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Abstract 

 

Most existing activity-based travel demand models are implemented in a tour-based 

microsimulation framework. Due to the significant computational and data storage 

benefits, the demand microsimulation allows a greater amount of flexibility in terms of 

demographic market segmentation, temporal scale, and spatial resolution, and thus the 

models can represent a wider range of travel behavior aspects associated with various 

policies and scenarios. This dissertation proposes three innovative methodologies, one for 

each of the three key dimensions, to fulfill the greater level of details toward a more 

mature state of activity-based travel demand models. 
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1 INTRODUCTION 

 

Transportation planning agencies have long developed travel forecasting models to 

evaluate the impacts of future changes in economy, demography, land use, and/or 

transportation on the performance of a regional transportation system. The first 

generation of travel forecasting models typically consists of four sequential steps: trip 

generation, trip distribution, modal split, and trip assignment. The first three steps are 

grouped as travel demand models, which collectively estimate the travel demand of 

regional residents, the travel demand for goods movement, and/or the travel demand for 

special purposes. The last step, also known as network supply models, measures 

transportation performance, such as link volume, link speed, link travel time, etc. 

(Castiglione, Bradley, & Gliebe, 2015). 

 Since 1980s the travel demand models have slowly evolved from trip-based to 

activity-based approaches as transportation planning and policies in the United States has 

expanded from “long-term supply-oriented mobility” to “short-term demand-oriented 

accessibility” (Pinjari & Bhat, 2011). The shortcomings of the trip-based travel demand 

models are well recognized in both theory and practice. In the trip-based approach, the 

unit of analysis for modeling travel is a trip that connects two locations. Therefore, the 

trip-based models essentially ignore the interactions between trips made within the same 

trip chain, the interactions between trip chains made for the same day, and the 

interactions between trips made by household members (Vovsha, Bradley, & Bowman, 

2005). In addition, the trip-based approach forces a quite simple overall model structure. 
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This is mainly because the trip-based models are inevitably implemented by an aggregate 

method called zonal enumeration or fractional probability (Bradley, Bowman, & Lawton, 

1999). In other words, all possible combinations of the outcomes of different demand 

sub-models are enumerated and the sub-model probabilities are multiplied to distribute 

demand across all the alternatives. Donnelly, Erhardt, Moeckel and Davidson (2010) 

illustrates how quickly the problem size increases in the aggregate implementation 

method as the complexity of the sub-models is added. Indeed, in the trip-based approach, 

adding more dimensions to travel demand sub-models is often not practical because it 

becomes computationally intensive and cumbersome to manage. As a result, there is a 

limit in alleviating aggregation biases with respect to demographic market segmentation, 

temporal scale, and spatial resolution. 

 On the other hand, the activity-based approach is typically implemented on a tour-

based microsimulation framework (Davidson, et al., 2007). On the tour-based framework, 

the basic travel unit is not a trip any more but a tour that is defined as a chain of trips 

starting and ending at home. The main advantage of the tour-based structure is to 

preserve a consistency among multiple trips within a tour in terms of travel mode, 

destination, and timing. On the microsimulation framework, a full list of households and 

persons in a synthetic population is simulated during a simulation day. Compared with 

zonal enumeration used for the trip-based models, the demand microsimulation provides 

significant benefits of computation and data management, which allows for more 

sophisticated travel demand sub-model developments. As there is virtually no limit to the 

number of predictors for the core probability demand sub-models, the true advantage of 
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activity-based travel demand models is to allow a greater amount of flexibility in terms of 

demographic market segmentation, temporal scale, and spatial resolution, and thus the 

models can represent a wider range of travel behavior aspects associated with various 

transportation planning and policies. 

In this dissertation, three innovative methodologies, one for each of the three key 

dimensions, are proposed to fulfill the greater level of details toward a more mature state 

of activity-based travel demand models. For each of the proposed methods, this chapter 

provides an overview of research background and motivation and summarizes key 

features of the method. The subsequent three chapters will describe the methods as stand-

alone articles. Then the dissertation will conclude with a discussion of how they 

contribute to the current literature. 

 

Discrepancy Analysis of Activity Sequences 

In the trip-based models, demographic market segments are pre-defined with a very 

limited number of population groups, and this market segmentation is usually held 

constant across all the demand sub-models. For the activity-based models, however, it is 

unnecessary to pre-define demographic segments because individual households and 

persons in a synthetic population are simulated (Castiglione et al., 2015). Any known 

attributes that characterize individual households and persons can be used in the models, 

including household size, age of household head, household income, number of 

household workers, number of household students, number of household children, person 

age, person sex, person employment status, and many others. 
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 It was an important topic in the early stage of the activity-based travel behavior 

analysis to identify meaningful attributes of households and persons that help explain 

how different households and persons make different activity-travel decisions (Pas, 

1983). The holistic approach to understanding complex activity patterns has recently 

received new attention since the introduction of sequence alignment methods into time 

use and transportation research (Wilson, 1998). In existing literature, sequence alignment 

methods are almost always combined with cluster analysis. Although this cluster-based 

approach has been proven powerful for discovering a typology of activity patterns, it does 

not seem successful in identifying various contexts that would impact the patterns. This is 

because cluster analysis may cause too much information loss as a result of reducing a 

large set of observations into a limited number of clusters. 

Instead of the cluster-based approach, a new methodological combination of 

sequence alignment with discrepancy analysis is proposed in this dissertation. As a 

generalization of the principle of ANOVA, discrepancy analysis enables to evaluate the 

association between complex objects (e.g., activity sequences) characterized by a 

pairwise distance matrix and one or more covariates. The proposed method was 

originally developed in ecology under the name of a non-parametric MANOVA 

(Anderson, 2001), and recently introduced into sociology with the name of discrepancy 

analysis (Studer, Ritschard, Gabadinho, & Müller, 2011) and ANODI (Bonetti, 

Piccarreta, & Salford, 2013). Additionally, an induction tree is built to visualize how 

individual activity sequences vary with the value of covariates. 
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Discrete-Time Analysis of Activity Duration 

As one of the core components in activity-based travel demand models, activity 

scheduling models activity starting and ending times and activity duration. There are two 

primary approaches for representing the process of activity scheduling: “rubber-banding” 

and “growing” approaches (Gliebe & Kim, 2010). The rubber-banding scheduling pre-

defines an overall daily tour pattern, and then fills the entire day by adding intermediate 

activity stops, which is also known as hierarchical scheduling. In the growing or 

chronological scheduling, it is assumed that as the day goes by, people decide what to do 

next, where to do it, and how to get there. These sequential decisions depend on previous 

activities, time windows, business hours, intra-household interactions, and so on. 

 On the other hand, the integration between activity-based demand models and 

dynamic network supply models recently becomes a key issue. Two approaches are 

available for the demand-supply integration: sequential integration and dynamic 

integration (Konduri, 2012). In the traditional sequential integration approach, the 

demand and supply components are run independently and sequentially in the form of an 

“input-output data flow” with a feedback of the network conditions until a convergence is 

achieved. The dynamic integration approach adopts an “event-based paradigm” and 

constantly communicates between the demand and supply models along a continuous 

time axis. Under the dynamic integration approach, the dynamic traffic assignment 

(DTA) is better integrated with the growing scheduling of activity participations than the 

rubber-banding scheduling (Gliebe & Kim, 2010). For the growing scheduling, activity 
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duration can be explicitly incorporated at a continuous or quasi-continuous temporal 

scale by hazard-based duration models that deal with time to an event. 

In this dissertation, a discrete-time hazard-based duration model is proposed, 

which is essentially equivalent to a discrete choice model with temporal dummies as the 

simplest form of dynamic discrete choice models. There are several important benefits in 

the discrete-time duration models over the continuous-time models. It is possible in the 

discrete-time framework to handle tied observations (e.g., joint activity participations of 

household members) and to add time-varying covariates (e.g., transit operating hours and 

business hours). In addition, the discrete-time method relatively easily expands the model 

structure for more complex situations. In the application of the discrete-time duration 

model to activity duration analysis, complex situations of activity-travel data need to be 

considered, including multiple states of origin activity, competing risks of destination 

activity, and a multilevel structure for recurrent activity episodes within individuals. 

Moreover, a circular or periodic variable is introduced as a combination of sine and 

cosine in order to model time-of-day effects. 

 

Multiple Imputation by Chained Equations 

In recent activity-based model developments it becomes more common to use multiple 

spatial scales within a model system (Castiglione et al., 2015). For example, larger spatial 

units, such as traffic analysis zones (TAZs) that are often defined at a resolution that is 

similar to Census tracts or Census block groups, can be used to develop auto and transit 

network skims. At the same time, one can use smaller spatial units, such as Census blocks 
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or parcels, to incorporate the attributes of small-scale land use and transportation systems 

(e.g., the mix of land uses and the distance to transit stops). 

 However, it is more difficult to develop, maintain and forecast the attributes of 

smaller spatial units than those of TAZs. Especially, parcels data are often incomplete 

with missing values. According to the study of Waddell, Peak and Caballero (2004), up 

to 70% of the efforts in land use and transportation modeling are spent on data 

processing, and handling missing data is a major piece of these efforts. In the field of 

integrated land use and transportation modeling, missing values are largely handled in an 

ad-hoc basis without assessment of imputation quality. Recently, more sophisticated data 

imputation techniques based on machine learning have been developed in other fields 

such as statistics and computer science. 

 This dissertation introduces Multiple Imputation by Chained Equations (MICE) 

and tests it with parcel data. Instead of generating a single best guess, this technique 

replaces each missing value with a set of plausible values. The MICE is flexible and 

practical because it can handle a mix of continuous and discrete missing variables by 

imputing each of the missing variables based on its own imputation engine. In practice, 

the success of a MICE application depends on how to design well for the imputation 

engine. Recently, the use of recursive partitioning as the imputation engine of MICE 

becomes popular because it can capture complex interaction effects on missing variables 

with minimal effort to set up the models. As a case study, the MICE approach is used for 

parcel data imputation. The performance of MICE is evaluated with two recursive 
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partitioning methods (i.e., Classification and Regression Trees and Random Forests) 

using a cross-validation technique. 
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2 DISCREPANCY ANALYSIS OF ACTIVITY SEQUENCE 

 

Over the past four decades the goals of urban transportation planning and policies have 

shifted from meeting ‘long-term, supply-oriented, mobility’ needs to facilitating ‘short-

term, demand-oriented, accessibility’ needs. This shift has created a new paradigm, called 

activity-based travel behavior analysis (Pinjari & Bhat, 2011). The underlying theory of 

the activity-based analysis recognizes that travel is a derived demand to participate in 

activities that are separated in time and space. The theory implies that “travel can be best 

understood in the broader context of activity patterns” (Ettema, 1996). An individual’s 

activity pattern is a complex phenomenon resulting from interactions of multiple 

dimensions, such as timing, duration, locations, activity types, travel mode, trip chaining, 

activity jointness, activity substitution, activity priority, activity planning horizon, and so 

on (Burnett & Hanson, 1982). 

 Given that it is very difficult to capture their full complexities with all the 

dimensions, two general approaches have been used to measure the complexity of 

activity-travel patterns (Burnett & Hanson, 1982). One is decomposing an individuals’ 

activity pattern into the numerous dimensions and generating separate measures for each 

of the dimensions. The other is treating the pattern as a multidimensional ‘holistic’ entity. 

Currently, the first approach is dominant in activity pattern research, in part because most 

existing operational activity-based travel forecasting systems are implemented on a 

micro-simulation framework that consists of a series of calibrated econometric models to 

address the multiple dimensions either individually or jointly (Davidson, et al., 2007). 
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Discrete choice models, discrete-continuous choice models, and hazard-based duration 

models are widely used as the basis of the micro-simulation implementation framework 

(Pas, 1997). The second approach to measuring activity patterns, which relates to this 

paper, was popular in the early stage of the activity-based travel behavior analysis. Many 

transportation researchers recognized early on the complexity of activity patterns and 

emphasized the need to understand individual activity patterns as a whole (Pas, 1983; 

Koppelman & Pas, 1985; Recker, McNally, & Root, 1985). The holistic approach focuses 

more on interpreting people’s daily or weekly activity patterns into homogeneous groups 

and identifying determinants or constraints that influence the homogeneous patterns. 

 The early efforts on the holistic approach fall into two categories (Pas, 1983). 

First, each activity pattern is described by numerous measures, and then the measures are 

used for factor analysis or principal components analysis to identify its salient features. 

The latter information is often used to classify the whole set of activity patterns into a 

small number of similar groups. The second holistic method is comparing individuals’ 

activity-travel patterns each other that are often represented on time-slice variables. The 

comparison produces a matrix of pairwise dissimilarities between the patterns, which is 

subsequently used for cluster analysis. 

 Given our limited knowledge about human activity decisions, both atomistic and 

holistic approaches to accounting for the complexity of activity patterns are equally 

important and complementary (Burnett & Hanson, 1982). The atomistic or decomposing 

approach serves as a core part of activity-based models to predict the patterns, while the 

holistic approach provides theoretical and empirical foundations by identifying travel 
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determinants. However, it is surprising that although attention to the former is prominent 

today, the latter has seen little progress since the development of the cosine similarity 

index by Koppelman and Pas (1985) and the feature extraction of Recker, McNally and 

Root (1985), even if those classifications may be not satisfactory in that they only explain 

a small amount of variability within the clusters (Schlich & Axhausen, 2003). 

 The holistic approach to understanding complex activity patterns has recently 

received new attention since the introduction of sequence alignment methods into time 

use and transportation research (Wilson, 1998). In existing literature, sequence alignment 

methods are almost always combined with cluster analysis. Although this cluster-based 

approach has been proven powerful for discovering a typology of activity patterns, it does 

not seem successful in identifying various contexts that would impact the patterns. This is 

because cluster analysis may cause too much information loss as a result of reducing a 

large set of observations into a limited number of clusters (Studer, et al., 2011). 

