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Abstract 
 

The negative consequences of sprawling metropolitan regions have attracted attention in 

both academia and in practice regarding how to better design settlements and alter travel 

behavior in a quest to curtail vehicle emissions. Studies that have attempted to understand 

the nexus between land use, travel and vehicle emissions have not been able to address 

the issue of self-selection in a satisfactory manner. Self-selection occurs when households 

choose their residential location based, in part, on expected travel behavior. This non-

random experience makes the use of traditional regression frameworks that strongly rely 

on random sampling, unsuitable. This replication study’s purpose was to examine the 

impact of land use and travel on CO2 emissions using the Heckman (1979) sample 

selection model in Portland Metropolitan Area.  Three research questions guided this 

study: (1) Does self-selection to drive a motor vehicle lead to reduction in CO2 

emissions? (2) Does land use and automobile travel influence the decision to drive after 

controlling for self-selection? (3) What land use and travel factors determine CO2 

emissions after controlling for self-selection? The findings suggest driving has a 

statistically significant negative effect on estimated CO2 and that most land use variables 

significantly affect driving behavior. 
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Chapter 1: Introduction  

1.1. Research Background 

The negative consequences of sprawling metropolitan regions have attracted 

attention in both academia and in practice regarding how to better design settlements and 

alter travel behavior in a quest to curtail vehicle emissions. Urban sprawl has been 

accused of wasting prime lands, increasing congestion and air pollution, and causing 

obesity (Cox, 2004). Broad separations of land uses through zoning, investment in 

highways, and government subsidies, among others, have often been cited as causes of 

urban sprawl. Urban sprawl contributes significantly to transportation-related greenhouse 

gas (GHG) emissions (Stone et al., 2009). Recently, for example, transportation activities 

accounted for 25% of CO2 emissions from fossil fuel combustion (EPA, 2016a). 

Metropolitan authorities have been keen on addressing the transportation and land use 

challenges hindering the achievement of their environmental metrics since, for example, 

37% of U.S. population lives in a county that violates one or more National Ambient Air 

Quality Standards (NAAQS) (EPA, 2016b). 

Land use policies deemed appropriate in ameliorating transportation impacts 

include increasing density, mixing land uses, connecting blocks, making destinations 

accessible, and making transit accessible (TRB, 2009). Land use policies aim to decrease 

travel demand and emissions by reducing density, trip lengths and encouraging greater 

transit use, thus resulting in a reduction of carbon dioxide emissions. However, recent 

work maintains that attempts at increasing density may have negative unintended 
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transportation-related environmental consequences such as carbon dioxide (IBI Group, 

1990).  

The issue of self-selection has become an integral part of assessing the impact of 

land use and travel behavior on CO2 emissions due to the realization that earlier reliance 

on land use factors alone to investigate travel and emission outcomes have tended to 

exaggerate causal effects. Households are deemed to self-select when they choose their 

residential location based, in part, on expected travel behavior (Boarnet & Crane, 2001). 

Empirical findings are inconsistent on the extent that self-selection impacts travel 

behavior (Bento et al., 2005; Brownstone & Golob, 2009; Cao, 2009; Cao et al., 2009). 

The simplest, though impractical, approach to assess travel impacts of land use would be 

to randomly assign households as either New Urbanist (e.g. compact, diverse and 

pedestrian-orientated) or suburban (e.g. auto dependent, leapfrogged and uncentered) 

neighborhoods, and compare the travel outcomes before and after the assignment. Since 

households cannot be randomly assigned into either neighborhood category because they 

have already self-selected residential location, random assignment is considered an 

impractical approach. 

Three broad groups of empirical studies have been devoted to assessing the 

effectiveness of metropolitan initiatives aimed at reducing vehicle emissions. Simulations 

have often been carried out to examine transportation and emission effects of alternative 

land use scenarios (Stone et al., 2007; Stone et al., 2009), and found compact 

developments to reduce auto use and cut CO2 emissions.  Although these use unique 

combinations of land use and travel scenarios to model possible future emissions, the 
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comparisons are, at best, descriptive. Others have used multivariate regressions to model 

the effect of land use and travel variables on vehicle emissions (Frank et al., 2000; Frank 

et al., 2005), and noted that denser and more mixed land uses led to CO2 reductions. 

While researcher controlled for personal factors, they did not explicitly account for 

residential self-selection. Few studies employed sample selection models such as 

Heckman (1979) and instrumental variables to control for selection bias or endogeneity in 

land use, travel, and emission models (Wang et al.,2013a). Wang et al. (2013a) used the 

National Household Travel Survey (NHTS) with Virginia Add-On to determine whether 

smart growth developments were related to lower CO2 emissions and found that mixed 

land uses and well-connected roadways were associated with lower CO2 emissions.  

This study primarily replicates the above work (Wang et al.,2013a) in Portland 

Metropolitan Area. Replication is an attempt to extend studies with the aim to externally 

validate their findings. We can only build confidence in relationships between concepts 

when such theories have been able to stand the test of falsifications: 

Only when certain events recur … can our observations be tested. We do not take even 

our own observations quite seriously, or accept them as scientific observations, until we 

have repeated and tested them. Only by such repetitions can we convince ourselves that 

we are dealing with a mere isolated “coincidence,” but with events which, on account of 

their regularity and reproducibility, are in principle intersubjectively testable (Popper, 

1959, p. 45). 

This work extends the work of Wang et al. (2013a) in terms of household 

residential location, measuring CO2 emissions, the addition of new variables, and 
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improved model specification. First, Wang and his colleagues used synthetically imputed 

residential location at the centroid of census blocks because NHTS did not disclose 

residential location due to confidentiality concerns. However, work by Wang et al. 

(2013b) to ascertain validity of geo-imputations in measuring travel behavior noted 

significant errors when land use variables such as accessibility is measured within census 

blocks. Second, they failed to compute CO2 emissions per mile based on type of vehicle. 

CO2 computations were based on 8,887 g CO2 per gallon across different vehicle classes 

which assumed all vehicles in Virginia emitted CO2 at this rate. Third, this work 

improves previous work by introducing new variables that have higher likelihood of 

influencing driving decisions and CO2 emissions. These variables include land use (e.g. 

block size, population density, distance to LRT, distance to bust stop, distance to CBD, 

number of bus stops, number of LRT stops, and land use mix), demographics (e.g. race, 

gender, household size, average age of household members, and number of workers), and 

others (e.g. disability, employer parking, having a transit pass, having flexible work 

schedules, gas prices, and home ownership). Finally, the study improves the specification 

of the selection model. Previous work mis-specified the likelihood of driving model by 

using either land use or travel variables, thereby implying there was no influence of these 

variables on the decision to drive. Indeed, ample evidence in the literature reviewed point 

to the relevance of these variables in determining the decision to drive. 

This study makes a number of important contributions to research on land use, 

travel and GHG emissions. First, this study explicitly examines the effect of land use and 

travel behavior on the decision to drive. This is relevant for travel demand analysts who 
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are interested in identifying land uses that significantly impact travel outcomes. Second, 

this study provides insights into how land uses and travel preferences influence CO2 

emissions. This analysis will enhance our understanding of the CO2 emission effects of 

land use and travel preferences which is vital for planning and managing land use and 

travel scenarios. Finally, this study will further aid our understanding of air-quality-

related health effects emanating from land use and travel decisions since vehicle 

emissions account for most urban air pollution and health threats. 

The purpose of this econometric study is to replicate the results of Wang et al. 

(2013) by examining the impact of land use and travel on CO2 emissions using the 

Heckman (1979) sample selection model in Portland Metropolitan Area.   

 

1.2 Conceptual Framework, Research Questions, and Hypotheses 

1.2.1. Conceptual Framework   

 

This study is founded on two critical individual decision processes. The 

underlying assumption is that an individual makes two separate but related decisions with 

regard to driving. The first decision is whether or not to drive. The second decision is 

about the level of CO2 emission that is generated once the decision to drive has been 

made. The decision to drive was thought of being influenced by income (Inc), distance to 

work (DWork), number of workers (Workers), and the presence of children (Child). All 

these variables are expected to have a positive relationship with driving.   
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The amount of CO2 emitted by households who drive is determined by number of 

vehicle trips (VTrips), income (Inc), number of vehicles (Veh), number of drivers 

(Driver), road density (RDen), number of intersections (Int), age of household head (Age) 

and land use mix (Mix). Figure 1 below shows the conceptual framework guiding this 

study, adapted from Wang et al. (2013). 

