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ABSTRACT 

There are extensive empirical studies on the impacts and effectiveness of Smart Growth 

policies; however, very few of them consider the perspective of individual decision 

makers and, to this author’s knowledge, none have studied developers as location-aware 

decision-making agents. This study tries to fill this gap partially by assessing the impacts 

of Portland’s smart growth policies on developers’ location choice behavior with 

developer-based location choice models. 

The dissertation has two purposes. By assessing the impacts of Smart Growth policies on 

individual home developer’s location choice, it provides a micro- and behavioral 

foundation for the understanding of Smart Growth policies. As a bi-state metropolitan 

area located on the border between Oregon and Washington, the Portland region provides 

a unique environment that allows my research to examine whether home developers react 

to Smart Growth policies differently in the two states with different land use policy 

systems. The dissertation also aims to create a developer-based land development 

forecast model, which can be used as a scenario analysis tool for the Portland region’s 

long-term land use and transportation planning. Besides the developer location choice 

model mentioned above, the components of this comprehensive developer-based land 

development model also include a time series regression model that predicts annual new 

housing supply in the region and a model that synthesizes housing projects in a forecast 

year.   

The study shows that home developers in the Portland metropolitan area are sensitive to 

most Smart Growth policies that have been implemented in the region, but they react to 



ii 
 

them differently across the border between Oregon and Washington. Single-family home 

(SFH) and multi-family home (MFH) developers show different preferences for location 

attributes. The most significant predictors of where a developer will choose to locate a 

project are the locations of previous projects. After controlling for all of the other factors 

discussed above, there remains a strong preference for developing SFH units outside of 

the UGB in both Oregon and Washington sides of the Portland metropolitan area.  

Latent class models have been developed to detect taste variations among home 

developers in the SFH and MFH markets separately. Estimation results show clear taste 

variations across developers and housing projects with respect to site attributes in their 

location choice. With other variables in the segmentation model being the same, project 

size provides a better fit to the data than developer size, indicating that developers have 

taste variations among their different projects. Large size SFH projects developed by 

contractor-owners are more likely to be within the UGB and their locations tend to have 

higher residential density, housing diversity, transportation accessibility, road density, 

and land price. With most MFH projects within the UGB, estimation results show that 

large size MFH projects prefer the locations with higher residential density, housing 

diversity, mixed use, road density, land price, average household income, and proportion 

of young and middle age households. 

The three-step new housing supply and location choice forecast model seem to be able to 

capture the basic trend of housing market and land development in the Portland region. 

Three different aggregate housing supply forecast models, an conditional time series 

regressive model, a unconditional time series regression model, and an auto-regression 
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integrated moving average (ARIMA) model were tested and their advantages and 

disadvantages were discussed. Both the SFH and MFH project synthesis models can 

simulate housing projects well for a forecast year.  

Three location choice models were developed to allocate synthesized housing projects 

into space. The three models are characterized separately as: (1) assumed market 

homogeneity and atomization of development projects; (2) deterministic market 

segmentation and synthesis of projects by size; and (3) probabilistic market segmentation 

and synthesis of projects by size, using a latent class approach. Examination of forecast 

results shows that all three models can successfully capture the basic spatial pattern of 

housing development in the region; however, the spatial distribution of MFH 

development is lumpier and more unpredictable. While Models 2 and 3 are more 

sophisticated and make more sense from a theoretical perspective, they do not return 

better forecast results than Model 1 due to some practical issues. Models 2 and 3 would 

be expected to perform better when those practical issues are solved, at least partially, in 

future research.    
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CHAPTER 1 INTRODUCTION 

 

1.1 Research Purposes 

This dissertation project was inspired by two research gaps found by literature review. 

First, despite the popularity of Smart Growth policies, much of the current understanding 

of the effectuality of those policies lacks a micro-level behavioral foundation. There are 

some studies that use agent-based models to test the impacts of land use on individuals’ 

residential location choice, but being household-based represent only the demand side of 

the land development market. The other side of the market, the provision of housing 

supply as represented by developers remains under-studied. At first glance, this is 

puzzling because real estate developers are the primary urban space producers and their 

perspective on Smart Growth policies is so critical to the policy’s success.  

Secondly, simulation of the housing market is one of the most important components of 

integrated land use-transport models. Most extant integrated models, however, have 

focused lopsidedly on the demand for dwelling units by households, with scant attention 

paid to the supply side of the market, individual home developers. As Hunt et al. (2005) 

put it, “across all integrated models, housing/floor space supply models are probably the 

least well developed of any component of the entire modeling system.” 

The purpose of this dissertation is to fill these two research gaps partially by developing 

new housing supply and location choice models for the Portland, Oregon metropolitan 

area. First, a series of dynamic developer-based location choice models are developed to 

examine the impacts of Smart Growth policies on home developers’ location choice in 
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the metropolitan area and to detect the preference heterogeneity in developers’ location 

choice. This is believed to be the first study that assesses the impacts of Smart Growth 

Policies within a developer-based location choice model. As such, it provides a 

microeconomic treatment of the perceived utility/disutility of various attributes of 

alternative project locations from the perspective of developers.  

Secondly, this study proposes a comprehensive new housing supply and developer-based 

location choice model, which is rarely seen in existing integrated land use and 

transportation models. As such it provide a scenario planning tool for the long-term land 

use and transportation planning in the Portland metropolitan area.  

1.2 Literature Review 

1.2.1 Assessing the Effectiveness of Smart Growth Policies 

There are two main themes in the literature that examines the effectiveness of Smart 

Growth policies. One is to assess whether Smart Growth policies have effectively 

prevented urban sprawl and shaped land use in the patterns that are promoted by Smart 

Growth advocates. Urban growth containment policies have been the focal point of these 

studies. The second theme is to study whether land use patterns that follow Smart Growth 

principles have effectively reduced car travel and shifted people’s travel modes from car 

to public transit and non-motorized modes, thus reducing energy use and CO2 emissions 

in the transportation sector. This study falls in the first theme. 

A review of relevant literature finds three major approaches used by empirical studies to 

measure the impacts of Smart Growth policies on land use patterns. The first approach is 
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to use aggregate data at metropolitan level to examine the marginal effects of state 

growth management policies on land use while controlling other relevant variables. 

Multivariate regression is a commonly used econometric tool used in those studies. 

Explanatory variables are the variables representing the presence of growth management 

policies and other controlling variables measuring the socio-economic status, land use, 

public policy, and the availability of certain infrastructures in each metropolitan area at 

one or multiple time points. The dependent variables vary with the research questions 

raised by each study. Usually, they are the variables that can be used to measure land use 

characteristics such as density.  

For example, using a panel data composed of 19 time periods (from 1980 to 1998) on 

each of 293 metropolitan statistical areas (MSAs), Dawkins and Nelson (2003) examined 

the effectiveness of state growth management programs in steering new residential 

development from the suburbs toward the central city by regressing the share of new 

residential building permits attracted by the primary central city on state growth 

management variables and other controlled variables. The conclusion was that primary 

central cities in states with state growth management programs had attracted marginally 

higher shares of residential development than primary central cities in other states. With a 

similar approach, Nelson and Peterman (2000) evaluated the impacts of growth 

management on economic performance, measured by the change in the relative share of 

total personal income in 182 moderate-size MSAs from 1972 to 1992, and found a 

positive association between the presence of growth management efforts and economic 

performance. Carruthers (2002) examined the impact of state growth management growth 
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on five dimensions of urban development (density, the spatial extent of urbanized land 

area, property value, public expenditure on infrastructure and population change) with a 

dataset composed of 283 metropolitan counties at four time points. A basic finding by 

this study is that state-based planning programs worked better when strong consistency 

and enforcement mechanisms were required by the states. To examine the impact of state 

growth management policies on non-central retail sprawl, Wassmer (2002) studied 54 

western U.S. cities at three time points (1977, 1987, and 1997) by regressing retail sales 

in non-central places on urban containment policy variables and other controlling 

variables, and found that over time the most restrictive form of an urban growth boundary 

reduces the de-centralization of retail sales in metropolitan areas. Another regression 

based analysis by Wassmer (2006) used log square miles in 452 U.S. urbanized areas 

designated by the Census as a dependent variable to evaluate the effects of different types 

of urban containment policies implemented in different regions. Wassmer found that, 

while those different forms of local urban containment and statewide growth 

management policies are more or less achieving their goals, their outcomes are different. 

Only statewide growth management programs with vertically or horizontally integrated 

components were effective at reducing the sizes of urbanized areas. A study by Pendall 

(1999) found non-significant effects of urban growth boundaries on urban land use 

density. Nelson et al. (2004) assesses the effect of urban containment on the percent 

change in racial segregation change among U.S. metropolitan areas during 1990s and 

found that, while metropolitan areas with strong urban containment policies showed a 

higher percent decline in Caucasian/African American residential segregation, the effect 
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of urban containment policies are not statistically significant on segregation between 

Caucasian and other races. 

The second approach used by empirical studies to evaluate the effectiveness of Smart 

Growth policies on land use is descriptive analysis in an area where Smart Growth 

policies have been implemented. The basic idea behind this approach is to measure land 

use characteristics such as density and mixed use at sub-area levels to determine whether 

land use patterns have changed since the implementation of Smart Growth policies in the 

area, or whether land use patterns in sub-areas are different when their relative locations 

to urban growth boundaries (UGBs) are different. Song and Knaap (2004) measured land 

use characteristics (density, mixed use, road connectivity) at the neighborhood level in 

Washington County, Oregon at several different time points, and found that 

neighborhoods in Washington County are becoming better internally connected, more 

pedestrian accessible, and denser but remain relatively homogeneous in land use. In a 

similar spirit, Song (2005) compared the changes of urban land use patterns in three areas 

(Portand, Oregon; Orange County, Florida; and Montgomery County, Maryland) over 

time and found that all the three areas had similar development patterns: the growth of 

neighborhoods were denser and internal road connectivity better, but remained poor in 

terms of external connectivity, accessibility, and mixed land use. Nelson and Moor (1993) 

divided the Portland region into several parts based on their relative locations to UGBs 

and compared the percentages of housing units located in each of them, concluding that 

most regional development had been directed to the UGB and away from resource lands. 

Weitz and Moore (1998) selected three small size metropolitan areas in Oregon (Florence, 
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McMinnville, and Medford), divided their areas within UGB into six subareas, and 

compared the changes of percents of housing units located in them over time, finding that 

more recent development inside UGBs tended to be more contiguous rather than 

dispersed, compared with older development. A study by Gordon and Vipond (2005) 

compared the densities in two communities in Markham, Ontario designed under two 

different design spirits: new urbanism and conventional suburban planning, concluding 

that New Urbanism can accommodate high gross densities and consume less land.  

Compared to the empirical studies at aggregate level, descriptive analyses at sub-area 

level provide a spatial perspective at disaggregate level; however, the causal link between 

Smart Growth policies implemented in the region and the changes of land use pattern 

occurring in the region is still weak. Due to its descriptive nature, many relevant factors 

are not controlled and the impacts of those policies are not separable. To solve these 

problems, more complicated modeling approaches are needed. Compared to studies 

taking the first two approaches, there are fewer studies using modeling tools at 

disaggregate spatial level to examine the effectiveness of Smart Growth policies. An 

earlier example is a study by Jun (2004), which uses housing units at census-block group 

level as a linear function of the housing market and location attributes to evaluate the 

effectiveness of UGBs in the Portland metropolitan area, and found that Portland’s UGBs 

had no statistically significant impact on new housing construction location. By 

estimating binary logit models of land conversion for selected counties in Maryland for 

both pre-smart-growth and post-smart-growth period, Shen and Zhang (2007) tested the 

effectiveness of Smart Growth policies in Maryland. It was reported that Maryland’s 
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Smart Growth initiatives had been generally successful, but the effectiveness of those 

policies varied by county. Cho et al. (2006) used a heteroscedastic probit model to 

estimate the effects of an UGB on land development decisions in Knoxville and Knox 

County in Tennessee, finding that the UGB in the regions have successfully encouraged 

urban revitalization within the boundary and discouraged urban sprawl outside the UGB.      

1.2.2 Housing Supply Models in Existing Land Use Models           

The basic purpose of a housing supply model in an integrated land use model is to answer 

two questions: how many housing units will be produced in the forecast period and where 

they are. New housing supply models in existing integrated land use-transport models can 

be generally classified by one of two perspectives, “bottom-up” or “top-down.”   

In the bottom up perspective, the total housing supply in a metropolitan area is the 

collective outcome of individual land development decisions made for each land parcel, 

or other spatial unit, in the region. The assumption is that each land parcel may represent 

an independent housing supplier and that housing supply is determined at this 

disaggregate level. Prominent examples of the bottom-up approach are the MUSSA 

model developed by Martínez (1996, 2007) and UrbanSim by Waddell (2002). The 

theoretical foundations of these models are rooted in the classic bid-choice and hedonic 

approaches to valuation of land.  

In the operative MUSSA model (Martínez, 1996), housing suppliers are the owners of 

each dwelling-zone. In a bid-rent framework, each owner decides the combination of 

dwelling-zone options to supply and chooses the highest bidder among many consumers 

to maximize their profit. At the same time, consumers bid for the dwelling units (or land lot) 
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that will maximize their consumer surplus. Finally, supply-demand equilibrium is 

achieved and equilibrium prices are the results of auctions and market clearing. Martínez 

(2007) recently proposed a new conceptual framework for the MUSSA model. This new 

conceptual real estate market model is still a static equilibrium model, but the 

idiosyncratic nature of suppliers’ behavior was incorporated into the model, making the 

suppliers’ market behavior more explicit. In UrbanSim (Waddel et al., 2003), developed 

gridcells are used as the basic unit of built space. A multinomial logit model was used to 

estimate the probability of a grid cell experiencing a development event, and if it does 

experience such an event, calculating the probability of different types of events. Based 

on the probabilities estimated for a grid cell, commitment of development is simulated 

using a Monte Carlo sampling process. 

Land use models that take a “top down” perspective tend to be more aggregate in nature. 

One approach is rooted in industrial production theory, based on a spatial “input-output” 

model of a regional economy, and results in the consumption of land by residents.  A 

recent example of this tradition is the PECAS model developed by Hunt and Abraham 

(2003).  Another approach uses simultaneous equations to balancing demand and supply 

for housing, a contemporary example being the MetroScope model developed by Conder 

(2002) and applied to numerous studies in the Portland metropolitan area. A third top-

down approach is the ILUTE model designed by Miller et al. (2006) in which housing 

supply is based on the thesis work by Haider (2003). The ILUTE model divides the 

housing supply process into two major parts: compute new housing stock at an aggregate 

level, using time-series analysis, and distribute new housing stock to zones at a 
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disaggregate level. Compared with the “bottom-up” perspective model, the “top-down” 

perspective models are more sensitive to macro-level economic factors and embed the 

notion of market clearing prices to balance supply and demand.   

1.3 Contributions 

This dissertation makes two major contributions to the field: the evaluation of Smart 

Growth policies from the developer’s perspective, and a new housing supply model in 

which the location choice is explicitly developer-based.  

In terms of evaluating the effectiveness of Smart Growth policies, this study contributes 

in several respects. First, as the literature review shows, there have been no studies 

evaluating the effectiveness of Smart Growth policies from an individual agent’s 

perspective. To my knowledge, this is the first study that assesses the effectiveness of 

Smart Growth policies using developer-based location choice models. As such it provides 

a microeconomic treatment of the perceived utility/disutility of various attributes of 

alternative project locations from the perspective of developers. Secondly, whereas other 

research has focused on just one Smart Growth policy, principally the urban growth 

boundary (UGB), this study tests for the impacts of UGBs in conjunction with several 

other important policies in one comprehensive model, allowing us to isolate individual 

policy effects and control for exogenous factors. Thirdly, except for the study by Jun 

(2004), other research focusing on Portland as their case study have ignored the portion 

of the market in Clark County, Washington. In this study, I explicitly include project 

location alternatives in Clark County, allowing us to assess whether home developers 

respond differently to different state land use policy systems within the same 
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metropolitan market. Lastly, previous studies examined Portland’s Smart Growth policies 

using data from before 2000. In the past decade, Metro has systematically collected land 

use and building permit data at a small spatial scale, providing us with reliable, detailed 

data from which to identify trends in the region since 2000, an important consideration 

given the promulgation of Washington State's Growth Management Act (GMA) in the 

mid-1990s and the recentness of it impacts. 

A basic trend in the integrated land use modeling field is to develop agent-based housing 

supply model. However, due to the shortage of data and the complexity in housing supply 

market, to my knowledge, none of the housing supply models in existing integrated land 

use models are actually developer-based. Recent update of MUSSA by Martínez (2007) 

considers the idiosyncratic nature of housing suppliers, but the housing supplies in his 

model are still “dwelling-zone” owners, not developers in real world. The housing supply 

model in ILUTE (Miller et al., 2006) uses developers’ housing projects as observation 

units to estimate their location choice models. However, in their forecast model, housing 

projects are atomized into individual housing units and each unit is assumed to be 

homogenous and independent. Thus, it is still not an agent-based model. In this 

dissertation, developer-based location choice models are developed, developers’ taste 

heterogeneity is investigated, and the forecast capabilities of the models are tested and 

compared to non-agent based forecast models. This is believed to be the first housing 

supply model in which individual home developers’ behavior and idiosyncratic nature are 

estimated and calibrated in an integrated land use model.            
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1.4 Structure 

The main body of this dissertation is divided into two parts. The first part consists of 

three chapters that examine the impacts of Portland’s Smart Growth policies on home 

developers’ location choice behavior. Chapter 2 gives descriptive analyses of the study 

area, the region’s home developers, their housing projects, spatial distribution of new 

housing development, and location attributes selected to explain developers’ location 

choices. In Chapter 3, simple Multinomial logit (MNL) models are developed to assess 

whether Smart Growth Policies have different impacts on home developers’ location 

choice in Oregon, compared with across the border in the State of Washington. Chapter 4 

explores the preference heterogeneity in home developers’ location choice by developing 

mixed multinomial logit (MMNL) models. The second part develops a comprehensive 

new housing supply and location choice model.  

As indicated by the flowchart in Figure 1, the model consists of three sub-models: an 

aggregate housing supply forecast model, a housing project synthesis model, and 

ahousing location choice model. Chapter 5 develops and compares three time series 

models that can be used to predict the total amount of new housing supply in the forecast 

year in the region. Chapter 6 synthesizes housing projects in the forecast year, which can 

be used as forecasting units in the location choice model. Chapter 7 proposes three 

different new housing location choice models and compares their forecast capabilities. 

The dissertation ends with a concluding Chapter 8 that summarizes its main 

accomplishments and limitations. 
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Figure 1 Comprehensive new housing supply and location choice model 
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CHAPTER 2 DESCRIPTIVE ANALYSES  

 

This chapter gives descriptive analyses on the study area, home developers and their 

housing developments in the region from 2000 to 2007, and explanatory variables 

selected to model home developers’ location choice. 

2.1 Study Area 

Straddling the border between Oregon and Washington, the Portland metropolitan area is 

a bi-state metropolitan area composed of four counties: Multnomah, Washington, and 

Clackamas in Oregon, and Clark County in Washington (Figure 2). The total area of the 

region is about 3728.7 square miles. According to the Census estimation, the population 

in the metropolitan area was about 2.08 million in 2009. There are 41 cities in the region, 

and the city of Portland is the biggest one with a population of 566,143 in 2009. For 

transportation planning purposes, the four-county region is divided into 1998 Traffic 

Analysis Zones (TAZs), which I use as spatial units for the location choice models 

developed in this study. As indicated by Figure 2, the sizes of TAZs vary, but 86.4% are 

smaller than one square mile.  

While the four counties in the region comprise the same housing market, the market 

functions under two different state land use systems. The three counties in Oregon are 

served by Metro, the only elected regional government in the United States. Metro 

includes Clark County, Washington (Vancouver area) on its 2040 Growth Concept maps 

(Metro, 1995), but has no regulatory powers there. The planning and zoning in Clark 

County is regulated by Washington state laws. 
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Figure 2 Counties and cities in the Portland metropolitan area  
Data source: Metro, RLIS (2007) 

 
Figure 3 TAZs in the Portland metropolitan area 
Data source: Metro, RLIS (2007) 
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2.2 Home Developers in the Portland Metropolitan Area  

New housing development data in the study area used by this study was extracted from 

the geo-coded building permit data provided by Metro (2000-2007a), which includes all 

the housing permits issued in the region from 2000 to 2007. With this data, I am able to 

know the names of home developers, their contract types, specializations, development 

locations, and the number of housing units they developed. 

 In this study, a single family home (SFH)/multifamily home (MFH) project is defined as 

a cluster of new SFH/MFH units permitted for construction by a developer in one TAZ in 

a single year. The size of a project is defined as the number of housing units included in it. 

Since some developers have development activities in multi-years, the size of a developer 

is measured by dividing the total number of housing units they developed by the number 

of their active years. Table 1 shows the description of SFH and MFH developers and their 

projects in the region from 2000 to 2007.  

2.2.1 SFH Developers 

As shown by Table 1, from 2000 to 2007, there were 7,123 SFH developers in the region 

that collectively developed 21,237 SFH projects, producing 65,377 new SFH units. The 

average SFH developer size was 2.58 units and the average project size was 3.08 units. 

To illustrate the size distribution of SFH developers, I categorized SFH developers into 

three groups based on their sizes: small developers who produced only one unit per year, 

medium size developers who produced more than one but less or equal to five units per 

year, and large size developers who produced more than five units per year. As Figure 4 
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indicates, small size SFH developers accounted for 67 percent of all SFH developers, the 

number of projects developed by them accounted for 27 percent of all SFH projects, but 

they contributed only 9 percent of all new housing units on the SFH market. Medium size 

SFH developers accounted for 27 percent of all SFH developers, their projects accounted 

for 40 percent of all SFH projects, and new housing units developed by them accounted 

for 20 percent of all new SFH units. Large size developers accounted for only 7 percent 

of all SFH developers, they built 33 percent of all SFH projects, but they produced 71 

percent of all new SFH units on the market. Thus, the SFH market in the Portland region 

was dominated by large size developers, though their number is very few compared to the 

total number of SFH developers in the region.  

The data also provides developers’ contract information. Based on their contract types, I 

categorize developers in the region into two types: contractor-owners and contractors. A 

contractor-owner is a general contractor who owns the land with the intent to build and 

sell, while a contractor is a general contractor who is hired by an individual or company 

to build. The main difference between the two lies in that contractor-owners are real 

location decision makers, but contractors are not. Within 7,123 SFH developers, 35.1 

percent of them were contractor-owners and 64.9 percent were pure contractors. The data 

shows that the mean size of SFH developers who were contractor-owners was much 

larger than SFH developers who were contractors (4.88 units vs 1.34 units). Contractor-

owner type developers developed 95 percent of SFH projects whose sizes were larger 

than 5 units in those eight years.  
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Table 1 Description of SFH and MFH developers and projects (2000-2007) 

Data source: author’s computation based on the building permit data from Metro (2000-2007a) 

 

Figure 4 Breakdown of SFH developers, their projects and new housing units 
Data source: author’s computation based on the building permit data from Metro (2000-2007a)  

 

 
Figure 5 Breakdown of MFH developers, their projects and new housing units 
Data source: author’s computation based on the building permit data from Metro (2000-2007a)  

Variable name SFH MFH
Total number of developers 7123 934
Number of projects 21237 1530
Average developer size (units) 2.58 23.6
Average project size (units) 3.08 24.05
Percent of devlopers who are contractor-owners 35.11 51.7
Percent of devlopers who are specialized on SFH 94.33 0.00
Percent of devlopers who are specialized on MFH 0.00 57.49

Small SFH develoeprs Medium SFH developers Large SFH developers
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40%

33%

9%

20%
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Small MFH develoeprs Medium MFH developers Large MFH developers

47%

30%
23%

36% 33% 31%

4%
12%

83%Percent of developers in all developers

Percent of projects  in all projects

Percent of MFH units in all MFH units
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Specialization is another developer attribute that is available from the data. The data 

shows that 94.3 percent of SFH developers concentrated on SFH projects and only 5.7 

percent of them also developed MFH projects. The mean size of projects developed by 

SFH developers who were also active on the MFH market is larger than average SFH 

project size (5.98 units vs 3.08 units), indicating that SFH developers who developed 

both SFH and MFH tend to be large-scale developers.  Not all SFH developers were 

active in all eight years: 67.4 percent were active only in one year, 32.6 percent were 

active in two or more years, and only 1.9 percent were active in all eight years.  

2.2.2 MFH Developers 

As indicated by Table 1, there were 934 MFH developers from 2000 to 2007 in the 

Portland metropolitan area. They collectively developed 1,530 MFH projects with 36,803 

new MFH units. The average MFH developer size was 23.6 units and the average size of 

MFH projects was 24.1 units.  

Similar to SFH developers, I categorized MFH developers into three groups: small MFH 

developers who produced only two to five units per year, medium size MFH developers 

who produced more than five but less or equal to twenty units per year, and large size 

MFH developers who produced more than twenty units per year. As indicated by Figure 

5, small size MFH developers accounted for 47 percent of all MFH developers; the 

number of their projects accounted for 36 percent of all MFH projects; and they 

contributed 4 percent of total new MFH units in those eight years. In contrast, the 

proportion of large size MFH developers in all MFH developers was only 23 percent, but 

they produced 87 percent of all new MFH units on the market. Similar to the SFH market, 
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a small amount of large size developers dominated the MFH market in the Portland 

metropolitan area.  

