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Abstract 

This study examines the criteria which help academics receive National Institute 

of Health funds (NIH). The study covers 3,092 NIH recipients and non-recipients in the 

same department or institute at twenty-four universities. The universities are drawn from 

those below the top twenty in terms of receipt of NIH funds.  With regards to 

performance, non- recipients have lower performance than recipients. A key determinant 

of the receipt of NIH funds is individual performance, as measured by the number of 

articles published and average citations per article in the two years immediately prior to 

the grant application.  Professors receive more NIH money than do associates and 

assistant professors.  Other positive contributors are the field of study, whether the 

academic has both a PhD. and Medical degree, and has licensed an innovation, been 

involved in the start of a new business and patented an invention through the university. 

To the extent that individual performance criteria represent the quality of the research 

proposal, allocation of NIH funds is based on merit.  

A Tobit model indicates that being highly cited does not guarantee increasing 

returns.  Likewise, career citations have only a small statistically significant impact.  In 

addition, a negative coefficient associated with the second derivatives of both articles 

published in 2006–07 and their associated citations indicate diminishing marginal returns. 
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Chapter 1: Literature Review 

In the future, the buildings housing those who will create well-paying, 
sustainable jobs, and provide the United States with a sustainable 
competitive advantage in the global economy are not courthouses or 
government offices but research labs, classrooms, and innovation centers 
where big ideas are hatched and subsequently translated into reality. 
(Thorp and Goldstein, 2010, Engines of Innovation: The Entrepreneurial 
University In The Twenty-First Century, p. 2) 

There are limits to how much of the total talent a few universities can 
succeed in capturing. … But the distribution of talent in its most extreme 
form is nevertheless sharply skewed.  … The greatest discoveries are 
made by a very small proportion of the population of professors at even 
the best schools.  If the wealthiest dominate the “acquisition” of this 
group, they will in fact reduce the competitors to a farm system of 
universities, whose function will increasingly be to prepare those who 
demonstrate the greatest talent to move up to the “final eight” or the “final 
four”. (Cole, 2009, The Great American University, p. 47) 

Background 

The statements reproduced above represent the promise and the dilemma 

associated with American universities and colleges, which provide the wherewithal—

graduates and intellectual capital—needed to compete successfully in a global economy.  

Though they are important institutions, needed for economic growth, their underlying 

principle of academic excellence, which has evolved since World War II, has created a 

number of challenges.  First and foremost is the use of rankings to determine academic 

excellence.  This system, called climbing the Carnegie Ladder, places research 

universities on the top rung of the ladder.  Colleges and universities compete to reach the 

top rung.  The problem, as Cole expressed above, is that those at the top of the ladder, 
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considered to be the elite, garner the largest amounts of research funds and alumni 

contributions, which in turn attracts the most talented researchers: the stars.  Thus the rich 

get richer.  This makes it difficult for lower-ranked universities and colleges to compete 

effectively.  A second challenge is the pressure associated with the expectations placed 

on the academic entrepreneur.  The academic entrepreneur, as initially defined, is 

concerned with obtaining research grants and economic sponsorship from private and 

government sources.  Over the past few decades, this term has taken on a more business-

oriented meaning, in that such academics are actually entrepreneurs who found 

businesses, which happens particularly frequently in the field of biotechnology. 

After World War II, university administrators made a conscious effort to make the 

academic entrepreneur the “normative behavior” for university professors.  This behavior 

was encouraged through a reward system in which salaries and promotion were based on 

the amount of outside grant money received (Lowen, 1997). 

Since the academic system has been considered a meritocracy, academics who are 

considered “stars” obtain a disproportionate amount of the rewards and acclaim, which is 

known as the Matthew Effect (Merton, 1968).  Further, because of that acclaim, “star” 

academics are the most sought-after by universities attempting to maintain or improve 

their ranking relative to other universities.  Consequently, they can demand premium 

salaries and other benefits from current or suitor institutions.  However, once hired, 

exceptional performance is expected of them.  The resulting pressure, critics such as 

Rhode (2006) have argued, has led to too little attention given to teaching and too much 
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given to producing research.  While this criticism may be justified, the underlying 

problem concerns the atmosphere and culture surrounding the academic entrepreneur: 

In an ideal world, research priorities would be determined by what is most likely 
to advance the pursuit of knowledge.  In the world as we know it, the focus is 
often on what is most attractive to government, foundation, corporate, or 
individual funders.  And when institutions or their faculty can take a cut of the 
revenues through patents or partial ownership interests, or when sponsors insist on 
secrecy or controls over publications to protect their investment, the corrosive 
possibilities are still greater. Why should so much effort focus on basic research 
when all the money is in developing no-snag panty hose? (Rhode, 2006: 20–21) 

 
The purpose of this dissertation is not to address the validity of these criticisms.  

Rather, this research will attempt to answer three questions at the heart of the existing 

approach followed by university administrators.  First, are there specific characteristics 

that positively affect the receipt of federal research funds?  Second, are there increasing 

returns associated with attracting star academics to a university?  Third, can lower-ranked 

universities move up in the rankings, or do those who are considered elite have such a 

cumulative advantage that it is almost impossible to reach the top tier?   

As a foundation for addressing these three, primary research questions, I make 

one assumption and put forward two propositions.  The assumption is that university 

officials and faculty researchers at universities, as well as policy makers, are rational 

actors.  The first proposition is that at the strategic level there are two economic models 

at work.  The second proposition is that university officials do not operate in a vacuum; 

their decisions are shaped by the norms of the university. 

I first consider two economic models.  The first model, clearly expressed above 

by Cole (2009), stresses the positive agglomeration effects and cumulative advantage 
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early entrants obtain over time.  The rich get richer and early entrants have an absolute 

advantage that later entrants have a difficulty overcoming. his model primarily views the 

university as one of many economic entities, albeit a somewhat-isolated ivory tower. 

The second model is associated with creative destruction, disruptive technology, 

and institutional lock-in.  This model is expressed by the statement above of Thorp and 

Goldstein (2010), and those who support space allocation for startups.  Under this model, 

entrepreneurs appropriate the spillover benefits of university research.  This model 

emphasizes the entrepreneur who starts new firms using acquired or retained knowledge.  

Moreover, universities interact differently with different types of entrepreneurs.  For 

instance, the history of the electronics industry indicates that new firms were often 

created by dissatisfied employees who left existing firms.  Silicon Valley’s rise was in 

part due to a close working relationship with Stanford University’s scientists and 

engineers.  In biotechnology, meanwhile, the entrepreneurs are frequently academics.  

The software industry’s entrepreneurs are sometimes students who begin from their 

research at university to start new companies (Battelle, 2005; Darby and Brewer, 1997, 

Zucker; Friedman, 2004; Friedman, 2009; Lecuyer, 2007; Livingston, 2007). 

It should be noted that these economic models are not mutually exclusive, with 

the second model often considered a subset of the first (Ellison and Glaeser, 1997; Fujita 

and Thisse, 2001).  However, their different emphasis could lead to different policy 

decisions and differently structured local or regional economies.  Consequently, they are 

treated here as two models. 
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The treatment of these models as distinct is not unreasonable, since certain 

agglomeration effects are often stressed over others.  Christophe Lecuyer (2007) 

attributes Silicon Valley’s growth to Marshall-associated agglomeration effects, primarily 

technology efficiency, with organizations adopting flatter and more flexible structures.  

He deemphasizes the public-good aspects of knowledge spillovers, the free ridership of 

social networks identified by Saxenian (1996), the monopoly rents associated with 

sectors dominated by intellectual capital, and lock lock-in effects , because of consumer 

choice or standardization, have allowed companies like Microsoft and Intel to dominate 

their markets and reap near-monopoly rents (Liebowitz and Margolis, 1999).  On the 

empirical side, Henderson (2008) contends that economies of agglomeration and 

knowledge spillovers have not been sufficiently separated for analysis. 

Two universities exemplify the polar distinctions between these models.  At one 

end is Johns Hopkins University, which for much of its history has had a culture that 

discourages professors from collaborating with the private sector (Feldman and 

Desrochers, 2003; 2004).  At the other end is Stanford University, which has actively 

encouraged collaboration and spin-offs and has had a policy to provide incubator space 

(O’Mara, 2005).  In the case of Stanford, Battelle (2005, p. 67) stated, “Students don’t 

come to Stanford just for training.  They come for the dream: to start a company, grow 

rich, make their mark on the history of technology, and maybe change the world.” 

One difficulty is that neither strategic model leads to a clear-cut winner.  

Historically, Johns Hopkins has been the largest university recipient of federal research 

and development (R&D) money, receiving almost twice as much annually as MIT and 
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Stanford.  Yet, Johns Hopkins “…lags behind other universities in measures of 

technology transfer performance, such as number of patents granted, licensing revenues 

and university-based spin-offs” (Feldman and Desrochers, 2004, p. 107). 

Overlaying the strategic models and example universities are the organizational 

and cultural norms associated with university growth and prestige (the second proposition 

I mentioned above). Christensen and Eyring (2011) call this climbing the Carnegie 

ladder.  The top rung of the ladder is a designation as a research university.  To climb the 

ladder, lower-ranked universities attempt to emulate elite research universities by adding 

laboratory space and hiring star academics.  The underlying assumption is that by 

emulating the elite research universities, those ranked lower will reap increasing returns 

by garnering a greater share of research funds, thereby attracting better academic talent 

and more graduate students.  Two difficulties are presented, however.  One, moving up 

the ladder is an expensive and high-risk venture.  The winners of such a move appear to 

be faculty and administrators, with the costs being born by taxpayers, donors, fundraisers, 

and students.  “But, whether the additional prestige is worth the gamble is another 

question, and one that has become increasingly important in light of the escalating costs 

of higher education” (Rhode, 2006, p. 14).  The second difficulty is that the cumulative 

advantage of the elite research universities may be such that lower-ranked universities 

will always be subservient; in other words, the gamble may never pay off at all. 

Having presented the assumption and propositions, the next step in developing the 

research model is to assess the assumption and to evaluate what prior research says about 
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the propositions.  Prior research will also help identify the most important variables to 

include in the model. 

 

Rational Actor Theory 

A consistent assumption in neoclassical economics is that humans are rational 

beings and will act in their own self-interest.  Given the choice between two goods, an 

individual will seek to maximize his or her wellbeing, selecting the good that maximizes 

utility.  A similar assumption is made about private and public organizations.  Firms and 

organizations, of course, are legal entities, not individuals with individual preferences.  

Nevertheless, it is assumed that such entities seek to maximize institutional self-interest, 

as perceived by those who are in control.  Such self-interest, when combined with the 

desire to make a profit, results in actions that impact the economy and long-term growth.  

North (1990, p. 74) notes the potential broader economic impact of one of the 

contributors to economic growth, knowledge: “The kinds of knowledge and skills that 

will be acquired by the organization to further its objective will in turn play a major role 

in the way the stock of knowledge evolves and is used.” 

While organizations act in their self-interest, it is essential to distinguish between 

the interests and objectives of the individuals who control the organization and the needs 

of the firm.  Andrew Grove recounted the story of how Intel exited the memory chip 

business.  He was talking to Gordon Moore, Intel’s Chairman and CEO at the time.  “If 

we got kicked out and the board brought in a new CEO, what do you think he would do? 

Gordon answered without hesitation, ‘He would get us out of memories.’ I stared at him 
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numb, then said, ‘Why shouldn’t you and I walk out the door, come back in and do it 

ourselves?’”(Grove, 1988, p. 89) 

Grove called this incident a strategic inflection point, a point in time at which 

decisions become critical for a company’s growth, even its survival.  Such points, 

however, are difficult to recognize and even more difficult to implement if the needed 

change is radical.  This is particularly true if the organization has been very successful.  

Prior success can blind decision-makers, leading them to make decisions that seem 

foolish in hindsight. 

The rational actor concept has also been generally accepted in the field of public 

administration.  In a review of the literature on this topic, Camerer and Fehr (2006) 

conclude that under certain conditions, models based on self-regarding preferences and 

homogeneous rationality predict aggregate behavior rather well.  In short, such models 

can be used to predict behavior, because that behavior is frequently consistent and 

rational. 

Because an organization’s goals and needs sometimes differ from those of its 

individual members, organizations have developed procedures to unify and channel 

individual actions.  The primary mechanisms for doing so include: 

1. Dividing work and assigning tasks. 

2. Establishing work rules and standards of behavior. 

3. Establishing a hierarchy through a system of authority and influence. 

4. Indoctrinating members in the values of the organization, through training and 

informal means. 
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5. Developing and articulating organizational goals and strategic objectives. 

(Argyris, 1973, Simon, 1973a) 

Organizational and group norms are particularly important for moderating the 

conflict between individual goals and organizational needs.  With respect to academic 

research, a number of norms have evolved over time and seem widely accepted.  These 

norms, as articulated by Robert Merton (1968), are communism, universalism, 

disinterestedness, and organized skepticism.  More simply put, academic findings must 

be published (communism), knowledge must be subjected to impersonal criteria for 

evaluation (universalism), personal interest must be excluded from procedures for 

acquiring knowledge (disinterestedness), and criticism is permitted and encouraged 

(organized skepticism; Centina, 1991).  The general acceptance of these norms 

“…guarantee that, unlike other social systems, stratification and scientific inequalities in 

science grow by the application of universal criteria, so the most significant contributors 

are also the best rewarded” (De Bellis, 2009, p. 56).  Feldman and Desrochers (2004) 

observe that these norms significantly influenced Johns Hopkins University’s approach to 

research, while Thursby and Thursby (2003) assumed the presence of these norms in their 

research design. 

 

Agglomeration Effects and Cumulative Advantage 

The concept of agglomeration effects is derived from the work of Alfred 

Marshall, who identified four main factors that contribute to and are the consequences of 

agglomeration: 1) the existence of “thick markets” for specialized labor; 2) the existence 
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of knowledge and technology spillovers; 3) the emergence of subsidiary trades; and 4) 

the reduction of transportation and communication costs (Fingleton et al., 2007).  More 

recently, the work of Arrow (1962; 2000) and Romer (1986) has expanded the concept of 

externalities to include the interactions between industries and organizations in a model 

of knowledge accumulation.  Romer’s work is sometimes associated with what is called 

new growth theory.  In general, the production of new knowledge is said to have 

decreasing returns at the firm level.  It takes considerable time and energy (some of 

which may not prove useful) to produce knowledge.  However, there are positive returns 

to co-located firms via knowledge spillovers and free-rider appropriation.  Co-located 

firms can sift through knowledge that is placed in the public domain or obtained through 

networking, take what they find useful, and leave the rest.  At the initial level of 

commercialization, where a new product is dominated by intellectual capital or where 

path dependence and market lock-in control, there are increasing returns to generating 

knowledge.  In knowledge-dominated products, once the knowledge is developed and 

transferred to the product, the cost of replication becomes minimal.  For instance, the cost 

of a computer disk containing Microsoft Office is far less than the cost of developing the 

software.  In addition, the cost of reproducing millions of copies of the code is equally 

small relative to the development cost.  Lastly, if the commercializing firm is an early 

entrant and is able to establish its product as the standard, it will then gain a majority 

share of the market and reap monopoly-like profits.  The theory of increasing returns also 

emphasizes the importance of timing: it makes little sense to enter a market that is 

already close to being locked-in (Arthur, 1996). 
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Glaeser and Gottlieb (2009) conclude that while some manufacturing firms cluster 

to reduce the cost of moving goods, there appears to be a shift in factor intensity, 

particularly with respect to education levels.  Education levels in metropolitan areas are 

positively associated with per capita income and employment growth (Gottlieb and 

Fogarty, 2003).  High levels of education also appear to help lagging areas reorient and 

better adjust to economic shocks (Glaeser and Saiz, 2003).  The presence of a research 

university helps facilitate economic growth in up-cycles, while also reducing the 

magnitude of contraction in a downturn (Lendel, 2010).  Thus, urban areas with a high 

level of education and higher-ranked universities appear to have an advantage over those 

with lower levels of education and lower-ranked universities. 

These contributions of education and associated skills appear to hold particularly 

well for science-based industries.  In examining the expansion of knowledge stock in the 

field of nanotechnology, Darby and Zucker (2003) found that the size of the knowledge 

stock in a particular geographic area, in terms of both patents and articles published, is 

positively related to the creation of knowledge in the field.  Similarly, the amount of 

National Science Foundation funding awarded to an area is also positively associated 

with the development of knowledge stock. 

Consistent with new growth theory, entrepreneurial firms tend to locate near 

research facilities in order to appropriate knowledge spillovers (Jaffe, Fogarty, and 

Banks, 2002).  Reinforcing the concentration of such firms is the tendency of star 

scientists and engineers to gravitate to highly ranked universities (Zucker and Darby, 

2006).  Finally, to complete and reinforce this pattern of growth, cumulative advantage 
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and positive returns also appear to be at work in the distribution of federal funding.  As 

Rose (1986, p. 96) observed: “The newest and most modern facility attracts eminent 

scientists to an institution; the scientists win vast numbers of research grants; and the 

resulting prestige makes the host institution a prime candidate for any additional facility 

support that becomes available.  The elite research universities are quite naturally pleased 

with this process.” 