 

 

Figure 1: Conceptual Framework 

 

 

1.2.2. Research Questions 

 

The following questions directly follow the conceptual framework above: 

Question 1: Does self-selection play a role in the relationship between driving a motor 

vehicle and CO2 emissions? If the drivers in the sample randomly chose to drive, an OLS 

regression could be used to estimate CO2 emissions. But, drivers who would have high 

CO2 emissions may be unlikely to choose to drive, and thus the sample of observed CO2 

emission is biased upward. 
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Question 2: Does land use and automobile travel influence the decision to drive after 

controlling for self-selection? 

 

Question 3: What land use and travel factors determine CO2 emissions after controlling 

for self-selection? 

 

1.2.3. Hypotheses 

 

Overall, three hypotheses are tested in this study. The first hypothesis is focused 

on unobservable factors that affect both the decision to drive and CO2 emissions. That is, 

it answers the question of whether self-selection is a relevant factor. The second 

hypothesis is concerned about finding the determinants of the decision to drive. The last 

hypothesis addresses the effect of land use and travel on CO2 emissions in the presence of 

self-selection. Following Wang et al. (2013a), the hypotheses driving this study are: 

 

Hypothesis 1: The decision to drive and CO2 emissions are interrelated.  

Hypothesis 2: The decision to drive is the result of land use characteristics of households. 

Hypothesis 3: Land use and automobile travel behavior factors are strongly associated 

with CO2 emissions.  
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1.3.  Outline of the Study 

 

Chapter two is devoted to reviewing literature germane to the connection between 

land use, travel, and CO2 emissions. Chapter three is directed at data, variables, and 

model specification to address the research questions. Chapter four is dedicated to a 

report of the findings. Chapter five concludes the study with a summary of the findings 

and recommendations for future studies.  
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Chapter 2: Literature Review 

2.1. Introduction  

 

This review is divided into two main sections. The first section is devoted to 

reviewing relevant underlying theoretical formulations within which the study is 

conceptualized. The second section looks at endogeneity/self-selection and broad groups 

of studies that are dedicated to understanding the impact of land use, travel, and CO2 

emissions.  

 

2.2. Residential and Employment Location Choice 

 

Alonso (1964) is widely accredited with the standard monocentric model of urban 

land use theory, often referred to as bid-rent theory. This theory derives inspiration from 

the closed land use and transport model of von Thunen, complementarity model of 

Wingo, and central place theory of Christaller and Losch. The standard model is a partial-

equilibrium model because it assumes employment location to be fixed at the central 

business district (CBD). It also assumes that there is a single-worker in a household, 

housing cost is a function of capital and land, and transportation cost is constant and 

uniform across space. Bid-rent theory provides an earlier approach to model residential 

and firm locations given trade-offs between transportation and housing costs, on one 

hand, and transportation costs, wages and land rents, on the other. Consequently, bid-rent 

theory is at the core, a cost-benefit analysis in which residential location choice is based 
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on household utility maximization theory while firm location choice is based on profit 

maximization theory.  

Given a household consumption bundle of housing and transportation, households 

will maximize utility of housing and non-housing goods subject to a budget constraint. A 

number of stylized facts are discernible from this formulation: that the higher housing 

cost incurred from locating closer to the CBD is expected to defray the commute cost 

saved and that the higher the commute distance the lower the housing price. Under this 

theory, residential densities are expected to decline with distance to CBD because 

commute costs outweigh rents, thereby showing up in increased trip lengths.   

Firms are assumed to locate at places that would maximize profits by either 

increasing revenue or reducing costs. Since revenue is directly proportional to rent, 

wages, prevailing price at the CBD and transportation cost, firms will locate farther from 

the CBD only if savings in production costs exceed transportation costs of inputs 

(Pickrell, 1999). Despite the elegance of the standard location theory in predicting 

residential and employment location, the simplifying assumptions renders the 

applicability of the model questionable in many urban settings. Changes in contemporary 

regional environments characterized by decentralized employment, spatial mismatch 

between jobs and housing locations; household location preferences due to ethnicity and 

race; and structural changes of dual-income earnings, increased female-headship and 

increased part-time jobs, continue to make predictions from the bid-rent model unreliable 

(Giuliano, 1995). 
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Cao, Mokhtarian, and Handy (2009) reviewed a large body of literature covering 

nine methodological categories on residential location and overwhelmingly confirmed the 

effect of land use on travel choices. Specifically, they noted the decision to choose 

residential location based on preference for certain travel behavior significantly 

accounted for some of the variation in the land use-travel connection. Automobile 

ownership is partially important in the overall effect of residential location on travel 

behavior. A number of studies have focused on jointly modeling land use and automobile 

ownership/use. These studies conclude that built environment affects both residential 

choice and auto ownership (Brownstone & Golob, 2009; Bhat & Guo, 2007). 

 

2.3. Consumer Demand Theory  

 

Consumer demand theory postulates that demand for a good is directly 

proportional to characteristics of the good (e.g. price), subject to a budget constraint 

(Small & Verhoef, 2007). Boarnet and Crane (2001) formulated a reduced-form 

microeconomic demand theory to predict travel behavior from prices, income, and 

sociodemographic characteristics of travelers. Their model defined two key dimensions 

of a structural model from which the reduced-form is deduced. First, they assumed that 

land use affects the generalized cost of travel, which is defined as distance and speed 

between origins and destinations or accessibility. The reasoning here is that compact 

developments will shorten trip length and increases travel speeds. Second, they assumed 

that the cost of travel and socio-economic characteristics determined overall travel 
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behavior. While this theory dominates most research assessing the effect of built 

environment on travel, it has suffered much criticism. Primarily, it suffers from 

estimation problems such as endogeneity or selection bias (Crane & Guo, 2011).   

 

2.4. Implications for this study 

 

These two theories have important implications for the study of built environment effects 

on travel. These include density, commuting, and income segregation. Density is one of 

critical dimensions of urban land use with significant influence on travel. As the city 

spreads farther from the CBD, the bid-rent model predicts a decline in population density. 

Increase in commute trip length has been an area of policy concern lately. Glaeser and  

Kahn (2001) estimated employment and population density gradients for 120 MSAs 

using zip code level data and found population and employment to be strongly positively 

correlated. But employment locations were much more centralized than population. This 

potential mismatch has the tendency to increase distance to work. Income effects of the 

model are two-pronged. The rich households would prefer to live in the outskirts because 

of their lower ratio of commute to housing costs. However, the rich could be attracted to 

locations closer to the center due to their higher opportunity cost of time. Thus, less dense 

neighborhoods, high income earners living in the outskirts and increase in trip lengths 

due to separation of residences and workplaces lead to over-reliance on automobiles. 
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2.5.  The Endogeneity Problem 

 

Endogeneity is one of the difficult problems in trying to establish the causal effect 

of land use on travel. The traditional OLS regression of travel behavior on land use and 

socio- demographics elicits endogeneity resulting from correlation between the predictors 

and errors. This endogeneity is the result of the observed proclivity of individuals 

choosing to live in “locations based on their travel abilities, needs and preferences” 

(Litman, 2005, p. 6). Thus, individual idiosyncratic attitudes and personal characteristics 

are fundamental in determining endogeneity. The seminal study of Cervero (1994) 

regarding the San Francisco Bay Area noted that individuals living in housing 

developments near transit stations were far more likely to use public transit than average 

city-dwellers, primarily because “they have a proclivity to patronize rail transit, whether 

due to habit, personal taste, or happenstance” (p. 177).  In a related scenario of individual 

characteristics determining travel behavior, there is ample empirical evidence to support 

the notion that an individual's income is a strong predictor of travel mode (Best & 

Lanzendorf, 2005; Boarnet & Sarmiento, 1998). Any attempt at assessing the impact of 

land use and travel on CO2 emissions without accounting for the unique effect of 

endogeneity would bias the causal impact. The following subsections examine the 

sources of endogeneity and possible remedies. 
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2.6.  Causes of Endogeneity 

 

Econometrically, endogeneity is caused by three problems: omitted variables, 

measurement error, and simultaneity (Wooldridge, 2010, p. 54-55). Omitted variable bias 

is the situation where an excluded predictor from a regression equation finds itself in the 

error term to correlate with the remaining predictors. Residential self-selection is a 

special case of omitted variable bias; the choice of residence is based on factors 

unobserved by researchers, hence proxying for the unobservable factors captured in the 

error term. Since predictors of travel behavior would proxy for the unobserved factors 

due to the correlation with the omitted variables in the error term, the estimated 

coefficients would not be uniquely measuring the effect of land use on travel behavior. 

