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Abstract  

The incidence of bus crashes in the US have been trending upwards, with accident, 

injury and fatality rates increasing 171%, 37.8%, and 5.1% respectively, between 2003 

and 2007. Reversing the upward trend is an important objective of both transit 

providers and the society in general. This study introduces an operator-based safety 

methodology that utilizes data recovered from transit Intelligent Transportation 

Systems (ITS) technologies and related systems to identify and assess factors 

contributing to bus operations safety incidents at TriMet, the transit provider for the 

Portland, Oregon metropolitan region. The analysis specifically focuses on collision, 

non-collision and total incidents, as well as on preventability of incidents that occurred 

between 2006 and 2009.  

 

Regression analysis established that bus operator age, experience, short duration 

absenteeism from work, operator’s work span and variability in daily work 

span/assignments are empirically correlated with bus safety incidents. In addition, 

schedule adherence pressures and bus lift operations are also related to safety 

incidents. The other factors that influence safety performance are operators’ 

responsive action events and customer complaints about unsafe bus operation. These 

findings make some contributions to the understanding of the factors that are 

empirically related to the frequency of safety incidents as well as offer insights into 

operation practices and policies that hold promise for reducing bus safety incidents.  
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CHAPTER 1.0:  STUDY OUTLINE 

1.1. Introduction 

This study examines the relationship between transit bus safety incidents and 

operational characteristics using an operator-level, risk based approach. Increases in 

traffic volumes and land use intensification policies have made the operating 

environment for bus transit more difficult in recent years, leading to increased safety 

concerns and heightened levels of risk.  Examples of the types of transportation and 

land use factors influencing transit safety include higher levels of pedestrian and 

bicycle traffic, increases in population and employment density, and various “smart 

growth” design elements (i.e., narrow streets, on-street parking, retrofitting streets 

with pedestrian and bike facilities). 

 

Previous transit industry safety research, as well as research focused more generally 

on commercial motor vehicles, has provided considerable insights into the effects of 

human, physical and environmental conditions on safety. Recent efforts to examine 

the influence of operating environment on bus accident likelihood have been limited. 

As a result, the relationship between operational characteristics and safety 

performance of bus transit systems is not well understood.  

 

The goal of this research is to better understand the relationship between operational 

characteristics and bus accident occurrences, in order to identify and assess 

contributing factors to bus operations safety incidents. This research is made possible 
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by the emergence of data from Intelligent Transportation Systems (ITS) technologies 

and related systems. These data have created an opportunity to explore a new 

dimension of safety— the transit operating environment. Previous research could not 

systematically and comprehensively address this dimension due to data limitations and 

research design complications.  

 

1.2. Problem Setting 

Concerns about safety are central to transit system planning and delivery of service. 

The incidence of bus transit crashes in the US has continued to rise steadily since 2003 

and the trend does not seem to show any signs of slowing down (FTA, 2009). The 

consequences of injuries, fatalities and property damage resulting from bus crashes are 

serious problems that continue to affect both the general public and transit agencies in 

the United States.  For example, in 2002, the Federal Transit Administration (FTA) 

reported that there were approximately 12,750 collisions involving fixed-route buses 

accompanied by 12,000 injuries and 80 fatalities (FTA, 2002).   

 

The most recent FTA report indicates that while ridership has grown annually at a 

relatively steady pace, the bus industry’s accident rate has risen at a greater rate (FTA, 

2009).  In particular, FTA analysis of the National Transit Database  (NTD), 

visualized in Figure 1, reveals that bus incident rates have been trending upward, with 

accident, injury and fatality rates increasing 171%, 37.8%, and 5.1%, respectively, 

between 2003 and 2007 (FTA, 2009) .  Similarly, the total value of property damaged 



 
 

                                                                                                           3 
 

in bus collisions has also continued to rise steadily. For example, in 2003 the total 

inflation adjusted value of property damaged in the U.S. rose to $28.7M from $25.7M 

in 2002 (FTA, 2004).  

  

             Figure 1. Bus Accident, Injury and Fatality Rates: 2003- 2007,  
                           Standardized by 100,000,000 Passenger Miles 
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                                           Source: Authors compilation using data from FTA Winter, 2009 

 

An analysis of risk management and risk financing practices for a select number of 

transit properties by Chaney and Derr (1996) found that bus accident losses 

characterized as property damage or bodily injury to passengers, pedestrians or other 

motorists were responsible for about 50% of the total risk cost. Similarly, Abacus 

Technology Corporation (1996) also found that losses related to traffic accidents 

involving collisions and passenger accidents accounted for about 51 percent of the 

total risk cost and, on average, the total risk cost was 4.85 percent of a bus transit 
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agency’s operating expenses.  An indication that for every one hundred dollars spent 

on operating expenses, $ 4.85 actually goes towards covering the cost of risk.  Other 

components of total cost of risk include safety and loss control program cost, risk 

management program cost, claims handling, and insurance premiums.   

 

A careful review of data on safety performance of major surface transportation modes 

reveal that US transit systems are relatively safe when compared to automobile travel. 

For example, the American Public Transit Association reports that the bus passenger 

fatality rate (standardized by passenger miles) in 2003-2005 was only 2.8% of the 

fatality rate for automobile travelers (APTA, 2009). Nevertheless, the safety risks 

faced by bus riders are relatively greater than the risks associated with travel by other 

transit modes.  For example, the Federal Transit Administration reports that across the 

transit industry, bus accidents account for more than 80 percent of all public 

transportation accidents while providing roughly 45 percent of all passenger trips 

(FTA, 2003). Similarly, the most recent information reported to the Federal Transit 

Administration’s National Transit Database (NTD) reveals that while buses accounted 

for 40% of transit passenger miles in 2006, they were associated with 58% of the 

industry’s safety incidents, 61% of injuries, and 41% of fatalities (FTA, 2009).  

 

Given the increasing trend of accident rates, prevalence of bus accidents and their 

associated costs, there is a need for transit providers and other agencies such as the 

FTA to take a more concerted and unified approach toward slowing down and 
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possibly reversing this upward trend. The common approach would be to undertake 

safety investment programs, but the challenge is ascertaining where the focus should 

be and what level of safety resources to allocate.  One way to meet this challenge is to 

conduct a systematic and thorough safety analysis to identify and assess contributing 

factors that are within the control of transit providers, so that changes in operating 

policies and practices can be introduced to improve safety. As the FTA (2009: 5) has 

observed, “… a transit bus system does have influence over how its bus operators 

perform their duties and can implement training and supervisory monitoring programs 

to improve operator safety related performance.” Beyond the operator, a variety of 

factors related to the planning and delivery of bus service affect safety performance 

and are also subject to managerial control (Technology and Management Systems, 

2001). 

 

1.3. Purpose of the Study  

While previous transit industry safety research and research focused more generally on 

commercial motor vehicles have provided insight into the effects of human, physical 

and environmental conditions on safety, there has been little empirical examination of 

how operational factors impact bus accident likelihood. The purpose of this study is to 

empirically examine the relationship between the operational characteristics and 

accident occurrences in a transit system, in order to identify and assess factors 

contributing to bus operations safety incidents. The analyzes is designed to offer 
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insights into potential operations policies and practices that may be used or changed to 

improve bus operator safety performance.  

 

Previous studies on this topic have specifically addressed the effects of operator 

demographics, factors contributing to operator stress and fatigue, various measures of 

safety risk exposure (e.g., related to time and/or distance, passenger volumes served), 

and route or vehicle characteristics representing potential safety hazards. While the 

collective scope of prior transit safety research has been broadly established, it is also 

important to acknowledge that the various human, physical and environmental 

dimensions of safety risk corresponding to a transit bus operating environment, 

particularly in a medium to large scale urban setting, are dynamic and highly complex. 

 

Prior empirical studies that have investigated factors contributing to bus transit crash 

and/or passenger injury incidence have generally fallen well short of sufficiently 

representing this complexity, particularly with respect to those risk determinants that 

are within the control of the transit provider. Data resource limitations have often 

compromised safety analysis in the transit industry as reflected in overly-aggregated 

research designs and model specifications lacking either relevant variables or relying 

on measures that only roughly approximate safety risk determinants. The widespread 

deployment of intelligent transportation system (ITS) technologies in the transit 

industry over the past decade carries the potential to mitigate many of the data 

resource limitations that have constrained prior safety research. Unlike other 
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conventional ways of data collection, ITS and related systems collectively generate 

information which is comprehensive and provides a detailed portrayal of operators’ 

work qualifications, work environment, and work performance. 

 

From a methodological perspective, attempts to model accident rates and frequencies 

have varied from the use of the  mean-variance approach to least squares regression 

techniques to count data methodological approaches, such as, Poisson models (P), 

Negative Binomial models (NB), Zero- Inflated Poisson (ZIP) or Negative Binomial 

models (ZINB).  The mean-variance approach entails use of the mean and variance of 

accident involvement rates. It is often undertaken to test the equality of accident risk 

between different exposure groups (Jovanis and Delleur, 1981; 1983). This approach 

models well the nonnegativity and heteroskedasticity but does not address the 

discreteness of the count data (Cameron and Trivedi, 2005). 

 

A number of studies have discussed the advantages and disadvantages of using the 

Poisson regression approach as an alternative to least squares methods.  For example, 

in research that examined the appropriateness of Poisson and least squares methods to 

modeling of accident frequencies,  Jovanis and Chang (1986) found that Poisson 

distribution is superior to least squares techniques in modeling crash data because it 

requires a smaller sample size and, unlike the least squares models, Poisson models 

neither predict non-integer nor negative values.  Consequently, Jovanis and Chang 

(1986) recommend use of Poisson estimation in modeling crash data.  
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One requirement, which is also the major limitation of Poisson estimation, is that the 

mean of the count process equals its variance. When the variance of an accident event 

is greater than the mean of accident event, data violates the equality constraint and 

using a Poisson model leads to biased standard errors.  Negative binomial distribution 

has been used as an alternative approach to address this problem (Shankar et al. 1995; 

Washington et al., 2003). The NB model is more flexible and easily overcomes over-

dispersion problems (Cameron and Trivedi, 2005; Washington et al., 2003).   

 

This research primarily uses a count data modeling framework to assess the role of 

operational characteristics in bus transit accidents. In addition, a discrete outcome 

modeling structure is employed in exploring incident preventability. The ITS 

generated incident data and other data archived by TriMet, the transit provider for the 

Portland, Oregon metropolitan area, is used to assess in-service collision, non-collision 

and total incidents, as well as the likelihood of involvement in preventable and non-

preventable incidents that occurred on the agency’s bus system over a three year 

period, from September, 2006 through February, 2009.  

 

The remainder of this thesis is structured as follows. Chapter 2.0 presents a review 

of safety research literature. This is followed by data description and research 

methodology discussion in chapter 3.0.  In chapter 4.0 the safety incident frequency 

analysis results are discussed. This is followed with the description and development 

of the preventability analysis model in chapter 5.0.  In addition, this chapter also 
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presents and discusses factors that influence the likelihood of preventable incident 

involvement. Finally, chapter 6.0 provides the concluding remarks, highlighting the 

policy or management implications, study contributions and potential future research 

directions.  
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CHAPTER 2.0: LITERATURE REVIEW 

2.1. Introduction. 

This chapter is divided into four parts. Part 2.2 covers theoretical perspectives and the 

related conceptual structures.  Part 2.3 presents various modeling frameworks or 

econometric approaches that have been used in similar safety research efforts. In part 

2.4, empirical findings from a sample of selected safety studies that focus specifically 

on operator safety performance are presented. In addition, this part will also cover 

general research that examines the influence of non-driver level factors on safety. 

Finally, section 2.5 presents the summary of what is known and not known, including 

what is addressed in the present study. 

 

2.2. The Conceptual / Theoretical Frameworks 

The human capital theory formulated by Becker (1964; 1962) suggests that variations 

in human capital across individuals and companies can explain the differences in labor 

force outcomes, such as safety and productivity. More job experience, higher level of 

education or skills set, and perhaps, higher employee compensation, for example, are 

expected to lead to fewer crashes and/or better employee outcomes. Human capital 

theory has empirically been tested and supported by a number of truck industry safety 

studies (Rodriguez et al. 2006; Rodriguez et al. 2003; Krass, 1993; Monaco and 

Williams, 2000). For example, Rodriguez et al. (2003) found that human capital, 

occupational and compensation factors were important predictors of crash frequencies.  
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A careful review of empirical studies in the large area of safety reveals that application 

of human capital theory has been used in truck industry safety analysis only to a 

limited scale. In general, there seems to be no consensus on one unified theory of 

accident occurrences. However, it is also evident that the traditional highway–based 

empirical framework has most often been adapted and applied to bus transit safety 

research at both industry and firm levels.   

 

The conventional highway-based empirical approach treats occurrences of highway or 

commercial vehicle accidents as being the result of the interaction between the driver, 

vehicle, roadway and environmental conditions (Jovanis, 1989; Jovanis, 1986). 

Evidence suggests that empirical studies that have used this approach have had a 

driver focus, in part because human error is recognized as the key determinant of 

commercial vehicle accidents (Jovanis, 1989). Whereas this empirical framework is 

useful, still it cannot directly be applied to bus transit accident analysis because of the 

complications that are inherent and specific in the transit industry.  

 

There are features which are unique to bus transit and have no parallel structure in the 

traditional highway safety field. First, there is the risk of an accident in bus transit 

which is affected in part by transit service characteristics and by agency policy 

environment in addition to the traditional factors of human, vehicle, roadway and 

environmental conditions, such as, weather and lighting factors. Second, passenger 

injuries resulting from non-collision incidents are also a major concern in the transit 
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industry. In particular, injuries to transit passengers occur in non-collision incidents, 

especially while the vehicle is accelerating or decelerating (Wahlberg, 2007), and 

during boarding and alighting processes (Morlok et al., 2004; Hudenski, 1992).   

 

At an industry or aggregate level, the organizational-based conceptual framework 

proposed by Reason (1997) has been used as a tool to investigate factors that are 

important in bus accident occurrences (Chang and Yeh, 2005; Arnold and Hartley, 

2001). In this structure, organizational factors influence work place factors, which in 

turn result in unsafe acts and these unsafe acts might eventually lead to an accident. In 

other words, the accident risk at an industry level is determined by organizational 

factors, workplace factors and unsafe acts. This framework considers the 

organizational and work place factors and has potential to provide more insight into 

the safety performance of transportation companies than does the highway-based 

structure (Chang and Yeh, 2005).  The major shortcoming of this framework is that it 

cannot be used to identify safety problem areas within a specific transit agency. 

  

At the level of an individual bus transit agency or firm, perhaps the most important 

and relevant empirical structure is the risk-based conceptual framework (RF) proposed 

by Jovanis et al. (1991). This conceptual approach is broader in scope than the 

highway-based approach but as with other structures, RF is spatially-based and 

therefore it is not appropriate for the present study. However, RF is attractive because 
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it can be used to provide insight into safety performance for a specific transit company 

at multiple-levels (i.e. system-wide, route or even at trip level).  

 

On the other hand, RF has obvious limitations because accident data and associated 

attributes are organized around the individual routes or roadway segments.  When 

accident data is organized around the routes, as was the case in the study of Jovanis et 

al. (1991), it becomes almost impossible to consider both the behavioral and non-

behavioral factors in the same estimation model. This may in part explain why Jovanis 

et al., did not account for factors related to the operator and to operator assigned work 

in their estimation model.  

 

For this study, the conceptual structure formulated by Jovanis et al. (1991) was 

modified into an integrated empirical framework or model that is consistent with the 

human capital theoretical perspective. The Integrated Operator Signup-Based Risk 

Framework (IRF) shown in Figure 2 was applied in the present study.  In this 

framework a particular level of safety risk is treated as resulting from the interaction 

between the bus operations related factors (i.e. operator factors, assigned-work 

characteristics, customer feedback, temporal factors, and transit service characteristics 

and agency policies). The resulting risk level may lead to a collision or non-collision 

incident, which may be classified as either a preventable or non-preventable incident.  
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The empirical analysis showed that IRF is a promising tool for determining 

operational factors that are related to bus transit incidents.  The key strength of IRF is 

that it considers and performs well at capturing a wide array of operator-level 

information sources that are important in explaining bus collision and non-collision 

incidents. The specific information captured ranges from operator demographics, 

employment status, work assignment factors, service delivery to the 

customer/passenger feedback and temporal factors.  IRF also captures information  

 
 
                      Figure 2. Integrated Operator Signup-Based Risk Framework 

Service Performance 
 Lifts/Hour 
 Speed 
 On Time 
 Road Calls 
 Traffic Delays 

Driver 
 Age 
 Gender 
 Race 
 Work Status 
 Seniority 

Assigned Work 
 Route (Specific) 
 Route (Type) 
 Shift 
 Garage 
 Vehicle 
 Hours/Week 

Customer Feedback 
 Commendations 
 Complaints 

Transit Agency 
Policies & Practices 

Safety Risk 
Exposure (i.e. hours 

worked, boardings/hour) 

Preventable 
Non-preventable Incident (Collision and / or Non Collision) 

Temporal Characteristics (e.g. Seasonal Signups) 

 

                                                                                        (Source: Authors compilation, 2010) 
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on preventable and non-preventable incidents which is used to provide more insight  

about policies and practices that are important in minimizing occurrences of 

preventable incidents and thus improving bus, as well as passenger/customer safety.   

 

Notable omissions from the IRF framework include lack of consideration of factors 

that capture workplace and organizational or agency-wide culture. In addition, 

information on time of the day variations in traffic volume and changing conditions or 

passenger demand patterns are not well captured. These omissions and use of coarse 

or rough proxies to represent risk exposures limit the ability of IRF to better identify 

and assess factors that influence bus operations safety.  

 

The estimated empirical model (see chapter 4) indicates that the variable “total hours 

worked’ performs well at capturing risk exposure. Similarly, incorporation of the 

number of passenger complaints in the previous signup period as well as inclusion of 

an interaction term between absence hours and fit for duty commendation improves 

model performance and accounts for historical effects of customer complaints. 

Conversely, the “passenger boardings” variable, which ideally should represent the 

risk exposure for non-collisions events, did not perform as well as expected.  

 

The safety literature suggests that IRF structure may be improved by stratifying total 

hours worked and number of passenger boarding in order to capture non-linear effects. 

Potential factors that future research can add to the structure include the average hours 
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worked and number of passenger boardings during the peak and off-peak periods 

respectively. Also, as shown in Chimba et al. (2010) stratification of the speeding 

variable better captures the changing driving or traffic conditions and thus may 

improve IRF performance. 

 

Prior research on bus safety performance has mainly been examined at two-levels of 

analysis; system and route–levels. The system level approach is used where the goal of 

the analysis is to investigate factors that are important in safety and to provide broad 

level indicators of safety performance (Chang and Yeh, 2005; Jovanis et al. 1991). 

Beyond the big picture or safety performance indicators, route level designs are used 

in determining geometric and other non-behavioral factors that contribute to crash 

incidents (Jovanis et al. 1991; Chimba et al. 2010).  Data in route-level design are 

organized around the individual routes or network facility segments. As observed in 

the studies by Jovanis et al. and Chimba et al. the route-based design approach is 

limited to the sample of operators who are involved in incidents and consequently, 

information on those without incidents is not recovered. In addition, behavioral factors 

are not captured in the route based designs.   

 

In contrast to earlier safety research, the present study examines the contributing 

factors to bus safety using the operator signup based approach. This approach is 

consistent with Evans (2004) perspective that efforts to improve safety should focus 

on human behavior. Similarly, FTA (2009) policy paper on bus safety improvement 



 
 

                                                                                                           17 
 

strategies recommends that the focus should be to identify and assess effects of factors 

that are within transit agency control. In the next section, various analytical 

frameworks that have been used in examining the factors that influence safety are 

discussed.  

 

2.3. Modeling Approaches and Estimation Methods  

This section specifically reviews issues associated with various analytical frameworks 

that are used in modeling crash data, and is structured into four sections. Section 2.3.1 

discusses the strengths and weaknesses of modeling crash data by least square 

regression models. Section 2.3.2 presents the Poisson distribution modeling approach, 

how it has been implemented in practice and the issues that limit its widespread 

application. Section 2.3.3 presents the negative binomial modeling approach and the 

associated issues. In section 2.3.4, the negative multinomial modeling method and 

related issues are provided. This is followed in section 2.3.5 with the discussion of 

issues associated with application of fixed and random effects negative binomial 

methods. Finally, section 2.3.6 covers Zero-inflated Poisson /negative binomial 

methods and other count data modeling approaches.  

 

2.3.1. The Least Squares Regression Models 

Least squares and linear regression modeling approaches have been used in a number 

of safety studies (Ceder, 1982; Ceder and Livneh, 1982). The dependent variable is 

either accident frequency (defined as the number of accidents) or accident rate 
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(defined as number of accidents per mile or million miles). The risk components are 

assigned as independent variables, and may include various factors (.i.e. vehicle type, 

human factors, etc.).  A linear regression models is specified as; 

Yi = βo  + β1X1, i + β2X2, i +.... + β k-1, X k-1, i + εi  ...............................................  1.0 

Where, 

 βo is a constant term, βi are parameters to be estimated, Xi  are independent variables, 

and εi is the random or error term which captures the unobserved effects. 

 

In practice this model is used to model a continuous variable as a function of 

covariates for explanation or prediction purposes. It has fairly robust assumptions and 

is used to model a variety of multivariate, linear and non-linear relationships, and also 

has the advantage of being flexible and easy to learn to use.  Linear regression 

modeling is limited in model forms however. For example, it cannot handle both 

additive and multiplicative effects. In addition, least squares regression analysis is 

only suitable and appropriate for continuous variables. When used in crash data 

analysis, linear regression can yield predicted values that are either non-integer or 

negative. These are not appealing statistical properties, and also, they are inconsistent 

with count data distributions (Washington et al., 2003).  

 

Poisson distribution has been recommended as an alternative to least squares 

regression in modeling crash incident data (Jovanis and Chang, 1986). In the next 

section, Poisson regression modeling is examined.    
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2.3.2. The Poisson Modeling approach 

Count data are usually modeled by assuming a Poisson distribution (Cameron and 

Trivedi, 2005; Washington et al., 2003). The Poisson distribution is appropriate for a 

dependent variable that takes only nonnegative integer values and can be used to 

model the number of occurrences of an event, such as the number of accidents. 

Poisson regression is also appropriate for rate data, where the rate is a count of events 

occurring to a particular unit of observation, divided by some measure of that unit's 

exposure to crash risk. For example, number of accidents per given time period.  

 

More generally, event rates can be calculated as events per unit time, which allows the 

observation window to vary for each unit.  Shankar et al. (1995) provides a number of 

reasons why Poisson distribution should be the starting point for modeling safety 

incidents. First, it lends itself well to the modeling of count data by virtue of its 

discreteness, and nonnegative integer distribution characteristics. Second, it can be 

generalized to more flexible distribution forms.  

 

In a Poisson regression model, the probability of operator j being involved in y 

accidents per time period, t, where y is a non-negative integer, is expressed as; 

P (Yjt= y jt) = exp(-λjt) λj t
yj t / yj t!   ……………………………….............1.1 

Where,  

P(yjt) is the probability of operator j being involved in y accidents per time period t, 

and Yjt is the observed frequency of accidents in time period t involving operator j.  
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While  λjt is the Poisson parameter for operator j, which is equal to the expected 

number of accidents involving operator j in time period t, E[yjt].  

 

The Poisson regression models are estimated by specifying the Poisson parameter: the 

expected number of events or accidents per period as a function of explanatory 

variables. The most common relationship between independent variables and the 

Poisson parameter is the log-linear model and is expressed as;  

ln λj t  = βXj t  or,  equivalently………………………………………….……….... 1.2a. 

λj t  = exp(βXj t ) ....................................................................................................... 1.2b. 

Where,  

Xjt is a vector of operator- and time-specific explanatory variables, and β is a vector of 

coefficients to be estimated.  

 

In this formulation the expected number of accidents per time period is given by; 

E[yj]= λj   = exp(βXj)………………………………………………. ……………....1.3 

In practice, the exposure variable enters on the right-hand side of the equation, but 

with a parameter estimate constrained to one (Greene, 2003). The model is specified 

as 

log (λj t )= log(exposure) + βo + βi Xj t ……………………………………………..1.4 

Where,  
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βo  is the constant term and exposure, for example in the case of the present study is 

the total hours of service per operator signup. The above model can be expressed as;  

log (λj t ) - log(exposure) = a + βXj t  = log (
Exposure

jt
) =    βo  + βi Xj t ..……........ 1.5 

This model is often estimated by using standard maximum likelihood methods, with 

the likelihood function given as;  

L(β) = 
j

( exp[- exp(βXj)][ exp(βXj)]
y
j ) / yj ! ……………….……………....... 1.6 

 

The log of the likelihood function provided below is simpler, convenient and more 

appropriate to estimate using standard econometric softwares.  

LL (β)= 


n

j ,1

 [- exp(βXj) + yj βXj – ln(yj !)] ……………….…………………….. 1.7 

Poisson regression is a powerful analysis tool. It easily overcomes the constraints that 

limit use of linear regression models.  In particular, the Poisson distribution approach 

has successfully been used for modeling crash data because it fits count data well. But 

as with other methods, this tool has to be used appropriately.  

 

Failure to recognize that count data is truncated or contains a preponderance of zeros 

often limits the application of Poisson regression. For excess zeros, if there are two 

processes at work, one determining whether there are zero events or any events, and a 
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Poisson process determining how many events there are, there will be more zeros than 

a Poisson regression would ideally predict.  

 

The Poisson distribution requires that the mean of accident outcomes be equal to the 

variance, that is, E[yi]= Var[yjt]. When crash data is over-dispersed, the estimated 

variance term is larger than in a true Poisson process. As overdispersion becomes 

larger, so does the estimated variance. As a result all of the standard errors of 

parameter estimates become inflated. Shankar et al. (1995) observed that when data is 

over-dispersed or under-dispersed and Poisson distribution is used in estimation, then 

the equality assumption will be violated resulting in biased estimates of β, which 

consequently can lead to making erroneous inferences.  

 

Over-dispersion arises when variables influencing the Poisson rate across observations 

are omitted from the regression (Washington et al., 2003). Over-dispersion was an 

issue that confronted the present study since some variables, particularly those related 

to bus operator habits, were not considered. The conditional mean and variance 

equality assumption is typically taken to be the major shortcoming of the Poisson 

regression modeling approach.  

 

Many alternative formulations that can overcome this limitation have been suggested 

in modeling literature. For example, Greene (2003) observes that a negative binomial 

model, which arises from a natural formulation of cross-section heterogeneity is the 
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common approach used in practice as an alternative to Poisson regression. To 

overcome over-dispersion or under-dispersion complications, the negative binomial 

distribution is often used. This alternative specification and associated issues are 

examined in the next section. 

 

2.3.3. The Negative Binomial Modeling Approach 

The negative binomial distribution model relaxes the Poisson’s mean-variance 

equality constraint. It is especially useful for discrete data over an unbounded positive 

range whose sample variance exceeds the sample mean.  A negative binomial 

distribution or modeling (NB) approach is considered the current state of practice for 

modeling the over-dispersed crash data. It is derived by generalizing or rewriting the 

Poisson model ( equation 1.2a or 1.2b ) by introducing an individual, unobserved 

effect into the conditional mean.   

 

In NB approach, each observation j can be specified as; 

λj t  = exp(βXjt + εjt)        or alternatively………..………………………....1.8a. 

ln λj t  = βXjt + εjt ……………………………….……………....………... .1.8b. 

Where , 

exp(εjt) is a gamma-distribution error term with mean 1 and variance α2.  

 

The  addition of the error term allows the variance to differ from the mean, resulting in 

a mean-variance relationship provided in equation1.9  below; 
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Var[yjt]=  E[yjt][1 + α E[yjt]] = E[yjt] + α E[yjt]
2.……………………………….…. 1.9. 

The α is often referred to as an over-dispersion or under-dispersion parameter and the 

decision to use either Poisson or negative binomial is dependent on the value of α. 

When α approaches zero, Poisson specification is used and vice versa.  Washington et 

al. (2003) notes that the test for over-dispersion is provided by Cameron and Trivedi 

(1990) and is based on the assumption that under Poisson model, (yjt- E[yjt] )
2- E[yjt] 

has mean zero, where E[yjt] is the predicted count λj t .   

 

Therefore the competing hypotheses are given as; 

HO: Var[yjt]= E[yjt ]  ............................................................................................. 2.0a. 

HA: Var[yjt]= E[yjt ] + αg(E[yjt]) ............................................................................2.0b. 

