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ABSTRACT 

The United States has had a federal biofuels policy since the 1970s. The purpose of 

this policy was to help the development of a biofuel industry during a time of high fuel prices 

in order to provide a domestic alternative to expensive foreign oil. Later the policy was 

changed to help lower the environmental impact caused by conventional fuels. Since that 

time the industry has grown and currently produces around 15 billion gallons of biofuels 

every year.  

The current federal biofuel policy is largely based on one program, the Renewable 

Fuel Standard (RFS), which mandates the production and blending of several different 

classes of biofuels and provides a form of subsidy to the biofuel industry. This paper 

examines the market effects of the federal biofuel policy and provides recommendations for 

improving the policy to counteract any negative effects.  

Federal biofuel policy has many far-reaching market effects. Some are easily 

calculable through expenditures and lost revenues, while others are harder to quantify 

because their full effects are not yet known. By evaluating these market effects, this paper 

will provide ample evidence that the federal biofuels policy needs to change, and will show 

what effects these changes could induce. 

The biofuels industry largely owes its existence to government policies, however as 

the research shows the industry can now stand on its own. This paper will examine what will 

happen if the federal policy is eliminated and what the future of the biofuels industry could 

hold. Based on these examinations, it is unlikely that the industry needs further government 

support and policies should be adjusted in light of this. 
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CHAPTER 1: OVERVIEW 

The United States, like other developed nations, relies on the transportation of goods 

and people to support its economy. The transportation infrastructure of the United States 

relies on vehicles powered by non-renewable fossil fuels. Currently, the United States uses 

27% of annual world oil production (EIA, 2010b). Due to the United States’s insatiable thirst 

for oil, two major concerns have developed at the national level: energy security and 

environmental protection. The United States imports between half and two-thirds of the oil it 

consumes (EIA, 2009a, Tyner 2007). This demand for oil also causes nearly a third of all 

carbon dioxide emissions in the US (EPA, 2010a).  In order to address these concerns 

Congress has passed several pieces of energy legislation, one of the most recent being the 

Energy Independence and Security Act of 2007 (110. PL 140), which was passed:  

To move the United States toward greater energy independence and security, to 
increase the production of clean renewable fuels, to protect consumers, to increase the 
efficiency of products, buildings, and vehicles, to promote research on and deploy 
greenhouse gas capture and storage options, and to improve the energy performance 
of the Federal Government, and for other purposes.  
 

Under this law, Congress continued its long support of biofuels, including corn-based 

ethanol, soy biodiesel, and cellulosic ethanol (still commercially unviable) through an update 

to the Renewable Fuels Standard.  

In recent years three main policies have been used to encourage biofuels production: 

the Volumetric Ethanol Excise Tax Credit (VEETC), often called the blender’s credit; an 

Import Duty on Fuel Ethanol, often referred to as the ethanol import tariff; and the 

Renewable Fuel Standard. 

 The blender’s tax credit is given to companies who mix ethanol and gasoline to make 

gasohol. The tax credit has been set at different levels, but was most recently at 45 cents per 
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gallon until it expired at the end of 2011. The blender’s tax credit has been the most 

controversial biofuels policy, because it is seen as a subsidy to produce ethanol from corn. 

 The ethanol import tariff was created by Congress to protect domestic producers of 

ethanol from cheap sugar-based ethanol imported from South America. The import tariff 

charged 54 cents per gallon of imported ethanol plus 2.5% of market price of the ethanol. 

Like the blender’s tax credit, the ethanol import tariff expired at the end of 2011. 

 The Renewable Fuel Standard remains the main federal biofuels policy and was 

enacted in its current form in the Energy Independence and Security Act of 2007. The 

Renewable Fuel Standard requires the blending of biofuels in four categories: conventional 

biofuel, advanced biofuel, cellulosic biofuel, and biomass-based diesel. What each category 

requires will be discussed later. The Renewable Fuel Standard will eventually require 22 

billion gallons of biofuels be blended in 2022.  Companies that do not meet the blending 

requirements are fined up to $37,500 per day. However the EPA can waive the penalty if the 

means to produce the biofuel do not exist (EPA, 2011).  

History of Biofuels Policy 

Federal biofuels policy began as a way to support domestic energy production during 

the energy crisis of the late 1970s. The first policy development came from the Energy Tax 

Act of 1978, which gave blenders of ethanol an exemption from the federal gasoline excise 

tax of 4 cents per gallon of blended gasohol for a blend of up to 10% ethanol (CEC, 2004). 

Table 1 shows a complete list of legislative changes to federal biofuels policy. Chief among 

them was the creation of an income tax credit in addition to the excise tax exemption. (The 

law required that any excise tax credit taken be deducted from the income tax credit claimed, 

ensuring no overlap of tax credits.) When Congress passed amendments to the Clean Air Act 
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that required gasoline to contain a higher percentage of oxygen to reduce air pollution, two 

main oxygenates were used: ethanol and methyl tertiary butyl ether (MTBE), until MTBE 

was gradually phased out at the state level due to environmental safety concerns. This 

demand for oxygenate was the largest driver of ethanol expansion during the 1990s (EIA 

2009b). The largest change in biofuel policy since the creation of the tax credits was the 

Renewable Fuels Standard. At the end of 2011, the VEETC for corn based ethanol and tax 

credit for soy biodiesel were allowed to expire along with the import tariff. The subsidy for 

the blending of cellulosic ethanol is set to expire at the end of 2012. While the VEETC was 

allowed to expire, legislative history shows that the biodiesel tax credit has expired and been 

renewed retroactively. Because of this, they will continue to be discussed, even though 

renewal is unlikely for funding reasons. The VEETC and import tariff are unnecessary and 

should be avoided for reasons discussed later in this paper. 

Future Transportation Fuel Needs 

It is projected that the United States will demand 15 million barrels of crude oil based 

transportation fuel per day by 2022 and 16 million barrels per day by 2035 (EIA, 2010a). 

While total demand will increase, the rate of increase is expected to slow due to greater fuel 

efficiency and higher use of biofuels to replace some fossil fuels. However, fuel efficiency 

isn’t a solution. The Jevons paradox is an economic theory that states when efficiency rises, 

consumption doesn’t drop, because a lower price causes increased demand.  If the Jevons 

paradox holds true in this case, the increased efficiency will increase fuel use, not decrease 

its use. Fuel follows a negative exponential demand curve, meaning there is a group of 
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Table 1: History of Legislative Policy Changes 
1978 Energy Tax Act Created a federal gasoline excise tax exemption for 

blenders of ethanol of 4 cents per gallon for a blend of up 
to 10% ethanol 

1980 Energy Security Act Created a loan guarantee program for the construction of 
ethanol plants 

1980 Crude Oil Windfall 
Profit Tax Act 

Ethanol excise tax exemption was extended until 1992 and 
an income tax credit of 40 cents per gallon was created 

1980 Omnibus 
Reconciliation Act 

Ethanol import tariff was created 

1980 Gasohol Competition 
Act 

Prevented gasoline marketers from discouraging the use of 
gasoline blended with ethanol 

1982 Surface 
Transportation 
Assistance Act 

The excise tax exemption was raised to 5 cents per gallon 
of gasohol and gas excise tax was raised to 9 cents 

1984 Tax Reform Act Excise tax exemption raised to 6 cents per gallon of 
blended gasohol, income tax credit raised to 60 cents per 
gallon of ethanol 

1990 Omnibus Budget 
Reconciliation Act 

Reduced excise tax exemption to 5.4 cents per gallon of 
gasohol, reduced income tax credit to 54 cents per gallon 
of ethanol, extended both tax credits until 2000, introduced 
small ethanol producers income tax credit of 10 cents per 
gallon of ethanol 

1990 Clean Air Act 
Amendments 

Required gasoline in 31 urban areas to contain higher 
percentage of oxygen to reduce air pollution, ethanol 
fulfilled this requirement 

1998 Transportation 
Efficiency Act of the 
21st Century 

Lowered excise tax exemption to 5.1 cents per gallon of 
gasohol, lowered income tax credit to 51 cents per gallon 
of ethanol and extended both through 2007 

2004 American Jobs 
Creation Act 

Replaced the excise tax exemption with a tax credit and 
renamed the program the Volumetric Ethanol Excise Tax 
Credit (VEETC) 

2005 Energy Policy Act Created the Renewable Fuels Standard (RFS) mandating 
the production of 7.5 billion gallons of ethanol to be 
blended by 2012 

2007 Energy Independence 
and Security Act 

Increase the RFS mandate to 36 billion gallons by 2022 
including conventional biofuels, advanced biofuels, 
cellulosic biofuels, and biomass based diesel. 

2008 Food, Conservation, 
and Energy Act (Farm 
Bill) 

Reduced the tax credit to 45 cents per gallon of ethanol 
once blending reached 7.5 billion gallons per year 

2011 The VEETC was allowed to expire along with the ethanol import tariff leaving the 
RFS as the only major biofuel policy still in place 

CEC, 2004, Energy Policy Act, 2005, 110 PL 140, 110 PL 234 
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consumers who will demand a certain quantity of fuel at any price. But as the price 

decreases, the number of consumers who demand fuel increases, as more people can afford to 

take driving vacations to, say, the Grand Canyon. This decrease in price could cause an 

increase in demand that eliminates any fuel savings from increased efficiency. As Figure 1 

illustrates, a decrease in market price increases demand, requiring greater supply. Jevons 

paradox has long been debated and its accuracy is unknown, however future changes in the 

transportation fuel market may help decide on its accuracy. With domestic production of oil 

peaking in 1970 at 9.6 million barrels per day, the future increase in oil production will 

continue to rely on foreign oil sources (EIA, 2009b). With the passage of the Energy 

Independence and Security Act and update to the Renewable Fuel Standard, the government 

mandated an increase in production of renewable fuels. As part of this mandate Congress 

defined “renewable fuel” as “fuel that is produced from renewable biomass and that is used 

to reduce the quantity of fossil fuel present in a transportation fuel” (110 PL 140). The 

Renewable Fuel Standard, in addition to defining renewable fuels, created four categories, 

each with requirements on greenhouse gas (GHG) emissions and blending mandates. To 
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measure GHG emissions, a life-cycle analysis (LCA) must be completed. An LCA measures 

the GHG emissions throughout the entire production process: from any land use change, the 

production, growth, and harvest of the bioenergy feedstocks such as corn and soybeans, the 

production of the biofuel, and any transportation of the fuel. 

The first category of the RFS is conventional biofuel, including corn-based ethanol, 

which must have life-cycle GHG emissions of 20% below traditional gasoline. The RFS 

mandates 15 billion gallons of conventional biofuels be produced per year by 2015. The 

second category is advanced biofuels, including ethanol made from raw materials other than 

corn, such as sugar, that reduce life-cycle GHG emissions by 30% compared to gasoline. 

