
CARNEGIE MELLON UNIVERSITY

A Trust Region Filter Algorithm for

Surrogate-based Optimization

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree of

DOCTOR OF PHILOSOPHY

in

CHEMICAL ENGINEERING

by

JOHN P. EASON

B.S., CHEMICAL ENGINEERING, THE UNIVERSITY OF TULSA

Pittsburgh, Pennsylvania

Apr, 2018





Copyright c© 2018, John P. Eason

All rights reserved





Acknowledgments

First, I would like to extend my deepest thanks to my adviser Larry Biegler for all he
has done for me over these years, for his extensive knowledge, patience, and constant
encouragement. His devotion to his work and to his students is inspiring.

I would like to thank the members of my committee, Professors Ignacio Grossmann,
Nick Sahinidis, and Bruno Sinopoli for their time, input, and advice, which has helped
shape the direction of this thesis. I would also like to thank Professor Selen Cremaschi
for leading me towards graduate school and training the research fundamentals that have
allowed me to succeed.

Thanks to all of the members of the Biegler group for the welcoming and encouraging
environment for research, and for their friendship. Throughout my studies, I have had the
opportunity to collaborate closely with several fellow students and visiting researchers.
Special thanks to Alex Dowling, both for the fruitful collaboration on the power plant op-
timization and for helping me navigate the beginning of grad school. Though not included
in this thesis, collaborations with Haoshui Yu and Dehao Zhu were an enjoyable and im-
portant piece of my graduate studies. Thanks to Prof. Xi Chen for the memorable visit to
Zhejiang University and Jiayuan Kang for collaboration on the surrogate equation of state
project.

I would like to thank Dr. David Miller for forming and managing the Carbon Capture
Simulation Initiative (CCSI) and the Institute for the Design of Advanced Energy Systems
(IDAES), which have provided partial support for this work. Thanks also to my many
colleagues at NETL, including Tony Burgard, John Eslick, and Andrew Lee for the stim-
ulating discussions. Special thanks to Jinliang Ma, whose boiler simulation code helped
form a central motivating application in this work. Thanks also to John Siirola and the
team at Sandia for helping the trust region code live on past this thesis. Finally, I grate-
fully acknowledge support from the NSF Graduate Research Fellow Program under grant
number DGE-1252522.

Finally, I would like to thank my family. Thanks to my parents for their love and encour-
agement, and especially thanks to my wife Wei. Through her help with brainstorming, as
proofreader, and as code adviser, her influence is present throughout this thesis, but most
of all thanks for her unwavering love and support. This would not have been possible
without her.

John P. Eason
Pittsburgh, PA

Apr 2018

ACKNOWLEDGMENTS

i





Abstract

Modern nonlinear programming solvers can efficiently handle very large scale optimiza-
tion problems when accurate derivative information is available. However, black box or
derivative free modeling components are often unavoidable in practice when the mod-
eled phenomena may cross length and time scales. This work is motivated by examples
in chemical process optimization where most unit operations have well-known equation
oriented representations, but some portion of the model (e.g. a complex reactor model)
may only be available with an external function call.

The concept of a surrogate model is frequently used to solve this type of problem. A
surrogate model is an equation oriented approximation of the black box that allows tradi-
tional derivative based optimization to be applied directly. However, optimization tends to
exploit approximation errors in the surrogate model leading to inaccurate solutions and re-
peated rebuilding of the surrogate model. Even if the surrogate model is perfectly accurate
at the solution, this only guarantees that the original problem is feasible. Since optimality
conditions require gradient information, a higher degree of accuracy is required.

In this work, we consider the general problem of hybrid glass box/black box optimiza-
tion, or gray box optimization, with focus on guaranteeing that a surrogate-based opti-
mization strategy converges to optimal points of the original detailed model. We first
propose an algorithm that combines ideas from SQP filter methods and derivative free
trust region methods to solve this class of problems. The black box portion of the model is
replaced by a sequence of surrogate models (i.e. surrogate models) in trust region subprob-
lems. By carefully managing surrogate model construction, the algorithm is guaranteed to
converge to true optimal solutions. Then, we discuss how this algorithm can be modified
for effective application to practical problems. Performance is demonstrated on a test set
of benchmarks as well as a set of case studies relating to chemical process optimization.
In particular, application to the oxycombustion carbon capture power generation process
leads to significant efficiency improvements. Finally, extensions of surrogate-based opti-
mization to other contexts is explored through a case study with physical properties.
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Chapter 1

Introduction

Modeling, simulation, and optimization tools have become essential tools for engineers

in many industries. By leveraging together physical insights, mathematics, and advanced

computing, lower cost, more efficient systems can be developed with greater reliability. In

the chemical process industries, simulation tools are already ubiquitous for process design

and operations. Process simulators can predict the performance of a plant for a speci-

fied design configuration and at certain operating conditions. Mathematical optimization

techniques have great potential to further accelerate the design process. However, several

barriers remain to widespread adoption in the process industries.

The continuous advancement of simulation technology also acts as an impediment to

adoption of optimization methods. Developments in computational fluid dynamics and

molecular dynamics provide ever more simulation tools to engineers. However, these

methods often use specialized computational strategies to find solutions. Optimization

algorithms usually require explicit mathematical models, implemented in a way that is

compatible with the solution algorithm. Therefore, optimization usually must be consid-

ered as a goal at the early stages of developing a model.

Powerful algorithms and software exist for solving many classes of optimization prob-

lems. One can classify a problem based on the presence of constraints (absent, inequality,

equality), the presence of nonlinearity, convexity (of objective, constraints, or feasible re-

gion), presence of discrete decisions, and amount of information obtained from the model
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(derivative free, first-order, second-order, or other methods). Many common process de-

cisions are continuous variables, including temperature, pressure, and flowrates. Discrete

decisions could include whether or not a certain piece of equipment is purchased, and

require the use of mixed integer optimization techniques. In this thesis, we will not con-

sider the case of discrete decisions and instead focus on continuous optimization problems.

Because of detailed thermodynamic and reaction models, chemical process optimization

is usually represented as nonconvex nonlinear optimization, or nonlinear programming

(NLP) problems. The presence of safety or materials limitations often imposes bounds on

variables, leading to inequality constraints as well. This class of optimization problems in-

cludes many important applications in chemical engineering including process optimiza-

tion and optimal control. An NLP can be written mathematically as

min
x∈Rn

f(x)

s.t. h(x) = 0

g(x) ≤ 0

(1.1)

The objective function is f : Rn → R, equality constraints are h : Rn → Rme with me ≤

n, and inequalities constraints are g : Rn → Rmi . These functions are assumed to be

sufficiently smooth, i.e. with Lipschitz continuous first derivatives on a compact domain.

Several choices exist for the solution of NLPs. Problems encountered in chemical process

optimization may be high dimensional, (with thousands or tens of thousands variables/-

constraints) but they are also highly sparse, allowing for efficient linear algebra routines.

This makes second-order Newton-type methods highly effective for these problems. How-

ever, these methods requires accurate derivative information. If a mathematical model is

implemented in an algebraic modeling language, derivatives are automatically obtained

through automatic differentiation. However, it is not always possible to put a model within

an optimization modeling framework. Many practitioners prefer to use previously estab-

2
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lished and validated simulation models for optimization. In addition, complex simula-

tions such as computational fluid dynamics require highly specialized methods to solve

the mathematical models, which may consist of large scale partial differential algebraic

equations. Therefore, there is significant demand for black box optimization techniques in

process engineering.

Black box optimization is when the optimization solver only has access to input-output

data from an objective function. This can be used directly with simulation software, but

there are several drawbacks. Optimization is most useful when there are many degrees

of freedom and intuition may be insufficient to guide decision making. However, black

box optimization can only efficiently operate on problems with relatively few degrees of

freedom (for example on the order 10-20). In addition, the elimination of equality con-

straints greatly slows progress since these equations must be fully simulated at each black

box call. Finally, the lack of accurate derivatives also harms the convergence rate of the

optimization, so precise solutions may be difficult to obtain.

In this thesis, we attempt to bridge the gap between conventional NLP and black box

optimization. This is captured by the term “glass box/black box” optimization, or “gray

box optimization,” where glass box refers to equations that yield accurate derivatives, and

black box refers to parts of the model that are derivative free, for example generated by

an external simulation call. This work is motivated by the case of process optimization

problems where one or more unit models are modeled with external simulations, yet we

emphasize the generality for a wider class of optimization problems. In particular, applica-

tions in thermodynamic property calls are shown to be promising. The problem structure
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of interest can be written as:

min f(z, w, d(w))

s.t. h(z, w, d(w)) = 0

g(z, w, d(w)) ≤ 0

(1.2)

where minimization is over z ∈ Rn and w ∈ Rm. w represents the inputs to the black box

function, and z represents the remaining decision variables. d(w) : Rm → Rp represents the

outputs of the black box as a function of inputs w. It is assumed that all functions f, h, g, d

are twice continuously differentiable, although derivatives may be unavailable for d(w).

The past approach to solving these “glass box/black box” optimization problems has

largely been through the use of surrogate models. Surrogate models, also known as re-

duced models or metamodels, are equation-based approximations of a typically black box

function. These can range from polynomial interpolation to proper orthogonal decompo-

sition, and from Gaussian process regression to neural networks. Regardless, the input-

output data from the black box function is converted into equations that may be used

directly in optimization and other analysis. The construction of accurate surrogate models

is itself an active area of research, with contributions from approximation theory, machine

learning, statistics, and engineering. An appropriate choice of experimental design, func-

tional form, and validation method will depend on the context in which a surrogate model

is used. In this thesis, we focus on the use of surrogate models for optimization. Instead of

specifying one particular methodology, we study the behavior of surrogates in optimiza-

tion and place guarantees on the performance. This is accomplished through combining

concepts from derivative free optimization with classical constrained nonlinear optimiza-

tion theory.

4
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1.1 CONTRIBUTIONS

1.1 Contributions

The main contributions of this thesis are summarized as follows:

1. A novel trust region filter (TRF) algorithm for glass box/black box optimization is

proposed, which is both robust to lack of derivatives in some constraints while also

taking advantage of equation oriented constraints.

2. The convergence of the TRF algorithm to first-order KKT points is proved. This is

the first provably convergent algorithm specifically designed for this problem class.

3. The TRF algorithm is implemented in Pyomo with interfaces to multiple choices of

surrogate model. The code is easily extensible to other choices of surrogates.

4. A test set for glass box/black box optimization was assembled from established NLP

benchmarks. The resulting test set is used to validate the performance of the TRF

algorithm and demonstrate the effect of algorithmic improvements.

5. The concept of a sampling region, first proposed by Powell for unconstrained deriva-

tive free optimization, is revisited in the context of glass box/black box optimization.

The sampling region is able to greatly improve performance of the TRF algorithm.

This is the first time that the effect of the sampling region has been directly examined.

6. The TRF algorithm is applied to several case studies in process engineering. Most

notably, an oxycombustion carbon capture plant was optimized with an embedded

detailed boiler simulation. The combination of modeling detail and a large system

boundary identified new design concepts and increased efficiency.

1.2 Research Statement and Dissertation Overview

This dissertation is organized as follows: In Chapter 2, the basics of nonlinear optimization

theory are reviewed, including the KKT conditions and constraint qualifications. These
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1.2 RESEARCH STATEMENT AND DISSERTATION OVERVIEW

concepts will be important for characterizing solutions of glass box/black box optimiza-

tion and developing algorithmic solution approaches. Then, we will review some (derivative-

based) solution methods for NLPs as well as basic categories of derivative-free optimiza-

tion methods.

Chapter 3 presents a brief review of surrogate-based optimization approaches and appli-

cations. Surrogate model (reduced model) approaches are classified into data-driven and

model-driven approaches, and general guidelines about their use are presented. Then, a

certain class of derivative free optimization methods, model-based trust region methods,

is reviewed. These basic trust region concepts are later expanded upon throughout the

thesis.

Chapter 4 introduces a novel trust region filter algorithm for solving glass box/black

box optimization problems. When equation based surrogate models are used in place of

the black box, NLP solvers may be applied directly but an accurate solution is not guar-

anteed. Trust region concepts are used to manage the surrogate models and adaptively

adjust their fit to manage errors. By combining concepts from trust region filter methods

and derivative free optimization, the method guarantees convergence to first order critical

points of the original glass box/black box problem. Algorithmic concepts are introduced

and convergence is proved.

Chapter 5 discusses practical aspects of the trust region filter method. We discuss several

modifications to the basic algorithm introduced in Chapter 4. This includes the sampling

region, which maintains the algorithm’s global convergence properties without requir-

ing the trust region to shrink to zero in the limit. Additional modifications to the filter

mechanism and trust region update formulas are also shown to improve performance. To

benchmark the development of this optimization method, a test set of problems is gener-

ated based on modified problems from the CUTEr and COPS sets. The modified algorithm

6
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1.2 RESEARCH STATEMENT AND DISSERTATION OVERVIEW

demonstrates improved performance using the test problem set. In addition, we discuss

the implementation of the method connected to the Pyomo modeling language.

Chapter 6 summarizes all case studies that have been solved with the trust region filter

method. Initial studies on the Williams-Otto provide insight into the effect of functional

form and experimental design for surrogate models used with the trust region method.