Put differently, because individuals self-select (non-random) residential locations based 

on attitudes and personal characteristics, the error terms would deviate from random. 

Thus, unobserved factors erroneously explain the causal effect of land use on travel 

behavior. 

Measurement error arises when predictors in a regression are mismeasured and 

have additive errors that get subsumed into the error term. Suppose the outcome of 

interest 𝑦 = 𝛽𝑥 + 𝜖 (2), where 𝑥 is imperfectly measured by �̃� = 𝑥 + 𝑢 (3). Substituting 

(3) in (2) yields 𝑦 = 𝛽(�̃� − 𝑢) + 𝜖 = 𝛽�̃� + (𝜖 − 𝛽𝑢) (4). Therefore, measurement error 

in the predictor has the tendency to bias the estimates and makes the predictor 

endogenous. 
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Simultaneity bias occurs when a predictor is also caused by an outcome such that 

x causing y, and y, in turn, causes x. Suppose the following simultaneous equation for two 

related processes Xi and  Yi: 

 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖 (5) 

𝑋𝑖 = 𝛼0 + 𝛼1𝑌𝑖 + 𝑣𝑖 (6) 

  

A reduced-form of substituting one in the other results in: 

 

𝑌𝑖 =
𝛽0+𝛽1𝛼0

1−𝛼1𝛽1
 + 

𝛽1𝑣𝑖+𝑢𝑖

1−𝛼1𝛽1
  (7) 

𝑋𝑖 =
𝛼0+𝛼1𝛽0

1−𝛼1𝛽1
 + 

𝑣𝑖+𝛼1𝑢𝑖

1−𝛼1𝛽1
 (8) 

Since neither Yi nor Xi can be solved without the other, estimating the structural model 

with OLS is biased when Xi and u are correlated. 

 

2.7. Econometric Approaches for Addressing Endogeneity 

 

While at first glance endogeneity seem intractable, advances in econometrics have 

made it a less difficult issue. There are two ways of handling the problem: the Heckman 

two-stage procedure and instrumental variables. 
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2.7.1. Heckman Two-Stage Procedure 

 

Heckman (1979) proposed two equations for dealing with the endogeneity bias in 

standard regressions: outcome and selection equations. Suppose the outcome yj is 

determined by 𝑦𝑗 = 𝑥𝑗𝛽 + 𝑢1𝑗 (9) and the selection equation is 𝑧𝑗ϓ + 𝑢2𝑗>0 (10), 

where 𝑢1 ~ 𝑁(0, 𝜎), 𝑢2 ~ 𝑁(0,1), and 𝑐𝑜𝑟𝑟(𝑢1 𝑢1 ) = 𝜌. While the Heckman procedure 

has been widely used in econometrics, its application is challenged when both selection 

and outcome functions have common variables. In other words, variables that determine 

the selection equation must be independent of those in the outcome model. The model 

also assumes outcomes are normally distributed.  However, in reality, these two processes 

may have common predictors. Indeed, Little and Rubin (1987) warns that, “for the 

[Heckman] method to work in practice, variables are needed in (x2) that are good 

predictors of (y2*) and do not appear in (x1), that is, are not associated with (y1) when 

other covariates are controlled” (p. 230). 

 

2.7.2. Instrumental Variables 

 

Instrumental variable estimators are applied to the endogeneity problem by 

accounting for both observable and unobservable predictors. Recall that endogeneity 

results from correlation of predictors and errors: 
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The instrumental variable approach resolves the endogeneity problem by having a 

variable z (instrument) that correlates with the predictor but not the outcome, as 

illustrated below: 

  

 

Instruments are derived from a “combination of institutional knowledge and ideas about 

the processes determining the variable of interest” (Angrist & Pischke, 2008, p. 117). The 

process is implemented in two stages, hence two-stage least squares (2SLS). The first 

step isolates part of the predictor that correlates with the error by regressing predictors on 

the instrument through OLS. Predicted values of the endogenous predictor are used in the 

second stage rather than the actual endogenous variables to predict outcomes. The 

estimated coefficients are unreliable when the instruments are associated with predictors 

(Wooldridge, 2010, p. 940). 

Self-selection bias is a serious concern for evaluating the impact of land use and 

travel on CO2 emissions. Evaluation methods such as Heckman two-steps and 

instrumental variables methods for dealing with self-selection and endogeneity are were 

reviewed. While the Heckman model is important for addressing unobservable variables 

that affect outcome and selection equations, its application in situations where the 

outcome of interest is discrete is complex (Greene, 2012, p. 881). Instrumental variables 
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that correct self-selection bias in land use and travel studies are mostly weak because they 

are found to correlate outcomes (Greenwald & Boarnet, 2001).  

 

2.8. Impact of Land Use, Travel, and CO2 Emissions 

2.9. Introduction 

 

The strength of the relationship between land use, transportation, and mobile 

source emissions is less straightforward. Studies that link land use, transportation and 

emissions can be grouped into three main categories: simulations, multivariate, and 

selection/instrumental variable models.  

Simulation studies come in two varieties. One approach is to use median 

household income, vehicle ownership, and employment rate to determine local VMT 

estimates, which are passed onto EPA’s emission simulators (e.g. Motor Vehicle 

Emission Simulator, MOVES) to estimate CO2 emissions (Stone et al. 2007; Stone et al. 

2009). Another way is to perform integrated land use, transportation, and emission 

modeling using operational models such as TRANUS (Bandeira et al. 2011) or post-

process the outputs in another simulator to obtain emission values (Mitchell et al. 2011). 

There are also those studies which rely heavily on standard cross-sectional multivariate 

techniques, where mobile emission values- based on standard elasticities- are regressed 

on land use and/or transportation variables (Pushkar, 2000; Frank et al. 2000; Frank et al. 

2005).  
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2.9.1. Simulation Studies 

 

The results from integrated land use, travel, and emission simulations have not 

been consistent. A review of compact growth and emissions by Bartholomew (2007) 

showed wide variation in NOx emission effects because most studies only use density as 

the land use variable in predicting travel behavior at the expense of other land use 

variables. Stone et al. (2007) examined the connection between land use and air quality in 

11 MSAs in the upper Midwest of the US under BAU and compact growth (CG) 

scenarios. For the BAU scenario, the variables of historical growth rates of total 

population, population density, number of households, median household income, mean 

vehicles per household, and employment rate projected population and land use in 2050.  

Under the CG scenario, population growth shifted between rural, urban and suburban 

areas to reflect containment goals. The CG scenario’s growth, based on the BAU 

scenario, was adjusted with Portland’s historical rates.  

Vehicle miles traveled is mostly post-processed in MOBILE 6 for modeling 

emissions for carbon monoxide (CO), nitrogen oxides (NOx), fine particulate matter 

(PM2.5), and volatile organic compounds (VOC). MOBILE 6 estimates average emission 

factors per mile per pollutant given variables such as vehicle fleet characteristics, engine 

mode of operation, climate, and travel speeds. Carbon dioxide emissions (CO2) were 

estimated using average travel speeds and vehicle fuel efficiencies. Using national data, 

they estimated the number of trips generated and miles of travel for rural, urban and 

suburban areas using variables such as income, vehicle ownership, and employment rate. 
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Number of trips generated and miles of travel were multiplied by number of households 

to obtain total daily vehicle miles of travel for census tracts. There was some correlation 

between emissions and the scenarios considered. Specifically, the CG scenario led to 

6.0% reduction in PM2.5, 5.6% in NOx and CO, and 5.2% in VOC emissions. 

Stone et al. (2009) set out to understand land development and vehicle fleet 

hybridization on emissions in six Midwestern states: Illinois, Indiana, Michigan, 

Minnesota, Ohio, and Wisconsin. This work differs from the earlier study in the modeling 

of CO2 emissions. While the earlier study estimated emissions from average speeds and 

fuel economy standards, the latter study refines the CO2 estimates with the standard 8877 

g emission rate. They defined four scenarios consistent with their study 2050 objectives. 