Advanced biofuels make up 4 billion gallons of the RFS. The third category is cellulosic 

ethanol made from cellulose, hemicellulose, or lignin from a renewable biomass, which has a 

life-cycle GHG emissions reduction of 60%. The RFS mandates 16 billion gallons be 

produced annually by 2022. The final category is biomass-based diesel, including soy 

biodiesel, that has a life-cycle GHG emissions reduction of 50%. This category requires 1 

billion gallons be produced to meet the RFS mandate.  

Biofuels Production 

In order to better understand biofuels policy, it is important to have an understanding 

of how biofuels are produced. There are two general sources for bioenergy: food-based and 

nonfood-based feedstocks. Food-based feedstocks include corn, soybeans, sugar, and 

vegetable oils; nonfood-based feedstocks include crop-residues, dedicated bioenergy crops, 

and municipal solid waste. While there are diverse feedstocks and production methods, the 

basic supply chain is the same: 

1. Production of the biomass feedstock 
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2. Harvest and storage of the feedstock 

3. Transport of the feedstock to a biofuel production facility 

4. Conversion of biomass to biofuel and co-products 

5. Distribution of biofuel to gasoline blenders 

6. Distribution to fuel stations for sale to end user 

This section will examine how the various biomass feedstocks follow this supply 

chain and future problems that must be overcome. 

Food-based biofuel. Food-based biofuels use feedstocks that can be eaten or fed to 

livestock.  Because of this, biofuels that use food-based feedstocks are in direct market 

competition with consumers. This is often used as an argument against food-based biofuels 

and will be discussed further later in the paper.	
  

Corn-based ethanol. The most common food-based biofuel is ethanol made from 

cornstarch. This method of producing biofuels has been used for over 30 years and is 

relatively established compared to other biofuel production methods. The feedstock for 

cornstarch ethanol is corn and can be produced nationwide, however most corn production 

takes place in the Midwest (USDA-ERS, 2010). In 2010 the United States produced 12 

billion bushels of corn, of which approximately 40% was used to produce ethanol (USDA-

NASS, 2010; RFA, 2011b). To convert corn to ethanol the starch must be separated from the 

proteins. To accomplish this, corn is ground into meal, and enzymes are used to hydrolyze 

the starch into glucose (Schweitzke et al. 2008). This glucose can then be fermented using 

yeast to create a mash. This mash is then distilled to separate the ethanol from other liquids. 

The estimated ethanol yield is 112 gallons per dry ton of corn (Patzek, 2006), however the 

average yield achieved by US ethanol plants is 100 gallons per dry ton (Mueller, 2010). 
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The left over proteins, oils, minerals and fibers that are separated from the starch in 

the corn are used to create a co-product called dried distillers grains with solubles (DDGS). 

For every bushel of corn that is used to make ethanol, approximately one third of a bushel of 

DDGS is produced (Nichols et al., 2006). The ethanol producer sells the DDGS to livestock 

producers as a corn replacement in feed. Because the DDGS are high in proteins and 

minerals, they help in the production of livestock and are priced to compete with corn for 

feed.  

Following the production of ethanol, the fuel must be transported to a blender. 

Because ethanol is soluble in water, it cannot be sent current petroleum pipelines and must be 

carefully stored and transported to limit water contamination. The current method of 

transport is through rail cars, barges, and over-road trucking (USDA-AMS, 2007). After 

ethanol is blended with gasoline it uses the same distribution system as gasoline to reach 

fueling stations where it is sold to the end-user. 

Vegetable oils and animal fats. Vegetable oils such as palm seed oil, rape seed oil, 

and soybean oil, and rendered animal fats are used to produce biodiesel. In the United States 

soybean oil is the largest biomass feedstock used for the production of bio-mass based diesel 

due to its use in crop rotation with corn. The production of soybeans is very similar to corn 

and uses nearly identical storage and distribution systems.  

In order to convert soybeans to biodiesel, the oil must be first removed. The soybean 

is ground into a powder, and a solvent is used to remove the oil from the solids (NSRL, 

2010). Once the oil is removed and filtered, a catalyst is used to convert triglycerides into 

biodiesel. A thermochemical process can be used to refine the biodiesel into green diesel by 

adding a hydrogenate catalyst (Kalnes et al., 2009). Green diesel made from biodiesel can be 
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used the same way petroleum-derived diesel is used, except that it is solid at room 

temperature and must be heated for storage, limiting its use.  

The current biodiesel production of 532 million gallons uses 16% of all soybean 

production in the United States (EIA, 2010c; USDA-NASS, 2010). The current production is 

about half of the mandated level of production in the Renewable Fuel Standard. The total 

production capacity in the US is 2.7 billion gallons, however low demand due to quality 

problems limits production (NBB, 2010). 

One of the co-products from the production of biodiesel is glycerol, an ingredient in 

pharmaceuticals and soap production. The solids left from the oil extraction of soybeans 

produces a high protein meal that can be used as a livestock feed. A biodiesel production 

facility often receives a better profit from the soybean meal than the actual biodiesel because 

of a previously established market for soybean meal as a protein additive to livestock feed 

(Carriquiry and Babcock, 2008).  

Due to the cold temperature side effects of biodiesel and green diesel, its blending is 

limited to ensure the mixture remains liquid. This limitation and relatively small use of diesel 

as transportation fuel prevent large scale production of biodiesel. Until problems with 

biodiesel quality are solved production will remain low.  

Nonfood-based feedstocks. Nonfood-based feedstocks use a variety of plants and 

residues that would normally be considered waste.  Because these materials are considered 

waste, a market for their use does not currently exist on a widespread scale and would need 

to be developed. 
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Cellulosic feedstocks. Cellulosic ethanol can be produced from a variety of sources, 

including agricultural residues, forest residues, dedicated energy crops, and municipal solid 

waste. These feedstocks contain materials comprised of cellulose, hemicellulose, and lignin.  

Agricultural residues. During production of crops such as corn, soybeans, and wheat, 

a large amount of the plant is unused and often discarded in the field to decompose. These 

unused portions of the plant are referred to as agricultural residues. These agricultural 

residues are environmentally valuable to the field for erosion control, and their 

decomposition maintains soil sustainability. The residues are also economically valuable to 

the producer because they reduce the need for fertilizer. Producers already collect some crop 

residues from fields for other uses, however collection is very limited.  

The most common agricultural residue considered for conversion to cellulosic ethanol 

is corn stover – the stalk, leaves, and other parts of the corn plant left in the field by a 

combine harvester. Total dry mass corn stover per acre is estimated to be equal to harvest 

grain by weight (NAS-NAE-NRC, 2011). With an average yield of 162 bushels per acre in 

the Midwest, total dry mass is approximately 3.8 tons per acre (USDA-NASS, 2010). Current 

estimates put harvest of corn stover for conversion between 30-50% of total to maintain 

sustainability of fields and limit erosion (Beach and McCarl, 2010). At 50% collection, 1.9 

dry tons of corn stover could be collected per acre. With corn acreage predicted to be around 

90 million acres over the next decade, the EPA estimates 82 million dry tons of corn stover 

can be harvested (EPA, 2010b).  

Forest resources. The Renewable Fuels Standard limits where forest resources can be 

harvested for biofuel production. Currently trees and tree residues can come only from 

managed tree plantations grown on non-federally owned lands that were last cleared prior to 
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December 19, 2007 (110 PL 140). This limit prevents use of many of the most productive 

forests in the Pacific Northwest which are on federal lands. This limit will force most 

production to come from the Southeast, where forest plantations are privately owned (NAS-

NAE-NRC, 2011). The Energy Independence and Security Act also limits production forests 

to those planted by humans. This limitation was meant to reduce the clearing of native 

forests, however new competition for biofuel feedstocks could lead to new plantations on 

native forestland to meet demand for other wood products. Harvesting of trees for bioenergy 

feedstocks will remain the same as current tree harvesting systems, however the method of 

forest residue harvesting is uncertain. 

Dedicated bioenergy feedstocks. Several nonfood crops have the ability to be used as 

bioenergy feedstocks. These perennial crops offer several environmental advantages over 

their food crop counterparts, but suffer from infrastructure barriers to use. There are several 

different nonfood crops that can be used as bioenergy feedstocks, but crops like switchgrass, 

Miscanthus, native grasses and short-rotation woody crops are the most popular for future 

biofuel production (NAS-NAE-NRC, 2011). Until the production of these dedicated 

bioenergy feedstocks develops into a commercially viable enterprise, the method of 

production will be unknown. 

Municipal solid waste. Municipal solid waste (MSW) made from biological materials 

such as wood, cotton, and food scraps can be used to produce cellulosic ethanol. According 

to the Environmental Protection Agency (2010a) the US produced 165 million tons of 

biological waste that could be turned into cellulosic ethanol. Collection of MSW can be made 

easier through recycling programs that separate metal, glass, and paper products. There are 

several barriers to widespread use of MSW for biofuel production. Many urban areas have 
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turned to trash incinerators to produce energy and which would compete with biofuel 

production (Mann, 1987). In areas where recycling programs are less developed, the process 

to separate biological materials may be cost prohibitive to producing biofuels. 

Cellulosic Supply Chain  

Similar to food-based biofuels, the production of cellulosic feedstocks is mostly 

seasonal and requires large scale storage of feedstocks for use later in the year. Currently the 

infrastructure for large scale storage and transportation of cellulosic biofuels is limited. 

Cellulosic feedstocks are far less energy-dense than food-based feedstocks and take much 

larger areas for storage and transportation. The area required for storage and increased cost of 

transportation could make unprocessed cellulosic feedstocks uneconomical for use. Regional 

processing facilities that increase the density of the feedstock through liquefaction could 

make transport and storage more economical (Carolan et al, 2007). MSW and forest 

resources do not have these problems because of their availability year around. 

There are currently two processes for converting cellulosic feedstocks to ethanol, 

biochemical and thermochemical (NAS-NAE-NRC, 2011). The two processes both meet the 

standards required by the RFS for the production of cellulosic ethanol and each has its 

challenges preventing commercial scale production. 

Biochemical production. The current biochemical process for the production of 

ethanol uses a mix of chemical and biological processes to release the sugars to be fermented. 

The process is different for each kind of feedstock; this drawback limits what feedstocks a 

cellulosic ethanol production facility can use, which limits what feedstocks can be grown in 

the region. The basic process uses chemicals to remove carbohydrates from the lignin and 

sugars from the cellulose and hemicellulose (Foust et al. 2009). However the current process 
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does not completely remove all of the sugars from the cellulose and hemicellulose. Harsher 

chemical processes can remove more sugars; however these processes make it toxic for 

biological fermentation to occur (Olivia et al., 2003). After the mash is fermented, the 

distillation process follows the same steps as in the production of corn-based ethanol. The 

solid material remaining from the process can be used as an energy source when burned. 