The ammonia synthesis process is studied as a medium-scale process optimization prob-

lem. The reactor is treated as a black box, and the trust region filter performance is vali-

dated against a full simultaneous discretization approach of the reactor equations. Next,

we study large-scale power plant optimization. The boiler of the power plant is repre-

sented by a detailed simulation code that requires several minutes to be solved externally

using CFD strategies. The boiler is integrated into both conventional and oxycombus-

tion (carbon capture) power plants and the models are optimized to maximize thermal

efficiency. The results show that rigorous optimization can reduce the carbon capture ef-

ficiency penalty from 8-10% to under 6%. Next, a solid sorbent carbon capture process is

studied to minimize the utility usage subject to a carbon capture requirement. The results

demonstrate the advantage of the sampling region concept to improve performance on

otherwise intractable problems. Finally, the application of the TRF algorithm to thermody-

namic properties is investigated through the concept of a surrogate equation of state.

Chapter 7 concludes the dissertation, summarizes main contributions and outlines rec-

ommendations for future work.
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Chapter 2

Nonlinear Optimization Background

This chapter will briefly review the basics of nonlinear programming theory as well as

popular solution approaches. First, optimality conditions are reviewed, including first

and second order KKT conditions and a discussion on constraint qualifications. Then,

nonlinear programming (NLP) algorithmic concepts are introduced, with brief discussion

of major classes of algorithms and summary of popular software.

2.1 Optimality Conditions

In this thesis, we focus on optimization methods that obtain locally optimal solutions. In

this section, optimality conditions that characterize locally optimal solutions are reviewed.

Recall the general formulation of an NLP, where bounds and inequalities are represented

as gi(x) ≤ 0. This gives the following formulation:

min f(x)

s.t. h(x) = 0

g(x) ≤ 0

(2.1)

where we define decision variables x ∈ Rn, objective function f : Rn → R, equality con-

straints h : Rn → Rme , and inequality constraints g : Rn → Rmi . The constraints define a

feasible set, which we will refer as

X := {x ∈ Rn : h(x) = 0, g(x) ≤ 0}

8
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2.1 OPTIMALITY CONDITIONS

Then, a local minimum of NLP (2.1) is defined as follows:

Definition 1 (Local minimum). A point x∗ is a local minimum of (2.1) if x∗ ∈ X and there exists

ε > 0 such that:

f(x) ≥ f(x∗) ∀ x ∈ X ∩ {‖x− x∗‖ ≤ ε}. (2.2)

2.1.1 First Order KKT Conditions

In the case of unconstrained optimization min f(x), the first order necessary optimality

conditions are given by∇f(x) = 0. Therefore, many unconstrained optimization methods

work in part by attempting to solve the system of nonlinear equations defined by this con-

dition. Similarly, constrained optimization methods are often based on solving the system

defined by the KKT conditions. The first order Karush-Kuhn-Tucker (KKT) conditions are

the necessary optimality conditions for a local minimum x∗ of constrained NLP (2.1). To

introduce the KKT conditions, first define the Lagrangian function:

L(x, λ, η) = f(x) + h(x)Tλ+ g(x)T η (2.3)

An additional concept called a constraint qualification will be introduced in the following

section. The KKT necessary conditions are the result of the following theorem:

Theorem 2.1.1. If x∗ is a local minimum of (2.1) and a constraint qualification holds at x∗, then

there exist multipliers λ∗ and η∗ such that

∇xL(x∗, λ∗, η∗) = ∇f(x∗) +∇h(x∗)λ∗ +∇gj(x∗)η∗ = 0

h(x∗) = 0

g(x∗) ≤ 0

η∗ ≥ 0

g(x∗)T η∗ = 0

(2.4)
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9



2.1 OPTIMALITY CONDITIONS

2.1.2 Constraint Qualifications (CQs)

Constraint qualifications (or regularity conditions) provide some restriction on relation

of the feasible set and the equations used to represent it. If no constraint qualification

holds, an optimal solution may or may not satisfy the KKT conditions (2.4) There are a

variety of constraint qualifications proposed in the literature. In general, there is trade-off

between strict conditions that are easily computable and abstract conditions that may be

difficult or impossible to verify in practice. The “weakest” possible constraint qualification

for use with the KKT theorem, sometimes called the Guignard constraint qualification, is

discussed in [1]. However it is clear that it is usually impossible to compute a certificate

of satisfaction for this condition, except through checking strictly stronger conditions. In

practice, the following two constraint qualifications are popular due to their ease of com-

putation and intuitive interpretation.

Define I = {1, . . . ,me} and J = {1, . . . ,mi} as the index sets for equality and inequality

constraints respectively. The jth inequality constraint is written gj(x).

Given a point x, we define the notion of an active set of inequalitiesA(x) ⊆ J as follows:

A(x) = {j | gj(x) = 0} (2.5)

Now we define the linear independence constraint qualification (LICQ) and Mangasarian-

Fromovitz constraint qualification (MFCQ) as follows:

Definition (LICQ). Given a point x and corresponding active set A(x), LICQ is defined

by linear independence of the constraint gradients {∇hi(x),∇gj(x)} for all i ∈ I and j ∈

A(x∗)}.

Definition (MFCQ). Given a point x and corresponding active set A(x), MFCQ is defined

by linear independence of the equality constraint gradients and the existence of a search

direction p such that∇hi(x)T p = 0 for all i ∈ I and∇gj(x)T p < 0 for all j ∈ A(x).

10
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Of these two, LICQ is strictly stronger since it is easy to show that satisfaction of LICQ

implies satisfaction of MFCQ. If an optimal point x∗ satisfies LICQ, it can be shown that

there exist unique KKT multipliers λ∗ and η∗ [2]. If MFCQ holds, a weaker result states

that the set of multipliers lies within a bounded polytope [3]. LICQ and MFCQ are both

sufficiently strong to satisfy “sequential optimality conditions,” where sequences of primal

and dual variables that approaching satisfaction of (2.4) will in fact converge to a KKT

point [4]

2.1.3 Second Order Conditions

To obtain sufficient optimality conditions, one must look to second order information. In

unconstrained optimization, the second order sufficient conditions are straightforward: If

∇f(x∗) = 0 and ∇2f(x∗) is positive definite, then x∗ is a strict minimizer of f . To extend

this to constraints, one must consider the curvature of the objective function in feasible

directions. Define the following cone:

d ∈ C(x, λ, η) ⇐⇒


∇h(x)Td = 0,

∇gj(x)Td = 0, j ∈ {i | gi(x) = 0, λi > 0}

∇gj(x)Td ≤ 0, j ∈ {i | gi(x) = 0, λi = 0}

(2.6)

The second order sufficient conditions are given by the following theorem:

Theorem 2.1.2. Suppose that x∗ and multipliers λ∗, η∗ satisfy the KKT conditions (2.4) and

dT∇xxL(x∗, λ∗, η∗)d > 0 for all nonzero d ∈ C (2.7)

then x∗ is a strict local solution of (2.1)

Second order information can also be used to obtain additional necessary optimality con-

ditions. For the unconstrained case: If x∗ is a minimizer of f , then∇f(x∗) = 0 and∇2f(x∗)

is positive semidefinite. In the constrained case:
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Theorem 2.1.3. If x∗ is a local minimum of (2.1), LICQ holds at x∗, and λ∗, η∗ are the multipliers

that satisfy the KKT conditions (2.4), then:

dT∇xxL(x∗, λ∗, η∗)d ≥ 0 ∀ d ∈ C (2.8)

For proofs of these theorems, see for example [2].

2.2 NLP Algorithms

This section briefly reviews gradient-based approaches to nonlinear programming in the

form (2.1). Several algorithmic features are reviewed separately. NLP algorithms generate

a sequence {xk} that converges to a KKT point of (2.1). Algorithms can be classified by

several features, including the approach to generate a new point xk+1 and globalization

strategy. Common approaches for each of these are reviewed below.

2.2.1 Step Generation

In this section, we review various methods for step generation for nonconvex constrained

NLP. Derivatives are assumed to be available and matrix factorizations tractable.

2.2.1.1 Early NLP Methods

Early work on NLP worked in the framework of sequential unconstrained minimization.

These algorithms have been almost completely superseded by SQP and interior point ap-

proaches but certain theoretical concepts are still used in many algorithms today. The

main idea is to transform a constrained optimization problem into an approximating un-

constrained problem. Each iterate in the overall NLP algorithm is therefore generated by

the solution of an unconstrained problem. The unconstrained subproblems are updated

12
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either according to a predetermined scheme or adaptively based on the result of the pre-

vious subproblem. Unconstrained subproblems can be solved with classical approaches

such as Newton’s method, perhaps after applying some smoothing to the underlying prob-

lem. There are two main approaches to transfer the constraints to the objective function.

Penalty functions, as the name imply, penalize the violation of the constraint with a penalty

parameter ρ ∈ R+

fpen(x, ρ) = f(x) + ρ‖h(x)‖+ ρ‖max(0, g(x))‖ (2.9)

The penalty function is related to the Lagrangian, and as a result it can be shown that

there is a sufficiently large penalty parameter ρ such that x∗ being a local minimum of

(2.1) implies that x∗ is also a local minimum of (2.9). Therefore, the only task is to find

a penalty parameter sufficiently large, and to converge to a local minimum that is also

feasible for (2.1). Since algorithms would start with a low value of ρ to keep the problem

well conditioned, iterates would be infeasible with respect to (2.1) until a sufficiently large

value of ρ is found.

Barrier methods provide an alternative way to move inequality constraints to the ob-

jective function. The issues of nonsmoothness in the norm and max operator in (2.9) are

partially avoided, but this approach requires a starting point that satisfies g(x) < 0. The

barrier term is formed as follows:

fbar(x, µ) = f(x)− µ
∑
j∈J

log(−gj(x)) (2.10)

The augmented Lagrangian is another approach for moving equality constraints to the

objective function. For an equality-constrained NLP, the Augmented Lagrangian function

is defined as:

LA(x, λ, ρ) = f(x) + h(x)Tλ+ (ρ/2)h(x)Th(x) (2.11)
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where λ is an estimate of the multipliers. Compared to (2.9), the Augmented Lagrangian

function is smooth, facilitating the solution of subproblems. The multiplier estimates λ are

normally generated in an outer loop, for example using the least squares estimate:

λ(x) = −[∇h(x)T∇h(x)]−1∇h(x)T∇f(x) (2.12)

2.2.1.2 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) methods generate steps through the solution

of constrained optimization subproblems, namely quadratic programs. These quadratic

programs are in a sense local approximations of the original nonlinear program. This

approach can be derived from the KKT necessary optimality conditions. For an equality

constrained optimization problem, the first-order KKT conditions state

∇f(x∗) +A(x∗)λ∗ = 0

h(x∗) = 0

(2.13)

where A(x) = ∇h(x). If Newton’s method is applied to solve this system for x and λ, we

generate sequences {xk} and {λk}. The Newton step is then written asWk Ak

ATk 0


dxk
dλk

 = −

∇f(xk) +Akλk

h(xk)

 (2.14)

where Wk = ∇xxL(xk, λk) and Ak = ∇h(xk) and new iterates are obtained by xk+1 =

xk + αdxk and λk+1 = λk + αdλk , where α ∈ (0, 1] is a suitable stepsize.

Note that the solution of this linear system is in the same as finding a critical point of the

quadratic program

min ∇f(xk)
Td+ 1

2d
TWkd

s.t. h(xk) +ATk d = 0
(2.15)

Through repeated solutions of the QP subproblems, the sequence of points is generated to

move towards the solution.

14
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Extension to handle inequality constraints can be through the application of active set

concepts: subsets of inequalities are assumed to be active (gj(x) = 0) and the QP can be

solved as normal. Alternatively the active set selection can be included within the QP

solution process using linearized inequalities.

IfWk is positive definite on the null space ofATk , then dxk is the solution of QP (2.15). This

observation forms the basis of SQP methods. The inequality constraints can be handled

by an active set strategy in the QP, where active constraints are guessed and treated as

equalities. It can be shown that under mild assumptions the linearized QP can identify the

correct active set. See [2, 5, 6, 7] for more details on SQP.

2.2.1.3 Interior Point Methods

Interior Point methods generate points with an inner-outer loop approach. Throughout

the algorithm, the barrier approach is used to eliminate inequality constraints. This is

typically presented in the context of bound constrained optimization (general inequalities

can be transformed to bound constraints with the addition of slack variables):

min
x∈Rn

f(x) s.t. h(x) = 0, x ≥ 0 (2.16)

After moving bound constraints to the objective function, the barrier subproblem is formed

as follows:

min
x∈Rn

ϕµ(x) = f(x)− µ
n∑
i=1

ln(x(i)) s.t. h(x) = 0, (2.17)

where µ ≥ 0 is the barrier parameter and ϕµ(x) is called the barrier function. The solutions

of (2.17) converge to the solution of (2.16) as µ → 0 under certain conditions, see [3] or [8]

for details.

After introducing dual variables

v(i) =
µ

x(i)
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the KKT conditions of (2.17) are equivalent to the primal-dual equations:

∇f(x) +A(x)λ− v = 0

h(x) = 0

XV e− µe = 0

(2.18)

Interior point methods solve the primal dual equations in inner iterations using Newton’s

method and control µ in an outer iteration.

2.2.2 Globalization

Since most NLP methods are based in Newton’s method, it is important to consider the

effect of starting point. To guarantee convergence from any starting point, a variety of

globalization strategies have been proposed. Globalization consists of two pieces: a met-

ric of progress towards the solution and a mechanism to generate a better step if sufficient

progress is not made. In classical unconstrained optimization, the obvious metric of accep-

tance is decrease in the objective function. However, for convergence purposes it is usually

better to require sufficient decrease in the objective function. Sufficient decrease normally

can be measured as “actual reduction over predicted reduction.” (This is the typical expla-

nation in the trust region literature, whereas line search literature does not usually present

this as a ratio). In the Armijo condition, predicted reduction is the amount the objective

function would reduce based on a linearization at a point xk. Therefore, the Armijo condi-

tion [9] can be written as:
f(xk)− f(xk + sk)

sTk∇f(xk)
> η (2.19)

for some constant η. If this holds, then the step sk is “acceptable” because it gives sufficient

reduction. If, however, the condition (2.19) does not hold, then the algorithm has to take

some recourse to find a new step sk. This is typically accomplished through a line search

or trust region approach.

