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Perpetual availability is an important operational goal in today’s computer systems. How-

ever, achieving this goal is challenging because modern software systems contain faults that

can cause them to fail. For example, multi-threading is widely used in modern software to

fully utilize the computing capability of multicore processors. However, employing multi-

threading can lead to concurrency faults such as deadlock and data race that are notoriously

difficult to to isolate, detect, and repair.Data races, which involves two concurrent accesses

to the same data where at least one is a write, are the most common concurrency faults.

As our first step, we investigate the main sources of race detection overhead and find

that a large effort is spent on repeatedly monitoring operations that cannot cause data races

or have already been identified as causes of races. Based on these observations, we propose

two orthogonal optimizations for race detection: Stationary Object Suppression (SOS) and

Loop Iteration Sampling (LIS).

SOS employs a dynamic program analysis technique to filter out Stationary Objects;

which are read-only objects that can be shared by multiple threads. As such, they can never

participate in data races. By eliminating monitoring operations on Stationary Objects, SOS

can detect up to six times more races within an overhead budget than Pacer, a state-of-the-

art sampling based race detector.

Although SOS can greatly reduce the number of objects to monitor for race detection, it

repeatedly monitors identified sources of races. A further investigation shows that loops in

a program substantially contribute to occurrence of such repetitive data races. We propose



a sampling based race detector, LIS, which adjusts sampling rate for data access operations

within loops to be inversely proportional to number of iterations.

To achieve perpetual availability, the next step is to address these software faults as they

are detected during deployment. We propose a race healing system that can automatically

generate and apply repairs during program execution. The system applies a fix immediately

after a race is detected to prevent the race from occurring again.
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Chapter 1

Introduction

Perpetual availability is a key requirement of today’s computer systems as society’s reliance

on such systems is increasing. For instance, when safety critical systems such as medical

devices or utility systems fail, there are dire consequences that can result in loss of life. In

addition, as more organizations rely on application servers and cloud services to conduct

financial transactions, support day-to-day operations, and provide valuable services to their

customers, failures of these systems can result in consequences ranging from customers

annoyance to heavy financial losses [Par11]. To provide perpetually available services,

the fault detection and repairing processes have to be non-intrusive and automatic given

the highly likely presence of faults in deployed systems. As such, non-automated and

time consuming repair processes that include fault issuing, manual fault repairing and even

dynamic patching cannot be used. Moreover, these typical processes often require system

rebooting, which impairs system availability.

Currently, multicore processors have become the default configuration not only for

high performance servers, but also for personal computers and mobile computing devices.

Therefore, multithreading is an effective way to exploit computation power of multicore

processors. However, writing correct concurrent programs is challenging due to subtle
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concurrency faults like data races, deadlocks and atomicity violations, which represent ma-

jor classes of concurrency faults in modern systems. Although static analysis and model

checking can guarantee correctness of concurrent programs, they cannot scale to large com-

plex applications in real world [HJM04, KYKS09, VJL07, NAW06, CLL+02]. Software

testing is a practical way to find concurrency faults [PS08]. However, concurrency faults are

sensitive to thread interleaving, exponentially increasing with the number of threads, which

test suites are unable to exhaustively cover in general. As a result, concurrency faults could

stay dormant in testing period and then appear during fielding [LPSZ08, KP04]. Based on

this emerging computing trend, we need to have approaches and techniques that can detect

and repair various types of concurrency faults in deployed systems.

One famous example of a concurrency fault is the Northeast Blackout of 2003 that

caused part of the US and Canada to lose power for many hours [KP04]. That incident

was initiated by a data race that prevented an alarm system from notifying power-plant

operators of impending power transmission problems. The main culprit that caused the

alarm system to fail was a race condition that corrupted a shared data structure. Once this

data structure was corrupted, the alarm system entered a live-lock state and completely

stopped processing incoming events causing massive backlogs. During their investiga-

tion, engineers discovered that the same race had manifested itself as corrupted alarm logs.

However, after three million hours of operation, that race-related fault had never caused the

alarm system to completely fail.

This example shows that even very well tested systems can still have data races that may

produce harmful results. As such, it is critical to have race detection capability in deployed

systems. Because it is quite common for data races to appear multiple times before they can

actually harm the system, there are opportunities to repair these races before they become

harmful.
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1.1 Overview

This dissertation takes a first step toward building an automatic and transparent concurrency

fault detection and healing system. The focus of our work is on building a race detection

and healing system for deployed applications. We choose data races for several reasons.

First, data races are a common class of concurrency faults, which occurs when there are

two concurrent accesses to the same data, and at least one of them is a write. Second,

historical reports have shown that data races can cause major failures, resulting in heavy

financial losses and even fatalities [KP04, LT93]. Third, recent research shows that data

race still exists in widely used commercial software such as eclipse IDE and Apache Web

server [BCM10, Fou]. Fourth, it is also possible to extend data race detector to cover other

interesting property violations including atomicity. As such, we build our system to satisfy

the following requirements:

1. Low detection overhead. Our system yields low overhead so that it can be used in

deployed software.

2. Efficient repair. The detection and healing process is on-the-fly and transparent so it

can occur without interrupting execution of applications.

3. Effective repair. Our system is capable of determining if a repair can subsequently

cause deadlock. If it does, the repair is not applied.

The architecture of our proposed system is shown in Figure 1.1. To clarify, RaceDr

is a race healing framework hosting race detectors like Pacer, LIS and SOS as plugin

components. The system includes the Race Detection and Race Healing components.

Race Detection component can support multiple race detectors. Currently, three have been

implemented: Pacer, SOS and LIS. Pacer was introduced and implemented by Bond et
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Relevant Runtime Systems inside JVM 

Sampling 
Controller 

Race  
Reporting 

Atomicity  
Violation Fixing 

JIT  
Compilation 

Memory 
Management 

Repair 
Advice 

Adaptive 
Optimization 

RaceDr Components and Functionality 

Contention 
Monitoring 

Detection 
Advice 

Synchronization 

Figure 1.1: Architecture of race detection and healing system.

al. [BCM10] while SOS and LIS are proposed by us. All of these race detectors use sam-

pling to control overhead. We extend SOS to detect atomicity violations that can lead to

high-level data races. Atomicity violation is defined as an interruption of an atomic method

execution by other thread’s action. Atomicity violations can occur even if the program is

data race free.

Detection Advice can help to rule out benign races from harmful races. Our proposed

RaceDr can dynamically inject code to fix or avoid program faults. For example, RaceDr

can automatically generate and deploy patches to fix data races detected by Race Detection.

Atomicity Violations Fixing will automatically fixing high level data races on the fly; how-

ever, the fixing could introduce deadlocks. As such, RaceDr includes Deadlock avoidance

to ensure that repairs cannot cause deadlocks. As future work, we will implement Con-

tention Monitoring to help evaluate the performance of generated repairs. If a repair causes
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a significant performance slowdown due to contention on that repair lock, the system can

remove the repair. We built RaceDr as part of a Java Virtual Machine (JVM) to exploit the

existing runtime infrastructure.

1.2 Background

Two classes of approaches have been proposed to dynamically detect data races. Vector-

clock-based approaches build Happens-Before relationships by recording logical times of

memory accesses with vector clocks [Lam78]. In this approach, there is a race if two

memory accesses do not have Happens-Before relationship and at least one of them is

a write. The approach is precise, that is, there are no false positives. However, it has

high overhead due to the need to monitor all memory accesses. As a dynamic detection

approach, it can only report races that have been detected under observed interleaving. This

means, that other races may exist but they can only be exposed under different interleavings

that have not been executed. As such, they are not reported.

Lockset-based approaches assume that every access to shared data has to be protected

by locks in order to ensure data race freedom. Therefore, this approach checks locks pro-

tecting each memory access. A data race will be reported if two accesses do not share at

least one lock while accessing the same memory location. This approach generally out-

performs a vector-clock-based approach since it does not record the logical time of each

memory access. It can also discover potential data races that do not present in observed

thread interleavings. However, Lockset based approach is imprecise and can report false

warnings because it does not consider some synchronizations like fork-join relationship.

Significant advances have been made to reduce overhead of dynamic race detection.

For instance, FastTrack[FF09], as a vector-clock-based approach, achieved comparable

performance as lockset-based approach while it still keeps the precision. Even with these



6

recent advancements, FastTrack still incurs an average overhead of 850% across a range

of programs. Although sampling based techniques like Pacer[BCM10] can successfully

control the race detection overhead to be low enough for deployed systems, it is not effec-

tive because to incur no more than 86% overhead, the approach can only monitor about 3%

of possible race-inducing operations.

Furthermore, data race is not only hard to detect, but also challenging to fix. Typ-

ically, repairing data race by inserting locks can introduce other faults including dead-

locks [PKL+09]. Atomicity violation fixing could be even more challenging and error

prone since it involves locking a code region instead of just two data access operations.

Again, improper fixing could seriously reduce execution concurrency or even lead to dead-

locks.

In addition, if repairs can be automatically generated, applying them transparently is

still a major challenge. Recently, there have been several research efforts that have been

introduced to repair concurrency faults. AFix [JSZ+11] is a tool to automatically fix atom-

icity violations. It takes a fault report as its input, then automatically generates patches to

fix the violations. It also uses static and dynamic program analysis to ensure the fix is dead-

lock free. Note that AFix automates the manual patch generation procedure; however, it

needs recompilation to repair faults, causing the system to be unavailable during the recom-

pilation and restart period. LOOM provides a framework to apply hot patches manually,

but it still require patches generated by developers, which could be time consuming and

error prone as we discussed [WCY10]. To the best of our knowledge, there is no existing

work that can automatically generate and deploy repairs for concurrency faults.
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1.3 Motivation

Next we use a motivating example to show why the overhead of race detection is so high

and the opportunities to improve its efficiency. We also study the real world examples to

show the property of data races and atomicity violations, leading to a chance to automati-

cally fix them on the fly.

1.3.1 Overhead of Race Detection

To demonstrate the inefficiency of existing race detectors, consider an example shown in

Figure 3.2. The program has two instances of class Datum, s and n, which hold a value

flag that is operated by three method calls: inc(), clear() and isReady(). Thread RacerA

and thread RacerB are currently running. The instance of RacerB loops to check if s is

ready. If s is ready, it increases the flag value of the n. The instance of RacerA clears the

flag value of the n first, then performs the same task as RacerB.

Checking for data races with FastTrack involves monitoring all read and write op-

erations. For example, each call to inc() involves one read from and one write to flag.

Including the writes that are performed during initialization of the two Datum field in-

volves 2,000,005 writes and 4,000,000 reads. However, it is unnecessary to monitor all

these 6,000,005 operations for two reasons. First, the four writes(two writes to fields s and

n in instance of Example, and two writes to filed flag in object s and n) during the initial-

ization cannot get involved in races since the objects are not shared at that point. Second,

field s is read-only after initialization, that is, the object that s references cannot involve

races, so the 2,000,000 reads to field s do not need to be monitored. As such, around

one third (2,000,004) of operations can avoid monitoring to reduce the overhead, without

affecting detection effectiveness.

In Figure 3.2, there are two distinct races: race1 and race2. The sources of race1
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consist of code at line 16 and code at line 26. Sources of race2 consists of code at line

13 and code at line 26. Pacer, a sampling based race detector based on FastTrack, applies

sampling uniformly. As such, when we configure Pacer to operate at a high sampling

rate (e.g., 80%), race2 could be detected up to one million times. Any detection after the

initial detection is redundant because the sources have already been identified. When we

configure Pacer to operate at a small sampling rate (e.g., 3%) to reduce overhead (86%),

the race detection rate is also very low. Consequently, there is a good chance that Pacer,

operating at that sampling rate, would miss race1. On the contrary, because the statements

that cause race2 are executed frequently, race2 has a much higher probability than race1

of being detected.
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1 p u b l i c c l a s s Example {
2 Datum s = new Datum ( ) ;
3 Datum n = new Datum ( ) ;
4
5 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ){
6 new RacerA ( ) . s t a r t ( ) ;
7 new RacerB ( ) . s t a r t ( ) ;
8 }
9 }

10
11 c l a s s RacerA implements Runnable ex tends Example{
12 p u b l i c vo id run ( ) {
13 n . c l e a r ( ) ; / / race2
14 f o r ( i n t i =0 ; i <1000000; i ++){
15 i f ( s . i sReady ( ) ) {
16 n . i n c ( ) ; / / race1
17 }
18 }
19 }
20 }
21
22 c l a s s RacerB implements Runnable ex tends Example{
23 p u b l i c vo id run ( ) {
24 f o r ( i n t i =0 ; i <1000000; i ++){
25 i f ( s . i sReady ( ) ) {
26 n . i n c ( ) ; / / race1 , race2
27 }
28 }
29 }
30 }
31
32 c l a s s Datum {
33 i n t f l a g = 1 ;
34 p u b l i c vo id i n c ( ) { f l a g ++; }
35 p u b l i c vo id c l e a r ( ) { f l a g =0; }
36 p u b l i c boolean i sReady ( ) { f l a g >0; }
37 }

Figure 1.2: Example of data races.
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Based on the observation stated above, we identify two possible race detection opti-

mizations that can significantly reduce detection overhead but without significantly affect

detection rate.

• Optimization 1. Existing race detection approaches monitor unnecessary operations,

contributing to excessive overhead. The overhead can be reduced by identifying

unnecessary operations and then avoiding monitoring them.

• Optimization 2. Current sampling based race detection approaches detect redun-

dant data races mainly due to loop code. The redundancy can be removed to reduce

overhead.

1.4 Opportunities for Race Healing

The following example is related to a fault report from Apache Tomcat fault repository as

shown in Figure 1.3. One responsibility of method SystemLogHandler in the util.log

class is to capture and redirect output and error messages to the corresponding applica-

tion’s log file. The captured messages are maintained on a globally accessible stack called

reuse. A call to isEmpty() and a call to pop() can race – the former reads data stor-

ing the size of the stack and the latter can write that data. However, an observable error only

occurs when pop() is invoked when reuse is empty. Any typical dynamic and precise

race detector would be able to detect the first instance that a read by isEmpty() happens

concurrently with a write by pop() or vice versa.
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if (!reuse.isEmpty()) {

log = (CaptureLog)reuse.pop();

} else {

log = new CaptureLog();

}

Figure 1.3: Bug 31018 in Apache Bugzilla

The example demonstrates a key insight: data races occur frequently in deployed con-

current software but often their effects on system behavior are too subtle to be noticed and

would not be classified as a failure. Therefore, we can take advantage of the time window

to dynamically fix data races before they cause dire consequences.

1.5 Contributions

My work to date has made the following contributions to the area of dynamic race detection

and repair. They are described in the next three subsections.

1.5.1 Stationary Analysis

As stated in Optimization 1, a large number of objects cannot be involved in data races.

These objects are stationary objects. A stationary object is an object that is written

during the initialization period and after the object has been read, there are no more

write operations. The notion of stationary objects is extended from the definition of sta-

tionary fields [UL08]. A race occurs when two accesses to a shared data are not properly

synchronized and at least one access is a write [BCM10, FF09]. A stationary object cannot

get involved in races for two reasons. First, a stationary object is not shared in initialization
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phrase(Only the creator thread can access it.) Second, there are no writes after a stationary

object is shared by definition.

1.5.2 Loop Iteration Sampling

Fundamentally, stationary analysis aims to increase density of data races over objects by

reducing monitoring on a class of objects that cannot involve races. Based on Optimization

2, we propose a sampling technique that aims to increase density of data races over exe-

cuted code, which is orthogonal to stationary analysis. The main idea is to differentiate the

monitoring efforts between operations that reside in loop regions and those that do not. The

goal is to reduce the overhead for monitoring repetitive operations in loops. The example

in Figure 3.2 reveals a glaring inefficiency of techniques that uniformly sample monitoring

operations over time. This finding motivates us to build a sampling based race detector that

differentiates sampling loop code and non-loop code. It monitors iterations of loops in a

program and decreases the sampling rate for code in a loop when iterations for that loop

increases. More details about this approach, named LIS, will be explained in Section 3.

1.5.3 On-the-fly Race Healing System

As discussed, mission critical systems cannot afford downtime. The Just-In-Time (JIT)

compilation infrastructure provides the facility to transparently correct faulty code, like

code involving races. It is natural that we fix the data races on the fly by regenerating

racy code with proper synchronization based on JIT compilers. Therefore, the program

can keep running while the data races are eliminated. Moreover, as the system keeps fixing

data races, the system will have fewer and fewer races and become data race free eventually,

which leads to the opportunity that the data race detector can be shut down after all or most

data races are fixed. We propose an online race healing system, RaceDr, to transparently fix
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data races. However, data race freedom cannot ensure atomicity of the program [LPSZ08],

so we propose an approach to automatically fix atomicity violations based on RaceDr.

1.6 Dissertation Statement

As stated, data races are currently the most common concurrent fault. However, existing

data race detection techniques are often too expensive for field use. Furthermore, existing

fault healing techniques cannot repair races immediately, transparently, and non-intrusively

after they are detected. We propose an efficient, effective and transparent framework, in-

cluding two orthogonal race detection optimizations and an one-the-fly healing system, to

detect and repair data races and atomicity violations for deployed software.

The dissertation makes the following contributions:

1. We build a dynamic program analysis technique called Stationary Analysis, to iden-

tify objects that cannot participate races. When the analysis is used, we can enhance

race detection rates by up to six times while maintaining the same overhead as that

of a sampling based system without stationary analysis.

2. We extend an existing sampling based race detector to differentiate sampling rates

between code within loops and code outside loops. This approach reduces the race

detection overhead by reducing redundant monitoring operations (i.e., monitoring

operations that have already been identified as racy), but without significantly sacri-

fice race detection coverage.

3. We propose a race healing system that works with our race detectors to automatically

fix races as soon as they are detected.

4. We extend our race detector to detect atomicity violations. Then we utilize our heal-

ing system to also fix these detected atomicity violations.
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1.7 Dissertation Organization

This dissertation is organized as follows. In Chapter 2 and Chapter 3, we introduce our two

dynamic data race detectors, SOS and LIS, including the approaches and evaluation results.

Chapter 4 focuses on our data race healing system, RaceDr. We will explain the prototype

we have built and the future work. In Chapter 5, we discuss related work.
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Chapter 2

SOS: Stationary Object Suppression ∗

Data races are subtle and difficult to detect errors that arise during concurrent program

execution. Traditional testing techniques often fail to find these errors, but recent research

has shown that targeted dynamic analysis techniques can be developed to detect races that

occur during a program execution. State-of-the-art techniques have shown that precise race

detection (i.e., where no false race reports are generated) can be achieved with comparable

runtime overhead to the best known dynamic techniques. Unfortunately, even with these

recent advances the overhead of race detection remains very high—commonly incurring an

8 times slow down in program execution [FF09].

In this work, we incorporate an optimization technique based on the observation that

many thread-shared objects are written early in their lifetimes and then become read-only

for the remainder of their lifetime; these are known as stationary objects. Races cannot

occur on accesses to stationary object since all accesses are reads, and therefore, our pro-

posed approach does not monitor those accesses. The main contribution of our work is

concentrating the monitoring effort on objects that can participate in races. Our experi-

mental result shows that our proposed system only incurs an an average overhead of 45%
∗Some of the material in this chapter appeared in [LSaD11].
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of that of FastTrack, a low-overhead dynamic race detector. We then compared the effec-

tiveness of our approach to detect races in deployed environments with that of Pacer, a

sampling based race detector based on FastTrack. We found that our approach can detect 5

times more races than Pacer when we budget 50% for runtime overhead.