In summation, the presence of highly skilled workers and knowledge diffusion are 

seen as key ingredients for economic success.  Skill-based cities are both more productive 

and have higher rates of economic growth.  In fact, there appears to be a cumulative 

advantage associated with highly skilled areas: such areas attract higher levels of talent, 

larger amounts of research funds, and more firms that want to appropriate the knowledge 

stock.  Lastly, skill composition may be one of the most powerful predictors of urban 

growth. 

In another respect, high skill levels, when combined with high levels of research 

and development (R&D), provide the seed corn for innovation and entrepreneurship.  

This can lead to the development of disruptive technologies and processes, which in turn 

allow emerging firms that use new inventions and technologies to replace the old.  This is 

the second model. 
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Creative Destruction and Knowledge Spillover: A Theory of Entrepreneurship 

Creative destruction is a dynamic process whose main actor is the entrepreneur, who 

creates something new: a technology, a process, a new supply source, or a new 

organizational structure.  By placing these innovations in the market, the entrepreneur 

challenges existing firms and their products.  In some cases, the new innovation 

commands a decisive cost or quality advantage that challenges not just the margins, but 

the very profit foundation of existing products (McGraw, 2007; Swann, 2009).  New 

technologies or processes disrupt the existing economic balance and, over time, 

supersede older, previously established technologies.  This succession forces existing 

firms to adapt or go out of business.  The implications of this process extend beyond the 

simple succession of market-dominant firms and products.  Caballero and Jaffe (2002, 

p. 148) found that the general decline in labor productivity from the 1960s to the mid-

1980s “…can be traced to a fall in research productivity connected to a decrease in the 

potency of old knowledge in generating new ideas.” 

To the extent that a metropolitan area is dominated by older firms with 

technologies or products that are being challenged or superseded in the marketplace, the 

entire area will have a harder time competing.  If the metropolitan area becomes unable to 

attract or keep highly skilled workers or unable to create an atmosphere conducive to 

innovation, the city may slip into a downward spiral.  By contrast, “cities of knowledge” 

evolve and are sustained because they place considerable emphasis on building university 

research capabilities, generating industrial research, and attracting highly skilled workers, 

primarily scientists and engineers (O’Mara, 2005). 
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The knowledge stock in a geographic area is primarily endogenous and a result of 

the local educational system, in which the university plays a major role.  As an 

institution, the university consumes goods and services and prepares its graduates for the 

workforce with professional training and advanced degrees.  Academics provide 

consulting services and engage in research and development activities that spill over into 

the economy.  Other university outputs include capital investment and provision of 

regional leadership (Goldstein and Renault, 2004). 

Emphasis on the entrepreneur shifts the focus of economic decision-making away 

from the exogenous firm to “individual agents with endowments of new economic 

knowledge”; however, these agents cannot function if the knowledge stock that results 

from R&D is entirely appropriated by existing firms (Aces et al., 2009).  Audretsch 

(2007) argues that high-technology hubs like Silicon Valley, Austin, San Diego, Boston’s 

Route 128, and North Carolina’s Research Triangle Park represent economic cultures and 

clusters that exhibit the attitudes, actions, and values necessary for an entrepreneurial 

society.  As Audretsch (2007, p. 190–91) observes: “The flagship institutions and policies 

in an entrepreneurial society must have an entirely different focus than their counterparts 

did in the managed economy.  The entrepreneurial society institutions are a departure 

from the managed economy stalwarts: unions, big government programs, and corporate 

hierarchy.” 

In her study of the growth of Silicon Valley, Saxenian (1996) revealed the 

importance of network linkages and flatter organizational structures for dynamic 

economic environments.  Her analysis indicated that, in the semiconductor industry, at 
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least, the Route 128 corridor was more closely linked to Audretsch’s “managed 

economy.”  Further, she observed that the vertical integration, structural hierarchies, and 

secrecy that typified Route 128 corporations prevented them from responding quickly 

enough to the accelerated pace of technological and market change in semiconductors. 

Examining labor mobility and patent citations, Almeida and Kogut (1999) found 

that networks and labor mobility were stronger in Silicon Valley than in other 

semiconductor clusters in the United States.  Labor mobility helped diffuse knowledge 

and reinforced an entrepreneurial orientation.  In San Diego, a cadre of managers 

associated with Hybritech, a company formed in the early 1980s, was instrumental in 

founding or strengthening relationships with other local biotechnology companies.  These 

companies and their associated linkages became the basis for San Diego’s biotechnology 

cluster (Casper, 2007). 

Networks of relationships are one of the differences between older, established 

economic areas and emerging ones.  Looking at patent issuance and subsequent citations, 

Auerswald and Kulkarni (2008) found that the infrastructure and culture of regions with 

emerging technology clusters also differ from older, established regions.  Emerging 

regions lead in patents for new technology, as well as in “hot patents,” which are 

previous generations of patents that lead to innovation.  According to their analysis, many 

areas with emerging technology economies are on urban peripheries and in small to mid-

sized cities. 

These findings of Saxenian (1996), Almeida and Kogut (1999), O’Mara (2005), 

Audretsch (2007), and Auerswald and Kulkami (2008) support the idea that knowledge 
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spillovers and disruptive innovations facilitate the development of new economic 

clusters.  This is especially true when technological/institutional lock-in and path 

dependence substantially limit the ability of existing firms to appropriate or absorb new 

knowledge. 

New technologies and ideas challenge the established order, yet because they are 

not as well-developed or mature, they may seem inconsequential when compared with 

existing products.  An early example is provided by the reaction of a British Parliament 

committee upon reviewing Thomas Edison’s idea for electrical lighting.  The committee 

noted that while Edison’s wild dreams might be “good enough for our transatlantic 

friends,” they were “unworthy of the attention of practical or scientific men” (Jones, 

2003, p. 59)  A more recent example concerns the development of the personal computer.  

Commenting on the rise of Apple Computer, Berkum (2010) noted that two decisions 

facilitated Apple’s success.  First, two leading companies—Atari and Hewlett-Packard—

declined to manufacture Apple’s computer.  Second, Xerox chose not to market the Alto 

computer developed by its California research laboratory.  Given the later growth of the 

personal computer market, these decisions today seem foolish.  However, the managers 

of Atari, Xerox, and HP must have believed they were making reasonable business 

decisions.  Another recent example is the development of the “proof of concept” data for 

Genentech’s underlying science.  According to Robbins-Roth (2000), when Keichi 

Itakura and Art Riggs, two of the scientists associated with the development of the proof 

of concept, applied for federal funding, “the reviewers doubted they could do it in the 3-

year grant time frame and also doubted the scientific merit.  Genentech funding did it in 9 
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months, and Philip Handler, President of the National Academy of Science, called it a 

scientific triumph of the first order” (p. 16). 

More generally, seemingly minor decisions made early in the establishment of a 

new technology can have large subsequent impacts (Arthur, 1996, 2009; Swann, 2009).  

Once a technology or process is established, it becomes harder for the organization using 

it to change.  “If it were desirable to re-establish an excluded technology—say steam 

propulsion—an ever widening technical changeover gap would have to be closed” 

(Arthur, 1996, p. 46).  Intellectually and technologically, organizations using dominant 

technologies or ideas tend to be locked in.  “It’s both a psychological and economical 

phenomenon: as people and companies’ age, they have more to lose.  … Attitudes 

focused on security, risk aversion, and optimization of the status quo eventually become 

the dominant positions, and even become organizational policy at companies that were 

once young, nimble and innovative” (Berkum, 2010, p. 62) 

Under conditions of lock-in and path-dependence, the attackers—new firms using 

new technology or processes—have an advantage.  If a technology or process happens to 

become dominant and locked-in, a company using it will reap monopoly profits and 

expand substantially, just as Microsoft and Intel did.  The growth of new companies 

under such conditions can help create both critical mass and a comparative advantage for 

the geographic regions in which they are located. 
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The Role of Universities 

The role that universities play in economic development is both historically 

important and wide-ranging.  Reviewing the development of the Industrial Revolution in 

Western Europe, Mokyr (2002) argued that the presence of academies, universities, and 

research institutes, along with the “…rules by which they play (such as open science, 

credit by priority, reproducibility of experiments, and rhetorical rules of acceptance) 

helped determine its historical path” (p. 288).  Mokyr also argued that technological 

advances are in part determined by the ability of educational systems to teach technical 

skills and enhance workers’ ability to absorb new knowledge and employ it in innovative 

ways. 

Thorp and Goldstein (2010), Audretsch (2007), O’Mara (2005), Zucker et al. 

(1998), and Saxenian (1996) all emphasized the importance of entrepreneurship and 

universities for creating the culture and infrastructure urban areas and regions need to 

reach critical mass and sustain economic growth.  Universities are also uniquely qualified 

to bring disparate groups together to find solutions to problems that seem intractable.  As 

Trani and Holsworth (2010) observed: “The upshot is that modern colleges and 

universities possess resources—scientific, commercial, medical, and cultural—that are 

vital to the entire range of community and regional development activities relevant to the 

contemporary knowledge economy” (p. 220). 

Universities provide the ingredients regions need to develop and sustain their 

comparative advantage (Feldman, 2007; Jaffe, Fogarty, and Banks, 2002).  As noted 

above, they provide employment and training.  University research also contributes 
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substantially to the development of new innovations and technologies (Mansfield, 1991).  

Equally importantly, universities contribute to the stock of knowledge from which new 

innovations and technologies are drawn.  Academic papers have a greater spillover effect 

than do industry papers (Adams, Clemmons, and Stephan, 2006).  In addition, co-

authorship between star scientists and/or top-ranked university scientists and company 

scientists increases the number and citations of that firm’s patents (Zucker, Darby and 

Armstrong, 1998). 

Firms tend to locate near major research universities in order to tap into tacit 

knowledge (Darby and Zucker, 2003).  However, Bania, Eberts, and Fogarty (1993) 

found that the impact of universities on startups may be industry-specific.  Their analysis 

found a significant association between university research and electrical and electronic-

equipment industries.  However, for instruments and related products, the relationship 

was insignificant.  Moreover, they found that greater numbers of scientists and engineers 

in the workforce did not have an effect on number of startups. 

Biotechnology is one area where there is a strong linkage between the university 

and the development of economic clusters (Friedman, 2004; Friedman, 2009; Zucker, 

Darby and Brewer, 1998).  The rise of the Washington, DC area as a biotechnology 

center is one example.  The Washington area had little biotechnology presence in 1973, 

with only ten biotechnology companies.  By the late 1990s, however, there were over 300 

biotechnology companies in the DC area.  Maryland ranked third in 1999, behind 

California and Massachusetts, among US states in the number of biotechnology 

companies, and the state ranked third, behind California and New York, in the number of 
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scientists and engineers with doctorates working in biotechnology (Feldman and Francis, 

2003).  Reviewing the growth of the DC biotechnology industry, Feldman (2007) noted 

“…conditions favored new-firm formation, perhaps in part due to the lack of an 

established large pharmaceutical company that could engineer mergers or acquisitions” 

(p. 256).  A key factor in the growth of biotechnology in the Washington area appears to 

have been a reduction in federal employment, which left many government scientists out 

of work, creating a surplus of highly skilled labor.  Slowly, networks of entrepreneurs, 

policymakers, and suppliers began to form.  At the same time, local universities, colleges, 

and technical centers recognized the need for more high-technology-oriented training and 

began to offer needed programs. 

Case studies of San Diego and Atlanta (Walcolt, 1999; 2002) and Cincinnati 

(Ferrand et al., 2009) have indicated that the presence of local universities facilitated 

biotechnology development there.  Lester’s (2005) examination of economic activity and 

growth in localities worldwide found that the contribution universities make to economic 

growth depends on the type of economic growth that is occurring, concluding as follows: 

In cases of new industry creation a local university or public research 
laboratory typically played the role of anchor institution, whereas in the 
case of upgrading the anchor institution was more likely to be a lead firm 
or lead customer.  In science-based industry formation the highest-impact 
educational outputs of local universities were PhD-level scientists and 
engineers with an interest in entrepreneurial careers and some exposure to 
entrepreneurial business practices. (p. 23) 
 
Regardless of the model—agglomeration or creative destruction—existing 

research appears to agree on three points.  First, universities are important contributors to 

areas' economic development and stability (Feldman and Florida, 1994; O’Mara, 2005; 
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Zucker, Darby and Brewer, 1998).  Second, money to sustain research, generally 

channeled through a research university, is a key contributor to economic growth, 

although the impact of research funds is still unsettled.  For example, Bloom-Kohout, 

Kumar, and Sood (2009) found that for every dollar of federal extramural research 

funding received in the life sciences, non-federal funding increased by $0.33.  In 

pharmaceuticals, a 1% increase in public basic research (specifically, NIH funding) 

ultimately led to a 1.8% increase in the number of new firms (Toole, 2012).  Woodward, 

Figueiredo, and Guimaraes (2006) found that the impact of research funds is generally 

marginal, ranging from 0.04 to 0.004 percent per million-dollar increase in R&D funding.  

Third, there must be an intertwining of government, universities, and private companies, 

which is called the Triple Helix (Etzkowitz, 2008; Etzkowitz and Leydesdorff, 2000; 

O’Mara, 2005).  In the Triple Helix, each entity reinforces and challenges the others with 

new ideas and new needs.  The result is a capitalization of knowledge similar to the 

development of physical infrastructure. Etzkowitz (2008) concludes as follows: 

When knowledge is transformed into capital, persons from any originating 
organization may be potential entrepreneurs and founders of firms.  A 
triple helix in which each strand may relate to the other, two can be 
expected to develop an “overlay of communications, networks, and 
organizations among the helices”. (p. 20). 
 
This combination results in a constructive advantage, which is defined as “… a 

strategic policy perspective of practical use to business firms, associations, academics 

and policy makers” (Cooke, 2006, p. 188).  The need for such a policy is one of the 

lessons O’Mara (2005) draws from the growth of “Cities of Knowledge”: high-

technology development must be “the end, not the means.”(p. 230) 
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Yale University provides a practical example of the Triple Helix.  Its experience 

also suggests that internal changes in the university are often necessary.  Prior to 1993, 

Yale had a culture regarding innovation that cost it foregone remuneration from a number 

of faculty inventions.  Between 1993 and 1996, “…the arrival of young faculty members 

from universities traditionally collaborating with industry contributed to a cultural change 

at Yale.  Moreover, successful commercialization has also contributed to the creation of a 

new culture at Yale that supports technology transfer” (Breznitz, 2014, p. 75). 

As a result of this cultural change, the staff in Yale’s Office of Technology 

Transfer (OTT) was upgraded.  By 2004, the OTT employed eighteen professionals with 

five-to-seven years of experience in private industry.  The process of licensing and 

spinning-out companies was changed to make it easier for faculty to do so.  The focus 

was also shifted from simply licensing and patenting to transferring inventions to the 

public domain.  

Between 1996 and 2011, royalties increased from a little over $5 million annually 

to $11 million.  By 2012, Yale was averaging 24 patents a year and had had 55 spin-outs 

and companies, of which 29 were biotechnology spin outs.   

To catalyze the capitalization of new businesses, Yale brought together venture 

capitalists, local companies, and local and state government agencies with the goal of 

facilitating the development of economic clusters in New Haven and Connecticut.  In 

sum, without the cultural change and committed leadership at Yale, New Haven’s 

biotechnology cluster might not exist. 
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Star Scientists and Engineers 

The case of Yale and biotechnology suggests that there is often a direct linkage 

between startups and university scientists.  Zhang and Patel (2005) found that between 

1990 and 2000, scientists working at universities or research laboratories founded close 

to half of venture-backed biotechnology startups, about two-thirds of which stayed in the 

same state as the university or laboratory.  Examining the relationship between human 

capital and the birth of biotechnology companies in various regions throughout the 

United States, Zucker, Darby and Armstrong (1998) found three significant factors: 1) a 

concentration of what the authors term “star scientists” or what Audretsch (2001) calls 

the “best scientific talent”; 2) the presence of major research universities; and 3) federal 

funding.  Of the three factors, the presence of star scientists and engineers was considered 

the most important.  In fact, once the number of star scientists is statistically controlled, 

the effects of the local and national economic infrastructures disappear (Zucker and 

Darby, 1996).  Stars, defined as scientists with twenty or more discovery articles, account 

for a higher percentage of new innovations than do their counterparts (Zucker, Darby and 

Brewer, 1998).  While star scientists represented only 0.8% of scientists listed in the Gen-

Bank through 1990, they accounted for 17.3% of published articles, or about 22 times the 

average Gen-Bank scientist (Zucker and Darby, 1996).  Star scientists also tend to 

congregate, moving from lower- to higher-ranked universities and to locations with 

greater opportunity.  The presence of star scientists and engineers is positively associated 

with firm location and new-firm creation, which contributes to a concentration of high-

technology industries in their vicinity (Zucker and Darby, 1996). 
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The Carnegie Ladder 

The Carnegie Ladder refers to a classification of academic institutions developed 

by the Carnegie Foundation, as follows: Research Universities, Doctoral Universities, 

Comprehensive Institutions, Liberal Arts Colleges and Two Year Colleges, and 

Specialized Institutions.  While there is evidence of a cumulative advantage among top-

tier institutions, some convergence in terms of publication volume has also occurred.  