Thermochemical process. The thermochemical process results in a greater number 

of products than the biochemical process (Spath and Dayton, 2003). Thermochemical 

conversion of cellulosic feedstocks does not have the same drawback of limited feedstocks as 

the biochemical process. Several thermochemical processes are being developed to produce 

biofuels.  

Gasification is a thermochemical process that uses high temperature steam and low 

oxygen conditions to produces syngas from the feedstock (Huber et al., 2006). This syngas is 

then purified and liquefied and can be used to produce ethanol through fermentation. 

Alternatively the syngas can be put into a Fischer-Tropsch reactor to produce liquid 

hydrocarbon fuels that can be added to petroleum fuels. These liquid hydrocarbon fuels are 

referred to as “drop-in” fuels because they are fully compatible with conventional fossil 

fuels.  

Fast Pyrolysis and Liquefaction are other processes for the production of biofuels. 

This process uses high temperatures in an anaerobic environment to thermally decompose the 

feedstock into various hydrocarbons gases. The gas is then condensed into a bio-oil. 

Currently the bio-oil is incompatible with fossil fuels and needs to be refined for use, but 

there has been no commercial success in refining the bio-oil to be compatible with fossil 
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fuels (NAS-NAE-NRC, 2011). Liquefaction is a process that also produces bio-oil, but uses 

high pressure and catalysts to break down the feedstock. 

The co-products made from the production of cellulosic ethanol will depend on what 

processes are used and how much production is achieved. If the Renewable Fuel Standard is 

met and 16 billion gallons of cellulosic ethanol are produced, the co-products from the 

production will need to find a market for them to be profitable. The Fischer-Tropsch process 

has the ability to produce high quality diesel and jet fuel from co-products with proper 

refining methods. Most of the co-products from cellulosic production are unsuitable for 

animal feed, unlike food-based ethanol production. However these products are often usable 

as fuel for boilers and incinerators to produce electricity.  

Conclusion 

The transportation and distribution of cellulosic ethanol to blenders is the same as 

corn-based ethanol and suffers the same problems. Due to reporting standards for the 

Renewable Fuel Standard, there are additional costs to the blender in the form of accounting 

systems (110 PL 140). Currently very little cellulosic biofuel is being produced in the United 

States, however there is investment in pilot plants that can be improved to full-size 

commercial production facilities.  

There are several barriers to cellulosic ethanol competing with fossil fuels, including 

those discussed above. Future technological improvement will decrease the cost of cellulosic 

biofuels, however it is unknown if these advances will come in time for cellulosic ethanol to 

meet its mandated production levels under the Renewable Fuels Standard. The current levels 

of corn-based ethanol and biomass-based diesel production make it believable that those 

technologies will meet the RFS mandate in time. In order for cellulosic to meet its mandate, 
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the development of new technologies and construction of production facilities must happen 

quickly, creating large uncertainty as to whether the mandate will be reached. 
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CHAPTER 2: METHODS 

Research Question 

The goal of this paper is to examine if current biofuels polices work to meet their 

goals, determine if these polices have an effect on the biofuels market, or on other markets, 

and explore what the consequences of those effects are. This paper will also use the 

conclusions reached from these questions to provide policy recommendations. 

Methodology 

The paper seeks to complete a literature review on the market effects of federal 

biofuels policy. The literature review will cover current market effects and possible future 

effects based on current policy. The literature review will also cover environmental effects, 

because they are considered a market externality. As a market externality, the cost of the 

effect is not incorporated in the price of the good, but is hidden. By including environmental 

effects in the analysis this paper will provide a more holistic look at the market effects of 

biofuel policy. 
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CHAPTER 3: LITERATURE REVIEW 

Market Effects 

Each of the different kinds of biofuels has different market effects based on various 

subsidies and how the biofuel is supplied. As mentioned earlier, corn-based ethanol, 

biomass-based biodiesel and cellulosic ethanol all receive some form of government subsidy 

that affects the market price of the biofuel.  

Market analysis. Biofuels producers rely on various markets, both to sell biofuels 

and to buy raw materials for their production. Corn-based ethanol and soy biodiesel use 

preexisting markets for the procurement of raw materials and have well-established markets 

for the final product. New biofuels such as cellulosic ethanol will have to establish markets 

for raw materials and meet the standards set to enter the current ethanol market. The mandate 

created by the Renewable Fuels Standard will force the creation of these new markets and 

have large effects on other markets. The effects previous biofuel production has had will help 

in predicting how future biofuels production will affect future markets. 

Increased demand for biofuels will affect the supply of the raw materials used to 

make them. The addition of cellulosic ethanol and its demand for raw materials like 

switchgrass will change demand for land and what crops are grown on them. Ripple effects 

will pass through other markets, both domestically and internationally. These changes and 

their costs may be counter to policy goals. If this is the case, policy options must be explored 

to mitigate them. There are three main policies that create these market ripple effects; the 

Volumetric Ethanol Excise Tax Credit, the biofuels import tariff, and the Renewable Fuel 

Standard. The policy that has the potential for the largest market effect is the Renewable Fuel 

Standard, because it mandates minimum production levels of biofuels, which has the 
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possibility of not allowing market control of production. If the market demand for biofuels is 

below the mandated level by the RFS, the RFS is considered binding (Figure 2). If the market 

demand for biofuel production is greater than the mandate, the RFS is not considered binding 

(Figure 3). For the purpose of exploring how the market is affected by federal policy, this 

section assumes the RFS is binding, meaning it forces the production of biofuels above the 

market demand for them.  

Biofuel prices. The original intention of the federal blender’s credit was to create an 

incentive for gasoline blenders to mix ethanol with gasoline. While this has created demand 

for ethanol it has also changed the market. At the previous tax credit of 45 cents per gallon, 

the market price for ethanol was increased, and with it the profitability for ethanol producers 

(Babcock, 2008). Increased production of ethanol also requires a larger supply of corn and 

other inputs; the subsequent increase in demand for inputs raises input prices. There is also 

an increase in the supply of ethanol co-products such as DDGS. As a result of the tax credit 

Figure	
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and production mandate, there have been far reaching impacts on the biofuel and commodity 

markets.  

In addition to the blender’s tax credit, the federal policy of mandating the supply of 

ethanol through the Renewable Fuels Standard has an effect on the biofuels market. While 

the blenders credit has an effect on the biofuels market at all production levels, the RFS only 

affects the market when it is binding. The RFS mandate for conventional ethanol, which 

includes ethanol made from corn, tops out at 15 billion gallons in 2015 (110 PL 140). It will 

be difficult for the ethanol industry to produce more than this amount as the increased price 

of corn will decrease profitability to levels that hinder investment in ethanol production 

facilities (Babcock, 2008).  

The third part of federal biofuels policy that has had an effect on biofuel prices is the 

import tariff on ethanol from most countries. The tariff was a 2.5% sales tax on all imported 

goods in addition to a 54 cent tax on each gallon of ethanol. The imported ethanol is eligible 

for the blender’s credit, which reduces the cost of the tariff. This tariff creates a price 

difference between U.S. ethanol and other ethanol sources, including sugar-based ethanol 

Figure	
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from Brazil. Currently up to 7% of total ethanol consumption imported from several 

Caribbean and Central American countries is exempt from the tariff, but importers still pay 

the sales tax. By driving down the importation of cheap ethanol, this policy also artificially 

increases demand for domestically produced ethanol.  

In order to realize how much of an effect past federal biofuels policy has had on the 

price of biofuels it is vital to look at what the market would look like without the different 

parts of federal biofuels policy. Bruce Babcock of the Center for Agriculture and Rural 

Development at Iowa State University ran several economic scenarios in 2008 on how the 

federal policy affected ethanol and corn production. In the first scenario the RFS was 

eliminated while the blender’s credit and import tariff were kept. Under this scenario the 

expected ethanol production fell by 4%, which decreased the price by 2%. This scenario has 

the largest effect on foreign ethanol production as imports decrease by 18%. The removal of 

only the RFS will only have a small effect on the supply of ethanol because the blender’s 

credit also increases the demand for ethanol.  

In the second scenario the import tariff and the blender’s credit are ended while the 

RFS continues. This scenario reflects current federal biofuel policy. By removing the 

blender’s credit, the RFS would be binding; however domestic supply would decrease by 

11% (Babcock, 2008). With the removal of the import tariff, the importation of cheaper 

ethanol from South America would increase by nearly 100% (Babcock, 2008). The decrease 

in ethanol demand and competition from cheaper foreign ethanol would decrease the price of 

ethanol by 13% (Babcock, 2008). While the price of ethanol would decrease, the price of 

gasohol would not decrease because gasoline prices would increase.   
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The third scenario is the elimination of all three biofuels policies. Under this scenario, 

total ethanol production would fall by 21%. This decrease in ethanol production would be 

accompanied by an 18% decrease in ethanol prices due to the artificial increase in price from 

the blender’s credit. Because of the decrease in price of ethanol, imports would only increase 

slightly.   

While federal policies related to biofuels have a large effect on the price of ethanol, 

oil remains the largest price driver regardless of what incentives may be in place. Because 

ethanol is a partial replacement of gasoline, its price tends to follow the price of gasoline, 

which is linked to the price of oil. In turn, corn prices are based on the expected selling price 

of ethanol. In 2006, the cost of oil was $60 per barrel. This led to a breakeven price for corn 

of $4.72 per bushel; without the subsidy the price would have been $3.12 (Tyner 2007). 

Without any federal incentives, a wholesale gasoline price of $3.00 will support ethanol 

prices of $2.00 and a production of 14 billion gallons, 1 billion gallons below the RFS 

schedule in 2015 (Babcock, 2008). If oil prices were to drop to a level that would lessen the 

wholesale price of gasoline, ethanol production and price would decrease. The opposite 

would occur with higher oil prices.  

Commodity prices. In order to understand how biofuel production has affected 

commodity markets, it is important to understand how the commodity markets have 

historically acted. The total cropland in the United States declined from its peak in 1981 until 

2006 (USDA-ERS, 2007, USDA-NASS 2010). The increase in cropland since 2006 

coincides with the first increase in real commodity prices since the 1970s. Prior to 2006 real 

commodity prices had been decreasing due to increased efficiency, even though demand for 

corn has increased since 1975 (USDA-NASS, 2010). Between 2004 and 2008 the price of 
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corn, soybeans, wheat, and rice increased by 102% (IMF, 2010). The increases in real 

commodity prices have a variety of causes, including the increased demand for the 

production of biofuels, energy costs associated with the production of crops, and increased 

futures prices. The increase in futures prices can be traced in part to federal policy. As the 

RFS increased the mandated supply of corn-based ethanol, the corn supply necessary for the 

expected production increase guaranteed an increase in future demand that speculators could 

use to expect an increase in corn. As corn-based ethanol production increased, demand for 

corn went from 10% of total corn production to more than 40% (USDA-ERS, 2010a). This 

increase in demand has displaced other crop acres to increase the supply of corn to meet the 

demand of other users, such as livestock producers. Even with the increase in demand for 

ethanol, the amount of corn fed to livestock has not decreased, since corn yields have 

increased (USDA-NASS, 2010). Additionally, dried distillers grains with solubles have been 

used to supplement livestock feed to meet increased demand for livestock production. 