Where, 

g(E[yjt]) is a function of the predicted counts that is usually given the values of  

g(E[yjt ])= E[yjt] or E[yjt]
2.   

 

In performing overdispersion test, a simple linear regression is estimated as shown in 

equation 2.1 below; 

Zjt= bWjt. ………………………………………………………….…….……...…...2.1 

Where,  

Zjt= (yjt - E(yjt ) )
2-   yjt  / E(yjt ) 2 ……………………………...………..…….................2.2 

Wjt= g(E(yjt )) / 2 …………………………………..…………………......………..2.3 
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The regression in equation 2.1 is run for both g(E[yjt ])  equal to E[yjt ] and E[yjt ]
2, if b 

is statistically different from zero in either case, then Ho is rejected and therefore the 

negative binomial  regression model is used for data analysis. 

 

According to Washington et al. (2003) and Cameron & Trivedi (2005) the negative 

binomial distribution form can be specified as provided below; 

P(yjt ) = (┌ ( (1/α) + yjt ) ┌ (1/α) yjt!) (1/α 1/α + λj t ﴿
1/α  (λj t 1/α + λj t ) 

yjt
 ,   .…2.4 

Where ┌ (.) is a gamma function.  The equation 2.4 , results  in the likelihood function 

(the product of probabilities) expressed below; 

L(λj t ) = 
j

(┌ ( (1/α) + yjt ) ┌ (1/α) yjt!) (1/α 1/α + λj t ﴿
1/α  (λj t 1/α + λj t ) 

yjt
 ,…2.5 

This function is maximized to obtain α and β coefficients.   

 

According to Green (1998), estimation of equation 2.5 can be done through the 

standard maximum likelihood procedures (MLE). Lord and Mannering et al. (2010) as 

well as Shankar et al. (1995) and Lin(2001) review some of the estimation methods 

that can be used in an estimation process besides the MLE procedures.  These include 

quasilikelihood, weighted least squares, regression-based estimation and moment 

estimation techniques. However, Shankar et al. (1995) cite evidence from the study by 

(Piegorsch, 1990) which indicates that for large samples (J > 20) the quasilikelihood 

and MLE methods are efficient and perform better in estimating the parameters.  
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Just like the Poisson approach, the NB approach easily overcomes the constraints that 

limit linear regression applications. The NB distribution approach has successfully 

been used for modeling crash data. Unlike the Poisson model, the NB approach is not 

limited by over-dispersion complications.  However, the NB approach is also limited. 

First, the NB model leads to inefficient coefficient estimates and biased estimated 

standard errors when used to estimate pooled count data with serial correlation in error 

structures. Second, NB specification is not easy to implement as “in-depth” knowledge 

is required to estimate and interpret the results. In the next sections, more advanced 

specifications which can overcome some of these issues are discussed.   

 

2.3.4. The Negative Multinomial Modeling Approach 

The negative multinomial modeling method (NMM) is basically an extension of the 

negative binomial model. While NMM is suitable for estimating count data with 

correlated error terms, it has not been used widely because the specification is fairly 

complex and interpretation of results is difficult. Serial correlation has been observed 

to be an issue in count data (Ulfarsson and Shankar, 2003; Washington et al., 2003). 

However, only a few safety studies have bothered to correct or even test its presence. 

Ulfarsson and Shankar (2003) observe that most researchers that estimate Poisson or 

negative binomial assume that serial correlation does not exist.  

 

Serial correlation has been attributed to a number of factors. For example, Lin (2001) 

reports that in most cases autocorrelation problems are due to omitted variables. On 
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the other hand, Washington et al. (2003) attributes it to the time series nature of count 

data especially from panel. When errors are correlated for different time periods for 

given observations, then the independence assumption of unobserved error terms is 

violated and, if not corrected, autocorrelation leads to inefficient coefficient estimates 

and biased estimated standard errors.  Therefore, negative multinomial distribution has 

been a preferred statistical approach in modeling data with auto-correlated error 

structures.   

 

The fixed-effects and random effects count data modeling approaches are other 

methods that easily overcome serial correlation related issues (Ulfarsson and Shankar, 

2003; Washington et al., 2003) and they are examined in the next section. 

 

2.3.5. Fixed /Random Effects Negative Binomial Modeling Approaches 

The fixed- and random effects negative binomial models are simple extensions of 

negative binomial models. These models are different from each other. The random 

effects modeling approach accounts for possible autocorrelation and over dispersion, 

which is often attributed to the unobservable heterogeneity.  In contrast, the fixed-

effects approach is limited as it does not account for heterogeneity in observations 

(Washington et al. 2003).  

 

Specifically, group-specific variations (in this case, individual bus operator– specific 

effects) would be unaccounted for in the fixed effects negative binomial (FENB) 
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models. While the regular NB models can overcome over dispersion, they fail to 

account for individual-specific effects and serial correlation that may occur over time 

in crash count data.  

 

Empirically, over dispersion and serial correlation can be overcome by incorporating 

in the model structures the indicator and trend variables that capture individual and 

temporal effects respectively. This approach however is limited as all unobserved 

heterogeneity will not be fully captured. Shankar et al. (1998) has suggested 

addressing these issues through use of an appropriate modeling framework that can 

produce efficient parameter estimates. Chin and Quddus (2003) indicate that one way 

to overcome over dispersion and serial correlation is by analyzing count data in panels 

and considering separate persistent individual effects in the negative binomial model.  

 

In the context of count data, Hausman et al. (1984) first examined random effects 

negative binomial (RENB) and fixed effects negative binomial models for panel data 

in their study of research and development patents. Other studies that have used 

random effects in crash frequency analysis include:  Johansson (1996) who examined 

the effect of a lowered speed limit on the number of crashes on roadways in Sweden; 

Miaou et al. (2003) used random effects in the development of crash risk maps in 

Texas. The findings of  the study by Shakar et al. (1998) that compared standard/ 

regular NB and RENB models in analyzing the  crashes caused by median crossovers 

in Washington State  indicates that RENB specifications are more appropriate in 
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modeling crash data because they account for group-specific effects. In addition, their 

study indicates that RENB models can significantly improve the explanatory power of 

the accident models.  

 

The RENB specification basically layers a random “individual and time” effect on the 

regular NB by assuming that the over dispersion parameter is randomly distributed 

across groups (Hausman et al . 1984; Shankar et al. 1998). This formulation is better 

able to account for the unobserved heterogeneity across observation units and time. 

Ultimately the variance- to- mean ratio is not constrained to be constant across 

individual operators, as is often the case in the cross-sectional or regular NB.  

 

The RENB model structure  is derived by introducing  a random individual –specific 

effects term into the relationship between the expected number of crash incidents λjt  

and the covariates, Xjt, of an observation unit j for  a given time period (Shankar et al. 

1998; Chin and Quddus, 2003).  Mathematically, this specification is expressed as   

ln λj t  = Xjtβ + uj …………………………..……………………………………….2.6 

Where, 

 Xjt is a vector of operator- and time-specific explanatory variables, β is a vector of 

coefficients to be estimated, uj is a random effect for the jth individual operator or 

observation group such that exp(uj) is a gamma-distribution with mean one  and 

variance α, where α is also an overdispersion parameter in the regular NB model .  
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As indicated by Shankar et al. (1998), variations of individual group effects over time 

are accounted by using  j / (1 +j ) to be B( a, b), where j is 1/ α and  B(.) is the beta-

distribution.  

 

Using the results derived by Hausman et al. (1984), the probability density function 

for the RENB specification for the jth individual group can be written as                  

P( nj1, …. .,njT | Xj1, ……, XiT ) 

                     =   
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   …………………2.7 

Where  (.)  is a gamma function and njt is the number of crash incidents involving 

operator j during time period t. The parameters a, b and the coefficient vectors β are 

estimated using standard maximum likelihood procedures (Shankar et al . 1998; Chin 

and Quddus, 2003).   

 

Generally, simple Poisson and negative binomial models and their extensions have 

made valuable contributions in uncovering crash risk factors. However, work by 

Shankar et al. (1997) suggest that these modeling efforts do not address the possibility 

that some observed units  have zero accidents during a specified time period that  may 

be qualitatively different from  Poisson or negative binomial distributed accident 

frequency counts. They suggest that two processes may be simultaneously at work in 

such situations. The consequences of estimating a dual –state system as a single –state 

system can lead to erroneous inferences regarding over dispersion in the data and 
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underlying causality. These issues are overcome by using the zero inflated models for 

analyzing the dual-state systems (Carson and Mannering, 2001; Washington et al. 

2003; Shankar et al.1997). The zero-inflated models and associated issues are 

discussed next. 

 

2.3.6. Zero- Inflated and other Modeling Approaches 

The Zero Inflated Poisson (ZIP) and Zero Inflated Negative Binomial (ZINB) models 

are simple extensions of Poisson and negative binomial models respectively.  These 

specifications often model count process as a dual state process (Washington et al. 

2003; Greene, 2003).  Where in state one, the count of zero is taken as an inherently a 

safe state.  Whereas in the other count state, state two, is taken as a Poisson or 

negative binomial process. The strength of the zero inflated modeling approach is that 

the ZIP and ZINB regressions often fit crash data well and they better account for the 

excess zeros often found in count data. In particular, these models account for zeros 

that are often not explained by the simple Poisson and negative binomial process.  

 

The major shortcoming confronting the zero-inflated modeling approach is that it is 

very hard to justify or support the notion of inherently safe situations; there is 

practically no theoretical appeal, as a safe state or situation in transportation is only 

possible if there is no movement. The other weakness for these models is that they are 

very difficult to interpret or explain differences in dual states. 
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Apart from the incident frequency analysis models discussed above, some safety 

studies have employed other analytical frameworks; such as system equations 

modeling, neural network (AI models) and meta- analysis. These models and related 

issues are equally important but they are beyond the scope of the present study and 

consequently they are not discussed.   

 

2.3.7. Summary and Lessons Learned 

In summary, modeling literature in this area reveals that all safety models have some 

strengths and weaknesses. The choice or selection of a given analytical model depends 

on the research problem at hand, data and individual judgment.  

 

There is evidence which reveals that a least squares or multiple linear regression 

approach is not a suitable method for modeling crash data. Poisson regression is 

appropriate for modeling accident or count data. However, if there is over-dispersion 

in data, an alternative framework, the negative binomial modeling is preferred.  In 

contrast, if over dispersion and/or serial correlation is present, then the negative 

multinomial specification, as well as fixed and random effects negative binomial 

modeling methods are preferred.  

 

The next section presents the results from a sample of safety studies that use log-linear 

or count data models as their analytical frameworks. 
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2.4. The Empirical Findings 

Turning to the specific factors and how they are related to accident rates and 

frequencies, evidence is clear that numerous factors play roles in accident occurrences.  

These factors have been well identified in the empirical framework conceptualized by 

Jovanis et al. (1991) and they are consistent with the human capital theoretical 

framework (Rodriguez et al. 2003; Monaco and Williams, 2000).  

 

In general, traffic safety literature has found negligent driver behavior to be the 

principal cause of crashes. Evans (2004), for example, summarizes the findings of two 

large independent studies undertaken in the U.S. and U.K. Analyzing the details of 

thousands of crash records, both studies found driver behavior to be either the sole or 

contributing cause of over 90% of crashes. The principal causes of the remaining 

crashes were identified as vehicle failures (e.g., brakes and tires), environmental 

factors (e.g, weather and lighting), and roadway factors (e.g., design and condition).  

 

The following sections present findings from a sample of previous empirical studies 

that have examined the relationships between accident occurrences and the identified 

factors, starting with operator specific factors in section 2.4.1, followed by factors 

beyond the operator, that can still be influenced and controlled by transit system 

management in section 2.4.2. In section 2.4.3, a brief acknowledgment and discussion 

of the general safety effects of other factors (e.g., factors related to design of facilities, 

land use and system operations related conditions respectively), mainly those beyond 
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the control of transit agencies are provided. Section 2.4.4 cover findings from bus 

transit practice literature. Finally, section 2.5, provides summary of what is known and 

not known, including the specific research questions that are addressed and the 

hypotheses for the present study. 

 

2.4.1. Operator-level Factors & Safety Performance  

There has long been a concern in the transit industry about the safety consequences of 

fatigue (Gertler et al., 2002). Fatigue among operators can be linked to selected work 

assignment practices in the industry. For example, rapid increases in fringe benefit 

costs have led to wider use of scheduled overtime assignments rather than additional 

hires in an effort to control costs. Similarly, splitting a full time operator’s shift (to 

cover both the AM and PM peak service periods) is less costly than covering each 

peak with a part time operator, but it also extends the span of the workday. Variability 

in shift time assignments also contributes to fatigue. Such variability is most prevalent 

among operators who work the extraboard, which fills assignments that are vacant due 

mainly to absences. 

 

The safety risks to operators from occupational stress are also a longstanding 

concern in the industry. The transit operator’s job has been characterized as being 

typical of a high-stress occupation, with heavy work demands, low control, low 

support and elevated risk of chronic health problems (Kompier and Martino, 1995; 

Long and Perry, 1985; Winkleby et al., 1988). The job entails three general 
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responsibilities that often come into conflict: provide positive customer service; 

adhere to a schedule; and drive safely.  Operator surveys reveal stressors that act to 

undermine each of these responsibilities: heavy passenger loads with a risk of assault; 

unpredictable delays related to congestion and variable passenger loads; and the risks 

of navigating a large vehicle in and out of traffic to serve stops that are typically 

located at busy intersections (Long and Perry, 1985). 

 

Research on occupational stress in the transit industry has focused on its effects on 

absence and health rather than on accident consequences. A study by Wahlberg and 

Dorn (2009) is an exception. They found a positive association between absence and 

accident frequencies among three independent samples of bus operators from the UK 

and Sweden, and thus posited that absence frequency signals health conditions that 

impair driving performance. An alternative interpretation may be drawn from the work 

of Strathman et al. (2009). Their study of US bus operators found that absences spiked 

on the days before and after scheduled days off, which suggests that an association 

between accident and absence frequencies may also reflect diminished driving 

performance related to low levels of job satisfaction and commitment. 

 

With respect to demographic and employment status attributes, crash incidence 

has been found to decline with operators’ age (Dorn and Wahlberg, 2008; Jovanis et 

al., 1991; Zegeer et al., 1993a). The effect of seniority was found to be non-linear by 

Jovanis et al. (1991), who determined that PACE operators with 3-6 years service 
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were overrepresented in crash incidents relative to operators with greater or less 

seniority.  Rodriguez et al. (2003) found that married, non-Caucasian, and female 

truck operators had fewer crashes. Distinctions between full and part time operators 

have not been explored to date. 

 

Research on crash risk related to operators’ work schedules indicates that crash 

likelihoods are greater for morning than afternoon and evening shifts, as well as for 

split shifts (Pokorny et al., 1987a; Pokorny et al., 1987b). Gertler et al. (2002) state 

that crash risk tends to increase over the course of the workday. Hamed et al. (1998) 

found crash incidence to be inversely related to operators’ break time. Other factors 

that are known to influence operator safety performance include; bus routes (.e.g., bus 

stop location) and vehicle characteristics. These factors are beyond the control of bus 

operator, but they are subject to the control of transit agency management. The role of 

these factors in safety performance is discussed next.  

 

2.4.2. Planning & Service Delivery Related Factors  

The location and design of bus stops have been found to influence safety and crash 

risk. Stops located at the far side of intersections experience lower crash incidence 

than near side or mid-block stops (Cheung et al., 2008; Texas Transportation Institute, 

1996; Zegeer et al., 1993a). Bus turn-out lanes have been recommended in moderate 

traffic volume situations, as have lighting upgrades and pedestrian facility 

improvements (Texas Transportation Institute, 1996). 
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The vehicle-specific attributes that are known to influence bus accident risk include; 

vehicle age, model year, vehicle door steps and configuration. Older vehicles and old 

bus models have been reported to be over- represented in crashes relative to the newer 

bus models (Zeeger et al. 1994; Chang and Yeh, 2005). These findings can be 

attributed to a number of reasons. First, new vehicles incorporate new technologies 

which are often geared at improving safety. Second, new vehicles tend to have fewer 

failures while in operation and therefore they are less likely to be involved in 

preventable collisions. Third, vehicle age may affect handling characteristics and these 

may also vary for different types of buses. 

 

Vehicle door type and designs are known to have negligible impact on bus transit 

collisions. In contrast, these attributes have been found to be important in non-

collision passenger accidents. More specifically, evidence suggests that door-related 

passenger accidents in part depend on the number of door steps and also on the 

direction in which the door opens. For example, Hudenski (1992) showed that vehicles 

with three door steps had higher rates of falling and boarding accidents than vehicles 

with two door steps. He also found that vehicles with inwardly opening doors were 

more likely to strike passengers while they were alighting or standing on board than 

outward or sideward opening doors.  

 

A number of measures have been employed or suggested in order to control for safety 

risk exposure. Such measures include the number of vehicle hours and miles; 
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passenger movements and stops served; route length, traffic volume, and number of 

intersections per route; and the extent of on-street parking (Cheung et al., 2008; 

Jovanis et al., 1991; Ragland et al., 1992).  

 

Lastly, factors related to road facility design, system operations and land use adjacent 

to roadways have been found to influence safety of commercial vehicles, as well as 

automobiles. These factors are generally beyond the transit management control, but 

they are important to the present study because they provide valuable insight into how 

these factors are related to accident rates and frequencies. The role of these factors in 

traffic safety performance is discussed next.  

 

2.4.3. Factors Beyond Transit Management Control 

Turning to factors specifically related to design and other related conditions, there is 

clear evidence indicating that the effect of these factors on crash activity depends in 

part on the type of the variable and how the given variable is entered in the estimation 

model.  Roadway segments or zones with higher average posted speed limits are 

consistently associated with fewer accident occurrences (Cheung et al. 2008; Carson 

& Mannering, 2001; Hadayeghi et al. 2003; Milton & Mannering, 1998; Shankar et al. 

1997; Jovanis et al. 1991 and Strathman et al. 2003).  

 

This relationship is, however, counter-intuitive and has been explained in various 

ways. Some authors have argued that high speed roads are likely to be well designed, 
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carry small traffic volumes and have fewer stops and are therefore relatively safer 

(Cheung et al. 2008; Jovanis et al. 1991). The challenge is that such routes allowing 

faster travel may be safer but might not be preferred for transit operations if fewer 

patrons exist.  Alternatively, higher speed limit may mean lower spacing between 

intersections and thus less opportunity for conflicts.  

 

Another explanation is that there are simultaneity issues associated with the speed 

limit variable (Hadayeghi et al. 2003;  Carson & Mannering, 2001). The latter 

argument is based on the fact that speed limit is often instituted in response to 

occurrence of crashes and therefore speed sign placement need to be treated as an 

endogenous variable in crash frequency analysis.  

 

Shoulder width and travel lane width have mixed effects on accident occurrence. The 

effect and magnitude of each of these variables depend on whether the factor is 

entered in the estimation model as a continuous or as a dummy variable.  For example, 

Shankar et al. (1997) showed that when defined as categorical or dummy variables, 

travel lane and shoulder width have positive and significant effects on crash 

frequency. On the other hand, when treated as a continuous variable, lane width has a 

negative effect (Hadi et al., 1995) and in another study, lane width had a negligible 

effect on crash frequency (Hauer et al., 2004). 
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The numbers of lanes on a roadway are positively and significantly related to the 

frequency of accidents (Carson & Mannering, 1998; Milton and Mannering; 1998; 

Shankar et al. 1997). This relationship has been interpreted by Strathman et al. (2003) 

as highlighting the increased hazard associated with lane changes. The latter study 

uses incident frequency data from Oregon to show that right turn lanes increase crash 

frequency, whereas the left turn lanes have a negative effect.  

     

Crash frequencies are generally estimated to be positively correlated with the number 

of intersections and access points on a roadway.  This relationship has, however, been 

shown to be sensitive to the type of intersections along the roadway.  The number of 

unsignalized intersections and access points on a roadway are positively correlated to 

crashes (Sawalha et al., 2000; Brown & Tarko, 1999).  In contrast, the number of 

signalized intersections has been shown to have a negative impact on crash activity.  

 

Evidence also suggests that the effect of signalized intersections on crash frequency 

partly depends on the spatial and operational features of the given intersections. For 

example, Abdel-Aty and Wang (2006) showed that signalized intersections with a 

relatively high number of lanes had higher crash frequencies than small-sized 

signalized intersections located in primarily residential areas.  

 

Research on crash risk related to land use factors has found that the likelihood of crash 

activity partly depends on the type of land use. Commercial and related (.i.e retail, 
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visitor lodging, manufacturing, auto sales, etc.) uses have been shown to exhibit a 

stronger positive effect on crash activity than the non-commercial land uses, such as, 

residential, vacant or open lands (Hadayeghi et al., 2003; Hadayeghi et al., 2007;  Kim 

and Yamashita, 2002; Ronkin, 2004). Land used for hospital activity has been shown 

to have a negative influence on crash frequency (Kim et al., 2006).  This finding can 

be interpreted in various ways.  The most common explanation is that the true 

determinants of the hospital activity’s influence on safety were not controlled in the 

estimation model.  

 

The conventional environment conditions, such as, weather related factors, road 

surface conditions, and lighting conditions are, by definition, beyond the control of 

transit agencies. The role these factors play in accident occurrences has been shown to 

be significant. For example, Zeeger et al. (1993a) showed that while bus crashes were 

more prevalent on dry pavement, crashes occurring on wet pavement were 

significantly more likely to result in injury. They revealed that bus crashes that occur 

on snowy or icy roadways were less likely to result in injury. 

 

In general, Jovanis et al. (1991) cites a study by (Jovanis and Delleur, 1983) which 

provides evidence from truck safety studies that tend to support the contention that 

weather conditions are likely to have only modest effects on bus transit accidents 

compared to automobile accidents because the bus operator is a professional who 
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better cope with adverse driving weather conditions. This argument however, fails to 

recognize that other road users are non-professionals. 

 

It is true that these highway safety studies have contributed to a better understanding 

of the influence of factors related to design of facilities, land use, and system 

operations in accident occurrence and resulting injuries. The findings cannot be 

assumed to be directly transferable to design of safety countermeasures in the bus 

transit industry.  More specifically, bus transit safety practices literature suggests that 

a number of countermeasures can be implemented to reduce bus transit crashes 

(Technology and Management Systems, 2001). But the key challenges are 

determining where the focus should be and what level of resources or which strategy 

to use.  

 

The next section presents findings from a sample of transit safety practices literature, 

highlighting some of the issues associated with the safety countermeasures that are 

often used in response to safety problems.  

 

2.4.4. Bus Transit Safety Countermeasures  

The most common safety practices across transit systems include operator training 

programs, retrofitting vehicles with advanced safety technologies such as LED brake 

lights at the rear of the bus, providing customer safety information and routine vehicle 

inspection and maintenance. The Texas Transportation Institute (TTI) report (1996) 
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presents findings and recommendations from research on bus stop location and design 

that can be used by agencies to improve the safety of bus stops for passengers, buses, 

pedestrians and other vehicles.  

 

The TTI  report particularly indicates that efforts to improve safety should include 

placement of bus stops at the far side of an intersection. The document provides 

information about the factors that need to be considered in bus stop zone designs. For 

example, the document recommends that bus bays should be considered where curb 

lane traffic exceeds 250 but has less than 1000 vehicles during the peak hour. 

Otherwise merging back into traffic would be unsafe.  Further, the document calls for 

coordination and cooperation of public and private interests, especially in providing 

sidewalks, lighting, access to streets, curbs and in minimizing potential conflicts or 

interactions of the stopping bus with pedestrian and the general traffic stream.   

 

The earlier reported empirical findings on bus stop location or placement are clearly 

consistent to what is being done in practice. Findings from a number of practice 

studies indicate  that locating the stop just after the intersection (far-side) is safer than 

either placing the stop at just before the cross street at the intersections (near–side), or 

on the block face between two intersections (Texas Transportation Institute,1996;  

Zeeger et al., 1993a).  These authors have argued that far-side stop location minimizes 

conflicts between right turning vehicles and the buses. But they also fail to highlight 

the fact that far-side location might increase the number of rear end accidents. For 
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instance, a driver in the vehicle immediately behind the bus may not expect the bus 

that just stopped, say, at the light before the intersection, to again stop at the far–side 

stop location, and consequently the vehicle immediately behind might run into such a 

bus.   

 

Bus stops are sometimes placed between the driveways of gasoline service stations 

and convenience stores. While this location has several appealing features, some 

disadvantages exist as well. For example, Texas Transportation Institute (1996) 

reported that because these facilities are usually on corners, vehicle turning 

movements abound and pedestrian access is seldom clearly marked. Consequently, 

placement of a bus stop in such a location increases the potential for conflicts and 

crashes.  

 

Although these practices and programs have contributed to safety improvement, the 

absence of references to safety-oriented practices in the areas of work organization 

(.e.g., scheduling, compensation, service and operations planning) is notable.  A more 

systematic approach is needed in order to gain insight into the relative importance of 

the operator-based factors in explaining bus crashes and in identifying safety 

countermeasures that can be applied to reduce the occurrence of preventable incidents, 

as well as the frequency of collision and non-collision incidents. 
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2.5. Summary and Lessons Learned 

The findings from the empirical literature review reveal that prior empirical studies 

specifically examining bus crashes primarily addressed the effects of operator 

demographics, factors contributing to operator stress and fatigue, various measures of 

safety risk exposure and route or vehicle characteristics representing potential safety 

hazards. The importance of operational characteristics has also been recognized by 

researchers (Jovanis et al., 1991; Zegeer et al., 1993a; Zegeer et al., 1993b). Due to 

data limitations and research design issues these studies could not directly model the 

likelihood of preventable incident involvement and crash frequencies at the operator 

level. 

 

The literature review also reveals a number of limitations to prior studies on bus 

transit accident analysis. First, there are no studies that have comprehensively 

examined the operational determinants of bus transit accidents at the operator signup 

level. Second, the influence of employment status, assigned work, work performance 

abilities and customer feedback on the expected frequencies of bus collision and non-

collision has not been quantitatively determined. Third, there is no study that has used 

data recovered from Transit ITS technologies and related systems to develop an 

operator-based safety incident model that can help in identifying and assessing the 

effect of factors that contribute to the likelihood of preventable incident involvement 

and occurrence of transit bus safety incidents.  
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This research strives to fill these knowledge gaps and builds on earlier studies to 

broaden bus transit accident literature by developing a more comprehensive operator 

signup- based approach to exploring the role of operator specific factors and how they 

affect the frequency and preventability of crash incidents.   

 

2.5.1. Research Questions 

The purpose of this research is to better understand the relationship between 

operational characteristics and transit bus accident occurrences, and, consequently, 

identify and assess factors contributing to bus operations safety incidents, so that 

changes in operating policies and practices can appropriately be considered to improve 

operator safety performance.  This goal is accomplished by developing an operator 

signup-based safety model that is used to address the following research questions: 

1. How do bus operator’s employment status, demographic factors and assigned-

work characteristics affect the frequency of bus safety incident occurrences? 

2. How do operator’s ability to perform work and attitudes toward service and 

safety issues influence the frequency of bus operations safety incidents? 

 

2.5.2. Study Hypotheses  

1. It is expected or hypothesized that the  bus operator’s  age, experience and 

variations in  short duration absenteeism from work , as well as the operator’s 

assigned work characteristics, such as work span and variability in daily work 



 
 

                                                                                                           47 
 

are empirically related to the likelihood of preventable incident involvement 

and frequency of collision and non-collision incidents. 

2. It is hypothesized that schedule adherence pressures associated with running 

late and lift operations, as well as responsive action events and customer 

complaints about unsafe bus operations are expected to be correlated with the 

likelihood of preventable incident involvement and frequency of bus safety 

incidents. 

 

This study uses safety incident data from TriMet’s Accident and Incident Tracking 

System to construct a model to answer the above stated questions. While data 

recovered by transit ITS technologies and related systems have made important 

contributions to operations management and service planning (Furth, et al., 2006), as 

well as to market research (Strathman, et al., 2008), there is no prior study that has 

comprehensively investigated the potential of using these databases for transit safety 

analysis and planning.   

 

In contrast to earlier safety research, the present study uses incident data recovered by 

these technologies in combination with information from Human Resources, 

scheduling, and customer relation databases to provide a comprehensive and detailed 

representation of the transit operating environment. This approach has the advantage 

of relying on operator-level data to investigate the effects and role of operational 

characteristics on safety incident occurrences. This is obviously different from 



 
 

                                                                                                           48 
 

aggregated approaches used in the previous studies, which heavily relied on databases 

that were largely constructed from police reports or operator-self reported safety data.  
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CHAPTER 3.0:  DATA AND METHODOLOGY 

3.1. Introduction 

This research design section is divided into five parts; part 3.2 describes the study area 

and provides a detailed description of type and sources of data. Part 3.3 presents the 

research methodology. Part 3.4 presents the safety incident patterns observed in the 

study data.  While part 3.5 provides the basic structure of the safety model that is used 

to empirically analyze the effects of operational factors on transit bus safety incidents. 

