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Abstract 

Life Cycle Assessment (LCA) has been applied to help decision-makers understand quantitative 

environmental effects and impacts through the life stages of a product or process. Matrix-based 

LCA models are widely incorporated to LCA software tools to simplify the assessment and provide 

straightforward results. However, these tools do not sufficiently provide the uncertainties that 

arise from the inventory data as well as from the matrix-based models. To address this problem, 

in this thesis I use a range method to explore three types of uncertainties (parameter, scenario, 

and model uncertainties) present in matrix-based LCA models. These three types of uncertainties 

are assessed separately for two different types of LCA models: the Input-Output- based LCA model, 

and the process-based LCA models analyzed with matrix methods.  IO-based LCA models are 

studied with the Environmental Input-Output Life Cycle Assessment (EIO-LCA) model, and the US 

LCI database incorporated to matrix methods is used as an example of process -based LCA models. 

I selected two demonstrate the results with two environmental effects (greenhouse gas emissions 

and energy consumptions) and five environmental impacts (global warming, ozone depletion, 

acidification, eutrophication and ecotoxicity).   

First, I analyzed the parameter uncertainty in the EIO-LCA model. Publicly available data sources 

and assumptions are used to estimate the parameter uncertainties of the direct energy 

consumption in the US industrial sectors. The direct and indirect energy consumption ranges are 

estimated through the EIO-LCA model. The results show that the parameter uncertainties are 

generally within -40% to 40% from the default values, with several outliers. Second, I examined 

the scenario uncertainties in total carbon dioxide emissions by using alternative inputs in the US 

LCI database. I found that the US LCI database fails to take full advantage of matrix-based methods; 

when incorporated to matrix-based LCA models, less than 10% of the processes contribute to the 

indirect environmental effects. The results of scenario uncertainty estimation in the US LCI 

database show that on average, the total carbon dioxide emissions across all processes are 

between -30% to -30%. Finally, I addressed the model uncertainty by using different Life Cycle 

Inventory Assessment (LCIA) methods incorporated in the matrix-based models. The results show 

that when the US LCI inventories are applied, the uncertainties due to choosing different impact 
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methods are within 5%. This is possibly caused by the incompleteness of the inventories: more 

than 50% of the characterized substances are excluded in the inventory, resulting in the neglect 

of some impact values. 

The results from this study emphasize the importance of estimating uncertainties in matrix-based 

LCA models. The variability in the LCA results is caused by all three types of uncertainties, as well 

as the incomplete inventories embedded in the matrix-based LCA models. Future LCA database 

and software should focus on including uncertainty estimation in the features and improving the 

inventory data to take full advantage of the matrix-based LCA models.  

  



7 
 

Table of Contents 

 

Acknowledgements .......................................................................................................................... 4 

Abstract ............................................................................................................................................ 5 

Table of Contents ............................................................................................................................. 7 

List of Figures .................................................................................................................................. 10 

List of Tables ................................................................................................................................... 15 

1. Chapter 1. Introduction and Background ................................................................................... 17 

1.1 Motivation ............................................................................................................................ 17 

1.2 Introduction .......................................................................................................................... 18 

1.2.1 Life cycle assessment..................................................................................................... 18 

1.2.2 Matrix-based LCA models.............................................................................................. 19 

1.2.3 Uncertainty in LCA ......................................................................................................... 20 

1.2.4 Life cycle impact assessment (LCIA) .............................................................................. 21 

1.3 Dissertation outline and research questions  ....................................................................... 23 

2. Chapter 2. Parameter uncertainty in the EIO-LCA model ...................................................... 24 

2.1 Parameter uncertainty in matrix-based tools ...................................................................... 24 

2.2 Material and Methods .......................................................................................................... 26 

2.2.1 Values in the R matrix.................................................................................................... 26 

2.2.2 Data sources .................................................................................................................. 27 

2.2.3 Assumptions and calculations ....................................................................................... 29 

2.3 Results and discussion .......................................................................................................... 39 

2.3.1 Uncertainty results for single sectors............................................................................ 39 

2.3.2 Uncertainties of the 𝒈 vector ........................................................................................ 44 

2.3.3 Sectoral impact to overall model .................................................................................. 44 

2.3.4 Uncertainty values re-evaluation .................................................................................. 47 

2.4 Decision support considering uncertainty ........................................................................... 48 

2.4.1 Case Study 1 – Illustrating impact of uncertainty on the results  .................................. 48 

2.4.2 Case Study 2 – Identifying uncertainty related to specific fuel use .............................. 49 



8 
 

2.4.3 Case Study 3 – Identifying hotspots given uncertainty ................................................. 52 

2.5 Conclusion ............................................................................................................................ 52 

3. Chapter 3. Data analysis in the US LCI database and scenario uncertainty in matrix-based 

models ............................................................................................................................................ 54 

3.1 Introduction of the matrix-based method ........................................................................... 54 

3.2 Definitions of connections and processes............................................................................ 55 

3.3 Matrices mapped from unit processes in the US LCI database ........................................... 57 

3.1.1 Cut-off processes ........................................................................................................... 57 

3.1.2 Cradle-to-gate and gate-to-gate processes................................................................... 58 

3.1.3 Product flows and elementary flows............................................................................. 65 

3.4 Connections in the US LCI database ..................................................................................... 67 

3.5 Comparisons of the interconnections between the US LCI database and the EIO-LCA model

 .................................................................................................................................................... 76 

3.5.2 Classification based on ISIC code .................................................................................. 77 

3.5.1 Number of interconnections in the IO table ................................................................. 78 

3.5.2 Classification based on ISIC code .................................................................................. 79 

3.5.3 Hotspots in the EIO-LCA and comparison results.......................................................... 80 

3.5.4 Comparison with the IO table based on individual processes ...................................... 82 

3.6 Scenario uncertainty estimation in the US LCI database ..................................................... 84 

3.6.1 Scenario uncertainty in US LCI processes...................................................................... 85 

3.6.2 Scenario uncertainties in US LCI industries ................................................................... 94 

3.7 Conclusions for the chapter ................................................................................................. 98 

4. Chapter. LCIA uncertainty in a process-based LCI database ................................................ 100 

4.1 Introduction to LCIA and the comparison between LCIA methods  ................................... 100 

4.1.1 Life cycle impact assessment....................................................................................... 100 

4.1.2 Differences in LCIA methods ....................................................................................... 102 

4.1.3 Matrix-based LCA model and LCIA .............................................................................. 104 

4.1.4  Inventories reporting regarding environmental impacts ........................................... 105 

4.2 Summary of impact categories and substances ................................................................. 105 

4.3 Variability in the impact assessment results in the US LCI database ................................. 112 



9 
 

4.4 Validating substances coverages and variability in the impact assessment results based on 

individual processes ................................................................................................................. 118 

4.5 Impact based inventory reporting criteria  ......................................................................... 135 

4.6 Discussion ........................................................................................................................... 140 

5. Chapter 5. Conclusions and future work .............................................................................. 142 

5.1 Research question and answers ......................................................................................... 142 

5.2 Conclusion .......................................................................................................................... 145 

5.3 Future work ........................................................................................................................ 147 

5.3.1 Analyze the uncertainties of other environmental effects in the matrix-based LCA 

models .................................................................................................................................. 147 

5.3.2 Quantify the relationship between the technology matrix and the environmental 

matrix.................................................................................................................................... 148 

5.3.3 Estimate scenario uncertainty using other LCI databases .......................................... 148 

5.3.4 Test the correlation between number of substances covered and the total impact 

results ................................................................................................................................... 148 

5.3.5 Improving the minimum report value criteria ............................................................ 148 

Appendix ....................................................................................................................................... 149 

References .................................................................................................................................... 235 

 

 

  



10 
 

List of Figures 

 

Figure 2-1: Method used to calculated different B values from different R matrices that has 

substitutes ...................................................................................................................................... 34 

Figure 2-2: Scaled results for 1 million dollars of final demand of sector No. 120 (Petrochemical 

manufacturing). Total energy as well as separated fuel consumptions are provided. 

Abbreviation: NG as natural gas, Petrol as petroleum products, N-F-Elec as non-fossil fuel 

electricity. ....................................................................................................................................... 40 

Figure 2-3: Scaled results of total energy consumption and top 15 energy intense sectors for 

$200k final demand of sector No. 120 (Petrochemical manufacturing). Graph on top is the 𝒈 

values (direct and indirect); the bottom shows the top 15 energy intense sectors for the 𝒈 

values. ............................................................................................................................................. 41 

Figure 2-4: Results of the 𝑩 matrices for all 428 sectors, based on percentage changes  

comparing with default value. Linear scale is used for negative values while base 10 logarithmic 

scale is used for positive values. .................................................................................................... 42 

Figure 2-5: Results of 𝒈 values for all 428 sectors, based on percentage changes compared to 

default value. Linear scale is used for negative values while base 10 logarithmic scale is used for 

positive values. ............................................................................................................................... 43 

Figure 2-6: Scaled results of total energy consumption for approximately 170,000 paper and 

plastic cups ..................................................................................................................................... 49 

Figure 2-7: Results of energy consumption for 1 km concrete and asphalt pavement, error bars 

are the max/min values without outliers ....................................................................................... 51 

Figure 3-1: Definitions of upstream and downstream connections in this study, shown with one 

downstream connection and two upstream connections for a hypothetical Process A. .............. 56 

Figure 3-2: Number of upstream connections for each process in the US LCI database. The inset 

provides greater detail for those processes with 10 or less process inputs. Values on the x axis 

indicate the number of connections in which each process falls. For example, the third bar on 

the main graph shows that there are 272 processes that have a range from 6 to 10 upstream 

connections. Results are shown separately for Cut-off (blue), and non-Cut-off processes 



11 
 

(orange). The bar on the zero value is the number of processes with no upstream connection. All 

Cut-off processes have zero upstream connections, due to the inventory unavailability. ........... 69 

Figure 3-3: number of downstream connections for each process in the US LCI database. The 

inset shows processes with 10 or less downstream connections. Result are shown separately for 

cut-off (blue) and non-cut-off processes (orange). Values on the x axis indicate the number of 

connections in which each process falls. For example, the third bar on the bottom graph shows 

that there are 19 processes that have connections ranging from 11 to 20; 9 of these processes 

are “cut-off” processes. The bar on the zero value is the number of processes with no 

downstream connections. .............................................................................................................. 70 

Figure 3-4: different types of connections among the 1471 processes in the US LCI database. The 

chart on the right shows the different types of connections shared by the 1471 processes, the 

figure on the left shows processes that have fuel (green circle), electricity (brown circle) or 

transportation (blue circle) as inputs, for the processes that have one or more than one 

upstream or downstream connections.  ......................................................................................... 74 

Figure 3-5: Numbers of connections for agriculture, industrial and transportation sectors (331 in 

total) in the IO table (service sectors not considered). The left histogram shows the numbers of 

downstream connections; the right histogram shows the numbers of upstream connections.  .. 79 

Figure 3-6: highlights of connections in IO table (left) and US LCI database (right). Values 

between the lowest and highest were highlighted in 3 color scales: white (lowest), yellow (0.01% 

of the highest), and red (highest). Grey area were processes in the US LCI database that have no 

accurate matches in the IO table, such as “coal, combusted in industrial boiler” process. .......... 81 

Figure 3-7: Overall scenario uncertainty caused by using direct alternative electricity inputs. The 

default electricity input for each process was the electricity input from the original inventory. 

Left: fossil CO2 emissions, as percentage difference from the default, for 876 gate-to-gate 

processes (without cutoff processes). Right: the emissions for each process were calculated by 

using 78 grid electricity and 21 fuel electricity scenarios, without the outliers caused by using 

“Electricity, onsite boiler, hardwood mill, average, NE-NC”. Each scenario used one of the 99 

electricity generation processes as electricity input. ..................................................................... 88 



12 
 

Figure 3-8: Overall scenario uncertainty caused by using both direct and indirect alternative 

electricity inputs. The default electricity input for each process was the electricity input from the 

original inventory. Left: fossil CO2 emissions, as percentage difference from the default, for 876 

gate-to-gate processes (without cutoff processes). Right: the emissions for each process were 

calculated by using 78 grid electricity and 21 fuel electricity scenarios, without the outliers 

caused by using “Electricity, onsite boiler, hardwood mill, average, NE-NC”. Each scenario used 

one of the 99 electricity generation processes as electricity input.  .............................................. 89 

Figure 3-9: Overall scenario uncertainty caused by using alternative electricity inputs. Y-axis 

represents 876 gate-to-gate processes (without cutoff processes) in the US LCI database. Values 

on the x-axis are the ratios of total to direct fossil CO2 emissions................................................. 90 

Figure 3-10: Fossil CO2 emissions for one metric ton of “Iron, sand casted”. Left: scenario 

uncertainty caused by using grid electricity. Right: scenario uncertainty caused by using fuel 

electricity. The top graphs show the total emissions. The bottom graph shows the results from 

the top ten product contributors under alternative scenarios (markers). .................................... 92 

Figure 3-11: Total fossil CO2 emissions for one metric ton of “Iron, sand casted”, considering four 

different cases. ............................................................................................................................... 93 

Figure 3-12: total fossil CO2 emissions, in kg, for 1 ton of “Benzene, at plant” by using alternative 

scenarios in electricity and transportation industries. The default values are circled and the 

default inputs are listed.................................................................................................................. 94 

Figure 3-13: fossil CO2 emissions, in kg, for 1 metric ton of Manufacture of basic iron and steel 

category (top), and Manufacture of basic chemicals (bottom)  ..................................................... 97 

Figure 3-14: legend for Figure 3-13. ............................................................................................... 97 

Figure 4-1: Elements of the LCIA phase provided in ISO 10040 (ISO 2006b) ............................... 101 

Figure 4-2: Numbers of Global warming (GW) substances in the gate-to-gate process from the 

US LCI database. The processes were sorted from the largest number of substances (left) to the 

smallest (right). The two values for each process are the maximum and minimum number of 

substances in 14 popular impact assessment methods (see Table 4-2). The “cut-off” processes in 

the US LCI database are not shown in this figure, as these processes do not have any output 



13 
 

component. Also omitted are the processes without GW substances after No. 360. The first 10 

processes’ names are shown in the table.  ................................................................................... 122 

Figure 4-3: Non-zero values for the US LCI processes that have the largest numbers of global 

warming (GW) substances. The marked cells in the tables represent non-zero values. Cells with 

red borders are reported as non-zero values by the EPA GHGRP. The direct and indirect tables 

were obtained from the 𝐁 matrix, and 𝐠 vector for each process respectively (the non-zero 

values are highlighted in orange). ................................................................................................ 124 

Figure 4-4: Non-zero values for the US LCI processes that have only one global warming (GW) 

substance. The highlighted cells in the tables represent non-zero values. Cells with red borders 

are reported as non-zero values by the EPA GHGRP. The process number corresponds to the x-

axis in Figure 4-2. .......................................................................................................................... 125 

Figure 4-5: GW values in kg CO2 eq perfunctional unit, from 14 impact methods, marked by the 

different symbols described in the legend.  Processes No.1 to No.10 are shown on the left, and 

processes No. 11 to No. 50 are shown on the right. The processes are sorted by total impact 

results including direct and indirect impacts. The first 10 processes’ names, industrial categories, 

functional units, and original index numbers from the US LCI database are listed in the table.  127 

Figure 4-6: GW values in kg CO2 eq per functional unit from 14 impact methods for processes 

No. 50 to No. 620. The processes are sorted from high to low by the total impact results 

including direct and indirect impacts. Other processes with zero GW impact from any of the 

methods are not shown. .............................................................................................................. 128 

Figure 4-7: GW impact values in kg CO2 eq  per ton-km for 190 transportation processes in the 

US LCI database. ........................................................................................................................... 130 

Figure 4-8: GW impact values in kg CO2 eq per kWh for 98 electricity processes in the US LCI 

database. ...................................................................................................................................... 130 

Figure 4-9: GW impact values in kg CO2 eq per kg for 23 plastic material processes in the US LCI 

database ....................................................................................................................................... 131 

Figure 4-10: Total GW impacts for the “Crude palm kernel oil, at plant” process calculated from 

14 different methods. Two of the 14 methods listed in the figure have different covered 

substances (The markers are the same as in Figure 4-5). ............................................................ 132 



14 
 

Figure 4-11: Testing the relation between the results from Global Warming and substance 

completeness proportions. The marker color indicates different alternative scenarios. The black 

line is the fit obtained from a linear weighted least squares regression..................................... 134 

 

  



15 
 

List of Tables 

Table 2-1: Energy prices used in this study .................................................................................... 28 

Table 2-2: Summary of different data sources and assumptions used in the uncertainty range 

model. Default value is annotated.  ................................................................................................ 35 

Table 2-3: Detailed descriptions of assumptions used in data sources ......................................... 37 

Table 2-4: Result from controlled tests, sectoral results (Million TJ) ............................................ 46 

Table 2-5: Energy Consumption for 1km concrete pavement ....................................................... 50 

Table 2-6: Energy Consumption for 1km of asphalt pavement ..................................................... 50 

Table 3-1: Inputs in the gate-to-gate and cradle-to-gate processes for PET production from 

Franklin Associates’ original LCA study. The two processes differ in material usage and inputs.. 59 

Table 3-2: Inputs in the gate-to-gate and cradle-to-gate processes for PET production provided 

by the US LCI database. Italics are used to mark the differences from Table 3-1. The inputs for 

the cradle-to-gate process are broken into upstream raw elementary flows, as opposed to the 

inputs as product flows from the original LCA study.  .................................................................... 60 

Table 3-3: top ten fossil CO2 emissions processes for producing 1 kg of Polyethylene 

terephthalate, resin, at plant (PET), calculated from the gate-to-gate PET process. .................... 65 

Table 3-4: process and resource elementary flows ....................................................................... 66 

Table 3-5: Processes with more than 20 downstream connections in the US LCI database. ........ 72 

Table 3-6: Processes with more than 20 downstream connections in the US LCI database, sorted 

by three industrial categories......................................................................................................... 73 

Table 3-7: top 5 inputs for Cement manufacturing, sorted by direct economic values in the IO 

table, and mass values in the US LCI database, respectively. ........................................................ 83 

Table 3-8: Fossil CO2 emissions to produce 1 metric ton of Portland cement, calculated from EIO-

LCA model (left) and the US LCI database (right). The shaded rows show the total CO 2 emissions, 

including both direct and indirect emissions. The remaining rows show the top 10 emissions 

from different sectors or processes. .............................................................................................. 84 

Table 3-9: Mean and standard deviation of the minimum or maximum values for all 876 

processes, based on four different cases ....................................................................................... 91 



16 
 

Table 4-1:  Numbers of characterized substances in major impact categories (columns) for 45 

impact assessment methods (rows). The displayed methods are embedded in the SimaPro 

software (version 8.3). Highlighted rows with red and Italic font are the methods chosen for 

demonstration in this study. ........................................................................................................ 107 

Table 4-2: characterization factor values (in kg CO2 eq) for all 110 global warming (GW) 

substances generalized from 14 popularly used impact methods. ............................................. 109 

Table 4-3: Elementary flows for Mercury with different impact regions and compartments in the 

US LCI database ............................................................................................................................ 114 

Table 4-4: GW substances in the US LCI database and their characterization factors in different 

methods........................................................................................................................................ 115 

Table 4-5: Summary of the number of substances and matching elementary flows in five 

selected impact categories for the US LCI database. ................................................................... 117 

Table 4-6: Mandatory Greenhouse gases reported to the US EPA GHGRP for each industry. Cell 

listed as “EPA” are emissions reported under the mandatory reporting rule. Cells highlighted 

with red color are emissions that are not included in any of the US LCI process within each 

industry. ........................................................................................................................................ 120 

Table 4-7: GW substances for the “Crude palm kernel oil, at plant” process, and impacts for the 

substances calculated from 14 impact methods. The cells with larger values are highlighted with 

darker background. ...................................................................................................................... 132 

Table 4-8: Maximum characterization factor value and new cut-off criteria for each substance. 

Cut-off criteria were based on 5% and 1% of total GW for 1kWh “Electricity, bituminous coal, at 

power plant” The first 34 GW substances are shown as examples. ............................................ 137 

 

  



17 
 

1. Chapter 1. Introduction and Background 

1.1 Motivation 

Life cycle assessment (LCA) is a decision-support technique for practitioners, including policy 

makers and industry, to assess the environmental impacts of a product or process. The results 

from LCA studies can aid the decision-makers by providing quantitative environmental impact 

results (Hellweg and Canals 2014). LCA software tools, such as OpenLCA, SimaPro, and CMLCA, 

have been designed for conducting LCA studies and are popularly used by environmental 

specialists and decision makers. These tools provide accessible LCA results and have lower 

barriers to be understood and handled compared to the scattered scientific LCA reports published 

in academic journals. However, the user-friendly interfaces of LCA tools have insufficient 

uncertainty information to make the users fully understand the underlying information behind 

the data and the results. This lack of sufficient uncertainty information limits the accuracy of 

decision-making based on the results provided by the LCA tools.  

The LCA tools often incorporate matrix-based methods in the analyses of LCA results. Due to the 

complexity of matrix-based methods, the uncertainty estimation in the LCA tools are hard to be 

addressed. The existing tools use only empirical judgments and simulations to estimate the 

uncertainties in the LCA tools. The estimated uncertainties from such methods are hard to 

interpret and can be easily ignored by the users. In order to provide the users with more reliable 

uncertainty results in LCA tools, more robust uncertainty estimation methods for matrix-based 

models need to be developed. More accurate uncertainty information for LCA tools needs to be 

provided. 

This dissertation attempts to analyze the uncertainty associated with the data inputs and model 

outputs of matrix-based LCA tools. A method using real-life data rather than empirical estimation 

based on the quality of the deterministic data is developed, and the uncertainties of matrix-based 

LCA tools are estimated based on the new method. In addition, the uncertainties from the 

empirical estimation method are applied to current available full datasets used in the input-

output matrix-based model to compare with the uncertainty results estimated from the new 

method.  
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In this study, a new method to estimate the uncertainty in matrix-based LCA models will be 

provided. The method is based on more reasonable estimation and assumptions, and provides  

more robust uncertainty results in matrix-based LCA models. The proposed method can be easily 

applied to both process matrix LCA and input-output LCA models. The uncertainty results will help 

matrix-based LCA tool users have an insight of the importance of uncertainty in LCA models, and 

provide more understandable uncertainty results  to support the decision-making process 

associated with LCA.  

 

1.2 Introduction 

1.2.1 Life cycle assessment  

Life Cycle Assessment (LCA) is a method that computes and evaluates the inputs, outputs , and 

environmental impacts from design to disposition of a product or process (Guinee 2002; ISO 

2006a). The guidelines developed by the International Organization for Standardization (ISO) 

regulate the minimum requirements in the principles and framework of LCA studies (ISO 2006b). 

Based on the ISO standards ISO 14040 and 14044, LCA studies involve four main phases: 1) the 

goal and scope definition that defines the context of the study, 2) the life cycle inventory (LCI) 

that creates an inventory of stages and flows, 3) the life cycle impact assessment (LCIA) that 

evaluates the environmental impacts based on the inventory, and 4) the interpretation that 

systematically interprets the results (ISO 2006a). Three primary types of LCA methodologies have 

been applied to determine environmental impacts and help in decision making: process-based 

LCA that analyzes the impacts from the processes involved in a study, economic input-output LCA 

(IO-LCA) that uses economic exchange values to trace the total impacts from the supply chain, 

and hybrid LCA that combines process-based and input-output-based methods to combine and 

expand the perspective of the two methods (Hendrickson et al. 1998) (Hertwich 2005) (Finnveden 

et al. 2009) (Pairotti et al. 2014).   

Following the four stages and conducting an LCA study in each of the three primary types is time 

consuming; this is a complex processes that requires data gathering, study scoping, inventory and 

impact estimation as well as result interpretation (Ong et al. 2001). Different LCA databases and 
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LCA tools have been developed to help the users perform LCA studies in more efficient and 

convenient ways. LCA software tools such as Gabi, SimaPro, BEES, EIO-LCA and LCA databases 

such as Ecoinvent and U.S. LCI use existing inventory data, and include various models and 

methods to quickly generate systematic results for users (GmbH 2006) (Consultants 2008) (NIST 

2009) (National Renewable Energy Laboratory 2012).  

1.2.2 Matrix-based LCA models 

The efficiency of LCA analysis can be improved by scaling the inventory in matrix-based models. 

Compared to scattered scientific LCA models, matrix-LCA models provide accessible results and 

have lower barriers to be understood and handled. The Life Cycle Inventory (LCI) data from 

existing LCA databases (U.S. LCI, ELCD and Ecoinvent) can be mapped on to a matrix model. 

Recently, the matrix-based LCA models have been widely accepted and incorporated to LCA 

software tools (Heijungs and Suh 2006).  

Matrix-based methods are applied to Input-output (IO) LCA models. IO LCA is a method that 

combines LCA and the economic input-output approach, which is applied in the principles of 

Input-output models developed by Leontief (Leontief 1970). The IO method scales the direct 

requirement exchanges in dollar values between industrial sectors into matrix  𝑨 , and uses 

Leontief inverse (𝑰 − 𝑨)−𝟏  to include the upstream requirements of the sectors. The 𝑨 matrix can 

be the regionally specified input-output table from economic surveys. For example, the 2002 

Standard Use Table provided by the US BEA is used in the IO-LCA model developed at Carnegie 

Mellon University. IO-LCA applies the environmental effects from the industries to the Leontief 

inverse and estimates the total environmental effects from productions in the industries.  

The process-based LCA can also apply the matrix methods to scale the inventories and provide 

both direct and indirect effects. The principles are the same for the two different models with 

slight differences. First, the process-based LCA considers the exchanges between product flows, 

not industrial sectors. Second, in process-based LCA, the direct requirements are scaled into the 

𝑨 matrix based on physical units. In this way, the exchanges between processes are based on the 

functional units of the production, instead of dollar values as used in IO-LCA models. Third, instead 

of Leontief inverse  (𝑰 − 𝑨)−𝟏 , the inverse of the 𝑨  matrix is used in estimating the total 
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requirements. Despite the three minor differences, the two models have the same advantage of 

efficiently providing both direct and indirect effects. However, both models also suffer from the 

lack of uncertainty information.   

In this study, the parameter uncertainties of these two models are accessed. I use the US 2002 

Economic input-output life cycle assessment (EIO-LCA) model’s energy consumption category to 

implement and demonstrate the utility of the uncertainty estimation method in the IO LCA model. 

The US LCI database are incorporated into matrices to provide the uncertainties in the process -

based LCA methods.  

1.2.3 Uncertainty in LCA 

LCA practitioners have long been trying to consider uncertainty information in LCA studies to give 

more robust conclusions (Huijbregts 1998; Lloyd and Ries 2007; Williams et al. 2009). Huijbregts 

et al. (2003) outlined three sources of uncertainty: parameter uncertainty, scenario uncertainty, 

and model uncertainty. Parameter uncertainty arises from using inaccurate data and weighting 

factors in the LCI analysis (Huijbregts 1998). Scenario uncertainty includes different choices such 

as scope, system boundaries, and allocation methods. Model uncertainty is caused by spatial 

differences as well as characterization factors.   

These types of uncertainties are propagated to the life cycle results via different methods, such 

as probabilistic (Bullard et al. 1988; Raa and Steel 1994; Ali and Santos 2014), fuzzy (Tan 2008; 

Cruze et al. 2012), and range analysis (Chevalier and Téno 1996; Geisler et al. 2005; Deng et al. 

2011; Bawden et al. 2015). In probabilistic methods, random samples are generated by 

distributions that are defined to represent uncertainties in the inventory data. Each distribution 

is estimated or chosen based on its parameters such as mean, standard deviation, and distribution 

type (e.g., normal or uniform). The parameters and type of distribution can be estimated with 

different methods, including: applying the regression results of various data sets (Lenzen 2001; 

Yamakawa and Peters 2009; Lenzen et al. 2010), assumptions made for estimating the impact 

multipliers (Zhang, et al 2014), or by using the pedigree matrix approach (Weidema and Wesnæs 

1996). The fuzzy number approach uses fuzzy logic to estimate uncertainty in the degree of 

plausibility of data (Tan 2008). The range method applies multiple values for each process to 
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represent the uncertainty. The multiple values are collected for each process and are treated 

equally as possible inputs in the inventory resulting in a range of possible values in the final answer.  

In current practice, parameter uncertainty in matrix-based LCA models has been addressed by 

using a pedigree matrix approach (Weidema and Wesnæs 1996). This approach determines the 

parameter uncertainty from the data indicator scores, which quantitatively estimate the quality 

of the data sources. In practice, this approach requires a considerable number of assumptions 

and simulations. Some LCA software tools like SimaPro, include this analysis. However, estimating 

parameter uncertainty in this way is problematic, in two ways. First, the uncertainty distributions  

from the inventory data are arbitrary. The data indicator scores and pedigree matrix approach 

focus on quantifying the quality of each data point’s data source, rather than the quality of the 

data points. The distributions are not estimated from real data samples, but rather empirical 

judgement. Second, the uncertainty results are hard to interpret. Generally, LCA practitioners are 

not capable to easily understand the methodology of parameter estimation and simulation. It is 

hard to interpret the uncertainty in the results without knowing the causes. 

Scenario and model uncertainties have not yet been addressed in matrix-based LCA models. Here, 

the scenario uncertainty can be caused by scaling inventories with different goal and scope to the 

same matrix; while the model uncertainty can come from different impact assessment methods  

being incorporated into the software. Compared with the parameter uncertainty, the scenario 

and model uncertainties from matrix-based LCA models are more easily overlooked. When a 

matrix-based model scales inventories with different goal and scope together without any 

distinction, the users are unable to realize the result contains scenario uncertainty. Similarly, the 

model uncertainty cannot be identified unless the potential uncertainty results are given directly 

to the users. In current practice, LCA tools that apply matrix-based methods generally do not 

clearly provide potential scenario and model uncertainties to the users.  

1.2.4 Life cycle impact assessment (LCIA)  

Life cycle impact assessment (LCIA) is a phase of life cycle assessment (LCA) (ISO 2006b). This 

phase seeks to evaluate the environmental impacts from a product system (Owens 1997). To 
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achieve this evaluation, Life cycle inventory (LCI) data are associated with environmenta l impact 

categories (ISO 2006b).  

Multiple impact assessment methods have been developed for different purposes of the LCA 

studies. Early impact assessment developments were based on the only available reference - ISO 

standard (Baumann and Rydberg 1994). In 1999, the SETAC-Europe working group provided 

guidance to impact assessment method developments, in order to model the best available 

impact assessment method (Udo de Haes et al. 1999). The concepts of impact assessment 

framework, and principles of characterization factor modeling are widely accepted and adapted 

in LCIA developments. Many LCIA methods have been developed since, some of which are 

updated regularly. These methods provide characterization factors to transform environmental 

effects to quantified environmental impacts. In matrix-based LCA models, to evaluate the total 

environmental impact results for products under study, the LCIA methods are applied to the 

inventories and effects.  

LCIA methods provide different characterization vectors to transform the effects. The differences 

in the characterization factors are the contributors to the model uncertainties in matrix-based 

LCA models. LCA studies have focused on the uncertainties in the LCIA results regarding the 

differences in LCIA methods. Baumann and Rydberg (1994) compared three early LCIA methods: 

ecological scarcity (ECO), environmental theme (ET), environmental priority strategies in product 

design (EPS). For these three methods, Baumann and Rydberg looked at the differences between 

the calculation methods for characterization factors. Pennington et al. (2004) also systematically 

reviewed the differences between multiple impact assessment methods regarding their models 

and methodologies. More recently, some LCA studies have considered the variances in the impact 

results caused by choosing different impact methods (Brent and Hietkamp 2003; Bovea and 

Gallardo 2006; Cavalett et al. 2013; Owsianiak et al. 2014; Martinez et al. 2015). All of these 

studies emphasized the importance of choosing the best-suit impact assessment method for the 

goal and scope of the study. However, no LCA study has focused on understanding the model 

uncertainty caused by using different LCIA methods in matrix-based LCA models.  
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1.3 Dissertation outline and research questions 

In this study, I introduce methods to comprehensively address the three types of uncertainties  in 

matrix-based models. For reference, I have applied our methods to two different matrix-based 

models: the IO-LCA model, and the process-based LCA model.  

Following the introduction (Chapter 1), the dissertation is divided into three research chapters 

and a concluding chapter, followed by appendices and references. The main chapters and the 

research questions they explore are outlined below. 

In chapter 2, the parameter uncertainty in matrix-based LCA models is estimated using an IO LCA 

model. Key research questions include:  

 What are the uncertainty ranges of direct and indirect life cycle energy consumptions over 

the supply chain of the U.S. industries based on economic input-output models with public 

available data?  

 What is the impact of each individual industry’s uncertainty on results of other industries?  

 Which industries have the largest uncertainties in the model? How to reduce the 

uncertainties of these industries? 

In chapter 3, the parameter uncertainty is estimated for process -based LCA inventories 

incorporated into the matrix-based LCA model. Chapter 3 also introduces the scenario uncertainty 

in the same model. Key research questions include:  

 In the current US LCI database, how many processes flows contribute to the indirect 

environmental effects when applied to matrix-based LCA models? 

 What are the total CO2  emissions ranges from US industrial processes by considering 

different scenarios from current process-based life cycle inventory databases?  

 What are the ranges of total CO2 emission ranges from aggregated US industrial processes 

calculated from current process-based life cycle inventory databases?  

In chapter 4, the model uncertainty is estimated based on the differences in the LCIA methods. 

Key research questions include:  



24 
 

 In current LCIA methods, how many substances are covered? How many of these 

substances are included in elementary flows in the US LCI database? Does the US LCI 

database have enough flows that are characterized in impact assessment methods to build 

a robust inventory? 

 For processes in current process-based LCA databases, what are the uncertainties of direct 

and indirect environmental impacts caused by different impact characterization factors 

used in LCIA?  

 What are the contributions of different characterization factor values and coverages of 

substances from different methods to the LCA result?  

 What should be the new reported value in LCI for different substances considering impact 

assessment results?  

 

 

2. Chapter 2. Parameter uncertainty in the EIO-LCA model 

2.1 Parameter uncertainty in matrix-based tools 

Parameter uncertainty arises from using inaccurate data and weighting factors in life cycle 

inventory analysis (Huijbregts 1998). The parameter uncertainties in the LCA inventories are 

propagated to life cycle results via different methods, such as probabilistic (Bullard et al. 1988; 

Raa and Steel 1994; Ali and Santos 2014), fuzzy (Tan 2008; Cruze et al. 2012), and range analysis 

(Chevalier and Téno 1996; Geisler et al. 2005; Deng et al. 2011; Bawden et al. 2015). In 

probabilistic methods, random samples are generated by distributions that are defined to 

represent uncertainties in the inventory data. Each distribution is estimated or chosen based on 

its parameters such as mean, standard deviation, and distribution type (e.g., normal or uniform). 

The parameters and type of distribution can be estimated with different methods, including: 

applying regression results of various data sets (Lenzen 2001; Yamakawa and Peters 2009; Lenzen 

et al. 2010), assumptions made for estimating the impact multipliers (Zhang, et al 2014), or by 

using the pedigree matrix approach (Weidema and Wesnæs 1996). The fuzzy number approach 
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uses fuzzy logic to estimate uncertainty in the degree of plausibility of data (Tan 2008). The range 

method applies multiple values for each process to represent the uncertainty. The multiple values 

are collected for each process and are treated equally as possible inputs in the inventory resulting 

in a range of possible values in the final answer.  

In this study, I introduce a method that adapts principles of the range method to propagate 

uncertainty in matrix-based models, as such methods are used in most LCA software tools to 

manage data and generate results. The focus in this study is on propagating and representing data 

(parameter) uncertainty, as applied to an input-output matrix based model. A range of alternative 

values developed based on different data sources with different assumptions are considered in 

the inventory. The data are derived from publicly available data sources such as government 

agencies, published research articles, and reports. Different assumptions are used to convert or 

estimate the raw data from these sources to derive values in an appropriate form for the model. 

Values calculated were used to estimate changes in results from the model’s current deterministic 

values. A new way of visually presenting results is also introduced.   

I use the US 2002 Economic input-output life cycle assessment (EIO-LCA) model’s energy 

consumption category to implement and demonstrate the utility of the method. The EIO-LCA 

model is used because it has a clear boundary, which includes all US industrial sectors (428 in 

total), providing consistency for comparison between sectors. Although, there are many potential 

impacts that could be model choosing energy consumption i s based on the on the high degree of 

data availability, and because it is a fundamental component to estimate other inventory 

categories, such as greenhouse gas emissions.  

In an IO-based matrix model, Equation 1 is used to estimate the environmental effects from all 

sectors defined in the system. In Equation 1, 𝒇 is a vector of requirement defined by the users; it 

is the amount of direct purchase from the industry in dollar value. For an economic system that 

has n industries, the 𝒇 vector has n by 1 dimensions. The 𝑨 matrix is n by n, each column or row 

represents an industry in the system. The 𝑨 matrix can be the regionally specified input-output 

table from economic surveys.  For example, the 2002 Standard Use Table (the Use Table) provided 

by US BEA (ref) is used in the IO-LCA model developed Carnegie Mellon University (ref). The 𝑩 
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matrix is an m by n matrix, the rows are m different environmental effects cause by producing 

dollar units of product in each industry (represented by impact/$). The resultant vector 𝒈, has m 

by 1 dimensions and contains the m total environmental effects for the final demand 𝒇. For each 

environmental effect ( 𝒊 = 𝟏, … , 𝒎 ), the direct and indirect effects can be separated by the 

Hadamard (entrywise) product of the transpose of row 𝒊 in the 𝑩 matrix and (𝑰 − 𝑨)−𝟏𝒇:  

Equation 1:  𝒈 =  𝑩(𝑰 − 𝑨)−𝟏𝒇 

Equation 2:  𝒉𝒊 =  𝑩𝒊 
𝑻 ∘ (𝑰 − 𝑨)−𝟏𝒇 

This approach provides a method to quickly scale large inventory data to estimate the final impact, 

saving users time and effort. As the direct and indirect effects can be separated, the large indirect 

effects contribute to the total effects can be sorted to identify the hotspots in the upstream 

production. LCA tools, such as EIO-LCA, can provide the users these hotspots in the results; the 

hotspots are straightforward and can help to identify the important upstream industry to reduce 

the effects. However, LCA tools fail to emphasize uncertainty, which is critical in determining the 

impact of LCA results and conclusions (Wang and Work 2014). Common LCA tools typically show 

only deterministic results; since no uncertainty is displayed, users or the study audience may 

assume that there is no relevant uncertainty.  

The following sections describe the methods used in developing these uncertainty-based 

estimations in the 2002 EIO-LCA model with respect to energy consumption. The detailed 

information of sectors in the EIO-LCA model are provided in Table S1 in the Appendix.  

2.2 Material and Methods  

This section explains the method used to evaluate 𝑩 matrices. I also provide a description of the 

data sources and assumptions. Finally, the method used for propagating the uncertainty are 

introduced.   

2.2.1 Values in the R matrix 

In a deterministic input-output model, an energy 𝑩 matrix contains the unit energy consumption 

of each industry sector based on the economic exchange between industries, making the unit in 
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the energy 𝑩 matrix Joules/$. Two steps are involved in estimating values in a 𝑩 matrix: first, 

annual energy consumption values for each industry are estimated from available data sources; 

second, the energy values are normalized (divided) by the total annual economic output of the 

industry sector. In the new method, instead of a single deterministic value, multiple energy 

consumption values were derived by using various available data sources to generate an energy 

consumption range for each sector. Those different consumption values were estimated from 

different sources like survey reports, e.g., with different assumptions about fuel prices. The 

detailed estimations of data points are discussed below.   

2.2.2 Data sources 

Energy consumption values were calculated from various publically available data sources. From 

the different data sources as well as various assumptions (see section Assumptions and 

Calculations), multiple values were developed for each sector. For the energy consumption 

category in the 2002 EIO-LCA model, data from 6 publicly available government agency sources 

were used:  

U.S. Bureau of Economic Analysis (US BEA) 

U.S. Census Bureau (Census) 

U.S. Department of Energy, Energy Information Administration (US EIA) 

U.S. Environmental Protection Agency (US EPA) 

U.S. Department of Agriculture (USDA) 

National Transportation Research Center (NTRC). 

The 2002 Standard Use Table (the Use Table), provided by US BEA, has expenditure data for the 

energy production sectors (in million $) for all 428 US industrial sectors. An advantage of the Use 

Table is the availability of sectoral level data for electricity, coal, petroleum fuels and natural gas 

consumption for all 428 sectors. Due to the completeness of the data, the Use Table has 

traditionally been used as a major data source in IO-based LCA models (including the EIO-LCA 

model). Values in the Use Table were converted from expenditure values to physical units with 

various price assumptions.  
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Table 2-1 shows the prices used in all the sectors when no more specific price data is available. 

Values are provided by U.S. Energy Information Administration (Forms EIA-782A, "Refiners'/Gas 

Plant Operators' Monthly Petroleum Product Sales Report" and EIA-782B, "Resellers'/Retailers' 

Monthly Petroleum Product Sales Report). The prices were used to convert fuel expenditure 

values in U.S. dollars to energy consumption values in physical units. 

Table 2-1: Energy prices used in this study 

Fuel type Value Unit 

Coal 1.25 $/MBtu 

Natural Gas 4.02 $/1,000 cu. Ft 

Motor Gasoline 0.947 $/gal 

Kerosene-Type Jet Fuel 0.721 $/gal 

Kerosene 0.99 $/gal 

No. 1 Distillate 0.828 $/gal 

No. 2 Distillate 0.759 $/gal 

No. 2 Diesel 0.762 $/gal 

No. 2 Fuel Oil 0.737 $/gal 

No. 4 Distillate 0.657 $/gal 

Residual Fuel Oil 0.569 $/gal 

The U.S. Census Bureau was another major data provider across nearly all sectors. Detailed 

reports including Industry Series Reports for mining, construction, and manufacturing sectors; 

Core Business Statistics Series; and the Business Expenses Survey were applied to evaluate energy 

consumption values for agriculture, mining and mineral, construction, utility, manufacturing, 

transportation and service industry categories. Values from the Census required conversion from 

North American Industry Classification System (NAICS) codes to IO codes, as well as from 

expenditure values to physical units with price assumptions, if the values were provided by 

expenditure value.  

Some data sources were used only for a broad industry category. For instance, two energy surveys, 

the US EIA’s Manufacturing Energy Consumption Survey (MECS) and Commercial Buildings Energy 
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Consumption Survey (CBECS) were major data sources for manufacturing and service sectors. 

MECS provides detailed fuel and electricity usage in both physical units and expenditure dollar 

values. CBECS provides energy consumption and expenditure values for commercial buildings. 

The values are in a form of building types aggregated by principal building activities, such as 

education, food services and health care. These two surveys have the disadvantage that some of 

the values were aggregated to higher-level sectors, which required allocation in order to provide 

values at the 428 industrial sector level.  

Values from US EPA, USDA and the Transportation Energy Data Book published by National 

Transportation Research Center (NTRC) were used for energy estimation for utility, agriculture, 

and transportation sectors. The data gathered from these different data sources were processed 

by recalculating, allocating or aggregating with assumptions. A full report of how the data were 

processed can be found at http://www.eiolca.net/docs/ (Chen et al. 2016). 

2.2.3 Assumptions and calculations 

Applying the range method, different values were calculated to form alternative 𝑩  matrices, 

rather than using one deterministic 𝑩  matrix to estimate a deterministic 𝒈  vector. These 𝑩 

matrices were calculated from different data sources with different calculation assumptions. The 

methods vary across sectors, but generally include price assumptions for unit conversion, 

allocation for aggregated values in raw data, and missing raw data evaluation. 

Energy consumption values from different data sources were not necessarily in physical energy 

units. For instance, expenditure values were commonly provided, as in the Use Table. In these 

cases, data were converted to physical units of energy with fuel prices. As price values were not 

always available for individual sectors, sectors were grouped into categories where one of its 

members’ energy price was known. For instance, CBECS provided fuel prices based on building 

types, the price values for the building type “education” was assigned to three sectors: education 

services, social assistance, and national security & international affairs. This a ssignment was 

based on the definition of the building type “education” from CBECS (US EIA 2003). 
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Allocation was required when the energy data was at an aggregate level compared to that needed 

for the EIO-LCA model. These values were allocated into their sub-sectors using allocation factors 

that were situation dependent. For example, while MECS provided energy consumption values 

for manufacturing sectors, they were often at the 3-digit NAICS code level rather than the 6-digit 

level needed for the model. In these cases, fuel expenditures in dollars from the detailed Use 

Table were used as allocation factors to estimate the 6-digit sectoral fuel consumption. The 

assumption presumes that sectors within an aggregate industry sector have similar costs of 

energy. Fuel use values were allocated from the 3-digit to 6-digit sector level by considering the 

dollar purchases of the fuels of each commodity sector in the model from the relevant industry. 

For example, in the Food sector (3-digit NAICS code 311), if sector 311111 (6-digit NAICS code) 

represented 90% of purchases from the Coal mining sector for all the sectors beginning with 311, 

then 90% of the coal use would be allocated to sector 311111.  

Some data sources provide reports with partially withheld data, in these cases, missing data were 

estimated using different methods, such as adapting data from previous years. In the US Census’ 

Industry Series Reports for mining, the physical units of energy consumption for a few sectors 

were withheld. Two general methods were used to estimate the missing values: 1) deriving 

missing values based on logical deductions; 2) the energy expenditure ratio of the sector to the 

total mining category.  

The uncertainties in the 𝑩 matrix are then propagated through the model to calculate the life 

cycle final results. The direct and indirect (total) consumption is the value in the 𝒈  vector, 

calculated by Equation 1. Instead of using only one 𝑩  matrix, I used various 𝑩  matrices to 

estimate different 𝒈 vectors; those B vectors were used to form the ranges. Besides the default 

matrix, which was chosen as a set of values falling in the middle of all the available data sources, 
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and is generally the current EIO-LCA deterministic results with a few exceptions1, alternate 𝑩 

matrices were formed using data from one data source and calculated with the one assumptions. 

This enables investigators to make different assumptions to select the 𝑩 matrix values that meet 

the purpose of their analyses. Presenting results calculated from same data source/assumptions 

can more clearly present the overall uncertainty for users, and avoid weighting methods. Table 

2-2 and Table 2-3 show the summary of different assumptions and data sources used in each 

alternative 𝑩 matrix (USDA 2002a; Census 2007a; MECS 2002; NTRC 2014; EIA 2004).  

A brief description of data sources and assumptions used to convert values are listed below; a 

more detailed document can be found at  http://www.eiolca.net/docs (Chen et al. 2016). 

 USDA: United States Department of Agriculture (USDA) 2002 Census of Agriculture 

provided the expense of total gasoline, fuel and oil (but not electricity) in dollar values for 

agriculture sectors in its report (USDA 2002b). Prices in Table S1 are used to convert the 

energy expenditure values to physical units.  

 Use Table 1: the US 2002 Standard Use Table (the Use Table) provided by Bureau of 

Economic Analysis (BEA 2002) has the detailed expenditure values from other sectors to 

one sector (in million dollars). In the Table, the purchases from Coal mining, Power 

generation, Natural gas distribution, and Petroleum refinery sectors for all other 

remaining sectors are used as the energy purchase values. Prices in Table S1 are used to 

convert the energy expenditure values to physical units.  

 Use Table 2: values in the Use Table are used as the energy purchase values. Different 

prices are used to estimate energy consumption values. The prices are provided by the 

2002 Manufacturing Energy Consumption Survey (MECS 2002), and the Commercial 

                                                 

1 A default value in the analysis represents the base case of the percentage change. The default value for 

each sector was chosen as a set of values falling in the middle of all the available data sources. In most of 

the cases, the default value is the value used in the current EIO-LCA model. In two cases, default values in 

this study are not equal to those in the current EIO-LCA model: 1) values that are updated with new 

evaluated withheld data, a few manufacturing and mining sectors have these updated values; and 2) values 

that calculated based on more specific price assumptions, these values are used in natural gas and gasoline 

product consumption for service sectors.  

 

http://www.eiolca.net/


32 
 

Buildings Energy Consumption Survey (CBECS 2003). MECS provides the unit prices of 

different fuel types in its reports: Average Prices of Purchased Energy Sources 2002, with 

the unit dollar per physical unit and dollar per million BTU. CBECS provides fuel expense 

values and energy consumption values based on the types of the building, these values 

are used to calculate the unit price of the fuels regarding individual building types. These 

less aggregated unit price values are used to convert the energy expenditure values to 

physical units.  

 US Census mining 1,2,3,4,5: US Census of Bureaus’ 2002 Economic Census Industry Serious  

Reports (2007) provided fuel and electricity usage in physical units (e.g., short ton, barrel, 

cubic feet, gallon and kWh) as well as economic expenditures in some cases for the mineral 

sectors in 2002. Two different allocation methods are used for the withheld data points in 

the source. Method 1 was used in estimating current values in EIO-LCA mode; method 2 

involves some new assumptions and re-evaluation. Two major differences are: 1) various 

fuel prices were used, rather than fixed fuel price; 2) withheld data were re-estimated in 

order to better fix the total fuel expenditure values provided by Census Mining Report.  

