage of household expenditures for these 

populations. During the transition to automated vehicles, it is important for policymakers to 

encourage the potential benefits while minimizing the potential challenges.  

 

5.6  Recommendations for Policymakers 

This study focuses on how new travel demand from populations currently underserved 

could impact current light-duty VMT due to vehicle automation, and finds that the estimated 14 

percent increase in VMT is non-trivial, but also can be managed with focused planning. Today’s 

underserved population currently relies on relatives, public transportation, and/or some form of 

government assistance to meet their daily travel needs. Vehicle automation has the potential to 

increase mobility and access for currently underserved populations, thereby also increasing their 

VMT.  

This study provides insight for state and local government agencies to begin assessing the 

potential scale of the challenges of automation, and to plan for ways to effectively accommodate 

the new demand for more LDV travel. This could include determining services and 

accommodations that could make automated travel more appealing for the elderly and those with 

medical conditions to account for the absence of human interaction that once existed. Local and 

state governments along with private companies that offer shared services could study how 

automated vehicles could become more accessible and used more frequently than existing on-

demand mobility services for underserved populations that have difficulties traveling due to 

medical conditions and/or age. The need for and value of any financial incentives to encourage 

automation for these populations could also be evaluated. Further research is needed on 

understanding the unique transportation needs of different disability categories (blindness, 

deafness, autistic, etc.) since these populations along with the elderly could become more frequent 

users of shared and personally-owned automated vehicles.  

Federal agencies such the Federal Highway Administration (FHWA) could use the results 
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and discussion provided in this study when considering bounds on future highway costs, benefits, 

and capacity needs. The USDOT could consider the results of this study for future initiatives that 

are intended to promote economic growth and job creation in local communities (e.g. Strong Cities, 

Strong Communities initiative). 

   

5.7  Bounding model limitations and future work 

While the results from this bounding analysis offer a new understanding of the impact 

automated vehicles could have on VMT, there are several opportunities for future research. Rather 

than only looking at changes in the travel characteristics of the elderly, non-drivers, and those with 

medical conditions, future estimates should also consider the implications of vehicle automation 

on the travel patterns of drivers outside of the three demand wedges. Total demand from 

underserved populations in a fully AV environment could be greater than the upper bound 

estimated in this paper. Right now we assume that each person’s travel is bounded by a healthier 

or younger population, which may not be the case in some instances. Cheaper SAV rides could 

impact transit demand and could encourage individuals to switch to light-duty travel as the cost to 

operate a taxi becomes more comparable to the actual cost of driving, due to the elimination of the 

driver. Changes to population size over time, automated vehicle price, and market penetration rates 

could also be incorporated, to better model transportation demand variations from population 

change and to reflect the influence that consumer demand could have on future VMT.  As noted 

by Childress et al. (2015), regions could conduct stated preference surveys to gain some additional 

understanding on how consumers might travel differently with automated vehicles.  These types 

of surveys will be important to help understand the potential for disruptive changes in vehicle use, 

but their results will only be validated through the revealed preferences of actual users of 

automated vehicles. 

Although this chapter produces estimates based on the assumption that vehicle automation 

will increase the VMT of those populations who usually find it hard to travel, there are also factors 

that could decrease VMT that are not accounted for. For example, improvements in public 

transportation, increases in urban density and car sharing, as well as increases in the cost of vehicle 

ownership could cause people to rely less on personal vehicles for travel especially in urban areas. 

In addition, there could be other aspects of travel besides actual car time itself that even with 

automation could still make it difficult for those in underserved populations to travel freely that 
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could be accounted for in future research. There is also some portion of the population who may 

not want to travel more or cannot travel independently even with the existence of driverless cars. 
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Chapter 6: Conclusions and Future Work 

 

Over the next decade, automated vehicle technologies will likely become more widespread 

and prominent daily life. While we are not fully certain of how AVs will influence mode choice 

and vehicle ownership rates, AVs should provide new benefits to drivers in terms of safety, 

parking, and accessibility, but are likely to increase VMT and generate new demand from new 

users, which could lead to greater congestion costs. With the proper planning and research any 

negative externalities that could arise from the adoption these technologies could be minimized. 

An objective of this dissertation is to aid policymakers in making more informed decision so that 

we can have a smooth transition to a fully connected and automated light-duty vehicle fleet.  