This part also provides the description of safety model variables.  Part 3.6 covers 

model selection process and criteria, as well as the model specification issues 

encountered and how they are addressed.  

 

3.2. The Study Area, Type and Sources of Data  

TriMet can be characterized as a mid-sized urban transit system, providing fixed route 

bus, light rail and streetcar service to the Portland, Oregon, metropolitan area, shown 

in Figure 3.  TriMet’s system was selected as a case study for this safety research for a 

number of reasons. It was an early adopter of automatic passenger counter (APC) 

techonology and leveraged its APC experience in the design of its automatic vehicle 

location (AVL) system. TriMet’s experience with APC techonology dates back to a 

demonstration project in the early 1980s, while AVL was deployed in 1998. Second, 

the agency has a strong reputation in the industry for its innovative uses of archived 

AVL and APC data for  internal decision making in areas such as performance 

monitoring, scheduling, service planning and market research. 
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                              Figure 3.  Map of TriMet Bus Service District 
 

     
                                                                        
                                                                                      Source (TriMet website, 2010) 
 

 

Third, TriMet’s ITS and related systems recovered databases  on bus 

accidents/incidents and potential risk determinants provide a rare and unique 

opportunity to use data from a single source to analyze safety performance. This 

database is unique because data are recovered and recorded by the agency. This is 

obviously different from survey generated databases which often rely on driver recall. 

On the other hand, using an agency-specific database has shortcomings, the major one 

being that the results will apply exclusively to the population of TriMet operators. 
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To date, data sources for safety analysis are generally limited. While data recovered by 

transit ITS technologies and related systems have made important contributions to 

operations management and service planning, they have not been widely used for 

transit safety analysis and planning. Until recently, TriMet relied on manual data 

collection methods (e.g., ride checking staff, driver recall and operator self-reported 

data) for safety analysis and for National Transit Database reporting. The deployment 

of ITS and related systems have made the data collection process relatively simpler, 

more comprehensive and less expensive.  The TriMet Bus Dispatch System (BDS) 

includes a variety of technologies, such as APC and AVL.  This system has proven to 

be more reliable and accurate compared to manual methods of data collection.   

 

The ITS generated accident/incident data and data on incident determinants archived 

by TriMet, were used to assess in-service collision, non-collision and total safety 

incidents that occurred on the agency’s bus system over the three year study period: 

September, 2006 through February, 2009. The AVL system serve as the backbone 

technology, providing time and location referencing for monitoring passenger activity, 

as recorded by APCs, as well as for a wide range of in-service incidents recorded by 

operators on mobile data terminals (MDTs). AVL data are also useful in their own 

right for monitoring schedule and headway adherence, on-time performance, vehicle 

speeds, dwell times, running times, departure times and layover times. 
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The highly detailed data records recovered by ITS technologies are archived in an 

enterprise data warehouse. The warehouse also maintains other databases that are 

relevant to transit safety analysis and these data were merged with ITS data through 

operator references. The human resource database provides information about operator 

demographics, employment status, experience, and work attendance. In addition,  an 

automated scheduling and run cutting database provides detailed information about 

operators’ assigned work, covering: vehicles, routes, days, time of day and scheduled 

overtime. 

 

Lastly, a customer relations database provides information about customer reactions to 

their riding experience, including commendations of operators’ performance on the 

job and concerns about operators’ treatment of passengers, handling of vehicles or 

fitness for duty. Collectively, the information from these archived databases provides a 

comprehensive and detailed portrayal of operators’ work qualifications, work 

environment and work performance. 

 

3.3. Research Methodology  

This study addressed the research questions and hypotheses stated in section 2.5.1 and 

2.5.2 respectively through analysis of archived ITS and related systems data described 

above using an operator-based design approach (discussed in section 2.2). This 

database is rich because it contains information on operators’ work qualification, work 
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environment and safety/work performance for both crash involved and crash- 

uninvolved bus operators- characteristics usually unavailable in other safety databases.  

 

The operator-based design makes it possible to organize safety incidents data and 

information on corresponding operational factors around each bus operator –signup 

period. This design enables both behavioral and non-behavioral factors to be 

incorporated in the same estimation model. In addition, both operators with and 

without safety incidents are included in the sample and thus all information is 

recovered.  

 

The most apparent shortcoming of operator signup design is the challenge of ensuring 

control or representation of risk exposure. While in route-based designs the variable 

total miles traveled is often used to account for the risk exposure.  In contrast, the 

variable total hours worked (by the operator during each signup period) is used as a 

proxy measure to account for risk exposure in the present. However, it does not 

account for differences in risk exposure by route or time of the day. Some routes have 

high incidents of crashes due to factors mentioned earlier that are not controlled in this 

study (discussions on performance of exposure proxies and how they might limit 

research findings is provided in section 5.7). 

 

The overall methodology process consists of three main steps. In the first part, the 

research identifies a list of 1,502 bus operators that operated TriMet buses between 
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September, 2006 and February, 2009. The second part involves identifying the number 

of incidents and the attributes associated with each operator for every operator sign-up 

period. The third step involves aggregating the number of incidents and specifying the 

associated operator attributes at the operator sign-up level. The analysis is done at the 

operator sign-up level in order to reflect the operational conditions at the agency.   

The unit of observation of the safety model is defined as an operator signup, a 

three-month period for which regular duty operators select (on the basis of seniority) 

work assignments developed by the agency’s scheduling and run cutting software. 

Given the three-year time frame of this study, the analysis as such spans 12 signups 

and includes 1,502 bus operators.  The number of operator-signup observations totals 

13,796. This results in an unbalanced panel, as some bus operators were not observed 

in every signup because of retirements, quits, new hires, and transfers to or from other 

transit mode assignments.  

 

The organization of sample observations into 3-month signups involves reconciling 

trade-offs between the need to address “zero-inflation” issues related to the incidence 

of collision and non-collision events, and the need to minimize measurement error and 

heterogeneity in the variables representing operators’ work and risk exposure (Lord et 

al., 2005; 2007). Regarding zero-inflation, it can be argued that a signup is too short a 

time span for modeling collision and non-collision events. Also, there are more than 

sufficient degrees of freedom to allow the analysis to be cast at the annual (or longer) 

scale.  
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Although a longer time span would reduce the share of zero-event observations, it 

would exacerbate other problems. First, except for extraboards, operators’ work is 

defined by signups. This work remains relatively fixed with respect to the variables 

that proxy its characteristics. Over a longer time frame, the correspondence of these 

variables with the work attributes they represent erode, with the consequences 

reflected as measurement error or risk heterogeneity. Second, the seasonality of 

collision and non-collision events, an important feature of these phenomena, would 

not be captured in an annual model. 

 

In general, previous empirical studies reveal that the design of studies examining the 

factors that are important in safety has clearly been problematic. Strathman et al. 

(2003) observed that while the before and after approach is often relevant when safety 

countermeasures or interventions are being evaluated, its’ validity is subject to two 

problematic phenomena. First, regression to the mean problem. Second, crash 

migration problems. The crash migration problem occurs when countermeasure 

implementation shifts the crash location from one place to another rather than 

reducing crash frequency. On the other hand, regression to the mean results when 

countermeasures are applied where high incidences of crashes occur. Ascertaining 

whether reduction in crashes is due to countermeasures implemented rather than other 

forces is a challenge. Use of comparable locations or sites has been proposed in 

literature as a potential remedy to address this problem. Finding a truly comparable 

site is not an easy task (Strathman et al., 2003).  The cross-sectional approach is 
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perhaps the most popular method used in systematic safety studies. The major 

advantage of this approach is that it provides information that can have long run 

perspectives or implications. The disadvantages are that this approach cannot be used 

in examining effectiveness of program interventions or for safety policy evaluations. 

Omitted variable bias has been a common challenging issue, especially in cross-

sectional safety studies.  Factors that are omitted in the model specification are 

expected to be represented in the error structures of the specified model.  If the 

omitted variables are correlated with the variables included in the model, the estimates 

may be spurious. 

 

Use of the panel data approach in transportation applications exists, but it is not widely 

used in safety evaluation studies (Washington et al., 2003). The advantage of the panel 

data approach is that a large sample size or more data points can be readily available 

on the variables of interest. The key misspecification issues that have to be confronted 

when this approach is employed include serial correlation and heteroscedasticity 

(Washington et al. 2003). The present study employs the latter approach, and 

specification related issues are addressed as discussed in Section 3.6.2. 

 

3.4. The Observed Pattern of Safety Incidents  

The safety incident data for this study were retrieved from TriMet’s Accident and 

Incident Tracking System. The records of all bus-involved safety incidents from 

September 2006 through February 2009 were retrieved and reviewed. Records of 
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incidents that did not occur within the platform service time window (e.g., between 

pull-out and pull-in times) were deleted. Such incidents were typically associated with 

bus maintenance, refueling, and “yardspotting” activities. Also, records of safety 

incidents or injuries witnessed by an operator but not directly involving bus operations 

were deleted. Two records were produced each time collisions involving a bus and 

another transit vehicle occurred. In these infrequent cases, the record that had 

previously been coded as “preventable” was retained and the other record was deleted. 

Lastly, duplicate records were deleted.  

 

A breakdown of the safety incidents is presented in Table 1. Nearly 57% of the 

incidents were collisions. About half of the collisions involved other motor vehicles, 

and about two-thirds of these collisions were result of another motor vehicle running 

into a bus. The second most frequent collision type involved mirror strikes with other 

vehicles or fixed objects. Least frequent among collisions were those involving 

pedestrians and cyclists. Non-collision incidents consisted mainly of passenger slips, 

trips and falls. About 44% of these incidents occurred during the boarding or alighting 

process. Other slip, trip and fall incidents occurred on board, usually in connection 

with hard stops or during the stop-servicing phases of acceleration and deceleration. 

The remaining non-collision incidents involved a variety of circumstances, the most 

common being struck by a door movement or by a falling object in the vehicle. 

TriMet risk managers review reports prepared after each incident to determine 

whether the incident could have been prevented by following the agency’s established 
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operating policies and practices. As shown in the crash summary statistics provided in 

Table 1, about one in five incidents were subsequently judged to have been 

preventable. However, the extent of preventability varies considerably across the 

incident typology. At the upper end, a majority of incidents involving a bus running 

into another vehicle or a fixed object was judged to have been preventable. 

Alternatively, only one in twenty-five non-collision incidents was judged to have been 

preventable, with slips, trips and falls during boarding or alighting being the least 

preventable. 

 

Table 1. Breakdown of TriMet Bus Safety Incidents, Sept, 2006 -Feb, 2009. 

Incident Type Percent of Total Preventable (%)

Collisions 56.80% 30.70%
 - With Motor Vehicles 27.3 29.6
   - Vehicle into Bus 17.4 9.5
   - Bus into Vehicle 9.9 66.2
 - With Fixed Objects 5.5 58.6
 - Mirror Strikes 21.9 25.6
 - With Pedestrians 1.1 32.7
 - With Bicyclists 1 19.6
Non-Collisions 43.2 4.1
 - Slips, Trips & Falls 35.2 4
   - Related to Boarding & Alighting 15.4 2.4
   - Other Slips, Trips & Falls 19.9 5.2
 - Other Non-Collision 8 4.7
Overall 100 19.2  
                                                                                                                                         (n= 4,631) 
 

The other safety incident patterns observed are related to the course of operators’ 

shifts and daily operations. These patterns were developed for both collision and non-

collision incidents. In each case, exposure is controlled by operator hours of service.  
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As shown in Figure 4, the rate of collisions over daily operations is elevated during the 

morning and more intensity is observed in the evening peak periods.  

 

                Figure 4. Collision and Non-Collision Rates By Time of Day 
(Incidents per 10,000 Operator Hours) 

 
 
 
 
This pattern can be attributed to the higher collision risk related to the greater traffic 

volumes that occurs during the same periods.  In contrast, the non-collision rate 

gradually increases from a low at 3:00 AM to a peak at 5:00 PM, possibly reflecting 

growing fatigue among work commuting passengers. 

 

Turning to the shift related safety incidents pattern visualized in Figure 5, it can be 

observed that the collision rate generally declines over the first 8 shift hours.   
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Figure 5. Collision and Non-Collision Rates By Shift Hour 
(Incidents per 10,000 Operator Hours) 

        

 

The collision rate then turns upward for those operators transitioning into overtime 

work, with the peak occurring in the 11th work hour.  The relatively few operators 

working beyond 11 hours are typically providing a voluntary fill of open work.   

 

Overall, the collision rate pattern over shift hours is consistent with concerns 

expressed in the literature on operator fatigue.  The rate of non-collision incidents is 

fairly stable over the first 8 shift hours, but also turns upward with overtime.  It thus 

appears that overtime-related operator fatigue is contributing to greater collision than 

non-collision risk. 
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Another related pattern to consider in evaluating the resulting sample is the 

distribution of the number of safety incidents with respect to operator signup. Table 2 

shows the frequency distribution of the safety incidents at TriMet during the three year 

study period. Overall, the number of the operator signups totals 13,960, of which 

10,316 operator signups (74.78%) contain no safety incident for the three year period. 

The implications of these distributions are twofold. First, the distribution is skewed 

towards zero. This implies that linear regression methods are not appropriate.  A count 

data modeling framework is a better option. Second, the large number of operator 

signups with zero safety incidents implies or represents something other than a 

censoring outcome (Greene, 2003).  

 

An operator-based risk model described below relates the safety incidents to 

demographic characteristics and employment status of operators, their actual assigned 

work, their actual service delivery performance and customer feedback on their 

performance. Neither in transit safety research nor in the perspectives of transit 

operations and risk managers there is a basis for positing that a “virtually safe” state 

exists among bus operators and their assigned work. Evidence of such is necessary to 

justify the application of zero-inflation estimators. Zero-inflation estimators were thus 

not considered. As designed, the operator signup level model used in the present 

incident frequency analysis corresponds most closely to Lord et al.’s (2005) 

designation of low risk/low heterogeneity conditions. 
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 Table 2. Frequency Distribution of Safety Incidents at TriMet, Sept, 2006- Feb, 2009 

Number of Safety
 Incidents 

 Collision Incidents
Frequency

Non-collision Incidents
Frequency

 Total or Overall 
Incidents Frequency

0 11544 12214 10316
1 1990 1398 2769
2 237 146 577
3 23 29 109
4 2 6 18
5 ─ 2 6
6 ─ 1 1  

                                                                                                         (Source, Authors compilation, 2010) 
 

 

3.5. The Safety Model Structure  

A count data estimation framework is employed in the bus incident frequency 

analysis. This framework reflects both the relative rarity of events and the fact that the 

frequency distribution of incidents across operator signups is highly skewed toward 

zero. In the simplest context, one model is possible. However, to distinguish between 

models with and without lag variables for collision, non-collision and total crash 

events required an estimation of six safety models, a more detailed breakdown of 

incident types would provide greater specificity, but this would also likely lead to an 

increasing share of zero event observations per operator-signup a situation that needs 

to be avoided.   

 

The basic structure of the bus transit safety incidence model takes the following 

general form: 
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Incdts.ijt = f(Dem.jt, Empl.jt, Work.jt, Perf.jt, Cust.jt, Temp.jt),  

Where, 

Incdts.ijt = the total number of safety incidents ( or of  type i) involving operator j’s  

                  bus  that occurred during signup t; 

Dem.jt = a vector of operator j’s demographic characteristics on the first day of 

                signup t; 

Empl.jt = a vector of operator j’s employment status characteristics on the first 

                day of signup t; 

Work.jt = a vector of operator j’s assigned work characteristics during signup t; 

Perf.jt = a vector of operator j’s service delivery and performance 

                characteristics during signup t; 

Cust.jt = a vector of customer commendations and complaints referencing 

               operator j received during signup t. 

Temp.jt = a vector of temporal characteristics capturing effects of seasonal and annual    

                 variations. 

 

3.5.1. Independent Variables  

The explanatory variables incorporated in the safety model are organized into six 

categories. Categories one through five are of interest to the present study. The other 

remaining category, temporal characteristics, is mainly used as a control and also 

serves to capture seasonality in the model. General information about variables 

included in each category is provided next.  More specific details; such as how each 
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variable in a given category is defined, measured and corresponding measurement 

units are provided in Appendix A. 

 

i. Demographic Characteristics 

Variables covering demographic characteristics include operator’s age, sex, race 

and ethnicity. 

 

ii. Employment Status Characteristics 

Employment variables cover seniority (years) and full time, part time or 

probationary (initial six months) status. 

 

iii. Assigned Work Characteristics 

The assigned work of regular duty operators is fixed throughout a signup with 

respect to shift time, total hours of work, span of work, route, and bus type. The 

assigned work of other types of operators varies, in some instances across all of these 

characteristics. For example, the assigned work of extraboard operators can vary daily 

in filling work that opens as a result of regular duty operator absences. A less extreme 

example is the work of regular relief operators, who fill open work blocks of operators 

on leave (e.g., vacations, jury duty).  Least variable, but still an issue, is the work of 

regular duty operators with assignments covering multiple (e.g., interlined) routes. 

Overall, about 25% of a mid-sized transit agency’s actual delivered work varies in the 

ways described above.  
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To account for such variations, an operator’s assigned work is defined by the 

allocation of one’s actual hours in service across risk-differentiated operational 

characteristics. With respect to work shift, each operator’s hours are ideally allocated 

over the following service periods: Early AM (before 06:00); AM Peak (06:01-09:00); 

Midday (09:01-15:00); PM Peak (15:01-18:00); and Evening (after 18:00).  Hours 

spent in providing weekday service are distinguished from weekend service hours.  

 

Hours are also allocated over a route typology covering radial, crosstown, feeder and 

peak express service. Hours by vehicle type distinguish between low floor and 

standard buses. Lastly, actual overtime hours are represented. In addition to the 

breakdown of hours across the characteristics of assigned work, dummy variables are 

defined for the following operator designations: extraboard service; full and part time 

splits; and regular relief service.  

 

iv. Service Delivery and Performance Characteristics 

Operators’ service delivery and performance are represented by a variety of 

variables that employ archived ITS data. For each operator, the percentage of early, 

ontime and late departures from route time points is measured in relation to the 

average performance of all other operators serving the same route(s) at the same 

time(s). The operator’s average speed between time points is similarly measured in 

relation to peer operators.  Boardings and lift usage activity are measured per revenue 

hour. The lift usage variable is included to proxy service to passengers with mobility 
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impairments. Overloads are measured as the percentage of trips whose peak passenger 

loads exceed the agency’s capacity standard. Actual average layover time is measured 

in relation to actual average revenue service time per trip. 

 

Archived mobile data terminal ( MDT) data provide counts of the following events 

having potential direct or indirect safety implications: security response requests; 

vehicle replacement requests; road call (e.g., bus non-operable and out of service) 

requests; and traffic-related delays. 

 

v. Customer Commendations and Complaints 

Customer information variables include the number of recorded (i.e., received by 

Customer Relations via phone or email) complaints related to an operator’s 

unprofessional conduct, unsafe operation of the bus or problems related to timely 

service delivery (e.g., missed stops, pass-ups, early departures). Customer 

commendations of operators distinguish between those related to stop announcements 

and those for all other reasons. Lastly, the number of incidents involving questions 

related to an operator’s “fitness for duty” is measured. The sources of this information 

include customers, field supervisors and others. 

vi. Temporal Characteristics 

Seasonality and temporal effects are represented by signup and year-specific dummy 

variables. 
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3.5.2. Dependent Variables 

The number of bus collisions and non-collision incidents, as well as the total number 

of incidents during each operator signup period were used as the dependent variables 

for the models with and without lags respectively. Summary statistics for considered 

variables are provided along with the other model estimation results in Table 3 in 

chapter 4 and also in Appendix B. 

 

3.6. Model Selection Process and Criteria  

The effects of operational factors on incident frequency were examined using a set of 

three separate but statistically validated operator –based models. These included the 

overall or total incidents model, as well as the collision and non-collision incident 

models. Independent of statistical validation, specific incident type models were 

estimated because of their potential for providing  greater explanatory power relative 

to a single, total or overall incident frequency model as separate models allow 

parameters to vary  across crash types (Shankar et al.,1995). From a practical 

perspective, this variation is fairly reasonable, as the effects of some variables, such as 

lift operation or usage, are expected to have different effects on expected frequency of 

collision and non-collision incidents.  

Previous research has shown that conventional linear regression models are not 

appropriate for analyzing crash data. A Poisson model is often the starting model but if 

there is overdispersion a negative binomial model becomes the preferred specification 

over Poisson. The decision approach or rule adopted in selecting the appropriate 
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econometric models for analyzing the frequency of total or overall, collision and non-

collision incidents mirrored the standard practice in econometrics analysis. An overall 

or total incident frequency model was selected as the base model. Using an overall 

model as the base case is consistent with the observed practice in the traffic safety 

analysis (Lee and Mannering, 2002). 

 

The process of selecting an appropriate model specification for analyzing total 

incident frequency data involved the following five steps:  First, the total incidents 

data was estimated using Poisson regression in the Stata software. The estimated value 

for Poisson goodness-of-fit was significantly large at α =0.05 level. This finding 

suggests that the Poisson distribution is not a good choice. 

 

In the second step, total incidents data were estimated using negative binomial 

regression. The test for overdispersion (Washington et al., 2003) parameter αnb was 

found to be significantly different from zero (αnb =0.278, LR test 2  value = 56.15, P 

= 0.000). This finding confirms that incident data are over-dispersed and therefore 

Poisson regression is not the appropriate specification. In addition, the null hypothesis 

provided in equation 2.3.3 (see equation 2.0a & 2.0b) that the variance of total 

incidents is not different from the mean was rejected at α =0.05 level. These findings 

indicate that negative binomial structure is preferred to the Poisson specification.  
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In the third step, the likelihood ratio test was performed to determine whether a pooled 

negative binomial model (with constant overdisperson parameter for a given 

observation unit) is preferred to the panel or unrestricted models (with a varying 

overdispersion parameter). Washington et al., (2003) has specified the formula for the 

likelihood ratio test as;   

X2= - 2( LL( βR)- LL( βUR)) ………….……………………………………………2.8 

Where .  

X2 statistic is 2  distributed with the degrees of freedom equal to the difference in the 

numbers of parameters in the restricted model βR and unrestricted model βUR. The LR 

test of panel versus pooled specification, yields 2  value of 75.68 and P= 0.000. This 

finding indicates that a panel specification or structure is preferred to the pooled 

model. 

 

Fourth, fixed and random effects negative binomial models were estimated. The 

specification test devised by Hausman (1978) was then used to assess whether 

individual effects were fixed or random. The LR test 2  value was equal to 178.59, 

with 47 degrees of freedom and P= 0.000, an indication that the difference in 

coefficients of fixed and random effect models was systematic. This test finding 

showed that individual effects are random and therefore, random effects negative 

binomial model is preferred to the fixed effects negative binomial specification in 

analyzing frequency of total incidents. 
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Fifth, steps one through fourth were repeated for collision and non-collision incidents. 

As in total incidents frequency, the tests also indicated that the random effects 

negative binomial models were the preferred model specifications rather than the fixed 

effects negative binomial models.  

 

Apart from the above stated tests, the Bayesian information criterion (BIC) and 

Alkaike Information Criterion (AIC) were also considered in selecting the appropriate 

random effect negative binomial model. The model specification with a lower value is 

preferred to those with higher values (Greene, 2003; Abdel- Aty and Radwan, 2000). 

The choice of variables for inclusion into the model was achieved through an 

extensive search of the operations safety incidents and related operator database. The 

variables that were chosen were those that provided significant improvements in the 

log-likelihood function (LL-value) of the model at convergence.  

 

In summary, the above tests indicated that the random effects negative binomial 

specifications (discussed in section 2.3.5) were preferred over other count data models 

for analyzing the relationship between operational characteristics and the frequency of 

total incidents, as well as with the collision and non-collision frequencies.   

 

3.6.1. Model Evaluation 

The ratio of log-likelihood  index (ρ2)  is a measure used to  determine the additional 

variation  in accident frequency explained  by the obtained model  to the constant term 



 
 

                                                                                                           71 
 

( Abdel-Aty and Radwan, 2000 ). This measure is similar to the coefficient of multiple 

determination  in multiple linear  regressions and has been  applied  in evaluation of 

negative binomial models  by  Chin and Quddus  (2003), as well as  by Abdel and 

Radwan (2000) .   

 

Similarly, this measure is adopted to evaluate if the selected  RENB models have 

sufficient explanatory and predictive  powers.  Mathematically, the  log –likelihood 

index is expressed as: 

ρ2   = 1 - L( β)/L( 0)  …………………………………………..……….………2.9a 

Where, 

 L(β )  is the log-likelihood value of the fitted model, and  L(0) is the log-likelihood  

value of the  zero model.  The disadvantage of this specification is that the index will 

increase whenever new variables are added to the model.  This weakness is addressed 

by incorporating a correction for the number of independent variables, k.   

 

According to Chin and Quddus (2003) the adjusted log-likelihood ratio index is 

derived from equation 2.9a and, is expressed as: 

ρ -2  = 1 – (L( β)- k) /L( 0)  ………………………………………………………...2.9b 

Where, all parameters are as previously defined.  

The estimated log-likelihood index and associated adjusted values for collision, non-

collision and total incidents of estimated RENB models are provided in Table 3 

(section 4.2) and Appendix B. The derived log-likelihood ratio indices for all 
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estimated models were in the range of about 0.3 to 0.5. In addition all the distribution 

parameter values (a & b) were significant at α = 0.05 level. These findings indicate 

that the RENB specifications perform well at predicting the expected frequencies of 

collisions, non-collisions and total incidents and have sufficient explanatory as well as 

predictive powers and distributional advantages. 

 

3.6.2. Justification for Separate Incident Type Models  

The likelihood ratio (LR) test was also performed to determine whether or not there is 

statistical justification for independent or separate analysis of collision and non-

collision incidents.  The procedure used here broadly resembles what has been 

documented in traffic safety analysis. However, a careful look reveals some variations. 

Lee and Mannering (1999) employed an LR test in assessing whether to analyze crash 

frequencies occurring in urban and rural road arterials as pooled or as separate models. 

They found that beyond an overall crash model, it was statistically valid to analyze 

separate types of crash models.  

 

In the present case, the statistical justification process for estimating separate incident 

type models followed the approach that has been developed for econometric analysis 

(Greene, 1999: 2003; Judge et al., 1980) and has been applied in safety model 

selection by Ulfarson and Shankar (2003). Overall the process has three steps. First, 

the total incidents model without constraints (unrestricted βUR) is estimated. In the 

Second step, total incidents model with coefficients constrained to be equal to the 
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coefficient values of collision model (restricted - βRc) is estimated. Similarly, another 

total incident models with coefficient constrained to be equal to the coefficient values 

of non-collision model (restricted - βRnc )  is also estimated. In the third step, the 

likelihood ratio tests comparing the unrestricted to restricted total incident models are 

then performed using the formula specified in equation 2.8.  

 

The results of the likelihood ratio test between unrestricted total incident model βUR 

and restricted total incident model-c were statistically different at α =0.05 level. 

Similarly, the unrestricted βUR and restricted total incident model-nc were also 

significantly different (α =0.05). The model comparison indicates a difference between 

these models and suggests a need for separate analyses of the incident types. 

 

3.6.3. Model Specification Issues  

Given the comprehensive nature of the safety estimation model, multicollinearity 

related issues were expected because some of the explanatory variables are likely to be 

correlated. While multicollinearity cannot cause estimators to be biased, inefficient or 

inconsistent, its presence in data can increase standard errors of the coefficients. This 

consequently might lead to estimated coefficient parameters that are less significant 

and in turn can lead to erroneous inferences. 

The presence of multicollinearity can be identified by low values of t-statistic, high 

value for correlation coefficients between variables and the sensitivity of estimated 

coefficients parameters (Lin, 2001; Ramanathan, 1995; Abdel-Aty and Radwan, 
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2000). Other approaches of detecting multicollinearity include running pair wise 

correlations between independent variables and checking if estimated coefficients are 

drastically altered when variables are dropped or added to the model (Abdel-Aty and 

Radwan, 2000).  The pairwise correlations between the independent variables were 

found to be relatively small. The parameter estimates were not very sensitive to the 

addition or removal of variables, an indication that multicollinearity was not an issue 

of concern. Furthermore, the coefficients in estimated models had meaningful signs 

and magnitudes. Hence, there is no basis for concern about multicollinearity. 