2.1 Introduction

Modern microprocessors provide multiple processing cores per chip. As such, a natural

way for developers to achieve higher performance is to employ thread-level parallelism in

their applications. However, writing correct concurrent programs can be challenging, espe-

cially achieving proper synchronization of access to shared resources. Improper synchro-

nization can lead to runtime errors such as deadlocks and data races, which are difficult to

detect, isolate, and correct. As an example, data races are often sensitive to execution inter-

leaving, and therefore, may only occur infrequently and intermittently. Furthermore, many

of these races do not always produce incorrect results, making detecting their presence dif-

ficult. Thus, we have seen many instances in which these races stay dormant during the test-

ing period and then manifest themselves during deployed system operation [Apa, Can, Lia].

Detecting data races can lead to improved dependability of multithreaded applications.

However, doing so can prove to be difficult. Approaches that rely on static program anal-

ysis can scale well but tend to result in conservative approximation of potential sources of

races [AFF06, NAW06, VJL07]. On the other hand, dynamic detection techniques that use

vector clocks to track the ordering of accesses to individual object fields are precise, but

incur very high runtime overhead [BCM10, PS03, PS07, FF09]. Dynamic detection tech-

niques based on recording information at the class level rather than the object level, such as

lockset approaches, can reduce runtime overhead, but they can also issue many false race

reports [EQT07, SBN+97].
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FastTrack, a dynamic race detection system introduced by Flanagan and Freund, can

reduce the overhead of vector clock based race detection to be about the same as that of

lockset based race detection, but without compromising the precision provided by the use

of vector clocks [FF09]. The key idea in FastTrack is to replace a large percentage of

full vector clock operations with a more time and space efficient operation to track access

ordering. According to their reported results, even with this optimization FastTrack still

slows applications down by eight times on average, making it infeasible for use in many

testing and system deployment contexts.

To reduce the runtime overhead of dynamic analyses, a number of researchers have

explored the use of sampling techniques, e.g., [AVY08, BLH10, DDE08]. For race detec-

tion, the Pacer system adds sampling to the FastTrack algorithm [BCM10]. Sampling is

effective in reducing runtime overhead, but there is a corresponding reduction in data race

detection. As an example, when the sampling rate of Pacer is set to 1 and 3%, the execution

overheads are on average 52 to 86%, respectively. At 86% overhead, the average race de-

tection rate is 30% (ranging from 0.9% to 82.7%). When the sampling rate is set to 100%

(i.e., Pacer detects all possible dynamic races), the average execution slowdown is a factor

of 12.

State-of-the-art dynamic race detection techniques such as FastTrack and Pacer are too

expensive to be “turned on” all the time in deployed systems. Moreover, when sampling

is used to drive overhead down to a tolerable level, e.g., less than 100%, the number of

detected data race drops significantly. In this work, we introduce an optimization approach

that eliminates the need to monitor a large number of objects, and shared accesses to fields

of those objects, for race detection.

The proposed optimization is based on the notion of stationary field introduced by

Unkel and Lam [UL08]. A stationary field is a field that has been written during the ini-

tialization period and once the field has been read, there are no more write operations
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afterward. We extend the definition of “stationary” to define stationary objects. The key

insight that motivates our work is that a race occurs when two accesses to a shared variable

are not correctly synchronized, and at least one access is a write [BCM10, Lam78]. Be-

cause stationary objects are not written after escaping, they cannot be involved in races. We

define a dynamic analysis to determine whether an object is stationary and couple it with

the FastTrack algorithm where processing of read operations is disable when an object is

stationary.

We implemented this analysis on top of the Pacer’s code base in Jikes RVM and ex-

plored its effectiveness in reducing the race detection cost of FastTrack algorithm imple-

mented as part of Pacer. (Note that in the remaining of this chapter, our evaluation of

FastTrack is based on the Pacer’s implementation of the algorithm.) We also evaluated its

ability to increase the detection of races by Pacer at low sampling rates. In addition, we

implemented an additional LiteRace-like optimization [MMN09] that disables stationary

object analysis on “hot” methods and explore its effects on overhead and race detection

effectiveness. We show, through an experimental evaluation using 6 multithreaded Java

benchmarks, that optimizing dynamic data race detection in this way is effective in re-

ducing the average overhead of FastTrack by 55% and increasing the effectiveness of race

detection with 50% overhead budget by nearly a factor of 6 over Pacer.

The key contributions of the work lie in: (1) the design of a light-weight dynamic anal-

ysis that can eliminate the need to monitor a large number of read accesses for precise data

race detection, (2) an evaluation of the potential overhead reduction that can be achieved by

coupling this analysis with state-of-the-art race detection approaches, and (3) an evaluation

of the potential improvement in the detection of data races that can be achieved at very low

overhead rates by coupling the analysis with Pacer.
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2.2 Approach

In Java, a programmer can declare an object field to be final, if the field is read-only af-

ter it has been initialized by the constructor [UL08]. The use of this feature allows the

Java compiler to both enforce the read-only property and exploit that property for opti-

mization. Unfortunately, programmers, in practice, rarely declare fields to be final, even

though the access pattern of many fields meet the requirements for final fields. Further-

more, the definition of a final field comes with some rather restrictive conditions; these

conditions are designed to make the validation of field finality by the compiler simple. One

effect of these conditions is that certain fields that share the essential characteristics of final

fields cannot be declared final; for example, fields whose initialization logic is within the

constructor but involves complex control flow (which can make validation of field finality

complex) or whose initialization logic is performed outside of the constructor. While Java

itself cannot capture the read-only nature of such fields, work by Unkel and Lam provides

a solution [Unk09, UL08].

In their work, Unkel and Lam introduced the concept of stationary fields as a gener-

alization of final fields. The definition of stationary fields extends that of final field by

allowing a stationary field to have multiple writes across multiple methods as long as these

write operations happen before all read operations. A final field, on the other hand, is

written only once during execution [GJSB05].

They then proposed an automatic inference approach to statically detect these stationary

fields. During initialization, their algorithm monitors read and write operations to each

field. It then analyzes whether a field is written after initialization; if it is, that particular

field becomes non-stationary. To reduce the analysis overhead, they make a “simplifying

assumption” that an object initialization occurs before that object’s reference is stored into

any object [UL08]. After the reference is stored, the object is referred to as lost. In their
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implementation, lost objects are identified by monitoring putfield bytecode [Unk09].

In terms of the relationship between lost objects and method-escaping objects, lost objects

are only a subset of method-escaping objects because the definition of lost does not account

for any reference returns at the end of a method call. Furthermore, a subset of lost objects

may be thread-escaping in multi-threaded applications.

The result of their empirical study using 26 benchmark programs showed that stationary

fields are prevalent in Java programs. The percentage of stationary reference-typed fields

ranges from 44 to 59% when both applications and libraries are considered. For primitive-

typed fields, the percentage of stationary-field is greater than 30% in each of the evaluated

benchmarks. Two key insights from this study are applicable to dynamic race detection:

1. There is no need to monitor for races before an object is lost because the object is

still thread local. Note that Unkel and Lam use to notion of lost to indicate the end

of initialization. However, from data race detection point of view, lost also indicates

that an object may no longer be thread-local and can participate in races.

2. Races cannot occur on stationary fields because they are not written after they have

become lost. As a reminder, in order for data race to occur, at least one concurrent

access must be a write. Stationary fields are read-only.

These insights tell us that monitoring only non-stationary fields should be sufficient for

race detection. The potential impact is significant reduction in the number of fields or

objects (if we can identify objects with only stationary fields) that must be monitored for

data races. We also anticipate that fewer monitored objects would lead to fewer monitored

read and write operations, resulting in significantly lower dynamic race detection over-

head. Next, we describe how this insight can be applied to existing dynamic race detection

approaches such as FastTrack.
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2.2.1 Challenges and Opportunities

In principle, this sounds straightforward, but several challenges must be overcome to realize

this optimization in the context of modern data race detection algorithms.

First, we must enable and disable the processing of read operations on a per object

basis. Doing this efficiently is not possible using an instrumentation approach; FastTrack is

implemented through instrumentation. We use per object meta-data encoded in the VM’s

object structure to control the processing of the race detection algorithms.

Second, we must detect when an object’s field will only be read during the portion

of the object’s lifetime when it is thread shared. We could use a static analysis, such as

Unkel and Lam’s stationary field analysis [UL08], but instead, we use an efficient dynamic

analysis to determine object fields that are read-only when shared. This analysis sets the

per object meta-data that controls data race algorithm processing.

Third, since we use a dynamic analysis to determine read-only object fields we must

account for the fact that such an analysis cannot know the future access pattern on the

object. We achieve this by designing an optimistic analysis that assumes each object is

read-only once it escapes its creating thread and then reclassifies an object once a write is

observed. While efficient, the weakness of this approach is that it creates a window during

program trace within which data races may not be detected. We discuss the impact of this

on data race detection in Section 2.3.1.

As we demonstrate, this optimization strategy can work with essentially any object-

based data race detection approaches. It can be applied to significantly reduce the overhead

of data race detection. It can also be coupled with existing sampling-based data race detec-

tion techniques to significantly improve the number of data races that can be detected when

monitoring at very overheads, e.g., below 100%. We explore this in detail in Section 2.4.
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2.2.2 Applying Stationary-Object Optimization

The goal of our work is to only apply race detection monitoring on objects that can po-

tentially suffer from data races and no monitoring at all on objects that cannot suffer from

races. Our main insight is that races can only occur on non-stationary fields and therefore,

monitoring should only be turned on for objects with such fields. Later in this section, we

will describe our approach to accomplish this goal. However, we first would like to describe

three concepts that are essential for this work. First, we briefly summarize FastTrack, an

optimized vector clock-based race detection technique that has demonstrated much lower

overhead than other vector clock-based approaches. Second, we define stationary object,

which is a notion we extend from the previously described stationary field. Third, we de-

scribe the three categories of objects that are used as part of the stationary object analysis

and how the category information is recorded. In the last part of this section, we describe

our approach to integrate dynamic analysis of stationary objects with FastTrack and discuss

the shortcomings and benefits of the proposed integration.

2.2.3 Major Concepts

FastTrack. In vector clock-based race detection mechanisms, each vector clock (VC) and

VC operation incur O(n) time and space overheads, where n is the number of threads,

respectively (see Section 5 for more information about vector clock-based race detection).

In FastTrack, the write vector clock is replaced with an epoch—a lightweight representation

for recording the last write performed on a field that contains the single clock value, c, at

which the write occurred and the thread that performed the write, t. Updating an epoch

and comparing an epoch to general vector clock are O(1)-time operations. In addition,

FastTrack can use epochs to replace vector clocks in most of the read operations. As

such, FastTrack is an order of magnitude faster than a traditional vector clock-based race
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detector [FF09] and 2.3 times faster than DJIT+, a VC-based race detector for C++ [FF09,

PS07].

Stationary Object. Work by Unkel and Lam [UL08, Unk09] introduced stationary fields

as a generalized final fields. In our work, we extend the definition of the term “stationary”

to objects. That is, a stationary object is an object that contains only stationary fields.

If there is at least one field in the object that is not stationary, the object is considered

as a non-stationary object. This new definition allows us to control the race detection

monitoring at the object-level instead of the field-level. While the object-level monitoring

is a coarser monitoring granularity (e.g., if an object has multiple fields but only one field

is non-stationary, any read/write access to this object must still be monitored for races), it

eases the implementation of the mechanism to enable or disable the monitoring process.

Categorizing Objects. Because our approach only monitors objects for races when they

have become non-stationary, we first need to record each object’s status. An object’s status

can be either initial, lost, or non-stationary; initial and lost objects are interpreted as being

stationary. Every object is set to initial upon creation. Once the reference to an object is

assigned to a field in another object, its status changes to lost. Note that this is the definition

of lost introduced by Unkel and Lam [UL08]. If a field in a lost object is written, then its

object’s status changes to non-stationary. Previous work has shown that there are several

ways to record object meta-data. We develop our proposed technique inside a JVM so our

approach embeds meta-data in the object’s structure; an approach similar to that used in

QVM and other work to maintain runtime information as part of dynamic analysis [AVY08,

JBM04].
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2.2.4 Supporting Stationary Object Analysis

Dynamic data race detection involves monitoring operations related to locking as well as

reads and writes of memory locations from different threads.

Monitoring Lock Usage. Our approach monitors lock usage information, such as

monitor enter and monitor exit operations, inside the JVM [BCM10, XSaJ08].

The captured information is then used to perform race detection and manage vector clocks

in a manner that is identical to existing race detection algorithms. That is, the vector clock

for a lock is updated when a thread acquires the lock, and the clock for a thread is incre-

mented when the thread releases the lock.

Conceptually, if a safe determination of which objects are stationary were performed,

then lock operations on those objects would not need to be performed. This might be done,

for example, via a static analysis that determines that all instances of a class are stationary.

We use a dynamic analysis that optimistically determines whether objects are stationary

and then reverts to full data race processing when it is determined that an object is non-

stationary. Consequently, we prefer a safe treatment of lock operations and monitor them

fully for race detection. Since lock operations are relatively rare (3.2% in the FastTrack

study), the performance penalty for this decision is modest.

Monitoring Reads and Writes. We implemented our mechanism as read- and write-

barriers. The stationary object analysis code as well as race detection code is injected into

the processing of various bytecodes such as putfield and getfield, which perform

write and read operations, respectively, on objects.

Algorithm 1 describes the process to monitor for races after a read operation. In the

FastTrack algorithm, a read operation requires a check with previous writes on that variable

for races; the operation is simply shown as function checkRaceWrite-Read in the

algorithm (line 2). Next, FastTrack updates the read component of the vector clock of that
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Input: objRef, objField

1: if objRef.status == nonStationary {
2: checkRaceWrite-Read(objRef.objField, currentThread)
3: updateReadVC(objRef.objField, currentThread)
4: }

Algorithm 1: ReadMonitor()

particular thread. The operation is shown as function updateReadVC (line 3) [FF09].

Note that these basic VC operations are clearly described in [FF09, BCM10]. Because our

technique only monitors for races when an object becomes non-stationary, it must check

the object’s status (the code for this check is highlighted in gray) for each read operation.

If the status is non-stationary, race detection code is executed.

Input: objRef, objField, primitiveValue

1: if objRef.status == lost

2: objRef.status = nonStationary

3: if objRef.status == nonStationary {
4: checkRaceWrite-Read(objRef.objField, currentThread)
5: checkRaceRead-Write(objRef.objField, currentThread)
6: updateWriteVC(objRef.objField, currentThread)
7: }

Algorithm 2: PrimitiveWriteMonitor()

Because our algorithm keeps track of lost objects, our analysis needs to distinguish be-

tween writes of primitive data and writes of reference data. Algorithm 2 describes the steps

in our proposed algorithm to monitor for races after primitive-typed data, primitiveValue,

is written to a field, objField, of an object, objRef. Again, the code to support stationary ob-

ject analysis is highlighted in gray. The unhighlighted lines show the generic race detection

operations that must be performed after a write.

First, our analysis checks the status of the written-to object. If it is lost, then the write

operation causes the object’s status to change to non-stationary (line 1 and 2). When the
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status is non-stationary (line 3), the race detection monitoring code (line 4 to 6) is executed.

When reference-type data is written to a field in an object, additional analysis to track

lost objects is needed. In Algorithm 3, lines 3 to 9 are exactly the same as those in Algo-

rithm 2. However, lines 1 and 2 are needed to change the object’s status of referenceValue

from initial to lost because the write operation makes the object pointed to by reference-

Value accessible from objRef.

Input: objRef, objField, referenceValue

1: if referenceValue.status == initial

2: referenceValue.status = lost

3: if objRef.status == lost

4: objRef.status = nonStationary

5: if objRef.status == nonStationary {
6: checkRaceWrite-Read(objRef.objField, currentThread)
7: checkRaceRead-Write(objRef.objField, currentThread)
8: updateWriteVC(objRef.objField, currentThread)
9: }

Algorithm 3: ReferenceWriteMonitor()

2.3 Implementation

We implemented our stationary-object analysis on top of Pacer [BCM10], a sampling-

based race detection technique based on FastTrack [FF09]. Pacer implements the FastTrack

algorithm inside Jikes RVM 3.1.0, a high performance meta-circular Java Virtual Machine

(JVM) [Jik11]. In addition to implementing the FastTrack algorithm, Pacer is also capable

of performing sampling in order to control the runtime overhead of race detection. We will

also use this sampling feature in our performance evaluation. Next, we describe some key

components in our implementation.
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Metadata. To record the status of an object (i.e., initial, lost, non-stationary), we used

two bits from the object’s header field in RVM. Using these two bits does not incur addi-

tional storage space, but requires masking and unmasking operations. We also explored an

alternative approach to add one extra word per object to record status information. This ap-

proach eliminates the masking and unmasking operations, but increases space overhead by

one word per object, which can affect heap usage and GC performance. Our investigation

revealed that the bit stealing design performs slightly better than the latter approach.

Instrumentation. To detect status transitions, we instrumented all write operations

at runtime. We took advantage of the existing write barrier infrastructure in Jikes RVM.

There are two kinds of write barriers, primitive type and reference type. Primitive write

barriers capture writes to primitive-typed fields. On the other hand, reference write barriers

capture writes to reference-typed fields. Since the mechanism to process objects and arrays

is similar, we do not differentiate between objects and arrays in our discussion. We also

modified the read-barrier mechanism in Pacer to check an object’s status before executing

the race detection code.

As shown in Algorithm 3, there are two kinds of status transitions in stationary-object

analysis that must be detected at runtime:

Transition 1: initial→ lost

Transition 2: lost→ non-stationary

The reference-type write barriers have been implemented to detect both transitions.

Once a reference is written to a host object in the heap, the referenced object is marked as

lost. The status of the host object also changes to non-stationary if and only if the current

status of the host object is lost. On the other hand, the primitive-type write barrier only

detects Transition 2. Once a field is written, the host object is marked as non-stationary if

and only if its current status is lost. The write-barrier code executes right before the actual
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write happens.

There are two compilers in Jikes RVM: baseline and optimizing. Every method is ini-

tially compiled by the baseline compiler prior to its first execution. Later, if the method

becomes “hot,” the optimizing compiler recompiles the method with more optimizations.

Our system can be configured to apply instrumentation related to stationary-object analysis

to the baseline, the optimizing, or both compilers. Disabling instrumentation in the opti-

mizing compiler allows us to realize a form of optimized data race detection that mimics

the intuition of LiteRace [MMN09] — races in frequently executed code are rare, whereas

races in cold code are more prevalent.

Enabling/Disabling Race Detection. Pacer’s implementation of FastTrack adapts all

read/write operations to update and compare vector clocks. We built our stationary-object

analysis on top of Pacer. In this implementation, each time a read or write operation oc-

curs, our system checks the status of the host object. If its status is initial or lost, our system

does not execute the race detection code. Otherwise, it performs race detection. Our im-

plementation can also work with Pacer’s existing sampling feature, which can be enabled

or disabled at the end of each garbage collection cycle. Next, we describe the possible

impacts of our stationary-object analysis and report our experimental result that quantify

these impacts.

2.3.1 Effects on Race Detection Coverage

As shown in the three algorithms, our approach incurs small monitoring overhead to per-

form status check for each of initial or lost object and full race detection overhead for non-

stationary objects. This is much different than FastTrack in which race detection analysis

and vector clock updates are performed on all objects.

While this can result in a significant saving, it does come at a cost of missing a par-



29

ticular type of race that occurs at a particular time. Next, we describe the ability of our

approach to detect Write-Write, Read-Write, and Write-Read races and explain why our

approach misses a particular kind of race. We also report the result of comparing the effec-

tiveness of our race detection against that of FastTrack.

Detecting Write-Write Races. One key step of stationary object analysis is a detecting

write operation on a lost object. When that occurs, the object’s status changes to non-

stationary and from this point onward, race detection is enabled on this object. As such,

our technique can detect any write-write race that occurs in a particular program execution.

Detecting Write-Read Races. When a read operation is performed on a non-stationary

object, the first step of race detection is to check if the read races with prior writes. Since

we turn on race detection when write operations are performed on lost and non-stationary

objects, our system already maintains sufficient information on these objects to detect races.