 

6.1  Summary 

This dissertation spans several topic areas: from cost benefit analyses and travel demand 

estimations to parking demand modeling and level of service estimations. We began by exploring 

economic feasibility of equipping all light-duty vehicles with crash avoidance technologies. We 

then develop a method for existing roadways to determine viable platoon demonstration sites and 

estimate the impacts this could have on congestion and level of service. After that, we develop an 

agent-based model to quantify the changes in VMT and energy use from driverless vehicles 

moving from downtown garages and lots to more distant cheaper parking and discuss the impacts 

this could have on safety and urban form in our cities. Finally, we assessed the impact of AVs on 

the mobility of the elderly and those with medical conditions and determined those age groups, 

genders, and populations that could have the greatest increases in travel demand in a driverless 

vehicle environment.  

Chapter 2 used observed insurance data from the IIHS to develop estimates on the changes 

in collision claim frequency and severity for vehicles equipped with FCW, LDW, and BSM. In 

addition, publically available data from 2012 GES and FARS were used to form estimates on the 

number crashes relevant to each technology. These estimates allowed for an estimation of the 

annual economic benefits these technologies could provide collectively and independently. The 

result of this work shows that the fleet-wide adoption of commercially available crash avoidance 

technologies, blind spot monitoring, lane departure warning, and forward collision, is currently 

feasible from an economic perspective and could provide an upper bound annual net benefit of 



117 
 

approximately $202 billion or $816 per vehicle if all relevant crashes could be prevented. The 

technology with the greatest cost save potential is FCW, which could provide up to $129 billion 

in annual benefits. Considerable benefits from prevented and less severe crashes can be derived 

from levels 1 and 2 AVs. 

Having concluded that the fleet-wide adoption of crash avoidance technologies provides a 

positive annual net benefit, Chapter 3 focuses on highways and roadways transitioning to 

accommodating CAVs. Chapter 3 provides a methodology for roadways to determine potential 

platoon demonstration sites and the impacts this could have on current LOS by using the 

Pennsylvania Turnpike as a case study. In this chapter we identified those portions of the turnpike 

with at least three lanes in one direction, for greater than 2 miles, and estimate how dedicating a 

platoon lane for commercial truck platooning on these highway sections could impact current LOS. 

The results indicate that there are several sections of the Pennsylvania Turnpike where 

implementing a commercial truck platoon demonstration site could be a viable option. However, 

setting time of day and day of week lane-based restrictions during peak hours and peak travel days 

would minimize disruptions to traffic flow. In addition, there are potential cost saving benefits 

from heavy duty vehicle platooning. For example, if all HDV crashes on the turnpike could be 

avoided this would result in an upper bound annual benefit of about $39 million. Greater benefits 

could be realized as more roadways transition to accommodating CAVs. Turnpike commissions 

as well as state and local governments should begin to plan for a highway system that 

accommodates CAV transportation. 

Chapters 4 and 5 take a step forward to a point in time where all light-duty vehicles are 

driverless (Level 5). Chapter 4 uses Seattle parking lot occupancy and price data to estimate the 

potential impact of driverless vehicles on VMT, energy use, emissions, parking revenue, and daily 

parking cost savings in the city of Seattle, Washington from changes in parking decisions using an 

agent-based simulation model. Generally speaking, we found that if the POVs parked in the 

downtown parking lots and garages moved to more distant, cheaper parking locations, we are not 

expected to see substantial increases in overall VMT and energy use. The results also suggest that 

as AV penetration rates increase, parking lot revenues decrease significantly and could likely 

decline to the point where operating a lot is unsustainable economically, if no parking demand 

management policies are implemented. This could lead to changes in land use as amount of parking 

needed in urban areas is reduced and cars move away from the downtown area for cheaper parking 
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in more satellite locations. Driverless valet vehicles could considerably alter the economics of 

parking, which will affect energy, emissions, VMT, and urban form in cities. 

 Finally, Chapter 5 uses national household travel data to assess the increases in light-duty 

VMT from new demand from populations with historically lower mobility in a fully AV 

environment. The changes to light-duty VMT are estimated by creating and examining three 

possible travel demand wedges. The combination of the results from all three demand wedges 

represents an upper bound of 295 billion miles or a 14% increase in annual light-duty VMT for 

the US population 19 and older. Since traveling has other costs besides driving effort, these 

estimates serve to bound the potential increase from these populations to inform the scope of the 

challenges, rather than forecast specific VMT scenarios. Increased mobility could result in 

underserved populations to travel more for leisure, work, and medical purposes and government 

as well as private companies should look to encourage those types of trips. 