These were business-as-usual (BAU), Smart-Growth 1 (SG 1), Smart-Growth 2 (SG 2), 

and Hybrid-Electric Vehicle Fleet Scenario (HEV).  

The BAU scenario assumed population and land use changes to be the same as 

observed trends, resulting in an increase of fuel economy from 19.5 to 25.6 MPG. The 

SG1 was based on the assumption that additional population growth will only occur in 

suburban and urban areas through the implementation of regionwide urban growth 

boundaries (UGB) and transit-oriented development (TODs).  Under SG2, some 

population growth was allowed in the rural fringes, but most growth occurred in suburban 

and urban areas. The HEV scenario assumed 100% of a region’s vehicular fleet would be 

converted to HEV, resulting in average fuel economy of 33.0 MPG. Emission adjustment 

factors were estimated for these scenarios using ratio of base MPG and expected MPG 

under HEV with a VMT rebound correction of 2%. The rebound takes into account VMT 
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increases due to improved fuel economy.  The results indicated that the increase in 

average fuel economy from 19.5 to 25.6 MPG led to a reduction of CO2 emissions 

between 5% and 18%, depending on the scenario. 

Bandeira et al. (2011) assessed the effect of land use and transportation emissions 

in the city of Aveiro, located in the north-center region of Portugal. They employed an 

integrated approach to land use, transportation and emissions with TRANUS (de la Barra, 

1989) and Transport Emission Model (TREM). TRANUS is designed with multiple 

theoretical foundations. It relies on Alonso’s (1964) bid-rent theory, Lowry’s (1964) 

gravity model, Wilson’s (1970) spatial interaction model, Leontief’s (1951) input-output 

model, McFadden’s (1974) discrete choice model, and Dijkstra’s (1959) shortest-path trip 

assignment algorithm. TREM calculates emission rates of pollutants for CO, PM10, VOC 

and NOx. Fuel consumption was calculated using average speed from TRANUS. Land 

use and transportation of the urban system are mutually dependent and modeled in 

TRANUS using two concepts: location and interaction. Developers supply locations to 

households and industries given equilibrium land rents. When demand exceeds supply of 

location, rents increase to clear the market. TRANUS is rightly based on the assumption 

that interaction between various locations generates travel. When demand for travel is not 

met by existing infrastructure, travel time increases, hence locations become inaccessible.  

The land use model produces locations of activities, required floor space and land 

rents which are pivoted to the transport model. The transport model defines multiple 

paths for each O-D pair given transport network, transport services supply, fares, 

operating costs, values of time and preferences. This model also estimates transport costs 
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and accessibility measures. The number of trips, by mode, between a pair of O-D is 

defined by volume of interaction and accessibility. The transport model separates the 

number of trips by vehicle, link, route and person. Finally, travel times are adjusted for 

constraints on capacity. Link-speeds are fed into TREM for emission estimates.   

Bandeira et al. (2011) considered three scenarios: base case, sustainable mobility, 

and stringent Euro 6 policy. The baseline scenario assumed no change to current 

transportation practices. The second scenario assumed an increase in vehicle occupancy 

rate through carpooling and other sustainable arrangements. Lastly, all passenger cars 

were assumed to comply with Euro 6 technology. Overall, emissions were reduced for 

sustainable mobility and Euro 6 policy. In scenario 1, CO, PM10, VOC and NOx 

emissions by 54%, 44%, 44%, and 44%, respectively. For scenario 2, there was reduction 

of 83% in CO, 95% in PM10, 87% in VOC and 79% in NOx. 

Mitchell et al. (2011) studied long-term carbon dioxide emissions from transport 

for different land use strategies in three UK regions using MEPLAN (Echenique, 1994). 

MEPLAN is a random utility model with network and land-use equilibrium established 

through congestion delay and Input-Output (IO) models. Therefore, MEPLAN simulates 

demand and supply of land and transport models in an integrated fashion. The interaction 

of these equilibrium markets is essential in defining market price of land and congestion. 

The number of trips in the network was estimated using SATURN, based on trip demand, 

congestion, and cost. The CO2 emissions were modeled with SMARTNET using link 

length, vehicle flow and speed, and speed-dependent fuel use and emission factors in 72 

classes of vehicles, weight, engine size, and fuel type. 
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The scenarios evaluated included BAU, compaction, dispersal and planned 

expansion. The BAU considers lower highway investment and higher development 

densities. Compaction policies were expected to have a very high job-housing balance. 

Dispersal scenarios relaxed stringent zoning to enable realtors to freely develop sites. 

Planned expansions aim at developing new communities in old neighborhoods closer to 

rail lines and highways. CO2 reductions were similar among all scenarios. Compared with 

BAU, compaction led to an increase of CO2 emissions by 2.2%. Under the dispersal 

scenario, CO2 emissions increased by 2.1%. Planned expansions were found to register 

CO2 emissions between -0.2 and 0.2%. 

While these simulations provided a broad understanding of the magnitude and 

direction of relationships between various land use policies and transportation-related 

emissions, the soundness of these studies is as good as the assumptions made (Lucas, 

2009), variables used (Handy, 1996), and intended goal of the simulation (Anderson et 

al., 1996). Since the exact future is always unknown, assumptions are always made when 

modeling possible future trajectories of a phenomenon. Most of these assumptions are 

driven by historical approximations of underlying relationships between variables of 

interest. When data upon which these assumptions are based are not validated, the 

assumptions emanating thereof may be unreliable. A case in point is the work of Stone et 

al. (2007) which defined compact growth rates using Portland‘s historical data. Despite 

the absence of compact growth trend data for their regions of study, the reliance on data 

from another region with different socio-economic background is difficult to justify. 
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Six urban growth (infill, constant density, low density, medium density, high 

density, suburban) and three vehicle technology (BAU, fuel-mix, and HEV mix) 

scenarios were developed by Hankey & Marshall (2010) to study the impact of urban 

form, and vehicle and fuel technologies on travel distance and emissions. In agreement 

with previous studies, they report that rising VKT has the potential to attenuate the 

emission benefits from technologies such as HEV and lead to an increase in emissions. 

Based on 1991 Air Quality Management Plan Los Angeles metropolitan area, Bae 

(1993) studied the effect of growth management policies on vehicle emissions, and found 

that transportation, land use and growth management policies are prohibitively expensive 

to have any significant effect in reducing vehicle emissions. Based on IMULATE, Farber 

et al., (2009) simulated morning-peak traffic for Hamilton, Canada under base case, 

urban growth center, general, and combined intensification scenarios. They found 

positive NOx emissions reduction of different land use policies. 

Mansfield, Rodriguez, Huegy and Gibson (2015) investigated how urban design 

improved air quality and health risks in North Carolina using the regional 4-step travel 

demand model and land use regression model under three scenarios. The base case 

scenario was based on the assumption that regional growth in land use would depict a 

dispersed form with low densities, resulting from inadequate investment in mass transit, 

development of suburban research offices, and central industrial parks. The second 

scenario, compact growth, re-allocates population and employment from non-urban to 

urban in case the area implements policies such as density incentives transfer of 

development rights, and urban growth boundaries. Finally, a sprawling scenario was 
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simulated by reallocating population from a sprawl density threshold of 1.75 

persons/acre. That is, TAZs with densities above this threshold are located in TAZs with 

lower densities while maintaining workplace distributions consistent with the base case. 

The scenarios were fed into the TDM to determine number, length, and types of trips. 

PM2.5 concentration (μg/m3) was regressed on peak AM VKT within 1,000 meter buffer 

of the center of the eight monitoring stations. The analysis concluded that compact 

growth decreased PM2.5 concentrations by 0.2% whereas sprawl increased 

concentrations by 1%. 