 

There were concerns about presence of endogeneity. This was a concern in that senior 

drivers might choose a safer or easy routes or vehicles. When independent variables in 

the model are endogenous, their parameter values may depend on the frequency of 

crashes. For example, Carson and Mannering (2001) studied an endogeneity problem 

when they examined the effectiveness of ice-warning signs in reducing frequency of 

ice-related accidents and their severity. Ignoring the endogeniety may lead one to 

erroneously conclude that ice-warning signs increase the frequency of ice-related 

crashes because the signs are associated with locations of high ice-crash frequencies. 

Truly, this was an endogeneity problem because ice-warning signs were more likely to 

be placed at locations of high ice-crash frequencies.  

In a recent paper focusing on statistical analyses of crash frequency data,  Lord and 

Mannering(2010) observe that while accounting for endogenous variables in 

traditional least squares regression models is relatively straight forward, the same is 
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not true for count data models. They observe that for count data models, the modeling 

processes typically applied do not lend themselves to standard endogenous-variable 

correction techniques, such as instrumental variables. In addition, they point out that 

accounting for endogenous variables adds considerable complexity to the count data 

modeling process.   

 

In the present study, concerns that there might be endogeneity problems related to 

operator seniority or experience could not be supported by TriMet data.  As the 

experience variable (measured in years) for a subsample of bus operators who run 

same assignments was not significantly correlated to the frequency of incidents in all 

models.  An indication that endogenous concerns related to bus operator seniority can 

safely be ignored. This observation in part can be attributed to the overtime incentives 

or trade in shifts and therefore in practice drivers work on a wide variety of routes in 

the service district.  However, omitted variable bias is a concern as some variables 

such as operator habits are not controlled in this study.  
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CHAPTER 4.0:  INCIDENT FREQUENCY ANALYSIS RESULTS  

4.1. Introduction 

The presentation in this section mainly focuses on the model interpretation and 

discussion of the estimated results. In general, the findings indicate that there are many 

differences and similarities among bus transit operational characteristics, especially as 

it relates to their effects and influence on the expected incident frequencies. The 

effects for each of the variables incorporated in the safety models are discussed in the 

next section. 

 

4.2. Estimation Results, Interpretation and Discussion 

The count data modeling approach was used to examine the empirical relationship 

between operational characteristics and bus transit incident frequency. Overall, a total 

of six operator – based Random Effects Negative Binomial (RENB) models were 

estimated using maximum likelihood methods in STATA software. To better account 

for the role of operational factors in bus transit safety, both standard and modified 

RENB specifications were estimated for collision, non-collision and total incident 

events.   

 

The distinction between these models is that while modified specifications had 

variables accounting for main, interaction and lagged effects.  In contrast, the standard 

specifications accounted for main and interaction effects, but not lagged or historical 

effects.  
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Elasticities were computed to provide some insight into the impact and role of 

parameter estimation results. In particular, elasticities were computed to ascertain the 

marginal effects of the independent variables. Washington et al. (2003) provide 

formulas for the elasticities for continuous and indicator variables.  

 

The elasticity for continuous variables represents a proportionate change in the 

expected incident frequency with respect to a proportionate change in a given variable. 

This is expressed as: 

E
jt

jtkx



= 
jt

jt




  x 
jtk

jtk

X

X


   =    βXjtk ,  ………………………….…….3.0 

Where E reprsesents the elasticity , Xjtk is the value of the kth independent variable for 

observation j , βk is the estimated parameter for the kth independent variable and is 

the expected frequency for observation j.  

 

The pseudo-elasticity for indicator variables represents the proportionate change in 

expected frequencies relative to the reference group or base category excluded from 

the model. This is computed as,  

E
jt

jtkx



= exp (βXjtk)-1  exp (βXjtk)  ……………………………………….3.1 

Elasticities are computed for each observation j.  However, in practice, only the 

average elasticity over all observations is reported. The coefficient estimates, 

elasticities for continuous variables and pseudo-elasticities for categorical variables 
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are summarized in Table 3. The elasticities and pseudo-elasticities were computed for 

significant variables at α = 0.05 level.   

 

In addition, the joint elasticities for age and experience variables were also computed 

to determine the operator’s age-experience combinations ( e.g., age 25/0 years 

experience………...age 60/35 years experience) at which the collision and total 

incidents risk is minimized ( i.e., where the joint elasticity equals zero). The joint 

elasticities were not derived in non-collisions case because the estimated parameters 

for the experience variable are based on linear estimates. 

 

The presentation in this section largely focuses on the estimated results from the 

modified RENB models. However, the standard model results provided in the 

appendix B will occasionally be referenced. The effects for variables considered in the 

safety models are examined next — starting from the operator demographics to work-

assigned characteristics: service performance, customer feedback and temporal 

factors. 

 

Operator Demographics  

The estimated parameters are clearly consistent with the human capital perspective. 

For example, among the operator factors, age, experience and female gender were 

found to be significantly related to incidents frequencies. Specifically, age has a 

negative and diminishing effect on the incident of crash frequency. This means that at  
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Table 3. Modified RENB Estimates and Elasticities
TOT COL NCOL TOT COL NCOL

   β (S.E)    β (S.E)    β (S.E) E E E

Dependent Variables

Total Incident Events (T0T)
0.312
(0.609) ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   

Collision Events (COL)
0.183
(0.449) ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   

Non-collision Events (NCOL)
0.129
(0.400) ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   

Independent Variables
OPERATOR DEMOGRAPHICS

Age
50.32
(9.311)

̶ .0526*
(.0170)

̶ .0433*
(.0204)

̶ .0589*
(.0270)

Age2
2619.1
(906.4)

.0006*
(.0002)

.0006*
(.0002)

.0005*
(.0003)

Female
0.308
(0.462)

.1158*
(.0465)

.0606
(.0557)

.1945*
(.0738) 0.109 ̶  ̶   0.177

African American
0.142
(0.349)

̶ .1187*
(.0600)

̶ .1132
(.0719)

̶ .1330
(.0947) -0.130 ̶  ̶   ̶  ̶   

Asian/Pacific Islander
0.0360
(0.186)

̶ .1109
(.1130)

̶ .1778
(.1364)

̶ .0225
(.1784) ̶  ̶   ̶  ̶   ̶  ̶   

Hispanic
0.037
(0.189)

.0505
(.1009)

.0155
(.1225)

.0907
(.1582) ̶  ̶   ̶  ̶   ̶  ̶   

EMPLOYMENT STATUS CHARACTERISTICS

Years of Experience
10.74
(8.31)

̶ .0400*
(.0101)

̶ .0494*
(.0118)

̶ .0307*
(.0161) -0.330

Years of Experience2
184.22
(257.3)

.0006*
(.0003)

.0008*
(.0003)

.0005
(.0005) ̶  ̶   

Probationary Status
0.045
(0.207)

.2374*
(.0912)

.1052
(.1174)

.4778*
(.1401) 0.211 ̶  ̶   0.380

ASSIGNED-WORK  CHARACTERISTICS

Unique Assignments
11.85
(17.904)

̶ .0006
(.0016)

̶ .0039
(.0022)

.0034
(.0028) ̶  ̶   ̶  ̶   ̶  ̶   

Split Shift
0.270
(0.444) ̶  ̶   

̶ .0668
(.0912)

.0651
(.1129) ̶  ̶   ̶  ̶   ̶  ̶   

Lag Split Shift
.2843
(.4511)

.1034*
(.0459) ̶  ̶   ̶  ̶   0.098 ̶  ̶   ̶  ̶   

Total Hours Worked
396.90
(123.57)

.0022*
(.0002)

.0020*
(.0003)

.0023*
(.0004) 0.873 0.794 0.913

Weekend Hours
78.59
(81.53)

̶ .0010*
(.0003)

̶ .0014*
(.0004)

̶ .0004
(.0005) -0.079 ̶  .110 ̶  ̶   

Average Daily Span
9.353
(1.629)

 ̶ .0040
(.0144)

.0565*
(.0231)

̶ .0811*
(.0284) ̶  ̶   0.528 -0.759

Daily Span CV
0.140
(0.116)

.5022
(.2604)

1.038*
(.3352)

̶ .1729
(.4265) ̶  ̶   0.145 ̶  ̶   

Three Day/ 30 Hour Week
0.023
(0.149)

.3458*
(.1333)

.1920
(.1753)

.5582*
(.1976) 0.292 ̶  ̶   0.428

Four Day/ 40 Hour Week

0.004
(0.059)

̶ .5056
(.3562)

̶ 2.194*
(1.004)

.3143
(.3910) ̶  ̶   -7.971 ̶  ̶   

-0.858

VARIABLES & PARAMETERS

0.778 1.708

-3.222-2.711

Mean
(Std. Dev)
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Table 3 -continues TOT COL NCOL TOT COL NCOL

ASSIGNED-WORK  
CHARACTERISTICS - continue    β (S.E)    β (S.E)    β (S.E) E E E

Short Term Absence Hours
14.74
(22.30) ̶  ̶   

.0038*
(.0010) ̶  ̶   ̶  ̶   0.400 ̶  ̶   

Interaction of Fit for Duty & Short 
Term  Absence Hours

.123
(2.200) ̶  ̶   

.0228*
(.0100) ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   

Lag Short Term Absence Hours 
14.19
(21.80)

.0022*
(.0009) ̶  ̶   

.0013
(.0015) 0.031 ̶  ̶   ̶  ̶   

Merlo Garage
0.225
(0.418)

̶  .1383*
(.0696)

̶ .2012*
(.0857)

̶ .0564
(.1106) -0.150 ̶ .223 ̶  ̶   

Powell Garage
0.346
(0.476)

.0057
(.0468)

.0484
(.0577)

̶ .0335
(.0739) ̶  ̶   ̶  ̶   ̶  ̶   

Secondary Radial Route
0.152
(0.359)

 ̶ .0254
(.0664)

.0227
(.0810)

̶ .1303
(.1100) ̶  ̶   ̶  ̶   ̶  ̶   

Crosstown Route
0.244
(0.430)

̶  .1158*
(.0485)

̶ .0996
(.0614)

̶ .1278
(.0754) -0.120 ̶  ̶   ̶  ̶   

Feeder Route
0.060
(0.237)

̶ .0847
(.1354)

̶ .1730
(.1634)

.1485
(.2213) ̶  ̶   ̶  ̶   ̶  ̶   

Peak Express Hours
0.023
(0.150)

̶ .0684
(.1604)

̶ .0794
(.1771)

̶ .5462
(.3551) ̶  ̶   ̶  ̶   ̶  ̶   

Shift Ends 4:00-7:00 pm
0.479
(0.500)

̶ .0741
(.0502)

̶ .1075
(.0641)

.0100
(.0830) ̶  ̶   ̶  ̶   ̶  ̶   

Shift Ends  After 7:00 pm
0.197
(0.398)

̶ .0421
(.0623)

̶ .1601*
(.0788)

.1062
(.0975) ̶  ̶      ̶ .174 ̶  ̶   

Low -Floor Bus
0.666
(0.472)

.0557
(.0682)

.0461
(.0851)

.0667
(.1085) ̶  ̶   ̶  ̶   ̶  ̶   

Old Bus
0.229
(0.420)

̶ .1020
(.0908)

 .0223
(.1112)

̶ .3266*
(.1511) ̶  ̶   ̶  ̶   -0.386

Small Bus
0.047
(0.211)

̶ .1643
(.1545)

̶ .1391
(.1782)

̶ .3442
(.2840) ̶  ̶   ̶  ̶   ̶  ̶   

SERVICE PERFORMANCE CHARACTERISTICS

Boardings Per Revenue Hour
43.16
(10.25)

.0034
(.0027)

.0008
(.0033)

.0061
(.0043) ̶  ̶   ̶  ̶   ̶  ̶   

Lifts Per Hour
0.286
(0.148)

.6061*
(.1590)

.4824*
(.2016)

.8460*
(.2466) 0.173 0.138 0.242

Ave.Max. Speed - Peer Speed
0.068
(1.500)

.0145
(.0140)

̶ .0013
(.0167)

.0354
(.0231) ̶  ̶   ̶  ̶   ̶  ̶   

Proportion Late Departs
0.1402
(0.098)

.8926*
(.2218)

.5932*
(.2735)

1.118*
(.3504) 0.125 0.083 0.157

Proportion Early Departs
0.057
(0.060)

.4908
(.3476)

1.033*
(.4111)

̶ .3959
(.5793) ̶  ̶   0.059 ̶  ̶   

Layover Proportion
0.256
(0.198)

̶ .1403
(.1530)

̶ .0393
(.1165)

̶ .5359
(.3358) ̶  ̶   ̶  ̶   ̶  ̶   

Security Requests
0.526
(1.015)

.0551*
(.0160)

.0174
(.0220)

.0806*
(.0227) 0.029 ̶  ̶   0.042

Evasive Action Events

0.023
(0.160)

.5755*
(.0680)

.0095
(.1281)

.8881*
(.0838) 0.013 ̶  ̶   0.020

Mean
(Std. Dev)
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TOT COL NCOL TOT COL NCOL

   β (S.E)    β (S.E)    β (S.E) E E E
CUSTOMER SERVICE INFORMATION

Unsafe Operation
0.214
(0.528) ̶  ̶   ̶  ̶   

.1081*
(.0479) ̶  ̶   ̶  ̶   0.023

Lag Unsafe Operation
.2135
(.5276)

.0796*
(.0315)

.1086*
(.0382) ̶  ̶   0.017 0.023 ̶  ̶   

Unprofessional Treatment
0.410
(0.836) ̶  ̶   

.0516*
(.0254) ̶  ̶   ̶  ̶   0.021 ̶  ̶   

Lag Unprofessional Treatment
.4022
(.8203)

.0674*
(.0203) ̶  ̶   

.0742*
(.0303) 0.027 ̶  ̶   0.030

Fit for Duty
0.007
(0.086)

.2994
(.1717)

̶ .2762
(.3534)

.4397**
(.2594) ̶  ̶   5.987 0.003

Service Delivery Problem
0.112
(0.412)

.0107
(.0426)

̶ .0005
(.0520)

.0330
(.0682) ̶  ̶   ̶  ̶   ̶  ̶   

Commendation: Calls Stops
0.747
(1.426)

.0064
(.0112)

.0018
(.0155)

.0118
(.0188) ̶  ̶   ̶  ̶   ̶  ̶   

Commendation : Other
0.302
(0.685) ̶  ̶   ̶  ̶   

.0458
(.0392) ̶  ̶   ̶  ̶   ̶  ̶   

Lag Commendation : Other
.3014
(.6919)

.0022
(.0250)

.0440
(.0296) ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   

TEMPORAL CHARACTERISTICS

Fall Signup
0.163
(0.369)

̶ .0555
(.0576)

̶ .1417
(.0732)

.0670
(.0887) ̶  ̶   ̶  ̶   ̶  ̶   

Spring Signup
0.289
(0.453)

.0141
(.0536)

.0204
(.0667)

̶ .0207
(.0866) ̶  ̶   ̶  ̶   ̶  ̶   

Summer Signup
0.190
(0.392)

̶ .0100
(.0538)

̶ .0391
(.0680)

.0455
(.0847) ̶  ̶   ̶  ̶   ̶  ̶   

2007
0.442
(0.497)

.1849*
(.0821)

.2233*
(.1041)

.0888
(.1291) 0.169 0.200 ̶  ̶   

2008
0.374
(0.484)

.0416
(.0864)

.0992
(.1093)

̶ .1054
(.1363) ̶  ̶   ̶  ̶   ̶  ̶   

2009
0.100
(0.300)

̶ .0326
(.1076)

̶ .0501
(.1356)

̶ .0174
(.1689) ̶  ̶   ̶  ̶   ̶  ̶   

Intercept ̶  ̶   
1.638*
(.5356)

2.2099
(1.5560)

1.830
(.7919) ̶  ̶   ̶  ̶   ̶  ̶   

Parameter, a ̶  ̶   
145.842
(39.476)

1000.59
(1379.7)

62.67
(19.585) ̶  ̶   ̶  ̶   ̶  ̶   

Parameter, b ̶  ̶   
7.898

(1.317)
9.452

(2.795)
2.828
(.430) ̶  ̶   ̶  ̶   ̶  ̶   

Sample Size 11,585 11,585 11,585 11,585 ̶  ̶   ̶  ̶    ̶ ̶   
Number of Groups ̶  ̶   1,425 1425 1,425 ̶  ̶   ̶  ̶   ̶  ̶   
Walds chi-value ̶  ̶   621.9 298.4 529.4 ̶  ̶   ̶  ̶   ̶  ̶   
LR Test Vs. Pooled chi-value ̶  ̶   62.2 15.21 96.5 ̶  ̶   ̶  ̶   ̶  ̶   

Ratio of log-likelihood index( ρ2) ̶  ̶   0.297 0.281 0.513 ̶  ̶   ̶  ̶   ̶  ̶   

Adjusted ratio log-likelihood (ρ-2 ) ̶  ̶   0.281 0.273 0.507 ̶  ̶   ̶  ̶   ̶  ̶   

* Variable is significant at α = 0.05 level and E represents Elasticity

Mean
(Std. Dev)Table 3 -continues

 

 

lower age levels, an increase in age has a negative effect on expected crash frequency, 

reaching zero when the operators age is 36.08 years and turning positive at higher age 

levels. While age elasticity is positive, collision incidents are more sensitive (elastic) 
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to age changes than to total incidents.  The positive elasticity is attributable to the fact 

that the negative–to- positive transition is reached at the age 36.08, which is well 

below that of the sample average of 50.32 years.  In contrast, age elasticity for non-

collision is negative and is based on a non-linear parameter estimate.  

 

The parameter estimates indicate that the expected total incidents frequency for 

African Americans is 13% lower than their white counterparts. The relevance of race 

disappears when associated incident type data are estimated.  For example, collision 

and non-collision data estimates indicate that there are no significant distinctions in 

the expected frequency that can be related to the operator’s race or ethnicity.  In 

contrast, the expected frequency of non-collision and total incidents for female 

operators is about 17% and 10% greater respectively than for their male counterparts.   

 

There is no clear interpretation of this finding, although it should be noted that 

incidents are self-reported by operators.  Collisions where no gender distinctions are 

established leave tangible evidence that non-reporting is not a plausible explanation. 

Arguably, it may be either reflecting cultural bias such that female operators are more 

likely to report truth as others see it or that passengers who experience non-collision 

incidents are more likely to acknowledge them when a female rather than a male 

operator is involved or both arguments may be true. 
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Operator Employment Status Characteristics 

Turning to operator employment status characteristics, the parameter estimates 

indicate that the operator’s incident frequencies are clearly related to operator’s length 

of service. In particular, those operators who are new to the job and still are on 

probation status have expected frequencies  of non-collision and total incidents about 

38% and 21 % greater respectively than the corresponding frequencies for seasoned or 

regular operators. In contrast, there is no difference in the collision incident 

occurrences between regular operators and operators who are still new on the job. 

 

Holding probation status variable fixed, the estimated effect of experience on 

collisions is negative and diminishing, reaching minimum at 30.8 years of service and 

turning positive beyond that point.  The negative experience elasticities of -3.222 and -

2.711- for collision and total incidents respectively are fairly elastic, and their negative 

signs reflect the fact that average operator experience (10.74 years) is well short of the 

30.8-year transition point.  The effect of experience on non-collision frequency is 

estimated to be linear and negatively inelastic (E = -0.33), with the expected non-

collision incident frequency of an operator, for instance, with 10 years of service being 

33% higher than that of an operator with 20 years of service. 

 

Beyond the estimated independent elasticities for age and experience variables, the 

computed joint elasticities for age-experience combinations indicate that the collision 

incidents risk is minimized for an operator who is 47 years and has operated the bus 
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for about 22 years. This finding suggests that there is an operator age-experience 

combination at which the safety gains of experience exceeds the safety effects of 

aging. For the overall incidents model, the risk is minimized when the age-experience 

combination is 51 and 26 years respectively.  

 

The derived age-experience combinations should be seen as representing the 

hypothetical or stereo-typical bus operator. This is because while some people work as 

bus operators for a longtime, say from 25 to 60 years, in contrast, others especially the 

young operators often quit after a short-time in search of better opportunities. 

Similarly, some older persons, without prior bus operating experience become bus 

operators. As a result of these dynamics or turnovers, only a small number of bus 

operators may fit the age-experience description of a stereo-typical bus operator. In the 

case of the non-collision incidents, the age-experience combination with minimum 

risk could not be established because the estimated parameters for the “experience” 

variable are based on linear estimates. 

 

Assigned Work Characteristics 

Overall, the parameter estimates indicate that among the 22 variables that were used to 

explore how expected incident frequencies are influenced by the assigned work 

characteristics, fourteen variables were found to have a clear significant effect at, α = 

0.05 level. Seven of these variables are positively related to the expected incident 
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frequencies, on the other hand, six have a negative relationship. The other factor, span 

variability, has a mixed effect on safety. 

 

 An operator’s total hours of work during a signup represents an indicator of crash risk 

exposure and had a significant positive relationship with the expected collision, non-

collision and total incident frequencies. A test of the null hypothesis that total hours of 

work have a unitary elasticity (E= 1) was rejected for the collision and total incidents 

models but not for the non-collision incidents.  The negative weekend hours elasticity 

suggests that collision and total incidents risk diminishes on days when regional traffic 

volumes are lower and congestion is less pronounced.  Reductions in weekend risk do 

extend to non-collision incidents. However, the effect is relatively small.  

 

Apart from the total hours of work variable, the parameter estimate for the dummy 

variable identifying operators with split shifts is not significant across all the estimated 

models. This can partly be explained by the fact that experience effects have already 

been accounted for in the estimated models, and therefore the direct effect of split shift 

dummy is negligible. Surprisingly, the split shift variable in the prior signup was 

found to have a significant positive effect on the expected total frequency incidents. 

Given that split shift dummy is a proxy measure for fatigue, the positive and 

significant effect associated with this variable when lagged for one period may signal 

that fatigue in the last period has safety effects in the current period. The effects for 
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lag of split shift, however, could not be established in collision and non-collision 

models.  

 

Two dummy variables were also specified to identify bus operators who worked 

compressed workweeks. The findings are mixed, with part time operators on 3-day, 

30-hour weeks estimated to experience higher non-collision and total incident 

frequencies. In contrast, operators on 4-day, 40-hour weeks were estimated to 

experience significantly lower collision frequencies than operators on standard 

workweeks. 

 

The expected frequencies of collision and non-collision incidents are influenced by the 

average daily span of hours as well as the span variability.  The collision incidents 

model indicates that an increase in work span for one more hour is estimated to result 

in about 5.3 % increase in expected collision frequency. For span variability, a 10% 

increase in the span’s coefficient of variation is estimated to result in about 1.5 % 

increase in expected collision frequency.   

 

The work span finding is most relevant to bus operators on split shifts, and it suggests 

that an increase in the amount of time separating shifts would contribute to greater 

collision frequency.  It also suggests that compressed workweeks, with their 

approximate 25% increase in daily span for full time operators, would also result in 

greater collision frequency.  The span variability finding is most relevant to operators 
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who work the extra-board and those operators who engage in frequent trades of their 

assigned work.  Both circumstances are associated with greater span variation. For 

non-collisions, while the effect of span variability is negligible, on the other hand, the 

negative sign associated with an increase in average work span was not anticipated.  

 

Beyond operator work hours and related safety effects, the collision model estimates 

reveal that variations in short duration absence hours are positively related to the 

expected collision frequency.  Short duration absences account for about half of total 

time loss among operators at TriMet.  Focusing on the short duration component of 

operator time loss lessens the prospect of simultaneity, wherein it would be necessary 

to consider operator absences as a contributor to safety incidents as well as a 

consequence.  The estimated short duration absence elasticity can be interpreted as a 

contributor to collision frequency.   

 

Alternatively, the elasticity for the lag of short duration absence hours may be 

interpreted as an indicator that job dissatisfaction is the basis of the crash 

contributions, not operator’s health. This interpretation is contrary to the argument that 

accident/health related absenteeism could be at play in estimated safety incidents 

(Wahlberg & Dorn, 2009).  In other words, absenteeism is not necessarily a 

consequence of crashes. As documented in absenteeism literature (Strathman, et al., 

2009), it may be a signal of worsening job attitudes, which in turn could compromise 

safety. The positive and significant coefficient on interaction term, between the fit for 
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duty variable and short duration absence hours, suggest that the safety risk of a unit 

increase in fit for duty complaints is more pronounced for operators with diminishing 

job satisfaction.  

 

Shift period is represented by two categories of variables which identify the time of 

day when an operator’s run concludes.  The expected collision frequencies of 

operators whose runs conclude after 7:00 pm, which accounts for about 20 % of all 

runs, are estimated to be 17.4 % lower than the expected frequencies of operators 

whose runs conclude before 4:00 pm.  On the other hand, operators whose runs 

conclude between 4:00- 7:00pm, which account for about 50 % of all the runs, are 

estimated to have safety performance that is not significantly different from those 

whose shift ends before 4:00 pm. This finding should be interpreted cautiously as split 

shifts are highly correlated with peak periods.  

 

Among the three garages, the expected collision and total incidents frequency of buses 

dispatched from Merlo is estimated to be 22.3 % and 15 % below Central garage 

respectively. In contrast, there is no significant difference in safety performance of 

buses dispatched from Powell and those dispatched from Central garage. 

 

Bus route operating conditions are represented by four route typology dummy 

variables.  It was expected that collision frequencies would be higher on frequent 

service radials than any other route type given that traffic volumes are generally higher 
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along these routes and on-street parking is more prevalent.  However, with the 

exception of crosstown route, on which expected total incidents frequency is estimated 

to be 12% lower than the frequent service radials, the incident elasticities of  other 

alternative route types, namely, secondary radial, peak express hours and feeder 

routes, are not statistically different from frequent service radials. 

 

The effects of type and size of bus on the expected incident frequency was also 

explored. The null hypothesis that the expected non-collision frequency among low 

floor buses is not significantly different from other bus types could not be rejected. 

This finding is contrary to what has been reported elsewhere (Hudneski, 1992 ) and 

can partly be attributed to the practice at TriMet of assigning its low-floor vehicles to 

the most heavily patronized routes, which would contribute to a confounding of the 

bus type and passenger boarding variables in the model.  In the case of vehicle size, 

parameter estimates indicate that safety performance of small vehicles is not 

significantly different from the standard vehicles.  

 

Another unanticipated result is that the expected non-collision frequency among buses 

older than 15 years is estimated to be 38.6% below that of newer buses.  This finding 

is not consistent with what has been documented in transit safety literature (Zeeger et 

al., 1994; Chang and Yeh, 2005) and can be interpreted in two ways. First, older buses 

at TriMet are mainly used during morning and evening peak periods to help deal with 

the increased demand for the service. Therefore, like most urban areas the profile of 
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passengers during peak periods tends to consist of more young people and customer 

cohorts that are not physically challenged.  

 

Another possible explanation is based on the risk compensation or offsetting behavior 

hypothesis (Peltzman, 1975). That is, because these vehicles are older, it is possible 

that operators and users of these bus types respond by being more careful and more 

alert to the bus operating conditions. Evans (2004) has argued that the risk 

compensation theory is weak and is not supported by empirical evidence. 

 

Service Performance Characteristics 

Among the eight service performance related variables that were examined, five were 

found to have a significant positive relationship with expected incident frequencies, 

while the rest had an insignificant effect. The passenger boardings per revenue hour 

was expected to have a positive influence on expected incident frequency but for 

unknown reasons, it turned out to have an insignificant effect on safety.  

 

The estimated elasticity for lift movements per hour is positive for collision and non-

collision, as well as in the total incidents model. This suggests that passengers with 

mobility impairments face unique safety risks associated with lift functioning and on-

board securement. This finding is consistent with what has been documented in the 

safety literature (NHTSA, 1997).  While it is straightforward to interpret the positive 
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elasticity associated with lifts movement and what it means in non-collisions, the same 

is not true for the collision and total incident models.  

 

One possible explanation for positive elasticity found in the latter models is that the 

time and attention that operators devote to serving passengers with disabilities 

conflicts with the time and attention needed to operate the bus safely. For example, 

Dueker et al. (2004) estimate that a bus lift operation requires about 60 seconds of 

additional dwell time. This implies that bus lift operation contributes to the likelihood 

of a bus running late and, as such, it may serve as an incentive to the bus operator to 

pay less attention and to rush in an effort to adhere to the schedule, which may 

compromise safety. 