Further increases in ethanol production to meet the RFS will continue to affect the demand 

for corn and increase corn prices. If the RFS were to be repealed the price of corn would 

decrease by a little over 1%; however, if the RFS is fully implemented the price will increase 

by 3 to 5% by 2022 (Babcock, 2008, Gehlhar et al., 2010).  

Increased demand for corn and soybeans have been met through increases in yield; 

however, future increases in yield are not expected to be as high, which means more acres 

must be used to produce crops. This increase in cropland for the production of corn and 

soybeans creates competition for land use. One of the largest competitors for corn and 

soybean cropland is wheat. The change in land use from wheat production to corn and 

soybean production will decrease total wheat production and increase wheat prices. While 
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cropland used to produce wheat has continued to decline since 1981, an increase in wheat 

prices will increase the cropland used to grow wheat, most likely from acres that are 

unsuitable for corn and soybean production (USDA-NASS, 2010). The allocation of 

resources used to grow corn, soybeans, and wheat has been for the most part market 

mediated. Some subsidies have made corn and soybeans more profitable to grow than wheat; 

however, the increased demand for corn caused by biofuels supported by federal policy has 

been the largest change that is not purely market based.  

The price of corn is now tied to the price of oil due to ethanol (Babcock, 2008). 

Because ethanol is priced on its energy value in relation to oil-derived gasoline, the price 

ethanol producers can pay for corn is linked to the price of oil. This connection will continue 

until other alternative fuels are developed that do not rely on agricultural commodities as raw 

materials. With the current production capacity in the United States, ethanol with or without 

federal incentives will continue to be used as a fuel additive for the foreseeable future. If the 

RFS, blenders credit, and import tariff were all ended, the price of corn would decrease by 

13% and similar decreases in other commodities would follow (Babcock, 2008).  

Feedstocks such as agricultural residue, forest residue, and dedicated bioenergy 

feedstocks do not currently have markets to determine their market prices. This lack of 

information makes analysis difficult to accurately determine the full effects caused by 

cellulosic production. The National Academy of Sciences (2011) has released a report on its 

Biofuel Breakeven model, which compares the price biofuel producers are willing to pay and 

the price cellulosic feedstock producers are willing to accept to try and develop an estimated 

market price for cellulosic feedstocks. This model provides a basic understanding of where 

cellulosic biofuel markets may develop and at what prices. The model ignored the Renewable 
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Fuel Standard mandate and tried to use purely market conditions. Under this model, no 

cellulosic feedstock had a feasible market assuming an oil price of $111 per barrel and a 

production efficiency of 70 gallons of ethanol per dry ton of feedstock. At an oil price of 

$191 per barrel, the market for cellulosic ethanol is feasible; however, what minimum oil 

price is required to make the market feasible is unknown. There is currently a $1.01 tax credit 

available for the blending of cellulosic ethanol, but the tax credit is set to expire at the end of 

2012, and unless extended, it will not be available to producers of cellulosic ethanol to 

improve feasibility. While the market feasibility for cellulosic ethanol is questionable, the 

Renewable Fuel Standard requires its production in order to be blended and will transfer the 

high cost of production to consumers through high fuel prices. If blenders choose to not 

blend cellulosic ethanol due to high prices, the penalty for not meeting the RFS would also 

be passed on the consumer through higher fuel prices. 

Grain exports. The U.S. plays an important role in the world market because it has 

historically been a net exporter of crops like corn, soybeans, and wheat. The demand for corn 

exports has been fairly constant; additionally, soybean exports have increased and wheat 

exports have decreased over the last 25 years (USDA-FAS, 2010). One of the reasons that 

foreign demand for grain has remained stable is due to a decreasing value of the dollar that 

began in 2002. As the value of the dollar dropped compared to other currencies, the increase 

in commodity prices was proportionally less. The continued demand for exports and 

increasing commodity prices has had an effect on market prices, which affects what crops 

farmers plant in order to maximize profits. In addition, the increase in biofuels production 

and continued exports have decreased excess supplies that make up the U.S. stocks to use 

ratio, a metric comparing inventory to expected use. As developing nations’ diets change to 
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include larger proportions of meat, the demand will undoubtedly increase competition 

between biofuels production and exports (Roland-Holst, 2010). By 2015 the price of corn is 

expected to rise 12.6% from 2010 prices due to total demand increases (Taheripour et al., 

2010). 

Land prices. Biofuels production will elevate land prices for two reasons: Increased 

commodity prices raise the profit per acre, which makes cropland more profitable compared 

to other uses such as pastureland; additionally, the RFS mandate will require more land to 

grow bioenergy feedstocks. This will increase land prices in areas suitable for bioenergy 

feedstock production. For current conventional biofuels, such as corn-based ethanol, the 

required land area will increase by very little and eventually decrease as corn yields improve; 

however, higher prices will increase corn production. Various techniques such as GPS 

planting and increased plant populations will result in higher production without the need for 

more land.  

The largest factor in how much land prices will increase due to the RFS will be what 

source cellulosic ethanol comes from. If dedicated bioenergy crops, such as switchgrass, are 

used to meet the RFS mandate, a significant increase in cropland will occur. In order to 

harvest the necessary dry tonnage of bioenergy feedstock, an additional 27 million acres of 

cropland will be necessary (USDA, 2010). The RFS requires that any land used to produce 

bioenergy feedstocks be in production prior to December 19, 2007 to prevent land use 

change (110 PL 140). In order to meet this requirement, production of bioenergy feedstocks 

will displace 6.5% of cropland, and these displaced crops will require new cropland to meet 

demand. These crops will most likely be grown on land not previously in production, thereby 

negating the prior-use requirement.  
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Until cellulosic ethanol production reaches commercial scale and markets for its 

feedstocks are established, it is difficult to determine how much land prices will rise. If large 

amounts of crop and forest residues are used instead of switchgrass, the amount of new land 

needed could be minimal. But any change in land use will result in some increase in land 

prices.  

Food prices. Commodities’ largest use is food production. The increase in 

commodity prices over the last decade from near all-time real price lows to near all-time 

highs has contributed to rising consumer food prices (Babcock et al, 2010). According to the 

USDA, the Food Consumer Price Index increased 4% in 2007 and 5.5% 2008 compared to a 

historic average of 2-3% (USDA-ERS, 2011b). The near doubling of commodity prices over 

the same period has had an effect on food prices here in the U.S. and around the world (IMF, 

2010). The most important commodity in the relationship between biofuels production and 

food prices is corn. 

It is important to examine how federal biofuels policy will affect corn prices because 

corn is a raw material used in many foodstuffs and as feed for livestock that produce meat, 

dairy, and eggs. Increased corn prices caused by rising oil prices and ethanol demand have 

increased the cost of raising livestock. Raising poultry, which require the largest proportion 

of corn in their diets, has become 15% more expensive, and very little of that increase has 

been passed on to the consumer (Tyner, 2007). Eliminating the three major biofuels policies 

would reduce costs for livestock producers by 7% for beef, 5% for pork, 3% for dairy, and 

4% for eggs (Babcock, 2008). Current estimates suggest that a 30% drop in corn prices will 

lower consumer food expenditures by 1.3%. Corn prices would be even higher if not for the 

use of DDGS by livestock producers. One bushel of corn is able to produce 2.79 gallons of 
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ethanol and 18 pounds of DDGS (Taheripour and Tyner, 2010). Because it can be used as a 

corn replacement, its price follows that of corn. Federal biofuels policy has had little effect 

on consumer food prices, and ending these policies will have almost no effect in lowering 

food costs.  

The reason food prices do not rise and fall at the same rate as commodity prices is 

due to the processing costs associated with transforming raw commodities into food found on 

grocery store shelves. The more a product is processed, the less its price is affected by 

commodity prices. The commodities used to produce biofuels, such as corn and soybeans, 

require a great deal of processing before they are consumed, and thus are barely affected by 

changes in commodity prices. The price of corn flakes, for example, is 95% processing costs. 

A 40% increase in the price of corn would only increase the price of corn flakes by 2%. The 

average processing costs of U.S. agricultural commodities is 81% (USDA-ERS, 2011c). Due 

to this high percentage, biofuels currently have a minimal effect on non-meat food prices.  

However, changes in commodity prices do have a larger effect on meat prices. 

Products such as beef, chicken, and pork are more affected because of the feed costs 

associated with raising the animals. With chicken, the feed, most of which is corn, makes up 

69% of the cost of bringing the meat to market (Donohue and Cunningham, 2009). In 

addition, the length of time to market plays a large factor. Broiler chickens are raised in short 

time period measured in weeks, whereas cattle raised for beef require up to two years from 

birth to slaughter. The longer period for which feed must be fed increases the cost caused by 

increasing commodity prices. Due to the various techniques used to raise livestock for 

slaughter it is difficult to determine how much of the increase in meat prices is due to 

biofuels production. The best metric to use to determine the effect of biofuels is to look at the 



	
  
	
  

	
  

28	
  

price of chicken, as most broilers are raised in a uniform way. Of the total price of chicken, 

42% goes to raise the broiler, of which 69% is feed, in this case corn—meaning of the 

increase in chicken prices, 5.8-11.6% was as a result of increased commodity prices (NAS, 

2011). The increase in meat and dairy prices will have some effect on demand for those 

products.  

In addition, the increased cost of raising livestock affects more than just food prices. 

Co-products from meat production such as leather and wool will also be affected. Taheripour 

et al. (2010) predicted that between 2006 and 2015, the worldwide decrease in livestock 

industries would equal $3.7 billion. But most of the contraction occurring in countries that 

still rely on corn for feed instead of DDGS. Within the United States, the contraction of the 

livestock industry is projected to be $0.9 billion. 

Biofuels will also affect how livestock are produced. Increased grain prices will cause 

an increase in the use of pastureland as cropland. Taheripour et al. (2010) estimated that 18.7 

million acres of pastureland could be converted to cropland by 2015 due to increased grain 

prices. This reduction in pastureland will change how livestock are raised; including a 

possible increase in concentrated animal feeding operations such as feed lots and hog 

confinements.  

Oil and transportation fuels. If the RFS is achieved and 36 billion gallons of biofuels 

replace fossil fuels, total U.S. demand for oil will drop by 9.5% (EPA, 2010b). This 

reduction in oil usage will reduce worldwide oil demand enough to decrease the price of a 

barrel of oil by as much as $1.05. Other studies show that the worldwide price of oil would 

fall by approximately 4% and standard gasoline prices would decrease by 8% (Gehlhar et al., 
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2010). The price of gasoline sold as transportation fuel would decrease by 12% because it 

would be blended with less expensive biofuels such as ethanol. 