These simulations ignore socioeconomic and attitudinal variables that are critical 

for explaining observed travel behavior. The variables used include age (Newbold et al., 

2005), gender (Best & Lanzendorf, 2005; Dieleman et al., 2002), number of children 

(Ryley, 2005), and land use and travel attitudes (Schwanen & Mokhtarian, 2005). Since 

simulations aim at gauging possible future state-of-affairs, they inherently gloss over real 

happenings. The assumptions which are supposed to aid in explaining current behavioral 

relationships are themselves questionable. Moreover, simulation models do not explicitly 

account for socioeconomic characteristics of households in the models. These limitations 

have led to modeling land use, transportation, and emissions using multivariate 

frameworks. 
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2.9.2. Multivariate Studies 

 

Multivariate regression-based studies aim at predicting mobile-emissions from 

land use and travel behavior (TB). These regression studies concur with simulation 

studies on the conclusion that compact development results in less emission compared 

with conventional neighborhoods.  

Multivariate studies on the effect of land use and travel on vehicle emissions first 

assume that land use policies influence travel behavior (Crane, 2000). In turn, travel 

behavior affects vehicle emissions. There are disagreements on whether this stylized fact 

is indeed true. Krizek (2003) and Shen (2000) intimate that households located in 

different urban environments travel differently, confirming the fact that urban form 

influences travel behavior. Others, think the observed relationship between urban form 

and travel behavior may be inflated (Boarnet & Sarmiento, 1998; Giuliano & Small, 

1993). Despite the divergence of opinion on the relationship, most studies appear to 

follow the former position. Therefore, it is important to review scholarship on the effect 

of urban form and VMT, and VMT’s influence on vehicle emissions. 

 

2.9.2.1. The Effect of Urban Form on VMT 

 

Land use is traditionally measured with density, design, diversity, distance to 

transit, and destination accessibility (Transportation Research Board, 2009). A 

metaanalytic review of 55 studies by Ewing and Cervero (2010) found consistent 
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relationships between land use measures and travel behavior. They found somewhat weak 

negative elasticities for density (0.00 to -0.04), diversity (-0.02 to -0.09), design (-0.12), 

destination accessibility (-0.05 to -0.22), and distance to transit (-0.05).  

Literature is replete with studies that surmise an inverse relationship between 

density and distance (Brownstone & Golob, 2009; Heres-Del-Valle & Niemeier, 2011; 

Manville & Shoup, 2005). VMT reduction elasticities of density vary from 0.2% to 2.7% 

by some accounts (Frank, et al., 2011; Spears, Boarnet & Handy, 2010). Giuliano and 

Narayan (2003) examined U.S. and U.K. cities to ascertain whether densities influenced 

commute and non-commute distances. They regressed daily miles traveled on MSA size 

and population density, gender, age, income, and employment. They found denser cities 

to have a higher likelihood of generating shorter commute and non-commute trips.  

Studies by Næss (2006), Peng (1997), and Krizek (2003) are in agreement with 

Giuliano and Narayan (2003). Frank and Pivo (1994) studied the extent of land use 

diversity and commute length in Seattle/Tacoma. Based on a multiple regression, they 

found that average commute length in well-balanced neighborhoods was one-third shorter 

than in neighborhoods with very separate uses. Despite the wide variations in density-

VMT elasticities, the overwhelming conclusion affirms the notion that living in denser 

neighborhoods grants households the prospect to reach many destinations in a shorter 

amount of time.  

Susilo and Maat (2007) observed a negative relationship between accessibility 

and travel time. This relationship is corroborated by others (Crane & Chatman; 2003; 

Ewing & Cervero, 2010). Neighborhoods with traditionally-gridded street designs were 
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found to reduce VMT substantially (Handy, Tal & Boarnet, 2010; Kulash et al., 1990). 

Finally, Næss et al. (1995) noted a significantly positive relationship between distance 

from urban center and an individual’s travel distance in Oslo, Norway. 

 

2.9.2.2. The Effect of VMT on Emissions 

 

Most of the research linking distance traveled and vehicle emissions are 

consistent; higher VMT is associated with higher vehicular emissions in urban areas. 

Barla et al. (2011) studied the effect of land use on CO2 emissions in Quebec, Canada, 

controlling for driving license status, gender, university diploma, professional, age group, 

household structure, homeownership and income classes. They found that a unit increase 

in distance increased CO2 emissions by 300 grams (CO2 equivalent). Stead (1999) 

studied the correlation between travel patterns and per capita emissions of carbon 

dioxide, carbon monoxide, hydrocarbons, nitrogen oxides and particulate matter. Vehicle 

emission was calculated from vehicle age, fuel type, engine size, engine temperature, and 

travel speed and vehicle occupancy. The results showed that travel distance by car is 

significantly correlated with transport emissions. Studies by Ewing (1997) and Difiglio 

and Fulton (2000) confirm these correlations. 

These two strands of relationships provide the conceptual guideposts for 

multivariate studies on land use, transportation, and emissions. Pushkar (2000) used a 

simultaneous regression approach to evaluate the GHG emissions from nine hypothetical 

neighborhoods using travel survey data from the Greater Toronto Area (GTA). They first 
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modeled vehicle ownership from variables such as distance to CBD, number of adults per 

household, household income, daily bus vehicle service hours within 1 km, number of 

stores within a 1 km radius, house types mix in neighborhood, housing units in a 1km 

radius, average dwelling unit size, rapid transit station within 1 km, and road type. The 

predicted values of vehicle ownership were used, among other variables, to calculate 

automobile VKT. GHG emissions were estimated with CO2 equivalents of 294 g per 

VKT for automobiles and 57 g per PKT for transit.  

The three land use scenarios constructed for this study were conventional 

suburban, medium density development, and neo-traditional development. The 

conventional suburban scenario exemplified land use in sprawling neighborhoods. 

Specifically, it comprised of low density, lack land use mix, and not pedestrian-oriented. 

The neotraditional development design is high transit access, pedestrian and bicycling-

friendly, and was located in high density areas. The medium density development 

scenario is a midway future between conventional suburban and neotraditional 

development. They are assumed to have medium-density, low-rise townhouses, and are 

auto-oriented with some transit access. They found compact development to have 

between 25% to 45% less GHG emissions when compared with conventional 

neighborhoods. 

Frank et al. (2000) used the Puget Sound Transportation Panel Survey to study the 

relationship between land use, household travel demand, and vehicle emissions, 

controlling for residential selection. Land use was measured by household density, 

employment density, census block density, and commute distances. In MOBILE5, NOx, 
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CO, and VOC emissions were estimated with data on vehicle trip generation, vehicle 

hours of travel, vehicle miles of travel, average trip travel speed, and the mode of engine 

operation. They modeled household emissions in a multiple regression with emissions as 

the dependent variable (NOx, CO, and VOC) and number of vehicles, household size, 

income class, household density, employment density, block density as independent 

variables. On the whole, household and employment densities were negatively associated 

with NOx, CO, and VOC emissions. On the contrary, commute distance was positively 

related with NOx, CO, and VOC emissions. 

Frank et al. (2005) tried to understand how the number of jobs per sector, density, 

mixed use, travel time, and distance affect NOx emissions using Puget Sound Household 

Travel Survey. Emissions were estimated by EPA’s MOBILE 6.2 using link speeds and 

distances from the regional travel demand model. They regressed mean daily household 

vehicle emissions of hydrocarbons (HC) and oxides of nitrogen (NOx) on vehicles per 

household, persons per household, VMT, net residential density, intersection density, and 

mixed land use. They found a positive association between household size and income, 

and mean daily household vehicle NOx emissions. Intersection densities, net residential 

density and mixed use were negatively associated with NOx emissions. Finally, an 

increase in VMT was strongly and positively associated with NOx emissions. 

Multivariate studies are limited in two respects. First, they fail to model the 

connection between land and transportation markets explicitly. Modeling the dependency 

between land use and transportation sectors is important because spatial interaction 

between land uses determines demand for travel, and accessibility from the transportation 
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infrastructure determines interaction between land uses. Second, the use of ordinary least 

squares regression to model emissions for the entire sample when some households did 

not drive is lacking. This presents sample selection bias which can be corrected with 

Heckman (1979) and instrumental variable models.  