Consequently, we need a direct analysis of the association between pairwise dissimilarity 

measures and explanatory variables without any prior clustering. Inspired from the work 

of Studer et al. (2011), this paper proposes a new combination of sequence alignment 

with ANOVA-like tools, not with cluster analysis. The proposed method was originally 

developed in ecology under the name of a non-parametric MANOVA (Anderson, 2001), 

and recently introduced into sociology with the name of discrepancy analysis (Studer, et 

al., 2011) and ANODI (Bonetti, et al., 2013). In addition to the methodological 

combination, an induction tree is built to visualize how activity sequences may vary with 

the value of covariates. 
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2.1 Sequence Alignment Methods for Activity Pattern Analysis 

Sequence alignment methods, also known as optimal matching (OM), measure the 

dissimilarity between two sequences of characters by calculating the minimal cost of 

transforming one sequence into the other (Wilson, 1998; Martin & Wiggins, 2011). Two 

basic operations are used in the sequence transformation: substitutions and indels. The 

substitution operation replaces an element of one sequence with the different element 

located at the same position of the other sequence. The indel, an OM jargon standing for 

the insertion or deletion of an element, causes a one-position movement of all the 

elements to the right. The transformation costs for substitutions and indels are assigned 

by the researcher in advance either theoretically or empirically. A dynamic programming 

algorithm is usually used to repeat the sequence alignment for all pairs of sequences. The 

final output of sequence alignment is a pairwise distance matrix of activity sequences, 

which is almost always used as input for cluster analysis. The resulting cluster 

membership is often associated with other variables, either as a dependent variable (e.g., 

multinomial logit models) or as an independent variable (e.g. ANOVA). 

 Sequence alignment methods were initially developed in biology in 1970s from 

the needs of analyzing DNA sequences of nucleic acids or protein sequences of amino 

acids, and introduced into social science in the 1980s (Abbott & Tsay, 2000). It was in 

the late 1990s that the methods were first adopted for the analysis of people’s activity 

patterns (Wilson, 1998). Recently, sequence alignment is applied in the goodness-of-fit 

testing for activity-based travel demand micro-simulation models, in which predicted 

activity-travel patterns are compared with the observed one at an agent level (Sammour, 
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et al., 2012). Table 1 summarizes some applications of sequence alignment methods to 

activity pattern analysis. 

 

Table 2-1 Applications of Sequence Alignment Methods to Activity Pattern Analysis 

Citation 

Sequence 

Specification 

Assigning 

Transformation Costs 
Number 

of 

Clusters 

Subsequent 

Data Analysis sequence 

element 

time 

scale 
substitutions indels 

(Wilson, 

2001) 

activity only 30 min 

varying by 

activity being 

compared 

gap opening; 

extension 
4 ANOVA 

activity; 

location; 

person present 

30 min complicated 
gap opening; 

extension 
4 ANOVA 

(Shoval & 

Isaacson, 

2007) 

location only 1 sec not used 
gap opening; 

extension 
3 

contingency 

table analysis 

(Saneinejad 

& Roorda, 

2009) 

activity; 

location 
15 min not used 

gap opening; 

extension 
9 

descriptive 

statistics 

 

 Wilson (2001) examined the activity patterns of 248 Canadian women who were 

selected as a 5% random sample from the main time-use survey. The 248 activity diaries 

were converted into two sets of sequences: one was composed of only one dimension 

(i.e., activity type) and the other had three dimensions (i.e., activity type, location and the 

presence of other persons). The author defined 15 activity types regardless of in-home or 

out-of-home, 5 locations (i.e., home, workplace, other place, traveling, or unknown), and 

5 types of persons present with the survey respondent (i.e., alone, household members, 

friends, other persons, or unknown). Both the activity-only sequences and the activity-

setting sequences were specified in 30-min time intervals. In the activity-only sequence 

alignments, the substitution costs varied with the type of activities being compared. The 
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indel costs were also further refined into two types; a gap open penalty for the first indel 

position and a gap extension penalty for all the subsequent indels. For the activity-

settings sequences, the transformation costs of substitutions were more complicated due 

to many ways of combining levels of the activity settings, and the same indel costs were 

assigned as in the activity-only sequences. Both sets of sequences were visually clustered 

into four similar patterns. Subsequently, the author conducted ANOVA to examine 

discriminatory power of the cluster membership with regard to socioeconomic 

characteristics. 

 Shoval and Isaacson (2007) investigated the moving paths of visitors to the Old 

City of Akko in Israel. For this study, 40 visitors were given GPS devices to track their 

movements in space and time. The study area was divided into 26 polygons with each 

polygon representing a single location, and each visitor’s polygon locations were 

consecutively recorded every second during the visit. Since visitors started their trip at 

different times of day and their visit durations were different each other, the sequence 

lengths of visitors varied. Only indel operations were used to align the location sequences 

of different lengths. The authors identified three distinct moving paths. In addition, they 

conducted a contingency table analysis. 

 Saneinejad and Roorda (2009) measured similarities between weekly activity 

sequences of 282 individuals who participated in a special survey in which, among other 

information, respondents were directly asked to describe activities that they normally do 

every week. The authors defined 10 activity types (i.e., 9 routine and 1 non-routine 

activities) and 2 activity locations (i.e., in home and out of home). Two letters 
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representing activity type and location were specified on every 15-min time interval of 5 

weekdays for each individual, and thus the length of all sequences is equal to 480. No 

substitutions were used, while two types of indels were defined: gap opening indels and 

gap extending indels. The authors identified 9 different schedules of routine weekly 

activities. Then, they described socioeconomic characteristics of individuals within each 

cluster. 

 It has been demonstrated that sequence alignment methods outperform in 

classifying activity-travel patterns compared to other conventional dissimilarity 

measures, such as Euclidean distance measures and signal-processing theoretical 

measures (Joh, Arentze, & Timmermans, 2001). Only sequence alignment methods can 

capture sequential information imbedded in activity patterns. This unique ability of 

sequence alignment methods may yield better cluster solutions that are more likely to be 

sensitive to activity-travel constraints. On the other hand, there are many controversial 

issues for using sequence alignment in social science, rather than in biology (Aisenbrey 

& Fasang, 2010). The issues include the meaning of indels and substitutions in the 

context of human behavior analysis; the arbitrary assignment of transformation costs for 

substitutions and indels; required symmetry of the pairwise distance matrix; the lack of 

proper support of multi-dimensional analysis; and time distortion by indels. Fortunately, 

a ‘second wave’ of sequence alignment toward methodological improvements is currently 

observed in sociology (Aisenbrey & Fasang, 2010) as well as transportation (Joh, 

Arentze, Hofman, & Timmermans, 2002; Wilson, 2008). 
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2.2 Data and Methods 

The Portland metropolitan portion of the 2011 Oregon Travel and Activity Survey 

(OTAS) is used for this study. The portion of the Survey records all locations visited by 

approximately 15,000 persons of nearly 6,500 households living in the Portland 

metropolitan region during a scheduled day. A random sample of 1,000 persons, which 

accounts for about 6.5% of the main survey, is selected to reduce the computational 

burden of performing a series of proposed methods. In addition, for simplicity reasons, 24 

types of self-reported original activities are aggregated into 12 major activity types as 

shown in Table 2. It should be noted that all at-home activities are grouped into three 

different categories: home in the beginning of the day (HB), home returning temporarily 

in the middle of the day (HR), and home in the end of the day (HE). This categorization 

of at-home activities may help partially avoid time distortion that often occurs by indels. 

Time distortion by indels is a unique feature of sequence alignment in matching 

sequences of varying lengths. In case of aligning sequences involving timing and 

duration of episodes, the indel operations need to be carefully used to prevent excessive 

time distortion (Shoval & Isaacson, 2007; Lesnard, 2010). A simpler way of avoiding 

time distortion, as in this study, might be roughly disaggregating a sequence state (i.e., at-

home activity) by time periods (i.e., in the beginning, in the middle and in the end of the 

day). 
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Table 2-2 Activity Aggregation and Average Duration (1,000 Persons) 

12 Activity Types 

(Aggregated) 

24 Activity Types 

(Originally Self-Reported) 
Code 

No. of 

Episodes 

Average 

Duration 

(min.) 

Home in the beginning 
work at home; 

all other activities at-home 
HB 968 495 

Home returning 

temporarily 

work at home; 

all other activities at-home 
HR 410 121 

Home in the end 
work at home; 

all other activities at-home 
HE 848 560 

Work 
work; all other activities at work; 

work related 
WK 625 312 

School 
attending class; 

all other activities at school 
SC 218 355 

Escort 
drop off; 

pick up 
EC 270 10 

Eat out eat meal outside of home EO 196 44 

Household maintenance 
routine shopping; major shopping; 

household errands 
HM 516 28 

Personal business 
service private vehicle; personal business; 

health care 
PB 226 71 

Social recreation 
civic/religious activities; outdoor/indoor 

recreation; visit friends; loop trip 
SR 375 134 

Other other OT 4 387 

Trip for the activity 
not categorized in the survey, 

but explicitly included for this study 
TR 3656 19 

 

 The goal of this paper is to identify determinants that influence individuals’ daily 

activity-travel patterns from the holistic perspective. To achieve this goal, four sequential 

steps are proposed: 1) representing an individual’s activity diary as a sequence of 

characters; 2) performing sequence alignment to produce a pairwise distance matrix 

among all activity sequences; 3) conducting discrepancy analysis to examine the 

association between activity sequences characterized by the distance matrix and one or 

more categorical predictors; and 4) building an induction tree to help interpret how 

activity sequences change with the predictors. All of these steps are implemented in R 
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with the TraMineR package (Studer, et al., 2011; Gabadinho, Ritschard, Muller, & 

Studer, 2011). 

 

2.2.1 Sequence Representation 

Like all other household activity-travel surveys, the OTAS data is released in a spell 

format, where each record represents an activity spell or episode of variable duration 

undertaken by a person, and each person may have more than one activity episode during 

a day. To conduct sequence alignment, an individual’s activity diary first needs to be 

converted from the spell format to a sequence of letters representing activity states on a 

fixed time scale. In this study, individual activity diaries are reconstructed with 12 

aggregated activity types on 5-min time intervals from 3:00 AM through next day 2:59 

AM, so that each activity sequence consists of 288 consecutive activity codes. Figure 1 

shows a ‘sequence index plot’ and a ‘state distribution plot’ for the transformed activity 

sequences. In the activity sequence index plot, the first 10 sequences of the subsample are 

individually rendered with stacked bars depicting the activity states over time. The 

sequence index plot is useful to visualize individual activity trajectories and the duration 

spent in each successive activity episode. The activity state distribution plot shows the 

distribution of activity states at each time interval for all sequences in the subsample 

(Gabadinho, et al., 2011). Both plots will be used for building an induction tree as the 

displayed node content. 
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Figure 2-1 Activity Sequence Index Plot and Activity State Distribution Plot 

 

2.2.2 Sequence Alignment 

Once activity diaries are represented as state sequences with a single attribute of activity 

type on time intervals of a fixed length, the next step is to align the activity sequences for 

measuring the dissimilarities between each pair of them. One of the controversial issues 

of sequence alignment methods in human behavioral applications, as in this study, is how 

to set up transformation costs or penalties for the two basic operations – substitutions and 

indels. In fact, existing literature suggests various ways of assigning the transformation 

costs. For example, the indel cost can be separated into two types – gap opening penalty 

and gap extension penalty (Wilson, 2001; Shoval & Isaacson, 2007; Saneinejad & 

Roorda, 2009). A higher penalty can be given for gap openings in the first time position 

of an activity episode than for gap extensions in all the subsequent time positions of that 

episode. In addition, instead of using a single substitution cost, it is possible to develop a 

matrix that specifies the substitution costs between all pairs of sequence states (Wilson, 
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2001). The substitution cost matrix can also be derived from the probability of transition 

between sequence states, given that a higher transition rate between two states may 

indicate a less costly substitution of these states (Lesnard, 2010). However, this study 

follows the default settings, focusing more on evaluating the validity of sequence 

discrepancy analysis that is new in transportation research. In other words, the 

substitution and indel costs are set to 2 and 1, respectively, in this study. 

 

2.2.3 Discrepancy Analysis of Activity Sequences 

This paper introduces a new methodology for a direct analysis of the association between 

complex objects described by a distance matrix and one or more categorical variables; 

there is no need for any prior data reduction technique, such as cluster analysis. This new 

method is a generalization of MANOVA (Anderson, 2001). The standard MANOVA is 

concerned with measurable objects that are characterized by multiple continuous 

dependent variables. On the other hand, the generalized MANOVA can handle complex 

objects that are not directly measurable, but can be described by a pairwise dissimilarity 

matrix, such as ecosystems, life trajectories and activity diaries. 

 The purpose of ANOVA is to test for significant differences among group means 

by analyzing the variance. Recall that given a certain sample size, the sample variance is 

a function of the sum of squared deviation from the mean or SS for short. The essence of 

ANOVA is partitioning the total variance (SST) into two different sources of variance: 

the within-group variance (SSW) and the among-group variance (SSA). Then, the two 

variance sources are compared to produce the test statistic of F-ratio. The larger the F-
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ratio value, the more likely it is to reject the null hypothesis that there is no difference 

among the group means. 