The data shows that 51.7 percent of MFH developers were contractor-owners, and 42.5% 

of them were also active on the SFH market in those eight years. The average size of the 

projects developed by MFH developers who were contractor-owners is very close to the 

average MFH project size (23.3 vs 24.1 units). The mean size of MFH projects by MFH 

developers who were active in both SFH and MFH markets was larger than the average 

MFH project size (30.1 vs 24.1 units). 

Similar to SFH developers, not all MFH developer were active in consecutive years. 

About 21.6 percent were active in two or more years, and less than 1 percent were active 

in all eight years. 

2.3 Spatial Distribution of New Housing Development (2000-2007) 

To show the spatial distribution of new housing development in the region, new SFH and 

MFH units produced between 2000 and 2007 were aggregated to 1,998 TAZs. In Figures 

6 and 7, each TAZ is symbolized by a circle whose size is proportional to the number of 

new SFH/MFH units in that TAZ.     

The data shows that from 2000 to 2007, 74 percent of TAZs (1479 out of 1998) in the 

region attracted some SHF development. As shown in Figure 6, most TAZs where the 

number of new SFH units exceeded 150 in the eight years were in urban peripheral areas. 

Among the four counties in the region, Washington County, Oregon attracted the most  
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Figure 6 New SFH development in the Portland Metropolitan area (2000-2007) 
Data source: author’s computation based on the building permit data from Metro (2000-2007a)  

 
Figure 7 New MFH development in the Portland Metropolitan area (2000-2007) 
Data source: author’s computation based on the building permit data from Metro (2000-2007a)  
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new SFH developments; Clark County, Washington was second; and Multnomah County 

had the fewest. Most new SFH developments in Washington County, Oregon were 

concentrated in the peripheries of cities of Beaverton, Hillsboro, Tigard, Sherwood, and 

Northwest Portland. In Clark County, Washington, except for the new SFH developments 

in cities of Battle Ground and Ridgefield, most new SFH developments occurred in the 

far suburban areas of cities of Vancouver and Washougal. In Clackamas County, Oregon, 

the cities of Happy Valley and Oregon City attracted most new SFH developments during 

the study period. Multnomah County, Oregon, home to the city of Portland, had far fewer 

SFH developments than the other three counties. Most new SFH developments in 

Multnomah County were located in the peripheries of cities of Gresham, Troutdale, 

Fairview, and East Portland. There were also some large SFH projects on the south side 

of the Columbia Boulevard in West Portland.        

Compared to SFH development, MFH development in the region from 2000 to 2007 was 

more concentrated in the built-up areas within city boundaries. As shown in Figure 7, 

Multnomah County, Oregon attracted the most new MFH developments and most of 

them were in the City of Portland. Washington County, Oregon was second to it, and 

most MFH developments in it were in the Cities of Hillsboro and Beaverton. In Clark 

County, Washington, MFH developments were mainly located in the City of Vancouver. 

Clackamas County, Oregon attracted the least MFH development during the study period. 

2.4 Data and Explanatory Variables 

My study utilized two sets of data provided by Metro and a dataset from the GIS 

department of Clark County, Washington to create explanatory variables for location 
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Table 2 Mean values of the TAZ attributes in 2001 and 2007 

Variable name Variable description 2000 2007

UGB_IN Within UGB (yes=1, no=0) 0.75 0.75
UGB_ON Crossed UGB (yes=1, no=0) 0.05 0.03
UGB_OUT Out of UGB (yes=1, no=0) 0.20 0.16
UGB_EXP In or partially in UGB expansion areas (yes=1, no=0) 0.00 0.06

SFH_DEN SFH net density (units/acre) 2.91 3.79

SFHDEN_N No SFH in the TAZ (yes=1, no=0) 0.13 0.12
SFHDEN_L Low SFH density  (yes=1, no=0) 0.22 0.20
SFHDEN_M Medium SFH density  (yes=1, no=0) 0.60 0.59
SFHDEN_H High SFH density  (yes=1, no=0) 0.05 0.08

MFH_DEN MFH net density (units/acre) 12.17 12.39

MFHDEN_N No MFH in the TAZ (yes=1, no=0) 0.43 0.42
MFHDEN_L Low MFH density  (yes=1, no=0) 0.14 0.13
MFHDEN_M Medium MFH density  (yes=1, no=0) 0.25 0.26
MFHDEN_H High MFH density  (yes=1, no=0) 0.18 0.18

H_DIV Housing diversity 9.57 10.68

H_MIX MFH and SFH mixed  (yes=1, no=0) 0.30 0.31
H_SFH Dominated by SFH  (yes=1, no=0) 0.55 0.54
H_MFH Dominated by MFH  (yes=1, no=0) 0.15 0.15

MIX_U Mixed use 1.23 1.25

MIX_USE Mixed use (yes=1, no=0) 0.32 0.22
MIX_RES Dominated by residential (yes=1, no=0) 0.33 0.40
MIX_NON Dominated by non-residential (yes=1, no=0) 0.36 0.38

AUTO_RET Auto for retail employment
AUTO_NRET Auto for non-retail employment
TRS_RET Transit for retail employment
TRS_NRET Transit for non-retail employment

RD_DEN Road density in TAZ (ft/acre) 112.67 114.01

LAND_SFH Buildable land for SFH (acre) 9.00 7.49
LAND_MFH Buildable land for MFH (acre) 2.72 3.06
LAND_VL Average land value in TAZ ($/ft2, in 2000 dollars) 5.45 7.41

HINC Median household income ($1000)
AGE Percent of household whose head is aged between 25-54 
Clark The TAZ is in Clark County, Washington  (yes=1, no=0) 0.23 0.23
N Number of TAZs in the region 1998 1998

64.84

57.01
272.09
20.27
92.96

50.39
Socio-economic characteristics:

MFH net density dummy variables:

Other location and site attributes controlled:

UGB dummy variables:

SFH net density dummy variables:

Housing diversity dummy:

Existing infrastructure:

Mixed use dummy variables:

Mixed use ratio:

Housing diversity ratio:

MFH net density: 

SFH net density: 

Transportation accessibilities:
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choice models. Metro's Regional Land Information System (RLIS) and a dataset from the 

GIS department of Clark County, Washington provided geographically-detailed land use, 

existing housing stock, zoning, and transportation information for each year of the study. 

From Metro's travel demand modeling system, I derived 2005 TAZ-to-TAZ morning 

peak two-hour period travel time matrices by auto and transit modes and used these to 

calculate accessibility measures, namely a zone's accessibility to employment (discussed 

below). The Census 2000 data at the census tract level (U.S. Census Bureau, 2000) and 

the County Business Patterns data at the ZIP code level (U.S. Census Bureau, 2000-2007) 

were also used to provide local socioeconomic variables. 

The mean values of the TAZ attributes used to explain developers’ location choice are 

presented in Table 2 for the years 2000 and 2007. For most of the variables, we can 

observe a change in their mean values over the eight-year span. Note that socioeconomic 

characteristics were available only for 2000 and travel accessibility variables were only 

available for 2005; therefore, the values for these variables were used for each year. 

Individual variable descriptions are provided below. 

2.4.1 Variables Relevant to Smart Growth Policies  

The UGB in the Portland metropolitan area represents a set of planning policies aiming at 

preserving agricultural and forest lands, limiting the outward extension of the public 

infrastructure and facilities, increasing residential density and diversity, encouraging 

mixed use, and reducing auto travel. These Smart Growth policies might be made 

explicitly or implicitly to support infill development within the UGB and to prevent 

urban sprawl outside of it. The data available for this study allows us to measure the 
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effects of some of those polices, such as those related to residential density and diversity, 

mixed land use, transportation accessibility, and utilization of existing infrastructure. An 

important consideration of this inquiry is that being inside or outside UGB can also 

capture other relevant factors that are concomitant to the UGB, such as the availability of 

buildable land and land price, two effects that were controlled by including them in our 

model specifications. What remains after controlling for the measurement of these direct 

policy outcomes and the concomitant factors that I can measure, is the UGB effect which 

I hope to capture through parameter estimates. This UGB effect represent policies and 

concomitant land use conditions and costs, such as development impact fees and taxes, 

and perhaps consumer demand that could not be measured directly and hence control. 

Thus, UGB dummy variables were specified to indicate whether a particular location 

alternative is within the UGB, within a designated expansion area, straddling the UGB 

border, or completely outside the UGB. If the area of the intersection between a TAZ and 

the UGB expansion area is larger than 30 acres, the TAZ was defined to be partially in 

the UGB expansion area. Between 2000 and 2007, the UGB for the three Oregon 

Counties was expanded three times, in 2002, 2004 and 2005, and the UGB in Clark 

County, Washington was expanded once, in 2004. Since it takes time for developers to 

respond to UGB expansion, each expansion is counted after the year it was designated. 

Figure 8 shows the UGBs in 2000 and their expansions between 2000 and 2007. Table 2 

shows the proportion of TAZs in each of these categories and reflects the expansion from 

2000 to 2007. 
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Figure 8 The UGBs in 2000 and their expansions between 2000 and 2007 
Data source: Metro, RLIS (2007); GIS department at Clark County, Washington (2007) 

 

Higher residential densities are generally thought to conserve land and provide critical 

mass for efficient transit service. In this study, separated TAZ-based measures of density 

for SFH and MFH were created. Density was calculated as the total number of units 

divided by the total land area of the properties they actually occupy. Based on the 

definition used in Portland-area zoning system, dummy variables were created to indicate 

the residential density in each TAZ as follows: (1) TAZs without any SFHs/MFHs; (2) 

Low-density (SFH less than 1 unit per acres, MFH less than 10 units per acre); (3) 

Medium-density (SFH 1 to 8 units per acre, MFH 10 to 20 units per acre); and (4) High-

density (SFH greater than 8 units per acre, MFH greater than 20 units per acre). Table 2 
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shows that the proportions of the TAZs in each density group shifted slightly towards the 

higher density categories of the study period.   

A mix of housing types is often advocated as means of providing affordable living 

options to various socio-economic strata and more equitable access to neighborhood 

resources, e.g., schools. To measure the housing diversity in each TAZ, the ratios of 

MFH units to SFH units in each TAZ were calculated and the TAZs in the region were 

categorized into three groups evenly based on that ratio. I defined a TAZ as being 

"dominated by SFH" if it had a ratio less than or equal to 0.1; "MFH and SFH mixed" if it 

had a ratio greater than 0.1 and less than 2.0, and "dominated by MFH" if it had a ratio 

larger than 2.0. Table 2 shows that the proportions of TAZ falling into these categories 

did not change significantly in the region between 2000 and 2007.  

Smart Growth advocates mixing residential and commercial land uses to provide work 

and non-work activity opportunities within shorter travel distances, ideally fostering a 

sense of community and reducing auto travel. As is standard practice in transportation 

planning, I used employment as a proxy for the amount of commercial activity 

opportunities in a TAZ. I then created a "mixed use" index from the ratio of number of 

employees to the number of housing units in each TAZ. Yearly employee data came from 

the County Business Patterns data. Since these were available at ZIP code level, which is 

larger than the TAZ, the mixed use index for each TAZ was set to that of the ZIP code to 

which it belongs. In addition, the employee data from the ZIP code business pattern data 

does not distinguish by industry sector, so mixed use was defined broadly as a mixture of 

residential and non-residential uses. Based on this index, the TAZs are categorized into 
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three groups: (1) "dominated by residential" with an index equal to or less than 0.5; 

"mixed use" with an index between 0.5 and 1.0; and TAZs "dominated by non-

residential" land uses with an index larger than 1.0. As Table 2 indicates, from 2000 to 

2007, the percent of TAZs dominated by residence in the region decreased substantially 

while the level of mixed use areas increased in the Portland metropolitan area. 

Transportation accessibility was based on the modeled morning two-hour peak travel 

times for pairs of TAZs, utilizing a static estimate of 2005 congested network travel times. 

The Metro travel demand model also provides 2005 estimates of employment by TAZ 

and by industry sector. These data were used to calculate four accessibility variables, 

differentiated by auto and transit modes and by retail and non-retail employment. I 

adapted the negative exponential travel impedance formula from Meyer and Miller (2001, 

p 336): 

, ∑ exp                  (1) 

in which ,  measures the employment accessibility for TAZ , β is 

parameter indicating the sensitivity of trip making to travel time,  is the travel 

time from TAZ  to TAZ , and  is the number of jobs in TAZ . In this 

study, I used the reciprocal of the mean travel time for journey to work in the region to 

represent the mean impedance effects of travel time. According to the American 

Community Survey, in 2005 the mean commuter travel time in the Portland region was 

24.4 minutes (U.S. Census Bureau, 2005), resulting in a β value of 0.041. We scaled the 

calculations by 1000 when used in the model in order to produce coefficient values 
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comparable in magnitude to other variables, which has no effect on model fit or the 

significance of parameter estimates. As Table 2 shows, auto provides much better travel-

time weighted access to retail and non-retail opportunities than transit in the region.  

Housing development requires the support of the infrastructure such as road, water, and 

sewer systems. Haider and Miller (2004) use the length of road to measure the physical 

development in a zone. In this study, considering that the sizes of TAZs vary, the density 

of road was used to represent the level of infrastructure in a TAZ. The road density is 

calculated by dividing the total length of roadways in a TAZ over the area of the TAZ. 

While calculating the roadway length, only local streets were counted and highways and 

arterial roads were excluded. The number of road lanes was not considered. Table 2 

shows that average regional road density increased slightly over the study period.  

2.4.2 Land Supply, Price and Socioeconomic Attributes 

In addition, to the potential impact of Smart Growth policies on the attractiveness of 

alternative locations for residential development, it is essential to control for more 

generally well-known attributes of development potential. Most new housing 

developments are still being built on vacant land, making the availability of buildable 

land a critical factor that developers must consider when choosing locations. For SFH 

development, the availability of buildable land in each TAZ is the area of vacant land 

zoned for low-density residential use and suitable for building houses. For MFH 

developments, the availability of buildable land in each TAZ is the area of the vacant 

land zoned for medium- and high-density residential and mixed use purposes. Clark 

County, Washington has a Vacant Buildable Lands Model (Clark County, 2010a) to 
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estimate the buildable land for the county. In Portland, the buildable vacant land for SFH 

is defined by the vacant land zoned for low-density residential use, and the slope of the 

land is less than 25%. There are two prominent limitations to defining buildable land 

based on the aggregated acres of appropriately zoned vacant land. First, land 

fragmentation and zoning change are not considered. Secondly, it omits the possibility of 

redevelopment that might make more land available in built-up areas. Table 2 shows that 

from 2000 to 2007 the amount of buildable land in the region zoned for SFH 

development decreased while the amount of buildable land available to MFH increased. 

We used the natural log of the buildable land area in each TAZ for model specifications, 

which is mathematically necessary for consistency with the notion that, all else being 

equal, a percentage change in the utility of more buildable land will result in the same 

percentage change in the probability of choosing that alternative. 

Land price is another important factor that developers will consider when they select 

locations for their housing development. In this study, market prices for land in all TAZs 

were not available, so I used as proxy the tax assessment value of residential land. For 

each study year, this variable was calculated as the total value of residential land in each 

TAZ by the total area of residential land, deflated by the annual consumer price index 

(CPI) for the Portland Region (US Bureau of Labor Statistics, 2010). I note that the land 

values used are assessed values, not transaction prices, thus they lag behind market rates 

usually by a few years, if not more. Since tax assessed value was frozen in 1996 in 

Portland, Oregon, and is only allowed to be increased by 3 percent per year, the gap 

between the market value and the tax value became wider during the boom years. On one 
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hand, this makes the tax assessed land value a less accurate proxy for the market land 

value; on the other hand, this fact helps us to minimize the endogeneity problem in which 

the marginal utility of land values reflects the values of other attributes included in the 

model that contribute to land price. Table 2 shows that the average TAZ value for 

residential land in the Portland metropolitan region increased significantly from 2000 to 

2007.  

In order to assess the effects of existing area demographics, which might have some 

bearing on the attractiveness of potential project sites, I included the average household 

income and the percent of households whose heads were between the ages of 25 and 54 

to represent the proportion of young and middle aged households in each census tract, as 

reported in the 2000 Census data, and applied these to each TAZ for all eight years. 

2.4.3 Effects of Previous Choices 

A developer's familiarity with an area based on past experience is likely to make it 

attractive for future work for reasons such as comfort with the local market, relationships 

with local contractors and government officials, and investments in local infrastructure. 

In addition, what appears to be multiple projects separated in time might actually be 

multiple phases of the same project. The permit data shows that 2,324 of the 7,123 

developers receiving permits from 2000 to 2007 were active in more than one year (32.6 

percent), with just 138 (1.9 percent) active in all eight years. In this study, I hypothesize 

that home developers tend to locate their new projects in the TAZs they had development 

activities in previous years or the TAZs that are geographically close to those TAZs. To 

test this hypothesis, variables were created to indicate whether TAZs were chosen by the 
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same developer in a previous year or were adjacent to TAZs chosen by the same 

developer in previous years. I limited consideration to lagged variables within the past 

two years in order to use as many observations as possible. For example, with the data 

available from 2000 to 2007 and using two-year lags, I can utilize the dependent 

variables of location choices from 2002 to 2007 (16,320 SFH projects and 1,138 MFH 

projects), which proved to be a sufficient sample. Accordingly, I created four dummy 

variables to represent the lagged effects for developers’ location choice in year . Auto-

regressive variables AR(1) and AR(2) indicate that a TAZ in choice set was chosen by 

the same developer in years 1 and 2, respectively. Neighboring zone indicator 

variables NB(1) and NB(2) indicate that a TAZ in choice set shares boundary with the 

TAZ chosen by the same developer in years 1 and 2, respectively. Inclusion of 

these lagged effects in the model has two potential benefits. First, it can reflect the spatial 

attachment between developers and their old locations helping to account for potential 

spatial autocorrelation. Such attachment can be formed due to developers’ familiarity 

with location attributes, local housing market, administrative process, local officials, etc. 

Secondly, it can capture some factors that make locations attractive to developers, but 

which were not measured by the available data, helping to control for repeated 

observations of the same developer that could lead to biased parameter estimates if 

otherwise ignored. It is assumed that these benefits are worth and outweigh any potential 

information lost due to using two fewer years of observations.    
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CHAPTER 3 ASSESSING THE IMPACTS OF SMART GROWTH POLICES 
ON HOUSING DEVELOPERS IN A BI-STATE METROPOLITAN AREA 

 

3.1 Introduction 

There are extensive empirical studies on the impacts of Smart Growth policies; however, 

very few of them consider the perspective of individual decision makers and, to our 

knowledge, none have studied developers as location-aware decision-making agents. 

Thus, much of the current understanding of the effectuality of Smart Growth policies 

lacks a micro-level behavioral foundation to capture the dynamics between growth 

policies and the key land-conversion agents. Literature review finds some studies using 

agent-based models to test the impacts of land use on individuals’ residential location 

choices, but being household-based represent only the demand side of the land 

development market. The other side of the market, the provision of housing supply as 

represented by developers remains under-studied. At first glance, this is puzzling because 

real estate developers are the primary urban space producer and their perspective on 

Smart Growth policies is so critical to the policy’s success. Hunt et al. (2005) summarize 

three reasons for this: lack of data, complexity of the supply process, and relatively few 

decision-makers involved in the process, all of which make developing statistically 

reliable models difficult.  

This chapter fills this research gap by studying the impacts of Smart Growth policies on 

home developers’ location choice behavior in the Portland metropolitan area, a bi-state 

metropolitan area straddling the border between Oregon and Washington. While 

numerous Smart Growth policies have been implemented in the Portland region, this 
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chapter focuses on the policies related to five important aspects of Smart Growth: urban 

growth containment, residential density and housing diversity, mixed use, transportation 

system accessibility, and utilization of existing infrastructure. There are three research 

questions this study tries to answer:  

1) To what extent do Smart Growth policies influence home developers’ location 

choice in the Portland metropolitan area? 

2) Do Smart Growth Policies have different impacts on home developers’ location 

choice in Oregon compared with across the border in the State of Washington? 

3) Do SFH and MFH developers exhibit different preferences for their project 

location choices?  

To answer those research questions, a set of developer location choice models were 

developed for SFH and MFH developers separately. The remainder of this chapter 

discusses the Portland metropolitan area and its Smart Growth policies; reviews some of 

the prior research that has examined the effectiveness of these policies; discusses the 

model design and estimation results; and concludes with a summary of important findings. 

3.2 Smart Growth Policies in the Portland Metropolitan Area 

While the four counties in the region comprise the same housing market, the market 

functions under two different state land use systems. The three counties in Oregon are 

served by Metro, the only elected regional government in the United States. According to 

its Charter (Metro, 1992), Metro has the power to require changes in local comprehensive 

plans to make them consistent with its functional plans. Oregon law also requires local 

comprehensive plans to be compatible with statewide planning goals (Abbott, 2002). 



35 
 

Metro includes Clark County, Washington (Vancouver area) on its 2040 Growth Concept 

maps, but has no regulatory powers there. The planning and zoning in Clark County is 

regulated by Washington state laws, which include the Growth Management Act (GMA), 

enacted in 1990 to guide planning for growth and development. Notably, while designing 

their growth management system, the Washington legislature deliberately avoided the 

top-down planning system found in Oregon (Weitz, 1999), and limited the power of the 

State to alter the content of local plans (Abbott, 1997).  

Portland has an international reputation as a model for Smart Growth. Among many 

Smart Growth policies that have been implemented in Portland region, its UGB garners 

the most attention. Metro adopted the UGB for its 24 cities and parts of its three counties. 

Each jurisdiction in the region is required to make their plans and implement actions 

consistent with the UGB (Seltzer, 2004). The basic purpose of the UGB is to prevent 

urban sprawl by identifying and separating rural land from urban and "urbanizable" land, 

thereby providing orderly, efficient transitions from rural to urban use (Metro, 1995). In 

order to provide sufficient land for urban growth, Metro is required also to maintain a 20-

year inventory of developable land within the UGB, which has resulted in several UGB 

expansions since its adoption in 1979.  

In Clark County, Washington, as required by the GMA, urban growth areas (UGAs) were 

designated and urban growth is encouraged to be inside of them. In this study, the 

boundary of the UGAs in Clark County, Washington were considered to be its UGB. As 

a policy tool, the UGB represents a set of planning policies that regulate the land use 

outside and inside it. A comparison of the statewide planning goals in Oregon and 
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Washington show that both the states have the land use policies regulating the land use 

outside UGB by: 1) protecting agricultural and forest lands, environmentally critical areas, 

and open space; 2) restricting the establishment and extension of public facilities; and 3) 

controlling residential, commercial, and industrial land development on rural land. While 

the two states share similar goals in restricting land development outside UGB, the 

regulations on the land development outside UGB in Clark County, Washington tend to 

be less restrictive due to several reasons. First, Clark County has much more land outside 

UGB zoned for low density residential purpose than the three Oregon counties. To 

compare Clark County to the other three Oregon counties, the area of land zoned for 

residential, rural, mixed use and other purposes in Clark County are calculated based on 

the GIS data provided by Clark County, Washington. The area of land zoned for 

residential, rural, mixed use and other purposes in the three Oregon Counties are 

calculated based on the Regional Land Information System (RLIS) GIS data provided by 

Metro.  

Calculation results show that based on 2005 zoning categories, Clark County, 

Washington has 21,132 acres of land outside UGB zoned for residential purposes, 

compared with a three-county total of just 7,572 acres of land zoned for residential 

purposes outside of UGBs on the Oregon side. Secondly, the proportion of land outside 

UGBs zoned as rural land is much higher in Clark County, Washington. Generally, 

compared to farm and forest lands, the restriction of land development on rural land is 

less strict, allowing low-density residential development on large land parcels. According 

to the Clark County 20-Year Comprehensive Growth Management Plan 2004-2024 
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(Clark County, 2010b), rural lands are the areas that lie outside of the UGB and do not 

include designated long-term resource lands (agriculture, forest or mineral resources). 

Based on the 2005 zoning categories, Clark County has about 331,000 acres of land 

outside the UGB of which 34 percent (about 111,138 acres) was designated as rural lands. 

In contrast, in the three Oregon counties there were 1711,717 acres of land outside the 

UGB of which only 7.2 percent (about 123,521) acres were zoned as rural lands. In 

addition, some rural areas in Clark County with small lot development patterns, natural 

features as boundaries, and access to arterials are designated as rural centers. In rural 

centers, both residential and commercial developments, and necessary public facilities 

and services are allowed to support the needs of rural residents and natural resource 

industries. 

In addition to the land development regulations outside of it, the success of the UGB 

hinges upon policies that encourage mixed-use, high-density, and transit-oriented 

development (TOD) on the lands within it. Oregon Statewide Planning Goal 10 on 

housing requires the provision of a variety of densities and types of residences in each 

community (Oregon Department of Land Conservation and Development, 2010). The 

2040 Growth Concept adopted by Metro in 1995 also calls for substantial amounts of the 

region's growth to occur in medium- to high-density mixed-use, walk-able urban centers 

and corridors linked by high-quality transit service (Metro, 1995). In Washington, 

Statewide Planning Goal 3 on affordable housing set by the GMA encourages the 

availability of affordable housing, promotes a variety of residential densities and housing 

types, and encourages preservation of existing housing stock (Washington State 
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Legislature, 1990). Accordingly, moderately smaller lot sizes, higher average, and 

provisions for a wide range of housing densities and types are encouraged in Clark 

County’s 20-year Comprehensive Growth Management Plan 2004-2010 (Clark County, 

Washington, 2010). 

While the statewide planning goals in both states encourage compact development and 

TOD within the UGB, the real effects of those state-level policies are highly dependent 

on the planning and land use regulations by local governments, especially their zoning. 