 US Census construction 1,2: US Census of Bureau’s reports “Construction: Subject Series - 

Industry General Summary: Detailed Statistics for Establishments by Subsector: 2002” and 

“Construction: Industry Series: Detailed Statistics for Establishments: 2002” are used to 

estimate the energy consumption values for construction sectors. The two reports provide 

energy consumption values in four different categories: Gasoline and Diesel, Natural gas, 

Electricity, and Other fuels in dollar value; Prices in Table S1 are used to convert the energy 

expenditure values to physical units. In addition, the values in the reports are provided by 

NAICS code, a bridge developed by Sharrard (2007) was used to convert the NAICS code 

to IO code: each NAICS construction industry was allocated into one or more different IO 

industries based on a mathematical method.  

 CBECS 1,2: the Commercial Buildings Energy Consumption Survey (CBECS 2003) conducted 

by US Energy Information Administration (US EIA) is used for energy consumption values, 

allocation is needed. The values provided by CBECS are in both energy consumption value 

in physical units and expenditure value in dollars. The values are based on the types of the 



33 
 

building, such as education, rather than industrial codes. Therefore, values from CBECS 

are allocated into different sectors based on the “crosswalk between CBECS buildings and 

NAICS industries”. In this file, different types of building activities were allocated to its 

likely corresponding NAICS sectors. For example, the building type category “education” 

was considered to be most likely allocated into 611 Education services, as well as two 

other sectors 624 Social assistance and 928 National security and international affairs. 

Then the NAICS sectors were converted to IO based sectors. 

 MECS 1,2,3: 2002 Manufacturing Energy Consumption Survey (MECS 2002) provides  

energy consumption values for manufacturing sectors. The survey also provided standard 

errors for the values. These values are all used in the scenario ranges. Data  provided by 

MECS are in physical units, but generally aggregated at the 3-digit NAICS level, values were 

allocated from the 3-digit to 6-digit sector level by considering the dollar purchases of the 

fuels of each commodity sector in the model from the relevant industry sectors.  

 EPA: Data from National Greenhouse Gas Emissions Data (Table A-21 “2002 Energy 

Consumption Data and CO2 emissions from Fossil Fuel Combustion by Fuel Type”) 

reported by EPA (2014) were used as coal, natural gas and petrol consumptions for Power 

generation sector. These values are provided in physical units, merely for electricity 

generation; no further calculation and conversion are needed. 

 NTRC: Transportation Energy Data Book  (2014) conducted by Oak Ridge National 

Laboratory and published by the U.S. Department of Energy. Its 24th edition reported the 

consumption of energy in physical units by fuel type and transportation mode for the year 

2002. The energy consumption values are used for the transportation sectors.  

Figure 2-1 tries to more visually describe the substitution process  used (as first mentioned in the 

paper) for when a data source does not cover all 428 sectors. Three different substitutes are used 

to replace the missing values. For example, if one data source (US Census) only provides data for 

sectors No. 20 to 30, the rest of 418 sectors need substitutes in the R matrix. Three different cases 

of choosing three different substitutes will result in three different B values: asterisk, plus, and 

circle symbol shows the result of using default values, minimum values, and maximum values for 

each sector as substitute, respectively.  
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Figure 2-1: Method used to calculated different B values from different R matrices that has substitutes 

 

In the cases where partial data were available, such as 𝑩 matrix No. 3 in Table 2-2, All the results 

are chosen as they could be helpful to understand possible outcomes caused by different 

assumptions. 
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Table 2-2: Summary of different data sources and assumptions used in the uncertainty range model. 
Default value is annotated. 

B 

matrices 

Sector categories 

Agri-

culture Mining Util ity Construction 

Manu-

facturing 

Trans-

portation Service 

Default USDAd 

US 

Census 

Mining 1d 

EPAd 

US Census 

Construction 

1d 

MECS1d NTRCd 
CBECS 

1d 

1 Use Table 1 

2 Use Table 2 

3 

USDAd 

 

US 

Census 

Mining 2 

EPAd 

 

US Census 

Construction 

1d 

 

MECS1d 

NTRCd 

CBECS 

1d 

4 

US 

Census 

Mining 3 

5 

US 

Census 

Mining 4 

6 

US 

Census 

Mining 5 

7 

US 

Census 

Mining 1d 

 

MECS 2 

8 MECS 3 

9 

MECS1d 

CBECS 2 

10 

US Census 

Construction 

2 

CBECS 

1d 

d default value used as substitute 

The values used in the 𝑩 matrices are not necessarily independent. Results could be from the 

same data source, but with different assumptions. Two alternative 𝑩 matrices are both calculated 

from the Use Table, with different price assumptions. The same energy purchase values are used 

for each sector, only the fuel price (divisor) for each sector changes; therefore the energy 

consumption results are highly interdependent. Also, some raw data used in the data sources 
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were derived from common economic surveys. The values for mining sectors, construction, and 

agriculture sectors were all derived from the US Economic Census, meaning that the data sources 

are not entirely independent. All the results are chosen as they could be helpful to understand 

possible outcomes caused by different assumptions. 
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Table 2-3: Detailed descriptions of assumptions used in data sources 

Abbreviation  Calculation description Calculation methods 

Use Table 1 Fix fuel prices provided by EIA are applied to convert values for all sectors 
Price assumptions for unit 

conversion 

Use Table 2 
Different fuel prices to convert individual sectors, the prices values are gathered from 

different data sources, such as CBECS and MECS 

Price assumptions for unit 

conversion 

US Census 

Mining 1  

Withheld fuel expenditure are estimated based on the sum of rows and columns, different 

fuel prices (from Census Mining) are used to convert values for each sector 

Missing raw data evaluation, 

price assumptions for unit 

conversation 

US Census 

Mining 2 

Withheld fuel expenditure are estimated based on the sum of rows and columns, fixed fuel 

prices are used to convert values for each sector 

Missing raw data evaluation, 

price assumptions for unit 

conversation 

US Census 

Mining 3 

Withheld fuel expenditure are estimated based on the ratios from total, different fuel 

prices (estimated for individual sector from Census Mining) are used to convert values for 

each sector 

Missing raw data evaluation, 

price assumptions for unit 

conversation 

US Census 

Mining 4 

Withheld fuel expenditure are estimated based on the ratios from total, fixed fuel prices 

(estimated for all sectors in the category from Census Mining) are used to convert values 

for each sector 

Missing raw data evaluation, 

price assumptions for unit 

conversation 

US Census 

Mining 5 

Withheld fuel expenditure are estimated based on the ratios from total, fixed fuel prices 

(from EIA) are used to convert values for each sector 

Missing data evaluation, price 

assumptions 

MECS 1 
Default values provided by MECS are used, some values are calculated based on allocation, 

expenditure values from the Use Table are used as allocation factor 

Allocation for aggregated values 

in raw data 
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MECS 2 
Minimum values provided by MECS are used, some values are calculated based on 

allocation, expenditure values from the Use Table are used as allocation factor 

Allocation for aggregated values 

in raw data 

MECS 3 
Maximum values provided by MECS are used, some values are calculated based on 

allocation, expenditure values from the Use Table are used as allocation factor 

Allocation for aggregated values 

in raw data 

CBECS 1 

Some values are calculated based on allocation, 'converting bridge' provided by CBECS is 

used allocation factor; different fuel prices to convert individual sectors, the prices values 

are gathered from different data sources, such as CBECS and MECS 

Allocation for aggregated values 

in raw data, price assumptions 

for unit conversation 

CBECS 2 

Some values are calculated based on allocation, 'converting bridge' provided by CBECS is 

used allocation factor; fixed fuel prices to convert individual sectors, the prices values are 

gathered from different data sources, such as CBECS and MECS 

Allocation for aggregated values 

in raw data, price assumptions 

for unit conversation 

USDA 

Some values are calculated based on allocation, expenditure values from the Use Table are 

used as allocation factor; fix fuel prices provided by EIA  are applied to convert values for 

all sectors 

Allocation for aggregated values 

in raw data, price assumptions 

for unit conversation 

EPA 
Some values are calculated based on allocation, values from the same data source are 

used as allocation factor 

Allocation for aggregated values 

in raw data, price assumptions 

for unit conversation 

NTRC 
Some values are calculated based on allocation, expenditure values from the Use Table are 

used as allocation factor 

Allocation for aggregated values 

in raw data  
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2.3 Results and discussion 

This section shows how the method is implemented in the 2002 EIO-LCA model, using IO Sector 

No. 120, Petrochemical manufacturing, as an example. Additionally, three case studies are used 

to demonstrate the potential improvement in decision support considering the uncertainties and 

results.  

2.3.1 Uncertainty results for single sectors 

Figure 2-2 shows the results for total energy consumption across the supply chain as well as 

separated by fuel for IO Sector No. 120, Petrochemical manufacturing.  The names in the legend 

indicate different alternative 𝑩 matrices used to estimate the result (Table 2-2). All the results are 

chosen as they could be helpful to understand possible outcomes caused by different 

assumptions.. Three other 𝑩 matrices that use each sector’s minimum/maximum/default value 

generalized from all alternative results are also provided. The results are based on one million 

dollars of final demand input in sector 120. Since IO-LCA models are linear, the relative 

uncertainty for a different input of final demand would be the same. In this case, the sector’s total 

energy consumption varies from 21 TJ to 62 TJ, resulting in the range of -50% to 40% compared 

to the default value of 42 TJ. Figure 2-2 shows that the uncertainties of natural gas and petroleum 

usage are the major contributors to the large discrepancy of total energy consumption. They are 

also estimated to be the highest fuel inputs in the total.  

The causes of the uncertainties are also displayed in Figure 2-2. The red symbols are the values 

calculated from the 𝑩 matrix using values from the Use Table. All of the red symbols are larger 

than the value calculated from the default 𝑩 matrix, which demonstrates that the values in the 

Use Table tend to be the upper values within the ranges. In addition, the uncertainty in the total 

energy consumption is mostly caused by the large uncertainty of petroleum consumption 

associated with data from the Use Table, of which possible reasons are discussed later in this 

paper. The results calculated from the US Census data (blue symbols in Figure 2-2) are closer to 

the default value. Since only a small proportion of data come from the Census, and a majority of 

the data are substitutes, the results are similar to the results calculated from default values.  
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Figure 2-2: Scaled results for 1 million dollars of final demand of sector No. 120 (Petrochemical 
manufacturing). Total energy as well as separated fuel consumptions are provided. Abbreviation: NG 
as natural gas, Petrol as petroleum products, N-F-Elec as non-fossil fuel electricity.  

As a hotspot analysis tool, IO models like EIO-LCA can deterministically list the highest sectors 

across the supply chain for an industry. Figure 2-3 shows the results of the top 15 most energy 

intense sectors in the supply chain for 200 thousand dollars of final demand in sector 120, sorted 

by the values in the deterministic 𝑩 matrix used in current EIO-LCA model. As can be seen, sector 

120 (Petrochemical manufacturing), 115 (Petroleum refineries) and 126 (Other basic organic 

chemical manufacturing) are the top 3 energy intense sectors, contributing an estimated 64% to 

the total energy consumption. These three sectors  are also major contributors to the uncertainty 

of total energy consumption; however, the rankings of the top 5 energy intense sectors could 

change when uncertainties are considered. The red symbols for the top 3 sectors remind us that 

the Use Table is the data source leading to the high end of the ranges. As these sectors belong to 

the Petroleum Product Manufacturing category, this finding indicates that the Use Table provides 

greater energy consumption values for some petroleum products. Similar conclusions can be 
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made for values from CBECS, which provides relatively smaller values for petroleum products. The 

reason for these differences is discussed in the following section.  

 

Figure 2-3: Scaled results of total energy consumption and top 15 energy intense sectors for $200k final 
demand of sector No. 120 (Petrochemical manufacturing). Graph on top is the 𝒈 values (direct and 
indirect); the bottom shows the top 15 energy intense sectors for the 𝒈 values. 



42 
 

 

Figure 2-4: Results of the 𝑩 matrices for all 428 sectors, based on percentage changes comparing with 
default value. Linear scale is used for negative values while base 10 logarithmic scale is used for 
positive values. 
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Figure 2-5: Results of 𝒈 values for all 428 sectors, based on percentage changes compared to default 
value. Linear scale is used for negative values while base 10 logarithmic scale is used for positive 
values. 

While Figure 2-3 suggests sectors with high default values also have high uncertainty for Sector 

120, this is not a general rule - uncertainty varies across many dimensions. Figure 2-4 shows the 

uncertainty results of all 428 sectors in all 𝑩 matrices, based on each sector’s percentage change, 

compared to its default value. Note that the positive side of the x-axis is transformed to log scale 

for legibility. Results suggest that in general, the sectoral uncertainty for direct and indirect energy 

consumption in the 𝑩 matrix is approximately ±50% overall. In some extreme cases, the values 

reach over 40 times larger than the default value. For example, the value for Coal mining (No. 21, 

noted by the dashed arrow in Figure 2-5) varies from 5 to 70 TJ/M$, and Petroleum lubricating oil 

and grease manufacturing (No. 118, noted by the solid arrow in Figure 2-5) varies from 3 to 110 

TJ/M$. Such outcomes demonstrate how different data sources and assumptions can result in a 

significantly larger range for some sectors, which would not be currently expressed in such models, 

like EIO-LCA. Results from Figure 2-4 also show that Use Table (red) and MECS (green) generally 
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lead to values larger than the default while US census of construction (purple) generally lead to 

lower values.  

This analysis suggests that the uncertainty in the energy 𝑩 matrix can be large. Thus using only a 

single data source for a sector in the 𝑩 matrix (as typically done in IO-LCA models) could ignore 

important information about the system.  

2.3.2 Uncertainties of the 𝒈 vector 

Figure 2-5 shows the results of the 𝒈 values, which include the total of direct and indirect energy 

consumption calculated from Equation 1 for $1 million final demand for each industry, based on 

different 𝑩 matrices. Detailed percentage changes for all 428 sectors are shown in Table S1 of the 

Appendix. The results were calculated based on the total economic output in 2002 for each sector. 

The overall uncertainty in total energy consumption for a sector varies from about -40% to 40%; 

however, for several extreme cases, the result is approximately 5 times larger than the default 

value. The percentage changes are smaller compared to changes in the 𝑩 matrix, especially for 

the extreme cases, given the interconnectedness of supply chains. The results show that the 

percentage changes in the 𝒈 vector are generally less than the changes in the 𝑩 matrix, based on 

the composition of the overall supply chain.  

The different patterns of uncertainties are caused by the discrepancies in the values of the 𝒈 

vector, which are taken from various data sources. Using this information, potential sectors with 

large uncertainties could be identified or adjusted after further investigation, in order to reduce 

the uncertainty in the model. The next section briefly discusses how to investigate the reasons for 

large discrepancies, by re-evaluating data sources. 

2.3.3 Sectoral impact to overall model 

In matrix-based LCA models, the change of one sector’s value in 𝑩 matrix can have impacts on 

the whole model. In order to show the impacts from single sector to the overall model, controlled 

tests are conducted and compared with base case results. The controlled tests are performed by 

setting the value of one of the 428 sectors in 𝑩 matrix as upper or lower bound while holding all 
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other 427 sectors constant at their default values, and the results are compared with base case, 

which uses default value for each sector. A top ten detailed sectoral results is shown in Table 2-4. 

Not surprisingly, Power generation has the most impact to the model; and considering both sides 

from the default value, Pipeline transportation is another very important sector cause the total 

changes is 3 million TJ. These sectors, though have relatively smaller uncertainties, have the 

largest impacts on the model. The controlled test of the study provides information of the 

importance of the sectors to the model. The importance of the sector does not depend on the 

energy intensity or the uncertainty of the sector, but the relations of each sector to the rest 427 

sectors in the model. Hospital sector has a total 2 million TJ energy consumption value and more 

than 500% upper uncertainty results, however it has negligible impacts over other sectors as well 

as the model 

On one hand, this information will benefit the decision makers by providing supporting 

information of selecting the most sensible sectors , user will be able to choose the best suitable 

information to reduce the uncertainty in their LCA analysis. Values provided in Table 2-4 show 

both the changes of each sector and the changes of the rest of the sectors caused by the sector. 

For a sector such as hospital that has big sectoral change but small impact over the rest sectors, 

the uncertainty is only important when this sector’s result is investigated in a LCA study. On the 

contrary, coal mining sector, which has both big sectoral change and big impact over the model, 

needs to be taken serious account anytime. On the other hand, as matrix-based LCA model 

involves a great amount of calculation, the information will help the user to decide with sectors 

should be taken into more serious account to limit the calculation time in matrix-based LCA 

models. So far the high uncertainty flows have not been addressed in uncertainty analys es in 

matrix-based LCA models. The results in this study will support further uncertainty estimation and 

sensitivity analysis in matrix-based LCA models. 
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Table 2-4: Result from controlled tests, sectoral results (Million TJ) 

I-O number Sector name 

Change 

without 

sectoral 

change 

(real) 

Change 

with 

sectoral 

change 

Sectoral 

change 

Change 

Default 

value 

to 

221100 Power generation and supply -15.2 -27.9 -12.7 Min 

324110 Petroleum refineries 4.3 7.0 2.7 Max 

211000 Oil and gas extraction -4.0 -4.9 -0.9 Min 

331110 Iron and steel mills -2.7 -3.5 -0.8 Max 

212100 Coal mining 2.6 3.8 1.2 Max 

325190 

Other basic organic chemical 

manufacturing 2.2 3.1 0.8 Max 

486000 Pipeline transportation 1.5 2.2 0.7 Max 

486000 Pipeline transportation -1.5 -2.2 -0.7 Min 

324191 

Petroleum lubricating oil and 

grease manufacturing 1.0 1.5 0.5 Max 

324121 

Asphalt paving mixture and block 

manufacturing 1.0 1.6 0.7 Max 

325190 

Other basic organic chemical 

manufacturing 0.7 1.1 0.3 Min 

 

The analyses above are based on the exchanges between sectors within the boundary set by the 

IO table (the entire production of the economy), thus the results are limited to the energy 

consumption within the system boundary set for a certain year and geographic area. For example, 

several studies suggested that energy embedded in infrastructure should be included in the 

supply chain of a process (Chester and Horvath 2009; Lucas et al. 2012; Turconi et al. 2013). 

However, this part of the energy is not within the system boundary of the EIO-LCA model. Several 

industrial sectors such as “Nonresidential manufacturing structures” are included in the IO table; 

however, the exchange between other sectors and these construction sectors are based on the 



47 
 

year 2002, excluding energy embedded in the infrastructure already built. Therefore, the results 

in Table 2-4 are limited to the system boundary of the EIO-LCA model; if the users need to include 

processes outside the boundary, the results might change depending on the boundary drawn for 

the new analysis.   

2.3.4 Uncertainty values re-evaluation 

The existence of major discrepancies for some of the sectors is one of the novel results presented. 

Tracking the reasons for these can provide decision makers with a clearer concept of how or when 

to use the various data given the uncertainties. An example is shown in Figure 2-3. Larger than 

default values were calculated from the Use Table (red), while smaller than default values were 

calculated from CBECS (light blue). A possible explanation is the insufficient documentation of the 

data source. Values provided by the Use Table were based on the purchase of all fuels for the 

sector, rather than energy consumed specifically in production phases. For example, these 

purchases could include fuels used as both energy and feedstocks. The resulting uncertainty can 

be reduced as better-documented data are provided (I note that MECS separates fuel and 

feedstock usage but is more aggregated than values in the Use Table).   

An extreme example of data induced uncertainty can be found in the Coal mining sector. The 

minimum value of coal consumption for the Coal mining sector was calculated from the Census, 

while the maximum value was from the Use Table. Comparing the Use Table with other data 

sources, it was found that coal purchases between coal companies included coal undergoing 

beneficiation, which was accounted as an energy source purchase in the Use Table .  

The values generated from these data sources, including those not well-documented, were used 

in the analysis. As all the data sources are government agency surveys or peer-reviewed published 

articles, the possible reason for the differences among sources could not always be confirmed. 

With all the data sources separately noted in the result, users can make decisions based on all the 

information provided. For example, a data source for a particular sector may be excluded by the 

user, changing that range accordingly. An example of the utility and impact of data exclusion can 

be seen in case study 2. 
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2.4 Decision support considering uncertainty 

The results propagated from the uncertainties in the inventory in the EIO-LCA model can improve 

the utility of this source of information. As shown below, adding representations of uncertainty 

enables two-dimensional hotspot screening tools. The first dimension relates to the most 

important effects, and the second is their relative uncertainty.  Either or both can indicate where 

additional data (e.g., primary data or sector-specific data) could be useful in subsequent efforts. 

Three case studies are shown that demonstrate how the information from our results can be used. 

All are based on previously published LCA work; I update the studies using the 2002 EIO-LCA 

model and present results with consideration of uncertainty. These case studies demonstrate that 

with such uncertainty results, 1) the LCA conclusions can be strengthened; 2) the uncertainty 

source can be identified; and 3) hotspots can change.  

2.4.1 Case Study 1 – Illustrating impact of uncertainty on the results   

LCA was at the center of the paper vs. plastic debate of the early 1990s (Hocking 1991). In a 

previous study, Lave and colleagues compared the toxic releases and energy use (electricity only) 

of plastic and paper cups using a 1987 EIO-LCA model (Lave et al. 1995). They estimated that 

170,000 plastic cups consumed almost 50% less electricity (4,400 kWh vs. 8,600 kWh) than paper 

cups.  

The Paperboard container manufacturing and Plastics material and resin manufacturing sectors 

were chosen to represent paper and plastic cups respectively; total energy rather than only 

electricity was evaluated. The deterministic results using the models’ default values show that 

total energy consumption for 170,000 paper cups and plastic cups are 0.4 and 0.5 TJ, respectively, 

suggesting that plastic cups consume more energy than paper cups, different than previously 

stated perhaps due to exclusion of fuels. 

Adding uncertainty, total energy consumption for a plastic cup and a paper cup varies from 0.25 

TJ to 0.69 TJ, and from 0.28 TJ to 0.45 TJ, respectively, as shown in Figure 2-6. The results with the 

consideration of uncertainty suggest that plastic cups use energy at the same level or higher than 

the paper cup production. The plastic cup has a larger range of possible energy use values than 

the paper cup. When results are compared on a data source by data source basis, the plastic cup 
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always consumes more energy than the paper cup, except for the minimum value. These results 

suggest strongly that beyond the previous simple deterministic results, it is very likely that plastic 

uses more energy, e.g., when all individual (mostly independent) data sources suggest higher 

values for a plastic cup, the comparison between two types of cup is more robust.   

 

Figure 2-6: Scaled results of total energy consumption for approximately 170,000 paper and plastic 
cups 

 

2.4.2 Case Study 2 – Identifying uncertainty related to specific fuel use 

Similar to case study 1, all the assumptions except for the price values from the old study are 

adapted to the new study.  

In Horvath and Hendrickson’s study (1998), the concrete pavement is made of 78,066 kg steel 

bars and 720 square meters of concrete, while the asphalt pavement takes 5,018 MT of asphalt.  

In this study, new price assumptions are used. U.S. Department of Transportation’s report Price 

Trends for Federal-Aid Highway Construction provides the material prices for highway 

constructions from 1972 to 2006 (USDOT 2002). According to the data, prices of steel, concrete 

and asphalt were $0.61/lb, $25.86/sq.yd., and $34.14/ton in 2002. Therefore, the expenditures  

of one kilometer-long cement concrete and asphalt pavement are $0.13 million ($106,000 steel 

and $22,270 concrete) and $0.19 million. Applying these expenditure values to EIO-LCA model, 

Iron and steel mills, Ready-mix concrete manufacturing, Asphalt paving mixture and block 
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manufacturing sectors are used for three components, energy consumption results for two types 

of pavements are shown in Table 2-5 and Table 2-6, respectively. 

Table 2-5: Energy Consumption for 1km concrete pavement 

Fuel types 

Min (GJ) 

Default 

(GJ) Max (GJ) 

Upper 

uncertainty 

(%) 

Lower 

uncertainty 

(%) 

Coal 3.29 2.64 0.84 24% -68% 

Natural gas 1.51 1.38 0.99 9% -28% 

Petroleum products 0.71 0.39 0.00 81% -100% 

Non-fossil  electricity 0.63 0.60 0.41 5% -32% 

Biomass 0.10 0.09 0.09 3% -3% 

Total 6.23 5.11 2.33 22% -54% 

 

Table 2-6: Energy Consumption for 1km of asphalt pavement 

Fuel types Min (GJ) 
Default 

(GJ) 
Max (GJ) 

Upper 

uncertainty 

(%) 

Lower 

uncertainty 

(%) 

Coal 0.70 0.50 0.30 41% -40% 

Natural gas 2.18 1.70 1.23 28% -28% 

Petroleum products 14.50 0.88 0.00 1546% -100% 

Non-fossil  electricity 0.32 0.26 0.22 27% -15% 

Biomass 0.12 0.11 0.11 3% -3% 

Total 17.81 3.45 1.86 417% -46% 

 

Updating to the 2002 EIO-LCA model and using the Iron and steel mills, Ready-mix concrete 

manufacturing, and Asphalt paving mixture and block manufacturing sectors to represent the 

pavement products, it was found that the deterministic total energy consumption for 1 km of 

asphalt and concrete pavement changed to 4 TJ and 5 TJ, respectively, favoring the choice of 

asphalt on an energy basis. As the analysis based on EIO-LCA model relies on the prices of the 

products, the differences from the prior analysis are possibly due to the significant change of the 

prices of asphalt and concrete over 10 years. However, the results remain deterministic, 
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encouraging users to make assertive decisions; the question becomes whether considering 

uncertainty in the model can better assist the LCA analyses. 

 

Figure 2-7: Results of energy consumption for 1 km concrete and asphalt pavement, error bars are the 
max/min values without outliers 

As shown in Figure 2-7, considering all values, the energy consumption for 1 km of asphalt 

pavement has a range from 1.9 TJ to 17.8 TJ, larger than that of concrete pavement (2.3 TJ to 6.2 

TJ). Asphalt pavement could be nearly 8 times (17.8/2.3) more energy intense, in contrast to the 

conclusion based on simple deterministic values. The large range in total energy use for asphalt 

pavement is mostly associated with the uncertainty of petroleum usage. As mentioned previously, 

the Use Table indicates larger petroleum purchase values for petroleum product manufacturing 

industries due to potential feedstock use. The uncertainty could be reduced if improved 

documentation was available. Providing all the results can allow users to make decisions based 

on all available data. The users can choose to ignore the big outliers caused by insufficiently 

documented data. For instance, if the values from the Use Table are ignored, the ranges for 

asphalt pavement change to 1.9 TJ to 3.7 TJ, resulting in a maximum value for asphalt pavement 

smaller than the maximum value for concrete pavement. 
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2.4.3 Case Study 3 – Identifying hotspots given uncertainty  

LCA models, specifically IO-LCA models, are often used as a hotspot screening tool to help 

decision-makers access quick and simple relative results. The importance of sectors regarding 

environmental impact rankings helps determine what and where to look for potential impacts in 

a supply chain. Ukidwe and Bakshi (2008) developed a model to evaluate the environmental 

impacts of the chemical industry. In one step of the analysis, an economic input-output (EIO) 

model was used to identify the most significant supplier in an industry’s supply chain. EIO models 

provide the economic outputs for all sectors in the supply chain; the most significant supplier can 

be found by sorting the outputs. Ukidwe and Bakshi identified that the most important supplier 

is the Petroleum refineries sector regarding economic output for the Petrochemical 

manufacturing sector.  

Inspired by Ukidwe and Bakshi’s study, I use the 2002 EIO-LCA model to evaluate the energy 

consumption for Petrochemical manufacturing. In our analysis, rather than economic output, 

energy consumption is evaluated and shows that the most energy intense sector is Petrochemical 

manufacturing.  

When considering uncertainty, the most significant supplier can change. As shown in Figure 2-3 

(which is the relevant result to use for this case study), when all possible data points are 

considered, Petrochemical manufacturing, Petroleum refineries, or Other basic organic chemical 

manufacturing could be the most energy intensive sector in the supply chain. If uncertainties are 

not considered, the possibility of the other two sectors being the most significant supplier may 

be ignored, and they could be left out of the analysis or not be a focus of study.  

2.5 Conclusion  

This study develops a method that propagates and visualizes uncertainty, focusing on inventory 

data uncertainty, in matrix-based LCA models.  The uncertainty results provide additional insight 

to understand how a screening tool framework can be used to identify both the importance and 

the uncertainty of the results. Considering the uncertainty can provide better decision support 

for LCA studies, leading to more robust decisions as compared to those using only deterministic 

values. Different data sources and assumptions were used to build different underlying matrices 
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of direct and indirect energy consumption values for each sector. The different consumption 

values provide information that can be used to identify the source of the uncertainties. A benefit 

of this approach is that it can be extended easily as additional relevant data sources are identified.  

Results show that uncertainty in the 𝑩 matrix in the EIO-LCA model is generally around 50%, with 

some extreme cases that reach over 40 times the default value. The overall uncertainty of each 

sector considering both direct and indirect impacts is smaller; total energy consumption, 

considering all 428 industries, is generally within -40% to 40%, with a few extreme cases that have 

over 4 times more impact. Outliers show that even reliable data sources can lead to large 

uncertainty, especially when underlying assumptions are not well documented or understood.  

Another contribution of this paper is the visualization of all possible values calculated for one 

sector. The results visually show all possible results calculated from different data sources and/or 

assumptions, rather than merely the maximum and minimum values for a sector. There are 

several advantages of this visualization. First, results emphasize all possible results, which cannot 

be indicated in simple bounding results. Second, more information can be provided when possible 

results are shown to users. Users can make judgments based on all the information shown in the 

visualization. Third, users can track the source(s) of uncertainty in the inventories by reading the 

possible results.  

The general method used here for energy consumption can be applied to other inventory 

categories of an IO-LCA model, can be expanded to consider scenario and model uncertainties. 

The method described here can be used to inform an uncertainly analysis in process matrix 

models as well and could consist of known ranges of values for a sub-process input into the 𝑩 

matrix or simply deriving a range of data from the various complementary available process 

datasets. As an example, if electricity is important in the process and the model has various data 

to represent electricity generation (grid average, renewable, fossil fuel-based, etc.), a range can 

be generated to help an analyst to explore and present the impacts. Future work will focus on 

adapting the method to the uncertainty estimation in the technology and intervention matrices 

of process-based models. 
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3. Chapter 3. Data analysis in the US LCI database and scenario uncertainty in 

matrix-based models  

3.1 Introduction of the matrix-based method 

Process-based data is typically used in LCA, and when implemented in software using existing 

databases, is often modeled with matrix-based methods. The method scales life cycle inventories 

from existing databases into matrices, and uses formulas (such as Equation 1) to calculate the 

direct and indirect environmental effects for any user-defined final demand in the system 

(Heijungs et al. 1992; Heijungs 2010; Heijungs and Suh 2006; Wang and Work 2014).  The results 

calculated from the matrix-based LCA method can separately provide environmental effects of 

direct (onsite) and indirect (upstream) processes in the system under study.  

The system under study may consist of all processes provided in a LCA database. These databases, 

such as US LCI (United States Life Cycle Inventory) and Ecoinvent, often provide LCI data for a 

significant amount of processes. The LCI data generally includes direct (gate-to-gate) energy, 

materials used, and emissions from the production of the processes (NREL et al. 2004).  

To assess the direct environmental effects from production, the LCI of each process can be used 

individually. The LCI data of different processes can also be grouped together using matrix-based 

methods to include both direct and indirect environmental effects. A brief description of how 

inventories are mapped into matrices is provided below. 

The inputs and outputs in a unit process from a LCA database are one of two types: product flows 

or elementary flows. The product flow is an input or output from the technosphere (technical 

system or the economy) (NREL et al. 2004). Electricity generated from coal is an example of a 

product flow. An elementary flow is an environmental effect to the biosphere (nature or 

ecosystem) without previous human transformation (ISO 2006b) (NREL et al. 2004). Carbon 

dioxide emitted to air is an example of an elementary flow. In process -based LCI databases, each 

unit process has its product flow mapped on to the technology matrix (𝑨), and its elementary flow 

mapped on to the intervention matrix (𝑩). These two matrices are used in Equation 3 (Heijungs 

2010) to calculate direct and indirect environmental effects.  
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Equation 3:   𝒈 = 𝑩𝑨−𝟏𝒇 

Where 𝒇 is a vector representing the final demand defined by the users; it is the amount of 

product output in its functional unit. For a system that has n unit processes and m elementary 

flows, the 𝒇 vector has n by 1 dimensions. The 𝑨 matrix is n by n, each column represents a unit 

process and each row indicates the input/output product flow. The 𝑩 matrix is an m by n matrix, 

here the rows are m different elementary flows, such as carbon dioxide emissions.  𝑨−𝟏𝒇 gives an 

n by 1 vector of the total input/output product flows. The resultant vector  𝒈, has m by 1 

dimensions and contains the m total environmental effects for the final demand  𝒇. For each 

environmental effect ( 𝒊 = 𝟏, … , 𝒎 ), the direct and indirect effects can be separated by the 

Hadamard (entrywise) product of the transpose of row 𝒊 in the 𝑩 matrix and 𝑨−𝟏𝒇:  

Equation 4:   𝒉𝒊 =  𝑩𝒊 
𝑻 ∘ 𝑨−𝟏𝒇 

Where 𝒉𝒊 is an n by 1 vector containing the 𝒊th  environmental effect from n unit processes for the 

final demand 𝒇.  

3.2 Definitions of connections and processes 

Two directed connection categories among processes are defined: downstream and upstream 

(Figure 3-1). The downstream connections of a process indicate the relative role of the process in 

the database. An electric power generation process, for example, was typically used as an energy 

input in industrial productions, thus many downstream connections would be expected. Figure 

3-1 shows the downstream and upstream connections for a hypothetical process A. On the right 

panel, two input product flows are related to Process A via upstream connections (Process B and 

C). The left panel shows the definition of a downstream connection. When a process serves as an 

input to another process, I say that the input process has a downstream connection to the 

receiving process. Process A has one downstream connection, to Process B, which of course then 

has an upstream connection to Process A. As shown in this example, an upstream connection 

could be another process’ downstream connection, or vice versa.  
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Figure 3-1: Definitions of upstream and downstream connections in this study, shown with one 
downstream connection and two upstream connections for a hypothetical Process A. 

As the LCI for each process only provides direct inputs or outputs, the indirect inputs or outputs  

calculated from the matrix-based LCA method rely on the interconnections between processes in 

the system under study. These interconnections are links between processes based on their 

respective inventories. In the matrices, a link between two processes is represented by a non-

zero value. In recent years, the interconnections in the LCI database have become interesting to 

LCA practitioners. Using graphical methods, Kuczenski (2015) estimated the interconnections 

between processes in several LCI databases; this study concluded that all the databases under 

consideration shared similar internal structure. Network analysis methods have also been used in 

input-output models to determine the key processes in the system (Singh and Bakshi 2011; 

Kagawa et al. 2013; Nuss et al. 2016). These studies generally focused on determining the strongly 

connected processes in the system with the purpose of categorizing processes in the databases, 

and identifying important processes in particular industries. However, the question of how the 

database interconnections affect the results from matrix-based LCA method remains unanswered.  

Substantial connections are crucial to evaluate direct and indirect environmental effects. The 

coverage of connections determines whether the indirect environmental effects can be fully 

captured. This study demonstrates a method to evaluate the effects from the interconnections in 

matrix-based methods. The US LCI database is used as a case study. The latest version of the US 

LCI database provides 1060 unit processes. These unit processes have inputs or outputs from 1466 

elementary flows and other processes. In this study, first, the processes from the US LCI database 

were mapped on to the A and B matrices. Then, the inputs and outputs for each process were 

evaluated and quantified to demonstrate the coverages of connections in the database. Last, I 

compared the connections with the input-output table and the results from EIO-LCA 
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(Environmental Input-Output Life Cycle Assessment) model to identify possible missing 

connections for some processes. In addition, I analyzed the uncertainties resulting from using 

alternative utilities for each process.  

3.3 Matrices mapped from unit processes in the US LCI database 

At the time this analysis was conducted, the US LCI database provided 701 unit processes. The 

inventories of these unit processes could be obtained individually from the US LCI website 

compiled by the National Renewable Energy Laboratory (NREL 2012). To apply the inventories  

into matrix-based LCA model, I downloaded the inventory data for all available unit processes and 

used Matlab software to map their inventories into the 𝑨 and 𝑩 matrices (code is provided in the 

Appendix). Following the terminology from above, the results from the mapping showed n=1471 

product flows and m=2701 elementary flows in the matrices. I observed some potentially 

problematic processes in the matrix mapping and results. These problematic processes affect the 

consistency of the inventories in the matrices and could result in inaccurate interpretations in the 

matrix-based LCA model. Therefore, before the interconnections in the matrices were evaluated, 

I screened potential problematic processes according to three categories: the cut-off processes, 

the system boundary, and the flow types.  

3.1.1 Cut-off processes 

In US LCI, “cut-off” processes, previously labeled as “Dummy” processes, are input products 

whose inventories are not yet provided in the current version of the database. For example, the 

inventory information of one secondary steel production process (“CUTOFF Steel, secondary, at 

plant”) is not yet included in the database.  Currently, 525 or 35% of the total number of processes 

in US LCI database are cut-off processes. The cut-off processes cover diverse products and 

generally can be found in all US industries, see Table S3 for a list of all cut-off processes. When 

the database is applied to a matrix-based LCA model, the presence of cut-off processes, as inputs 

to a process under study, results in the neglect of upstream effects. This is because the cut-off 

processes do not contribute to the indirect effects.  
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3.1.2 Cradle-to-gate and gate-to-gate processes 

Based on the inclusiveness of the processes’ system boundaries, data in the US LCI database is 

associated with two different types of unit processes: “gate-to-gate” and “cradle-to-gate”. Gate-

to-gate processes are unit processes for the production only; the word “gate” indicates the entry 

or exit threshold of a factory.  Whereas the cradle-to-gate processes also include upstream inputs 

and outputs; the word “cradle” indicates the origin of a product. 

The US LCI database has around 10% cradle-to-gate processes among the total number of unit 

processes provided; the identification of these processes are introduced later in this section. Here, 

Polyethylene terephthalate (PET) is used as an example product to illustrate how the two types 

of processes are listed in the US LCI database. The cradle-to-gate and gate-to-gate inventories for 

producing PET were provided in a LCA study (Franklin Associates 2010), and are shown in Table 

3-1. For PET, the cradle-to-gate process and gate-to-gate process differ in their material usage 

and transportation inputs. The four material inputs for the gate-to-gate process are products from 

other factories that are incorporated to the production of PET. The cradle-to-gate PET process is 

composed of crude oil, natural gas, and oxygen; these are the raw production materials for the 

four inputs in the gate-to-gate process.  There are transportation inputs in the cradle-to-gate 

process, because compared to the gate-to-gate process, there are more product exchanges 

between factories or industrial sites.  

In the US LCI database, the published inventories in Table 3-1 were modified to produce two 

different unit processes, as shown in Table 3-2. 
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Table 3-1: Inputs in the gate-to-gate and cradle-to-gate processes for PET production from Franklin 
Associates’ original LCA study. The two processes differ in material usage and inputs.  

Gate-to-gate PET inventory, for 1000kg PET, 

provided by Franklin Associates study 

Cradle-to-gate PET inventory, for 1000kg PET, 

provided by Franklin Associates study 

Material 

Paraxylene 

Ethylene glycol 

Acetic acid 

Methanol 

 

521 kg 

322 kg 

37.2kg 

35.2 kg 

Material 

Crude oil 

Natural gas 

Oxygen 

 

568 kg 

215 kg 

223 kg 

Water consumption 0.537 cubic meter   

Energy use 

Electricity (grid) 

Electricity (cogeneration) 

Natural gas 

Bit./Sbit. Coal 

Distillate oil 

Residual oil 

 

558 kWh 

9.59 cubic meter 

98.1 cubic meter 

18.9 kg 

12.8 liter 

26.8 liter 

Energy use 

Electricity (grid) 

Electricity (cogeneration) 

Natural gas 

Bit./Sbit. Coal 

Distillate oil 

Residual oil 

 

882 kWh 

12.1 m3 

352 m3 

35.9 kg 

13.8 liter 

80.1 liter 
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 Transportation 

Combination truck 

Rail  

Barge 

Ocean freighter 

Pipeline-natural gas 

Pipeline-petroleum 

 

28.5 tkm 

1633 tkm 

139 tkm 

2717 tkm 

382 tkm 

395 tkm 

 

Table 3-2: Inputs in the gate-to-gate and cradle-to-gate processes for PET production provided by the 
US LCI database. Italics are used to mark the differences from Table 3-1. The inputs for the cradle-to-
gate process are broken into upstream raw elementary flows, as opposed to the inputs as product 
flows from the original LCA study.  

Gate-to-gate PET inventory, for 1000kg PET, 

provided by the US LCI database 

Cradle-to-gate PET inventory, for 1000kg PET, 

provided by the US LCI database 

Material 

Paraxylene, at plant  

CUTOFF Ethylene glycol, at plant 

Acetic acid, at plant 

Methanol, at plant 

 

521 kg 

322 kg 

37.2kg 

35.2 kg 

Material 

Coal, lignite, in ground 

Coal, unprocessed bituminous, in 

ground 

Gas, natural, in ground 

Oil, crude, in ground 

Oxygen, in air 

Uranium oxide, 332 GJ per kg, in ore 

 

25.3 kg 

326 kg 

222 kg 

587 kg 

243 kg 

6.46 g 

Water, process, unspecified natural 

origin/m3 

0.244 m3 Water, process, unspecified natural 

origin/m3 

12.1 m3 
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Energy use 

Electricity, at grid, US, 2008 

Electricity, at cogen, for natural gas 

turbine  

Natural gas, combusted in industrial 

boiler 

Bituminous coal, combusted in 

industrial boiler  

Diesel, combusted in industrial 

equipment Residual fuel oil, combusted 

in industrial boiler  

 

558 kWh 

9.59 m3 

98.1 m3 

18.9 kg 

12.8 liter 

26.8 liter 

 

Energy use 

Gas, natural, in ground 

Oil, crude, in ground 

Energy, from biomass 

Energy, from hydro power 

Energy, geothermal 

Energy, kinetic (in wind), converted 

Energy, solar 

Energy, unspecified 

 

504 m3 

151 kg 

5.37 MJ 

24.8 MJ 

13 MJ 

12.9 MJ 

0.547 MJ 

17.4 MJ 

Transportation 

Transport, barge, diesel powered 

Transport, barge, residual fuel oil 

powered 

Transport, pipeline, natural gas 

Transport, train, diesel powered 

 

0.655 

tkm 

2.18 tkm 

0.0876 

tkm 

1610 tkm 

Transportation 

 

 

 

Disposal 

CUTOFF Disposal, solid waste, 

unspecified, to municipal incineration 

CUTOFF Disposal, solid waste, 

unspecified, to sanitary landfill 

 

0.31 kg 

 

4.19 kg 

 

Disposal 

CUTOFF Disposal, solid waste, 

unspecified, to municipal incineration 

CUTOFF Disposal, solid waste, 

unspecified, to sanitary landfill 

 

128 kg 

 

31.8 kg 
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CUTOFF Disposal, solid waste, 

unspecified, to waste-to-energy 

0.59 kg CUTOFF Disposal, solid waste, 

unspecified, to waste-to-energy 

CUTOFF Disposal, solid waste, process, 

to municipal incineration 

0.595 kg 

 

1.03 kg 

 

As shown in Table 3-2, the gate-to-gate process provided by the US LCI database links to four 

other processes flows (“Paraxylene, at plant”,  “CUTOFF Ethylene glycol, at plant”, “Acetic acid, at 

plant”, and “Methanol, at plant”) in the model as inputs, and the inputs are identical to the 

inventory provided in the original LCA study (Table 3-1). On the other hand, cradle-to-gate 

processes in the US LCI database (Table 3-2) link to other elementary flows as inputs, and do not 

have product flows. The US LCI database (Table 3-2) also includes further decompositions, derived 

from Table 3-1, of the inputs’ raw materials represented as only elementary flows. For example, 

“Electricity (grid)” is decomposed into upstream inputs such as “energy from solar”, and “energy 

from geothermal”.  This decomposition requires additional assumptions on electricity generation 

methods; however, the assumptions used are not stated in the metadata of the process  (or any 

other cradle-to-gate process in the database), making the interpretation impossible for any user. 

It can only be assumed that the grid electricity used in the production is a mix of electricity 

generated from different types of power plants. The power plants themselves use different 

energy sources, such as solar power, to generate electricity. Thus, in this example, the resulting 

cradle-to-gate PET inventory is a mix of raw energy inputs. In general, this type of decomposition 

allows the cradle-to-gate process to have only elementary flows as inputs . When mapping 

processes on to matrices, a representation of only elementary flows avoids double-counting. 

Double-counting occurs when matrix 𝑨  includes upstream inputs; the double-count of inputs 

propagates to 𝑨−𝟏𝒇  in Equation 3. On the contrary, without double-counting, the results 

calculated from 𝑨−𝟏𝒇 correspond to only one unit of the process under study and the cradle-to-

gate emissions in the 𝑩 matrix represent the total emissions. The effects calculated from gate-to-

gate processes can be separated into direct and indirect effects in each upstream input using 

Equation 4. In this way, I can trace the locations of the upstream effects. The CTG decomposition 
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prevents the double-counting issue. However, the necessary assumptions as well as the 

decomposition methods are not documented in the US LCI database. As a result, the users are 

unable to fully interpret the cradle-to-gate inventory.  

The cradle-to-gate processes and gate-to-gate processes have different system boundaries. The 

two types of processes should be separated when mapped into matrices to avoid potential 

scenario uncertainty in matrix-based LCA models. Hence, in this analysis I distinguish the cradle-

to-gate processes from the unit processes in the US LCI database.  

To categorize cradle-to-gate and gate-to-gate processes, I consider each process’ metadata. The 

metadata information includes system boundary, location, and other notes of the LCA studies. 

First, the cradle-to-gate processes were identified by parse matching keywords “Cradle-to-gate”, 

“cradle to gate” and “CTG” in the metadata via MATLAB software (code available in the Appendix). 

Then, the identified processes’ full descriptions were individually assessed to avoid errors in pa rse 

matching. Last, the processes with all elementary flows but no product flows as inputs were 

separately identified; these processes could be cradle-to-gate processes whose inventories have 

been simulated into elementary flows. 

Keyword matching identified 125 potential cradle-to-gate processes in the original LCA study 

(Table 3-1). This database investigated the inventories for several different plastic resins. 

Individual assessments revealed 61 false positives; the cradle-to-gate misclassification was due to 

errors in the metadata, see Table S2. From the correctly classified 64 cradle-to-gate processes, 10 

processes only had cradle-to-gate inputs in part of their inventories. For instance, the “Soy-based 

resin, at plant” process was listed as “part cradle-to-gate, part unit process” in its metadata. 

Despite the lack of clarity in these inventories, I assumed it is reasonable to consider all 64 

processes as cradle-to-gate.  

In the 𝑨 matrix mapped from all US LCI processes, I observed elementary flows as sole inputs in 

the remaining processes. By individual assessment I found that 6 were actually cradle-to-gate 

processes. Four of these six misclassifications were identified as having simulated upstream 

energy inputs, such as PET, CTG process in Table 3-2. I assumed that gate-to-gate processes did 

not have to break inputs into upstream raw materials. These processes were: “Corn steep liquor”, 



64 
 

“Forest residue, processed and loaded, at landing system”, “Wood fuel, unspecified”, and “Zinc, 

Special High Grade”. The other two misclassifications were “Polylactide Biopolymer Resin, at plant” 

and “Zinc, sheet”; they had other simulated upstream inputs. The final classification count was 70 

cradle-to-gate processes (approximately 4% of the total). Furthermore, 48 out of the 70 cradle-

to-gate processes had simulated upstream inputs in the form of raw materials, such as the PET, 

CTG process in Table 3-2, meaning the remaining 22 processes could cause double-counting when 

applied to matrix-based models.  

The cradle-to-gate processes can provide total environmental effects without needing to use the 

matrix-based method, making them seemingly more convenient to use than the gate-to-gate 

processes. However, a disadvantage of the cradle-to-gate processes is that they fail to provide 

effects on different stages of the production. For example, the cradle-to-gate PET process 

provided in Table 3-2 indicates that the total (direct and indirect) fossil CO2  emissions, for 

producing 1 kg of PET, is 2.419 kg. I cannot know the amount of fossil CO2  emissions from 

different inputs of the production (and thus cannot evaluate sources of differences if there were 

alternative production processes). In comparison, by running the gate-to-gate PET process in the 

matrix-based model, I calculate the direct and indirect emissions from the upstream processes 

(the upstream processes with the highest 10 emissions are listed in Table 3-3). Gate-to-gate 

processes can take the full advantage of the matrix-based method by separately listing the 

emissions from different stages. For the PET example, the users can tell that the onsite fossil CO2  

emissions (excluding emissions from burning fossil fuel) was 72.4 kg, only 6% of the total  

emissions, while the most intensive emissions were from burning fossil fuel in the production or 

upstream energy use. As seen in this example, gate-to-gate processes allow the LCA practitioners 

to efficiently interpret the LCA results. On the contrary, cradle-to-gate processes fail to deliver an 

equivalent breakdown of results.  