 

Variation in operator average maximum speed relative to the peers was expected to be 

positively related to the expected frequency of collision and non-collision incidents. 

But the test for the null hypothesis that the safety effect of operator average maximum 

speed relative to the peers is significantly different from zero was rejected.  

 

Independent of speed and the bus lift operation effects examined above, two variables, 

namely, proportionate late and proportionate early departures, were included in the 

models to capture the safety effects of operators’ inability to adhere to a schedule. The 

estimated results indicate that the expected frequency of collision, non-collision and 

total incidents is estimated to increase with the proportion of late (by more than 5 
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minutes) departures from time points.  One may be tempted to attribute this finding to 

operator speeding, but a careful eye can see that this variable is already accounted for 

in the models and its effect is found to be small. Other alternatives for schedule 

recovery would be to cut deceleration, dwell, or acceleration times, each of which is 

known to contribute to elevated safety risk. 

 

Operator early departure, by more than one minute from time points, was entered in 

the models as a proportionate early departure variable. The parameter estimates are 

significant and positively related to the expected collision frequency, but in the case of 

non-collision and total incidents models, the effect is not large. While the estimated 

coefficients for running late and early are both positive and significant in the collision 

model, the elasticity for running late is almost double that of running early.  

 

One motivation for running early is that it adds to the amount of layover time.  While 

previous literature has identified insufficient layover time as a contributor to operator 

fatigue and safety risk, the collision, non-collision and total incident’s parameter 

estimates for the share of platform time devoted to layover was not significantly 

different from zero at α = 0.05 level. Following an agreement between the union and 

the management, TriMet run cuts must assure a minimum of 80 minutes of layover 

and break time in an 8-hour shift, which represents about 17% of platform time. More 

specifically, the study period data indicates that the estimated actual run cuts 

implemented yielded a layover share of 8.5 % more than the agreed minimum. 
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Therefore, in practice, it appears that the layovers built into the run schedules are 

reasonably sufficient to ensure that safety is not compromised.  

 

An operator’s responsive actions to security and safety concerns are examined by 

incorporating in the model variables that account for the effects of the number of 

messages sent to dispatchers requesting security personnel and for evasive action 

events, such as taking hard stops to avoid a crash. While the estimated effect of these 

two types of events on expected non-collision and total incidents frequencies is 

positive, the relative significance of evasive action events is roughly half the 

magnitude associated to security request incidents.  Taking evasive action itself may 

be a contributor to an on-board safety incident.   

 

In contrast, a security request may occur as an outcome of an on-board safety incident, 

particularly when the consumption of alcohol or other substances is involved. In the 

case of collisions, the test for the hypothesis that the estimated coefficient of operator 

responsive action is not different from zero was rejected. 

 

Customer Service Information  

Turning to customer feedback factors, it was expected that the effect of customer 

complaint variables on expected incident frequency would be positive, and on the 

other hand, commendations related variables were expected to have a negative 

relationship. But contrary to prior expectations, it turns out that the direction of the 
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relationship and the relative significance of these factors depends not only on the 

specific variables but also on the incident type considered.  

 

The expected frequency of non-collision incidents is estimated to be positively related 

to passenger complaints addressing operator unsafe operation of the bus.  It may be 

reasoned that positive association between customer complaints variables and safety 

incidents may be because of previous customer experience of safety incidents which 

may serve as a motivation for lodging a complaint. This simultaneity issue is 

addressed in the present study by lagging any complaint related variable reported in 

standard RENB models (See Appendix B) with a positive and significant effect on 

expected crash frequencies.  

 

The estimated elasticity for lag of unsafe operation variable is positive in the collision 

and total incidents models. Although inelastic, this finding suggests that passenger 

complaints about an operator’s unsafe bus operation is not motivated by their prior 

experience with bus crash incidents, but may be signaling elevated safety risk and 

associated consequences. In other words, this finding can be interpreted as indicating 

that chronic complaints regarding an operator unsafe bus operation elevates the risk of 

being involved in a collision, which may be in the present or future signups. The 

model estimates also reveal that customer complaints of unprofessional treatment by 

operators are estimated to be positively related to the expected frequency of collision 

incidents. On the other hand, their effects are negligible in non-collisions.  
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In contrast, the estimated elasticity of the lag of unprofessional treatment variable is 

positive in non-collision and total incidents frequency models but not in collisions. 

This finding can similarly be interpreted as indicating that a pattern of complaints 

about an operator’s unprofessional treatment of passengers or customers may be a 

signal for an elevated risk for a non-collision incident.  The variable capturing a 

service delivery problem is insignificant in all estimated models. The fit for duty 

variable is positively related to both the expected collisions and non-collision 

frequencies. In the case of non-collisions, the fit for duty variable is estimated to have 

an inelastic elasticity. In contrast, it has an interaction effect with short duration 

absence hours on expected collision frequency, with an elasticity value more than one 

(elastic).  

 

The positive effect of fit for bus operation variable can be interpreted as capturing the 

safety effect of an operator, who may be taking prescription medication or who may 

be using alcohol.  Whether on medication or alcohol, any operator deemed unfit to 

operate the bus by either customers or supervisors is a great collision risk and should 

not sit behind the wheel. The interaction term, between fit for duty variable and short 

duration absence hours, suggests that the effect of a unit increase in the fit for duty 

complaints about an operator on expected collisions frequency is more pronounced in 

the presence of short duration absence hours.  
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Among the variables related to customer commendations of operators, the coefficient 

estimate of the variable commendation other, not for stop announcements, in the 

standard RENB was found to be positively related to expected collision and total 

incidents frequency. However, on lagging this variable, the estimated coefficient for 

the lag of commendation other turns out not to be significantly different from zero at α 

= 0.05 level.  A test for the hypothesis that the coefficient of the variable 

commendation of the operator, related to stop announcements, is significantly 

different from zero was rejected. This finding may be interpreted in a number of ways. 

First, it may suggest that safety performance is not influenced by operator personality 

characteristics. Another possible explanation is that the conflicts between safe bus 

operation and customer service responsibilities have been well reconciled at TriMet.  

 

Temporal Characteristics  

The effect of annual and seasonal variations on bus safety performance was examined 

by incorporating year and signup-specific dummy variables in the estimation models. 

The parameter estimates for the signup indicators were found not to be significantly 

different from zero.  About a week of snow and ice conditions were experienced in 

two winter signups during the study period.  Also, unlike the summer and fall, the 

winter and spring signups consistently experienced variable rainfall. However, none of 

the signup indicators were found to be significant, suggesting that seasonal variations 

in the Portland region’s weather have no discernable consequences for bus safety.  
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In contrast, of the three indicators, only the one year-specific dummy variable was 

found to be significantly different from zero. The indicator for the year 2007 was 

estimated to have about 20% and 17% more expected collision and total incidents 

frequencies  respectively than the base year, 2006.  

 

This finding can be attributed to a number of factors. First, the economic downturn in 

the Portland region after 2007 may have had an effect on safety.  Between January 

2008 peak and August 2009, regional employment fell 6.3% and total regional 

employment returned to early 2001 levels (Vander, 2009). Therefore, some easing of 

traffic-related risk exposure was likely to have occurred during that period. Secondly, 

unobserved effects of agency operational procedures might have been at play. For 

example, the aggressive practice of operator recruitment that was enforced around and 

during the same period might have had unintended safety effects.  The strategy was to 

recruit/hire and create a large pool of operators, so that over time the agency would 

have a more reliable base of experienced operators. While this strategy had good 

intentions, limited agency personnel and resources might have compromised the 

supervision, monitoring and training of the recruited crew resulting in unintended 

safety outcomes.  

 

In summary, there are notable differences obtained for collision and non-collision 

safety incidents. In particular, age and experience have negative and diminishing 
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effect on expected frequencies of collision incidents. In the case of non-collisions, the 

expected incidents frequencies are inversely related to operator’s age and experience. 

 

Beyond the operator characteristics, an increase in work span by one more hour is 

estimated to result in 5.3% increase in expected collision frequency. A similar increase 

is estimated to result in about 7.6 % decrease in expected non-collision incidents.   

Work span variability is another factor that affected collision and non-collisions 

incidents differently. Specifically, a 10 % increase in the span’s coefficient of 

variation is estimated to result in 1.5% increase in expected frequency of collision 

incidents. In non-collisions this variable is not significant. 

 

Regarding operator absenteeism, variations in short-duration absence hours are 

estimated to have positive influence on expected collision frequency, but are 

insignificant in the case of non-collision incidents data. With respect to schedule 

adherence ability, the analysis found that while running late is positively related to 

collision and non-collision incidents, the magnitude of the elasticity estimate in non-

collision is about twice as much that obtained in collision incidents model. In addition, 

the early depart variable is positively related to frequency of collisions incidents. In 

non-collisions the effect is insignificant. 

 

Turning to operator’s responsive actions to security and risk situations, the number of 

security requests and evasive action events are positively related to occurrences of 
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non-collision incidents, but their effect in collision is insignificant. Customer 

complaints had an opposite effect. Non-collision incidents are positively related to 

passenger complaints about unsafe bus operation, but in collision incidents the 

variable unsafe complaint is insignificant.  

 

Given what these models have so far established, the next logical question or 

challenge is: how can TriMet reduce occurrences of collision and non-collision bus 

incidents? One possible approach is to ensure that preventable bus incidents are 

avoided or minimized in the service district. This, however, requires identification and 

assessment of the factors that influence occurrences of preventable bus incidents. This 

task is the focus of the next chapter.  
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CHAPTER 5.0:  PREVENTABILITY ANALYSIS AND RESULTS  

5.1. Introduction 

Beyond safety incident frequency analysis, the effect of operational characteristics on 

the likelihood of preventable incident involvement was also examined. The distinction 

between incident frequency and preventability analysis is that while count data 

methods were used in modeling the former, the latter was modeled as discrete safety 

outcomes. This approach is consistent with what has been done in the traffic safety 

literature. Specifically, McCarthy and Madanat (1994) have indicated that binary logit 

models can appropriately be used to analyze crash occurrence, especially when the 

dependent variable takes on very small integer values.  

 

In the case of this study, only a few TriMet bus operators were involved in preventable 

incidents and a large number were not involved in any incidents at all.  Given the large 

number of operators that were either involved in a few or no preventable incidents, a 

set of binary logit specifications was developed to estimate how preventable incident 

involvement is influenced by bus operations. 

 

The reminder of this chapter is organized as follows: In the next section the limited 

dependent variable (LDV) modeling approaches and related issues are discussed. Data 

description and discussion of model estimation is provided in section 5.3. In section 

5.4, model specification issues are presented. In section 5.5, the discussion of 

alternative model interpretations is provided. This is followed in section 5.6 with the 
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estimated model results. Finally, section 5.7 presents a discussion of methodological 

considerations and result limitations. 

 

5.2. Discrete Outcome Modeling Methods 

There is a well-developed record of safety literature which has established that 

accident data can appropriately be analyzed through LDV modeling methods. In 

particular, multinomial (MNL) and nested logit modeling structures have largely been 

used in accident severity analysis (Shankar and Mannering, 1996; Carson and 

Mannering, 2001; Lee and Mannering, 2002). According to Carson and Mannering 

(2001), these methods are applied in estimating the likelihood of various severity 

outcomes given that an accident has occurred. 

 

As in the earlier studies (Shankar and Mannering, 1996; Carson and Mannering, 2001) 

an appropriate binary logit model was developed and then used to estimate the 

probability of observing a safety outcome i given that the bus was in the revenue 

service operation. In the simplest case, a standard logit model that defines the 

dependent variable yjt to be one if bus operator j is involved in a preventable incident 

outcome during time period t and zero otherwise was appropriate.  

 

In particular, the logit structure proposed by McCarthy and Madanat (1994), for 

analyzing the likelihood of fatal accidents was adapted and applied in indentifying the 

operational factors that are correlated with the likelihood of preventable incident 
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involvement. The general expression for the probability of preventable incident 

involvement is expressed as: 

P( preventable incident involvement )  

= P ( yjt = 1) = 
)'exp(1

)'exp(

jt

jt

x

x





………………………………….…………………3.2 

                           j = 1, , , , , J;  t = 1, , , , , , , T …………………………………......3.3             

Where, 

 Xjt is a vector of operator- and time-specific explanatory variables, β is a vector of 

coefficients to be estimated and yjt is assigned one if an operator j is involved in a 

preventable incident and zero otherwise.  

 

The parameter vector β  is estimated  using the maximum likelihood methods. The 

likelihood function according to Washington et al. (2003) is expressed as: 

   L = 
 

J

j

I

i
iP

1 1
)( δ

ij ……………………………….…………..…………………...3.4 

Where, 

 J is the total number of observations and δ is defined as being equal to one if the 

observed discrete outcome for observation j is one and zero otherwise. This model is 

easy to estimate using standard econometrics software. In addition, interpretation of 

the parameter estimates is straight forward. However, this model can only be used if 

the dependent variable has two discrete outcomes.   
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Beyond the two safety outcomes, factors influencing the likelihood of the other safety 

outcomes; namely non-incident involved, preventable incident involved, non-

preventable incident involved and other unclassified incident category were also 

considered. This required either developing a simple multinomial or a more advanced 

but flexible nested logit model.  Following established practices in LDV modeling, 

multinomial logit was selected first because it is the simpler specification. In addition, 

the multinomial logit model has previously been derived and applied to severity 

analysis (Shankar and Mannering, 1996), and can intuitively be extended to incident 

preventability analysis.  

 

Specifically the multinomial logit model can estimate the likelihood of bus operator j 

being involved in safety outcome i during signup t. Mathematically,  Pj(i) represents 

the probability of operator j being involved in safety outcome i and Sijt being a linear 

function that determines the safety outcome of bus operation such that   

Sijt=  βi Xjt, + εijt    …………………………………………………………..……….3.5  

Where, 

  Xjt is a vector of observable operator and time-specific explanatory variables that 

determines safety outcome, β is a vector of coefficients to be estimated and εijt is 

unobservable random error.  
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According to Carson and Mannering (2001), the probability that an operator j is 

involved in safety outcome i can be rewritten as the probability that Sijt  is greater than 

all other  SIjt. Therefore, the general probability statement can be expressed as 

P j(i) = P(Sijt > SIjt),  for all I i  …………………………………………………….3.6 

Where, 

 I is the set of possible safety outcomes. Substituting equation 3.5 into equation 3.6, 

the latter equation can be expressed as 

P j(i) = P(βi Xjt, + εijt   > β IXjt, + εIjt ),  for all I i    .............................................3.7a   

           = P(βi Xjt,- β IXjt, > εIjt- εijt ),  for all I i       ………………..…………...3.7b    

With equation 3.7b, an estimable safety outcome model is developed by assuming a 

distribution form of the random error term. A natural choice would be to assume that 

the random error is normally distributed. The resulting specification structure would 

then be a probit model. However, models of this type are computationally impractical 

in a situation with more than two discrete outcomes, and they are not easy to estimate 

(Carson and Mannering, 2001; Shankar et al., 1996).  

 

A more common and widely used approach is to assume that the random error terms 

are generalized extreme value (GEV) distributed, sometimes also called the Gumbel, 

Weibull, or double exponential distribution (Small and Verhoef, 2007). The GEV 

assumption produces a closed form model which is computationally easy to estimate 

(Shankar et al., 1996).  In addition, based on GEV assumption, it can readily be shown 

(McFadden, 1981; Washington et al., 2003) that a multinomial logit is produced. 
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 The general expression for the probability of operator j being involved in safety 

outcome i given a possible set of  I outcomes is mathematically expressed as: 

             P j(i) = 


I

jtI

jti

X

X

]exp[

]exp[




                           …………………………………...…3.8   

 

Where all variables are as previously defined and to estimate the coefficient parameter 

vectors (β) by the standard maximum likelihood methods, and the log likelihood 

function formulated by Washington et al., (2003) was adapted.  This is expressed as:  

  LL =  






I

i
iI

IjIijij

J

j

LJi
11

][ )exp((  )  ………………………………………3.9 

Where, 

 I is the total number of safety outcomes, J is the total number of observations, δ is 

defined as being equal to one if the observed discrete outcome for observation j is one 

and zero otherwise. The concerns relating to the suitability of this model for analyzing 

the effect of operational factors on the likelihood of incident preventability are 

addressed in section.5.4. 

 

5.3. Model Development 

The effect of operational characteristics on the likelihood of incident preventability 

was also estimated through analysis of TriMet‘s archived ITS and related systems 

data.  As with incident frequency analysis, in the first step a list of 1,502 bus operators 

that had operated TriMet buses, between September, 2006 and February, 2009 was 

developed. In the second step, all the 10,316 operator signup observations without 
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incidents were identified and coded as one. Since incidents at TriMet are classified as 

either Preventable (PA) or non-preventable (NPA), the third step involved coding all 

817 operator signup observations with a PA entry as 2 while coding 873 operator 

signup observations  that had an NPA entry as 3. There were 1,790 operator signup 

observations that were not classified or categorized and were coded as 4. In the fourth 

and final step, the multinomial logit model was then estimated. In total there were 

13,796 operator signup observations, 12 signups during the three year study period. 

 

In the case of binary logit specifications, the model development process had three 

distinct but well connected steps. First, the 1,790 unclassified operator signup 

observations were deleted from the sample. Second, the 817 operator signup 

observations with a preventable incident entry during the study period were coded one 

while the rest (12,006) of the operator signups were assigned zeros. Finally, in the 

third step, the PA status logit model was then estimated.  

 

5.4. Model Specification Issues  

The MNL specification is based on a celebrated and restrictive property of 

independence of irrelevant alternatives (IIA). The IIA property is both a major 

strength and weakness of MNL. The IIA property implies or requires the assumption 

that the unobserved random error terms are independent from one safety outcome type 

to the other. This was not anticipated to be the case because some of the safety 

outcome types were likely sharing unobserved terms and therefore they were expected 
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to be correlated. Surprisingly, it turns out that this hypothesis could not be supported 

by TriMet data.  

 

The assumption of IIA was assessed using Hausman test and Small-Hsiao test. 

Hausman test was devised by Hausman and McFadden (1984). The Small–Hsiao test 

(also known as the likelihood ratio test) is provided in Small & Hsiao (1985). These 

are post-estimation tests in Stata software and were performed using the program 

written by Freese and Long (2000). The hypothesis that the odds (safety outcome-J 

verses safety outcome–k) are not independent of the other outcomes was rejected at α 

= 0.05 level. This finding indicated that IIA assumption is not violated. When the IIA 

assumption is violated, the more flexible structure, known as nested logit, is preferred 

and has been used in safety analysis by Lee & Mannering, (2002) and Shankar et al., 

(1996) among others. 

 

5.5. Model Interpretations  

The estimated coefficients from the incident preventability models are not directly 

interpretable as is the case in the linear regressions models because the dependent 

variable for each outcome is expressed as the logarithm of the odds of an event.  This 

complication is addressed by computing the relative risk ratio (or sometimes also 

known as odds ratio) for categorical variables and average derivatives for continuous 

variables (Crown, 1998; Zador et al., 2000). 
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According to Crown (1998) partial derivatives enable the effects of a particular 

variable on the probability of an event to be examined without the inconvenience and 

confusion introduced by the log of the odds formulation. The derivative indicates the 

change in probability of each discrete safety outcome with respect to a unit change in 

the independent variable. The relative risk ratio indicates how the probability of safety 

outcome i relative to zero or reference group changes if the independent variable is 

increased by one unit. The relative risk ratio was computed by exponentiation of the 

coefficient estimates of categorical variables. In contrast, average derivatives for 

continuous variables were computed using the formulation provided by  Koppelman & 

Bhat (2006) and Crown (1998).   

 

Direct partial derivative of the probability with respect to an independent variable 

within a particular equation is given as: 

       ikii

ik

i
PP

X

P 



)1(   ………………………….………………………………4.0               

While in another equation, the cross partial derivative of the probability of a given 

outcome with respect to an independent variable is expressed as: 

            IkIi

I

i
PP

X

P

K





     ……………………………………………………….…4.1 

In the case of logit models the odd ratios (or relative risk ratios) were computed for 

dummy variables using the formulation provided by Crown (1998). This is 

mathematically expressed as: 
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Odd ratio= exp(βk) …………………………………….……………………...….…4.2 

 

In addition, the partial derivatives were computed for the continuous variables that 

were significant in the model using the formulation provided in equation 4.3.  

           )1( iik

k

i
PP

X

P
 




 ………………………..……………………………… 4.3    

Elasticity is the other measure used to quantify the extent to which the discrete 

outcome probabilities are influenced by changes in an independent variable 

(Koppelman and Bhat, 2006; Washington et al., 2003; Shankar and Mannering, 1996). 

In the multinomial logit model analysis, elasticity represents or measures the 

proportionate change in the probability of a safety outcome due to a proportionate 

change in the explanatory variable.  

 

According to Washington et al. (2003) elasticities for continuous variables are 

computed from the partial derivatives for each observation as: 

        E iP
x

J
j

)(  = 



j

j iP )(
)(iP

X

j

j
        ………………………….……………….....4.4 

Where P(i) is the probability of operator j being involved in safety outcome i,  E 

represents the elasticity and Xj is the value of the variable being considered. When this 

equation is applied to the multinomial logit model in equation 3.8 above then the 

elasticity equation becomes: 

       E iP
x

J
j

)(  = [1- P(i)] βiXj    …………………………………..……………..….4.5 
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The elasticity formula however is not applicable to indicator variables (those taking on 

one or zero values). A measure of the effect of the indicator variable is derived by 

computing pseudo– elasticity (Washington et al., 2003; Shankar and Mannering, 

1996).  

 

The pseudo-elasticity in the multinomial logit formulation is given as 

Ex
iP

KI

)( =  1
()(exp

)exp()](exp[

)exp()exp][






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
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


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kIkIkIkIii

I

kIkI

I II

ji




    …………..4.6      

Where Ij is the set of alternate outcomes with Xk in the function determining the safety 

outcome, and I is the set of all possible outcomes. These elasticity and pseudo-

elasticity formulations have been applied in assessing effects of variables on various 

types of accident severity (Shankar and Mannering, 1996; Chang and Mannering, 

1999).  

 

5.6. Estimation Results and Discussion 

Turning to the results, two sets of multinomial and binary logit models were estimated 

using maximum likelihood methods. The distinction between these models is that the 

modified specifications had main and lagged variables incorporated. In contrast, the 

standard specifications accounted only for the main variables. The structure of the 

multinomial logit model (with four safety outcomes: non-incident involved, 
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preventable incident involved, non-preventable incident involved and other 

unclassified incident outcomes) was estimated.  

 

The estimation process was carried out using STATA software with “non-incident 

involved” as the reference group. The estimated coefficients for modified multinomial 

and binary logit models are presented in Table 4. Also included are the computed odd 

ratios and average derivatives for the binary logit model. 

 

The presentation in this section covers estimated parameters from the modified 

multinomial and binary logit models. However, the standard model results provided in 

Appendix C will be referenced as needed. Given the number of variables covered in 

the models, the discussion to follow will mainly focus on the estimated parameters 

from the modified multinomial logit model. The parameter estimates of the ordinary 

logit model will only be discussed where the estimates from the multinomial logit are 

counter-intuitive or less informative.  
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Table 4. Modified Multinomail and Logit Coefficient Estimates

ESTIMATION MODELS

PA NPA UNC

   β (S.E)
ODD 
RATIO

AVE.
DER

   β
 (S.E)

   β
 (S.E)

   β
 (S.E)

OPERATOR DEMOGRAPHICS

Age
̶ .0804*
(.0360) ̶  ̶   

̶ .0845*
(.0340)

̶ .0344
(.0351)

̶ .0408
(.0251)

Age2
.0011*
(.0003) ̶  ̶   

.0012*
(.0003)

.0004
(.0004)

.0004
(.0003)

Female
.1174
(.0951) 1.12500 ̶  ̶   

.1471
(.0950)

.1823*
(.0915)

.1269
(.0661)

African American
̶ .1853
(.1273) 0.83080 ̶  ̶   

̶ .2250
(.1255)

̶ .2693*
(.1209)

̶ .0706
(.0834)

Asian/Pacific Islander
̶ .5572*
(.2673) 0.57280 ̶  ̶   

̶ .5185
(.2656)

.3147
(.1893)

̶ .0933
(.1600)

Hispanic
.0216
(.2097) 1.02180 ̶  ̶   

.0362
(.2093)

.1076
(.1987)

.0774
(.1458)

EMPLOYMENT STATUS CHARACTERISTICS

Years of Experience
̶ .0701*
(.0206) ̶  ̶   -0.0034

̶ .0795*
(.0208)

̶ .0372
(.0197)

̶ .0315*
(.0144)

Years of Experience2
.0009
(.0006) ̶  ̶   ̶  ̶   

.0010
(.0006)

.0007
(.0006)

.0005
(.0004)

Probationary Status
.4952*
(.1960) 1.64100 ̶  ̶   

.5152*
(.1971)

.1331
(.2203)

.4900*
(.1538)

ASSIGNED-WORK  CHARACTERISTICS

Unique Assignments
̶ .0021
(.0038) ̶  ̶   

̶ .00011 ̶ .0067
(.0040)

̶ .0015
(.0039)

.0017
(.0028)

Split Shift ̶  ̶   ̶  ̶   ̶  ̶   
̶ .2571
(.1664)

̶ .0941
(.1623)

.0761
(.1151)

Lag Split Shift
.2279*
(.1046) 1.25600 ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   

Total Hours Worked
.0024*
(.0005) ̶  ̶   0.00012

.0024*
(.0006)

.0024*
(.0005)

.0025*
(.0004)

Weekend Hours
̶ .0012
(.0007) ̶  ̶   

̶ .00006 ̶ .0015*
(.0007)

̶ .0009
(.0007)

̶ .0005
(.0005)

Average Daily Span
.0312
(.0303) ̶  ̶   0.00162

.0925*
(.0416)

̶ .0467
(.0401)

̶ .0608*
(.0283)

Daily Span CV
.4782
(.5723) ̶  ̶   0.02480

.9921
(.6120)

.7720
(.5940)

.6184
(.4225)

Three Day/ 30 Hour Week
.2465
(.2943) 1.28000 ̶  ̶   

.1976
(.2939)

.2172
(.3084)

.3260
(.2221)

Four Day/ 40 Hour Week

̶ 1.225
(1.025) 0.29370 ̶  ̶   

̶ 1.437
(1.029)

 ̶ 1.100
(1.028)

 ̶ .1101
(.4949)

0.0130

 MODELS WITH MAIN AND LAGGED VARIABLES

PA Status

VARIABLES  &  
PARAMETERS 

MULTINOMIAL LOGITLOGIT
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PA NPA UNC

   β (S.E)
ODD 
RATIO

AVE.
DER

   β
 (S.E)

   β
 (S.E)

   β
 (S.E)

ASSIGNED-WORK  CHARACTERISTICS - continues

Short Term Absence Hours ̶  ̶   ̶  ̶   ̶  ̶   
.0063*
(.0018)

.0009
(.0019)

.0024
(.0013)

Lag Short Term Absence Hours
.0078*
(.0017) ̶  ̶   0.00040 ̶  ̶   ̶  ̶   ̶  ̶   

Merlo Garage
̶ .1658
(.1451) 0.84720 ̶  ̶   

̶ .1910
(.1476)

̶ .4963*
(.1576)

.0571
(.1037)

Powell Garage
̶  .1914
(.1025) 0.82580 ̶  ̶   

̶  .1460
(.1031)

.1803
(.0964)

.0890
(.0713)

Secondary Radial Route
̶ .1525
(.1495) 0.85850 ̶  ̶   

̶ .1413
(.1490)

.1634
(.1403)

̶ .0518
(.1074)

Crosstown Route
̶ .2321*
(.1138) 0.79290 ̶  ̶   

̶ .2569*
(.1133)

̶ .0556
(.1053)

̶ .1353
(.0771)

Feeder Route
̶ .3342
(.2833) 0.71590 ̶  ̶   

̶ .3045
(.3010)

.0639
(.2885)

.0190
(.2009)

Peak Express Hours
̶ .2388
(.3272) 0.78760 ̶  ̶   

̶ .2438
(.3340)

̶ .2262
(.3720)

.1750
(.2371)

Shift Ends 4:00-7:00 pm
.0098
(.1202) 1.00990 ̶  ̶   

.0696
(.1192)

̶ .1625
(.1127)

̶ .1111
(.0806)

Shift Ends  After 7:00 pm
.0076
(.1442) 1.00760 ̶  ̶   

̶ .0547
(.1444)

̶ .0002
(.1308)

̶ .1036
(.0963)

Low -Floor Bus
.0251
(.1491) 1.02550 ̶  ̶   

.0423
(.1505)