Based on the 2005 zoning categories, Clark County has 72,848 acres of land zoned for 

residential purpose, of which 11.6 percent (about 8,483 acres) is zoned for medium and 

high-density residential use. In the three Oregon counties, there are 143,217 acres of land 

zoned for residence, of which 16.8 percent (about 23,989 acres) are zoned for medium 

and high-density residential use. Thus, there is more land zoned for medium and high 

density residential use in the three Oregon counties than Clark County, Washington, both 

in total and proportionally. In addition, the 2005 zoning categories indicate that the three 

Oregon counties have much more land zoned for "mixed uses" (13,465 acres) than Clark 

County's mixed use zoning (1,464 acres).  

In addition to its land use components, Metro’s 2040 Growth Concept Plan (1995) 

emphasizes TOD to reduce car travel. To reduce the reliance on single-occupant 

automobile use, the plan promotes increased planning for alternative modes and street 

connectivity and encourages land use patterns throughout urban areas that make it more 

convenient for people to walk, bicycle, use transit, and generally drive less to meet their 

daily needs. Similar to their Oregon neighbor, the Washington State GMA sets it 
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transport goal as encouraging efficient, multi-modal transportation systems that are based 

on regional priorities and coordinated with county and city comprehensive plans; 

however, promotion of the TOD concept in Clark County came much later than in 

Oregon. Figure 9, below, shows the transit lines in the Portland metropolitan area. The 

Oregon side of the metro area has higher densities, a more fully developed bus transit 

system, and light rail and streetcar--modes not found in Clark County/Vancouver.  

 
Figure 9 Transit lines in Portland metropolitan area in 2005 
Data source: Metro, RLIS (2005) 

3.3 Prior Examination of Portland's Smart Growth Policies 

Previous studies examining the impacts of Portland’s Smart Growth policies have 

focused on its UGB, questioning whether it has successfully prevented urban sprawl and 
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encouraged certain growth patterns such as higher land use density, more mixed use, and 

TOD.  

Nelson and Moor (1993) divided the fore-mentioned three Oregon counties into four 

parts based on their relative locations to the Portland UGB. Comparing land use density 

in these four areas from 1985 to 1989, they concluded that development was being 

directed to the areas within the UGB but recognized that considerable development 

continued outside the UGB and efficient expansion of the UGB in the future may be 

jeopardized by low-density development along the boundary. Abbott's (2002) analysis of 

multiple data sources concluded that Portland’s UGB had successfully contained new 

development within the UGB, increased land use density, and decreased the average new 

lot size. Further, he noted that almost all the new housing outside the UGB was located in 

Clark County, Washington, where traditional subdivisions of moderately priced houses 

were still available. Song and Knaap (2004) developed several quantitative measures of 

urban form and computed these for neighborhoods of varying age in Washington County, 

Oregon, part of the Metro region. Their findings indicated that single-family housing unit 

density, internal street connectivity, and pedestrian accessibility have increased at the 

neighborhood level, but that the mixing of land uses was limited.  

While the studies reviewed above reported that Portland’s UGB was at least partially 

achieving its goals, other researchers have come to contradictory conclusions. For 

example, Richardson and Gordon (2001) argued that Portland is actually statistically 

similar to Los Angeles in terms of suburbanization, decentralization, and public transit. 

Jun (2004) evaluated the impact of Portland’s UGB on urban spatial form in three 
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different ways: comparing Portland with other metropolitan regions, comparing areas 

inside and outside the UGB, and developing a regression model. Jun’s study confirms the 

argument by Richardson and Gordon that Portland has not been successful in sprawl 

control, citing that Portland experienced substantial population suburbanization from 

1980 to 2000. Jun’s study also suggested that Portland’s UGB has had little effect on 

attracting new residential development into UGB and has actually had a significant 

impact on diverting new growth into Clark County, Washington.   

There may be many reasons for the contradictory conclusions of previous studies, but 

data limitations and methodological inconsistency figure prominently. First, many studies 

fail to recognize that the UGB is only one of several Smart Growth policy instruments 

implemented in the Portland metropolitan area. Studies examining the impacts of Smart 

Growth policies other than the UGB are rare, such as densification and mixed-use 

development incentives, TOD, and road and sewerage extension policies. The success of 

the UGB is highly dependent on the support of these other planning policies as well as 

the existing built environment and exogenous socio-economic factors. In the extensive 

literature assessing the effectiveness of the UGB, very few of them control for those 

factors. Indeed, these studies also rely upon outcomes aggregated at a fairly coarse spatial 

level and lack a behavioral foundation rooted in economic theory. 

Another gap in literature is that very few studies have examined the impacts of Smart 

Growth policies from developers’ perspective. As major space producers in U.S. cities, 

real estate developers’ response to such policies is critical to its success. Downs (2005) 

summarized three main groups that advocate Smart Growth practices: nongovernment 
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environmentalists, urban planners and other local public officials, and innovative private 

real estate developers. Compared to the other two groups, however, the preferences of 

developers toward Smart Growth polices is ambiguous. On one hand, it is reported that 

consumers are willing to pay a premium for housing with Smart Growth characteristics 

(Song & Knaap, 2003), and some developers have applied for permits to build projects 

following Smart Growth principles (Downs, 2005). On the other hand, O’Connell’s (2009) 

recent survey over 202 U.S. cities on their planning and development officials suggested 

that developers and real estate interests were the most active opponents of Smart Growth 

policies. 

3.4 Model Formulation 

Discrete choice modeling techniques were used to reveal the compensatory tradeoffs that 

developers make when choosing sites for their housing projects among a set of alternative 

locations. Since each developer may have several housing projects, projects rather than 

developers were used as individual observations in the model. Thus the model represents 

the choice of location for a particular project, given the attributes of that project and its 

developer.  

Discrete choice models are usually derived under the assumption that a decision maker 

seeks to maximize his/her utility. As one cannot directly observed utility, random utility 

theory suggests that utility is a latent construct that can be measured indirectly as a 

function of the attributes of each alternative and the preferences of each decision maker 

for each attribute (Train, 2003). In this research, each developer chooses from  

alternative TAZs for project . The developer expects to obtain a certain level of utility 
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 from each alternative TAZ  for project . The utility is composed of two parts, the 

systematic portion , which can be measured and an unobserved random portion, , an 

error term: 

                                                                 (2) 

In this study, for each alternative TAZ , there are four groups of alternative specific 

attributes: a vector of location-specific variables representing Portland’s Smart Growth 

policies , a vector of TAZ site attributes , a vector of TAZ socio-demographic 

attributes , and lagged-effect variables , such as whether a TAZ or its neighbors 

had been previously chosen as a project site by the same developer. For project , the 

function for the systematic utility portion is: 

                                        (3) 

where,  represents a parameter vector for Smart Growth policy variables,  represents 

the parameters for TAZ site variables,  represents the parameters for TAZ socio-

demographic variables, and  represents the parameters for lagged effects. Assuming 

that the error components  are identically and independently distributed (IID) across 

the alternatives, and following an extreme value distribution, also known as a Gumbel 

distribution, the choice probability for alternative TAZ  may be written as:  

Pr |  

∑  
                                (4) 

which is the multinomial logit model (MNL) model. Equation (4) thus represents the 

probability of choosing location j' for project i from a set of alternative locations.  



44 
 

Baseline models using Equation (4) were estimated for each of the two market segments, 

SFH and MFH.  

Each individual makes a choice from a set of alternatives available assumed to be 

available to them. In this study, there are 1998 TAZs in the region. It is assumed that each 

SFH unit consumes at least 0.1 acres of buildable vacant land, each MFH unit consumes 

at least 0.01 acres of buildable land, and only TAZs with enough buildable land were 

considered to be eligible candidates for the choice set. Thus, smaller size projects tend to 

have larger full choice set, and larger projects tend to have smaller full choice sets. With 

this constraint, it was still neither computationally feasible nor theoretically realistic to 

assume that developers would consider all the eligible TAZs as alternatives in the choice 

set for each project. Therefore, a random sample of 19 alternative TAZs from all the 

eligible TAZs, plus the chosen TAZ were used as the choice set for each project. 

Alternatives were sampled without replacement and without any type of importance 

sampling or stratification. According to MacFadden (1978) and Nerella and Bhat (2004), 

random sampling of alternatives provides consistent estimates even for small sample 

sizes when using a MNL model. One advantage gained by sampling alternatives from full 

choice set is that it helps avoid the spatial autocorrelation among alternative locations, 

who are likely to be proximate to each other if full choice sets are used. 

To examine whether developers behave differently in Oregon and Washington, I 

specified a "bi-state" model in which all the variables were interacted with a dummy 

variable , which represents whether the TAZs are in Clark County, Washington. The 

equation for the models is: 
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Pr |  

∑  
   (5)          

where β  represents the parameters for all the interaction effects in the model. Models 

were estimated using maximum likelihood methods using NLOGIT software version 4.0 

(Econometric Software, Inc., 2007). 

My descriptive analysis revealed that the sizes of housing projects vary quite a bit. The 

distribution of project sizes tends to follow a basic power-law curve, with many projects 

of small size monotonically transitioning to very few projects of large size. In order to 

account for these differences and the relatively greater complexity and constraints faced 

by developers as the magnitude of a project increases, I estimated models using the 

project size in dwelling units as the observation weight. Consequently, the preferences of 

a developer with a project size of 100 units contributed the same information to the 

likelihood calculations as 100 projects in which a single home was constructed. 

Preliminary estimation results show much better goodness-of-fit measures for the 

weighted models compared with the un-weighted models and parameter estimates that 

were more consistent with our expectations. In this chapter, only the estimation results 

from the weighted models are reported. Explanatory variables are the TAZ attributes 

presented and discussed in Chapter 2 (see Table 2). 

3.5 Model Results and Findings 

To compare model goodness of fit, I calculate the adjusted pseudo R² ( ) for each 

model based on the formula: 
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1                                                              (6) 

where  is the log likelihood value at convergence,  is the number of parameters, 

and 0  is the log likelihood value with only the constant in the model.  

As indicated by Table 3, SFH models returned much higher adjusted pseudo R² than 

MFH models, suggesting that SFH models fit in the data better. For both SFH and MFH 

sectors, the bi-state models show slightly better model goodness of fit than the base 

models. 

3.5.1 Smart Growth Policies  

Table 3 presents the estimation results from the base models and the bi-state models for 

SFH and MFH developers. The base model assesses to what extent SFH and MFH 

developer location choices are influenced by Smart Growth policies in the region while 

controlling for other site and socioeconomic variables and the lagged effects of past 

choices. In the bi-state model, all the variables are interacted with a dummy variable 

representing the TAZs in Clark County, Washington to indicate whether there are 

statistically significant differences across state lines. 

UGB 

As discussed above, estimated parameters on UGB dummy variables represent policies, 

land use conditions and development-related costs that are concomitant to the UGB but 

not included and controlled for elsewhere in the model. It should be noted that since most 

MFH developments are within the UGB, UGB dummy variables were not included in the 

MFH developer models and therefore only appear in the table for the SFH models.  
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Table 3 Base model and bi-state model results 

Variables Coef t-value Coef t-value Coef t-value Coef t-value

UGB:
UGB_IN -- -- -- -- -- -- -- --
UGB_ON 0.0648 1.47 -0.1564 -2.44 -- -- -- --

UGB_ON*Clark 0.3235 3.58 -- --
UGB_OUT 0.5622 10.29 0.6798 9.80 -- -- -- --

UGB_OUT*Clark -0.4325 -3.51 -- --
UGB_EXP 0.0133 0.23 -0.0525 -0.65 -- -- -- --

UGB_EXP*Clark 0.0961 0.80 -- --
SFH net density:

SFH_DEN_N -- -- -- -- -- -- -- --
SFH_DEN_L 0.7452 8.36 0.7501 7.79 -- -- -- --

SFH_DEN_L*Clark -0.6150 -2.92 -- --
SFH_DEN_M 1.4189 15.28 1.3476 13.71 -- -- -- --

SFH_DEN_M*Clark -0.4861 -2.30 -- --
SFH_DEN_H 2.0555 18.13 2.0961 17.31 -- -- -- --

SFH_DEN_H*Clark -1.9169 -5.59 -- --
MFH net density:

MFH_DEN_N -- -- -- -- -- -- -- --
MFH_DEN_L -- -- -- -- -0.3423 -1.49 -0.2450 -0.90

MFH_DEN_L*Clark -- -- -0.1521 -0.25
MFH_DEN_M -- -- -- -- 0.3055 1.35 0.3540 1.34

MFH_DEN_M*Clark -- -- 0.7150 1.17
MFH_DEN_H -- -- -- -- 0.7795 3.32 0.9104 3.36

MFH_DEN_H*Clark -- -- 0.3673 0.55
Housing diversity:

H_MIX -- -- -- -- -- -- -- --
H_SFH -0.0309 -1.19 -0.1533 -4.85 -0.0167 -0.09 0.0212 0.10

H_SFH*Clark 0.3136 4.67 0.0499 0.09
H_MFH -0.1562 -3.67 -0.1584 -3.35 0.4456 5.44 0.4885 5.52

H_MFH*Clark 0.3242 2.89 -0.5253 -2.04
Mixed use:

MIX_USE -- -- -- -- -- -- -- --
MIX_RES 0.0888 3.36 0.1541 4.57 0.4205 4.19 0.3532 3.26

MIX_RES*Clark -0.1725 -3.10 0.1276 0.41
MIX_NON 0.0504 1.92 -0.1214 -3.75 -0.0039 -0.05 -0.0748 -0.79

MIX_NON*Clark 0.5640 9.45 0.3688 1.39
Accessibility:

AUTO_RET -0.0191 -3.43 -0.0313 -5.21 -0.0051 -0.25 0.0082 0.38
AUTO_RET*Clark 0.1206 4.90 -0.0564 -0.43

AUTO_NRET -0.0001 -0.04 0.0011 0.85 0.0029 0.62 -0.0002 -0.03
AUTO_NRET*Clark -0.0225 -4.28 0.0132 0.47

TRS_RET 0.0213 2.81 0.0199 2.39 -0.1072 -4.64 -0.1109 -4.50
TRE_RET*Clark -0.0348 -1.05 0.0401 0.26

TRS_NRET -0.0043 -2.58 -0.0050 -2.76 0.0241 4.75 0.0249 4.71
TRS_NRET*Clark 0.0101 1.37 -0.0093 -0.27

Existing infrastructure
RD_DEN 0.0016 5.72 0.0027 7.09 -0.0019 -2.96 -0.0010 -1.47

RD_DEN*Clark -0.0019 -3.15 -0.0038 -1.73

MFH 
Base Model Bi-State ModelBase Model Bi-State Model

SFH

Smart Growth policies examined and their corresponding variabels
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Table 3. (Continued) 

Using TAZs within the UGB as a reference case, the estimation results suggest that, all 

else being equal, there is statistically significant preference for developing SFH outside 

of the UGB, and this effect is consistent for both states. As suggested above, after 

controlling for land value and availability, the lower cost of doing business outside of the 

UGB and pent up demand for more rural living would seem to hold sway in some project 

location decisions. In Oregon these would be limited to single dwelling units on very 

large lots (e.g., two acres or more). As suggested by the base model, there is no 

significant difference between the TAZs within the UGB and the TAZs on the UGB 

Variables Coefficient t-value Coefficient t-value Coefficient t-value Coefficient t-value

Existing site attributes:
LAND_SFH 0.1114 27.08 0.1197 23.71 -- -- -- --

LAND_SFH*Clark -0.0313 -3.43 -- --
LAND_MFH -- -- -- -- -0.2677 -15.88 -0.2038 -10.32

LAND_MFH*Clark -- -- -0.2540 -6.57
LAND_VL -0.0605 -11.27 -0.0447 -7.10 0.0160 3.94 0.0170 3.99

LAND_VL*Clark -0.0847 -5.63 -0.0464 -0.80
Socio-Economic attributes:

HINC 0.0019 2.07 -0.0007 -0.67 -0.0008 -0.26 0.0022 0.69
HINC*Clark 0.0180 7.88 -0.0006 -0.05

AGE 0.0096 6.29 0.0109 5.93 -0.0029 -0.64 0.0011 0.22
Age*Clark -0.0163 -5.31 0.0023 0.18

AR(1) 4.6152 97.90 4.6158 96.94 5.1828 18.24 5.0662 17.79
NB(1) 1.3429 28.51 1.3301 28.26 3.4067 9.90 3.3323 9.64
AR(2) 1.9542 31.64 1.9470 31.56 2.4208 4.79 2.3429 4.67
NB(2) 1.2503 25.28 1.2250 24.71 1.3276 3.92 1.2324 3.60
Number of parameters
log likelihood
Null log likelihood
Pseudo R sq
Adjusted Pseudo R sq
Weighting variable
Sample size

SFH MFH 
Base Model Bi-State Model Base Model Bi-State Model

0.26 0.27

project size project size
1138 1138

0.25 0.26

-2441 -2409
-3301 -3301

Variables controlled while assessing smart growth policies

Lagged effects

-28208
23 42 20 36

16320 16320

0.42 0.43

-27916
-48652 -48652

project size project size
0.42 0.43
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boundary line. However, the bi-state model suggests that while there is a statistically 

significant propensity to avoid developing along the UGB boundaries in the three Oregon 

counties, new SFH developments in Clark County, Washington were more likely to be in 

the locations along the UGB boundaries. In the base and bi-state models, there were no 

significant effects attributed to a TAZ located in a UGB expansion area, meaning that 

these lands are no more attractive for SFH home development than the land originally 

contained within the UGB. This finding might be temporary, however, since all the UGB 

expansion areas counted by this study were drawn after 2000, most in 2004, and it takes 

time for developers to respond to the new designations. 

Residential Density  

The existing density of SFH in units per acre was found to have a significant, positive 

effect of the project location preference for SFH development. As shown in Table 3, 

relative to the reference case of zero existing SFH units, the magnitude of the coefficients 

estimated for the low-, medium- and high-density SFH indicator variables increases from 

lowest to highest in the base model, and these coefficient are statistically different from 

one another. In the bi-state model, however, there is a significant offsetting negative 

parameter for Clark County in all the density categories. The net effect is that, while 

positive, developers in Clark County are more likely to develop medium-density SFH 

projects than high-density SFH projects. These results may be attributed in part to 

increased profitability of developing SFHs at higher densities, up-zoning and policy-

driven density bonuses, and the relative cost of land within the UGBs, which tends to be 

higher in the three Oregon counties compared with Clark, County. 



50 
 

In the MFH models, the estimation results show a similar albeit somewhat weaker 

propensity for locating new MFH projects in TAZs where there are currently high 

densities of MFH. The results are not significant statistically for the low- and medium-

density categories, but significant for high-density category, which is also true in the Bi-

state model. These results are consistent with the notion that, in both states, MFH 

development is being directed to areas that already have a lot of MFH housing. 

Housing Diversity 

The estimation results for the base model in Table 3 show that, relative to the reference 

case of "mixed SFH and MFH," developers are significantly less likely to develop SFH in 

TAZs in which MFH dominates. In the bi-state model, developers are significantly less 

likely to develop SFH in TAZs in which either SFH or MFH dominates. However, there 

is a significant, positive offsetting effect for Clark County, resulting in a different 

preference ordering. In the three Oregon Counties, the preference would be for 

developing in "mixed" housing zones, followed by "SFH dominated" and "MFH 

dominated." In Clark County, the net effect of the parameter estimates reveals a similar 

preference to "SFH dominated" and "MFH dominated" zones, with the "mixed housing" 

category being least preferred, all else being equal. The seeming ambiguity of the Clark 

County results might reflect a less mature growth management system in which there is 

an existing shortage of mixed housing areas. This is gradually changing as new SFH units 

are built in areas currently dominated by MFH.  

The MFH base model shows that MFH developers have the preference to the TAZs 

dominated by MFHs, but they are indifferent between the TAZs with mixed housing and 
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the TAZs dominated by SFHs; however, the Bi-state model shows that this is only true 

for developers in the three Oregon counties. MFH developers in Clark County, 

Washington are also indifferent between the TAZs with mixed housing and the TAZs 

dominated by SFHs, but there is a significant, negative parameter for the interaction with 

“MFH dominated” dummy variable, which has a magnitude large enough to offset the 

coefficient of the main effect. This indicates that in Clark County, Washington, MFH 

developers are less likely to choose the location dominated by MFH. 

Mixed Use 

Downs (2005) argued that among many Smart Growth policies, providing for mixed land 

uses is likely to be implemented since it does not incur strong opponents. Using TAZs 

characterized as "mixed use" as the reference case, the estimation results shown in Table 

3 suggest that SFH developers are more likely to choose the TAZs dominated by 

residences but are indifferent between the land that is dominated by non-residential use 

and the land that is mixed use. The SFH bi-state model shows SFH developers in the two 

states have a different preference ordering. In the three Oregon counties, the preference 

ordering is: TAZs dominated by residential use, followed by "mixed use," and then TAZs 

dominated by non-residential uses. In Clark County, the SFH preference ordering favors 

the TAZs dominated by non-residential use, followed by the TAZs with mixed use, and 

finally the TAZs dominated by residential use. This seemingly surprising difference 

between the two states may again reflect differences in maturity of their respective 

growth management systems. Recent efforts to guide growth into a mixed used scenario 

in Washington is in its early stages; therefore, lacking a great deal of existing mixed use 
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areas, new SFH is being built in areas that have heretofore been dominated by non-

residential land uses. A future analysis might re-label these TAZs as "mixed use" as the 

residential housing stock catches up with non-residential land uses. 

For MFH, the estimation results show a more prosaic outcome in which development of 

new MFH projects shows the strongest propensity towards TAZs that are currently 

dominated by residential uses, while exhibiting no significant secondary preference for 

locating in commercial-dominated zones versus mixed use. These outcomes are 

consistent between the two states.  

Auto and Transit Accessibility 

As shown in Table 3, the effects of four transportation-related accessibility variables 

were tested. These four measures were differentiated by mode, auto or transit, and by the 

object of access, retail or non-retail employment, as surrogates for employment or 

shopping opportunities, respectively. For SFH, the parameter estimates of the base model 

suggest an aversion to the areas with a high level of access to retail employment by car 

and non-retail employment by transit, and significant preference to locations with better 

accessibility to retail employment by transit; however, the bi-state model reveals that this 

is only true on the Oregon side of the border. SFH developers in Clark County show 

similar preference for transit accessibility to SFH developers in Oregon. In addition, 

Washington developers show preference for locations with better accessibility for retail 

employment by car and aversion to locations with better accessibility for non-retail 

employment by car. Anecdotally, greater Vancouver and Clark County would seem to 

have a higher proportion of strip commercial development and shopping areas close to 
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new residential subdivisions. Statistically, this finding is consistent with the above 

analysis on mixing of uses in which there is a significant preference for developing SFH 

projects in zones dominated by commercial uses.  

The MFH model estimation results paint a quite different picture. As shown in Table 2, 

auto accessibility to either retail or non-retail employment has had no significant effect 

on the propensities of developers to site new MFH projects in both states. In contrast, 

accessibility by the transit mode is highly significant, with the base model showing a 

significant negative effect towards locating projects in areas with high transit access to 

retail and a significant positive effect of locating in TAZs with high access to non-retail 

employment. The bi-state model shows no significant difference between the two states. 

These results seem to reflect the vast conversion of former industrial lands along 

Portland's south waterfront and north of downtown in the now famous Pearl District to 

high-rise multi-family structures during the study period. Similar, smaller-scale 

conversions have also taken place in Vancouver, Washington near the waterfront. These 

areas have high transit accessibility and are close to downtown employment centers. 

Existing Infrastructure 

Using road density as a proxy for development-supportive existing infrastructure, I tested 

the notion that, Smart Growth policies encourage more efficient use of existing 

infrastructure. It is noted that while residential infrastructures such as sewage and water 

system are usually accompanied with road systems, road density is not always a perfect 

proxy. Another issue is that since the number of road lanes is not counted, road density 
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tends to be over-measured in the areas where the number of road lanes is small; while in 

the areas where the road lanes are large, road density is under-measured.  

The base models show that this would seem to be the case for new SFH development but 

the reverse seems to be true for MFH development. The SFH bi-state model estimates 

show a significant negative offsetting effect for SFH developers in Clark County. This 

may reflect a more lenient policy framework in Clark County towards infrastructure 

extensions and lower development surcharges, compared with the three Oregon counties. 

In Oregon, state legislation requires consistency between transportation and land use 

plans and the Oregon Department of Transportation is involved in reviewing plan 

amendments, thus the adequate provision of infrastructure is assured.  

3.5.2 Site Characteristics and Socio-Economic Variables Controlled   

The supply of buildable land in a TAZ, expressed in the natural log in the model, is 

expected to be a primary attractor for new housing development. The estimation results 

show that this is evident in the SFH base model by a very strong, significant positive 

parameter estimate for SFH buildable land. In the SFH bi-state model, there is an 

offsetting negative effect in Clark County for SFH acreage, meaning that the marginal 

utility of each additional vacant square meter is somewhat less valuable. Given the 

weighting of projects by size, this may be interpreted in terms of the utilization rate of 

vacant land, which in Clark County means larger average SFH lot sizes, compared with 

the three Oregon Counties.  

However, in both the MFH base model and bi-state model, Table 3 shows significant 

negative coefficients for buildable land in both states. Considering that all the alternatives 
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in the choice set were required to have enough buildable land when the choice set was 

determined, this suggests that for MFH development, as long as the locations have 

enough buildable land, MFH developers prefer to the TAZs with less amount of buildable 

land, which are more likely to be in the built-up areas. This is consistent with the 

descriptive analysis in Chapter 2 which showed that MFH developments were much less 

likely to occur in urban peripheries than SFH development.  