Evidence of publication convergence led Dey, Milem, and Berger (1997) to observe that 

“it is not surprising that institutions at the lower levels in the hierarchy are attempting to 

be more isomorphic with regard to the publication-productivity rates of the top-tier 

institutions, given the higher visibility and greater influx of research funds that result 

from high rates of productivity” (p. 320). 

Reviewing the approach taken by the University of Chicago in assembling the 

faculty in economics that became known as the Chicago School and which is associated 

with a number of Nobel Laureates, Overtveldt (2007) remarked that the approach taken in 

the earliest days was simple: “We look for home runs” (p. 29).  Administrators sought 

economists that, because of their extensive scholarship, were very likely to make 

breakthroughs in the discipline. 

Obtaining the best possible academic talent has long been the conventional 

wisdom in higher education.  Cole (2009) considered talent accumulation a necessary 

condition for institutional excellence.  His historical analysis of research universities 

reinforced the notion of an accumulative advantage and points to the allure of being one 

of the best.  He concludes as follows: 
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The oldest private and public universities used their early advantage—
better faculty attracted stronger students, stronger students meant greater 
alumni contributions, greater alumni contributions led to better research 
facilities, better research facilities drew better faculty and so on.  
Advantages such as these allowed top universities to accumulate even 
more resources from individuals and institutional backers in order to 
create still greater advantages in competing for talent. (p. 34–35) 
 
Stanford University’s history of growth illustrates the cumulative advantage of a 

top-ranked university, but it also serves as evidence that middling institutions can become 

powerhouses.  Leland Stanford and his wife founded a junior college as a memorial for 

their son.  Centered on farmland in Palo Alto, California, Stanford opened its doors in 

1891.  By 1945 it was a regional university “with aspirations.”  By 1961, it had ten 

departments in the top echelon of U.S. universities, as rated by the American Council on 

Education.  By 1984, the American Council on Education ranked Stanford’s engineering 

school third, just behind UC Berkeley and MIT (Adams, 2009). 

The guiding light for Stanford’s ascent was Fredrick Terman, the provost and 

Dean of Engineering.  Terman implemented a number of significant changes in the way 

Stanford operated.  He sought to create strong connections with the local business 

community.  He created steeples of excellence by attracting eminent scholars, under the 

belief that these stars would attract other stars, as well as attracting money from federal 

and private sources.  He also encouraged faculty to supplement their university income 

by consulting for private companies.  Lastly, he helped create the Stanford Industrial 

Park, where new and existing firms could be in close proximity to the university’s 

facilities and faculty. 
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Stanford’s development was a slow process and not without controversy.  The 

shifting of the political science department to a behavioral approach (which eventually 

raised its rankings) is a case in point.  In 1957, Terman and Stanford’s President Sterling 

blocked the department’s choice for chair, Mulford Q Sibley.  This created a 

confrontation with faculty members and a furor in the press.  However, Terman wanted to 

hire a star with a behavioral approach, consistent with his view of the direction the 

university needed to take in order to align with the preferences of potential funders.  

Ultimately, the university hired Gabriel Almond as chair in 1963.  Sidney Verba, a leader 

in comparative politics with a behavioral approach, moved from Princeton to Stanford a 

year later.  During this seven-year period, the department’s ranking rose from thirteenth 

to seventh (Lowen, 1997). 

While Terman did not build steeples of excellence across the entire university, his 

overall approach was successful.  The symbiotic relationship between Stanford 

University and local businesses would lead to an economic dynamo that became known 

as Silicon Valley.  Between 1988 and 1996, startup companies linked to Stanford 

accounted for 60% of the revenue generated by all Silicon Valley firms (Gibbons, 2000). 

By 1998, Silicon Valley’s publicly held companies had a market capitalization of $743 

billion—while Detroit’s automotive industry was capitalized at $136 billion and 

Hollywood’s entertainment firms were capitalized at $76 billion (Nevens, 2000). 

As Silicon Valley companies flourished, Stanford’s standing as a top-tier research 

university became firmly established.  As of 2006, its 264 National Academy-elected 

members ranked behind only Harvard (with 284 members).  Also in 2006, the size of 
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Harvard’s endowment ranked first, while Stanford’s ranked third.  In research dollars 

received, Stanford ranked eighth behind top-ranked Johns Hopkins (The Center for 

Measuring University Performance, 2008).  Thus, Stanford has become a prime example 

of an entrepreneurial university. 

 

The Entrepreneurial University 

The aura of Silicon Valley and its symbiotic relationship with Stanford has led 

other universities, as well as governments, to seek to replicate Stanford’s strategy.  The 

University of Louisville, for instance, was able to increase its NIH funding between 1996 

and 2006 from 95th to 73rd place, or from $20 million to over $90 million.  This was 

accomplished through a series of initiatives that included “bucks for brains,” a state-

funded program used to create and fill endowed chairs with faculty who are exceptional 

contributors to their fields.  University and local leadership expected that these faculty 

would “bring major extramural grants and contracts to the university” (Schweitzer, 

Sessler, and Martin, 2008, p. 564). 

At the national level, Congress endorsed the concept of an entrepreneurial 

university in passing the Bayh-Dole Act of 1980, which allows universities to license and 

patent inventions and innovations derived from federally sponsored grants.  The 

expectation was that a greater amount of university-to-industry technology transfers 

would occur, which in turn would garner additional revenues from fees and licenses 

(Mowery et al., 2004). 
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The Bayh-Dole Act has contributed to the creation of technology transfer offices 

within universities and has also resulted in an increase in the number of patents issued to 

colleges and universities.  The impact of the Bayh-Dole Act is still being debated.  

Aldridge and Audretsch (2010) found that 70% of university scientists with grants from 

the National Cancer Institute (NCI) who commercialize their research do so through their 

university’s office of technology, while the other thirty percent use the back door of 

commercializing their research through spinouts.  Mowery et al. (2004) questioned 

whether the Act has been an important contributor to the university’s impact on economic 

growth and development, noting that universities had conducted research and made 

substantial economic contributions to local economies long before the Bayh-Dole Act.  

The research of Thorp and Goldstein (2010) fall somewhere in the middle.  They noted 

that only a few universities have reaped substantive financial rewards from licensing.  

Among these is Emory University, with $320 million from the AIDS drug Emtriva, the 

University of Florida, with $80 million from Gatorade, and Columbia University, with 

$600 million from Axel genetic-engineering techniques.  Consequently, they argued that 

universities ought to be less concerned about the revenue generated by licensing and 

more concerned about how the office of technology transfer can be used to simplify the 

process of licensing and patenting products and inventions: 

By making it easier for faculty to obtain patents and negotiate license 
deals and spin out-out companies, the university keeps faculty engaged 
and connected and therefore less likely to leave.  Providing faculty with 
equity ownership is cheaper than a salary increase, especially if money for 
an increase must come from an endowment where, typically, only 5 
percent per year is expendable. (Thorp and Goldstein, 2010, p. 35) 
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Improvements to the technology transfer system are but one aspect of Thorp and 

Goldstein’s argument.  The overall thrust of their argument is that to stay competitive in a 

knowledge-based and increasingly global economy, universities need to reorient their 

culture to become more entrepreneurial.  This includes seeking out a wider variety of 

funding, which often facilitates collaboration and the flow of information.  They believe 

that an entrepreneurial emphasis also encourages labs to focus on outputs and results, 

which increases the impact of their research.  This in turn helps garner additional funds 

for research. 

Thorp and Goldstein’s argument that universities are not entrepreneurial enough 

emphasizes the competing strategies that underpin the drive to move up the Carnegie 

Ladder.  Comparing Stanford’s rise with the standing of UC Berkeley, Adams (2009) 

concludes that Stanford had three things that Berkeley did not: 1) the right leader; 2) a 

long-term strategy; and 3) it faced a financial predicament that made entrepreneurial 

activity both attractive and necessary.  In a review of Fredrick Terman’s attempts to 

replicate Stanford’s success elsewhere, Leslie and Kargon (1996) found few successful 

examples.  They conclude that Terman did not recognize how much his leadership and 

the circumstances associated with post-World War II spending combined with the unique 

characteristics of the small start-ups in Silicon Valley to create an economic dynamo.  In 

short, the development of Silicon Valley might be an isolated example of fortunate 

circumstances. 

If the Stanford experience was unique, attempts to replicate its dynamics might be 

futile.  Along the same lines, becoming more entrepreneurial might not garner a 
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university a very large return, as evidenced by the limited number of universities that 

garner substantive funding from licensing.  The question then becomes: is it possible to 

move up the university rankings, or do those at the top have such an absolute advantage 

that doing so is futile? 

 

Universities and Research Funding 

Research regarding the relationship between a university’s funding and its ranking 

indicates a degree of fluidity.  Geiger and Feller (1995) analyzed total federal research 

funds distributed to American universities from 1952 to 1990, showing that the 

percentage of total federal research funds received by the ten largest performers 

decreased over that time from 43.4% to 20.1%.  There were ten Tier I losers, while Tier 

II Universities increased their share, with 14 gainers and six losers.  The financial 

condition of universities did not explain these changes; rather, gaining institutions 

became more like the Tier I institutions (Geiger and Feller, 1995).  In an examination of 

research awards to universities from 1972 to 1994, Brewer, Gates, and Goldman (2001) 

found little overall change.  In 1972, ten institutions attracted 25% of the research 

funding, and 29 attracted 50%.  In 1994, 13 institutions had 25%, and 35 had 50%.  

However, among individual institutions there was fluidity.  There were more gainers (12) 

than losers (7).  The authors postulated that more institutions sought research funds 

because total research funding increased over this period.  Quon (2001) found that the 

NIH funding rankings of medical schools from 1990 to 2000 were likewise fluid: 
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In general, large changes in rank were more frequent for schools ranked 
lower to begin with, no doubt in part because the actual dollar amounts of 
their total awards were proportionately less.  Nevertheless, large moves 
also occurred in the top-tier schools, illustrating that even the most 
research-intensive schools can experience substantial and sustainable 
changes in ranking. (p. 2) 
 
More broadly, Bania et al. (1991) found that increases in NIH funding contributed 

to a shift in university positions.  The top universities moved up by being more 

competitive within fields rather than by specializing in the right mix of fields.  University 

degree programs were a vital contribution to the area’s research base.  Another major 

contributor to university’s ability to obtain NIH funding was investment in infrastructure, 

particularly science and engineering facilities and equipment. 

 

University Funding and Variable Interaction  

Studies of the relationship between university funding and performance have 

sometimes used a basic production function approach (Bania, Eberts, and Fogarty, 1993; 

Adams and Griliches, 1998; Lendel, 2010).  The university receives funds and produces 

products: students and publications.  However, the nature of the relationship between 

funding and output, particularly publications, is inconclusive.  Summarizing his own and 

other research, Landel (2010) noted two major conditions that impact the relationship: 1) 

top-ranked scientists receive more funding because they are better-connected and have 

better reputations for producing solid research; and 2) recurrent funding is important for 

sustaining focused research, and better-funded universities have the capability to provide 

recurrent funding.  In a review of the impact of industry funding in the life sciences, 
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Campbell, Koski, and Blumenthal (2004) found that such funding allowed academics to 

publish more. 

Reviewing the research on publication productivity among scientists, Fox (1983) 

concluded that one of the main determinants of successful publication is location at a 

prestigious university.  Because the elite institutions have resources to advance the work 

of their academicians, superior talent gravitates to these locations, which in turn furthers 

their advantage.  Pessimistically, but consistent with the notion of cumulative advantage, 

he concluded that since the elite institutions already have sufficient opportunities to 

obtain resources, there is probably no help for those institutions at the bottom.   

Publications are an important output of universities and are an important 

determinant of their receipt of research funds.  McAllister and Condon (1985), Pagel and 

Hudetz (2011a; 2011b), and Pao (1991) all found a positive association between NIH 

funding and the quantity and nature of university publications.  This association also 

appears to hold true for papers in biomedical subfields (McAllister and Condon, 1985).  

Jacob and Lefgren (2007) estimated that NIH funding results in the publication of one 

additional article over a five-year period.  Boyack and Jordan (2011), also looking at NIH 

grants and associated publications, found that the median time lag to publication was 

three years and that each grant leads to approximately 1.7 new articles.  Further, articles 

acknowledging NIH grants were cited twice as much as non-grant-acknowledging 

articles.  Lastly, Pagel and Hudetz (2011a; 2011b) found that the H-index, an indicator of 

reputation as represented by citations per article, was positively associated with receipt of 

NIH funds. 
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Understanding what drives publication activity has important implications for a 

university’s impact on the larger community.  Individual motivation, as opposed to 

outside activity, plays a part in publication.  Agrawal and Henderson (2002) found that 

researchers at MIT are driven primarily by interest in the research field, making 

publishing decisions on a case-by-case basis.  Academics who license an invention or 

who are involved in a startup continue to publish at a rate consistent with or higher than 

their peers (Lowe and Gonzalez-Brambila, 2007; Thursby and Thursby, 2003).  Star 

scientists, regardless of their level of involvement with private-sector firms, tend to 

generate a larger number of publications than do their peers (Zucker and Darby, 1996).  

Agrawal, McHale, and Oettle (2012), examining the impact of star scientists on 

departmental productivity, found that productivity increases with the arrival of a star. 

However, there is a view that as researchers age, their publications decline in 

quantity (Baser and Pema, 2004; Gingras et al., 2008; Levin and Stephan, 1991).  

However, Wray (2003) found that young scientists are not necessarily more frequent 

publishers than older ones, because they are not as well-positioned to make revolutionary 

discoveries.  He concluded that middle-aged scientists are the best-positioned. 

There also appears to be an aging effect with respect to citations of published 

work.  Parolo et al. (2015) found that citations reach their peak a few years after the date 

of publication, decaying rapidly thereafter.  Papers with fewer citations decay more 

rapidly.  Pollman (2000) found that aging occurs by at least four years from publication.  

Redner (2005), looking at citations of work published in the journal Physical Review over 
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a 110-year span, found that average citation age was 6.2 years but found it to be less than 

two years with only 3.6 citations for articles published before 2000.   

Institutionally, there may be some convergence in terms of publications.  A time-

series analysis of the publications of Carnegie-categorized universities by Dey, Milem, 

and Berger (1997) found evidence to support both the cumulative-advantage and mobility 

perspectives.  The universities at the top of the Carnegie ladder had high rates of 

publication.  However, many institutions in the middle also had high rates of publication.  

They conclude that those institutions in the middle with higher rates of publication have 

an opportunity to join the elite. 

While the relationship between research funding and publication is complex, it 

may also be mutually reinforcing.  As McAllister and Condon (1985) noted, “it takes 

money to do research, but one has great difficulty obtaining awards without a good 

publication record” (p. 74).  Further, when research funding is linked directly to 

publication, there is a direct impact on the level and type of publications (Butler, 2004; 

Jimenez-Contreras et al., 2003; Reinhart, 2009).   

At the institutional level, research on the relationship between total NIH funding 

received and average articles published per faculty member is inconclusive.  Sandstrom 

(2009) found that the association between publications and federal funding is generally 

weak.  Alternatively, Adams and Griliches (1998) found decreasing returns to the effect 

of publications on grant funds received.  One possible reason for these decreasing returns 

is the growing number of journals and virtual media in which an academic can present 

research findings (Kim, Morse, and Zingales, 2006).  The growing number of options for 
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information dissemination makes it more difficult to assess the impacts of scholarly 

activity. Ali, Bhattacharyya, and Olejniczak (2010), however, found a strong statistical 

relationship between publications in 2002–03 and grant dollars received.  They also 

found decreasing returns for the number of publications versus grant dollars received and 

a disparity in grant dollars by academic field.  For instance, academics in the Biological 

and Biomedical Sciences field receive larger amounts of total grant funds than do 

academics in the Physical and Mathematical Sciences field.  

In summary, history indicates that universities have moved up the Carnegie 

Ladder.  Sustained federal funding provides the resources institutions need to develop the 

infrastructure required to create a virtuous cycle and move up the ladder.  Conventional 

wisdom indicates that attracting star scientists and engineers is a key component to 

movement up the ladder.  Stars have higher publication rates, and because of the positive 

and possibly mutually reinforcing association between publications and federal funding, 

conventional wisdom and prior research indicate that stars attract higher levels of federal 

funding.  However, citation rates peak soon after publication, decreasing rapidly 

thereafter, which calls into question the conventional wisdom that stars automatically 

generate positive returns.  Further, the distribution of research funds may be sensitive to 

field-specific activity; thus, broad generalization may not be appropriate. 
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Chapter 2: Research Design 

 

Overview 

In an economy driven by innovation and entrepreneurship, research universities 

generate the discoveries and spillovers that help develop a constructive advantage.  A key 

element in this regard is the level of research funding received; without support for R&D, 

the ability to develop a constructive advantage is diminished.  This dissertation will 

attempt to determine which variables contribute to universities successfully obtaining 

research funds.  It will also attempt to determine if star scientists garner a higher share of 

research funds and estimate the extent to which their presence produces spillover benefits 

among their university colleagues. 

The bulk of public funding for R&D comes from the federal government.  The 

main recipient of federal research dollars is the individual academic, who submits 

requests for funding through his or her grant proposals.  In addition to the technical 

aspects of any proposal, the characteristics, productivity, and reputation of the researcher 

play a role in awards of grant funding (Boyack and Jordan, 2011; Kienholz and Berg, 

2014; McAllister and Narin, 1985; Pao, 1991; Zucker, Darby, and Armstrong, 2002). 