As such, our technique can detect any write-read race that occurs in a particular program

execution.

Detecting Read-Write Races. When a write operation is performed on a lost object, a

check with prior reads is performed. However, because we do not monitor read operations

for lost objects, our system does not have sufficient information to detect the first instance

of read-write race when an object is in lost state. As such, this type of race goes undetected

in our system. However, if the same type of race occurs on the same object later on, our

system would be able to detect it because by then the object has already become non-

stationary, an object state in which full race detection monitoring is enabled. Next, we

quantify the occurrences of undetected races due to our approach.

Quantifying Undetected Races. We conducted an experiment to quantify the number

of races that goes undetected in our approach when compared to those detected by the

FastTrack implementation in Pacer.
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Table 4.1 describes a set of six benchmarks, which are commonly used by researchers to

evaluate Java systems. Three are from the DaCapo 2006 benchmark suite (eclipse, hsqldb,

and xalan) with two additional benchmarks from the DaCapo-9.12-bach suite (avrora and

sunflow) [BGH+06]. The three from the 2006 suite were used in the evaluation of Pacer.

Note that some benchmarks in the 2009 suite overlap with those in the 2006 suite. In

addition, not all benchmarks in the 2009 suite can run on our version of Jikes RVM with

Pacer.

We also attempted to obtain the source code of pseudojbb2000, which was also used

to evaluate Pacer. Unfortunately, we were not able to do so; as such, we used a newer

version called pseudojbb2005, which is SPECjbb2005 that has been modified to generate

predictable workload in each run [Sta05].

We ran each benchmark 50 times and identified races that have been detected in these

50 runs. This is necessary because races occur non-deterministically, and therefore, a large

number of runs are needed to detect most of the possible races. We also chose 50 runs to

replicate the experiment used to evaluate the performance of Pacer.

Detected races are reported in Columns 2 and 3 in Table 2.2. Note that we used the

same methodology as that used by the authors of Pacer, in which we report races that occur

over 25 times. Our approach misses 5 out of 116 races detected by FastTrack. Four of

the missed races are in eclipse and one is in xalan; no races are missed in the other four

benchmarks.

From the programmer’s point of view, one important source of information that is used

to fix races is the actual source of the reported data races. This information is presented

in a race report as bytecode indices within methods. In some applications, we observed

that a source can participate in many races. Columns 4 and 5 in Table 2.2 report identified

sources. As shown in the table, eclipse is the only benchmark for which our approach

misses some of the sources (3). Note that while our approach did not detect one race in
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Number of
Benchmark Description Threads
avrora Discrete event simulator of a 27

sensor network (DaCapo 2009).
eclipse Executes some of non-GUI jdt 16

performance tests for Eclipse
(DaCapo 2006).

hsqldb Execute a number of transactions 402
against a model of a
banking application (DaCapo 2006).

pseudojbb A program emulating 3-tier system 17
(a modified SPECjbb2005).

sunflow A multi-threaded global illumination 5
rendering system (DaCapo 2009).

xalan Transforms XML documents into 9
HTML (DaCapo 2006).

Table 2.1: Basic description of each benchmark.

xalan, it could identify all sources of data races.

When one is willing to sacrifice some race detection for a reduction in the overhead

of runtime monitoring, as is done in Pacer, the fact that our optimization is lossy has less

impact. In that setting, one must study the cost-benefit of the technique, i.e., how fault

detection varies with overhead, which is what we do discuss in Section 2.4.

Detected Races Identified Sources
Benchmark FastTrack SO FastTrack SO
avrora 12 12 10 10
eclipse 27 23 32 29
hsqldb 23 23 28 28
pseudojbb 22 22 21 21
sunflow 13 13 20 20
xalan 19 18 36 36

Table 2.2: Comparing the number of detected races and detected bytecodes that cause races
(FastTrack versus our approach).
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2.3.2 Reducing Monitored Objects and Operations

Table 2.3 reports the numbers of objects that an implementation of FastTrack monitors (“All

Objects”), the objects that remain stationary throughout the program execution (“Station-

ary Objects”), and the objects that are determined to be non-stationary (“Non-Stationary

Objects”). The percentage of all objects that are monitored when using the Stationary-

object Optimization (SO) are reported in Figure 2.1; these are the non-stationary objects.

There are four applications that must monitor fewer than 30% of the total number of ob-

jects with pseudojbb monitoring less than 2%. The two remaining have significantly more

non-stationary objects with avrora having the just under 88%.

While a reduction in the number of objects that requires monitoring can provide a sense

of the potential savings in race detection cost, the reduction in the number of monitored

operations ultimately determines the overhead. Table 2.4 shows the counts of read and

write operations for an implementation of FastTrack and for the non-stationary objects

using our SO. As expected, the reductions due to the SO lie primarily in the eliminated

monitoring of read operations on stationary objects. We also see a slight reduction in the

number of monitored write operations. We can achieve this reduction because SO does not

monitor any write to an object that is still in the initial state.

Figure 2.2 plots the percentage of FastTrack operations that require monitoring under

SO. There are four applications that must monitor fewer than 70% of monitored operations

in an implementation of FastTrack with hsqldb monitoring about 40%. Out of these four,

three (pseudojbb, sunflow, and xalan) also have the largest percentage of stationary objects.

However, for eclipse the SO eliminates the need to monitor nearly 90% of the objects, yet it

still needs to monitor 71% of read/write operations. This result shows that read operations

are not distributed evenly among objects. In fact, a large number of objects that we stop

monitoring may not have many read/write operations. Next, we evaluate the impacts of the
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Figure 2.1: Percentage of objects that must be monitored in SO.
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Figure 2.2: Percentage of operations that must be monitored in SO.

reduction in monitored operations on runtime performance.

Benchmark All Objects Stationary Non-Stationary
Objects Objects

avrora 301796 37013 (12.26%) 264783
eclipse 1416852 1237967 (87.37%) 178885
hsqldb 134959 48923 (36.25%) 86036
pseudojbb 8246421 8152388 (98.86%) 94033
sunflow 2286384 2113066 (92.42%) 173318
xalan 135852 97791 (71.98%) 38061

Table 2.3: Anaysis result of object demographics. The percentage of SO objects over all
objects reported in parentheses for each application.
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Benchmark FastTrack Reads Non-Stationary Reads FastTrack Writes Non-Stationary Writes
(×106) (×106) (×106) (×106)

avrora 25.85 20.37 (78.78%) 2.01 2.00
eclipse 63.41 40.65 (64.09%) 18.13 18.04
hsqldb 12.99 4.17 (32.11%) 1.90 1.87
pseudojbb 4.08 2.06 (50.51%) 1.34 1.33
sunflow 9.76 6.80 (69.67%) 0.270 0.269
xalan 8.86 5.40 (61.03%) 1.47 1.45

Table 2.4: Comparing read and write operations between FastTrack and our approach. Note
that we also report the percentage of Non-Stationary Reads over FastTrack Reads for each
application in parentheses.

2.4 Performance

In this section, we evaluate the runtime performance of SO against that of the implemen-

tation of FastTrack in Pacer. As mentioned previously in Section 2.3, our approach can

perform instrumentation in the baseline compiler, optimizing compiler, and both. As such,

we present two versions of SO: the first version performs instrumentation in both compilers

(SO) and the second version performs instrumentation only in the baseline compiler (SOn).

That is, there is no instrumentation to support stationary-object analysis when methods be-

come “hot” and have been recompiled by the optimizing compiler. We then evaluate the

performance of these two versions and compare the race detection effectiveness of SOn

against that of SO.

Lastly, we introduce SOs, which is based on SOn and incorporates the sampling feature

of Pacer. One important objective of Pacer is to perform low-overhead race detection in

deployed systems. As shown in their paper, Pacer is able to detect races while maintaining

86% runtime overhead. However, the sampling rate required to achieve this low overhead

is 3% of all read/write operations which limits race detection effectiveness. We compare

the race detection effectiveness of SOs against that of Pacer by maintaining fixed runtime

overheads of 50%, 70%, 85% and 100%. We also discuss why applying the stationary-
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object optimization can increase the effectiveness of sampling-based race detection systems

such as Pacer.

In terms of experimental methodology, we executed each of the 6 benchmarks 10 times

for each of the data race detection systems. The average performance is reported.

2.4.1 Performance of SO

Tables 2.3 and 2.4 show that the proposed SO can substantially reduce the numbers of

objects and operations that must be monitored, respectively. The reduced monitoring efforts

result in execution overhead reductions over that of FastTrack as reported in Table 2.5.

On average, the overhead of SO is 72% of that of FastTrack (see gray bars in Figure 3.4).

The lowest overhead of 60% of FastTrack’s is achieved in hsqldb. We also see that in

sunflow the overhead is as high as 81% of FastTrack’s. In all, the overhead ranges from

60% to 82% of FastTrack’s. Also notice that the reduction percentage for each benchmark

correlates well with the number of operations that has been reduced by SO; that is, the

overhead reduction percentage is close to the operation reduction percentage.

Slowdown Factor (×)
Benchmark FastTrackPacer SO SOn

avrora 5.1 4.5 4.2
eclipse 21.0 16.8 8.2
hsqldb 12.2 7.3 3.8
pseudojbb 7.7 5.1 4.3
sunflow 29.2 24.1 13.1
xalan 11.6 7.1 2.6
average 13.8 10.3 5.9

Table 2.5: Comparing the slowdown factor of the implementation of FastTrack in Pacer
(FastTrackPacer), SO, and SOn over the execution time of RVM with no race detection.
For example, xalan running on FastTrackPacer is 11.6 times slower than running on RVM
with no race detection.
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Figure 2.3: Overhead of SO and SOn normalized against that of FastTrack implementation
in Pacer.

2.4.2 Performance of SOn

In this configuration, we further reduce the number of monitored operations by not having

the optimizing compiler perform any instrumentation to support stationary-object analysis

or race detection. There are two main insights for exploring this configuration.

1. Based on our race reports, we noticed that all types of races occur repeatedly; many

races occur several thousand times in a run. As such, it is possible that monitoring

only a small window of operations would be sufficient to uncover most if not all types

of races.

2. Work by Marino et al. suggests that “data races are likely to occur when a thread

is executing a cold (infrequently accessed) region in the program” [MMN09]. Their

experimental result indicated that if they use this observation to guide a sampling-

based race detector, it can detect over 70% of data races.

Our approach of only enabling instrumentation in the baseline compiler exploits these

two insights by (i) creating a monitoring window based on the time a method executes as

unoptimized object code, and (ii) cold regions of the code would be unlikely to go through
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Figure 2.4: Comparing the number of missed races in SOn with that of SO normalizing
with the number of races detected by FastTrack.

the optimizing compiler. As such, when races occur in a cold method, our system can detect

them. Figure 2.4 compares the race detection effectiveness of SOn to those of SO and an

implementation of FastTrack. Notice that when our approaches miss detecting races, we

report the numbers of detected races over the number of all detected races by the Pacer’s

implementation of FastTrack. For example, SOn detects 18 races while FastTrack detects

27 races or 18
27

in eclipse.

As shown in the figure, SOn still detects over 90% of races in four out of six appli-

cations. In the worst performing application, eclipse, SOn still detects 67% of all races

detected by the Pacer’s implementation of FastTrack. It also detects over 84% of races in

xalan. Based on this result, this approach still provides good race detection coverage espe-

cially in a low-overhead race detection system that are expected to miss some races (e.g.,

sampling based race detection).

Figure 3.4 reports the average overhead of SOn normalized against that of the imple-

mentation of FastTrack in Pacer (see black bars). The average overhead is 46% of that of

FastTrack implementation. The major reason for the smaller overhead is due to the num-

ber of monitored operations that have not been injected by the optimizing compiler. With
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SO, the average reduction in the number of operations is 30%. SOn can further increase

this reduction percentage to 55%. That is, SOn monitors less than half of the operations

monitored by FastTrack while still detecting 90% of the races.

2.4.3 Performance of SOs

One interesting feature of Pacer is its ability to guarantee proportionality when sampling

is used. As shown by Pacer, sampling can significantly reduce the runtime overhead to a

point that race detection is possible in deployed systems [BCM10]. Because we implement

our dynamic stationary-object analysis in Pacer, we can also utilize this feature as a way to

reduce overhead of SOn by controlling the sampling rate.

In this section, we report the result of our experiment to evaluate the suitability of using

SOn in deployed environments. Our methodology is applying Pacer’s sampling mechanism

to SOn—we call the resulting technique SOs. We then observe the number of detected

races for a particular overhead budget (i.e., 50%, 70%, 85%, and 100%). We then compare

the number of detected races for each benchmark for SOs and Pacer and report the results

in Figure 3.5.

It is worth keeping in mind that the overhead of the sampling mechanism in Pacer is

around 30%; it is impossible to reduce monitoring overhead below that threshold. Because

SOs also incurs additional overhead for mechanisms to support stationary-object analysis,

the overhead of SOs without turning on race-detection is already at 35%. As such, we set

our lowest budgeted overhead to be at 50%.

As shown in the figure, SOs can detect more races than Pacer in five out of six bench-

marks when the overhead is set to be below 100%. For pseudojbb, all races originated from

one commonly used class. As such, both Pacer and SOs can detect over 75% of the races

with low sampling rates. Also notice that SOs can detect nearly the same number of races
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Figure 2.5: Comparing the effectiveness of SOs and Pacer in detecting races within low
overhead budgets.
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as that of Pacer in pseudojbb (difference of 1 fewer race or less).

Another interesting benchmark is sunflow. Pacer cannot consistently detect races until

the overhead budget is set to 500% (not shown in the graph). At that overhead, it can detect

1.7 races on average while SOs can detect 10.7 races on average. One key characteristic

that makes SOs more successful is the reduced set of objects, and read and write operations,

that must be sampled. Sunflow is by far the most expensive application for Pacer to execute.

It incurs 29 times slowdown when compared to RVM without race detection (see Table

2.5). As such, it can only sample at a very low rate to maintain 100% or less overhead.

On the other hand, when the operations that cannot participate in races have been culled

by our approach, a low sampling rate has a much better chance of catching race inducing

operations. As an example, Pacer can only sample about 3% of the operations in sunflow

to maintain 85% overhead. On the other hand, a sampling rate in SO that can maintain the

same overhead is as effective as a sampling rate of 9% in Pacer. That is, in order for Pacer

to detect the same number of races as that of SO, it needs to sample at 9%.

Another interesting point is that SOs is more effective at the lowest overhead budget.

As shown in Figure 3.6, SOs can detect on average a factor of six more races than Pacer

when the overhead budget is 50%. As the overhead budget increases, this factor becomes

smaller. At 100% overhead, SOs detects more races than Pacer by a factor of 2. If we

increase the budgeted overhead to 500% or more, the numbers of detected races between

the two approaches begin to converge.

2.5 Conclusions

Data races are subtle and difficult to detect errors that arise during concurrent program

execution. As of now, state-of-the-art techniques have shown that precise race detection

can be achieved, but at a cost of 8 times slow down in program execution. In this work, we
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Figure 2.6: Comparing race detection effectiveness between SOs and Pacer.

incorporate an optimization technique based on the stationary objects notion. Stationary

objects are only written to early in their lifetimes and then become read-only afterward. As

such these objects can never participate in data races since they are never written. Based on

this insight, we develop a methodology that concentrates the monitoring effort on objects

that can participate in races. Our experimental result shows that our proposed system only

incurs an average overhead of 45% of that of an implementation of FastTrack. Furthermore,

when our approach is applied under tight overhead budgets (less than 100%), it can detect

up to a factor of 6 times more races than Pacer, a sampling-based race detector based on

FastTrack algorithm.
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Chapter 3

LIS: Loop Iteration Sampling

Currently, state-of-the-art precise race detectors are too expensive to be “turned on” all

the time. As such, recently introduced approaches use sampling to bring the cost of race

detection down to a feasible level. In doing so, their effectiveness in detecting races suf-

fers because with sampling, monitoring is only operational for a fraction of the program

execution, thereby, reducing opportunities to observe the occurrence of races.

Furthermore, our study reveals that the small fraction of the execution that a detec-

tor spends on monitoring is often of limited value due to repetitive detection of the same

races. Most programs consist of loop regions. Because these detectors sample uniformly

with respect to time, executions in loops mean that loop regions are sampled more often

than non-loop regions. Non-uniform sampling increases detection overhead but without

increasing detection effectiveness.

In this work, we introduce Loop Iteration Sampling or LIS, a new detection optimiza-

tion that spends less time to monitor repetitive operations that occur inside loop regions.

The algorithm employs a differential sampling approach to significantly and continuously

reduce the monitoring efforts in long running loops. When we apply LIS to two existing

sampling-based race detectors, Pacer and SOS, we see a 52% and 33% reduction in over-



43

head, respectively. LIS also increases the numbers of detected races by a factor of seven

for Pacer and a factor of two for SOS, when we restrict the race detection overhead to

less than 100%.

3.1 Introduction

As the speed of microprocessors tails off, exploiting the availability of multiple processing

cores per chip is becoming an increasingly popular way for developers to achieve higher

performance. A natural way to do this is to shift from writing purely sequential applications

to employing thread-level parallelism in their applications. Writing correct concurrent pro-

grams can, however, be challenging, because improper synchronization of access to shared

resources can lead to runtime errors such as deadlocks and data races, which are difficult

to detect, isolate, and correct. This is because concurrency faults are sensitive to execution

interleavings. As such, they often appear unpredictably and intermittently.

Dynamic race detection provides a way for programmers to detect races as they occur

during execution of a program. Currently, dynamic detection techniques that use vector

clocks [BCM10, FF09, PS03, PS07] to track the ordering of accesses to individual object

fields provide precise detection, but incur very high runtime overhead. Work by Li et al. at-

tempts to reduce the overhead by applying stationary analysis, which identifies objects that

are read-only and cannot participate in races [LSaD11]. The evaluation of this technique

shows that stationary analysis can reduce the number of objects that must be monitored

by an average of 65% across six benchmarks. However, the analysis can only reduce the

number of operations that must be monitored by an average of 35%.

As part of this work, we conduct an investigation which reveals that many of these

access operations occur within loops. As such, they are executed repeatedly as part of a

program execution. We also discover that when a source of data race exists in a loop, it is
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detected again and again so monitoring these operations does not necessarily reveal new

sources of races. This insight provides an opportunity to reduce the race detection overhead

without degrading race detection effectiveness by appropriately reducing monitoring efforts

within loops.

Furthermore, our investigation also reveals that monitoring in loops can also reduce the

benefit of using sampling as a way to reduce race detection overhead [BCM10, LSaD11].

Existing sampling-based approaches do not sample uniformly across a program. For ex-

ample, Pacer, a sampling based race detector, employs garbage collection events to enable

and disable race monitoring. Conceptually, their approach seeks to uniformly sample time

slices during which they monitor for data races. However, when a program has long run-

ning loops, Pacer ends up monitoring more within those loops, because the program spends

more time in those loops. The net result is that sampling is non-uniform across the program

locations that might participate in a data race. This leads to increased detection overhead,

but without a corresponding increase in detection effectiveness. In the absence of infor-

mation about where races might be located in a program, a sampling approach for runtime

monitoring should uniformly distribute sampling across the entire program to balance cost

and effectiveness.

Our work advances the state-of-the-art in race detection in two ways. First, we intro-

duce a new race detection optimization technique that significantly reduces the monitoring

efforts in loop regions, and therefore significantly reduces race detection overhead. We

achieve this reduction by applying a loop iteration sampling (LIS) that reduces the mon-

itoring effort in a loop based on the execution frequency of that loop. We implemented

our optimization technique in Jikes RVM and evaluated its effectiveness. The experimental

results reveal that it can reduce race detection overhead by an average of 54%, when com-

pare to Pacer, while maintaining nearly the same race detection effectiveness as that of a

detector without LIS.
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Second, when our approach is used in combination with temporal sampling, it auto-

matically calculates an LIS rate for each loop that aims to spread monitoring uniformly

across the program and thereby reduce overhead while yielding good race detection ef-

fectiveness. We then evaluate the effectiveness of LIS under four race detection overhead

budgets: 50%, 70%, 85%, and 10%. Our evaluation reveals that LIS allows more races to

be detected while maintaining the same overhead as those of SOS’s and Pacer’s. This is

because LIS allows a higher temporal sampling rate to be used given a specific overhead

budget for a given application.