If the RFS is fully implemented and fuel efficiency standards are met, the amount of 

oil imported for transportation fuel will decrease. USDA-ERS (2010b) predicts that the use 

of biofuels will reduce oil imports by 16-17%. This reduction will lower US oil import 

expenditures by $61-68 billion. This decrease in imports would cause the dollar to appreciate 

and reduce the cost to import other goods. An increase in the value of the dollar would also 

reduce exports to other countries.  

The RFS is a consumption mandate that requires the blending of various renewable 

fuels. While fuels like corn-based ethanol and soy biodiesel are price competitive with 

gasoline and diesel, cellulosic ethanol is not. If the price of cellulosic ethanol remains high 

and the tax credit is allowed to expire, the high cost will be passed onto the consumer 

because of the consumption mandate. This increase in transportation fuel price would cause a 

reduction in demand for transportation fuel. 

Conclusion. Understanding the market effects of biofuels policy is important in 

determining the effectiveness of the policy. Current biofuels production has had multiple 

market effects and the future production of cellulosic biofuels could have major market 

effects. While the actual market effects of cellulosic ethanol are unknown, the predictions 

leave pause. Federal policy has been designed to reduce land use change; unfortunately, 

markets will undoubtedly cause land use change that has repercussions beyond the market. 

Even though biofuels have had minimal effects on food prices in the United States, future 

biofuel production could have larger impacts as food crops compete for land. The effects on 

food prices will also be much more dramatic in underdeveloped countries. 
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Effects on Federal Revenue and Expenditures 

Federal biofuels policy also affects federal revenues and expenditures and has a broad 

range of impacts in areas including tax revenues, welfare programs, agriculture support 

programs, and conservation programs. 

Federal revenues. Federal biofuels policies both add to the federal coffers and take 

from them. The major policies that affect federal revenues are the blender’s credit, the import 

tariff, and federal income taxes. 

Volumetric Ethanol Excise Tax Credit. The volumetric ethanol excise tax credit, 

also known as the blender’s credit, has had a large effect on tax revenue because it reduces 

the amount owed by blenders. The VEETC was allowed to expire at the end of 2011. In 2010 

the 45 cent tax credit for corn-based ethanol reduced tax revenues by nearly $5.4 billion 

(GAO, 2011). The blenders credit also has a subsidy for cellulosic ethanol of $1.01 per 

gallon; however, the tax credit is set to expire in 2012 and no commercial facilities are 

expected to be operational in order to receive it. While the blender’s credit expired at the end 

of 2011, it can be renewed retroactively, though this is unlikely. If the tax credit were 

extended, at the RFS mandated supply of 15 billion gallons annually the blender’s credit 

would reduce federal revenues by $6.75 billion per year (GAO, 2011). 

Import tariff. In addition to the VEETC, the government has previously laid an 

import tariff of 54 cents per gallon plus 2.5% of the import value. In total, the tariff brings in 

around 59 cents per gallon of imported ethanol. This tariff also expired at the end of 2011. 

The imported ethanol was also eligible for the blender’s credit, which withholds tax revenues 

at 45 cents per gallon. This leaves approximately 14 cents per gallon in federal revenue per 

gallon of imported ethanol. Even without the tariff, current corn-based ethanol production 
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makes it unlikely that any ethanol will be imported to fulfill the conventional biofuel portion 

of the RFS. Because most imported ethanol is made from sugarcane, it is possible for it to 

fulfill the advanced biofuel requirement.  

Income tax revenues. The increases in commodity prices have helped to increase on-

farm incomes, which have resulted in increased income tax revenues. Net farm income for 

2010 was $79.1 billion, up from $61.6 billion in 2009 (USDA-ERS, 2011d). The USDA 

forecasts that 2011 incomes will increase by 31%. Unfortunately, how much tax revenues 

have increased is unknown because the most recent data on tax revenues from farm activities 

is from 2004 (USDA-ERS, 2009). 

Federal expenditures. There are several federal policies that could be affected by the 

biofuels production. Currently several programs are set up to provide subsidies for the 

production of corn and soybeans. Welfare programs, such as food and nutrition assistance, 

will costs more due to higher food prices caused in part by biofuels production. Federal 

programs for the construction of biofuel production facilities directly subsidize biofuel 

producers. There are also some social costs associated with the production of biofuels that 

affect federal policy. 

Cellulosic ethanol production facility construction programs. There are several 

programs that provide money to help pay for the construction of cellulosic ethanol 

production facilities. These programs take the form of tax credits, grants, loans, and loan 

guarantees. Programs range from $50 million up to $400 million per construction project. 

Programs like these are direct federal expenditures on biofuels production, unlike other 

expenditures discussed below. 
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Farm programs. The Food, Conservation, and Energy Act of 2008, better known as 

the 2008 Farm Bill, renewed several programs that were established to help support low 

commodity prices (110 PL 234). The 2008 Farm Bill authorized three programs to help 

farmers through direct payments, countercyclical payments, and loan deficiency payments. 

With the current prices of commodities, these programs are unnecessary, and biofuels 

policies increase the expenditures of some of these programs.  

The direct payment program pays farmers a fixed amount for producing certain kinds 

of crops. Among the eligible crops are corn and soybeans. As corn-based ethanol production 

has increased, the supply of corn necessary to meet demand has jumped which increases the 

funds required to make direct payments—no matter what the market prices for those eligible 

crops are. The 2008 Farm Bill established direct payments at 28 cents per bushel for the 2012 

crop year. The Farm Bill is set to be renewed in 2012, which could change the direct 

payment schedule, though reauthorization will most likely be delayed due to the 2012 

elections. 

The government also provides countercyclical payments if the market price of an 

eligible crop falls below a target price. Biofuels policies have helped to increase the market 

prices for eligible crops. Under the Farm Bill, the target price for corn is $2.63 per bushel. At 

the time this paper was written, the market price for corn was $6.59 minus basis cost (CME, 

2011). Because the current price is more than double the target price, no countercyclical 

payments have been made. Due to the current market price and projected market price 

without biofuels policies, the federal expenditure is expected to be zero; however, federal 

biofuels policy does not ensure this, so it does not save the federal government any money by 

keeping the policy. 
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The final program authorized by the Farm Bill provides loan deficiency payments 

meant to assist farmers in meeting operating loans if the market prices of eligible crops fall 

below the market loan rate. The Farm Bill set the marketing loan rate at $1.95 per bushel of 

corn. Under this program the government will pay farmers the difference between the market 

price and the marketing loan price if the market price is below the marketing loan price. 

Similar to countercyclical payments, biofuel policy does not help to keep the market price 

above the marketing loan rate, nor does it push the price below it.  

Based on USDA (2011) projections for 2011-2021, the prices of corn, soybeans, and 

wheat will not fall below any of the target prices or marketing loan rates. Because of this, the 

government is unlikely to make any countercyclical payments or loan deficiency payments. 

However, federal biofuels policy does nothing to ensure that prices do not fall below these 

levels. Instead, the policies have increased the demand for corn and soybeans, and thereby 

increased the funds necessary to meet direct payment obligations.  

In addition to programs to support commodity prices, the Farm Bill reauthorized 

several conservation programs, including the Conservation Reserve Program (CRP), which 

was  developed to help conserve high-risk acres that were in agricultural production by 

paying farmers to remove them from production. The 2008 Farm Bill allows 32 million acres 

to be enrolled in CRP. In 2010, 31.3 million acres were enrolled in CRP on 10-15 year 

contracts that paid an average of $44 per acre. To qualify for CRP, the land had to be used to 

plant an agricultural commodity for four of the previous six years (110 PL 234). As biofuel 

production expands, the demand for land to grow bioenergy crops for both cellulosic and 

conventional biofuels will increase. Due to the requirements to enroll in CRP, that land will 

fulfill the land use change requirements of the RFS. In order for CRP to compete with 
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possible biofuels profits, it will have to increase its per acre payment.  In 2010, CRP cost 

$1.7 billion, and that figure will likely increase (Cowan, 2010). In recent years the number of 

acres applying for CRP has been higher than the number of acres available to be enrolled; 

however, new bioenergy crops could be better suited to grow on some marginal CRP land 

that was unprofitable for corn or soybean production. Currently, bioenergy crops such as 

native grasses or switchgrass cannot be harvested from CRP land. If this rule changed it 

could be possible for CRP enrollments to stay high at reduced rates by allowing bioenergy 

crops that are suitable for conservation purposes to be grown and harvested for use in the 

production of biofuels. 

Nutrition and income assistance programs. One of the market effects discussed 

earlier is the increase in food prices caused by federal biofuels policy. While the increase due 

to biofuels is small, the increase affects low-income groups the most, especially those relying 

on government nutrition and income support. Programs like the Supplemental Nutrition 

Assurance Program (SNAP) and the Special Supplemental Assistance Program for Women, 

Infants, and Children (WIC) provide financial assistance to help low-income families buy 

food. Annually the Food Consumer Product Index (FCPI) increases by 2-3%, however, when 

global food stocks are low, such as they were in 2006-2008, food prices increase faster than 

average. Spending on programs like SNAP and WIC is linked to increases in the FCPI. 

According to Congressional Budget Office (2009), FCPI increases associated with biofuels 

resulted in a boost in SNAP funding of $500-800 million and in WIC funding of $75 million. 

As food prices are expected to increase, in part due to increased production of biofuels, the 

federal expenditures for SNAP and WIC will have to increase to compensate.  
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Supplemental income programs, such as Social Security, Supplemental Security 

Insurance, and military and federal retirement programs, increase payments with increases in 

the total Consumer Price Index. In 2009, Social Security and Supplemental Security 

Insurance had a combined budget of $709.6 billion and increases every year. The massive 

size of these programs causes even small changes in the CPI caused by biofuels policy to 

increase federal expenditures in huge proportions. 

Social costs. In addition to federal expenditures that can be quantified, there are 

social costs caused by market failures that could increase the cost of federal biofuels policies. 

One of the largest social costs is the environmental impact of biofuels production and use. 

This topic will be discussed further in its own section. Other social costs include the 

transformation of the agricultural industry from small family farms to large corporate farms 

due to increased costs associated with operating a farm. This could affect federal programs 

designed to increase small farms (110 PL 234). Social costs, while hard to quantify, should 

play an important part in analyzing the effectiveness of biofuels policy. 

Environmental Impacts of Biofuel Policy 

In an effort to reduce the environmental impact of fossil fuels, the U.S. has added 

biofuels to transportation fuels to make them burn cleaner and to decrease greenhouse gas 

emissions. In recent years the actual environmental benefit of the use of biofuels has been 

questioned. While the addition of biofuels does make a fuel burn cleaner, growing bioenergy 

feedstocks and producing biofuels requires the use of fossil fuels and other resources that 

may become unsustainable (Robertson et al., 2008).  