16
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In a line search method, the step is adapted by reassigning xk+1 = xk+αsk for some α ∈

(0, 1]. This means that the search direction is maintained, but the step length is modified.

As long as sTk∇f(xk) < 0, then it can be shown that there exists some sufficiently small

step size in the direction of sk that will satisfy (2.19). This is usually guaranteed by the

design of the algorithm.

Trust region methods, in contrast, change both the step size and direction when seek-

ing to find a step with sufficient improvement. In algorithms using a trust region, every

step generation subproblem (e.g. a QP subproblem in SQP) contains an extra constraint,

bounding the maximum possible step size. In unconstrained optimization with Newton’s

method, the addition of the trust region means that each iteration solves the following

subproblem:

min
s

m(s) := sT∇f(xk) +
1

2
sT∇2f(xk)s (2.20)

s.t. ‖s‖ ≤ ∆k

If the solution of this subproblem does not satisfy the sufficient decrease condition

f(xk)− f(xk + sk)

−m(s)
> η (2.21)

then the trust region radius ∆k+1 is assigned to a smaller value and the subproblem (2.20)

is solved again. This means that both step size and step direction may be changed. Trust

region methods may use more effort in step generation but this can lead to better step

directions and fewer iterations required. It also helps provide robust performance. Line

search methods, on the other hand, tend to be faster and somewhat better for poorly scaled

problems.

When moving to constrained problems, the notion of sufficient progress towards the so-

lution becomes more ambiguous. Now, a new point must be judged both by decrease in

the objective and by constraint satisfaction. Two of the most common ways of balancing
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these two goals to judge progress are merit functions and filters. The use of merit functions

derives from early penalty function algorithms. A step may be generated using an SQP or

interior point approach, but progress towards the solution is judged by its ability to reduce

the sum of the objective and penalized constraint violation. If a step sk sufficiently reduces

the merit function, then it is acceptable. However, similar to penalty function methods,

there is a drawback that the appropriate value of the penalty parameter is difficult to pre-

dict a priori.

Filter methods were developed by Fletcher and Leyffer [10] as an alternative to merit

functions that eliminate the need for estimating a penalty parameter. Instead of a single

measure for both objective and constraints, filter methods borrow concepts from multi-

objective optimization to somewhat separate these two goals. Compared to merit func-

tions, filters tend to accept more steps, which can lead to fewer recomputed steps and

larger steps, while still guaranteeing global convergence. In addition, it is somewhat more

robust to scaling compared to merit functions. The filter approach will be discussed in

detail in Chapter 4.

2.3 NLP Software

This section provides a brief, incomplete survey of popular software packages for NLP.

This helps provide a context of existing tools and motivates the addition of a new method

described in Chapter 4

1. CONOPT [11]: CONOPT includes several active set NLP solvers, including a gradi-

ent projection method, a sequential linear programming method, and an SQP-type

method. These are automatically selected or even nested together.

18
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2. filterSQP [10]: Filter SQP is a trust region SQP method, using the filter method for

globalization. It uses the bqpd package to solve QPs. In the case of indefinite Hes-

sians, a local QP solution is returned.

3. IPOPT [12]: IPOPT uses a filter line search globalization for an interior point method.

It is available through the open-source COIN-OR project.

4. KNITRO [13]: The KNITRO package includes the interior point method described

in [14] as well as an SLQP algorithm. Globalization is through merit function line

search or a trust region approach depending on the features. The KKT matrices can

be solved with either a direct factorization or indirect conjugate gradient method.

5. LANCELOT [15]: LANCELOT is an augmented Lagrangian method using a trust

region approach. After moving equalities to the objective with the augmented La-

grangian function, the bound constrained trust region subproblem is solved with

conjugate gradient steps.

6. LOQO [16]: LOQO uses a line search combined with elements of a filter, with re-

course to a merit function in certain circumstances. Step generation is with the inte-

rior point approach.

7. MINOS [17]: MINOS is a reduced space augmented Lagrangian method. The aug-

mented Lagrangian subproblem is solved with linearized constraints. A reduced

gradient method with quasi-Newton updates is then used to solve the subproblem.

8. NPSOL [18] is an SQP algorithm using a line search and merit function for global-

ization. The merit function used is the augmented Lagrangian function. The Hessian

is approximated with a dense BFGS update. The dense linear algebra methods make

it more suitable to smaller problems.

9. SNOPT [19]: SNOPT is a large-scale SQP code. SNOPT implements sparse linear

algebra routines so it is suitable for larger problems. A full-space, limited-memory
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BFGS update is used for the Hessian matrix.

20
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Chapter 3

Surrogate-based Optimization

In Chapter 2, we reviewed methods for nonlinear programming as well as some approaches

to derivative free optimization. However, not all optimization problems of interest fit

neatly into one of these problem classes. In particular, multi-disciplinary models are be-

coming more and more common. Computational models are increasingly complex, and

frequently draw on knowledge from various domains, or utilize multi-scale modeling

paradigms to model across length- and time-scales. As a result, a single optimization

problem may need to model subsystems that are represented with various external soft-

ware or simulations. In some circumstances, external models are computationally cheap

with accurate derivative estimates available. In this case, these external functions may be

provided to an optimization solver, for example through the ASL external function inter-

face [20]. In the case that some part of the model cannot be addressed by this method, or

accurate derivatives are not cheaply available, the problem is a hybrid “glass box/black

box” optimization problem.

By glass box models, we refer to models that admit equation oriented representations.

These models are easily implemented in an algebraic modeling language and derivatives

may be efficiently obtained through automatic differentiation. This includes many com-

mon models in process engineering, where lumped parameter (algebraic) descriptions are

widely accepted as sufficiently accurate. Black box models, by contrast, do not admit an

equation oriented representation, or such a representation is unavailable. These models
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are typically computationally expensive, so the performance of an optimization method

for glass box/black box problems should be judged on its ability to find a solution with

the fewest calls to the black box. We will assume that derivatives of the black box exist

but are not available for use in the optimization algorithm. In practice, black box functions

may have either stochastic noise or numerical noise (usually due to nested convergence

loops solved to loose tolerances). Rigorous consideration of this noise is beyond the scope

of this work, and we will assume in this study that noise is negligible or its effects can be

avoided in the optimization.

3.1 Derivative Free Optimization (DFO) Algorithms

Before considering the solution of glass box/black box problems, we first review the ba-

sics of black box optimization, or derivative free optimization (DFO). DFO arose out of

the demand for practical optimization algorithms that can be applied by directly query-

ing an objective function. This mimics the trial-and-error that may be used to naively

search for better solutions, but automates this process and (hopefully) comes with conver-

gence theory to guide the search to an optimal solution. These can generally be divided

into deterministic and stochastic approaches. The latter will not be considered in detail

here, as these approaches often rely on extensive calls to the objective function, which may

be costly to run, and convergence results are often lacking. Deterministic derivative free

optimization is usually motivated by the optimization of a (possibly) expensive objective

function.

Algorithms for deterministic derivative free optimization can be broken down into sev-

eral categories. First, direct search methods seek better local solution through directly

sampling the objective function. These can be further subdivided into Nelder-Mead type
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algorithms and pattern search methods. The Nelder-Mead algorithm [21] was an early

local search method and remains popular in several software packages. It is sometimes

referred to as the Nelder-Mead simplex algorithm, not to be confused with the simplex

method for nonlinear programming. It is so called because the algorithm maintains a set

of n+1 affinely independent candidate solutions in n dimensional space. At each iteration,

the point xi with the worst objective value is replaced with a new point. This new point is

generated according to some algorithmic rules, by expanding, contracting, reflecting etc.

the simplex formed by the n + 1 candidate solutions. Therefore the set of candidate so-

lutions slowly moves downhill to approach a local optimum. A modified version of the

algorithm with convergence theory is presented in [22].

Pattern search methods and mesh adaptive direct search methods work with one in-

cumbent point and seek a point with new point satisfying a sufficient decrease condition.

Convergence is driven by polling positive spanning sets at a given step size. If the sam-

pling fails to find a point that improves the objective function, then the step size is reduced.

The various methods differ largely in their methods to choose a positive spanning set, han-

dling of constraints, and heuristics to seek global solutions.

Several global search methods also operate deterministically. Lipschitzian partitioning

techniques use an adaptively updated estimate of Lipschitz constants to propose “under-

estimators” of the objective function. Then, they proceed by sequentially partitioning the

space minimizing the “underestimators,” and updating the Lipschitz parameters. Termi-

nation is usually determined by a fixed function evaluation budget. Other deterministic

methods still use probabilistic arguments: Assuming that samples of the objective func-

tion are realizations of a Gaussian process can lead to sampling strategies that maximize

the “expected improvement” (for example, see [23]). Although derivations of these expres-

sions can be involved, the initial assumption that the objective function may be modeled

CHAPTER 3. SURROGATE-BASED OPTIMIZATION

23



3.1 DERIVATIVE FREE OPTIMIZATION (DFO) ALGORITHMS

as a Gaussian process may not always be appropriate.

3.1.1 Trust Region DFO

The class of methods that we will focus on is model-based trust region methods for DFO.

In these methods, the objective function evaluations are used to construct interpolation/re-

gression models, which then act as approximations for minimizing the original problem.

This is usually combined with a trust region for globalization, where the trust region intu-

itively describes the region of the search space where the approximation is “trusted.” The

simplified outline algorithm is as follows, where the goal is to minimize f(x).

1. Initialize algorithm, choose initial point x0, trust region radius ∆0, and algorithmic

parameters η, γc ∈ (0, 1) and γe > 1. Set k = 0.

2. Construct approximation model rk(x) ≈ f(x).

3. Solve the trust region subproblem mins rk(xk + s) s.t. ‖s‖ ≤ ∆k to obtain solution

sk.

4. Ratio test: Evaluate ρk = actual reduction / predicted reduction = f(xk)−f(xk+sk)
r(xk)−r(xk+sk) .

5. If ρk < η, then xk+1 = xk and set ∆k+1 = γc∆k. Set k := k + 1 and go to 2.

6. Else, set xk+1 = xk + sk and ∆k+1 ∈ [∆k, γe∆k]. Set k := k + 1 and go to 2.

The trust region is updated based on whether sufficient decrease was achieved. If the

step was rejected, i.e. xk+1 = xk, then the trust region radius is reduced by a contraction

factor γc. Otherwise, it may be increased to try to take larger steps and speed progress.

The key to convergence is that the approximation models rk(x) are made to be suffi-

ciently accurate within the trust region. The notion of sufficient accuracy may be quanti-

fied with the κ-fully linear property. First we denote the trust region as the ball of radius
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∆k centered at xk:

B(xk,∆k) := {x : ‖x− xk‖ ≤ ∆k}

This is defined as follows:

Definition 2 (κ-fully linear models). A model rk(w) is κ-fully linear approximation of f on

B(xk,∆k) if

‖∇rk(x)−∇f(x)‖ ≤ κg∆k and ‖rk(x)− f(x)‖ ≤ κf∆2
k (3.1)

for all x ∈ B(xk,∆k) and for some finite κg > 0 and κf > 0 independent of k

Roughly stated, this means that the approximation rk(x) must behave at least as well

as a first order Taylor expansion within the trust region. Derivation or verification of this

bound will depend on the particular form of approximation function r(x) and the data

used to fit it. In most implementations, the approximation is polynomial interpolation or

regression, and the form of κf and κg can be derived as follows:

Consider the approximation of a black box function d̄(w) : Rm → R using a polynomial

in P lm, the space of polynomials in Rm of degree l or less with real valued coefficients. We

define φ(w) = {φ1(w), φ2(w), . . . , φq(w)}T as a vector of basis functions for P lm evaluated

at a particular point w ∈ Rm. Denote the sample set W = {w1, w2, . . . , wp} ⊂ Rm. Let

d̄(W ) denote the vector whose elements are the black box outputs d̄(wi), i = 1, . . . p. The

regression matrix M has entries mi,j = φj(w
i). Thus, given a polynomial basis set φ and

sample set W the least squares regression problem is stated as follows:

min
α

‖Mα− d̄(W )‖2 (3.2)

If M has full column rank, we say that the sample set W is poised for least squares regres-

sion and the unique solution α∗ is given by α∗ = [MTM ]−1MT d̄(W ).
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The error in the regression model can be bounded using the regression Lagrange poly-

nomials `i, i = 1, . . . p. For a sample set W , each regression Lagrange polynomial `i ∈ P lm

is defined as ᾱTi φ, where ᾱi is the solution of:

min
α

‖Mα− ei‖2 (3.3)

where ei is the ith unit vector. Note that there is one Lagrange polynomial `i corresponding

to each sample point wi. Lemma 4.6 in [22] shows that the unique polynomial r(w) that

approximates d̄(w) in the least squares sense on the sample set W satisfies

r(w) =

p∑
i=1

d̄(wi)`i(w) (3.4)

The error in the approximation r(w) may be bounded using the Lagrange polynomials.