.0712
(.1523)

.0451
(.1111)

Old Bus
̶ .1537
(.1942) 0.85750 ̶  ̶   

̶ .1178
(.1966)

.1782
(.2027)

̶ .2097
(.1462)

Small Bus
.0552
(.2974) 1.05670 ̶  ̶   

̶ .0188
(.3224)

̶ .6320
(.3477)

̶ .0724
(.2264)

SERVICE PERFORMANCE CHARACTERISTICS

Boardings Per Revenue Hour
̶ .0014
(.0061) ̶  ̶   

̶ .00007 ̶ .0005
(.0061)

.0106
(.0057)

.0038
(.0043)

Lifts Per Hour
1.001*
(.3694) ̶  ̶   0.05192

1.035*
(.3546)

.4462
(.3580)

.6106*
(.2624)

Ave.Max. Speed - Peer Speed
.0150
(.0330) ̶  ̶   0.00078

.0186
(.0295)

.0184
(.0295)

.0550*
(.0213)

Proportion Late Departs
1.227*
(.4583) ̶  ̶   0.06364

1.174*
(.4691)

.4752
(.4659)

.9257*
(.3371)

Proportion Early Departs
1.112
(.7067) ̶  ̶   0.05769

1.138
(.7457)

1.011
(.6948)

.7514
(.5175)

Layover Proportion
.0391
(.0777) ̶  ̶   0.00203

.0299
(.1396)

̶ .1282
(.2724)

̶ .7867*
(.3392)

Security Requests
̶  .0111
(.0396) ̶  ̶   

̶ .00057 ̶  .0031
(.0421)

.0539
(.0379)

.1065*
(.0262)

Evasive Action Events

.2926
(.2175) ̶  ̶   0.01517

.5624*
(.2268)

1.409*
(.1643)

.7140*
(.1570)

Table 4.  continues

PA Status
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PA NPA UNC

   β (S.E)
ODD 
RATIO

AVE.
DER

   β
 (S.E)

   β
 (S.E)

   β
 (S.E)

CUSTOMER SERVICE INFORMATION

Lag Unsafe Operation
.1772*
(.0739) ̶  ̶   0.00919

.1936*
(.0710)

.0946
(.0704)

.1210*
(.0520)

Unprofessional Treatment
.0377
(.0499) ̶  ̶   0.00196

.0520
(.0490)

.1173*
(.0440)

.1211*
(.0322)

Lag Fit for Duty
̶ .0055
(.5491) ̶  ̶   

̶ .00028 ̶ .0179
(.5264)

.1590
(.4457)

̶ .4106
(.3027)

Service Delivery Problem
.0994
(.0828) ̶  ̶   0.00515

.0972
(.0848)

̶ .0654
(.0991)

̶ .1417
(.0782)

Commendation: Calls Stops
̶ .0149
(.0364) ̶  ̶   

̶ .00077 ̶ .0185
(.0299)

̶ .0082
(.0280)

.0117
(.0196)

Commendation : Other
.0608
(.0547) ̶  ̶   0.00315

.0901
(.0531)

.0919
(.0536)

.0608
(.0396)

TEMPORAL CHARACTERISTICS

Fall Signup
.1628
(.1445) 1.17680 ̶  ̶   

.1339
(.1427)

̶ .3400*
(.1255)

̶ .0390
(.0930)

Spring Signup
.4049*
(.1317) 1.49920 ̶  ̶   

.3664*
(.1295)

̶ .4817*
(.1245)

.0622
(.0875)

Summer Signup
.3514*
(.1318) 1.42100 ̶  ̶   

.3324*
(.1307)

 ̶ .3776*
(.1223)

 ̶ .0237
(.0895)

2007
̶  .2737
(.1807) 0.76050 ̶  ̶   

̶  .2319
(.1824)

.3280
(.1692)

.3326*
(.1381)

2008
̶ .3667
(.1899) 0.69300 ̶  ̶   

̶ .3228
(.1920)

.1408
(.1798)

.1592
(.1444)

2009
̶ .5827*
(.2385) 0.55840 ̶  ̶   

̶ .5322*
(.2388)

.2313
(.2348)

.0038
(.1778)

Intercept
 ̶  2.700*
(.9646) ̶  ̶   ̶  ̶   

 ̶  2.990*
(.9533)

̶  3.715*
(.9535)

̶  1.765*
(.6832)

BASE  = NO-INCIDENT
Sample Size 10,079 ̶  ̶   ̶  ̶   11,585 ̶  ̶   ̶  ̶   
Wald Chi-square (49) 261.38 ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   
LR Chi- square (147) ̶  ̶   ̶  ̶   ̶  ̶   830.95 ̶  ̶   ̶  ̶   

Where *is significant at α =0.05 level; UNC is unclassified and AVE.DER is average derivative

Table 4.  continues

PA Status

 

 

The computed relative risk ratios and average derivates /marginal effects computed 

from estimated coefficients of the modified multinomial logit are provided in Table 5. 

In general, the signs of the computed parameters are plausible and they are generally 

consistent with prior expectations and what was established in the incident frequency 

models. An interpretation and discussion of the findings is presented next. Factors  
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Table 5. Average Derivatives and Computed Relative Risk Ratios

ESTIMATION MODELS

PA NPA UNC PA NPA UNC

RRR RRR RRR
OPERATOR DEMOGRAPHICS

Age ̶  ̶   ̶  ̶   

Age2 ̶  ̶   ̶  ̶   

Female 1.1580 1.2000 1.1353 0.0058 0.0087 0.0116

African American 0.7985 0.7639 0.9319
̶ .0090 ̶ .0125 ̶ .00450

Asian/Pacific Islander 0.5954 1.3700 0.9110
̶ .0203

0.0218
̶ .00972

Hispanic 1.0370 1.1140 1.0805 0.0009 0.0054 0.0075
EMPLOYMENT STATUS CHARACTERISTICS

Years of Experience -0.0035 ̶  ̶   -0.0026

Years of Experience2 ̶  ̶   ̶  ̶   ̶  ̶   

Probationary Status 1.6740 1.1420 1.6322 0.0245 0.0013 0.0554
ASSIGNED-WORK  CHARACTERISTICS

Unique Assignments ̶  ̶   ̶  ̶   ̶  ̶   
̶ .00033 ̶ .00008

0.0002

Split Shift 0.7733 0.9102 1.0790
̶ .01179 ̶ .00484

0.0105

Total Hours Worked ̶  ̶   ̶  ̶   ̶  ̶   0.0001 0.0001 0.0002

Weekend Hours ̶  ̶   ̶  ̶   ̶  ̶   
̶ .00007 ̶ .00004 ̶ .000042

Average Daily Span ̶  ̶   ̶  ̶   ̶  ̶   0.0046 0.0027
̶ .00742

Daily Span CV ̶  ̶   ̶  ̶   ̶  ̶   0.0411 0.0345 0.0549

Three Day/ 30 Hour Week 1.2180 1.2430 1.3855 0.0068 0.0091 0.0356

Four Day/ 40 Hour Week 0.2375 0.3330 0.8957

̶ .0371 ̶ .03647 ̶ .00200

MODIFIED MULTINOMIAL LOGIT

AVE. DERIVATIVES

0.0112

VARIABLES & PARAMETERS

̶  ̶   ̶  ̶   ̶  ̶   

̶  ̶   ̶  ̶   ̶  ̶   
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PA NPA UNC PA NPA UNC

RRR RRR RRR

Short Term
 Absence Hours ̶  ̶   ̶  ̶   ̶  ̶   0.0003 0.0000 0.0002

Merlo Garage 0.8261 0.6088 1.0587
̶ .00783 ̶ .02382

0.0105

Powell Garage 0.8641 1.1980 1.0931
̶ .00784

0.0098 0.0092

Secondary Radial Route 0.8682 1.1780 0.9495
̶ .00659

0.0101
̶ .00587

Crosstown Route 0.7734 0.9460 0.8734
̶ .01067 ̶ .00138 ̶ .01237

Feeder Route 0.7375 1.0660 1.0192
̶ .01309

0.0042 0.0033

Peak Express Hours 0.7837 0.7976 1.1913
̶ .01091 ̶ .01169

0.0232

Shift Ends 4:00-7:00 pm 1.0721 0.8500 0.8948 0.0045
̶ .00818 ̶ .01120

Shift Ends  After 7:00 pm 0.9468 0.9999 0.9016
̶ .00196

0.0009
̶ .01054

Low -Floor Bus 1.0430 1.0738 1.0461 0.0015 0.0034 0.0041

Old Bus 0.8890 1.1951 0.8108
̶ .00479

0.0120
̶ .02213

Small Bus 1.0190 0.5315 0.9302 0.0028
̶ .02645 ̶ .00440

Boardings Per Revenue Hour ̶  ̶   ̶  ̶   ̶  ̶   
̶ .00008

0.0006 0.0003

Lifts Per Hour ̶  ̶   ̶  ̶   ̶  ̶   0.0442 0.0169 0.0561

Ave.Max. Speed - Peer Speed ̶  ̶   ̶  ̶   ̶  ̶   0.0005 0.0006 0.0057

Proportion Late Departs ̶  ̶   ̶  ̶   ̶  ̶   0.0488 0.0158 0.0888
Proportion Early Departs ̶  ̶   ̶  ̶   ̶  ̶   0.0466 0.0461 0.0666

Layover Proportion  ̶ ̶   ̶  ̶   ̶  ̶   0.0066
̶ .00150 ̶ .08373

Security Requests ̶  ̶   ̶  ̶   ̶  ̶   
̶ .00095

0.0022 0.0111

Evasive Action Events ̶  ̶   ̶  ̶   ̶  ̶   0.0183 0.0695 0.0633

SERVICE PERFORMANCE CHARACTERISTICS

Table 5. continues AVE. DERIVATIVES

ASSIGNED-WORK  CHARACTERISTICS - continues
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PA NPA UNC PA NPA UNC

RRR RRR RRR
CUSTOMER SERVICE INFORMATION

Lag Unsafe Operation ̶  ̶   ̶  ̶   ̶  ̶   0.0082 0.0037 0.0111

Unprofessional Treatment ̶  ̶   ̶  ̶   ̶  ̶   0.0014 0.0053 0.0119

Lag Fit for Duty ̶  ̶   ̶  ̶   ̶  ̶   
̶ .00382

0.0058 0.0431

Service Delivery Problem ̶  ̶   ̶  ̶   ̶  ̶   0.0057
̶ .00282 ̶ .01535

Commendation: Calls Stops ̶  ̶   ̶  ̶   ̶  ̶   
̶ .00093 ̶ .00047

0.0014

Commendation : Other ̶  ̶   ̶  ̶   ̶  ̶   0.0036 0.0043 0.0053
TEMPORAL CHARACTERISTICS

Fall Signup 1.1430 0.7117 0.9617 0.0079
̶ .0167 ̶ .00288

Spring Signup 1.4430 0.6178 1.0642 0.0197
̶ .0252

0.0074

Summer Signup 1.3940 0.6855 0.9766 0.0187
̶ .01917 ̶ .00242

2007 0.7930 1.3880 1.3945
̶ .01384

0.0163 0.0353

2008 0.7241 1.1512 1.1726
̶ .01614

0.0075 0.0183

2009 0.5873 1.2601 1.0038

̶ .02153

0.0150 0.0013
Where UNC represents unclassified incidents

Table 5. continues AVE. DERIVATIVES

 

 

considered were operator demographics and employment status, assigned-work 

characteristics, service performance, customer feedback and temporal factors. 

 

Operator Demographics and Employment Status  

The likelihood of an operator being involved in a preventable incident relative to non- 

incident involvement is estimated to decrease at a diminishing rate with respect to 
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operator’s age. It reaches a minimum when the operator is 35.21 years old; which is 

relatively lower than the sample average of 50.32 years. Presumably, this is what one 

would expect— a diminishing marginal safety returns relationship. Surprisingly, age 

was found to be insignificant in non-preventable and unclassified incident outcomes.  

It may be recalled that in the case of incident frequency analysis, the minimum 

expected collision and total incidents is reached when an operators is about 36.08 

years old.  

 

These results show that the negative-to-positive transition of the expected collisions 

and total incidents, as well as the likelihood of preventable incident involvement, is 

reached at about the same age – approximately when the operator is 35 years old. 

Holding age fixed, an operator’s length of service was expected to be negatively 

correlated with the likelihood of preventable and non-preventable incident 

involvements.  

  

The estimated parameters indicate that the probability of being involved in a 

preventable incident over non-incident involved is about 1.67 times higher for 

operators who are still on probation than regular operators. Similarly, the estimated 

probability of unclassified incident involvement over non-incident involved operators 

is about 1.63 times higher for those on probation than regular operators. The 

difference between the likelihood of non-preventable incident involvement for regular 

operators and those who are still on probation is relatively small. These results 
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indicate that relative to regular bus operators, those operators who are still on 

probation are more likely to be involved in preventable and unclassified incidents than 

in the other safety outcomes. 

 

Beyond initial probationary period of employment, operators’ experience is estimated 

to be inversely related to the likelihood of preventable and unclassified incident 

involvements. More precisely, each additional year of operators experience is 

estimated to reduce the probability of being involved in a preventable incident over 

non-incident involved by 0.35 percentage points. In the case of unclassified incidents, 

the probability declines annually by 0.26 percentage points.  

 

These results indicate that an experienced bus operator is relatively safe and has a 

higher likelihood of being involved in an unclassified than in preventable safety 

incidents. In contrast, operator experience was found to be insignificant in non-

preventable incident occurrences, an indication that non-preventable incidents are 

relatively random events. These findings can be interpreted as validating TriMet’s 

training and safety review process of classifying bus safety incidents as either PA or 

NPA. Indeed, NPA incidents are random events as involvement is not influenced by 

experience or operator’s length of service. 

 

Regarding gender, race and ethnicity, the estimated model results indicate that the 

female dummy variable is not significantly correlated with the probability of being 
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involved in preventable and unclassified incidents. However, for unknown reasons, the 

probability of being involved in non-preventable over non-incident involved is 1.2 

times higher for female than male counterparts.  

 

As previously discussed in the incident frequency analysis section, female operators 

are may be more likely to report when involved in non-preventable incidents, or non-

preventable incidents are more likely to be acknowledged to a female bus operator. 

The likelihood of preventable incident involvement relative to non-incident involved 

was found not to be associated with race and ethnicity indicators.  

 

Similarly, the differences in likelihoods of non-preventable and unclassified incident 

involvement for African American, Asian, Hispanic and White operators are not 

significantly different from zero.   

 

Assigned Work Characteristics 

Turning to assigned work related factors, an operator’s total hours of service during a 

signup was entered in the model to account for exposure to incident risk. The 

estimated coefficients for this variable were all positive and significantly different 

from zero at  α = 0.05, but the associated marginal effects varied across different 

outcomes. A unit increase of an operator’s total hours of service is associated with a 

higher marginal effects on the likelihood of preventable incident involvement than 

non-incident involved, followed by unclassified and then non-preventable incident 
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outcomes.  The negative weekend hours marginal effect suggests that preventable 

incidents risk diminishes on days when regional traffic volumes are lower and 

congestion is less pronounced.  Similarly, change in driving patterns may be at play. 

 

Independent of operator’s total hours of service, straight assignments are generally the 

most sought after assignment type among operators, while split assignment type, 

whether full or part time, are least desired.  These preferences are not reflected in the 

likelihood of associated safety outcomes across run types.  Similar findings were 

established in the incident frequency analysis, the exception being that in the total 

incidents’ frequency model, the lag of split shift dummy variable was found to be 

positively correlated with expected total incident frequency. However, in the present 

binary analysis the lag of split shift dummy was dropped from the model because it 

was insignificant.  

 

When binary logit model was estimated (see Table 4 and Appendix C) the lag of the 

split shift dummy variable was found to increase the likelihood of preventable incident 

involvement.  This finding can be interpreted as signaling that fatigue in the last period 

has safety effects in the current period. Two dummy variables were also incorporated 

in the model to identify bus operators who worked compressed workweeks. The 

coefficients, however, are insignificant. An indication that the likelihood of being 

involved in any incident type versus non-incident involved, is not different between 
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part-time operators on 3-day, 30-hour weeks, operators on 4-day, 40-hour weeks and 

those operators on standard workweeks. 

 

An operator’s average daily span of work hours is found to be positively related to the 

likelihood of preventable and unclassified incident involvement, but not with non-

preventable incident outcome. An increase in work span by one more hour is 

estimated to increase the probability of preventable incident involvement over non-

incident involved by 0.46 percentage points. On the other hand, a similar increase 

results in a decrease of unclassified incidents by 0.74 percentage points.  Span 

variability was found to have insignificant effects.   

 

The present findings are similar to the results established in the incident frequency 

analysis section. In particular, work span findings seem to be more relevant to bus 

operators on split shifts.  More specifically, the findings suggests that an increase in 

the amount of time separating shifts not only contributes to greater preventable 

incident involvements over non-incident involved but also will increase the likelihood 

of the unclassified incidents.  These findings indicate that the split shift effect on 

safety is not direct. Unlike in the collision incidents analysis, span variability was 

unexpectedly found to be insignificant in preventable incident outcomes. 

 

Beyond operator work span effects, the model estimates reveal that variations in short 

duration absence hours are positively related with the likelihood of preventable 
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incident involvement, but not with other incident outcomes. The estimated marginal 

effects  associated with short duration absence hours can be interpreted as a 

contributor to probability of preventable incident involvement relative to non-incident 

involved.  These findings are consistent with prior expectations (Wahlberg & Dorn, 

2009) and resembles the empirical relationship uncovered in the collision frequency 

models.  

 

Differences, however, were observed when instead of the present signup absence 

hours, the prior signup short duration absence hours was entered into model. While the 

lag of the short duration absence hours variable was positively correlated with the 

expected collision frequency, in the present binary analysis this variable was dropped 

from the model because it was found to be insignificant. When a different model 

specification was employed (see ordinary logit estimates in Table 4 and in Appendix 

C), the lag of short duration absence hours was found to have a significant positive 

effect on the probability of preventable incident involvement. The coefficient on the 

lag of short duration absence hours may be interpreted as a signal of diminishing job 

satisfaction (Strathman, et al., 2009), which in turn may compromise safety.  

 

Turning to the time-of-day, the most desired runs or assignments are those that 

correspond to normal business hours, while the least desired are those in which 

operators have to deal with the evening commuting rush at the end of their shift.  

These considerations, however, are not reflected in the safety performance of bus 
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operations as the two dummy variables identifying the time of day when an operator’s 

run concludes were not significantly different from zero at α =0.05 level.  

 

Work for operators is assigned out of three garage facilities, with Central serving as 

the primary garage, and Powell and Merlo serving as satellite facilities. Among the 

three garages, the likelihood for non-preventable incident involvement over non-

incident involved is lower for buses dispatched from Merlo garage than those 

dispatched from Central garage (RRR= 0.6088, P = 0.002). In contrast, there is no 

significant difference in the safety performance of buses dispatched from Powell and 

those dispatched from Central garage. This finding suggests that although non-

preventable incidents are known to be random events, they are deterministic to some 

level.  

 

With respect to route typology, operators on frequent service radial routes with 15-

minute or better service frequency to the Central Business District face elevated risk 

levels. Some of the risks are related to exposure to more traffic volumes, overload 

consequences from headway deviations, as well as greater interference from 

construction activity, downtown traffic and on-street parking.  Therefore, it was 

anticipated that this would be reflected in safety performance differentials across 

alternate route types, including: secondary radials, feeders, peak expresses and 

crosstowns.   
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Surprisingly, model estimation results show that there are no safety differentials across 

route types. The crosstown routes are the only exception where the likelihood of 

preventable incident involvement is estimated to be lower than the frequent service 

radial routes (RRR = 0.7734, P = 0.023).  A similar, pattern was ascertained in 

incident frequency models. Specifically, it was found that the expected total incidents 

on crosstown routes was 12% lower than the frequent service radial routes. On the 

other hand, the expected total incidents on frequent service radials and other route 

types were not significantly different from zero. 

 

The operational safety effect of vehicle related factors was also examined. The 

estimated parameters indicated that the likelihood of preventable incident involvement 

over non-incident involved is not significantly different among low-floor buses and 

other bus types. Similar findings were also found in other incident types, non-

preventable and unclassified incident outcomes.  One dummy variable, a small bus 

indicator, was entered in the model to represent and capture vehicle size effects on 

safety outcomes. The results show that vehicle size is not correlated with safety 

performance. Similarly, safety performance for new and buses older than 15 years was 

found to be not significantly different.  

 

In comparison with incident frequency estimates, the present results are relatively 

similar to what was found in collision and total incident models. In particular, it was 

established that the expected collision and total incident frequencies were not 
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significantly different between new and older buses. On the other hand, the present 

binary model findings are different from the incident frequency model results. 

Specifically, an inverse relationship was established between older buses and expected 

non-collision frequencies. In contrast, the model estimates do not support the 

hypothesis that the likelihood of incident preventability over non-incident involved is 

different between newer and older buses (α = 0.05 level).  

 

Service Performance Characteristics 

Turning to service performance related factors, passenger boardings were expected to 

have a positive influence on the likelihood of preventable incident involvement. This 

relationship was expected because a larger volume of passengers increases the 

exposure risk and the prospect for an occurrence of unpleasant incidents — especially 

those associated with braking and acceleration. As it turns out, more passenger 

boardings per revenue hour was not significant in preventable or non-preventable 

incident involvements.  

 

Relative to non-incident involved, one more lift movement per hour is estimated to 

increase the probabilities of preventable and unclassified incident involvement by 

about 4.4 and 5.6 percentage points respectively. In the case of incident frequency 

models, lift movements were found to be positively related to the expected collision 

and non-collision frequencies, as well as to the total incident frequencies. However, 

unlike preventable incident outcomes, non-preventable incident involvement is not 
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correlated with lift movements at α = 0.05.  This finding is consistent with the general 

observation that non-preventable incidents are relatively random events.  

 

The positive marginal effects associated with lift movements in preventable incident 

outcome can be interpreted in a number of ways. But as observed in earlier bus transit 

studies (Strathman, et al., 2009; Dueker, et al., 2004) each lift operation adds 60-120 

seconds to dwell time. Further, they also note that when lift operations occur with 

regularity, time can be added to the schedule to account for longer dwells.  

Conversely, when lift operations occur infrequently, schedules are not adjusted and 

delays from lift-extended dwells must be recovered. It can be argued that bus lift 

operation contributes to the likelihood of a bus running late. Consequently, this may 

serve as an incentive to the bus operator to pay less attention and to rush in an effort to 

adhere to the schedule. These actions in turn may increase the likelihood of 

preventable and unclassified incident involvement.  

 

Speeding relative to peers represents a potential safety risk. Variations in speeding 

were expected to be positively related to the likelihood of preventable and non-

preventable incident outcomes. Indeed, the estimated parameters reveal that speeding 

is positively correlated with the likelihood of unclassified incident involvement. 

However, this variable was found not to be empirically associated with the likelihood 

of preventable and non-preventable incident outcomes.  
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Independent of speeding and bus lift operation effects, two other variables, namely, 

proportion late and proportion early departures, were included in the model to capture 

the safety effects of operators’ inability to adhere to a schedule. It was expected that 

operators who consistently depart from time points late compared to their peers 

serving the same route during the same time period would be associated with 

increased likelihood of preventable incidents. The estimated parameters are consistent 

with prior expectations. Specifically, the proportionate late variable is positively 

associated with preventable and unclassified incident outcomes.   

 

Similarly, in the case of incident frequency models, positive relationships were 

established between this variable, the proportion late, and the expected collision and 

non-collision, as well as, in the expected total incidents frequency models. However, 

the present model estimates show that the likelihood of non-preventable incident 

involvement is not significantly correlated with the proportion late variable.  

 

The variable, proportion early depart, was entered in the model to capture safety 

effects associated with operators early departures from time points relative to the 

peers. It was found to have insignificant effects on bus operations safety.  

 

In comparison to the incident frequency model estimates, the early depart variable was 

insignificant in non-collision and total frequency models. On the other hand, it was 

found to have a positive influence on the expected collision frequency incidents.  
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Arguably, operators who consistently leave early, by more than one minute from time 

points relative to their peers may be motivated by a number of reasons. Some of the 

objectives according to Strathman. et al., (2009) are that early departures can pad the 

amount of layover time at the end of the route; early departures can also diminish 

actual headways, allowing operators to carry lighter passenger loads. 

 

As stated in Section 4.2, literature has identified insufficient layover time as a 

contributor to operator fatigue and safety risk. Therefore, the proportion layover 

variable was expected to be empirically correlated with the likelihood of preventable 

and non-preventable incident involvement. Contrary to prior expectations, this 

variable was found to have insignificant effects not only on the likelihood of 

preventable incident involvement but also for non-preventable incident outcomes. For 

unknowns reasons, proportion layover variable was found to be inversely related to the 

likelihood of unclassified incidents.  The negative marginal effects associated with this 

variable in unclassified over non-incident involved can be attributed to the sufficient 

layover time that TriMet builds into the actual run schedules. 

 

The effects of the responsive actions taken by bus operators due to security and safety 

risk related concerns are explored by accounting for the number of pre-coded text 

messages sent to dispatchers requesting security personnel and reporting evasive 

action events.  The occurrence of a security related incident was estimated to increase 

the probability of unclassified incident involvement over non-incident involved by 
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about 1.1 percentage points.  In contrast, the occurrence of security incidents was 

insignificant in preventable and non-preventable incident involvement outcomes.  

 

Operator stress associated with navigating a large bus on routes through congested city 

traffic is compounded when operators have to take evasive actions to avoid crashes. 

The occurrence of an evasive action related incident is estimated to increase the 

probability of preventable incident involvement over non-incident involved by 1.83 

percentage points. While in the case of non-preventable and unclassified incident 

involvements, the probabilities are estimated to increase by about 7% and 6% 

respectively. These results are similar to the findings established in non-collision and 

total incident frequency model. On the other hand, they are different from what was 

found in collision models.  Precisely, the occurrence of an evasive action event was 

insignificant in the collision frequency model. In the present analysis, the occurrence 

of an evasive action event is estimated to increase the likelihood of preventable and 

non-preventable, as well as, unclassified incident outcomes. 

 

Customer Service Information  

Beyond the operator’s service performance, customer feedback about an operator’s 

bus operation is expected to be empirically correlated with safety outcomes. 

Passengers experience bus operators’ delivery of service first-hand and some are 

motivated to report either complaints or make commendations on their bus ride 

experiences. Specifically, it was expected that the likelihood for preventable incident 
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involvement would increase with the complaints but decrease with commendations. A 

complaint about unsafe operation of the bus and concern about an operator’s fitness 

for duty were estimated to have a positive effect on the likelihood of preventable 

incident involvement in the standard models (specifications without lagged variables- 

see Appendix C). The standard models also reveal that the complaints related to rude 

or unprofessional treatment by an operator have a positive influence on the likelihood 

of non-preventable and unclassified incident involvements.  

 

Positive association between customer complaint variables and safety incidents, as 

argued in the incident frequency section might arise because of previous customer 

experience of crash incidents, which may serve as a motivation for lodging a 

complaint. This simultaneity issue was addressed in the present binary models by 

lagging the complaint related variables that had significant influence on the likelihood 

of incident involvement.  

 

The modified model estimated that a complaint in the prior signup about unsafe bus 

operation increases the probability of preventable incident involvement over non-

incident involved by about 0.8 percentage points. On the other hand, the likelihood for 

unclassified incident involvement was estimated to increase by about 1.1 percentage 

points. The effect of complaints related to prior concerns about operators’ fitness for 

duty was unanticipatedly found to be insignificant in preventable incident 

involvement.  
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The other variables that were found to be insignificant in the modified binary model 

include: service delivery problem complaints, commendations factors, such as prior 

commendations for stop announcement and commendations for other actions. These 

findings are relatively similar to what was established in the incident frequency 

models. Specifically, prior signup complaints related to unsafe operation of the bus 

were found to positively influence the expected collision and total incidents 

frequencies.  

 

Similarly, the present binary model has established that prior signup complaints about 

unsafe operation of the bus have a positive influence on the likelihood of preventable 

and unclassified incident outcomes. As earlier argued, this finding suggests that 

passenger complaints about an operator’s unsafe bus operation is not motivated by 

their prior experience with bus safety incidents, but may be signaling elevated habitual 

safety risk and associated consequences. In other words, this finding can be interpreted 

as suggesting that chronic complaints regarding operator unsafe bus operation elevates 

the risk of being involved in a preventable incident.  