 For one-way univariate ANOVA, in which a single response variable is linked to 

one predictor, SSW is the sum of (deviation) squares between individual cases and their 

group mean, while SSA is the sum of (deviation) squares between group means and the 

overall sample mean. Next, consider one-way multivariate ANOVA, in which multiple 

responses are associated with one predictor. Traditionally, MANOVA compares the 

among-group variance/covariance matrix versus the within-group variance/covariance 

matrix, instead of the corresponding variances. The covariance here is included because 

the multiple response variables may be correlated and we need to consider these 

correlations for the significance test. In case that the correlations between response 

variables do not really matter, as in independent activity sequence objects, however, we 

can simply add up the sums of squares across all response variables. Then, we can 

construct an F-ratio test statistic, as in the univariate ANOVA problem. Such an additive 

partitioning of the sums of squares in MANOVA can also be thought of geometrically as 

shown in Figure 1 of Anderson (2001). 

 The key to generalize the geometric approach of MANOVA to complex objects is 

based on the fact that “the sum of squared distances between points and their centroid is 

equal to the sum of squared interpoint distances divided by the number of points” 

(Anderson, 2001). This relationship has an important implication that an additive 

partitioning of sums of squares can be obtained without calculating the central locations 

of groups. For the Euclidean distance measure, the relationship between distances to the 
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centroid and interpoint distances was well known early on. It was found that this key 

relationship holds for any non-Euclidean distance measures equivalently (Anderson, 

2001). The importance of this finding is substantial because, unlike the Euclidean 

distances, the calculation of a central location for non-Euclidean distances, such as a 

pairwise distance matrix resulting from sequence alignments, is often problematic. 

Further, Studer et al. (2011) demonstrate that if the distance measure is non-Euclidean, 

the non-Euclidean distances do not need to be squared before summing them. In short, 

the new method generalizes the notion of “sum of squares” in ANOVA to non-Euclidean 

measures of dissimilarity. 

 Once the test statistics of pseudo F-ratio with any non-Euclidean distance measure 

is obtained, we need to test the statistical significance. However, we cannot conduct the 

classical F-test as in the standard ANOVA because the distances between complex 

objects are not normally distributed and thus the pseudo F-ratio statistic does not follow a 

Fisher distribution under the null hypothesis. Instead, we need to consider a permutation 

test in order to obtain a new distribution of the pseudo F-ratio under the null hypothesis. 

The permutation test works as follows. First, the complex objects are exchanged among 

the different groups of a categorical predictor through a random permutation. Second, a 

new pseudo F-ratio statistic, called Fpermuted, is computed. Third, the first and second steps 

are repeated for all possible permutations, which give the entire distribution of the pseudo 

F-ratio statistic under the true null hypothesis. Fourth, from this distribution, the p-value 

of the observed pseudo F-ratio statistic (Fobserved) is assessed by evaluating the proportion 

of Fpermuted that are higher than Fobserved. Since the number of all possible permutations is 
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often huge, it is usually practical to perform 1,000 permutations for tests with a 5% 

significance level (Studer, et al., 2011; Anderson, 2001). Table 3 compares standard 

ANOVA versus generalized MANOVA in one-way design with respect to the calculation 

of a test statistic and the significance test. 

 

Table 2-3 Standard ANOVA vs. Generalized MANOVA: One-Way Design 

 Standard ANOVA Generalized MANOVA 

Test 

Statistic 

� − ����� = 		
 (� − 1)⁄		� (� − �)⁄  ������ � − ����� = 		
∗ (� − 1)⁄		�∗ (�∗ − �)⁄  

• 		� = 		� + 		
 • 		�∗ = 		�∗ + 		
∗ 

• 		� is the sum of squared Euclidean 

distances from individuals to the grand 

centroid 

• 		�∗  is the sum of all pairwise 

distances divided by the number of 

objects 

 

• 		� is the sum of squared Euclidean 

distances from individuals to their 

group centroid 

• 		�∗  is the sum of all pairwise 

distances within groups divided by 

the number of objects 

• 		
 is the sum of squared Euclidean 

distances from group centroids and the 

grand centroid 

• 		
∗ = 		�∗ − 		�∗  

p-value F test permutation test 

Note: (1) a refers to the number of levels or groups of a covariate; (2) in the generalized MANOVA, n* = n 

(n - 1) / 2 where n is the sample size. 

 

 In the above, the one-way design of discrepancy analysis was discussed; that is, a 

single factor is associated with a distance matrix of the complex sequence objects. The 

one-way design can be nicely extended to a multi-way design in which multiple factors 

are involved. For more information on formula of SST, SSW, and SSA to compute a 

pseudo F test statistic in the multi-way design, refer to McArdle and Anderson (2001). As 

in the one-way discrepancy analysis, since the F distribution is not suitable for evaluating 
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the pseudo F-ratio statistic, we consider the permutation test again. This paper conducts 

the multi-way discrepancy analysis to simultaneously find out multiple factors that 

explain discrepancies among individuals’ activity patterns. Since those factors are often 

highly correlated, their unique effects after controlling for other effects are more 

appropriate than their marginal effects obtained from a series of the one-way discrepancy 

analysis. 

 

2.2.4 Tree-Structured Analysis of Sequences 

Indeed the sequence discrepancy analysis with either a single factor or multiple factors 

can explain which variables have significant effects on the discrepancy among activity 

sequences. However, it is hard to tell what the effects are, namely, how activity 

sequences may vary with the value of the predictors. To complement this limitation, an 

induction tree is built. In general, trees work as follows. First, all sequence objects are 

located in an initial node. Then, each node is recursively partitioned by the value of a 

predictor. The predictor and the split are determined so that the resulting child nodes are 

different from one another as much as possible. The procedure is repeated at every new 

node until certain stopping criteria are met. As building a tree with state sequences is very 

rare in existing literature, however, this study follows the instructions suggested by 

Studer et al. (2011). Their tree is slightly different than popular tree algorithms, such as 

CHAID, in several aspects. First, while CHAID can only handle a categorical variable, 

the proposed tree is built on the basis of sequence objects that are neither continuous nor 

categorical. Second, the proposed tree is binary in that each node is split into only two 
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subsamples, unlike multi-branch trees of CHAID. Third, a pseudo R2 derived from the 

one-way discrepancy analysis is used as a node splitting criterion. In other words, each 

node is split with the predictor and its value achieving the highest pseudo R2 value. 

Fourth, the significance of the one-way pseudo F-ratio that is determined through 

permutation tests is used as a stopping criterion. At each node, the tree stops growing a 

branch once the selected split encounters a non-significant F value. 

 

2.3 Results and Discussions 

2.3.1 Sequence Discrepancy Analysis with Multiple Factors 

Table 4 shows the results of the multi-factor discrepancy analysis of activity sequences 

characterized by a pairwise sequence alignment distance matrix. For illustrative purpose, 

only seven significant covariates were selected, including one interaction term. The set of 

covariates explained approximately 19.4% of the total discrepancy among the daily 

activity sequences of 1,000 persons since the global pseudo R2 = 0.194. The overall 

model was statistically significant, indicated by the global pseudo F value of 34.064 and 

p < .05. The most significant factor was an indicator of whether or not the person was a 

K-12 student. If the K-12 indicator was removed, the global pseudo R2 decreased by 

0.046. This difference was significant since the pseudo F value for that indicator was 

57.034, which was a value attained less than five times out of the thousand permutations. 

The worker indicator was also significant. Removing the indicator variable from the 

model reduced the global pseudo R2 by 0.043, which was significant since the pseudo 

Fworker = 52.904 was attained less than five times amongst the thousand permutations. As 



26 

 

for the other indicator variables, results indicated that full-time college students, persons 

with driver’s license, adults over age 65 made moderate but significant contributions to 

explain the total discrepancy of activity sequences. There also existed statistically 

significant discrepancy in activity sequences among five groups of different household 

size (1, 2, 3, 4, and 5+). Finally, the sequence discrepancy of activity diaries were 

strongly influenced by an interaction of the Worker and Adult-over-age-65 covariates. 

 

Table 2-4 Multi-Factor Discrepancy Analysis 

Variable Variable Type 
Pseudo F 

(for each variable) 

∆Pseudo R2 

(for each variable) 
p-value 

Worker indicator 52.904 0.043 0.001 

K-12 student indicator 57.034 0.046 0.001 

Full-time college student indicator 2.829 0.002 0.008 

Licensed indicator 4.658 0.004 0.001 

Adult over age 65 indicator 3.220 0.003 0.003 

Household size 5 categories 2.361 0.002 0.017 

Worker * Adult over age 

65 
interaction 2.337 0.002 0.027 

Global 

Pseudo F 

(for total) 

Pseudo R2 

(for total) 
p-value 

34.064 0.194 0.001 

 

2.3.2 Tree Analysis of Activity Sequences 

Using the same set of covariates as in the previous multi-factor discrepancy analysis, but 

without the interaction term, an induction tree was built for the subsample of 1,000 

activity trajectories, which is shown in Figure 2. To display more comprehensive 

information about the content at each node, the same tree was built with both activity 

sequence index plots and activity state distribution plots in the top and bottom panels of 
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Figure 2, respectively. In addition to the node content, other important information is 

displayed on each node, including node size (n) and within-node discrepancy (s2). 

Moreover, a selected split covariate and its associated one-way pseudo R2 are shown at 

the bottom of each parent node. The selected binary split of a covariate is indicated at the 

top of each child node. 

 The global pseudo R2 of the tree was 18.96%, which is slightly lower than that of 

the multi-factor discrepancy analysis in Table 4. However, it should be noticed that while 

in the discrepancy analysis the seven covariates including one interaction term turned out 

to be significant, only four covariates of them were involved for developing the tree to 

produce the similar pseudo R2 value. This might be because several interaction effects are 

automatically detected on the tree. For example, it was found that household size had 

more influences on the activity sequences of non-workers who do not go to K-12 school 

(e.g., homemaker) than those of K-12 students. As for workers, household size mostly 

influenced the daily activity patterns of younger workers (less than age 65), not older 

workers (over age 65). 

 In addition to the automatic detection of interaction effects and the provision of a 

comprehensive view of the sequence-covariate link, the induction tree yielded seven 

clusters at the terminal nodes. As shown in the tree with state distribution plots, it is 

possible to discover the differences among the seven clusters in the distribution of 

activity types at each 5-min time point. For example, see the terminal node indicating K-

12 students. Most of them conducted the ‘school’ activity (yellow) in the midday and 

their ‘trip’ activity (black) was noticeably peaked at two time points. In addition, non-
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workers who are not a K-12 student were separated by household size. Those with small 

household size (h_size <= 2) spent more time at home (grey) than those with large 

household size (h_size > 2). Further, one cluster of older workers was discovered, which 

differs from the other three clusters of younger workers. Compared to younger workers, 

older workers spent less time on working (blue) and social recreation (green) and more 

time on personal business (violet), such as health care. Not surprisingly, the ‘trip’ activity 

of older workers was spread over the midday without any clear peak time points. 
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(a) Tree with activity sequence index plots 
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(b) Tree with Activity State Distribution Plots 

 

 
 

Figure 2-2 Induction Trees of Activity Sequences: 

(a) with activity sequence index plots and (b) with activity state distribution plots 
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2.4 Conclusion 

Individuals’ daily activity-travel patterns are complex due to interactions of numerous 

aspects embedded in them. An “old” question in activity-based travel behavior analysis is 

what explains the complexity of activity-travel patterns. To answer the question, this 

study proposed the discrepancy analysis of activity sequences. Viewing individual 

activity patterns as holistic and sequential objects, activity diaries were first converted 

into sequences of characters representing activity states. Then, the total discrepancy in the 

activity sequences was defined with a pairwise dissimilarity matrix between all sequences 

that was obtained from sequence alignment methods. Following the principle of 

ANOVA, the total sequence discrepancy was partitioned into explained among-groups 

discrepancy and residual within-groups discrepancy. This partition enabled to measure 

the strength of the association between activity sequences and covariates by calculating a 

pseudo R2 and to assess the statistical significance of the association through the 

permutation tests of a pseudo F-ratio value. In addition to the sequence discrepancy 

analysis, this study developed an induction tree to help understand how individual 

activity sequences vary with the influential covariates. 

 Most of the existing applications of sequence alignment to activity-travel diary 

data have been restricted to calculating and classifying the dissimilarities of activity 

sequences, missing useful knowledge on activity sequences. It is expected that this 

research will allow us to explore the unknown area. In addition, this study would make a 

practical contribution to a micro-simulation framework for activity-based travel demand 

modeling. Some activity-based models assume a sequential scheduling process in which 
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individuals decide what to do next at every time point. The approach is often criticized 

for the absence of any pre-planning process where activities are scheduled first on the 

basis of their priority and the schedule is implemented next. Gliebe and Kim (2010) 

respond to this criticism by assigning household roles to individuals before simulating 

them. This market segmentation can create a propensity for a certain type of behavior 

from which a wide range of activity-travel patterns may emerge. However, the market 

segmentation does not really capture the sequential decision process in advance. 

Discrepancy analysis with sequence alignment proposed in this paper may enable a more 

suitable segmentation for agents who are simulated through a sequential scheduling 

process. 

 This study certainly leaves room to be improved in several aspects. First of all, 

sequence alignment methods combined with discrepancy analysis in this paper can be 

further fine-tuned with different transformation cost settings for indels and substitutions. 