In order to understand their impact, it is important to look at recent life-cycle analyses 

(LCA) that evaluate the environmental impact of biofuels production. It is important to 
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understand any negative environmental externalities associated with biofuels production in a 

market analysis, because the externality is considered a market failure. The emissions from 

biofuels must also be compared to the emissions from fossil fuels to determine if the policy 

goals of the Renewable Fuel Standard are being met.  

Life-cycle analysis. A life-cycle analysis looks at the production of biofuels from the 

very beginning until the end consumer burns the fuel (ISO, 2006). The LCA must begin with 

land use change, examine the production process of growing bioenergy feedstocks, the 

infrastructure related to the transportation and storage of bioenergy feedstocks, the biofuel 

production process, the blending process, and the emissions from the consumption of the 

biofuel. 

Environmental effects. In order to understand the environmental impact of biofuels, 

multiple factors must be examined: Greenhouse gases, air pollutants, soil sustainability, 

water quality, and water consumption all must be reviewed. 

Greenhouse gas emissions. The International Panel on Climate Change defines a 

greenhouse gas as: 

A gas that absorbs radiation at specific wavelengths within the spectrum of radiation 
(infrared radiation) emitted by the Earth’s surface and by clouds. The gas in turn 
emits infrared radiation from a level where the temperature is colder than the surface. 
The net effect is a local trapping of part of the absorbed energy and a tendency to 
warm the planetary surface. Water vapor (H2O), carbon dioxide (CO2), nitrous oxide 
(N2O), methane (CH4) and ozone (O3) are the primary greenhouse gases in the 
Earth’s atmosphere. (IPCC, 2011) 

Biofuels both consume and release various greenhouse gases throughout the production 

process; however, the net effect is different for each of the bioenergy feedstocks and 

production processes. Without knowing what feedstocks will be used to produce cellulosic 

biofuels in the future, the exact amount of greenhouse gas emissions will be unknown. That 
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said, studies of the different production possibilities give a good prediction of how much 

could be emitted.  

One of the largest greenhouse gas emissions related to biofuels production is caused 

by land use change. The transfer of land from native ecosystems to row crop-farms increases 

the level of GHG emissions compared to using land previously in production (Fargione et al., 

2008). With rising commodity prices, there has been an increase in the number of acres 

planted, leading to market-mediated land use change, which could release carbon stored in 

the soil and vegetation planted there. If the production of cellulosic ethanol becomes a 

reality, the new market for cellulosic feedstocks will introduce an additional competitor for 

land use and could increase the acres farmed in the U.S. Biofuels policies also have the 

ability to affect global land use. The Global Trade Analysis Project estimated that for every 

1,000 gallons of corn-based ethanol produced, there would be a land use change of 0.32 

acres, which would result in over 5 million acres of land use change if the 16 billion gallons 

required by the RFS is met (Tyner et al., 2010). The land appropriated by biofuels production 

would be 33% forest and 67% pasture and grassland. In order to combat land use change 

Congress required that all biofuels feedstocks be grown on land in production before 

December 19, 2007. However, bioenergy feedstocks could be grown on land already in 

production and the previous crop moved to new land. Because of this, it is very difficult to 

enforce the regulation (111 PL 140). Converting forest to cropland releases a large amount of 

carbon (NRC, 2010a). For this reason it is important to limit how much land use change 

occurs due to biofuels policy.  

The type of bioenergy feedstocks used to produce biofuels plays a big role in 

determining GHG emissions. Perennial crops have a higher carbon sequestration potential 
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than annual crops; some crops require fewer agricultural inputs made from fossil fuels, and 

equipment requirements for production (Anderson-Teixeira et al., 2009). While annual crops 

like corn and soybeans require greater inputs, they are converted to biofuels more efficiently 

than perennial cellulosic feedstocks, which reduces the emissions per unit of fuel, even 

though emissions are higher per unit of land (Williams et al., 2009). Corn and soybeans also 

have an advantage over cellulosic feedstocks in that very little, if any, land use change is 

needed to produce enough feedstocks to fulfill the RFS. 

The inputs and management practices for growing bioenergy feedstocks also affect 

GHG emissions. Several studies have compared the carbon storage of different soil 

management practices, including no-till and conventional tillage. These studies found no 

difference in carbon storage between the different tillage methods; however, conventional 

tillage does require tractors to till the soil, which release carbon (Blanco-Canqui and Lal, 

2008, Christopher et al., 2009). Bioenergy feedstocks can require large amounts of 

agricultural inputs depending on the soil used to grow them. Fossil fuels are used to 

manufacture agricultural inputs like fertilizers, herbicides, and pesticides, which must then be 

transported and applied (Snyder et al, 2009). Nitrogen fertilizer releases nitrous oxide in its 

production process and through nitrification of soil after application to fields, both of which 

increase GHG emissions (Bouwman et al., 2010). The EPA (2010c) estimates that 68% of all 

N2O emissions come from agriculture. Better management practices can reduce GHG 

emissions by requiring fewer inputs; however, they require educating farmers. 

The production process used to turn feedstocks into biofuels also has significant GHG 

emissions. Carbon dioxide is released in the fermentation process that turns sugars into 

alcohol. Ethanol plants use fossil fuels or burn biomass to create heat and electricity required 
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for production (RFA, 2011). Carbon emissions from burning biomass are considered carbon 

neutral, because biomass releases carbon already captured from the atmosphere. Few 

production facilities use this method, though as cellulosic production facilities are being 

built, planners are choosing to move to biomass in order to be more carbon neutral (Wang et 

al., 2011a).  

No matter what bioenergy feedstock or production process is used, once the ethanol is 

produced, the transportation and tail pipe emissions are the same. Once the GHG emissions 

are measured or estimated, a LCA can be completed. Because each kind of biofuel mandated 

by the RFS has a different GHG emission standard, separate LCAs must be done for each 

fuel type. 

Searchinger et al. (2008) conducted a U.S. average life-cycle analysis of corn-grain 

ethanol that puts total GHG emissions at 177 g CO2 eq per MJ, compared to gasoline, which 

has life-cycle GHG emissions of 49 g CO2 eq per MJ (Hsu, 2011). Of all the cases examined, 

the Searchinger et al. study had the highest GHG emissions; Wang et al. (2011a) had the 

lowest GHG emissions at 69 g CO2 eq per MJ. These studies, however, did include carbon 

emissions from land use change that has already occurred to determine the life-cycle carbon 

emissions. Because the land use change has already occurred, ending the use of corn-based 

ethanol will not decrease GHG emissions. The EPA in its final rulemaking for the Renewable 

Fuel Standard conducted its own LCA and determined corn-based ethanol did meet the 20% 

reduction of GHG emissions compared to gasoline to fulfill the mandate (EPA, 2010b).  

Biofuels made from municipal solid waste and agricultural or forest residues have a 

far better opportunity to reduce GHG emissions compared to corn-based ethanol. This is in 

large part because there is very little land use change involved if sustainable amounts of 
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residues are removed (Cherubini and Ulgiati, 2010). MSW has the largest opportunity to 

reduce GHG emissions; however total volume of waste can only produce enough biofuels to 

replace 2% of fossil fuels used for transportation (Kalogo et al., 2006). 

The GHG emissions caused by future use of dedicated bioenergy crops to produce 

cellulosic ethanol depend on what land use change occurs. If the production of dedicated 

bioenergy crops causes land use change either directly – or indirectly, as farmers seek land to 

grow displaced crops – the life-cycle GHG emissions could increase enough to cause the 

biofuel to not meet RFS requirements (Roberts et al., 2006). The land used to grow dedicated 

energy crops must have a low carbon sequestration ability in order for the GHG emissions to 

be low enough from the land use change. While the GHG emissions may be higher than 

allowed by the RFS, GHG emissions from land used to grow dedicated bioenergy crops will 

be lower than if used to grow corn or soybeans for biofuel production (Hammerschlag, 

2006).  

While the EPA has determined corn-based ethanol to fulfill the necessary GHG 

emissions reduction, other studies show it does not meet the standard, leaving definitive 

conclusions open to further research. Biofuels produced from MSW and agricultural or forest 

residues have been shown to reduce GHG emissions enough to meet the RFS standard, 

however it is unknown if enough supply to produce the required amount of biofuels can be 

obtained without negatively affecting soil sustainability. As far as the amount of GHG 

emissions from cellulosic ethanol, the variability of production methods makes it difficult to 

determine if the biofuel will meet the RFS standard. As more research is conducted into 

GHG emissions and cellulosic ethanol becomes commercially viable, it will be possible to 

determine if cellulosic ethanol meets the RFS standards. 
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The Renewable Fuels Association, a public policy organization promoting the use of 

ethanol and other biofuels, lists several facts about ethanol and its effect on the environment. 

It specifically cites a study by Liska et al (2008), which found a life-cycle GHG emission 

reduction of 48-59%. The study found this reduction by only looking at the most efficient of 

biorefineries and crop planting systems, and ignoring historical averages. While this study 

does do a good job of finding what the most efficient systems are capable of, it ignores the 

real-world production that exists. A majority of biorefineries are far less efficient than the 

ones examined in this study, and the corn production methods are not easily changed on a 

nationwide scale to meet the most efficient practices. While the study is useful to show what 

the future of biofuels production could be, it is unlikely that the industry as a whole will ever 

reach this efficiency before the RFS expires. 

Air quality. In addition to GHG emissions, biofuels also emit various air pollutants, 

including: carbon monoxide, sulfur dioxide, nitrous oxide, particulate matter, ozone, 

ammonia, and volatile organic compounds (VOCs) (NAS, 2009). These air pollutants can 

harm to humans and the environment. Hill et al. (2009) compared the emissions of these air 

pollutants for the different biofuels and also for gasoline production. The study determined 

that ethanol made from either cellulosic or corn feedstocks resulted in higher emissions of 

VOC’s, nitrous oxides, ammonia, and particulate matter than gasoline; cellulosic ethanol 

emitted lower sulfur dioxide emissions than gasoline, while corn-based ethanol emitted 

higher.  

Air pollutants are much different from GHG emissions, because their effects are local 

rather than worldwide. As discussed earlier, ethanol was used as an oxygenate to meet Clean 

Air Act requirements for certain urban areas, because the problems are local rather than 
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widespread. Because air pollutants are a local problem it is difficult to quantify the issue at 

the national level. In areas with poor air quality, biofuels will make the problem worse. Cook 

et al. (2011) determined that air pollutant emissions caused by the RFS would be 11 million 

tons of nitrous oxide, 47 million tons of carbon monoxide, 9 million tons of sulfur dioxide 

and 4 million tons of ammonia. The EPA (2010a) determined that due to these increased air 

pollutants, up to 245 premature adult deaths could occur. 