The remainder of this chapter is organized as follows. Section 3.2 reports the results of

our experiment to investigate the effect of loops on race detection performance. Section 3.3

describes our analysis and the implementation of our technique in Jikes RVM. Section 3.4

reports the results of our experimental evaluation of LIS. We compare our results against

the most cost-effective sampling based race detection techniques available and show that

adding LIS improves those techniques significantly. Section 5 compares our work to other

existing work in this area. Section 3.5 discusses future work that can be done to further

improve the detection effectiveness of the proposed analysis.

3.2 Effects of Loops on Race Detection

We conducted a set of experiments on the same multithreaded benchmarkas as we used in

Chapter 2 to evaluate the effects of memory access operations within loops on race detec-

tion overhead. The term loops refers to for-loop, while-loop, and iterators. We modified

the Jikes RVM to detect loop execution and then report the numbers of monitored op-

erations that are outside of loop regions. The race detectors used in our experiment are

Pacer [BCM10] and SOS [LSaD11]. Pacer was configured to monitor every operation

(100% sampling rate).
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3.2.1 Monitored Operations within Loops

An underlying principle that motivates the use of cache to speed up memory access time is

the 90/10 rule-of-thumb. It states that a program spends 90% of its execution time in only

10% of the code. As such this rule implies that a major part of a program execution is spent

in loops.

We hypothesize that such execution behavior also provides an opportunity to reduce the

cost of race detection. This is because if race detection related operations reside in loops,

they would be accessed repeatedly. The result of our prior work on stationary analysis

also hints that such repeated accesses occur in most programs. When we applied stationary

analysis, we see an average of 65% reduction in the number of objects [LSaD11]. However,

in terms of monitored operations, stationary analysis could only achieve less than 35%

reduction (see the last gray bar in Figure 3.1). This result implies that objects that should

be monitored for races are accessed repeatedly.

To verify our hypothesis, we conduct an experiment to eliminate monitored operations

that reside in loops. We report the results in Figure 3.1. Note that these potential savings

are over-approximated because in practice, we cannot eliminate all operations that must be

monitored in loops. However, the results provide upper-bounds on the attainable savings.

The results indicate that four out of six applications can significantly benefit from LIS.

Three applications show that 60% to 70% of monitored operations reside in loop regions

(eclipse, hsqldb, and sunflow). We also see that 50% of operations in xalan are in loop

regions. The exceptions are pseudojbb and avrora, which shows little potential benefit from

applying LIS. On average, LIS yields higher overhead saving than stationary optimization,

but by only a few percent. However, in some applications, loop iteration sampling is more

than twice as effective in reducing the number of monitored operations than stationary

object suppression. From the results, we conclude that reducing monitored operations in
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Figure 3.1: Projected fractions of costs if operations in loops are not monitored.

loop regions has the potential to significantly reduce the overhead of race detection in some

applications.

3.2.2 Detected Races within Loops

Our previous study also indicated that the statements involved in a data race are often de-

tected repeatedly during a program run. For example, when Pacer is used without sampling,

it can detect 12 unique sources of races in avrora. However, during execution, those twelve

sources have been dynamically detected over 417,000 times. This averages to nearly 35,000

detected dynamic races per unique race. In the other applications, we see the ratio between

dynamic races and unique races to be 599.37 for eclipse, 19.30 for hsqldb, over two million

for pseudojbb2005, 3.31 for sunflow, and 1.63 for xalan.

Next, we investigate the number of dynamic races that are detected in loops. We found

that in avrora, eclipse, and pseudojbb2005, over 90% of dynamic races are detected in

loops. The other three applications indicates that less than 17% of dynamic races are de-
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tected in loops. This observation provides even more reasons to apply LIS. First, in ap-

plications where most dynamic races are detected in loops, we should be able to reduce

monitoring in loop regions but still be able to detect most of unique races. To illustrate this

point, we use avrora as an example. As reported earlier, most races are detected in loops.

Furthermore, each unique race is dynamically detected over 35,000 times. If we are to

reduce the monitoring in loops by a factor of 100, each unique race can still be detected as

many as 350 times. Second, for applications that do not have many races in the loop, there

is no need to spend a lot of monitoring efforts in loop regions. As such, these applications

are also candidates for LIS.

In the next section, we provide the details of our approach to reduce the monitoring

overhead in loop regions. We do so by applying a scaling factor to control the sampling

rate of monitoring in loop regions. We then describe our implementation of the LIS in Jikes

RVM which is designed to integrate with Pacer and SOS.

3.3 Approach

As stated previously, state of the art dynamic race detectors [BCM10, MMN09, FF09] are

still too expensive to be used in deployed systems. As such, sampling has been used on

these detectors as a way to reduce overhead. Recent work by Li et al. applies stationary

analysis to reduce overhead by an average of 35% [LSaD11]. However, as shown in Sec-

tion 3.2, there might be an opportunity to significantly reduce the race detection overhead

by customizing the sampling of monitoring operations in loop regions. In this section, we

describe our approach to perform sampling to reduce race detection cost. We refer to our

proposed loop optimization technique as Loop Iteration Sampling.

The main idea is to differentiate the monitoring efforts between operations that reside

in loop regions and those that do not. The goal is to reduce the overhead for monitoring
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repetitive operations in loops. As shown before, current approaches can spend up to 80%

of their monitoring effort on operations in loops. However, that effort does not always

yield increased race detection. Next, we describe our approach to differentiate monitoring

in loop and non-loop regions.

3.3.1 Loop Iteration Sampling Algorithms

To understand how loops cause redundant data access monitoring, consider the simple

example in Figure 3.2. The program has a class Example containing a static field d. Two

instances of threads loopRacer and regularRacer concurrently access field Example.d.

There are two distinct data races between write operation at line 22 and read operations at

line 12 and 14, denoted as race1 (race between lines 12 and 22) and race2 (races between

lines 14 and 22), respectively.

Race detectors such as FastTrack or Pacer (with 100% sampling rate) would monitor all

data access operations and detect one instance of race1 and one million instances of race2.

Clearly, there is no need to identify the source of a data race (e.g. race2) one million times.

When we configure Pacer to operate at a small sampling rate (e.g., 3%) it samples

operations to monitor uniformly over the execution time. However, the 3% sampling rate,

which can cause up to 86% overhead [BCM10], is very low. Consequently, there is a good

chance that Pacer, operating at that sampling rate, would miss race1. On the other hand,

because the statements that cause race2 are executed frequently, race2 has a much higher

probability than race1 of being detected.

The example reveals a glaring inefficiency of techniques that uniformly sample mon-

itoring operations over time. To overcome this inefficiency, we propose a Loop Iteration

Sampling technique that samples the number of operations to be monitored inside loop

regions. The goal of the proposed technique is to reduce overhead without degrading de-
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1 p u b l i c c l a s s Example {
2 s t a t i c Datum d = new Datum ( ) ;
3
4 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ){
5 new LoopRacer ( ) . s t a r t ( ) ;
6 new R e g u l a r R a c e r ( ) . s t a r t ( ) ;
7 }
8 }
9

10 c l a s s l o o p R a c e r {
11 p u b l i c vo id run ( ) {
12 Datum d1 = Example . d ; / / race1
13 f o r ( i n t i =0 ; i <1000000; i ++){
14 Datum d2 = Example . d ; / / race2
15 }
16 }
17 }
18
19 c l a s s r e g u l a r R a c e r {
20 p u b l i c vo id run ( ) {
21 whi le ( t rue ) {
22 Example . d = new Datum ( ) ; / / race1 , race2
23 }
24 }
25 }

Figure 3.2: Data Race Example

tection effectiveness. Next, we describe LIS.

If a heap access bytecode is currently executing in a loop, which is denoted by op, our

algorithm records the current number of loop iterations that have bee executed, denoted as

S. Let the sampling rate of operations outside of loops be α. The sampling rate of op is

calculated as follows:

SamplingRate(op) =
α

10dlg(S)e

To illustrate the potential benefits of this scheme, reconsider the example from Fig-

ure 3.2. The read operation at line 12 has nearly one million times higher probability to be

sampled than the read operation in line 14. As explained below, with LIS the probabilities
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that race1 and race2 would be detected become much closer – since the sampling rate of

line 14 within the loop converges to α/106. This means that most loop iterations are not

monitored, resulting in overhead reduction. As for write operation at line 22, the sampling

rate will eventually decrease to a very low level. For instance, the sampling rate will be

0.000001 ∗ α after one million iterations, which means that the race detection overhead

within that loop would approach the minimum. This characteristic can be quite beneficial

to long running server applications as the detection overhead continues to decrease as the

program continues to run.

Next we explain Algorithm 5 and Algorithm 6. To do so, we need to provide some

information about the sampling mechanism in Pacer, which we refer to as “global” sam-

pling mechanism because it controls sampling for the whole program. Currently, the global

mechanism is regulated by garbage collection invocations. For example, if the sampling

rate is 10%, monitoring takes place every 10th garbage collection invocation. In this ap-

proach, there is a centralized Boolean variable, samplingStatus, that records whether we

should monitor operations at this time. In this example, the variable is only set to 1 every

10th garbage collection cycle.

Our LIS approach extends the mechanism used in Pacer to control monitoring in loops.

Because, we adjust the sampling rates based on the number of iterations, we create a cen-

tralized Boolean array to record whether loops should be monitored at this time. We refer

to this Boolean array as loopSampling. To illustrate the relationship between LIS and the

global sampling mechanism in Pacer, we provide a simple example. Let us assume that the

sampling rate is 10% and the garbage collector has just been invoked. However, this is the

9th invocation and not the 10th invocation so the sampling mechanism is disabled. This

means that samplingStatus and every element in loopSampling are set to false. This also

means that from this point on to the next garbage collection invocation, there will not be

any race detection monitoring.
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The way we organize loopSampling is that each element stores information for a set of

loops whose iteration counts have the same logarithm when truncated to an integer. For

example, if we have two loop regions, both have iterated through 8 times, these two loops

belong to the same group, which is 10 iterations or less. Any memory read and write

operation in these two loops, would check whether monitoring is enabled by accessing a

loopSampling[1]. Variable range in Algorithm 5 computes the log-based index into the

loopSampling array.

Continuing the example, when the garbage collector is invoked again it is the 10th

invocation so temporal sampling is on. The mechanism sets samplingStatus to true and then

applies Algorithm 6 to set each element of loopSampling. The way we set each element

to true or false is based on the number of sampled iterations (sampledOps) for each group

and the total number of iterations (totalOps). Note that sampleOps and totalOps are integer

arrays with the same dimension as samplingStatus. The values of totalOps and sampledOps

are updated in Algorithm 5 and used in Algorithm 6 to calculate the current sampling rate

(currentRate in Algorithm 6) and the rate that should be sampled within a particular group

of loops (targetRate in Algorithm 6). As shown in Algorithm 6, we periodically adjust the

sampling rate by multiplying a weight that is obtained by dividing the target sampling rate

with actual sampling rate.

We illustrate the process to adjust the sampling rate in Algorithm 6 below. First, assume

the target sampling rate for loops with fewer than 10 iterations is 10%. Assume also that

there is an data access operation within a loop, which has executed eight iterations. The

operation will check loopSampling[1] to see if monitoring should be performed. Second,

assume the sampling rate for code outside loop is 100%, then loopSampling[1] = .1 * (1

/ .1). Third, assume that out of the eight iterations (totalOps[1]==8), two iterations have

been sampled (sampledOps[1]==2). This means the actual sampling rate is 25% (2/8).

Because we set the target sampling rate to 10% in the previous step, the current rate of 25%
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is too high. Consequently, we reduce the target sampling rate to 4% (.1 ∗ (.1/.25)) in order

drive the current sampling rate towards the target of 10%.

{Input: data access operation, op}

if SamplingStatus(op) == true then
checkRace(op, currentThread)
updateVectorClock(op, currentThread)

Algorithm 4: Data Race Monitoring

{Input: data access operation, op}
{Output: whether monitor or not for this execution}

loopSampling[0..n] = {true, false};
sampledOps[0..n]
totalOps[0..n]

if op is within loops then
range← dlg(op.iterations)e
totalOps[i] + +
if loopSampling[range] then
sampledOps[i] + +
return true

else
return false

Algorithm 5: Sampling Status

3.3.2 Implementation

We incorporate LIS into two existing race detectors that have been implemented in Jikes

RVM, Pacer and SOS (see Chapter 2 for more information). Pacer is based on the

FastTrack but it incorporates a sampling mechanism that can be used to control overhead.

SOS is then based on Pacer so it also has sampling feature. Next,we describe some key

components in our implementation.

Loop identification. The first major challenge to deploy LIS is to dynamically identify

loops. The dynamic compilers in Jikes RVM identifies basic blocks inside loops as part
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{Input: α is the sampling rate for code outside loops}
{Output: loopSampling[0..n] containing sampling decisions for different sampling rate}
for i = 1→ n do
targetRate[i]← α

10i

result = random(0, 1) {Generate a random float number within [0,1]}
if sampledOps[i] 6= 0 then
currentRate = sampledOps[i]

totalOps[i]

targetRate[i] = targetRate[i]2

currentRate
if result ≤ targertRate[i] then
loopSampling[i] = true

else
loopSampling[i] = false

Algorithm 6: Sampling Decision

of the compilation process. We exploit this information and perform instrumentation of

intermediate representations to record loop iterations. For data race detection, we only

instrument heap access bytecodes such as getfield, putfield, getstatic, putstatic, aaload,

aastore, etc. However, it is quite complex to deal with a method call in loop. This is

because a method could also be called by a different calling context. This problem becomes

even more complex for method calls in nested loops.

To deal with such issues, we create a runtime loop checker. The checker sets a counter

for each thread to record the loop depth of method calls. Every time the program enters a

method call in loops, the counter is increased. When the program exits from a method call

in a loop or loops, the counter is decreased. As such, when the counter value is non-zero,

the program is executing in loop(s), shown in Figure 3.3.

1 c u r r e n t T h r e a d . loopDepth ++:

2 / / method c a l l w i t h i n a loop

3 foo ( ) ;

4 g e t C u r r e n t T h r e a d ( ) . loopDepth−−:

Figure 3.3: Instrumentation For Method Call
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Sampling decision. As mentioned above, we count iterations for each bytecode, so it is

straightforward to apply the algorithm in Section 3.3.1 to dynamically calculate sampling

rate for bytecodes inside loops.

Further optimization. There are two compilers in Jikes RVM: baseline and optimizing

compilers. Every method is initially compiled by the baseline compiler prior to its first

execution. Later on, if the method becomes “hot”, the optimizing compiler recompiles the

method with more optimizations. As reported by LiteRace[MMN09], data races tend to

occur in ”cold” region. The insight motivates us to further enhance data race coverage by

disabling sampling in baseline compiler. With this approach, more monitoring is done

inside the baseline compiler.

3.4 Performance Evaluation

In this section, we evaluate the performance of LIS. Our experimental methodology is

to apply LIS to enhance two existing data race detection techniques: Pacer and SOS.

Note that SOS also uses the sampling mechanism of Pacer. As such, the mechanism to

control sampling in Pacer, which we refer to as global sampling is also used to control

sampling rate in SOS. We then create two new detectors: Pacer+LIS, or PacerLIS , and

SOS +LIS, or SOSLIS . We then study both the efficiency of the effectiveness of the two

new detectors relative to Pacer and SOS without further optimization under two operating

scenarios: no sampling and controlled overheads through sampling.

The way we configure PacerLIS and SOSLIS is as follows. For the case that sampling

is not used, we set the global sampling rate to 100%. Setting it to 100%, in effect, disables

the periodic sampling component of Pacer. Next, we enable the sampling component of

LIS. The sampling rate is only applied to loop regions to control the monitoring efforts.

Initially, the LIS rate is the same as global sampling rate (100% in this case). However,
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as the loop continues to run, the LIS rate is periodically recalculated and decreased. In

this example, our detectors monitor all operations in non-loop regions and then only some

operations as controlled by the LIS rate in loop regions.

Second, we assess the potential for LIS to achieve low overhead race detection at a level

that might be considered for use in deployed settings. To do this we fix the overhead of each

analysis and then study the race detection effectiveness. In all of the analyses we work with

the mechanism for controlling overhead is through the reduction of the global sampling

rate, however, sampling rate and and overhead are not directly proportional. Complicating

matters further the relationship between sampling rate and overhead varies with each of the

four analyses we study. For example, Bond et al. have shown that Pacer is able to detect

races while maintaining 86% runtime overhead and to achieve this requires a sampling rate

of 3%. We explore four fixed sampling overhead rates 50%, 70%, 85% and 100% that

allow us to explore the least expensive, and least effective, instances of the analyses. For

each analysis, across each program, we computed the sampling rate required to achieve

those overheads.

In terms of experimental methodology, we executed each of the 6 benchmarks 10 times

using each of the race detectors. The data we report is computed in terms of averages across

those 10 runs.

3.4.1 Efficiency of SOSLIS

Figure 3.1 shows that the LIS has the potential to reduce the number of operations that must

be monitored – specifically the operations occurring within loops. The reduced monitor-

ing effort may result in execution overhead reductions relative to the detectors that do not

employ LIS as reported in Table 3.1.

On average, the overhead of SOSLIS is 48.5% of that of Pacer (see the last black bar
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in Figure 3.4). It is also interesting that in sunflow the overhead of SOS is 81% of Pacer’s

but the overhead of SOSLIS is only 23% of Pacer’s. In all, the overheads of SOSLIS range

from 23% to 91% of Pacer’s. As shown in Figure 3.1, avrora does not have many operations

in loops, and therefore, does not benefit from applying LIS. This is the main reason why

LIS is only able to reduce the overhead of avrora by 9%.

In addition, we also see more uniform overheads with SOSLIS . As an example, when

sunflow is executed on SOS, the slowdown is 23.9 times. This is an improvement from

the slowdown experienced by Pacer but it is still quite large. Across all applications, the

slowdown factors of SOS range from 4.2 to 23.9 times. In contrast, the slowdown factors

of SOSLIS range from 3.5 to 7.1 times. This implies that SOSLIS yields more consistent

and predictable performance.

When only LIS is used with Pacer, its average overhead is 65% of Pacer’s. On the other

hand, when SOS is used with Pacer, its average overhead is 72% of Pacer’s. This indicates

that if only one optimization technique is to be used, LIS is more effective in reducing

overhead than SOS.

Slowdown Factor (×)
Benchmark Pacer SOS PacerLIS SOSLIS

avrora 5.1 4.2 5.2 4.7
eclipse 21.0 16.6 7.6 7.1
hsqldb 12.2 7.3 7.8 3.5
pseudojbb 7.7 5.1 8.1 5.2
sunflow 29.2 23.9 8.4 6.7
xalan 11.6 7.1 6.3 5.5
average 14.5 10.7 7.2 5.4

Table 3.1: Comparing the slowdown factor of the implementation of Pacer, SOS,
PacerLIS , and SOSLIS over the execution time of RVM with no race detection. For ex-
ample, avrora running on Pacer is 5.1 times slower than running on RVM with no race
detection.
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Figure 3.4: Overheads of SOS, PacerLIS and SOSLIS normalized against Pacer’s.

3.4.2 Effectiveness of SOSLIS

Typically, when we apply optimization techniques such as SOS or LIS, one possible neg-

ative impact is a reduction the race detection effectiveness. That is, the system may miss

some races. In SOS, the first instance of race that involve write after read is not detected.