One criticism of the federal research-funding process is that peer review panels 

steer funds to those institutions with which the members of the panel are affiliated (Rose, 

1996).  To the extent that grant funds are allocated based on characteristics beyond the 

specific merits of research proposals, there might exist a normative profile of who is best 

qualified.  The policies of the university and its reputation may also contribute to the 
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successful receipt of grant funds (Bania et al., 1991).  The extent to which such a profile 

exists can be assessed by examining the statistical effects of personal and university 

characteristics on the receipt of federal funds. 

Once an academic submits a proposal, the funding agency determines if the 

proposal merits funding.  The dominant funding sources in the biotechnology disciplines 

in the United States are the National Institutes of Health (NIH).  NIH grants are also a 

dominant funding source for Nobel Laureates in the United States (Tatsioni, Vavva, and 

Ioannidis, 2010). 

Grant proposals to the NIH are subject to a rigorous review process that is 

divorced from the input of staff (Ross, 2000).  The Center for Scientific Review, with 

17,000 external experts, reviews at least a portion of 70% of NIH funding requests.  The 

review process is also considered to be the most consistent in funding use-inspired basic 

research (Stokes, 1997). 

Figure 1 presents the broad categories into which specific variables that influence 

NIH funding can be arranged.  Broadly, these fall into four categories: 1) General 

Environmental, including general geographic and population characteristics; 2) 

Institutional/University, including variables associated with the university; 3) 

Departmental, including variables associated with the department or institute in which the 

researcher is located; and 4) Researcher Characteristics. 
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Figure 1. Factors Influencing NIH Awards. 

 

Except for the work of Bania et al. (1991), little has been done to analyze key 

characteristics distinguishing NIH recipients from non-recipients.  While Hendrix (2008) 

estimated the relationship between NIH funding received and the number of articles 

published per faculty member, he focused on the university rather than the individual.  

Zucker and Darby (1996) compared the performance of star scientists with that of non-

stars but did not look specifically at NIH recipients, nor did they explore whether 

increasing returns are associated with NIH funding received.  Ali, Bhattacharyya, and 

Olejniczak (2010) investigated the receipt of federal grant money from multiple sources, 

academic productivity, and institutional characteristics using a Tobit model. The 

independent variables included whether the university is a public or private member of 

the American Association of Universities, the percent of university academics who have 

published articles, broad department breakdowns, number of articles published, the 
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number of articles squared, and those articles’ associated citations for the time frame 

2003 to 2004.  They did not consider whether there is a difference among highly cited 

researchers, grant recipients and non-recipients, and institutional academic rank.  While 

they included a geographic distribution, they did not include variables such as university 

rank, metropolitan size, whether or not there is a medical school, or the number of 

institutional NIH recipients in the geographic area.  This work examines a larger number 

of possible contributing factors.     

  

Research Questions 

This dissertation will attempt to address some of the gaps in the research by 

exploring the following empirical questions: 

1. Do Highly Cited Researchers receive significantly more NIH funding than do 

others? 

2. Does the number of members of the National Academy of Arts and Sciences at a 

university positively contribute to NIH funding?  (Is there a faculty-level halo 

effect?) 

3. Does having a degree from a top-ranked university contribute positively to the 

amount of NIH funding received? 

4. Does the number of articles published in the two years immediately preceding the 

receipt of NIH funds have a positive impact on the level of NIH funding? 

5. Does the average number of citations per article published in the preceding two 

years positively affect the level of NIH funding? 
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6. Is there a difference in publication performance between NIH recipients and non-

recipients? 

7. Do academics who license an innovation or invention through the university’s 

Office of Technology Transfer (OTT) receive more NIH funding than other 

recipients? 

8. Do academics who are part of a spinout receive more NIH funding than do other 

recipients? 

9. Does being listed as an inventor on a patent application by the university 

contribute positively to the receipt of NIH funding? 

 

The research design builds on the work of Ali, Bhattacharyya, and Olejniczak 

(2010), Sandstrom (2009), Hendrix (2008), McAllister and Condon (1985), and 

McAllister and Narin (1983).  In its simplest form, the design postulates a direct 

relationship between a researcher’s NIH funding and his or her prior publications.  A key 

assumption is that current funding is in part a function of the number of articles an 

academic published in prior years.  The most recent preceding years, in this case 2006 to 

2007, are assumed to be the most important.  A further assumption is that research is 

driven more by individual interest and professional norms than by funding levels.  These 

professional norms, as noted in the previous chapter, are communism, universalism, 

disinterestedness, and organized skepticism.  The postulated existence of these norms 

allows for the possibility that peer reviewers, consciously or unconsciously, follow a set 

of standards by which they measure professional credibility. 
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Both the underlying assumptions and prior research results indicate that a model 

with just two variables—funding and total publications—is too simplistic.  Additional 

variables are needed to account for other possible factors influencing NIH awards.  Some 

of the factors to be tested include whether the recipient is a star scientist, the recipient’s 

gender, whether the recipient’s degree is from a top-ranked university nationally or 

globally, the number of high-caliber academics located at the university, the type of 

degree the recipient has received, the average citations per recipient’s article published in 

2006 to 2007, his or her career citations to 2007, the number of patents issued the 

recipient prior to funding, whether or not he or she has licensed innovations/inventions, 

and whether or not he or she is involved in the spin out of a company.  Most of these 

factors have been considered in research at the individual level (Audretsch and Aldridge, 

2009; Buccola, Ervin, and Yang, 2009; Thursby and Thursby, 2003; Van den Besselaar 

and Leydesdorff, 2009; Wood, 1990). 

 

Sample Characteristics 

The sample includes all NIH recipients for 2008 from 24 universities and all non-

recipients who have a PhD or MD, who are tenured or assistant professors, and who are 

in the same department or institute in which the recipients are located.    

Non-recipients of NIH awards are included in order to allow comparisons among 

non-recipients, recipients, and stars in terms of the various performance measures.  Since 

the members of the non-recipient group have zero funding, a censored condition exists in 
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the dependent variable; thus, a Tobit estimation procedure is employed (Gujarati, 2003; 

Kennedy, 2003). 

Table 1 shows the twenty-four universities that have been selected for analysis.  

The sample includes three universities from the 1996 NIH funding recipient categories of 

1–50, five from 51–100, six from 101–150, four from 151–200, and five from 201 and 

above, along with Portland State University (which is not ranked).  With respect to 

geographic representation, the universities are distributed as follows: Northeast—3; 

Southeast—6; Midwest—4; Mountain West—5; and Pacific—5. 

 

Dependent Variables 

 The three metrics representing the NIH awards that have been chosen to serve as 

dependent variables are as follows: 1) 2008 NIH total funds received per individual; 2) 

2008 average amount of NIH Grants received per individual; and 3) 2008 total number of 

grants received per individual (source: NIH Extramural research grants). 

NIH funding was chosen for this analysis for four reasons: 1) NIH is the major 

federal funding source for biomedical research; 2) the NIH peer review process is 

substantive and merit-driven; 3) the review process is considered to be the most 

consistent in funding use-inspired basic research; and 4) allocation of funds is based in 

part on the concept of “contribution to the field.” 

The use of all funds received is based on the idea that regardless of type, federal 

money contributes to a researcher’s reputation and is a basis for receipt of additional 

funds.  Thus, no distinction is made between the types of funds received (i.e., research 
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project grants, individual or institutional training grants, or construction grants).  Further, 

while there are different NIH Institutes, it is assumed all Institutes follow similar 

procedures for allocating NIH funds, in short, that there is a unity in the allocation 

process.  This assumption is consistent with the approach of other studies.  For instance, 

Ali, Bhattacharyya, and Olejniczak (2010) treated grants from the NIH, the National 

Science Foundation (NSF), and the U.S. Department of Agriculture as having had similar 

approaches to allocation.  Druss and Marcus (2005), while focusing on NIH grants, 

treated the allocation criteria of R01 grants the same regardless of awarding institute.  

Feeney and Welch (2014) simply focused on the amount of the academic’s successful 

grant award and whether or not the individual is a Principal Investigator or Co-Principal 

Investigator.   

Where multiple grants are awarded, the total award is used, which may cause 

some measurement error, because the individual variables are counted once regardless of 

whether a person received one grant of $300,000 or three for $100,000.  While the total 

amount an academic receives seems more reflective of stature, in order to ensure robust 

analysis, the average size of grant award and the number of grants awarded per individual 

will also be used as dependent variables. 

 

Independent Variables 

The model’s independent variables are grouped into three categories: 1) 

individual; 2) institutional; and 3) environmental.  Insufficient data or inconsistency in 

University reports prevented the use of departmental-level data.  
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Individual Variables 

 Characteristics of the individuals in the model related to prior scholarship include: 

1) number of articles published in 2006 and 2007; 2) average number of citations per 

article published in 2006 and 2007; 3) total career citations; and 4) highly cited 

researcher, a binary variable (0, 1; source: Thomason Reuters Science Citation Index).  

 

Table 1. Sample Universities. 
NIH Funding Rank     

1996 2005 University State City Region 
17 18 Case Western Reserve University OH Cleveland Middle 
30 30 U of Colorado Health Science Center CO Denver West 
44 49 University of Utah UT Salt Lake City West 
54 59 University of Arizona AZ Tucson West 
65 33 Oregon Health Sciences University OR Portland Pacific 
72 60 University of Cincinnati OH Cincinnati Middle 
71 80 Virginia Commonwealth University VA Richmond SE 
99 105 University of Memphis TN Memphis SE 

109 110 University of Missouri MO Columbia Middle 
108 119 Temple University PA Philadelphia NE 
117 108 University of Oklahoma OK Norman Middle 
114 99 Brown University RI Providence NE 
139 128 University of Georgia GA Athens SE 
147 165 University of Oregon OR Eugene Pacific 
157 133 Arizona State University AZ Tempe West 
160 171 Washington State University WA Pullman Pacific 
167 193 University of Mississippi MS University SE 
181 214 Oregon State University OR Corvallis Pacific 
411 197 Georgia Institute of Technology GA Atlanta SE 
204 78 University of Louisville KY Louisville SE 
214 185 University of Nevada NV Reno West 
224 317 University of Rhode Island RI Kingston NE 
240 257 Wright State University OH Dayton Middle 

  Portland State University OR Portland Pacific 
 



45 
 

 
 

Problems are associated with several of these measures.  First, the focus on 

publications and citations limits the representation of scholarship, excluding meetings, 

editorial material, and book chapters.  Second, variations in authors’ names create 

difficulty determining precise publication and citation counts.  In this instance, the 

author’s last and first names are used.  For articles and citations from 2006–07, the 

university is also identified.  For career citations, the university is added when it is 

difficult to link a specific article to the person in the sample.  This procedure will likely 

cause an undercount. An additional problem occurs, because of the use on a university 

identifier, where an academic moves from one university to another.  To alleviate this 

problem, I add two additional variables: 1) the second derivatives of the total number of 

2006–07 articles published, which mitigates some of the problems associated with career 

cites and also helps test for increasing or decreasing returns; and 2) the total number of 

citations for each article published in 2006–07. 

 Another problem is that I assume that the Principal Investigator (PI) is the key 

determinant in the receipt of NIH funds.  The work of Feeney and Welch (2014) provides 

support for this assumption, as they find that PIs have higher productivity than Co-

Principal Investigators and other team members.  Highlighting the importance of the PIs, 

Mangematin et al. (2014) stated, “The necessity for universities and public research 

centers to identify high performance scientists with the potential to become star principal 

investigators at an early stage in their career is apparent” (p. 6).  Druss and Marcus 

(2005), looking at the publication patterns of NIH R01 (basic research) grants, found that 

Principal Investigators publish more than do junior investigators.  This implies an 
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apprentice model, in which Principal Investigators obtain funding and more junior 

members share in writing the results. 

The Highly Cited Research designation reported by Thomason Reuters differs 

from Darby and Zucker’s (2003), who define Stars as scientists with twenty or more 

discovery articles.  By contrast, Thomason Reuters’ Highly Cited Researcher is defined 

as being among the 250 most-cited individuals in a defined discipline for the period 1981 

to 2011. 

 Characteristics of individuals related to their educational background are as 

follows (sources: University, Vitae, Google): 

• Degree Received: PhD (0,1) 

• Degree Received: MD (0,1) 

• Degree Received: both PhD and MD (0,1) 

Characteristics of individuals related to their field of research are as follows: 

• Basic Science—Biology, Chemistry, Physics, Engineering, etc. (0,1) 

• Microbiology, Molecular Biology, Biochemistry (0,1) 

• Neuroscience, Genetics (0,1) 

• Medicine, Dentistry, Nursing, Psychiatry (0,1) 

• Other—Anatomy, Public Health, etc. (0,1) 

Where multiple fields are listed, I use the first department notation listed in the 

NIH grant award or the department listed first in the individual’s Vita. 
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 Individual patent activity is represented by being listed as an inventor on a 

university’s patent application during the period of 2000–2007 (source: U.S. Patent 

Office).  This measure is limited only to patents issued to the current university at which 

the academic is located, which likely undercounts since other universities or patents 

issued directly to individuals are not included.  The decision to use issuance, as opposed 

to application, reflects a desire to more closely link final results with NIH funding.  On 

average, the patent award process takes 2.77 years (Merges, Menell, and Lemley, 2010).  

The period 2000 to 2007 was used to ensure adequate coverage. 

 Licensing and spinout activity by individuals is represented as follows (source: 

University OTT): 

• Listed by the university’s OTT (or equivalent) as having licensed an 

innovation or invention (0, 1). 

• Listed by the university’s OTT as being involved in a spinout (0, 1). 

Due to confidentiality agreements, not all inventions are listed on OTT websites, 

which can result in an undercount.  OTT websites are not uniform in their display or 

identification of spin outs, nor are company websites uniform in how they identify 

involved university researchers. 

 The final individual characteristic relates to gender, a binary variable (0, 1; 

sources: first names, University, Vita, and Google). 
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Institutional Variables 

The university-level characteristics represented in the model include the following 

(sources: The Center for Measuring University Performance; National Science 

Foundation; Shanghai Ranking of World Universities): 

• Number of National Academy of Arts and Sciences members at the university 

in 2008. 

• The ranking of the university from which the individual received his or her 

degree. 

• Public or private university (0, 1). 

• University space allocated to research and development in 2005. 

• Number of institutes listed by the university. 

 

Environmental Variables 

Environmental characteristics include the regional location of the university, a 

metropolitan indicator of human capital, and the population of the metropolitan area, as 

follows (source: American Community Survey): 

• Regional location—a binary variable for each of Northeast, Southeast, 

Midwest, Mountain West, and Pacific (0, 1). 

• Percentage of the metropolitan population with a bachelor’s degree or higher 

in 2008. 

• Metropolitan population in 2008. 
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Methodological Issues 

The main concern with the model’s specification is the problem of simultaneity.  

As noted above, there may be a bidirectional relationship between funding and 

publications.  A common test for simultaneity, the Hausman Specification Test, will be 

performed on the model to determine whether simultaneity is a problem.  If it is, a 

2-Stage Least Squares or an Indirect Least Squares method can be used to handle the 

simultaneity problem. 
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Chapter 3: Results 
 
 
Descriptive Statistics 
 

The sample obtained from the 24 selected universities comprises 3,092 

individuals from a total population of 5,806 (53% coverage).  Table 2 shows the 

distribution by university.  The sample coverage ranges from a low of 22.5% for the 

University of Mississippi to a high of 89.5% for the University of Cincinnati.  The 

sample had 2,210 men (71.5%) and 883 women (28.5%).  By academic rank, the sample 

had 1,739 professors (56.3%), 833 associate professors (26.9%), 513 assistant professors 

(16.6%), and seven of unknown rank (0.2%). 

It is difficult to determine the actual representativeness of the sample regarding 

academic rank.  The 2011 U.S. Census Bureau Statistical Abstract of the United States 

provides a roughly comparable breakdown by gender in the life, physical, and social 

sciences occupational category, with women comprising 28.7% of the three occupational 

categories in this sample—biological scientists, medical scientists, and chemists and 

materials scientists—in 2009. 

It should be noted that comparable does not mean an exact correspondence.  Other 

occupational categories are included in the sample, and their presence could contribute to 

undercounting.  However, examining the overall internal breakdowns suggests that this 

may not be a serious problem.  

Table 3 presents the descriptive statistics for the sample.  The 2008 NIH Fund 

Facts indicate that the total research grants awarded to the amounted to $20,375,000,000 
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in 46,437 individual grants.  This is an average award of $439,618. This is greater than 

the sample’s average grant award of $366,100.83 (see Table 4).  With respect to the other 

reported independent variables, NIH award recipients in the sample clearly have higher 

levels of performance in terms of articles published, citations per publication, and career 

citations. 

Table 4 and Graph 1 show the distribution by grant-dollar category.  Forty-two 

(3.2%) received two million to four million, while five (0.4%) received over four million 

dollars. These skewed results, where only a few researchers obtain a very large share of 

grant funds, are consistent with the findings of Zucker and Darby (2006). 
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Table 2. Sample Distribution by University. 