Another limitation of the undocumented cradle-to-gate processes is that when applied to the 

matrix-based method, it is impossible to improve the inventory by reducing the uncertainty in 

each input. For the PET example, the total fossil CO2 emissions from the cradle-to-gate and gate-

to-gate differ by 1.242 kg, with the cradle-to-gate process (not surprisingly) having a larger 

emission value. As the emissions by inputs from the cradle-to-gate process are not available, it is 
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impossible to identify what produced these discrepancies. Alternatively, in the case of gate-to-

gate processes, improving the data quality for an input also improves the uncertainty in the total 

emission. For example, the largest part of fossil CO2  emissions for producing PET is from burning 

natural gas in the production, therefore when this input is switched to another fuel, or the data 

quality of emissions from the natural gas combustion is improved, the total fossil CO2  emissions 

can be updated accordingly. This update could not be possible for cradle-to-gate processes, 

because their emission sources cannot be tracked.  

Table 3-3: top ten fossil CO2 emissions processes for producing 1 kg of Polyethylene terephthalate, 
resin, at plant (PET), calculated from the gate-to-gate PET process. 

Process name 

Fossil 𝐂𝐎𝟐 

emissions (g) 

Parentage of 

the total  

Natural gas, combusted in industrial boiler 508.18 41.0%  

Residual fuel oil,  combusted in industrial boiler 140.02 11.3%  

Electricity, natural gas, at power plant’  95.72 7.7%  

Bituminous coal,  combusted in industrial boiler  94.78 7.6%  

Polyethylene terephthalate, resin, at plant  72.40 5.9%  

Electricity, bi tuminous coal,  at power plant 44.94 3.6%  

Transport, ocean freighter, residual fuel oi l powered  40.34 3.3%  

Diesel, combusted in industrial equipment  37.34 3.0%  

Transport, train, diesel powered 32.04 2.6%  

Methanol, at plant  29.28 2.4%  

Other 142.26 11.5%  

Total  1,237 100%  

3.1.3 Product flows and elementary flows  

As mentioned before, a gate-to-gate process should include all the possible inputs within the 

technosphere. This would maximize the interconnections and include all possible indirect effects. 

For example, when mapping the inventory from a coal power plant on the US LCI database, one 

should make sure that all the associated intermediate processes have been included. For example, 

Coal power plants use coal as their energy input, thus a product flow that represents coal 

combusted for energy should be chosen as one of the inputs. Choosing “coal as a raw material” 
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as an input would result in ignoring potentially large emissions from the coal mining process. Note 

that some cradle-to-gate processes in the US LCI database have already included all inputs in the 

elementary flows, thus the cradle-to-gate processes do not have the same problem.  

In this study, all 474 raw material input elementary flows were used to identify the processes that 

had skipped intermediate product flows. First, I distinguished the processes with any of these raw 

material flows as an input. Then, the distinguished processes were individually evaluated to 

identify the processes that had used these raw material elementary flows directly without the 

intermediate process.  

The results show that among all 1471 processes, 136 had at least one of these raw material 

elementary flows as inputs. After evaluating these 136 processes individually, it was found that 

131 processes were either cradle-to-gate processes (54) or correctly connected to the biosphere 

gate-to-gate processes (77). The 54 cradle-to-gate processes had the raw material elementary 

flows listed in Table 3-4 as inputs due to a separate issue discussed above. The remaining 77 gate-

to-gate processes were correctly connected to the biosphere. For example, the “Coal, in ground 

(hard, 30.7 MJ per kg)” elementary flow is an input to “Anthracite coal, at mine”. The “Anthracite 

coal, at mine” process is a product (product flow) which is directly produced using “coal in ground” 

as raw material. Thus, no intermediate flow was skipped. In conclusion, there are only 5 processes 

that possibly skipped the intermediate processes (Table 3-4). 

Table 3-4: process and resource elementary flows  

Product flow  
Functional 

unit 

Elementary flow as inputs, 

skipping intermediate 

processes 

Value for 1 functional 

unit (positive as inputs, 

negative as outputs) 

Winter wheat straw, 

production, average, 

US, 2022 

1 kg Energy, from biomass 15.0 MJ  

Corn stover, 

production, average, 

US, 2022 

1 kg Energy, from biomass 15.4 MJ  
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Switchgrass, 

production, US, 2022 
1 kg Energy, from biomass 15.3 MJ  

Portland cement, at 

plant  
1 kg 

Clay, unspecified -59.7 g 

Gypsum -61.5 g 

Iron ore  -13.5 g 

Limestone -1400 g 

Raw material,  unspecified  -26.4 g 

Sand, unspecified -40.5 g 

Shale -52.2 g 

Slate -1.13 g 

Iron, sand casted 1 kg 

Coal ,  bituminous, 24.8 MJ 

per kg  
-14.6 g 

Limestone -76.7 g 

Sand, unspecified -1100 g 

 

Skipping intermediate processes can result in neglecting the upstream environmental effects. The 

processes fail to reach the utmost connections for the matrix-based LCA studies. Hence there is a 

need to resolve the inconsistencies in flow types in order to improve the database. The next 

section will discuss additional connection issues found in the US LCI database.  

3.4 Connections in the US LCI database 

To understand the processes and whether they can take full advantage of matrix-based LCA 

models, the connections between processes were analyzed using the definition of upstream and 

downstream connections introduced in section 3.2. The results show that 791 out of 1471 product 

flows have no upstream connections; this number includes 525 cut-off processes (Figure 3-2). The 

absence of upstream connections neglects potential indirect effects, as discussed previously. 

Similarly, 503 out of the 1471 product flows had no downstream connections (Figure 3-3). The 

lack of upstream connections in cut-off processes is due to inventory unavailability, not zero 

inputs. The matrix-based models (and databases) are less useful when the inventories include cut-

off processes; when the cut-off processes are replaced by other processes with full inventories, 
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they will have non-zero upstream connections. It is important to be aware of cut-off processes 

because they are used as inputs in other processes’ inventories (but again, have no upstream 

inventory). Figure 3-3 shows that almost all cut-off processes have more than one downstream 

connection; in fact, 28 of them have more than 10 downstream connections – meaning 10 

processes would otherwise benefit from them having real inventories. These cutoff processes 

may hide total environmental effects. Therefore, when new inventory data are incorporated in 

the US LCI database, the cut-off processes’ inventories, especially the ones with large number of 

downstream connections, should be prioritized to maximize the utility and completeness of the 

database, and avoid potentially missing total environmental effects.  

The results also show that global average (upstream and downstream for all processes) was 4 

connections. In general, processes had more downstream connections than upstream 

connections; 69 processes had more than 20 downstream connections, one process (“Transport, 

train, diesel powered”) had 250 downstream connections . In comparison, no process had more 

than 51 upstream connections. Individual processes did not necessarily have more downstream 

than upstream connections.   
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Figure 3-2: Number of upstream connections for each process in the US LCI database. The inset provides 
greater detail for those processes with 10 or less process inputs. Values on the x axis indicate the number 
of connections in which each process falls. For example, the third bar on the main graph shows that 
there are 272 processes that have a range from 6 to 10 upstream connections. Results are shown 
separately for Cut-off (blue), and non-Cut-off processes (orange). The bar on the zero value is the 
number of processes with no upstream connection. All Cut-off processes have zero upstream 
connections, due to the inventory unavailability.  
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Figure 3-3: number of downstream connections for each process in the US LCI database. The inset shows 
processes with 10 or less downstream connections. Result are shown separately for cut-off (blue) and 
non-cut-off processes (orange). Values on the x axis indicate the number of connections in which each 
process falls. For example, the third bar on the bottom graph shows that there are 19 processes that 
have connections ranging from 11 to 20; 9 of these processes are “cut-off” processes. The bar on the 
zero value is the number of processes with no downstream connections. 

 

 

Table 3-5 lists the non-cutoff processes with more than 20 downstream connections. Many of 

these processes represent very similar alternative processes, often with minor differences.  For 

example, “Electricity, at grid, US, 2000” (No. 15 in  

Table 3-5) and “Electricity, at grid, US, 2008” (No. 11) each represent an overall US average grid 

mix of electricity. Here, these input processes differ only by the year.  If there are multiple versions 

for a given type of electricity process, only one should be chosen as the input. Table 3-4 includes 

the numbers of downstream connections for some similar processes, such as the two electricity 
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examples discussed above. To understand the downstream connections from each type of input 

process, the connections of these similar processes were aggregated, the processes are listed by 

their categories in Table 3-6. The results show that energy or transportation accounted for the 

majority of processes with large numbers of downstream connections.  These processes are 

similar and are often used as inputs by other processes. When one of these processes is used as 

an input, it is possible to consider other similar processes as alternatives. Including these possible 

alternatives can potentially improve the inventories and the LCA results. This is the subject of the 

second topic in this chapter.  

The upstream connections can be subdivided into three individual types based on the 

characteristics of their inputs: 1) cutoff or non-cutoff inputs, 2) within or without the same 

industrial category based on the ISIC (The International Standard Industrial Classification of All 

Economic Activities) code, and 3) whether energy or transportation is included. Cut-off inputs to 

a process, in the first type, were distinguished because they do not contribute to the indirect 

effects. The ISIC code used in the second type is a classification structure based on industrial 

economic activities (UN 2008). I chose to use the ISIC code to categorize the processes because it 

associates industrial products with economic activities, and its categories are more detailed than 

the input-output industrial sectors. In the ISIC code, the industries are categorized in broad 

structures called divisions; these broad structures are further separated into detailed structures 

called classes. The inputs arising from outside the same category were identified to show whether 

the processes were connected to other industries, as processes that only have inputs from the 

same industry could be merely the mix of similar processes. For example, the grid electricity 

process in the US LCI database is a mix of different electricity processes generated by different 

types of fuels. For the processes that had at least one downstream or upstream connection, their 

inputs were evaluated separately to identify whether they were fuel, electricity, and/or 

transportation. It can be assumed that the production of most products needs certain types of 

energy and transportation as inputs, therefore the processes without any energy and 

transportation input should be identified. I note that this is another inconsistency in the 

inventories of LCI databases. For example, some processes include transportation in their scope, 

while others do not. However, the users are generally unaware of this inconsistency and might 
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use a process that does not align with their scope assumptions. The proper identification of this 

inconsistency can lead to improvements on the processes’ inventories.  

 

Table 3-5: Processes with more than 20 downstream connections in the US LCI database. 

No. Process name 

Number of 

downstream 

connections 

1 Transport, train, diesel powered 250 

2 Transport, pipeline, unspecified petroleum products 191 

3 Transport, barge, average fuel mix 176 

4 Natural gas, combusted in industrial boiler 130 

5 Transport, ocean freighter, average fuel mix 129 

6 Diesel, at refinery 128 

7 Transport, combination truck, diesel powered 102 

8 Transport, combination truck, average fuel mix 93 

9 Diesel, combusted in industrial equipment 89 

10 Gasoline, combusted in equipment 83 

11 Electricity, at grid, US, 2008 71 

12 Electricity, residual fuel oil, at power plant 66 

13 Liquefied petroleum gas, combusted in industrial boiler 63 

14 Gasoline, at refinery 55 

15 Electricity, at grid, US, 2000 54 

16 Diesel, combusted in industrial boiler 45 

17 Electricity, at grid, Eastern US, 2000 42 

18 Residual fuel oil, combusted in industrial boiler 42 

19 Transport, pipeline, natural gas 31 

20 Natural gas, combusted in industrial equipment 30 

21 Transport, barge, diesel powered 26 

22 Electricity, at grid, Western US, 2000 25 

23 Quicklime, at plant 25 
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24 Bituminous coal, combusted in industrial boiler 24 

25 Transport, barge, residual fuel oil powered 23 

 

Table 3-6: Processes with more than 20 downstream connections in the US LCI database, sorted by 
three industrial categories 

Category Process name 

Number of 

downstream 

connections 

Fossil fuel and 

electricity as 

energy 

Electricity, at grid 192 

Natural gas, combusted 160 

Diesel, combusted 89 

Gasoline, combusted 83 

Liquefied petroleum gas, 

combusted 
63 

Residual fuel oil, combusted 42 

Bituminous coal, combusted 24 

Transportation 

Transport, train 249 

Transport, pipeline 222 

Transport, barge 225 

Transport, combination truck 195 

Transport, ocean freighter 129 

Materials 

Diesel, at refinery 128 

Gasoline, at refinery 55 

Quicklime, at plant 25 

 

Figure 3-4 shows the different types of connections for the 1471 processes in the database. Also 

included in Figure 3-4 is the analysis of energy and transportation inputs for the processes that 

have at least one upstream or downstream connection.  The results show that 342 (233+284-

194+19) processes (23% of the total) have at least one upstream or downstream connection. 248 

(342-94) out of these 342 processes have either transportation or fuel as input. If transportation 

is considered as an important input to decide whether a given process’ inventory is fully 
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established, there are 76 (61+9+6) processes (5% of the total) that have both energy and 

transportation as inputs. On the other hand, more than 50% of the total processes have no 

upstream connections; this percentage includes the cut-off processes. I also note that more than 

34% of the total processes do not have downstream connections.   

The results also show that 165 processes in the database have neither upstream nor downstream 

connections. Most of these processes were by-products from the production of other products, 

thus their inputs were not considered. For example, “Steam, at uncoated freesheet mill” is a by-

product of “uncoated freesheet”. For this production, I assumed that allocation was not necessary. 

Thus, the number of inputs for this by-product was zero; consequently, the number of upstream 

connections was also zero. Additionally, this by-product was not used as an input in any other 

processes’ inventories, resulting in zero downstream connections.  

 

 

Figure 3-4: different types of connections among the 1471 processes in the US LCI database. The chart 
on the right shows the different types of connections shared by the 1471 processes, the figure on the 
left shows processes that have fuel (green circle), electricity (brown circle) or transportation (blue 
circle) as inputs, for the processes that have one or more than one upstream or downstream 
connections.  
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Let us define a “useful process” as one that effectively contributes to the indirect values in the 

matrix-based LCA model. A “useful process” requires 1) at least one upstream and downstream 

connection, and 2) at least one energy (fuel or electricity) and at least on transportation as input. 

This definition is made for several reasons. First, most processes without upstream connections  

neglect indirect effects in the matrix-based LCA model. Second, processes without downstream 

connections can be seen as only a product , rather than a contributor in the database (previous  

studies have defined these processes as “foreground processes” (UNEP 2011)). Processes without 

downstream connections are just modeled products from the matrix; these processes do not 

contribute to the indirect effects for other processes when incorporated in the matrices, 

therefore they do not affect the results of any other process in the database. Third, processes 

without energy or transportation as inputs are assumed to have missed these two inputs in the 

inventory; in this case, it is quite possible to neglect both direct and indirect upstream 

environmental effects. I found only 76 “useful processes” in the current version of the US LCI 

database. It is assumed that compared to the rest of the processes, the “useful processes” can 

cover more indirect effects in the matrix-based LCA method. I believe that the processes that are 

not “useful processes”, especially the processes without upstream connections or no 

energy/transportation input should not be included in the matrix. The processes without 

upstream connections do not contribute to the indirect environmental effects when used in the 

matrix-based model framework, and the lack of interconnections may mislead users to assume 

that there are no upstream effects.  

Similarly, a process without energy inputs is problematic. In the production of a process, it is 

unlikely that no energy is used, thus, missing energy inputs in the inventory ignores the upstream 

effects from energy consumption. In addition, transportation can be defined to be inside or 

outside of the system boundary of a process. In a database, the system boundaries for all 

processes should be consistent to avoid ignoring neglects of effects from transportation. However, 

in the US LCI database, some processes have transportation as inputs while others do not; the 

exclusion of transportation inputs results in missing upstream effects. The missing of energy 

inputs and inconsistency in transportation inputs are problematic when the processes are 
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incorporated into a matrix-based framework. It is difficult (sometimes impossible) for users to 

realize when upstream effects are missing.  

On the other hand, when updating the database, priority should be given to the processes that 

have downstream connections without upstream connections, such as some cut-off processes. 

For these processes, if the inventories are updated, more upstream effects can be included when 

modeling processes that connect to them. To maximize the connections, processes with no 

energy inputs should be prioritized for updates.  I suggest that to gather the most indirect 

environmental effects, the processes in the US LCI database should be updated and maintained 

with a matrix-based LCA framework in mind. Identifying potential missing inventories can be 

helpful to the inventory updates. I use an input-output table as a reference to spot locations of 

the potential missing inventories and identify neglected connections in the US LCI database. In 

the next section, I introduce methods and results for the comparison between the IO model and 

the US LCI database.  

3.5 Comparisons of the interconnections between the US LCI database and the EIO-LCA model 

The technology matrix (A) in the current US LCI database is structured by mapping the physical 

inventory data from all processes; the processes are comprised of a wide range of industries in 

the US. It is ordered alphabetically. However, the analyses above show that there are processes 

without upstream or downstream connections, which suggests a lack of interconnections in the 

technosphere. To better understand the interconnections in the database, the 2002 US input-

output table (IO table) is used as a reference to identify potentially missed connections in the US 

LCI database.  

The interconnections in the (A) matrix from the US LCI database were compared with the 

interconnections in the IO table; both represent exchanges in the technosphere. The 

interconnections in the US LCI database were then referenced with the hotspots of exchanges 

between industries identified in the IO table. In the IO table, the exchanges between sectors are 

based on direct requirements in dollar values. In this way, all purchases between industries can 

be translated into product exchanges. These exchanges can be good references for 

interconnections. In the US LCI database, the exchanges in the technosphere are based on 
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individual products or processes in physical unit operations. In the IO table, the exchanges are 

based on industry sectors with purchase values in dollars. Because the industrial categories 

classified by the ISIC are more comparable with the industrial sectors in the IO table, categorized 

the processes in the US LCI database were categorized into industrial divisions via the ISIC code. 

The categorization was based on the descriptions of industries provided by the ISIC code 

documentation and the industrial categories of the processes in the US LCI database. The 

industry-classified US LCI processes were aggregated and fitted into a new technology matrix that 

have the same format with the IO table to make a more feasibly comparison.  

3.5.2 Classification based on ISIC code 

The International Standard Industrial Classification of All Economic Activities (ISIC) is a 

classification structure based on industrial economic activities (UN 2008). The industries are 

categorized in broad structures called divisions; the broad structures are further separated into 

detailed structures called classes. 

I categorized the processes in the US LCI database into different categories that are comparable 

with IO sectors. Then, the inventories of the processes were mapped to a smaller matrix that was 

comparable with the IO table by aggregation. The inventories for processes were aggregated to 

inventories for industries using the following two steps. First, for a process, the inputs from the 

same categorized ISIC industrial class were summed to represent the input from the industrial 

class.  For example, the inputs of all types of electricity, such as coal and natural gas electricity, 

were summed to a total electricity consumption (one single number of the electricity input). 

Second, within each industrial class, a process was chosen to represent the industry. For instance, 

the “Iron, sand cast” process was chosen to represent the Iron and steel manufacturing industry. 

As the choice of a representative process can be arbitrary, this section uses the maximum input 

values across all processes as the values in the new inventory. The aggregated upstream inputs 

were mapped into a new matrix with equal rows and columns corresponding to the number of 

industrial classes. The industry on each row represented an industry that provided input; each 

column had the chosen process’ inventory and represented the inventory for that industry.  
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The 1471 processes in the US LCI database fell into 83 categories, including 76 ISIC classes and 7 

fuel combustion categories. The 7 fuel combustion categories were separately listed as they 

represent different stages of the energy inputs. One fuel combustion category is “Natural gas, 

combusted in industrial boiler”. The corresponding upstream fuel input in this case was “Natural 

gas, at extraction site”. The process names and ISIC categories are listed in Table S3.   

When categorized by the ISIC code, the IO table has 136 equivalent industries, including 54 service 

and government sectors. Again, the service and government sectors were not included in the 

analysis because they were not present in the US LCI database. From the remaining 82 industries, 

6 did not have equivalent correspondences in the US LCI database. Thus, only 76 industries from 

the IO table were compared with their corresponding aggregated US LCI industrial categories.  

3.5.1 Number of interconnections in the IO table 

Let us first consider the number of connections from the detailed level industries in the IO table; 

this should provide a general idea of how different the connections are at this detailed level. 

I used the same method provided in section 3.4 Connections in the US LCI databaseto evaluate 

the number of upstream and downstream connections of the sectors in the IO table. In the 

detailed level IO table, there are 428 industrial sectors; 97 of these are service and government 

sectors that are not part of the US LCI database. I focus on the remaining 331 agricultural, 

industrial, and transportation sectors, because these categories are also present in the US LCI 

database, and thus their connections can be compared. 

Results show that the average number of connections in the IO table is 277 for both upstream 

and downstream connections. I note that connection values less than $50,000 were not provided 

in the table (rounded down to $0), thus the actual number of the connections could be larger. 

Figure 3-5 shows the histograms of downstream and upstream connections for the 331 sectors. 

Most of the sectors had more than 250 upstream connections, no sector had less than 150 

upstream connections in the IO table. On the other hand, 57 (5+15+18+6+13) sectors had less 

than 200 downstream connections, among which 5 had zero downstream connections (hunting, 

and construction sectors). 
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Figure 3-5: Numbers of connections for agriculture, industrial and transportation sectors (331 in total) 
in the IO table (service sectors not considered). The left histogram shows the numbers of downstream 
connections; the right histogram shows the numbers of upstream connections. 

 

While the IO table benefits from aggregation of sectors, the results indicate that the IO table 

differs from the US LCI database in number and pattern of connections. The number of 

connections in the IO table are significantly larger (277 on average) than the connections in the 

US LCI database (4 on average). The average number of connections in the US LCI database is 

significantly smaller despite its larger total number of processes. The IO table also differs on the 

pattern of connections. For instance, the majority of the sectors had upstream inputs, and only a 

few sectors were not used as inputs to other sectors. The number of processes with downstream 

connections in the IO table was higher than the number of processes with upstream connections  

in the US LCI database. This indicates that unlike the processes in the US LCI database, the IO table 

includes mostly foreground sectors (products but not contributors).  

3.5.2 Classification based on ISIC code 

The International Standard Industrial Classification of All Economic Activities (ISIC) is a 

classification structure based on industrial economic activities (UN 2008). The industries are 

categorized in broad structures called divisions; the broad structures are further separated into 

detailed structures called classes. 
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I categorized the processes in the US LCI database into different categories that are comparable 

with IO sectors. Then, the inventories of the processes were mapped to a smaller matrix that was 

comparable with the IO table by aggregation. The inventories for processes were aggregated to 

inventories for industries using the following two steps. First, for a process, the inputs from the 

same categorized ISIC industrial class were summed to represent the input from the industrial 

class.  For example, the inputs of all types of electricity, such as coal and natural gas electricity, 

were summed to a total electricity consumption (one single number of the electricity input). 

Second, within each industrial class, a process was chosen to represent the industry. For instance, 

the “Iron, sand cast” process was chosen to represent the Iron and steel manufacturing industry. 

As the choice of a representative process can be arbitrary, this section uses the maximum input 

values across all processes as the values in the new inventory. The aggregated upstream inputs 

were mapped into a new matrix with equal rows and columns corresponding to the number of 

industrial classes. The industry on each row represented an industry that provided input; each 

column had the chosen process’ inventory and represented the inventory for that industry.  

The 1471 processes in the US LCI database fell into 83 categories, including 76 ISIC classes and 7 

fuel combustion categories. The 7 fuel combustion categories were separately listed as they 

represent different stages of the energy inputs. One fuel combus tion category is “Natural gas, 

combusted in industrial boiler”. The corresponding upstream fuel input in this case was “Natural 

gas, at extraction site”. The process names and ISIC categories are listed in Table S3.   

When categorized by the ISIC code, the IO table has 136 equivalent industries, including 54 service 

and government sectors. Again, the service and government sectors were not included in the 

analysis because they were not present in the US LCI database. From the remaining 82 industries, 

6 did not have equivalent correspondences in the US LCI database. Thus, only 76 industries from 

the IO table were compared with their corresponding aggregated US LCI industrial categories.  

3.5.3 Hotspots in the EIO-LCA and comparison results 

In this section, the connections in the US LCI database and the IO table are compared on the 

aggregated level of the matrices.  
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Figure 3-6 provides an overall comparison, using connection hotspots, between the IO table (left) 

and the technology matrix in the US LCI database (right). Both tables represent the A matrix in 

the matrix-based LCA method. The IO sectors were bridged to 76 ISIC classes from the previously 

categorized US LCI processes. The grey areas in the figure were US LCI categories that did not have 

equivalent sectors in the IO table, such as “natural gas, combusted in industrial boiler”. The cells 

in each table represent the total contributions directed from rows to columns. The relative 

percentages from the entries in each row (contributing sectors) are indicated with a color map, in 

this scale white is 0%, yellow is 0.01%, and red is 100%.  

 

 

Figure 3-6: highlights of connections in IO table (left) and US LCI database (right). Values between the 
lowest and highest were highlighted in 3 color scales: white (lowest), yellow (0.01% of the highest), and 
red (highest). Grey area were processes in the US LCI database that have no accurate matches in the IO 
table, such as “coal, combusted in industrial boiler” process. 

The US LCI database has less interconnections than the IO table, this result was also observed in 

the previous sections. However, the comparisons between industries and products could be 

arbitrary for two reasons. First, the sectors in the IO table count both the material flows and the 

other economic activities. The purchase of goods are not necessarily the material inputs for 

producing the products.  For example, a steel company may purchase fruit from a farm for 

company events; this may result in a connection between the steel manufacturing sector and the 

fruit farming sector. However, fruit for company events is not a physical input used to produce 

steel, and given the scope of typical process-based inventories, as such will not be listed in the 
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inventory of steel production process in the US LCI database. Second, the IO table and the US LCI 

database have different system boundaries. In the US LCI database, the connections between 

processes are limited to only products and materials. The scope of the processes generally 

excluded other activities in the inputs, such as the use of tools and machineries. Therefore, when 

comparing to equivalent industries in the IO table, it is more appropriate to use specific products 

that can represent whole industries from US LCI.  

3.5.4 Comparison with the IO table based on individual processes 

To better understand the differences between the connections in the IO table and the US LCI 

database, several specific processes were chosen to be compared with equivalent industrial 

sectors in the IO table.  

Table 3-7 shows the top 5 inputs regarding economic purchase value for cement manufacturing 

sectors in the IO table; for contrast, I also list the top 5 inputs sorted by their mass values from 

the US LCI database. The results showed that the energy and the transportation were important 

attributes for cement manufacturing. However, transportation of any type was not included in 

the equivalent processes in the US LCI database (‘Portland cement, at plant’).  
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Table 3-8 compares the total fossil  CO2 emissions, for producing one metric ton of cement, 

calculated from the EIO-LCA model and the US LCI database. The CO2  emissions from the EIO-LCA 

model were calculated assuming the price for US cement was $77.5/ton in 2002 (USGS 2002). The 

total CO2  emissions include both direct and indirect emissions; they are the sum of the emissions 

of the sectors or processes listed in the tables. The results show that the emissions  from each US 

LCI process are generally higher, with a few exceptions, such as truck and pipeline transportation. 

These higher values are possibly caused by the parameter uncertainties in the US inventories. For 

example, the direct emissions from the US cement process are 70% higher compared to those 

from the EIO-LCA model, possibly due to parameter uncertainty. On the other hand, the US LCI 

truck transportation process has smaller emissions, because it is outside the system boundary of 

the cement process. The emissions from the truck process are only composed from upstream 

productions. The US LCI database includes more than 100 truck transportation processes, these 

transportation processes are inputs of some processes in the database. As discussed previousl y, 

whether or not to include transportation inputs in the inventories should be consistent across all 

the processes. Therefore, the cement manufacturing industry should consider including truck 

transportation in its inventory. The exclusion of transportation from cement manufacturing 

processes in the US LCI database might be an issue of using inconsistent system boundaries across 

processes in the database, as discussed in section 3.4. Because IO-LCA has a clear system 

boundary for all the sectors in the system, it can be used as a reference to reinforce the inclusions 

or exclusions of certain processes in the inventories.  

Table 3-7: top 5 inputs for Cement manufacturing, sorted by direct economic values in the IO table, 
and mass values in the US LCI database, respectively. 

IO table US LCI 

Top 5 inputs for Cement manufacturing sector 

Power generation and supply Limestone 

Natural gas distribution Water 

Ground or treated minerals and earths manufacturing Gypsum 

Lime and gypsum product manufacturing Clay, unspecified 
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Truck transportation Shale 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-8: Fossil CO2 emissions to produce 1 metric ton of Portland cement, calculated from EIO-LCA 
model (left) and the US LCI database (right). The shaded rows show the total CO2 emissions, including 
both direct and indirect emissions. The remaining rows show the top 10 emissions from different sectors 
or processes.  

IO sectors 

Fossil 

CO2 

emissions 

(kg) 

  US LCI processes  

Fossil 

CO2 

emissions 

(kg) 

Total 413.9   Total  963.5 

Cement manufacturing 334.0   Portland cement 553.0 

Power generation and supply 62.5   Coal 282.0 

Lime and gypsum product manufacturing 1.9   Electricity 105.7 

Truck transportation 1.7   Natural gas 13.5 

Oil and gas extraction 1.4   Fossil fuel 5.2 

Ground or treated minerals and earths 

manufacturing 
1.4   Transport, train 2.8 
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Petroleum refineries 1.3   Transport, barge 0.5 

Rail transportation 1.2   
Transport, ocean 

freighter 
0.33 

Pipeline transportation 1.0   Transport, truck 0.32 

Clay and non-clay refractory manufacturing 0.5   Transport, pipeline 0.002 

Remaining sectors 6.8   Remaining processes 0.003 

 

3.6 Scenario uncertainty estimation in the US LCI database 

In the previous chapter, a range method was used to analyze the parameter uncertainty in IO 

matrix-based LCA models. This chapter introduces a method to estimate the scenario uncertainty 

in the models. Scenario uncertainty reflects the uncertainty in the results caus ed by different 

choices in the LCA studies, such as allocation methods selections and system boundary drawings 

(Huijbregts et al. 2003).  In this study, simultaneously choosing different inventories is considered 

as one type of choice in LCA studies; the uncertainty caused by such different choices is evaluated 

to represent on type of scenario uncertainty in the matrix-based LCA models. 

In the current US LCI database, various processes have overly specific inputs. For example, 

“Transport, combination truck, diesel powered”, is the only truck transportation input for the 

“Lime, agricultural, corn production” process. This suggests that only diesel powered combination 

trucks are used in the production of lime, excluding the possibility of using gasoline or other  

powered trucks. These overly specific processes can cause scenario uncertainty in traditional LCA 

studies, because the processes fail to provide other possible choices as inputs. Typically, this is 

also a problem in the matrix-based LCA models where the processes are connected, and 

potentially contribute to each other’s environmental effects. Moreover, in matrix-based LCA 

models, the results only show the aggregated effects from each process. Without a profound 

knowledge of all inventories in the database, the users are unable to realize about the existence 

of overly specific processes. Thus, the scenario uncertainties caused by these processes are likely 

to be ignored. This introduces methods to consider scenario uncertainties in the matrix-based LCA 

model, using the US LCI database as a case study. Because the results calculated from a matrix-

based LCA model are based on the connections between processes within the boundary of the 
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model, the scenario uncertainty caused by different choices of inputs should be within the same 

boundary. Before new processes are introduced, the scenario uncertainties can be estimated 

using existing information in the model. As such, in this study, the scenarios are based on 

processes that are already part of the US LCI database, no new inventories are constructed. The 

scenario uncertainties are separately evaluated for US LCI processes and industrial categories.  

3.6.1 Scenario uncertainty in US LCI processes   

The scenario uncertainties for US LCI processes were evaluated by creating a range of alternative 

scenarios while treating each environmental effect separately. Each possible scenario is built by 

replacing alternative inputs to a process. The alternative inputs are similar US LCI processes that 

serve the same function. As an example, all 99 electricity processes (including 78 grid electricity 

processes and 21 fuel electricity processes) in the database are considered as similar processes 

and used as alternatives. All the alternatives were used to create different scenarios , the range of 

alternative scenarios represents the scenario uncertainty. The scenario uncertainty caused by 

using direct and indirect alternative inputs are estimated separately. Fossil CO2  emissions are 

used as an example to demonstrate the results.  

First, I estimated scenario uncertainties caused by using different direct electricity inputs as 

alternatives. For a process, its specified inputs from electricity were replaced by all alternative 

electricity processes in the database; new results were calculated based on these alternatives and 

used to form a range. When there were multiple electricity inputs for a process in the original 

inventory, the values of the common category inputs were summed for a single input value. For 

example, the “Polyethylene terephthalate, resin, at plant” (PET) process mentioned above has 

two upstream electricity inputs (0.051 kWh “Electricity, at cogen, for natural gas turbine”, 

and .0.056 kWh “Electricity, at grid, US, 2008”) for each kg production in the original inventory. 

Thus, the total electricity input value was the sum (0.107 kWh). Then, I fit the new inventory into 

a new 𝑨 matrix (𝑨𝒏𝒆𝒘). In 𝑨𝒏𝒆𝒘, the 0.107 kWh electricity input for the PET resin process was 

iteratively replaced as a scenario by each of the 99 electricity processes in the database. Replacing 

the electricity input by all available alternatives  resulted in 99 different technology matrices 

(𝑨𝒊 
𝒏𝒆𝒘 , 𝑖 = 1,2, … ,99 ). While all other values in the inventory remain unchanged, the difference 

between these 99 𝑨𝒊 
𝒏𝒆𝒘  matrices was only due to the different electricity processes used for the 



87 
 

PET process. Throughout this analysis, the 𝑩  matrix and 𝒇  vector in Equation 3 remained 

unchanged. I calculated 99 different g vectors (g vector has one value, fossil CO2 , in this study) 

from the 99 different 𝑨𝒊 
𝒏𝒆𝒘matrices; the range of fossil CO2  generated was the final result for 

producing 1 kg of PET resin in the US LCI database.  

Next, the electricity inputs for all processes were replaced by alternatives to represent the 

scenario uncertainties caused by indirect electricity consumption. The method is similar to the 

one mentioned above, with a slight difference in building the new alternative matrices. Instead 

of replacing the electricity input for only one process, one of the 99 electricity processes was used 

as an alternative for all of the processes in the database. Thus, in the  𝑨𝒊 
𝒏𝒆𝒘 , the electricity input 

for all the processes changed from the default to alternative 𝑖. For example, when “Electricity, at 

grid, US, 2008" is chosen as the scenario, all processes use this process as their only electricity 

inputs. The results calculated from this method represent the scenario uncertainties caused by 

using both direct and indirect electricity alternative inputs, and are compared with the scenario 

uncertainties caused by using only direct electricity alternative inputs.  

The overall uncertainties across all US LCI processes caused by choosing different direct electricity 

inputs are shown in Figure 3-7. For each process, I calculated the fossil CO2  emissions based on 

different scenarios. Grid electricity processes (78) and fuel electricity processes (21) are 

separately listed, because the fuel electricity alternatives represent the most extreme cases. It is 

unlikely for a process to use only one type of fuel electricity as input; mos t of the electricity used 

is from one region’s grid electricity mix. The percentage values in Figure 3-7 were calculated based 

on the differences between each alternative and the default scenarios, which was  assumed as the 

emission calculated from using the default electricity (the electricity input in the original inventory)  

as input. Thus, each row in the figure has 99 results, representing the differences between 99 

alternatives and the default scenario. Note that processes 148 to 246 on the y-axis have no results, 

because they are the electricity processes, using alternative electricity inputs as different 

scenarios do not affect the results of these processes.  

Figure 3-7 shows two important results. First, there is one outlier for each process. In all cases, 

the outliers can be traced to using a specific electricity process, namely “Electricity, onsite boiler, 



88 
 

hardwood mill, average, NE-NC” as the electricity input. This  electricity process is a byproduct of 

producing hardwood in a hardwood mill; the large environmental effect values are possibly due 

to the allocation of the effects from the production. For better visualization, values calculated 

from using “Electricity, onsite boiler, hardwood mill, average, NE-NC” as the electricity inputs are 

excluded from the results.  

Second, not surprisingly, the fuel electricity scenarios have larger ranges compared with grid 

electricity scenarios. The grid electricity processes are different mixes of the fuel electricity 

processes in the database; the most fossil CO2  intense electricity generation methods are mixed 

with the least intense methods, thus resulting in moderated CO2  emissions.   

The results from scenario uncertainty caused by using both direct and indirect (total) alternatives 

show similar results (Figure 3-8): the outliers are caused by “Electricity, onsite boiler, hardwood 

mill, average, NE-NC” process; fuel electricity scenarios result in larger ranges. To compare the 

differences between the cases of using only direct alternatives and using both direct and indirect 

alternatives, I compared the maximum CO2  emissions values calculated from these two cases for 

a process. For each process, I used the ratio of the two maximum values to represent the 

difference; the results are shown in Figure 3-9. Using both direct and indirect scenario alternatives 

can result in as large as 33 times more CO2  emissions for some processes; in general, the 

differences are around 5 times. The results indicate the importance of the indirect emissions, 

certain electricity processes can cause large scenario uncertainty in the model. In addition, the 

results show the importance of including more similar processes for the users to choose in the 

database. If only one electricity process is available to choose, any process that uses electricity 

would inevitably use the single electricity as input, ignoring both the direct and indirect scenario 

uncertainty. 
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Figure 3-7: Overall scenario uncertainty caused by using direct alternative electricity inputs. The default 
electricity input for each process was the electricity input from the original inventory. Left: fossil CO2 
emissions, as percentage difference from the default, for 876 gate-to-gate processes (without cutoff 
processes). Right: the emissions for each process were calculated by using 78 grid electricity and 21 fuel 
electricity scenarios, without the outliers caused by using “Electricity, onsite boiler, hardwood mill, 
average, NE-NC”. Each scenario used one of the 99 electricity generation processes as electricity input.  
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Figure 3-8: Overall scenario uncertainty caused by using both direct and indirect alternative electricity 
inputs. The default electricity input for each process was the electricity input from the original 
inventory. Left: fossil CO2 emissions, as percentage difference from the default, for 876 gate-to-gate 
processes (without cutoff processes). Right: the emissions for each process were calculated by using 78 
grid electricity and 21 fuel electricity scenarios, without the outliers caused by using “Electricity, onsite 
boiler, hardwood mill, average, NE-NC”. Each scenario used one of the 99 electricity generation 
processes as electricity input. 

 

 

Figure 3-9: Overall scenario uncertainty caused by using alternative electricity inputs. Y-axis represents 
876 gate-to-gate processes (without cutoff processes) in the US LCI database. Values on the x-axis are 
the ratios of total to direct fossil CO2 emissions. 

The minimum and maximum values from these scenarios were used to calculate the range 

uncertainty for each process. Excluding outliers and processes without electricity inputs, the 

results show that for grid electricity alternatives, the average (across all US LCI processes) of the 

minimum and maximum scenario uncertainties is within -10% and 10%, respectively (Table 3-9). 

The corresponding standard deviation are 13% and 12%, respectively, indicating similar 

variabilities from the negative and positive sides. The results from fuel electricity are larger than 

the grid electricity; however, the general scenario uncertainty for all the processes is within 20%.   
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Table 3-9: Mean and standard deviation of the minimum or maximum values for all 876 processes, 
based on four different cases 

 Mean (%) Standard deviation (%) 

 Minimum Maximum Minimum Maximum 

Fuel electricity, direct -12.6 10.9 23.9 20.6 

Fuel electricity, total -22.2 20.3 27.0 24.2 

Grid electricity, direct -5.6 5.5 11.0 10.6 

Grid electricity, total -10.1 9.8 12.8 12.0 

 

An example process is used to demonstrate how upstream inputs contribute to the scenario 

uncertainty. “Iron, sand casted” process is chosen as the example because 1) it has various 

products as inputs, including electricity; and 2) it is potential input for many other products, such 

as machinery. For the process, the default scenario provided in the original US LCI inventory 

resulted in 1120 kg of total fossil CO2  emissions, using “Electricity, grid US, 2000” as the electricity 

input.  Figure 3-10 shows the fossil CO2  emissions for 1 metric ton of “Iron, sand casted” process, 

which resulted from all 99 electricity scenarios, and distinguishes results from grid and fuel 

electricity scenarios. Each distinct marker represents the result calculated from one scenario used. 

The top sections of the figure show that the total CO2  emissions vary between 240 and 1770 kg; 

the ranges formed by using grid electricity alternatives are smaller than the ranges from the fuel 

electricity alternatives. There is an outlier again at 19MT (not shown) which was caused by using 

“Electricity, onsite boiler, hardwood mill, average, NE-NC”.   

Similar to the results in chapter 2, the figure lists the top ten processes by the maximum values 

that contribute to the total emission of “Iron, sand casted” process. In the bottom graphs, the 
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rows show the CO2  emissions results from different product contributors sorted by their 

maximum value in descending order. Similar to the top graph, each of the ten product 

contributor has 78 distinct markers from the grid electricity and 21 from the fuel electricity. It 

can be seen that Bituminous coal electricity process is the most important contributor to the 

uncertainty in producing sand casted iron. On the other hand, some processes only contribute 

to the total emission, not the uncertainty. For example, “Bituminous coal, combusted in 

industrial boiler” process has a consistent emission value. The process contributes the same 

amount of emission regardless of the scenario chosen is because that it is only an input to sand 

casted iron process, not an input to any electricity process.Figure 3-11 includes four different 

cases to compare the differences between using direct alternatives and total alternatives as well 

as using fuel electricity and grid electricity alternatives. . Similar to the results for all processes, 

fuel electricity has larger ranges compared with grid electricity; the emissions are larger 

considering both direct and indirect alternatives than using only direct alternatives. The 

differences between using total alternatives and direct alternatives are small (less than 100 kg), 

indicating small indirect electricity use in the supply chain for the process. 

 

Figure 3-10: Fossil CO2 emissions for one metric ton of “Iron, sand casted”. Left: scenario uncertainty 
caused by using grid electricity. Right: scenario uncertainty caused by using fuel electricity. The top 
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graphs show the total emissions. The bottom graph shows the results from the top ten product 
contributors under alternative scenarios (markers). 

 

 

Figure 3-11: Total fossil CO2 emissions for one metric ton of “Iron, sand casted”, considering four 
different cases.  

Apart from electricity, in the US LCI database, other similar processes can also be used as 

alternatives.  As discussed earlier in the chapter, there are several categories of the database 

where there are data for many similar processes; here, these categories are chosen to 

demonstrate further scenario uncertainty case studies . The same method used for electricity 

scenarios was used for transportation and fossil fuel alternatives. Because the “Iron, sand casted” 

process excluded transportation as input, I choose another example to show the uncertainty due 
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to using alternative transportation inputs; only direct alternatives are considered. 

 

Figure 3-12 shows the total fossil CO2 emissions for producing one metric ton of “Benzene, at 

plant”. The default scenario used the processes specified in the current US LCI database as inputs. 

The markers indicate the results from alternative scenarios in four electricity (99) and 

transportation (151) industries. The number of scenarios is different in each industry. As in Figure 

3-10, I excluded the outlier results from “Electricity, onsite boiler, hardwood mill, average, NE-

NC”. The results from different scenarios ranged from 540 to 567 kg in truck transportation, and 

from 530 to 563 kg in electricity; in both industries, the scenario uncertainties are simi lar. Jointly, 

truck transportation and electricity form a range (530 to 567 kg) that is only -2 to 5% different 

from the results in the default scenario (540.6 kg). The range of results from alternative scenarios 

in transportation barge and pipeline was much narrower; however, these industries only had a 

few alternative scenarios (less than three each). If the database provide more processes in the 

same category, the variability can become more precise.  
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Figure 3-12: total fossil CO2 emissions, in kg, for 1 ton of “Benzene, at plant” by using alternative 
scenarios in electricity and transportation industries. The default values are circled and the default 
inputs are listed.  

 

3.6.2 Scenario uncertainties in US LCI industries 

The method and the results shown in the previous section provide the scenario uncertainties for 

individual processes. To estimate the uncertainties on the industrial level, I needed to develop a 

second method, because the first method cannot be applied to all alternative inputs. When 

multiple similar inputs are available, the alternatives are easy to find, thus the scenario 

uncertainty can be estimated. However, as discussed previously, the processes in the US LCI are 

not well-connected, the numbers of inputs/outputs in most processes are not large enough for 

analysis using the first method. Therefore, I developed the second method to analyze 

uncertainties at industrial levels.  

The second method involved a few more steps. First, to classify similar processes, the processes 

in the US LCI database were categorized according to the ISIC classes explained in section 3.5.2 

Classification based on ISIC code. The 1471 processes were categorized into 83 industrial 

categories, detailed results are shown in Table S3 and S4. Second, new alternative matrices 

𝑨𝒊 
𝒏𝒆𝒘𝑰𝑰  were found based on industries rather than processes. Third, total fossil CO2  results were 
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calculated from the alternative 𝑨𝒊 
𝒏𝒆𝒘𝑰𝑰  matrices via Equation 3; the results show the total fossil 

CO2  emissions to produce 1 kg of product in one selected final demand industry.  

Then, I found a new 𝑨𝒊 
𝒏𝟖𝟑   matrix with 83 columns and 83 rows based on industries, instead of 

the original 𝑨 matrix with 1471 columns and 1471 rows based on processes. The 83 columns in 

the new A matrix represented 83 industries in the US LCI database; the 83 rows were the inputs 

to the 83 industries, same as in the original A matrix. The 83x83 𝑨𝒊 
𝒏𝟖𝟑  matrix differed from the 

1471x1471 𝑨 matrix in that the columns and rows were industries but not product flows. In this 

way, each industry (column) had 83 inputs from 83 input industries (rows). The industries in the 

83 columns were estimated first, then the values for the 83 input industries were calculated.  

I took the average input values across all processes in each product industry as the new input 

value in each column of the new matrix, thus the inputs to each of the 83 product industries were 

the averages of the inputs from each product industry, resulting in a default matrix with average 

input values for all 83 product industries. This step resulted in a 1471 x 83 matrix; the 1471 rows  

were the input processes from the original 𝑨 matrix, while the 83 columns represented the 83 

product industries. Then, each product industry’s input from each input industry was calculated 

by adding all inputs within the input industry, resulting in a s ingle input value. For example, the 

input from the manufacturing of plastic products industry to the manufacture of engines and 

turbines industry was the sum of inputs values of all processes in the manufacturing of plastic 

products industry.  

Third, each product industry (column) in the 83 x 83 𝑨𝒊 
𝒏𝟖𝟑  matrix was replaced by a 

representative process in the industry, thus in the new 83 x 83 𝑨𝒊 
𝒏𝟖𝟑  matrix, one product industry 

had inputs from a representative process while the rest 82 product industries had the mean input 

values as mentioned previously. This new 𝑨𝒊 
𝒏𝟖𝟑  matrix represents one scenario. Thus, all 

processes in the same industry provide the same number of scenarios. This set of scenarios 

together with the other 82 sets are used to estimate the range of emiss ions in Equation 3. For 

example, there were 25 processes in the plastic products manufacturing industry, the 

representative processes resulted in 25 83x83 alternative technology matrices. In each of the 25 

alternative matrices, the plastic product manufacturing industry (column 42) had inventory of one 
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selected process in the category (for example, ‘Composite scrap, from composites compression 

molding, at plant’); the remaining 82 columns had mean values as default.  As there were 1471 

processes in the 83 industries, I had 1471 83x83 alternative 𝑨𝒊 
𝒏𝟖𝟑  matrices in total, all these 

𝑨𝒊 
𝒏𝟖𝟑  matrices were used for estimating the range result for total fossil CO2  emissions.  

For each alternative 𝑨𝒊 
𝒏𝟖𝟑 , there was a corresponding environment vector (𝑩 matrix in Equation 

3). Each alternative environmental matrix was generated with the same method: the mean 

emission values were taken as the default 83x1 vector, and each emission value for one industry 

was replaced by a representative value from the emission values of each process.  

Finally, total fossil CO2  emissions were calculated from Equation 3, with a defined final demand 

value from an industry. As there were 1471 alternative 83x83 𝑨𝒊 
𝒏𝟖𝟑  matrices and 1471 

corresponding 𝑩 matrices, the range of total fossil CO2  emissions was formed by a set of 1471 

values and included all possible emission values from the method.  

Figure 3-13 shows the ranges of fossil CO2  emissions calculated for one metric ton of product in: 

“Grow of cereals” category. The legend for the markers is shown in Figure 3-14. Each distinct 

marker represents an industry in which its default representative process is replaced by an 

alternative process. For example, the yellow cross markers represent the values resulting from 

using alternatives in the Road Transportation industry while keeping the others as the mean 

values. Alternative processes in the Road Transportation industry resulted in at least two different 

fossil CO2  emissions values in the growth of cereals. Overall, the results in Figure 3-13 suggest 

that the majority of the discrepancies were caused by using processes in certain industries as the 

replacement, namely Energy, Electricity power generation, and Transportation.  
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Figure 3-13: fossil CO2 emissions, in kg, for 1 metric ton of Manufacture of basic iron and steel category 
(top), and Manufacture of basic chemicals (bottom)  

 

Figure 3-14: legend for Figure 3-13. 

The large discrepancies observed are possibly due to differences in product industries; the inputs 

and outputs can vary significantly due to the use of alternative processes. Using a process in the 

category to represent the other processes is not reasonable in these cases. This is also confirmed 

by another observation from the uncertainty estimation method: using particular processes as 

the representatives in the technology matrix generates unreasonable results (large negative total 

fossil CO2  emissions), possibly due to the double-counting of inputs, especially from fuel 
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consumption. The results show that without altering the processes in the Road Transportation 

category, the differences were still large. This observation confirms the importance of providing 

all possible inventories to the users, as the ranges were simply caused by using different 

representative processes within one industrial category.  