In LIS, because we monitor fewer operations in loops, it can also miss races. Table 3.2

reports the race detection effectiveness.

Benchmark Pacer SOS PacerLIS SOSLIS

avrora 12 12 10 10
eclipse 27 23 20 18
hsqldb 23 23 23 22
pseudojbb 22 22 21 21
sunflow 13 13 13 13
xalan 19 18 19 18

Table 3.2: Comparing the number of detected unique races.

As shown in the table, SOSLIS can detect all unique races in one application, all but

one unique races in three applications (hsqldb, pseudojbb, and xalan), which accounts for

missing at most 5% of all detected races (xalan). In avrora, it misses two races or 16.67%.

It misses nine races or 33% in eclipse. By analyzing the runtime data (which is not shown),
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we discover a very unique situation with eclipse. In other applications, the percentage of

reduction in the number of detected dynamic races range from 0% (in xalan) to 19% (in

pseudojbb) when SOS is used. However, we see a reduction is 60% in eclipse. (With Pacer,

there are 16,191 detected dynamic races in eclipse. After SOS is applied, the number of

detected dynamic races reduces to 6,444, which is a 60% reduction).

Further investigation reveals that eclipse has a few races that cannot be detected by

SOS due to the its limitations. This explains the 60% reduction in the number of detected

dynamic races. With SOSLIS , the number of detected dynamic races is further reduced

by another 99%, when compared to SOS (As reported earlier, there are 6,444 instances

of detected dynamic races. After LIS is applied to SOS, the number reduces to only 54).

The result of the analysis indicates that (1) eclipse has many unique races that cannot be

detected by SOS; and (2) in addition, it also has many unique races that reside in loop

regions but they are in code locations that are not frequently monitored. As such, when we

reduce the monitoring efforts in loops, these races go undetected. Despite all these missed

races, SOSLIS still detects 66% of unique races detected by Pacer while yielding only

35% of Pacer’s overhead.

In summary, we can achieve the greatest reduction in most applications when both

SOS and LIS are used together. We also notice that the reduction percentage for each

benchmark correlates well with the number of operations that have been eliminated by

loop sampling; that is, the overhead reduction percentages are similar to the operation

reduction percentages. In terms of race detection effectiveness, SOSLIS can detect most

races detectable by Pacer. As such, we conclude that we can achieve significant overhead

reduction without sacrificing significant race detection effectiveness.
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3.4.3 Effectiveness of SOSLIS with Fixed Overhead

In this section, we report the result of our experiment to evaluate the suitability of using

SOSLIS in deployed environments. As explained above, our evaluation approach is to ap-

ply Pacer’s sampling mechanism to SOSLIS and observe the number of detected races for a

particular overhead budget (i.e., 50%, 70%, 85%, and 100%). We compare the percentage

of unique detected races for each benchmark, for each of the four detectors at each over-

head budget. We report the results in Figure 3.5. To aid in understanding the data in these

figures, we also report the average number of unique races detected by SOSLIS as labels

above the lines representing SOSLIS .

It is worth keeping in mind that the overhead of the sampling mechanism in Pacer is

around 30%; therefore, it is impossible to reduce monitoring overhead below that threshold.

Because LIS also incurs additional overhead for mechanisms to support analysis. As such,

we set our lowest budgeted overhead to be at 50%.

As shown in the figure, SOSLIS can detect more races than any other approaches in

five out of six benchmarks when the overhead is set to be below 100%. The only exception

is avrora, in which LIS is not effective in reducing the number of operations. As such,

LIS is also not effective in reducing the overall detection overhead. In fact, SOS is more

effective at reducing the number of monitored operations in avrora. For pseudojbb, all races

originated from one commonly used class. As such, all configurations can detect over 75%

of the races with low sampling rates.

Another interesting benchmark is sunflow. Pacer and SOS cannot consistently detect

races when the overhead is 70% and below. At 100%, SOS can detect races more con-

sistently. Throughout the range of budgets, SOSLIS can consistently detect races. The

detected races range from 2 at 50% overhead budget to 8 at 100% overhead budget.

One key insight is that sunflow is by far the most expensive application for Pacer and



61

(a) avrora

0 

20 

40 

60 

80 

100 

50% 70% 85% 100% 

(%
) 

6.5
7.0

7.1
7.3

(b) eclipse

0 

20 

40 

60 

80 

100 

50% 70% 85% 100% 

(%
) 

4.5 5.4 6.3

11.4

(c) hsqldb

0 

20 

40 

60 

80 

100 

50% 70% 85% 100% 

(%
) 

9.1

12.6

20.2 22.1

(d) pseudojbb

0 

20 

40 

60 

80 

100 

50% 70% 85% 100% 

(%
) 

21 212020

(e) sunflow

0 

20 

40 

60 

80 

100 

50% 70% 85% 100% 

(%
) 

2.1
3.2

6.4
8.0

(f) xalan

0 

20 

40 

60 

80 

100 

50% 70% 85% 100% 

(%
) 

1.5
2.6

10.7
12.3

Pacer SOS Pacer+LO SOS+LO 

Figure 3.5: Comparing the raced detection effectiveness of detectors with loop-
optimization with the ones without given low overhead budgets. For each application,
we also report the number of detected unique races by SOSLIS above the solid black line.
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SOS to execute. It incurs 29 and 24 times slowdown, respectively when compared to RVM

without race detection (see Table 3.1). As such, they can only sample at low rates to

maintain 100% or less overhead. Low sampling rates mean that they would miss a lot of

races. Furthermore, there is no consistency in the number of detected races across runs

for Pacer; some runs would report no races while others report a few races. As such, the

average number of detected races across ten run is only 0.7.

Sampling Rate (%) at
an Overhead Budget of

Benchmark 50% 70% 85% 100%
Pacer 0.9 1.5 2.8 5.1
SOS 3.6 7.9 11 14.2
PacerLIS 5.4 9.8 15.3 18.2
SOSLIS 10.1 12.3 21 31.6
Average 5.00 7.88 12.52 17.28

Table 3.3: Comparing the average sampling rate used by each approach to maintain the
budgetted overhead.

The results also reveal that Pacer can only use an average of 5% sampling rate to

maintain less than 100% overhead (see Table 3.3). On the other hand, SOSLIS can use up

to 31% sampling rate to maintain the same overhead. This is because SOSLIS incurs low

detection overhead. This characteristic also makes the approach more effective at detecting

races when the budget is very low. As shown in Figure 3.6, SOSLIS can detect on average

a factor of 10 more races than Pacer when the overhead budget is 50%. As the overhead

budget increases, the factor becomes smaller because the numbers of detected races begin

to saturate; since there are a fixed number of races after some time all of the detectable races

will be reported. At 100% overhead, SOSLIS detects four times more races than Pacer. It

is also worth noting that when we compare the numbers of detected races between SOS

and SOSLIS across different allowable overhead budgets, SOSLIS consistently detect more
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Figure 3.6: Comparing race detection effectiveness at low overhead between Pacer, SOS,
and SOSLIS .

races than SOS by a factor of 1.5 to 2.3.

In summary, these characteristics make SOSLIS more effective at detection race when

the overhead budget is small. They also open up an opportunity for the approach to be

feasibly used to detect races in deployed systems.

3.5 Conclusion

In our preliminary study, we have shown that a large amount of race detection overhead has

to do with the monitoring efforts in loop regions. Furthermore, when temporal sampling

is used to control the detection overhead, a large portion of sampled operations lay within

loops. As such, the sampling appears to be non-uniform with respect to the code regions,

and data races that exist in loops are detected repeatedly.

Repeated detection of the same race causes unnecessary overhead and does not increase

the detection effectiveness. In this work, we propose an optimization technique called Loop

Iteration Sampling, which reduces the monitoring effort when a program is executing in

loops. The non-loop regions are unaffected. We have implemented our proposed opti-

mization on two race detectors available in Jikes RVM, Pacer and SOS. We then evaluate
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the effectiveness of LIS using six Java multithreaded benchmarks that contain data races.

The result of our evaluation shows that for programs that perform significant iterative com-

putation, the optimization can reduce race monitoring overhead by as much as 80%. On

average, the approach reduces the overhead of race detection by 53% when we compare to

Pacer and 30% when compare to SOS. We also find that the approach provides much more

consistence performance over both Pacer and SOS.

Next, we evaluated the effectiveness and efficiency of LIS to detect races under tight

overhead budgets. LIS is on average a factor of 7 more effective than Pacer and a factor of

2 more effective than SOS. This is because LIS is more efficient than SOS or Pacer alone so

given an overhead budget, SOS with LIS can set the temporal sampling rate to 31% while

Pacer and SOS can only set the rate to 5.1% and 14.2%, respectively.



65

Chapter 4

RaceDr: A Race Healing System

In this chapter, we present RaceDr, which is a system that builds on state-of-the-art race

detection techniques and couples them with on-the-fly generation of race repairs. RaceDr

is implemented for Java programs within the JVM making the technique transparent and

automatic. We evaluate RaceDr on a collection of multi-threaded Java applications and

find that it incurs a modest increase in overhead relative to existing precise race detectors.

Moreover, the fixes RaceDr produces are deadlock-free and can be applied when RaceDr

is disabled – rendering the benefits of the fixes with low overhead (15%).

4.1 Introduction

Self-healing systems [Har10, KLT+07] have been introduced to enhance the dependabil-

ity of these systems. The basic idea is to create ways for systems to (i) dynamically de-

tect problems and identify the sources of those problems, (ii) reason about the resolution

of those problems, and then (iii) apply software fixes on-the-fly as the system continues

to operate. To date, several research efforts have built adaptive systems using different

approaches including dynamic detection of faults and regeneration of code with fixes,
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e.g., [ZM04, JSZ+11]. However, only a few efforts have targeted self-healing of concur-

rency faults, such as data races and atomicity violations, in deployed software [KLT+07,

Zen03].

One aspect of data races that makes them attractive as a target for self-healing is that,

in general, data races occur frequently in concurrent software but often their effects on

system behavior are too subtle to be noticed and would not be classified as a failure [KP04].

We seek to exploit this observation by developing RaceDr, a self-healing system for Java

applications that is capable of detecting both low-level and high-level data races early

during system execution and modifying the software to avoid future occurrences of races

that might cause serious system failures. Our proposed system is more complete, efficient,

and effective than existing healing systems for races and atomicity violations [KLT+07,

JSZ+11, WCY10] because:

1. RaceDr can detect data races precisely and efficiently. Our proposed system utilizes

state-of-the-art sampling-based and highly optimized race detection algorithms that

can be tuned to work well in different application scenarios (e.g., during testing or

under deployment).

2. RaceDr can repair races on-the-fly. The repair process happens in real-time and

is automatic and transparent to the software developer. Existing approaches often

require developers to use extra tools, such as bytecode instrumentors. Developers

also need to stop the application, analyze execution reports to generate repairs, apply

the repairs, and then relaunch the application. As such, those repair processes are

invasive and cumbersome.

3. RaceDr does not introduce new faults such as deadlocks in the application. Unlike

previous work that relies on timeout to break deadlocks caused by the generated
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#Dyn. #Race
Prog. Source #Thr #Class #Meth. Races Src.

[A] [B] [C] [D] [E]
avrora DaCapo 27 397 1802 493138 32

2009
eclipse DaCapo 16 1230 9580 514376 46

2006
hsqldb DaCapo 402 113 1012 511 35

2006
pseudojbb SPECjbb 17 261 952 6.95e7 148

2005
sunflow DaCapo 5 121 986 447 24

2009
xalan DaCapo 9 360 2203 81 26

2006
Total Races 7.05e7 311

Table 4.1: Basic description of each benchmark.

repairs, our system analyzes whether repairs can cause deadlock. If so, then the

system breaks the deadlock and then removes the repairs.

In this chapter, we study the application of RaceDr to a collection of six multi-threaded

programs. Their characteristics are shown in Table 4.1. Columns A-C list the number

of threads, loaded classes, and compiled methods. Column’s D and E show, respectively,

the number of dynamic race reports generated for these applications using state-of-the-art

precise race detection algorithms and the number of unique race sources, i.e., pairs of read

and write statements in the programs.

In addition to presenting RaceDr, in this work, we explore two scenarios for its use :

(a) during testing and debugging and (b) during deployment.

RaceDr can serve as a drop-in replacement for a dynamic race or atomicity detector

during testing and debugging. Using a typical race detection system can result in a large

number of dynamic race reports, up to millions of such reports as shown in column D

in the table. Most of this information is redundant, since a single race source may be

reported many times. RaceDr includes a dynamic race repair component, but it incurs



68

modest additional overhead relative to the best precise detectors. RaceDr goes further

than just detecting races by fixing races when they are first detected, thereby suppressing

much of the dynamic race report information without sacrificing reports of the unique race

sources – the root causes of the fault. Moreover, RaceDr can issue, as part of its report,

a patch which encodes the race fixes. In this way, developers can see both the report of

the races and the fixes that were generated. These fixes can be applied for use in deployed

system operation, if the developer approves of them, or they can serve as useful guidance

in helping the developer produce their own fixes.

RaceDr is implemented within a JVM and thus, it can also be used during deployment

to enhance dependability of concurrent software. We use a highly optimized sampling-

based race detection technique, which allows us to control overhead while still detecting

significant numbers of races. Furthermore, as RaceDr performs race repair an application

might reach a state in which very few new races are being detected. In each of the appli-

cations we studied, we saw that the number of unique race sources detected drops off very

quickly with the number of program runs (see Figure 4.1). This phenomenon allows a user

to define a threshold below which RaceDr is disabled. At that point the repaired applica-

tions can continue to run with just the additional overhead of locking that results from the

race fixes – in the applications we studied this overhead is 15% on average.

The rest of this chapter is organized as follows. Section 4.2 formalizes the semantics of

concurrent program traces. Section 4.3 presents the atomicity violation detection algorithm

and correctness proof. Section 4.4 provides an overview of the current state of the art

in race detection and race healing systems, and presents the key features of RaceDr that

distinguish it. Section 4.5 describes our implementation of RaceDr inside a Java Virtual

Machine (JVM). Section 4.6 reports the result of our experimental evaluation of RaceDr

in both the testing/debugging and deployed scenarios. We conclude with future research

directions in Section 4.7.
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Figure 4.1: Unique races detected across 20 program runs.

4.2 Preliminaries

In this section, we formalize the semantics of multi-threaded programs.

4.2.1 Semantics of Multithreaded Programs

A multithreaded program consists of a set of concurrently executing threads denoted as

t ∈ Tid, which conduct operations to access variables x ∈ V ar and locks m ∈ Lock.

Operations that a thread can perform are listed as follows:

• rd(t, x): thread t reads from variable x.

• wr(t, x): thread t writes to variable x.

• acq(t,m): thread t acquires lock m.
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• rel(t,m): thread t release lock m.

• fork(t, u): thread t forks a new thread, u.

• join(t, u): thread t blocks until thread u terminates.

• enter(t): thread t enters an atomic section.

• exit(t): thread t exit from an atomic section.

The rd and wr are data access operations. The acq, rel, fork and join are synchro-

nization operations. The enter and exit are notions that represent a thread enter or leave

a predefined atomic method. A trace α captures an execution of a program by listing a

sequence of operations performed by the threads. The happens-before relation, denoted as

→hb, is the smallest transitively-closed closure over operations in a trace[Lam78]. Opera-

tion a happens before operation b in trace α, denoted as a →α b, if a occurs before b and

one of the following conditions holds:

• a and b are performed by the same thread.

• a is a release of lock m and b is an acquire of lock m.

• a is a fork of a new thread u by a thread t, t 6= u, and u is the thread that performs b.

• a is performed by thread u, and b is a join that blocks a thread t, t 6= u, until u

terminates.

We define logic order between two operations a and b, denoted as LogicOrder(a, b) in

trace α as follows:

• a happens before b.

• a happens after b if and only if b happens before a.
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• Otherwise, a and b are concurrent.

Operations a and b are conflict if they access the same variable and at least one of them

is a write. A trace has a race condition if it has two operations a and b that satisfy the

following two conditions:

• a and b are concurrent.

• a and b are conflict.

The definition of happens-before relation involves only two operations. Next, we lift

the definition to specify the logic order between a method and an operation.

4.2.2 Vector Clock Based Race Detection

Vector clocks(VC) are an widely used race detection data structure, which precisely tracks

the happens-before relationship between operations. VC based race detection algorithms

perform dynamic analysis on all synchronization, read, and write operations. They detect

concurrent variable accesses, and if one is a write, they report a data race. Typically,VC

base race detection algorithm stores a vector clock for each synchronization object, each

variable read, and each variable write. A vector clock is indexed by thread identifier:

C[1::n]. For each synchronization object o, the analysis maintains a vector clock Co that

maps every thread t to a clock value c. VC updates as follows:

• For acq(t,m): Ct ← Ct
⋃
Cm.

• For rel(t,m): Cm ← Ct, Ct[t]← Ct[t] + 1.

For example, if thread t acquires lock m, the join of t and m’s vector clocks into t’s

vector clock by updating each element Ct[i] to max(Ct[i];Cm[i]). When a thread t releases
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a lock m, the analysis copies the contents of ts vector clock to m’s VC. It then increments

the t entry in t’s VC.

4.3 Atomicity Violation Detection

In Chapter 2-3, we explored approaches to efficiently detect data races caused by unex-

pected thread interference. However the absence of data races is not sufficient to en-

sure the correctness of a program. Figure 4.2 shows a known atomicity violation in Java

StringBuffer class. Between method calls to length() and getChars(), another thread

can acquire the lock and modify field length, therefore, method append can encounter a

fault due to accessing a pale value of field length. This example illustrates that simply

synchronizing methods length() and getChars() cannot ensure the correctness although

it does guarantee data race freedom.
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1 p u b l i c f i n a l c l a s s S t r i n g B u f f e r {

2 . . .

3 i n t l e n g t h ;

4 p u b l i c synchronized S t r i n g B u f f e r append ( S t r i n g B u f f e r sb ) {

5 i n t l e n = sb . l e n g t h ( ) ;

6 / / Ano ther t h r e a d c o u l d c a l l method s e t L e n g t h ( )

7 / / t o change t h e v a l u e o f f i e l d l e n g t h .

8 sb . g e t C h a r s ( 0 , l en , va lue , c o u n t ) ;

9 . . .

10 }

11

12 p u b l i c synchronized i n t l e n g t h ( ) { . . . }

13 p u b l i c synchronized void s e t L e n g t h ( . . . ) { . . . }

14 p u b l i c synchronized void g e t C h a r s ( . . . ) { . . . }

15 . . .

16 }

Figure 4.2: Example of Atomicity Violation

The fault in above example is defined as atomicity violation, namely high level data

races[AHB03]. Atomicity is a common property for multi-threaded programs. It places

stronger restrictions on thread interleaving than race conditions do: A code block (usually

a method) is atomic if for any arbitrarily interleaved program execution, there is a serial

execution of the atomic code block, which means no thread interleaving, with the equivalent

overall effect.

Besides the fault shown in Figure 4.2, recent research has found that some subtle

defects due to atomicity violations even in well tested systems, even in well-tested li-

braries [FQ03]. Havelund reports finding similar errors in NASAs Remote Agent space-

craft controller [AHB03], and Burrows and Leino [BL04] and von Praun and Gross [vPG03]



74

have detected the same type of defects in Java applications.

Atomicity provides a strong guarantee on noninterference between threads. This guar-

antee can safely reduce complicated problem of reasoning or verify about behavior of

multi-threaded program to a less challenging problem of reasoning about behavior of se-

quential programs. The reduction substantially facilitates standard techniques such as pro-

gram analysis, software testing and verification.

In summary, atomicity is a fundamental and widely applicable correctness property of

multi-threaded programs. It helps to detect more program faults caused by undesirable

thread interference that cannot be found by race detectors. In addition, fixing atomicity

violations is more challenging than fixing data races since only synchronizing shared data

accesses is not enough.