 
 

University    Population Sample Percent 
Brown       261    151     57.9 
Memphis      117      53     45.3 
Oregon State       115      71     61.7 
Rhode Island        83      54     65.1 
Georgia Tech      150      76     50.7 
Washington State     155      73     47.1 
Wright State        93      73     78.5 

 Oregon       143                  91                 63.6 
Nevada (Reno)     137      61     44.5 
Mississippi      151      34     22.5 
Temple      200      81     40.5 
Oregon Health Science     413    233     56.4 
Arizona State      284    152             53.2 
Cincinnati                 171    153     89.5 
Missouri      288      161     55.9 
Colorado Health Science Ctr      24      13     54.2 
Oklahoma      134      78     58.2 

 Case Western Reserve     398                249                 62.6 
Utah       592     367     62.0 
Louisville      279     186     66.7 
Georgia      292     146     50.0 
Portland State        84       34     40.5 
Arizona      583     302     51.8 
Virginia Commonwealth    659     200     30.3 
Total                5806    3092     53.3 
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Table 3. Sample Descriptive Statistics. 

  
Category      Statistic 

     Total Sample             3,092 
NIH Recipients            1,324 
Non-NIH             1,768 

            Average NIH Dollars for Total               $230,769 
Average Dollars per NIH Recipient    $538,927 
Average Dollars per NIH Non-Recipient (NR)    0 
Average 2006–07 Articles Total                 3.87 
Average 2006–07 Articles NIH                 5.31 
Average 2006–07 Articles NIH NR      2.8 
Average Cites per 2006–07 Article Total                1.46 
Average Cites per 2006–07 Article NIH                2.03 
Average Cites per 2006–07 Article NIH NR       1.03 
Average Career Cites Total              430.83 
Average Career Cites NIH              637.19 
Average Career Cites NIH NR             275.76 
Total Number of Grants                      1,856 
Average Grant Award per Academic               $366,100.83 
Average Number of Grants per Academic                 1.4 
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Table 4. Number of Academics and Percentage by Dollar Category. 

NIH Dollar Range 
         Number of 

Academics Percent of Total 
0 1768 57.18 

250,000 308 9.96 
500,000 570 18.43 
750,000 221 7.15 

1,000,000 75 2.43 
1,250,000 57 1.84 
1,500,000 26 .84 
1,750,000 17 .55 
2,000,000 10 .32 
2,250,000 9 .29 
2,500,000 9 .29 
2,750,000 5 .16 
3,000,000 3 .10 
3,250,000 3 .10 
3,500,000 3 .10 
3,750,000 1 .03 
4,000,000 0 0 
4,250,000 1 .03 
4,500,000 0 0 
4,750,000 2 .06 
5,000,000 0 0 
6,000,000 1 .03 
7,000,000 1 .03 
8,000,000 1 .03 
9,000,000 1 .03 
Total 3092 

 
   
   Table 5 shows the distribution of men and women by selected independent 

variables.  The percentages of each specific category are in parentheses.  The data 

indicate that NIH non-recipients are the majority of the sample, with similar distribution 
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for women (58.5%) and for men (56.6%).  With regard to performance measures, and 

consistent with the results shown in Table 3, NIH non-recipients have lower performance 

than do NIH recipients.  The 41.5% of NIH recipients in the sample who are women is 

higher than the percentage of actual awards to women in 2008 (approximately 25%; NIH 

Data Book), so women may be overrepresented in this study. 

While female overrepresentation may be a problem, the publication and citation 

difference between NIH Recipients and NIH Non-Recipients implies that the direction or 

statistical significance of the individual performance variables may not be a significant 

issue.  Moreover, the difference in publication rates between men and women is 

consistent with that found in other studies (Evans, 2011; Hesli and Lee, 2011). That 

women in the sample have lower citation rates than men is also consistent with earlier 

work (Ferber, 1988). 
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Table 5. Distribution by Gender. 

 
Category       Male     Female 
Total           2199 (71.7)      893 (28.5) 
NIH Recipients            953 (43.4)      371 (41.5) 
Non NIH Recipients         1246 (56.6)      522 (58.5 
Average Dollars for Total                        $238,342         $183,992 
Average for NIH Recipients             $576,321                   $442,871 
Average for NIH Non-Recipients (NR)               0          0 
Average 2006–07 Articles Total                 4.19          3.09 
Average 2006–07 Articles NIH              5.71          4.26 
Average 2006–07 Articles NIH NR                        3.03          2.25 
Average Cites per Article 2006–07 Total            1.53          1.27 
Average Cites per Article 2006–07 NIH            2.17          1.66 
Average Cites per Article 2006–07 NIH NR            1.04          1.00 
Average Career Cites Total          469.57      273.61 
Average Career Cites NIH          728.84      403.89 
Average Career Cites NIH NR                    318.82      180.78 
Average Number of Grants              1.40          1.30 
Average Dollars per Grant            $379,561.70        $330,536.60 

 
 

Table 6 and Figure 3 show a distributional breakdown of the percentage of total 

grant funds received by each gender.  A greater percentage of sampled women who 

received NIH awards in 2008 are in the $1–$500,000 range. They are slightly under—

6.4% versus 7.4%—in the category $500,001–$750,000, but women fall off considerably 

beyond this threshold.  

Table 7 compares the grant percentage distribution between genders.  A higher 

percentage of women than men receive awards from $1–$25,000 (28.1% versus 21.3%).  

Similarly, women receive proportionately more awards in the $250,001–$500,000 range 

(45.7% versus 42.1%).  In all other categories, males receive proportionally more total 

NIH grant dollars.  
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Table 6. NIH Dollar Allocation by Gender. 

 
 

NIH Dollars Male % Female % 
0 1246 0.566621 522 0.584546 

250,000 203 0.092273 104 0.116461 
500,000 401 0.182273 169 0.18925 
750,000 163 0.074091 58 0.06495 

1,000,000 62 0.028182 14 0.015677 
1,250,000 46 0.020909 11 0.012318 
1,500,000 22 0.01 4 0.004479 
1,750,000 14 0.006364 3 0.003359 
2,000,000 8 0.003636 2 0.00224 
2,250,000 8 0.003636 1 0.00112 
2,500,000 6 0.002727 3 0.003359 
2,750,000 5 0.002273 0 0 
3,000,000 2 0.000909 1 0.00112 
3,250,000 3 0.001364 0 0 
3,500.00 3 0.001364 0 0 
3,750,000 1 0.000455 0 0 
4,000,000 2 0.000909 0 0 
5,000,000 1 0.000455 1 0.00112 
6,000,000 1 0.000455 0 0 
7,000,000 1 0.000455 0 0 
8,000,000 1 0.000455 0 0 

Total 2199 
 

893 
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Table 8 breaks down awards by academic rank.  Professors receive more NIH 

money than do associate and assistant professors.  Similarly, professors produce more 

articles and have higher citations rates.  Consistent with the trends that appear in the other 

tables, NIH grant recipients produce more articles and have higher citation rates than do 

NIH non-recipients. 

Tables 9, 10, 11, 12, and 13 present the results by department, for academics who 

have licensed an invention, for those who have spun out a company, for those who have 

patented an invention, and for those who are highly cited, respectively.  The number of 
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academics in the sample licensing inventions, spinning out new companies, or patenting 

is very small—one hundred or 3.2% for licensing, six or 0.2% for spinouts, and 162 or 

5.2% for patenting.  However, those who license, are involved in spinning out a 

company, or who patent an invention receive higher levels of NIH grant funds and have 

higher production levels than do NIH non-recipients. 

Surveying 345 Highly Cited Researchers in 2008, Parker, Lortie, and Allesina 

(2010) found that the average extramural funding for U.S. scientists in their survey was 

$534,594, reporting that “fifty percent of respondents receive $250,000 or less each year, 

and 81% receive $500,000 or less” (p. 135).  Six percent of their respondents reported 

receiving over $1,000,000.  Their respondents’ average extramural grant total was 

$387,909. 

Table 13 indicates that the highly cited individuals in this study received an 

average total of $927,189 with an average of $478,113 per grant. This is considerably 

higher than reported by Parker, Lortie, and Allesina (2010).  It is also higher than the 

average amount received by all NIH recipients in this sample.  The average number of 

articles published in 2006–07 by highly cited researchers and the average citations per 

article are also higher than the sample averages for these categories, consistent with the 

findings of Zucker and Darby (2006).  

The differences in publication levels and citations among departments are 

consistent with other research (e.g., Adams and Griliches, 1998; Warner, Lewis, and 

Gregorio, 1981).  Similarly, the publication levels of individuals with licenses and spin 
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outs are consistent with previous findings that academics who license an invention have 

published as much or more than their peers (Thursby and Thursby, 2003). 

 

 
 

Table 7. Total NIH Award Allocation and Percentage Compared by Gender. 
 
 

Dollars Men % of Men Women % of Women 
250,000 203 21.3 

 
104 28.1 

500,000 401 42.1 
 

169 45.7 
750,000 163 17.1 

 
58 15.7 

1,000,000 62 6.5 
 

14 3.8 
1,250,000 46 4.8 

 
11 3 

1,500,000 22 2.3 
 

4 1 
1,750,000 14 1.5 

 
3 0.8 

2,000,000 8 0.8 
 

2 0.5 
2,250,000 8 0.8 

 
1 0.3 

2,500,000 6 0.6 
 

3 0.8 
2,750,000 5 0.5 

 
0 0 

3,000,000 2 0.2 
 

1 0.2 
3,250,000 3 0.3 

 
0 0 

3,500,000 3 0.3 
 

0 0 
3,750,000 1 0.1 

 
0 0 

4,000,000 2 0.2 
 

0 0 
5,000,000 1 0.1 

 
1 0.2 

6,000,000 1 0.1 
 

0 0 
7,000,000 1 0.1 

 
0 0 

8,000,000 1 0.1 
 

0 0 
Total  953 

  
370 
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Table 8. Characteristics by Academic Rank. 
 

 Category   Professor Associate Assistant Unknown 
  Total     1739    833    513    7 
   NIH       900    307    112    6 
   NIH Non-Recipients (NR)    840    526    401    1 
   Average $ NIH Total        $332,626        $119,528        $68,400        $195,008 
   Average $ NIH           $643,342        $324,321      $313,297        $227,509 
   Average $ NIH NR        0       0       0    0 
   Av Art 2006–07 Total               5.0      2.93       1.57  2.71 
   Av Art 2006–07 NIH      6.13     3.67       3.28             3.17 
   Av Art 2006–07 NIH NR      3.8      2.5       1.09             0 
   Av Cites 2006–07 Total      1.64     1.46        .82     .93 
   Av Cites 2006–07 NIH      2.1         2.02      1.57   1.08 
   Av Cites 2006–07 NIH NR      1.16     1.13        .61   0 
   Av Career Cites Total           675.23            151.14    56.74          791.71 
   Av Career Cites NIH            852.99            190.3               142.3          923.67 
   Av Career Cites NIH NR  484.30            128.28      33.00            0 
   Average Number of Grants       1.5         1.19     1.17   1.0 
   Average Dollars per Grant  $414,834      $269,265         $244,519       $227,508 
 

 

Table 9. Breakdown of Characteristics by Department. 
Category   Basic    Molecular     Neuroscience  Medical     Economics      Other 

Total                545            338        194               1124             23               869 
NIH                145    187        127                 546               4            318 
Non NIH               400    151          67                 578             19               551 
Av $ Total                 $117,268  $292,686    $368,592        $256,401    $65,971   $181,596 
Av $ NIH                  $440,764  $529,027    $567,514        $528,798   $379,336   $501,715 
Non NIH                   0               0            0                     0                 0                0 
Av Art 2006–07                   4.06          4.21            4.45       4.03            1.56  3.36 
Av Art NIH                   5.88          5.03            5.4       5.52            2.75  4.84 
Av Art non NIH                    3.39          3.2            2.68       2.63            1.32            2.51 
Av Cites Total                       1.54       1.9            2.19       1.90              .79  1.12 
Av Cites NIH                   2.26          2.28           2.67       2.88              .96  1.61 
Av Cites Non NIH                1.28       1.44           1.3          .98             .76               .84 
Av Career Total                300.69   518.08      580.13    401.17         91.3           307.48 
Av Career NIH               607.91      571.41      782.38    568.22       120.38         499.26 
Av Career Non NIH          188.76   452.05      205.38    244.24         85.1           195.78 
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Table 10. Breakdown for License Holders. 
 
Category 
Total                 100 
NIH             70 
NIH Non-Recipients (NR)         30 
Av $ Total               $386,590 
Av $ NIH                $552,156 
Av $ NIH NR                0 
Av 2006–07 Art Total                    6.6 
Av 2006–07 Art NIH          7.5 
Av 2006–07 Art NIH NR         4.5 
Av Cites 2006–07 Total         2.48 
Av Cites 2006–07 NIH        2.84 
Av Cites 2006–07 NIH NR         1.64 
Career Cites                        1,136.62 
Career Cites NIH                    1,363.79 
Career Cites NIH NR                606.57 
Average Number of Grants        1.6 
Average Dollars per Grant      $345,258.40 
 

 
 
Table 11. Breakdown for Academics with Spin Out Companies. 
 

          Category 
Total               6 
NIH               5 
NIH Non-Recipients (NR)            1 
Av $ Total              $654,496 
Av $ NIH               $785,395 
Av $ Non NIH                        0 
Av Total 2006–07 Art                       5.33 
Av Total 2006–07 Art NIH           3.40 
Av Total 2006–07 Art NIH NR                  15 
Av Cites 2006–07 Total           0.89 
Av Cites 2006–07 NIH            0.83 
Av Cites 2006–07 NIH NR                           1.20 
Av Career Cites Total               406 
Av Career Cites NIH                      483 
Av Career Cites NIH NR                  18 
Average Number of Grants     1.00 
Average Dollars per Grant   $785,394 
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Table 12. Breakdown for Academics with Patents. 
Category 

 Total 162 
NIH 97 
NIH Non-Recipients (NR) 65 
Av $ Total $459,747  
Av $ NIH $767,825  
Av $ NIH NR 0 
Av Total 2006–07 Art 7.44 
Av Total 2006–07 Art NIH 7.69 
Av Total 2006–07 Art NIH NR 7.06 
Av Cites 2006–07 Total 2.58 
Av Cites 2006–07 NIH 3 
Av Cites 2006–07 NIH NR 1.96 
Av Career Cites Total $887.98  
Av Career Cites NIH $944.34  
Av Career Cites NIH NR $803.88  
Average Number of Grants $1.60  
Average Dollars per Grant $436,110.70  
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Table 13. Breakdown for Highly Cited Academics.              
 
Category 
Total             45 
NIH Recipients           20          
NIH Non-Recipients (NR)                     25 
Av $ Total             $412,084.00 
Av $ NIH             $927,189.00 
Av $ NIH NR                     $0.00 
Av 2006–07 Art Total                    10.76 
Av 2006–07 Art NIH                    13.60 
Av 2006–07 Art NIH NR                      8.48 
Av Cites 2006–07 Total                      3.61 
Av Cites 2006–07 NIH                     3.84 
Av Cites 2006–07 NIH NR                     3.96   
Av Career Cites Total                       2,618.58 
Av Career Cites NIH                      4,716.55 
Av Career Cites NIH NR                940.20 
Average Number of Grants             1.85 
Average Dollars per Grant           $478,113.70 
 
  

Table 14 breaks down personal and performance characteristics by the number of 

grants received.  Just over 69% of awardees received only one grant, and another 22.6% 

received two grants.  Only four (0.3%) received five grants.  The fact that the number of 

total articles and average and career citations increase with the number of grants received 

indicates that merit plays a substantive role in the award process.  At five grants, these 

dynamics change, which may reflect that the number of individuals receiving this many 

grants is small.  Only 42.2% of the highly cited individuals received NIH grants. The 

majority of the highly cited researchers (57.9%) received one NIH grant, while another 

21.1% received two awards. 
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Table 14. Breakdown of Characteristics by Number of Grants Received. 

   
Number of Grants 

Characteristics 1 2 3 4 5 
Total 914 297 80 22 4 
Men 634 226 65 19 3 
Women 280 71 15 3 1 
Assistant 92 18 1 0 0 
Associate 254 45 7 0 0 
Professor 562 234 72 22 4 
Unknown 6 0 0 0 0 
PhD 736 238 52 16 2 
MD 120 41 17 4 2 
PhD/MD 58 18 11 2 0 
Basic 116 21 5 2 0 
Molecular 127 41 15 3 0 
Neuroscience 77 42 5 1 0 
Economics 3 0 1 0 0 
Med/Nurse/Dent 363 124 40 10 3 
Other 288 69 14 6 1 
Average Total Articles 2006–07 4.54 6.6 7.29 12.95 5.75 
Average Cites 2006–07 1.89 2.18 2.96 2.41 1.23 
Career Cites 492.03 875.22 1062.04 1869.96 1848.75 
Average Total NIH Dollars $347,909 $808,048 $1,306,246 $1,627,127 $3,231,624 
Highly Cited 11 4 2 2 0 

 
 
     Table 15 and Graph 3 show grant award information by dollar category and number of 

grants.  A substantial majority of grants awarded were in the $250,000–$500,000 range, 

with 80.5% receiving one to two grants.  There are very few large multiple awards of 

grants, with only four multiple awards over $2,250,000 or more.  In fact, the quadrants 

for three, four, and five grants at $2,500,000 and above have no awards. 
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Table 15. Breakdown by Number and Size of Grants Awarded. 
Grant Dollars  1 2 3 4 5 
250,000 301 54 11 2 0 
500,000 518 195 54 13 3 
750,000 53 26 10 6 0 
1,000,000 12 10 3 1 1 
1,250,000 8 5 1 0 0 
1,500,000 4 3 0 0 0 
1,750,000 8 1 1 0 0 
2,000,000 4 0 0 0 0 
2,250,000 1 0 1 0 0 
2,500,000 0 1 0 0 0 
2,750,000 0 0 0 0 0 
3,000,000 2 1 0 0 0 
3,250,000 2 0 0 0 0 
3,500,000 0 0 0 0 0 
3,750,000 0 0 0 0 0 
4,000,000 0 1 0 0 0 
4,250,000 1 0 0 0 0 
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Tobit Regression 
 

Having presented the descriptive statistics and identified the consistencies with 

and differences from prior research, I turn now to the results of the Tobit Regression.  I 

used a Tobit Regression because there is censored data associated with those researchers 

who received no NIH extramural grant funds. The Tobit regression model was run using 

STATA Version 13. 