From Section 4.3 in [22] when r(w) is a regression polynomial in P lm,

|d̄(w)− r(w)| ≤ 1

(l + 1)!
νlΛp∆

l+1 (3.5)

for any w in the smallest ball B(W ) containing sample set W . ∆ denotes the diameter of

this ball. Λ is defined as

Λ := max
1≤i≤p

max
w∈B(W )

`i(w). (3.6)

νl is an upper bound on the (l + 1)th derivative of d̄(w), and p is the sample size.

The functional form of (3.5) clearly gives the desired error bound for the κ-fully linear

property. The only remaining effort is to show that the constants κf and κg are bounded,

which is equivalent to showing that Λ is bounded for each iteration. Λ is strictly related

to the geometry of the sample set, and can be estimated using the condition number of

MTM [22]. Thus it is possible to verify, just through the choice of polynomial regression

and the sample geometry, that the resulting approximation model will be κ-fully linear on

B(xk,∆k).
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3.2 Constrained DFO

One approach for these hybrid glass box/black box systems is to simply apply derivative

free optimization for the whole system. However, this strategy is restricted by inherent

limitations of derivative free optimization methods. First, DFO methods have limited op-

tions in handling constraints. This is especially true when the constraints may be coupled

with black box evaluations, as when a black box unit operation is embedded within a re-

cycle loop of a chemical process. To apply DFO in the degrees of freedom, the recycle

loop must be converged repeatedly. This requires many calls to the black box and there-

fore can be computationally expensive. Also, DFO methods do not scale well on problems

with very many degrees of freedom. Model based trust region methods discussed in 3.1.1

usually use quadratic interpolation models to propose steps. Quadratic interpolation of a

function f : Rn → R requires (n+1)(n+2)
2 poised sample points. Therefore, the expense of

objective function evaluation can quickly become prohibitive.

A few derivative free optimization solvers have added features to consider some types

of constrained problems. Powell’s COBYLA [24] was the earliest available solver to ex-

plicitly handle general constraints in a DFO setting. Recently, more solvers can implement

inequality constraints through a penalty or barrier approach (e.g. NOMAD [25, 26]). The

recent trust funnel method [27] is able to handle equality constraints as well. For a recent

review covering constrained derivative free optimization and applications, see [28]. Most

methods are restricted in some way, for example only allowing linear constraints or only

inequalities. Methods that handle general constraints may assume that all constraints are

black box, when in fact glass box information may be known.
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3.3 Surrogate-based Optimization

In the engineering literature, glass box/black box problems are often solved with the use of

surrogate model (also known as reduced models, model functions, or meta-models). The

black box function is replaced by an approximation that is compatible with the equation

oriented optimization environment, resulting in a fully equation-oriented problem that can

be solved with off-the-shelf solvers.

3.3.1 Model Reduction and Surrogate Modeling

Model reduction, in various forms, has played an integral role in chemical engineering

process simulation and optimization. For the purpose of steady state simulation and de-

sign, most processes can be modeled with systems of algebraic equations. These equations

can be solved with commercial process simulators or utilized in conjunction with state-of-

the-art optimization methodologies. However, these models rely on several assumptions

such as perfect mixing, plug flow, or thermodynamic equilibrium, which may restrict their

domain of applicability. The choice of these assumptions represents an early form of model

reduction. Recently, advances in detailed, distributed parameter, and multi-scale models

have led to interest in new model reduction methods that aim to directly approximate the

behavior of the original detailed model (ODM) for use in simulation and optimization. The

detailed models often follow a “bottom up” modeling approach, where a set of (partial)

differential and algebraic equations are derived from fundamental physical laws. Models

at this higher fidelity can include transport behavior and detailed reaction kinetics, which

require computationally costly simulations.

As stated in a recent perspective article [29], many challenges in energy and the environ-

ment require solutions using multi-scale analysis, design, simulation, and optimization.
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Models developed at small length and time scales provide crucial insights for overall sys-

tem performance. For example, the performance of entrained gasifiers is inherently tied to

the transport and reaction behavior. A computational fluid dynamics (CFD) simulation of

the reactor can take over 20 CPU hours to solve [30]. When considering that this gasifier is

only one component in a pre-combustion carbon capture power plant, most design and op-

timization methodologies quickly become impractically time-consuming. Moreover, there

are also software compatibility issues arising from the simultaneous use of distributed pa-

rameter CFD models for the gasifier but lumped parameter (algebraic) models for other

equipment, including heat exchangers, turbines etc. These two reasons, the computational

expense of detailed models and model compatibility across length- and time-scales, have

motivated significant interest in surrogate modeling in process systems engineering.

There has always been a balance between model fidelity and computational tractability

since the earliest use of computers in chemical engineering. Early computer-based flash

calculations were greatly simplified by the introduction of surrogate models for the phys-

ical properties [31, 32, 33]. The use of surrogate models proved very effective for speeding

the calculation without sacrificing much accuracy. Computing hardware has improved

substantially since that time, but these early works show how model reduction can be

used to solve problems that otherwise may be intractable.

Model reduction is a broad topic with contributions from many different research com-

munities. Within chemical engineering, it is useful to classify strategies into two categories:

model-based order reduction and data-driven model reduction. Model-based order reduc-

tion attempts to maintain the original structure while reducing the model size, while data-

driven reduction views the model as an input-output relation that can be approximated by

a surrogate model.

In model-based order reduction, the original structure of the model is somehow main-
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tained. When the original model is a large-scale system of ODE’s specialized methods can

take advantage of that structure [34]. For nonlinear systems, model order reduction can

include multi-grid methods, where discretization schemes may be adapted, and spectral

methods, such as proper orthogonal decomposition. A survey of applications for chemical

processes can be found in [35].

Proper Orthogonal Decomposition (POD), also known as Karhunen-Loéve decomposi-

tion, can reduce large spatially distributed models to much smaller models. POD models

are formulated by projecting the PDAE system onto a set of basis functions, which are

themselves generated from the numerical solution of the original equations. Applications

are numerous, with examples including [36, 37, 38, 39, 40, 41, 42, 43, 44, 45]. POD models

are built by using a Galerkin projection of the model onto a set of basis functions. These

basis functions are often generated empirically from numerical solutions of the ODM, as

through the method of snapshots. Therefore, despite classifying this as a model-based reduc-

tion method, there is still some dependency upon data and experimental design.

In addition to model-based reduction methods, data-based reduction methods have

been successfully applied on many problems. The most common aspect of this approach

is surrogate modeling, where the ODM is treated as a fully black box function. This black

box may be sampled, and regression/ interpolation approaches can be used to fit the sam-

pled data. The resulting surrogate model, or metamodel, is then used in place of the ODM

for simulation, optimization, or other analysis. There is considerable flexibility in the func-

tional form and fitting methods used for surrogate construction, and this flexibility can be

used to customize an approach suitable for a particular problem. Simpson et al. [46] pro-

vide a seminal review of the field, which outlines several important steps and existing sur-

rogate modeling frameworks. The main steps of surrogate modeling construction include

experimental design, model selection, and model fitting. Several established methodolo-
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gies suggest combinations of choices for each of these three steps. For example, response

surface methodology, typically used in optimization settings uses central composite de-

signs in combination with quadratic models constructed with least-squares regression. The

central composite design helps determine curvature information for the quadratic models.

A more complete description can be found in Myers and Montgomery [47]. In some ways,

response surface methodology is a predecessor to the trust region methods for derivative

free optimization. Other surrogate modeling approaches include Gaussian process regres-

sion (including Kriging) and artificial neural networks. These methods may perform better

with space filling or sequential experimental designs [48, 49].

Surrogate modeling strategies remain an active area of research. Two noteworthy re-

views including more recent developments can be found in [50, 51]. Contemporary works

often borrow concepts from machine learning, such as the desire to fit “sparse” models,

i.e. models with simpler functional forms. Best subset techniques with integer program-

ming can be used to select appropriate basis functions from a larger set to arrive at sparse

models [52, 53].

3.3.2 Algorithms with Convergence Theory

Even if considerable effort is used to construct a surrogate model, optimization using a

surrogate model can lead to inaccurate answers. Any error in the surrogate model can

be used to artificially improve the objective, and hence optimization may terminate in

regions of poor surrogate accuracy. The surrogate model can then be adjusted to increase

accuracy in that region. However, such a method offers no guarantee of converging to the

optimum of the actual glass box/black box optimization problem, as shown by [54, 55].

In these works, the authors give an example where a surrogate model update algorithm

even converges to a local maximum rather than minimum. The reason for this failure is
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that the update scheme only adjusts for feasibility of the overall system, not optimality.

If the surrogate model and black box function agree at a point, then the glass box/black

box optimization problem is feasible. However, optimality conditions involve gradient

information so a higher degree of accuracy is needed. In addition, globalization is required

to drive convergence to a local minimum.

Several researchers have explored the use of trust region methods to use surrogate mod-

els effectively in optimization. Alexandrov et al. [56] applied the trust region concept

to general surrogate models in engineering. They considered the task of unconstrained

minimization using arbitrary approximation functions in place of the actual function. Sur-

rogate models are constructed so that the function value and gradient of the surrogate

model match those of the black box model at the center of the trust region. The trust region

subproblem was the minimization of the surrogate model subject to the trust region con-

straint. Standard methods for unconstrained trust region methods were used to evaluate

the step, including the ratio test shown in Section 3.1.1. Convergence was proved to the op-

timum of the original unconstrained black box problem. These concepts were extended to

constrained optimization problems and implemented for the DAKOTA package [57], but

convergence behavior was not proved. Another early work by Arian, Fahl, and Sachs [58]

demonstrated the use of POD reduced models with a trust region method. The algorithm

was shown to be convergent under the assumption that the gradients of the POD model are

sufficiently accurate, although that accuracy condition may be difficult to verify in prac-

tice. Wild, Regis, and Shoemaker use the framework of κ-fully linear models to develop

an algorithm for the use of radial basis function surrogate models [59]. March and Wilcox

[60] also use the κ-fully linear framework from DFO for the use of multi-fidelity models.

In multi-fidelity optimization, the reduced model is typically a coarser discretization of

the PDE system. Caballero and Grossmann [61] use Kriging models to represent unit op-
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erations for process optimization. Trust region concepts are used to shrink the domain of

the Kriging models but convergence to local optima is not proved. Henao and Maravelias

[62, 63] use a similar methodology with neural network representations of common pro-

cess units, March and Wilcox [60] use constrained trust region subproblems with surrogate

models. Globalization is managed with the use of a merit function, but the authors stop

short of a convergence proof. Agarwal and Biegler [64] discuss convergence results for

constrained subproblems when the derivatives of the black box are known. To ensure con-

sistency and ultimately drive convergence to correct optimum, corrective terms are added

to a POD approximation model. Biegler et al. [55] solve inequality constrained problems

where the derivatives are unavailable using penalty function method combined with DFO

concepts. Stopping criteria based on the reduced model errors are suggested.

Surrogate models have been used in global optimization / global search using “grey

box” models [65, 66, 67]. In this broader class of problems, simplified models stand in

for challenging or computationally expensive modeling elements. Asymptotic behavior is

ignored because of tight budgets on function calls and dimensionality is small.

3.4 DFO Software

For a thorough comparison of DFO solvers, see [68]. This section mentions a few ap-

proaches that were influential in this dissertation.

1. DFO [69] A model-based trust region algorithm using quadratic interpolation mod-

els of the objective function. Sample sets are monitored for poisedness and adapted

as necessary.

2. ORBIT [59] Optimization by radial basis function interpolation in trust regions uses

a similar framework as the DFO algorithm but uses radial basis function approxima-
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tions instead of polynomials.

3. UOBYQA [70] Unconstrained Optimization BY Quadratic Approximation is Pow-

ell’s first software for derivative free optimization. Similar to the approach in the

DFO software, Powell’s approach uses a slightly different trust region update strat-

egy as well as the concept of a sampling region to allow larger steps near the solution.

4. NEWUOA [71] The New Unconstrained Optimization Algorithm, developed to largely

replace UOBYQA uses minimum Frobenius norm updates to a quadratic model at

each iteration. By not requiring a full set of interpolation points, the algorithm can

make progress with fewer function calls and numerical performance is promising,

but rigorous convergence theory has not been developed.

5. NOMAD [26] Nonlinear Optimization by Mesh ADaptive search contains many con-

figurable features to solve methods with direct search type algorithms. Inequality

constraints can be handled through the use of barrier methods.
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Algorithm and Theory

In this chapter, we propose trust region filter (TRF) method for general glass box/black

box optimization. The TRF method combines features of an SQP filter method [72] with

model-based derivative free optimization concepts introduced in [22]. Whereas filter SQP

solves a nonlinear program through a sequence of quadratic programming subproblems,

the TRF method solves the glass box/black box nonlinear program (4.2) through a se-

quence of nonlinear programming subproblems. The motivation for this approach is that

the glass box portion of the model provides cheap derivative information that should be

exploited as much as possible, while function calls to the black box should be minimized.

If a black box function is given directly to a gradient based NLP solver using finite dif-

ference gradients, the noisy derivative estimates can cause the solver to fail. Even if the

method works, traditional NLP solvers are built with the assumption that function and

gradient calls are reasonably cheap. However in a glass box/black box problem we may

be able to use many calls to the cheap glass box derivatives to reduce the calls to the black

box. The TRF method is motivated by this observation.

A trust region filter framework is used to control errors in the surrogate model while bal-

ancing improvement in feasibility and optimality. The algorithm is based on the SQP filter

method in Fletcher et al. [72], its extension to inexact Jacobians by Walther and Biegler [73],

and first order consistent surrogate models by [64]. By moving from quadratic program-

ming subproblems to surrogate model based NLPs, more glass box information may be
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utilized at each iteration. In the following section, the glass box/black box problem is for-

mulated and the concepts of the surrogate model trust region filter method are introduced.