As mentioned earlier, vacant land fragmentation and zoning change were not considered 

when measuring the acreage of buildable land in TAZs, which might have caused some 

bias in model estimation. To ignore land fragmentation tends to over-measure the amount 

of buildable land in the TAZs where vacant land is more fragmented, and those TAZs are 

more likely to be in built-up areas. This might lead to the underestimation of the 

importance of buildable land and the attractiveness of TAZs on urban peripheries. I also 

noticed that some housing developments, especially MFH developments in high density 

areas were built on developed land originally zoned for non-residential purpose, such as 

industrial or commercial. Ignoring zoning change could cause the overestimation of the 

importance of vacant land and underestimation the possibility of housing development in 

built-up areas where vacant land is scarce.     

The estimation results also show that, all else being equal, developers of SFH prefer less 

expensive land, as suggested by the significant negative coefficient estimates show in 

Table 3. There is a significant additional, negative effect in Clark County shown in the 

bi-state model results, which suggest that developers there are even more cost averse. In 

contrast, there is significant positive effect of land value among developers of MFH in 
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both states. This might be due to the fact that MFH development is more likely to occur 

in high-density areas where land price tends to be higher and land price captures some 

positive factors for MFH development that are missing from the models. As noted above, 

land values used are assessed values, not transaction prices, thus they lag behind market 

rates usually by a few years, if not more. This fact helps us to avoid the endogeneity 

problem in which the marginal utility of land values reflects the values of other attributes 

included in the model that contribute to land price. Nevertheless, the gap between the 

assess land value and the market land value tends to under-measure the importance of 

land price in developers’ location decision, and this is especially true for a housing 

market boom period. 

As shown in Table 3, the two socio-economic variables show significantly positive 

parameters in the SFH based model. The results from the SFH bi-state model indicate 

that SFH developers in Clark County are more likely to choose TAZs with higher average 

household income than SFH developers in three Oregon counties, but they prefer to build 

in the TAZs with fewer young and middle-age households, ages 25 to 54. This might 

suggest a stronger trend in Clark County for developing SFH homes for wealthier, older 

households, a supposition that may be supported by the previous analysis indicating 

trends towards lower density SFH developments compared with the Oregon counties. The 

MFH models show that MFH developers are not sensitive to the average household 

income and the age structure in the TAZs in both states. Acknowledging that there might 

be loop causality between the socio-economic status of a TAZ and the housing 
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development in that TAZ, but the use of Census 2000 data for all the eight years of study 

period helps us avoid that problem.   

3.5.3 Lagged Effects of Previous Choices 

The estimation results on lagged effects for SFH and MFH developers are similar and 

quite intuitive. As shown in Table 3, if a developer was active within the previous two 

years, there is a significant positive effect of locating the current project in the same TAZ 

as the previous project, or in a neighboring TAZ. The effects lessen somewhat going 

from a one-year lag to a two-year lag, and are greater for the same zone (AR) than for a 

neighboring zone (NB). The magnitude and significance of these variables makes them 

the strongest predictors in the entire specification. This would seem to confirm that 

developers form attachments to the locations with which they are familiar, or are phasing 

projects with separate permits in consecutive years. 

3.6 Conclusions 

The developer project location choice models developed in this study show that home 

developers in the Portland metropolitan area are sensitive to most Smart Growth policies 

being implemented in the region, but they react to them differently across the border 

between Oregon and Washington. In addition, SFH developers and MFH developers 

show different preferences for location attributes. 

In our models, the most significant predictors of where a developer will choose to locate 

a project are the locations of previous projects. For SFH development, the availability of 

appropriately zoned vacant land is another very significant positive factor, with a 
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significant difference between states in terms of the marginal value of vacant land, which 

seems to be higher in the Oregon portion of the region for SFH. This would seem to 

reflect larger average lot sizes for new SFH in Clark County, Washington. For MFH 

development, developers tend to choose the locations with less amount of buildable land 

when all the alternatives have enough buildable land for development. There is a strong 

propensity to save money on land prices for SFH developers. But the MFH models 

suggest that MFH developments are more likely to occur on land with high price, 

reflecting the fact that MFH development is more likely to be in high density location and 

higher land price might capture some positive factors that are missing from the model. In 

terms of demographics, there is a slight significant preference for developing SFH in 

Clark County in TAZs with higher incomes and with a lower proportion of young and 

middle-aged adult households, compared with across the border in Oregon. 

In both states, developers seem to respond positively to Smart Growth policies that would 

encourage developing at higher densities, providing a mix of housing types, and 

encouraging mixed used development. On the Oregon side of the metropolitan area, the 

highest SFH densities are preferred, but on the Washington side there remains a stronger 

propensity to develop in medium-density areas. In addition, there is evidence that new 

SFH is built predominantly in TAZs that already contain a mix between SFH and MFH 

housing types or is dominated by SFH in Oregon, whereas in Clark County recent SFH 

developments have been more likely to be developed in either existing SFH or MFH-

dominated zones, but not mixed housing. The interpretation is that Clark County contains 

fewer existing mixed housing types and that this reflects the gradual transition to mixed 



59 
 

housing types in the propensity to develop SFH in areas now dominated by MFH. 

Supporting this notion of a maturing growth management system is the significant 

positive preference estimated for Clark County to develop SFH in areas dominated by 

non-residential development, compared with Oregon-side preferences for avoiding non-

residentially-dominated zones and favoring existing residential and mixed use zones in 

that order. Essentially, Clark County development is transitioning toward a more mixed 

use pattern through SFH development in commercial areas. This is also supported by a 

significant positive impact of automobile accessibility to retail employment in Clark 

County and an opposite negative impact of auto access to retail employment in the three 

Oregon counties. 

In terms of MFH, in both states the development preferences seem to favor existing 

locations that are dominated by residential use, especially the locations with high MFH 

density. This confirms the existence of “state dependency” in residential development. At 

the same time, there is a significant impact in both states of developing MFH in TAZs 

that are highly accessible by transit to non-retail employment, which supports the Smart 

Growth ideals of fostering shorter, non-auto work commutes and reflects recent large-

scale development of former industrial lands. 

Finally, after controlling for all of the other factors discussed above, there remains a 

strong preference for developing SFH units outside of the UGB in both Oregon and 

Washington sides of the Portland metropolitan area. I hypothesize that this effect may 

reflect demand by a market segment with preferences for lower-cost rural living and may 
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be largely the collective outcome of many one-time private developers who build a single 

residence on a large lot.  

To synthesize, there would seem to be evidence that Smart Growth policies have been 

implemented in ways that are achieving objectives of greater densification, mixes of 

housing types and land uses, and transportation system accessibility on both sides of the 

Portland Metropolitan area. At the same time, there exists what seems to be a latent 

demand by some consumers which motivates some developers to seek out lower-cost and 

lower density opportunities where permitted and, in the Portland Metro area, there are 

more of these opportunities in Clark County.  

The models developed in this study implicitly assume taste homogeneity for location 

attribute preferences. The next chapter examines to what extent taste variation plays in 

location choice decisions.   
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CHAPTER 4 EXPLORING THE PREFERENCE HETEROGENEITY IN HOME 
DEVELOPERS’ LOCATION CHOICE 

 

4.1 Introduction 

In Chapter 3, each type developers (SFH and MFH) are assumed to share the same tastes 

in their location choice, which is a very strong consumption. In this chapter, the 

preference heterogeneity in home developers’ location choice is explored by developing 

mixed multinomial logit (MMNL) models for SFH and MFH developers. Compared to 

the MNL model, MMNL models are free from the restrictive independently and 

identically distributed (IID) assumption and able to accommodate taste variations across 

individuals. To my knowledge, this is the first study that explores the preference 

heterogeneity in home developers’ location choice using MMNL models.  

In the reminder of the chapter, I compare several MMNL models and give the 

formulation of the models selected to explore home developers’ preference heterogeneity; 

discusses model estimation results; and conclude with summary of findings and their 

policy implications. 

4.2 Methodology 

4.2.1 Model Comparison 

As in Chapter 3, I exogenously divide the housing market into SFH and MFH segments. 

Within each segment, to explore home developers’ taste heterogeneity in their location 

choice, the following models have been tested and compared: 1) simple MNL models 

with partial exogenous market segmentation by having explanatory variables interacted 
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with dummy variables created based on developer and project attributes; 2) pure random 

parameter logit (RPL) models in which some parameters are set as randomly distributed; 

3) RPL models with the heterogeneity in the means of random parameters considered by 

setting the means of random parameters as a function of developer and project attributes; 

and 4) latent class models with endogenous market segmentation.  

I finally chose latent class models because it helped avoid the following issues associated 

with other types of models mentioned above. First, while MNL models with partial 

exogenous market segmentation can capture systematic heterogeneity, the housing 

market segmentation has to be determined in an ad hoc way, which is inherently arbitrary. 

In addition, when using more than one developer attribute to group developers into 

different market segments, the number of segments grew fast and the sample sizes of 

some segments became too small to return reasonable coefficients. Secondly, pure RPL 

models cannot capture the systematic variations in individual developers’ preference, 

making it less useful for this study. Moreover, there is little agreement or governance as 

to selecting the distribution type of random parameters. Thirdly, compared to pure RPL 

models, RPL models with heterogeneity in the means of random parameters are able to 

capture systematic taste variation among developers, but the issue of selecting 

distribution types for random parameters remains. Finally, it takes much longer time for 

RPL models (pure and non-pure) to converge, making exploration of alternative 

specifications very time consuming. 

As summarized by Bhat (1997), compared to the models mentioned above, the latent 

class model determines the market segmentation endogenously, and it shows the 
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following advantages: 1) it jointly determines the number of segments, the assignment of 

individuals to segments, and segment specific choice model parameters, which allows the 

use of many segmentation variables; 2) it obviates the need to determine the market 

segmentation in an ad hoc way. In contrast to RPL formulations, the LCM provides a 

more intuitive basis for describing heterogeneity.   

4.2.2 Latent Class Model Formulation 

As in Chapter 3, since each developer can have several projects in different locations, 

housing projects were used as observation units in the model. 

Following Train (2003), latent class models in this study are derived as follows. Each 

developer faces choice among  alternative locations for his/her project . The developer 

obtains a certain level of utility  from each alternative location  for project , and the 

utility is composed of two parts, the systematic portion  and the error : 

                                                                 (7) 

In this study, for each alternative location , there is a set of alternative specific location 

attributes . Assuming that the error  in utility function is independent and identically 

distributed (IID), the choice probability for alternative location  is:  

Pr ,  

∑  
                                                       (8) 

where  denotes the parameter for each TAZ attribute. 
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Following Bhat (1997) and Greene and Hensher (2003), assuming that there are  

relatively homogenous segments in the market, the choice probability for alternative 

location  chosen by a developer for project  in segment c is 

, |  

∑
                                               (9) 

where   denotes the parameter for each TAZ attribute in segment c. A segmentation 

model that decides the probability of project  in segment c can be expressed as 

 
∑  

, c = 1,…, ,                                     (10) 

where  denotes project and developer related attributes which are used to estimate the 

segmentation models and  represents the parameters for those variables. Then, the 

unconditional (on segment membership) probability of project  choosing alternative 

TAZ  can be written from equation (9) and (10) as 

P , ∑ Pr , |                                         (11) 

With the parameters in the segment-specific location choice models and the parameters in 

the segmentation model, one can estimate the mean values of developer and project 

related attributes in segment c ( ) as follows: 

∑
∑                                                                (12) 

The means of location related attributes in segment c ( ) can also be calculated as 

follows: 

∑
∑                                                                (13) 
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4.2.3 Determination of Choice Sets 

As mentioned in Chapter 3, McFadden (1978) proved that random sampling of 

alternatives provides consistent estimates even for small sample sizes in the MNL model. 

Unfortunately, in the non-MNL models, such consistency does not hold. The good news 

is that Nerella and Bhat (2004) found that increasing sample size for non-MNL models 

can dramatically improve the accuracy and, with very large sample sizes, the accuracy of 

random sampling is comparable to the accuracy of the MNL model. They recommended 

that when sampling alternative is the only realistic way to estimate non-MNL models, the 

analyst should consider a sample size no less than one fourth of the full choice set and 

preferably one half of the full choice set.  

As in Chapter 3, it is assumed that each SFH unit consumes at least 0.1 acres of buildable 

vacant land, each MFH unit consumes at least 0.01 acres of buildable land, and only 

TAZs with enough buildable land were considered to be eligible candidates for the choice 

set. With this constraint, the full choice set for most projects is still too large to estimate 

the model. To achieve a realistic choice set size for the latent class model estimation, the 

full choice set faced by each housing project was reduced by assuming that all the 

eligible alternative TAZs must be in the same county as the chosen TAZ. This was based 

on the finding that less than 10 percent SFH developers in the region had projects in more 

than one county during the eight-year study period. With these two constraints, 99 

alternative TAZs for each project were sampled without replacement, making the average 

choice set size closer to or larger than one-fourth of the full choice set for all projects. As 

mentioned in Chapter 3, an advantage gained by sampling alternatives is that it helps 
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avoid the spatial autocorrelation among alternatives, which are likely to be proximate to 

each other if full choice sets are used.   

Explanatory variables in location choice models are the selected TAZ attributes presented 

in Chapter 2 (see Table 2). Different from Chapter 3, however, the model specifications 

developed in this chapter  deliberately avoided the use of dummy variables when possible 

since the use of dummy variables in the market segmentation model tends to create small 

segments in which the sample size is too small to return reasonable coefficients. For the 

same reason, the two UGB dummy variables representing TAZs on the UGB line and 

TAZs in the UGB expansion areas were combined into one group called TAZs in UGB 

peripheral areas. Developer size, project size, developer’s contract type, and 

specialization were the variables used to determine the market segmentations for SFH 

and MFH developers. Descriptive analysis on these variables was presented in Chapter 2. 

4.3 Model Estimation Results and Findings 

While exploring developers’ taste heterogeneity in their location choice, the housing 

market was divided into SFH and MFH sectors and these two sectors were modeled 

separately. Within each sector, estimation results from three models are reported: a 

simple MNL model, a developer-based latent class model, and a project-based latent class 

model. The difference between the developer-based and the project-based models is that 

the former uses developer size in the segmentation model while the later uses project size. 

By using developer size in the segmentation model, it was assumed that developers make 

location choice decisions based on their own size and different projects by the same 

developer reflect the same tastes for location attributes. In contrast, by using project size 
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in the segmentation model, it was assumed that developers make location choice by 

projects and different projects developed by the same developer reflect different tastes for 

location attributes. 

Latent class models for SFH and MFH sectors were estimated with number of segments 

C = 2, 3, and 4. The estimation results show that, for each sector, latent class models with 

more segments yield better model goodness of fit in terms of adjusted pseudo R²; 

however, the latent class model with four segments returned some unreasonable 

parameters. Thus, the latent class models with three market segments for the SFH and 

MFH sectors were preferred as offering the best combination of fit and interpretability. 

Model estimation results for the SFH sector are presented in Table 4. As indicated by 

Table 4, compared to the MNL base model, both latent class models show better 

goodness of fit in terms of adjusted pseudo R² (0.154 and 0.157 vs 0.136), meaning that 

segmenting the markets endogenously with the latent class model does make significant 

improvements. The results show that the developer-based and project-based models tell 

quite similar stories due to the positive correlation between developer size and project 

size. Compared to the developer-based latent class model, however, the project-based 

latent class model returns better goodness of fit in terms of adjusted pseudo R² (0.157 vs 

0.154), indicating that project size is a better explanatory variable than developer size for 

determining between market segments. This is also an indication that SFH developers 

make location choice decisions by projects, and they show different tastes for their 

different projects. Due to the space limitation, in this study, only the results from the 



68 
 

project-based model are discussed. The mean values of the segment-specific project- and 

location-related attributes based on it are presented in Table 6.   

Model estimation results for the MFH sector are shown in Table 5. Compared to the 

MNL base model, the latent class models improves the adjusted pseudo R² from 0.074 to 

0.114, indicating that endogenous MFH market segmentation explains MFH developers’ 

location choice significantly better. Different from the SFH sector, however, the 

developer-based model and the project-based model for the MFH sector return the same 

model goodness of fit. One possible explanation is that, compared to SFH developers, 

MFH developers tend to have fewer projects, and the correlation between developer size 

and project size is higher for the MFH sector than the SFH sector (0.771 Vs 0.539). 

Similar to the SFH sector, only the results from the MFH project-based model are 

discussed below. The mean values of the project- and location-related attributes based on 

it are also presented in Table 6. 

4.3.1 Class Probability Models 

A latent class model estimates two sub-models simultaneously: the segment-specific 

choice model based on equation (9) and the segmentation model by equation (10). The 

segmentation model is the model that determines the probability that each project belongs 

to each segment. As Table 4 shows, the sizes of segment 1, 2, and 3 in the SFH project-

based model are 33.0 percent, 25.2 percent, and 41.8 percent respectively. Table 6 shows 

that Segment 2 has the largest average project size (8.49 units), segment 1 is second (1.47 

units), and Segment 3 has the smallest average project size (1.07 units). About 90 percent 

SFH projects in Segment 2 were developed by contractor-owners, much higher
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Table 4 Base and latent class model results for the SFH sector 

Variables Coef t-value Coef t-value Coef t-value Coef t-value Coef t-value Coef t-value Coef t-value

UGB dummy variables:
Within the UGB -- -- -- -- -- -- -- -- -- -- -- -- -- --
In UGB peripheral areas 0.1799 5.53 0.0721 1.16 0.0605 1.51 1.0207 15.15 0.0015 0.03 -0.1587 -2.99 0.9999 18.38
Outside the UGB 1.4210 36.30 -0.3369 -1.60 0.9205 18.91 2.5549 39.13 -0.0562 -0.30 -0.1316 -1.71 2.4178 45.11

SFH net density 0.0319 4.67 -0.0147 -0.76 0.0720 10.16 0.0561 5.17 -0.0010 -0.05 0.1177 14.60 0.0324 3.42
Housing diversity -0.0061 -5.09 -0.1400 -4.66 -0.0004 -0.75 -0.0525 -6.15 -0.1535 -5.25 0.0009 1.65 -0.0332 -7.27
Mixed use 0.0134 3.41 -0.2035 -5.05 -0.0245 -3.74 0.0170 6.63 -0.1632 -4.49 -0.1843 -8.09 0.0171 7.23
Accessibility:

Auto for retail emp -0.0132 -2.32 0.0224 1.92 -0.0124 -1.65 -0.0751 -8.48 0.0238 2.12 -0.0205 -1.97 -0.0734 -9.91
Auto for non-retail emp -0.0009 -0.78 -0.0070 -2.84 0.0014 0.87 0.0099 5.15 -0.0070 -2.95 0.0023 1.05 0.0109 6.80
Transit for retail emp 0.0031 0.49 -0.0131 -0.89 0.0171 2.19 0.0554 5.48 -0.0170 -1.19 0.0038 0.36 0.0691 8.19
Transit for non-retail emp 0.0010 0.70 0.0035 1.10 -0.0031 -1.82 -0.0051 -2.24 0.0044 1.43 -0.0013 -0.54 -0.0092 -4.89

Road density 0.0006 2.26 0.0016 2.50 0.0011 4.16 0.0016 3.82 0.0007 1.21 0.0021 6.05 0.0014 4.22
Buildable land for SFH 0.1871 48.05 0.7591 29.80 0.1337 27.85 -0.0057 -0.93 0.6889 25.47 0.1635 23.89 -0.0050 -0.95
Land value (deflated, in 2000$) 0.0101 2.30 0.1065 9.51 -0.0086 -1.60 -0.0371 -4.60 0.0926 8.66 -0.0445 -5.96 -0.0088 -1.38
Average household income 0.0074 10.49 0.0109 6.70 -0.0001 -0.16 -0.0131 -10.22 0.0118 7.71 -0.0097 -7.60 -0.0074 -7.10
% of household head aged 25-54 0.0082 6.34 -0.0023 -0.79 0.0071 4.68 0.0357 16.61 -0.0015 -0.53 0.0073 3.65 0.0274 15.50
Lagged effects:

AR(1) 3.3043 100.14 3.2118 141.43 3.2118 141.43 3.2118 141.43 3.2243 136.46 3.2243 136.46 3.2243 136.46
NB(1) 1.0632 28.67 1.0272 40.56 1.0272 40.56 1.0272 40.56 1.0315 38.90 1.0315 38.90 1.0315 38.90
AR(2) 1.1949 26.84 1.1614 38.99 1.1614 38.99 1.1614 38.99 1.2075 38.81 1.2075 38.81 1.2075 38.81
NB(2) 0.6356 15.68 0.5954 21.64 0.5954 21.64 0.5954 21.64 0.6081 21.17 0.6081 21.17 0.6081 21.17

Constant -- -- -1.0448 -4.35 -0.8203 -2.17 -- -- -2.8468 -17.43 -2.3874 -8.78 -- --
Developer size -- -- 0.3673 8.98 0.7723 12.29 -- -- -- -- -- -- -- --
Project size -- -- -- -- -- -- 1.1255 13.35 1.8597 11.99 -- --
Contract type -- -- 1.0976 15.56 0.6608 2.48 -- -- 1.0175 17.26 0.5560 2.15 -- --
Specialization -- -- -0.3145 -1.36 -2.2793 -6.96 -- -- 0.6789 5.58 -2.2169 -9.13 -- --
Class size (%) -- --
Number of parameters
Log likelihood at convergence
Null log likelihood
Psuedo R2

Adjusted psuedo R2

Sample size 16320

5418

-74793

0.136 0.154 0.157
0.136

Base Model Latent Class Model(developer-based)
Segment 1 Segment 3

29.2

Latent Class Model(project-based)
Segment 3Segment 2 Segment 1 Segment 2

Segmentation modelSegmentation model

-74793

1632016320

0.1580.155
-74793

Segment-specific location choice model Segment-specific location choice model

-64598
54

-63219

28.3 42.6 33.0 25.2 41.8

-62963
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Table 5 Base and latent class model results for the MFH sector 

Variables Coef t-value Coef t-value Coef t-value Coef t-value Coef t-value Coef t-value Coef t-value

UGB dummy variables:
Within the UGB -- -- -- -- -- -- -- -- -- -- -- -- -- --
In UGB peripheral areas 1.5150 7.06 0.4258 0.94 1.4987 4.08 2.7704 4.60 0.4213 0.89 0.0162 0.03 3.3803 10.18
Outside the UGB 0.5100 2.81 -0.3028 -0.49 0.8376 5.00 -0.3851 -0.57 -0.2628 -0.42 0.0955 0.44 0.9291 3.05

MFH net density: 0.0048 2.77 0.0023 0.37 0.0090 4.11 0.0047 1.40 0.0052 0.86 0.0032 1.54 0.0126 4.02
Housing diversity: 0.0001 0.36 -0.0025 -1.16 -0.0091 -5.60 0.0005 1.30 -0.0026 -0.96 -0.0001 -0.05 -0.0029 -3.37
Mixed use: -0.1803 -4.22 -0.1022 -0.72 -0.2683 -6.18 -0.1238 -1.22 -0.1760 -1.17 -0.1541 -2.88 -0.3756 -6.08
Accessibility:

Auto for retail emp -0.0974 -3.45 -0.0394 -0.42 -0.1496 -5.57 0.1633 1.79 -0.0542 -0.55 -0.1731 -5.14 -0.0356 -0.83
Auto for non-retail emp 0.0235 4.07 0.0062 0.33 0.0390 7.17 -0.0298 -1.43 0.0098 0.51 0.0319 4.48 0.0235 2.72
Transit for retail emp 0.0887 3.25 -0.0262 -0.31 0.1756 6.71 -0.2623 -3.12 0.0086 0.10 -0.2088 -5.93 0.2709 6.82
Transit for non-retail emp -0.0196 -3.34 0.0081 0.45 -0.0397 -7.08 0.0654 3.39 0.0009 0.05 0.0370 5.03 -0.0567 -6.65

Road density: 0.0012 2.07 0.0016 0.78 0.0028 4.81 0.0032 1.90 0.0020 0.97 0.0031 3.84 0.0029 3.66
Buildable land for MFH -0.1876 -10.25 -1.1648 -9.85 0.2598 11.19 0.5311 6.40 -1.2141 -9.50 0.1949 5.40 0.2864 10.14
Land value (deflated, in 2000$) -0.0209 -3.05 -0.0387 -1.52 -0.0331 -3.53 0.0418 2.94 -0.0498 -1.91 -0.0072 -0.95 -0.0549 -3.59
Average household income -0.0173 -5.83 -0.0086 -0.97 -0.0273 -9.30 0.0139 1.62 -0.0144 -1.53 -0.0076 -2.11 -0.0343 -7.91
% of household head aged 25-54 0.0070 1.52 0.0102 0.82 0.0052 1.27 -0.0172 -1.20 0.0107 0.81 -0.0012 -0.18 0.0213 3.96
Lagged effects:
AR(1) 4.1808 26.04 4.0082 33.99 4.0082 33.99 4.0082 33.99 4.0854 33.60 4.0854 33.60 4.0854 33.60
NB(1) 1.1210 4.83 1.1174 7.10 1.1174 7.10 1.1174 7.10 1.0576 6.71 1.0576 6.71 1.0576 6.71
AR(2) 2.1939 8.09 2.3242 12.60 2.3242 12.60 2.3242 12.60 2.3520 12.92 2.3520 12.92 2.3520 12.92
NB(2) 1.0106 3.95 0.8512 4.66 0.8512 4.66 0.8512 4.66 0.7499 4.12 0.7499 4.12 0.7499 4.12

Constant -- -- 3.5970 3.32 5.3696 4.97 -- -- -1.2952 -4.30 -0.7950 -2.52 -- --
Developer size -- -- -0.0242 -5.30 -0.0312 -6.78 -- -- -- -- -- -- -- --
Project size -- -- -- -- -- -- -- -- 0.0086 2.56 0.0118 3.48 -- --
Contract type -- -- 0.8602 1.03 0.8016 0.97 -- -- -0.0485 -0.18 -0.3322 -1.09 -- --
Specialization -- -- -0.7632 -0.86 -1.5073 -1.71 -- -- 0.6715 2.51 0.3562 1.16 -- --
Class size (%) -- --
Number of parameters
Log likelihood at convergence
Null log likelihood
Psuedo R2

Adjusted psuedo R2

Sample size

-5110 -5110 -5110

1138 1138 1138

0.078 0.125 0.125
0.074 0.114 0.114

-4713 -4472 -4472
18 54 54

Segmentation model Segmentation model

22.8 69.0 8.2 22.3 28.5 49.2

Segment-specific location choice model Segment-specific location choice model

Base Model Latent Class Model(developer-based) Latent Class Model(project-based)
Segment 1 Segment 2 Segment 3 Segment 1 Segment 2 Segment 3



  71

 
Table 6 Mean values of the project- and location-related attributes 

 

than the 70 percent average level. About 77 percent SFH projects in segment 1 were 

developed by contractor-owners, still higher than the 51 percent for the projects in 

segment 3. In contrast to the projects in segment 1 and 3, much more projects in segment 

2 were developed by developers who also had MFH developments. In summary, SFH 

projects in segment 2 are more likely to be the large projects built by contractor-owner 

type developers who were active on both SFH and MFH markets. In contrast, SFH 

projects in Segment 3 tend to be small projects built by contractors who are focused on 

SFH. 