 

Temporal Characteristics  

Safety performance was estimated to vary systematically with respect to temporal 

factors. In particular, regarding annual variations, the probability of unclassified 

incident involvement over non-incident involved is estimated to have been about 40% 

higher in the year 2007 than the year 2006. On the other hand,  the likelihood for 
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preventable incident involved over non-incident involved is estimated to have been 

lower in the year 2009 than in the year 2006 (RRR= 0.5873, P = 0.026).  

 

Seasonality is evident as well. The likelihood for non-preventable incident 

involvement over non-incident involved is lower during fall and spring than in the 

winter signup. In contrast, the same is not true for preventable and unclassified 

incident outcomes. More precisely, during the study period, the probability for 

preventable incident involvement over non-incident involved is estimated to have been 

about 1.4 times higher in the summer than in the winter signup.  

 

The higher likelihood of non-preventable incidents in the winter than fall and spring 

signup can be attributed to snow and the icy conditions that were experienced during 

the winter periods. The estimated increase in likelihood for preventable incident 

outcomes in summer over winter signups can possibly be attributed to the increase in 

exposure risks that is often evident in the summer periods. In particular, high levels 

and increased flow volumes of other road users, such as motorists and pedestrians, as 

well as, cyclists are usually common in the summer period; this might consequently 

contribute to more preventable incident outcomes.   

 

These findings are different in a number of ways from what was established in the 

incident frequency models. First, all signup related variables were insignificant in the 

incident frequency models. In contrast, the present model estimates, clearly reveal 
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existence of seasonality. Second, expected collision and total incidents frequencies 

were estimated to be higher in 2007 than in the year 2006. In contrast, the present 

model estimates reveal that the likelihood of preventable incident involvement was 

lower in the year 2009 than in the year 2006. 

 

5.7 Methodological Considerations and Result Limitations 

There are two main methodological limitations of this study which might affect the 

validity of the analyses: those limitations related to representation of the exposure 

variable in the study design and of inadequate control of the confounding effects of the 

covariates.  

 

The most apparent shortcoming of the operator-based design is the challenge of 

correctly representing risk exposure. This was especially apparent given that the 

variable passenger boardings per revenue service hour was insignificant in all models 

at α =0.05 level. Given this finding, the total hours worked by the operator during each 

operator signup period was used as a proxy measure of risk exposure for all safety 

models. Total hours worked is an important risk exposure variable especially when 

bus service provision is in urban areas.  Finer definitions or stratification of hours 

worked, such as using hours worked in peak and off-peak,  may improve performance 

of this safety model because stratified total hours better captures variations in risk 

exposure between off-peak and peak periods.  
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As an alternative to total hours, future analyses can stratify/classify total hours worked  

into  more detailed categories such as hours worked during early morning( before 7:00 

am), hours worked in morning peak ( 7:00- 9:00 am), mid-day period ( 9:00 am- 4:00 

pm) and evening hours ( after 6:00 pm). These refinements may better capture 

variations in risk exposure and improve performance of the safety model.  

 

Turning to risk exposure empirical findings in non-collision analysis, the two known 

risk exposure measures for non-collision incidents are total hours worked and number 

of passenger boardings per revenue hour of service.  The variable passenger boarding 

per revenue hour would have been an ideal representation of risk exposure for non-

collision incidents.  But for unknown reasons it was insignificant in the models. The 

safety incident pattern earlier observed in Figure 4 (section 3.4) indicates that non-

collisions incidents are mostly concentrated in afternoons, especially between 1:00pm- 

7:00 pm.  The analysis also showed that the number of passenger boardings during the 

morning periods corresponds to the number of passenger boardings in the afternoon 

periods.  

 

Therefore, from the observed pattern of non-collision incidents over time of the day 

and the insignificant finding for the passenger boarding variable, it can be speculated 

that what the passenger boardings variable is capturing or measuring is not 

homogenous. The condition of passengers /customers appears to be changing overtime 

or is unstable. Future research, can address this issue by stratifying the passenger 
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boardings variable by time periods as proposed for the total hours variable above. The 

stratification of the number of passenger boardings per revenue hour will better 

account for passenger exposure and may improve the safety model performance. 

 

The other limitations of this study are those related to the confounding effects of  time 

of day variation of safety incidents with selected operator characteristics- for example, 

split shifts, hours worked,  age and experience. One way to determine if these 

theoretical concerns are supported by data is to look for or to check if time of the day 

safety incidents are correlated with selected operator characteristics for stratified 

samples or subsamples with same level of risk exposure. The experience variable 

(measured in years) for a subsample of bus operators who run the same assignments, 

also known as unique assignments, was not significantly correlated to the frequency of 

safety incidents in all models. In addition, pairwise correlations between these study 

variables were very small at α = 0.05 level.  

 

It is possible, however, that safety incidents may be correlated with these study 

variables through a third variable, also known as extraneous/exogenous variable. In 

addition, some of the variables may be correlated with omitted variables (i.e. split shift 

and peak periods) and therefore omitted variable bias limitations. The feasible 

approaches to addressing correlations between study variables and the extraneous 

variable is through use of efficient designs and/or statistical analytical controls (Kish, 

1959). Statistical controls for potential confounding factors were employed in the 
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present study. The time of the day when an operator concludes the run (or shift end) 

and the variable that captures the shift type worked (split shift) were incorporated in 

the model, but shift period worked specifically was not included.  

 

Nevertheless, morning and evening peaks have higher levels of traffic volumes than 

off-peak periods.  Consequently they have higher levels of risk exposure.  Use of the 

variable that accounts for the time of the day when an operator shift concludes is 

necessary, but not sufficient, to fully address the potential confounding effects that 

may exist. Therefore, stratification of these study variables may improve future 

analysis. For example, shift worked can be stratified into early morning peak, mid-day 

off-peak, evening peak and evening off-peak shift periods. These variable refinements 

and the stratification of other study variables may improve future model results. This 

observation suggests that confounding concerns have not completely been eased in the 

present study. Especially, the separation of the effect of time of day variation safety 

incidents from the selected operator variables is not well captured and/or controlled 

for in the present models. The implication is that the analysis/results must be 

interpreted with these considerations in mind. But as observed in an earlier study 

(Kish, 1959), “the perfect should not be the enemy of the good”.  
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CHAPTER 6.0:  CONCLUSIONS AND RECOMMENDATIONS  

6.1 Introduction 

This chapter provides a summary of the key findings that the study has established. In 

addition, the chapter presents concluding remarks and associated policy or practice 

implications, as well as the study’s contributions and future research directions. 

 

6.2. Summary, Conclusions and Implications 

This study has examined how incident frequency and preventability is associated with 

bus operations at TriMet.  Empirical analyses encompassed 4,631 incidents that 

occurred over a three-year period, from September 2006 through February 2009.  

Regression analysis identified twenty-four factors (summarized below in Table 5) that 

are empirically correlated with the frequency of collision, non-collision and total 

incidents, as well as those that are associated with preventable, non-preventable and 

other unclassified incident involvements.  

 

In overall, this study has uncovered that there are numerous empirical relationships 

between operational factors and transit bus safety incidents.  Specifically, safety 

incident frequency and preventability analysis has shown that bus operator age, 

experience and short duration absenteeism from work, as well as the operator’s work 

span and variability in daily work span/assignments are correlated with bus safety 

incidents.  
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Table 6. Important Factors in Safety Performance Analysis at TriMet
OPERATOR DEMOGRAPHICS & EMPLOYMENT STATUS CHARACTERISTICS

Age
Years of experience
Probationary status
ASSIGNED- WORK CHARACTERISTICS

Total hours worked
Weekend hours
Split shift
Average daily span
Daily span coefficient of variation
3-day/30 hour week
4-day/40 hour week
Short term absence hours
Merlo garage
Crosstown
Shift end after 7:00 pm
Old bus
SERVICE DELIVERY & PERFORMANCE CHARACTERISTICS
Lift operations per hour
Proportion late departs
Proportion early departs
Security requests
Evasive  action events
Boardings per revenue hour*
CUSTOMER SERVICE INFORMATION
Unsafe bus operation
Unprofessional treatment
 Fit for duty
* This variable ideally represents exposure for non‐collision incidents‐ may have to be stratified   

 

In addition, this study has also shown that schedule adherence pressures and bus lift 

operations are related to safety incidents. The other factors that are empirically 

correlated with safety performance are operators’ responsive action events and 

customer complaints about unsafe bus operation. These findings and their associated 

management or policy implications are discussed below. 
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First, the safety incident frequency and preventability analysis results indicate that 

beyond the initial probationary period of employment, there are diminishing marginal 

safety returns associated with both operator age and length of service. With respect to 

the age effect, the negative-to-positive transition of the expected collisions and total 

incidents, as well as the likelihood of preventable incident involvement, is reached at 

about the same age – approximately when the operator is 35 years old.  

 

Traffic safety researchers have long recognized that drivers’ motor and cognitive 

performance diminish with age, although the transition point estimated in this study 

occurs when bus operators are still relatively young.  This finding may not surprise 

those who have studied the health and wellness of transit operators.  However, health 

and wellness research in the transit industry has tended to focus on such outcomes as 

health expenses, workers’ compensation costs, absenteeism costs, and operator 

turnover costs (Davis, 2004).  As this study’s findings indicate, safety outcomes and 

costs should also be a relevant concern associated with the aging of operators.   

 

Regarding the experience effect, safety incident frequency analysis results indicate 

that negative-to-positive turning point in collision frequency is reached when operator 

length of service is approximately 30.8 years. This finding provides empirical 

evidence of diminishing marginal safety returns to operator length of service, and 

point to a need for more emphasis on regular refresher training – a practice that an 
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industry survey by Moffat et al. (2001) found is utilized by only 36% of transit 

properties.  

 

In the case of preventability analysis, the results indicate that an experienced bus 

operator is relatively safe and has a higher likelihood of being involved in an 

unclassified than in preventable safety incidents. In contrast, non-preventable incidents 

are not influenced by operator’s experience, an indication that non-preventable 

incidents are relatively random events. These findings can be interpreted as validating 

TriMet’s operator training program and safety review process of classifying bus safety 

incidents.  As it stands now, four in five incidents that occurs during bus operations, 

the agency is not at fault, usually the other parties are. This shows that the rate of 

incidents preventability at TriMet is really low which is good news as it signals 

success of the agency’s safety training program. Given TriMet’s ability and resources, 

it should however, strive towards having zero preventable safety incidents. 

 

Second, apart from transit industry concerns for bus operator absenteeism-related 

health expenses, labor costs and high labor turnover, absenteeism’s contribution to 

safety incidents is also another area that needs attention. In particular, this study’s 

findings suggest that absenteeism directly and indirectly contributes to undesirable 

safety outcomes and costs.   
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The evidence of direct effects is established in the estimated positive correlation 

between an operator’s absence hours and expected collision frequency, as well as in 

the association with preventable incident outcomes. The evidence for indirect effects 

is established through the absence-driven demand for extraboard replacement 

operators, whose more varied daily work spans are estimated to contribute to greater 

collision frequency.  

 

Third, there has also been a longstanding concern in the transit industry about the 

safety consequences of operator fatigue (Gertler et al., 2002). This study’s findings 

offer empirical evidence that support this concern in a number of ways.  Specifically, 

this study reveals that, holding operators total hours of service constant, an increase in 

the daily span of hours is found to increase the likelihood of preventable incident 

involvement, as well as the expected frequency of collisions. This finding is perhaps 

more relevant for split shift bus operators – as they often run extended spans of 

workdays.  Given that the risk exposure is not fully accounted in this study, this 

interpretation should be treated with caution.  

 

Another variable that captures the fatigue effect, split shift in prior signup, is not only 

positively correlated with expected total incidents but also increases the likelihood of 

preventable incident involvement. Similarly, fatigue-related concerns associated with 

the disruptive effects of variable work assignments are supported by the positive 

correlation between work span variability and expected collision frequency.  This 
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study’s findings demonstrate that the expected labor cost savings that motivate the use 

of such work assignments are at least partially compromised by higher safety costs. 

 

Fourth, the safety risk of occupational stress has also been a serious concern in the 

transit industry. This study has uncovered that running late not only increases the 

likelihood of preventable incident outcomes, but also is found to be a significant 

contributor to the expected frequency of collision, non-collisions and total incidents.  

However, with the emergence and adoption of AVL systems at TriMet, schedulers 

now have access to running time data. The availability and use of running time data to 

inform scheduling reduces the likelihood that running late is a consequence of an 

unrealistic or improperly written schedule. But as Levinson (1991) observes, 

schedules are written to be compatible with the abilities of a “typical” bus operator.  

 

The difference of abilities in relation to the typical operator implies that some 

operators will face greater challenge and pressure adhering to a schedule on a given 

route or time of day than others. In theory, safety performance may be improved by 

assigning work to operators so that the difference between the actual and typical 

abilities is minimized. However, in practice this alternative may not be feasible, as the 

union and management agreement allows bus operators to select work on the basis of 

seniority – which may or may not align actual and desired operator abilities.  
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Regarding running early effects, the early depart variable is positively correlated with 

the expected collision frequencies but not with incident preventability. However, 

relative to late depart estimates, it was found that while both are positively associated 

with the expected collision frequency, the elasticity for running late is almost double 

that of running early. This study’s findings thus show that operator- related safety 

performance is more sensitive to running late than running early.  

 

Previous literature has identified insufficient layover time as a contributor to operator 

fatigue and safety risk. Arguably, one motivation for running early is that it adds to the 

amount of layover time. This argument is however not supported by TriMet data as the 

estimated actual run cuts implemented during the study period yielded a layover share 

of 8.5 % more than the agreed minimum of 80 minutes in an 8-hour shift. Therefore, 

in practice, the data supports that the layover built into the run schedules at TriMet is 

reasonably sufficient to ensure that safety is not compromised.  

 

Fifth, the model results also indicate that factors affecting operators’ schedule 

maintenance pressures, such as lift usage, are empirically associated with safety 

outcomes.  In particular, the lift operations variable was found to increase the 

likelihood of preventable and unclassified incident involvement. In the case of safety 

incident frequency models, lift movements were found to be positively related to the 

expected collision and non-collision frequencies, as well as to the total incident 

frequencies.  When lift operation is infrequent and unpredictable, it is often treated as 
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another contributor to random delay and is addressed indirectly in the recovery time 

that is built into a posited schedule.  

 

The positive association established between lift operation and preventable incident 

outcomes, as well as with incident frequency may potentially be interpreted as a 

scheduling problem. Now the challenge is to figure out how this new insight can help 

improve safety performance. This study’s finding indicates a need for a more detailed 

empirical analysis of lift activity at the route and trip levels to ascertain how the 

problem should be addressed in the schedule development process.  

  

Analysis also established a positive correlation between lift operation and the expected 

frequency of non-collision incidents. This suggests that passengers with mobility 

impairments face unique safety risks that may be attributed to improper functioning 

and on-board securement of lifts. This study’s finding indicates a need for continuing 

research on the design of lift and securement devices. In addition, it also points to a 

need for continuing review of practices intended to ensure safe travel of passengers 

with disabilities.  

 

Sixth, beyond the safety risk concerns of occupational stress associated with schedule 

maintenance pressures and lift operations, operator response to risky and unsafe 

situations is also another area that needs attention.  This study indicates that bus 

operator responsive actions to security incidents and risk situations are significant 
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contributors to safety outcomes. Specifically, the number of security request incidents 

by the operator is positively correlated with the expected frequency of non-collision 

and total incidents.  Similarly, the number of operator evasive action events is 

positively correlated with the expected frequency of non-collision and total incidents. 

However, comparison of the relative importance for these two operator responsive 

action related variables shows that the elasticity for evasive action events is roughly 

half the elasticity associated with security requests. This finding suggests that 

operator- related safety performance is more responsive or sensitive to security request 

incidents than evasive actions events.   

 

Operator evasive action events were also positively associated with the likelihood of 

preventable, non-preventable and other unclassified incident outcomes. This study’s 

finding may suggest that responsive actions should also be a relevant concern in bus 

operations at TriMet, especially since, operator responsive actions may themselves 

contribute to safety incidents. For example, taking evasive action itself may contribute 

to on-board safety or non-collision incidents.  Similarly, a security request may occur 

as an outcome of an on-board safety incident, especially when consumption of alcohol 

or other substances is involved. With these issues at hand, this finding underscores a 

need for a more detailed empirical analysis of operator responsive actions at the trip 

and route level to determine how associated preventable collision and non-collision 

incidents can be reduced.  
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Seventh, customer commendations and complaints serve as a valuable source of 

information about the bus operator’s attitude toward service delivery and safety issues. 

While operators are often rightfully skeptical of the validity of pieces of customer 

information, this study has found that patterns of customer information offer important 

insights into operators safety-related performance.  

 

In particular, the model results indicate that the current and prior signup complaints 

related to unsafe operation of the bus is positively correlated not only with the 

likelihood of preventable incident outcomes, but also with the expected collision and 

total incidents frequencies. This finding suggests that passenger complaints about an 

operator’s unsafe bus operation are signaling an elevated safety risk and associated 

consequences. This finding can be interpreted as suggesting that chronic complaints 

regarding operator unsafe bus operation elevates the risk of being involved in a 

preventable incident which may occur either in the present or future signup, and 

consequently increases collision frequencies.  

 

Safety incident frequency analysis results indicate that interaction between short 

duration absence hours and fit for duty variables are positively correlated with 

expected collision frequency. This finding suggests that the safety consequence of 

fitness complaints about an operator are more pronounced in the presence of short 

duration absence hours. The general message for transit management represented in 
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this study’s findings may be summarized as follows: listen to and follow up on pieces 

of customer information, and act on patterns of information. 

Finally, regarding ITS recovered data and transit safety improvement, this study 

provides an example of the contribution that transit ITS data can make in realizing 

more comprehensive safety analysis and greater understanding of safety risks, 

especially when combined with other information commonly maintained and archived 

in an agency’s data warehouse. Surveys conducted by the U.S. Department of 

Transportation’s (USDOT) Volpe Transportation Systems Center suggest that the 

transit industry has not fully tapped the potential of archived ITS data with respect to 

safety analysis and planning (USDOT, 2009).  For example, a Volpe Center 2004 

survey that queried transit agencies on their use of ITS data for accident analysis or 

prediction found that only 6 out of the 80 responding metropolitan area transit 

properties indicated that they had used their data for safety analysis. 

 

The ability to realize the potential benefits of ITS data resources in safety and other 

applications may however be limited by a number of challenges: such as those related 

to  ITS data validation, data integration, staffing and staff expertise in accessing and 

analyzing archived data. TriMet stands out as a unique exception for being one of a 

limited number of transit properties in the US that has managed to overcome these 

challenges (Strathman et al., 2008). TriMet’s experience provides valuable lessons for 

other properties in promoting more effective utilization of transit ITS and other data 

resources in operations management, service planning and market research. 
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Moving forward, this study recommends that TriMet continue to maintain and 

improve upon their safety incident records. In the short run, the agency may want to 

ensure that their safety incident database at minimum has information on the above 

identified factors. In addition, the agency may want to clearly determine the definition 

or meaning of bus operator job dissatisfaction and identify how exactly this variable is 

measured in order to capture the information as appropriate.  

 

Another safety issue that the agency may need to determine is related to operator work 

span. Specifically, the agency may need to establish whether it makes a difference to 

have operators resting 2-3 hours between shifts verses 5-6 hours. In other words:  what 

time span between two operator split shifts is cost-effective? In addition, TriMet may 

want to conduct a cost-effectiveness study that compares the overall agency-wide cost 

of the current practice of having regular operators running split shifts verses using or 

hiring part-time operators to cover those shifts instead. Another study that may allow 

TriMet to ascertain the attributes that describe a “typical” operator may be essential in 

reduction of preventable incident outcomes related to scheduling. 

 

As earlier observed in section 1.3 the transit operating environment is dynamic and 

highly complex. Ultimately, the safety performance of TriMet is subject to change 

over time. Therefore, this study recommends that in the long run (say after every 

twelve to sixteen signups) a similar study using the safety models that have been 

developed (random effects negative binomial and logit/multinomial logit) may be 
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necessary to determine if there are any significant changes in operations that may be 

compromising operator-related safety performance.  

    

6.3. Study Contributions and Future Research 

This study established that there are numerous empirical relationships between 

operational factors and transit bus safety incidents. Specifically, it uncovered that bus 

operator age, experience and short duration absenteeism from work, as well as the 

operator’s work span and variability in daily work span/assignments are correlated 

with bus safety incidents. In addition, schedule adherence pressures associated with 

running late and bus lift operations are empirically related to safety incidents. The 

other factors that influence safety performance are operators’ responsive action events 

and customer complaints about unsafe bus operation.  

 

These findings make some contributions to the understanding of the factors that are 

empirically related to the likelihood of preventable incident involvement, as well as 

those that influence the frequency of safety incidents. The findings also offer insights 

into operation practices and policies that hold promise for improving operator safety 

performance.  

 

In addition to empirical and practical contributions, this research also contributes to 

our methodological knowledge. The developed operator signup-based methodology 

and econometric tools/models can be calibrated and adapted to estimate transit bus 
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incidents for localities in which large and medium sized transit agencies provide bus 

service. The products and knowledge generated from this research together with what 

will be established in the above recommended studies (assuming they will be done) 

will allow to enhance existing transit safety countermeasures and to develop new ones 

which will lead to reductions in accidents and thus yield substantial cost savings in the 

form of reduced risk. 

 

This study suffers from four important shortcomings. First, operator-habit related 

variables are not considered in the safety model. While it is difficult to measure and 

account for operator habit-related factors, it is obvious that habits are non-

homogeneous across different bus operators. For example, some operators might take 

more risks than others. An appropriate analytical framework should control for 

differences in accident involvement likelihood across operators with different habits.  

Second, the safety effects of other modes (e.g., automobiles, bicycles, trucks.etc.) in 

the network have not been accounted for. Third, log-linear model specification has 

been assumed as the most appropriate formulation of the count data modeling 

framework. In practice, other model forms, such as additive formulations do exist. 

Ideally, data mining techniques can be used to identify the most appropriate model 

form, but this has not been explored. Fourth, risk exposure is not fully accounted or 

represented in this study especially in non-collision incidents.  
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Future safety research built on this study’s findings can explore the effect of operator 

habit-related factors on safety performance in urban transit systems. Another potential 

study can examine the influence of operational characteristics on safety performance 

across various US urban transit systems.  
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APPENDICES 
 
 

Appendix A. Variable Definition and  Measurements
Dependent Variables Definition &Measurement

Collision incidents Count of collision incidents during signup
Non-collision incidents Count of non-collision incidents during signup
Total incidents Count of all incidents during the signup
Non-incident involved Count of all operator signup periods without an incident
Preventable incidents involved Count of total preventable incidents that occurred in each operator signup.
Non-Preventable incidents involved Count of total non-preventable incidents that occurred in each operator signup
Unclassified incidents involved Count of total  incidents that were uncategorized in each operator signup
Independent Variables

Age Operator's age(in years) on the first day of signup
Male A dummy variable equaling one if the operator is male and zero otherwise
Female A dummy variable equaling one if the operator is female and zero otherwise
White A dummy variable equaling one if the operator's race is white and zero otherwise
African American A dummy variable equaling one if the operator's race is African American and zero otherwise
Asian A dummy variable equaling one if the operator's race is Asian or pacific Islander and zero otherwise
Hispanic A dummy variable equaling one if the operator's race is Hispanic and zero otherwise

Seniority /Years Experience Operator's TriMet experience (in years) on the first day of the signup.

Probationary
A dummy variable equaling one when the operator's employmentstatus is "Probationary" on the first day 
of the signup and zero otherwise

Same Assignments
A dummy variable equaling one when the operator's assigned work  is the same as in the previous 
signup and zero otherwise

Split Shift
A dummy variable equaling one when operator's assigned work is split between two distinct blocks of 
time during the workday and zero otherwise

Total Hours worked Total hours worked by the operator during the signup
Weekend Service Hours Total weekend service hours  worked by the operator during the signup
Average Daily Work Span  Average daily work span worked by the operator during the signup.

Average Daily CV
 Is the ratio of standard deviation to Average daily work span for the operator during the signup ( 
coefficient of variation).

Three day/30 Hour wk  A dummy variable equaling one if the operator worked  three-day/30 hour weeks  and zero otherwise.
Four day/40 Hour week A dummy variable equaling one if the operator worked  four-day/40 hour weeks  and zero otherwise.

Operator Demographic characteristics

Employment Status Characteristics

Assigned Work characteristics
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Appendix A - continues Definition &Measurement

Short term Absence Hours
Short duration (three consecutive days or less)  hours associated with sick leaves, unexcused absences, 
and leaves related to a serious medical condition.

Center Garage
A dummy variable equaling one when the operator’s pullout during the sign-up is from the Center St. 
garage and zero otherwise

Powell Garage
A dummy variable equaling one when the bus operator’s pullout during the sign-up is from the Powell 
Ave. garage and zero otherwise

Merlo Garage
A dummy variable equaling one when the bus operator’s pullout during the sign-up is from the Merlo 
Dr. garage and zero otherwise

Frequent Service Radial Route
A dummy variable equaling one when the operator’s assigned route is classified as a frequent service 
Trunk Radial (i.e., headways 15 minutes & under) and zero otherwise

Secondary Service Radial Route
A dummy variable equaling one when the operator’s assigned route is classified as a secondary service 
Trunk Radial (i.e., headways greater than 15 minutes) and zero otherwise

Crosstown Route
A dummy variable equaling one when the operator’s assigned route is classified as a Crosstown and 
zero otherwise

Feeder Route
A dummy variable equaling one when the operator’s assigned route is classified as a Feeder and zero 
otherwise

Peak Express Service Hours
A dummy variable equaling one when the operator’s assigned route is classified as a Peak Express and 
zero otherwise

Shift Ends Before 4:00
A dummy variable equaling one when an operator’s scheduled pull-in for the sign-up occurs before 4:30 
pm and zero otherwise

Shift Ends 4:00- 7:00pm
A dummy variable equaling one when an operator’s scheduled pull-in for the sign-up occurs between 
4:30 and 7:30 pm, and zero otherwise

Shift Ends After 7:00 pm
A dummy variable equaling one when an operator’s scheduled pull-in for the sign-up occurs after 7:30 
pm and zero otherwise

Low-Floor Bus  A dummy variable equaling one if bus type assigned a low floor bus and zero otherwise
Old Bus  A dummy variable equaling one  if bus type assigned is old and zero otherwise
Small Bus  A dummy variable equaling one if the bus type assigned  is small and zero otherwise
Standard Bus  A dummy variable equaling one if the bus type assigned is standard and zero otherwise

Boardings per Revenue Hour Passenger boardings per revenue hour on service delivered by the operator during the signup
Lifts per Revenue Hour Lift operations per revenue hour on service delivered by the operator during the signup

Av.Max. Speed vs.Peers Speed
Operators mean maximum speed between time points minus the mean maximum speed of peer 
operators (.i.e., traveling between the same time points during the same time period) during the signup.

Proportion Late Departures vs.Peers

Proportion of an operator's departures from time points that are late (i.e., more than five minutes late in 
relation to scheduled departure) minus the proportion of late departures of peer operators (i.e., serving 
the same time period) during the signup

Proportion Early Departures vs.Peers

Proportion of an operator's departures from time points that are early (i.e., more than one minute early in 
relation to scheduled departure) minus the proportion of early departures of peer operators (i.e., serving 
the same time period) during  the signup

Actual average Layover Proportion or time
Operator's actual average layover time divided by actual average revenue service time per trip during the 
signup

Security response requests
Number of text-coded requests for security response transmitted by the operator to the dispatch center 
via the bus control head during the signup

Evasive Action Events Number of incidents requiring the operator to take evasive action during the signup

Assigned Work characteristics-continues

Service Perfomance Characteristics
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Appendix A - continues Definition &Measurement

Fit for Duty
Number of reported (e.g., by passengers , field supervisors) "Fit for Duty" incidents involving the 
operator during the signup.

Unsafe Operation
Number of incidents involving unsafe vehicle operation by the operator reported to Customer Relations 
during the signup

Unprofessional Treatment
Number of "unprofessional conduct" complaints involving the operator reported to Customer Relations 
during the signup

Service Delivery Problem
Number of complaints reported to Customer Relations involving a service delivery problem (e.g., 
missed stops & pass-ups, early departures ) by the operator during the signup.

Commendations: Stop Announcements
Number of commendations reported to Customer Relations involving the announcement of stops over 
the bus intercom by the operator during the signup

Commendations: Other
Number of commendations of the operator for  all other reasons reported to Customer Relations during 
the signup.