Only one variable is normalized: science and engineering space.  Science and 

engineering space is not allocated across all faculty members in a university; instead, it is 

allocated to those who are doing laboratory-related work.  In this case, the science and 

engineering space divided by the study population per university is used as a reasonable 

approximation.  

Tables 16 and 17 present the results of the Tobit models.  Table 16 presents 

models with total grant dollars awarded as the dependent variable.  The basic iterations 

are all the individual performance measures, including the rank of the university for the 

terminal degree and whether or not an individual is highly cited.  The second iteration 

adds institutional variables, and the third iteration adds environmental variables.  The 

iterations demonstrate the basic stability of the coefficients of the productivity variables.  

The difference between iteration three in Table 16 and the total-grant-amount 

model in Table 17 is that the rank of the university for the terminal degree and highly 

cited researcher were dropped as variables, while the rank of total R&D expenditures was 

added.  The rank of university for the terminal degree was dropped for two reasons: 1) it 
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is not statistically significant; and 2) doing so increases the number of observations from 

2,346 to 3,076 to use in the Tobit regression models for total grant awards, average grant 

amount, and number of grants. 

As can be seen in the correlation matrix (Table 18), the highly cited categorical 

variable has a .432 correlation with career citations.  Even though highly cited status is 

significant at the ten percent level, it is excluded for four reasons: 1) it is a binary 

variable, while career citations are an interval variable; 2) career citations are significant 

at the stronger five percent level; 3) career citations covers more published work, and 

therefore provides better analytics; and 4) the highly cited coefficient is perhaps 

counterintuitively negative, while career citations carries a positive coefficient.  

Moreover, the use of the total articles and citation per article variables alone 

meaningfully limits the measure of productivity.  The use of the second derivative 

substantially extends the limited base—the citation range and variance. This allows better 

identification of positive and negative returns. It thus compensates for the exclusion of 

the highly cited dummy variable. 

Given the relatively high correlation (39.1%) between total articles and career 

citations, as seen in Table 18, there is the possibility of simultaneity.  As noted earlier, a 

common test for simultaneity is the Hausman statistic.  Below are the Hausman statistics 

for the three Tobit independent variables.  

Total Grant Amount   χ(28) 0.60 
Prob > χ2      1.00 
B = consistent under Ho and Ha; obtained from Tobit 
B = inconsistent under Ha, efficient under Ho; obtained from Tobit 
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Test: Ho: differences in coefficients not systematic 
 
Average Grant Amount  χ(29) 1.76 
Prob > χ2       1.00 
B = consistent under Ho and Ha; obtained from Tobit 
B = inconsistent under Ha, efficient under Ho; obtained from Tobit 
Test: Ho: differences in coefficients not systematic 
 
Number of Grants   χ(29) 3.43 
Prob > χ2       1.00 
B = consistent under Ho and Ha; obtained from Tobit 
B = inconsistent under Ha, efficient under Ho; obtained from Tobit 
Test: Ho: differences in coefficients not systematic  
 
The statistics indicate no systematic difference in the estimates.  Thus, 

simultaneity is not a major problem. 

Table 17 presents the results of the Tobit regression for the three dependent 

variables—NIH total funds awarded, average dollars per grant, and number of grants.  

Across all three regressions, the basic measures of productivity (total articles 2006–07 

and average citations of articles 2006–07) are positive and statistically significant at the 

0.00 probability level.  Career citations is positive at the 0.00 level in the total-dollars 

model and at the 0.10 level for the average-grant-dollars model, while this variable is not 

statistically significant in the number-of-grants model.  The second derivatives of the 

total articles and average citations variables are statistically significant for each 

dependent variable at either the 0.00 or 0.05 level of significance.  In each instance, the 

derivative is negative, which indicates decreasing returns. 

In terms of the variables’ impact on the amount of total NIH dollars received in 

2008, the results of the regression indicate that a key determinant is the number of articles 



71 
 

 
 

published in 2006–07.  These results are consistent with the findings of Ali, 

Bhattacharyya, and Olejniczak (2010). The average number of citations per article 

published in 2006–07 is another important determinant.  Whether one is an assistant or 

associate professor has a statistically significant and negative impact compared to holding 

the rank of professor.  This is consistent with the descriptive statistics presented in Table 

5, which show that professors received larger amounts of NIH grant money than do 

assistant and associate professors. 

In isolation, most of the institutionally related variables are estimated to have a 

negative effect on the receipt of NIH funds, with two exceptions: 1) having a medical 

school and 2) the university’s rank in terms of total R&D expenditure.  Having a medical 

school associated with the university is statistically significant at the 0.05 level in the 

total-dollars model, at the 0.05 level in the average-grant-dollars model, and at the 0.00 

level in the number-of-grants model, consistent with the historical trend found by 

Graham and Diamond (1997) and by Geiger (2008). 

University rank in terms of total R&D expenditures has a negative coefficient, 

which is expected given that the highest possible ranking is one.  Its statistical 

significance at the 0.00 level indicates that there is a halo effect associated with R&D 

rank, though the coefficient is small (-$3,042.67 in the total-dollars model).  The small 

coefficient indicates two things.  First, as a university moves up the ranking, there is only 

a marginal gain for individuals based on reputation alone.  Second, if the small 

coefficient is any indication, it appears that for this sample of NIH-receiving universities, 
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the peer-review process demonstrates little allocation bias oriented towards university 

rank.   

Having a medical degree has a significant effect only in the number-of-grants 

model.  Having both an MD and a PhD is statistically significant, as is being in a 

medically related department.  This likely reflects the changing nature of research in the 

biomedical field, as does the statistical significance of the molecular biology and 

neuroscience department dummy coefficients.  However, there is a subtle aspect here.  

The fact that having a dual degree is statistically significant indicates that research in the 

biomedical field increasingly draws on a combination of the rigorous research designs 

associated with a PhD and the advanced medical training associated with MD programs. 

The correlation matrix (Table 19) highlights two subtle relationships which 

underpin the broader ranking of universities by total R&D expenditures.  First, there is a 

.72 correlation between the rank in terms of total R&D expenditure and the number of 

National Academy members at a university, which may indicate that researchers are 

moving from lower- to higher-ranked institutions.  Such a pattern would be consistent 

with Zucker and Darby’s (2006) results for star scientists.  Second, there is a strong 

correlation between the number of graduate students, the number of National Academy 

members (.67), and ranking in terms of total R&D expenditure (.64).  While the data in 

this study do not capture the differences in quality of graduate students at the included 

universities, the above correlations are consistent with the findings of Zucker and 

Darby (2006) and of Agrawal, McHale, and Oettle (2012) that graduate students tend to 

gravitate to higher-ranked or more star-filled universities.  The correlations of number of 
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graduate students, number of tenured faculty, endowment, and number of National 

Academy members with rank in terms of total R&D add credence to the idea that there is 

a reputational halo effect, albeit a small one.  These correlations also indicate that a 

number of institutional variables indirectly impact the receipt of NIH funds.  

The small coefficient for career citations and the negative coefficients and 

statistical significance of the second derivative of articles published and citations of those 

articles all demonstrate that there are diminishing returns to publications and citations in 

the receipt of NIH funding. 

Controlling for the effects of rank, publication, and citations, the regressions 

indicate that NIH awards are not affected by a researcher’s gender. However, it should be 

noted that the number of academics who receive total grant awards of $750,000 or more 

is relatively small, and most are male (see Graph 2 and Tables 3 and 5). 

Professorial rank plays a significant role in the receipt of NIH funds.  Professors 

are estimated to garner more NIH dollars.  Again, even when controlling for publications 

and citations, being a professor is statistically significant.  As noted in Table 8, professors 

have higher numbers of citations, which in turn enhances their reputation.  There is also 

likely a practice effect present; over their careers, professors have learned by trial and 

error how to write winning grant proposals. 
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Table 16. Tobit Model Total NIH Dollar Iterations. 
  Variables Basic Basic/Inst Basic/Inst/Envirn Probability 

Percentage Bachelor 
   

4978.55 * 0.00 
Metro Pop 

   
*0.02 **0.05 

Number NIH Org 
   

-8347.96 ***0.10 
Basic Science  

 
*-366991.2 

 
*-35844.8 

 MolBiochem 
 

**171414.6 
 

**169707 
 NeroSciGenetics 

 
*340654.1 

 
*329594.7 

 Economics  
 

-397804.2 
 

-448586 
 MedNursDental 

 
59259.6 

 
51797.73 

 Private University 
 

-92887.38 
 

***-222145 
 NE Region 

 
-31435.11 

 
159042.4 

 SE Region 
 

-102575.7 
 

***-161094.6 
 Middle 

 
67895.6 

 
-193251 

 West 
 

-87364.94 
 

-5146.16 
 Academy Member 

 
-1373.95 

 
***-12429.08 

 Land Grant 
 

-63903.28 
 

-50973.9 
 Number Institutes 

 
-2469.78 

 
-1804.58 

 Med School 
 

**164376.7 
 

**144820.3 
 Tenured Faculty 2012 

 
-60.4 

 
-15.67 

 Full Time Grad Std 
 

25.49 
 

***79.62 
 Endowment 2008 

 
0 

 
**0 

 SciEng Space per Study Pop 
 

-302.55 
 

-701.59 
 Rank Univ Last Degree R&D 2008 -362.11 -395.28 

 
-353.45 

 Highly Cited **-474720.1 ***-299802.2 
 

***-308222 
 Sex Female 56448.59 22881.23 

 
23529.82 

 MD degree *234506.1 87035.98 
 

66573.91 
 MD/PhD degree *432575 *304346.5 

 
*295802.5 

 Total Articles 2006–07 *73321.6 *69873.67 
 

*70929.1 
 Articles 2006–07 Squared *-1475.46 *-1308.92 

 
*-1351.96 

 Ave Cites 2006–07 *90701.04 *73908.09 
 

*73524.6 
 Ave Cites 2006–07 Squared *-3028.93 **-2467.99 

 
**-2445.57 

 Career Citation as of 2007 *42.39 **30.91 
 

**33.83 
 Assistant Professor *-521283.9 *-538194.4 

 
*-547157 

 Associate Professor *-337319.5 *-340241.9 
 

*-335241.2 
 License 118146.8 155027.2 

 
178399.6 

 Spin Out 586308.2 ***620143.4 
 

566160.1 
 Patent Applications 2000–07 117086.3 ***174291.2 

 
***168065 

 Constant -542244.2 -512696.8 
 

-752921 
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Table 17. Tobit Regressions by Dependent Variables. 

 
Coefficients 

  Variable Total Grant Dollars Av Grant $ Number of Grants 
Gender Female 29455.37 31318.09 0.1 
Medical Degree -53874.47 -46136.43 *-0.28 
MD/Phd Degree *200969.6 *135813.4 *0.51 
Total Articles 2006–07 *64885.47 *34813.1 *0.12 
Articles Squared* *-1264.7 *-715.7 *0 
Average Cites 2006–07 *55672.5 *34849.11 *0.12 
Average Cites Squared **-1666.69 *-1076.75 *0 
Career  *22.2 ***10.69 0 
Basic Science Dept *-275284.3 *-149805.7 *-0.53 
MolBioChem *195686.1 *121022.9 *0.39 
NeroSciGenetics *280920.2 *178200.5 *0.47 
Economics -335984.3 -250113.9 -0.54 
MedNursDental *113767.4 **61389.92 *0.21 
Assistant Professor *-523570.8 *-326669.3 *-0.94 
Associate Professor *-297491.6 *-169672.4 *-0.46 
License ***154244.7 ***89970.81 *0.58 
Spin Out ***586712.8 *660607.9 0.46 
Private University -126139.3 110483 -0.2 
Northeast Region 192219.5 114404.6 ***0.36 
Southeast Region **-177528.1 -85076.05 *-0.38 
Middle Region -109074.1 -56160.2 -0.29 
West Region 26742.11 60797.18 -0.03 
Percent Bachelors  2062.4 1862.35 0.01 
Metro Pop 2010 **0.017 **0.01 *0 
Academy Members **-14384.16 *-10159.35 *-0.03 
Land Grant Univ ***-137616 -76816.14 **-0.36 
Number of Orgs NIH 2008 ***-4235.4 **-2672.04 **-0.01 
Medical School              ***125037.1 ***68330.73 *0.31 
Rank Total R&D Exp 2008 **-3042.67 **1507.21 **-0.01 
Tenured Faculty -71.6 -52.78 0 
Full Time Grad Std 13.09 25.32 0 
Patent Application 2008 ***136346.4 40098.87 0.11 
Endowment 2008 0.000067 0 0 
Science/Eng Sp per Pop -911.22 -565.81 0 
Constant -78206.03 -104105.2 0.12 
Number Observations 3076 3076 3076 
* 0.00 probability    **0.05 probability     ***0.10 probability  
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Table 18. Correlation Matrix for Selected Individual Productivity Variables. 

      
Variable 

NIH Funds 
2008 

Articles 
2006–07 

Average 
Cites 

Career 
Cites 

Highly 
Cited 

Number 
Grants 

Grant 
Dollars 

NIH Funds 
2008 1 

      Total Articles 
2006–07 0.2954 1 

     Average Cites 
2006–07 0.1489 0.2421 1 

    Career Cites 0.1859 0.3913 0.2052 1 
   Highly Cited 0.0452 0.1776 0.0996 0.432 1 

  Number of 
Grants 0.71 0.3187 0.187 0.1501 0.0321 1 

 Average Grant 
Dollars 0.8648 0.2472 0.1352 0.1553 0.0235 0.5669 1 
 

 

Table 19. Correlation Matrix for Institutional Characteristics with Normalized Variables. 

 Rank NIH Academy Faculty 
Studen

t 
Endo

w 
EngSp

c 
Rank Total 2008 1 

      NIH Fund 2008 -0.0809 1 
     Academy Members -0.7216 0.0131 1 

    Tenured Faculty 2012 -0.216 -0.0513 0.2333 1 
   Full Time Graduate 

Students -0.6373 0.0049 0.6690 0.1465 1 
  

Endowment -0.2557 0.0935 0.2290 0.1232 
-

0.2906 1 
 

EngSpace per Pop -0.0281 -0.0319 0.0467 0.1170 
-

0.0124 
0.011

5 1 
  

Another factor that impacts the receipt of NIH funds is the individual’s specific 

field of study.  While the categories used in this study are broad, there is clearly an 

orientation of NIH funding toward specific fields, even though the productivity levels are 

similar in terms of articles published and average number of citations.  Basic science 

(biology, chemistry, physics, etc.), for instance, has a negative coefficient, which is 
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statistically significant at the 0.00 level across all models.  Molecular biology and 

microbiology, neuroscience, genetics, and medical/nursing/dental departments have 

positive and statistically significant coefficients, which is also consistent with the 

findings of Ali, Bhattacharyya, and Olejniczak (2010). 

  The region in which a university is located generally has no effect on the amount 

of NIH funds received, except for the Southeast region, the presence in which has a 

negative and significant impact at the 0.05 level.  However, further study would be 

needed to determine the extent to which this relationship holds across a broader selection 

of geographically distributed universities.  Whether a university is private or public has 

no significant consequence in any of the regression models, which differs from the 

findings of Ali, Bhattacharyya, and Olejniczak (2010) that public universities receive 

fewer federal grant dollars than do private universities.  They may have found such a 

difference because they include a broader range of federal funding sources than the NIH 

dollars used here. 

A land grant designation is negative and significant at the 0.10 level for the total-

NIH-dollars model and significant at the 0.05 level for the average-grant-dollars and the 

number-of-grants models.  This may reflect the fact that land grant institutions have 

historically had greater access to other federal funds, such as those provided by the U.S. 

Department of Agriculture. 

Variables associated with the percentage of metropolitan residents with bachelor 

degrees, the number of university institutes, the number of tenured faculty, and the 

number of full-time graduate students is estimated to have no significant impact on the 
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receipt of NIH funds.  Endowment size also had no significant impact in any of the 

estimated models, inconsistent with the view that endowments help facilitate grant 

applications (Cole, 2009; Rose, 1986).  However, endowments, while often allocated to 

departments, are frequently subject to specific restrictions, which may limit their impact 

(Lapovsky, 2009).  Further, since the universities in this study do not represent any 

beyond the top 20 NIH recipients. The impact of endowments may be significant when 

universities in the top 20 NIH recipients are considered. 