3.7 Conclusions for the chapter 

This chapter provides analyses of the processes in the US LCI database and the scenario 

uncertainty caused by using different alternative inputs in the inventories.  

The analysis of the processes in the US LCI database show that the processes have potential 

problems, especially when incorporated into matrix-based LCA models. First, inconsistent system 

boundaries and missing inputs to processes can cause neglects of environmental effects. Second, 

the processes in the database are not well-connected, only one fourth of the processes have at 

least one upstream or downstream connection, indicating that the database is not fully taking 

advantage of matrix-based LCA models. Therefore, to overcome these two issues, the US LCI 

database can focus on: 1) defining a consistent system boundary for all processes, and 2) update 

the inventories of some processes.  To minimize the time and effort in the updates, processes  

without energy inputs should be updated first to avoid the neglects of environmental effects from 

the consumption of energy. Then the cutoff processes should be updated with full inventories. 

The cut-off processes that do not have any similar alternative in the database should be given 

priority. The cut-off inputs can be replaced by other alternatives in the database. For example, 

the processes that use “CUTOFF Electricity, fossil, unspecified, at power plant” as the electricity 

input should use another non-cutoff electricity input as replacement before the cutoff electricity 

process can be updated with a full inventory.  

In this study, the EIO-LCA model is used to show the differences between the connections in the 

US LCI database and the connections in the IO table. The results showed that the US LCI database 

has much less connections. One advantage of IO-LCA models is that the models have a clear 

system boundary for all the sectors; thus, the results calculated from the models are consistent 

and easy to interpret. The US LCI database as well as other process based LCI databases can use 
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IO-LCA models as a reference to identify the potential missing inventories and reduce part of the 

neglects in the environmental effects.     

In this chapter, I also used two methods to evaluate the scenario uncertainties in the US LCI 

database. The first method focused on the uncertainties due to choices of alternative electricity 

and transportation in the inventory. The second method evaluated the scenario uncertainties 

caused by choosing different processes in each industrial category. The results from the first 

method indicate that scenario uncertainties are generally within -20% and 20% from the default 

choice, and may show some outliers. The second method results in bigger scenario uncertainties: 

an example shows that by choosing different processes within the same industrial category, the 

CO2  emissions for 1 kg of industrial product can vary between 0 and 400 kg. Both methods show 

that the scenario uncertainties in matrix-based LCA models can be large. The results calculated 

based on the current US LCI database are only preliminary as the connections between processes 

are rather sparse. However, this method can provide better results on future database versions, 

which ideally will include more well-connected inventories. 
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4. Chapter. LCIA uncertainty in a process-based LCI database 

The previous chapter analyzed the processes in the US LCI database. By considering the 

contributions to the indirect effects, I analyzed different types of processes in the database and 

their potential impacts on the uncertainty in matrix-based LCA models. Additionally, I computed 

scenario uncertainties in the process-based matrix LCA model by considering the scenario 

uncertainty in the inventories. In this chapter, I present an analysis of the uncertainty in the 

environmental impacts for the processes in the US LCI database. Here, the uncertainty analysis is 

based on 1) the variability in the characterized environmental effects for each inventory, 2) the 

differences in the coverages of substances, and 3) the characterization of factor values from 

different impact assessment models.  

4.1 Introduction to LCIA and the comparison between LCIA methods 

4.1.1 Life cycle impact assessment 

As regulated by ISO 14040 standard, Life Cycle Impact Assessment (LCIA) is a phase of Life Cycle 

Assessment (LCA) (ISO 2006b). This phase seeks to evaluate the environmental impacts from a 

product system (Owens 1997). To achieve this  evaluation, Life cycle inventory (LCI) data are 

associated with environmental impact categories (ISO 2006b).  
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Figure 4-1: Elements of the LCIA phase provided in ISO 10040 (ISO 2006b) 

According to the ISO 14040 standard, LCIA has three mandatory elements: selection, classification, 

and characterization (Figure 4-1) (ISO 2006b). The first element is the selection of impact 

categories. An impact category is a class that represents environmental issues (ISO 2006b), such 

as global warming or cumulative energy demand. The selection of impact categories should be 

related to the goal and scope of the LCA study. For example, appropriate geographic locations 

should be considered (Matthews et al. 2014). The second element is classification, which maps 

the inventory flows that are considered to contribute to an impact category. These flows are 

referred to as substances in previous LCIA studies. The third element provides an assessment of 

impacts via characterization indicators for each substance. The indicators are also referred to as 

“equivalency factors”; but in this study, I will consistently use the term “characterization factors”. 

Characterization factors are used to transform environmental effects to quantified environmental 

impacts. There are three more elements in LCIA studies, but they are optional. In this chapter, I 

focus on discussing the uncertainties generated from the first three mandatory elements.  
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Based on the goal and scope of the study, the impact categories can be divided into two major 

types: midpoint and endpoint impacts. Midpoint impacts are intermediate damages that increase 

the impact concentration, and thus change the local environment. Examples of midpoint impacts 

are global warming, ozone depletion, acidification, and eutrophication (Bare et al. 2000). Endpoint 

impacts are final effects or damages to the ecosystem, humans, and resources (Udo de Haes et 

al. 1999). Examples of endpoint impacts include global atmospheric temperature rising due to 

greenhouse gas emissions (Lashof and Ahuja 1990), or increasing cardiovascular events due to 

toxic air emissions (Brook et al. 2004). Midpoint and/or endpoint impact categories are included 

in various methods. In some cases, a few traditional midpoint categories can be modeled as 

endpoint categories. For example, in the impact assessment method “ReCiPe-Endpoint”, ozone 

depletion is modeled as an endpoint category, indicating the damage caused by thinning the 

stratospheric ozone layer, such as increasing occurrences of skin cancer.  

Multiple impact assessment methods have been developed for different purposes in LCA studies 

over time. Early impact assessments were generally developed according to the only available 

reference - ISO standard (Baumann and Rydberg 1994). Then in 1999, the SETAC-Europe working 

group provided guidelines for improving impact assessment methods (Udo de Haes et al. 1999). 

Since then, the concepts of impact assessment framework, and principles of characterization 

factor modeling have become widely accepted and implemented in LCIA. Currently, many LCIA 

methods exist and some are regularly updated. As more choices of impact methods for the same 

geographical area become available, the choice of an appropriate method for a given LCIA study 

is an important challenge. As a result, the differences between the methods is an interesting topic 

in the field of LCIA research (Owsianiak et al. 2014; Dreyer et al. 2003).  

4.1.2 Differences in LCIA methods 

The comparison between different LCIA methods can be traced to the 1990’s. Baumann and 

Rydberg (1994) compared three early LCIA methods: ecological scarcity (ECO), environmental 

theme (ET), and environmental priority strategies in product design (EPS). The main difference 

between ECO, ET, and EPS was in the estimation of the characterization factors with respect to 

different goals and scopes. For example, the ECO method assumed that the pollutants were 

emitted to the local area, whereas the EPS method focused on emissions to the whole 
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atmosphere. Pennington et al. (2004) systematically reviewed 12 impact categories, examining 

the differences between multiple impact assessment methods in relation to their models and 

methodologies. The available LCIA methods for each category were listed and the spatial and 

temporal differences between methods were summarized.  Both Baumann and Rydberg, and 

Pennington emphasized the importance of choosing the appropriate impact assessment method 

according to the goal and scope of each individual study, such as the impact area. However, these 

pioneering studies focused mostly on qualitative differences, and did not elaborate a quantitative 

comparison between LCIA methods.   

More recently, some LCA studies have considered the variability of results caused by choosing 

different impact methods. Both Bovea and Gallardo (2006) and Dreyer et al. (2003) compared the 

LCIA results for particular materials using three methods: CML, Ecoinciator95, and EDIP. Bovea 

and Gallardo (2006) compared the impact results of three different plastic materials  (PVC, PP and 

PE). Their study showed that for the same plastic product, the differences between the minimum 

and maximum values in the impact results varied between 0 to more than 800 times; the higher 

values occurred in the photochemical oxidation category. Dreyer et al. (2003) examined the 

differences in impact results for the lacquer product system due to characterization factor values 

by calculating the contribution of impacts from each substance. In the Dreyer and colleauges’ 

study, the results were between 0 to 8200 times; aquatic ecotoxicity category had the largest 

range. Additionally, Owsianiak et al. (2014) compared the results of plastic materials from three 

impact assessment methods (ILCD 2009, ReCiPe 2008, and IMPACT 2002+), and concluded that 

the variability in the LCIA results was between 5% and more than 1,000,000%. Similar 

comparisons based on particular materials or products can be found in other LCA studies: 

Martinez et al. 2015; Cavalett et al. 2013; Xue and Landis 2010; Brent and Hietkamp 2003; de 

Vries and de Boer 2010. All of these studies demonstrate that for a product, different impact 

methods can lead to different LCIA results. LCA is supposed to be for decision support and 

strategic thinking. The presence of different results means there is potential for different 

decisions. However, some issues have not been addressed yet. First, all existing comparisons used 

only a few impact methods. Systematic quantitative comparisons across more than three impact 

methods has not been addressed. Second, though these studies provided variabilities from using 
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different impact assessment methods; they did not quantify the causes of variability. The 

variances could be caused by the differences in the coverages of substances or by discrepancies 

in the characterization values. Third, existing studies used specific LCA case studies. Here, I aim to 

study the variability in the impacts of many different products using an LCI dataset with 

inventories for many processes.  

4.1.3 Matrix-based LCA model and LCIA 

Matrix-based LCA methods are used to scale the inventory and provide direct and indirect LCA 

effects. A given LCI dataset can be mapped to matrices in order to evaluate the total  impact results 

for its processes. As discussed in Chapter 3, Equation 3 is used to calculate environmental effects. 

The vector 𝒈 in equation 1 includes the results from all types of environmental effects provided 

in the system boundary of the matrix-based model. In LCIA, the entrywise (Hadamard) product in 

Equation 4 is used to calculate the impacts for each category in a method. In Equation 5, 𝒒𝒊
𝒌 is the 

characterization row vector for the impact method 𝒌 and category 𝒊; each entry value in 𝒒𝒊
𝒌 is the 

characterization factor corresponding to the respective elementary flows . Only elementary flows 

that are substances in the category have characterization factor values. The 𝒒𝒊
𝒌  entries 

corresponding to elementary flows that are not substances in the category are set to zero; in LCA 

software, this is generally intended as a default placeholder for the elementary flows whose 

potential impacts are currently unknown. For an impact method 𝒌 and category 𝒊, the result 𝒉𝒊
𝒌  

is a vector that represents the impact values of all elementary flows. For example, suppose that 

in a LCA study, 𝒈 includes the results from two global warming substances: carbon dioxide, and 

methane emitted to air. The corresponding global warming characterization factors in 𝒒𝒊
𝒌  are 

multiplied by the respective emission values from 𝒈, resulting in two impact values in the 𝒉𝒊
𝒌  

vector. The sum of all values in the 𝒉𝒊
𝒌  vector is the total global warming impact results.  

Equation 5:   𝒉𝒊
𝒌 = 𝒒𝒊

𝒌 ∘ 𝒈 

LCA practitioners often select one impact assessment method and at least one impact category. 

For example, developed by the US EPA, the TRACI method is a common choice for LCA studies of 

products produced in the US (Bare et al. 2003). TRACI stands for “Tool for Reduction and 

Assessment of Chemicals and Other Environmental Impacts”. Within TRACI, the global warming 
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(GW) category is often selected, as it is the impact category for the evaluation of climate change 

impacts. LCA software includes features that allow easy and fast selections from these methods  

and categories to provide straightforward impact results using Equation 2. For example, the 

SimaPro software (version 8.3) contains information on characterization factors for around 50 

impact assessment methods for the users to choose. However, it fails to show the differences in 

the LCIA methods as well as the possible different results when other methods are chosen.  

4.1.4  Inventories reporting regarding environmental impacts 

Criteria have been developed to determine the inventories that should be included in the system 

boundary (Suh et al. 2004); they are based on ratios of the mass, and energy or economic values 

of one functional unit of the process under study. These criteria, often referred to as cutoff criteria, 

can be problematic. When excluded, these processes might result in large impact values, as the 

characterization factor values for the excluded processes can be large. For example, “  

Dichlorodifluoromethane, CFC-12” has a large GW characterization factor (around 

10,000 kg CO2eq). Thus, emissions as small as 0.001 mg can result in an GW impact of 0.1 

𝑘𝑔 𝐶𝑂2𝑒𝑞. However, under total-mass-based cutoff criteria, the small emissions are likely to be 

excluded from the inventory. The exclusion of small emissions can result in ignoring large LCIA 

results. Yet, no LCA study has focused on understanding the potentially neglected impact results 

due to the selection of criteria.  

In this study, I performed a comprehensive comparison of uncertainties arising from the selection 

and use of different LCIA methods. Processes from the US LCI database are used to demonstrate 

the results. Our work considers three key sources of variability in LCIA results: 1) differences in 

the environmental effects from the US LCI process inventories, 2) differences in coverage of 

substances in the methods, and 3) differences in the characterization factor values for all 

commonly used impact assessment methods. Finally, the impact assessment results are used to 

develop a new criteria for drawing system boundaries in LCA studies.  

4.2 Summary of impact categories and substances  

While there are many LCIA methods available, I use a practitioner’s perspective in this analysis. 

As such, I obtained characteristics of the 50 impact methods and categories  provided in the 
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SimaPro software (version 8.3). The number of substances for the 19 most widely used impact 

categories in 45 selected methods are listed in Table 4-1. The 5 remaining methods only provided 

one or a few impact categories - such as cumulative energy demand methods - and are not listed 

in Table 4-1. 

The results show that on average, each method provides approximately 10 impact categories, 

with a few exceptions that cover only one or two. These exceptions are customized methods that 

were developed for a specific purpose. For example, IPCC methods only provide information on 

GW categories. Some categories are used in most of the methods, such as global warming and 

acidification; while others are given in only a few methods, such as abiotic depletion. For each 

category, different methods provide connections to significantly different numbers of 

characterized substances. For example, the number of substances for the Freshwater Ecotoxicity 

category vary from 46 in CML 1992 to 22,706 in TRACI 2.1.  

Some of the methods are simply different versions of the same methods, e.g., there are three 

different TRACI methods: TRACI, TRACI 2, and TRACI 2.1.  As a result, I only focus on distinct 

methods from the latest versions. Five impact categories (Global warming (GW), Acidification, 

Eutrophication, Ozone depletion, and Ecotoxicity) were chosen based on their widespread use, 

acceptance, and variation, for three reasons. First, these categories are available in most of the 

impact assessment methods. This is not the case for every category, for instance, “Smog” was 

available only in a few methods. Second, GW, Acidification, Eutrophication and Ozone depletion 

have relatively widely accepted coverages of substances. Third, the number of characterized 

substances vary significantly in these five categories: from as few as 18 substances in Acidification 

to as many as 30,514 substances in Ecotoxicity. Overall, the selected methods robustly represent 

the coverages of substances in all other categories. Under this selection of example categories, 

the study only focuses on comparing the methods that include these five categories (red italics in 

Table 4-1).  
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Table 4-1:  Numbers of characterized substances in major impact categories (columns) for 45 impact assessment methods (rows). The 
displayed methods are embedded in the SimaPro software (version 8.3). Highlighted rows with red and Italic font are the methods chosen for 
demonstration in this study.  
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Table 4-2: characterization factor values (in kg CO2 eq) for all 110 global warming (GW) substances generalized from 14 popularly used impact 
methods.  
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The observed high variability in the GW characterization factor values is somewhat unexpected 

because compared to other impact categories, the GW category is considered to be a relatively 

well-developed category. The estimation method for the GW category was assumed to be 

developed from one research agency, the Intergovernmental Panel on Climate Change (IPCC), and 

accepted by most of the methods. Thus, the coverages of substances were expected to be 

identical or at least similar between different methods. However, the results show that some 

methods have much smaller numbers of substances, such as BEES, CML2001, and Eco-indicator 

(which I stipulate are relatively older, but are still widely available in LCA software tools). No 

method includes all substances listed in Table 4-2. The ILCD method, for example, includes six 

substances that are not included in any other methods; yet it does not include 

“Perfluorocyclopropane”, a substance that is included in most of the other methods.  

Apart from the differences in the coverages of substances, the characterization factors  also vary 

significantly across methods. This variability is beyond the variability expected from using 

different specific global warming timeframes. For example, there are six different values for 

Chloroform from 14 methods while the GW metric is defined at 20, 100, and 500 years.  

4.3 Variability in the impact assessment results in the US LCI database 

Differences in the coverages from substances, and differences in the characterization factors are 

two sources for the variability in the LCIA results. A third source of variability is from differences 

in inventories that are connected to LCIA methods. The number of included substances in the 

inventory affects the LCIA result. This section evaluates the effects from the coverages of these 

GW substances in life cycle inventories.  

The 2701 elementary flows in the US LCI database include potential substances in each impact 

category. The purpose of this section is to identify these substances by matching  their information 

with the elementary flows and substances provided in each category. The information includes 

the names of the materials or emissions in the elementary flows, as well as two other restrictive 

elements: compartments such as air, water and soil, and by impact regions such as lake, and river. 

As an example, Table 4-3 shows all elementary flows for Mercury in the US LCI database, specified 

to compartments and impact regions. Matlab software was used for the matching between the 
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information in the elementary flows and the substances in each category (code available in the 

Appendix), by the names and other restricted information.  

In some cases, the substances provided in impact categories are not specified by impact regions 

and compartments. Current practice is to apply the substances and their characterization factors 

in an impact method to all possible regions and compartments in the elementary flows. For 

instance, in the Ecoindicator 95 method, “Mercury emissions to air” is not regionally specified in 

the “heavy metals” impact category. The substance and its characterization factor are applied to 

all US LCI mercury flows to air (No. 1398, 1403, 1404, 1405 and 1411 in Table 4-3). On the other 

hand, when a substance provided by an impact method is regionally specified, an elementary flow 

in a LCI database should have the same impact region considered as a match. For example, in the 

ReCiPe Midpoint method, one impact region for Mercury to soil is “forestry”. As shown in Table 

4-3, in the US LCI database, Mercury does not have forestry as one of its impact regions, indicating 

that the substance from the ReCiPe Midpoint method does not match any US LCI elementary flow.  

Table 4-4 shows the all GW substances in the US LCI database. Thirty five out of the 110 GW 

substances shown in Table 4-4 were identified as elementary flows. These GW substances were 

not regionally specified in the methods and applied to all elementary flows with the same 

chemical names. Thus, 94 US LCI elementary flows specified by impact regions were identified as 

matches.  
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Table 4-3: Elementary flows for Mercury with different impact regions and compartments in the US LCI 
database 

 

 

  

Flow 

No. in 

USLCI Name Impact region Compartment Unit 

1398 Mercury unspecified air kg 

1399 Mercury unspecified water kg 

1400 Mercury industrial soil kg 

1401 Mercury ocean water kg 

1402 Mercury agricultural soil kg 

1403 Mercury high population density air kg 

1404 Mercury low population density air kg 

1405 Mercury stratosphere air kg 

1406 Mercury ground- water kg 

1407 Mercury ground-, long-term water kg 

1408 Mercury lake water kg 

1409 Mercury river water kg 

1410 Mercury unspecified soil kg 

1411 Mercury low. pop. air kg 



116 
 

 

Table 4-4: GW substances in the US LCI database and their characterization factors in different methods. 
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The number of substances for the five chosen impact categories are shown in Table 4-5. The first 

row in Table 4-5 shows the numbers of substances summarized from all impact methods for each 

category and the corresponding compartments (e.g., as described above there are a total of 110 

distinct global warming substances across all methods considered). The third row represents the 

numbers of chemicals in each category that are included in the USLCI elementary flows. The forth 

row shows the number of elementary flows that have the same name with the substances in each 

category. Finally, the last row shows the total number of US LCI elementary flows classified by the 

compartments in the second row. The US LCI database classified 1030 elementary flows with 

compartment air, 237 with soil, and 924 as water. The results show that considering all five impact 

categories (the last column), around 60% (938 out of 2191) of the US LCI elementary flows are not 

substances in any of these categories, resulting in zero impacts. In addition, for each impact 

category, different methods provide different numbers of substances, resulting a range of 

number of substances covered (row 3). The ranges are generally large. For example, ozone 

depletion method has a number of matched substances vary between 6 and 25, indicating using 

one method can result in the neglect of 75% substances provided in another method.  

Table 4-5: Summary of the number of substances and matching elementary flows in five selected 
impact categories for the US LCI database. 

  GW  
Acicifi-

cation  

Eutrophi-

cation  

Ozone 

Depletion 

Eco-

toxicity 

All five 

categories 

Number of substances from all 

methods 
110 19 93 108 30514 30514 

Compartments for the 

substances 
Air Air 

Air, 

water, 

soil 

Air 

Air, 

water, 

soil 

Air, 

water, 

soil 

Matched substances 

(compartment specified) 
17 - 35 6-14 14 - 26 6 - 25 

244 - 

830 
 

Maximum number of matched 

elementary flows considering 

all impact regions 

94 48 71 39 830 938 

Number of elementary flows  1030 1030 2191 1030 2191 2191 
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The approximate 60% of exclusion of substances can be due to different reasons. First, possible 

cutoff criteria can cause neglects of emissions; the emissions that are smaller than the cutoff value 

are not reported in the inventory. Second, some particular substances are simply not emissions 

in the production. To better understand the reasons of the exclusions, based on individual 

industries and processes, I applied other data sources as reference to identify whether there are 

data gaps in the inventories.  

4.4 Validating substances coverages and variability in the impact assessment results based on 

individual processes  

In the previous section, I listed the differences between the number of substances in the impact 

methods and in the US LCI database. The results showed that the differences can be large, in that 

the database may currently lack information on a large number of substances with known impacts . 

It is reasonable that there are more substances included in impact assessment methods than the 

numbers of substances emitted from production since data comes from many individual 

processes, each of which could in fact not have emissions of such substances. However, if results 

from another data source shows that the emissions likely exist but are not covered in the US LCI 

process, it means that there is a data gap and the inventory should be updated to include the 

emissions. To demonstrate the idea of using these references to determine whether there are 

data gaps, in this study, I used the global warming impact category as an example, because the 

data for this category are currently available. The methods can be applied to other impact 

categories as more third-party data can be acquired.  

 

The US EPA’s Greenhouse Gas Reporting Program (GHGRP) 2  provides annual Greenhouse Gas 

emissions data from large emitting industries. In 2009, the US EPA published a mandatory 

reporting rule for greenhouse gas emissions. It regulated that facilities in the US should report 

any emissions that are more than 25,000 metric tons carbon dioxide eq per year. Since then, the 

US EPA collects reported emissions from these facilities and provides the data to the public. The 

latest data are from 2015, for 32 industry types. These data were used in this study to identify 

greenhouse gas emissions from different industries and as a reference to identify possible data 

gaps in the US LCI database.  

 

                                                 
2 US EPA Greenhouse Gas Reporting Program. https://www.epa.gov/ghgreporting/ghg-
reporting-program-data-sets, accessed 05-01-2017  

https://www.epa.gov/ghgreporting/ghg-reporting-program-data-sets
https://www.epa.gov/ghgreporting/ghg-reporting-program-data-sets
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Based on the data provided by GHGRP, the greenhouse gas emissions reported by each industry 

under the mandatory reporting rule are summarized in Table 4-6, cells with “EPA” indicate that 

there were more than 25,000 metric tons of carbon dioxide equivalent greenhouse gas emissions 

from various industries (EPA provides 32 industries, for simplicity, only industries covered in the 

US LCI database are listed in the table). The summarized results from the EPA reports show that 

carbon dioxide, methane and dinitrogen oxide are reported in the emissions from all industries, 

while the other six greenhouse gases are reported in only in metal, chemical, and electronic 

manufacturing industries.  The table, lists the inclusion or exclusion of the greenhouse gases in 

the US LCI database; the red cells indicate the EPA reported emissions that are excluded from any 

US LCI process within the same industry. The result shows that there are data gaps for some 

industries in the database, especially in ethanol production and electronics manufacturing 

industries; the non-zero values are reported to EPA from these industries, but the substance are 

not included in the processes’ inventories. For example, EPA requires metal production industries 

to report perfluorocarbons; however, among the 22 US LCI metal processes, none have 

perfluorocarbons as outputs. The exclusion of these substances could be caused by the time 

differences between the inventories reported and the release of the mandatory reporting rule; 

some of the inventories were reported before 2005, thus the emissions reporting were not 

regulated by the rule. These old inventories can be improved referencing the rule. However, the 

exclusions of global warming substances indicate possible exclusion of substances from other 

impact categories, and currently no reference can be found to identify possible gaps. Future 

studies can aim to solve these problems by identifying impact substances from industrial 

emissions.  
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Table 4-6: Mandatory Greenhouse gases reported to the US EPA GHGRP for each industry. Cell listed as 
“EPA” are emissions reported under the mandatory reporting rule. Cells highlighted with red color are 
emissions that are not included in any of the US LCI process within each industry.  

The evaluation on the industrial level provides a high level summary of the inclusion of global 

warming substances. A detailed level analysis was also performed to understand the inclusion of 

US LCI processes. For simplicity, the matrix method is applied. Considering all substances 

summarized from the 14 different impact methods, the values in the 𝑩  matrix were used to 

identify whether a process had certain substances in the direct emission. Each row in the 𝑩 matrix, 

found in Equation 3, represents an elementary flow, which is a direct input or output for the 

processes in the columns. For each column, non-zero values in the rows represent direct 

emissions from identified substances in each process. Thus, identifying the non-zero values in the 

substance rows efficiently leads to the substances from each process. The zero values were 

assumed to have zero effects, thus resulting in no corresponding impacts.  

Figure 4-2 shows the ranges in number of GW substances for the US LCI gate-to-gate processes. 

Using their maximum values, these ranges are sorted by the process having the largest number 

of GW substances (left) to the smallest (right). The two values for each process are the maximum 

and minimum number of substances summarized from 14 impact assessment methods (shown in 

Figure 4-2). For example, in Figure 4-2, process number one had a range of identified substances 

between 11 and 15; this range resulted from using different impact methods. The “cut-off” 

processes do not have any output component; thus, they were not shown in Figure 4-2. Cradle-

to-gate processes were also excluded in Figure 4-2, because their emissions are not exclusively 
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direct emissions. Figure 4-2 also omits processes without GW substances. The results show that 

the discrepancies between the maximum and minimum numbers can be large. Only 314 or 25% 

of the 876 cradle-to-gate processes had more than one GW substance, and 523 processes do not 

include any GW in their inventories. As show in Figure 4-2, the processes with the largest numbers  

of GW substances are fuel combustion processes.  

There were some instances in which the number of substances was small or even zero. This lack 

of substances induces a small or zero value for the direct GW impact results in most of the 

processes (i.e., it would report that the process has no global warming impact). The reason for 

the lack of substances can be traced to the inventories of the processes. Most processes do not 

include GW substances in their inventories. It is possible that the processes do not have GW 

emissions. For example, the “electricity, US, grid mix” process is a mix of electricity generated by 

different types of fuels. In this case, generating grid electricity does not involve any real 

production (no emission is produced from the process). However, these special cases only apply 

to a small part of the processes, not to all the 523 processes. GW substance emissions may also 

be excluded from the inventory when they are outside the system boundary of the LCA studies. 

This exclusion can result in ignoring impact values in the results. When the system boundary is 

set, the inclusion/exclusion of certain emissions is often based on benchmarks referred to as 

cutoff criteria. The cutoff criteria specify a boundary using mass, energy or economic value, rather 

than impact results.  Thus, small emissions from substances are more susceptible to being 

excluded from the inventory. I will discuss cutoff issues more in the next section.  
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Figure 4-2: Numbers of Global warming (GW) substances in the gate-to-gate process from the US LCI 
database. The processes were sorted from the largest number of substances (left) to the smallest 
(right). The two values for each process are the maximum and minimum number of substances in 14 
popular impact assessment methods (see Table 4-2). The “cut-off” processes in the US LCI database are 
not shown in this figure, as these processes do not have any output component. Also omitted are the 
processes without GW substances after No. 360. The first 10 processes’ names are shown in the table.  

So far, I have identified the direct emission substances from each process in the US LCI database. 

Now I focus on the indirect/upstream emission substances and their impacts from each process. 

The indirect emissions for each process were obtained from the 𝒈 vector. After identifying the 

substances, the final ranges of impact results were computed from their corresponding 

characterization factors. The differences observed in the impact results were due to the 

variabilities in the characterization factors, and the number of substances covered in each method.  
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In the direct analysis, I found 548 processes with no GW substances (from any GW methods) in 

their direct emissions (i.e. in the 𝑩 matrix). In the direct and indirect analysis, 268 out of these 

548 processes include GW substances in their upstream (i.e., in their 𝒈 vectors). As an example, 

Figure 4-3 summarizes the occurrence GW substances for the processes with the top ten highest 

number of GW substances in their direct inventories (i.e., the first ten processes listed in Figure 

4-3). The non-zero substances corresponding to direct and indirect emissions are displayed 

separately and highlighted in orange; red border cells are reported as non-zero values by the EPA 

GHGRP. The results indicate that 1) more substances are found in the total emissions; 2) some 

substances are widely included, such as fossil carbon dioxide; 3) some GW substances reported 

in EPA GHGRP are not included in some of the processes’ inventories.  
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Figure 4-3: Non-zero values for the US LCI processes that have the largest numbers of global warming 
(GW) substances. The marked cells in the tables represent non-zero values. Cells with red borders are 
reported as non-zero values by the EPA GHGRP. The direct and indirect tables were obtained from the 
𝐁 matrix, and 𝐠 vector for each process respectively (the non-zero values are highlighted in orange). 

 

Ten example processes with only one direct GW substance in the 𝑩 matrix columns are shown in 

Figure 4-4. Perhaps contrary to expectation, when a process has only one GW substance, it is not 

necessarily “carbon dioxide”, but can also be “dinitrogen monoxide (𝑁2𝑂)”.The results also show 

that the numbers of substances in the 𝒈 vector for the same process are larger, further indicating 

that indirect emissions are important to the impact results.  

Figure 4-3 and Figure 4-4 highlight the substances included in the process inventories. For 

processes with either the top 10 highest or lowest numbers of GW substances, when EPA’s GHGRP 

is used as a reference, potential data gaps are found in in the processes’ inventories. Though the 

total effects cover more substances, the missing substances are still excluded from the inventories, 

indicating the missing substances are not included in the inventory of any upstream inputs. 

Excluding these substances results in missing impact values; this is an issue in LCI databases, 

especially for the processes that have small numbers of GW substances . Addressing this issue can 

improve the quality of databases and facilitate better LCA results.   
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Figure 4-4: Non-zero values for the US LCI processes that have only one global warming (GW) 
substance. The highlighted cells in the tables represent non-zero values. Cells with red borders are 
reported as non-zero values by the EPA GHGRP. The process number corresponds to the x-axis in 
Figure 4-2.  

Next, using Equation 3 and Equation 5, I calculated the total impact assessment results per 

functional unit for each of the 876 gate-to-gate processes in the US LCI database. All 14 methods 
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were used in the estimation. Again, Matlab software was used to match substances. Among the 

876 gate-to-gate processes, 608 have non-zero GW impact results which are graphed below. Of 

these 608 processes, Figure 4-5 shows results for the 50 processes with the largest total GW 

impact values per functional unit. The total impact values for each process were calculated based 

on 14 different GW methods, as shown in the legend. Each row in the figure represents the 14 

total emissions from one functional unit production of a process. The displayed processes were 

sorted by the maximum GW impact value calculated from all methods. Figure 4-6 shows the 

results for the remaining 558 non-zero-impact processes. The processes with the 10 largest total 

GW impact values are different than the processes with the 10 largest numbers of GW substances 

in Figure 4-3, because the GW impact values are affected by the characterization factor values for 

the substances, whose values can differ by three orders of magnitudes between different 

substances.   

In general, the GW results are similar across different methods. Among the 608 processes, 517 

have less than 5% absolute departure from the average value (i.e., the difference between the 

maximum or minimum value and the average is less than 5%). There are some big outliers from 

two impact methods. No. 17 to No. 23 on the x-axis, for example, have larger values calculated 

from the Greenhouse gas protocol method (light blue squares) than using the other methods . On 

the other hand, processes No. 305 to No. 310 have larger values from the CML 2001 method 

compared to the other methods (Figure 4-6).  
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Figure 4-5: GW values in kg CO2 eq per functional unit, from 14 impact methods, marked by the different 
symbols described in the legend.  Processes No.1 to No.10 are shown on the left, and processes No. 11 
to No. 50 are shown on the right. The processes are sorted by total impact results including direct and 
indirect impacts. The first 10 processes’ names, industrial categories, functional units, and original index 
numbers from the US LCI database are listed in the table.  
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Figure 4-6: GW values in kg CO2 eq per functional unit from 14 impact methods for processes No. 50 to 
No. 620. The processes are sorted from high to low by the total impact results including direct and 
indirect impacts. Other processes with zero GW impact from any of the methods are not shown. 



130 
 

The processes provided in Figure 4-5 and Figure 4-6 were sorted to visualize the uncertainties in 

all processes; however, the functional units of these processes are different, making comparisons 

of uncertainties between processes impossible. In addition, the processes from the same industry 

could have similar impacts. Thus, I also grouped the processes from the same industries together 

to enhance the interpretation of results. Figure 4-7, Figure 4-8 and Figure 4-9 provide GW impact 

results for three example categories: transportation, electricity, and plastic material. These three 

categories are chosen as examples because their processes have relatively similar attributes, such 

as upstream flows and downstream uses. The results show that within the three categories, the 

maximum and minimum impact values are generally from the same impact methods. IPCC 2007 

20a often provides the largest GW impact, while ReCiPe Midpoint (I) results in the minimum 

impact value. These two methods cover the same numbers of substances, thus, the differences 

in the impact values were due to the differences in the characterization factor values.  

For the GW impact category, different time intervals is one of the reasons for the discrepancies 

in the impact results. As shown in Figure 4-7, Figure 4-8 and Figure 4-9, for most of the processes, 

clearly there are three sets of GW impacts. They are the results from three GW time intervals: 

short (20 years), medium (100 years), and long term (500 years). The differences in the 

characterization factors are the sources of the variances in these three sets: for some of the 

substances, such as methane, the short term characterization factors are larger than the long 

term ones. This difference regarding the time span is due to the lifetime of a substance: if the 

substance can be removed from the atmosphere in a fairly short amount of time (less than 500 

years), its characterization factor value decreases over years. Therefore, the impact results 

calculated from impact methods using different GW time intervals are different, they should be 

separately and clearly listed when provided to the users. In this study, I believe showing all results 

together with clearly listed legends can help the users to understand the differences caused by 

choosing different impact methods; listing all impact results together can als o provide the 

differences caused by using different time intervals. When the methods are incorporated into LCA 

software, the results can be improved by introducing user interface features. In short, the 

software should aim to provide all possible impact results from different impact methods and 

clearly separate the results from different time intervals  
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Figure 4-7: GW impact values in kg CO2 eq  per ton-km for 190 transportation processes in the US LCI 
database.  

 

Figure 4-8: GW impact values in kg CO2 eq per kWh for 98 electricity processes in the US LCI database.  
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Figure 4-9: GW impact values in kg CO2 eq per kg for 23 plastic material processes in the US LCI 
database 

The results above were high-level summaries across all US LCI processes to demonstrate the 

variability in results from various GW methods. Showing the detailed results calculated from LCIA 

methods can help LCA practitioners to understand the uncertainties caused by selecting different 

impact methods, which is more easily understood when considering a single process (which is the 

type of decision a practitioner would make when putting together a study). As such, Figure 4-10 

shows the GW impacts calculated from 14 different methods for an example process, “Crude palm 

kernel oil, at plant”. The process was chosen because compared to most of the processes, it has 

a larger range of GW impact values. Among the 14 methods, two methods (CML2001, and GHG 

Protocol) cover different substances (see Table 4-6). 
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Figure 4-10: Total GW impacts for the “Crude palm kernel oil, at plant” process calculated from 14 
different methods. Two of the 14 methods listed in the figure have different covered substances (The 
markers are the same as in Figure 4-5).  

 

Table 4-7: GW substances for the “Crude palm kernel oil, at plant” process, and impacts for the 
substances calculated from 14 impact methods. The cells with larger values are highlighted with darker 
background. 

 
 

Thus, the discrepancies between the remaining 12 methods are caused entirely by the differences 

in their characterization factors. As shown in Table 4-6, the larger value from the GHG Protocol 

method was caused by “Carbon dioxide, biogenic”, a substance that was not included in any  other 

methods. Because the impact value for this substance is 3.3 kg CO2 eq, larger than the total GW 

impact calculated from all other methods, it causes an outlier in the total GW impact values. If 

this substance was not included, the GW impacts calculated from the GHG Protocol method 

would be 0.914 kg CO2eq, which falls in the lower end of the impact range. On the other hand, 

the CML2001 method included two substances (“carbon monoxide” and “carbon monoxide, 

fossil”) that were generally excluded from other methods. Here, by saying excluded, I mean that 
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the chemicals were not shown in the list of substances of the method. However, because the 

impact values from these two substances were not large, the total impact results from the 

CML2001 method were within the range of other methods. It can be concluded that for this 

process, the discrepancies of the total impact results are caused by differences in: 1) the total 

emission values for the characterized substances in the 𝒈 vector; 2) the coverages of substances 

in methods; and 3) the differences in the characterization factor values of the substances. From 

the example in Figure 4-10 and the results from all US LCI processes (Figure 4-6), I can generally 

conclude that the outliers of the impact results are often caused by the inclusion of certain 

unusual substances in a particular method. The ranges in the impact results can be attributed to 

the differences in the characterization factors.   

It would be useful to incorporate visualizations, like those in Figure 4-10 and Table 4-6, as readily 

available tools in LCA software. These visualizations improve the understanding of the LCIA results 

by showing the main sources of discrepancies.  I believe that these visualizations would enable 

LCIA users to make more robust decisions. 

To better understand the correlation between the numbers of substances covered and the total 

impact results, I performed a regression analysis to test the relation between the numbers of 

characterized substances and the impact results.  

In matrix-based models, the resulting emissions are calculated from a dot product between a 

vector of substances and a vector of processes (Equation 3). Suppose both vectors have p 

elements, where p is the number of substances from an environmental impact. To evaluate the 

scenario uncertainty, I considered alternatives for the vector of substances. However, sometimes  

the vector of substances has several missing entries; this number often changes with different 

scenarios. The proportion of completeness is defined as 1-(number of missing substances divided 

by p). Algebraically, the dot product is a sum of entry-wise products in two vectors; all things equal, 

this sum will be smaller if some entries are zeros. I decided to test the extent to which the results 

are affected by the proportion of substance completeness in our analysis. See Figure 4-11 for the 

case of Global Warming, three other environmental impacts are considered in Figure S1 of the 

Appendix. I first computed the proportion of substance completeness for multiple scenarios 
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(denoted by marker color). Then I evaluated the resulting emissions under different processes 

(608 in this case). Because different process result in distinct magnitudes, I standardized the 

results of each process, i.e. I subtracted the average and divided by the standard deviation. The 

null hypothesis I tested is that a constant model is better than a linear model. A constant model 

(zero slope) represents the absence of a linear relationship between the results and the 

proportion of completeness. Using weighted least squares regression, I rejected the null 

hypothesis in favor of a non-zero slope (F statistic=479, df=8510, pValue<0.001). The regression 

weights were inversely proportional to the variance of repeated results within the domain of 

substance completeness proportion.  

 

Figure 4-11: Testing the relation between the results from Global Warming and substance 
completeness proportions. The marker color indicates different alternative scenarios. The black line is 
the fit obtained from a linear weighted least squares regression. 

 

Results from the regression analysis reject the null hypothesis in favor of a correlation between 

the numbers of substances with the impact results. Similar results are shown for other three 

impact categories (Eutrophication, Acidification, and Ozone depletion). From the regression figure, 

it can be seen that CML2001 and GHGProtocol methods result in higher GW impacts. Considering 

the results in Table 4-6, it could be possible that the larger values are caused by a few substances 
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that are excluded from all other methods, such as the biogenetic carbon dioxide. It will be helpful 

to quantitatively identify the uncertainty from the coverage of substances and the differences in 

the characterization factors. However, the number of substances covered in the US LCI 

inventories are not large enough to include most of the substances provided by each impact 

method; most processes cover similar substances. Thus, the results of regression test (and other 

potential methods) are determined by only a few exceptions, such as the substances shown in 

Table 4-6. The conclusion made based on these results can be arbitrary. Future studies can focus 

on improving the estimation with more completed inventories.   

4.5 Impact based inventory reporting criteria  

As discussed previously, most inventories in the US LCI database do not have characterized 

substances in each impact category, and some of the exclusions can be confirmed as data gaps by 

introducing other data sources, such as EPA GHGRP. This lack of information results in potential 

neglects of impact values in the LCA results.  Here, I introduce a new inventory reporting criterion. 

The criteria are developed with respect to the potential environmental impacts  and informed by 

the analysis above. I believe this new impact based criteria can help LCA studies to build more 

robust inventories.   

The proposed criteria are estimated based on the characterization factors of a substance and the 

knowledge of existing impacts from processes. Similar to the traditional cutoff criteria estimation, 

a certain ratio is used to regulate the minimum report impact value. The ratio can be defined 

according to the purpose of the studies, such as 5% (less strict), 1%, or 0.5% (stricter). Then, using 

the corresponding characterization factor, the minimum report impact value is converted to 

physical units of emissions.  The estimation method is described in Equation 6. The criterion was 

the result of the impact values and the substance’s characterization factor value. In Equation 6, 

𝐓𝒊  is the new impact based criterion for a certain substance  𝒊, 𝐫  is a constant ratio,  𝐏 is the 

environmental impact result for the process under study, and 𝑪𝑭𝒊  is the characterization factor.   

Equation 6:   𝐓𝒊 =
𝐫×𝐏

𝑪𝑭𝒊
 



137 
 

In this study, I determine 𝐏 based on the impact values from existing LCA studies. For instance, 

the GW impact from the “Electricity, bituminous coal, at power plant” process is currently around 

1 kg CO2eq per kWh generation. Our new criteria rules that any substances with more than 0.05, 

0.01, or 0.005 kg CO2eq (5%, 1%, or 0.01% of the 1 kg CO2eq, respectively) GW impact should be 

ensured to be included in the inventory. 

Table 4-7 shows the criteria estimation for the “Electricity, bituminous coal, at power plant” 

process. The criteria for all GW values were calculated referencing the current impact values in 

the bituminous coal electricity generation. In the current US LCI database, producing 1 kWh of 

electricity generated from bituminous coal results in 0.99 kg CO2eq GW impacts, this value is 

used for 𝐏 in Equation 6. To evaluate the results in two different situations, the ratio 𝐫  was 

defined as 1% and 5%.  

Because the maximum across all 𝑪𝑭𝒊′𝒔 results in the most extreme case of impact result, the 

maximum GW characterization factor (𝑪𝑭) values from 14 methods were used to estimate the 

strict criteria. The average characterization factor values were used for general criteria estimation.  

 

 

 

 

 

 

 

 

 

 

 

https://uslci.lcacommons.gov/uslci/flow/flowFromExchange/21793?qlookup=&max=&hfacet=&loc=&dtype=&offset=&pid=21791&qa=&qp=&qn=&q=&qt=&st=
https://uslci.lcacommons.gov/uslci/flow/flowFromExchange/21793?qlookup=&max=&hfacet=&loc=&dtype=&offset=&pid=21791&qa=&qp=&qn=&q=&qt=&st=
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Table 4-8: Maximum characterization factor value and new cut-off criteria for each substance. Cut-off criteria were based on 5% and 1% of 

total GW for 1kWh “Electricity, bituminous coal, at power plant” The first 34 GW substances are shown as examples.  
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Under the impact based inventory reporting criteria, the data reporters of LCA studies can be 

motivated to provide more potential substances in the inventories. In this way, the inventories  

can be improved and larger impact results can be expected. However, it is possible that after 

including more emissions, the environmental impact rises significantly, making the 1% or 5% total 

impact criteria larger than the original value. The larger criteria can result in the exclusions of 

emissions that are currently included. As a result, the new impact based criteria needs to be 

improved. However, based on the inventories in the current US LCI database, I am not able to 

decide how many new substances are going to be included and how much they are going to 

contribute to the total impact. Thus, the impact based criteria requires continued development.  

4.6 Discussion 

This study compared different commonly used impact assessment methods along with their 

impact categories. The substances in the elementary flows were identified to show the coverages 

of substances in LCI databases and it was found that different impact methods provided different 

coverages of impact categories and substances, as well as different characterization factor values. 

Considering five impact categories, around 50% of the US LCI elementary flows are not substances 

in the impact methods. Based on each process, when another data sources is used as a reference, 

some GW substance are missing from the inventory. These results could help the LCA 

practitioners better understand current situations in LCIA analyses.   

The substances in the indirect effects in some cases can be much larger than the ones in the direct 

effects. This shows the effectiveness of a matrix-based LCA model in estimating indirect effects 

and impacts. The total (direct and indirect) impact of a gate-to-gate process is approximately the 

same as the impact of cradle-to-gate processes for the same product. This suggests that cradle-

to-gate processes are not necessary when using a matrix-based model because the matrix model 

can sufficiently provide all upstream effects and impacts. 

To conduct an LCIA, the LCA practitioners often select one impact method and rarely compare 

results from different methods. Typically, there is no awareness of what the results might be 

under different methods. In LCA software, the choice of the method is left to the discretion of the 

user. Consequently, if the users do not understand the potential impacts of choosing one method 
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over another for the particular analysis, then one could accidently choose an inappropriate 

method. For example, a method with inappropriate GW time interval might be chosen for a study 

with a particular time scope. . There is also a danger of confirmation bias. The users could choose 

a method that supports the preconception and fails to investigate other possible alternatives.  The 

consequences can be problematic. The impact results calculated from different methods show 

that the discrepancies can be large. The sources of discrepancies can be traced to different 

coverages and characterization factors in the substances. The wrong choice of a method may 

result in wrong decisions. To overcome these issues, I recommend new visualization tools that 

provide a rich description of the LCIA methods and show results comparing different impact 

methods. By providing readily available visualization tools in LCA software like SimaPro, the users 

would be able to make more robust decisions based on the observed ranges.   

I showed that substances with large characterization factors are not necessarily included in the 

inventory of a process. To understand the exclusions, I used EPA’s GHGRP as a reference to 

identify possible data gaps in the US LCI inventories.  The results show that some processes have 

missing GW substances; this issue should be addressed when updating the database. No other 

reference can be found to identify possible gaps in other impact categories; however, the 

database should focus on improving the inventories to avoid data gaps in the GW category. A 

more specific cutoff criteria with respect to impact assessment results should be encouraged to 

LCI data reporters.    
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5. Chapter 5. Conclusions and future work 

In this chapter, I provide brief answers to the research questions listed in chapter 1. I also 

provide a general conclusion, discussion, and future work.  

 

5.1 Research question and answers 

 Chapter 2. Parameter uncertainty in the EIO-LCA model 

 What are the uncertainty ranges of direct and indirect life cycle energy consumptions over 

the supply chain of the U.S. industries based on economic input-output models with public 

available data?  

In chapter 1, the uncertainty of energy consumptions in the US industries were evaluated 

based on multiple data sources and range methods. The results show that the uncertainty 

of direct life cycle energy consumption in the US industries is generally around 50%, with 

some extreme cases that reach over 40 times the default value. Considering the indirect 

energy consumption, the overall uncertainty of each industry is smaller. The total energy 

consumption, considering all 428 industries, is generally within -40% to 40%, with a few 

extreme cases that have over 4 times more impact.  

 

 What is the impact of each individual industry’s uncertainty on results of other industries?  

Based on the uncertainty results from the first research question, the industries with large 

discrepancies in the direct energy consumption were identified. The impacts from these 

industries on the total energy consumption was estimated.  

The results show that the uncertainties from each industry affect the uncertainties in the 

model differently. The top five industries that have the strongest impacts are: power 

generation and supply, petroleum refineries, oil and gas extraction, iron and steel mills, 

and coal mining.  

 

 Which industries have the largest uncertainties in the model? How to reduce the 

uncertainties of these industries? 
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The results show that Coal mining sector and Petroleum lubricating oil and grease 

manufacturing sectors have the largest uncertainties (over 500% larger compared with 

default) in the direct energy consumptions. The total energy consumption value for Coal 

mining varies from 5 to 70 TJ/M$, and Petroleum lubricating oil and grease manufacturing  

varies from 3 to 110 TJ/M$. The reasons for their large uncertainty in total consumption 

values can be traced to the large discrepancies in the direct consumption, which are 

caused by problematic documented data.  

 

Chapter 3. Data analysis in the US LCI database and scenario uncertainty in matrix-based models 

 In the current US LCI database, how many processes flows contribute to the indirect 

environmental effects when applied to matrix-based LCA models? 

In this chapter, I assume that the gate-to-gate processes restricted by two criteria can 

contribute to the indirect effects when incorporated to matrix-based LCA models. The two 

criteria are: 1) processes with at least one upstream or downstream connection; and 2) 

processes that include energy and transportation in their direct inputs.  By evaluating each 

process individually, I found that there are only 61 processes that meet these criteria. This 

indicates that less than 5% of processes in the US LCI database contribute to the indirect 

effects in matrix-based LCA models.  

 

 What are the total 𝐶𝑂2  emissions ranges from US industrial processes by considering 

different scenarios from current process-based life cycle inventory databases?  