Then, the trust region filter method for surrogate models is presented in Section 4.2. Then,

the global convergence proof is discussed in Section 4.3. Finally, Section 4.4 concludes the

paper and outlines areas for future work.

4.1 Algorithmic Components

Consider the following formulation of the glass box/black box optimization problem:

min f(z, w, d(w))

s.t. h(z, w, d(w)) = 0

g(z, w, d(w)) ≤ 0

(4.1)

where minimization is over z ∈ Rn and w ∈ Rm. w represents the inputs to the black box

function, and z represents the remaining decision variables. d(w) : Rm → Rp represents the

outputs of the black box as a function of inputs w. We assume that all functions f, h, g, d

are twice continuously differentiable, although derivatives may be unavailable for d(w).

Because of the inherent difficulty of black box optimization problems, we assume that the

black box model forms a small portion of the overall system. The number of black box

inputs m is assumed to be small (less than a hundred). However, this assumes that the

black box function is evaluated as a single function call. If d(w) is in fact made up of sev-

eral smaller simulation calls (for example multiple black box unit operations, or black box

property calls for each stream), the dimension of w may be able to increase accordingly

as long as the dimensionality of each individual simulation call is small. By contrast, the

number of glass box variables n could be very large (on the order of tens of thousands),

corresponding with the capabilities of conventional derivative-based nonlinear program-
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ming methods.

To isolate the black box and glass box information, problem (4.1) is reformulated as

follows:

min
x

f(x)

s.t. h(x) = 0

g(x) ≤ 0

y = d(w)

(4.2)

By introducing new variables y ∈ Rp and defining xT = [wT , yT , zT ], all black box informa-

tion is moved to a single set of constraints. The remaining constraints h(x) = 0, g(x) ≤ 0,

and the objective function f(x) can be calculated without calling the black box. To solve

this problem, we will develop an algorithm that generates a sequence of points xk converg-

ing to the solution of (4.2). This sequence will maintain feasibility for glass box constraints

(i.e. h(xk) = 0, g(xk) ≤ 0 for all k), while simultaneously converging towards optimality of

(4.2) and feasibility of black box constraints y = d(w). The aim is to accomplish this with

as few calls to the black box d(w) as possible.

At each iteration, an optimization problem using a surrogate model to propose a new

point xk+1, which may or may not be accepted. Below, we discuss the details of the trust

region subproblem (TRSP) and the conditions we require on the surrogate models. Next,

we discuss the compatibility check, which is solved before the TRSP to ensure that it is suffi-

ciently feasible in a certain sense. Then, we discuss the criticality check that is used to help

determine when the algorithm can terminate. After this, we discuss the filter mechanism

that decides how to apply the solution of the TRSP in order to proceed to the next iteration

k + 1. Finally, we present the TRF algorithm and also discuss the feasibility restoration

procedure that is called when the compatibility check fails.

We will use equation based surrogate models to approximate the black box model. In
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particular, the TRF method utilizes a sequence of surrogate models rk(w) approximating

black box d(w). Each surrogate model is built to be accurate in a trust region of radius

∆k around a point xk. By substituting the surrogate model in place of the black box and

restricting the optimization to stay within the trust region where the surrogate model is

accurate, we form the trust region subproblem for iteration k (TRSPk) as follows:

min f(x)

s.t. h(x) = 0

g(x) ≤ 0

y = rk(w)

‖x− xk‖ ≤ ∆k.

(4.3)

In order to ultimately guarantee convergence of the subproblem solutions to the solution

of (4.2), the surrogate models rk(w) are constructed to satisfy the κ-fully linear property

within the trust region. This condition, introduced in Section 3.1.1, essentially requires that

the gradients and function values of rk(w) and d(w) converge as the trust region radius

∆k → 0. It is an inherent property of the method used to construct the surrogate model,

and under mild assumptions on sample set geometry, many interpolation and regression

methods can satisfy the κ-fully linear condition [22, 74]. This agnostic approach to the

functional form of the surrogate model provides great flexibility in customizing a surrogate

model to a specific black box d(w). If some knowledge is available from the application

as to what functional form to expect, this can be used directly to improve optimization

performance.

Note that the trust region constraint is written for all variables x rather than just black

box inputs w. If the glass box variables were not bounded with the trust region, i.e. if

the trust region constraint only bounds ‖w − wk‖ ≤ ∆k, then subproblem TRSPk may

become unbounded, even if the original problem (4.2) has a unique minimizer. Moreover,
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the convergence proof assumes that the solution to the trust region subproblem converges

to xk as the trust region converges to zero. This form of the trust region constraint helps

enforce that assumption.

4.1.1 Compatibility and Criticality Check

After constructing a κ-fully linear surrogate model, we could attempt to solve the trust

region subproblem (4.3). However, after replacing d(w) with rk(w) and introducing a trust

region constraint ‖x− xk‖ ≤ ∆k, the subproblem (4.3) might not be feasible. If the feasible

region of TRSPk is close to the trust region center, then the subproblem is likely to be a

good approximation of (4.2) because it has room to explore the feasible set and improve

the objective function. In this case we say that TRSPk is compatible.

Definition 3 (Compatibility). If there exists a point x̄ feasible for TRSPk (4.3) such that, for

fixed parameters κ∆ ∈ (0, 1), κµ > 0, and µ ∈ (0, 1),

‖x̄− xk‖ ≤ κ∆∆k min[1, κµ∆µ
k ] (4.4)

then TRSPk is compatible.

The following optimization problem, called the compatibility check, is used to measure

the feasibility of the subproblem:

min
x
‖y − rk(w)‖

s.t. h(x) = 0

g(x) ≤ 0

‖x− xk‖ ≤ κ∆∆k min[1, κµ∆µ
k ]

(4.5)

Problem (4.5) is always feasible (at x = xk; recall that h(xk) = 0 and g(xk) ≤ 0 for all

k). The objective function ‖y − rk(w)‖ searches for a feasible point to (4.3), while the trust
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region constraint is a requirement for compatibility. At each iteration define

nk = x∗n,k − xk

where x∗n,k is a minimizer of (4.5). nk may be partitioned into nw,k, ny,k, and nz,k, just as x

is partitioned into w, y, and z variables. If

yk + ny,k − rk(wk + nw,k) = 0, (4.6)

then TRSPk passes the compatibility test. When TRSPk is not compatible, a restoration

procedure is called to generate a compatible trust region subproblem TRSPk+1 (see Section

4.1.3).

If TRSPk passes the compatibility check, then we apply a criticality test. The criticality

test uses a criticality measure χ(x), which approaches zero when x is near a KKT point

of (4.3) when the trust region constraint is omitted. We interpret a small value of χ(x) as

an indication that x may be near a solution of (4.2), so the trust region radius should be

reduced to increase the surrogate model accuracy via the κ-fully linear property (3.1). By

eventually shrinking ∆k to zero, the algorithm is able to certify optimality in the limit.

The criticality measure χ(x) is derived by linearizing the subproblem (4.3) at one of its

feasible points. However, the original trust region constraint is dropped and replaced with

a unit trust region, as shown in (4.7):

χ(x) =
∣∣∣min
v

∇f(x)T v
∣∣∣

s.t. ∇h(x)T v = 0

g(x) +∇g(x)T v ≤ 0

vy −∇rk(w)T vw = 0

‖v‖ ≤ 1

(4.7)

where the partitioning of vT = [vTw , v
T
y , v

T
z ] corresponds to that of x. If a polyhedral norm
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(e.g. ‖ · ‖1 or ‖ · ‖∞) is used in the final constraint of (4.7), this problem is a linear program

and is relatively easy to solve.

In Algorithm 1, criticality is always checked at xk + nk. For convenience, define χk :=

χ(xk + nk). If the following condition holds:

χk < ξ∆k (4.8)

where ξ > 0 is a fixed parameter, then TRSPk requires a criticality update. Condition

(4.8) implies that we are close to optimality relative to the trust region radius and the trust

region radius is decreased in order to refine the accuracy of the surrogate model. This

criticality test directly corresponds to the criticality phase in Chapter 10 of [22].

If TRSPk is compatible and (4.8) fails, then the trust region subproblem (4.3) is solved.

Note that this problem will be feasible since we can initialize at xk + nk and TRSPk is

compatible.

4.1.2 Filter

Define

sk := x∗s,k − xk (4.9)

where x∗s,k is a minimizer of (4.3). After solving TRSPk to obtain sk, we evaluate the

quality of this step. If sk makes sufficient progress towards feasibility and/or optimality

of (4.2), then the step is successful and we assign xk+1 = xk + sk. Otherwise, the step is

unsuccessful and xk+1 = xk.

To define the notion of sufficient progress, our method will use the concept of a filter

originally developed in [10]. As an alternative to the merit function [75], a filter borrows

concepts from multi-objective optimization to balance the trade-off between feasibility and
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Figure 4.1: Convergence of the filter

the objective function. We define the following infeasibility measure of NLP (4.2):

θ(x) = ‖y − d(w)‖.

Because all trust region subproblems maintain feasibility for glass box constraints h(x) = 0

and g(x) ≤ 0, the infeasibility of black box constraints comprises the entire infeasibility of

the NLP.

The algorithm will define a subset of iterates Z ⊂ N for which (θ, f) pairs are stored in

the filter set, defined as follows:

Fk = {(θj , fj) : j < k, j ∈ Z}

where θj := θ(xj) and fj := f(xj). When we say that (θk, fk) is added to the filter, then

we mean that k is assigned to Z . These filter points can be interpreted as building a Pareto

front for the minimization of θ and f .

This is illustrated in Figure 4.1. If a point lies sufficiently below or to the left of the filter

front, it is acceptable to the filter; i.e. if for all (θj , fj) ∈ Fk ∪ (θk, fk),

θ(xk + sk) ≤ (1− γθ)θj or f(xk + sk) ≤ fj − γfθj (4.10)
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then the step sk is acceptable to the filter, where γθ, γf ∈ (0, 1) are fixed tuning parameters.

For small θ, the reduction in f must be prioritized. To see this, note that if every iterate is

added to the filter, the algorithm may converge to a feasible but suboptimal solution. For

example, suppose that x0 is in fact optimal for (4.2). Then, due to inaccuracy in the surro-

gate model used in the subproblem (4.3), we may take a step that improves the objective

function, but is actually infeasible for (4.2). However, because the (θ, f) pair for x0 was

added to the filter, there is no way to return to this optimal point. To prevent this behavior,

we evaluate the following switching condition:

f(xk)− f(xk + sk) ≥ κθθ(xk)γs (4.11)

where κθ and γs are tuning parameters. If (4.11) is true, we say that the step sk is an “f-

type step” and (θk, fk) should not be added to the filter. Otherwise, we call k a “θ-type

step” and assign k to set Z . In addition to θ-type steps, the filter is augmented whenever

restoration is called, i.e. (θk, fk) is added to the filter when TRSPk is not compatible.

Note that for f-type steps we do not need to check for sufficient decrease in the objective

function in (4.11) as required in the filter method in [72]. Instead of a quadratic model,

the subproblem (4.3) uses the actual objective function, so sufficient decrease will always

be achieved. Hence the usual sufficient decrease check for f-type steps is unnecessary and

every step sk that is acceptable to the filter is successful, i.e. xk+1 = xk + sk.

The filter also determines how the trust region radius is updated. If a step sk is unaccept-

able to the filter, then the trust region radius is decreased in order to refine the accuracy of

surrogate model rk(w). If sk is acceptable and k is an f-type step, then the error in the sur-

rogate model is under control and the trust region radius may be increased to take bigger

steps. For θ-type steps, the convergence theory in [72] allows total freedom as long as ∆k

remains bounded. We use the following update rule, based on the ratio test in derivative
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free trust region methods [22]. First, calculate the ratio of reduction in θ.

ρk =
θ(xk)− θ(xk + sk)

‖yk − rk(wk)‖
=

θ(xk)− θ(xk + sk)

θr(xk)− θr(xk + sk)
(4.12)

where θr(x) = ‖y − rk(w)‖. This is the standard ratio test from trust region methods, i.e.

the actual reduction divided by the predicted reduction. Note that θr(xk+sk) = 0 since the

subproblem is compatible. If the surrogate model interpolates at the trust region center,

i.e. rk(wk) = d(wk), then (4.12) simplifies as follows:

ρk = 1− θ(xk + sk)

θ(xk)

The trust region is then updated as follows, using parameters 0 < η1 ≤ η2 < 1 and 0 <

γc < 1 < γe.

∆k+1 =


γc∆k if ρk < η1,

∆k if η1 ≤ ρk < η2,

γe∆k if ρk ≥ η2.

(4.13)

Note that because xk + sk is acceptable to the filter, the step sk is accepted for any value of

ρk.

4.1.3 Restoration

As mentioned in Section 4.1.1, restoration is called whenever TRSPk is not compatible.

A restoration procedure is any algorithm that, given a point xk, returns xk+1, ∆k+1, and

rk+1(w) such that xk+1 is acceptable to the filter and TRSPk+1 is compatible.

The restoration phase seeks a point that is acceptable to the filter (4.10). A sufficient

condition for a successful restoration algorithm is to return a point xk+1 that is (nearly)

feasible for (4.2) along with a surrogate model rk+1(w) that interpolates the trust region

center (i.e. rk+1(wk+1) = d(wk+1)). In this case, xk+1 is acceptable to the filter because fea-

44
CHAPTER 4. ALGORITHM AND THEORY



4.2 ALGORITHM 1: TRUST REGION FILTER (TRF) METHOD

sible points are always acceptable. In addition, one can check that TRSPk+1 is compatible

for any choice of ∆k+1 > 0 by taking xk+1 as the solution of (4.5).