Segment Segment Segment Overall Segment Segment Segment Overall
Variable 1 2 3 market 1 2 3 market

Project size 1.47 8.49 1.07 3.08 28.49 35.85 14.17 24.05
Developer is contractor-owner 0.77 0.90 0.51 0.70 -- -- -- --
Developer is specialized on SFH 0.92 0.49 0.88 0.79 0.49 0.44 0.37 0.42

UGB:
Within UGB 0.84 0.83 0.33 0.63 0.86 0.94 0.96 0.93
On UGB periphery 0.14 0.08 0.07 0.10 0.03 0.04 0.04 0.03
Outside UGB 0.02 0.08 0.61 0.27 0.11 0.03 0.01 0.04

SFH net density 3.11 4.00 2.10 2.93 -- -- -- --
MFH net density -- -- -- -- 25.81 29.38 19.87 24.13
Housing diversity 0.24 2.73 0.35 0.91 30.10 42.38 6.75 22.95
Mixed use 0.70 0.83 1.18 0.93 1.18 1.26 0.89 1.07
Accessibility:

car for retail emp 55.59 56.11 48.36 52.80 60.30 60.63 67.53 63.79
car for non-retail emp 264.05 266.78 227.89 250.16 291.07 304.55 315.34 306.58
transit for retail emp 15.84 19.76 13.65 15.94 26.89 27.70 33.16 30.07
transit for non-retail emp 71.82 89.19 61.02 71.83 126.25 139.73 143.44 138.45

Buildable land for SFH 54.18 30.72 8.27 29.77 -- -- -- --
Buildable land for MFH -- -- -- -- 0.35 11.78 8.25 7.57
Average residential land value 4.41 4.82 2.55 3.76 8.43 9.59 6.41 7.84
Road density 109.43 123.94 75.13 99.25 155.52 172.62 151.64 158.97
Average household income 63.44 53.02 55.14 57.47 44.62 45.47 40.14 42.78
Age struture 67.22 66.67 65.50 66.39 64.33 65.65 63.81 64.49
Class size 7334 5343 8560 21237 342 472 716 1530

SFH MFH

Project attributes

Site and socio-economic variables
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As indicated by Table 5, the sizes of the three segments for the MFH sector are 22.3 

percent, 28.5 percent, and 49.2 percent respectively. Different from the SFH sector, 

contract type is not a significant variable in the segmentation model for the MFH sector. 

Table 6 shows that the average project size in Segment 2 is the largest and the mean size 

of the projects in Segment 3 is the smallest. About 44 percent of the MFH projects in 

Segment 2 are built by developers who are focused on MFH, slightly higher than the 

average 42 percent for the overall MFH sector. Compared to other segments, the MFH 

projects in Segment 3 are more likely to be built by developers who also had SFH 

developments.  

4.3.2 Segment-Specific Location Choice Models 

As shown in Table 4 and 5, both the SFH and MFH project-based latent class models 

give segment-specific parameters with quite different signs and magnitudes, indicating 

that there are clear differences in intrinsic preferences and sensitivities to location 

characteristics among the segments in each market sector. A comparison of parameters 

across segments provides important qualitative information regarding the characteristics 

of each segment versus other segments. The mean values of location attributes calculated 

based on them shown in Table 6 provide similar information, but in a more intuitive way. 

As indicated by Table 6, about 61 percent of SFH projects in segment 3 are located 

outside the UGB, much higher than the larger projects in segment 1 and 2 (2 percent and 

8 percent respectively). It also shows that SFH projects in segment 3 are more likely to be 

built by contractors. These are consistent with expectations since SFH projects outside 

the UGB tend to be on rural land with owners who are more likely to hire contractors to 
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build houses for their own use. In contrast, the projects in Segment 1 with an average size 

is slightly larger than the projects in Segment 3 are more likely to be developed by 

contractor-owners and are less likely to be outside the UGB. Instead, they are more likely 

to in the UGB peripheral areas. This suggests that small-size SFH projects built by 

contractor type developers are much more likely to be outside of the UGB. However, this 

is not the case for MFH projects. As Table 6 shows, overall, 93 percent of the MFH 

projects are within UGB. It is MFH projects in Segment 1, with medium average size, 

that are more likely to be outside the UGB than the small MFH projects in Segment 3 and 

the large MFH projects in Segment 2.  

SFH and MFH developers share similar taste variation on residential density and housing 

diversity: larger projects tend to be located in the TAZs with higher residential density 

and housing diversity. For the MFH sector, larger projects are also more likely to be in 

the locations with higher mixed-use levels. For the SFH sector, the projects in segment 3 

with the smallest mean size are more likely to be in the TAZs with the highest mixed use 

level. This might be due to the fact that many small size SFH projects are in Clark 

County, Washington, where the employment is more evenly distributed spatially, making 

the average level of mixed use relatively higher for TAZs in suburban areas, compared 

with the Oregon Counties.  

SFH developers’ preference for transportation accessibility as illustrated in Table 6 is 

also consistent with expectations that larger-size SFH projects are more likely to be 

located in TAZs with better transportation accessibility by car and transit for both retail 

and non-retail employment purposes. This is also consistent with the finding that large-

size projects are more likely to be within the UGB. In contrast, for MFH projects, the 
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projects in Segment 3 with the smallest average size are located in the TAZs with the best 

transportation accessibility for both retail and non-retail employment by car and transit. 

The projects in Segment 1, with medium average size, are most likely to be located in the 

TAZs with the worst transportation accessibility, which is consistent with finding that 

MFH projects in Segment 2 are more likely to be outside the UGB. 

Model results show that the relationship between the sizes of projects and the amounts of 

buildable land in their locations is not linear. For the SFH sector, the projects in Segment 

3 with the smallest average size, tend to be located in the TAZs with the least amount of 

buildable land, which is consistent with expectations. However, though the average size 

of projects in Segment 2 is much larger than Segment 1, the average amount of buildable 

vacant land in the TAZs for SFH projects in Segment 2 is much less than the TAZs for 

the projects in Segment 1. For the MFH sector, the average project size in Segment 2 is 

larger than Segment 1, and the projects in Segment 2 are more likely to be located in the 

TAZs with more buildable land. However, it is the MFH projects in Segment 3 with the 

smallest size that are mostly likely to be located in the TAZs with the largest amount of 

buildable land.  

Table 6 shows that for both the SFH and MFH sectors, larger size projects are more 

likely to be located in the TAZs with higher land value. It also indicates that larger size 

SFH and MFH projects are more likely to be in the TAZs with higher road density. These 

two findings are consistent with each other because the land with more physical 

development tends to have higher land price. It might also reflect the fact large size 

developers have deeper pocket than smaller ones and are more competitive bidders in the 

land market.  
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The TAZs in which the SFH projects in Segment 1 are located  have the highest average 

household income and proportion of the households with young and middle age 

household heads. Given the finding that the SFH projects in Segment 1 are more likely to 

be in the TAZs in the UGB peripheral areas with the most buildable land, moderate 

residential density and mixed use, and lowest housing diversity, the SFH projects in 

Segment 1 might be the large size single-family detached homes built for higher income, 

young and middle age households with kids. It is showed that the large MFH projects in 

segment 1 are located in the TAZs with the highest average household income and 

proportion of the households with young and middle age household heads.      

Since small size developers tend to be active in only one year, the estimation of lagged 

effects returns unreasonable parameters for the segments in which most developers are 

small. To solve this problem, the lagged effect variables were excluded from the 

segment-specific location models and constrained to be equal for all segments, making 

their coefficients represent the mean lagged effects for all the projects on SFH/MFH 

sectors. The estimation results show that the lagged effects for SFH and MFH developers 

are quite similar and consistent with the findings in Chapter 3. The four lagged effect 

variables are positive and very significant for both the SFH and MFH models. The 

magnitude of the parameter for AR(1) is so large that its influence on developers’ 

location choice in the next year is almost deterministic. The effects lessen somewhat 

going from a one-year lag to a two-year lag, and are greater for the same zone (AR) than 

for a neighboring zone (NB). This confirms the findings from Chapter 3 that developers 

form attachments to the locations with which they are familiar, or are phasing projects 

with separate permits in consecutive years. 
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4.4 Conclusions 

Latent class models have been developed to detect taste variations among home 

developers in the SFH and MFH markets separately. The project attributes such as 

developer size, project size, developer contract type, and developer specialization are 

used to segment the housing projects into three market segments endogenously. It is 

found that there are clear taste variations across developers and housing projects with 

respect to site attributes in their location choice. Compared to the simple MNL base 

model, the latent class models provided better fit to the data and offered more intuitively 

appealing results. It also shows that with other variables in the segmentation model being 

the same, project size provides a better fit to the data than developer size, indicating that 

developers have taste variations among their different projects.  

The segment-specific location choice model shows that large size SFH projects 

developed by contractor-owners are more likely to be within the UGB and their locations 

tend to have higher residential density, housing diversity, transportation accessibility, 

road density, and land price. At the same time, the results show that smaller-size projects 

for SFH display a preference for building outside the UGB and in areas featured by older 

adults. With most MFH projects within the UGB, estimation results show that large size 

MFH projects prefer the locations with higher residential density, housing diversity, 

mixed use, road density, land price, average household income, and proportions of young 

and middle age household. However, different from SFH projects, it is the small MFH 

projects that are more likely to be located in the locations with the best transportation 

accessibility, most likely the result of urban infill and redevelopment.  
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Some policy implications can be drawn from this research. First, this study shows that 

large size housing projects are more likely to be located within the UGB and in locations 

with compact development characteristics such as higher residential density, housing 

diversity, mixed use, and existing physical development. This confirms the conclusion by 

Downs (2005) that large size developers are more likely to develop innovative housing 

projects following the Smart Growth principles. 

Secondly, the descriptive analysis shows that the housing market in the Portland region is 

dominated by a small number of large developers. Model estimation indicates that 

developers with different attributes show clearly different intrinsic preferences in their 

location choice. Thus, it is important to treat developers and projects differently based on 

their sizes and other attributes when they are used as forecasting units to predict their 

location choice. More attention should be paid to large size developers and projects. 
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CHAPTER 5 AGGREGATE NEW HOUSING SUPPLY MODEL 

 

5.1 Introduction 

The design of the housing supply and location choice model proposed by this study 

follows three basic steps:  

1) aggregate housing supply forecast;  

2) project synthesis; 

3) location choice.  

This chapter presents the first step of the model. Chapter 6 and Chapter 7 discuss steps 2 

and 3 respectively. 

In this chapter, time series analysis techniques are used to analyze the housing market in 

the Portland metropolitan area. These are fully dynamic structural models, with changes 

in housing prices and other supply side cost shifters as predictors. Based on this analysis, 

three new housing supply forecast models are proposed.   

It should be noted that, in this chapter, the MFH sector is segmented further into two sub-

sectors: attached house (ATH) with two to four units in the structure, and apartment and 

condo (APT) with five or more in the structure. This stratification was done because 

these three market segmentation might have different sensitivity to market factors. When 

the forecast results are used for the next two steps, the forecast numbers of housing units 

in these two sub-sectors are combined as the predicted total new MFH supply.  
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5.2 Literature Review        

In existing housing supply research literature, two basic approaches have been widely 

used:  reduced form equations and structural equations (Dipasquale, 1999). Both of these 

two approaches estimate new housing supply by aggregate data. In the reduced form 

estimation, new housing supply is a function of prices and factors from both supply and 

demand sides, while in the structural equation models new housing supply is directly 

estimated as a function of price and cost shifters from the supply side only. Here, the term 

“new housing supply” is used to refer to new housing starts on the market, and to 

differentiate it from the term “housing supply” which sometimes is used to refer to the 

whole housing stock in the market.     

Generally, the null hypothesis tested by reduced form estimations is that the long-run 

supply of new residential construction is perfectly elastic, and that the long-run 

equilibrium of the housing supply is entirely determined by factors on the demand side. 

Representative research using reduced form equations all reported the finding of a 

horizontal supply curve (Follain, 1979; Leeuw and Ekanem, 1971; Stover, 1986). The 

findings from these studies concluded that, in the long term, housing price is determined 

by input prices and long-run equilibrium housing supply is determined by demand.   

Since the late 1980s, with the availability of more sophisticated time series analysis 

techniques,  more structural dynamic supply models have been developed to estimate 

new housing supply by house price and cost shifters on the supply side only. It is argued 

that demand factors can be reflected by the house price in the model. There are two main 

theoretical underpinnings for these structural models: the investment theory and the urban 
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spatial/growth theory (Dipasquale, 1999). The main difference between these two 

approaches lies in their treatment of the land market. Those studies based on investment 

literature tend to ignore land as an input to production, while those based on urban 

spatial/growth theory explicitly include the land market in their models (Dipasquale, 

1999). The papers by Poterba (1984) and Topel & Rosen (1988) are the two 

representatives for the literature using investment theory to estimate new housing supply. 

Both of these studies report significant impacts of housing price on new housing 

investment. The study by Topel and Rosen also found that the current housing price is not 

sufficient for new housing supply estimation, and builders have to form an expectation 

about future prices to determine their investment. This indicates the necessity of the 

dynamic model in new housing supply estimation.  

Compared to the investment literature, studies based on spatial theory view the housing 

supply as more closely intertwined with the land market. An example is the work by 

DiPasquale and Wheaton (1994). According to DiPasquale and Wheaton, different from 

other production factors, the level of the land price is determined by the stock of the 

housing, not the flow or the level of building activity. With the increase of housing price, 

the level of the construction increases to obtain excess profit. However, as the housing 

stock grows, land prices rise and eventually absorb the excess returns. Construction then 

declines back to its normal level. Housing price levels generate new construction only if 

those prices dictate a long-run equilibrium stock that is higher than the current level. The 

construction activity reflects the dynamic adjustment process as the current stock moves 

to its long-run equilibrium level.  



  82

Mayer and Somerville (2000) also develop an empirical model of housing supply derived 

from urban growth theory. Instead of using the level of housing prices and other cost 

shifters, they argue that changes to housing prices and costs are more appropriate for 

predicting the housing starts. Their reasons can be summarized by three arguments. First, 

housing starts are a flow variable, thus should be estimated by other flow variables such 

as the change of price instead of the level of price. The level of price and cost predict the 

housing stock instead of new housing starts. Secondly, their historical trend analysis 

shows that the housing starts curve is more consistent with the change of price instead of 

the price level. Thirdly, treating housing starts as a function of housing price change is 

also consistent with the time series properties of housing stocks and price, because both 

the housing starts and housing price change are stationary variables while the housing 

price is non-stationary. In order to reflect the dynamic properties of the housing market, 

they use lagged housing prices as proxies for developers’ future price expectations. Their 

model results show the significance of up to three lags of price changes and one lag of 

interest rate changes. 

While the above literature provides important findings on the nature of the housing 

supply process at the aggregate level, there remain deficiencies in the analysis done to 

date.  First, most of the existing housing supply research uses national data, assuming a 

single national housing market which might not reflect any local reality. This is an even 

more serious problem for the models based on the urban growth theory. By using national 

data, they are assuming the same urban form across different cities and states. Although 

Mayer and Somerville (2000) use national data in their study, they admit that “…the 

model is most appropriate for a single city...” Second, much of the housing supply 
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research focuses on single family housing market or the investment of the whole housing 

market, ignoring the differences between different housing sectors. Third, although recent 

studies use sophisticated time series analysis techniques, many early papers using 

aggregate time series data failed to carefully examine and correct the assumptions that 

econometric time series analysis tend to violate, making their research results 

questionable.  

5.3 Data and Methodology 

Table 7 presents the descriptive statistics for all the data used in this study. Quarterly data 

from 1996:Q1 to 2008:Q4 were used. Here, the term “1996:Q1” is used to represent the 

first quarter of 1996. Quarterly numbers of housing units in the permits (unit permits) 

issued by municipal authorities are used as a proxy for the new housing starts since actual 

housing starts data is not available at county or metropolitan area level. The unit permit 

data for each housing sector is from the monthly new privately owned residential 

building permits data (estimates with computation) reported by the U.S. Census Bureau at 

county and place level. The quarterly numbers of permitted units for SFH, ATH, and 

APT from 1996:Q1 to 2008:Q1 are plotted in Figure 10. 

As indicated by the Table 7, from 1996:Q1 to 2008:Q4, the average numbers of units for 

single family houses, attached houses, and apartments and condos are 2,319, 167, and 

1,022, respectively, accounting for about 66 percent, 5 percent, and 29 percent in the 

whole new housing market. The numbers of new housing units for the three housing 

types vary significantly over the cycle, with total unit permits ranging from 890 to 5,599. 

Most lower numbers occurred in 2007 and 2008.     
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Table 7 Descriptive statistics of time series model variables (1996:Q1-2008:Q4) 

 

Figure 10 Quarterly permit unit numbers for SFH, ATH, and APT (1996:Q1-2008:Q4) 
Data source: author’s computation based the building permit data from U.S. Census Bureau (1996-2008) 

Variable Mean Std. Minimum Maximum
Unit permits for single family houses

Level 2329 566 502 3087
Changes -43 398 -855 791

Unit permits for multi-family houses 167 77 28 325
Unit permits for apartments and condos 1022 542 339 2986
Unit permits for all housing types 3518 926 890 5599
Real new home sale price ( $1000)

Level 196.99 34.55 152.03 263.62
Changes 1.48 6.42 -12.08 19.17

New home sale time (days)
Level 67.02 16.46 36.68 132.49
Changes 1.41 9.79 -14.17 32.08

Real prime interest rate 5.58 1.62 2.20 8.15
ENR construction cost index 3233 128 3072 3517
Non-construction employment in Oregon (000, NSA)

Level 1527 66 1368 1650
Changes 5 25 -40 40

Average gas retail price (unleaded)
Level 149.63 46.40 89.24 279.57
Changes 1.09 22.73 -110.17 48.12

 

Time

Q
ua

rte
rly

 p
er

m
it 

nu
m

be
r

1996 1998 2000 2002 2004 2006 2008

0
50

0
10

00
15

00
20

00
25

00
30

00

Single Family House

 Apartment and Condo

 Attached House



  85

One issue related to the use of Census housing permit data is that, to what extent this data 

is consistent with the real housing start numbers. To answer this question, U.S. Census 

Bureau (2009) gives their estimates of the relationship of new housing permits, starts, and 

completions on their website based on a summary of data from 1999 to 2004. The 

estimates were derived by either comparing published estimates for recent years or by 

tabulating unpublished data. For the most part, they are rough approximations, and 

measurements of their sampling errors have not been calculated, subject to sampling 

variability as well as non-sampling error. Their estimates are the housing starts are 

generally 2.5 percent less than the permits by total units, 2.5 percent greater than the 

permits in single family units, and 22.5 percent less than permits in multifamily units; the 

housing completions are generally 4.0 percent less than starts in total units, 3.5 percent 

less than starts in single family units, and 7.5 percent less than starts in multifamily units. 

The quarterly new home sale price data are converted from the monthly average housing 

price data collected by the private company “Regional Multiple List Service (RMLS)”.  

RMLS relies on their Realtor subscribers to collect the monthly housing price data for the 

Portland metropolitan area. This price data is not quality controlled. It is the average 

number of all housing types for both new and existing homes on the market. Real housing 

price is calculated by deflating the house price data with CPI index. As indicated by 

Table 7, real house prices in the Portland metropolitan area increased by an average of 

$1,480 per quarter (0.7 percent of the mean price level) between 1996:1 and 2008:4, with 

declines as large as -$12,080 in 2008:4 and increases as high as $19,170 in 2006:2.   

Besides local housing prices, RMLS also reports the monthly market sale time for the 

Portland metropolitan area. The market sale time measures the average number of days it 
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takes for homes (new and existing) to sell. As Table 7 shows, the average market sale 

time is 67 days, ranging from 37 days in 2005:3 to 132 days in 2008:4. 

 The real prime interest rate is used to measure the capital cost to builders. The prime 

interest rate is the interest rate charged by banks for short-term loans to their most 

creditworthy customers. Only a small percentage of customers qualify for the prime rate, 

and thus it always serves as a basis for other, higher risk loans. The rate is almost always 

the same amongst major banks. 

The construction cost for builders are measured by the cost index reported by 

Engineering News-Record (ENR). The construction cost index reported by ENR has four 

basic cost components: common labor, steel, lumber, and cement. Their proportions in 

the index are 80 percent, 13 percent, 6 percent, and 1 percent respectively. While this cost 

index typically measures the costs for nonresidential buildings, this study uses it as a 

proxy for the residential construction cost. The data is a national cost index based on the 

20-city averages. Considering the national single market for construction materials, it is 

believed that this cost index can measure the local construction cost movement 

appropriately. Compared to the variables discussed above, the variation for the 

construction cost index is pretty small, ranging from 3,072 in 2001:1 to 3,517 in 2008:4.  

As revealed by literature review, land price data can be very useful for the estimation of 

the housing starts. However, land price data has been notoriously difficult to collect, and 

this is the case for the Portland metropolitan area. This study does not include the land 

price variable in the model. 
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The changes of total employment (excluding construction) and real retail prices for 

unleaded gas price in Oregon are used as instrumental variables for house price changes 

to test for endogeneity and identification problems in the model. Since the endogeneity 

hypothesis is rejected, the results of the models using these two variables to test 

endogeneity are not reported. The issues of endogeneity and identification problems will 

be discussed in detail in the section discussing empirical estimation results.   

When an OLS regression model is used to estimate time series data, both dependent and 

independent variables must be stationary. Otherwise the residuals of the OLS regression 

tend to be highly correlated, causing a spurious regression problem, which can yield 

erroneous estimation results. A common tool used to test the stationary nature of the 

variable is the Augmented Dickey-Fuller (ADF) unit root tests. The ADF test results for 

all the variables used in this study are presented in Table 8. Considering that the unit 

permit data might display a seasonal pattern, ADF tests with both seasonal and non-

seasonal deterministic components were conducted. The results show that with the 

exception of the unit permit data for single family house, the unit permit data for attached 

house, apartment and condo and the new housing market as a whole are all stationary. 

This suggests the use of differences for the single family unit permit data and the level 

data for other housing types and the whole market. The unit root test shows that both the 

real housing price and market sale time data are not stationary but their changes are, 

suggesting the use of their changes instead of levels in the regression models. For the real 

prime interest rate and construction cost index, both their changes and levels are 

stationary. 
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Table 8 Unit root test for variables 

The equations used by this study to estimate new housing supply follow Mayer and 

Somerville (2000) with some modifications. Mayer and Somerville used the changes in 

house price, the changes to the supply side cost shifters and their lags to estimate the new 

housing starts. This study adds the changes in house prices, while other cost shifters are 

represented by their levels (not changes). Mayer and Somerville also use the level of the 

Deterministic Significant Estimated ADF Reject unit 
Components1 lags order Theta t-value root2

Single-Family housing unit permit
Level (0,0,(2,3,4)) 9, 12 0.065 1.690
Level (0,0,(0)) N/A -0.025 -1.093
Differences (1,1,(2,3,4)) N/A -0.903 -6.016 ***
Differences (1,1,(0)) N/A -0.985 -6.738 ***

Attached housing unit permit
Level (1,1,(2,3,4)) N/A -0.755 -4.620 ***
Level (1,1,(0)) 8, 9 -0.801 -4.970 ***

Apt-Condo housing unit permit
Level (1,1,(2,3,4)) N/A -0.748 -5.138 ***
Level (1,1,(0)) N/A -0.766 -5.423 ***

Total housing unit permit
Level (0,0,(2,3,4)) N/A -0.062 -1.129
Level (1,1,(0)) 4 -0.549 -3.806 **

Real housing price
Level (0,0,(0)) 4, 10 0.005 1.093
Differences (0,0,(0)) 4, 5, 6, 7, 8, 9, 10 -0.988 -5.561 ***

Real prime interest rate
Level (1,1,(0)) 1, 3, 5, 7, 9, 11 -0.447 -3.720 **
Differences (1,1,(0)) N/A -0.760 -5.318 ***

New home sale time
Level (1,1,(0)) 12 0.253 3.432
Differences (1,1,(0)) N/A -0.952 -6.177 ***

Real Construction Cost Index
Level (1,1,(0)) 4 -0.132 -2.350 *
Differences (1,0,(0)) N/A -1.255 -8.892 ***

Non-constrution employment in Oregon
Level (1,1,(0)) 1 -0.031 -2.125
Changes (0,0,(0)) N/A -0.223 -2.163 **

Average real gas retail price (unleaded)
Level (0,0,(0)) N/A -0.381 -3.257 *
Changes (1,1,(0)) 1 -2.007 -7.528 ***

2. ***significant at 1% level; **significant at 5% level; *significant at 10%.