A puzzling result is the negative coefficient associated with Science and 

Engineering Space.  Although not at a significant level, the negative coefficient is 

inconsistent with the findings of Bania et al. (1991).   

Across all models, the direction of the coefficient associated with number of 

members of the National Academy does not change, indicating that the presence of 

National Academy members does not have a positive spillover effect on individual 

researcher’s success in obtaining NIH awards.  The fact that being in the highly cited 

category has a negative coefficient and significant impact at the ten percent level and the 

finding that the career-citations variable has a small coefficient provide further indication 

that spillover effects are limited.  

Three external variables have significant effects on NIH awards: 1) metropolitan 

population; 2) the number of organizations in the metropolitan area receiving NIH funds; 

and 3) rank in terms of total R&D expenditures.  The size of the urban area matters, 

possibly indicating a contribution of agglomeration economies.  However, the number of 

organizations in the metropolitan area competing for NIH funds also is estimated to have 
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a mitigating effect on such economies of agglomeration.  The estimated negative effect 

associated with the rank of total R&D expenditures is as expected; its inverse relationship 

with NIH dollars received suggests that there is a halo effect associated with reputation.  

Turning to the economic impact of the independent variables for Total NIH funds, 

funding is clearly a complex process.  Citations of recent articles are estimated to add 

about $55,000 per citation to NIH awards.  Having both a PhD and an MD contributes an 

estimated $201,000 per award.  Specializing in molecular biology, biochemistry, or 

microbiology contributes $196,000, while a focus on neuroscience and genetics 

contributes $281,000.  When an individual has licensed an invention or has been involved 

in a spinout, the estimated effects on NIH awards are $154,900 and $587,000, 

respectively.  Considering that the average NIH recipient receives a total amount of 

$538,927 and an average per-grant amount of $366,100, the effects of these variables 

clearly become very important. 

Table 20 and Graph 4 show the predicted total NIH funds by number of articles, 

along with the number of academics in the sample who published each number of 

articles.  The prediction is based on the derivative of the regression equation with respect 

to the number of publications.  Clearly, there are decreasing marginal returns for greater 

numbers of published articles.     

Holding other funding determinants constant, if an academic wanted to receive a 

modest additional amount of NIH funds, he or she must publish at least two articles.  If 

an academic sought to be in the middle of the pack (45.2%), he or she must have four 

publications over the previous two years, which would garner an estimated additional 
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$122,180.  If an individual wanted to break out of the pack, he or she would on average 

have five or six publications over the prior two-year period, which would place the 

person in the 64% to 72% range, garnering an estimated additional $286,475 to $336,180, 

respectively.  This amount can be compared with the average total grant amount of 

$515,927. 

These estimates indicate that in order to receive NIH grant dollars, a researcher 

must publish.  The positive statistical relationship between publication performance and 

total NIH grant funds indicates that there is an implicit normative performance standard 

used to allocate NIH grant dollars. 

Table 21 and Graph 5 present the estimated average grant award per article, again 

showing diminishing returns.  These diminishing returns, when combined with the results 

of Parolo et al. (2015), make it clear that publications and citations have a short shelf life, 

which affects the amount of NIH funding received in that the concept of “contribution to 

the field” increasingly requires that the work an academic produces be current. 

Table 22 and Graph 6 show the predicted total NIH dollars by average citations 

per published article, along with the number of academics receiving each rate of citation.  

Table 23 and Graph 7 show the predicted average NIH grant dollars in the same terms. 

As with the number of articles published, the results indicate diminishing marginal 

returns.  

Comparison of the coefficients across the models indicates a fair degree of 

consistency and stability.  Succinctly summarized, the models indicate that individual 

scholarly performance is a key determinant in obtaining NIH extramural grants. 
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Specifically, the number of articles published in the prior two years is an important 

determinant of successfully receiving a grant. 

In this study, 68% of those receiving NIH funds fell in the range of one-to-four 

citations per article.  Eight percent had between five and eight citations per article, and 

only six (0.005%) had seventeen or more citations per article.  The skewed nature of the 

estimated citation effect is similar to that found by Redner (2005).  Because the citations 

considered here are only associated with articles published in 2006 and 2007, the number 

of citations is relatively small in 2006 and becomes larger in 2007 as the articles became 

more widely reviewed.  While an article may be cited for many reasons, average citations 

within the first two years of publication may be seen to represent at least two factors.  

The first is a reputational effect.  The greater one’s reputation, the sooner peers tend to 

read and cite the article.  The second is the impact of a breakthrough article, as 

breakthroughs often become known to the field in advance and are reviewed and 

published more quickly. 

Because the skewed nature of the NIH dollars disbursed might substantively 

impact the basic model, I ran an additional Tobit regression excluding those fourteen 

academics, one of whom is Highly Cited, who received more than $3 million.  I also ran a 

regression with a National Academy Member interactive variable in order to determine if 

there was a spillover effect between the number of academy members at a university and 

academic rank.  The interactive variable was the product of the number of academy 

members at the university and the value of the individual’s rank: 0 = Unknown, 
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1 = Assistant, 2 = Associate, and 3 = Professor.  The results of these two regressions are 

presented in Tables A and B, respectively, in Appendix A.   

Eliminating the outliers had minimal impact.  Having a Medical Degree changes 

from negative but not statistically significant, to negative and statistically significant at 

the 0.05 level of probability.  Patent Applications become non-significant, though the 

coefficients of the variables also shift.  The most noticeable shifts are in Total Articles, 

which change from $64,885.47 to $51,465.32, and Average Citations, which drop from 

$55,672.5 to $42,919.48.    

For the regression including the interactive variable, the results found that the 

interactive variable had a value of -5,762.67 and was significant at the 0.05 level of 

probability.  No significant change in the probability levels of the other variables 

occurred.  Further, the changes in the coefficients are modest.  For instance, Total 

Articles moved from $64,885.47 to $65,061.52, while Average Citations moved from 

55,672.56 to 55,863.86. 
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Table 20. Diminishing Marginal Return for Total NIH Grants to Publications. 
 
Article Total Dollars Number of Academics  Percentage 
0 0 92 

 
0.069856 

1 62,355 179 
 

0.135915 
2 59,825 185 

 
0.140471 

3 57,295 141 
 

0.107062 
4 54,765 139 

 
0.105543 

5 52,235 116 
 

0.088079 
6 49,705 98 

 
0.074412 

7 47,175 71 
 

0.05391 
8 44,645 55 

 
0.041762 

9 42,115 43 
 

0.03265 
10 39,585 33 

 
0.025057 

11 37,055 29 
 

0.02202 
12 34,525 26 

 
0.019742 

13 31,995 21 
 

0.015945 
14 29,465 12 

 
0.009112 

15 26,935 14 
 

0.01063 
16 24,405 11 

 
0.008352 

17 21,875 8 
 

0.006074 
18 19,345 9 

 
0.006834 

19 16,185 11 
 

0.008352 
21 11,755 4 

 
0.003037 

22 9,225 3 
 

0.002278 
24 4,165 1 

 
0.000759 

25 1,635 2 
 

0.001519 
26 -895 1 

 
0.000759 

27 -3,425 1 
 

0.000759 
28 -5,955 1 

 
0.000759 

29 -8,485 2 
 

0.001519 
30 -11,015 2 

 
0.001519 

31 -13,545 2 
 

0.001519 
32 -16,075 2 

 
0.001519 

34 -21,135 1 
 

0.000759 
53 -69,205 2 

 
0.001519 
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Table 21. Diminishing Marginal Return for Average NIH Grant to Publications. 
Articles Academics Est Average Grants 

 0 92 0 
  1 179 32,695.61 
  2 185 30,542.11 
  3 141 28,388.61 
  4 139 26,235.11 
  5 116 24,081.61 
  6 98 21,928.11 
  7 71 19,774.61 
  8 55 17,621.11 
  9 43 15,467.61 
  10 33 13,314.11 
  11 29 11,160.61 
  12 26 9,007.11 
  13 21 6,853.61 
  14 12 4,700.11 
  15 14 2,546.61 
  16 11 393.11 
  17 8 -1,760.39 
  18 9 -3,913.89 
  19 11 -6,067.39 
  21 4 -10,374.40 
  22 3 -12,527.90 
  24 1 -16,834.90 
  25 2 -18,988.40 
  26 1 -21,141.90 
  27 1 -23,295.40 
  28 1 -25,448.90 
  29 2 -27,602.40 
  30 2 -29,755.90 
  31 2 -31,909.40 
  32 2 -34,062.90 
  34 1 -38,369.90 
  53 2 -79,286.40 
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Table 22.Diminishing Marginal Returns to Citations in Terms 
of Total NIH Grants. 

Articles Academics 
Average NIH 
Grant 

  0 267 0 
   1 349 33,818.77 
   2 270 32,537.36 
   3 176 31,112.22 
   4 107 29,726.21 
   5 63 28,211.39 
   6 19 26,914.79 
   7 20 25,245.62 
   8 9 24,095.09 
   9 9 22,563.50 
   10 9 20,744.48 
   11 6 19,353.98 
   12 1 17,636.30 
   13 4 16,562.75 
   14 1 16,004.50 
  15 5 13,820.19 
   16 3 12,321.03 
   17 1 10,479.30 
   20 1 6,185.10 
   26 1 -2,403.30 
   27 1 -3,834.70 
   28 1 -5,266.10 
   38                   1   -19,580    
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Table 23. Diminishing Marginal Returns for Average NIH Grant to Citations. 
Number of Citations Number of Academics Average NIH Grant 
0 267 0 

 1 349 33,353.50 
 2 270 31,425.65 
 3 176 29,281.57 
 4 107 27,196.36 
 5 63 24,917.36 
 6 19 22,966.65 
 7 20 20,455.45  

8   9 18,724.51  
9   9 16,420.27  
10   9 13,885.12  
11   6 11,591.64  
13   4   7,393.32  
17   1  -1,760.06  
20   1  -8,220.56  
27   1 -23,295.10  
38   1 -46,983.60  
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Let us turn now to the research questions. 

Research Questions 

1. Do Highly Cited Researchers receive significantly more NIH funding than do 

others? 

The answer to this question is both clear and nuanced.  The descriptive statistics 

show that highly cited NIH recipients on average receive $927,189 compared to $538,927 

for the entire sample. Similarly, the average total publications over 2006–07 for highly 

cited NIH recipients is 13.6, compared to an average of 5.31 for the entire NIH recipient 

sample.  Thus, consistent with other studies, highly cited academics are more productive 

and on average receive more NIH funds than others do. 

-60000
-50000
-40000
-30000
-20000
-10000

0
10000
20000
30000
40000

26
7

34
9

27
0

17
6

10
7 63 19 20 9 9 9 6 1 4 1 5 3 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 26 27 28 38

Av
er

ag
e 

N
IH

 D
ol

la
rs

 P
er

 G
ra

nt

Number of Academics
Average  Citation

Figure 8

Diminishing Marginal Returns for Average 
NIH Grant Amount to Citations

Total



90 
 

 
 

Of the forty-five highly cited academics in this study, nineteen (42.2%) received 

NIH grants.  Of those receiving NIH extramural grants, 57.9% received one grant, and 

another 21% received two grants.  Of the remaining four, two received three grants and 

two received four grants.  

However, the Tobit results indicate that, while the highly cited variable is 

statistically significant at the ten percent level, the negative coefficient actually reduces 

the amount of Total NIH Grant funds by $308,222.  The Tobit results also indicate that 

the number of career citations—which represent the reputation of the highly cited 

academics—while having a positive coefficient and statistical significance at the ten 

percent level, has a small $22.2 coefficient for total grant funds.  The negative coefficient 

for the second derivative for articles published from 2006–07 and their associated 

citations indicates that for these key performance indicators there are diminishing returns 

for both total grant and average grant funds, consistent with the findings of Adams and 

Griliches (1998) and of Ali, Bhattacharyya, and Olejniczak (2010).  

The perishability of articles and citations (Parolo et al., 2015, Pollman, 2000; 

Redner, 2005), combined with the diminishing marginal returns and small coefficient for 

the number of career citations, indicates that current publications and citations are more 

important than past performance.  In the highly competitive environment for NIH grant 

funding—only 28% of the applicants received NIH funds in 2008—the idea of publish or 

perish is not far from the economic truth, as indicated by these results.  Moreover, there is 

a positive and reinforcing association between ongoing publication and government 

funding (McAllister and Condon, 1985; Pagel and Hudetz, 2011a; Pagel and Hudetz, 
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2011b; Pao, 1991).  NIH funding increases the number of publications by one additional 

article over a five-year period (Jacob and Lefgren, 2007).  With an estimated time lag of 

about three years between NIH funding and publication (Boyack and Jordan, 2011), any 

disruption in the receipt of NIH funds could negatively impact publication and the 

subsequent receipt of NIH funds.   

Recurrent funding is therefore important for sustaining focused research and 

publication.  The results of this study indicate that endowments, after controlling for such 

factors as number of articles, their citations, gender, and number of career citations, do 

not effect the receipt of NIH extramural grant funds to any statistically significant extent.  

Yet better-funded universities may have the capability to provide recurrent funding 

(Landel, 2010), which could reflect the negative coefficient.  Further, highly cited 

academics may also have access to non-NIH funds.  Barring these, continued 

“contribution to the field” requires a strong current record of publication.  Depending on 

one’s past publication history and citation record, the criteria required for the designation 

of “Highly Cited” may be insufficient. 

2. Does the number of members of the National Academy of Arts and Sciences at a 

university positively contribute to NIH funding?  (Is there a faculty-level halo 

effect?) 

Regardless of model or dependent variable, this coefficient is negative and statistically 

significant at the 0.05 or 0.00 level of probability.  This association probably reflects two 

conditions.  First, the total number of Academy Members at a university reflects 



92 
 

 
 

members in all fields.  Academics in many of these fields, exemplified by the Economics 

Department in this study, generally neither seek nor receive significant amounts of NIH 

funds.  Second, highly cited Academy Members—the stars—may have access, because of 

their reputations, to funds other than from the NIH (Campbell, Koski, and Blumenthal, 

2004; Lendel, 2010). 

3. Does having a degree from a top-ranked university contribute positively to the 

amount of NIH funding received? 

There is no statistically significant relationship here.  There has been criticism 

that the NIH review panels steer money to universities with which they are somehow 

affiliated (Rose, 1965).  This research suggests that NIH funds appear not to be allocated 

based on the university from which an academic graduated.  Further, the small Total 

R&D Expenditures coefficient, at least up to the top twenty institutions ranked by R&D 

spending, indicates that any allocation bias is minimal. 

4. Does the number of articles published in the two years immediately preceding the 

receipt of NIH funds have a positive impact on the level of NIH funding? 

The Tobit model indicates that the number of articles published in the immediate 

two years prior to the receipt of NIH extramural grant funds has a positive and 

statistically significant impact on the amount of funding at the 0.00 level of probability.   

For the total amount of NIH grants received, the number of articles in the prior two years 

contributes $64,885.47, contributing $34,813.10 to the average grant award.  However, as 

indicated by the negative coefficients for the second derivative of the estimated total 
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grant award and average grant amounts attributed to the number of articles in the two 

years prior, there are diminishing marginal returns.  

5. Does the average number of citations per recent publication positively impact the 

level of NIH funding? 

For the immediate two years preceding the application for an NIH grant, the 

number of citations has a positive and statistically significant impact on receipt of such 

funds at the 0.00 probability level.  The number of career citations has a statistically 

significant but small impact.  However, the second derivative of the average number of 

citations has a negative coefficient.  This and the estimated marginal returns for total 

grant and average grants per citations indicate that there are diminishing returns to the 

number of citations.  

6. Is there a difference in publication performance between NIH recipients and non-

recipients? 

The data show a consistently lower publication rate for those academics who do 

not receive NIH funds.  This pattern holds regardless of gender, academic position, or 

department.  NIH non-recipients published on average 2.8 articles in the two years prior 

to 2008, while NIH recipients published on average 5.3.  This trend is similar for 

citations. 
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7. Do academics who license an innovation/invention through the university’s 

Office of Technology Transfer (OTT) receive more NIH funding than other 

recipients? 

Only 3.2% of the sample has licensed an invention.  Comparatively, NIH 

recipients who licensed an invention averaged $566,864 in total grant funds, compared to 

the average of $515,927 for the sample.  When controlling for articles published, average 

citations, career citations, departments, and rank, the licensing of technology contributes 

positively and is statistically significant at the 0.10 level for total grant and average grant 

and at the 0.00 level for number of grants.  The licensing of an invention contributes 

$154,244.70 to the total grant amount. 

8. Do academics who are part of a spinout receive more NIH funding than do other 

recipients? 

A very small number of academics in this sample (0.2%) have been involved in a 

spinout.  However, being involved in spinning out a business contributes positively to the 

receipt of total NIH funds.  The coefficient for spinning out a business is the highest of all 

the variables at $586,712 with a probability level of 0.10.  Comparatively, those 

recipients who spun out a company average $785,395, while the sample average is 

$515,927.  Spinning out a small business has a positive and statistically significant 

impact on average dollars per grant at the 0.05 level.  
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9. Does being listed as an inventor on a university’s patent application positively 

contribute positively to the receipt of NIH funding? 