 

6.2  Research Contributions 

 This thesis answers important questions regarding how AVs could impact safety, parking, 

decisions, mobility, and congestion and is meant to aid policymakers in making more informed 

decisions during the transition to connected and automated vehicles. While there has been research 

done in the past that have discussed the safety and parking implications of CAVs, this thesis takes 

a different approach and experimentally studies different scenarios. To my knowledge, it is the 

first to use observed insurance data to estimate the economic feasibility of fleet-wide partial 

automation. It is the first work that quantifies the changes in travel demand, energy use, and 

parking revenues, if privately owned vehicles (POV) currently parked in downtown garages and 

lots became driverless and could self-park in cheaper more distant parking locations. It is also the 

first work to make use of hourly traffic flow data to estimate the congestion impacts of dedicating 

a lane to commercial truck platooning. To my knowledge, this is the first work to estimate the 

changes in light-duty VMT from new demand from new users by creating and examining three 

possible travel demand wedges. 

 The key deliverables of this work are peer-reviewed journal publications. Chapter 2 has 

been published in Accident Analysis and Prevention and had media coverage in several outlets, 

including Forbes and Congressional Quarterly Researcher. In addition, this work was presented at 

various conferences including the Traffic 21 Seminar Series, Intelligent Transportation Systems 
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Pennsylvania Annual Meeting (2016), Transportation Research Board Conference (2016), ITS 

America Next Generation of Mobility Transportation Technology Fair on Capitol Hill (2017), 

Lifesavers National Conference (2017), and the Society of Collision Repair Specialists Roundtable 

Discussion (2017). Chapter 5 has been published in Transportation Research Part C: Emerging 

Technologies and selected among papers in all of Elsevier’s 2,600 academic journals for the 

Elsevier Atlas Award in December 2016. In addition, this work was presented at various 

conferences including the Traffic Transportation Research Board Conference (2015), Intelligent 

Transportation Systems World Congress (2015), and the Eisenhower Fellowship Research 

Showcase (2016). Chapter 4 has been submitted for publication in Transportation Research Part 

C: Emerging Technologies and has received favorable reviews.  Chapter 3 will be submitted for 

publication in the near future. The results of Chapters 1 and 5 have also been disseminated through 

CMU press releases. I will seek out similar outlets to disseminate the results of chapters 3 and 4 

once that work is published.  

 

6.3 Policy Implications 

The methods and results outlined in Chapters 2 and 3 help to illustrate some of the 

congestion and economic implications of transitioning to partial vehicle automation. The cost 

benefit approach employed in Chapter 2 allows for a comparison between the social costs and 

benefits of fleet-wide partial automation in the United States. The approach highlights the lower 

and upper bound annual benefits to private insurers, households, and third-parties from equipping 

the light-duty vehicle fleet with three different crash avoidance technologies. The cost benefit 

approach could serve as a resource for insurers exploring the implications that AVs could have on 

their business models and future incentives (i.e. discounts on insurance premiums) and for federal 

agencies in future vehicle safety rulemaking discussions and decisions. The methods and 

recommendations outlined in Chapter 3 could serve as a resource for turnpike commissions and 

infrastructure managers interested in transitioning towards CAV transportation. Instead if acting 

in isolation, collaboration between turnpike commissions could allow for a smoother transition to 

accommodating CAVs on private roads.  

The methods and results in Chapters 4 and 5 help to illustrate some of the mobility and 

parking implications of fully AVs or driverless cars. GHG emissions forecasts for the 

transportation sector should begin including the increase in energy use from new demand from 



120 
 

new users and zero occupancy vehicle trips. Cities could prepare for themselves for the 

underutilization of parking lots and garages in dense urban areas by adapting parking requirements 

for a future of self-driving cars. By building garages with horizontal floors, and exterior ramps, 

rather than interior ramps, parking deck structures could be more easily converted to traditional 

office spaces. Much of the land devoted to parking in today’s cities could be converted into parks, 

bike lanes, or sidewalks could be widened making it easier for pedestrians to move around the city, 

as driverless cars can drop passengers off and park in cheaper, more distant parking locations, 

reducing the need for exorbitant amounts of parking in urban areas. The National Association of 

City Transportation Officials (NACTO) has created guides on sustainable urban and transit street 

design and could provide valuable insight for cities interested in sustainable and equitable 

transportation development (National Association of City Transportation Officials 2017). Cities 

would need to look for other sources of revenues to supplement the money lost from parking taxes, 

paid parking, and parking tickets. Some cities may implement a parking tax for AVs choosing to 

exit the downtown area to obtain cheaper parking. Ridesharing could change attitudes towards car 

ownership and in dense urban areas we could see many trips made by driverless taxis instead of a 

POV. Shared vehicles could create new demand from new users (i.e. children/teenagers, those with 

medical conditions, non-drivers, and the elderly) and could change attitudes towards car 

ownership. In order to increase transportation accessibility in a fully AV environment, PPPs will 

play an essential in making shared travel more accessible to those in underserved populations. 