Variable

1. Deterministic components are intercept, time trend, and the quarterly seasonal dummies.
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market sale time to represent the market conditions; however, this study uses differences 

in market sale time, recognizing that market sale time levels are not stationary in the data 

set. Based on this descriptive data analysis, equation (14) is used to estimate new single 

family housing supply and equation (15) is used to estimate new housing supply for other 

market segments and the whole housing market: 

∆ ∆ , ∆ , ∆ , … , ∆ , ∆ , ∆ , , , ,              (14) 

∆ , ∆ , ∆ , … , ∆ , ∆ , ∆ , , , ,              (15) 

where ∆  represents the changes of new housing supply for single family housing 

market,  represents new housing supply for attached housing market, apartment and 

condo market, and the total housing supply for the all housing types, ∆  represents the 

current and lagged changes in house prices,  ∆  represents the change in sale time and its 

lags, ∆  represents the capital cost to builders measured by real prime interest rate and its 

lags, and c represents the construction cost and its lags measured by the ENR construction 

cost index. Since quarterly data is used in this study, the dummy variables for the four 

quarters are also included in the equations with the first quarter used as the reference 

group. A time trend variable is also in included in the model. In order to sweep out 

possible autocorrelation and to identify full dynamic models, the lags of the dependent 

and independent variables are included in some models. The number of lags  for each 

variable is explored by the model specification in order to identify the full dynamic 

model. 
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5.4 Empirical Estimation Results  

Using the variables and equations discussed above, the new housing supply models are 

estimated for each housing segments and the entire housing market. For each housing 

market segment, different numbers of lags for each variable have been tested to identify 

full dynamic models. Considering that quarterly data used by the study might bring 

seasonal autocorrelation to the model, AR(4) is used for each market segment. In order to 

save the degree of freedom for the estimation, the quarterly dummy for ATH model and 

the whole market model is dropped since it is not significant. Season adjustment was 

tried on the permit numbers to remove the seasonal effects in the market, but the 

estimation shows that seasonally-adjusted-unit permit data did not make a big difference 

from the unadjusted data.   

Considering that the price variable in the model might be correlated with some variables 

omitted from the model, causing an endogeneity problem, two-stage least square (2SLS) 

models were tried for each market segment and the Durbin-Wu-Hausman test is used to 

test the existence of endogeneity problem in the model. Instruments for current changes 

in real housing prices are the current changes in non-construction employment and real 

gas price in Oregon. Lagged changes in construction cost index are used as the 

instrument for the current changes in construction cost index. The results from the 

Durbin-Wu-Hausman test for each model reject the endogeneity hypothesis for both 

housing prices and construction cost index. The possibility of identification problems can 

be ruled out from the theoretical perspective. Identification problem arise when 

simultaneous equations are used to estimate current supply by current price because 

supply and price tend to influence each other in both directions. In this study, however, 
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new housing supply is measured by unit permits issued by government authorities, rather 

than the new housing supply observed from the market. Due to the lag time between 

permit issuance and fully constructed housing units becoming available for sale, it is 

reasonable to assume that at least one year will pass before permitted units begin to affect 

market prices.  Therefore, it is reasonable to believe that the lagged housing prices 

influence unit permit applications, not vice versa. This is also true for the construction 

cost variable in the model. Given the exclusion of the endogeneity and identification 

problems, only the estimation results from the OLS models are reported in Table 9. Since 

the dependent variable for the new single family housing supply model uses the changes, 

the estimation results from this model might not be directly comparable to the results 

from the other three models. 

As Table 9 indicates, changes in housing prices have significant impacts on the new 

housing supply for all markets segment, but the magnitudes of the impacts and the 

number of lags differ. For the single family housing market, only the current changes in 

housing prices significantly impact the new single family housing supply, suggesting that 

the single family housing market responds rapidly to the market change. For example, 

with a $1,000 increase in the current housing price change, the change of the new single 

family housing supply in current quarter will be increased by about 14 units. The impacts 

of housing price changes on new attached housing supply are relatively minor. The first 

and third lags in housing price changes are significant at 10 percent level, suggesting that 

it takes more time for the attached house market to respond to the price signal. $1,000 

increases in housing price changes at 1 and 3 quarters can lead to the increase in 

new attached housing supply by 2.69 and 1.99 units for current quarter t . For the 
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apartment and condo market, only the housing price changes at 3 and 4  quarters 

are significant, suggesting that the apartment and condo market is the slowest to respond 

to price changes. $1,000 increases in housing price changes at 3 and 4 quarters 

can lead to the increase of the new apartment and condo supply by 47 and 49 units for 

quarter . The impacts of the housing price changes on the whole market appear to be the 

mixed effects from the three market segments. Changes in housing prices at current, 

3 and 4 quarters are significant. $1,000 increases in housing price changes at 

current, 3 and 4 quarters can lead to the increase of the total new housing supply 

by 27, 52 and 56 units respectively for quarter .          

Several studies (Topel and Rosen, 1988; DiPasquale and Wheaton,1994; Mayer and 

Somerville, 2000) reported the significant role played by the lagged market sale time, 

which is used to represent the non-price signals for market conditions. Due to the non-

stationary nature of the market sale time data in this study, the changes in the market sale 

time rather than the level data are used. Both the current changes to the market sale time 

and its lags have been tried for each model. Only its first lag is found significant for the 

whole housing market, showing that builders do respond to non-price market signals. A 

one day increase in the changes of market sale time decreases the total new housing 

supply by 33 units. The inclusion of this variable tends to reduce both the magnitude and 

significance of the coefficient for the current change in housing price. However, for all 

housing market segments, neither the current changes in market sale time nor its lags are 

significant.      
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Both the changes and the level of real prime interest rate and their lags are tested in the 

model. Although none of them are significant, their signs are negative, which is 

consistent with expectations. Both the changes and the level of construction cost index 

and their lags are tested in the model. For single family house and apartment they are not 

significant, which is consistent with the findings from other empirical housing supply 

studies. The level of the construction cost index in the single family house model and the 

model for the whole market are significant, but their signs are positive, which is counter 

to expectations and therefore difficult to interpret. 

Dummy variables for the four quarters and time trend are included in each model to 

account for the potential seasonal pattern and time trend in the housing market. The 

estimation results show that only single family house and apartment markets demonstrate 

a significant seasonal pattern. Attached house and the whole market do not exhibit 

significant seasonal patterns, but demonstrate significant negative time trends, as opposed 

to the single family house and apartment markets. To remove the seasonal pattern from 

the model, the seasonal differences for single family housing unit permits and real 

housing prices were tried, but their ADF tests fail to reject the unit root hypothesis.    

The calculation of the new housing supply elasticity estimated by this study depends on 

the length of the time over which the elasticity is calculated.  For comparison with the 

elasticities reported by previous studies, the elasticity for the whole housing market are 

reported here.  According to the model estimated for the whole housing market, a one-

time change in housing prices influences new housing supply in current quarter, next 

3 quarter and 4 quarter. Afterwards, the new housing supply returns to its 

previous level. A 1 percent increase in housing price in current quarter causes a 0.51 
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Table 9 Time series regression results (1996:Q1-2008:Q4) 

SFH ATH APT ALL
Variable (Equation 1) (Equation 2) (Equation 2) (Equation 2)
Price change at time t ($1000) 13.98** 1.63 -2.84 26.88*

(2.03) (1.36) (-0.16) (1.78)
Price change at time t-1 ($1000) 4.40 2.69* -22.33 15.80

(0.63) (1.93) (-1.31) (0.85)
Price change at time t-2  ($1000) -10.03 -1.68 -29.99 -3.40

(-1.25) (-1.45) (-1.48) (-0.21)
Price change at time t-3  ($1000) 8.65 1.99* 47.45** 51.74***

(1.05) (1.74) (2.34) (3.21)
Price change at time t-4  ($1000) 1.10 1.45 49.39** 56.01***

(0.13) (0.99) (2.32) (2.62)
Market sale time change at time t-1 (day) -4.01 -0.83 -27.02 -33.18***

(-0.59) (-0.87) (-1.51) (-2.59)
Real prime interest rate at time t (%) -30.63 -3.96 -35.76 -85.08

(-1.51) (-0.89) (-0.66) (-1.51)
ENR construction cost index at time t -0.05 0.34*** 1.44 2.38**

(-0.14) (3.42) (1.17) (2.08)
Time Trend -6.04 -7.59*** -18.00 -55.01***

(-1.65) (-4.36) (-1.41) (-3.44)
2nd quarter dummy (Yes=1) -69.85 77.67

(-0.40) (0.20)
3rd quarter dummy (Yes=1) -708.22*** 408.86

(-2.78) (0.76)
4th quarter dummy (Yes=1) -672.84*** 876.88**

(-3.65) (2.51)
AR(1) -0.03 -0.11 0.19 0.17

(-0.15) (-0.64) (1.10) (1.11)
AR(2) -0.29 0.34** -0.18 -0.16

(-1.64) (2.41) (-1.15) (-1.06)
AR(3) -0.20 -0.28 0.23 0.08

(-1.22) (-1.90) (1.50) (0.52)
AR(4) -0.36* -0.33* -0.02 -0.10

(-2.00) (-1.96) (-0.15) (-0.70)
Constant 777.03 -637.53** -3631.31 -2437.27

(0.71) (-2.59) (-1.08) (-0.84)
AR(1) rho 0.54 0.80 -0.04 -0.63

(0.98) (0.86) (-0.08) (-1.53)
AR(2) rho -0.07 -1.11 0.44 0.28

(-0.14) (-1.54) (1.35) (0.72)
AR(3) rho -0.14 -0.17 0.30 0.58

(-0.38) (-0.39) (0.93) (1.30)
AR(4) rho -0.33 -0.43 0.26 0.45

(-0.85) (-1.20) (0.91) (1.15)
Adjusted R Sq 0.82 0.72 0.24 0.70
N 47 47 47 47
t value in parentheses. ***significant at 1% level; **significant at 5% level; 
                                         *significant at 10% level.
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percent increase in new housing supply at current quarter , a 0.96 percent increase in 

quarter 3 and another 1.1 percent in quarter 4. Over five quarters, a 1 percent 

increase in housing price causes a 2.56 percent increase in new housing supply. This is 

slightly smaller than the elasticities estimated by Mayer and Somerville (1988), but very 

close to the estimates by Topel and Rosen (1994) and DiPasquale and Wheaton (2000).       

Comparison of the goodness of fit for the four models in Table 9 show that the model for 

single family house market based on equation (14) achieves the highest adjusted R square 

(0.82). The adjusted R squares for multifamily house and the whole market are around 

0.70, and the adjusted R square for the apartment and condo market is very low (0.24). 

This indicates that factors other than those specified in the model influence the apartment 

and condo market in the Portland metropolitan area. The use of permit data in this study 

further makes the apartment and condo market difficult to predict.  When applying for 

apartment and condo, one apartment or condo permits, builders might include many 

housing units, making the unit permit data for this sector lumpy and difficult to predict.     

5.5 Forecast Models  

Based on the analysis discussed above, three different models for forecasting the new 

housing supply for the Portland metropolitan area are proposed: a conditional regression 

forecast model, an unconditional regression forecast model, and an ARIMA 

(autoregressive integrated moving average) forecast model. The first two forecast models 

are time series regression models developed from the empirical estimations discussed 

above. They differ in that, the conditional forecast model requires knowledge of the 

predictor values for future years, whereas the unconditional forecast model does not. 
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Conversely, the ARIMA forecast model predicts new housing supply based on its past 

values only.  

As the empirical estimation results discussed above indicate, changes in housing price 

and its lags are the most important predictors for the new housing supply in the Portland 

metropolitan area. The estimated capital and construction cost variables were not 

significant, or had the wrong signs, and were consequently omitted from the forecast 

models. The difficulty of future year prediction is another reason to exclude these cost 

variables from the models. Potential seasonal pattern and time trend for new housing 

supply are both included in the forecast models.  

The conditional forecast model is developed based on data from the dataset. First, the 

data from 1996:Q1 to 2006:Q4 were used to estimate forecast models for each housing 

market segment and the whole housing market segment.  In order to make sure that the 

predicted numbers of unit permits are always positive in the models for attached house, 

apartment and condo and the whole housing market, the natural log of permitted units 

was used as the dependent variables. The results are presented in Table 10. 

Next, the price values for the period 2007:Q1 to 2008:Q4 were used to predict the new 

housing supply for the eight quarters during that period. This is also called an out-of-

sample forecast. Last, the predicted new housing supply values are compared with the 

actual new housing supply values and the comparison is presented in Figure 11. The four 

graphs (a), (b), (c), and (d) in Figure 11 represent the single family, multifamily, 

apartment markets and the whole market respectively. As Figure 11 shows, the forecast 

model for the whole housing market performs very well, but it underestimates the 
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Table 10 Forecast regressions (1996:Q1-2006:Q4) 

housing supply plunge in the last quarter of 2008. The forecast model for the single 

family housing market predicts the four quarters in 2007 well, but does not fully predict 

the big fall in new housing supply in 2008. The attached house model predicts the annual 

total accurately, but misses its seasonal pattern. Compared to the other three models, the 

performance of the model for the apartment market is poor, which is not surprising given 

its extremely low adjusted R square in the estimation model. 

SFH ATH APT All
Variable (equation 1) (equation 2) (equation 2) (equation 2)

(take log for DV) (take log for DV) (take log for DV)
Price change at time t ($1000) 14.4140 0.0232 0.0327 0.0134

(1.86) (1.77) (1.59) (2.22)
Price change at time t-1 ($1000) 0.6336 0.0236 0.0012 0.0069

(0.08) (1.71) (0.05) (1.00)
Price change at time t-2  ($1000) -15.0056 0.0012 -0.0053 -0.0021

(-1.83) (0.09) (-0.23) (-0.30)
Price change at time t-3  ($1000) -1.6596 0.0166 0.0322 0.0134

(-0.20) (1.17) (1.35) (2.05)
Price change at time t-4  ($1000) -0.5174 0.0098 0.0521 0.0176

(-0.06) (0.69) (2.28) (2.64)
2nd quarter dummy (Yes=1) 8.3030 -0.1572 -0.2335 -0.0008

(0.06) (-0.62) (-0.58) (-0.01)
3rd quarter dummy (Yes=1) -530.0744 0.0232 0.4165 0.1110

(-3.32) (0.09) (0.99) (0.90)
4th quarter dummy (Yes=1) -567.8542 0.0033 0.8109 0.1434

(-4.24) (0.01) (2.32) (1.39)
Time Trend -0.6157 -0.0279 -0.0128 -0.0090

(-0.17) (-4.57) (-1.17) (-2.71)
AR(1) 0.2042 0.2419

(1.18) (1.52)
AR(2) -0.1607

(-0.92)
AR(3) 0.2087

(1.16)
Intercept 275.5255 5.6467 4.8636 6.2451

(2.25) (27.33) (2.58) (4.67)
Adjusted R sq 0.8176 0.3902 0.2160 0.5417
t value in parentheses.
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Figure 11 Conditional time series regression forecast versus actual (2007:1-2008:4) 
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Figure 12 Changes in prices forecast versus actual number (2007:1-2008:4) 

 

 

 

Table 11 ARIMA model estimation (1996:Q1-2006:Q4) 

 

SFH ATH APT All
Model Type ARIMA(2,1,0) ARIMA(2,0,0) ARIMA(3,0,0) ARIMA(3,0,0)
AR(1) 0.01 0.24 0.33 0.52

(0.12) (2.02) (2.54) (3.93)
AR(2) -0.85 0.59 -0.18 -0.24

(-11.69) (4.64) (-1.28) (-1.68)
AR(3) 0.38 0.46

(2.79) (3.33)
Intercept/mean -26.45 178.71 1055.10 3646.66

(-1.50) (5.01) (7.22) (11.64)
Log likelihood -321.03 -255.53 -365.17 -378.42
AIC 650.06 519.06 740.34 766.83
t value in parentheses
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Figure 13 Unconditional time series regression forecast, ARIMA based forecast, and actual number (2007:Q1-2008:Q4) 
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The unconditional time series regression forecast model is developed in three steps. First, 

similar to the conditional forecast model, the data from 1996:Q1 to 2006:Q4 were used to 

estimate the housing supply model. Second, the historical real housing price data from 

1996:Q1 to 2006:Q4 were used to predict values for the eight quarters in 2007 and 2008 

by the ARIMA model. The estimated real housing prices for 2007 and 2008 and their 

actual numbers are displayed in Figure 12. Third, the new housing supply values for the 

eight quarters of 2007 and 2008 were predicted using the model estimated from the first 

step and the real housing price values estimated from the second step.  

The ARIMA based forecast model is relatively straightforward. First, the unit permit data 

from 1996:Q1 to 2006:Q4 were used to estimate the ARIMA model for each housing 

market segment and the whole housing market. The results are presented in Table 11. 

Next these data were used to predict the new housing supply in 2007 and 2008. The 

actual housing supply number and the predicted numbers from the unconditional time 

series regression forecast model and the ARIMA forecast model are compared in Figure 

14. 

The four graphs (a), (b), (c), and (d) in Figure 14 represent the single family, multifamily, 

apartment markets and the whole market respectively. Since the data for 2009 are not yet 

available, it is difficult compare the two forecast models for that year. For 2008, however, 

the unconditional time series regression forecast model performs better for all three 

market segments and the whole market than the ARIMA forecast model.   

The three forecast models proposed above all have advantages and disadvantages. The 

conditional time series regression forecast model predicts more accurately, but is 
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conditional on knowing the real housing price values for future years, which might not be 

the case in the land use modeling practice. For certain scenario analyses, where the real 

housing prices in future years are provided by an expert panel to test different scenarios, 

this model can be useful. The unconditional time series regression forecast model does 

not require knowledge of the housing prices in future years. Instead, the model forecasts 

based on the historical real housing price projected by forecast model. Compared with the 

ARIMA model, an advantage shared by both conditional and unconditional forecast 

models is the reflection of the real market dynamic process and the sensitivity to price 

signals from the housing market. The ARIMA model requires the least amount of data, 

but reveals nothing about other cost shifters in the housing market. Its prediction is 

entirely dependent on its past movement path. 

5.6 Conclusion 

In this chapter, fully dynamic structural models are developed to predict new housing 

starts for three market segments in the Portland metropolitan area.  To my knowledge, the 

models developed in this research are unique among published sources for its use of local 

time-series data for building permit predictions.  In addition, the models presented here 

have been rigorously tested and refined to avoid problems of non-stationarity, 

endogeneity and autocorrelation. 

These results indicate the significant role played by the changes in real housing prices, 

but different housing sectors respond to the price signal at different paces. The single-

family housing sector shows the fastest reaction; new starts adjust to a market shock 

within one quarter. For the attached housing, and the apartment and condo sector, it takes 
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four and five quarters respectively to adjust to a market shock. Over five quarters, a 1 

percent increase in real housing price causes a 2.56 percent increase in the total new 

housing supply in the Portland metropolitan area. As a non-price signal for market 

conditions, the sale time for the houses on market is significant in new housing supply for 

the whole housing market, but not for any one of its three market segments. The 

estimations revealed that the capital cost and the construction cost to builders were not 

significant or had counter-intuitive signs. Based on this analysis, three new housing 

supply forecast models are proposed and their forecasting capabilities were compared to 

the empirical data.  The advantages and disadvantages of these three models were 

discussed. When applied to land use modeling practice, data availability and purpose of 

the forecast should guide model choice. 
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CHAPTER 6 PROJECT SYNTHESIS MODEL  

 

In this chapter, SFH and MFH project synthesis models are developed based on the 

housing permit data from 2000 to 2006. The 2007 data was hold out to measure the 

performance of these models. The purpose of synthesizing SFH and MFH projects is to 

provide a basis for market segmentation in a forecasting context. 

6.1 Size Distributions of SFH and MFH Projects 

Basic descriptive statistics of home developers and housing projects in the Portland 

region from 2000 to 2007 are discussed in Chapter 2. In this chapter, I focus on the size 

distributions of SFH and MFH projects, which are important inputs to the location choice 

models described in Chapter 7. This synthesis is needed to convert the forecast new 

housing starts, discussed in Chapter 5 into forecast projects by size and type. 

To explore their probability distributions, the sizes of all SFH and MFH projects in the 

region are treated as continuous variables, and the QQ plot function in the statistical 

software “SPSS” is used to test their distribution. The tests show that Gamma distribution 

fits the size distributions of SFH and MFH projects best among many probability 

distributions that have been tried. The gamma distribution is a two-parameter family of 

continuous probability distributions. It has a shape parameter  and a scale parameter . 

The equation defining the probability density function of a gamma-distributed random 

variable  is: 

, ,
Γ

 for 0 and , 0                          (16) 
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Figure 14 Gamma Q-Q plot for the size distribution of SFH projects (2000-2007) 
Data source: author’s computation based on the building permit data from Metro (2000-2007a)   

 

Figure 15 Gamma Q-Q plot for the size distribution of MFH projects (2000-2007) 
Data source: author’s computation based on the building permit data from Metro (2000-2007a)   

shape = .21044  scale = .0087

shape = .13817  scale = .04488
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Here, the random variable  represents project size. Figure 14 and 15 shows the Gamma 

Q-Q plots for the sizes of SFH and MFH projects from 2000 to 2007 in the region.  

6.2 Synthesizing SFH and MFH Projects 

To synthesize SFH and MFH projects in a forecast year based on their size distributions 

in previous years, the following information is needed:  

• Total amount of new SFH/MFH units in the forecast year; 

• Size distributions of SFH and MFH projects (specifically, the shape and scale 

parameters of the Gamma distribution);  

• Minimum and maximum sizes of SFH/MFH projects in the forecast year;  

• Total number of SFH/MFH projects in the forecast year.  

Total amount of the housing units in the forecast year can be estimated by the time series 

model developed in Chapter 5. Since the size distributions of SFH and MFH projects are 

stable across years, the shape and scale parameters of the Gamma distribution can be 

estimated based on housing project sizes in previous years. According to their definitions, 

the minimum sizes for SFH and MFH projects are 1 unit and 2 units respectively. The 

largest sizes for SFH and MFH projects in previous years can be used as the maximum 

sizes for SFH and MFH projects in the forecast year. With these parameters, one can 

generate many sets of projects with different number of projects in it. In order to control 

the number of synthesized projects in the forecast year and make it more realistic, the 

numbers of SFH and MFH projects in the forecast year are estimated by dividing the total 

number of new SFH/MFH units by their mean sizes in previous years. In order to make 
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the synthesis models converge quickly, a tolerance number is set for the total number of 

SFH/MFH projects in the forecast year. In this study, the tolerance is set as ± 5. For 

example, if the estimated number of projects isn, the model will converge when a set of 

projects is generated in which the number of projects falls into the range n ± 5.   

Since synthesized housing projects are generated randomly, the model results will not be 

exactly the same every time the model is run. However, since each set of projects 

synthesized by the same model is subject to the same constraints, such as the total 

number of housing units, minimum and maximum project sizes, probability distribution, 

and number of the projects, they tend to be very similar to each other.  

6.2.1 SFH Project Synthesis Model 

Figure 16 compares SFH project size distributions in each year from 2000 to 2007. From 

the figure, we can see that SFH project size distributions are quite stable across years, 

establishing a foundation for SFH project synthesis in a forecast year based on their 

probability distribution in previous years. 

 

Figure 16 Size distribution of SFH projects (2000-2007) 
Data source: author’s computation based on the building permit data from Metro (2000-2007a)   
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Table 12 shows three proposed synthesis models that use 2000-2006 SFH project data to 

synthesize SFH projects in 2007. In Model 1, the total number of new SFH units in 2007 

is the observed number showed by 2007 housing permit data. Gamma distribution 

parameters were estimated based on SFH projects from 2000 to 2006 and the plot is 

displayed in Figure 17. The minimum and maximum SFH project sizes in 2007 are the 

minimum and maximum project sizes revealed by the descriptive analysis on SFH project 

data from 2000 to 2006. The total number of SFH projects in 2007 is estimated by 

dividing the total number of housing units in 2007 by the mean SFH development project 

size from 2000 to 2006. Since there is a sudden reduction of the mean project size in 

2007, the model tends to underestimate the number of housing projects in 2007 (2244 

estimated vs 2530 observed). 

Model 2 is similar to Model 1, but it only synthesizes SFH projects with 2 or more units. 

SFH projects with only 1 unit are assumed to account for 70 percent of all SFH projects 

in 2007, which is based on the observation of their proportions in all SFH projects from 

2000 to 2006 shown in Figure 16. Model 3 makes the same assumption, but in Model 3 

SFH project sizes are transformed into natural log.  

The size distributions of SFH projects synthesized by the three models are showed in 

Figure 18. The observed size distribution of SFH projects in 2007 is also shown in Figure 

18 as a benchmark to measure the performance of the three SFH project synthesis models. 