 

2.9.3. Sample Selection and Instrumental Variable Models 

 

Sample Selection: Endogeneity refers to the fact that an independent variable 

included in the model is potentially a choice variable, correlated with unobservables 

relegated to the error term. Sample selection models address the issue of selection bias 

through Heckman (1979) selection models. Heckman's (1979) sample selection model is 

often used to correct selection bias where the outcome of interest is observed for only 

some part of the sample. The truncation of values of the dependent variable leads to 

violation of two key OLS regression assumptions: homogeneity of variance and 

independence. The error term is deemed homogenous when predicted variances for 

outcome variables are equal for all cases (Tabachnick & Fidell, 2013). Similarly, errors 

associated with a case are not allowed to correlate with the errors of any other case 

(Wooldridge, 2010). In the case of a truncated sample, the constant in the regression 

which ensures that the mean of the variance is zero is no more accurate. Thus, in the 

presence of self-selection, the error variance is not constant and errors not independently 

distributed. 
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The Heckman selection model is implemented in two steps: outcome and 

selection stages. The selection model estimates the likelihood of being in the sample 

while the outcome model estimates the outcome of interest conditional on being included 

in the sample from the selection model. The selection equation is estimated using a probit 

while the outcome model is estimated using OLS. The selection equation also outputs the 

inverse Mills ratio, which is the non-selection hazard correction that considers only those 

cases surviving at that stage for inclusion in the second-stage. 

Wang et al. (2013) were interested in determining whether neighborhoods with 

smart growth were associated with lower CO2 emissions using NHTS (2009) with a 

Heckman (1979) selection model. Land use was defined by number of cul-de-sacs, 

roadway length (miles), connected node ratio, link node ratio, length per node (miles), 

and mix of land uses. Travel behavior was measured by auto trip frequency and 

household driver count. VMT for each trip is multiplied by 8,887g/MPG to derive CO2 

per mile. The Heckman (1979) model comes with two equations: the outcome and 

selection. The selection equation is first modeled with probit to determine the probability 

of driving given a set of covariates. This probability is inputted into the outcome equation 

to estimate emissions, conditional on being a driver. The results indicated that 

neighborhoods with diversified land uses were associated with 12% lower CO2 

emissions, compared with neighborhoods with a single land use. In addition, a 0.1 mile 

increase in mean roadway length per node is associated with 2% higher CO2 emissions.  

Greenwald (2003) was interested in finding out if land use was significant in 

substituting walking and transit mode shares using 4,235 respondents in the 1994 



 

33 
 

Household Activity and Travel Behavior Survey conducted in Portland, Oregon. He 

grouped neighborhoods into six categories based on residential tenure and pedestrian-

environment factors (PEF). While the focus of the study was not directly targeted at the 

problem of self-selection, he used the predicted residential choice probabilities into eight 

outcome models using multinomial logit and proved that residents self-selected into New 

Urbanist style neighborhoods by substituting walking mode shares. The use of 

multinomial logit for the outcome model is inconsistent with the original specification of 

the model by Heckman (1979) that requires the outcome model be continuous. Despite 

this limitation, the study has highlighted the link between land use and three travel 

modes. He could have transformed the dependent variable to circumvent Heckman’s 

(1979) restriction on outcomes. 

Zhou and Kockelman (2008) studied the effect of neighborhood types on travel in 

Austin, Texas, using about 1,900 households in the 1998/99 Austin Travel Survey. 

Households living in the central area and other urban centers were classified as controls 

while those in the suburbs were classified as treatments. The treatment model was 

predicted using household size, number of workers, number of children under 5 years of 

age, household annual income and number of visitors on the survey day. Household VMT 

was modeled with household size, number of workers, number of children under five 

years of age, household annual income, proximity to work/school, delivery driver, and 

neighborhood median income, densities, and employment. They found that self-selection 

accounted for10% to 42% of the variance of VMT. The Heckman (1979) model is only 

appropriate when the outcome to be modeled has a normal distribution. VMT, in this 
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case, would deviate from normality, hence the unsuitability of the Heckman (1979) 

model.  A log-transformation of VMT would have justified the use of Heckman (1979) 

model.    

Instrumental Variable Models: Instrumental variables are used to examine 

treatment effects in observational studies to correct endogeneity. Endogeneity is 

problematic for modeling impact of policies when an independent variable is a choice 

variable and correlates with unobservable factors in the error terms. That is, changes in 

predictors are associated with changes in both outcome and errors. Thus, predictors are 

not truly exogenous of outcomes. In this case, a standard OLS approach will be biased in 

claiming predictors caused the outcome in the presence of these unobservable factors 

(Greene, 2012). One possible solution is to conduct an experiment that randomly assigns 

individuals into control and experiment neighborhoods to assess changes in travel 

behavior and emissions. Since, such pure experiments are both practically and ethically 

unfeasible, researchers have resorted to using instrumental variables that satisfy two 

conditions: uncorrelated with the errors but correlated with the endogenous variable. 

Boarnet and Sarmiento (1998) collected travel data from 679 individuals in 

Southern California to investigate the link between neighborhood land-use patterns and 

non-work trip generation. They used race and age of housing stock as instruments 

directly in an ordered probit model of number of non-work trips. Generally, they found a 

negative but significant association between retail employment density and non-work 

trips. While this study was important in closing the gap in previous studies by focusing 
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on non-work trips, the instruments performed poorly for percent of street grid within a 

quarter-mile of residences and population density. 

Still focusing on non-work trips, Greenwald and Boarnet (2001) used the 1994 

Household Activity and Travel Behavior Survey in Portland, Oregon, in ordered probit 

models. Their land use factors included population density, retail employment density, 

street grid patterns and pedestrian environment factors (PEF). They constructed 

instrumental variables from income, college education, race, and housing. They found 

land use effects on non-work walking trips to be largely present at the neighborhood 

level. Similar to the Boarnet and Sarmiento (1998) study, the instruments were a poor fit 

for retail density. 

Vance and Hedel (2007) were interested in the impact of land use on car use and 

distance traveled. They used the German Mobility Panel data containing about 4,300 

individuals with at least one car. They used the two-part model (TPM), an extension of 

Heckman's (1979) selection model which avoids the use of IMR. The TPM is the 

preferred model when the IMR correlates with predictors. Their instruments were age of 

housing stock, percent of older adults, and percent of immigrants. Both the selection and 

outcome equations were predicted by commercial density, street density, commercial 

diversity, walking minutes to public transit stop, gender, education, employment status, 

distance to work, age, number of young, number of cars, and income. They found that 

commercial density, street density and access to public transit were significantly but 

weakly associated with car use. Additionally, the instrumental variables showed some 

correlation with outcomes, a violation of instrumental variable application. Since the 
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choice of either Heckman (1979) or TPM is primarily dependent on the correlation of 

IMR with predictors, it would have been interesting to juxtapose the TPM results with 

those from Heckman's (1979) model to assess these correlations. However, it remains 

unknown if the Heckman (1979) model would have outperformed their TPM model. 

Khattak and Rodriguez (2005) examined whether residents of neo-traditional 

neighborhoods substituted walking for driving as claimed by New Urbanists in Chapel 

Hill (neo-traditional) and Carrboro (suburban), both in North Carolina. Their binary logit 

model predicted residential choice from eight attitudinal instruments: backyard, 

environmental protection, proximity to sidewalk, land consumption, neighbors, space 

requirements, children's play space, and access to shops. The predicted residential choice 

probabilities were used in the final negative binomial model with household size as a 

predictor. After controlling for demographic characteristics and self-selection, they 

maintained that single-family residents of neo-traditional neighborhoods made 

significantly fewer car trips and traveled fewer miles, compared to those in the suburbs. 

While they accounted for the count outcomes using negative binomial regression, there 

appears to be some association between walking and proximity to sidewalks, a violation 

of instrument condition. All instrumental variable estimators struggle to meet the 

stringent condition of correlating with only predictors. In reality, however, the identified 

instruments are associated with outcomes as well.  

In the final analysis, modeling land use, travel, and emissions (LTE) is important 

in understanding the conditions under which changes in land use and travel necessitate 

changes in vehicle emissions. Broadly, LTE is modeled with simulations, multivariate, or 
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selection/instrumental variable models. Simulations aim at modeling long-term emission 

effects of land use and travel factors. They mostly use standalone platforms such as 

TRANUS and MEPLAN to determine link speeds which are fed into an emission 

simulator such as MOBILE 6.2. Because they are macro-level models, they are unable to 

ascertain which individual characteristics are important in emission models. Multivariate 

models are cross-sectional snapshots of vehicle emissions given personal, land use and 

travel variables. Multivariate models fail to fully account for self-selection. Sample 

selection models are beginning to offer useful insights in emission models due to 

censored nature of emission data. Weak instruments render instrumental variables 

inefficient. 
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Chapter 3: Data, Variables, and Model Specification 

 

This chapter was mainly concerned about sources of data and the process of 

deriving variables. Also, the chapter looks at specification of the econometric model. A 

number of data were used for this study. Travel data for Portland Metropolitan Area were 

obtained from the second wave of Oregon Household Activity Survey (OHAS) launched 

in 2011. Land use data were procured from OHAS, Regional Land Information System 

(RLIS), and US Census Bureau. Socio-demographic data were acquired from OHAS. 