Soil sustainability. Soil sustainability is the ability of soil to retain nutrients required 

to grow crops. Current agricultural practices include, crop rotations, nutrient application 

through fertilizer, and natural decomposition, which help ensure soil sustainability. Soil tests 

are capable of determining if soil has the proper nutrients to stay sustainable. Improved 

management practices can help ensure soil sustainability. One of these practices is allowing 

agricultural residues to decompose into the soil; however, one plan for increasing biofuels 

production removes large amounts of agricultural residue and would require shifts in 

management practices to make up for the lost nutrients. Additionally, certain bioenergy 

feedstocks help the soil complete the nitrogen cycle and would improve soil sustainability.  

In order to produce cellulosic biofuels from agricultural residues, the residue must be 

removed from the field, which reduces the material that would naturally decay to replenish 

soil nutrients. It is important that too much agricultural residue not be removed from 

agricultural fields to ensure soil sustainability (Huggins et al., 2011). As more residue is 

removed, more nutrients must be added to maintain sustainability. 

Agricultural irrigation also has a unique effect on soil sustainability. Water from 

aquifers often contains minerals that are left in the soil after the it evaporates. These minerals 

increase soil salinity, which reduces yields (El-Ashry et al, 1985). Nearly half of all irrigated 
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soil is affected by salinity that reduces crop yields (NAS, 1993). As more irrigation is used, 

soil salinity will increase and eventually make the soil unusable. 

Water quality. Increased biofuel production that causes land use change will have an 

effect on water quality. Water quality will be most affected by the increase in biofuels 

production if land that was not in production is planted with crops that have little ground 

cover (Engel et al., 2010). Poor ground cover increases erosion and runoff of chemicals and 

fertilizers, which can cause water quality problems at great distances.  

One of the most studied water quality problems related to runoff is the hypoxia zone 

in the Gulf of Mexico caused by excess nitrogen from Mississippi river basin (Dale et al., 

2010b). A hypoxia zone is an area that lacks enough oxygen in the water for organisms to 

survive. Excess nutrient runoff has been attributed to the increasing size of the hypoxia zone 

in the Gulf of Mexico (Liu et al., 2010). Large hypoxia zones reduce profitability for 

fisherman and shrimpers. 

As biofuels production increases and more land is used to produce bioenergy 

feedstocks, the amount of runoff will increase with it (NRC, 2008). The increase in runoff 

will depend on what bioenergy feedstocks are planted. Perennial crops such as switchgrass 

allow less erosion and runoff compared to annual crops like corn. If cellulosic ethanol is 

made from agricultural residues, the reduction in land cover will also increase erosion, 

depending on soil management practices. Unfortunately no LCAs exist that estimate how 

much water quality is affected by biofuels production (Secchi et al., 2011).  

Because biofuel production facilities are required to apply for National Pollutant 

Discharge System permits, the facilities must meet standards set by the Clean Water Act to 

ensure water quality from any discharges (88 PL 206). While the production of biofuels 
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results in no water quality problems, the use of biofuel co-products does pose problems for 

water quality. DDGS contain concentrated amounts of nitrogen and phosphorus that are not 

digested by livestock, pass through the animals, and are disposed of in the manure. The 

higher concentrations of nitrogen and phosphorus can cause problems if the manure is used 

as fertilizer and not adequately diluted (Benke et al., 2010). 

As discussed earlier, irrigation has the ability to increase soil salinity. Runoff from 

saline soil can increase water salinity. Increased river salinity has major consequences for 

downstream users. Increased salinity of the Colorado River during the 1970s caused 

Congress to approve funding for a desalination plant to take salt out of the river (93 PL 320). 

Increases in irrigation for bioenergy feedstocks could cause similar situations in other river 

basins, including the Mississippi. 

Water consumption. Policy makers have long overlooked the amount of water used 

to grow crops in the United States. Increased reliance on irrigation and land use change can 

have dramatic effects on aquifers and ground water. Water for the production of bioenergy 

feedstocks comes from several sources depending on where the feedstocks are grown. In 

areas like Nebraska and Kansas, farmers irrigate with water from aquifers; in areas like Iowa 

and Illinois, groundwater replenished through rain provides water; and in areas like southern 

California, water is diverted from rivers for irrigation (Howell, 2001). As more bioenergy 

feedstocks are used, more water will be necessary to maintain production. 

Much of the crop production from South Dakota down to Texas relies on water from 

the Ogallala Aquifer. As the amount of land used to produce bioenergy feedstocks increases, 

the rate of water depletion in the aquifer also increases (Clark and Peterson, 2008). This is an 

important issue because the production of bioenergy feedstocks can consume water faster 
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than resources can be replenished. Currently agriculture uses one third of all water, and this 

figure will grow if there is an increase in bioenergy feedstocks. Even if the increase in 

production comes through higher crop density instead of land use change, more water will 

still be required.  

Increased planting of bioenergy feedstocks in areas that do not require irrigation also 

has an effect on water consumption. As more crops are planted in areas that rely on 

groundwater saturation, the level of groundwater can fall below the root zone. Additionally, 

as groundwater drops, streams, rivers, and lakes will have decreased inflow (USGS, 1999). A 

streams or river is classified as gaining or losing depending on its relationship with 

groundwater. Increased use of groundwater could turn streams that were once gaining into 

ones that are losing, which could affect groundwater downstream. Unfortunately, little 

research has been completed to quantify how much increases in biofuel production will affect 

groundwater resources. But there is little doubt that more production will cause decreases in 

groundwater. 

Many of the 31 states that make up the Mississippi river basin are currently cultivated 

with crops that can be used as bioenergy feedstocks, and will see increases in acres planted as 

markets for cellulosic feedstocks develop (US Army Corp of Engineers, 2001). As less 

groundwater is available for discharge into the Mississippi and its tributaries, the water level 

of the river could drop, hindering commerce that uses the river for transportation.  

Decreased water inflow can also reduce the amount of water available for gravity 

irrigation of other crops. Vegetable production around the Salton Sea in southern California 

relies on irrigation from the Colorado River (Imperial Irrigation District, 2011). Increases in 

upstream water use, both in irrigation from the river and decreases in groundwater discharge, 
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could prevent adequate water from reaching southern California. Additionally, the Colorado 

River flow could have implications in foreign relations. The Mexican Water Treaty of 1944 

requires 1.5 million acre-feet of water flow to Mexico annually. While the outflow of water 

from the Colorado River is tightly regulated, the inflow from groundwater is not and could be 

affected by future bioenergy feedstock production.  

Conclusion  

While the environmental impact of producing corn and soybeans has long been 

studied, how much new bioenergy feedstocks like switchgrass and residues will affect the 

environment is largely unknown because it’s unclear which bioenergy feedstocks will be 

grown. The production process for cellulosic ethanol is also filled with many unknowns 

because of the lack of commercial production to study. But from what is known about the 

environmental impact of biofuels production, certain conclusions can be made.  

The life-cycle greenhouse gas emissions of cellulosic ethanol will not meet the 

standards set by the RFS if large land use change is caused. Only if the RFS can be met 

through means that do not cause land use change will the GHG reduction standards be met. 

However, the available sources of bioenergy feedstocks that will not cause land use change 

make this highly unlikely. Increased production of bioenergy feedstocks will have major 

effects on air quality, soil sustainability, and water quality. In order to better understand how 

much biofuels will affect these environmental components, more research is needed. Water 

consumption is one of the most important environmental factors facing the future of biofuels 

production that has far reaching consequences. Future research is needed into all of these 

environmental factors; however, what is known now will help develop future biofuel policy. 
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CHAPTER 4: RESULTS 

From the literature review, several conclusions can be made. Federal policy 

supporting the production of biofuels has been based on two priorities, energy security and 

environmental protection. The current policy will have little impact on ensuring energy 

independence, because biofuels are not capable of replacing enough oil-based transportation 

fuels to end oil imports. There is also doubt that current requirements can be met because of 

uncertainty in how much greenhouse gases will be emitted from the future production of 

biofuels; if the policy cannot be met, changes will have to be made. 

Policy Problems 

The current Renewable Fuel Standard requires 36 billion gallons of biofuels be 

produced by 2022. Currently the U.S. uses 138 billion1 gallons of fuel a year. Replacing 36 

billion gallons will do little to reduce the total consumption of fossil fuels and will only 

reduce oil imports by 9.5% (EIA, 2010a; EPA, 2010b). There are also regulatory barriers to 

achieving the RFS. For instance, the EPA will only allow a 15% blend of ethanol to be used, 

and the 15% blend can only be used in cars manufactured after 2001. This level of blending 

will only allow 20 billion gallons to be blended each year (EPA, 2011). Until this regulatory 

problem can be fixed, the RFS will do little to meet it energy security goal. 

In addition to energy security concerns, biofuels have been supported because of their 

environmental benefits. Current studies that try to measure greenhouse gas outputs associated 

with the production and use of biofuels do not provide a clear picture of biofuels’ benefits or 

costs. The methodologies of these studies vary greatly and use different data estimations due 

to the lack of observations. In examining the various methodologies, several questions have 
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arisen in determining which study best represents reality. How far back in the production 

chain should we measure greenhouse gas output? Should land use change that has already 

occurred be included in determining the GHG emissions of the fuel? Are the data estimates 

accurate enough to provide an adequate measurement?  

From the literature review, there is data that suggests corn-based ethanol does not 

meet the required life-cycle reduction of GHG emissions to be considered for use under the 

RFS; however, the Environmental Protection Agency has determined that corn-based ethanol 

does meet the requirements. There is also considerable uncertainty about how cellulosic 

ethanol will be produced. Without knowing this, a life-cycle analysis that determines the 

GHG emissions is impossible to complete. While no LCAs exist to measure the possible 

carbon emissions, some predictions can be made. The land required for the production of 

bioenergy feedstocks will almost certainly cause land use change that will increase GHG 

emissions beyond the requirements of the RFS.  

In addition to problems with its policy goals, the current Renewable Fuels Standard is 

unachievable with current technology. The RFS mandates 16 billion gallons of cellulosic 

biofuel by the year 2022; currently no commercial cellulosic biofuel production facilities 

exist and the cost to produce cellulosic ethanol makes it highly unlikely that the mandate will 

be achievable (NAS, 2011). While the mandate for cellulosic biofuels is nearly unattainable, 

the mandate for 15 billion gallons of conventional biofuels will be easily reached by 2015, as 

production capacity currently sits at 14.1 billion gallons. The requirement of 4 billion gallons 

of advanced biofuels poses a challenge, as where the biofuel will come from is unknown. 

Currently, demand for corn-based ethanol is higher than the production mandated by 

the RFS. While the blenders credit did increase demand some, most of the demand is market 
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driven. The production of corn-based ethanol will continue regardless of federal biofuels 

policy. Because so much of the demand for corn-based ethanol is market driven, any policy 

changes will have minimal effects on its future. 

In addition to the current federal policies not meeting their goals, the policies have 

some negative market effects that make them undesirable. The development of cellulosic 

feedstock markets will be costly due to the infrastructure required, especially when 

considering that demand for biofuels relies on demand for oil; when newer fuels are 

developed, the demand for biofuels will end, leaving the costly infrastructure for cellulosic 

feedstocks with no use.  