As indicated by Figure 18, compared to the size distribution of observed SFH projects in 

2007, Model 1 tends to overestimate SFH projects with 1 unit and underestimate the SFH 

projects with 2 units. As mentioned above, in Model 2, only the SFH projects with 2 or 
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Table 12 SFH project synthesis models 

Data source: author’s computation based on the building permit data from Metro (2000-2006a)   

 

Figure 17 Gamma distribution of SFH project sizes for the three models (2000-2006) 

Data source: author’s computation based on the building permit data from Metro (2000-2006a)   

 

 

 Figure 18 Size distributions of synthesized and observed SFH projects in 2007 

Total Estimated No. of
SFH units Shape Scale Min Max projects and tolerance

SFH Project Synthesis Model 1 7002 0.133 0.043 1 267 2244±5
SFH Project Synthesis Model 21 5431 0.31 0.039 2 267 673±5
SFH Project Synthesis Model 31 5431 2.5412 1.7122 2 267 673±5

Gamma distribution Project size

2. the shape and scale parameters for simulation model 3 are etimated based on the data in natural log 
1. projects with size 1 is not simulated and assumed to account for 70% of the total number of SFH projects

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Model 1 Model 2 Model 3 Observed

100+ units

51‐100 units

21‐50 units

11‐20 units

6‐10 units

3‐5 units

2 units

1 unit

 

Model 1  Model 2 Model 3 



110 
 

more units are synthesized.  Figure 18 shows that Model 2 significantly overestimates the 

number of SFH projects with 2 units. Compared to Models 1 and 2, size distribution of 

SFH projects synthesized by Model 3 is much closer to the observed SFH projects in 

2007, indicating that this model has the best performance in the three models. Thus this 

model is selected as the final model and SFH projects synthesized by this model are used 

as forecasting units for the SFH location choice models in Chapter 7.  

6.2.2 MFH Project Synthesis Model 

Figure 19 shows the size distributions of MFH projects in each year from 2000 to 2007 in 

the region. Compared to the size distribution of SFH projects, the size distribution of 

MFH projects is lumpier across years, making the synthesis of MFH projects for a 

forecast year based on their size distributions in previous years more difficult.  

Descriptive analysis shows that there were only 9 MFH projects whose sizes were larger 

than 300 units from 2000 to 2006, so they are treated as outliers and not counted while 

calculating the mean size of MFH projects and estimating Gamma distribution 

parameters in the MFH project synthesis models. The maximum project size in the 

forecast year is set to 300 units.    

Table 13 shows the three synthesis models that use 2000-2006 MFH project data to 

synthesize MFH projects in 2007. Model 1 is the base model. The total number of new 

MFH units is the observed number in 2007. The number of MFH projects is calculated by 

dividing the total new MFH unit in 2007 by the mean size of MFH projects from 2000 to 

2006.  Similar to SFH projects, the mean size of MFH projects suddenly dropped in 2007, 
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making the estimated number of MFH projects in 2007 smaller than the observed number 

(111 vs 139).  

Model 2 is different from Model 1 in that MFH project sizes were transformed into 

natural log form while estimating the shape and scale parameters for the Gamma 

distribution. Model 3 also uses log transformation, but different from Model 2, MFH 

projects with 2 units are not synthesized in Model 3. Their proportion in the total number 

of MFH projects in 2007 was assumed to be 25 percent, as observed from previous years 

in Figure 19.  

Figure 21 compares the size distributions of MFH projects synthesized by the three 

models and observed in 2007. As the figure shows, the size distribution of MFH projects 

synthesized by Model 3 is closest to the size distribution of observed MFH projects in 

2007. Thus Model 3 is selected as the MFH project synthesis model and MFH projects 

synthesized by Model 3 are used as forecasting units for the MFH location choice models 

in Chapter 7.  

 

Figure 19 Size distribution of MFH projects (2000-2007) 
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Data source: author’s computation based on the building permit data from Metro (2000-2007a)   

 

Table 13 MFH project synthesis models 

 

Figure 20 Gamma distribution of MFH project sizes for the three models (2000-2006) 
Data source: author’s computation based on the building permit data from Metro (2000-2006a)   

 

 

Figure 21 Size distributions of synthesized and observed MFH projects in 2007 

Total Estimated No. of
MFH units Shape Scale Min Max projects and tolerance

MFH Project Synthesis Model 1 2458 0.262 0.012 2 300 111±5
MFH Project Synthesis Model 21 2458 2.445 1.184 2 300 111±5
MFH Project Synthesis Model 31 2402 4.988 1.903 3 300 83±5

Gamma distribution Project size

1. the shape and scale parameters for simulation model 2 and 3 are etimated based on the data in natural log 
2. projects with size 2 is not simulated and assumed to account for 25% of the total number of MFH projects
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6.3 Summary 

SFH and MFH project synthesis models were developed to convert new housing start 

forecast into projects by size and type. Models based on a Gamma distribution provided 

the best fit to the data, following a log transformation. Additionally, projects with just 

one housing unit are synthesized separately.  
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CHAPTER 7 FORECASTING THE LOCATION OF NEW HOUSING: A 
COMPARISON OF THREE APPROACHES  

 

7.1 Proposed New Housing Location Choice Models  

The comprehensive new housing supply and location choice model proposed by this 

study follows a top-down perspective. The highlighted boxes in Figure 22 reflect three 

alternative paths to allocating housing units in space, using location choice sub-models, 

the subject of this Chapter.  

 

 

Figure 22 Three proposed location choice models within the large model system 

 

As indicated by Figure 22, the main differences among the three location choice models 

lie in whether and how they handle developer taste heterogeneity and decision variables. 
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Model 1 is a MNL model and developer heterogeneity is ignored. The housing market is 

assumed to be homogenous and each housing unit is treated the same and distributed 

across the region as an individual unit. Thus, I essentially atomize development projects, 

ignoring the size of multi-unit housing projects when forecasting location choices. Model 

1 is similar to the housing supply model in ILUTE (2006). The difference is that when 

estimating Model 1, project size was used as the weighting variable which, as discussed 

below, resulted in a significantly better fit to the data.  

Different from Model 1, Models 2 and 3 require housing projects synthesized in Chapter 

6, thus providing a more realistic depiction of land requirements for multi-unit projects. 

As suggested by the findings from Chapter 4, developers with different sizes have 

different attribute preferences when choosing locations for their projects. In addition, 

availability of vacant land is considered to accommodate the entire housing project, when 

evaluating the utility of project location alternatives. 

Model 2 is also a MNL model, but differs from the first model option in that housing 

projects are categorized into three size groups: small SFH projects consisting of just one 

housing unit and small MFH projects consisting of two to five housing units; medium-

size SFH projects of 2-5 units and medium-size MFH projects with six to twenty units; 

and large-size SFH projects of 6 or more units and large-size MFH projects with twenty 

more units. The single-house (small) developers are designed to represent custom-built 

homes and private owner/developers. Projects in the medium range are intended to 

represent the majority of multi-unit projects, whereas larger projects are much less 

common, but account for the majority of new homes, as described in the next section. In 
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Model 2, systematic heterogeneity is modeled through endogenous deterministic 

segmentation of predictor variables by these project size indicator variables. 

In Model 3, market segmentation is determined endogenously and stochastically using a 

latent class model approach which has been discussed in Chapter 4. In the latent class 

models developed in this chapter, project size is used as the class membership variable. 

After testing for the existence of two, three and four latent classes, a three-class 

specification was chosen based on model fit and interpretability.  

The simulation of the location choice for new SFH and MFH projects follows two steps. 

First, the SFH/MFH location choice models are estimated with the data from 2000 to 

2006, and the 2007 data is set aside as a holdout sample. Secondly, new housing in 2007 

is distributed into zones based on the coefficients from model estimation results and 

simulation results are compared to observed spatial distribution of new housing indicated 

by the 2007 holdout sample to test the forecasting effectiveness of the models.  

Descriptions of the predictor variables used in models may be found in Table 2 in 

Chapter 2. Model estimations, including the determination of choice sets and the use of 

predictor variables, are based on the experiences and findings from Chapter 3 and 

Chapter 4. One major difference between the models estimated in this chapter and the 

models developed in previous chapters is the measurement of lagged effects. In previous 

chapters, lagged effects are measured by the dummy variables indicating if a developer 

had development in a TAZ or its neighbor TAZs in previous years, however, in the 

forecast model, information about developers’ activities in previous years is not predicted. 

As a proxy, I measure lagged effects from locations’ perspective. If a location had SFH 
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or MFH development in the previous year, then the lag indicator variable equals 1, and 

equals 0 otherwise.  

7.2 Model Estimation Results 

Each model was tested in an iterative way and only significant coefficients were retained 

in the final models for the forecast purpose. Estimation results for SFH models are 

presented in Tables 14 and 15, and estimation results for MFH models are presented in 

Tables 16 and 17.  

As indicated by Table 14 and 16, for both SFH and MFH, Models 1 has a better goodness 

of fit than Models 2 in terms of adjusted pseudo R² (0.142 vs. 0.133 for SFH, 0.181 vs. 

0.088 for MFH), despite having nearly half the number of estimated parameters, because 

it was estimated using project size as a weighting factor. Accordingly, a large project 

with 100 units contributed the same amount of information to the likelihood 

computations as 100 projects with just one unit.  The theoretical justification being that 

developers of larger projects have many more constraints to overcome in their choices, 

not only in terms of land assembly but also development costs and project complexity. 

Strictly speaking, however, for both SFH and MFH, the fit of Models 1 and 2 should not 

be compared directly due to the difference in estimation methods. The adjusted pseudo R² 

for SFH and MFH Models 3, the latent class models are even smaller, 0.094 for SFH 

Model 3 and 0.074 for SFH Model 3; however, these results are not comparable to 

Models 1 and 2 because of the different choice set sampling procedure and number of 

alternatives. 
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Table 14 Estimation results from SFH Models 1 and 2 (2000-2006) 

Variables Coef t-value Coef t-value Coef t-value Coef t-value
Location relative to the UGB:

Within the UGB -- -- -- -- -- -- -- --
On the UGB periphery -0.2568 -6.03 0.1614 3.39 -0.1489 -1.96 -- --

Clark County dummy 0.4962 8.13 0.1974 3.37 -- -- -- --
Outside the UGB 0.2170 3.78 1.1707 23.65 -- -- -0.6370 -3.84

Clark County dummy -0.3098 -2.88 -- -- -0.9983 -6.01 -3.9799 -5.39
Buildable vacant land for SFH: 0.1265 28.75 0.0818 20.33 0.0786 9.39 0.0625 4.06

Clark County dummy -0.0252 -3.10 -- -- -- -- -0.0684 -2.83
Deflated land value (in 2000$) -0.0246 -4.73 -0.0404 -7.47 -- -- -- --

Clark County dummy -0.0715 -5.75 -- -- -- -- -- --
Accessibility:

Auto for retail employment -0.0884 -19.09 0.0148 3.23 -- -- -- --
Clark County dummy 0.2320 11.10 0.0469 3.25 -- -- -- --

Auto for non-retail emp 0.0121 11.74 -0.0065 -6.48 -- -- -- --
Clark County dummy -0.0445 -9.92 -0.0074 -2.41 -- -- -- --

Transit for retail emp 0.0627 9.31 -0.0172 -2.81 -- -- -- --
Clark County dummy -0.2049 -7.17 -- -- -- -- -- --

Transit for non-retail emp -0.0162 -11.05 0.0045 3.34 -- -- -- --
Clark County dummy 0.0485 7.65 -- -- -- -- -- --

SFH net density dummy:
No SFH -- -- -- -- -- -- -- --
Low SFH density 0.8840 9.93 0.2671 4.07 0.7573 2.23 -- --

Clark County dummy -1.8288 -12.18 -- -- 1.0251 6.38 -- --
Medium SFH density 1.5783 17.54 0.5863 8.24 2.0507 6.23 1.3585 9.02

Clark County dummy -1.7535 -12.45 -- -- -- -- -0.6846 -4.06
High SFH density 2.6705 25.23 1.0228 10.37 2.2095 6.39 1.8551 8.11

Clark County dummy -2.3100 -10.68 -0.9547 -4.14 -- -- -- --
Housing diversity dummy:

Mixed housing -- -- -- -- -- -- -- --
Dominated by SFH -0.1760 -7.11 -0.1844 -6.90 0.2212 4.54 -- --

Clark County dummy 0.5576 9.91 0.1596 3.65 -- -- -- --
Dominated by MFH 0.1846 4.95 -0.6442 -10.74 0.3168 2.85 1.0455 9.33

Clark County dummy 0.3009 3.15 -- -- -- -- -- --
Mixed use dummy:

Mixed use: -- -- -- -- -- -- -- --
Dominated by residence 0.2710 11.32 0.3026 10.50 0.1383 2.79 -0.2083 -2.77

Clark County dummy -0.3467 -8.10 -0.5183 -12.19 -- -- 0.4080 2.91
Dominated by non-residence -- -- -0.0662 -2.24 0.2193 3.99 -- --

Clark County dummy 0.3417 8.24 -0.2810 -5.10 -- -- 0.8351 6.68
Road density -- -- 0.0022 7.18 -- -- -0.0044 -5.74

Clark County dummy -- -- -0.0045 -10.73 -- -- 0.0065 5.37
Household income -0.0037 -4.42 0.0134 16.40 -0.0110 -6.80 -0.0152 -6.53

Clark County dummy 0.0067 4.07 -- -- -- -- -- --
% of household head aged 25-54 0.0125 9.74 -0.0057 -3.67 0.0113 3.61 0.0340 7.95

Clark County dummy -- -- -- -- -- -- -- --
Lagged effect from previous year 1.3890 56.80 1.3467 52.03 0.1383 2.28 -- --
No. of parameters (K)
Log likelihood at convergence
Log likelihood with constant only
Psuedo R2

Adjusted Psuedo R2

Weighting variable
Sample size

Main effects Mid-size projects

33

Model 1 Model 2

61

Large projects

16367

0.142
0.143

-48795
-41837

Project size

-42262
-48795
0.134
0.133

16367
N/A
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Table 15 Estimation results from SFH Model 3:  latent class model (2000-2006) 

 

Variables Coef t-value Coef t-value Coef t-value

Location relative to the UGB:
Within the UGB -- -- -- -- -- --
On the UGB periphey 0.5302 7.83 -0.7618 -15.20 0.8299 12.96
Outside the UGB -0.1405 -0.61 0.0566 0.92 1.4304 21.55

Buildable land for SFH 0.5894 18.69 0.2544 39.36 -0.0467 -7.31
Clark County Dummy -0.1842 -4.59 0.0630 6.11 -0.3080 -16.49

Land value (deflated, in 2000$) 0.1916 11.96 -0.0459 -5.44 -0.0256 -3.00
Clark County Dummy -0.1317 -3.89 0.0411 2.33 -0.1271 -3.61

Accessibility:
Auto for retail emp 0.2007 11.55 -0.0427 -4.12 -0.1529 -18.06

Clark County Dummy -0.2817 -4.77 0.1379 4.82 0.2075 8.25
Auto for non-retail emp -0.0309 -9.59 -0.0024 -1.09 0.0248 13.74

Clark County Dummy 0.0407 3.28 -0.0195 -3.18 -0.0366 -6.75
Transit for retail emp 0.0950 5.45 -0.0895 -8.57 0.1061 11.28

Clark County Dummy -0.3041 -3.64 0.0020 0.06 0.1213 3.42
Transit for non-retail emp 0.0676 3.67 0.0022 0.27 -0.0285 -3.54

Clark County Dummy -0.0232 -6.10 0.0207 8.71 -0.0195 -9.30
SFH net density -0.1393 -4.76 0.1451 17.22 0.0578 4.87

Clark County Dummy -0.0952 -1.93 -0.0551 -3.45 -0.1185 -3.93
Housing diversity -0.1195 -2.83 0.0028 7.66 -0.0373 -5.44

Clark County Dummy -8.6220 -3.74 0.0477 10.51 -0.0252 -0.82
Mixed use 0.2536 17.42 -0.4783 -18.16 -0.1699 -9.04

Clark County Dummy -0.5700 -4.40 0.8255 16.38 0.1487 4.65
Road density 0.0015 1.53 0.0000 -0.04 0.0027 6.00

Clark County Dummy 0.0040 2.71 -0.0017 -2.79 0.0001 0.11
Average household income 0.0303 11.37 -0.0277 -20.05 -0.0039 -3.05

Clark County Dummy 0.0108 2.15 0.0252 10.28 -0.0004 -0.14
% of household head aged 25-54 0.0018 0.39 0.0202 8.86 0.0065 2.89

Clark County Dummy -0.0417 -5.21 0.0048 1.25 0.0141 3.10
Lagged effect from previous year 1.7283 18.29 1.0773 35.92 1.2254 43.20

Constant -2.1194 -17.61 -2.2897 -19.28 -- --
Project size 1.5005 13.94 1.6280 15.09 -- --
Class size (%)
No. of parameters (K)
Log likelihood at convergence
Log likelihood with constant only
Psuedo R2

Adjusted Psuedo R2

Weighting variable
Sample size

28.5 35.3 36.2

Segment 1 Segment 2 Segment 3

Segment-specific location choice model

Segmentation model

16367

-74998
0.095

85
-67839

N/A
0.094
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Table 16 Estimation results from MFH Models 1 and 2 (2000-2006) 

 

 

 

 

 

Variables Coef t-value Coef t-value Coef t-value Coef t-value
Buildable land for MFH -0.2616 -17.57 -0.1711 -12.03 -- -- -0.0766 -2.39
Average residential land value 0.0162 4.32 -0.0143 -1.96 -- -- 0.0325 3.02
Accessibility:

Auto for retail emp -0.0468 -2.53 0.0240 1.84 -0.0380 -1.85 -0.0649 -2.92
Auto for non-retail emp 0.0110 2.62 -0.0046 -1.63 0.0084 1.94 0.0145 3.08
Transit for retail emp -0.0566 -2.76 -- -- -- -- -- --
Transit for non-retail emp 0.0132 2.92 -- -- -- -- -- --

MFH density:
No MFH in TAZ -- -- -- -- -- -- -- --
Low MFH density -- -- 0.8229 3.97 -0.3820 -1.57 -- --
Medium MFH density -- -- 0.7767 3.91 -- -- -- --
High MFH density 0.3975 5.08 0.9118 4.30 -- -- -- --

Housing diversity:
MFH and SFH mixed -- -- -- -- -- -- -- --
Dominated by SFH -- -- -0.3059 -2.24 -- -- -- --
Dominated by MFH 0.7002 9.63 -0.9002 -6.76 0.6251 3.30 1.3206 6.93

Mixed use:
Mixed use: -- -- -- -- -- -- -- --
Dominated by residentical 0.3082 3.74 -- -- -- -- -- --
Dominated by non-residential -- -- -- -- -- --

Road density -0.0016 -2.72 0.0015 1.78 -0.0040 -3.06 -0.0027 -1.90
Average household income 0.0056 2.14 -0.0227 -5.10 0.0208 3.25 0.0339 5.41
Lagged effect from previous year 1.1992 17.78 1.0699 16.65 -- -- -- --
No. of parameters (K)
Log likelihood at convergence
Log likelihood with constant only
Psuedo R2

Adjusted Psuedo R2

Weighting variable
Sample size

MFH Model 1 MFH Model 2

12

-3450
0.184

Main effects Interaction with Interaction with
(Small size) medium size dummy large size dummy

1191
project size

-2814

0.181

25

-3450
0.095

1191

-3121

0.088
N/A
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Table 17 Estimation results from MFH Model 3:  latent class model (2000-2006)  

  

Variables Coef t-value Coef t-value Coef t-value

Buildable land for MFH -1.1003 -11.00 0.2743 11.64 -0.0631 -1.10
Average residential land value -0.0383 -2.04 -0.0262 -3.05 -0.0795 -1.46
Accessibility:

Auto for retail emp -0.0239 -0.29 -0.0689 -2.56 -0.7016 -6.87
Auto for non-retail emp 0.0031 0.19 0.0203 3.64 0.1371 6.16
Transit for retail emp -0.0270 -0.36 0.0991 3.81 0.3503 3.79
Transit for non-retail emp 0.0085 0.53 -0.0214 -3.79 -0.0900 -4.21

MFH density 0.0036 0.79 0.0075 3.52 0.0476 3.73
Housing diversity 0.0009 1.05 -0.0075 -5.34 0.0081 7.91
Mixed use -0.0314 -0.28 -0.2240 -5.52 -3.3827 -7.26
Road density 0.0025 1.46 0.0026 4.46 -0.0123 -2.96
Average household income -0.0023 -0.32 -0.0226 -7.72 -0.0182 -1.25
% of household head aged 25-54 -0.0007 -0.07 0.0027 0.68 0.0912 3.18
Lagged effect from previous year 0.4706 2.27 0.9234 16.51 3.9684 9.83

Constant 2.5030 6.63 3.8228 10.53 -- --
Project size -0.0081 -3.17 -0.0170 -5.63 -- --
Class size (%)
No. of parameters (K)
Log likelihood at convergence
Log likelihood with constant only
Psuedo R2

Adjusted Psuedo R2

Weighting variable
Sample size

Segment 2Segment 1 Segment 3

1191

Segmentation model

Segment-specific location choice model

25 68.6 6.4
43

-4687
-5110
0.083
0.074
N/A
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Since the focus of this chapter is to compare the models’ forecast capabilities, detailed 

discussion of estimation results that has been undertaken in Chapter 3 and 4 is omitted.  It 

is sufficient to mention here, that all three models are specified with the same basic set of 

explanatory variables for the same observations, with specification differences as the 

results of different forms of market segmentation, which in Models 2 and 3 resulted in 

considerably more estimated parameters. 

7.3 Location Choice Forecast Procedures  

The location choice forecast applies the model estimation results in Tables 14-17. The 

first step is to determine the full choice set available to each project. To be consistent 

with the model estimation, for each observation unit only the TAZs with enough 

buildable land are eligible as candidate TAZs in their choice set, assuming that each SFH 

unit consumes at least 0.1 acre and each MFH unit consumes at least 0.01 acre buildable 

land. In SFH/MFH Models 1, each forecasting unit is a housing unit, and the total number 

of the housing units is the total amount of the new supply indicated by the permit data. 

Since each housing unit is treated exactly the same, they shares the same full choice set. 

In SFH/MFH Models 2 and 3, the forecasting units are the synthesized projects and the 

choice sets faced by them differ according to size.  

The second major step is to calculate the utility and probability of each candidate TAZ in 

the choice set, based on the coefficients shown in Tables 14-17. In SFH/MFH Model 1, 

all the forecasting units share the same coefficients and choice sets, so the probabilities 

for candidate TAZs to be chosen by each of them are the same. In SFH/MFH Model 2, 

the synthesized projects are categorized into three size groups and the synthesized 
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projects in each size group share the same coefficients. In SFH/MFH Model 3, the latent 

class approach, the assignment of each synthesized project to the three market segments 

is determined by the segmentation model. The utilities and probabilities for each project 

to be in each segment are calculated first. Then each project is randomly assigned to one 

segment based on the probabilities. The probabilities of candidate TAZs in the choice set 

to be chosen by each project are calculated based on the segment-specific location choice 

model.   

In the third step, the forecasting units are allocated to a TAZ in their choice sets based on 

the probabilities calculated and using Monte Carlo draws. With each housing unit or 

synthesized project located into a TAZ, the amount of the buildable land in that TAZ is 

reduced by the amount of land consumed. Once the buildable land in a TAZ is exhausted, 

the TAZ is no longer eligible for the unplaced housing units or projects.  

After locating all housing units and synthesized projects into TAZs, the total number of 

new SFH/MFH units in each TAZ is calculated by aggregating all SFH/MFH housing 

units allocated to it. Since the sizes of most TAZs are very small, it would not be realistic 

to expect the models to predict the amount of the new housing unit accurately at that level. 

Thus, the forecast results from 1,998 TAZs were aggregated into 214 original census 

tracts in the region. Original census tracts in the region are obtained by aggregating 

subdivisions of census tracts into one. For example, census tracts 3.01 and 3.02 are 

aggregated into one original tract 3.  
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7.4 SFH Forecast Results Comparison 

Observed new SFH units and the forecasted new SFH units in each original census tract 

are represented by graduated circles in Figures 22, 23, 24, 25, respectively. All three 

models are able to predict the basic spatial distribution of SFH development in 2007, but 

some are closer to the observed pattern than others. 

In order to compare the forecast results from the three models, I calculate root mean 

square errors (RMSEs) for each model using the formula 

∑                                           (17) 

where  is the number of the housing units in original census tract  predicted by 

the model,  is the number of the housing units in each original census tract  

observed from the housing permit data, and  is the total number of the original census 

tracts. The RMSEs for SFH Model 1, 2, and 3 are 39.3, 66.8, and 49.9, respectively, 

indicating that overall SFH Model 1 has the most accurate forecasts and SFH Model 2 is 

least accurate.  

To make the comparison more intuitive and obtain a spatial perspective, the differences 

between the number of the housing units predicted by the three SFH forecast models and 

the observed number in each original census tract are illustrated in Figures 27, 28, and 29 

separately. Triangles represent the census tracts where the numbers of the SFH housing 

units are underestimated by the forecast models, and circles represent the census tracts 

where the forecast models over-estimate SFH development. The legend on each map 

indicates ranges of the differences represented by the symbols. Figure 30 shows major 
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cities and freeways in the region. Overall, the comparison between these three maps tells 

a similar story; SFH Model 1 is closest to the observed situation, and SFH Model 2 

shows the greatest deviation.    

As the figures indicates, a common problem with all three SFH models is that they tend 

to under-estimate SFH development in Washington County, Oregon, mainly in an urban 

peripheral area. The permit data shows that only five census tracts (Tracts 315, 316, 317, 

318, and 319) in the peripheries of Cities of Beaverton and Tigard produced more than 10 

percent of new SFH units in the entire metropolitan area, each year from 2000 to 2007.  

Thus, this area is an outlier in the region in terms of SFH development, and the predictor 

variables included in the models fail to capture the rapid growth there.    