The scenario uncertainties for the processes in the US LCI database were analyzed by 

using alternative inputs as different scenarios. The results show that by using different 

utility inputs as alternatives, the scenario uncertainties are generally within -20% and 

20%, with some outliers.  

 

 What are the ranges of total 𝐶𝑂2  emissions ranges from aggregated US industrial 

processes calculated from current process-based life cycle inventory databases?  
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Bigger scenario uncertainties are observed by using different processes as alternatives 

within the same industrial category. One example industry shows that the CO2  emissions 

for 1 kg of industrial product can vary between 0 and 400 kg.  

Chapter 4. LCIA uncertainty in a process-based LCI database 

 In current LCIA methods, how many substances are covered? How many of these 

substances are included in elementary flows in the US LCI database? Does the US LCI 

database have enough flows that are characterized in impact assessment methods to build 

a robust inventory? 

I examined the 50 LCIA methods summarized in the SimaPro software. The results show 

that the numbers of substances across impact categories vary significantly: from as few as 

18 substances to as many as 30,514 substances. Within the same impact category, the 

numbers of substances covered by each method are generally similar, with a few 

exceptions. For each of the five categories used in this study, less than 50% of its 

characterized substances were included in the US LCI database. This result indicates that 

the US LCI database does not have a robust inventory for LCIA studies.  

 

 For processes in current process-based LCA databases, what are the uncertainties of direct 

and indirect environmental impacts caused by different impact characterization factors 

used in LCIA?  

The results generally show that 80% of the gate-to-gate processes have less than 5% 

uncertainties, with respect to choosing different impact assessment methods. However, 

these small uncertainties are estimated based on insufficient US LCI inventories, the 

uncertainty results do not justify small uncertainties in the model. 

 

 What are the contributions of different characterization factor values and coverages of 

substances from different methods to the LCA result?  

The results show that based on individual cases, the different coverage of substances does 

not have strong impacts on the total results. However, a statistical study rejected the 
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possibility of independency in favor of a linear relationship between the number of 

substances and the total impact values.  

 

 What should be the new reported value in LCI for different substances considering impact 

assessment results?  

I propose a new minimum data report criteria based on LCIA results. The proposed criteria 

regulates that all emissions from substances should be taken into consideration and 

measured before reporting an LCI database.  An example result show that considering 

global warming impacts, the minimum reported value (by mass) can be as small as 5E-7 kg 

for 1kg electricity production. However, this value is larger than the minimum reported 

value for the same process in the current US LCI database.  

 

 

5.2 Conclusion 

This dissertation examines the uncertainties in the matrix-based LCA models. Three types of 

uncertainties (parameter, scenario, and model) are considered and evaluated based on two types 

of matrix-based LCA models: the input-output, and process-based LCA. With a range method, I 

estimated the uncertainties of two environmental effects (greenhouse gas emissions and energy 

consumptions) and five environmental impacts (global warming, ozone depletion, acidification, 

eutrophication and ecotoxicity) in matrix-based LCA models.  

In chapter 2, I examine the parameter uncertainty and use the range method to propagate the 

uncertainty in the EIO-LCA model. Publicly available data sources and value-converting 

assumptions are used to estimate the parameter uncertainties in the direct industrial energy 

consumption. The total (including indirect) energy consumption ranges are estimated through the 

matrix-based LCA model. The results show that the parameter uncertainties can be large in IO 

based LCA models. The uncertainties can be traced to individual industries and reduced by 

improving the raw data.  
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In chapter 3, I estimate the scenario uncertainties in matrix-based LCA by using alternative inputs 

in the US LCI database. By examining the processes, I find the US LCI database fails to provide 

well-connected processes to take full advantage of matrix-based method. Based on our definition, 

less than 10% of the processes in the database are well-connected so that they contribute to the 

indirect environmental effects when incorporated to matrix-based LCA models. I also estimated 

the scenario uncertainty in the model with the range method. The results show that the scenario 

uncertainties of each process caused by using different electricity or transportation inputs are 

smaller compared to the parameter uncertainties estimated from chapter 1. However, the 

industrial level uncertainties are much larger, due to the incompleteness of the database.   

The model uncertainty in matrix-based LCA models is addressed in chapter 4. Model uncertainty 

refers to the differences in LCIA methods. The same range method is used to estimate the 

variances in the environmental impact results for each US LCI process. In the LCIA methods 

selected for this study, I compare the differences in the coverages of substances and 

characterization factor values, and identified the number of substances in the US LCI elementary 

flows. The results show that the model uncertainty due to different choices of impact methods in 

the US LCI database is small, negligible in most of the processes. However, as the US LCI database 

does not have a robust inventory to support LCIA analysis, most of the processes do not include 

enough substances in their inventories. The impact values are the results from a few substances 

in the database, thus, I cannot conclude that the difference in impact methods has negligible 

effect on the total impact results. Aiming to improve the database, I propose new criteria to 

regulate minimum report inventory values. The criteria are estimated based on the impact results 

as well as the characterization factors for each substance.  

The parameter, scenario, and model uncertainty together contribute to the uncertainty in matrix-

based LCA models. The results in matrix-based LCA models generally show considerable 

uncertainties in the total energy consumption and GHG emission across most US industries. 

However, current LCA software fail to provide users with these uncertainties. The users often 

ignore the uncertainties in the data and model. LCA software is developed to assist LCA studies, 

which are in turn designed for making decisions based on quantitative results. When the 
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uncertainties are ignored, LCA software can only provide deterministic results that lead to 

subjective decisions.  

Furthermore, the analyses on the US LCI inventories indicate a potential problem in the LCI 

databases. The LCI database is widely applied to matrix-based LCA models for estimating total 

environmental effects and impacts. However, I find several problems in the current LCI database. 

These problems limit the advantages of matrix-based LCA models. The two biggest problems are 

inconsistencies in processes and incomplete inventories. Inconsistencies in processes are 

generally caused by including processes with different system boundaries in the same database. 

For example, cradle-to-gate processes and gate-to-gate processes are both included in the 

database. The incompleteness in the inventories can be found in both product flows and 

elementary flows. Processes are generally not connected in the database, resulting in the neglect 

of indirect effects. On the other hand, though the total number of elementary flows covered in 

the database is large, most of the substances that generate large environmental effects are 

excluded from the inventories. These types of incompleteness results in ignoring important 

effects and/or impacts; however, the LCA practitioners are often unaware of these problems 

when using the database.  

In conclusion, the uncertainties in matrix-based LCA models can be large; however, they are easily 

ignored by LCA practitioners. Future LCI databases should focus on including better inventories as 

well as uncertainties in the inventories. LCA software should aim to provide better uncertainty 

estimation methods and results to the users.  

 

5.3 Future work 

5.3.1 Analyze the uncertainties of other environmental effects in the matrix-based LCA models 

In this dissertation, the uncertainties in energy consumption and carbon dioxide emissions were 

analyzed for EIO-LCA model and the US LCI database, respectively. The same uncertainty 

estimation method introduced in this study can be applied to other environmental effects to both 

of the models as well as other matrix-based LCA models. For example, the uncertainty of carbon 

dioxide emissions in the EIO-LCA model can be evaluated next.  
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5.3.2 Quantify the relationship between the technology matrix and the environmental matrix 

In this study, the uncertainties were separately evaluated for the technology matrix and 

environmental effect matrix. Due to the limitation of the database (only a few portion of the 

processes are connected), I have not traced the sources of the uncertainties to these two 

individual matrices. Future work can focus on quantitatively analyze the contributions from these 

two matrices to the overall uncertainty.  

5.3.3 Estimate scenario uncertainty using other LCI databases 

The US LCI database was used to demonstrate the methods and results in this dissertation. Future 

work can focus on identify the problems and estimate uncertainties with other LCI database, such 

as Ecoinvent. Ecoinvent has more than 10 thousand processes and elementary flows, if these 

processes are better connected, there can be more scenarios available. For example, except utility 

and transportation industry, similar processes within metal, plastic material production industries 

can be used as alternatives.  

5.3.4 Test the correlation between number of substances covered and the total impact results  

In this study, I tested the correlation between the numbers of substances and the impact results. 

The preliminary results were based on insufficient LCI data. Future work can repeat the same test 

on other LCI databases that include more substances. The conclusions from the regression tests 

could change. Furthermore, another parameter, the differences in the characterization factors 

can be used in the regression test. The results can provide quantitative conclusions on the effects 

of LCIA methods on a statistical perspective.  

5.3.5 Improving the minimum report value criteria  

The minimum report value criteria introduced in this study need to be improved. More inventory 

data that covers more substances should be used for estimating the criteria. With the real-life 

inventory data, control tests can be performed to test how the new criteria impact on the report 

of new inventories; on the other hand, sensitivity analysis can be applied for analyzing the impact 

from the new reported inventory to the future updates of the criteria.  
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Appendix  

 

Table S1: IO industry code, name, and uncertainty ranges 

Sector 

No. 
IO No. Name Uncertainties 

1 1111A0 Oilseed farming 2% -83% 

2 1111B0 Grain farming 34% -78% 

3 111200 Vegetable and melon farming 20% -54% 

4 111335 Tree nut farming 14% -54% 

5 1113A0 Fruit farming 11% -55% 

6 111400 Greenhouse and nursery production 101% -43% 

7 111910 Tobacco farming 14% -79% 

8 111920 Cotton farming 13% -73% 

9 1119A0 Sugarcane and sugar beet farming 55% -59% 

10 1119B0 All other crop farming 102% -55% 

11 112120 Milk Production 18% -62% 

12 1121A0 Cattle ranching and farming 23% -78% 

13 112300 Poultry and egg production 152% -55% 

14 112A00 Animal production, except cattle and poultry and eggs  9% -71% 

15 113300 Logging 0% -97% 

16 113A00 Forest nurseries, forest products, and timber tracts  0% -89% 

17 114100 Fishing 0% -100% 

18 114200 Hunting and trapping 0% -76% 

19 115000 Agriculture and forestry support activities  0% -69% 

20 211000 Oil and gas extraction 13% -76% 

21 212100 Coal mining 1251% -75% 

22 212210 Iron ore mining 15% -48% 

23 212230 Copper, nickel, lead, and zinc mining 29% -69% 

24 2122A0 Gold, silver, and other metal ore mining 77% -72% 

25 212310 Stone mining and quarrying 92% -69% 

26 212320 Sand, gravel, clay, and refractory mining 70% -48% 

27 212390 Other nonmetallic mineral mining 75% -44% 

28 213111 Dril l ing oil  and gas wells 139% -94% 

29 213112 Support activities for oil  and gas operations  127% -95% 

30 21311A Support activities for other mining 135% -87% 

31 221100 Power generation and supply 1% -33% 
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32 221200 Natural gas distribution 0% -16% 

33 221300 Water, sewage and other systems 0% -27% 

34 230101 Nonresidential commercial and health care structures  18% -87% 

35 230102 Nonresidential manufacturing structures  2% -87% 

36 230103 Other nonresidential structures  33% -89% 

37 230201 Residential permanent site single- and multi-family structures 27% -84% 

38 230202 Other residential structures  28% -84% 

39 230301 Nonresidential maintenance and repair 35% -89% 

40 230302 Residential maintenance and repair 35% -92% 

41 311111 Dog and cat food manufacturing 77% -10% 

42 311119 Other animal food manufacturing 83% -9% 

43 311210 Flour mill ing and malt manufacturing 80% -7% 

44 311221 Wet corn mill ing 35% -46% 

45 311225 Fats and oils refining and blending 80% -10% 

46 31122A Soybean and other oilseed processing 69% -16% 

47 311230 Breakfast cereal manufacturing 73% -12% 

48 311313 Beet sugar manufacturing 31% -34% 

49 31131A Sugar cane mills and refining 27% -28% 

50 311320 Confectionery manufacturing from cacao beans  74% -8% 

51 311330 Confectionery manufacturing from purchased chocolate 79% -8% 

52 311340 Nonchocolate confectionery manufacturing 80% -8% 

53 311410 Frozen food manufacturing 73% -10% 

54 311420 Fruit and vegetable canning, pickling and drying 84% -10% 

55 311513 Cheese manufacturing 80% -8% 

56 311514 Dry, condensed, and evaporated dairy products  78% -10% 

57 31151A Fluid milk and butter manufacturing 89% -8% 

58 311520 Ice cream and frozen dessert manufacturing 77% -5% 

59 311615 Poultry processing 61% -15% 

60 31161A Animal (except poultry) slaughtering and processing 79% -9% 

61 311700 Seafood product preparation and packaging 91% -9% 

62 311810 Bread and bakery product manufacturing 90% -9% 

63 311820 Cookie, cracker and pasta manufacturing 79% -8% 

64 311830 Tortil la manufacturing 96% -10% 

65 311910 Snack food manufacturing 79% -10% 

66 311920 Coffee and tea manufacturing 80% -9% 

67 311930 Flavoring syrup and concentrate manufacturing 83% -9% 

68 311940 Seasoning and dressing manufacturing 74% -9% 

69 311990 All other food manufacturing 92% -9% 
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70 312110 Soft drink and ice manufacturing 63% -7% 

71 312120 Breweries 58% -12% 

72 312130 Wineries 77% -6% 

73 312140 Distil leries 51% -11% 

74 3122A0 Tobacco product manufacturing 198% -49% 

75 313100 Fiber, yarn, and thread mills  19% -20% 

76 313210 Broadwoven fabric mills 21% -25% 

77 313220 Narrow fabric mills and schiffli embroidery 39% -29% 

78 313230 Nonwoven fabric mills 21% -32% 

79 313240 Knit fabric mills 33% -28% 

80 313310 Textile and fabric finishing mills 34% -30% 

81 313320 Fabric coating mills 39% -32% 

82 314110 Carpet and rug mills  29% -34% 

83 314120 Curtain and linen mills  37% -30% 

84 314910 Textile bag and canvas mills 41% -31% 

85 314990 All other miscel laneous textile product mills  23% -34% 

86 315100 Hosiery and sock mills  144% -16% 

87 315210 Cut and sew apparel contractors  219% -13% 

88 315220 Men's and boys' cut and sew apparel manufacturing 152% -14% 

89 315230 Women's and girls' cut and sew apparel  manufacturing 264% -18% 

90 315290 Other cut and sew apparel manufacturing 119% -7% 

91 315900 Accessories and other apparel manufacturing 338% -21% 

92 316100 Leather and hide tanning and finishing 72% -16% 

93 316200 Footwear manufacturing 65% -24% 

94 316900 Other leather and all ied product manufacturing 58% -42% 

95 321100 Sawmills and wood preservation 19% -11% 

96 321219 Reconstituted wood product manufacturing 27% -12% 

97 32121A Veneer and plywood manufacturing 12% -5% 

98 32121B Engineered wood member and truss manufacturing 9% -5% 

99 321910 Wood windows and doors and millwork 31% -13% 

100 321920 Wood container and pallet manufacturing 60% -21% 

101 321991 Manufactured home, mobile home, manufacturing 27% -13% 

102 321992 Prefabricated wood building manufacturing 30% -13% 

103 321999 Miscellaneous wood product manufacturing 38% -13% 

104 322110 Pulp mills 10% -8% 

105 322120 Paper mills 11% -17% 

106 322130 Paperboard Mills 10% -11% 

107 322210 Paperboard container manufacturing 88% -8% 
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108 32222A 
Coated and laminated paper, packaging materials, and plastic fi lms 
manufacturing 

48% -3% 

109 32222B All other paper bag and coated and treated paper manufacturing 47% -3% 

110 322230 Stationery product manufacturing 53% -2% 

111 322291 Sanitary paper product manufacturing 35% -10% 

112 322299 All other converted paper product manufacturing 52% -3% 

113 323110 Printing 80% -7% 

114 323120 Support activities for printing 57% -5% 

115 324110 Petroleum refineries 82% -66% 

116 324121 Asphalt paving mixture and block manufacturing 1267% -19% 

117 324122 Asphalt shingle and coating materials manufacturing 2013% -29% 

118 324191 Petroleum lubricating oil  and grease manufacturing 4233% -54% 

119 324199 All other petroleum and coal products manufacturing 466% -86% 

120 325110 Petrochemical manufacturing 30% -40% 

121 325120 Industrial gas manufacturing 51% -30% 

122 325130 Synthetic dye and pigment manufacturing 214% -49% 

123 325181 Alkalies and chlorine manufacturing 27% -60% 

124 325182 Carbon black manufacturing 110% -72% 

125 325188 All other basic inorganic chemical manufacturing 25% -33% 

126 325190 Other basic organic chemical manufacturing 64% -31% 

127 325211 Plastics material and resin manufacturing 39% -61% 

128 325212 Synthetic rubber manufacturing 60% -32% 

129 325220 Artificial and synthetic fibers and fi laments manufacturing 125% -50% 

130 325310 Fertil izer Manufacturing 114% -2% 

131 325320 Pesticide and other agricultural chemical manufacturing 134% -49% 

132 325411 Medicinal and botanical manufacturing 208% -46% 

133 325412 Pharmaceutical preparation manufacturing 85% -41% 

134 325413 In-vitro diagnostic substance manufacturing 112% -27% 

135 325414 Biological product (except diagnostic) Manufacturing 65% -39% 

136 325510 Paint and coating manufacturing 127% -42% 

137 325520 Adhesive manufacturing 711% -64% 

138 325610 Soap and cleaning compound manufacturing 140% -46% 

139 325620 Toilet preparation manufacturing 129% -43% 

140 325910 Printing ink manufacturing 957% -69% 

141 3259A0 All other chemical product and preparation manufacturing 212% -55% 

142 326110 Plastics packaging materials, fi lm and sheet 28% -11% 

143 326121 Unlaminated plastics profile shape manufacturing 34% -7% 

144 326122 Plastics Pipe and Pipe Fitting Manufacturing 20% -8% 

145 326130 Laminated plastics plate, sheet, and shapes  40% -13% 
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146 326140 Polystyrene Foam Product Manufacturing 38% -13% 

147 326150 Urethane and Other Foam Product (except Polystyrene) Manufacturing 96% -22% 

148 326160 Plastics bottle manufacturing 21% -5% 

149 32619A Other plastics product manufacturing 69% -14% 

150 326210 Tire manufacturing 27% -22% 

151 326220 Rubber and plastics hose and belting manufacturing 30% -15% 

152 326290 Other rubber product manufacturing 36% -10% 

153 32711A Pottery, ceramics, and plumbing fixture manufacturing 16% -19% 

154 32712A Brick, ti le, and other structural clay product manufacturing 15% -20% 

155 32712B Clay and non-clay refractory manufacturing 15% -19% 

156 327211 Flat glass manufacturing 35% -24% 

157 327212 Other pressed and blown glass and glassware manufacturing 48% -6% 

158 327213 Glass container manufacturing 42% -9% 

159 327215 Glass Product Manufacturing Made of Purchased Glass  38% -3% 

160 327310 Cement manufacturing 23% -68% 

161 327320 Ready-mix concrete manufacturing 18% -21% 

162 327330 Concrete pipe, brick and block manufacturing 20% -19% 

163 327390 Other concrete product manufacturing 21% -20% 

164 3274A0 Lime and gypsum product manufacturing 21% -18% 

165 327910 Abrasive product manufacturing 11% -21% 

166 327991 Cut stone and stone product manufacturing 23% -22% 

167 327992 Ground or treated minerals and earths manufacturing 14% -19% 

168 327993 Mineral wool manufacturing 34% -8% 

169 327999 Miscellaneous nonmetallic mineral products  17% -21% 

170 331110 Iron and steel mills  13% -59% 

171 331200 Iron, steel pipe and tube manufacturing from purchased steel  87% -8% 

172 331314 Secondary smelting and alloying of aluminum 43% -24% 

173 33131A Alumina refining and primary aluminum production 12% -45% 

174 33131B Aluminum product manufacturing from purchased aluminum 82% -22% 

175 331411 Primary smelting and refining of copper 14% -30% 

176 331419 
Primary smelting and refining of nonferrous metal (except copper and 
aluminum) 

12% -27% 

177 331420 Copper roll ing, drawing, extruding and alloying 15% -22% 

178 331490 
Nonferrous metal (except copper and aluminum) roll ing, drawing, 

extruding and alloying 
20% -21% 

179 331510 Ferrous metal foundaries  9% -26% 

180 331520 Nonferrous foundries  14% -28% 

181 332114 Custom roll  forming 46% -13% 

182 33211A All other forging, stamping , and sintering 49% -13% 
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183 33211B Crown, closure and metal stamping manufacturing 44% -11% 

184 33221A Cutlery, utensils, pots, and pans manufacturing 42% -13% 

185 33221B Handtool manufacturing 38% -10% 

186 332310 Plate work and fabricated structural product manufacturing 44% -12% 

187 332320 Ornamental and architectural metail  products manufacturing 45% -13% 

188 332410 Power boiler and heat exchanger manufacturing 43% -12% 

189 332420 Metal tank, heavy gauge, manufacturing 44% -12% 

190 332430 Metal can, box, and other container manufacturing 36% -13% 

191 332500 Hardware manufacturing 42% -12% 

192 332600 Spring and wire product manufacturing 41% -12% 

193 332710 Machine shops 59% -14% 

194 332720 Turned product and screw, nut, and bolt manufacturing 46% -10% 

195 332800 Coating, engraving, heat treating and all ied activities  59% -18% 

196 332913 Plumbing Fixture Fitting and Trim Manufacturing 27% -23% 

197 33291A Valve and fittings other than plumbing 36% -9% 

198 332991 Ball and roller bearing manufacturing 24% -17% 

199 332996 Fabricated pipe and pipe fitting manufacturing 42% -11% 

200 33299A Ammunition manufacturing 50% -12% 

201 33299B Ordnance and accessories manufacturing 47% -11% 

202 33299C Other fabricated metal manufacturing 56% -16% 

203 333111 Farm machinery and equipment manufacturing 32% -13% 

204 333112 Lawn and garden equipment manufacturing 35% -10% 

205 333120 Construction machinery manufacturing 156% -24% 

206 333130 Mining and oil  and gas field machinery manufacturing 33% -8% 

207 333220 Plastics and rubber industry machinery 38% -8% 

208 333295 Semiconductor machinery manufacturing 54% -7% 

209 33329A Other industrial machinery manufacturing 58% -8% 

210 333314 Optical  instrument and lens manufacturing 53% -6% 

211 333315 Photographic and photocopying equipment manufacturing 48% -6% 

212 333319 Other commercial and service industry machinery manufacturing 294% -31% 

213 33331A Vending, commerical, industrial, and office machinery manufacturing 187% -22% 

214 333414 Heating equipment (except warm air furnaces) manufacturing 44% -8% 

215 333415 
Air conditioning, refrigeration, and warm air heating equipment 
manufacturing 

29% -12% 

216 33341A Air purification and ventilation equipment manufacturing 37% -9% 

217 333511 Industrial mold manufacturing 40% -5% 

218 333514 Special tool, die, jig, and fixture manufacturing 40% -6% 

219 333515 Cutting tool and machine tool accessory manufacturing 44% -5% 

220 33351A Metal cutting and forming machine tool manufacturing 45% -8% 
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221 33351B Rolling mill  and other metalworking machinery manufacturing 40% -7% 

222 333611 Turbine and turbine generator set units manufacturing 38% -10% 

223 333612 Speed Changer, Industrial High-Speed Drive, and Gear Manufacturing 29% -12% 

224 333613 Mechanical Power Transmission Equipment Manufacturing 27% -12% 

225 333618 Other engine equipment manufacturing 22% -19% 

226 333911 Pump and pumping equipment manufacturing 33% -7% 

227 333912 Air and gas compressor manufacturing 41% -8% 

228 333920 Material handling equipment manufacturing 39% -9% 

229 333991 Power-driven handtool manufacturing 25% -14% 

230 333993 Packaging machinery manufacturing 47% -9% 

231 333994 Industrial process furnace and oven manufacturing 45% -9% 

232 33399A Fluid power process machinery 37% -7% 

233 33399B Process and oven not fluid power machinery 33% -6% 

234 334111 Electronic computer manufacturing 52% -22% 

235 334112 Computer storage device manufacturing 56% -2% 

236 33411A 
Computer terminals and other computer peripheral equipment 
manufacturing 

136% -25% 

237 334210 Telephone apparatus manufacturing 88% -10% 

238 334220 Broadcast and wireless communications equipment 66% -4% 

239 334290 Other communications equipment manufacturi ng 97% -7% 

240 334300 Audio and video equipment manufacturing 38% -14% 

241 334411 Electron tube manufacturing 50% -15% 

242 334412 Bare printed circuit board manufacturing 83% -5% 

243 334413 Semiconductor and related device manufacturing 41% -4% 

244 334417 Electronic connector manufacturing 81% -4% 

245 334418 Printed circuit assembly (electronic assembly) manufacturing 59% -3% 

246 334419 Other electronic component manufacturing 72% -4% 

247 33441A 
Electronic capacitor, resistor, coil, transformer, and other inductor 

manufacturing 
59% -4% 

248 334510 Electromedical apparatus manufacturing 51% -8% 

249 334511 Search, detection, and navigation instruments  62% -5% 

250 334512 Automatic environmental control manufacturing 46% -15% 

251 334513 Industrial process variable instruments 67% -6% 

252 334514 Totalizing fluid meters and counting devices  47% -15% 

253 334515 Electricity and signal testing instruments  64% -3% 

254 334516 Analytical laboratory instrument manufacturing 77% -6% 

255 334517 Irradiation apparatus manufacturing 67% -4% 

256 33451A Watch, clock, and other measuring and controlling device manufacturing 68% -5% 

257 334613 Magnetic and optical recording media manufacturing 83% -6% 
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258 33461A Software, audio and video reproduction 56% -4% 

259 335110 Electric lamp bulb and part manufacturing 7% -16% 

260 335120 Lighting fixture manufacturing 20% -11% 

261 335210 Small electrical appliance manufacturing 9% -14% 

262 335221 Household cooking appliance manufacturing 9% -15% 

263 335222 Household refrigerator and home freezer manufacturing 6% -21% 

264 335224 Household laundry equipment manufacturing 7% -30% 

265 335228 Other major household appliance manufacturing 8% -17% 

266 335311 Electric power and specialty transformer manufacturing 7% -17% 

267 335312 Motor and generator manufacturing 6% -15% 

268 335313 Switchgear and switchboard apparatus manufacturing 11% -11% 

269 335314 Relay and industrial control manufacturing 18% -7% 

270 335911 Storage battery manufacturing 5% -17% 

271 335912 Primary battery manufacturing 5% -11% 

272 335920 Communication and energy wire and cable manufacturing 5% -15% 

273 335930 Wiring device manufacturing 18% -8% 

274 335991 Carbon and graphite product manufacturing 7% -18% 

275 335999 Miscellaneous electrical equipment manufacturing 37% -9% 

276 336111 Automobile Manufacturing 31% -16% 

277 336112 Light Truck and Util ity Vehicle Manufacturing 11% -15% 

278 336120 Heavy duty truck manufacturing 50% -12% 

279 336211 Motor vehicle body manufacturing 29% -15% 

280 336212 Truck trailer manufacturing 39% -8% 

281 336213 Motor home manufacturing 41% -10% 

282 336214 Travel trailer and camper manufacturing 44% -10% 

283 336300 Motor vehicle parts manufacturing 26% -11% 

284 336411 Aircraft manufacturing 31% -10% 

285 336412 Aircraft engine and engine parts manufacturing 33% -13% 

286 336413 Other aircraft parts and equipment 45% -16% 

287 336414 Guided missile and space vehicle manufacturing 55% -9% 

288 33641A 
Other guided missile and space vehicle parts and auxiliary equipment 
manufacturing 

31% -6% 

289 336500 Railroad rolling stock manufacturing 46% -10% 

290 336611 Ship building and repairing 30% -9% 

291 336612 Boat building 45% -9% 

292 336991 Motorcycle, bicycle, and parts manufacturing 35% -10% 

293 336992 Military armored vehicles and tank parts manufacturing 36% -7% 

294 336999 All other transportation equipment manufacturing 34% -12% 

295 337110 Wood kitchen cabinet and countertop manufacturing 49% -18% 
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296 337121 Upholstered household furniture manufacturing 41% -13% 

297 337122 Nonupholstered wood household furniture manufacturing 37% -19% 

298 337127 Institutional furniture manufacturing 52% -13% 

299 33712A Metal and other household nonupholsetered furniture 55% -13% 

300 337212 Custom architectural woodwork and millwork 98% -15% 

301 337215 Showcases, partitions, shelving, and lockers  53% -14% 

302 33721A Office furniture manufacturing 2% -91% 

303 337910 Mattress manufacturing 51% -14% 

304 337920 Blind and shade manufacturing 46% -13% 

305 339111 Laboratory apparatus and furniture manufacturing 46% -22% 

306 339112 Surgical and medical instrument manufacturing 41% -12% 

307 339113 Surgical appliance and supplies manufacturing 41% -13% 

308 339114 Dental equipment and supplies manufacturing 50% -7% 

309 339115 Ophthalmic goods manufacturing 49% -5% 

310 339116 Dental laboratories 46% -10% 

311 339910 Jewelry and silverware manufacturing 58% -12% 

312 339920 Sporting and athletic goods manufacturing 46% -12% 

313 339930 Doll, toy, and game manufacturing 40% -14% 

314 339940 Office supplies (except paper) manufacturing 49% -8% 

315 339950 Sign manufacturing 50% -10% 

316 339991 Gasket, packing, and sealing device manufacturing 43% -11% 

317 339992 Musical instrument manufacturing 52% -9% 

318 339994 Broom, brush, and mop manufacturing 42% -12% 

319 33999A All other miscellaneous manufacturing 43% -12% 

320 420000 Wholesale trade 6% -67% 

321 481000 Air transportation 11% -91% 

322 482000 Rail transportation 6% -97% 

323 483000 Water transportation 3% -99% 

324 484000 Truck transportation 1% -99% 

325 485000 Transit and ground passenger transportation 14% -87% 

326 486000 Pipeline transportation 70% -97% 

327 48A000 
Scenic and sightseeing transportation and support activities for 

transportation 
20% -85% 

328 491000 Postal service 8% -66% 

329 492000 Couriers and messengers  24% -95% 

330 493000 Warehousing and storage 31% -32% 

331 4A0000 Retail  trade 5% -40% 

332 511110 Newspaper publishers  0% -55% 

333 511120 Periodical publishers 38% -24% 
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334 511130 Book publishers 70% -8% 

335 5111A0 Directory, mailing l ist, and other publishers  111% -2% 

336 511200 Software publishers 113% -52% 

337 512100 Motion picture and video industries  9% -29% 

338 512200 Sound recording industries  309% -1% 

339 515100 Radio and television broadcasting 16% -63% 

340 515200 Cable and other subscription programming 66% -31% 

341 516110 Internet publishing and broadcasting 3220% -1% 

342 517000 Telecommunications 0% -88% 

343 518100 Internet service providers and web search portals  1407% 0% 

344 518200 Data processing, hosting, and related services  230% 0% 

345 519100 Other information services  824% 0% 

346 522A00 Nondepository credit intermediation and related activities  12% -42% 

347 523000 Securities, commodity contracts, investments  28% -18% 

348 524100 Insurance carriers  781% -1% 

349 524200 Insurance agencies, brokerages, and related 10% -41% 

350 525000 Funds, trusts, and other financial vehicles  817% 0% 

351 52A000 Monetary authorities and depository credit intermediation 74% -60% 

352 531000 Real estate 0% -89% 

353 532100 Automotive equipment rental and leasing 41% -11% 

354 532230 Video tape and disc rental  13% -17% 

355 532400 Commercial and industrial machinery and equipment rental and leasing 8% -65% 

356 532A00 General and consumer goods rental except video tapes and discs  4% -52% 

357 533000 Lessors of nonfinancial intangible assets  1% -61% 

358 541100 Legal services 4% -91% 

359 541200 Accounting and bookkeeping services  3% -88% 

360 541300 Architectural and engineering services  10% -91% 

361 541400 Specialized design services 2% -40% 

362 541511 Custom computer programming services  1% -96% 

363 541512 Computer systems design services  7% -76% 

364 54151A Other computer related services, including facilities management 4% -60% 

365 541610 Management consulting services  7% -80% 

366 5416A0 Environmental and other technical consulting services  22% -47% 

367 541700 Scientific research and development services  4% -72% 

368 541800 Advertising and related services  3% -85% 

369 541920 Photographic services 3% -38% 

370 541940 Veterinary services 15% -76% 

371 5419A0 All other miscellaneous professional and technical services  2% -80% 
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372 550000 Management of companies and enterprises  2% -82% 

373 561100 Office administrative services  2% -60% 

374 561200 Facil ities support services 6% -23% 

375 561300 Employment services 6% -84% 

376 561400 Business support services  0% -73% 

377 561500 Travel arrangement and reservation services  7% -88% 

378 561600 Investigation and security services  0% -50% 

379 561700 Services to buildings and dwellings  11% -94% 

380 561900 Other support services 0% -80% 

381 562000 Waste management and remediation services  13% -99% 

382 611100 Elementary and secondary schools 263% -12% 

383 611A00 Colleges, universities, and junior colleges 2% -60% 

384 611B00 Other educational services 848% -8% 

385 621600 Home health care services 469% -6% 

386 621A00 Offices of physicians, dentists, and other health practitioners  3% -63% 

387 621B00 Healthcare and social assistance 15% -19% 

388 622000 Hospitals 67% -24% 

389 623000 Nursing and residential care facilities 24% -19% 

390 624200 
Community food, housing, and other relief services, incl rehabilitation 
services 

339% 0% 

391 624400 Child day care services  207% 0% 

392 624A00 Individual and family services 226% 0% 

393 711100 Performing arts companies  132% -2% 

394 711200 Spectator sports 13% -24% 

395 711500 Independent artists, writers, and performers  345% -2% 

396 711A00 Promoters of performing arts and sports and agents for public fi gures 14% -6% 

397 712000 Museums, historical sites, zoos, and parks  120% -2% 

398 713940 Fitness and recreational sports centers  2% -80% 

399 713950 Bowling centers 19% -12% 

400 713A00 Amusement parks and arcades  2% -87% 

401 713B00 Other amusement, gambling, and recreation industries  4% -83% 

402 7211A0 Hotels and motels, including casino hotels  1% -62% 

403 721A00 Other accommodations  97% -6% 

404 722000 Food services and drinking places  2% -41% 

405 811192 Car washes 3% -71% 

406 8111A0 Automotive repair and maintenance, except car washes  2% -93% 

407 811200 Electronic equipment repair and maintenance 2% -41% 

408 811300 Commercial machinery repair and maintenance 3% -64% 

409 811400 Household goods repair and maintenance 2% -61% 
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410 812100 Personal care services 10% -69% 

411 812200 Death care services 7% -51% 

412 812300 Drycleaning and laundry services  8% -72% 

413 812900 Other personal services 7% -64% 

414 813100 Religious organizations 188% -1% 

415 813A00 Grantmaking, giving and social advocacy organizations 427% 0% 

416 813B00 Civic, social, professional and similar organizations 7% -45% 

417 814000 Private households 0% 0% 

418 S00102 Other Federal government enterprises  0% -100% 

419 S00201 State and local government passenger transit 12% -95% 

420 S00203 Other state and local government enterprises  4% -88% 

421 S00300 Noncomparable Imports  0% 0% 

422 S00401 Scrap 0% 0% 

423 S00402 Used and Secondhand Goods  0% 0% 

424 S00500 General Federal Defense 8% -93% 

425 S00600 General Federal non-defense government industry 6% -83% 

426 S00700 General state and local government services  6% -99% 

427 S00800 Owner-Occupied Dwellings 10% -100% 

428 S00900 ROW Adjustment 0% 0% 
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Table S2: List of cradle-to-gate processes in the US LCI database 

Index 

No. Name 

2 Acrylonitrile, at plant 

3 Acrylonitrile-butadiene-styrene copolymer, resin, at plant 

15 Aluminum, cold roll ing, at plant 

16 Aluminum, extrusion, at plant 

17 Aluminum, hot rolling, at plant 

18 Aluminum, primary, ingot, at plant 

22 Aluminum, secondary, ingot, at plant 

28 Aluminum, sheet, coated, at plant 

614 Carbon monoxide, at plant 

625 Coil, coating, m2, at plant 

626 Cold rolled sheet, steel, at plant 

633 Composite wood I-joist, at plant, US PNW 

634 Composite wood I-joist, at plant, US SE 

643 Corn steep liquor 

777 Electricity, biomass, at power plant 

788 Enzyme, Alpha-amylase, Novozyme Liquozyme 

789 Enzyme, Cellulase, Novozyme Celluclast 

790 Enzyme, Glucoamylase, Novozyme Spirizyme  

802 Ethylene glycol, at plant  

814 Forest residue, processed and loaded, at landing system 

824 Galvanized steel coil, coated, at plant 

825 Galvanized steel sheet, at plant 

829 Glue laminated beam processing, at plant, US PNW 

830 Glue laminated beam processing, at plant, US SE 

839 Gypsum wallboard product, regular, 0.5 inch (12.7 mm) 

840 Gypsum wallboard product, type X, 0.625 inch (15.875 mm)  

864 Hot rolled sheet, steel, at plant 

865 Hydrochloric acid, at plant  

893 Melamine urea formaldehyde hardener, at plant 

894 Melamine urea formaldehyde resin, at plant 

899 Metal panels, roof, at plant 

900 Metal panels, wall, at plant 

903 Methylene diphenyl diisocyanate resin, at plant, CTR 

937 Packaging and information sheets, i2900 desktop scanner  

938 Packaging, production scanners  

963 Phenol formaldehyde, at plant 

964 Phenol resorcinol formaldehyde hardener, at plant 
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965 Phenol resorcinol formaldehyde resin, at plant 

980 Polyethylene terephthalate, resin, at plant, CTR 

982 Polyethylene, high density, resin, at plant  

984 Polyethylene, linear low density, resin, at plant, CTR 

987 Polyethylene, low density, resin, at plant, CTR 

988 Polylactide Biopolymer Resin, at plant 

990 Polyol ether, for flexible foam polyurethane production, at plant, CTR 

992 Polyol ether, for rigid foam polyurethane production, at plant, CTR 

996 Polypropylene resin, at plant, CTR 

998 Polystyrene, general purpose, at plant, CTR 

1000 Polystyrene, high impact, resin, at plant, CTR 

1002 Polyvinyl chloride, resin, at plant, CTR 

1040 Quicklime, at plant 

1139 Scanner, department, i3200, i3400 

1140 Scanner, department, i4200, i4600 

1141 Scanner, department, i5200, i5600 

1142 Scanner, department, i5200v, i5600v 

1143 Scanner, department, i5800 

1144 Scanner, desktop, i2900 

1158 Single-ply, white, polyester reinforced PVC roofing membrane, 48 mils (1.219 mm) 

1186 Soy-based polyol, at plant 

1187 Soy-based resin, at plant 

1203 Steel product, primary structural, beams and columns, at plant  

1204 Steel product, secondary structural, girts and purlins, at plant 

1205 Steel, bil lets, at plant 

1207 Steel, liquid, at plant 

1208 Steel, stainless 304, flat rolled coil 

1209 Steel, stainless 304, quarto plate  

1210 Steel, stainless 304, scrap 

1237 Toluene diisocyanate, at plant, CTR 

1463 Wood fuel, unspecified 

1470 Zinc, sheet  

1471 Zinc, Special High Grade 

 

Table S3: US LCI processes and categorized ISIC code 

Index Product 
New 
functional 
unit 

ISIC code 

1 Acetic acid, at plant kg 2011 

2 Acrylonitrile-butadiene-styrene copolymer, resin, at plant kg 2011 

3 Alumimum scrap, at lost foam casting kg 2420 
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4 Alumina, at plant kg 2420 

5 Aluminium, extrusion, at plant kg 2591 

6 Aluminum ingot, production mix, at plant kg 2591 

7 Aluminum recovery, transport, to plant kg 3830 

8 Aluminum scrap, at precision sand casting kg 2420 

9 Aluminum scrap, at semi-permanent mold casting kg 2420 

10 Aluminum, cast, lost foam, at plant kg 2420 

11 Aluminum, cast, precision sand casting kg 2420 

12 Aluminum, cast, semi-permanent mold (SPM), at plant kg 2420 

13 Aluminum, primary, ingot, at plant, 1998 kg 2591 

14 Aluminum, primary, smelt, at plant kg 2420 

15 Aluminum, secondary, extruded kg 2420 

16 Aluminum, secondary, ingot, at plant, 1998 kg 2591 

17 Aluminum, secondary, ingot, from automotive scrap, at plant kg 2591 

18 Aluminum, secondary, ingot, from beverage cans, at plant kg 2591 

19 Aluminum, secondary, rolled kg 2591 

20 Aluminum, secondary, shape casted kg 2420 

21 Ammonia, steam reforming, liquid, at plant kg 2012 

22 Aniline, at plant kg 2011 

23 Anode, at plant kg 2591 

24 Anthracite coal, at mine kg 510 

25 Anthracite coal, combusted in industrial boiler kg COAL 

26 Automotive painting, electrocoating, per m2 m2 2930 

27 Automotive painting, electrocoating, per vehicle  m2 2930 

28 Automotive painting, pretreatment m2 2930 

29 Automotive painting, top coat, per m2 m2 2930 

30 Automotive painting, top coat, per vehicle m2 2930 

31 Bark mulch, at oriented strand board production, US SE kg 1610 

32 Bark, at  sawmill, US SE kg 1610 

33 Bark, at MDF mill kg 1610 

34 Bark, at plywood plant, US PNW kg 1610 

35 Bark, at plywood plant, US SE kg 1610 

36 Bark, at rough green lumber sawmill, softwood, US PNW kg 1610 

37 Bark, hardwood, average, High Intensity Management, NE-NC kg 1610 

38 Bark, hardwood, average, Low Intensity Management, NE-NC kg 1610 

39 Bark, hardwood, average, Med Intensity Management, NE-NC kg 1610 

40 Bark, hardwood, average, at forest road, NE-NC kg 1610 

41 Bark, hardwood, green, at logyard, NE-NC kg 1610 

42 Bark, hardwood, green, at logyard, SE kg 1610 

43 Bark, hardwood, green, at mill, E kg 1610 

44 Bark, hardwood, green, at mill, NE-NC kg 1610 
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45 Bark, hardwood, green, at mill, SE kg 1610 

46 Bark, hardwood, green, at sawmill, NE-NC kg 1610 

47 Bark, hardwood, green, at sawmill, SE kg 1610 

48 Bark, hardwood, green, at veneer mill, E kg 1610 

49 
Bark, sftwd, state-private moist cold forest, steep slope, at 
forest rd,INW kg 

1610 

50 
Bark, softwd, state or private dry forest, gentle slope, at 
forest rd, INW kg 

1610 

51 
Bark, softwd, state or private dry forest, steep slope, at forest 
rd, INW kg 

1610 

52 Bark, softwood, average, High Intensity Management, NE-NC kg 1610 

53 Bark, softwood, average, Low Intensity Management, NE-NC kg 1610 

54 Bark, softwood, average, Med Intensity Management, NE-NC kg 1610 

55 Bark, softwood, average, at forest road, INW kg 1610 

56 Bark, softwood, average, at forest road, NE-NC kg 1610 

57 
Bark, softwood, average, state or private dry forest, at forest 
road, INW kg 

1610 

58 
Bark, softwood, average, state or private moist cold forest, at 
forest road, INW kg 

1610 

59 Bark, softwood, green, at logyard, INW kg 1610 

60 Bark, softwood, green, at logyard, NE-NC kg 1610 

61 Bark, softwood, green, at mill, INW kg 1610 

62 Bark, softwood, green, at mill, NE-NC kg 1610 

63 Bark, softwood, green, at sawmill, INW kg 1610 

64 Bark, softwood, green, at sawmill, NE-NC kg 1610 

65 Bark, softwood, national forest, average, at forest road, INW kg 1610 

66 
Bark, softwood, national forest, gentle slope, at forest road, 
INW kg 

1610 

67 
Bark, softwood, national forest, steep slope, at forest road, 
INW kg 

1610 

68 
Bark, softwood, state-private moist cold forest, gentle slope, 
at frst rd, INW kg 

1610 

69 Bauxite, at mine kg 729 

70 Benzene, at plant kg 2011 

71 Biodegradable loose fill   2011 

72 Bitumen, at refinery kg 1920 

73 Bituminous coal, at mine kg 510 

74 Bituminous coal, combusted in industrial boiler kg COAL 

75 
Bituminous coal, combusted in industrial boiler, at pulp and 
paper mill (EXCL.) kg 

COAL 

76 Board trimmings and rejects, for  recovery/recycling kg 1702 

77 Bucked and debarked log, hardwood, green, at veneer mill, E  kg 1610 

78 Butadiene, at plant kg 2011 

79 Byproduct of aluminum casting, SPM, liquid residuals  kg 2420 
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80 
Byproduct of aluminum casting, precision sand, liquid 
residuals kg 

2420 

81 CUTOFF 2,4-D, at regional storehouse kg 2021 

82 CUTOFF Accelerator, at plant item 2811 

83 CUTOFF Acetone from butane, at plant kg 2011 

84 CUTOFF Acetone from butane, at plant. RER kg 2011 

85 CUTOFF Acetone, liquid kg 2011 

86 CUTOFF Additive, low-profile, at plant kg 2011 

87 CUTOFF Adhesive tube dispensers, at plant kg 2029 

88 CUTOFF Adhesive, UPR-based, at plant kg 2029 

89 CUTOFF Adhesives and binders, at plant kg 2029 

90 CUTOFF Agricultural machinery, general, production kg 2821 

91 CUTOFF Agrochemicals, at plant kg 2021 

92 CUTOFF Alachlor, at regional storehouse kg 2011 

93 CUTOFF Alkaline cleaner, unspecified kg 2011 

94 CUTOFF Alloying additives, at plant kg 2011 

95 CUTOFF Alloying metals and additives, at plant kg 2410 

96 CUTOFF Aluminium, at plant kg 2420 

97 CUTOFF Aluminum hydroxide, at plant kg 2011 

98 CUTOFF Aluminum oxide sealer, 100% solids kg 2011 

99 CUTOFF Aluminum scrap, automotive kg 2420 

100 CUTOFF Aluminum scrap, used beverage cans kg 2420 

101 CUTOFF Aluminum sheet kg 2420 

102 CUTOFF Aluminum, liquid, at plant kg 2420 

103 CUTOFF Aluminum, scrap kg 2420 

104 CUTOFF Ammonium sulfate 30% solids kg 2012 

105 CUTOFF Ammonium sulfate, 20% solids, at plant kg 2012 

106 CUTOFF Ammonium sulfate, at plant kg 2012 

107 CUTOFF Anthracite coal, at mine kg 510 

108 
CUTOFF Application of plant protection products, by field 
sprayer ha 

161 

109 CUTOFF Argon, liquid, at plant kg 2011 

110 CUTOFF Atrazine, at regional storehouse  kg 2021 

111 
CUTOFF BOD5, Biochemical Oxygen Demand, to municipal 
wastewater treatment kg 

WASTE_FLOW 

112 CUTOFF BOD5, to municipal wastewater treatment kg WASTE_FLOW 

113 CUTOFF Baling kg 2821 

114 CUTOFF Balsa wood, at plant kg 1610 

115 CUTOFF Bark, hardwood, at forest road, SE kg 1610 

116 CUTOFF Biocide, at plant kg 2021 

117 CUTOFF Body washer, at plant kg 2023 

118 CUTOFF Borax, anhydrous, powder, at plant kg 2011 
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119 CUTOFF Boric acid, at plant kg 2011 

120 CUTOFF Bottom ash, unspecified origin kg 3811 

121 CUTOFF Butyl acetate, liquid kg 2011 

122 
CUTOFF Cable, connector for computer, without plugs, at 
plant kg 

2732 

123 CUTOFF Calcium borates, at plant kg 2011 

124 CUTOFF Carbon black, at plant kg 2011 

125 CUTOFF Carbon dioxide, liquid, at plant kg 2011 

126 CUTOFF Carbon monoxide, at plant kg 2011 

127 CUTOFF Cement bags, at plant kg 2220 

128 CUTOFF Ceramic filters, at plant kg 2821 

129 CUTOFF Chains, at plant kg 2599 

130 CUTOFF Chemicals (unspecified) kg 2011 

131 CUTOFF Chemicals inorganic, at plant kg 2011 

132 CUTOFF Chemicals organic, at plant kg 2011 

133 
CUTOFF Chemicals, unspecified, used for wastewater 
treatment kg 

2011 

134 CUTOFF Chlorine, at plant kg 2011 

135 CUTOFF Chromic acid kg 2011 

136 CUTOFF Chromium III chromate sealer kg 2011 

137 CUTOFF Citric Acid, at plant kg 2011 

138 CUTOFF Clay, at mine kg 810 

139 CUTOFF Cleaner alkaline, at plant kg 2011 

140 CUTOFF Cleaning blast, at plant kg 2011 

141 CUTOFF Clearcoat material, at plant kg 2011 

142 CUTOFF Co-resin, UPR and styrene-based, at plant kg 2011 

143 CUTOFF Coatings kg 2022 

144 CUTOFF Cold impact extrusion, aluminium, 1 stroke  kg 2220 

145 CUTOFF Colorant, at plant kg 2022 

146 CUTOFF Combine harvesting ha 161 

147 CUTOFF Compressed natural gas, at plant m3 3520 

148 CUTOFF Continuous strand mat, glass fiber based, at plant kg 2310 

149 
CUTOFF Converted corrugated box, with average bleaching, 
at plant kg 

1702 

150 CUTOFF Conveyor belt, at plant m 2219 

151 CUTOFF Copper Chromium Arsenate (CCA), at plant kg 2011 

152 
CUTOFF Copper product manufacturing, average metal 
working kg 

2420 

153 CUTOFF Copper, at plant kg 2420 

154 CUTOFF Copper, at regional storage  kg 2420 

155 CUTOFF Copper, primary, at refinery kg 2420 

156 CUTOFF Core additives and catalyst for iron casting kg 2011 
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157 CUTOFF Core board, at plant kg 1702 