Finding a feasible point can be formulated as minimization of θ(x) subject to the glass

box constraints, but this is also a glass box/black box optimization problem. Instead, ap-

plication of problem-specific simulation techniques may be able to find a feasible solution

using calls to d(w) directly. For chemical process optimization, sequential modular con-

cepts can be used to converge the flowsheet using d(w). The inputs w to the black box may

be used as a tear stream. A fixed point iteration may be run by first evaluating the black

box d(w) and then solving the rest of the flowsheet to obtain a new value of w. Though

performance is not guaranteed, we found that using this method for restoration resulted in

fewer calls to the black box than Newton-type methods for process optimization problems.

4.2 Algorithm 1: Trust Region Filter (TRF) Method

In this section, the trust region filter algorithm is given for solving hybrid glass box/black

box problems. The detailed algorithm is presented below, and the overall logic is sketched

in Figure 4.2. Note that termination tolerances are not included; for convergence analysis,

the sequence of iterates must extend to infinity. A modified algorithm including termina-

tion conditions is presented in the following chapter.

Algorithm 1:

1. Initialization: Choose 0 < γc < 1 < γe, γf ∈ (0, 1), γθ ∈ (0, 1), κθ ∈ (0, 1), κ∆ ∈ (0, 1),

κµ > 0, µ ∈ (0, 1), γs > 1
1+µ , ξ > 0, ω ∈ (0, 1), 0 < η1 ≤ η2 < 1, κtmd ∈ (0, 1], an

initial trust-region radius ∆0, and an initial iterate x0 ≥ 0. Initialize the filter F0 = ∅.

Evaluate d(x0) and then calculate θ(x0). Set k = 0.

2. Generate a surrogate model rk(x) that is κ-fully linear on ∆k.
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3. Solve the compatibility check (4.5). If TRSPk is compatible as given by Definition 3,

go to Step 4. Otherwise, add (θk, fk) to the filter and go to Step 10.

4. Compute criticality measure χk. If criticality check (4.8) holds, reassign ∆k := ω∆k

and go to Step 2. Else, continue to Step 5.

5. Solve the subproblem (4.3) to compute a step sk.

6. Filter:

Evaluate θ(xk + sk). If the step is acceptable to the filter as given in (4.10), continue

to Step 7. Else, set xk+1 = xk, θk+1 = θk, and ∆k+1 = γc∆k, then set k := k + 1 and

go to Step 2.

7. Switching condition:

If the switching condition (4.11) is true, go to Step 8. Else, go to Step 9.

8. f-type step

Accept trial step and increase trust region: Set xk+1 = xk + sk, ∆k+1 = γe∆k, and

θk+1 = θ(xk + sk). Set k := k + 1 and go to Step 2.

9. θ-type step

Add (θk, fk) to the filter and accept trial step xk+1 = xk + sk. Update the trust region

using (4.12) and (4.13). Set k := k + 1 and go to Step 2.

10. Restoration

Call restoration algorithm to compute a point xk+1, trust region radius ∆k+1, and sur-

rogate model rk+1 such that xk+1 is acceptable to the filter Fk∪ (θk, fk) and TRSPk+1

is compatible. Set k := k + 1 and go to Step 2.
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Find new point 

with lower θ(xk+1) 

k = k+1
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xk+1 = xk + sk

Increase TR radius

k = k+1

Decrease TR radius

xk+1 = xk

xk+1 = xk + sk

Ratio test on 
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f - type step
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Unacceptable to filter
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Criticality step
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ξΔk > χk?

Filter check

Initialize

Build -FL model
Restoration

Figure 4.2: Algorithm 1 Flowchart
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4.3 Global Convergence

Under mild assumptions, the sequence xk generated by Algorithm 1 will converge to a

first order KKT point of (4.2). Standard NLP assumptions regarding smoothness of the un-

derlying functions and regularity of limit points are required. Also, assumptions are made

regarding the solutions of trust region subproblems (e.g. the solver should return a local

solution that sufficiently improves the feasible initial point). Under these assumptions, the

proof of Fletcher et al. [72] may be used with slight modification to show that there exists a

subsequence kj for which xkj → x∗, where x∗ is a first order KKT point of (4.2). The proof

first shows that θkj , χkj , and ∆kj all limit to zero. This in turn implies that x∗ is a KKT

point. Details of the convergence proof are given as follows.

To begin, we present a modified set of assumptions to accommodate NLP subproblems.

Then, we present two modified lemmas. The remainder of the proof then follows directly

from Fletcher et al. with little modification.

4.3.1 Assumptions

(A1) All functions are twice-continuously differentiable

(A2) All iterates {xk} remain in a closed bounded domain Ω ⊂ Rm+n+p.

These two assumptions are fairly standard in the nonlinear optimization literature; they

guarantee that the objective function is bounded below and therefore a minimum must

exist. The second derivatives are also bounded, which provide smoothness guarantees for

the proof. Assumption (A2) may be enforced by including bounds on all constraints in the

glass box inequalities g(x) ≤ 0, because the algorithm will never violate these constraints.

Assumption (A1) could be relaxed to hold for the union of all trust regions, but we keep

the assumption for all x for simplicity of presentation and to match with the assumption
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from Fletcher et al.

(A3) Approximations rk(w) are κ-fully linear for each iteration k, and are twice continu-

ously differentiable with uniformly bounded second derivatives.

The requirement of κ-fully linear models is given in Definition 2 in Section 3.1.1. We fur-

ther assume that whatever method is used to build surrogate models will give sufficiently

smooth models. Since the black box d(w), which is approximated by surrogate model

rk(w), is also assumed to be smooth, this assumption is relatively mild.

(A4) The Mangasarian Fromovitz Constraint Qualification (MFCQ) holds for the constraint

set of (4.2) at all limit points of {xk}.

MFCQ is a regularity condition on the constraint set so that the KKT necessary optimal-

ity conditions apply (see Chapter 2). This helps draw the connection between χ in (4.7)

and optimality of (4.2). In addition, MFCQ implies that χ(x) is a continuous function of x

(See Theorem 2.2.1 in [76] combined with Theorem 2.3 in [77]), which will help us show

that a sequence xk for which χk → 0 in fact converges to an optimal point of (4.2). To illus-

trate the relationship between MFCQ and continuity of χ, consider the following example:

minx s.t. 0 ≤ y ≤ x3. At the origin, MFCQ is violated because there does not exist a

direction into the strict interior of the linearized feasible region. One can easily check that

limx→0+ χ(x) = 0, but χ(0) = 1. Hence violation of MFCQ leads to discontinuity in the

optimal value function.

The remaining two assumptions state the requirements on the subproblem solutions.

(A5) The solution sk to the trust region subproblem (4.3) satisfies the fraction of Cauchy

decrease condition, as follows:

f(xk + nk)− f(xk + sk) ≥ κtmd χk min

[
χk
βk
,∆k

]
(4.14)
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for some constant κtmd and bounded sequence βk > 1.

Whatever method we use to solve the subproblem is assumed to reduce the objective func-

tion by some quantity related to the criticality measure. Because NLP (4.3) is initialized at

xk +nk, and the criticality measure is evaluated at this point, the sufficient decrease is con-

sidered relative to that point as well. For detailed motivation and discussion of the right

hand side of (4.14), see Chapter 15 of Conn et al. [78].

(A6) For some δn and κusc independent of k, if θk ≤ δn, there exists a solution to the

compatibility check (4.5) such that (4.6) holds and

‖nk‖ ≤ κuscθk. (4.15)

Moreover, it is assumed that whatever method is used to solve (4.5) will find such a

solution.

The existence of an nk satisfying (4.15) functions as regularity assumption on the subprob-

lem TRSPk. To illustrate the relationship between nk and θk, consider a surrogate model

rk(w) that interpolates at the trust region center xk (i.e., rk(wk) = d(wk), a condition that

we typically enforce in the case studies). Therefore, the objective function value of (4.5)

evaluated at xk gives ‖yk − rk(wk)‖ = θk. (A6) only has to hold for small θk, so (A6) states

that it does not require an arbitrarily large step in the set {x : h(x) = 0, g(x) ≤ 0}. The

assumption that a solver will find such a solution is likewise mild because we only require

(4.15) when θ(xk) is small.

4.3.2 Convergence Proof

Fletcher et al. [72] give a global convergence proof for a filter SQP method, which we will

adapt to prove convergence of Algorithm 1. The full set of lemmas are included below, but

proofs are omitted when they follow directly from a proof in [72].
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First, the notion of finite termination is modified. In Fletcher et al., finite termination

refers to the case when a point xk is found such that χk = θk = 0. In our work, the trust

region also has to go to zero. We define finite termination as the case where the sequence

{xk} generated by Algorithm 1 is finite. This can only result when the algorithm loops

infinitely in between Steps 2 and 4. If this happens for some iterate k, then xk is a first

order critical point if MFCQ holds at xk, which can be shown using a similar argument to

that in the proof of Lemma 4.3.2.

Lemma 4.3.1. (Bound 2 on normal step) Assume Algorithm 1 is applied and finite termination

does not occur. If (A2) and (A6) hold, k /∈ R, and θk ≤ δn, then there exists a constant κlsc > 0

independent of k such that

κlscθk ≤ ‖nk‖ (4.16)

Proof. Follows from Lemma 3.1 in Fletcher et al.

Lemma 4.3.2. (Replaces Lemma 3.2 in Fletcher et al.) Assume that Algorithm 1 is applied to

problem (4.2) and that finite termination does not occur. Suppose that (A1), (A2), (A3), (A4), and

(A6) hold, and that there exists a subsequence {ki} such that TRSPki is compatible for all ki, and

lim
i→∞

χki = 0, lim
i→∞

θki = 0, and lim
i→∞

∆ki = 0. (4.17)

Then every limit point of the subsequence {xki} is a first order critical point for problem (4.2).

Proof. The existence of a limit point x∗ is given by (A2). Consider the following criticality

measure, which will allow us to draw the relationship between a stationary point of prob-

lem (4.2) and observed criticality χk (4.7). The argument δ will be used to represent the

CHAPTER 4. ALGORITHM AND THEORY

51



4.3 GLOBAL CONVERGENCE

error in the gradient of the surrogate model.

χ̂(x, δ) =
∣∣∣min
v

∇f(x)T v
∣∣∣

s.t. ∇h(x)T v = 0

g(x) +∇g(x)T v ≤ 0

vy − (∇d(w) + δ)T vw = 0

‖v‖1 ≤ 1

(4.18)

Note that if χ̂(x∗, 0) = θ(x∗) = 0, then x∗ is a first order critical point of (4.2).

Theorem 2.2.1 in [76] combined with Theorem 2.3 in [77] provides the following result.

If MFCQ holds at a point (x, δ), then the optimal value function χ̂(x, δ) of the convex

program (4.18) is continuous at that point. Therefore, with assumption (A4), we conclude

that χ̂(x, δ) is continuous at (x∗, 0).

Define the sequence

δk := ∇rk(xk + nk)−∇d(xk + nk)

such that

χk = χ(xk + nk) = χ̂(xk + nk, δk).

By assumption (A6), θki → 0 implies that ‖nki‖ → 0. Since TRSPk is compatible, xki + nki

lies within the trust region and we know from the fully linear property (A3):

‖δki‖ ≤ κg∆ki

Since ∆ki → 0, we know that

lim
i→∞

δki = 0

Finally, this allows us to state that

χ̂(x∗, 0) = lim
i→∞

χ̂(xki + nki , δki) = lim
i→∞

χki = 0.
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Note that all xki satisfy the glass box constraints h(x) = 0 and g(x) ≤ 0, so x∗ is also glass

box feasible since the feasible set is closed. Together with θ(x∗) = 0 (by continuity), we

conclude x∗ is a first order critical point of (4.2).

Lemma 4.3.3. (Limit of θk for filter iterates) Assume that Algorithm 1 is applied to NLP (4.2)

and that finite termination does not occur. Suppose that (A1) and (A2) hold and that |Z| = ∞.

Then:

lim
k→∞
k∈Z

θk = 0.

Proof. Same as Lemma 3.3 in Fletcher et al. The proof only relies on the definition of the

filter mechanism, which has not changed in this algorithm.

Lemma 4.3.4. (Lemma 3.4 Fletcher et al.) Assume that Algorithm 1 is applied to problem (4.2)

and finite termination does not occur. Suppose that (A1), (A2), and (A3) hold, and that TRSPk is

compatible. Then there exists a constant κubt > 0 such that

θk ≤ κubt∆1+µ
k (4.19)

and

θ(xk + sk) ≤ κubt∆2
k. (4.20)

Proof. For the first conclusion, Lemma 3.4 in Fletcher et al. is applied directly to show that

there exists some κ̂ubt such that

θk ≤ κ̂ubt∆1+µ
k . (4.21)

The second conclusion follows directly from the fully linear property (3.1) as follows: De-

note ck(x) = y − rk(w). Since TRSPk is compatible, we have ck(xk + sk) = 0. Therefore

θ(xk + sk) ≤ κf∆2
k. Then, we may choose κubt as the maximum of κf from the fully linear

property and the constant κ̂ubt from relation (4.21).
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Lemma 4.3.5. (Lower bound on objective improvement) Assume that Algorithm 1 is applied

to NLP (4.2) and finite termination does not occur. Suppose also that (A1), (A2), (A5), and (A6)

hold and that k /∈ R. Suppose, for some ε > 0,

χk ≥ ε

and

∆k ≤ min

[(
ε

κumh

)
,

(
2κubg

κumhκ∆κµ

) 1
1+µ

,

(
κtmdε

4κubgκ∆κµ

) 1
µ

]
=: δm (4.22)

where κubg = maxx∈Ω ‖∇f(x)‖ and κumh = max
[
maxk{βk},maxx∈Ω ‖∇2f(x)‖

]
. Then,

f(xk)− f(xk + sk) ≥
1

2
κtmdε∆k. (4.23)

Proof. Follows from Lemma 3.5 in Fletcher et al. The assumption of bounded Hessians

(assumption AS2 in Fletcher et al.) is not required since the actual objective function is

used, and this result follows from (A1) and (A2).