One hundred and sixty-two academics in the sample (5.2%) have received a 

patent for an invention.  Patenting an invention does have a statistically significant impact 

on the total receipt of NIH grants at the 0.10 level.  It has no statistical impact on the 

average grant amount.  It must be noted that the data here are restricted to those 

academics who are cited as an inventor in patents submitted by their university and do 

not include patents submitted in their own names or by other organizations.  The results 

reflect this constricted approach. 

Given the problems with the data, a firm conclusion as to whether the probability 

level for Patents, Licenses, and Spinouts would increase or decrease with better data 

would require additional research.  Nonetheless, the positive association and statistical 

significance of all three variables may be a consequence of the three factors noted in the 

literature review.  The first is the growing impact of the Bayh-Dole Act, which 

encourages universities to license and patent inventions.  Mowery et al. (2004) noted a 

substantial increase in university patenting following the passage of the Act.  The second 

factor is current academics—attracted by the possibility of substantive remuneration, as 

exemplified by the wealth garnered by the academic founders of the early biotechnology 

firms (Hughes, 2011; Robbins-Roth, 2000)—may now be licensing and patenting more 

of their research results.  Aldridge and Audretsch (2010) noted such a trend for scientists 

receiving grants from the National Cancer Institute.  Finally, the culture within 
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departments may contribute to individuals’ decisions to license or patent (Bercovitz and 

Feldman, 2008).  Taken together, these three factors suggest that a cultural shift may be 

occurring in the normative behavior of scientists toward a more entrepreneurial and 

commercial-oriented attitude to research.  Such a shift may impact where research efforts 

are directed, which may, in turn, contribute to the departmental effects shown here in the  

Tobit models. 

 

Policy Implications 

The tapestry woven by this study presents a clear picture of the importance of 

individual academic performance.  The picture is more complex with regards to highly 

cited academics, as the Tobit models indicate that being highly cited does not guarantee 

increasing returns.  Likewise, career citations have only a small statistically significant 

impact.  In addition, the negative coefficients of the second derivatives of both articles 

published in 2006–07 and their associated citations indicate diminishing marginal returns.  

These are, of course, the key measures of the highly cited academic’s performance.  The 

descriptive statistics, on the other hand, indicate that highly cited academics receive more 

NIH funds and are more productive. 

The complexity and its subtle impact on policy is reflected in the interactions 

between a number of variables.  The number of academy members is positively 

associated with university ranking in terms of total research and development 

expenditure.  More academy members are also positively correlated with the size of a 
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university’s endowment.  When considering the fact that the presence of stars in a 

department generally increases the number of publications (Agrawal, McHale, and 

Oettle, 2012), there appears to be a subtle halo effect.     

Agrawal, McHale, and Oettle (2012), in their study of a star’s impact on 

Evolutionary Biology Departments, concluded: “Our findings suggest that star-

recruitment strategies may be most effective where a cadre of related incumbents is 

already present and the organization has a flow of new hiring slots sufficient to take 

advantage of the improved quality of potential new recruits” (p. 20).  This research 

suggests that while that hiring strategy may be valid, how institutions define stars and on 

which departments they focus their recruitment efforts may be equally important.  

An observation regarding Yale’s improvement in patenting and spinning out 

companies is telling, echoing Cole’s (2009) statement regarding absolute advantage: “As 

a private university, Yale can offer competitive salaries to senior employees recruited 

from industry” (Breznitz, 2014, p. 71).  The ability of top-ranked universities, such as 

Yale, to pay “competitive salaries” for the talent they desire is enhanced by the resources 

of their large endowments.  This makes it difficult for lower-ranked universities to 

compete for talent.  When combined with the trend noted by Zucker and Darby (2006), 

lower-ranked universities may be at an absolute disadvantage.  This returns us to the 

question Rhode (2006) raised: “Is it worth it?”  

The answer to that question depends on the policy objective.  However, if one 

assumes that lower-ranked universities must pay a premium above what the elite 

universities would be willing to pay—and perhaps the lower rank, the larger the 
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premium—this work indicates that the idea of a positive return on that investment may be 

problematic in such a circumstance.  

While this study focused on the year 2008, in order to determine if academics 

who moved from one university to another had maintained contracts with NIH after the 

move, I made a cursory examination.  The examples come from curricula vitae listed by 

ISI Thomason Reuters Highly Cited Academics and other academics’ curricula vitae.  

The results are presented in Appendix B, Table A.  Based on this very cursory review of 

nine academics, seven of whom are highly cited, two things become clear.  First, NIH 

contracts are maintained, often with an increase in the amount received.  Second, 

consistent with the findings of Zucker and Darby (1996), there is a tendency to move 

from a lower-ranked university to one of higher rank.  There are four exceptions: Ronald 

Kessler, Paul Watkins, Michael Levine, and Joseph Beckman.  Most relevant is Joseph 

Beckman, who moved from the University of Alabama to Oregon State University.  

When he left the University of Alabama, his peak grant was $844,550.  After several 

years at Oregon State University, his largest grant amount was $1,353,927.  While not 

systematic, these examples indicate that obtaining a Highly Cited Academic could result 

in higher levels of NIH funds for his or her new university. 

However, given the diminishing marginal returns to publications and citations, the 

small career-citation coefficients, and the negative coefficient for the highly cited 

categorical variable, when universities recruit a star, they must make sure that the star is 

on top of his or her game, both in terms of current publications and receipt of NIH funds. 

If he or she is current, obtaining higher-than-average returns seems likely.  Merely having 
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a title contributes little and may even hurt the university’s attempt to move up in 

rankings. 

The work of Bania et al. (1991) and the development of Stanford add additional 

refinement to the picture.  Universities move up in rankings by being competitive in a 

specific field, as opposed to trying to identify the right mix of fields.  The statistical 

significance of various departmental groupings strengthens this idea of focusing on 

specific departments.  

Equally helpful may be the development of an entrepreneurial atmosphere in the 

focus department and at the university.  Bercovitz and Feldman (2008) found that the 

culture within a department—and particularly the attitude of the Department Head—

increases the licensing activity of academics in that department.  

Yale’s experience in strengthening its OTT staff and streamlining processes in 

order to increase licensing and spinouts provides another focal point.  This in turn can 

have a substantive impact on the receipt of NIH dollars, on local economic development 

activities, and on the creation of a constructive advantage.   

 Unlike the findings of Bania et al. (1991), however, this study indicates that the 

amount of Science and Engineering Space has a small but statistically insignificant and 

negative coefficient.  Thus, rapidly expanding the amount of Science and Engineering 

space may not lead to the receipt of additional NIH funds.  
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Summary 

This study concerned 3,092 academics at twenty-four universities drawn from 

those in the top twenty and below in terms of receipt of NIH funds.  Universities in these 

categories are considered to be the most volatile.  Thus, the examination here of the 

performance of individual academics, institutional characteristics, and external factors 

may help inform what contributes the most to the receipt of NIH funds.  The 3,092 

academics represent 53.3% of the study population.  Non-recipients of NIH funding 

comprise the majority of the sample.  The distribution of non-recipients is similar for 

women, 58.5%, and for men, 56.6%.  With regards to performance measures, non- 

recipients of NIH grants have lower performance than recipients have.  

A key determinant of the receipt of NIH funds is individual performance, as 

measured by the number of articles published and average citations per article in the two 

years immediately prior to the grant application.  To the extent that these criteria 

represent the quality of the research proposal, allocation of NIH funds is based on merit.  

Professors receive more NIH money than do associates and assistant professors.  

Similarly, professors produce more articles and have higher citation rates.  Consistent 

with the findings throughout this study, on average, NIH recipients produce more articles 

and have higher citation rates than do non-recipients of NIH funds, regardless of rank. 

The data indicate that being highly cited alone does not contribute to an increase 

in NIH funding; there is a positive but small coefficient associated with number of career 

citations.   
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The second derivative of articles published in 2006–07 and average citations per 

article is negative and statistically significant at the 0.00 probability level.  Taken 

together, these results, along with the estimated decreasing marginal returns, indicate that 

there are decreasing returns for common academic productivity measures with regards to 

the receipt of NIH grant funds. 

The specific field of an academic also impacts the receipt of NIH funds.  While 

the categories used in this study are broad, the bias toward specific fields is clear even 

though productivity levels are similar.  This bias may reflect a changing emphasis in 

biotechnology research. 

Licensing technology contributes positively to the receipt of NIH funds.  Being 

involved in spinning out a business, patenting an invention, and licensing an invention 

also all contribute positively to the receipt of NIH funds.  These relationships and the 

departmental bias support the notion that there is an increasing emphasis on 

commercialization in biotechnology research. 

The data show complex interactions.  Individual performance is a key determinant 

to obtaining NIH funding, as are an academic’s rank and field.  Gender is not an 

important factor. While some institutional and environmental variables also contribute to 

the obtaining of NIH funds, they are secondary to individual effort. 

There is an expiration date, however, on the results of individual efforts.  This 

puts pressure on the academic who wants to receive NIH funds to continually produce.  

In the highly competitive biotechnology grant environment, where only 28% of 

applicants successfully received NIH Research Grants in 2008, publish or perish has a 
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very significant and specific meaning.  In the past, academics published copiously in the 

early periods of their careers.  As they aged, however, their publication rates declined.  In 

the biotechnology fields, however, increasing commercialization and increasingly 

entrepreneurial attitudes towards research may be changing this pattern.  With a short 

shelf life for publications and citations and the positive associations of licensing, 

patenting, and spinouts with NIH grants, publication must be continuous and commercial 

activities must be regularly pursued.  Combining these processes with the shifting 

research emphasis in specific departments may be creating a new group of stars.   

The definition of these new stars reflects that of Darby and Zucker (2006) in 

terms of impact, articles, citations, grant dollars received, inventions licensed, patents 

received, and involvement in spin outs.  It differs in terms of the current, up-to-date 

nature demanded of academic production.  For universities seeking to move up the 

Carnegie Ladder, the difference in emphasis might be conceptualized as the difference 

between obtaining a single home-run hitter and obtaining several academics who 

consistently hit doubles and triples.  While home-run hitters may capture a lot of 

attention, the latter are in fact the Money Ball Players.  
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Table A 

Tobit Regression Without Outliers (Over 3 Million Total Grant Dollars) 

Variable 
 

Coefficient t-statistic 
 Gender Female 

 
31536.76 1.08 

 Meddegree 
 

*-128824.4 -3.08 
 Degree MDPhD 

 
*187085.2 3.11 

 Total Art 200607 
 

*51465.32 9.8 
 ArtSqd 

 
*-1005.43 -5.39 

 AverCites 200607 
 

*42919.4 4.65 
 AvCites Sqd 

 
*-1312.98 -3.05 

 Career Cites 2007 
 

11.8 1.45 
 DeptBasic Sci 

 
*-249879.6 -5.78 

 Molbiochemmicro 
 

**115908.7 2.6 
 NeroSciGenetics 

 
*195548 3.61 

 EconDept 
 

***-295035.8 -1.63 
 MedNursingDent 

 
**78501.72 2.31 

 AsstProf 
 

*-437184.4 -10.18 
 AssocProf 

 
*-248712.8 -8.01 

 Liscenses 
 

*189289 2.8 
 Spinout 

 
**573371.1 2.24 

 PrivateUniv 
 

-126794.2 -1.44 
 RegNE 

 
155655.4 1.63 

 RegSE 
 

**-145543.6 -2.49 
 RegMiddle 

 
-103224.1 -1.09 

 RegWest 
 

27655.21 0.31 
 PerBachelor 

 
2826.72 1.11 

 MetroPop2010 
 

**.014 2.53 
 AcademyMembers 

 
*-13062.02 -2.78 

 LandGrant 
 

**-152950.9 -2.46 
 Number OrgNIH2008 

 
***-2952.82 -1.66 

 NumberInst 
 

2206 0.42 
 MedSch 

 
**93043.24 1.94 

 RankTotRDExp2008 
 

**-2692.58 -2.31 
 TenFaculty2012 

 
-67.07 -1.47 

 FullTimeGradStd 
 

11.94 0.27 
 PatentApplication200207 

 
61593.37 1.08 

 Endowment2008 
 

0 0.93 
 SciEngSpaceperStudyPop -720.13 -1.36 
 Constant 

 
39082.69 -1.36 

 Number of Observations 
 

3064 
  Confidence Level 

 
*0.00 **0.05 ***0.10 
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Table B 

Tobit Regression with Interactive Number of Academy Members Variable. 

     Variable Coefficient t-statistic 
  Gender Female 29343.1 0.78 
  Meddegree -53196.63 -1 
  Degree MDPhD **195957.4 2.52 
  Total Art 200607 *65061.52 9.64 
  ArtSqd *-1279.54 -5.34 
  AverCites 200607 *55863.86 4.72 
  AvCites Sqd *-1668.3 -3.03 
  Career Cites 2007 **23.94 2.32 
  DeptBasic Sci *-276750.2 -4.94 
  Molbiochemmicro *194804.2 3.39 
  NeroSciGenetics *275655.7 3.95 
  EconDept -335734.3 -1.43 
  MedNursingDent **11300.7 2.56 
  AsstProf *-660416.7 -7.89 
  AssocProf *-360323.3 -7.31 
  Liscenses ***152683.6 1.75 
  Spinout ***576023.8 1.75 
  PrivateUniv -121537.7 -1.07 
  RegNE 190536.7 1.54 
  RegSE **-155228.8 -2.04 
  RegMiddle -91482.62 -0.74 
  RegWest 46832.62 0.41 
  PerBachelor 1404.88 0.43 
  MetroPop2010 **0.0167 2.36 
  AcademyMembers -1488.01 -0.17 
  InterAcadRank **-5762.67 -2.21 
  LandGrant **-137154 -1.71 
  Number OrgNIH2008 -3496.57 -1.49 
  NumberInst 4472.7 0.66 
  MedSch **121760.7 1.96 
  RankTotRDExp2008 **-3179.05 -2.12 
  TenFaculty2012 -71.66 -1.22 
  FullTimeGradStd 16.88 0.29 
  PatentApplication200207 ***138372.1 1.91 
  Endowment2008 0 0.54 
  SciEngSpaceperStudyPop -857.14 -1.25 
  Constant -22682.76 -0.07 
  Number of Observations 3078 

   Confidence Level 
    *0.00 **0.05 ***0.10 
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Table A 
Movement of Academics and Receipt of NIH Funds 

Name Position Field University Year 

         David H. 
Ledbetter Professor 

Molecular 
Biology/ 
Genetics 

U of Chicago 
(48) 1999 2000 2001 2002 2003 

 Highly Cited  305989 313049 501403 501413 0 

         

   Emory (35) 2005 2006    

    405139 407488    

         
Ronald C 
Kessler Professor Neuroscience U of Michigan 

(10) 1992 1993 1994 1995 1996 

 Highly Cited  1325935 1254650 1501001 1887701 282072 

         

   Harvard (33) 1997 1998 1999 2000 2001 

    717438 1307320 6298503 7196239 5433952 

         
Susan G 
Anara Professor Neuroscience OR Hlth Sci 

Ctr (64) 1999 2000 2001 2002 2003 

 Highly Cited  323265 280209 285218 547015 195984 

         

   

U of 
Pittsburgh 

(22) 
2004 2005 2006   

    410135 416090 205661   

         
Joseph S 
Beckman Professor Biology/ 

Biochemistry 
U of Alabama  

(38) 1997 1998 1999 2000 2001 

 Highly Cited  246298 629317 563967 844550 151479 

         

   
OR State Univ  

(63) 2001 2002 2003 2004 2005 

    459785 1833390 1636927 1353927 1353927 

         
Paul B 

Watkins Assoc/Prof Pharmacology U of Michigan 
(10) 1995 1996 1997 1998  

 Highly Cited  309560 317503 274547 389924  

         

   

U of NC 
Chapel Hill 

(19) 
1999 2000 2001 2002 2003 

    378050 386889 395992 621537 1173729 
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Michael 
Levine Professor Biology/ 

Genetics 
U of San 
Diego (6) 1995 1996    

 Highly Cited  238787 223937    

         

   
U of Berkeley 

(17) 1997 1998 1999 2000 2001 

    232755 406370 745509 829766 1005722 

         
Wen-Hwa 

Lee Professor 
Molecular 
Biology/ 
Genetics 

U TX HSC 
(83) 1996 1997 1998 1999 2000 

 
Highly Cited 

 
566565 587511 599445 583086 613346 

         
   

U CA Irvine 
(62) 2001 2002 2003 2004 2006 

    
270825 1764156 1375067 683008 304375 

         Patricia D 
Hurn Professor 

 
OR Hlth Sci U 

(64)   2008 2009 2010 

      2120312 1824591 202736 

         
   

U TX Austin 
(32)   

2011 2012 2013 

      
322208 370951 352649 

         Susan 
Hickman Assistant 

 
OR Hlth Sci U 

(64)   
2008 2009 2010 

      
192500 231000 502736 

         
 

Associate 
 

Indiana U (37) 
  

2011 2012 2013 

      
322208 307923 352649 
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