The market effects of corn-based ethanol are much more limited than cellulosic 

because there exists a demand for corn outside the biofuel industry. The demand for corn-

based ethanol is also largely market driven instead of policy driven, and, as such, changes in 

policy will have little effect on the market. 

While federal biofuels policies do have effects on the market, the larger problem is 

with the policies themselves.  

Policy Basis 

As	
  discussed	
  earlier,	
  the	
  reasons	
  for	
  federal	
  biofuels	
  policy	
  are	
  based	
  on	
  two	
  

main	
  factors,	
  increase	
  energy	
  security	
  and	
  reduce	
  environmental	
  impact.	
  From	
  the	
  

results	
  of	
  the	
  literature	
  review	
  it	
  is	
  possible	
  to	
  examine	
  if	
  the	
  policy	
  fulfills	
  the	
  reasons	
  

for	
  its	
  existence.	
  With	
  the	
  current	
  ethanol	
  blend	
  cap	
  of	
  10%	
  for	
  all	
  cars	
  produced	
  before	
  

2001	
  and	
  15%	
  for	
  cars	
  produced	
  after	
  2001,	
  the	
  actual	
  ability	
  of	
  biofuels	
  to	
  reduce	
  oil	
  

imports	
  is	
  limited.	
  Even	
  if	
  the	
  production	
  and	
  use	
  of	
  E85	
  vehicles	
  increases,	
  the	
  impact	
  

on	
  oil	
  imports	
  will	
  be	
  negligible	
  until	
  these	
  vehicles	
  make	
  up	
  a	
  larger	
  percentage	
  of	
  total	
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cars.	
  Proponents	
  of	
  biofuel	
  use	
  argue	
  that	
  a	
  10%	
  reduction	
  saves	
  millions	
  of	
  dollars	
  per	
  

day;	
  however,	
  it	
  is	
  unknown	
  whether	
  the	
  reduction	
  in	
  oil	
  use	
  comes	
  from	
  foreign	
  oil	
  

imports	
  or	
  domestic	
  production.	
  If	
  the	
  reduction	
  is	
  not	
  in	
  imports,	
  biofuels	
  do	
  not	
  save	
  

any	
  money	
  from	
  being	
  sent	
  to	
  exporting	
  nations.	
  The	
  best	
  solution	
  to	
  reducing	
  oil	
  

imports	
  is	
  to	
  move	
  to	
  a	
  transportation	
  system	
  that	
  does	
  not	
  rely	
  on	
  oil	
  based	
  fuels,	
  but	
  

instead	
  on	
  electric,	
  hydrogen,	
  or	
  some	
  other	
  fuel	
  source.	
  

The	
  environmental	
  implications	
  of	
  biofuel	
  use	
  are	
  much	
  more	
  complex,	
  and	
  the	
  

improvements	
  are	
  questionable.	
  Initial	
  studies	
  have	
  reduced	
  tailpipe	
  emissions.	
  

However,	
  more	
  in-­‐depth	
  research	
  and	
  full	
  accounting	
  of	
  the	
  environmental	
  impact	
  

produces	
  doubt	
  about	
  biofuels’	
  ability	
  to	
  reduce	
  the	
  environmental	
  impact	
  of	
  

transportation	
  fuel.	
  More	
  study	
  is	
  needed,	
  however	
  current	
  scientific	
  conclusions	
  fail	
  to	
  

show	
  the	
  improvement	
  expected	
  from	
  biofuel	
  use.	
  

With	
  this	
  improved	
  information	
  about	
  biofuels,	
  it	
  is	
  time	
  for	
  a	
  reevaluation	
  of	
  

current	
  policy.	
  There	
  is	
  little	
  doubt	
  that	
  the	
  biofuels	
  market	
  will	
  exist	
  until	
  a	
  better	
  

alternative	
  is	
  discovered,	
  whether	
  the	
  federal	
  government	
  mandates	
  its	
  use	
  or	
  not.	
  This	
  

means	
  discontinuation	
  of	
  any	
  federal	
  policy	
  is	
  a	
  viable	
  option.	
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Discussion 

The ability of current biofuels to meet the policy goals of the Renewable Fuel 

Standard is questionable. Because of this, it is the recommendation of this paper that the 

Renewable Fuels Standard be repealed. Biofuels, while successful in reducing fossil fuel 

demand in the short term, are not a long-term solution to the transportation fuel needs of the 

United States. With current regulations limiting the amount of biofuels that can be blended 

and market demand for corn-based ethanol ensuring its continued use, there is little reason 

for the Renewable Fuel Standard. 

The blender’s credit provided unnecessary support for biofuels production at a cost to 

taxpayers. The tax credit has been useful in spurring demand to create the current ethanol 

industry; however the current political climate of budget austerity will make a future renewal 

of the credit unlikely. Studies have shown that corn-based ethanol will continue without the 

tax credit, but because the tax credit has only been absent for a short period of time any 

actual effect is unknown. For this reason, and considering the current political climate, this 

paper recommends the blender’s credit remain un-renewed. If the blender’s credit were 

essential to the continued production of corn-based ethanol, the recommendation may be 

different, however that is not the case. 

As with the blenders credit, it is the recommendation of this paper that the import 

tariff also remain un-renewed. Without the blenders credit, the import tariff would make the 

cost of imported ethanol far too high, and demand would drop to zero. There are also 

concerns that the import tariff without the blenders credit may go against World Trade 

Organization rules.  
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Biofuels as an industry owes itself to federal policy, but the current policies do not 

meet the goals they were meant to reach and, as such, should not be continued. If left to the 

market, cellulosic ethanol is unlikely to develop; however, the possible environmental effects 

of its production could make it undesirable. The future of transportation fuels in the United 

States will not be fossil fuels, but it will not rely on biofuels either. Future policies should 

focus on fuels that can replace 100% of fossil fuels and that do not have the same negative 

externalities of fossil fuels and biofuels. 
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APPENDIX A: GLOSSARY 

Advanced biofuel – biofuel that achieves a 50% reduction in greenhouse gas emissions from 

2005 baseline levels 

Agricultural residues – see: Crop residues 

Air pollutant – chemical, particulate, or biological material in the environment that cause 

harm to humans and animals 

Aquifer – layer of highly permeable rock that contains water, often used as the source of 

water for wells 

Bioenergy feedstock – plant that can be used to make biofuels, including corn, soybeans, 

sugarcane, switchgrass, and trees 

Biofuel – a fuel made from biological sources including bioenergy feedstocks 

Biomass-based diesel – diesel fuel made from bioenergy feedstock that achieves a 50% 

reduction in greenhouse gas emissions from 2005 baseline levels 

Blender – a company that mixes biofuels with conventional transportation fuels such as 

gasoline and diesel 

Carbohydrate – organic compound made of Carbon, Hydrogen, and Oxygen, commonly 

referred to as starch 

Cellulose – organic compound made of C6H10O5, provides the structure of cell walls in 

plants, source material used in cellulosic ethanol 

Cellulosic ethanol – biofuel made from non-food bioenergy feedstock that contains cellulose 

and that achieves a 60% reduction in greenhouse gas emissions from 2005 baseline 

levels 
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Consumer Price Index – measure by the federal government of the change in price of specific 

common goods and services purchased by household level consumers 

Conventional biofuel – biofuel that achieves a 20% reduction in greenhouse gas emissions 

from 2005 baseline levels 

Corn – common grain crop used in the production of ethanol 

Corn stover – crop-residue left over from corn production 

Crop-residue – plant material discarded after the harvest of crops  

Crop rotation – agricultural practice of alternating crops across growing seasons to improve 

soil sustainability 

Dedicated bioenergy crop – crop grown for the purpose of conversion to biofuel, has few 

other uses and is not used as a food source 

Distillation – the process of removing water and other compounds from ethanol by heating to 

ethanol’s boiling point 

Dried distillers grains with solubles – solid waste from the production of corn ethanol, used 

as a livestock feed 

Fertilizer – compound applied to soil to increase nutrients for plants 

Forest residue – plant material discarded after the harvest of trees 

Gasohol – a blend of gasoline and ethanol, current EPA rules limit the blend to 15% ethanol, 

85% gasoline; however the most common blend is 10% ethanol, 90% gasoline 

Glucose – one kind of carbohydrate, a simple sugar that can be turned into alcohol through 

fermentation 

Glycerol – simple polyol compound made up of three hydroxyl groups, basic compound in 

making triglyceride 
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Green diesel – diesel that can be used identically to petroleum diesel but is derived from 

renewable resources 

Greenhouse gas – gas produced naturally and by humans that traps heat in the atmosphere  

Hemicellulose – heteropolymer in plant cell walls 

Hypoxia zone – zone in a body of water that does not contain enough dissolved oxygen to 

sustain life, often called a dead zone 

Life-cycle analysis – assessment of environmental impact of a product from beginning to end 

Lignin – polymer compound in secondary plant cell walls 

Liquefaction – process of turning a solid into a liquid by breaking down polymer bonds 

Mash – liquid mixture made after enzymes have broken down starches into sugars 

Market externality – cost or benefit not incorporated in price caused by market inefficiencies 

Meal – flour made from grinding solids after the oils have been removed 

Miscanthus — genus of perennial grasses 

Municipal solid waste – garbage, common waste from heterogeneous sources 

Native forestland – forest that was not planted by humans, natural forest 

Native grass – grass that naturally grows in the wild 

Perennial crop – crop that lives multiple years even after harvesting and does not require a 

new seeding every year 

Renewable fuel – fuel made from renewable source materials, including biofuels 

Renewable Fuel Standard – policy by the U.S. federal government mandating the production 

and blending of renewable fuels 

Transportation fuel – fuel used to power vehicles including gasoline, diesel, and blends, 

including biofuels 
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Triglyceride – compound derived from glycerol and three fatty acids 

Salinity – Salt content of water or soil 

Short-rotation woody crop – fast growing tree that can be used to make biofuels 

Soil sustainability – practice of ensuring soil contains enough nutrients to grow plants and 

using plants to prevent erosion 

Soybean – oil seed legume grown in the Midwest, can be used to make biodiesel 

Subsidy – payment or economic benefit made to a business or individual from government 

Switchgrass – grass native to North America 

Syngas – synthetic gas containing carbon monoxide and hydrogen, can be used as a fuel 

source or transformed into a more efficient fuel 

Tariff – tax on imports into a country 

Vegetable oil – lipid made from plants 

Volumetric Ethanol Excise Tax Credit – policy of the U.S. federal government to provide 

subsidies to blenders of biofuels and conventional fuels 
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APPENDIX B: CONVERSIONS 

1 square mile = 640 acres 

1 hectare = 2.47 acres 

1 acre = 43,560 square feet 

1 barrel = 42 gallons 

1 bushel = 8 dry gallons 

1 bushel = 2,150.42 cubic inches 

1 ton = 2,000 pounds 
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