158 CUTOFF Core coating for aluminum casting kg 2592 

159 CUTOFF Core wash and paste for aluminum casting kg 2592 

160 CUTOFF Corn Starch, at plant kg 1061 

161 CUTOFF Corrugated board, mixed fibre, single wall, at plant kg 1702 

162 CUTOFF Corrugated cardboard kg 1702 

163 CUTOFF Creosote, at plant kg 2011 

164 CUTOFF Curing agent, at plant kg 2011 

165 CUTOFF DTPA kg 2011 

166 CUTOFF Defoamant, unspecified kg 2011 

167 CUTOFF Dichloromethane, at plant kg 2011 

168 CUTOFF Disodium octaborate tetrahydrate (DOT), at plant kg 2011 

169 CUTOFF Disposal, 1-methoxy-2-propanol, to sanitary landfill  kg 3811 

170 CUTOFF Disposal, BOF dust, to unspecified treatment kg 3811 

171 CUTOFF Disposal, BOF slag, to unspecified treatment kg 3811 

172 CUTOFF Disposal, acetone, to sanitary landfill kg 3811 

173 CUTOFF Disposal, acid pickling waste, to sanitary landfill  kg 3811 

174 
CUTOFF Disposal, anthracite coal combustion byproducts, to 
unspecified reuse kg 

3811 

175 
CUTOFF Disposal, ash and flue gas desulfurization sludge, to 
unspecified reuse kg 

3811 

176 CUTOFF Disposal, baghouse dust, to sanitary landfill kg 3811 

177 
CUTOFF Disposal, benzene, 1,2,4-trimethyl-, to sanitary 
landfill kg 

3811 

178 CUTOFF Disposal, biohazard waste, to sanitary landfill  kg 3811 

179 CUTOFF Disposal, carbon black, to residual material landfill  kg 3811 

180 CUTOFF Disposal, carbon black, to sanitary landfill  kg 3811 

181 CUTOFF Disposal, carbon black, to wastewater treatment kg 3811 

182 
CUTOFF Disposal, cement kiln dust, in residual material 
landfill kg 

3811 

183 
CUTOFF Disposal, chemical waste, unspecified, to residual 
material landfill kg 

3811 

184 
CUTOFF Disposal, chemical waste, unspecified, to residual 
materials landfill kg 

3811 

185 
CUTOFF Disposal, chemical waste, unspecified, to sanitary 
landfill kg 

3811 

186 
CUTOFF Disposal, chemical waste, unspecified, to unspecified 
treatment kg 

3811 

187 CUTOFF Disposal, contaminated carbon, to sanitary landfill kg 3811 

188 CUTOFF Disposal, copper compounds, to sanitary landfill kg 3811 

189 
CUTOFF Disposal, corrosive and toxic liquids, unspecified, to 
sanitary landfill kg 

3811 

190 CUTOFF Disposal, empty pails and drums, to sanitary landfill  kg 3811 

191 CUTOFF Disposal, ferric oxide, to sanitary landfill kg 3811 
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192 CUTOFF Disposal, filters, to sanitary landfill kg 3811 

193 CUTOFF Disposal, fly ash, to unspecified landfill kg 3811 

194 CUTOFF Disposal, formaldehyde, to unspecified treatment kg 3811 

195 CUTOFF Disposal, grinding residue, to sanitary landfill kg 3811 

196 CUTOFF Disposal, heavy alkalide naphtha, to sanitary landfill kg 3811 

197 CUTOFF Disposal, inert material, 0% water, to sanitary landfill kg 3811 

198 CUTOFF Disposal, inert solid waste, to inert material landfill kg 3811 

199 CUTOFF Disposal, inert solid waste, to inert material landfill kg 3811 

200 CUTOFF Disposal, inert solid waste, to unspecified treatment kg 3811 

201 CUTOFF Disposal, inert solid waste, to unspecified treatment kg 3811 

202 
CUTOFF Disposal, inert waste, 5% water, to inert material 
landfill kg 

3811 

203 CUTOFF Disposal, lead containing waste, to sanitary landfill kg 3811 

204 
CUTOFF Disposal, light aromatic solvent naphtha, to sanitary 
landfill kg 

3811 

205 
CUTOFF Disposal, lignite coal combustion byproducts, to 
unspecified reuse kg 

3811 

206 
CUTOFF Disposal, liquid wastes, unspecified to waste water 
treatment m3 

3700 

207 
CUTOFF Disposal, liquid wastes, unspecified, to sanitary 
landfill kg 

3811 

208 CUTOFF Disposal, mineral waste, underground deposit  kg 3811 

209 CUTOFF Disposal, mining waste, underground deposit  kg 3811 

210 CUTOFF Disposal, msw, to sanitary landfill  kg 3811 

211 CUTOFF Disposal, municipal solid wastes, to sanitary landfill  kg 3811 

212 CUTOFF Disposal, n-butyl alcohol, to sanitary landfill  kg 3811 

213 
CUTOFF Disposal, packaging-biocide carboys (HDPE), to 
sanitary landfill kg 

3811 

214 
CUTOFF Disposal, petroleum based wastes, unspecified, to 
sanitary landfill kg 

3811 

215 
CUTOFF Disposal, propylene glycol butyl ether, to sanitary 
landfill kg 

3811 

216 
CUTOFF Disposal, radioactive waste, unspecified hazardous 
waste landfill kg 

3811 

217 CUTOFF Disposal, refractory material, to sanitary landfill  kg 3811 

218 CUTOFF Disposal, resins, unspecified, to sanitary landfill kg 3811 

219 CUTOFF Disposal, rubber, to sanitary landfill kg 3811 

220 CUTOFF Disposal, sand, to sanitary landfill kg 3811 

221 CUTOFF Disposal, slag, to unspecified treatment kg 3811 

222 CUTOFF Disposal, slags & ash waste, unspecified reuse  kg 3811 

223 
CUTOFF Disposal, sludge, containing 1-methoxy-2-propanol, 
to sanitary landfill kg 

3811 

224 
CUTOFF Disposal, sludge, containing glycol ethers, to sanitary 
landfill kg 

3811 
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225 
CUTOFF Disposal, sludge, containing manganese compounds, 
to sanitary landfill kg 

3811 

226 
CUTOFF Disposal, sludge, containing nitrate compounds, to 
sanitary landfill kg 

3811 

227 
CUTOFF Disposal, sludge, containing phosphorous, to sanitary 
landfill kg 

3811 

228 
CUTOFF Disposal, sludge, containing zinc compounds, to 
sanitary landfill kg 

3811 

229 CUTOFF Disposal, sludge, to sanitary landfill  kg 3811 

230 
CUTOFF Disposal, solid waste to incineration with energy 
recovery kg 

3811 

231 
CUTOFF Disposal, solid waste to incineration without energy 
recovery kg 

3811 

232 CUTOFF Disposal, solid waste to sanitary landfill  kg 3811 

233 CUTOFF Disposal, solid waste, fuel, to municipal incineration kg 3811 

234 CUTOFF Disposal, solid waste, process, to sanitary landfill kg 3811 

235 CUTOFF Disposal, solid waste, process, to waste-to-energy kg 3811 

236 
CUTOFF Disposal, solid waste, unspecified, to incineration 
with energy recovery kg 

3811 

237 
CUTOFF Disposal, solid waste, unspecified, to inert material 
landfill kg 

3811 

238 
CUTOFF Disposal, solid waste, unspecified, to inert material 
landfill kg 

3811 

239 
CUTOFF Disposal, solid waste, unspecified, to municipal 
incineration kg 

3811 

240 CUTOFF Disposal, solid waste, unspecified, to sanitary landfill kg 3811 

241 
CUTOFF Disposal, solid waste, unspecified, to underground 
deposit kg 

3811 

242 
CUTOFF Disposal, solid waste, unspecified, to unspecified 
beneficial use kg 

3811 

243 
CUTOFF Disposal, solid waste, unspecified, to unspecified 
incinerator kg 

3811 

244 
CUTOFF Disposal, solid waste, unspecified, to unspecified 
land application kg 

3811 

245 
CUTOFF Disposal, solid waste, unspecified, to unspecified 
landfill kg 

3811 

246 
CUTOFF Disposal, solid waste, unspecified, to unspecified 
treatment kg 

3811 

247 
CUTOFF Disposal, solid waste, unspecified, to unspecified 
treatment kg 

3811 

248 
CUTOFF Disposal, solid waste, unspecified, to waste-to-
energy kg 

3811 

249 
CUTOFF Disposal, solid waste,process, to municipal 
incineration kg 

3811 

250 CUTOFF Disposal, stoddard solvent, to sanitary landfill kg 3811 

251 CUTOFF Disposal, tailings waste, underground deposit  kg 3811 
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252 
CUTOFF Disposal, unspecified ashes, to unspecified beneficial 
use kg 

3811 

253 
CUTOFF Disposal, unspecified ashes, to unspecified land 
application kg 

3811 

254 CUTOFF Disposal, unspecified ashes, to unspecified landfill kg 3811 

255 
CUTOFF Disposal, wastewater treatment plant residuals, to 
uns. beneficial use kg 

3811 

256 
CUTOFF Disposal, wastewater treatment plant residuals, to 
uns. incinerator kg 

3811 

257 
CUTOFF Disposal, wastewater treatment plant residuals, to 
uns. land application kg 

3811 

258 
CUTOFF Disposal, wastewater treatment plant residuals, to 
uns. landfill kg 

3811 

259 
CUTOFF Disposal, wood ash mixture, pure, 0% water, to 
sanitary landfill kg 

3811 

260 CUTOFF Disposal, wood waste, to residual material landfill kg 3811 

261 CUTOFF Disposal, wood waste, to unspecified treatment kg 3811 

262 CUTOFF Dried roughage store, non ventilated kg 161 

263 CUTOFF Dry rough lumber, at kiln kg 1610 

264 CUTOFF Dry strengths, at plant kg 1702 

265 CUTOFF Electricity from hydro kWh 3510 

266 CUTOFF Electricity, MSW, non-biogenic, at power plant kWh 3510 

267 CUTOFF Electricity, at grid, BC kWh 3510 

268 CUTOFF Electricity, at grid, MB kWh 3510 

269 CUTOFF Electricity, at grid, NB kWh 3510 

270 CUTOFF Electricity, at grid, ON kWh 3510 

271 CUTOFF Electricity, at grid, QC kWh 3510 

272 CUTOFF Electricity, at wind power plant, unspecified kWh 3510 

273 CUTOFF Electricity, biomass, gas, landfill, at power plant kWh 3510 

274 CUTOFF Electricity, biomass, gas, unspecified, at power plant kWh 3510 

275 CUTOFF Electricity, biomass, liquid, sludge, at power plant kWh 3510 

276 
CUTOFF Electricity, biomass, solid, agriculture by-products, at 
power plant kWh 

3510 

277 
CUTOFF Electricity, biomass, solid, biogenic MSW, at power 
plant kWh 

3510 

278 
CUTOFF Electricity, biomass,liquid, unspecified, at power 
plant kWh 

3510 

279 CUTOFF Electricity, biomass,solid, unspecified, at power plant kWh 3510 

280 CUTOFF Electricity, cogenerated, at plant kWh 3510 

281 CUTOFF Electricity, fossil, unspecified, at power plant kWh 3510 

282 CUTOFF Electricity, from renewable source, unspecified  kWh 3510 

283 CUTOFF Electricity, geothermal, unspecified kWh 3510 

284 CUTOFF Electricity, hydropower, at power plant, unspecified  kWh 3510 

285 CUTOFF Electricity, low voltage, at grid kWh 3510 
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286 CUTOFF Electricity, low voltage, at grid kWh 3510 

287 CUTOFF Electricity, low voltage, at grid/CN U kWh 3510 

288 CUTOFF Electricity, other fuels, at power plant, unspecified kWh 3510 

289 CUTOFF Electricity, other fuels, unspecified, at power plant kWh 3510 

290 CUTOFF Electricity, other gases, unspecified,  at power plant kWh 3510 

291 CUTOFF Electricity, petroleum coke, at power plant kWh 3510 

292 CUTOFF Electricity, petroleum, waste oil, at power plant kWh 3510 

293 CUTOFF Electricity, photovoltaic, unspecified kWh 3510 

294 CUTOFF Electricity, solar, unspecified, at power plant kWh 3510 

295 CUTOFF Electricity, tire derived fuel, at power plant kWh 3510 

296 CUTOFF Electricity, waste oil, at power plant kWh 3510 

297 CUTOFF Electrocoat resin, at plant kg 2013 

298 CUTOFF Electronic component, unspecified, at plant kg 2610 

299 CUTOFF Emulsion wax 53% solids kg 2011 

300 CUTOFF Energy, output MJ ENERGY 

301 CUTOFF Energy, unspecified MJ ENERGY 

302 CUTOFF Epoxy, resin, at plant kg 2011 

303 CUTOFF Ethanol fermentation plant Item(s) 4290 

304 CUTOFF Ethanol, at plant kg 2011 

305 CUTOFF Ethanol, denatured, corn stover, biochemical kg 2011 

306 CUTOFF Ethylene glycol, at plant kg 2011 

307 CUTOFF Expandable polystyrene, at plant kg 2011 

308 CUTOFF Expanded polystyrene foam, at plant kg 2011 

309 CUTOFF Explosives, at plant kg 2011 

310 CUTOFF Fatty acides kg 2011 

311 CUTOFF Fertilising, by broadcaster ha 161 

312 CUTOFF Filler, synthetic, at plant kg 2011 

313 CUTOFF Filter bags, at plant kg 2220 

314 CUTOFF Filter media, at plant kg 2011 

315 CUTOFF Flat glass, coated, at plant kg 2310 

316 CUTOFF Flat glass, uncoated, at plant kg 2310 

317 CUTOFF Flouropolymer (PVDF)  kg 2013 

318 CUTOFF Flux, at plant kg 161 

319 CUTOFF Fly ash, unspecified origin kg 3811 

320 CUTOFF Fodder loading, by self-loading trailer m3 5224 

321 CUTOFF Formic acid, 10% solution, at plant kg 2011 

322 CUTOFF Formic acid, at plant kg 2011 

323 CUTOFF Foundry sand, at mine  kg 810 

324 CUTOFF Galvanized steel scrap, at plant kg 2420 

325 CUTOFF Gasoline, used in personal vehicle kg 1920 

326 CUTOFF Gelcoat, UPR & styrene-based, at plant kg 2011 
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327 CUTOFF Glass fibre, at plant kg 2310 

328 CUTOFF Glue, at plant kg 2029 

329 
CUTOFF Glue-adhesive(30-50% terpene,30-50% 
polybutene,5-10% polyolefin), at plant kg 

2029 

330 CUTOFF Glyphosate, at regional storehouse kg 2011 

331 CUTOFF Grain refiners, at plant kg 2821 

332 CUTOFF Grass seed IP, at regional storehouse kg 161 

333 CUTOFF Grinding aids, at plant kg 2011 

334 CUTOFF Grinding media, at plant kg 2011 

335 CUTOFF Ground calcium carbonate, at plant kg 2011 

336 CUTOFF Hay grown for feed kg 1080 

337 CUTOFF Haying, by rotary tedder ha 161 

338 
CUTOFF Heat, at cogen with ignition biogas engine, allocation 
exergy MJ 

ENERGY 

339 CUTOFF Heat, from biomass  MJ ENERGY 

340 CUTOFF Heat, from landfill gas MJ 
RECOVERED 

ENERGY 

341 CUTOFF Hexane, at plant kg 2011 

342 CUTOFF Highlighter, at plant kg 3290 

343 
CUTOFF Hogfuel-Biomass (50% MC), combusted in industrial 
boiler kg 

BIOFUEL 

344 CUTOFF Hydraulic fluid, at plant kg 2011 

345 CUTOFF Hydrochloric Acid, at plant kg 2011 

346 CUTOFF Hydrochloric acid, 30% in H2O, at plant kg 2011 

347 CUTOFF Hydrogen peroxide kg 2011 

348 CUTOFF Hydrogen peroxide, at plant kg 2011 

349 CUTOFF In-mold coating, styrene-based, at plant kg 2220 

350 CUTOFF Initiator, MEKP, at plant kg 2011 

351 CUTOFF Injection moulding kg 2220 

352 CUTOFF Ink kg 2022 

353 CUTOFF Irrigating kg 161 

354 CUTOFF Isobutyl acetate, liquid kg 2011 

355 CUTOFF Isocyanate resin, at plant kg 2011 

356 CUTOFF Isoproponal, liquid kg 2011 

357 CUTOFF Kerosene, combusted in industrial boiler kg FOSSIL FUEL 

358 CUTOFF LCD glass, at plant kg 2610 

359 CUTOFF LCD module, at plant kg 2610 

360 CUTOFF Latex, at plant kg 2013 

361 CUTOFF Light emitting diode, LED, at plant kg 2011 

362 CUTOFF Liquid storage tank, chemicals, organics kg 2512 

363 CUTOFF Loading bales kg 161 

364 CUTOFF Low Density Polyethylene Film kg 2012 

365 CUTOFF Lube oil, at plant kg 1920 
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366 CUTOFF Lubricants, unspecified, at plant kg 1920 

367 CUTOFF Lubricating oil kg 1920 

368 CUTOFF Magnesium oxide, at plant kg 2011 

369 CUTOFF Maize drying kg 161 

370 CUTOFF Maleic anhydride, at plant kg 2011 

371 CUTOFF Materials for basecoat painting, at plant kg 2022 

372 CUTOFF Materials for basecoat painting, at plant kg 2022 

373 CUTOFF Measuring and dispensing pumps item 2811 

374 CUTOFF Melamine, at plant kg 2011 

375 CUTOFF Metallurgical coke, combusted in industrial boiler kg FOSSIL FUEL 

376 CUTOFF Metolachlor, at regional storehouse kg 2011 

377 CUTOFF Middle distillates, combusted in industrial boiler kg FOSSIL FUEL 

378 CUTOFF Mineral spirits kg 2011 

379 CUTOFF Miscellaneous metal scrap kg 2410 

380 CUTOFF Mixed deposit containers, at source  kg 3830 

381 CUTOFF Mixed paper kg 1701 

382 CUTOFF Mixed recyclables, at source  kg 3830 

383 CUTOFF Mixed recyclables, at source  kg 3830 

384 CUTOFF Mold-release agent, at plant kg 2011 

385 CUTOFF Monoethanolamine (MEA), at plant kg 2011 

386 CUTOFF Monoethanolamine, at plant kg 2011 

387 CUTOFF Mowing, by rotary mower ha 161 

388 
CUTOFF Natural gas, processed, for olefins production, at 
plant, internal offgas use  m3 

3520 

389 
CUTOFF Natural gas, processed, for olefins production, at 
plant, material use m3 

3520 

390 CUTOFF Neo pentyl glycol, at plant kg 2011 

391 CUTOFF Nitrogen, at plant kg 2011 

392 CUTOFF Nylon 6, at plant kg 2011 

393 CUTOFF Oil and grease, at plant kg 1920 

394 CUTOFF Oil, at plant kg 1920 

395 CUTOFF Old corrugated containers kg 3830 

396 CUTOFF Old magazines kg 3830 

397 CUTOFF Old news paper kg 3830 

398 CUTOFF Optical brightner, at plant kg 2011 

399 
CUTOFF Organophosphorus-compounds, at regional 
storehouse kg 

2011 

400 CUTOFF Other biomass fuel, unspecified kg 119 

401 
CUTOFF Overburden, stockpiled, on-site, for unspecified 
beneficial use kg 

990 

402 CUTOFF PVOH, at plant kg 2011 

403 CUTOFF Packaging, unspecified, at plant kg 8292 
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404 CUTOFF Pallet, for packaging kg 1623 

405 CUTOFF Palm kernel oil, crude, at plant kg 111 

406 CUTOFF Paper, woodcontaining, LWC, at plant kg 1701 

407 CUTOFF Pentane kg 2011 

408 CUTOFF Petroleum coke, combusted in industrial boiler kg 1920 

409 
CUTOFF Petroleum refining, for olefins production, at plant, 
internal offgas use kg 

1920 

410 
CUTOFF Petroleum refining, for olefins production, at plant, 
material use kg 

1920 

411 CUTOFF Phenol, at plant kg 2011 

412 CUTOFF Phosphate anti-corrosion kg 2011 

413 CUTOFF Phosphate anti-corrosion makeup kg 2011 

414 CUTOFF Phosphate anti-corrosion post-rinse kg 2011 

415 CUTOFF Phosphate pre-treat kg 2011 

416 CUTOFF Phosphoric Acid, at plant kg 2011 

417 CUTOFF Phosphorous Fertilizer (TSP as P2O5), at plant kg 2012 

418 CUTOFF Phthalic anhydride, at plant kg 2011 

419 CUTOFF Pigment, at plant kg 2022 

420 CUTOFF Pigment, at plant kg 2022 

421 CUTOFF Planting ha 161 

422 CUTOFF Plastic baggies, low density polyethylene, at plant kg 2220 

423 CUTOFF Plastic band, for packaging kg 2220 

424 CUTOFF Plasticshot, polymethylmethacrylate, at plant kg 2220 

425 CUTOFF Plasticshot, polyurea formaldehyde, at plant kg 2220 

426 CUTOFF Polycarbonate, at plant kg 2013 

427 
CUTOFF Polyethylene low density granulate (PE-LD), 
production mix, at plant kg 

2013 

428 
CUTOFF Polyethylene terephthalate, granulate, amorphous, 
at plant kg 

2013 

429 CUTOFF Polyethylene-film (PE) kg 2013 

430 CUTOFF Polymers, at plant kg 2013 

431 CUTOFF Polymethyl methacrylate, beads, at plant kg 2013 

432 CUTOFF Polyphenylene sulfide, at plant kg 2013 

433 CUTOFF Polypropylene-film (oriented) (PP) kg 2013 

434 CUTOFF Polyurethane Caulk kg 2013 

435 CUTOFF Polyurethane, flexible foam, at plant kg 2013 

436 CUTOFF Polyvinyl Acetate kg 2013 

437 CUTOFF Polyvinylidene fluoride kg 2013 

438 CUTOFF Potash Fertilizer (K2O), at plant kg 2012 

439 CUTOFF Potassium chloride, as K2O, at regional storehouse kg 2012 

440 CUTOFF Potassium fertilizer, production mix, at plant kg 2012 

441 
CUTOFF Potassium hydroxide, production mix, at plant, for 
polyol foams kg 

2012 
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442 CUTOFF Potassium nitrate, as K2O, at regional storehouse kg 2012 

443 CUTOFF Potato Starch, at plant kg 113 

444 CUTOFF Power adapter, for laptop, at plant kg 2610 

445 CUTOFF Precipitated calcium carbonate, at plant kg 2011 

446 CUTOFF Prewipe, at plant kg 2011 

447 
CUTOFF Printed wiring board, power supply unit desktop PC, 
Pb free, at plant kg 

2610 

448 
CUTOFF Printed wiring board, surface mounted, unspec., Pb 
free, at plant kg 

2610 

449 
CUTOFF Process wastewater, to municipal wastewater 
treatment kg 

3700 

450 CUTOFF Propane, combusted in equipment MJ ENERGY 

451 CUTOFF Propylene Glycol, liquid, at plant kg 2011 

452 CUTOFF Pulp chips, at sawmill, US  kg 1610 

453 CUTOFF Pulp chips, at sawmill, US SE/kg, in black liquor kg 1610 

454 CUTOFF Pulp chips, at sawmill, US SE/kg, in pulp kg 1610 

455 
CUTOFF Pulp slurry, groundwood, bleached, average 
production, at mill kg 

1610 

456 
CUTOFF Pulp slurry, kraft market, bleached, average 
production, at mill kg 

1610 

457 
CUTOFF Pulp slurry, sulfite, bleached, average production, at 
mill kg 

1610 

458 CUTOFF Pulp, deinked market, bleached, at mill  kg 1610 

459 
CUTOFF Pulp, refiner market, bleached, average production, 
at mill kg 

1610 

460 CUTOFF Pulpwood, hardwood, average, at forest road, US S m3 220 

461 CUTOFF Pulpwood, in black liquor solids m3 220 

462 CUTOFF Pulpwood, in pulp  m3 220 

463 CUTOFF Pulpwood, in wood fuel m3 220 

464 CUTOFF Pulpwood, softwood, average, at forest road, US S  m3 220 

465 CUTOFF Purified terephthalic acid, at plant kg 2011 

466 CUTOFF Pyretroid-compounds, at regional storehouse kg 2011 

467 CUTOFF Quaternary (DDAC), at plant kg 2011 

468 CUTOFF Recovered paper kg 3830 

469 CUTOFF Recycling, Aluminum scrap kg 3830 

470 CUTOFF Recycling, Steel scrap kg 3830 

471 CUTOFF Recycling, baghouse dust, unspecified kg 3830 

472 CUTOFF Recycling, batteries kg 3830 

473 CUTOFF Recycling, biohazard waste, unspecified kg 3830 

474 CUTOFF Recycling, cardboard kg 3830 

475 CUTOFF Recycling, cement kiln dust kg 3830 

476 CUTOFF Recycling, construction debris, unspecified kg 3830 
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477 
CUTOFF Recycling, fluorescent tubes and other mercury-
containing wastes kg 

3830 

478 CUTOFF Recycling, municipal solid wastes, unspecified  kg 3830 

479 CUTOFF Recycling, petroleum based wastes, unspecified kg 3830 

480 CUTOFF Recycling, refractory material kg 3830 

481 CUTOFF Recycling, rubber kg 3830 

482 CUTOFF Recycling, solid waste, unspecified kg 3830 

483 CUTOFF Recycling, waste, unspecified kg 3830 

484 CUTOFF Recycling, wood waste, unspecified kg 3830 

485 CUTOFF Refractory material, unspecified, at plant kg 3830 

486 CUTOFF Release agent, unspecified, at plant kg 2011 

487 CUTOFF Resorcinol, at plant kg 2011 

488 CUTOFF Retention aid, at plant kg 2011 

489 CUTOFF Rinse conditioner, at plant kg 2512 

490 CUTOFF Roundwood, hardwood, at forest road, SE m3 220 

491 CUTOFF Rubber and plastics hose and belting USD 2211 

492 CUTOFF Sawdust, at sawmill, US  kg 1610 

493 
CUTOFF Sawn Lumber, softwood, planed, green, at planer, 
PNW kg 

1610 

494 CUTOFF Secondary fuel  MJ 
RECOVERED 
ENERGY 

495 CUTOFF Secondary fuel renewable MJ 
RECOVERED 

ENERGY 

496 CUTOFF Shot blast, unspecified kg 2410 

497 CUTOFF Silica sand, at mine  kg 810 

498 CUTOFF Silica sand, at plant kg 2391 

499 CUTOFF Silicon, multi-Si, casted, at plant kg 2011 

500 CUTOFF Silicone dioxide, at plant kg 2011 

501 CUTOFF Silicone sealing compound kg 2011 

502 CUTOFF Silver, at regional storage  kg 2420 

503 CUTOFF Sizer, at plant kg 2821 

504 CUTOFF Slag, at blast furnace kg 2394 

505 CUTOFF Slag, production residue, recovered kg 2394 

506 CUTOFF Slurry spreading, by vacuum tanker kg 161 

507 CUTOFF Sodium Methylate, at plant kg 2011 

508 CUTOFF Sodium borate kg 2011 

509 CUTOFF Sodium chlorate kg 2011 

510 CUTOFF Sodium chlorate, at plant kg 2011 

511 CUTOFF Sodium hydrosulfite kg 2011 

512 CUTOFF Sodium hydrosulfite, at plant kg 2011 

513 CUTOFF Sodium hydroxide kg 2011 

514 CUTOFF Sodium hydroxide, 50% solids, at plant kg 2011 

515 CUTOFF Sodium hydroxide, at plant kg 2011 
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516 CUTOFF Sodium sulfate kg 2011 

517 CUTOFF Sodium sulfate, at plant kg 2011 

518 CUTOFF Softwood seed, at greenhouse, INW ha 210 

519 
CUTOFF Softwood with bark, avg. intst. harvest, at mill, US SE, 
in black liquor kg 

1610 

520 
CUTOFF Softwood with bark, avg. intst. harvest, at mill, US SE, 
in pulp kg 

1610 

521 
CUTOFF Softwood with bark, avg.intst. harvest, at mill, US SE, 
in self-gen. hogged fuel kg 

1610 

522 
CUTOFF Solid manure loading and spreading, by hydraulic 
loader and spreader kg 

161 

523 CUTOFF Solution corrosion inhibitor, at plant kg 2011 

524 CUTOFF Solvent-based stain, 30% solids kg 2011 

525 CUTOFF Sorted office paper kg 1701 

526 CUTOFF Spring wheat straw, production, average, US, 2022 kg 111 

527 CUTOFF Starch kg 1062 

528 CUTOFF Starch, at plant kg 1062 

529 CUTOFF Steam MJ ENERGY 

530 CUTOFF Steel band, for packaging kg 2420 

531 CUTOFF Steel cast part (machined)  kg 2420 

532 CUTOFF Steel product manufacturing, average metal working kg 2420 

533 CUTOFF Steel scrap (st) kg 2420 

534 CUTOFF Steel scrap, at plant kg 2420 

535 CUTOFF Steel, low-alloyed, at plant kg 2420 

536 CUTOFF Steel, secondary, at plant kg 2420 

537 CUTOFF Sulfur dioxide, at plant kg 2011 

538 CUTOFF Sulfuric acid, at plant kg 2011 

539 CUTOFF Sulphite, at plant kg 2011 

540 CUTOFF Sulphuric acid, liquid, at plant kg 2011 

541 CUTOFF Surfactant, unspecified kg 2011 

542 CUTOFF Swath, by rotary windrower ha 161 

543 CUTOFF Synthetic rubber, at plant kg 2013 

544 CUTOFF TEA gas scrubber, at plant kg 2011 

545 CUTOFF TEA gas, at plant kg 2011 

546 
CUTOFF TEA-DMEA (trimethyl amine, dimethylamine), at 
plant kg 

2011 

547 
CUTOFF TSS, Total Suspended Solids, to municipal 
wastewater treatment kg 

3811 

548 CUTOFF TSS, to municipal wastewater treatment kg 3811 

549 
CUTOFF Tailings, stockpiled, on-site, for unspecified beneficial 
use kg 

990 

550 CUTOFF Talc, at plant kg 2011 

551 CUTOFF Tap water, at user kg 3600 
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552 CUTOFF Tetrabromophthalic acid, at plant kg 2011 

553 CUTOFF Tetrafluoroethane (R-134a) kg 2011 

554 CUTOFF Tetrafluoroethylene, at plant kg 2011 

555 CUTOFF Textile, woven cotton, at plant kg 1312 

556 CUTOFF Thermal energy from propane (MJ)  MJ ENERGY 

557 CUTOFF Thermochemical Conversion Plant Item(s) 4290 

558 CUTOFF Thickener, at plant kg 2011 

559 CUTOFF Tillage, cultivating, chiselling ha 161 

560 CUTOFF Tillage, ploughing ha 161 

561 CUTOFF Tillage, rolling ha 161 

562 CUTOFF Tillage, rotary cultivator ha 161 

563 CUTOFF Tinted clearcoat materials, at plant kg 2011 

564 CUTOFF Tire derived fuel MJ 
RECOVERED 
ENERGY 

565 CUTOFF Titanium dioxide kg 2011 

566 CUTOFF Titanium dioxide, at plant kg 2011 

567 CUTOFF Transport, ocean tanker, average fuel mix  t*km 5012 

568 CUTOFF Transport, pipeline, coal slurry t*km 4930 

569 CUTOFF Transport, tractor and trailer t*km 4923 

570 CUTOFF Treatment gases, unspecified, at plant kg 3811 

571 CUTOFF Treatment salts, unspecified, at plant kg 3811 

572 
CUTOFF Treatment, electrocoating wastewater, unspecified 
treatment m3 

3700 

573 CUTOFF Treatment, sewage, to wastewater treatment, class 1 kg 3700 

574 
CUTOFF Treatment, sewage, to wastewater treatment, class 
1/CH U kg 

3700 

575 
CUTOFF Treatment, sewage, unpolluted, to wastewater 
treatment, class 3 m3 

3700 

576 
CUTOFF Treatment,maize starch production effluent,to 
wastewater treatment,class2 m3 

3811 

577 CUTOFF UV-cured filler, 100% solids kg 2022 

578 CUTOFF UV-cured sealer, 100% solids kg 2022 

579 CUTOFF UV-cured stain, 100% solids kg 2022 

580 CUTOFF UV-cured topcoat, 100% solids kg 2022 

581 CUTOFF Urea 40% solids kg 2011 

582 CUTOFF Urea, at regional storehouse kg 2011 

583 CUTOFF Waste, industrial kg 3811 

584 CUTOFF Waste, miscellaneous, combusted in industrial boiler kg 3811 

585 CUTOFF Waste, oil, combusted in industrial boiler MJ 
RECOVERED 
ENERGY 

586 CUTOFF Waste, other solid, combusted in industrial boiler kg 3811 

587 CUTOFF Waste, solvents, combusted in industrial boiler kg 3811 

588 CUTOFF Waste, tire derived, combusted in industrial boiler kg 3811 
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589 CUTOFF Wastewater, unspecified, to unspecified treatment kg 3700 

590 CUTOFF Water, at plant kg 3600 

591 CUTOFF Water, at user kg 3600 

592 CUTOFF Water, process kg 3600 

593 CUTOFF Water, process, deionized kg 3600 

594 CUTOFF Water-based stain, 20% solids kg 2011 

595 CUTOFF Wax kg 1920 

596 CUTOFF Wetting agent, unspecified kg 2011 

597 CUTOFF Wood and bark hogged fuel from harvesting residues kg 1629 

598 
CUTOFF Wood and bark hogged fuel from manufacturing 
residues, unspecified kg 

1629 

599 CUTOFF Wood waste, unspecified kg 3811 

600 CUTOFF Yeast paste, from whey, at fermentation kg 2011 

601 CUTOFF Zeolite, powder, at plant kg 2011 

602 CUTOFF Zinc scrap, life cycle production residue, recovered  kg 2420 

603 CUTOFF Zinc stearate, at plant kg 2420 

604 
CUTOFF Zinc waste inputs (50% Zn), life cycle production 
residue, recovered kg 

2420 

605 CUTOFF [sulfonyl]urea-compounds, at regional storehouse kg 2011 

606 Chainsawing, delimbing, NE-NC kg 1610 

607 Chainsawing, hand felling and delimbing, INW kg 1610 

608 Chainsawing, hand felling, NE-NC kg 1610 

609 Chlor-alkali electrolysis, chlorine for PVC, at plant kg 2011 

610 Chlorine, production mix, at plant kg 2011 

611 Cladding, roll formed, at plant kg 2511 

612 Clippings, hardwood, dry, at veneer mill, E kg 1610 

613 
Co-products of glue laminated beam production, at plant, 
unspecified, US PNW kg 

1621 

614 
Co-products of glue laminated beam production, at plant, 
unspecified, US SE kg 

1621 

615 
Co-products of laminated veneer lumber production, 
unspecified, US PNW kg 

1610 

616 Combustion, dry wood residue, AP-42 kg BIOFUEL 

617 Combustion, wet wood residue, AP-42 kg BIOFUEL 

618 Composite scrap, from composites compression molding, at plant kg 2220 

619 
Composite scrap, from composites open mold casting, at 
plant kg 

2220 

620 Composite scrap, from composites open molding, at plant kg 2220 

621 Composite scrap, from composites vacuum infusion, at plant  kg 2220 

622 Compression molding, rigid composites part, at plant kg 2220 

623 Conditioned log, at plywood plant, US PNW kg 1621 

624 Conditioned log, at plywood plant, US SE kg 1621 

625 Conditioned log, hardwood, green, at veneer mill, E kg 1610 
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626 Containerboard, average production, at mill  kg 1701 

627 
Coproducts of laminated veneer lumber production, 
unspecified, US SE kg 

1610 

628 Corn grain, at conversion plant, 2022 kg 119 

629 Corn grain, harvested and stored kg 119 

630 Corn steep liquor kg 1061 

631 Corn stover, at conversion plant, 2022 kg 119 

632 Corn stover, at field kg 119 

633 Corn stover, carted kg 119 

634 Corn stover, ground and stored kg 119 

635 Corn stover, production, average, US, 2022 kg 119 

636 Corn wet mill, gluten drying, AP-42 kg 1061 

637 Corn wet mill, gluten drying, AP-42 kg 1061 

638 Corn wet milling, operations, AP-42 kg 1061 

639 Corn, at field kg 119 

640 Corn, decomposition, 15.5% moisture  kg 119 

641 Corn, production, average, US, 2022 kg 119 

642 
Corrugate packaging, from LDPE injection molding, for 
shipping kg 

8292 

643 Corrugate packaging, from PP injection molding, for shipping  kg 8292 

644 Corrugate packaging, from PP thermoforming, for shipping kg 8292 

645 Corrugate packaging, from compression molding, for shipping kg 8292 

646 Corrugate packaging, from open molding, for shipping kg BIOFUEL 

647 Corrugated Product kg 1702 

648 Corrugated Product kg 1702 

649 Cotton straw, at field kg 116 

650 Cotton, at field kg 116 

651 Crew to Burn Bole Only slash in the Woods, INW ha 240 

652 Crude oil, at production kg 610 

653 Crude oil, extracted kg 1920 

654 Crude palm kernel oil, at plant kg 111 

655 Debarked wood, at plywood plant, US PNW kg 1610 

656 Debarked wood, at plywood plant, US SE kg 1610 

657 Delimbing, slide boom delimber ha 240 

658 Deposit containers, at collection kg 3830 

659 Deposit containers, at collection, CRV  kg 3830 

660 Diesel(1), at refinery kg 1920 

661 Diesel, at refinery kg 1920 

662 Diesel, combusted in industrial boiler kg FOSSIL FUEL 

663 
Diesel, combusted in industrial boiler, at pulp and paper mill 
(EXCL.) kg 

FOSSIL FUEL 

664 Diesel, combusted in industrial equipment kg FOSSIL FUEL 
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665 Distillers dried grains with solubles, 2022 kg 2011 

666 Dry rough lumber, at kiln, US PNW kg 1610 

667 Dry rough lumber, at kiln, US SE kg 1610 

668 Dry veneer, at plywood plant, US PNW kg 1621 

669 Dry veneer, at plywood plant, US SE kg 1621 

670 Dry veneer, sold, at plywood plant, US PNW kg 1621 

671 Dust and scrap, at oriented strand board production, US SE kg 1610 

672 E-glass, at plant kg 2310 

673 EPS insulation board, at plant kg 2013 

674 Electricity, alumina refining regions kWh 3510 

675 Electricity, aluminum smelting and ingot casting regions kWh 3510 

676 Electricity, anthracite coal, at power plant kWh 3510 

677 Electricity, at Grid, ASCC, 2008 kWh 3510 

678 Electricity, at Grid, ASCC, 2010 kWh 3510 

679 Electricity, at Grid, FRCC, 2008 kWh 3510 

680 Electricity, at Grid, FRCC, 2010 kWh 3510 

681 Electricity, at Grid, HICC, 2008 kWh 3510 

682 Electricity, at Grid, HICC, 2010 kWh 3510 

683 Electricity, at Grid, MRO, 2008 kWh 3510 

684 Electricity, at Grid, MRO, 2010 kWh 3510 

685 Electricity, at Grid, NPCC, 2008 kWh 3510 

686 Electricity, at Grid, NPCC, 2010 kWh 3510 

687 Electricity, at Grid, RFC, 2008 kWh 3510 

688 Electricity, at Grid, RFC, 2010 kWh 3510 

689 Electricity, at Grid, SERC, 2008 kWh 3510 

690 Electricity, at Grid, SERC, 2010 kWh 3510 

691 Electricity, at Grid, SPP, 2008 kWh 3510 

692 Electricity, at Grid, SPP, 2010 kWh 3510 

693 Electricity, at Grid, TRE, 2008 kWh 3510 

694 Electricity, at Grid, TRE, 2010 kWh 3510 

695 Electricity, at Grid, US, 2010 kWh 3510 

696 Electricity, at Grid, WECC, 2008 kWh 3510 

697 Electricity, at Grid, WECC, 2010 kWh 3510 

698 Electricity, at bleached kraft market pulp mill  kWh 3510 

699 Electricity, at coated freesheet mill kWh 3510 

700 Electricity, at coated mechanical paper mill  kWh 3510 

701 Electricity, at cogen, for natural gas turbine kWh 3510 

702 Electricity, at cogen, for natural gas turbine  kWh 3510 

703 Electricity, at eGrid, AKGD, 2008 kWh 3510 

704 Electricity, at eGrid, AKGD, 2010 kWh 3510 

705 Electricity, at eGrid, AKMS, 2008 kWh 3510 
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706 Electricity, at eGrid, AKMS, 2010 kWh 3510 

707 Electricity, at eGrid, AZNM, 2008 kWh 3510 

708 Electricity, at eGrid, AZNM, 2010 kWh 3510 

709 Electricity, at eGrid, CAMX, 2008 kWh 3510 

710 Electricity, at eGrid, CAMX, 2010 kWh 3510 

711 Electricity, at eGrid, ERCT, 2008 kWh 3510 

712 Electricity, at eGrid, ERCT, 2010 kWh 3510 

713 Electricity, at eGrid, FRCC, 2008 kWh 3510 

714 Electricity, at eGrid, FRCC, 2010 kWh 3510 

715 Electricity, at eGrid, HIMS, 2008 kWh 3510 

716 Electricity, at eGrid, HIMS, 2010 kWh 3510 

717 Electricity, at eGrid, HIOA, 2008 kWh 3510 

718 Electricity, at eGrid, HIOA, 2010 kWh 3510 

719 Electricity, at eGrid, MROE, 2008 kWh 3510 

720 Electricity, at eGrid, MROE, 2010 kWh 3510 

721 Electricity, at eGrid, MROW, 2008 kWh 3510 

722 Electricity, at eGrid, MROW, 2010 kWh 3510 

723 Electricity, at eGrid, NEWE, 2008 kWh 3510 

724 Electricity, at eGrid, NEWE, 2010 kWh 3510 

725 Electricity, at eGrid, NWPP, 2008 kWh 3510 

726 Electricity, at eGrid, NWPP, 2010 kWh 3510 

727 Electricity, at eGrid, NYCW, 2008 kWh 3510 

728 Electricity, at eGrid, NYCW, 2010 kWh 3510 

729 Electricity, at eGrid, NYLI, 2008 kWh 3510 

730 Electricity, at eGrid, NYLI, 2010 kWh 3510 

731 Electricity, at eGrid, NYUP, 2008 kWh 3510 

732 Electricity, at eGrid, NYUP, 2010 kWh 3510 

733 Electricity, at eGrid, RFCE, 2008 kWh 3510 

734 Electricity, at eGrid, RFCE, 2010 kWh 3510 

735 Electricity, at eGrid, RFCM, 2008 kWh 3510 

736 Electricity, at eGrid, RFCM, 2010 kWh 3510 

737 Electricity, at eGrid, RFCW, 2008 kWh 3510 

738 Electricity, at eGrid, RFCW, 2010 kWh 3510 

739 Electricity, at eGrid, RMPA, 2008 kWh 3510 

740 Electricity, at eGrid, RMPA, 2010 kWh 3510 

741 Electricity, at eGrid, SPNO, 2008 kWh 3510 

742 Electricity, at eGrid, SPNO, 2010 kWh 3510 

743 Electricity, at eGrid, SPSO, 2008 kWh 3510 

744 Electricity, at eGrid, SPSO, 2010 kWh 3510 

745 Electricity, at eGrid, SRMV, 2008 kWh 3510 

746 Electricity, at eGrid, SRMV, 2010 kWh 3510 
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747 Electricity, at eGrid, SRMW, 2008 kWh 3510 

748 Electricity, at eGrid, SRMW, 2010 kWh 3510 

749 Electricity, at eGrid, SRSO, 2008 kWh 3510 

750 Electricity, at eGrid, SRSO, 2010 kWh 3510 

751 Electricity, at eGrid, SRTV, 2008 kWh 3510 

752 Electricity, at eGrid, SRTV, 2010 kWh 3510 

753 Electricity, at eGrid, SRVC, 2008 kWh 3510 

754 Electricity, at eGrid, SRVC, 2010 kWh 3510 

755 Electricity, at grid, Eastern US, 2000 kWh 3510 

756 Electricity, at grid, Texas US, 2000 kWh 3510 

757 Electricity, at grid, US, 2000 kWh 3510 

758 Electricity, at grid, US, 2008 kWh 3510 

759 Electricity, at grid, Western US, 2000 kWh 3510 

760 Electricity, at unbleached kraft bag and sack paper mill  kWh 3510 

761 Electricity, at uncoated freesheet mill  kWh 3510 

762 Electricity, at uncoated mechanical paper mill kWh 3510 

763 Electricity, bauxite mining regions kWh 3510 

764 Electricity, bituminous coal, at power plant kWh 3510 

765 Electricity, diesel, at power plant kWh 3510 

766 Electricity, lignite coal, at power plant kWh 3510 

767 Electricity, natural gas, at power plant kWh 3510 

768 Electricity, nuclear, at power plant kWh 3510 

769 Electricity, onsite boiler, hardwood mill, average, NE-NC kWh 3510 

770 Electricity, onsite boiler, hardwood mill, average, SE kWh 3510 

771 Electricity, onsite boiler, softwood mill, average, NE-NC kWh 3510 

772 Electricity, residual fuel oil, at power plant kWh 3510 

773 Engineered flooring, hardwood, unfinished, E kg 1610 

774 Ethanol, 85%, at blending terminal, 2022 kg 1920 

775 Ethanol, 85%, blended, at service station, 2022 kg 2011 

776 Ethanol, denatured, at refueling station, 2022 kg 2011 

777 Ethanol, denatured, corn dry mill  kg 2011 

778 Ethanol, denatured, corn stover, biochemical kg 2011 

779 Ethanol, denatured, forest residues, thermochem kg 2011 

780 
Ethanol, denatured, mixed feedstocks, at conversion facility, 
2022 kg 

2011 

781 Ethanol, denatured, switchgrass, biochemical  kg 2011 

782 Ethanol, denatured, wheat straw, biochemical  kg 2011 

783 Ethylbenzene styrene, at plant kg 2011 

784 Ethylene dichloride-vinyl chloride monomer, at plant kg 2011 

785 Ethylene oxide, at plant kg 2011 

786 Ethylene, at plant kg 2011 

787 Felling, feller buncher, > 200 HP, INW ha 240 



185 
 

788 Felling, feller buncher, > 200 HP, NE-NC ha 240 

789 Fertilizer, corn, 2022 kg 2012 

790 Fertilizer, stover, 2022 kg 2012 

791 Fertilizer, switchgrass, 2022 kg 2012 

792 Fertilizer, winter wheat straw, 2022 kg 2012 

793 Fines, at oriented strand board production, US SE kg 1610 

794 Forest residue, dried, stored ha 210 

795 Forest residue, preprocessed, at conversion facility  kg 1610 

796 Forest residue, processed and loaded, at landing system kg 1610 

797 Fuel grade uranium, at regional storage  kg 721 

798 Fuel wood, hardwood, kiln-dried, at planer mill, NE-NC kg 1629 

799 Fuel wood, softwood, green, at sawmill, NE-NC kg 1629 

800 
Fuels, burned at bleached kraft market pulp mill, average 
production, at mill MJ 

ENERGY 

801 Fuels, burned at coated freesheet, average production, at mill MJ ENERGY 

802 
Fuels, burned at coated mechanical paper, average 
production, at mill MJ 

ENERGY 

803 
Fuels, burned at unbleached kraft bag sack paper, average 
production, at mill MJ 

ENERGY 

804 
Fuels, burned at uncoated freesheet, average production, at 
mill MJ 

ENERGY 

805 
Fuels, burned at uncoated mechanical paper, average 
production, at mill MJ 

ENERGY 

806 Gasoline, at refinery kg 1920 

807 Gasoline, combusted in equipment kg FOSSIL FUEL 

808 
Gasoline, combusted in equipment, at pulp and paper mill 
(EXCL.) kg 

FOSSIL FUEL 

809 Glycerin, at biodiesel plant kg 2011 

810 Glycerine, at plant kg 2011 

811 Green veneer, at plywood plant, US PNW kg 1621 

812 Green veneer, at plywood plant, US SE kg 1621 

813 Green veneer, sold, at plywood plant, US PNW kg 1621 

814 Green veneer, sold, at plywood plant, US SE kg 1621 

815 Greenhouse seedling, softwood, INW ha 210 

816 Grinding ha 161 

817 Harvest, corn, single pass ha 161 

818 Harvest, switchgrass ha 161 

819 Harvest, wheat, single pass ha 161 

820 Harvesting, fresh fruit bunch, at farm ha 161 

821 Hazardous waste (deposited)  kg 3811 

822 Hazardous waste (deposited)  kg 3811 

823 Hazardous waste (deposited)  kg 3811 

824 Heat, block conditiong, at veneer mill, E MJ ENERGY 
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825 Heat, drying stain, at engineered wood flooring mill, E MJ ENERGY 