In addition, activity sequences can be represented in a different way by considering 

multiple activity attributes simultaneously, such as activity location, travel mode and 

time, the presence of persons, etc. Lastly, it is worthwhile to compare the cluster 

solutions discovered by building a tree with those obtained from a classical cluster 

analysis following sequence alignment methods. Thus, it may be possible to empirically 

verify whether or not the new methodological combination presented in this paper will 

truly overcome information loss caused by the previous popular cluster-based approach. 
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3 DISCRETE-TIME ACTIVITY DURATION ANALYSIS 

 

Most existing activity-based travel demand models are typically implemented on a tour-

based microsimulation framework (Davidson et al., 2007; Vovsha, Bradley, & Bowman, 

2005). On the tour-based framework, the basic unit of analysis for modeling travel is a 

tour, not a trip. In the context of travel demand models a trip represents a travel unit 

connecting two locations, while a tour is defined as a chain of trips starting and ending at 

home or work (Donnelly et al., 2010). The main advantages of the tour-based structure 

are to preserve a consistency among multiple trips within a tour in terms of travel mode, 

destination, and timing. On the microsimulation framework, a full list of households and 

persons in the synthetic population is simulated during the course of a day. Compared 

with the “zonal enumeration” approach that is usually used to implement the 

conventional trip-based four-step models, the microsimulation approach has several 

advantages (Donnelly et al., 2010). First, the microsimulation may resolve several critical 

biases that result from demographic, spatial, and temporal aggregations. Second, the 

microsimulation models are computationally more efficient, virtually allowing an 

unlimited number of predictors. Third, the microsimulation outcomes look more realistic, 

being similar to individual activity-travel diaries in travel survey data. Lastly, the 

microsimulation models are better integrated with the state-of-the-art transport network 

analysis tools, such as Dynamic Traffic Assignment (DTA), by providing trip tables or 

individual trip schedules at a level of compatible temporal resolution (e.g., 30 or 15 

minute). 
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 Two different approaches are available to describe people’s daily decision-

making processes on activity and travel in the tour-based microsimulation framework 

(Gliebe & Kim, 2010). For the first approach, it is assumed that people preplan the 

number of tours for a day and the number of trips within the tour(s), set the duration of 

activities, and then calculate the remaining time windows under their space-time 

constraints. If things do not fit well, they re-schedule the day by adjusting activity timing, 

activity locations and/or travel modes. This approach is sometimes referred to as “pre-

planning” or “rubber-banding” scheduling. The second approach assumes that as the day 

goes by, people decide what to do next, where to do it, and how to get there. These 

sequential decisions depend on previous activities, time windows, business hours, intra-

household interactions, and so on. This approach is also known as “sequential” or 

“growing” scheduling. 

 The pre-planning scheduling microsimulation is a popular choice because of the 

plausible assumption that individuals’ daily activities are planned in advance, following a 

fixed hierarchy of activity types. The activity hierarchy typically contains solo 

mandatory, joint maintenance, joint discretionary, allocated maintenance, and solo 

discretionary activities, in order from most important to least important. However, there 

are little empirical evidences for such a rigid structure of activity priorities (Doherty & 

Mohammadian, 2011). The authors demonstrated that more than 50% of mandatory 

activities are not planned in advance in forming home-based tours. On the other hand, the 

sequential scheduling microsimulation is more flexible because there is no need to pre-

determine activity priorities and trip/tour frequencies. Instead, this approach focuses more 
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on how individuals’ activity-travel decisions change over time (Gliebe & Kim, 2010). 

The authors made a novel proposition that “utility for daily activity-travel alternatives is 

updated rather than accumulated.” 

 It is worthwhile to mention that the growing scheduling approach accounts for the 

activity pre-planning behavior as well, but in a different way. Instead of predicting 

individuals’ number of tours and stops a priori, a very specific household role can be 

assigned to each household member in the beginning of the simulation day to capture 

idiosyncratic patterns of pre-planning behavior. The household roles include, for 

example, working outside home with childcare responsibilities, working outside home 

while attending college classes, working outside home with planned joint activities with 

other household adults, and so on (Gliebe & Kim, 2010). Alternatively, sequence 

alignment methods can be applied to segment people into similar groups in terms of their 

activity sequences (Kim, 2014). Activity diaries are first transformed into sequences of 

characters representing activity types on fixed time intervals, say, 5-min time intervals. 

Then, the dissimilarities between all activity sequences are measured through sequence 

alignment. The resultant pairwise dissimilarity matrix is combined with ANOVA-like 

analysis to find out significant covariates affecting variations in the activity sequence 

patterns. An induction tree is also introduced to display how activity sequences vary with 

the covariates. 

 Such a sequential scheduling approach requires a series of linked dynamic 

discrete choices of activity episodes, locations, and travel modes to incrementally build 

an entire day’s activity-travel patterns for individuals in households (Gliebe & Kim, 
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2010). In other words, every 5 or 10 minute an individual decides whether to stay in a 

current activity or move to a next activity (next activity choice), and then once a new 

activity is chosen, the individual determines where to do it (next location choice) and 

how to get there (next mode choice). As for the next activity choice, one may think of a 

typical discrete choice model, such as multinomial logit regression. However, the 

decision on next activity choice is strongly time-dependent. For example, it depends on 

time spent in a current activity, cumulative time spent in all the previous activities for the 

day, and time of day. Static discrete choice models can only implicitly account for such 

time dependencies (Vovsha & Bradley, 2004). A promising statistical method to 

explicitly incorporate such time dependencies into the next activity choice is either 

hazard-based duration models or dynamic discrete choice models (Ettema, Borgers, & 

Timmermans, 1995). In this paper we introduce the simplest form of dynamic discrete 

choice models, which is essentially the same as hazard-based duration models in a 

discrete time framework (Heckman & Navarro, 2007). 

 Hazard-based duration models deals with time to an event, using a hazard 

function that represents the conditional probability of an event occurring at a time period, 

given that the event did not occur before the time period. Duration analysis is often 

referred to as event history analysis in social science, survival analysis in medical 

science, and failure time analysis in industrial engineering. There is a wide range of 

hazard-based duration models. One broad distinction between the duration models can be 

made by whether duration times are measured in continuous or discrete time (Steele, 

2005). Most existing duration models in transportation research belong to the continuous-
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time approach. Bhat and Pinjari (2008) list the recent applications of the continuous-time 

duration models to activity participation and scheduling studies. 

 Although activity duration data are continuous in nature, we devote ourselves to 

the discrete-time approach in this study for several reasons. First, activity diaries are 

retrospectively collected from household travel surveys. Therefore, respondents are more 

likely to approximate their activity arrival and departure times to multiples of 5 minutes 

(e.g., 5, 10, 15, 30, 60 minutes, etc.). Bhat (1996) suggests that activity duration data 

should be treated as being discrete. Second, as activity durations are discretely measured, 

the data may contain numerous ties at those discrete time intervals. While discrete-time 

models can easily handle the tied observations, serious biases can occur in the use of Cox 

proportional hazards model that is one of the most popular continuous-time models 

(Steele, Diamond, & Wang, 1996). In the context of activity-based modeling, such tied 

observations are common when considering joint activity participations of household 

members. Third, it is also more straightforward to include time-varying covariates into a 

discrete-time model than into a continuous-time model (Steele, 2005). The status of 

household members, traffic path information provided by DTA, and transit operating 

hours are varying over time, which are important variables in advanced activity-based 

models, even if they are not considered in this study. Lastly, discrete-time duration 

models can be relatively easily extended to recurrent events, competing risks, and 

multiple states, compared with continuous-time duration models. 

 The aim of this paper is to introduce a discrete-time duration model that can be 

designed for all of these complex situations and then illustrate its application to the 
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analysis of next activity choice and activity duration. In the next section we will review 

the discrete-time duration analysis. Then, we describe data used for this study, together 

with data transformation required to perform the discrete-time method and our model 

development process. Next, the model estimation results will be summarized for both 

random and fixed effects. In conclusion, some limitations of this study will be presented. 

 

3.1 Background 

Since discrete-time hazard-based duration models are rare in transportation research, in 

this section we briefly overview the methodology based on Steele’s multiple works 

(Steele, Goldstein, & Browne, 2004; Steele, 2005; Steele, 2008; Steele, 2011). For more 

detailed information, an excellent textbook is available (Singer & Willett, 2003). We 

begin the overview with a simplest case in which a single non-recurrent event is 

concerned. Then we add other complexities associated with recurrent events, competing 

risks, and multiple states in order. 

 

3.1.1 A Discrete-Time Duration Model for a Single Event  

Suppose that for each episode i, we observe duration yi accounting for time to a single 

target event (e.g., leaving a current activity episode). Suppose also that the duration yi is 

measured in discrete time intervals indexed by t (t = 1, 2, 3, …, K), which is either fully 

observed if the event occurs (�� = 1) or right-censored if not (�� = 0). The first step of a 

discrete-time analysis is to convert the individual-episode format to an individual-
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episode-period format; for each time period t, we define a binary response yti that 

indicates whether or not the event occurred during the time interval as follows: 

 

��� = �0            � < ��               0            � = ��, �� = 01            � = ��, �� = 1 

 

In the individual-episode file, for example, �� = 4 means that an episode i experiences an 

event during the fourth time interval. In the individual-episode-period format, the time to 

an event or the duration is converted into the four binary responses, namely, 

(�#�, �$�, �%� , �&�) = (0, 0, 0, 1). If the episode is right-censored at the same time interval, 

then the binary responses are coded as (�#�, �$�, �%�, �&�) = (0, 0, 0, 0). 

 Now we define a discrete-time hazard for time interval t, that represents the 

conditional probability of an event occurring during interval t, given that the event did 

not occur before t, as follows: 

 

ℎ�� = Pr (��� = 1|��+� = 0 for �. < �) 

 

 The next step is to model how the discrete-time hazard function depends on 

duration and covariates. Note that in the transformed data set (i.e., the individual-episode-

period format), the dependent variable of interest is binary, indicating the occurrence of 

an event. A popular solution to analyze binary responses is to perform a logit 

transformation of the hazard function. As a result, the log odds of the discrete-time 
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hazard is modeled as a linear combination of two sets of predictors, which is given as 

follows: 

 

/�0��(ℎ��) = /�0 1 ℎ��1 − ℎ��2 = 3(�) + 4.5�� ⋯ ⋯ ⋯ (1) 

 

where 3(�) is a function of time period t to incorporate the duration effect, namely, the 

dependence of the hazard function on t, which is referred to as the baseline logit-hazard. 

There are two different ways of specifying the baseline logit-hazard: non-parametric and 

parametric. The non-parametric specification includes a sequence of temporal dummy 

variables. Since there are K time intervals in the transformed data set, the baseline logit-

hazards can be specified with the K temporal dummies, 3(�) = 3#7# + 3$7$ + ⋯ +
3878. The resultant multiple intercepts represent the baseline logit-hazard for each time 

period. Although this non-parametric approach is attractive because of its flexibility, 

there is a practical drawback. In case that the number of time periods in a data set is large, 

the model needs a substantially large number of dummy variables, which is unwieldy. To 

be more parsimonious, one can parameterize the duration effect. Depending on a plot of 

the observed hazards over time, a variety of forms of 3(�) are possible, such as a linear 

function 3(�) = 39 + 3#�, a quadratic form 3(�) = 39 + 3#� + 3$�$ or a log function 

3(�) = 39 + 3#log (�), where 39 represents an overall intercept term. 

 On the other hand, in Equation (1), 5�� is a set of covariates to detect observed 

heterogeneity in hazard across episodes. The covariates are either time constant or time 

varying. In discrete-time models, it is straightforward to add time-varying covariates by 
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placing their different values in time periods. In addition, the assumption of 

proportionality that the effects of covariates are constant over time is common in 

continuous-time models. In discrete-time models, however, the proportionality 

assumption can be easily relaxed by introducing the interactions between x and t as an 

additional explanatory variable. 

 

3.1.2 A Discrete-Time Duration Model for Recurrent Events 

An event may occur one or more times to an individual during a given observation 

period. For example, in activity survey data, most individuals participate in more than 

one out-of-home activity during a day. In other words, an individual experiences an event 

that terminates an activity to carry out another activity several times for a day. In a 

discrete-time data set with recurrent events, we can define a series of binary response 

{ytij} in which ytij indicates whether an event has occurred in time interval t for episode i 

of individual j. Then, the corresponding discrete-time hazard function can be written as 

 

ℎ��< = Pr (���< = 1|��+�< = 0 for �. < �) 

 

If recurrent events are observed to an individual, it cannot be assumed that the durations 

of episodes are independent within the same individual. There may be unobserved 

heterogeneity, also known as shared frailty, between the individuals. Such unobservables 

can be captured using multilevel modeling techniques. Note that recurrent events occur in 

a two-level hierarchical structure where episodes in the lower level are nested within 
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individuals in the upper level. Hence, in discrete-time analysis, we can add a random 

intercept term to Equation 1, which is written as 

 

/�0��=ℎ��<> = log ? ℎ��<1 − ℎ��<@ = 3(�) + 4.5��< + �< ⋯ ⋯ ⋯ (2) 

 

where uj is a random effect associated with the jth individual. The values of uj are 

typically assumed to follow a normal distribution with zero mean and variance BC$. In 

such a two-level random intercept model, the log-odds of an event in interval t is only 

shifted by uj for the jth individual. In a more complex random coefficient model, the 

coefficients Ds can be specified to be random across individuals. 

 

3.1.3 Modeling Competing Risks and Multiple States 

Another common extension of duration models is to take into account more than one kind 

of event. So far, it is assumed that a single type of event occurs to an individual. 

However, in many situations, multiple types of event, also referred to as competing risks, 

may be competing to end an episode. If competing risks arise, the dependent variable in 

the discrete-time data is no longer binary, and it becomes multinomial. Therefore, 

Equation 2 can be generalized to a multinomial logit model with a random intercept. 