Although AVs could be a step towards a more equitable transportation system demand and 

congestion must be managed properly. We could see significant increase in travel from not only 

underserved populations but from those who users who are currently able to drive and from zero 

occupancy trips. Cities will need to determine how to best meet these demands at reasonable costs, 

while still being able to provide efficient service to users. Automated vehicles should make driving 

easier and more efficient but should not replace existing forms of public transportation, which are 

essential components of our transportation system, but are a step in the right direction towards zero 

deaths. Ultimately, by gaining a better understanding of the challenges we face on the transition to 

driverless cars, decision-makers can start to better plan for a future where the burden of driving is 

placed on the car instead of a human operator.  
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6.4 Future Work 

 While this dissertation work assesses possible AV implications in great detail, much future 

work remains during the transition to CAVs. First, this work assumes that the elderly and those 

with medical conditions will begin to travel as much as those in healthier or younger populations 

in a fully automated vehicle environment, an assumption that will likely not hold. Although most 

underserved populations will begin to travel more, it is not likely that the people within these 

populations will increase their travel to match that of a younger or healthier population as taking 

more trips would comprise a higher percentage of household expenditures, which may not be 

feasible for some individuals who do not have the disposable income. Young children (16 and 

under) are likely to travel more in a fully AV environment and could even take trips as “drivers” 

one day. This work assumes that VMT will increase but there are factors that could decrease VMT 

that are not accounted for. For example, decreases in vehicle ownership rates, greater subsidies 

and improvements in public transportation, and increases to urban density. Many experts predict 

that SAVs will replace many of today’s POV as a primary mode of transportation. A drawback of 

SAVs are empty or zero-occupancy trips to relocate and pick up passengers, which could increase 

VMT, congestion, and energy use.  Estimating the energy implications of this extra travel, taking 

into account future fuel economy standards, as well as strategies to better utilize existing capacity 

can provide feasible and practical solutions to better plan for an automated vehicle future.  

The cost and benefits estimates of partial automation could be expanded beyond a national 

analysis to a regional analysis. It is possible to recreate net benefit estimates for all regions of the 

country, showing where the highest net benefits could be achieved. In addition, the scope of this 

analysis could be expanded to include HDVs, bicycles, and pedestrian. For example, a future cost 

benefit analysis could assess the economic feasibility of equipping HDVs with forward collision 

warning or platooning technologies. Rather than estimating benefits solely on a per crash basis, 

future cost analyses should take into account crash severity.  

Other work could seek to develop a parking model with a transportation network using 

Seattle’s actual transportation network and travel demand flows; develop a better AV parking 

choice methodology (e.g. one where agents make parking decisions that are not only economical 

but also minimizes transportation system congestion and energy use vs. solely making decisions 

on based on parking price and occupancy); incorporate dynamic pricing in the parking lots and 

garages as AVs leave the downtown  for cheaper parking in more distant parking locations 
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(currently downtown parking lot and garage pricing static), evaluate the impacts of travel demand 

on congestion and the social cost this could have on the public at large, explore the impacts SAVs 

could have on vehicle ownership as it is likely for vehicle ownership rates to change as we 

transition to automation. 

 While the future remains uncertain, the results of this thesis indicate that vehicle 

automation are likely to bring substantial economic, mobility, and safety benefits to the traveling 

public. Vehicle automation has the potential to reduce a substantial amount of crashes that occur 

annually and provide substantial economic benefits to private insurers, household, and in terms of 

QALYs. Driverless vehicles have to ability to self-park in more distant, cheaper parking locations, 

saving drivers money and freeing up space in downtown areas for shops, parks, or office space 

where parking lots once existed. While new demand from new user groups and empty vehicle 

travel from cars looking for parking are likely to increase travel demand, AVs will likely have 

more efficient operating characteristics than current vehicles and in a connected environment with 

vehicle to infrastructure communication, congestion impacts would be lower than in a non-

connected environment. With the appropriate policymaking and planning people around the world 

should be able to travel in a safer, more cost effective, and sustainable transportation system that 

is equitable and meets everyone’s travel needs at a lower overall cost.  
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