826 Heat, drying veneer, hardwood, at veneer mill, E MJ ENERGY 

827 
Heat, indirect, heated zones, softwood, plywood veneer 
drying, AP-42 MJ 

ENERGY 

828 Heat, onsite boiler, hardwood mill, average, NE-NC MJ ENERGY 

829 Heat, onsite boiler, hardwood mill, average, SE MJ ENERGY 

830 Heat, onsite boiler, softwood mill, average, NE-NC MJ ENERGY 

831 
Heat, pressing panels, hardwood, at engineered wood 
flooring plant, E MJ 

ENERGY 

832 High radioactive wastes kg 3811 

833 High radioactive wastes kg 3811 

834 
Hog fuel, pur., combusted in industrial boiler, at pulp and 
paper mill (EXCL.) kg 

BIOFUEL 

835 
Hog fuel, self-gen., combusted in ind. boiler, at pulp and 
paper mill (EXCL.) kg 

BIOFUEL 

836 Hogfuel, from trim and saw at plywood plant, US PNW kg 1629 

837 Hogfuel, from trim&saw, plywood plant, US SE kg 1629 

838 Hogged fuel, hardwood, green, at sawmill, NE-NC kg 1629 

839 Hogged fuel, hardwood, green, at sawmill, SE kg 1629 

840 Hydrogen, liquid, synthesis gas, at plant kg 2011 

841 Injection molding, rigid LLDPE part, at plant kg 2220 

842 Injection molding, rigid polypropylene part, at plant kg 2220 

843 Iron and steel, production mix  kg 2410 

844 Iron, sand casted kg 2410 

845 Kerosene, at refinery kg 1920 

846 LLDPE scrap, from LLDPE injection molding, at plant kg 2220 

847 
LPG, combusted in industrial boiler, at pulp and paper mill 
(EXCL.) kg 

FOSSIL FUEL 

848 Laminated veneer lumber, at plant, US PNW kg 1621 

849 Laminated veneer lumber, at plant, US SE kg 1621 

850 Lignite coal, at surface mine  kg 520 

851 Lignite coal, combusted in industrial boiler kg COAL 

852 Lime, agricultural, corn production ha 161 

853 Limestone, at mine kg 810 

854 Liquefied petroleum gas, at refinery kg 1920 

855 Liquefied petroleum gas, combusted in industrial boiler kg FOSSIL FUEL 

856 Loader operation, large, INW ha 240 

857 Loader operation, large, NE-NC ha 240 

858 Low radioactive wastes kg 3811 

859 Low radioactive wastes kg 3811 

860 Lumber, softwood, ACQ treated, SE kg 1610 

861 Lumber, softwood, borate treated, PNW kg 1610 

862 Marine piling, softwood, CCA treated, SE kg 1610 
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863 Medium density fiberboard (MDF), at MDF mill  kg 1610 

864 Medium density fiberboard (MDF), at MDF mill  kg 1610 

865 Medium radioactive wastes kg 3811 

866 Medium radioactive wastes kg 3811 

867 Melamine urea formaldehyde resin, neat, 60% solids  kg 2013 

868 Metal composite material (MCM) panel, at plant kg 2511 

869 Metal composite material (MCM) sheet, at plant kg 2511 

870 Metal panel, insulated, at plant kg 2511 

871 Metallurgical coke, at plant kg 892 

872 Methanol, at plant kg 2011 

873 Methylene diphenyl diisocyanate resin, at plant, US PNW kg 2013 

874 Methylene diphenyl diisocyanate resin, at plant, US SE kg 2013 

875 Methylene diphenyl diisocyanate resin, at plant, US SE kg 2013 

876 Methylene diphenyl diisocyanate, resin, at plant kg 2011 

877 Mixed Alcohols, thermochemical process kg 2011 

878 Mixed recyclables, at collection, commercial kg 3830 

879 Mixed recyclables, at collection, curbside, volume basis  kg 3830 

880 Mixed recyclables, at collection, curbside, weight basis  kg 3830 

881 Mixed recyclables, at collection, dropoff center kg 3830 

882 Mixed recyclables, sorted at MRF kg 3830 

883 Mixed recyclables, to MRF kg 3830 

884 Mixings, hardwood, kiln-dried, at planer mill, NE-NC kg 1610 

885 Natural gas, at extraction site m3 620 

886 Natural gas, combusted in industrial boiler m3 NATURAL GAS 

887 
Natural gas, combusted in industrial boiler, at hydrocracker, 
for butadiene m3 

NATURAL GAS 

888 
Natural gas, combusted in industrial boiler, at hydrocracker, 
for ethylene m3 

NATURAL GAS 

889 
Natural gas, combusted in industrial boiler, at hydrocracker, 
for propylene m3 

NATURAL GAS 

890 
Natural gas, combusted in industrial boiler, at hydrocracker, 
for pyrolysis gas m3 

NATURAL GAS 

891 
Natural gas, combusted in industrial boiler, at pulp and paper 
mill (EXCL.) m3 

NATURAL GAS 

892 Natural gas, combusted in industrial equipment m3 NATURAL GAS 

893 Natural gas, extracted m3 620 

894 Natural gas, processed, at plant m3 3520 

895 Natural gas, processed, for olefins production, at plant m3 3520 

896 Natural soda ash (Sodium carbonate), at plant kg 2011 

897 Natural soda ash (Sodium carbonate), at plant kg 2011 

898 Nitrogen fertilizer, production mix, at plant kg 2012 

899 Office scanner Item(s) 2620 

900 Open mold casting, rigid composites part, at plant kg 2220 
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901 Open molding, rigid composites part, at plant kg 2220 

902 Oriented strand board product, US SE kg 1610 

903 Overburden (deposited) kg 3811 

904 Overburden (deposited) kg 3811 

905 Oxygen, liquid, at plant kg 2011 

906 Packaging and information sheets, i2900 desktop scanner kg 8292 

907 Packaging, production scanners kg 8292 

908 Palm kernel oil, processed, at plant kg 2029 

909 Palm kernels, at plant kg 111 

910 Panel trim, from trim and saw at plywood plant, US PNW kg 1610 

911 Panel trim, from trim and saw, at plywood plant, US SE kg 1610 

912 
Paper, bag and sack, unbleached kraft, average production, at 
mill kg 

1702 

913 Paper, freesheet, coated, average production, at mill  kg 1701 

914 Paper, freesheet, uncoated, average production, at mill  kg 1701 

915 Paper, freesheet, uncoated, average production, at mill, 2006 kg 1701 

916 Paper, mechanical, coated, average production, at mill  kg 1701 

917 Paper, mechanical, uncoated, average production, at mill  kg 1701 

918 Paraxylene, at plant kg 2011 

919 Particleboard, average, softwood, particleboard mill kg 1610 

920 Particleboard, average, softwood, particleboard mill kg 1610 

921 
Peeler core, from green veneer production at plywood plant, 
US PNW kg 

1610 

922 
Peeler core, from green veneer production at plywood plant, 
US SE kg 

1610 

923 Pesticide, Switchgrass kg 2011 

924 Pesticide, corn, 2022 kg 2011 

925 Petroleum coke, at refinery kg 1920 

926 Petroleum refining coproduct, at refinery  kg 1920 

927 Petroleum refining coproduct, unspecified, at refinery  kg 1920 

928 Petroleum refining, at refinery kg 1920 

929 Petroleum refining, for olefins production, at plant kg 1920 

930 Phenol Resorcinol Formaldehyde resin, neat, 60% solids  kg 2013 

931 Phenol formaldehyde resin,  neat, 47% solids kg 2013 

932 Phosphorous fertilizer, production mix, at plant kg 2012 

933 Phosphorous fertilizer, production mix, at plant kg 2012 

934 Piling, bole slash, in forest, steep slope forest, INW ha 240 

935 Piling, whole tree slash, at landing, gentle slope forest, INW ha 240 

936 Planer shavings, at planer mill, US SE kg 1610 

937 Planer shavings, from dried lumber, at planer mill, US PNW kg 1610 

938 Planer shavings, from green lumber, at planer mill, US PNW kg 1610 

939 Planting, switchgrass, 2022 ha 161 
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940 Plywood, at plywood plant, US PNW kg 1621 

941 Plywood, at plywood plant, US SE kg 1621 

942 Plywood, from open molding, for shipping kg 1621 

943 Poles, softwood, PCP treated kg 1610 

944 Polybutadiene, at plant kg 2013 

945 Polyethylene terephthalate, resin, at plant kg 2013 

946 Polyethylene, high density, resin, at plant  kg 2013 

947 Polyethylene, linear low density, resin, at plant kg 2013 

948 Polyethylene, low density, resin, at plant kg 2013 

949 Polylactide Biopolymer Resin, at plant kg 2013 

950 
Polyol ether, for flexible foam polyurethane production, at 
plant kg 

2013 

951 Polyol ether, for rigid foam polyurethane production, at plant kg 2013 

952 Polypropylene resin, at plant kg 2013 

953 Polypropylene scrap, from PP injection molding, at plant  kg 2220 

954 Polypropylene scrap, from PP thermoforming, at plant kg 2220 

955 Polystyrene, general purpose, at plant kg 2013 

956 Polystyrene, high impact, resin, at plant kg 2013 

957 Polyvinyl chloride, resin, at plant kg 2013 

958 Portland cement, at plant kg 2394 

959 Post, softwood, CCA treated, SE kg 1610 

960 Potato leaves, at field kg 113 

961 Potato, at field kg 113 

962 
Prefinished engineered wood flooring, at engineered wood 
flooring plant, E kg 

1610 

963 
Pressed raw panels, hardwood, at engineered wood flooring 
plant, E kg 

1610 

964 
Pressed raw panels, purchased, hardwood, at eng wood 
flooring plant, E kg 

1610 

965 Pressed raw plywood, from lay-up, at plywood plant, US PNW kg 1621 

966 Pressed raw plywood, from lay-up, at plywood plant, US SE kg 1621 

967 Propylene oxide, at plant kg 2011 

968 Propylene, at plant kg 2013 

969 Pulp chips, at rough green lumber production, US PNW kg 1610 

970 Pulp chips, at sawmill, US SE kg 1610 

971 Pulp chips, from dried lumber, at planer mill, US PNW kg 1610 

972 Pulp chips, from green lumber, at planer mill, US PNW kg 1610 

973 
Pulp chips, from green veneer production at plywood plant, 
US PNW kg 

1610 

974 
Pulp chips, from green veneer production at plywood plant, 
US SE kg 

1610 

975 Pulp, kraft market, bleached, average production, at mill  kg 1702 
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976 
Pulpwood, hardwood, average, High Intensity Management, 
NE-NC m3 

220 

977 
Pulpwood, hardwood, average, Low Intensity Management, 
NE-NC m3 

220 

978 
Pulpwood, hardwood, average, Med Intensity Management, 
NE-NC m3 

220 

979 Pulpwood, hardwood, average, at forest road, NE-NC m3 220 

980 
Pulpwood, sftwd, state-private moist cold forest, gentle 
slope, at frst rd, INW m3 

220 

981 
Pulpwood, sftwd, state-private moist cold forest, steep slope, 
at forest rd,INW m3 

220 

982 
Pulpwood, softwd, avg, state or private moist forest, at forest 
rd, INW m3 

220 

983 
Pulpwood, softwd, state or private dry forest, gentle slope, at 
forest rd, INW m3 

220 

984 
Pulpwood, softwd, state or private dry forest, steep slope, at 
forest rd, INW m3 

220 

985 
Pulpwood, softwood, average, High Intensity Management, 
NE-NC m3 

220 

986 
Pulpwood, softwood, average, Low Intensity Management, 
NE-NC m3 

220 

987 
Pulpwood, softwood, average, Med Intensity Management, 
NE-NC m3 

220 

988 Pulpwood, softwood, average, at forest road, INW m3 220 

989 Pulpwood, softwood, average, at forest road, NE-NC m3 220 

990 
Pulpwood, softwood, average, state or private dry forest, at 
forest road, INW m3 

220 

991 
Pulpwood, softwood, national forest, average, at forest road, 
INW m3 

220 

992 
Pulpwood, softwood, national forest, gentle slope, at forest 
road, INW m3 

220 

993 
Pulpwood, softwood, national forest, steep slope, at forest 
road, INW m3 

220 

994 Pyrolysis gasoline, at plant kg 2011 

995 
RFO, combusted in industrial boiler, at pulp and paper mill 
(EXCL.) kg 

FOSSIL FUEL 

996 Radioactive tailings kg 3811 

997 Radioactive tailings kg 3811 

998 Railroad tie, hardwood, rough, green, at sawmill, SE kg 1610 

999 Railroad ties, hardwood, creosote treated, SE kg 1610 

1000 Rapeseed residues, at field kg 111 

1001 Rapeseed, at field kg 111 

1002 Recovered energy MJ 
RECOVERED 

ENERGY 

1003 Recovered energy, at acetic acid production MJ 
RECOVERED 
ENERGY 
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1004 
Recovered energy, for Acrylonitrile-butadiene-styrene 
copolymer, CTR MJ 

RECOVERED 
ENERGY 

1005 Recovered energy, for Methylene diphenyl diisocyanate, CTR MJ 
RECOVERED 
ENERGY 

1006 
Recovered energy, for Polyethylene terephthalate, resin, at 
plant, CTR MJ 

RECOVERED 

ENERGY 

1007 
Recovered energy, for Polyethylene, high density, resin, at 
plant, CTR MJ 

RECOVERED 
ENERGY 

1008 
Recovered energy, for Polyethylene, linear low density, resin, 
at plant, CTR MJ 

RECOVERED 

ENERGY 

1009 
Recovered energy, for Polyethylene, low density, resin, at 
plant, CTR MJ 

RECOVERED 
ENERGY 

1010 
Recovered energy, for Polyol ether, for flexible foam 
polyurethane production, at plant, CTR MJ 

RECOVERED 

ENERGY 

1011 
Recovered energy, for Polyol ether, for rigid foam 
polyurethane production, at plant, CTR MJ 

RECOVERED 
ENERGY 

1012 Recovered energy, for Polypropylene, resin, at plant, CTR MJ 
RECOVERED 
ENERGY 

1013 
Recovered energy, for Polystyrene, general purpose, at plant, 
CTR MJ 

RECOVERED 

ENERGY 

1014 
Recovered energy, for Polystyrene, high impact, resin, at 
plant, CTR MJ 

RECOVERED 
ENERGY 

1015 Recovered energy, for Toluene diisocyanate, CTR MJ 
RECOVERED 
ENERGY 

1016 Recovered energy, for acrylonitrile MJ 
RECOVERED 
ENERGY 

1017 Recovered energy, for ethylene glycol, CTR MJ 
RECOVERED 
ENERGY 

1018 Recovered energy, for polyvinyl chloride, CTR MJ 
RECOVERED 

ENERGY 

1019 Recycled postconsumer HDPE pellet kg 3830 

1020 Recycled postconsumer PET flake  kg 3830 

1021 Recycled postconsumer PET pellet kg 3830 

1022 Refinery gas, at refinery kg 1920 

1023 Reforesting, average national softwood forest, INW ha 210 

1024 
Reforesting, average state or private dry softwood forest, 
INW ha 

210 

1025 
Reforesting, average state or private moist cold softwood 
forest, INW ha 

210 

1026 Reforesting, high intensity site, US PNW ha 210 

1027 Reforesting, high intensity site, US SE ha 210 

1028 Reforesting, low intensity site, US PNW ha 210 

1029 Reforesting, low intensity site, US SE ha 210 

1030 Reforesting, medium intensity site, US PNW ha 210 

1031 Reforesting, medium intensity site, US SE ha 210 

1032 Residual fuel oil, at refinery kg 1920 
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1033 Residual fuel oil, combusted in industrial boiler kg FOSSIL FUEL 

1034 Rice grain, at field kg 112 

1035 Rice straw, at field kg 112 

1036 Rough green lumber, at sawmill, US SE kg 1610 

1037 Rough green lumber, softwood, at sawmill, US PNW kg 1610 

1038 
Roundwood, hardwood, average, High Intensity 
Management, NE-NC m3 

220 

1039 
Roundwood, hardwood, average, Low Intensity Management, 
NE-NC m3 

220 

1040 
Roundwood, hardwood, average, Med Intensity 
Management, NE-NC m3 

220 

1041 Roundwood, hardwood, average, at forest road, NE-NC m3 220 

1042 Roundwood, hardwood, green, at logyard, NE-NC m3 220 

1043 Roundwood, hardwood, green, at logyard, SE m3 220 

1044 Roundwood, hardwood, green, at mill, E m3 220 

1045 Roundwood, hardwood, green, at mill, NE-NC m3 220 

1046 Roundwood, hardwood, green, at mill, SE m3 220 

1047 
Roundwood, sftwd, state-private moist cold forest, gentle 
slope, at frst rd, INW m3 

220 

1048 
Roundwood, sftwd, state-private moist cold forest, steep 
slope, at forest rd,INW m3 

220 

1049 
Roundwood, softwd, avg, state or private moist cold forest, at 
forest rd, INW m3 

220 

1050 
Roundwood, softwd, state or private dry forest, gentle slope, 
at forest rd, INW m3 

220 

1051 
Roundwood, softwd, state or private dry forest, steep slope, 
at forest rd, INW m3 

220 

1052 
Roundwood, softwood, average, High Intensity Management, 
NE-NC m3 

220 

1053 
Roundwood, softwood, average, Low Intensity Management, 
NE-NC m3 

220 

1054 
Roundwood, softwood, average, Med Intensity Management, 
NE-NC m3 

220 

1055 Roundwood, softwood, average, at forest road, INW m3 220 

1056 Roundwood, softwood, average, at forest road, NE-NC m3 220 

1057 
Roundwood, softwood, average, state or private dry forest, at 
forest road, INW m3 

220 

1058 Roundwood, softwood, green, at logyard, INW m3 220 

1059 Roundwood, softwood, green, at logyard, NE-NC m3 220 

1060 Roundwood, softwood, green, at mill, INW m3 220 

1061 Roundwood, softwood, green, at mill, NE-NC m3 220 

1062 
Roundwood, softwood, national forest, average, at forest 
road, INW m3 

220 

1063 
Roundwood, softwood, national forest, gentle slope, at forest 
road, INW m3 

220 
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1064 
Roundwood, softwood, national forest, steep slope, at forest 
road, INW m3 

220 

1065 Sawdust from I-Joist processing, at plant, US SE kg 1610 

1066 Sawdust, at planer mill, US SE kg 1610 

1067 Sawdust, at rough green lumber production, US PNW kg 1610 

1068 Sawdust, at sawmill, US SE kg 1610 

1069 Sawdust, from I-Joist processing, at plant, US PNW kg 1610 

1070 Sawdust, from dried lumber, at planer mill, US PNW kg 1610 

1071 Sawdust, from green lumber, at planer mill, US PNW kg 1610 

1072 Sawdust, from trim and saw at plywood plant, US PNW kg 1610 

1073 Sawdust, from trim and saw, plywood plant, US SE kg 1610 

1074 
Sawdust, hardwood, dry, at engineered wood flooring plant, 
E kg 

1610 

1075 Sawdust, hardwood, green, at sawmill, NE-NC kg 1610 

1076 Sawdust, hardwood, green, at sawmill, SE kg 1610 

1077 Sawdust, hardwood, kiln-dried, at planer mill, NE-NC kg 1610 

1078 Sawdust, hardwood, kiln-dried, at planer mill, SE kg 1610 

1079 Sawdust, softwood, green, at sawmill, INW kg 1610 

1080 Sawdust, softwood, green, at sawmill, NE-NC kg 1610 

1081 
Sawn Lumber, softwood, planed, kiln dried, at planer mill, 
INW kg 

1610 

1082 
Sawn lumber, hardwood, planed, kiln dried, at planer mill, 
NE-NC kg 

1610 

1083 Sawn lumber, hardwood, planed, kiln dried, at planer mill, SE kg 1610 

1084 Sawn lumber, hardwood, rough, green, at sawmill, NE-NC kg 1610 

1085 Sawn lumber, hardwood, rough, green, at sawmill, SE kg 1610 

1086 Sawn lumber, hardwood, rough, kiln dried, at kiln, NE-NC kg 1610 

1087 Sawn lumber, hardwood, rough, kiln dried, at kiln, SE kg 1610 

1088 Sawn lumber, softwood, planed, kiln dried, at planer, NE-NC kg 1610 

1089 Sawn lumber, softwood, rough, green, at sawmill, INW kg 1610 

1090 Sawn lumber, softwood, rough, green, at sawmill, NE-NC kg 1610 

1091 Sawn lumber, softwood, rough, kiln dried, at kiln, INW kg 1610 

1092 Sawn lumber, softwood, rough, kiln dried, at kiln, NE-NC kg 1610 

1093 Scanner, department, i3200, i3400 Item(s) 2620 

1094 Scanner, department, i4200, i4600 Item(s) 2620 

1095 Scanner, department, i5200, i5600 Item(s) 2620 

1096 Scanner, department, i5200v, i5600v Item(s) 2620 

1097 Scanner, department, i5800 Item(s) 2620 

1098 Scanner, desktop, i2900 Item(s) 2620 

1099 Scanner, packaging and information sheets Item(s) 2620 

1100 
Secondary bonding application, rigid composites part, at 
plant kg 

2220 
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1101 Secondary fuel MJ 
RECOVERED 
ENERGY 

1102 Secondary fuel MJ 
RECOVERED 

ENERGY 

1103 Secondary fuel renewable MJ 
RECOVERED 
ENERGY 

1104 Secondary fuel renewable MJ 
RECOVERED 
ENERGY 

1105 Seedlings, at greenhouse, US PNW Item(s) 130 

1106 Seedlings, at greenhouse, US SE Item(s) 130 

1107 
Shavings, hardwood, dry, at engineered wood flooring plant, 
E kg 

1610 

1108 Shavings, hardwood, kiln-dried, at planer mill, NE-NC kg 1610 

1109 Shavings, hardwood, kiln-dried, at planer mill, SE kg 1610 

1110 Shavings, softwood, kiln dried, NE-NC kg 1610 

1111 Shavings, softwood, kiln dried, at planer mill, INW kg 1610 

1112 Site preparation, national softwood forest, gentle slope, INW ha 240 

1113 Site preparation, national softwood forest, steep slope, INW ha 240 

1114 
Site preparation, state or private dry softwood forest, gentle 
slope, INW ha 

240 

1115 
Site preparation, state or private dry softwood forest, steep 
slope, INW ha 

240 

1116 
Site preparation, state or private moist cold softwood forest, 
gentle slope, INW ha 

240 

1117 
Site preparation, state or private moist cold softwood forest, 
steep slope, INW ha 

240 

1118 Skidding, aerial cable yarder, medium ha 240 

1119 Skidding, grapple skidder, >140 HP ha 240 

1120 Skidding, wheeled cable skidder, 120-160 HP ha 240 

1121 Skidding, wheeled skidder, 120-140 HP ha 240 

1122 Slack wax, at plant, US SE kg 2011 

1123 Soap stock, at plant kg 2023 

1124 Soda powder, at plant kg 2011 

1125 Sodium chloride, at plant kg 2011 

1126 Sodium hydroxide, production mix, at plant kg 2011 

1127 
Softwood logs with bark, harvested at average intensity site, 
at mill, US PNW m3 

220 

1128 
Softwood logs with bark, harvested at average intensity site, 
at mill, US SE m3 

220 

1129 
Softwood logs with bark, harvested at high intensity site, at 
mill, US PNW m3 

220 

1130 
Softwood logs with bark, harvested at high intensity site, at 
mill, US SE m3 

220 

1131 
Softwood logs with bark, harvested at low intensity site, at 
mill, US PNW m3 

220 
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1132 
Softwood logs with bark, harvested at low intensity site, at 
mill, US SE m3 

220 

1133 
Softwood logs with bark, harvested at medium intensity site, 
at mill, US PNW m3 

220 

1134 
Softwood logs with bark, harvested at medium intensity site, 
at mill, US SE m3 

220 

1135 Solid strip and plank flooring, hardwood, E kg 1610 

1136 Soy biodiesel, production, at plant kg 2011 

1137 Soy meal, at plant kg 1061 

1138 Soy oil, refined, at plant kg 1040 

1139 Soy-based polyol, at plant kg 2011 

1140 Soy-based resin, at plant kg 2011 

1141 Soybean grains, at field kg 111 

1142 Soybean grains, at field, 1998-2001 kg 111 

1143 Soybean oil, crude, degummed, at plant kg 1040 

1144 Soybean residues, at field kg 111 

1145 Soybean residues, at field, 1998-2001 kg 111 

1146 Soybeans, at field, 1998-2001 kg 111 

1147 Spoil (deposited) kg 3811 

1148 Spoil (deposited) kg 3811 

1149 Spring wheat straw, carted, 2022 kg 111 

1150 Spring wheat straw, ground and stored, 2022 kg 111 

1151 Steam, at bleached kraft market pulp mill  MJ ENERGY 

1152 Steam, at coated freesheet mill MJ ENERGY 

1153 Steam, at coated mechanical paper mill  MJ ENERGY 

1154 Steam, at uncoated freesheet mill MJ ENERGY 

1155 Steam, at uncoated mechanical paper mill  MJ ENERGY 

1156 Steel, cold-formed studs and track, at plant kg 2591 

1157 Sulfur, at plant kg 2011 

1158 Sulfur, thermochemical process kg 2011 

1159 Sulfuric acid, at plant kg 2011 

1160 Surfaced dried lumber, at planer mill, US PNW kg 1610 

1161 Surfaced dried lumber, at planer mill, US SE kg 1610 

1162 Surfaced dried lumber, from open molding, for shipping kg 2220 

1163 Surfaced green lumber, at planer mill, US PNW kg 1610 

1164 Switchgrass, at conversion plant, 2022 kg 119 

1165 Switchgrass, carted, 2022 kg 119 

1166 Switchgrass, ground and stored, 2022 kg 119 

1167 Switchgrass, harvested, wet kg 119 

1168 Switchgrass, production, US, 2022 kg 119 

1169 
TDF, combusted in industrial boiler, at pulp and paper mill 
(EXCL.) kg 

FOSSIL FUEL 
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1170 Tailings (deposited) kg 3811 

1171 Tailings (deposited) kg 3811 

1172 Tall oil, at bleached kraft market pulp mill  kg 2022 

1173 Tall oil, at coated freesheet mill kg 2022 

1174 Tall oil, at coated mechanical paper mill  kg 2022 

1175 Tall oil, at unbleached kraft bag and sack paper mill  kg 2022 

1176 Tall oil, at uncoated freesheet mill kg 2022 

1177 Tall oil, at uncoated mechanical paper mill  kg 2022 

1178 Thermoforming, rigid polypropylene part, at plant kg 2220 

1179 Tillage, conservation, corn production ha 161 

1180 Tillage, intensive, corn production ha 161 

1181 Tillage, reduce, corn production ha 161 

1182 Toluene diisocyanate, at plant kg 2011 

1183 Toluene, at plant kg 2011 

1184 Transport, aircraft, freight t*km 5120 

1185 Transport, barge, average fuel mix  t*km 5022 

1186 Transport, barge, diesel powered t*km 5022 

1187 Transport, barge, residual fuel oil powered t*km 5022 

1188 Transport, combination truck, average fuel mix  t*km 4923 

1189 Transport, combination truck, diesel powered t*km 4923 

1190 Transport, combination truck, gasoline powered t*km 4923 

1191 Transport, combination truck, long-haul, diesel powered t*km 4923 

1192 
Transport, combination truck, long-haul, diesel powered, 
Alaska t*km 

4923 

1193 
Transport, combination truck, long-haul, diesel powered, 
Central t*km 

4923 

1194 
Transport, combination truck, long-haul, diesel powered, East 
North Central t*km 

4923 

1195 
Transport, combination truck, long-haul, diesel powered, 
Hawaii t*km 

4923 

1196 
Transport, combination truck, long-haul, diesel powered, 
Northeast t*km 

4923 

1197 
Transport, combination truck, long-haul, diesel powered, 
Northwest t*km 

4923 

1198 
Transport, combination truck, long-haul, diesel powered, 
South t*km 

4923 

1199 
Transport, combination truck, long-haul, diesel powered, 
Southeast t*km 

4923 

1200 
Transport, combination truck, long-haul, diesel powered, 
Southwest t*km 

4923 

1201 
Transport, combination truck, long-haul, diesel powered, 
West t*km 

4923 

1202 
Transport, combination truck, long-haul, diesel powered, 
West North Central t*km 

4923 
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1203 Transport, combination truck, short-haul, diesel powered t*km 4923 

1204 
Transport, combination truck, short-haul, diesel powered, 
Alaska t*km 

4923 

1205 
Transport, combination truck, short-haul, diesel powered, 
Central t*km 

4923 

1206 
Transport, combination truck, short-haul, diesel powered, 
East North Central t*km 

4923 

1207 
Transport, combination truck, short-haul, diesel powered, 
Hawaii t*km 

4923 

1208 
Transport, combination truck, short-haul, diesel powered, 
Northeast t*km 

4923 

1209 
Transport, combination truck, short-haul, diesel powered, 
Northwest t*km 

4923 

1210 
Transport, combination truck, short-haul, diesel powered, 
South t*km 

4923 

1211 
Transport, combination truck, short-haul, diesel powered, 
Southeast t*km 

4923 

1212 
Transport, combination truck, short-haul, diesel powered, 
Southwest t*km 

4923 

1213 
Transport, combination truck, short-haul, diesel powered, 
West t*km 

4923 

1214 
Transport, combination truck, short-haul, diesel powered, 
West North Central t*km 

4923 

1215 Transport, combination truck, short-haul, gasoline powered t*km 4923 

1216 Transport, intercity bus, diesel powered p*km 4922 

1217 Transport, intercity bus, diesel powered, Alaska p*km 4922 

1218 Transport, intercity bus, diesel powered, Central  p*km 4922 

1219 Transport, intercity bus, diesel powered, East North Central  p*km 4922 

1220 Transport, intercity bus, diesel powered, Hawaii p*km 4922 

1221 Transport, intercity bus, diesel powered, Northeast p*km 4922 

1222 Transport, intercity bus, diesel powered, Northwest p*km 4922 

1223 Transport, intercity bus, diesel powered, South p*km 4922 

1224 Transport, intercity bus, diesel powered, Southeast p*km 4922 

1225 Transport, intercity bus, diesel powered, Southwest p*km 4922 

1226 Transport, intercity bus, diesel powered, West p*km 4922 

1227 Transport, intercity bus, diesel powered, West North Central p*km 4922 

1228 Transport, light commercial truck, diesel powered t*km 4923 

1229 Transport, light commercial truck, diesel powered, Alaska t*km 4923 

1230 Transport, light commercial truck, diesel powered, Central t*km 4923 

1231 
Transport, light commercial truck, diesel powered, East North 
Central t*km 

4923 

1232 Transport, light commercial truck, diesel powered, Hawaii t*km 4923 

1233 Transport, light commercial truck, diesel powered, Northeast t*km 4923 

1234 Transport, light commercial truck, diesel powered, Northwest t*km 4923 
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1235 Transport, light commercial truck, diesel powered, South  t*km 4923 

1236 Transport, light commercial truck, diesel powered, Southeast t*km 4923 

1237 Transport, light commercial truck, diesel powered, Southwest t*km 4923 

1238 Transport, light commercial truck, diesel powered, West t*km 4923 

1239 
Transport, light commercial truck, diesel powered, West 
North Central t*km 

4923 

1240 Transport, light commercial truck, gasoline powered t*km 4923 

1241 Transport, light commercial truck, gasoline powered, Alaska t*km 4923 

1242 Transport, light commercial truck, gasoline powered, Central  t*km 4923 

1243 
Transport, light commercial truck, gasoline powered, East 
North Central t*km 

4923 

1244 Transport, light commercial truck, gasoline powered, Hawaii t*km 4923 

1245 
Transport, light commercial truck, gasoline powered, 
Northeast t*km 

4923 

1246 
Transport, light commercial truck, gasoline powered, 
Northwest t*km 

4923 

1247 Transport, light commercial truck, gasoline powered, South  t*km 4923 

1248 
Transport, light commercial truck, gasoline powered, 
Southeast t*km 

4923 

1249 
Transport, light commercial truck, gasoline powered, 
Southwest t*km 

4923 

1250 Transport, light commercial truck, gasoline powered, West t*km 4923 

1251 
Transport, light commercial truck, gasoline powered, West 
North Central t*km 

4923 

1252 Transport, motor home, diesel powered p*km 4921 

1253 Transport, motor home, gasoline powered p*km 4921 

1254 Transport, motorcycle, gasoline powered p*km 4921 

1255 Transport, ocean freighter, average fuel mix t*km 5012 

1256 Transport, ocean freighter, diesel powered t*km 5012 

1257 Transport, ocean freighter, residual fuel oil powered  t*km 5012 

1258 Transport, passenger car, diesel powered p*km 4921 

1259 Transport, passenger car, gasoline powered p*km 4921 

1260 Transport, passenger truck, diesel powered p*km 4921 

1261 Transport, passenger truck, gasoline powered p*km 4921 

1262 Transport, pipeline, natural gas t*km 4930 

1263 Transport, pipeline, unspecified petroleum products  t*km 4930 

1264 Transport, refuse truck, diesel powered t*km 4923 

1265 Transport, refuse truck, diesel powered, Alaska t*km 4923 

1266 Transport, refuse truck, diesel powered, Central t*km 4923 

1267 Transport, refuse truck, diesel powered, East North Central  t*km 4923 

1268 Transport, refuse truck, diesel powered, Hawaii  t*km 4923 

1269 Transport, refuse truck, diesel powered, Northeast region  t*km 4923 

1270 Transport, refuse truck, diesel powered, Northwest t*km 4923 
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1271 Transport, refuse truck, diesel powered, South t*km 4923 

1272 Transport, refuse truck, diesel powered, Southeast t*km 4923 

1273 Transport, refuse truck, diesel powered, Southwest t*km 4923 

1274 Transport, refuse truck, diesel powered, West North Central  t*km 4923 

1275 Transport, refuse truck, diesel powered, West region t*km 4923 

1276 Transport, refuse truck, gasoline powered t*km 4923 

1277 Transport, school bus, diesel powered p*km 4921 

1278 Transport, school bus, diesel powered, Alaska p*km 4921 

1279 Transport, school bus, diesel powered, Central p*km 4921 

1280 Transport, school bus, diesel powered, East North Central  p*km 4921 

1281 Transport, school bus, diesel powered, Hawaii p*km 4921 

1282 Transport, school bus, diesel powered, Northeast p*km 4921 

1283 Transport, school bus, diesel powered, Northwest p*km 4921 

1284 Transport, school bus, diesel powered, South p*km 4921 

1285 Transport, school bus, diesel powered, Southeast p*km 4921 

1286 Transport, school bus, diesel powered, Southwest p*km 4921 

1287 Transport, school bus, diesel powered, West p*km 4921 

1288 Transport, school bus, diesel powered, West North Central p*km 4921 

1289 Transport, school bus, gasoline powered p*km 4921 

1290 Transport, single unit truck, diesel powered t*km 4923 

1291 Transport, single unit truck, gasoline powered t*km 4923 

1292 Transport, single unit truck, long-haul, diesel powered t*km 4923 

1293 Transport, single unit truck, long-haul, diesel powered, Alaska t*km 4923 

1294 
Transport, single unit truck, long-haul, diesel powered, 
Central t*km 

4923 

1295 
Transport, single unit truck, long-haul, diesel powered, East 
North Central t*km 

4923 

1296 Transport, single unit truck, long-haul, diesel powered, Hawaii t*km 4923 

1297 
Transport, single unit truck, long-haul, diesel powered, 
Northeast region t*km 

4923 

1298 
Transport, single unit truck, long-haul, diesel powered, 
Northwest t*km 

4923 

1299 Transport, single unit truck, long-haul, diesel powered, South t*km 4923 

1300 
Transport, single unit truck, long-haul, diesel powered, 
Southeast t*km 

4923 

1301 
Transport, single unit truck, long-haul, diesel powered, 
Southwest t*km 

4923 

1302 Transport, single unit truck, long-haul, diesel powered, West t*km 4923 

1303 
Transport, single unit truck, long-haul, diesel powered, West 
North Central t*km 

4923 

1304 Transport, single unit truck, long-haul, gasoline powered t*km 4923 

1305 
Transport, single unit truck, long-haul, gasoline powered, 
Alaska t*km 

4923 
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1306 
Transport, single unit truck, long-haul, gasoline powered, 
Central t*km 

4923 

1307 
Transport, single unit truck, long-haul, gasoline powered, East 
North Central t*km 

4923 

1308 
Transport, single unit truck, long-haul, gasoline powered, 
Hawaii t*km 

4923 

1309 
Transport, single unit truck, long-haul, gasoline powered, 
Northeast region t*km 

4923 

1310 
Transport, single unit truck, long-haul, gasoline powered, 
Northwest t*km 

4923 

1311 
Transport, single unit truck, long-haul, gasoline powered, 
South t*km 

4923 

1312 
Transport, single unit truck, long-haul, gasoline powered, 
Southeast t*km 

4923 

1313 
Transport, single unit truck, long-haul, gasoline powered, 
Southwest t*km 

4923 

1314 
Transport, single unit truck, long-haul, gasoline powered, 
West t*km 

4923 

1315 
Transport, single unit truck, long-haul, gasoline powered, 
West North Central t*km 

4923 

1316 Transport, single unit truck, short-haul, diesel powered t*km 4923 

1317 
Transport, single unit truck, short-haul, diesel powered, 
Alaska t*km 

4923 

1318 
Transport, single unit truck, short-haul, diesel powered, 
Central t*km 

4923 

1319 
Transport, single unit truck, short-haul, diesel powered, East 
North Central t*km 

4923 

1320 
Transport, single unit truck, short-haul, diesel powered, 
Hawaii t*km 

4923 

1321 
Transport, single unit truck, short-haul, diesel powered, 
Northeast t*km 

4923 

1322 
Transport, single unit truck, short-haul, diesel powered, 
Northwest t*km 

4923 

1323 Transport, single unit truck, short-haul, diesel powered, South t*km 4923 

1324 
Transport, single unit truck, short-haul, diesel powered, 
Southeast t*km 

4923 

1325 
Transport, single unit truck, short-haul, diesel powered, 
Southwest t*km 

4923 

1326 Transport, single unit truck, short-haul, diesel powered, West t*km 4923 

1327 
Transport, single unit truck, short-haul, diesel powered, West 
North Central t*km 

4923 

1328 Transport, single unit truck, short-haul, gasoline powered t*km 4923 

1329 
Transport, single unit truck, short-haul, gasoline powered, 
Alaska t*km 

4923 

1330 
Transport, single unit truck, short-haul, gasoline powered, 
Central t*km 

4923 
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1331 
Transport, single unit truck, short-haul, gasoline powered, 
East North Central t*km 

4923 

1332 
Transport, single unit truck, short-haul, gasoline powered, 
Hawaii t*km 

4923 

1333 
Transport, single unit truck, short-haul, gasoline powered, 
Northeast t*km 

4923 

1334 
Transport, single unit truck, short-haul, gasoline powered, 
Northwest t*km 

4923 

1335 
Transport, single unit truck, short-haul, gasoline powered, 
South t*km 

4923 

1336 
Transport, single unit truck, short-haul, gasoline powered, 
Southeast t*km 

4923 

1337 
Transport, single unit truck, short-haul, gasoline powered, 
Southwest t*km 

4923 

1338 
Transport, single unit truck, short-haul, gasoline powered, 
West t*km 

4923 

1339 
Transport, single unit truck, short-haul, gasoline powered, 
West North Central t*km 

4923 

1340 Transport, train, diesel powered t*km 4912 

1341 Transport, transit bus, CNG powered p*km 4921 

1342 Transport, transit bus, diesel powered p*km 4921 

1343 Transport, transit bus, diesel powered, Alaska p*km 4921 

1344 Transport, transit bus, diesel powered, Central p*km 4921 

1345 Transport, transit bus, diesel powered, East North Central  p*km 4921 

1346 Transport, transit bus, diesel powered, Hawaii p*km 4921 

1347 Transport, transit bus, diesel powered, Northeast p*km 4921 

1348 Transport, transit bus, diesel powered, Northwest p*km 4921 

1349 Transport, transit bus, diesel powered, South  p*km 4921 

1350 Transport, transit bus, diesel powered, Southeast p*km 4921 

1351 Transport, transit bus, diesel powered, Southwest p*km 4921 

1352 Transport, transit bus, diesel powered, West p*km 4921 

1353 Transport, transit bus, diesel powered, West North Central  p*km 4921 

1354 Transport, transit bus, gasoline powered p*km 4921 

1355 Turpentine, at bleached kraft market pulp mill kg 2022 

1356 Turpentine, at coated freesheet mill  kg 2022 

1357 Turpentine, at coated mechanical paper mill kg 2022 

1358 Turpentine, at unbleached kraft bag and sack paper mill  kg 2022 

1359 Turpentine, at uncoated freesheet mill kg 2022 

1360 Turpentine, at uncoated mechanical paper mill  kg 2022 

1361 Unsaturated polyester scrap, resin, at plant kg 2013 

1362 Unsaturated polyester, resin, at plant kg 2013 

1363 Urea formaldehyde resin, neat, 65% solids kg 2011 

1364 Vacuum infusion, rigid composites part, at plant kg 2220 

1365 Veneer, hardwood, dry, at veneer mill, E kg 1621 
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1366 Veneer, hardwood, green, at veneer mill, E kg 1621 

1367 Waste (deposited) kg 3811 

1368 Waste (deposited) kg 3811 

1369 Waste (deposited) kg 3811 

1370 Wheat grains, at field kg 111 

1371 Wheat straw, at conversion plant, 2022 kg 111 

1372 Wheat straw, at field kg 111 

1373 White mineral oil, at plant kg 2029 

1374 Winter wheat straw, carted kg 111 

1375 Winter wheat straw, ground and stored kg 111 

1376 Winter wheat straw, production, average, US, 2022 kg 111 

1377 Wood chips, hardwood, green, at sawmill, NE-NC kg 1610 

1378 Wood chips, hardwood, green, at sawmill, SE kg 1610 

1379 Wood chips, hardwood, green, at veneer mill, E kg 1610 

1380 Wood chips, softwood, green, at sawmill, INW kg 1610 

1381 Wood chips, softwood, green, at sawmill, NE-NC kg 1610 

1382 Wood chips, softwood, kiln dried, at planer mill, INW kg 1610 

1383 Wood fiber, softwood, green, at sawmill, INW kg 1610 

1384 
Wood fuel, MDF, generated on-site, combusted in industrial 
boiler kg 

BIOFUEL 

1385 Wood fuel, MDF, purchased, combusted in industrial boiler kg BIOFUEL 

1386 Wood fuel, at MDF mill kg 1629 

1387 
Wood fuel, hardwood, dry, at engineered wood flooring 
plant, E kg 

1629 

1388 Wood fuel, hardwood, dry, at veneer mill, E kg 1629 

1389 Wood fuel, hardwood, from flooring production, E kg 1610 

1390 
Wood fuel, hardwood, gen at lumber mill, combusted in 
industrial boiler, NE-NC kg 

BIOFUEL 

1391 
Wood fuel, hardwood, generated at lumber mill, combusted 
in industrial boiler, SE kg 

BIOFUEL 

1392 
Wood fuel, hardwood, generated at mill, combusted in 
industrial boiler, E kg 

BIOFUEL 

1393 Wood fuel, hardwood, green, at sawmill, NE-NC kg 1610 

1394 Wood fuel, hardwood, green, at veneer mill, E kg 1629 

1395 Wood fuel, hardwood, green,at sawmill, SE kg 1610 

1396 Wood fuel, hardwood, kiln-dried, at planer mill, SE kg 1610 

1397 
Wood fuel, hardwood, purchased, combusted in industrial 
boiler, E kg 

BIOFUEL 

1398 
Wood fuel, hardwood, purchased, combusted in industrial 
boiler, NE-NC kg 

BIOFUEL 

1399 
Wood fuel, hardwood, purchased, combusted in industrial 
boiler, SE kg 

BIOFUEL 

1400 
Wood fuel, hardwood,gen at flooring prod plant, combusted 
in industrial boiler, E kg 

BIOFUEL 
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1401 Wood fuel, hogfuel, particleboard mill kg 1629 

1402 Wood fuel, sanderdust, at MDF mill  kg 1629 

1403 Wood fuel, sanderdust, particleboard mill kg 1629 

1404 
Wood fuel, softwood, gen at lumber mill, combusted in 
industrial boiler, NE-NC kg 

BIOFUEL 

1405 Wood fuel, softwood, green, at sawmill, INW kg 1610 

1406 Wood fuel, softwood, kiln dried, NE-NC kg 1610 

1407 
Wood fuel, softwood, purchased, combusted in industrial 
boiler, NE-NC kg 

BIOFUEL 

1408 Wood fuel, unspecified kg 1610 

1409 Wood waste, at MDF mill kg 3811 

1410 Wood waste, softwood, particleboard mill kg 3811 

1411 Wood waste, unspecified, combusted in industrial boiler kg BIOFUEL 

1412 
Wood, particleboard, generated onsite, combusted in 
industrial boiler kg 

BIOFUEL 

1413 
Wood, softwood, INW, generated at lumber mill, combusted 
in industrial boiler kg 

BIOFUEL 

1414 Xylenes, mixed, at plant kg 2011 

1415 Zinc, Special High Grade  kg 2420 

1416 Zinc, sheet kg 2420 
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Table S4: Code, name and abbreviation of ISIC industries in the study, similar industries are highlighted 
by the same color.  

ISIC code Industry name  Abbreviation  

0111 Growing of cereals (except rice), leguminous crops and oil seeds Grow. Cereals 

0112 Growing of rice Grow. Rice 

0113 Growing of vegetables and melons, roots and tubers Grow. Vege 

0116 Growing of fibre crops Grow. Fiber 

0119 Growing of other non-perennial crops Grow Other Crop 

0130 Plant propagation Plant Propagat 

0161 Support activities for crop production 
Support Crop 
(ha) 

0161 Support activities for crop production Support Crop (kg) 

0210 Silviculture and other forestry activities 
Silviculture 
Forestry 

0220 Logging Logging 

0240 Support services to forestry Support Forestry 

0510 Mining of hard coal Mining H. Coal 

0520 Mining of lignite Mining Lig. Coal 

0610 Extraction of crude petroleum Extract. Crude 

0620 Extraction of natural gas Extract. NG 

0721 Mining of uranium and thorium ores Mining Uranium 

0729 Mining of other non-ferrous metal ores 
Mining Non-
ferrous 

0810 Quarrying of stone, sand and clay Quarrying 

0892 Extraction of peat Extract. Peat 

0990 Support activities for other mining and quarrying Support Mining 

1040 Manufacture of vegetable and animal oils and fats Manu. Vege 

1061 Manufacture of grain mill products Manu. Grain Mill 

1062 Manufacture of starches and starch products Manu. Starches 

1080 Manufacture of prepared animal feeds 
Manufacture 
Animal 

1312 Weaving of textiles Weaving Textiles 

1610 Sawmilling and planing of wood Sawmilling 

1621 Manufacture of veneer sheets and wood-based panels Manu. Veneer 

1623 Manufacture of wooden containers 
Manu. Wooden 
contain. 

1629 
Manufacture of other products of wood; manufacture of articles 
of cork, straw and plaiting materials 

Manu. Other 
Wood 

1701 Manufacture of pulp, paper and paperboard Manu. Pulp 

1702 
Manufacture of corrugated paper and paperboard and of 
containers of paper and paperboard Manu. Paper 
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1920 Manufacture of refined petroleum products 
Manu. Petrol. 
Pro 

2011 Manufacture of basic chemicals Manu. Chemical 

2012 Manufacture of fertilizers and nitrogen compounds Manu. Fertilizer 

2013 Manufacture of plastics and synthetic rubber in primary forms 
Manu. Pre. 
Plast/Rub 

2021 Manufacture of pesticides and other agrochemical products Manu. Pesticides 

2022 
Manufacture of paints, varnishes and similar coatings, printing ink 
and mastics Manu. Paints 

2023 
Manufacture of soap and detergents, cleaning and polishing 
preparations, perfumes and toilet preparations Manu. Soap 

2029 Manufacture of other chemical products n.e.c. 
Manu. Other 
Chemical 

2211 
Manufacture of rubber tyres and tubes; retreading and rebuilding 
of rubber tyres 

Manu. Rubber 
tube 

2219 Manufacture of other rubber products 
Manu. Other 
Rubber 

2220 Manufacture of plastics products 
Manu. Plastic. 
Prodt 

2310 Manufacture of glass and glass products Manu. Glass 

2391 Manufacture of refractory products Manu. Refractory 

2394 Manufacture of cement, lime and plaster Manu. Cement 

2410 Manufacture of basic iron and steel 
Manu. Bsc. Iron 
Steel 

2420 Manufacture of basic precious and other non-ferrous metals 
Manu. Non-
ferrous 

2511 Manufacture of structural metal products 
Manu. Struct 
Metal (kg) 

2512 Manufacture of tanks, reservoirs and containers of metal  Manu. Tanks 

2591 
Forging, pressing, stamping and roll-forming of metal; powder 
metallurgy Forging 

2592 Treatment and coating of metals; machining Treatment. Metal 

2599 Manufacture of other fabricated metal products n.e.c. 
Manu. Other. 
Fab. Metal 

2610 Manufacture of electronic components and boards Manu. Electronic 

2620 Manufacture of computers and peripheral equipment Manu. Computer 

2732 Manufacture of other electronic and electric wires and cables Manu. Other Elec 

2811 
Manufacture of engines and turbines, except aircraft, vehicle and 
cycle engines Manu. Engine 

2821 Manufacture of fluid power equipment 
Manu. Fluid 
power 

2930 Manufacture of parts and accessories for motor vehicles Manu. Parts 

3290 Other manufacturing n.e.c. Other Manu. 

3510 Electric power generation, transmission and distribution 
Elect. Power 
Gene 
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3520 Manufacture of gas; distribution of gaseous fuels through mains Manu/dist. Gas. 