 

The OHAS data was collected between April 2009 and November 2011. The goal of 

collecting this data was to profile demographic and travel characteristics of households in 

Oregon in an effort to update travel demand models. It contains person, household, trip, 

and vehicle files. Multiple random samples drawn from address-based sampling frame, 

supplemental geographic and choice samples, and a small cellular phone sample resulted 

in 19,932 households, 46,414 persons, and 172,079 trips data. 

 

3.1. Data Sources 

3.1.1. Travel Data 

 

Travel-related variables used for the study were binary driving decision, number 

of auto trips, number of vehicles in a household, number of drivers, and distance to work, 

all of which were obtained from OHAS. Table 3.1 below shows the summary statistics of 
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travel data. On average, about two vehicles were used to make seven trips. There were 

about two drivers per household and the distance to work was about five miles. 

 

Table 3.1: Description of Travel Data 

Variable N Mean SD Min Max 

Number of Vehicles 4394 1.8 1.0 0.0 8.0 

Vehicle Trips 4394 7.0 6.6 0.0 55.0 

Distance To Work 4394 4.9 8.8 0.0 160.4 

Number of Drivers 4394 1.7 0.7 0.0 6.0 

 

3.1.2. Land Use Data 

 

Land use data surrounding three-quarter mile buffer of the residence of a 

household was chosen to represent a neighborhood. Land use data included: number of 3 

and 4 way intersections, road density, and land use mix. All the variables came from 

Metro's Regional Land Information System (RLIS). For intersections, I used OpenJump 

to dissolve the street layer street name and then used Quantum Geographic Information 

System (QGIS) to count the number of 3 and 4 way intersections within the residential 

buffer. Road density is defined as the ratio of number of miles of roads to square miles of 

household residential buffer. QGIS sum line lengths tool was used to get all the lengths of 

roads within the household residential buffer. Finally, the land use mix was computed 

from Agriculture, Commercial, Forest, Industrial, Multi-Family Residential, Public/Semi-
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Public, Rural, and Single-Family Residential uses. The level of diversity is 

conceptualized as a Shannon-Entropy Index that ranges from 0 to 1, with 1 indicating 

heterogeneous and 0 homogeneous land uses. Land use mix index was calculated using 

the following formula (Cervero & Kockelman, 1997): 

 

Land Use Index = −
∑ (𝑝𝑘𝐼𝑛𝑝𝑘 )𝑛

𝑖=1

𝐼𝑛𝑁
 

 

Where Pk is the proportion of land use type i of total land area and N is the number of 

land uses used. Table 3.2 below shows the summary statistics of land use data. On 

average, there were about 250 intersections within the residential buffer with a minimum 

of 5 and maximum of about 700 intersections. There was about 20 miles of roads in the 

residential buffer of each household with a more balanced land use mix (0.8 land use mix 

value). 

 

Table 3.2: Description of Land Use Data 

Variable N Mean SD Min Max 

Number of Intersections 4394 247.5 123.7 5.0 700.0 

Road Density 4394 19.6 6.7 0.0 38.8 

Land Use Mix 4394 0.8 0.1 0.3 1.0 
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3.1.3. Emissions Data 

 

A Carbon Dioxide emission per gallon was divided by MPG for each vehicle to 

arrive at CO2 emissions per mile. The MPG data was obtained from vehicle file in 

OHAS. This figure was multiplied by VMT to get CO2 emissions per trip. Different 

vehicles were assigned different CO2 per gallon depending on their fuel type. The CO2 

per gallon for gasoline and diesel/ flex fuelled vehicles were 8887 and 10180, 

respectively. On average, each household recorded 33000 grams of CO2. Only 3619 

households had data on MPG that was included in the final sample.  

 

3.1.4. Socio-Demographic Variables 

 

Socio-demographic factors served as control variables in the econometric model. 

These variables included age of head of household, number of children, income, and 

number of workers. All socio-demographic variables were from OHAS. Table 3.3 below 

shows the summary statistics of socio-demographic data. The average age of head of 

households was 55 years. Average income stood at $71000. The number of workers in 

each household was 1.3 and about 30% of households had children. 
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Table 3.3: Summary of Socio-Demographic Variables 

Variables N Mean SD Min Max 

Age 4394 55.0 15.4 18 99 

Income 4394 71766.7 54152.9 0 200000 

HH Workers 4394 1.3 0.8 0 5 

Presence of Children 4394 0.3 0.4 0 1 

 

The figure below shows the correlation matrix of the variables considered for this study. 

 

Figure 2: Correlation Matrix 
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3.2.  Model Specification 

 

This study employed Heckman (1976) model comprising selection and outcome 

equations to examine the impact of land use, automobile travel, and CO2 emissions. The 

dependent variables for the selection was log-transformed CO2. Carbon dioxide emission 

was log-transformed to correct the non-normality of its distribution. The independent 

variables for the selection model were income (Inc), distance to work (DWork), number 

of workers (Workers), and the presence of children (Child). 

The independent variables for the outcome model were number of vehicle trips 

(VTrips), income (Inc), number of vehicles (Veh), number of drivers (Driver), road 

density (RDen), number of intersections (Int), age of household head (Age) and land use 

mix (Mix). 

Mathematically, the specifications outlined below emanate directly from the 

conceptual framework: 

 

𝑙𝑜𝑔𝐶𝑂2 = 𝛽0 + 𝛽1𝑉𝑡𝑟𝑖𝑝𝑠 +  𝛽2𝐼𝑛𝑐 + 𝛽3𝑉𝑒ℎ + 𝛽4𝐷𝑟𝑖𝑣𝑒𝑟 + 𝛽5𝑅𝐷𝑒𝑛 + 𝛽6𝐼𝑛𝑡 + 𝛽7𝑀𝑖𝑥 + 𝛽8𝐴𝑔𝑒 + 𝑢1 

CO2 is assumed to be observed if  

 

𝛾0 + 𝛾1𝐼𝑛𝑐 + 𝛾2𝐷𝑊𝑜𝑟𝑘 + 𝛾3𝑊𝑜𝑟𝑘𝑒𝑟 + 𝛾4𝐶ℎ𝑖𝑙𝑑 + 𝑢2 > 0 

 

The selection and regression equations are linked through their error terms. In the 

absence of no relationship between the two equations, OLS regression would be efficient 

since there would not be any self-selection problem. This is the case when ρ (rho) is not 
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significant. Marginal effects were reported in terms of a percent change in the dependent 

variable (coefficient x 100) for a unit change in the independent variable, all things held 

constant. The model was implemented with STATA 13 (StataCorp, 2013).   
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Chapter 4: Findings and Discussions 

Does self-selection play a role in the relationship between driving a motor vehicle 

and CO2 emissions?  

 

The impact of driving on CO2 emissions is well established in the literature. 

However, these impacts in the presence of self-selection required further investigation. 

Table 2 reports the results of the Heckman model. This question implies that vehicles 

driven on the survey day emitted more CO2. The unobserved factors of outcome and 

selection equations measure the degree of correlation between the factors (rho). Indeed, 

the result indicates a very high statistically significant correlation between unobserved 

factors in outcome and selection equations, p = -0.81, χ2 (1) = 299.93 (prob. <0.0001). 

The negative rho value shows that unobservable factors that make driving more likely 

tend to be associated with lower CO2 emissions. While unrealistic at a sample level, one 

should be reminded of the important assumption of rho not equal zero at the population 

level and not in the sample which has omitted many plausible explanatory variables. 

Also, the emissions per gallon data from EPA and MPG data may not properly reflect 

emissions and fuel efficiency in Portland. It would be of utmost importance to consider 

using alternative methods of deterring emissions for future studies.  