Fall Signup A dummy variable equaling one  for a Fall signup and zero otherwise
Winter Signup A dummy variable equaling one  for a Winter signup and zero otherwise
Spring Signup A dummy variable equaling one  for a Spring signup and zero otherwise
Summer Signup A dummy variable equaling one  for a Summer signup and zero otherwise

Year 2006 A dummy variable equaling one when the operator's signup occurrs in the year 2006 and zero otherwise

Year 2007 A dummy variable equaling one when the operator's signup occurrs in the year 2007 and zero otherwise

Year 2008 A dummy variable equaling one when the operator's signup occurrs in the year 2008 and zero otherwise

 Year 2009 A dummy variable equaling one when the operator's signup occurrs in the year 2009 and zero otherwise

Temporal Characteristics

Customer Commendations & Complaints
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Appendix B. Standard RENB Estimates and Elasticities

ESTIMATION MODELS
TOT COL NCOL TOT COL NCOL

   β (S.E)    β (S.E)    β (S.E) E E E

Dependent Variables

Total Incident Events (TOT)
0.316
(0.611) ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   

Collision Events (COL)
0.184
(0.443) ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   

Non-collision Events (NCOL)
0.132
(0.398) ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   

Independent Variables
OPERATOR DEMOGRAPHICS  

Age
50.0
(9.40)

̶ .0519*
(.0151)

̶ .0401*
(.0182)

̶ .0627*
(.0241)

Age2
2589.0
(909.7)

.0006*
(.0002)

.0005*
(.0002)

.0006*
(.0003)

Female
0.308
(0.462)

.0772
(.0421)

.0149
(.0507)

.1767*
(.0674) ̶  ̶   ̶  ̶   0.162

African American
0.140
(0.347)

̶ .1234
(.0549)

̶ .0955
(.0657)

̶ .1535
(.0884) ̶  ̶   ̶  ̶   ̶  ̶   

Asian/Pacific Islander
0.035
(0.184)

̶ .1060
(.1048)

̶ .1499
(.1267)

̶ .0646
(.1681) ̶  ̶   ̶  ̶   ̶  ̶   

Hispanic
0.038
(0.190)

.0421
(.0918)

.0210
(.1126)

.1364
(.1443) ̶  ̶   ̶  ̶   ̶  ̶   

EMPLOYMENT STATUS CHARACTERISTICS

Years of Experience
10.35
(8.31)

̶ .0392*
(.0091)

̶ .0440*
(.0109)

̶ .0292*
(.0148) -0.302

Years of Experience2
176.42
(252.90)

.0006*
(.0003)

.0007*
(.0003)

.0003
(.0005) ̶  ̶   

Probationary Status
0.074
(0.262)

.2232*
(.0728)

.1487
(.0923)

.3685*
(.1121) 0.200 ̶  ̶   0.308

ASSIGNED-WORK  CHARACTERISTICS

Unique Assignments
11.45
(17.42)

̶ .0002
(.0016)

̶ .0030
(.0020)

.0035
(.0025) ̶  ̶   ̶  ̶   ̶  ̶   

Split Shift
0.301
(0.459)

̶ .0006
(.0659)

̶ .0470
(.0840)

.0536
(.1013) ̶  ̶   ̶  ̶   ̶  ̶   

Total Hours Worked
383.55
(125.82)

.0017*
(.0002)

.0015*
(.0003)

.0021*
(.0003) 0.652 0.575 0.805

Weekend Hours
75.73
(79.87)

̶ .0009*
(.0003)

̶ .0012*
(.0004)

̶ .0005
(.0005) 0.068 ̶  .091 ̶  ̶   

Average Daily Span
9.45
(1.67)

.0073
(.0162)

.0638*
(.0207)

̶ .0763*
(.0249) ̶  ̶   0.603 ̶ .721

Daily Span CV
0.141
(0.116)

.3740
(.2382)

.8351*
(.2972)

̶ .2170
(.3749) ̶  ̶   0.118 ̶  ̶   

Three Day/ 30 Hour Week
0.021
(0.145)

.3509*
(.1209)

.2082
(.1590)

.5454*
(.1774) 0.296 ̶  ̶   0.420

Four Day/ 40 Hour Week

0.003
(0.054)

̶ .5824
(.3534)

̶ 2.238*
(1.004)

.2463
(.3809) ̶  ̶   -8.375 ̶  ̶   

STANDARD RENB 

VARIABLES & PARAMETERS
(Std. 
Dev)

0.810 0.990 ̶ .270

̶ 2.72 ̶ .300
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Appendix B -continues TOT COL NCOL TOT COL NCOL

ASSIGNED-WORK  
CHARACTERISTICS - continues    β (S.E)    β (S.E)    β (S.E) E E E

Short Term Absence Hours
13.91
(21.59)

.0023*
(.0008)

.0034*
(.0010)

.0008
(.0013) 0.032 0.357 ̶  ̶   

Interaction of Fit for Duty & Short 
Term  Absence Hours

.117
(2.119) ̶  ̶   

.0238*
(.0096) ̶  ̶   ̶  ̶   0.357 ̶  ̶   

Merlo Garage
0.218
(0.413)

̶ .1507*
(.0631)

̶ .2153*
(.0786)

̶ .0687
(.0989) -0.160 -0.240 ̶  ̶   

Powell Garage
0.341
(0.474)

.0116
(.0430)

.0523
(.0531)

̶ .0439
(.0675) ̶  ̶   ̶  ̶   ̶  ̶   

Secondary Radial Route
0.154
(0.361)

̶ .0193
(.0591)

̶ .0089
(.0731)

̶ .0641
(.0954) ̶  ̶   ̶  ̶   ̶  ̶   

Crosstown Route
0.238
(0.426)

̶ .1087*
(.0442)

̶ .0882
(.0563)

̶ .1381*
(.0682) -0.110 ̶  ̶   -0.150

Feeder Route
0.059
(0.235)

̶ .0418
(.1207)

̶ .1080
(.1471)

.0635
(.1973) ̶  ̶   ̶  ̶   ̶  ̶   

Peak Express Hours
0.027
(0.162)

̶ .0280
(.1314)

̶ .0712
(.1501)

̶ .3493
(.2590) ̶  ̶   ̶  ̶   ̶  ̶   

Shift Ends 4:00-7:00 pm
0.501
(0.500)

̶ .0521
(.0484)

̶ .1160
(.0606)

.0375
(.0763) ̶  ̶   ̶  ̶   ̶  ̶   

Shift Ends  After 7:00 pm
0.189
(0.391)

̶ .0470
(.0584)

̶ .1388
(.0738)

.0767
(.0904) ̶  ̶   ̶  ̶   ̶  ̶   

Low -Floor Bus
0.657
(0.475)

.0128
(.0596)

.0249
(.0748)

.0663
(.0942) ̶  ̶   ̶  ̶   ̶  ̶   

Old Bus
0.234
(0.423)

̶ .1849*
(.0785)

̶ .1338
(.0973)

̶ .2707*
(.1275) -0.200 ̶  ̶   -0.310

Small Bus
0.046
(0.210)

̶ .1425
(.1355)

̶ .1254
(.1595)

̶ .2250
(.2378) ̶  ̶   ̶  ̶   ̶  ̶   

SERVICE PERFORMANCE CHARACTERISTICS

Boardings Per Revenue Hour
43.37
(10.25)

.0027
(.0024)

.0004
(.0030)

.0066
(.0038) ̶  ̶   ̶  ̶   ̶  ̶   

Lifts Per Hour
0.286
(0.149)

.6364*
(.1385)

.5210*
(.1762)

.8490*
(.2142) 0.182 0.149 0.243

Ave.Max. Speed - Peer Speed
0.045
(1.502)

.0074
(.0127)

̶ .0030
(.0152)

.0215
(.0207) ̶  ̶   ̶  ̶   ̶  ̶   

Proportion Late Departs
0.149
(0.103)

1.1303*
(.1921)

.9147*
(.2392)

1.321*
(.3012) 0.168 0.136 0.197

Proportion Early Departs
0.054
(0.059)

.4313
(.3288)

1.142*
(.3889)

̶ .6685
(.5517) ̶  ̶   0.062 ̶  ̶   

Layover Proportion
0.255
(0.310)

̶ .0798
(.1014)

̶ .0429
(.0947)

̶ .2376
(.2473) ̶  ̶   ̶  ̶   ̶  ̶   

Security Requests
0.499
(0.980)

.0527*
(.0152)

.0217
(.0208)

.0797*
(.0214) 0.026 ̶  ̶   0.040

Evasive Action Events

0.025
(0.163)

.5813*
(.0606)

.0634
(.1107)

.9102*
(.0755) 0.015 ̶  ̶   0.023

Mean
(Std. Dev)
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TOT COL NCOL TOT COL NCOL
   β (S.E)    β (S.E)    β (S.E) E E E

CUSTOMER SERVICE INFORMATION

Unsafe Operation
0.207
(0.516)

.0691*
(.0290)

.0839*
(.0365)

.0692
(.0451) 0.014 0.017 ̶  ̶   

Unprofessional Treatment
0.391
(0.814)

.0607*
(.0188)

.0388
(.0246)

.0920*
(.0278) 0.024 ̶  ̶   0.036

Fit for Duty
0.007
(0.084)

.2536
(.1635)

̶ .3029
(.3392)

.3138
(.2515) ̶  ̶   2.816 ̶  ̶   

Service Delivery Problem
0.114
(0.413)

.0089
(.0382)

.0100
(.0473)

.0313
(.0592) ̶  ̶   ̶  ̶   ̶  ̶   

Commendation: Calls Stops
0.687
(1.380)

.0129
(.0112)

.0083
(.0143)

.0228
(.0170) ̶  ̶   ̶  ̶   ̶  ̶   

Commendation : Other
0.302
(0.705)

.0550*
(.0206)

.0641*
(.0252)

.0394
(.0335) 0.017 0.019 ̶  ̶   

TEMPORAL CHARACTERISTICS

Fall Signup
0.252
(0.434)

̶ .0082
(.0440)

̶ .0781
(.0570)

.0908
(.0673) ̶  ̶   ̶  ̶   ̶  ̶   

Spring Signup
0.253
(0.435)

.0355
(.0496)

.0778
(.0622)

̶ .0395
(.0795) ̶  ̶   ̶  ̶   ̶  ̶   

Summer Signup
0.170
(0.376)

.0203
(.0497)

̶ .0056
(.0635)

.0562
(.0773) ̶  ̶   ̶  ̶   ̶  ̶   

2007
0.414
(0.493)

.1292*
(.0557)

.1780*
(.0720)

.0464
(.0851) 0.121 0.163 ̶  ̶   

2008
0.345
(0.476)

̶ .0045
(.0600)

.0638
(.0772)

̶ .1288
(.0922) ̶  ̶   ̶  ̶   ̶  ̶   

2009
0.086
(0.280)

̶ .0833
(.0878)

̶ .1103
(.1119)

̶ .0369
(.1362) ̶  ̶   ̶  ̶   ̶  ̶   

Intercept ̶  ̶   
1.857

(.4894)
1.866

(.9677)
2.555

(.8313) ̶  ̶   ̶  ̶   ̶  ̶   

Parameter, a ̶  ̶   
163.446
(42.628)

603.734
(470.64)

114.86
(57.83) ̶  ̶   ̶  ̶   ̶  ̶   

Parameter, b ̶  ̶   
8.411

(1.281)
9.600

(2.553)
2.633
(.337) ̶  ̶   ̶  ̶   ̶  ̶   

Sample Size 13,796 13,796 13,796 13,796 ̶  ̶   ̶  ̶   ̶  ̶   
Number of Groups ̶  ̶   1,502 1,502 1,502 ̶  ̶   ̶  ̶   ̶  ̶   
Walds chi-value ̶  ̶   755.6 352.4 635.3 ̶  ̶   ̶  ̶   ̶  ̶   
LR Test Vs. Pooled chi-value ̶  ̶   75.68 19.13 142.5 ̶  ̶   ̶  ̶   ̶  ̶   

Ratio of log-likelihood index( ρ2) ̶  ̶   0.278 0.261 0.476 ̶  ̶   ̶  ̶   ̶  ̶   

Adjusted ratio log-likelihood (ρ-2
 ) ̶  ̶   0.264 0.254 0.470 ̶  ̶   ̶  ̶   ̶  ̶   

* Variable is significant at α = 0.05 level  and E represents Elasticity

Mean
(Std. Dev)Appendix B -continues
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Appendix C. Standard Multinomial and Logit Coefficient Estimates

ESTIMATION MODELS

PA NPA UNC

   β (S.E)
ODD 
RATIO

AVE. 
DER

   β
 (S.E)

   β
 (S.E)

   β
 (S.E)

OPERATOR DEMOGRAPHICS

Age
̶ .0853*
(.0311) ̶  ̶   

̶ .0871*
(.0293)

̶ .0270
(.0314)

̶ .0391
(.0223)

Age2
.0011*
(.0003) ̶  ̶   

.0011*
(.0003)

.0003
(.0003)

.0004
(.0002)

Female
.0899
(.0849) 1.094 ̶  ̶   

.0932
(.0847)

.0698
(.0832)

.1098
(.0598)

African American
̶ .1388
(.1106) 0.8704 ̶  ̶   

̶ .1601
(.1103)

̶ .1873
(.1085)

̶ .1240
(.0774)

Asian/Pacific Islander
̶ .5497*
(.2466) 0.5771 ̶  ̶   

̶ .5066*
(.2434)

.3469*
(.1710)

̶ .1482
(.1513)

Hispanic
.0856
(.1913) 0.9179 ̶  ̶   

̶  .0599
(.1905)

.0680
(.1834)

.1130
(.1302)

EMPLOYMENT STATUS CHARACTERISTICS

Years of Experience
̶ .0669*
(.0189) ̶  ̶   -0.0055

̶ .0702*
(.0189)

̶ .0325
(.0179)

̶ .0335*
(.0133)

Years of Experience2
.0009
(.0005) ̶  ̶   ̶  ̶   

.0009
(.0006)

.0006
(.0005)

.0005
(.0004)

Probationary Status
.5907*
(.1577) 1.8053 ̶  ̶   

.5843*
(.1555)

.0698
(.0832)

.3716*
(.1216)

ASSIGNED-WORK  CHARACTERISTICS

Unique Assignments
̶ .0035
(.0037) ̶  ̶   

̶ .00019 ̶ .0038
(.0037)

̶ .0022
(.0036)

.0021
(.0026)

Split Shift
̶ .1668
(.1429) 0.8463 ̶  ̶   

̶ .1620
(.1505)

̶ .0700
(.1467)

.0616
(.1057)

Total Hours Worked
.0014*
(.0005) ̶  ̶   0.00007

.0015*
(.0005)

.0021*
(.0005)

.0020*
(.0003)

Weekend Hours
̶ .0011
(.0007) ̶  ̶   

̶ .00005 ̶ .0012
(.0007)

̶ .0009
(.0007)

̶ .0006
(.0005)

Average Daily Span
.0855*
(.0339) ̶  ̶   0.0046

.0869*
(.0365)

̶ .0279
(.0356)

̶ .0285
(.0253)

Daily Span CV
.5014
(.5079) ̶  ̶   0.02697

.5710
(.5344)

1.0945*
(.5137)

.2688
(.3787)

Three Day/ 30 Hour Week
.0971
(.2720) ̶  ̶   0.00545

.0977
(.2729)

.3032
(.2812)

.2783
(.2008)

Four Day/ 40 Hour Week

̶ 1.3965
(1.0109) ̶  ̶   

̶ .04247 ̶ 1.4756
(1.027)

 ̶ 1.0684
(1.0258)

 ̶ .2462
(.4932)

Standard : Models Without Lag Variables

0.0114

LOGIT

PA Status

VARIABLES  &  
PARAMETERS 

MULTINOMIAL LOGIT
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PA NPA UNC

   β (S.E)
ODD 
RATIO

AVE. 
DER

   β
 (S.E)

   β
 (S.E)

   β
 (S.E)

ASSIGNED-WORK  CHARACTERISTICS - continues

Short Term Absence Hours
.0060*
(.0016) ̶  ̶   0.00032

.0060*
(.0017)

.0005
(.0018)

.0025
(.0013)

Merlo Garage
̶ .1260
(.1291) 0.8816 ̶  ̶   

̶ .1488
(.1314)

̶ .4623*
(.1419)

.0245
(.0942)

Powell Garage
̶  .2480*
(.0933) 0.7804 ̶  ̶   

̶  .2244*
(.0936)

.2126*
(.0882)

.0656
(.0655)

Secondary Radial Route
̶ .1702
(.1353) 0.8435 ̶  ̶   

̶ .1798
(.1332)

.1185
(.1274)

̶ .0159
(.0961)

Crosstown Route
̶ .2325*
(.1022) 0.7926 ̶  ̶   

̶ .2501*
(.1030)

̶ .0061
(.0955)

̶ .1466*
(.0710)

Feeder Route
̶ .2034
(.2655) 0.816 ̶  ̶   

̶ .2066
(.2664)

.0348
(.2578)

.0233
(.1810)

Peak Express Hours
̶ .0629
(.2635) 0.9391 ̶  ̶   

̶ .0816
(.2651)

̶ .1434
(.3054)

.0602
(.2042)

Shift Ends 4:00-7:00 pm
.0274
(.1135) 1.0278 ̶  ̶   

.0214
(.1104)

̶ .1400
(.1042)

̶ .1059
(.0755)

Shift Ends  After 7:00 pm
̶ .0850
(.1332) 0.9185 ̶  ̶   

̶ .0886
(.1336)

̶ .0264
(.1207)

̶ .1060
(.0902)

Low -Floor Bus (.1314) 1.0352 ̶  ̶   (.1310) (.1360) (.0989)

Old Bus
̶ .3182
(.1704) 0.7275 ̶  ̶   

̶ .3167
(.1702)

.0790
(.1779)

̶ .2552*
(.1278)

Small Bus
 .0608
(.2734) 1.0627 ̶  ̶   

 .0207
(.2851)

 .5475
(.3038)

 .0414
(.2014)

SERVICE PERFORMANCE CHARACTERISTICS

Boardings Per Revenue Hour
̶ .0049
(.0055) ̶  ̶   

̶ .00026 ̶ .0048
(.0054)

.0073
(.0051)

.0065
(.0038)

Lifts Per Hour
1.347*
(.3143) ̶  ̶   0.07246

1.3841*
(.3033)

.4385
(.3159)

.6228*
(.2324)

Ave.Max. Speed - Peer Speed
.0183
(.0294) ̶  ̶   0.00098

.0196
(.0264)

.0174
(.0267)

.0406*
(.0193)

Proportion Late Departs
1.405*
(.3948) ̶  ̶   0.07557

1.5194*
(.4058)

1.062*
(.4008)

1.280*
(.2960)

Proportion Early Departs
1.086
(.6662) ̶  ̶   0.05844

1.114
(.6983)

.9480
(.6519)

.6143
(.4937)

Layover Proportion
̶ .0042
(.0487) ̶  ̶   

̶ .00022 ̶ .0098
(.1295)

̶ .0467
(.1583)

̶ .3455
(.2449)

Security Requests
̶  .0091
(.0375) ̶  ̶   

̶ .00049 .0071
(.0398)

.0720*
(.0354)

.1136*
(.0249)

Evasive Action Events

.3487
(.1843) ̶  ̶   0.01876

.6052*
(.1961)

1.3291*
(.1473)

.6904*
(.1408)

Appendix C-continues

PA Status
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PA NPA UNC

   β (S.E)
ODD 
RATIO

AVE. 
DER

   β
 (S.E)

   β
 (S.E)

   β
 (S.E)

CUSTOMER SERVICE INFORMATION

Unsafe Operation
.1597*
(.0660) ̶  ̶   0.00859

.1718*
(.0657)

.1054
(.0661)

.0714
(.0498)

Unprofessional Treatment
.0215
(.0469) ̶  ̶   0.00116

.0368
(.0469)

.0986*
(.0417)

.1005*
(.0314)

Fit for Duty
.7374*
(.3427) ̶  ̶   0.03967

.7256*
(.3471)

̶ .0996
(.4699)

.4550
(.2740)

Service Delivery Problem
.0619
(.0800) ̶  ̶   0.00333

.0601
(.0807)

̶ .0291
(.0867)

̶ .1176
(.0700)

Commendation: Calls Stops
̶ .0146
(.0326) ̶  ̶   

̶ .00078 ̶ .0145
(.0280)

.0084
(.0257)

.0192
(.0183)

Commendation : Other
.0317
(.0485) ̶  ̶   0.001703

.0484
(.0481)

.0902
(.0475)

.0805*
(.0344)

TEMPORAL CHARACTERISTICS

Fall Signup
.0664
(.1083) 1.0686 ̶  ̶   

.0545
(.1071)

̶ .1803
(.0958)

.0287
(.0734)

Spring Signup
.4329*
(.1173) 1.5417 ̶  ̶   

.4031*
(.1159)

̶ .3873*
(.1184)

.0973
(.0819)

Summer Signup
.3273*
(.1172) 1.3872 ̶  ̶   

.2971*
(.1172)

 ̶ .2868*
(.1152)

 .0206
(.0834)

2007
.0261
(.1304) 1.0264 ̶  ̶   

.0385
(.1290)

.0414
(.1166)

.2585*
(.0936)

2008
̶ .0746
(.1391) 0.9281 ̶  ̶   

̶ .0753
(.1382)

̶ .1160
(.1269)

.1274
(.0996)

2009
̶ .3918*
(.1995) 0.6758 ̶  ̶   

̶ .3897
(.2000)

̶ .0223
(.1980)

̶ .0642
(.1451)

Intercept
 ̶  2.604*
(.8527) ̶  ̶   ̶  ̶   

 ̶  2.578*
(.8167)

̶  3.3956*
(.8431)

̶  1.988*
(.6012)

Sample Size 12,006 ̶  ̶   ̶  ̶   13,796 ̶  ̶   ̶  ̶   
Wald Chi-square (49) 314.23 ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   ̶  ̶   
LR Chi- square (147) ̶  ̶   ̶  ̶   ̶  ̶   964.85 ̶  ̶   ̶  ̶   
Prob > chi2 0.0000 ̶  ̶   ̶  ̶   0.0000 ̶  ̶   ̶  ̶   

Where * is significant at α =0.05 level; UNC is unclassified and AVE.DER is average derivative

Appendix C-continues

PA Status

BASE = NO-INCIDENT
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Appendix D. Average Derivatives and Computed Relative Risk Ratios

ESTIMATION MODELS

PA NPA UNC PA NPA UNC

RRR RRR RRR
OPERATOR DEMOGRAPHICS

Age ̶  ̶   ̶  ̶   

Age2 ̶  ̶   ̶  ̶   

Female 1.0980 1.0723 1.1161 0.00370 0.00279 0.01090

African American 0.8520 0.8292 0.8834
̶ .0063 ̶ .0086 ̶ .01080

Asian/Pacific Islander 0.6025 1.4147 0.8622
̶ .0205

0.02520
̶ .01550

Hispanic 0.9419 1.0703 1.1197 ̶ 0.0038 0.00320 0.01252
EMPLOYMENT STATUS CHARACTERISTICS

Years of Experience -0.0042 ̶  ̶   -0.0041

Years of Experience2 ̶  ̶   ̶  ̶   ̶  ̶   

Probationary Status 1.7940 1.1164 1.4501 0.03150 0.00080 0.03817
ASSIGNED-WORK  CHARACTERISTICS

Unique Assignments ̶  ̶   ̶  ̶   ̶  ̶   
̶ .00019 ̶ .00013

0.00027

Split Shift 0.8505 0.9324 1.0635
̶ .00793 ̶ .0038

0.00824

Total Hours Worked ̶  ̶   ̶  ̶   ̶  ̶   0.00006 0.00010 0.00019

Weekend Hours ̶  ̶   ̶  ̶   ̶  ̶   
̶ .00005 ̶ .00004 ̶ .000047

Average Daily Span ̶  ̶   ̶  ̶   ̶  ̶   0.00440 0.00148
.00382

Daily Span CV ̶  ̶   ̶  ̶   ̶  ̶   0.02310 0.05690 0.01741

Three Day/ 30 Hour Week 1.1030 1.3540 1.3210 0.00182 0.01590 0.02930

Four Day/ 40 Hour Week 0.2286 0.3435 0.7817

̶ .0388 ̶ .0363 ̶ .01546

VARIABLES  &  
PARAMETERS 

MULTINOMIAL LOGIT

̶  ̶   

̶  ̶   

̶  ̶   ̶  ̶   

̶  ̶   ̶  ̶   

Standard : Models Without Lag Variables

AVERAGE DERIVATIVE

MULTINOMIAL LOGIT

0.0096
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PA NPA UNC PA NPA UNC

RRR RRR RRR

ASSIGNED-WORK  CHARACTERISTICS - continues
Short Term Absence Hours ̶  ̶   ̶  ̶   ̶  ̶   0.00028   ̶  0.00001 0.00022

Merlo Garage 0.8617 0.6298 1.0248
̶ .0060 ̶ .0227

0.00662

Powell Garage 0.7990 1.2370 1.0678
̶ .01174

0.01230 0.00691

Secondary Radial Route 0.8354 1.1260 0.9842
̶ .00863

0.00750
̶ .00152

Crosstown Route 0.7787 0.9940 0.8636
̶ .01080 .0014 ̶ .0139

Feeder Route 0.8134 1.0354 1.0236
̶ .0096

0.00240 0.00351

Peak Express Hours 0.9217 0.8664 1.0621
̶ .0039 ̶ .0077

0.00820

Shift Ends 4:00-7:00 pm 1.0216 0.8693 0.8996 0.00220
̶ .0071 ̶ .01053

Shift Ends  After 7:00 pm 0.9152 0.9739 0.8995
̶ .0036

  ̶  0.00045
̶ .01043

Low -Floor Bus 1.0351 1.0100 0.9963 0.00170 0.00046  ̶ 0.0007

Old Bus 0.7286 1.0822 0.7748
̶ .0134

0.00720
̶ .0250

Small Bus 1.0209 0.5783 0.9594 0.00270
̶ .0243 ̶ .00143

SERVICE PERFORMANCE CHARACTERISTICS

Boardings Per Revenue Hour ̶  ̶   ̶  ̶   ̶  ̶   
̶ .00030

0.00037 0.00068
Lifts Per Hour ̶  ̶   ̶  ̶   ̶  ̶   0.06280 0.01550 0.05510

Ave.Max. Speed -
 Peer Speed ̶  ̶   ̶  ̶   ̶  ̶   0.00066 0.00061 0.00410

Proportion Late Departs ̶  ̶   ̶  ̶   ̶  ̶   0.06340 0.04490 0.12050

Proportion Early Departs ̶  ̶   ̶  ̶   ̶  ̶   0.04801 0.04460 0.05220

Layover Proportion ̶  ̶   ̶  ̶   ̶  ̶   0.00186
̶ .00006 ̶ .0368

Security Requests ̶  ̶   ̶  ̶   ̶  ̶   
̶ .00060

0.00310 0.01170

Evasive Action Events ̶  ̶   ̶  ̶   ̶  ̶   0.02130 0.06680 0.06090

AVERAGE DERIVATIVEAppendix D. contnues
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PA NPA UNC PA NPA UNC

RRR RRR RRR
CUSTOMER SERVICE INFORMATION

Unsafe Operation ̶  ̶   ̶  ̶   ̶  ̶   0.00770 0.00480 0.00584

Unprofessional Treatment ̶  ̶   ̶  ̶   ̶  ̶   0.00087 0.00460 0.00990

Fit for Duty ̶  ̶   ̶  ̶   ̶  ̶   0.03310   ̶  0.01102 ̶  ̶   

Service Delivery Problem ̶  ̶   ̶  ̶   ̶  ̶   0.00380
̶ .00094 ̶ .0128

Commendation: Calls Stops ̶  ̶   ̶  ̶   ̶  ̶   
̶ .00086 .00037

0.00210

Commendation : Other ̶  ̶   ̶  ̶   ̶  ̶   0.00159 0.00430 0.00770
TEMPORAL CHARACTERISTICS

Fall Signup 1.1056 0.8350 1.0291 0.00310
̶ .01005 .00402

Spring Signup 1.4965 0.6789 1.1022 0.02230
̶ .02151

0.01035

Summer Signup 1.3460 0.7507 1.0208 0.01680
̶ .01560 .00201

2007 1.0393 1.0423 1.2950
.00009

0.00027 0.02780

2008 0.9275 0.8905 1.1359
̶ .00414

  ̶  0.00701 0.01530

2009 0.6773 0.9779 0.9378

̶ .0163

0.00025  ̶ 0.0046

Where UNC represents unclassified incidents

Appendix D. contnues AVERAGE DERIVATIVE
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