Lemma 4.3.6. (f-type steps for small ∆) Suppose that Algorithm 1 is applied to problem (4.2)

and that finite termination does not occur. Suppose also that (A1), (A2), (A3), (A5), and (A6) hold,

that k /∈ R, that (4.16) holds, χk ≥ ε, and that

∆k ≤ min

[
δm,

(
κtmdε

2κθκ
γs
ubt

) 1
γs(1+µ)−1

]
=: δf . (4.24)

Then

f(xk)− f(xk + sk) ≥ κθθγsk .

Proof. Same as Lemma 3.7 Fletcher et al. Follows from Lemmas 4.3.4 and 4.3.5.

Lemma 4.3.7. (Small trust region will guarantee filter acceptance) Suppose that Algorithm 1

is applied to problem (4.2) and that finite termination does not occur. Suppose also that (A1), (A2),
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(A3), (A5), and FCD condition holds, χk ≥ ε, k /∈ R, and

θk ≤ κ
− 1
µ

ubt

(
κtmdε

2γθ

) 1+µ
µ

=: δθ. (4.25)

Then

f(xk + sk) ≤ f(xk)− γθθk.

Proof. Follows easily from Lemma 3.8 in Fletcher et al. where η2 is omitted becausem(x) =

f(x). Derived from Lemmas 4.3.4 and 4.3.5.

Lemma 4.3.8. (Small TR and small θ will not call restoration) Suppose that Algorithm 1 is

applied to problem (4.2) and that finite termination does not occur. Suppose also that (A1), (A2),

(A3), (A5), (A6), χk ≥ ε, and that

∆k ≤ min

[(
1

κµ

) 1
µ

,

(
γ2
c (1− γθ)κ∆κµ
κuscκubt

) 1
1−µ
]

=: δR (4.26)

Suppose furthermore than k > 0 and that

θk ≤ min[δθ, δn] (4.27)

Then, k /∈ R.

Proof. By equation (4.27) and the stated assumptions, we know that the conclusions of

Lemmas 4.3.1 and 4.3.7 apply. Assume, for the purposes of contradiction, that k ∈ R.

Because we assume (A6) holds, this means that

‖nk‖ > κ∆κµ∆1+µ
k (4.28)

where we have used the fact that κµ∆µ
k is less than 1 because of (4.26). The construction

of restoration phase must guarantee that if k ∈ R then k − 1 /∈ R. This can easily be

accomplished if restoration phase returns a feasible point.
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Now first suppose that iteration k − 1 is unsuccessful, i.e., xk−1 = xk. Then, because

θk = θk−1 and Lemma 4.3.7 holds, we know that

f(xk−1 + sk−1) ≤ f(xk−1)− γθθk−1. (4.29)

It is a property of the filter that if (4.29) holds and also

θ(xk−1 + sk−1) ≤ (1− γθ)θk−1

then sk−1 is acceptable. So, since iteration k − 1 is unsuccessful, we have

θ(xk−1 + sk−1) > (1− γθ)θk (4.30)

Now, applying Lemma 4.3.4 (which in turn uses Lemma 4.3.1),

(1− γθ)θk < θ(xk−1 + sk−1) ≤ κubt∆2
k−1 ≤

κubt
γ2
c

∆2
k

Now, using our supposition (4.28) and normal step requirement (4.15),

κ∆κµ∆1+µ
k < ‖nk‖ ≤ κuscθk ≤

κuscκubt
γ2
c (1− γθ)

∆2
k

and hence,

∆1−µ
k >

γ2
c (1− γθ)κ∆κµ
κuscκubt

which contradicts (4.26), so the assumption that k − 1 is unsuccessful must be false.

Thus, iteration k − 1 is successful and θk = θ(xk−1 + sk−1). By (4.28), (4.15), and Lemma

4.3.4,

κ∆κµ∆1+µ
k < ‖nk‖ ≤ κuscθk ≤ κuscκubt∆2

k−1 ≤
κuscκubt
γ2
c

∆2
k

implying that

∆1−µ
k >

γ2
cκ∆κµ
κuscκubt

again contradicting (4.26) since (1 − γθ) ∈ (0, 1). Therefore, the initial supposition (4.28)

must be false thus completing the proof.
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Lemma 4.3.9. (Convergence for infinite filter) Suppose that Algorithm 1 is applied to problem

(4.2) and that finite termination does not occur. Suppose also that (A1), (A2), (A3), (A5), and (A6)

hold. Suppose furthermore that |Z| =∞. Then there exists a subsequence {kj} ⊆ Z such that

lim
j→∞

θkj = 0 (4.31)

lim
j→∞

χkj = 0 (4.32)

lim
j→∞

∆kj = 0 (4.33)

Proof. The first conclusion, (4.31), is simply a restatement of Lemma 4.3.3. Next, Fletcher

et al. (Lemma 3.10) show that for any infinite subsequence {ki} ⊆ Z , a contradiction with

(4.31) implies that there exists {kl} ⊆ {ki} such that

lim
l→∞

∆kl = 0.

Next, Lemmas 4.3.6 and 4.3.8 imply that we will have successful f-type steps as long as

χkl is bounded away from zero, which prevent the trust region from vanishing. Therefore,

χkl → 0.

Lemma 4.3.10. (θ → 0 for finite filter) Suppose that Algorithm 1 is applied to problem (4.2), that

finite termination does not occur, and that |Z| <∞. Suppose also that (A1), (A2), (A3), (A5), and

(A6) hold. Then,

lim
k→∞

θk = 0. (4.34)

Proof. Because |Z| <∞, we note that |R| <∞. Denote k0 > 0 as the last iterate for which

xk0−1 is added to the filter. We know that all successful iterates with k ≥ k0 are f-type

steps. If the set of successful iterates is finite, then ∆k → 0 and Lemma 4.3.7 implies that
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finite termination has occurred. We know that all successful iterates with k ≥ k0 are f-type

steps and for successful iterate k

f(xk)− f(xk+1) ≥ κθθ(xk)γs ≥ 0

Because (A1)-(A2) imply that f is bounded below and the objective function cannot in-

crease for k ≥ k0, we have that

lim
k→∞

f(xk)− f(xk+1) = 0 (4.35)

so considering the previous relation, the desired conclusion (4.34) follows.

Lemma 4.3.11. (for finite filter, ∆k bounded away from zero if χ bounded away from zero)

Suppose that Algorithm 1 is applied to problem (4.2) that finite termination does not occur and that

|Z| <∞. Suppose also that (A1), (A2), (A3), (A5), and (A6) apply. If χk ≥ ε for all k ≥ k0 (where

k0 is defined as in the previous lemma), then there exists a ∆min > 0 such that

∆k ≥ ∆min

for all k.

Proof. Follows from Fletcher et al. Lemma 3.12.

Lemma 4.3.12. (Convergence of χ) Suppose that Algorithm 1 is applied to problem (4.2) that

finite termination does not occur and that |Z| <∞. Suppose also that (A1), (A2), (A3), (A5), and

(A6) apply. Then,

lim inf
k→∞

χk = 0. (4.36)
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Proof. Lemma 4.3.10 gives θk → 0, which implies that ‖nk‖ → 0 by (A6). The convergence

of f in successful iterates (4.35) implies in turn that

lim
k→∞
k∈S

[f(xk + nk)− f(xk + sk)] = 0 (4.37)

If χk ≥ ε for all k ≥ k0, Lemma 4.3.11 and the definition of the FCD condition imply for all

k ≥ k0,

f(xk + nk)− f(xk + sk) ≥ κtmdεmin

[
ε

κumh
,∆min

]
immediately giving a contradiction with (4.37). Hence, χk is not bounded away from zero

and the desired conclusion follows.

The convergence result is summarized in the following theorem.

Theorem 4.3.13. Suppose that Algorithm 1 is applied to problem (4.2) and that finite termination

does not occur. Suppose also that (A1), (A2), (A3), (A4), (A5) and (A6) hold. Then either the

restoration procedure terminates unsuccessfully or there is a subsequence {kj} for which

lim
j→∞

xkj = x∗

where x∗ is a first order KKT point of problem (4.2).

Proof. Suppose that the restoration procedure always terminates successfully. Then, from

Lemma 4.3.9, Lemma 4.3.10, and Lemma 4.3.12 we have.

lim
j→∞

θkj = lim
j→∞

χkj = 0.

Step 4 in the algorithm gives

lim
j→∞

∆kj = 0

and finally, Lemma 4.3.2 from above gives the final conclusion.
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4.4 Conclusions

A surrogate model trust region algorithm is presented for glass box/black box optimiza-

tion. Surrogate models are frequently used to embed black box functions into glass box

models, but care must be taken to correctly optimize these systems. Trust region methods

provide a natural framework for managing error in surrogate models. In addition, the

concept of a filter helps measure the success of a surrogate model in achieving feasibility

and optimality. The convergence of our method if KKT points is proved by combining

properties from the trust region filter developed in [72, 73] with derivative free optimiza-

tion concepts [22]. The applicability to chemical process optimization is shown on the

Williams-Otto process, the ammonia process, and a large-scale power plant optimization

problem in Chapter 6.

In the future, we plan to improve performance as we gain experience on more prob-

lems. When multiple black box functions are included in one problem, it may be beneficial

to use a separate trust region to manage each surrogate model. This may involve some

algorithmic modifications to the filter concepts. In addition, the handling of noise is an

open problem. The ability to rigorously account for stochastic or numerical noise would

greatly expand potential areas of application.

60
CHAPTER 4. ALGORITHM AND THEORY



Chapter 5

Implementation and Improvements

A trust region filter (TRF) method specifically for solving glass box/black box problems

was presented in Chapter 4 along with discussion of convergence properties. The version

of the algorithm presented in Section 4.2 can serve as a “vanilla” version, which is easiest

to follow for the purpose of convergence. However, several algorithmic adjustments can

improve performance while still working within the convergence theory presented. In this

chapter, we discuss these improvements to the TRF method as well as its implementation

in an integrated optimization framework. This chapter discusses and analyzes several of

the more important developments including separate trust and sampling regions as well

as their updating rules. To benchmark the improvements and implementation, a test set of

problems is gathered and the effects of major algorithmic modifications are demonstrated.

The structure of this chapter is as follows, we first discuss our algorithmic improve-

ments in Section 5.1 and the modified algorithm is given in Section 5.2. Then, we present

a Pyomo-based implementation of our algorithm in Section 5.3. and discuss the perfor-

mance of the algorithm on a set of test problems in Section 5.4. Finally, we conclude in

Section 5.5.

5.1 Proposed Modifications

In gaining experience with initial implementations of Algorithm 4.2, several concerns

emerged. First, the algorithm tends to take very small steps sk when moderately close
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to an optimum. This occurred because the filter required θ to remain small, which in turn

requires accurate surrogate models. A small trust region keeps the surrogate models very

accurate, but also slows the progress because all variables are restricted by the trust region.

This means that there is conflict between the trust region’s role in globalization, i.e. in

guaranteeing overall convergence, and its role in surrogate model management. To ad-

dress this problem, we will introduce the concept of a sampling region. This method can

partially decouple the two tasks of globalization and surrogate model management.

In addition, several issues arise when introducing numerical tolerances. Several algo-

rithmic adjustments to consider tolerances are discussed, and then a modified version of

the TRF algorithm is presented including stopping conditions.

5.1.1 Sampling Region

In trust region-based derivative free methods, the trust region simultaneously serves two

purposes: surrogate model error management and step size control (globalization). For

algorithms addressing fully black box problems, e.g. unconstrained DFO, this may not be

particularly troublesome. On the other hand, Powell separated these two tasks through

the concept of a sampling region in the unconstrained DFO solver UOBYQA [70]. The

sampling region describes the domain where the surrogate model is certifiably accurate

(e.g. where most data is contained for interpolation models), while a trust region is used

for globalization. The method works well, but when compared to other trust region-based

DFO algorithms that do not make a distinction between sampling region and trust region,

the advantage is not clear. However, for glass box / black box problems, the trust region

includes all variables, not just the inputs to the black box. A small trust region gives a more

accurate surrogate model, but greatly restricts the progress in the variables z that do not

directly interact with the black box. The sampling region offers a solution to this problem.
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We define the sampling region for iteration k as the ball B(xk, σk), where σk represents

the sampling region radius. We assume that the sampling region is contained within the

trust region, so σk ≤ ∆k for all iterations k. This assumption is based on our context

of polynomial surrogate models, and a larger sampling region may make sense for other

types of surrogate models or when the black box is extremely expensive. By building

models that are κ-fully linear property only for B(xk, σk), the models can more accurately

capture local behavior. Note that while we require the surrogate model to be κ-fully lin-

ear on the sampling region, this does not necessarily require that all samples need to be

contained within this region.