In this Section, we propose a solution to detect and fix atomicity violations in Java pro-

grams. We extend SOS race detector to cover high level data races as well. We propose an

approach to generate and deploy repairs to the violations as soon as detected. Meanwhile,

we also ensure our repair will not introduce new faults like deadlocks.

4.3.1 Atomicity Violation Detection Algorithm

Atomicity violation occurs if two data operations in an execution of an atomic method have

different logic order with an operation executed by another thread when accessing the same

data and one of these operations is write. For instance, in Figure 4.2, operation length() at

line 5 happens before setLength() at line6 while setLength() happens before getChars(...),

therefore, the atomicity of method append() is violated. We formalize the definition of

atomicity violation as follows.

Definition Atomicity Violation. Suppose t and t′ are two threads, x is an variable, op1(t, x)

and op2(t, x) are two data operations and op1(t, x) happens before op2(t, x), op3(t′, x) is
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another data operation, op1(t, x) and op2(t, x) belongs to method m, method m has an

atomicity violation caused by op1(t, x), op2(t, x) and op3(t′, x) if one of the following

conditions holds:

• op1(t, x) and op3(t′, x) are concurrent.

• op2(t, x) and op3(t′, x) are concurrent.

• op1(t, x) happens before op3(t′, x) and op3(t′, x) happens before op2(t, x).

There are two classes of atomicity violations based on the definition. One involves data

races while the other is data race free. If there is a data race between two operations and

one of operation is in an atomic method, then the method must have an atomicity violation.

Furthermore, if there is no data races, a program can still has atomicity violations as showed

in Figure 4.2.

We extend SOS data race detection algorithm to capture atomicity violations. For

atomicity violations involving data races, SOS can directly detect them; for those without

data races, we reduce them to data races by changing the instrumentation rules in SOS. The

intuition behind this instrumentation change is to ignore lock acquire/release operations if

this lock has been released in the same atomic method. For instance, the lock acquire and

release operations at line 8 in Figure 4.2 won’t be reflected in VC in order to reduce the

atomicity violation in method append(...) to a data race between methods setLength(...)

and getChar(...).

4.3.2 Proof of Correctness

Next, we prove the correctness of above atomicity violation detection algorithm.

Lemma 4.3.1. Suppose acq(t,m)→hb acq(t′,m) in trace α, rel(t,m) is the operation that

releases the lock acquired by operation acq(t,m), rel(t′,m) is the operation that releases



76

enter(t):
t.is Atomic++;

exit(t):
t.is Atomic- -;
if (t.is Atomic == 0) then

t.released locks.clear();

acq(t,m):
if ((is Atomic == 0) ‖ (!t.released locks.contains(m))) then

update VC;

rel(t,m):
if ((is Atomic == 0) ‖ (!t.released locks.contains(m))) then

update VC;
t.released locks.add(m);

Algorithm 7: Instrumentation for reducing atomicity violations to data races

// Operation op1 belongs to method m1.
// Operation op2 belongs to method m2.

if (op1 races with op2) then
if (m1 is atomic) then
m1 has an atomicity violation.

if (m2 is atomic) then
m2 has an atomicity violation.

Algorithm 8: Atomicity violation detection

the lock acquired by operation acq(t′,m), δ = {trace between acq(t,m) and rel(t,m)}, δ′

= {trace between acq(t′,m) and rel(t′,m)} then ∃ trace β, acq(t′,m) →hb acq(t,m) in

trace β, and α is identical to β except operations in δ and δ′.

Proof. This lemma is valid since locking can only form a partial order of operations.

We use the example in Figure 4.3 to illustrate the intuitive meaning of Lemma 4.3.1.

A program generates trace α, trace δ happens before trace δ′ because thread t get lock m

prior to t′. Generally, the same program can generate trace β, in which trace δ exchanges

positions with trace δ′ and the rest of δ and δ′ are the same. The reason is that locks
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in modern programming languages decide a partial order for the execution of two code

regions which share the same lock. In other words, the execution order of the code regions

protected by the same is reversible given no specific semantics constraints.
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Figure 4.3: Partial order decided by locks.

Theorem 4.3.2. If an atomic method m involves a race reported by the atomicity violation

algorithm, method m has an atomicity violation.

Proof. There are two cases:

1. Race related atomicity violations

Suppose there is a data race involving two operations op1, op2 and op1 belongs to

atomic method m, then op1 and op2 are concurrent. Therefore, method m has atom-

icity violation by definition.

2. Race free atomicity violations

Suppose the original program does not have data races, but there is a reported data
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race between op1(t, x) and op2(t′, x) due to ignoring re-acquire a lock l, denoted as

acq(t,m), previously released, denoted as rel(t,m) in the same atomic method.

Thread t′ must acquire the lock l, denoted as acq(t′,m), after rel(t,m) for two rea-

sons:

• if thread t′ does not acquire lock l, there will be a race in the original program.

• if acq(t′,m) happens before rel(t,m), there will not be a reported race due to

ignoring acq(t,m).

So, rel(t,m)→hb acq(t′,m).

On the other hand, there is a trace, in which acq(t′,m)→hb acq(t,m) while rel(t,m)→hb

acq(t′,m) according to Lemma 4.3.1.

Therefore, method m has an atomicity violation caused by rel(t,m)→hb acq(t′,m)

and acq(t′,m)→hb acq(t,m).

4.4 Overview

RaceDr consisting of : (a) a dynamic race detection system (which accepts parameters and

advice to control its application and overhead) and (b) a race healing component which

can generate repairs, evaluate repairs to determine if they are deadlock-free, and apply

repairs to the running program. RaceDr does this transparently by leveraging a number of

JVM sub-systems, such as the JIT compiler which is used to generate and apply repairs.

We briefly overview existing work on race detection and healing to provide a context for

understanding RaceDr in more detail.
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4.4.1 Precise Race Detection

Dynamic race detection approaches, generally, rely on either lockset or vector-clock tech-

niques. Lockset-based techniques, such as Eraser [SBN+97] and its descendants[CLL+02,

OC03, YRC05, EQT07], generally have low runtime overhead, but they can be imprecise

– they can report false races. Vector-clock-based techniques, such as DJIT+ [PS03] and

FastTrack [FF09], have the advantage of being precise – all reported races are real – but

they can cause applications to slowdown by a factor of eight or more [FF09].

In RaceDr we wish to only fix real races, so we leverage precise race detectors. In

recent years two developments have led to more efficient precise race detectors. Bond et

al. employ temporal sampling in the Pacer system which allows overhead to be reduced

significantly – below 100% when very low sampling rates are used [BCM10]. A sampling

race-detector, by its very nature, will skip over certain read and write operations and, thus,

while it may be precise it will lose some fault detection. To counter this, in our previous

work we developed an optimization that identifies objects that are effectively read-only,

so called stationary objects, and skips their analysis. This has the effect of focusing race

detection on the subset of accesses that are more likely to race. As a consequence our SOS

optimization results in increased fault detection, by a factor of five on average, relative to

Pacer [LSaD11]. In RaceDr we use a combination of Pacer with SOS as our low-overhead

precise race detector; other race detectors could be used as drop-in replacements.

To illustrate how these approaches work, consider a race that exists in a version of

Apache Tomcat 6.0.24; an excerpt of the code appears on the left of Figure 4.4. The method

isEmpty() reads the size of stack r and pop() writes the size of stack r. Thus if two

threads, T1 and T2, execute the code fragment such that one is executing isEmpty() and

the other is executing pop() a low-level race is reported. This race is identified just on

the basis of the ordering of reads and writes on the size field of the shared stack, r, even if
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there is no observable error.

In addition to low-level data races, this example also has a high-level data race that

cannot be detected by Pacer with SOS. Assume that the methods isEmpty() and pop()

are both synchronized. The execution shown on the right of Figure 4.4 exhibits a

race where threads T1 and T2 concurrently execute isEmpty() and proceed based on a

false result. The last thread to call pop() (in this trace T1), however, is left with an

empty stack.

This example shows that simply synchronizing r.isEmpty() and r.pop() is not

sufficient to make this code error free. We need to ensure that these two methods are

accessed atomically by each thread. Otherwise, atomicity violations that can lead to high-

level data races can occur. There are several techniques proposed in the literature to detect

such violations [HDVT08, FF04, WS06, PS08], but these can incur even greater slowdown

than low-level race detectors (by a factor of 14 or more).

4.4.2 Race Healing Systems

A number of recent projects have explored techniques for generating or applying fixes for

data races. We classify these approaches based on whether they include race detection,

and if so what kind, how they generate and apply repairs, and whether they address the

possibility of deadlock in repaired code. The following table summarizes our analysis of

these approaches:

Race Repair Repair Deadlock

System Detection Generation Application Free

AFix - Automatic Off-line Timeout

Axis - Automatic Off-line YES

LOOM - Manual On-Line -

Krena et al. Low-Level Automatic On-Line NO
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AFix [JSZ+11] uses static analysis to automatically generate off-line patches that can

fix single-variable high level data races that are detected by other tools. AFix uses a timeout

scheme to report when fixes appear to introduce deadlocks. Axis [LZ12] improves on

AFix by employing a Petri net model of resource access and constraints solving to produce

fixes. This has the advantage of producing better performing fixes that are guaranteed to be

deadlock-free.

LOOM [WCY10] takes a different approach. It provides a runtime mechanism to de-

ploy execution filters to “workaround” data races in native applications. It provides an

execution filter language in which users declare synchronization intent and LOOM installs

and enforces those filters. Given a race report a user can create a filter that specifies how

the race can be avoided, but the user must also ensure that the resulting execution avoids

deadlock.

The approach of Krena et al. is closest to ours in that it detects races, albeit only low-

level races, automatically generates a fix, and deploys it on-line [KLT+07]. This approach

uses imprecise race detection which means that many of the generated fixes may be for

false races. This can unnecessarily reduce concurrency in the fixed application. Moreover,

the introduced fixes can introduce deadlocks. It also requires additional tools including

bytecode instrumentor and ConTest testing framework to operate. As such, its performance

is too slow to be used in deployed software.

4.4.3 Our Approach

RaceDr is realized as a customized JVM which has the benefit of allowing our technique

to be more efficient than instrumentation-based solutions as well as transparent to software

developers.

In RaceDr race detection algorithms can leverage information readily available inside
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1 p u b l i c s t a t i c vo id s t a r t C a p t u r e ( ) {
2 CaptureLog l o g = n u l l ;
3 i f ( ! r . i sEmpty ( ) ) {
4 l o g =
5 ( CaptureLog ) r . pop ( ) ;
6 } e l s e {
7 l o g =
8 new CaptureLog ( ) ;
9 }

10 . . .
11 }

1 assume : r . s i z e ( )==1
2 (∗ $T 1$ ∗ )@r . i sEmpty ( ) ;
3 (∗ $T 2$ ∗ )@r . i sEmpty ( ) ;
4 (∗ $T 2$ ∗ )@r . pop ( ) ;
5 (∗ $T 1$ ∗ )@r . pop ( ) ;
6 e r r o r : (∗ empty s t a c k ∗ )

Figure 4.4: Apache Tomcat excerpt (left) and high-level race (right, in box).

the virtual machine (e.g., lock usage, read/write accesses). Pacer and SOS already do this

for low-level races. We support the detection of a wide-range of high-level races by detect-

ing low-level races in candidate atomic methods, i.e., those declared as public/protected, as

was done by Vaziri et al. [VTD06].

An important class of high-level races can, however, occur without the presence of a

low-level data race [PS08]. In Section 4.3, we describe how we modify the vector clock

calculations in existing race detectors to account for the inconsistent view of atomicity

across threads. This allows our race detection component to catch high-level races. The

execution on the right of Figure 4.4 shows an instance of such a race that our approach can

detect.

Repairs are generated by injecting new locks into the program and synchronizing rac-

ing regions using those locks. This process is implemented by customizing the JVM’s

JIT compilation and adaptive optimization sub-systems. Low-level race repairs wrap rac-

ing reads and writes with synchronization statements and are guaranteed to not introduce

deadlocks into the program. For high-level race repairs, we insert synchronized blocks

around racing regions – our current implementation synchronizes entire methods. As an

example, the fix for the race in Figure 4.4 adds lock and unlock operations to protect the

body of startCapture(). To ensure deadlock-freedom, we apply a deadlock avoid-
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ance algorithm. This analysis can be done at a low cost by leveraging information about

lock ownership that is maintained by the synchronization mechanism inside the JVM. If a

deadlock is detected, RaceDr breaks the deadlock and then rolls back the repair.

Since repairs introduce locking, this may reduce concurrency, in our study we found

that fixing all detected races in applications caused a slowdown of 15% on average. In

some cases races are intended to achieve better multi-threaded performance, to support

this we allow race reports to be fed to RaceDr as detection advice which will suppress the

reporting and fixing of specified races.

The next section provides a more detailed discussion of the implementation of RaceDr

and its main components.

4.5 Implementation of RaceDr

RaceDr is implemented as a new feature in Jikes RVM version 3.1.0 [Jik11]. As such, it can

take advantage of existing runtime subsystems to enable efficient and transparent repairs.

Figure 1.1 illustrates the high-level organization of RaceDr and its connection with various

JVM subsystems.

Leveraging JVM’s Subsystems. As shown in the figure, RaceDR uses the JIT compiler

infrastructure to analyze methods and dynamically and transparently insert code that con-

trols race monitoring (e.g., manipulate and check monitoring control bits). It also utilizes

the existing Adaptive Optimization Systems, which is used to recompile frequently used

methods to include more optimizations, to inject and remove repairs. In addition, we also

utilize the information maintained by the synchronization mechanism to identify the thread

that is holding a lock. This information is used by our deadlock avoidance mechanism.

Furthermore, monitoring memory access operation can be “piggy backed” on the mem-

ory management subsystem through read and write barrier mechanisms, which supports
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garbage collection. Once a race is detected, we can easily obtain information related to

participating threads, methods, and code locations. As such, to use our system, there is no

need to modify the source files or class files to enable monitoring. The healing process is

automatic so there is no user intervention. It is also transparent, so programs run normally.

4.5.1 Race Detection

The race detection component is designed to be extensible so that it can support multiple

race detection techniques. Currently, it supports Pacer and SOS. Pacer is an implementa-

tion of FastTrack with sampling support. SOS is an optimization of Pacer with dynamic

stationary analysis. Because both techniques have been designed to only detect low level

data races, we have modified these two algorithm to detect atomicity violations that can

lead to high-level data races.

Detecting High-Level Races. Most atomicity violations involve low-level data races. As

such, both Pacer and SOS can readily detected them. On the other hand, detecting atom-

icity violations without data races requires a change in the race detection algorithm. To

understand this change, we first review the basics of vector clock based race detection – as

presented in Section 2.2 of [FF09].

A vector clock V C : TaskId→ N records a logical time for each thread in the system.

V Cs are partially-ordered (v) in a point-wise manner; V1 v V2 ↔ ∀t : V1[t] ≤ V2[t]. They

also have a join operator (t); ∀t : (V1 t V2)[t] = max(V1[t], V2[t]).

For race detection, each thread t has its own local vector clock Ct whose elements

record the logical time of the most recent operation by each thread. Each lock l in the

program also has a vector clock Ll which are updated to reflect the thread ordering enforced

by synchronized access to the lock. When thread t acquires lock l, Ct is updated to CttLl.

When thread t releases lock l, Ll is updated to Ct. For each shared variable x, in our case
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fields of heap allocated data, two vector clocks Rx and Wx are maintained to record the

logical time of the last read and write operations on x for each thread. A read from x by

thread t is race-free as long as it follows the last write in each thread, i.e., Wx v Ct. A

write to x by thread t is race-free as long as it follows the last read and write to x in each

thread, i.e., Wx v Ct ∧Rx v Ct.

Algorithm 9 shows our modification of this basic VC-based race detection algorithm.

First, we identify public or protected methods as candidate atomic methods. We

track the entry and exit of such atomic methods on a per thread basis – t denotes the thread

id. Our modification only performs VC updates the first time a lock is acquired/released

in an atomic method. We record the set of released locks within each atomic method to

enforce this. The intuition behind this modification is that the lock’s VC is “stuck” at

the value of the first lock release. All subsequent lock acquires within the atomic section

will use the VC value for that first release. Since that VC is earlier in the partial-order

than the lock VC computed by the standard algorithm, then all races reported by the basic

VC algorithm will still be reported. Moreover, any additional race reports result directly

from those older VC values propagating to other threads which acquired the lock and then

performed read/write operations within the atomic section. This is precisely the scenario

we seek to detect, thus we conclude that our extended algorithm is precise and accurate

with respect to low and high-level races.

To illustrate this algorithm in action, consider the trace in Figure 4.4. Table 4.2 shows

the vector clock updates at the level of granularity of a method call. The locked object is r

and the shared variable is r.size.

The vector clock updates for the two calls to isEmpty() proceed as in the basic

VC race detection algorithm since they are the first to appear within their thread’s calls

of the candidate atomic method startCapture(). The gray cells illustrate the VC

comparisons that give rise to race reports. When T1 executes r.pop(), CT1 = [1, 0] – from
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CT1 CT1 Lr Rr.size Wr.size

[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

T1@r.isEmpty() [1, 0] [0, 0] [1, 0] [1, 0] [0, 0]

T2@r.isEmpty() [1, 0] [1, 1] [1, 1] [1, 1] [0, 0]

T2@r.pop() [1, 0] [1, 1] [1, 1] [1, 1] [1, 1]

T1@r.pop() [1, 0] - - [1, 1] [1, 1]

Table 4.2: Vector clock updates for Figure 4.4.

T1’s perspective T2 is at logical time 0. In contrast, Wr.size = [1, 1] which indicates that

T2 is at logical time 1, which is consistent with the fact that T2’s time was updated by

its call to r.pop() (the 4th row in the table). Thus, T2’s logical time violates the ordering

constraint required for race-freedom (described above) and a race is detected. Note that a

race is also detected for the write operation performed in r.pop() by T1. Since they are both

nested within the same candidate atomic method, they can be addressed by the insertion of

a single lock to achieve repair of both races.

Useful Features. The system also provides several features in addition to sampling. For

example, the race detection component can generate reports of detected races, allowing the

developer to use the information to repair races in the subsequent runs or synthesize patches

for the faulty Java source files. In the case that developers create benign or intentional data

races for performance reasons, detection advice can be provided to the race detector so that

it ignores those races.

4.5.2 Race Healing

Our healing system transparently and automatically performs repair on-line. For low-level

data races, RaceDr guarantees that our repair is deadlock-free. For high-level data races,

RaceDr provides a mechanism to avoid deadlocks due to repairs.

Low-Level Race Repair. RaceDr creates a locking object, l for an object that can race,
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1 a t o m i c E n t e r ( t ) {
2 t . i s A t om i c ++;
3 }
4
5 a t o m i c E x i t ( t ) {
6 t . i sAtomic−−;
7 i f ( t . i s A t o m i c == 0)
8 t . r e l e a s e d L o c k s . c l e a r ( ) ;
9 }

10
11 acq ( t ,m) {
12 i f ( ( t . i s A to m i c == 0) | |
13 ! t . r e l e a s e d L o c k s . c o n t a i n s (m) )
14 Ct ← Ct t Lm ;
15 }
16
17 r e l ( t ,m) {
18 i f ( ( t . i s A to m i c == 0) | |
19 ! t . r e l e a s e d L o c k s . c o n t a i n s (m) )
20 Lm ← Ct ;
21 t . r e l e a s e d L o c k s . add (m) ;
22 }

Algorithm 9: Atomicity violation detector modifications.

obj. This locking object, l, stays alive in special objects hashmap for the lifetime

of obj. As such, the number of created locking objects is at most equal to the number of

dynamic instances of detected races in each application.