 Suppose that there are R types of event. In competing-risks analysis, a categorical 

response ytij is defined for each interval t of episode i of individual j. If an event of type r 

occurs in interval t, then ���< = � for r = 1, …, R, while if no event occurs, ���< = 0. The 

event-specific discrete-time hazards are defined as follows: 
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ℎ��<(E) =  Pr (���< = �|��+�< = 0 for �. < � ��� � = 1, … , G) 

 

and Equation 2 for the single event analysis becomes 

 

/�0��Hℎ��<(E)I = log Jℎ��<(E)
ℎ��<(9)K = 3(E)(�) + 4(E).5��<(E) + �<(E), � = 1, … , G ⋯ ⋯ ⋯ (3) 

 

The above random intercept multinomial logit model consists of R equations contrasting 

the risk of an event of type r with the risk of no event as the reference category. The form 

of baseline logit-hazard and the set of covariates may be specified differently for each 

type of event. In addition, the effects of duration and covariates may vary across event 

types. Further, the random effect associated with individual j may vary by event type, 

even if the random effects (i.e., �<(#), �<($), … , �<(M)
) are assumed to follow a multivariate 

normal distribution with a covariance matrix. 

 In competing-risk models, we focus on transitions from one origin state. 

However, there may be multiple origin states from which multiple types of event are 

competing to end the origin state. A simple way of handling multiple origin states 

simultaneously is to add dummy variables indicating which state is occupied during 

interval t to the competing-risk model of Equation 3 as predictor variables. A more 

general discrete-time duration model for recurrent events, competing risks, and multiple 

states is described by Steel et al. (2004). 
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3.2 Application to Activity Duration Analysis 

The main goal of this study is to develop a hazard-based duration model on a discrete-

time framework for daily in-home and out-of-home activity episodes. In this study, an 

activity episode is defined as a continuous period during which an individual is at risk of 

experiencing an event that terminates an origin or current activity and then moves to a 

destination or next activity. The duration (i.e., the time to an event) of activity episode is 

measured in discrete time intervals. This study takes into account complex situations as 

we consider multiple states for the origin activity type as well as competing risks for the 

destination activity. An additional complexity comes from that activity episodes are 

recurrent within individuals. In this section, we describe the sample data and their 

transformation, and the model development. 

 

3.2.1 Sample Data Definition 

In this study we use the 2011 Oregon Travel and Activity Survey (OTAS). The Portland 

metropolitan portion of the 2011 OTAS records daily in-home and out-of-home activities 

of about 11,000 persons of nearly 4,800 households. Among them, we select those aged 

65 and over who do not work in order to reduce computational burden. Another 

important reason to study this particular group of people is that elderly travel behavior is 

an interesting research topic among transportation planners as the Baby Boomers just 

started retiring a few years ago. For simplicity, we also remove persons with any type of 

censored observations, including left-censored observations (i.e., out-of-home activities 

in the beginning of the day), right-censored observations (i.e., out-of-home activities in 
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the end of the day), left-right-censored observations (i.e., stay at home or travel all day). 

In short, this study examines only retirees who participated in at least one out-of-home 

activity, starting and ending the day at home. Table 1 compares the frequency and 

average duration of aggregated activity types between all persons and retirees. Note that 

in-home activities are subdivided into three levels: home in the beginning of the day, 

home returning temporarily in the middle of the day, and home in the end of the day. As 

expected, retirees stayed longer at home than all persons (430 vs. 344 min.). In addition, 

retirees’ average duration minute of all out-of-home activities was one half of that of all 

persons (53 vs. 125 min.). When excluding subsistence activity types, such as work, 

work-related, and school activities, however, the average durations for each type of out-

of-home activity were similar each other between retirees and all persons. 
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Table 3-1 Frequency and Average Duration of Activity Episodes for Retirees  

Aggregate Activity Type 

All Persons 

(n = 9,339) 

Retirees 

(n = 586) 

Frequency 

Average 

Duration 

(in min.) 

Frequency 

Average 

Duration 

(in min.) 

In-home Activity 

home in the beginning 9,339 358.7 586 476.5 

home in the middle 4,630 116.7 270 142.0 

home in the end 9,339 555.3 586 671.4 

Sub-total 23,308 343.5 1,442 430.0 

Out-of-home Activity 

work 5,012 368.6   

work-related 1,509 104.0   

school 2,224 368.1   

eat out 2,295 47.6 195 62.6 

escort 3,115 8.8 107 8.7 

health care 790 69.6 105 66.9 

personal business 2,820 31.0 370 33.8 

shopping 4,087 30.5 488 37.7 

social recreation 4,072 97.2 348 108.7 

Sub-total 25,924 125.0 1,613 53.0 

 

3.2.2 Data Transformation 

The original survey data set is released in an individual-episode file format where a two-

level hierarchical structure is revealed with activity episodes (lower level) nested within 

individuals (upper level). The key attributes of activity episodes are obtained from the 

survey data, including origin activity type, destination activity type, activity duration, 

activity location, travel mode, and so on. The dependent variable of this study is the 

duration of activity episode, which is defined as time to an event terminating an origin 

activity state. Although the duration variable is continuous in nature, in this study it is 
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treated as an interval variable because more than 50% of the duration times are recorded 

to the nearest multiples of 5 (e.g., 5, 10, 15, 30 min, etc.). On the other hand, the activity 

diaries involve both the multiple states of origin activity and the competing risks of 

destination activity. Table 2 shows the transitions of activity episodes from an origin 

activity to a destination activity. It is important to note that different destination types are 

allowed for each origin state. For example, it is not allowed to move from an in-home 

origin (i.e., H1 and H2) to an in-home destination (i.e., H2 and H3). For all the out-of-

home origin activity types, it is allowed to move to any type of destination, including the 

same activity type. 

 

Table 3-2 Transitions of 2,469 Activity Episodes from Origin to Destination 

 

  

Now we convert the individual-episode file to an individual-episode-period file, 

which is illustrated in Figure 1. Initially, the duration times of 2,469 activity episodes of 

586 retirees were grouped into 5-min intervals, yielding 81,828 observations in the 
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converted data set, which caused a prohibitive computational burden. Therefore, we 

decided to reduce the file size by increasing the width of the time interval to 15 minutes, 

which produced 28,074 observations in the individual-episode-period file. Note that 

broadening the time interval does not change the number of episodes. If there are several 

episodes within a 15-min interval, all the episodes are retained in the 15-minute-interval 

data set as a duration time of one 15-min interval is recorded for each of them. The top 

panel of Figure 1 illustrates an individual who experienced three events of terminating a 

current activity episode and moving to a next activity episode for a day: from H1 to SR, 

from SR to SH, and from SH to H3. The duration of the first activity H1 was 420 

minutes, which accounts for 28 intervals in 15-min time slots. This can be said that the 

first event of ending H1 and transitioning to SR occurred during the 28th 15-min time 

interval. As shown in the bottom panel of Figure 1, the one record of the event 

occurrence (rij = SR) with the duration (yij = 28) is converted to a sequence of 28 

multinomial responses (y1ij, y2ij, …, y27ij, y28ij) = (0, 0, …, 0, SR). Similarly, the second 

activity episode ended in the 5th time interval and is transformed with a series of 5 

multinomial responses, while as the third episode terminated during the 1st interval, a 

single multinomial response is only necessary. In the converted data set, the response of 

zero represents no event occurrence during that time interval, which will be used as the 

reference category for the multinomial logit model. 
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Figure 3-1 Converting from Individual-Episode to Individual-Episode-Period 
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3.2.3 Model Development 

For the discrete-time duration variable or ytij, we develop a two-level multinomial logit 

model using Equation 3, which is re-written here: 

 

log Jℎ��<(E)
ℎ��<(9)K = 39(E) + 3#(E) log(�) + D(E)	������<(E) + N(E)OP7��< + �<(E), 

� ∈ RS2, S3, TP, T	, SU, VW, 	S, 	G X                                    ⋯ ⋯ ⋯ (4) 

 

The first two terms of the right hand side of Equation 4 form the baseline logit-hazard. 

Instead of using temporal dummies, we use the parametric specification to make the 

model more parsimonious. Two parametric forms for the baseline logit-hazard were 

compared – quadratic and log, and it turned out that the model fit with the log form was 

better in this study. Both the overall intercept (i.e., 39) and the duration effect (i.e., 3#) 

are specified to vary by event type r. 

 Dummy variables for origin activity are included to take into account multiple 

states from which an event occurs. Since some transitions are not allowed, different 

dummy coding schemes are used for each origin activity state. For the in-home 

destination types, five dummies (i.e., EO, ES, PB, SH, and SR) are defined for the origin 

state with HC as the reference category. For the out-of-home destinations, we create even 

origin state dummies (i.e., H2, EO, ES, HC, PB, SH, and SR), taking H1 as the reference 

case. As the coefficient of each origin state dummy is allowed to vary across event type r, 

it is expected to capture all the chaining effects from an origin from a destination. 
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 Time-of-day effects on the risk of an event are an important factor. Transitions to 

a particular type of new activity strongly depend on hours of day. For example, leaving a 

present activity for eating out usually occurs between 11:00 AM and 1:00 PM for lunch 

and between 5:00 PM and 7:00 PM for dinner. People tend to participate in social 

activities at certain times of day, say, in the evening. An easy way is to include dummy 

variables indicating hours of day. However, given that many state dummies are already 

specified in the model, adding a larger number of time-of-day dummies is not a good 

choice. Also, since the time-of-day dummies may be severely correlated, especially for 

adjacent hours of day, including them as predictors may lead to an unstable model. 

Alternatively, hours of day can be treated as a circular or periodic variable. To obtain a 

periodic variable of hour of day measured in degrees, hour of day (H) is multiplied by 

2Y V⁄ , where P represents the known period of the periodic phenomenon (in our case 24 

hours). The sine and cosine of the periodic variable are then inserted as explanatory 

variables. Therefore, the time-of-day effects are included as trigonometric predictors as 

follows: 

 

N(E)OP7��<(E) = N#(E)Z�� 12YV S2(E) + N$(E)��� 12YV S2(E)
 

 

The coefficients N#and N$ may vary across competing risk r. Higher order trigonometric 

polynomials of the periodic variable can be explored as possible independent variables 

for each event type r. 
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 Lastly, �<(E)
 is the upper-level random effect for the contrast of response category 

r with the reference category 0. We add eight random effects; one for each destination 

type, and it is assumed that the random effects are multivariate normally distributed with 

a vector of zero means and a variance-covariance matrix. Non-zero variances suggest that 

there exist unobserved individual-level influences on the odds of being in a response 

category r rather than the reference category 0, while non-zero covariances capture 

correlation between the unobserved individual-specific influences of the different 

response categories. 

 

3.3 Results 

This section describes the model estimation results. It is important to note that our model 

specification described in the previous section is not a “final” one. Since the aim of this 

paper is to demonstrate the potential of a discrete-time approach to modeling activity 

duration, we simplify the model structure by including only a few fixed effects (duration, 

state, and time-of-day effects) together with random effects. As shown in Table 3, the 

log-likelihood statistics were acceptable, particularly for a model with a large number of 

choice alternatives. 
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Table 3-3 Model Fit Statistics 

 

  

3.3.1 Random Effects 

For comparison we fitted a single-level multinomial logit model (which is not shown in 

this paper) that ignores possible correlations between activity episodes participated by an 

individual for a day. Overall, we found little differences in parameter estimates between 

single-level and multi-level models, even if the standard errors in the single-level model 

were mostly underestimated as expected. We also conducted a likelihood ratio test to see 

if the multilevel model performed statistically better than the single-level model. The chi-

square statistic of 140.67 with 36 degrees of freedom indicated as a whole the 

significance of the random-effect parameters, var(ur) and cov(ur,uq) for r, q ∈ {H2, H3, 

EO, ES, HC, PB, SH, SR} and r ≠ q. 

 Table 4 shows the variance-covariance matrix of the estimated random effects. 

There was between-individual variation in the choice of returning home temporarily (H2) 

versus staying (ST), returning home in the end (H3) versus staying (ST), and escorting 

(ES) versus staying (ST), as indicated by significant non-zero variances. However, there 

was no significant evidence of unobserved individual-specific influences on the hazard of 

Statistic Value

Log likelihood at null -61684.88

Log likelihood at constants -11858.07

Log likelihood at two-level convergence -10556.70

Rho Squared w.r.t null 0.829

Rho Squared w.r.t constants 0.110

Number of cases 28,074        

Note: w.r.t = with regard to
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the other out-of-home activity purposes (EO, HC, PB, SH, and SR) versus staying (ST). 

In addition, we found that there is a significant correlation between the random effects for 

some pairs of transitions. During a day, for example, individuals with a high hazard of 

moving from staying (ST) to health care (HC) tend to have a high hazard of moving from 

staying (ST) to eat-out (EO), as indicated by its positively significant covariance (0.89). 

For many other pairs of transitions, however, the correlations between the random effects 

were not significant. 

 

Table 3-4 Random Effects Variance-Covariance Matrix 

 

 

3.3.2 Fixed Effects 

Table 5 shows the estimated coefficients and standard errors for the fixed part of the full 

model. The results indicate that the duration effects were significantly positive for all 

event types of destination activity after controlling for the origin activity states and the 

times of day. This is as expected because the risk of terminating a current activity and 

then moving to a next activity increases as the time spent in the current activity episode 

increases regardless of activity types. For example, the odds of returning to home 

temporarily (H2) versus staying in a current activity increased by �9.%# = 1.36 with 

ST to H2 0.66 ***

ST to H3 0.09 1.69 ***

ST to ES 0.26 . 0.49 *** 0.51 ***

ST to EO 0.12 -0.13 0.06 0.08

ST to HC -0.17 0.33 -0.22 0.89 * -0.28

ST to PB -0.16 -0.19 . 0.43 ** -0.12 0.49 -0.40

ST to SH 0.09 -0.30 ** 0.26 . 0.30 . -0.04 0.02 0.05

ST to SR 0.50 ** -0.18 -0.04 -0.22 -0.11 0.11 0.02 -0.05

ST to SH ST to SRST to H2 ST to H3 ST to ES ST to EO ST to HC ST to PB
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respect to a natural log of one 15-min time interval increment in a current activity 

episode. 