As Figure 27 indicates, SFH Model 1 under-estimates SFH development in Washington 

and Clackamas Counties, and over-estimates SFH development in Clark and Multnomah 

Counties. Multnomah County is home to the City of Portland, and the TAZs in that area 

tend to have much less buildable vacant land. SFH Model 1 over-allocates development 

to Multnomah County because individual housing units are used as the forecasting units 

for the location choice forecast.  

Since each housing unit requires only a small amount of vacant land, densely urbanized 

TAZs are more likely to be included in choice sets than they are in SFH Models 2 and 3. 

Compared to the other two models, SFH Model 2 tends to over-estimate SFH 

development in the UGB peripheral areas in Clark and Clackamas Counties, where vast 

amounts of buildable vacant land are available. At the same time, SFH Model 2 under-

predicts development in areas within the UGB, and this is especially true in Washington 
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Figure 23 Observed SFH development in 2007 

 
Figure 24 Predicted SFH development by SFH Model 1 in 2007 
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Figure 25 Predicted SFH development by SFH Model 2 in 2007 

 
Figure 26 Predicted SFH development by SFH Model 3 in 2007 
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Figure 27 SFH Model 1 forecast vs observed in 2007 

 
Figure 28 SFH Model 2 forecast vs observed in 2007 
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Figure 29 SFH Model 3 forecast vs observed in 2007 

 
Figure 30 Major cities and freeways in the region  
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and Clark Counties. This might indicate that the importance of buildable vacant land has 

been over-emphasized in the specification of the model. The reason could be due to the 

omitting of redevelopment, land fragmentation and zoning change while calculating the 

amount of buildable land in each TAZ. Another more important consideration is the 

exogenous market segmentation in SFH Model 2 in which the synthesized projects with 6 

or more units are categorized as “large-size” projects, such that all projects within this 

group, whether they have 6 units or 106 units, share the same coefficients estimated by 

the model.  The wide range of project sizes in the large-size project group makes the 

forecasts inaccurate and slightly unstable. One way to solve this problem would be to 

create more segments for the larger-size projects, but the number of large-size SFH 

projects in the Portland housing market is too small to support further segmentation. 

Compared with the other two models, SFH Model 3 predicted SFH development most 

accurately in Washington and Clackamas Counties, but it tends to over-estimate SFH 

development in Multnomah County, especially in South and Southeast Portland. SFH 

Model 3 shares a similar issue with SFH Model 2, the difficulty of forecasting locations 

for a small number of very large projects. Model 3 differs from SFH Model 2, however, 

because market segmentation was determined endogenously and forecasting allocates the 

large-size projects into market segments in a probabilistic way. This results in a 

heterogeneous treatment of preferences. The comparison between Figures 28 and 29 

indicate that this difference helps SFH Model 3 returns better forecast result than SFH 

Model 2, but it still not quite as accurate as SFH Model 1 overall.  
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An additional issue with SFH Models 2 and 3 is the use of dummy variables. When 

certain dummy variables were estimated for SFH Models 2 and 3, it was common to 

obtain non-significant results because it was often the case that projects within a 

particular market segment, even a latent one, would happen to be located in only the 

TAZs defined by the dummy variable. For example, when most of the projects in one 

market segment are located in the TAZs outside the UGB, the UGB dummy variable 

becomes a problem while estimating the model. In SFH Model 2, this problem can be 

solved by controlling the market segmentation; however, in SFH Model 3, the latent class 

model, market segmentation is determined probabilistically and is difficult to control. So 

in SFH Model 3, I avoided the use of dummy variables.     

7.5 MFH Forecast Results Comparison 

Figures 31, 32, 33, and 34 shows observed new MFH units and forecasted new SFH units 

in each original census tract represented by graduated circles. As Figure 31 indicates, 

most new MFH units in 2007 are in Multnomah County, which is home to the city of 

Portland. The results from the three MFH forecast models capture this basic trend. 

However, compared to SFH development, the spatial distribution of MFH development 

in the region is lumpier, and thus more difficult to predict. Compared to the forecast 

results by the SFH models, the results from the MFH forecast model show much greater 

deviations from the observed situation, and are less consistent with each other. To 

quantify the differences between the forecast results from the three MFH models and the 

observed situation, RMSEs are calculated for each of them based on equation (17) at the  
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Figure 31 Observed MFH development in 2007 

 
Figure 32 Predicted MFH development by MFH Model 1 in 2007 
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Figure 33 Predicted MFH development by MFH Model 2 in 2007 

 
Figure 34 Predicted MFH development by MFH Model 3 in 2007 
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Figure 35 MFH Model 1 forecast vs observed in 2007 

 
Figure 36 MFH Model 2 forecast vs observed in 2007 
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Figure 37 MFH Model 3 forecast vs observed in 2007 

 

census tract level. The RMSEs for MFH Models 1, 2, and 3 are 43.19, 49.82, and 52.98 

respectively. This suggests that MFH model 1 is closest to the observed situation, and 

MFH Model 3 shows the greatest deviation. 

The differences between the number of the housing units predicted by the three MFH 

forecast models and the observed number in each original census tract are displayed in 

Figures 35, 36 and 37 separately. Again, triangles represent the census tracts where the 

numbers of new MFH housing units are underestimated by the forecast models, and 

circles represent the census tracts where the forecast models over-estimate MFH 

development. The legend on each map indicates ranges of the differences represented by 

the symbols.  
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As indicated by Figure 35, MFH Model 1 over-estimates new MFH development in 

Multnomah County, but under-estimates Washington County and Clark County. A main 

reason is that individual housing units are used as forecasting units for MFH Model 1. 

Since each MFH unit requires only a small amount of vacant land, densely urbanized 

TAZs in Multnomah County are much more likely to be included in choice sets than they 

are in Models 2 and 3. The large number of small size TAZs with small amount of the 

buildable land for new MFH in the Portland City makes the area dominate the whole 

metropolitan area in MFH Model 1.     

Both Figure 32 and Figure 36 show that the spatial distribution of MFH development 

predicted by MFH Model 2 is more evenly distributed than the observed situation. 

Overall, it tends to overestimate the MFH development in peripheral area but 

underestimate built-up areas. In MFH model 2, the forecasting units in the model are 

synthesized projects, in which sizes vary a lot. By model design, for large size MFH 

projects, only the TAZs with large amount of buildable land are eligible as candidate 

locations and those TAZs tend to be the TAZs in urban peripheral area. Thus, large size 

projects are more likely to be located into TAZs in urban peripheral area by MFH model 

2. This suggests that the role of buildable land availability has been overestimated in the 

specification of MFH Model 2.  

Similar to MFH Model 2, MFH Model 3 uses synthesized MFH projects as forecasting 

units. Therefore, it shares the same challenge faced by MFH Model 2; the forecast of a 

small number of large projects across a large number of location alternatives, which is 

always subject to large errors. The difference is that the taste variation for projects with 
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different sizes is determined endogenously in MFH Model 3. As Figure 37 indicates, 

MFH model 3 tends to underestimate new MFH development in Clark County. It shows 

both underestimation and overestimation in Multnomah County. Interestingly, both the 

underestimated and overestimated areas in Multnomah County are concentrated in the 

Portland central city area. Thus, if the forecast results by MFH Model 3 are aggregated at 

larger spatial scales than the original census tracts, the underestimation and 

overestimation will cancel each other out, making the forecast results look better. This 

might suggest that TAZs, even census tracts are still too small to expect accurate forecast 

results for MFH developments.        

The market segmentation for MFH projects also makes the use of dummy variables a 

problem. Since the number of the MFH projects is much smaller, this issue is more 

serious for the MFH market segmentation models, because identification and significance 

problems are more likely to be arise during estimation.     

7.6 Lessons Learned 

In this chapter, three location choice models are specified and compared for SFH and 

MFH sectors separately. While all the models use housing projects as observations to 

estimate models, they make different assumptions in terms of developers’ taste 

heterogeneity in their location choice. In SFH/MFH Models 1, developers are assumed to 

have homogenous attribute preferences for location alternatives, regardless of project size; 

however, these utility function parameters were estimated using a weighted maximum 

likelihood procedure in which project size served as estimation weight.  Since each 

housing project is viewed as a cluster of independent housing units, each project was 
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atomized when forecasting, allocating each housing unit individually. This seemed to 

over-predict infill development in more urbanized parts of the region, but yielded more 

accurate forecasts overall. 

In SFH/MFH Models 2 and 3, projects are synthesized and projects with different sizes 

are assumed to be subject to different sets of attribute preferences representing different 

types of developers and project contexts.  In SFH/MFH Models 2, developers’ taste 

heterogeneity is represented systematically by assigning projects with different sizes into 

three market segments exogenously. In SFH/MFH Models 3, developers’ taste 

heterogeneity is modeled endogenously by a latent class model. When forecasting both 

Models 2 and 3, the project is kept intact, requiring that candidate locations have 

sufficient buildable land to accommodate the entire project. 

A comparison between forecasted and observed new SFH housing units in the Portland 

metropolitan area in 2007 showed that all three SFH models can capture the basic spatial 

pattern of SFH development in the region. Compared to SFH development, the spatial 

distribution of MFH development is lumpier and more difficult to forecast. The three 

MFH models show more deviations from the observed situation. While SFH/MFH 

Models 2 and 3 are more complex and make more sense from a theoretical perspective, 

they are not more accurate overall than SFH/MFH Models 1. There are several practical 

issues that have limited the performance of SFH/MFH Models 2 and 3.  

First, the available information about developer attributes is somewhat difficult to use for 

forecasting purposes, which makes difficult the exploration of developers’ location 

choice taste variation.  One would expect to see SFH/MFH Models 2 and 3 produce 



139 
 

better forecasts when the data at individual developer level is richer and understanding of 

their market behavior is better. 

More importantly, model estimation showed that the most significant predictors of where 

a developer will choose to locate a new housing project are the locations of their previous 

projects. One prominent advantage of developer-based models such as Models 2 and 3 is 

that they are able to take into account such the information; however, this study found it 

difficult to synthesize both developers and their projects. In addition, the data analysis 

shows that only a small number of very large developers were active in each year in the 

study period. Thus, if developers in a forecast year are to be synthesized based on 

developers in base years, one has to decide which developers will continue to be active, 

which developers will exit market, and how many and what types of developers will be 

formed on the housing market in the forecast year. All these require much more data than 

is available, and more studies in developers’ market behavior. In this study, for Models 2 

and 3, only housing project sizes were synthesized. Their developers and the locations 

they chose in previous years were missed, and this dramatically limited their forecast 

capability. 

Moreover, this study revealed that market segmentation limits the use of some key 

dummy variables in the model when most observations in one market segment fall into 

one group defined by a dummy variable. This issue is especially true for the latent class 

model where market segmentation is determined endogenously through the estimation 

process and cannot be controlled directly by the modeler. Since the number of MFH 
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projects is always much smaller than the SFH projects in U.S. cities, this problem is more 

serious for MFH forecast models.  

 A confounding feature of the Portland housing market is that a small number of large-

size projects contribute to a large proportion of the total housing supply, which is likely 

to be the case in other markets as well.  Their large market share makes large-size 

projects crucial to the forecast, but their small sample size means makes it difficult to 

estimate significant parameters for this group.  In addition, the physics of forecasting a 

small number of large projects across a large number of location alternatives is 

challenging and will thus always be subject to large errors. Again, this issue is more 

challenging for MFH forecast models since the number of MFH projects is smaller, but 

the average size of the MFH projects is much larger. While constraining choice based on 

buildable vacant land is helpful, it is not necessarily a cure.  Indeed, there is evidence that 

developers are able to assemble enough land for large projects through rezoning, which 

implies that some areas thought to not have enough buildable land may indeed be feasible 

candidates for projects.  

Finally, using revealed developer location choices through permit data, one does not 

observed the choice sets considered by developers. Sampling a subset for the eligible 

alternative zones in the region offers a practical way out; however, consistency does not 

hold when sampling alternatives is applied to the non-IID models. Nerella and Bhat 

(2004) suggest a sample size no less than one fourth of the full choice set and preferably 

one half of the full choice set in sampling alternatives for the non-MNL models.  When 
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the study area is a large metropolitan area or the spatial scale is very fine, one fourth of 

the full choice set might still be too large to be practical.  
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CHAPTER 8 CONCLUSIONS 

 

A comprehensive new housing supply and location choice model has been developed for 

the Portland bi-state metropolitan area and the impacts of Smart Growth policies on home 

developers were examined. The purposes are to provide a scenario planning tool for the 

region’s long-term land use and transportation planning and a micro- and behavioral 

foundation for the understanding of Smart Growth Policies from developers’ perspective.  

The dissertation has reached most of its objectives, but more work needs to be done if in 

order to have a better understanding of developer’s housing supply and location choice 

behaviors. The remainder of this chapter summarizes its main accomplishment, discusses 

its shortcomings, and sets out some avenues for future research. 

8.1 Smart Growth Policies and Home Developers 

One major contribution of this dissertation is that it provides a developer perspective for 

the understanding of Smart Growth policies at a micro- and behavioral level. This study 

is believed to be the first one that measures the effectiveness of Smart Growth policies in 

two neighboring states within a comprehensive developer-based location choice model.  

8.1.1 General Evaluation 

The assessment of the impacts of Smart Growth policies on home developers in the 

Portland bi-state metropolitan area starts out with general location choice models for SFH 

and MFH developers. The general models find that home developers in the metropolitan 

area respond positively to Smart Growth policies that would encourage developing at 
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higher densities, providing a mix of housing types, and encouraging mixed used 

development. SFH and MFH developers show distinct preferences for location attributes, 

but the most significant predictors of where they would choose to locate a project are the 

same: the locations of their previous projects. After controlling for all of the other 

variables in the model, there remains a strong preference for developing SFH units 

outside of the UGB in both Oregon and Washington sides of the Portland metropolitan 

area, which indicates that some portion of the market remains strong for lower density 

dispersed living.   

8.1.2 Smart Growth Policies in a Bi-State Context 

Acknowledging that the Portland metropolitan area is a bi-state metropolitan area 

straddling on the border between Oregon and Washington and the two states have 

different land use systems, bi-state models were developed to examine whether Smart 

Growth policies have different impacts on SFH and MFH developers’ location choice in 

Oregon compared with across the border in the State of Washington.  

The model results show that home developers on the two sides of the state border do react 

to the Smart Growth policies differently. On the Oregon side of the metropolitan area, the 

highest SFH densities are preferred, but on the Washington side there remains a stronger 

propensity to develop in medium-density areas. I found evidence that new SFH is built 

predominantly in TAZs that already contain a mix between SFH and MFH housing types 

or is dominated by SFH in Oregon, whereas in Clark County recent SFH developments 

have been more likely to be developed in either existing SFH or MFH-dominated zones, 

but not mixed housing. The interpretation is that Clark County contains fewer existing 
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mixed housing types and that this is witness to the gradual transition to mixed housing 

types in the propensity to develop SFH in areas now dominated by MFH. Supporting this 

notion of a maturing growth management system is the significant positive preference 

estimated for Clark County to develop SFH in areas dominated by non-residential 

development, compared with Oregon-side preferences for avoiding non-residentially-

dominated zones and favoring existing residential and mixed use zones in that order. 

Essentially, Clark County development is transitioning toward a more mixed use pattern 

through SFH development in commercial areas. This is also supported by a significant 

positive impact of automobile accessibility to retail employment in Clark County and an 

opposite negative impact of auto access to retail employment in the three Oregon 

counties. 

In terms of MFH, in both states the development preferences seem to favor existing 

locations that are dominated by residential use, especially the locations with high MFH 

density. At the same time, there was a significant impact in both states of developing 

MFH in TAZs that are highly accessible by transit to non-retail employment, which 

clearly supports the Smart Growth ideals of fostering shorter, non-auto work commutes 

and reflects recent large-scale development of former industrial lands. 

8.1.3 Home Developers’ Preference Heterogeneity 

Latent class models have been developed to detect taste variations among home 

developers in the SFH and MFH markets separately. The project attributes such as 

developer size, project size, developer contract type, and developer specialization are 

used to segment the housing projects into three market segments endogenously. It is 
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found that there are clear taste variations across developers and housing projects with 

respect to site attributes in their location choice. Among the four variables used in the 

segmentation model, project size is the most significant one, and it provides a better 

model fit to the data than developer size, indicating that developers show taste variations 

among their different projects. 

The segment-specific location choice models show that large size SFH projects 

developed by contractor-owners are more likely to be within the UGB and their locations 

tend to have higher residential density, housing diversity, transportation accessibility, 

road density, and land price. With most MFH projects within the UGB, estimation results 

show that large size MFH projects prefer the locations with higher residential density, 

housing diversity, mixed use, road density, land price, average household income, and 

proportion of young and middle age household. Thus, a policy implication that can be 

drawn is that large size housing developers and projects are more likely to follow Smart 

Growth principles and more attention needs to be paid to small scale housing 

developments, especially those on the rural land.  

8.2 Comprehensive New Housing Supply and Location Choice Model 

Another major contribution this dissertation is the development of a set of developer-

based new housing location choice models, which are rarely seen in existing integrated 

land use and transportation models. Time series regression models that predict annual 

new housing supply in the region and models that synthesize housing projects in the 

forecast year are developed to support the developer-based location choice models. Thus, 

the comprehensive new housing supply and location choice model proposed by this study 
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follows a top-down perspective with three major steps: aggregate housing supply forecast, 

project synthesis, and location choice. 

8.2.1 Aggregate Housing Supply Forecast  

Three aggregate housing supply forecast models were developed and compared: a 

conditional time series regression forecast model, an unconditional time series regression 

forecast model, and a simple ARIMA forecast model. 

The three forecast models have advantages and disadvantages. The conditional time 

series regression forecast model predicts more accurately, but is conditional on knowing 

the real housing price values for future years, which might not be the case in the land use 

modeling practice. For certain scenario analyses, where the real housing prices in future 

years are provided by an expert panel to test different scenarios, this model can be useful. 

The unconditional time series regression forecast model does not require knowledge of 

the housing prices in future years. Instead, the model forecasts based on the historical real 

housing price data and uses projections from the ARIMA forecast model. Compared with 

the ARIMA model, an advantage shared by both conditional and unconditional forecast 

models is the reflection of the real market dynamic process and the sensitivity to price 

signals from the housing market. The ARIMA model requires the least amount of data, 

but reveals nothing about other cost shifters in the housing market. Its prediction is 

entirely dependent on its past movement path. 
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8.2.2 Project Synthesis Model 

SFH and MFH projects are synthesized based on their size distributions in previous years. 

The tests show that Gamma distribution fits the size distributions of SFH and MFH 

projects best among many probability distributions that have been tried.  Besides their 

size distributions in previous years, the following constraints are set to make synthesized 

projects closer to observed projects in the forecast year: total amount of new SFH/MFH 

units in the forecast year estimated by the aggregate housing supply models; minimum 

and maximum sizes of SFH/MFH projects in the forecast year, and the total number of 

SFH/MFH projects in the forecast year. 

The model tests found that the SFH project synthesis model can predict better if it only 

synthesizes SFH projects with two or more units and transforms SFH project sizes into 

natural log, assuming that the proportion of SFH projects with only 1 unit in all SFH 

projects in the forecast year is the same as their proportion in previous years. Similarly, 

for MFH project synthesis model, synthesized projects are closer to observed ones when 

the model synthesizes projects with three or more units and transforms project sizes into 

natural log, assuming that the proportion of MFH projects with only 2 units in all MFH 

projects in the forecast year is the same as their proportion in previous years.  

8.2.3 Location Choice Models 

Three location choice models are proposed and compared. The first one is a MNL model 

and developer heterogeneity is ignored. The market is assumed to be homogenous and 

each housing unit is treated the same and distributed across the region as an individual 

unit; however, these utility function parameters were estimated using a weighted 
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maximum likelihood procedure in which project size served as estimation weight. Since 

each housing project is viewed as a cluster of independent housing units, each project is 

atomized when forecasting, allocating each housing unit individually. This seemed to 

over-predict infill development in more urbanized parts of the region, but yielded more 

accurate forecasts overall. 

The other two models require synthesized housing projects, and projects with different 

sizes are assumed to be subject to different sets of attribute preferences representing 

different types of developers and project contexts, thus providing a more realistic 

depiction of land requirements for multi-unit projects. In the second model, developers’ 

taste heterogeneity is represented systematically by assigning projects with different sizes 

into three market segments exogenously. In the third model, developers’ taste 

heterogeneity is modeled endogenously by latent class models. When forecasting these 

two models, the project is kept intact, requiring that candidate locations have sufficient 

buildable land to accommodate the entire project. While these two models are more 

complex and make more sense from a theoretical perspective, they are not more accurate 

overall than the first one for both SFH and MFH market sectors. There are several 

practical issues that have limited their performance.  

First, the available information about developer attributes is somewhat difficult to use for 

forecasting purposes, which makes difficult the exploration of developers’ location 

choice taste variation. Moreover, it was found that market segmentation limits the use of 

some key dummy variables in the model when most observations in one market segment 

fall into one group defined by a dummy variable. In addition, the physics of forecasting a 
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small number of large projects across a large number of location alternatives is 

challenging and will thus always be subject to large errors.       

8.3 Limitation and Future Research 

Despite its accomplishments, this dissertation has its limitations. A few of them are 

discussed below, with some elements of solution for future research. 

8.3.1 Data Constraint 

I am fortunate to have the data support from Metro; however, land use models have been 

notoriously known for its data hungry nature and this study is not an exception. The 

impacts of data constraint on this study can be summarized into two aspects. 

First, some important variables are missed from the models due to unavailable data.  For 

example, it is well known that housing price and vacancy rates are important factors that 

influence developers’ location choice decision, however, since the data for them are not 

available at zone level, they are missing from the models. One would expect to see the 

explanatory power of developer location choice model to be significantly improved when 

the data on these two variables are available at small spatial scales, if the endogeneity 

problems caused by them are appropriately handled. 

Local governments’ policy and tax incentives have a profound impact on the local 

housing market. Some of them were controlled in this study, such as zoning and the UGB, 

but many others are missing from the models. Future research can make improvements 

by including relevant variables in the model.  
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Second, some variables used for model estimations in this study are subject to 

measurement error. This study uses numerous sources of data to create variables needed 

for model estimation, but none of them were collected intentionally for building land use 

models. This not only creates a huge amount of data process work, but also produces 

some measurement errors while transforming the data into the variables required by this 

study. A good example is the measurement of buildable land for MFH development. In 

this study, I used the amount of vacant land zoned for medium and high-density 

residential use or mixed use in a TAZ to measure the availability of buildable land for 

MFH development in that TAZ. However, in many TAZs, vacant land is fragmented, and 

a simple aggregation could overestimate the ability to accommodate large-size projects. 

Another issue is that some MFH projects were located on developed land originally 

zoned for non-residential purposes. But there is no way to count in those zoning changes 

in the model because they were negotiated case by case and not showed in publically 

available data.        

The use of proxy variables can also lead to measurement errors. In this study, some 

variables were used as proxies for the real variables of interest, which were not available. 

For example, road density was used as a proxy for existing infrastructure. In many cases 

residential infrastructures such as sewage and water system are accompanied with road 

systems, but road density is not always an appropriate variable to represent the 

availability and density of infrastructure in the locations. 
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8.3.2 Discrete Choice Modeling  

Discrete choice modeling has become a commonly used tool to simulate residential 

location choice. However, all the residential location choice models, using either 

households (demand side) or developers (supply side) as observation units, share a 

similar problem: real alternative locations considered by the decision makers are not 

observed. This problem could be be partially solved by conducting surveys asking 

developers to state their considered choice sets, but it could be extremely difficult to 

accurately represent all the home buyers or developers in the whole metropolitan area.  

Furthermore, while random sampling of alternatives provides statistically consistent 

estimates even for small sample sizes in the MNL model and helps avoid spatial 

autocorrelation issue, such consistency does not hold for non-MNL models. Nerella and 

Bhat (2004) suggest a sample size no less than one fourth of the full choice set and 

preferably one half of the full choice set in sampling alternatives for the non-MNL 

models. When the study area is a large metropolitan area or the spatial scale is very fine, 

one fourth of the full choice set might still be too large to be practical. 

Discrete location choice models developed in this study assume that all developers 

already have an investment plan and what they need to do is to select a location from a 

set of alternative locations. In reality, different developers might follow different paths to 

look for locations for their projects. Some might already have an investment project and 

need to decide a location for that project, but there are other developers who already own 

the land and what they look for is the right investment project for the land. Even for 

developers who are searching locations for their projects, they might not just choose one 
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location by comparing a set of alternative locations simultaneously. Instead, they might 

reduce their search scope step by step, or search locations one-by-one until they get the 

right one for their projects. Future research can make contributions by studying those 

different location behavior patterns of developers.  

Lastly, while the statistical models can show us significant factors that are influencing 

developers’ location choices, causality is still not fully understood. Conducting in-depth 

interviews and structural survey on housing developers would be helpful to 

understanding how developers view Smart Growth policies and what role those policies 

play when they choose project locations.  

8.3.3 Housing Market Volatility 

The housing markets in U.S. cities have followed boom-and-bust cycles. The volatility of 

the housing market has made the forecast of new housing supply challenging, and this 

will be even especially true when the forecast is a long-term one. This study already 

shows that changes to housing prices is the most significant predictor for new housing 

supply, but forecasting housing price is difficult. New housing supply is also strongly 

influenced by long-term demographic trends, economic policy changes, and economic 

cycles, but the later two are also difficult to predict. At the micro-level, our understanding 

of how housing suppliers make decisions and view the market is still poor. These 

considerations call for more data collection and research at both macro-, and especially at 

micro-levels to help us understand housing developers better. 
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