To avoid introducing deadlocks, we adopt the classic approach to avoiding deadlock of

partially ordering the locks and then acquiring locks according to that order [SG08]. In

our approach, the program locks are partitioned into D – the locks defined program by

the developer – and L – the locks inserted by our approach to avoid data races. Our lock

insertion algorithm orders locks such that:

1. ∀d ∈ D : ∀l ∈ L : d ≺ l, and inserts locks such that they are always acquired

after developer defined locks. As such, there are no other operations between the

acquisition and the data access. If the program acquires any other lock, it must be

done before the acquisition of l.
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2. Our approach also ensures that inserted locks are never acquired in a nested fashion

– thus an ordering on the locks in L is irrelevant. Again, the algorithm acquires

lock right before the access. There are no other operations between the lock object

acquisition and the data access.

High-Level Race Repair. The race healing component currently utilizes a simplified

Banker’s algorithm to detect deadlocks due to our repairs. Typically, the Banker’s algo-

rithm handles multiple resources [SG08]. For our scenario, the calculation is done when a

lock is acquired; therefore, the analysis is simplified.

The algorithm keeps track of lock usage by recording the locks that each thread is

currently holding and trying to acquire. For each acquired lock, we keep the information

about the thread that is holding the lock. If a deadlock is detected, the following process

occurs:

1. The lock being acquired is bypassed.

2. If the lock was inserted by RaceDr, it removes the injected lock.

Timeout. Our race healing component also supports a time-out mechanism similar to that

used in AFix [JSZ+11]. This solution also does not guarantee deadlock freedom but can

break a deadlock once a predefined amount (e.g., 10 seconds) of time has passed. To

support this mechanism, we create a special lock with programmable timeout support. If

a deadlock is encountered due to our repair, our race healing component also removes the

repair through a rollback mechanism.

Useful Features. Typically, the race detection component initiates the healing component

whenever a race is encountered. However, the component also supports the collection of

repair advice in the form of a report generated by the race detection component. This

feature allows the repair process to take place separately from the race detection process.
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For example, the detection can take place during debugging and the detected race report

can be provided as patches for the advice mechanism to repair races prior to or during

deployment.

For future work, we plan to implement a contention monitoring mechanism (shown as

dotted box in Figure 1.1) to dynamically detect lock-contention due to our repairs. The

goal is to use a rollback mechanism to remove particular repairs if they cause too much

lock contention, resulting in significant performance degradation.

Repair Delays. There are a few situations that can delay the repair process. First, if a

race is detected as part of a loop, the method continues to execute until it finishes. Races

encountered in the loop would stay unrepaired until the method finishes. By leveraging

the adaptive optimization system to regenerate repairs, our system can suffer from queuing

delays. Consider a race detected in method m1. RaceDr will place m1 with its repair advice

in the adaptive optimization queue to be recompiled with repairs. While waiting in the

recompilation queue, m1 may be invoked once again and this will invoke the unrepaired

copy of the method. Our evaluation (see Table 4.5) shows that the delay between detecting

a race and applying a repair can vary significantly with the application.

4.6 Evaluation of RaceDr

We evaluate the effectiveness of RaceDr two usage scenarios. First, we evaluate its use

in-house, i.e., before application deployment, to detect and fix races after which the fixes

are applied to the application for deployment. Second, we evaluate the use of RaceDr in a

deployed environment, where it can continue to find and fix defects in fielded applications.

In both scenarios our primary focus is to determine: (a) How expensive is RaceDr relative to

race-detection alone? and (b) How effective is RaceDr in repairing races in an application?

We will exploit RaceDr’s configurability to address these questions under settings that seem
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appropriate for the two usage scenarios.

4.6.1 Evaluation Environment

RaceDr is implemented in Jikes RVM 3.1.0 [Jik11]. All experiments are executed on a

workstation with 4 2GHz AMD Opteron dual-core processors, where each core has 16 GB

of main memory. The system runs Ubuntu with Linux kernel 2.6.30.

We selected benchmarks that are commonly used by researchers to evaluate multi-

threaded Java systems; Table 4.1 describes the benchmarks. Three are from the DaCapo

2006 benchmark suite (eclipse, hsqldb, and xalan) with two additional benchmarks from

the DaCapo-9.12-bach suite (avrora and sunflow) [BGH+06]. Currently, not all bench-

marks in the 2009 suite can run on RaceDr due to limitations with the Pacer race-detector,

which RaceDr builds on. We also used pseudojbb2005, which is a version of SPECjbb2005

that has been modified to generate predictable workloads on each run [Sta05].

4.6.2 Using RaceDr In-House

In this setting, we configure the race detection component to perform full-sampling, i.e.,

the race detector is never turned off. This has two, related, effects: (1) the cost of race

detection is high and (2) the number of races detected is also high. We believe that these are

reasonable configuration options for in-house testing, especially since RaceDr effectively

automates fault diagnosis and repair.

4.6.2.1 Cost of Race Healing in RaceDr

It is well-known that precise race detection comes with significant overhead. Since RaceDr

includes a race detector it will also incur high-overhead, but we wish to evaluate the addi-

tional overhead that results from generating and applying race repairs.
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Detection Detection Fixes
Only and Healing Only

Benchmark [A] [B] [C]
avrora 4.76 4.83 1.07
eclipse 14.32 14.56 1.24
hsqldb 6.62 6.71 1.10
pseudojbb 4.92/4.72 5.73/5.21 1.83/1.19
sunflow 20.93 21.08 1.17
xalan 3.11 3.29 1.16
Average 9.11 9.37 1.26/1.15

Table 4.3: Race detection and race healing slowdown factors and effects on performance
due to repairs.

Table 4.3 reports the slowdown factor for running just race detection (column A), run-

ning race detection and healing (column B), and running the program with just the gener-

ated race repairs (column C). Note that running with just the repairs does not require either

race detection or healing to be enabled – we discuss this below. Since race detection effec-

tiveness varies with the executed thread schedule we ran each benchmark 10 times; recall

from Figure 4.1 that the number of detected unique races tapers off rapidly with additional

program runs.

We configured RaceDr with the best performing precise race detector we are aware

of – SOS. Li et al. [LSaD11] reported the overhead of SOS for detecting just low-level

races, whereas here we report the overhead for detecting both low and high-level races.

The average slowdown for this race detector alone is 9.11, whereas for Pacer the slowdown

was 13.8 and for SOS detecting just low-level races the slowdown was 5.9 on the same

benchmarks and execution platform [LSaD11].

When RaceDr performs race detection, race healing, and race reporting. On average

the slowdown was 9.37 across our benchmarks. An additional runtime overhead of 26% is

incurred by race healing and reporting. Nearly all of this additional overhead comes from

race healing – the cost of race reporting is negligible.
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Statically Dynamically Dynamic Lock
Benchmark Injected Locks Injected Locks Acquisitions

[A] [B] [C]
avrora 89 261433 514362
eclipse 61 364136 739126
hsqldb 67 346 614
pseudojbb 956/42 2.65e7/2.58e5 3.92e8/3.51e5

sunflow 26 236 536
xalan 33 77 116

Table 4.4: Reporting lock usage and lock acquisition characteristics.

Discussion. By subtracting columns A from B in Table 4.3, we can compute the additional

runtime overhead incurred by race healing. That additional overhead ranges from 7%, for

avrora, to 81% for pseudojbb2005. Moreover, the percentage increase for pseudojbb2005

is over three times the next highest, 24% for eclipse. There are several factors that can

contribute to the overhead of healing. To apply a fix, methods must be unloaded from

the JVM’s execution cache, recompiled, and reloaded. Depending on the number of locks

injected this cost can be expensive. Another component of healing overhead is the cost to

create and manage lock objects at runtime. This is mainly due to the cost to allocate lock

objects, acquire and release those locks, and eventually garbage collect them.

Table 4.4 reports data on the number of locations at which locks are injected into the

program (column A), the number of times those injected locks are allocated at runtime (col-

umn B), and the number of times those locks are acquired (column C). From this data it is

clear that the overhead of pseudojbb2005 results from the fact that an additional 26 million

locks are created and subsequently acquired at runtime. We discuss why this happens and

RaceDr’s support for addressing this overhead below.

Table 4.4 also highlights some of the subtleties that arise when working in a JVM/JIT

environment. Theoretically, the number of statically injected locks and the number of

unique races should be the same. However, our approach injects more locks than the num-
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ber of unique races (see Table 4.1). Further investigation shows that due to in-lining and

other compiler optimizations, a source of a race can appear in multiple compiled methods.

RaceDr must inject locks in each such method.

4.6.2.2 Performance of Repaired Races

Repairs are compiled into the benchmarks by a lightweight path through RaceDr that reads

the generated race reports. Since this path does not involve race detection or healing, the

runtime overhead is reduced significantly. Column C of Table 4.3 reports that overhead.

There are two numbers for pseudojbb: the first (1.83) includes an intentional race, which is

discussed next, and the second (1.19) uses the race advice mechanism in RaceDr to avoid

repairing intentional races. The overhead of repairs across all programs averages 15% when

the intentional race is ignored.

Discussion. To understand why pseudojbb2005 incurs so much overhead, we investigated

its execution behavior. Most races occur in an XML parser method. This method is called

from every server thread in the benchmark and is thus, highly concurrent. To achieve high-

performance, the developers of that method employ an intentional benign race, known as

synchronization races in the form of a user-defined lock [NWT+07]. Unfortunately, the

precise race detectors we employ identify this as a race. Because this is a commonly

invoked method, over 26 million locks objects must be created to fix this race. These

locks are then acquired nearly 400 million times. Therefore, the optimization that has been

carefully crafted by the developers was nullified by RaceDr.

To address the presence of benign races, RaceDr provides a detection advice mechanism

for developers to specify sources of races that should not be reported or fixed. We used

this feature to avoid fixing the benign race in pseudojbb2005. Specifically, we informed

RaceDr that it should ignore any race that occurs in the XML parser. Since the race is

no longer detected, there is no race repair inserted. This results in a reduction of unique
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Figure 4.5: Effects of sampling on detection coverage.

races from 148 (see Column E in Table 4.1) to 32 and a 3-order of magnitude reduction

in lock acquisition (see the pairs of numbers in Table 4.4). This yields reduction in the

overhead of the race repairs from 83% to 19%. Also note the overhead reduction from the

pairs of values in columns A and B of Table 4.3 when the benign race is suppressed. For

the remainder of this chapter, we will evaluate the performance of pseudojbb2005 without

detecting and repairing benign races.

4.6.2.3 RaceDr Fix Effectiveness

For each detected race, RaceDr will produce a potential fix. Those fixes will be analyzed

to determine whether they can cause a deadlock. Across all of the experiments reported in

Table 4.3 only 3 out of 318 repairs were judged as potentially deadlocking. RaceDr can be

configured to deploy timed locks for those 3 races and then rollback the fixes if the lock

timers expire – indicating an occurrence of deadlock.
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4.6.3 Using RaceDr in Deployed Environments

As shown in the previous section, race detection comprises the dominant cost in applying

RaceDr. To use RaceDr in deployed environments, we reduce this cost by applying Pacer’s

race detection sampling; SOS uses the same sampling mechanism as Pacer. As part of

our evaluation, we investigate the impact of sampling on both the performance and race

detection effectiveness of SOS extended with support for high-level races. First, we observe

the race detection effectiveness when sampling is used to control the runtime overhead to

be within a certain budget. Second, we evaluate the overall performance of RaceDr by

exploiting the insight that we can eventually turn off race detection after a program runs

multiple times.

4.6.3.1 Impacts of Sampling on Detection Effectiveness

To evaluate the effectiveness of our SOS atomicity violation detector, we perform the same

experiment that was used to evaluate the effect of sampling on SOS [LSaD11]. That is,

we fix the overhead of race detection to be 50%, 70%, 85% and 100% of the original

benchmark execution time. We achieve these target overheads by controlling the sampling

rate in SOS which limits the race detector to periodically observing small windows of

execution behavior. To achieve 50% runtime overhead, the sampling rates range from 2.1%

in pseudojbb2005 to 3.8% in hsqldb. For 100% overhead, the sampling rates range from

14% in pseudojbb2005 to 31% in hsqldb.

Figure 4.5 reports the percentages of unique race sources detected at the four target

overheads. The reported values are normalized against the average numbers of detected

unique races per run with full-sampling, i.e., all of the program execution is visible to

the race detector (see Table 4.1, column E). The figure also illustrates that the detection

coverage increases as we go from 50% to 100% overhead.
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Figure 4.6: Race repairs with varying detection overhead.

Figure 4.6 reports the number of unique instances of races that have been repaired for

each benchmark. Since less than 1% of the races in our study have fixes that may intro-

duce deadlock, as expected the repaired races rises in direct proportion with the number of

detected races.

Discussion. A point to take away is that RaceDr can only repair races that have been de-

tected. Hence, its effectiveness depends on the detection coverage. Because RaceDr must

first detect a race, by definition, it will miss healing that instance of the race. Addition-

ally, there are delays in the JIT recompilation process, so more instances of the race may

be missed. Furthermore, in our implementation, recompilation can only occur once the

method is no longer in use. If a unique race exists in a method that is mainly a loop, mul-

tiple dynamic races may be detected before it is repaired. To quantify the effect of repair

delays, we analyze race reports generated by our system with detection and healing.
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Overhead Budget
Benchmark 50% 75% 85% 100%
avrora 658.75 1594.05 1662.97 2024.22
eclipse 1.44 21.31 116.67 160.58
hsqldb 2.00 8.98 22.11 17.22
pseudojbb 11.77 129.67 148.47 202.67
sunflow 2.50 1.79 1.96 6.98
xalan 2.00 2.94 1.90 1.92

Table 4.5: Average number of detected races before a repair is applied.

Table 4.5 reports the average number of detected races between the detection of each

race and the application if its repair. Avrora is a sensor network simulator that has only

a small number of unique races (32 in Table 4.1, column E) but can have nearly 500,000

dynamic races. This indicates that these races reside in loops. Since repairs can only be

applied when the method enclosing such loops returns, it is not surprising to see long repair

delays (over 2000 detected races); pseudojbb2005 exhibits a similar pattern. On the other

hand, benchmarks that have relatively few dynamic races (hsqldb, sunflow, and xalan) incur

much shorter delays. An interesting benchmark is eclipse. It has many dynamic races and

many methods, which in this case leads to moderate repair delays.

4.6.3.2 Impacts of Disabling Race Detection

Prior work by Arnold et al. [AWR05] suggests that significant performance improvements

can be achieved if the runtime information from the current execution can be used to op-

timize the virtual machine configuration for the next execution. This notion is directly

applicable to race repair because if the repair information from the current execution can

be retained for the next execution, our proposed system would be able to directly repair

previously identified races.

We evaluate the benefits of retaining cross-run information using the following method-

ology. We tuned RaceDr to operate at 100% overhead – doubling application runtime.
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Figure 4.7: Percentage of detected races after 20 runs.

Next, we ran each benchmark 20 times. After each run the race report is recorded. This

allows us to accumulate the set of race reports for a sequence of runs. Figure 4.1 reports the

unique race sources detected in each run relative to the accumulated race reports from the

preceding runs. It is clear from this data that for all benchmarks most of the unique races

are detected within the first 10 runs.

Discussion. The effectiveness of race detection in uncovering unique race sources dimin-

ishes over time and, consequently, it makes little sense to continue to incur large race

detection and healing overheads throughout an application’s deployment. RaceDr allows

the user to turn off off race detection, but retain the fixes previously generated. In our

current implementation the user must specify what amounts to a threshold on the rate at

which unique races are detected and when an application falls below that threshold, then

the next execution of the application is performed without race detection and healing. We

leave the exploration of more sophisticated online approaches to suppressing the operation

of RaceDr components to future work.

Because RaceDr can accumulate repairs across multiple program runs, it is possible for
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the system to eventually detect as many races as that of full-sampling. Figure 4.7 plots the

percentage of all detected races (found at full-sampling) that are found when race detection

is limited to a budget of 100% of application runtime and 20 runs are performed. Here we

see that applications can detect anywhere from 65% to 85% of total number of races.

Across all benchmarks RaceDr repairs 144 races after 20 runs. This represents 73.85%

of all detected unique races when the system is running with full sampling. (Our system

detects 195 races when running at full sampling. This number is different than that in Ta-

ble 4.1 because it does not include the benign races in pseudojbb2005.) When considering

disabling of race detection and healing, we note that after 10 runs, RaceDr has already

repaired 129, or 90%, of the races it will encounter in 20 runs. Selecting a threshold for

disabling race detection and healing may depend on many factors, but it seems clear that

there is an opportunity to exploit this phenomenon and significantly reduce runtime over-

head. Recall that when those components of RaceDr are disabled the runtime overhead

drops to 15%, on average, across the benchmarks (Table 4.3, column C).

4.7 Conclusion

In this work, we take a step toward building a completely transparent and automatic race

healing system with RaceDr. Our system can detect data races precisely and efficiently

through the use of a state-of-the-art race detector that can be tuned to work well in different

application scenarios. It computes repairs for detected races and prior to applying those

repairs, determines whether a repair can cause the system to deadlock. If it can, we can use

special locks with timeouts to break the deadlock if it should occur or rollback the repairs.

Our evaluation reveals that RaceDr can effectively expose and repair races in a pre-

deployment testing and debugging environment. The repair information can then be used

during application deployment to provide a more robust program with modest (15%) over-
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head due to additional locking. It is also possible to use RaceDr in a deployed setting. By

using a low sampling rate, the overhead of RaceDr can be controlled and over a series of

program runs this can result in the detection and repair of nearly as many races as would

be resolved with full-blown race detection. Once the rate of newly detected races for a

program drops low enough, RaceDr can be run without detection and healing which nearly

eliminates the overhead incurred during subsequent program executions.

The results of our work open up several new research opportunities. For example,

it is likely that the optimal point at which detection and healing should be turned off in

deployed environments differs from one application to the next. As such, phase detection

algorithms are needed to identify where those capabilities should be disabled and enabled.

Currently our race detection uses temporal sampling, but other forms of sampling, e.g.,

across the methods or classes of a code base, could also be effective. Finally, detection of

benign races, or even those whose locking results in high contention, could also increase

the transparency and automation of RaceDr.
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Chapter 5

Related work

5.1 Race Detection

Numerous recent research have been presented on race detection. FastTrack [FF09] and

Pacer [BCM10] are the most closely related work ours and we have done extensive com-

parisons in Section 2.2.4. As such, we only compare our approach to other related race

detection work in this section. Race detection, in general, can be broadly categorized into

two approaches: static and dynamic race detection. Next, we describe these approaches in

turn.

Static race detection Model checking has been applied to detect races for over a

decade [HJM04, KYKS09]. Model checking provides precise results with no false re-

porting; however it can suffer from state explosion, and therefore, does not scale well.

Other static race detection techniques [VJL07, NAW06, CLL+02] can scale to large

systems, but they are not precise; that is they can provide false positives. Furthermore,

they often have difficulties dealing with reflection and native methods [UL08]. As such,

our approach is instead based on dynamic analysis because we need to have precision in

stationary object identification. Furthermore, our approach is built on top of a dynamic race
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detector.

Dynamic race detection There are at least two common dynamic race detection ap-

proaches: one is based on vector clocks and the other is based on locksets. These two

approaches have been used individually as well as together to detect races. Typical lockset

algorithms enforce the locking discipline that every shared variable is protected by some

locks and a lock is held by a thread whenever it accesses the variable. Eraser [SBN+97] is

one of the representative work on race detection based on locksets. It is common for lockset

algorithms to generate false positives, but they have much lower execution overhead than

vector clock based approaches.

A vector clock based race detector constructs happens-before relationships from pro-

gram statements. It pays particular attention to all accesses to shared resources and syn-

chronization primitives such as locks. Generically, the algorithm maintains logic time vec-

tors for all shared data and records when they were last accessed. An example of VC based

algorithm is DJIT+ which is used to detect races in concurrent C++ programs [PS03, PS07].