 Most of the state dummy variables were statistically significant for most 

destination activity types. For example, we found significant positive transition 

relationships for returning to home temporarily from escort (3.99), personal business 

(1.39) and shopping (1.54), not from eat-out (0.65) and social recreation (0.11). On 

further examination of the results, we found that the odds of moving to eat out rather than 

staying was �$.^^ = 19.89 times higher when people are at home in the middle of day 

(H2) than in the beginning of day (H1). This implies that retirees tend to perform more 

than one tour for a day and during the second or third tour they are more likely to eat out 

for lunch or dinner.



 

 

 

5
6

Table 3-5 Estimated Coefficients 

 

Variable Est. S.E. Sig. Est. S.E. Sig. Est. S.E. Sig. Est. S.E. Sig. Est. S.E. Sig. Est. S.E. Sig. Est. S.E. Sig. Est. S.E. Sig.

Constant -4.55 0.39 *** -2.49 0.26 *** -8.46 0.46 *** -10.32 0.75 *** -12.37 0.99 *** -7.90 0.40 *** -7.46 0.33 *** -7.67 0.39 ***

Duration Effect

log(actDur15) 0.31 0.10 ** 0.18 0.07 ** 0.84 0.11 *** 0.97 0.16 *** 1.60 0.25 *** 0.68 0.10 *** 0.48 0.08 *** 1.04 0.10 ***

State Effect

thisH2 2.99 0.33 *** 3.08 0.42 *** 3.32 0.59 *** 2.67 0.26 *** 2.64 0.24 *** 3.21 0.28 ***

thisHC 3.73 0.46 *** 2.54 0.93 ** 2.57 0.93 ** 2.73 0.43 *** 3.44 0.31 *** 2.89 0.52 ***

thisEO 0.65 0.37 . 0.20 0.26 2.39 0.53 *** 3.85 0.56 *** 3.39 0.98 *** 3.29 0.36 *** 3.50 0.30 *** 2.88 0.38 ***

thisES 3.99 0.44 *** 2.93 0.38 *** 7.21 0.61 *** 6.75 0.72 *** 7.45 1.43 *** 6.70 0.59 *** 6.66 0.51 *** 7.57 0.56 ***

thisPB 1.39 0.34 *** 0.83 0.27 ** 5.04 0.43 *** 3.98 0.66 *** 5.04 0.97 *** 3.92 0.36 *** 4.23 0.30 *** 4.21 0.41 ***

thisSH 1.54 0.33 *** 0.94 0.23 *** 4.23 0.40 *** 4.35 0.65 *** 4.52 0.78 *** 3.55 0.35 *** 3.99 0.26 *** 4.19 0.37 ***

thisSR 0.11 0.33 -0.50 0.26 * 2.47 0.32 *** 2.04 0.53 *** 3.06 0.60 *** 1.96 0.33 *** 2.55 0.23 *** 1.45 0.33 ***

Time-of-day Effect

hSIN1 1.43 0.13 *** -0.01 0.11 0.92 0.17 *** 1.15 0.21 *** 2.31 0.29 *** 0.87 0.13 *** 0.60 0.10 *** 1.56 0.12 ***

hCOS1 -0.66 0.29 * 0.31 0.12 ** 0.01 0.24 0.51 0.26 * -1.22 0.65 . -0.83 0.21 *** -1.08 0.18 *** 0.70 0.17 ***

SH

(vs. Stay)

SR

(vs. Stay)

Destination Activity Type

H2

(vs. Stay)

H3

(vs. Stay)

EO

(vs. Stay)

ES

(vs. Stay)

HC

(vs. Stay)

PB

(vs. Stay)
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3.4 Conclusion and Future Work 

In this paper we explicitly proposed a hazard-based duration model in a discrete-time 

framework for activity duration analysis that incorporated time dependencies into activity 

episode choice and duration. We also demonstrated the fact that the discrete-time hazard-

based duration model is essentially equivalent to a discrete choice model with temporal 

dummies as the simplest form of dynamic discrete choice models. In addition, we 

illustrated the flexibility of the discrete-time approach by enabling complex situations of 

activity-travel data to be modeled, such as multiple states of origin activity, competing 

risks of destination activity, and a multilevel structure for recurrent activity episodes of 

an individuals and by facilitating the integration of activity participation model with 

supply model of dynamic traffic assignment (DTA). 

 Recently, the integration between activity-based demand models and dynamic 

network supply models becomes a key issue as travel modeling research and practice 

adopt the microsimulation framework. Two approaches are available for the demand-

supply integration: sequential integration and dynamic integration (Konduri, 2012). In the 

traditional sequential integration approach, the demand and supply components are run 

independently and sequentially in the form of an input-output data flow with a feedback 

of the network conditions until convergence is achieved. The dynamic integration 

approach adopts an “event-based paradigm” while constantly communicating between 

the demand and supply models along a continuous time axis. In other words, the demand 

model sends a set of departing trips to the supply model at every simulation minute for 

those travelers who decide to move to a next activity location. The DTA supply model 
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loads these trips on the network. For those travelers who arrive at their destination, the 

supply model feeds back a set of arriving trips to the demand model in every minute of 

simulation. Then the demand model simulates a series of activity participation decisions, 

including activity duration. As the state of practice for activity duration modeling is the 

continuous-time method, we see a strong potential of the proposed discrete-time method 

that can make the demand model to be dynamic or time-dependent as well. As such, in a 

dynamic integration, the dynamic network model can be integrated with the dynamic 

demand model with the discrete-time framework, resulting in “truly emergent” activity-

travel participation decisions. 

 There is a list of works we would like to pursue in our future research. First, as 

mentioned previously, one important advantage of the discrete-time approach over the 

continuous-time approach is the capacity to explicitly include time-varying independent 

variables. To make the model more realistic, we hope to include more policy-sensitive 

time-varying covariates in our model specification. For example, one can trace the 

availability of household auto(s), the presence of household kid(s) at home or school, and 

the jointness of other household member(s) into discrete-time intervals. Time-varying 

accessibility measures, proposed in recent ABM model development, can be included as 

another set of covariates to explicitly capture the temporal variation of activity 

participation opportunities (Paleti et al., 2015). Second, we added the upper-level random 

effects to control for unobserved individual-specific influences as well as correlation 

between the unobserved individual-specific influences. Possible correlation between the 

random effects was rarely detected for our population group (i.e., retirees). However, it is 
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expected to observe high correlation in random effects for other population groups, such 

as workers and students. Alternative model specification with assumed correlation 

structure beforehand may be better at capturing the correlation structure among these 

population groups. Lastly, a potential problem with the discrete-time approach is that data 

in the person-episode-period format can be extremely large, particularly when time 

intervals are short and the observation period is long. One strategy to reduce the data size 

is to group time intervals and then weight the grouped observations by exposure time 

(Steele, Goldstein, & Browne, 2004). 
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4 MULTIPLE IMPUTATION BY CHAINED EQUATIONS 

 

As analysis and models for land use and transportation planning gradually move to 

micro-level because of policy requirements and theoretical and technical advantages 

(Waddell, 2009), missing data becomes an increasingly common problem in micro-level 

land use and transportation modeling and policy analysis. According to the study of 

Waddell et al. (2004), up to 70% of the efforts in land use and transportation modeling 

are spent on data processing, and handling missing data is a major piece of these efforts. 

Missing values in land use and transportation data sets, particularly those in land 

use data sets, are generally handled on an ad-hoc basis with either manual inspection and 

cleaning, or rule-based or heuristic methods. While these methods can solve one type of 

missing data problem at a time in some user-specified sequence, they are hard to be 

adapted for different applications and there is no systematic way to assess their quality 

(Waddell, 2009). 

More sophisticated statistical modeling and machine learning techniques have 

been developed in statistics and computer sciences and tested and applied to tackle 

missing data problems in many fields such as industrial engineering (Lakshminarayan et 

al., 1999), forestry (Eskelson et al., 2009), etc. Waddell (2009) suggests that k-nearest 

neighbors and support vector machine may be two promising techniques for imputing 

missing land use data, particularly, parcel-level data. However, to our knowledge, there is 

no systematic research assessing the applicability and quality of these data imputation 

techniques in imputing missing land use data.  
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 Furthermore, most applications of data imputation in land use data generate a 

single imputation of the missing value – that is, substitute a missing value with a single 

best guess. However, single imputation masks the uncertainty in the missing values. In 

other words, the imputed values in the data are treated as if they are real observed values, 

without appropriately addressing the uncertainty associated with the substitutions. To this 

end, Rubin (Rubin, 1987) proposes a multiple imputation framework. Instead of 

producing a single best guess, multiple imputation uses a Monte Carlo simulation and 

replaces each missing entry with a set of m plausible values in which m is typically small, 

say 3 to 10. The advantage of multiple imputation is that, each of the m imputed data sets 

can still be analyzed with standard complete-data methods, but the analysis results can be 

combined by simple arithmetic calculations to produce mean estimates, standard errors, 

and p-value for quantities of interest that incorporate uncertainty due to imputation of 

missing data. 

 A popular approach to implementing multiple imputation, especially for 

multivariate missing data, is multiple imputation by chained equations (MICE), also 

known as fully conditional specification or sequential regression multiple imputation. It 

has been widely applied in psychology (Azur et al., 2011), medicine (White et al., 2010), 

epidemiology (Burgette & Reiter, 2010), etc. One of the reasons for the popularity of 

MICE is its flexibility. MICE can handle missing continuous and discrete variables 

because each variable with missing data is imputed based on its own imputation model. 

Recent studies attempt to implement recursive partitioning within MICE in order to 
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automatically preserve interaction effects in the data (Doove et al., 2014; Shah et al., 

2014). 

 In this study, we apply the non-parametric MICE approach to impute missing 

values in parcel data. Recently more and more land use and transportation modeling work 

and analysis moves to use parcel data (Waddell, 2009). However, parcel data are prone to 

problems of incomplete or missing values. In addition, in land use and transportation 

modeling, base year data are usually used to project future land use and travel patterns. 

So even though the number of missing values may be small, it is still necessary to impute 

them. We aim to test different methods in imputing missing parcel data and assess the 

quality of the imputation results, taking the uncertainty into consideration.  

The remaining of this paper is organized as follows. The next section overviews 

the background of missing data patterns and mechanisms, multiple imputation, MICE, 

and the implementation of recursive partitioning in MICE. In the Parcel Data Imputation 

section, we discuss multiple imputation for parcel data, along with missing data 

description, MICE set-up, and visual diagnosis. The section that follows, we discuss the 

validation of non-parametric MICE. Finally, we conclude the paper with some 

suggestions for future research. 

 

4.1 Background 

4.1.1 Patterns and Mechanisms of Missing Data 

For practical reasons, it is useful to distinguish three different patterns of missing data: 

univariate, monotone, and arbitrary patterns (Schafer & Graham, 2002; Van Buuren, 
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2007). First, a missing data pattern is univariate if only one variable has missing values 

and the remaining variables are all completely observed. For the univariate missing data, 

a variety of parametric or non-parametric methods can be used for conducting multiple 

imputation. Second, in the monotone pattern, more than one variable are missing and the 

missing variables can be ordered such that if a variable is missing for a subject, then other 

variables are also missing for that subject. Such a monotone pattern is often observed in a 

longitudinal data set as one leaves the longitudinal study in the middle of entire waves of 

data collection. In this case, it is possible to impute the multivariate missing data by a 

series of univariate methods for multiple imputation. Lastly, an arbitrary pattern is 

observed from multivariate missing variables, in which their missing values can occur in 

any set of variables for any subjects. Then, we need a truly multivariate method for 

multiple imputation. The arbitrary pattern is the focus of this research. 

 On the other hand, it is important to understand different mechanisms through 

which data are missing, because different missing mechanisms may cause different risks 

of bias when missing data are excluded in analysis. The missing mechanisms are 

commonly classified as missing completely at random (MCAR), missing at random 

(MAR), and missing not at random (MNAR). First, MCAR assumes that the probability 

of data being missing depends on neither observed nor unobserved variables. In this case, 

the set of subjects that are completely observed is also a random sample from the source 

population. Thus, a complete case analysis in which all missing data are excluded gives 

unbiased results, even if such a simple method is less efficient because the entire data set 

is not used. Second, in the MAR mechanism, the probability that data are missing 
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depends on observed variables, but not on unobserved ones. In this case, a complete case 

analysis is no longer based on a random sample, and selection biases are likely to occur. 

Such a bias can be overcome through data imputation, in which a missing value for a 

subject is replaced by a predicted value from the subject’s other known characteristics. 

Lastly, a mechanism for missing data is MNAR if the probability of data being missing 

depends on both observed and unobserved variables. In this case, there is no universal 

method. We may only address the MNAR biases by conducting sensitivity analyses in 

which the effects of different mechanisms are compared (Donders et al., 2006). As in 

many other studies, the MAR mechanism is assumed in this study to apply a data 

imputation approach to the missing data problems. 