  

 Does land use and automobile travel influence the decision to drive? 
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Overall, for the selection model, income, distance to work, number of workers, 

and presence of children were statistically significant at predicting the likelihood of 

driving at the 5% level. Specifically, a unit increase in household workers increases the 

likelihood of driving by 13%, controlling for other variables. Wang et al. (2013) found a 

similar result (8.6%). A unit increase in the distance to work increased the likelihood of 

driving by less than 1%. A unit increase in income increases the probability of driving by 

less than 1%. Having children in a household increases the likelihood of driving by as 

high as 14%.  

 

What land use and travel factors determine CO2 emissions after controlling for self-

selection? 

 

For the outcome model, number of vehicle trips (VTrips), number of vehicles 

(Veh), number of drivers (Driver), number of intersections (Int), age of household head 

(Age), were statistically significant at predicting CO2 emissions. As expected, a unit 

increases in vehicle trips increases CO2 emissions by 3%. Having one more vehicle in the 

household has the potential to increase CO2 emissions by as high as 32%. This is six 

times higher than found by Wang et al. (2013a) in Virginia. The Portland figures are 

higher than those in Virginia because Wang et al. (2013a) used the gasoline emission 

rates for diesel vehicles, thereby underestimating total emissions.  

An additional driver in the household increases the likelihood of CO2 emissions 

by 4.7%. A unit increase in the number of intersections decrease CO2 emissions by less 
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than one unit. Having older household heads increases the probability of increasing CO2 

emissions by one-half of a percent.  

 

A unit increase in distance to work, distance to CBD and number of vehicles tend 

to increase CO2 emissions. On the contrary, increase in distance to nearest bus stop had a 

negative effect of CO2 emissions. A unit increase in distance to work increases the CO2 

emissions by 11%. All things being equal, as households drive longer to work, they burn 

more fuel which generates more CO2. Indeed, average commute time has increased by 1 

minute from 2006 to 2014. A unit increase in distance to nearest bus stop decreases the 

CO2 emissions by 37%.  

A unit increase in number of vehicles increases the CO2 emissions by 23%. This 

is four times higher than found by Wang et al. (2013). 
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Table 4.1: Heckman Model Results 

 

Outcome  Selection 

Variables 

Marginal 

Effect SE p>z 

 

B SE p>z 

Vehicle Trips  0.290 0.001 <0.001     

Income <-0.001 <0.001 0.051  <0.001 <0.001 <0.001 

HH Vehicles 0.277 0.010 <0.001     

Diver 0.046 0.015 0.002     

Road Length -0.004 0.003 0.194     

Intersections <-0.001 <0.001 0.031     

Land Use Mix -0.014 0.085 0.865     

Age of HH Head 0.005 0.003 0.048     

Age of HH Head Squared <-0.001 <0.001 0.039     

Distance to Work     0.111 0.009 <0.001 

Number of Workers     0.126 0.031 <0.001 

Child in HH     0.135 0.064 0.035 

Constant 3.458 0.107 <0.001  0.124 0.044 0.005 

N = 4394                                                     Log likelihood = -3878.35 

Prob. > chi-squared =0.000                        ρ = -.8111, probability > chi-squared < .001 
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Chapter 5: Conclusions 

 

This study has helped to enhance our understanding of the complex relationship 

between land use, automobile travel, and CO2 emissions. Heckman (1976) model for 

correcting self-selection was employed to gain additional knowledge in evaluating the 

impact of land use, travel, and CO2 emissions. Land use, travel, and socio-demographic 

data from Census Bureau, OHAS, and RLIS were used to conduct this study. This section 

reports the findings and explores possible future studies given limitations of this study.  

 

5.1. Summary of Findings  

Three key questions were posed for this study. All the questions were answered in 

the affirmative. 

Question 1: Does self-selection play a role in the relationship between driving a 

motor vehicle and CO2 emissions? The results indicate the presence of selection, ruling 

out importance of OLS in modeling land use, automobile travel, and CO2 emissions.   

Question 2: Does land use and automobile travel influence the decision to drive? 

For the selection equation, the most important predictors of driving were number of 

workers, distance to work, income and presence of children.  

Question 3: What land use and travel factors determine CO2 emissions? 

Conditional on driving, CO2 emissions were predicted by number of vehicle trips, number 

of vehicles, number of drivers, number of intersections, and age of household head. 
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5.2. Research significance for smart growth and climate change 

5.2.1. Smart growth implications 

 

The findings of this study have potential implications for urban growth 

management and climate change. Out of the 10 principles identified by The Smart 

Growth Network to be essential to managing rapid growth of urban neighborhoods in a 

sustainable manner, 8 are directly related to land use and transportation. These are mixing 

land uses, compact designs, housing diversity, encourage non-motorized transport, 

having a sense of place, protection of sensitive environmental resources, and community 

revitalization. These principles can directly be translated into actionable neighborhood 

design strategies. These strategies can manifest in street designs, transit-oriented 

developments (TODs), and sustainable transportation planning. Street designs can be re-

oriented from primarily serving automobiles to encouraging transit use by, for example, 

increasing the number of intersections. 

Similarly, TODs which are mixed-use developments in close proximity of transit 

stops can significantly change travel behavior, especially from driving to transit. Well 

implemented, TODs can help improve air quality, protect open spaces and increase 

ridership (Cervero, 2004). These developments shorten the distance between residences 

and workplaces, hence fewer driving trips which generate much of the CO2 emissions. 

Sustainable transportation is a movement from transport options that worsen pollution, 

help to reap benefits of non-motorized and transit, and meet sustainable development 

objectives (Schiller, Bruun & Kenworthy, 2010). 
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Finally, the extent at which transportation system is sustainable can be measured 

from a wide range of indicators. Some of the proposed sustainable indicators with high 

impact on transportation include number of trips and modes used (Heanue, 1997), 

accessibility of employment centers and auto use (Litman, 2007). Thus, making streets 

complete with other transportation options, mixing uses at transit stations and embracing 

sustainable transportation reduces driving, hence reduce CO2 emissions. 

 

5.2.2. Significance for climate change 

 

Recent rapid changes in the global climate have attracted concomitant policy and 

research attention. Although both natural and human actions are responsible for rising 

temperatures, volcanic eruptions, and natural causes of GHGs (IPPC, 2013 ), most recent 

increases are directly related to human activities. For instance, in 2014, CO2 accounted 

for about 81% of total GHG emissions, of which transportation’s share was 26%, second 

to electricity (30%). This trend can be reversed by, among others, altering land uses so as 

to reduce auto travel demand and induce transit patronage, thus greatly benefitting the 

climate. 

 

Land use changes that increase density and mix residential and commerce activities, 

in combination with accessibility improvements are more likely to reduce VMT and CO2 

emissions. Accessibility could be enhanced by shortening the distance to work through 

land use mix, shortening distance to transit stops and CBD by encouraging TODs. 
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5.3. Limitations and Future Research 

Like many empirical studies, this work has many drawbacks, among which are 

not differentiating between work and non-work trips, limited land-use mix measurement, 

and not accounting for hierarchical relationship between land use and household location. 

The importance of non-work trips in overall trips is unquestionable. According to NHTS 

(2009), non-work trips accounted for 89% of total trips, 84% of person trips per day, and 

81% of person miles of travel per day. Obviously, concentrating on work trips in this 

study masks important component of travel- family, personal, social, and recreational-

that can influence CO2 emissions in no trivial way. 

The land use-mix index that was constructed focused on horizontal footprint of 

activities rather than vertical uses. These activities were Agriculture, Commercial, Forest, 

Industrial, Multi-Family Residential, Public, Rural, and Single Family Residential. This 

therefore assumed no use beyond ground level for storey buildings. Since land uses such 

as Commercial, Industrial, Multi-Family Residential, and Public can be mixed up in a 

single location, it would be interesting to see future work account for their square footage 

in the land use mix. 

Hierarchical modeling of constructs has become appealing for social scientist on 

statistical grounds. When a number of households share a common land use because they 

are located with the same neighborhood, standard errors of OLS regressions are 

underestimated. This has the potential of rejecting the null hypothesis when it cannot be 

rejected if corrections were made. No studies so far have attempted to combine 

hierarchical models with sample selection in understanding land use and transportation. 
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