One of the main overhead for VC based detectors is the comparing vector clock entries.

This is an O(n) time operation where n represents the number of threads. As programs

become more thread intensive, the overhead continues to climb.

FastTrack [FF09], LiteRace [MMN09] and Pacer [BCM10] are all based on vector

clocks. As aforementioned, the main contribution of FastTrack is the reduction in the VC

storage space and operation time from O(n) to O(1). As such, FastTrack can maintain

the precision while reducing the overhead to be about the same as that of a lockset based

approach.

LiteRace can also reduce overhead without compromising too much detection coverage

by exploiting an insight that races are more likely to exist among infrequently executed

code. Their technique gradually reduces the sampling rates as the code become “hotter”

and maintain high sampling rates for “cold” code. We adapt a variation of this technique by
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exploiting the compiler infrastructure in Jikes RVM to perform instrumentation in “cold”

code and less instrumentation in “hot” code. Another distinction from our work is that

LiteRace performs offline analysis while our approach perform analysis on-line.

Hybrid Race Detection There are also techniques that combine VC and locksets to

achieve higher precision at lower cost. As an example, MultiRace combines both ap-

proaches to detect races in C++ programs [PS07]. RaceTrack uses the lockset based ap-

proach for checking locking discipline but then also applies the VC based approach to

determine access orders. This approach can significantly reduced the occurrence of false

race reports while maintaining 2x to 3x execution overhead [YRC05]. However, these sys-

tems do not guarantee precision; they only reduce false positives. Therefore, they are not

used in our system.

Predictive Race Detection Smaragdakis et al. build a sound predictive race detec-

tor to detect some hard to find races [SES+12]. They generalize happens-before rela-

tionship to causally-precedes relation (CP) to soundly detect more races. This approach

uses Fasttrack [FF09] to generate program execution traces, then it builds CP relation

based on the races and detect races. The results of applying CP to real-world programs

show that it can find races that are difficult to detect by happens-before based race de-

tectors. Quantitatively they are able to predict just slightly fewer additional races as our

technique. In addition to assuring soundness, CP race detection improves on other race

predictors [CR07] [CSR08] [SRA06] in that its time complexity is polynomial.

Hardware Based Race Detection So far, most software based race detectors introduce

significant overhead. Hardware can greatly speed up the detection, as shown by DRFx

[MSM+10] and Conflict Exceptions [LCS+10]. DRFx uses a hardware buffer of memory

locations accessed between fences and coherence event monitoring that checks for conflicts

with addresses in the buffer. Conflict Exceptions keeps pre-assigned byte level access bits

per cache line and sets aside memory space to keep access bits for out-of-cache data. How-
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ever, these approaches require specialized hardware, which may not publicly be available.

5.2 Atomicity

Atomicity is a fundamental correctness property in multi-threaded programs. The research

in the area dates back Lipton’s reduction theory [Lip75], which defines sufficient conditions

to ensure atomicity of parallel programs. This reduction theory forms the basis of a number

of atomicity checking approaches including Atomizer [FF04].

Atomizer uses a dynamic analysis for detecting atomicity violations in Java programs.

Atomizer is built on top of a lockset based race detector, Eraser. It uses Eraser to dynam-

ically collect the lock information that is required for reasoning about atomicity. RaceDr

also extends a race detector, SOS [LSaD11], to capture atomicity violations. The major

difference is that SOS is a precise detector while lockset based approach is imprecise.

Velodrome [FFY08] improves Atomizer by ensuring completeness and soundness rel-

ative to the program execution that is observed. It builds a dependence graph for a pro-

gram based on the happens-before relation over synchronization and read/write operations.

Therefore, cycles in the dependence graph indicate atomicity violations in the program.

Velodrome can identify the operation causing the violation, which could facilitate violation

fixing. Unlike our race detection algorithms that can detect both high- and low-level data

races, Velodrome cannot detect low-level data races.

Vaziri et al. [VTD06] define a notion of atomicity violations that involves associating

synchronization constraints with data, which can avoid some false warnings issued by re-

duction theory based approaches. In follow-up work, Hammer et al. [HDVT08] propose

a concurrent program correctness criterion called atomic-set serializability, which states

that units of work must be serializable for each atomic data grouping. They also provide

a dynamic analysis to detect violations for atomic-set serializability based on 14 program
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interleaving patterns.

There is a large body of work on testing for concurrency faults. A number of techniques

in this area manipulate program scheduling to better expose concurrency faults. For exam-

ple, Active testing [JNPS09] randomizes the program’s schedule at the application level by

inserting yield points. DataCollider [EMBO10] use hardware breakpoints to detect prob-

lematic memory accesses via kernel support. There is also work that can predictively find

concurrency faults based on observation of program behavior.

ConMem [ZSL10] monitors memory access information of a program and predicts pos-

sible program traces that could lead to a fault. AVIO detects atomicity violations according

to program access interleaving invariants [LTQZ06]. In general, any of these techniques

for boosting fault detection effectiveness can be used in concert with RaceDr. When us-

ing RaceDr for testing and debugging this is probably the preferred approach, since the

program will more quickly reach the point at which new races are no longer detected.

5.3 Fault Repair

AFix [JSZ+11] is closely related to ours. AFix provides a static analysis for bug reports to

automatically generate patches that can fix single-variable atomicity violations. AFix also

has runtime monitoring based on timeout to avoid deadlocks. Unlike Virtual Healer, AFix

cannot immediately fix bugs on-the-fly. It only provides patches that must be applied by

developers. As such, AFix might need rebooting or code recompilation to work. This can

greatly reduce system availability.

As a complement to AFix, LOOM can aid developers to generate ”live-workaround” to

fix data races [WCY10]. It provides a language that developers can easily write a patch.

LOOM also builds an update engine to install patches without interrupting the program

executions. However, it still needs users to manually generate patches while VirtualHealer
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fully automates the process of patch generation.

In addition to systems that we have discussed in this dissertation, the following systems

can also perform self-healing. ClearView[PKL+09] provides a mechanism to automatically

generate patches for x86 binaries at runtime. It operates at the binary level so it does not

need source code and can apply patches without system reboots. However it is not design

to support repairs of concurrency faults. Weimer [WNLGF09a] introduce a new approach

to automatically fix faults with genetic programming. This approach is designed for testing

environment since the overhead is too high to be effectively used in deployed system (i.e.

200 seconds for 63,000 line programs). Portend [KZC12] provides a system to distinguish

benign races and harmful races, which could be an infrastructure of VirtualHealer.

PBnJ [SAM10] performs dynamic contract checking of methods. It employs SAT

solver to detect contract violations based on predefined specifications. Specifications, re-

quired by PBnJ, can be difficult to write for concurrent programs due to complexities of

properties. Meanwhile, read and write operations need be monitored in order to detect and

fix concurrency bugs. This could be prohibitively expensive in their system.

Krena et al. proposed an on-the-fly race healing that can detect races and inject two

types of instructions: scheduling and synchronization to fix them. The system was built

on top of ConTest, a concurrent program testing platform so that it can perform runtime

monitoring and code injection using the features provided by ConTest. The race detection

is based on Eraser which is a lock-set based race detection approach [KLT+07].

REASSURE use rescue points to recover from software faults [PK11]. It will rollback

the program execution when certain anticipated software errors occur. It keeps the software

operational and returns a valid error code. However, REASSURE cannot fix errors, which

is similar to LOOM.

Genetic algorithm has been employed to automatically fix software faults [LGNFW12,

LGWF12, FL12, SFW10, WFLGN10, WNLGF09b], which is described as viewing pro-
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grams through the lens of evolutionary biology. These approaches assume that the program

functional requirements are properly encoded in the test cases. Once a program fault is

located, a genetic algorithm based mechanism will evolve the program to produce program

variants until one variant is found to successfully pass the functional test cases and avoid

the program defects. These approaches do not require formal specifications, program an-

notations or special coding software. However, it is challenging to ensure the test cases

completely include all functional requirements. On the other hand, the number of variants

can exponentially increases for complicated program faults that involves multiple program

locations.

5.4 Optimizing Runtime Monitoring

There is a long history of work on optimizing runtime monitoring. The vast majority of

that work has focused on monitors aimed at checking properties of individual program

states, e.g., assertions, array bounds checks [MMS98, BGS00]. A more recent trend has

looked at reducing the cost of monitoring properties related to sequences of program states

(or actions), e.g., data races, typestate [SY86]. Since our interest in this dissertation is in

optimizing dynamic data race detection we will discuss recent approaches to reducing the

overhead of state sequencing properties.

Generally speaking, there are two main approaches that have been explored to reduce

monitoring overhead: using static analysis to determine instrumentation that can be safely

removed, and using sampling to select a subset of instrumentation to insert in the program.

Static Analysis. Over the last several years, there have been two groups exploring

the use of static analysis for reducing the cost of monitoring typestate properties — one

can think of these as any property that can be described as a finite state automaton. In a

pair of papers, Eric Bodden and colleagues developed a staged analysis approach [BLH08,
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Bod10]. Early stages involve flow-insensitive analyses that exploit information about the

program statements and data that are reference in the property, whereas later flow-sensitive

analyses relate the structure of property automaton to paths in the program control flow

graph to drop instrumentation. These techniques have been shown to be quite effective

across a range of properties checked on the DaCapo benchmarks [BGH+06].

In [PDE10] we focused on the the general problem of monitoring properties specified

as finite-state automata and the optimization of monitor instrumentation in loops. We de-

veloped conditions under which a prefix of the loop iteration space may be unrolled. The

unrolled prefix is then instrumented while the remaining iterations of the loop have their

instrumentation removed. This loop optimization was able to reduce the number of op-

erations that required monitoring by several orders of magnitude across a set of DaCapo

benchmarks. Unfortunately, for multi-threaded programs there is no guarantees that the

behavior of other threads will occur while a loop is executing its monitored prefix, thus the

technique is not directly applicable to data race detection.

Sampling. There has been a large body of work on using sampling techniques to,

for example, choose a subset of assertions to enable in a program execution. Sampling

can significantly reduce the overhead of runtime monitoring, but that benefit comes with

a reduction in fault detection. Sampling sequencing properties is much more subtle than

sampling assertions. To preserve the precision of runtime monitoring, one must sample sets

of instrumentation that when enabled ensure that no false error reports will be issued.

One straightforward way to do this is to sample the set of objects that are monitored as

is done in QVM [AVY08]. QVM uses a randomized sampling approach, similar in spirit to

Pacer. QVM is a customized VM that uses a bit in the object header to efficiently control

instrumentation that bit is set, using a biased coin flip, when the object is allocated.

Several researchers have exploited the structure of the property to identify subsets of

instrumentation that preserve some fault detection, but offer potential overhead reduction.
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This general approach is taken, in very different ways, in [BHL+07] and [DDE08]. Since

data races have a very simple structure there is little opportunity for applying this strategy.

Most work on optimizing the monitoring of sequencing properties performs the op-

timization either offline or at object creation time. Pacer is slightly different in that it

monitors some operations throughout an object’s lifetime and only samples a subset of

remaining operations; it controls sampling at garbage collection time. Work by Xian et

al. [XSaJ08] also uses sampling to control the overhead of monitoring lock usage in large

Java server applications. In this approach, sampling is controlled by thread creations; that

is, more information is monitored during the initialization and then less as the number of

threads stabilizes.

In general, for any sampling approaches one must consider the population being sam-

pled and the relationship between that population and the properties being analyzed. In

some cases, the population can be reduced with little loss in detecting property violations.

This is the case for our SOS optimization – we eliminate stationary objects from the popu-

lation of objects on which reads and writes are sampled.

When using temporal sampling, as is done in Pacer and QVM, the regions within which

sampling is performed may vary widely in the size of the population of reads/writes that

might be sampled. These techniques are insensitive to this variation in population density

and this can result in unnecessarily high monitoring overhead. Our approach attempts

to adjust the sampling rate within loops so that the population density within sampled

temporal regions more closely matches the overall sampling rate. In doing this, we achieve

lower overhead while sacrificing little in the way of race detection.
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5.5 Stationary Fields

As we discussed, Unkel and Lam [UL08] presents the notion of stationary fields to describe

fields on which all writes happen before reads, creating an opportunity to further optimize

programs. Our proposed approach is based on this notion with a broader scope to include

objects in addition to fields. Rogers et al. [RZKW08] extends Java language to express a

field as stationary when some constraints are satisfied. With this extension, JVM can get

the information about stationary fields for runtime optimization. They use class loading as

a case study. The evaluation result shows it can achieve 1.67% to 3.90% speedup in their

experimental subjects.

Bronson et al. [BKO09] use stationary field information to optimize strongly isolated

Software Transactional Memory (STM). They use static analysis to identify stationary fields

in a program, they then use the result to help improve SMT performance by eliminating

memory barriers on stationary fields. Loginov et al. [LYC+08] treats stationary fields in

the same way as final fields in the verification of dereference safety in Java programs. To

the best of our knowledge, there is no existing work on race detection optimization with

stationary field information.
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Chapter 6

Conclusion and Future Work

This chapter summarizes my dissertation work and provides directions for future work.

For future work, we propose a road-map to extend our current work, which includes an ap-

proach to optimize race detection, a technique to improve the online adjustment of RaceDr

and a study on the quality of repairs generated by RaceDr and developers.

6.1 Conclusion

This dissertation presents research on automatic race detection and healing since data races

are the most common concurrency faults and the root cause of many system failures. Our

approaches optimize sampling based dynamic race detection by increasing density of data

races over sampling space. We achieve this goal based on the insight that many opera-

tions access stationary objects, which cannot participate data races. Therefore, our detector

does not need to monitor these operations. The evaluation results shows that our optimiza-

tion can detect up to six times more races than existing with the same overhead budget in

comparison to Pacer, a state-of-the-art race detector.

The goal for race detection is to find code locations that can cause data races. Therefore,
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detecting one instance of a race is enough to locate the sources of that race. However, our

evaluation found that even after filtering out stationary objects, race detectors still spend

substantial amount of time on detecting the same races over and over again, causing some

races to be needlessly detected up to several millions times. An in-depth investigation

reveals that a majority of repetitive races occur in loops. Based on this insight, we built a

sampling based race detector, LIS, that can adaptively adjust sampling rates according the

number of iterations in the loop. By applying LIS to Pacer and SOS, we can get 52% and

33% overhead reduction, respectively.

Lastly, we propose RaceDr, a framework to transparently repair data races on-the-fly.

RaceDr advances existing race repair systems as follows. First, it includes a high perfor-

mance race detector, extended from SOS, that can cover both low level and high level data

races. The overhead of the race detector can be controlled by adjusting sampling rate in

order to use in deployed systems with tight performance constraints. Second, RaceDr en-

sure the correctness of repairs by not introducing deadlocks due to the repair code. Third,

the repairs are automatically generated and applied so there is no need to manually perform

fault repairs. Fourth, the repairs are immediately applied without interrupting the execution

of the system.

6.2 Future Work

6.2.1 Code Based Sampling for Race Detection

Sampling is an effective way to reduce overhead of dynamic race detection, but existing

sampling based race detection has the following limitations:

1. Current approaches, such as Pacer, use uniform sampling based on time. However,

the goal of race detection is to identify code locations that cause races instead of the times
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when races occur. As such, when a program is executed in loops, the temporal sampling ap-

proaches would repeatedly monitor the same code region, as identified by our investigation.

Spatial sampling based on code region could make race detection more efficient.

2. Current sampling based race detectors are not cognizant of program semantics, there-

fore, they assume that all program code has equal probability to participate races. In fact,

semantic information could greatly enhance efficiency of race detection. Program loop in-

formation can help reduce repetitive detected races as shown in Chapter 3. However, LIS

just takes the first step to make use of semantics information in race detection, and there

are two additional directions worth pursuing.

First, type information can guide race detectors to adjust sampling rate. For instance,

a symptom of races is that a type of class has many accesses to shared data but without

sufficient synchronizations. As such, this type of classes should employ high sampling

rate. In addition, combination of both static and dynamic analyses can work together to

reduce overhead without sacrificing precision.

6.2.2 Race Repair Study

RaceDr automatically generates repairs for low level and high level races based predefined

algorithms. It is interesting to compare RaceDr’s repairs with hand-crafted repairs. We

plan to investigate the official repairs released by developers that can provide some insights

for RaceDr to improve its race healing algorithm. We can conduct user study of race

repair among different level of developers ranging from beginning programmers, graduate

students, and experienced engineers to evaluate the benefits of RaceDr for different group

of users. The study will answer the following questions:

• Do hand-crafted repairs introduce fewer deadlocks than RaceDr?
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• What is the performance implication if applying repairs generated by RaceDr versus

manually generated repairs?

As our experiment shows, RaceDr occasionally generates repairs that can cause dead-

locks. There are two possible reasons for these deadlocks. First, some deadlocks occur

due to the program semantics, so it is very difficult to avoid such deadlocks without non-

trivial changes to the original program. Second, some deadlocks are caused by the current

limitations of our system (e.g., lack of global program information, naive lock inserting al-

gorithm). For the latter case, we expect hand-crafted repairs should provide deadlock free

solutions. Therefore, it is very interesting to investigate the reasons for RaceDr to generate

repairs causing deadlocks. The results can lead to improvements of our fixing mechanism.

It is known that locks can lead to performance bottlenecks. RaceDr causes about 15%

performance overhead. We plan to compare the overhead of RaceDr with that of manually

generated repairs to determine which approach is more efficient in terms of introducing

lower runtime overhead. We believe that studying these research questions will open up

opportunities to further improve RaceDr.

6.2.3 Concurrency Attack Study and Fixing

Recent investigations of real-world data races and atomicity violations have shown that

they can lead security vulnerabilities [YCSS12, PMBM08]. For instance, a directory ser-

vice script in Mac OS X 10.3.9 has an atomicity violation that can result in authentication

vulnerability when the following actions occur. First, it writes the private and public keys

to a temporary file; then it reads the keys and put them into the database. Because the

two-step process is not atomic, attackers can exploit the violation by replacing the tempo-

rary file with their own public and private keys before the temporary file is re-read, causing

the attackers keys to be inserted to the database instead of the actual keys. As multi-core
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systems are becoming the mainstream computer platform, this class of vulnerabilities is

expected to rapidly increase. However, to the best of our knowledge, there is no systematic

and comprehensive study on security vulnerabilities due to data race. As such, a careful

and comprehensive empirical study can characterize possible security defects caused by

data races and suggest potential solutions to identify and address these defects.

To study these vulnerabilities, we hypothesize that races that can cause security threats

have characteristics that are different from those that only impair program correctness. The

insights gained from our study can suggest potential opportunities to expose and eliminate

them. More specifically, our study will answer the following research questions:

• What percentage of races are able to compromise system security? Are they only a

small portion or a majority of the races in a system?

• Which class of races tend to cause security issues, low-level data races or atomicity

violations? In the case of atomicity violations, does the duration of the atomicity

violation affect exploitability, and can attackers affect that duration?

• What is the vulnerability manifestation pattern? How many threads participate? How

many variables are involved?

• Can the traditional race fixing solutions like inserting synchronization operations

eliminate vulnerabilities?

• Can the proposed security patches in bug repositories really fix the vulnerabilities?

Can they introduce new defects for security, correctness or performance?

Based on our investigations of above questions, we will conduct experiments to deter-

mine if the knowledge obtained from the study can be helpful in finding and addressing

race-related vulnerabilities.
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Because RaceDr can fix generic races and atomicity violations, it also has the potential

to fix vulnerability due to data races that can lead to concurrency attacks. The key is to find

out the particular features of races that can impair the system security. We strongly believe

that knowledge about real world race vulnerabilities will be valuable for guiding research

towards the detection of, and defense against, this class of increasingly prevalent attacks.

We are going to extend RaceDr to prevent concurrency attacks. Since security attacks are

usually time critical, the feature of on-the-fly fixing of RaceDr can fit in this situation very

well.
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