3600 Water collection, treatment and supply Water. Treat 

3700 Sewerage Sewerage 

3811 Collection of non-hazardous waste 
Collect. Non-haz. 
Waste  

3830 Materials recovery Materials Recvy 

4290 Construction of other civil engineering projects Construction 

4912 Freight rail transport Rail Transt 

4921 Urban and suburban passenger land transport 
Land Passanger 
Transt 

4922 Other passenger land transport 
Other Passanger 
Transt 

4923 Freight transport by road Road Transt 

4930 Transport via pipeline Pipe Transt 

5012 Sea and coastal freight water transport Sea Water Transt 

5022 Inland freight water transport 
Inland Water 
Transt 

5120 Freight air transport Air Transt 

5224 Cargo handling Cargo handling 

8292 Packaging activities Packaging 

BIOFUEL BIOFUEL BIOFUEL 

COAL COAL COAL 

ENERGY ENERGY ENERGY 

FOSSIL FUEL FOSSIL FUEL FOSSIL FU 

NATURAL GAS NATURAL GAS NATURAL G 
RECOVERED 
ENERGY RECOVERED ENERGY RECOVERED 

WASTE_FLO
W WASTE_FLOW WASTE_FLO 
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Figure S1: Testing the relation between the results from three different environmental impacts: 
acidification (left), eutrophication (middle), and ozone (right).The marker color indicates different 
alternative scenarios. The black line is the fit obtained from a linear weighted least squares regression.  
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Table S5: characterization factor values (in 𝐤𝐠 𝐂𝐅𝐂 𝐞𝐪) for all ozone depletion substances generalized from 11 latest version impact methods 
provided in SimaPro software.  
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Table S6: characterization factor values for all Eutrophication substances generalized from 11 latest version impact methods provided in 
SimaPro software.  
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Table S7: characterization factor values for all Acidification substances generalized from 11 latest version impact methods provided in SimaPro 
software. 
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Table S8: characterization factor values for 50 Ecotoxicity substances generalized from 8 latest version 
impact methods provided in SimaPro software. The remaining 30472 substances are not shown in the 
table. 

 



213 
 

 

Matlab code to map US LCI inventories into the 𝑨 and 𝑩 matrices 

data=xml2struct('Acetic acid, at plant.xml'); 
%%    % add xml files, the information is put into different cells.  
% name_sub_all % 1. the names of input/output for each flow from the files 
% category_sub_all % 2. the names of subcategory of input/output for each flow 

from the files 
% mean_sub_all  % 3. the values of input/output for each flow from the files 
% unit_sub_all % 4. the functional unit of input/output for each flow from the 

files 
% number_sub_all % 5. the index number of input/output for each flow from the 

files 
% input_sub_all % 6. the index number of inputs for each flow from the files 
% output_sub_all % 7. the index number of outputs for each flow from the files 
%  
% % values from each 701 process 
% name_all % 1. name of the process 
% category_all % 2. subcategory of a process 
% value_all % 3. the output value of a process 
% unit_all % 4. functional unit of a process 

       
files = dir('*.xml'); 
% values from inputs/ouputs for each 701 process 
name_sub_all=cell(length(files),1); % 1. name 
category_sub_all=cell(length(files),1); % 2. sub category 
category_local_all=cell(length(files),1); % 2.1 local category 
mean_sub_all=cell(length(files),1); % 3. mean value  
unit_sub_all=cell(length(files),1); % 4. functional unit 
number_sub_all=cell(length(files),1); % 5. number 
input_sub_all=cell(length(files),1); % 6. input category index number 
output_sub_all=cell(length(files),1); % 7. output category index number 

  
% values from each 701 process 
name_all=cell(length(files),1); % 1. name 
category_all=cell(length(files),1); % 2. sub category 

value_all=cell(length(files),1); % 3. mean value 
unit_all=cell(length(files),1); % 4. functional unit 

  
%% 
parfor i=1:length(files) 
data = xml2struct([files(i).name]); 
Num_exchange=length(data.ecoSpold.dataset.flowData.exchange); 

  
name=data.ecoSpold.dataset.metaInformation.processInformation.referenceFunctio

n.Attributes.localName; 
category=data.ecoSpold.dataset.metaInformation.processInformation.referenceFun

ction.Attributes.localSubCategory; 
value= 

data.ecoSpold.dataset.metaInformation.processInformation.referenceFunction.Att

ributes.amount; 
unit=data.ecoSpold.dataset.metaInformation.processInformation.referenceFunctio

n.Attributes.unit; 
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name_all{i,1}=name; 
category_all{i,1}=category; 
value_all{i,1}=value; 
unit_all{i,1}=unit; 

  
name_sub=cell(Num_exchange,1); 
category_sub=cell(Num_exchange,1); 
category_local=cell(Num_exchange,1); 
mean_sub=nan(Num_exchange,1); 
unit_sub=cell(Num_exchange,1); 
number_sub=nan(Num_exchange,1); 

  
% information from the input/outputs from each process  
for j=1:Num_exchange 

     
    name_sub{j}=data.ecoSpold.dataset.flowData.exchange{j}.Attributes.name; 

  
    % same for subcategory, if subcategory is not avaiable, use"NaN" 
    if 

isfield(data.ecoSpold.dataset.flowData.exchange{j}.Attributes,'subCategory')==

1 
       

category_sub{j}=data.ecoSpold.dataset.flowData.exchange{j}.Attributes.subCateg

ory; 
    else  
       category_sub{j}='NaN'; 
    end 
    % same for localsubcategory, if subcategory is not avaiable, use"NaN" 
    if 

isfield(data.ecoSpold.dataset.flowData.exchange{j}.Attributes,'localCategory')

==1 
       

category_local{j}=data.ecoSpold.dataset.flowData.exchange{j}.Attributes.localC

ategory; 
    else  
       category_local{j}='NaN'; 
    end 

     
    

mean_sub(j)=str2double(data.ecoSpold.dataset.flowData.exchange{j}.Attributes.m

eanValue); 
    unit_sub{j}=data.ecoSpold.dataset.flowData.exchange{j}.Attributes.unit; 

    

number_sub(j)=str2double(data.ecoSpold.dataset.flowData.exchange{j}.Attributes

.number); 
% import the index numbers for input or output, the matrix eg. 

"input_category_all" returns the  
% index values for inputs shown in the file. use 999 to replace the values 
% that are not available 
    if isfield(data.ecoSpold.dataset.flowData.exchange{j}, 'outputGroup')~=0 
        

output_sub_all{i,:}(j,1)=str2double(data.ecoSpold.dataset.flowData.exchange{j}

.outputGroup.Text); 
    else  
        output_sub_all{i,:}(j,1)=999; 
    end 
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    if isfield(data.ecoSpold.dataset.flowData.exchange{j}, 'inputGroup')~=0 
        

input_sub_all{i,:}(j,1)=str2double(data.ecoSpold.dataset.flowData.exchange{j}.

inputGroup.Text); 
    else  
        input_sub_all{i,:}(j,1)=999; 
    end 
end 
name_sub_all{i,1}=name_sub; 
category_sub_all{i,1}=category_sub; 
category_local_all{i,1}=category_local; 
mean_sub_all{i,1}=mean_sub; 
unit_sub_all{i,1}=unit_sub; 
number_sub_all{i,1}=number_sub; 

  
end 
% in "input_category_all" and "output_category_all". replace the zero value 

(output category as zero) 
% with "888", and change all 999 to zero.  
% the output_category_all returns the revised index number, 888 indicates 
% the output is in "0" category from the orignial file, 0 indicates the 
% index number is not available from the orignial file. 
parfor i=1:length(output_sub_all) 
    for j=1:length(output_sub_all{i,1}) 

        if output_sub_all{i,1}(j,1)==0 
           output_sub_all{i,1}(j,1)=888; 
        elseif output_sub_all{i,1}(j,1)==999 
           output_sub_all{i,1}(j,1)=0; 
        end       
    end 
    output_sub_all{i,1}=-output_sub_all{i,1}; %%use negative number for 

outputs  
end 

  
parfor i=1:length(input_sub_all) 
    for j=1:length(input_sub_all{i,1}) 
        if input_sub_all{i,1}(j,1)==0 
           input_sub_all{i,1}(j,1)=888; 
        elseif input_sub_all{i,1}(j,1)==999 
           input_sub_all{i,1}(j,1)=0; 
        end       
    end     
end 

  
% add input and output index number together 
input_output_sub_all=cell(length(input_sub_all),1); 
for i =1:length(input_sub_all) 
    input_output_sub_all{i,1}=input_sub_all{i,1}+output_sub_all{i,1}; 
end 

  
%%  
% fine all index numbers from all the inputs/outputs in the files  

%"unique_numbers" returns all the index numbers avaiable from the 

inputs/outputs 

  
A=zeros(length(files),1); 
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for i=1:length(A) 
    A(i,1)=length(number_sub_all{i,1}); 
end 
% combine all index numbers from input/output together. "matrix_size" 
% returns a matrix that have columns that presents the processes(all 
% files), the rows for the combination of all input/ouput for each process 
name_sub_matrix=cell(max(A),length(A)); 
category_sub_matrix=cell(max(A),length(A)); 
category_local_matrix=cell(max(A),length(A)); 
unit_sub_matrix=cell(max(A),length(A)); 
number_sub_matrix=zeros(max(A),length(A));  
mean_sub_matrix=zeros(max(A),length(A)); 
input_output_sub_matrix=zeros(max(A),length(A));  

  
for i = 1:length(number_sub_matrix(1,:))% could put name, category, etc here 
    name_sub_matrix(1:length(number_sub_all{i,1}),i)= name_sub_all{i,1}; 
    category_sub_matrix(1:length(number_sub_all{i,1}),i)= 

category_sub_all{i,1}; 
    category_local_matrix(1:length(number_sub_all{i,1}),i)= 

category_local_all{i,1}; 
    unit_sub_matrix(1:length(number_sub_all{i,1}),i)= unit_sub_all{i,1}; 
    number_sub_matrix(1:length(number_sub_all{i,1}),i)=number_sub_all{i,1}; 
    mean_sub_matrix(1:length(mean_sub_all{i,1}),i)=mean_sub_all{i,1}; 
    

input_output_sub_matrix(1:length(input_output_sub_all{i,1}),i)=input_output_su

b_all{i,1}; 

  
end 

  
%% % find unique index numbers of the process/flow and their input/output 

categories 
[unique_numbers,ia1,ic1] = unique(number_sub_matrix,'first','legacy'); 
unique_numbers(:,2)=input_output_sub_matrix(ia1); 

unique_numbers(1,:)=[]; 

  
%% 
%Build A+R matrix: "All_matrix" returns the matrix with all 
%inputss/ouputs information combined together. All columns are 701 

processes,all rows are flows go to one process  
%Build category index matrix: "category_index" returns the matrix with all 
%inputss/ouputs index information combined together.  
index=zeros(size(number_sub_matrix)); 

  
%find index number connecting numbers of the input/output with unique numbers 
for i = 1:size(number_sub_matrix) 
    for j=1:size(files) 
        [Lia_1, index(i,j)]=ismember(number_sub_matrix(i,j),unique_numbers); 
    end 
end 
%% 
% find correspoding names, mean, category, etc according to index  
name_sub_1=cell(length(unique_numbers),length(files)); 

category_sub_1=cell(length(unique_numbers),length(files)); 
category_local_1=cell(length(unique_numbers),length(files)); 
mean_sub_1=zeros(length(unique_numbers),length(files)); 
unit_sub_1=cell(length(unique_numbers),length(files)); 
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number_sub_1=zeros(length(unique_numbers),length(files)); 
input_output_sub_1=zeros(length(unique_numbers),length(files)); 

  
for i = 1:size(number_sub_matrix) 

    for j=1:size(files) 
        if index(i,j)>0 
           name_sub_1{index(i,j),j}=name_sub_matrix{i,j}; 
           unit_sub_1{index(i,j),j}=unit_sub_matrix{i,j}; 
           category_sub_1{index(i,j),j}=category_sub_matrix{i,j}; 
           category_local_1{index(i,j),j}=category_local_matrix{i,j}; 
           mean_sub_1(index(i,j),j)=mean_sub_matrix(i,j); 
           number_sub_1(index(i,j),j)=number_sub_matrix(i,j); 
           input_output_sub_1(index(i,j),j)=input_output_sub_matrix(i,j); 
        end 
    end 
end 

  

  
%% 
% find unique names and corresponding functional unit, category of 

inputs/outputs and subcategory (important) 
% Locb returns the matrix index of numbers from unique numbers, using Locb 
% reqires the size of a matrix the same size of "number_sub_matrix" (1201,701) 
unique_names=cell(length(unique_numbers),1); 
unique_category=cell(length(unique_numbers),1); 
unique_local_category=cell(length(unique_numbers),1); 
unique_unit=cell(length(unique_numbers),1); 

  
for i = 1:length(unique_numbers) 
    [Lia,Locb] = ismember(unique_numbers(i,1),number_sub_matrix);   % ismember 

function returns the subscript number of the location of a index number 
    unique_names{i,1}=name_sub_matrix{Locb}; % find the name from 

"matrix_name" using the coordinates  

    unique_category{i,1}=category_sub_matrix(Locb); 
    unique_local_category{i,1}=category_local_matrix(Locb); 
    unique_unit(i,1)=unit_sub_matrix(Locb); 
end 

  

  
%% 
% find the matrix index numbers of 701 processes' names. Locb_2 returns the 
% index numbers. there are processes that are within the 701 files but not 

% within the inputs/outputs (4176), assign numbers to these proceses, from 
% 10000+max number (10000+4176)) 
Locb_2=zeros(length(files),1); 
for i = 1:length(name_all) 
    [Lia_1(i,1),Locb_2(i,1)] = ismember(name_all{i,1},unique_names);  
end 
max_index=max(length(unique_names),max(Locb_2)); % find the largest number of 

all the processes 
extra_No=sum(Locb_2(:)==0); % find how many processes are not within all 

inputs/outputs 
extra_index=max_index+10000; %assign numbers for those processes that are not 

within inputs/outputs 
for i = 1:length(Locb_2) 
    if Locb_2(i,1)==0 
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        Locb_2(i,1)=extra_index; 
        extra_index=extra_index+1; 
    end 
end 
%% build A+R matrix. all processes and flows are in the matrix, values from 

4177 to 4128 are the processes that are not input for any other processses 
All_matrix_number=zeros(length(number_sub_1),length(number_sub_1)); 
All_matrix_mean=zeros(length(mean_sub_1),length(mean_sub_1)); 
All_matrix_input_output=zeros(length(input_output_sub_1),length(input_output_s

ub_1)); 

  
for i = 1:length(Locb_2) 
if Locb_2(i,1)<10000 
   All_matrix_number(:,Locb_2(i,1))=number_sub_1(:,i); 
   All_matrix_mean(:,Locb_2(i,1))=mean_sub_1(:,i); 
   All_matrix_input_output(:,Locb_2(i,1))=input_output_sub_1(:,i); 
else 
   All_matrix_number(:,(Locb_2(i,1)-10000+1))=number_sub_1(:,i); 
   All_matrix_mean(:,(Locb_2(i,1)-10000+1))=mean_sub_1(:,i); 
   All_matrix_input_output(:,(Locb_2(i,1)-10000+1))=input_output_sub_1(:,i); 
end 
end 
% add missing rows 
All_matrix_mean(max_index+1:length(All_matrix_mean),:)=0; 

All_matrix_number(max_index+1:length(All_matrix_number),:)=0; 
All_matrix_input_output(max_index+1:length(All_matrix_input_output),:)=0; 
%% 
%find norminator for all processes (in A matrix) 
Norm=zeros(length(All_matrix_mean),1); 

  
for i = 1:length(Locb_2) 
if Locb_2(i,1)<10000 
   Norm(Locb_2(i,1),1)=str2double(value_all{i,1}); 
else 
   Norm((Locb_2(i,1)-10000+1),1)=str2double(value_all{i,1}); 
end 
end 
%% 
% make output/input category negative or positive, to show the correct 
% category; 
% -888:  
% -2, -3: process as output 
% -4 :elementary flow as output (emission) 

% 4 : elementary flow as input(resource) 
% 5 : process as input 
All_matrix_mean_modi=zeros(size(All_matrix_mean)); 
for i = 1: length(All_matrix_mean) 
    for j = 1: length(All_matrix_mean) 
        if All_matrix_input_output(i,j)<0 
           All_matrix_mean_modi(i,j)=-All_matrix_mean(i,j); 
        elseif All_matrix_input_output(i,j)==888 
           All_matrix_mean_modi(i,j)=-All_matrix_mean(i,j); 

        else  
           All_matrix_mean_modi(i,j)=All_matrix_mean(i,j); 
        end 
    end 



219 
 

     
end 
 All_matrix_mean= All_matrix_mean_modi; 
%% 

% separte A matrix and R matrix, and their names 
A_matrix=All_matrix_mean; 
R_matrix=All_matrix_mean; 
R_matrix((end-extra_No+1):end,:)=[]; %delete extra rows in R 
Norm_A=Norm; 
Norm_R=Norm; 
unique_names_A=unique_names; 
unique_names_R=unique_names; 
unique_category_A=unique_category; 
unique_category_R=unique_category; 
unique_local_category_A=unique_local_category; 
unique_local_category_R=unique_local_category; 
unique_unit_A=unique_unit; 
unique_unit_R=unique_unit; 
unique_number_A=unique_numbers; 
unique_number_R=unique_numbers; 
% find A matrix, use NaN to replace values that should be in R (find input 
% only) 
for i = 1:length(unique_numbers) 
if abs(unique_numbers(i,2))==4 

   A_matrix(:,i)= NaN; 
   A_matrix(i,:)= NaN; 
   Norm_A(i,:)=NaN; 
   unique_names_A{i,1}= 'NaN'; 
   unique_category_A{i,1}='NaN';    
   unique_local_category_A{i,1}='NaN'; 
   unique_unit_A{i,1}= 'NaN'; 
   unique_number_A(i,1)= NaN; 
end 
end 

  
A_matrix(length(unique_number_A)+1:length(A_matrix),:)=0; 
% find R matrix, use NaA to replace values that should be in A (find output 
% only) 

  
for i = 1:length(unique_numbers) 
if abs(unique_numbers(i,2))~=4 
    R_matrix(i,:)= NaN; 
%     Norm_R(i,:)=NaN; %this is not going to be used  
    unique_names_R{i,1}='NaN'; 
    unique_category_R{i,1}='NaN'; 
    unique_local_category_R{i,1}='NaN'; 
    unique_unit_R{i,1}='NaN'; 
    unique_number_R(i,1)= NaN; 
end 
end 

  
%replace outputs columns in R matrix with NaN 

for i=1:length(unique_numbers) 
if  abs(unique_numbers(i,2))==4 
    R_matrix(:,i)= NaN; 
end 
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end 
%% 
% delete NaN in A and R matrices 
%delete NaN rows in A and R matrix 
A_matrix=A_matrix(any(~isnan(A_matrix),2),:); 
R_matrix=R_matrix(any(~isnan(R_matrix),2),:); 
%delete NaN columns in A and R matrix 
A_matrix=A_matrix(:,all(~isnan(A_matrix))); 
R_matrix=R_matrix(:,all(~isnan(R_matrix))); 

  
%delete NaN in unique numbers 
unique_number_A=unique_number_A(:,1); 
unique_number_R=unique_number_R(:,1); 
unique_number_A(isnan(unique_number_A))=[]; 
unique_number_R(isnan(unique_number_R))=[]; 
Norm_A(isnan(Norm_A))=[]; 
Norm_R(isnan(Norm_R))=[]; 
%% 
%delete NaN in names, category, functional units for A and R  
% use while function, delete a row if the values is "NaN", delete from the 
% last row to the first row 
i = length(unique_numbers); 
while i>0 
    if strcmp(unique_names_A(i,1),'NaN')==1 

        unique_names_A(i,:)=[]; 
        unique_category_A(i,:)=[]; 
        unique_local_category_A(i,:)=[]; 
        unique_unit_A(i,:)=[];  
    end 
    i=i-1; 
end 
% same for R  
i = length(unique_numbers); 

  
while i >0 
    if strcmp(unique_names_R(i,1),'NaN')==1 
        unique_names_R(i,:)=[]; 
        unique_category_R(i,:)=[]; 
        unique_local_category_R(i,:)=[]; 
        unique_unit_R(i,:)=[]; 
    end 
    i=i-1; 
end 

  
%% 
% find extra processes names in the files but not in the inputs/outputs 
unique_name_extra=cell(extra_No,1); 
unique_category_extra=cell(extra_No,1); 
unique_unit_extra=cell(extra_No,1); 
for i = 1:length(Locb_2) 
if Locb_2(i,1)>10000 
   unique_name_extra{i,1}=name_all{i,1}; 

   unique_category_extra{i,1}=category_all{i,1}; 
   unique_unit_extra{i,1}=unit_all{i,1}; 

    
else 
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   unique_name_extra{i,1}=NaN; 
   unique_category_extra{i,1}=NaN; 
   unique_unit_extra{i,1}=NaN; 
end 
end 

  
% delete NaN  
unique_name_extra(cellfun(@(unique_name_A_plus) 

any(isnan(unique_name_A_plus)),unique_name_extra))=[]; 
unique_category_extra(cellfun(@(unique_subCategory_A_plus) 

any(isnan(unique_subCategory_A_plus)),unique_category_extra))=[]; 
unique_unit_extra(cellfun(@(unique_unit_A_plus) 

any(isnan(unique_unit_A_plus)),unique_unit_extra))=[]; 

  
%% 
%add extra names, categories, units  
 unique_names_A_all=unique_names_A; 
 unique_category_A_all= unique_category_A; 
 unique_local_category_A_all= unique_local_category_A; 
 unique_unit_A_all=unique_unit_A; 

  
h=length(unique_number_A)+1; 
for i = 1:extra_No 
    unique_names_A_all{h+i-1,1}=unique_name_extra{i,1}; 
    unique_category_A_all{h+i-1,1}=unique_category_extra{i,1}; 
    unique_local_category_A_all{h+i-1,1}=unique_category_extra{i,1}; 
    unique_unit_A_all{h+i-1,1}=unique_unit_extra{i,1}; 
end 
%% % m_R returns the number of flows in R, n_A returns the number of processes 

in A 
[m_R,n_A]=size(R_matrix); 
%% 
% sort R matrix by names of emissions ; meta_info_R returns the sorted meta 

% information (by names) 
[SortR_names,IndR_names]=sort(unique_names_R); 

  
SortR_names_category=cell(m_R,1); 
SortR_names_local_category=cell(m_R,1); 
SortR_names_unit=cell(m_R,1); 
R_matrix_sortNames=R_matrix; 
for i = 1:m_R 
    SortR_names_category(i,1)=unique_category_R(IndR_names(i,1),1); 

    

SortR_names_local_category(i,1)=unique_local_category_R(IndR_names(i,1),1); 
    SortR_names_unit(i,1)=unique_unit_R(IndR_names(i,1),1); 
    R_matrix_sortNames(i,:)=R_matrix(IndR_names(i,1),:); 
end 

  
%% sort  
% sort names, find index number 
[SortA_names,IndA_names]=sort(unique_names_A_all); 
% SortA_name_category=unique_category_A_all(IndA_names); 

% SortA_name_unit=unique_unit_A_all(IndA_names); 

  
% sort A matrix by index number, pay attention to the way 
SortA_name_category=cell(n_A,1); 
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SortA_name_local_category=cell(n_A,1); 
SortA_name_unit=cell(n_A,1); 
SortA_name_mean_inter=zeros(size(A_matrix)); 
SortA_name_mean=SortA_name_mean_inter; 
for i = 1: n_A 
    SortA_name_category(i,1)=unique_category_A_all(IndA_names(i,1),1); 
    

SortA_name_local_category(i,1)=unique_local_category_A_all(IndA_names(i,1),1); 
    SortA_name_unit(i,1)=unique_unit_A_all(IndA_names(i,1),1); 
    SortA_name_mean_inter(i,:)=A_matrix(IndA_names(i,1),:); 
end 
% sort columns for A 
for i = 1: n_A 
    SortA_name_mean(:,i)=SortA_name_mean_inter(:,IndA_names(i,1)); 
end 

  
%% 
% use index number to sort Norm 
SortA_Norm_A=zeros(size(Norm_A)); 
for i = 1: n_A 
    SortA_Norm_A(i,1)=Norm_A(IndA_names(i,1),1); 
end 

  
%% 
% use index number to sort R matrix columns 
SortA_name_Rmean=zeros(size(R_matrix_sortNames)); 
for i = 1:n_A 
    SortA_name_Rmean(:,i)=R_matrix_sortNames(:,IndA_names(i,1)); 
end 
SortA_name_Rmean=-SortA_name_Rmean; 
%% 
%combine information together, returns R matrix, A matrix, functional 
%units; names, categories, functional units for R and A matrix 

  
%values of functional units 
funct_units_2016=zeros(length(SortA_Norm_A),1); 
for i = 1:length(SortA_Norm_A) 
    if SortA_Norm_A(i,1)==0 
       funct_units_2016(i,1)=1; 
    else 
       funct_units_2016(i,1)=SortA_Norm_A(i,1); 
    end 
end 
% the A matrix 
USLCI_Atech_raw_2016=SortA_name_mean; 
% the R matrix 
env_factors_2016=SortA_name_Rmean; 

  
% meta information for the A matrix 
meta_info_A=cell(n_A,3); 
for i = 1:n_A 
meta_info_A{i,1}=SortA_names{i,1}; 

meta_info_A{i,2}=SortA_name_category{i,1}; 
meta_info_A{i,3}=SortA_name_unit{i,1}; 
meta_info_A{i,4}=SortA_name_local_category{i,1}; 
end 
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% meta information for the R matrix 
meta_info_R=cell(m_R,3); 
for i = 1:m_R 
meta_info_R{i,1}=SortR_names{i,1}; 
meta_info_R{i,2}=SortR_names_category{i,1}; 
meta_info_R{i,3}=SortR_names_unit{i,1}; 
meta_info_R{i,4}=SortR_names_local_category{i,1}; 
end 
%% %save matrices and export A and R matrix to excel file  
save('matrices2016_1107.mat','meta_info_R','meta_info_A','funct_units_2016','U

SLCI_Atech_raw_2016','env_factors_2016') 
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Matlab code used to identify cradle-to-gate processes 

%  data=xml2struct('Alumina, at plant.xml'); 
%%    % add xml files, the information is put into different cells.  
% name_sub_all % 1. the names of input/output for each flow from the files 
% category_sub_all % 2. the names of subcategory of input/output for each flow 

from the files 
% mean_sub_all  % 3. the values of input/output for each flow from the files 
% unit_sub_all % 4. the functional unit of input/output for each flow from the 

files 
% number_sub_all % 5. the index number of input/output for each flow from the 

files 
% input_sub_all % 6. the index number of inputs for each flow from the files 
% output_sub_all % 7. the index number of outputs for each flow from the files 
%  
% % values from each 701 process 
% name_all % 1. name of the process 
% category_all % 2. subcategory of a process 
% value_all % 3. the output value of a process 
% unit_all % 4. functional unit of a process 

       
files = dir('*.xml'); 

  
% values from each 701 process 
name_all=cell(length(files),1); % 1. name 
category_all=cell(length(files),1); % 2. sub category 
value_all=cell(length(files),1); % 3. mean value 
unit_all=cell(length(files),1); % 4. functional unit 
generalComment_all=cell(length(files),1); % 5.  
title_all=cell(length(files),1); % 5.  
title=cell(1,1); 

  

  
for i=1:701 
data = xml2struct([files(i).name]); 
Num_exchange=length(data.ecoSpold.dataset.flowData.exchange); 

  

name=data.ecoSpold.dataset.metaInformation.processInformation.referenceFunctio

n.Attributes.localName; 
category=data.ecoSpold.dataset.metaInformation.processInformation.referenceFun

ction.Attributes.localSubCategory; 
value= 

data.ecoSpold.dataset.metaInformation.processInformation.referenceFunction.Att

ributes.amount; 
unit=data.ecoSpold.dataset.metaInformation.processInformation.referenceFunctio

n.Attributes.unit; 

if 

isfield(data.ecoSpold.dataset.metaInformation.processInformation.referenceFunc

tion.Attributes,'generalComment')~=0 
   

generalComment=data.ecoSpold.dataset.metaInformation.processInformation.refere

nceFunction.Attributes.generalComment;     
else 
   generalComment='NA';      
end 
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if 

length(data.ecoSpold.dataset.metaInformation.modellingAndValidation.source)==1 
    if 

isfield(data.ecoSpold.dataset.metaInformation.modellingAndValidation.source.At

tributes,'title')~=0 
       

title{1,1}=data.ecoSpold.dataset.metaInformation.modellingAndValidation.source

.Attributes.title;     
    else 
       title{1,1}='NA';      
    end 
else  
%     for nn = 

1:length(data.ecoSpold.dataset.metaInformation.modellingAndValidation.source) 
    for nn = 1:1 

  
    if 

isfield(data.ecoSpold.dataset.metaInformation.modellingAndValidation.source{1,

nn}.Attributes,'title')~=0 
       

title{1,nn}=data.ecoSpold.dataset.metaInformation.modellingAndValidation.sourc

e{1,nn}.Attributes.title;     
    else 
       title{1,nn}='NA';      

    end 
    end 
end 

  
name_all{i,1}=name; 
category_all{i,1}=category; 
value_all{i,1}=value; 
unit_all{i,1}=unit; 
generalComment_all{i,1}=generalComment; 
for h=1:length(title) 
    title_all{i,h}=title{1,h}; 
end 

  
end 
%% find the crade to gate processes 
load ctg.mat 
Cradel2Gate_11=zeros(7,1); 
for i = 1:701 
    a=strfind(generalComment_all{i,1},'radle'); 
    if length(a)==1 
       Cradel2Gate_11(i,1)=strfind(generalComment_all{i,1},'radle'); 
    elseif length(a)>1 
       Cradel2Gate_11(i,1)=a(1,1);     
    else 
       Cradel2Gate_11(i,1)=0; 
    end 
end 

  

Cradel2Gate_x=find(Cradel2Gate_11); 
%% 
Cradel2Gate_2=zeros(701,1); 
for i = 1:701 
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    if strfind(title_all{i,1},'CRADLE-TO-GATE')>0 
       Cradel2Gate_2(i,1)=strfind(title_all{i,1},'CRADLE-TO-GATE'); 
    else  
         if strfind(title_all{i,1},'radle')>0 
             Cradel2Gate_2(i,1)=strfind(title_all{i,1},'radle'); 
         else 
             Cradel2Gate_2(i,1)=0; 
         end 
    end 
end 
Cradel2Gate_y=find(Cradel2Gate_2); 

  
%% 
Cradel2Gate_all=[Cradel2Gate_x;Cradel2Gate_y]; 
Cradel2Gate=unique(Cradel2Gate_all); 
c2g=name_all(Cradel2Gate); 
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Matlab code used to match substances from different methods with the US LCI elementary 

flows, GW impact category as an example 

 

load matrices2016_alo.mat 
load index_by_ISIC.mat % change index number can be a function 
% load GWP_methods.mat 
load CTG_Cutoff.mat 
%% 
% GWP_All_CF_comparments(:,6)=strrep(GWP_All_CF_comparments(:,6),char(39),''); 

  
%% 
TARGET1=GlobalWarming; 
parm=1;  

  
if parm==1  
    aws1=1; 
    aws2=1030; 
    AWS='Air';  
elseif parm==2 
    aws1=1784; 
    aws2=2070; 
    AWS='Water';  
elseif parm==3 
    aws1=1547; 
    aws2=1783; 
    AWS='Soil';  
end 
% air: 1:1030. water: 1784:2070  soil: 1547:1783  
%% 
[hh,inddd]=sort(TARGET1(:,1)); 

  

  
TARGET2=TARGET1(inddd,:); 
TARGET=cell(1,size(TARGET2,2)); 
for i = 1:size(TARGET2,1) 
    [lia,det]=ismember(TARGET2{i,1},AWS); 
    if det(1,1)>0 
        TARGET(i,:)=TARGET2(i,:); 
    end 
end 

  
%% 
TARGET(all(cellfun('isempty',TARGET),2),:) = []; 

  
TARGET(:,2)=strrep(TARGET(:,2),char(40),''); 
TARGET(:,2)=strrep(TARGET(:,2),char(41),''); 
% Remove () from the texts  
% need to clean the data for "unspecific" no () 

  
%% 
funct_units_updated=funct_units_2016_updated_alo'; 
funct_units_mat=repmat(funct_units_updated,length(USLCI_Atech_raw_2016_alo),1)

;  %makes a "repeated matrix" with funct_units down columns 
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unit_conv_mat=repmat(unit_conv,1,length(USLCI_Atech_raw_2016_alo)); 
%divide by functional units 
norm_Atech_raw=USLCI_Atech_raw_2016_alo./funct_units_mat; % normalizes the A 

matrix by functional units 
norm_Atech_raw=norm_Atech_raw.*unit_conv_mat; 
norm_Atech_raw(logical(eye(size(norm_Atech_raw))))=-1; 
funct_units_env=repmat(funct_units_updated,length(env_factors_2016_alo),1);  % 

same as above except has 2708 rows 
env_factors_norm=env_factors_2016_alo./funct_units_env; 

  
%% 
% sort R matrix 
sort_env_factors_norm=env_factors_norm(index_R,:); 
sort_meta_R=meta_info_R(index_R,:); 
[Lia,ImpactInR_uiq] = ismember(TARGET(:,3), sort_meta_R(aws1:aws2,1)); 

  
%% 
sort_meta_R(:,1)= deblank(sort_meta_R(:,1));  
% Remove trailing whitespace from end of string or character array  
sort_meta_R_AWS=sort_meta_R(aws1:aws2,:); 
%% 
[uniqueA unique_num j] = unique(sort_meta_R_AWS(:,1),'first'); 
[par,asw]=ismember(TARGET(:,3),uniqueA); 
% unique_num = index number of the first unique in sort_meta_R 
% j = index number of the names in UniqueA, 620 names in total 

  
index1 = (find(ismember(j,asw)))';  
[a,b]=ismember(j,asw); 
c=zeros(length(b),1); 
for h = 1:size(sort_meta_R_AWS,1) 
    if b(h,1)>0 
    c(h,1)= asw(b(h,1),1); 
    else 

    c(h,1)=0; 
    end 
end 

  
LL = c(c~=0); 

  
[Lia,ImpactInR_uiq_2] = ismember(sort_meta_R_AWS(:,1),TARGET(:,3)); 

  
ImpactInR_uiq_2 = ImpactInR_uiq_2(ImpactInR_uiq_2~=0); 

duplicate_names_2=cell(length(LL),1); 
for h=1:length(ImpactInR_uiq_2) 
    for k=1:size(TARGET,2) 
        duplicate_names_2{h,k}=TARGET{ImpactInR_uiq_2(h,1),k}; 
    end 
end 

  
equl_Eflow_in_R=cell(length(ImpactInR_uiq_2),1); 

  

for i = 1:size(sort_meta_R_AWS,1) 
    if b(i,1)>0, 
        equl_Eflow_in_R{i,1}=sort_meta_R_AWS{i,1}; 
        equl_Eflow_in_R{i,2}=sort_meta_R_AWS{i,2}; 
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        equl_Eflow_in_R{i,3}=sort_meta_R_AWS{i,3}; 
    else 
        equl_Eflow_in_R{i,1}=[]; 
    end 
end 
equl_Eflow_in_R(all(cellfun('isempty',equl_Eflow_in_R),2),:) = []; 

  
for i = 1: length(equl_Eflow_in_R) 
    equl_Eflow_in_R{i,4}=duplicate_names_2{i,5}; 
    equl_Eflow_in_R{i,5}=duplicate_names_2{i,6};  
    equl_Eflow_in_R{i,6}=duplicate_names_2{i,1};  
    equl_Eflow_in_R{i,7}=duplicate_names_2{i,7};  

  
end 

  
%delete all empty values 
equl_CF_in_R=cell(length(duplicate_names_2),6); 
for i = 1: length(equl_Eflow_in_R) 
    if ismember(duplicate_names_2{i,2},equl_Eflow_in_R{i,2})==1 
        equl_CF_in_R{i,1}=duplicate_names_2{i,3}; 
        equl_CF_in_R{i,2}=equl_Eflow_in_R{i,2}; 
        equl_CF_in_R{i,3}=equl_Eflow_in_R{i,3}; 
        equl_CF_in_R{i,4}=duplicate_names_2{i,5}; 
        equl_CF_in_R{i,5}=duplicate_names_2{i,6}; 
        equl_CF_in_R{i,6}=duplicate_names_2{i,1}; 
%         equl_CF_in_R{i,7}=duplicate_names_2{i,7}; % only for all methods 

  
    else 
        equl_CF_in_R{i,1}=[]; 
    end 
end 
equl_CF_in_R(all(cellfun('isempty',equl_CF_in_R),2),:) = []; 

  

% equl_CF_in_R returns stricker elementary flows that have coressponding CF 
% in each method. both the name of the chemical (eg carbon dioxide, fossil) 
% and the category of the chemial (eg. unspecific) should match 
% equl_Eflow_in_R returns general matches, only the names of the chemical 
% matches 

  
%% 
[SortA_mean,SortR_mean_s,Sort_meta_info_A,Sort_meta_info_R] = 

Sort_matrix(norm_Atech_raw,sort_env_factors_norm,meta_info_A_updated,sort_meta

_R_AWS,index_by_ISIC); 

  
%% 
%find the index numbers of elementary flows from the method under 
%assessemnt 

  
[lia1,l2]=ismember(ImpactInR_uiq,unique_num); 
for i =1:length(unique_num)-1 
    num(i,1)=unique_num(i+1,1)-unique_num(i,1); 

     
end 
ImpactInR=zeros(length(ImpactInR_uiq),max(num)); 
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for i = 1:length(ImpactInR_uiq) 
    if l2(i,1)~=0 
        if l2(i,1)<length(unique_num) 
            num1=unique_num(l2(i,1),1);   
            num2=unique_num((l2(i,1)+1),1); 
        end 
       ImpactInR(i,1:length(num1:num2-1))=num1:num2-1; 

        
    end 
end 

  
ImpactInR=unique(ImpactInR); 
ImpactInR(any(ImpactInR==0,2),:)=[]; 

  
% LL returns the index number in unique A 
% ImpactInR returns the index number in sort_meta_R 
%% make R matrix that contains only traci processes 
IMPACT_GWP_R=zeros(length(ImpactInR),size(sort_env_factors_norm,2)); 
for i = 1:length(ImpactInR) 
    IMPACT_GWP_R(i,:)=sort_env_factors_norm(ImpactInR(i,1),:); 
end 

  
%% 

  
% find (ind_GWP_R) index number of emissions (ref to sort_meta_R) for each 

process 
for i =1:size(IMPACT_GWP_R,2) 
    midinx=find(IMPACT_GWP_R(:,i)); 
    num_GWP_R(1,i)=length(midinx); 
end 
ind_GWP_R=zeros(max(num_GWP_R),size(IMPACT_GWP_R,2)); 
for i =1:size(IMPACT_GWP_R,2) 
    if num_GWP_R(1,i)>0 
    midinx=find(IMPACT_GWP_R(:,i)); 
    ind_GWP_R(1:length(midinx),i)= midinx; 
    end 
end 
for i = 1:size(ind_GWP_R,1) 
    for j = 1:size(ind_GWP_R,2) 
        if ind_GWP_R(i,j)>0 
           ind_GWP_R(i,j)=ImpactInR(ind_GWP_R(i,j),1); 
        end 

    end 
end 

  

  
%% 
L=inv(-norm_Atech_raw); 
non_zero_num_L=zeros(size(L)); 
for i =1:length(L) 
    test=find(L(:,i)>1e-5); 

    for j =1:length(test) 
        non_zero_num_L(j,i)=test(j,1); 
    end 
end 
%%  
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% find (non_zero_num_R) index number of process (ref to the A matrix) that 
% are connected to IMPACT_GWP_R (the R then the CF in the method) 

  
R1=IMPACT_GWP_R'; 

non_zero_num_R=zeros(size(R1)); 
for i =1:size(R1,2) 
    test=find(R1(:,i)~=0); 
    for j =1:length(test) 
        non_zero_num_R(j,i)=test(j,1); 
    end 
end 
%% 
% (num_GWP_L) numbers of processes (in A) that are connected to CF 
num_GWP_L=zeros(size(non_zero_num_R,2),size(non_zero_num_R,1)); 

  
test_L_num=zeros(1471,1471); 
%% 
test2=zeros(1471,1471); 
IMPACT_GWP_L=cell(size(equl_Eflow_in_R,1),1); 
for n=1:size(equl_Eflow_in_R,1) 
for i = 1:1471 
    [test1,test2(:,i)]=ismember(non_zero_num_L(:,i),non_zero_num_R(:,n)); 
    for j= 1:length(non_zero_num_L) 
        if non_zero_num_L(j,i)==0 
            test2(j,i)=0; 
        end 
    end 

  
    num_GWP_L(n,i)=nnz(test2(:,i)); 
end 
IMPACT_GWP_L_1=zeros(1471,1471); 
for i = 1:1471 
    for j=1:1471 

            if test2(j,i)>0 
                if non_zero_num_R(test2(j,i),n)>0 
                    

IMPACT_GWP_L_1(non_zero_num_R(test2(j,i),n),i)=non_zero_num_R(test2(j,i),n); 
                end 
            end 
    end 
end 
IMPACT_GWP_L{n,1}=IMPACT_GWP_L_1; 
end 

  

  
%% 
%IMPACT_GWP_L_value_total: added value in L processes, compare it with 
%IMPACT_GWP_R 
IMPACT_GWP_L_value=IMPACT_GWP_L; 
IMPACT_GWP_L_value_total=zeros(size(equl_Eflow_in_R,1),1471); 
for n=1:size(equl_Eflow_in_R,1) 
IMPACT_GWP_L_value{n,1}(IMPACT_GWP_L_value{n,1}~=0)=1; 

  
R_value=IMPACT_GWP_R(n,:); 
R_value=repmat(R_value,1471,1); 
R_value=R_value'; 
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IMPACT_GWP_L_value{n,1}=R_value.*(IMPACT_GWP_L_value{n,1}.*L); 

  
IMPACT_GWP_L_value_total(n,:)=sum(IMPACT_GWP_L_value{n,1}); 

end 
%% 
%separte processes (cutoff, Cradle-to-gate, non-cradle-to-gate 
IMPACT_GWP_L_value_total_cutoff=IMPACT_GWP_L_value_total(:,89:613); 
IMPACT_GWP_R_cutoff=IMPACT_GWP_R(:,89:613); 
IMPACT_GWP_L_value_total_CTG=IMPACT_GWP_L_value_total(:,CTG_Num_alphabeta(:,1)

); 
IMPACT_GWP_R_CTG=IMPACT_GWP_R(:,CTG_Num_alphabeta(:,1)); 
IMPACT_GWP_L_value_total_GTG=IMPACT_GWP_L_value_total(:,GTG_Num_alphabeta(:,1)

); 
IMPACT_GWP_R_GTG=IMPACT_GWP_R(:,GTG_Num_alphabeta(:,1)); 
%% 
GWP_All_CF_value_all=duplicate_names_2(:,7:end); 
GWP_All_CF_value_all = cell2mat(GWP_All_CF_value_all); 
%% 
GWP_L_cl=cell(length(IMPACT_GWP_L),1); 
for n = 1:1 
[GWP_L_cl{n,1}(:,1),GWP_L_cl{n,1}(:,2)]=find(IMPACT_GWP_L{n,1}); 
end 
%% 
% impact values (kg CO2 eq) for 21 methods  
IMPACT_final_CTG=cell(size(GWP_All_CF_value_all,2),1); 
for i = 1:size(GWP_All_CF_value_all,2) 
    

a=repmat(GWP_All_CF_value_all(:,i),1,size(IMPACT_GWP_L_value_total_CTG,2)); 
    IMPACT_final_CTG{i,1}=a.*IMPACT_GWP_L_value_total_CTG; 
end 

  
IMPACT_final_GTG=cell(size(GWP_All_CF_value_all,2),1); 

for i = 1:size(GWP_All_CF_value_all,2) 
    

a=repmat(GWP_All_CF_value_all(:,i),1,size(IMPACT_GWP_L_value_total_GTG,2)); 
    IMPACT_final_GTG{i,1}=a.*IMPACT_GWP_L_value_total_GTG; 
end 
%% 
num_sub_4_process=sum(IMPACT_GWP_R_GTG~=0); 
num_sub_4_process=num_sub_4_process'; 
[B,index_sort_1]=sort(num_sub_4_process,'descend'); 
for i = 1:size(IMPACT_GWP_R_GTG,2) 
    IMPACT_GWP_R_GTG_sorted(:,i)=IMPACT_GWP_R_GTG(:,index_sort_1(i,1)); 
    

IMPACT_GWP_L_value_total_GTG_sorted(:,i)=IMPACT_GWP_L_value_total_GTG(:,index_

sort_1(i,1)); 

  
end 

  
num_methods_4_sub=sum(IMPACT_GWP_R_GTG~=0,2); 
num_methods_4_sub_2=sum(IMPACT_GWP_L_value_total_GTG~=0,2); 

  
[B,index_sort_2]=sort(num_methods_4_sub_2,'descend'); 
%% 
% non_zero_num_R:none zero numbers in GWP R matrix 
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% non_zero_num_L:none zero numbers in GWP L matrix that linked to R 
% num_GWP_L: each row link to each GWP elementary flow, each column is each 
% process 
% num_GWP_R:number of process that linked to all GWP elementary flows 
% IMPACT_GWP_R: the length is "number in R", which means the how many 
% elementary flows in the selected method 
% equl_CF_in_R: strict equlities  
% equl_Eflow_in_R: soft equlities 
num_GWP_R=num_GWP_R'; 
num_GWP_R_GTG=num_GWP_R(GTG_Num_alphabeta); 
%% 
[lia_in_USLCI,in_USLCI]=ismember(TARGET1(:,3),duplicate_names_2(:,3)); 
lia_in_USLCI=lia_in_USLCI+1-1; 
in_USLCI=find(in_USLCI); 
USLCI=TARGET1(in_USLCI,:); 
[lia_du,in_USLCI_du]=ismember(equl_Eflow_in_R(:,1),USLCI(:,3)); 

  
%% 
GTG_names=meta_info_A_updated(GTG_Num_alphabeta,:); 
CTG_names=meta_info_A_updated(CTG_Num_alphabeta,:); 

  

  
%% 
sss=SortR_mean_s(aws1:aws2,:); 
num_R_total_1=sum(sss<0); 
num_R_total_2=sum(sss>0); 
num_R_total=num_R_total_1+num_R_total_2; 
num_R_total_GTG=num_R_total(:,GTG_Num_alphabeta); 
num_R_total_GTG=num_R_total_GTG'; 

  
num_R_total_CTG=num_R_total(:,CTG_Num_alphabeta); 
num_R_total_CTG=num_R_total_CTG'; 
%% 

load plotfeat.mat 

  
fig=figure();  
for i = 1:length(IMPACT_final_GTG) 
    hold on 
    z1 = 

scatter(1,sum(IMPACT_final_GTG{i,1}(:,280)),'marker',marker{ni(i,1),1}); 
end 
view(90,90); 

xlim([0,2]); 
% ylim([-3,3]); 
title(['GWP value (kgCO2eq) from ',num2str(length(IMPACT_final_GTG)),' 

methods']); 

  
%% 
fig=figure();  
for i = 1:length(IMPACT_final_GTG) 
    hold on 

    z1 = 

scatter(1,sum(IMPACT_final_GTG{i,1}(:,232)),'marker',marker{ni(i,1),1}); 
end 
view(90,90); 
xlim([0,2]); 
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% ylim([-3,3]); 
title(['GWP value (kgCO2eq) from ',num2str(length(IMPACT_final_GTG)),' 

methods']); 

  

%% 
fig=figure();  
for i = 1:length(IMPACT_final_GTG) 
    hold on 
    k= 1:100; 
    z1 = 

scatter(k,sum(IMPACT_final_GTG{i,1}(:,k)),'marker',marker{ni(i,1),1}); 

   
end 
view(90,90); 
ylim([0,30]); 
% ylim([-3,3]); 
title(['GWP value (kgCO2eq) from ',num2str(length(IMPACT_final_GTG)),' 

methods']); 

  
fig=figure();  
for i = 1:length(IMPACT_final_GTG) 
    hold on 
    k= 101:200; 
    z1 = 

scatter(k,sum(IMPACT_final_GTG{i,1}(:,k)),'marker',marker{ni(i,1),1}); 

   
end 
view(90,90); 
ylim([0,10]); 
% ylim([-3,3]); 
title(['GWP value (kgCO2eq) from ',num2str(length(IMPACT_final_GTG)),' 

methods']); 
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