 

4.1.2 Multiple Imputation 

Multiple Imputation is a statistical approach to handling missing data, which was first 

proposed in the 1980s by Rubin (1987). It aims to overcome the limitation of single 

imputation by allowing for the uncertainty introduced by missing data. Multiple 

imputation function is increasingly available in common statistical software, such as R, 

SAS, Stata, and SPSS. In general, multiple imputation consists of three steps. The first 

step is to construct an imputation model, which is sometimes referred to as an imputer or 

an imputation engine. For a single missing variable z, the imputer regresses z on a set of 

non-missing variables among individuals with observed z values. Now each missing 

value of z is replaced m times by a plausible value that is a random draw from the 

predictive distribution of the imputation model. 
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 The second step is usually simple. Each of the multiple imputed data sets is 

analyzed separately but identically by a complete-data method (e.g., a linear regression) 

to estimate quantities of interest (e.g., the regression coefficients). Since the multiple data 

sets are identical for the complete data but not for the imputed data, this step generates 

the m different estimates for each quantity. 

 The third step is to combine the m estimates, using Rubin’s rules (Rubin, 1987). 

Suppose that ab<  is an estimate of a scalar quantity of interest obtained from imputed data 

set j (j = 1, 2, …, m) and c< is the variance of ab< . The overall estimate ab is simply the 

average of the individual m estimates: 

 

ab = 1d e ab<
f

<g#
 

 

The overall variance of the overall estimate ab is formulated with two components: the 

within-imputation variance (W) and the between-imputation variance (B): 

 

h��=ab> = c + 11 + 1d2 W 

 

The within-imputation variance explains the variation of the estimate in one imputed data 

set, which is calculated by averaging the m variances: 
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c = 1d e c<
f

<g#
 

 

The between-imputation variance measure how the estimates vary from imputation to 

imputation to reflect the uncertainty due to missing data, which can be given: 

 

W = 1d − 1 e(ab< − ab)$
f

<g#
 

 

The greater the variation of the estimates across the imputations, the higher the 

uncertainty introduced by missing data. The overall standard error is the square root of 

h��=ab>. A significance test of the null hypothesis a = 0 is performed in a usual way. 

Since single imputation omits the between-imputation variance, the standard error is 

always too small (White et al., 2010). 

 

4.1.3 Multiple Imputation by Chained Equations (MICE) 

In large data sets with missing values such as the parcel data set, the missing values often 

occur in more than one variable and follow an arbitrary pattern. When the pattern of the 

multivariate missing data is arbitrary, two general multivariate approaches are available 

for multiple imputation: joint modeling (JM) and multiple imputation by chained 

equations (MICE). The JM approach assumes a multivariate normal distribution for all 

variables in the imputation model. Imputed values are obtained from the estimated joint 
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distribution. JM was first proposed by Schafer (Schafer, 1997) and was widely used in 

the earlier applications of multiple imputation to multivariate missing data. However, the 

parametric method of JM may lack flexibility due to its normality assumption. In case 

that there are both continuous and discrete variables, the assumption of multivariate 

normality is often violated. The MICE approach is more flexible in that, instead of 

assuming multivariate normality, MICE models a series of conditional distributions, one 

for each missing variable, based on the other variables in the imputation model. The 

semi-parametric method of MICE is increasing popular and there are many statistical 

packages available for MICE (Van Buuren, 2007). 

 To describe the procedure of generating multiple imputed data sets in MICE, 

suppose a set of variables, y1, …, yj, where some of them are missing. The following steps 

are involved (Azur et al., 2011): 

Step 1: Fill in every missing value by a random draw from the observed values, which 

will serve as a placeholder. 

Step 2: For the first missing variable, say y1, return the placeholders to missing, and 

then construct an imputation model that regresses y1 on the other variables, 

say y2, …, yj, only among individuals with the observed y1. 

Step 3: Replace every missing value in y1 by a random draw from the posterior 

predictive distribution of the imputation model for y1. 

Step 4: For the second missing variable, say y2, return the placeholders to missing, 

and then construct an imputation model that regresses y2 on the previously 
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imputed variable(s) y1 and the other variables y3, … yj, only among individuals 

with the observed y2. 

Step 5: Replace every missing value in y2 by a random draw from the posterior 

predictive distribution of the imputation model for y2. 

Step 6: For all other missing variables, repeat Steps 4 and 5. 

Step 7: To stabilize the results, repeat Steps 2 through 6 l times (e.g., 10 to 20), which 

produces one imputed data set. 

Step 8: Repeat Steps 1 through 7 m times (e.g., 5 to 10) to generate m imputed data 

sets. 

 

 The most significant advantage of using MICE is its ability to handle different 

types of variables because each missing variable is imputed from its own imputation 

model. For example, a linear regression imputer can be used to impute missing values in 

a continuous variable, while a logistic regression imputation model may be constructed to 

impute a discrete missing variable. When a missing variable is skewed and its 

transformation to normality is impossible, Predictive Mean Matching (PMM) is usually 

suggested as an imputer. PMM can be seen as a type of random k-nearest-neighbor 

method (Waddell, 2009). In a PMM model, imputed values are simply sampled from the 

observed values of the missing variable, so that the distribution of the imputed values is 

similar to that of the observed values. Especially, PMM is desirable when the sample size 

is large and a missing variable is ‘semi-continuous’ for which many values are equal 

(White et al., 2010). 
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4.1.4 Recursive Partitioning in MICE 

In MICE, it is required to build an imputation model for each of the variables with 

missing values. In practice, however, specifying the imputation models is not an easy task 

for at least two reasons. First, missing variables to be imputed may have complex 

distributions. In this case, standard parametric models are not appropriate for the 

imputers. Also, data transformations to normality are not always possible. Second, there 

may exist interactive and nonlinear relationships among the variables in the imputers. 

The nature of these interactions and nonlinearity is usually unknown a priori. It is very 

laborious to add the interaction and nonlinear effects to the imputation models. To 

mitigate these two challenges, recent studies suggest the use of recursive partitioning as 

an imputation engine within MICE (Burgette & Reiter, 2010; Doove, Van Buuren, & 

Dusseldrop, 2014; Shah et al., 2014). 

 One of the most popular recursive partitioning techniques is Classification And 

Regression Trees (CART) (Breiman et al., 1984). CART is called either classification 

trees or regression trees, depending on the response variable of interest being categorical 

or continuous, respectively. In CART, a predictor space is partitioned so that 

observations are clustered into several groups that are relatively homogeneous with 

respect to the response variable. The best partitions are found by recursive binary splits of 

the predictors. The resulting series of splits are represented in a tree structure. The leaves 

of the tree represent the groups of observations, and the values in each leaf approximate 

the conditional distribution of the response variable based on the predictors. Since all 

splits are conditional on the previous splits, complex interactions are automatically 
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detected in the tree. The grown tree is usually pruned to avoid overfitting and for easier 

interpretation. However, when a tree is built for imputation, this pruning procedure is not 

desirable (Burgette & Reiter, 2010). 

 However, there are two major disadvantages of CART because of its hierarchical 

nature. First, the trees of CART may be suboptimal. A “best” split is determined only 

locally in each leaf regardless of future splits. Second, CART may produce unstable trees 

because trees may vary markedly from sample to sample. In other words, small changes 

in sample may lead to different initial splits and then yield quite different final trees. 

Alternatively, another popular recursive portioning method is Random Forests. While 

CART builds a single tree, Random Forests generates multiple trees and averages them 

(Breiman, 2001). Variation in the individual trees is produced by bootstrapping and 

random variable selection. Instead of using all observations, a bootstrap sample is used to 

build each tree. Rather than using all variables, a subset of variables is randomly selected 

to find the best split at each leaf (Doove et al., 2014). 

 

4.2 Case Study: Parcel Data Imputation 

Integrated land-use and transportation models are trending towards using disaggregated 

spatial resolution, such as parcel. Although some concerns for using micro-level data 

have been pointed out, such as large data requirements, long computing times, and 

stochastic variations (Wegener, 2011), the advantages of using parcels as the spatial unit 

of analysis are enormous. First, parcels are more behaviorally realistic in modeling the 

built environment than uniform grid cells as well as coarse zones. In the real world, 
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transaction, regulation, and development usually occur at the parcel level. Second, using 

the parcel geography allows us to measure walking-scale accessibility by representing 

people’s activity locations on parcels. Walking access to transit stops or grocery stores 

are increasingly important from public health and policy perspectives (Waddell, 2009). 

 In the U.S., parcel data are usually managed by local governments that assess 

property taxes. There is huge variation in data completeness and data quality across 

jurisdictions and missing values are common in variables that are necessary for 

developing integrated models, including building square feet, building type, number of 

stories, year built, building value, land value, land use, and so on. Especially for parcels 

that are exempt from property taxes but nevertheless important for models, there tend to 

be more missing values on the attributes. Therefore, there is a significant need for 

handling missing values in parcel data as the research and practice of integrated models 

move to use parcel as the spatial boundary. 

 For this study, we pick Multnomah County in Oregon as our study area. 

Multnomah County includes Oregon’s largest city, Portland. The parcel data are obtained 

from Metro’s Regional Land Information System (RLIS) that provides a variety of 

geographic information for the Portland metropolitan area. Metro and the regional 

partners update the parcel data every quarter. For this study we focus on one parcel data 

set updated in the fourth quarter of year 2011. The parcel data set provides information 

such as parcel area in square feet, building floor area in square feet, building value in 

dollar, land value in dollar, land use type, and so on. We detect a modest amount of 

missing entries from the parcel data set. The missing data pattern is shown in Table 1. 
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Among the total of 271,977 parcels, 83.7% are completely observed for all of the 

variables. The remaining parcels have at least one missing entry for any of the variables. 

The largest number of missing entries (i.e., 37,037 or 13.6%) is observed in the land-

value variable, while the smallest number of missing entries (i.e., 2,097 or 0.8%) is in the 

land-use variable. Among the parcels with missing entries, 60.6% are missing for only 

one variable, 37.3% for two variables, and 2.2% for three variables. We also notice that 

the missing entries are scattered among the variables. Therefore, we conclude that the 

missing values in the parcel data set follows an arbitrary pattern, which makes MICE a 

suitable methods for imputing the multivariate missing values in the parcel data set. 

 

Table 4-1 Missing Data Pattern of 271,977 Parcels (1 = observed & 0 = missing) 

 

 

4.2.1 Setting Up MICE: Choice of Predictors 

Assuming the MAR mechanism and arbitrary missing pattern, we now set up MICE to 

impute all the multivariate missing values on the parcels of Multnomah County. The first 

step is to determine which variables are included as predictors in the imputation models. 

Table 2 is a list of the variables. We include all of the four missing variables: building 

Parcel Area Land Use Building Value Building Floor Area Land Value Frequency

1 1 1 1 1 227,591        

1 0 1 1 1 2,097            

1 1 1 0 1 2,825            

1 1 0 1 1 13                 

1 1 1 1 0 21,959          

1 1 0 0 1 2,414            

1 1 1 0 0 14,122          

1 1 0 1 0 1                   

1 1 0 0 0 955               

Total none 2,097 3,383 20,316 37,037 271,977        
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floor area, building value, land value, and land use. Since the first three continuous 

variables include huge values from which it is hard to draw meaningful interpretations, 

we scale down by dividing each of the three variables by parcel area. As a result, we use 

three new missing variables, namely, building floor area per parcel area (i.e., FAR; floor 

area ratio), building value per parcel area (i.e., BVPA), and land value per parcel area 

(i.e., LVPA). It is also important to note that these three missing variables are semi-

continuous because a large portion of their values is zero and the remaining portion is 

continuous. The other missing variable (i.e., LU) is categorical with 9 levels, including 

agriculture, commercial, forest, industrial, multifamily residential, public/semi-public, 

rural, single family residential, and vacant. Additionally, four non-missing variables are 

included to increase the prediction power of the imputation models: Area, District, 

POP10, and JOB11. Area is a continuous predictor, representing the parcel size in square 

feet, while District is a categorical predictor with 10 polygons covering Multnomah 

County among 20 districts that divide the Portland Metropolitan area for a variety of 

planning and analysis purposes. The other two non-missing variables are obtained from 

outside data sources. POP10 represents the 2010 population size of census block group 

that the parcel belongs to, which is obtained from U.S. Census Data. JOB11 or number of 

jobs in census block group that the parcel belongs to is extracted from the 2011 

Workplace Area Characteristics (WAC) file of Longitudinal Employer-Household 

Dynamics (LEHD). We use these two outside variables as a proxy for neighborhood 

characteristics of parcels.
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Table 4-2 A List of Predictors Included in the MICE Imputers 

 

Variable

Name
Description

Variable

Type

Number of

Missing Parcels
Min Max Mean Median

FAR building floor area per parcel area (in square feet) semi-continuous 20,316 (7.5%) 0 4,457 1.22 0.25

BVPA building value per parcel area (in dollar) semi-continuous 3,383 (1.2%) 0 588,178 278.36 20.05

LVPA land value per parcel area (in dollar) semi-continuous 37,037 (13.6%) 0 2,232 19.42 16.47

LU 9 land use types categorical 2,097 (0.8%) - - - -

Area parcel area (in square feet) continuous no missing 2 30,956,896 35,772.12 5,433.68

Disctrict 10 districts covering Multnomah County categorical no missing - - - -

POP10 2010 population size by Census block group continuous no missing 8 4,746 1,657.36 1,407.00

JOB11 2011 number of jobs by Census block group continuous no missing 4 30,390 1,173.45 263.00
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4.2.2 Setting Up MICE: Choice of Imputers 

The aim of this study is to impute missing values in four variables, namely, FAR, BVPA, 

LVPA, and LU using MICE. The key to success of a MICE application is how well the 

imputation model is specified for each missing variable. In the parcel data set described 

previously, missing values are observed in a mix of continuous and categorical variables 

with complex distributions. Especially, three of them (i.e., FAR, BVPA, and LVPA) are 

continuous but inflated with zeroes. In addition, there may exist a variety of interactions 

between the predictors. For example, we can easily think of the interaction effects of land 

use type and district geography on the building floor area ratio on a parcel. Multifamily 

residential parcels located in CBD district tend to have a higher FAR (i.e., a higher 

building on a smaller size of parcel) than the same land-use type of parcels in other 

districts. Manually testing such interaction effects in the imputation model is a very time-

consuming task with no guarantee of success. For these reasons, we initially consider two 

recursive partitioning methods (i.e., CART and Random Forests) as an imputation model 

of MICE. We generate 5 imputed data sets (m = 5 in Step 8) after 5 iterations (l = 5 in 

Step 7). 

 

4.2.3 Visual Diagnosis 

Because we never observe the missing values, we cannot quantitatively assess how well 

each imputation technique performs. An important step in multiple imputation is to 

diagnose whether imputations are plausible or not. As a simple visual way of checking 

the plausibility of the imputations, it is useful to compare the distributions of original data 
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and imputed data. Figure 1 shows the distributions of the three continuous variables as 

individual (jittered) points, in which blue points are observed data and red points are 

imputed data. The zeroth imputation of all the panels contains blue points only, 

representing the original distribution. The red points follow the blue points reasonably 

well without showing any data points that are clearly impossible. However, it should be 

noticed that the CART-based MICE did not produce proper imputes for extreme values 

of FAR and BVPA. They are severely right skewed compared with LVPA; the skewness 

of FAR, BVPA, and LVPA is 265, 92 and 21, respectively. For more graphical diagnostic 

tools, refer to Abayomi et al. (2008). To be able to quantitatively assess the performance 

of each imputation model, we will create a validation data set and compare how well each 

imputation recover the true values, which will be discussed in the next section.
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Figure 4-1 Visual Diagnosis of the CART-based MICE 
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4.3 Assessment of MICE 

To evaluate the performance of MICE, we compare the predictive accuracy of the three 

different MICE specifications (i.e., MICE via PMM, MICE via CART, and MICE via 

Random Forests). The combination of MICE with PMM is widely used because as a 

semi-parametric approach it can handle any variable types. Especially, PMM is often 

used to impute a semi-continuous missing variable. It is expected that CART and 

Random Forests can automatically capture complex interaction effects on missing 

variables with little tuning effort needed in developing the imputation models. 

To this end, we first create a validation set by removing parcels with any missing 

values from the original parcel data, which produces a validation data set of 227,591 

parcels with the 8 complete variables. Then, from the validation data set, we artificially 

make 5 percent of the values in the four variables (i.e., FAR, BVPA, LVPA, and LU) to 

be missing at random (MAR), yielding a training set of the same number of parcels but 

with missing values. As shown in Table 3, the artificial missing values are evenly 

scattered across all the missing variables, indicating an arbitrary pattern of missing data. 
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Table 4-3 Missing Data Pattern of 227,591 Parcels in the Training Data Set 

 

 

 With this training data set, we perform MICE with three different imputation 

models (i.e., PMM, CART, and Random Forests). The ‘mice’ package of R is used for 

the PMM-based MICE and the CART-based MICE (Van Buuren & Groothuis-

oudshoorn, 2011), while we use the ‘CALIBERrfimpute’ package of R for the MICE 

imputation based on Random Forests (Shah, 2014). Each of the three MICE imputation 

runs produces 5 imputed data sets as designed. It is often suggested that small numbers of 

imputed data sets (e.g., 3 or 5) are sufficient unless missing rates are unusually high, say 

50% (White et al, 2010). For each imputed data set, we compare the imputed values of 

the training set with the original complete values of the validation set. We calculate root 

mean square error (RMSE) and R-squared for the continuous variables, whereas an 

accuracy rate is computed for the categorical variable (Fawcett, 2006). 

Area District POP10 JOB11 FAR LVPA LU BVPA Frequency

1 1 1 1 1 1 1 1 185,350   

1 1 1 1 1 1 0 1 9,745        

1 1 1 1 0 1 1 1 9,711        

1 1 1 1 1 1 1 0 9,883        

1 1 1 1 1 0 1 1 9,729        

1 1 1 1 0 1 0 1 502           

1 1 1 1 1 1 0 0 532           

1 1 1 1 0 1 1 0 505           

1 1 1 1 1 0 0 1 512           

1 1 1 1 0 0 1 1 502           

1 1 1 1 1 0 1 0 516           

1 1 1 1 0 1 0 0 19             

1 1 1 1 0 0 0 1 33             

1 1 1 1 1 0 0 0 26             

1 1 1 1 0 0 1 0 26             

Total none none none none 11,298 11,344 11,369 11,507 227,591   
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 Table 4 shows the validation results. We find that both of the non-parametric 

MICE imputations perform much better than the semi-parametric MICE for the 

categorical missing variable (i.e., LU), indicated by a higher average accuracy rate for 

MICE via Random Forest (0.934) and MICE via CART (0.927) than MICE via PMM 

(0.780). However, it is found that there are noticeable differences in performance 

between the two non-parametric imputations for the continuous missing variables. The 

MICE with Random Forests performs best for LVPA; the average R-squared for LVPA is 

0.450 with Random Forests, 0.426 with CART, and 0.234 with PMM. As for FAR and 

BVPA, the MICE with CART performs best with the highest average R-square (0.665 for 

FAR and 0.506 for BVPA). Surprisingly, the Random Forests within MICE shows a 

similar performance to the PMM within MICE (0.568 and 0.569 for FAR; 0.405 and 

0.406 for BVPA). The lower performance of Random Forests in this study can be 

explained by a different level of skewness for the three continuous missing variables. As 

mentioned earlier, as the three variables are semi-continuous, they are all severely 

positive or right skewed. However, there is a significant gap in the skewness level among 

the semi-continuous missing variables. The skewness of FAR, BVPA, and LVPA in the 

training data set is 65, 222, and 16, respectively. The relatively high skewness, especially 

of BVPA, results from some extreme data points or outliers as shown in the blue dots of 

Figure 1. Since we build only 10 trees in Random Forests due to computational burden, it 

is possible to easily miss the effects of such extreme values during the tree building 

process of drawing bootstrap samples and selecting random input variables. Therefore, 
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we conclude that the CART-based MICE is the most appropriate for imputing missing 

values in a large data set, such as the parcel data in this study. 

 

Table 4-4 Validation Results of MICE (PMM vs. CART vs. Random Forests) 

 

 

4.4 Discussion 

In this paper, we have demonstrated MICE as a flexible method to implement multiple 

imputation for the multivariate missing values in parcel data. We consider MICE via 

PMM, and two recursive portioning techniques (i.e., CART and Random Forests) as 

imputation engines for MICE. To assess their performance, we have conducted cross-

validation and found that, under limited computing power, the CART-based MICE has 

m=1 m=2 m=3 m=4 m=5

RMSE 0.270 0.286 0.268 0.294 0.283 0.280

R-squred 0.590 0.558 0.586 0.547 0.565 0.569

RMSE 50.871 38.446 51.229 41.432 34.979 43.391

R-squred 0.285 0.457 0.181 0.453 0.656 0.406

RMSE 19.157 17.104 17.184 17.657 16.662 17.553

R-squred 0.179 0.250 0.236 0.232 0.276 0.234

LU
Accuracy

Rate
0.780 0.783 0.781 0.776 0.782 0.780

RMSE 0.247 0.222 0.248 0.238 0.238 0.239

R-squred 0.684 0.710 0.637 0.655 0.641 0.665

RMSE 43.843 34.327 30.682 34.442 45.009 37.661

R-squred 0.331 0.571 0.670 0.563 0.393 0.506

RMSE 14.484 15.269 14.306 13.801 13.955 14.363

R-squred 0.422 0.384 0.427 0.454 0.443 0.426

LU
Accuracy

Rate
0.927 0.925 0.930 0.924 0.928 0.927

RMSE 0.284 0.313 0.282 0.281 0.229 0.278

R-squred 0.543 0.506 0.559 0.553 0.676 0.568

RMSE 76.119 73.102 36.429 36.961 33.766 51.275

R-squred 0.195 0.187 0.541 0.515 0.585 0.405

RMSE 14.110 13.435 13.692 13.953 14.978 14.034

R-squred 0.446 0.479 0.467 0.450 0.409 0.450

LU
Accuracy

Rate
0.936 0.934 0.933 0.935 0.932 0.934

Average

LVPA

PMM

CART

FAR

BVPA

LVPA

Multiple Imputed Data SetImputation

Model

Missing

Variable

Validation

Measure

FAR

BVPA

Random

Forest

FAR

BVPA

LVPA
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performed best for imputing missing values in both continuous and discrete variables, 

especially when the distribution of the continuous variables to be imputed is skewed. 

 For future research, we plan to improve the performance of Random Forests-

based MICE by increasing the number of trees, which is expected to produce more 

reliable imputers. In addition, although we have generated multiple imputed data sets, we 

have not taken full advantage of them. We plan to conduct standard statistical analyses 

with the resulting multiple imputed data sets and assess the uncertainty introduced via 

imputed data. Lastly, this study focuses primarily on recursive partitioning methods as an 

imputation model. There are many other machine learning techniques, such as k-nearest 

neighbor, support vector machine, and Bayesian network that have been used in data 

imputation. It would be interesting to benchmark them with the methods in this study. 
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5 CONCLUSION 

 

Travel forecasting models have been developed to support informed decision-making 

about alternative transportation and land use scenarios. The key benefit of activity-based 

models is that they allow the assessment of a wider range of planning and policy than 

trip-based models. Especially, activity-based models can provide significantly more 

robust insights into policies and projects that may affect individuals’ activity and travel 

behavior as they are implemented in a fully disaggregate microsimulation framework. 

Some examples include congestion pricing, parking pricing, flexible work schedules, a 

variety of transit fare policies, and so on. 

 However, activity-based travel forecasting is still in a formative stage. Existing 

U.S. activity-based models are not fully capable of evaluating such modern transportation 

and land use policies. One possible solution for having more policy-sensitivity would be 

to maximize the level of details in terms of market segmentation, temporal scale and 

spatial resolution, which is one of the most critical design considerations for activity-

based modeling (Castiglione et al., 2015). Unlike trip-based models, adding more 

demographic segments, more time periods, and more zones does not substantially 

influence run time and data storage in activity-based models. This dissertation explores 

recent methodological advances to take full advantage of this key feature of activity-

based models. 

 First, activity-based models simulate individual households and persons in a 

synthetic population. A variety of socio-demographic characteristics of residents in the 
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modeling area are used to be representative of the actual population. With all the 

combinations of standard variables, thousands of different types of agents can be 

considered in activity-based models, rather than just a couple of demographic segments 

in trip-based models. On the other hand, individuals’ daily activity pattern is so complex 

due to its multidimensionality that researchers need a method to examine the daily 

patterns from a holistic point of view. Recently sequence alignment was introduced in the 

field of travel behavior research to answer such an “old” question. In Chapter 2, an 

innovative method was proposed by linking sequence alignment with ANODI (Analysis 

of Distance). It was shown that this new methodological combination can identify unique 

attributes of travelers that influence complex daily activity-travel patterns. Likewise, the 

proposed method can be used to detect policy-sensitive variables for simulated 

individuals. In addition, since activity-based models provide more detailed outputs with a 

list of individual households, persons, tours and trips, their application for environmental 

justice analysis becomes more common to understand the impacts of transportation 

scenarios on different population groups (Cheng, Hu, Huang, & Wen, 2012). The 

proposed method can be applied for environment justice analysis in a different way by 

examining daily activity and travel patterns as a whole rather than specific accessibility 

and mobility indicators. 

 Second, activity-based models explicitly represent time-of-day choices, such as 

activity arrival and departure times as well as activity duration. Continuous-time duration 

models are typically used for activity duration analysis. Chapter 3 discussed some 

limitations of the continuous-time framework and proposed a discrete-time duration 
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model that is essentially a simplest form of dynamic discrete choice models. One of the 

key benefits is that the discrete-time approach can easily handle time-varying constraints 

and allow to track household members and cars for each of 10 or 15-min discrete-time 

periods. Similarly, the most recent version of CT-RAMP explicitly traces car use at 

origin and destination of each trip (Vovsha, et al., 2017). The temporal detail is critical 

given that the integration of activity-based models with dynamic traffic assignment 

becomes increasingly important. A strong potential of the proposed method is that the 

activity-based demand model can be dynamic or time-dependent as well, so that the 

integration with the dynamic supply model can result in “truly emergent” travel 

forecasting. 

 Third, it has become more common to use multiple spatial scales in activity-based 

models. For example, traffic analysis zones may be large enough for auto and transit 

skimming, while microzones or parcels may reduce aggregation bias to measure 

accessibilities associated with population, employment, school enrollment, parking 

supply, distance to transit stops, urban density, etc. Using a smaller spatial scale is 

increasingly important because transportation and land use projects pay more attention to 

their local-level impacts. However, it is challenging to develop and maintain small-scale 

spatial information, especially for future-year scenarios. In Chapter 3, multiple 

imputation by chained equations was introduced to handle multivariate missing values in 

parcel data. This sophisticate data imputation technique was adopted to develop a 

continuous and reusable data hub for land use and transportation planning and modeling 

(Wang & Kim, 2014). 
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 As the age of Big Data has come, travel forecasting has a tremendous opportunity 

to move forward to its mature status. Big Data, such as cellular tower data, navigation-

GPS data, and Location Base-Services (LBS) data, allows us to observe and understand 

mobility behavior at the level of details that has never happened before (Anda, Fourie, & 

Erath, 2016). Nevertheless almost all existing activity-based travel demand models rely 

on conventional data sources, such as household travel surveys and census data. The 

three innovative methods proposed in this dissertation may help realize the 

unprecedented level of details by allowing for greater flexibility in the model 

specification.  
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