The benefit of the sampling region is two-fold. The original algorithm requires the trust

region to vanish as the algorithm converges; now we only require that the sampling region

goes to zero. This will allow for larger trust region steps near the solution, which is partic-

ularly important since the glass box variables z are also controlled by the trust region for

globalization purposes. Second, with the sampling region radius σk < ∆k, it may not be

necessary to rebuild the surrogate model if the step is rejected. Therefore, the trust region

can adjust for globalization purposes, and unless the new trust region radius is set below

the current sampling region radius, the original surrogate model may be re-used.

A potential drawback of the sampling region is that is decreases the chance that sample

points can be reused if the trust region center moves. However, the potential to reuse

points tends to become smaller as the number of black box inputs increases. Consider

the volume of the intersection of two trust regions. For example, suppose that the trust

region at iteration k is the set {x ∈ Rn : ‖x‖∞ ≤ 1}, where the current iterate xk = 0.

Then, the subproblem proposes a full step to the corner of the trust region, i.e. xk+1 =

[1, 1, . . . , 1]T . Further suppose that the trust region radius stays the same, ∆k+1 = ∆k = 1.

Then, the volume of each trust region is 2n but the volume of the intersection between
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the two iterations is only 1. This demonstrates the dimension-dependency of the potential

to reuse sample points between two consecutive iterations. As the dimension increases,

the “probability” that previous sample points will lie near the new trust region center

decreases exponentially.

The sampling region concept has not been shown before to be compatible with the con-

vergence framework of κ-fully linear models. Conn et al. [22] suggest that the κ-fully

linear property can hold on a region of radius α∆k, where α is a fixed positive constant.

However, this will always require the trust region to decrease in criticality phase. Instead,

we will develop an algorithm that only requires the sampling region radius to tend to zero,

while the trust region can remain larger near optimality.

5.1.1.1 κ-fully linear on B(wk, σk) implies κ-fully linear on B(wk,∆k)

Recall the definition of a κ-fully linear model: A model r(w) approximating d(w) is κ-fully

linear on B(wk, σ) for constants κf and κg if for all w in B(wk, σ):

‖d(w)− r(w)‖ ≤ κfσ2 ‖∇d(w)−∇r(w)‖ ≤ κgσ (5.1)

We can show that a surrogate model rk(w) that is κ-fully linear on B(wk, σ) will be κ-

fully linear on B(wk,∆) with ∆ > σ. Standard assumptions are used, d(w) and rk(w) are

both twice differentiable on B(wk,∆), and the second derivatives are uniformly bounded

for all k.

Given any w ∈ B(wk,∆), Taylor’s theorem states that:

d(w) = d(wk) +∇d(wk)
T (w − wk) +O(‖w − wk‖2) (5.2)

r(w) = r(wk) +∇r(wk)T (w − wk) +O(‖w − wk‖2) (5.3)

Subtracting (5.3) from (5.2) and applying the Cauchy-Schwarz inequality:

‖d(w)− r(w)‖ ≤ ‖d(wk)− r(wk)‖+ ‖∇d(wk)−∇r(wk)‖‖w − wk‖+ Lr‖w − wk‖2 (5.4)
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where Lr is a bounding constant. Then using (5.1) for point wk and recalling that w ∈

B(wk,∆),

‖d(w)− r(w)‖ ≤ κfσ2 + κgσ∆ + Lr∆
2 (5.5)

Since σ < ∆,

‖d(w)− r(w)‖ ≤ (κf + κg + Lr)∆
2 (5.6)

so κ-fully linearity onB(wk,∆) follows from boundedness ofLr. A similar argument holds

for the bound on the gradients, outlined as follows. Again given any w ∈ B(wk,∆), we

have:

∇d(w) = ∇d(wk) +O(w − wk) (5.7)

∇r(w) = ∇r(wk) +O(w − wk) (5.8)

Subtracting (5.8) from (5.7) and introducing bounding constant Lrg:

‖∇d(w)−∇r(w)‖ ≤ ‖∇d(wk)−∇r(wk)‖+ Lrg‖w − wk‖ (5.9)

Now applying the Cauchy-Schwarz inequality, then applying (5.1):

‖∇d(w)−∇r(w)‖ ≤ κgσ + Lrg∆ (5.10)

‖∇d(w)−∇r(w)‖ ≤ (κg + Lrg)∆ (5.11)

thus proving the following Lemma.

Lemma 5.1.1. If a model rk(w) is κ-fully linear on B(wk, σk) for constants κf , κg, and the second

derivatives of rk(w) are uniformly bounded on B(wk,∆k), then there exist κ̂f , κ̂g such that rk(w)

is κ-fully linear on B(wk,∆k).

Above, we showed that κ̂f = κf + κg + Lr and κ̂g = κg + Lrg.
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5.1.1.2 Update of sampling region radius

As with the use of a sampling region in UOBYQA, we avoid shrinking the sampling region

until necessary. If the trust region radius would be set to some value less than the sampling

radius, then the sampling region is shrunk so that it is again contained within the trust

region. In addition, the criticality phase of the original algorithm no longer has to take the

trust region to zero. Instead, because of the κ-fully linear property, first order optimality is

guaranteed as the sampling region radius decreases to zero.

The original criticality test, given in (4.8), shrinks the trust region by a constant factor

each time it is satisfied. When using a sampling region, the criticality phase shrinks the

sampling region instead of the trust region. In addition, computational experience showed

that reducing the sampling region by a constant factor may be too conservative. Often

once the criticality phase is invoked, the algorithm has nearly found the solution, allowing

a more aggressive reduction in σ to be used. Therefore with the sampling region, the

criticality test (4.8) changes to

χk < ξσk (5.12)

If this condition is true, then σk is reduced. The following formula then uses the observed

criticality to attempt to set σ to a value where the criticality test (5.12) no longer holds.

σk = max(min(σk−1, χk/ξ),∆min)

5.1.2 Step Size Update

The basic trust region update formula (4.13) increases or decreases the trust region radius

by constant factors. However, as noted in [78], this may be too restrictive of a requirement.

In general, the size of the trust region at iteration k + 1 is based on the norm of the step

computed at iteration k. Since the trust region has been largely decoupled from surrogate
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model accuracy, this allows the trust region to rapidly adapt to its role in globalization.

As shown in the convergence proof (see Section 4.3), the following two features are re-

quired for the trust region radius. First, the trust region must not decrease when taking

an f -type step. Next, the trust region must decrease when a step is rejected. Outside

of this, we have freedom to define an update procedure as desired, using computational

experiments as a guide. The following scheme has been effective in practice.

One problem that emerged in Algorithm 1 was a sequence of f -type steps with small

norm ‖sk‖. This allowed the trust region to grow very large during convergence, in turn

causing a prolonged criticality phase to certify optimality. For f -type steps, the trust region

is now updated as follows:

∆k+1 := max [γe‖sk‖,∆k]

where γe ≥ 1 and sk is the step as defined in (4.9). This means that if the current trust

region constraint is (nearly) active, the trust region should be expanded to allow faster

progress. However, if the step at this iteration is small, we maintain the current value of

∆k since a decrease in the radius is not allowed.

For θ-type steps, the convergence proof has no restrictions on the trust region update

(provided ∆k ∈ R+). Therefore, we propose the following modification.

∆k+1 =


γc‖sk‖ if ρk < η1,

∆k if η1 ≤ ρk < η2,

max{γe‖sk‖,∆k} if ρk ≥ η2

(5.13)

where ρk is given by

ρk =
θ(xk)− θ(xk + sk) + εθ
max(‖yk − rk(wk)‖, εθ)

(5.14)

and εθ is a small tolerance. This new definition of ρ is derived from the standard trust

region definition of actual reduction divided by predicted reduction (4.12). Since the trust
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region subproblem is compatible, we know that the predicted reduction is equal to θ(wk).

The small tolerance εθ is added to control behavior near θ = 0. The form of this definition

was chosen to prevent the trust region from decreasing when both θk and θ(xk + xk) are

very small. Since the trust region update on θ-type steps does not impact global conver-

gence, this form is chosen for its better numerical performance.

When a step is rejected, the following update is used:

∆k+1 = γc‖sk‖.

This aggressively shrinks the trust region to prevent the same failed step being tried again.

In other words, this eliminates the possibility that sk+1 = sk, which may occur when the

surrogate model rk+1 is nearly or exactly the same as the one used at iteration k.

5.1.3 Changes to filter mechanism

In this section, we discuss additional modifications to the filter mechanism introduced in

Section 4.1.2. We will say that a step sk is acceptable to the filter if:

θ(xk + sk) ≤ (1− γθ)θj or f(xk + sk) ≤ fj − γfθj (5.15)

for all (θj , fj) ∈ Fk. In previous trust region filter methods [72], the following additional

requirement is enforced for all acceptable steps:

θ(xk + sk) ≤ (1− γθ)θk or f(xk + sk) ≤ f(xk)− γfθk (5.16)

By contrast, the line search filter method proposed in [12] only requires (5.16) for θ-type

steps.

Because imposition of (5.16) is a tighter condition on the acceptance of sk, it may lead to

more frequent shrinkage of the trust region and calls to the restoration phase at the current
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iterate. On the other hand, if (5.16) is not imposed, a bad sk would be allowed that may

impede performance at subsequent iterations.

We observed this trade-off in our computational results, and found that allowing sk

“inside” the filter (disregarding (5.16)) actually improved performance and reduced the

number of calls to restoration phase. This means that in general, taking a relatively “bad”

step that doesn’t satisfy (5.16) seems better at preventing restoration than decreasing the

trust region directly. Moreover, only condition (5.15) is required to guarantee convergence.

We also borrow the following requirement from IPOPT [12] that restricts f -type steps to

small values of θ. This may be viewed as a modification of the switching condition (4.11).

A step sk is an f -type step if

θ(xk) ≤ θmin and f(xk)− f(xk + sk) ≥ κθθ(xk)γs (5.17)

The requirement that θ be small to take an f -type step is justified as we do not want to

increase the trust region radius for very large values of θ. This places more emphasis on

reducing infeasibility in the earlier stages of the algorithm.

5.2 Algorithm 2: Modified TRF Method

The TRF method with the above modifications is presented below. Unlike the presentation

in Chapter 4, termination tolerance parameters are also included here. For convenience,

the algorithm from Section 4.2 is referred to as Algorithm 1, and the modified version

presented here is referred to as Algorithm 2.

Algorithm 2:

1. Initialization: Choose an initial trust-region radius ∆0, an initial iterate x0, and an

initial sampling radius σ0. Choose termination tolerances εθ (for feasibility), εχ (for

criticality), and ε∆ ≥ ∆min for ensuring accurate surrogate models and preventing
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numerical issues with small trust regions, respectively. Choose compatibility check

parameters κ∆ ∈ (0, 1), κµ > 0, µ ∈ (0, 1), and εcompat > 0. Choose criticality scaling

parameter ξ > 0. Select trust region update parameters 0 < γc < 1 ≤ γe. Choose

switching condition parameters γs > 1
1+µ , κθ ∈ (0, 1), and θmin > 0. Initialize the

filter F0 = ∅ and select positive filter parameters γf , γθ, and θmax. Select ratio test

thresholds 0 < η1 < η2 < 1 and sampling region reset parameter ψ ∈ (0, 1]. Evaluate

d(x0) and then calculate θ(x0). Set k = 0.

2. Generate a surrogate model rk(w) that is κ-fully linear on B(xk, σk). Reuse previous

surrogate model if possible.

3. Criticality and termination check:

Calculate criticality measure χk (4.7)

(a) If θk ≤ εθ, χk ≤ εχ, and σk ≤ ε∆, STOP. A first order critical point has been

found to tolerance.

(b) If ∆k ≤ ∆min, ∆k−1 ≤ ∆min, θk ≤ εθ, and θk−1 ≤ εθ, STOP. A feasible solution

has been found but progress to optimality is too slow.

(c) Criticality phase: Set σk = max(min(σk−1, χk/ξ),∆min)

4. Compatibility Check:

Solve the compatibility check (4.5). Denote the optimal objective function value as β.

If β < εcompat (i.e. TRSPk is compatible), go to Step 5. Otherwise, add (θk, fk) to the

filter and go to Step 10.

5. Solve subproblem (4.3) and obtain the solution x̄. Define the step sk := x̄− xk.

6. Filter:

Evaluate θ(xk + sk). If for all (θj , fj) ∈ Fk,

θ(xk + sk) ≤ (1− γθ)θj or f(xk + sk) ≤ fj − γfθj
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then the step sk is acceptable to the filter. If the step is acceptable to the filter, continue

to Step 7. Else, set xk+1 = xk, θk+1 = θk, ∆k+1 = γc‖sk‖, and σk+1 = min{σk, ψ∆k+1},

then set k := k + 1 and go to Step 2.

7. Switching condition:

If the switching condition (5.17) holds, then go to Step 8. Else, go to Step 9.

8. f -type step

Accept trial step and possibly increase trust region: Set xk+1 = xk + sk, ∆k+1 =

max{γe‖sk‖,∆k}, σk+1 = σk, and θk+1 = θ(xk + sk). Set k := k + 1 and go to Step 2.

9. θ-type step

Add (θk, fk) to the filter and accept trial step xk+1 = xk + sk. Update the trust region

using (5.13) and (5.14). Set σk+1 = min[σk, ψ∆k+1]. Set k := k + 1 and go to Step 2.

10. Restoration Phase Return a new point xk+1, trust region radius ∆k+1, sample region

radius σk+1 and new surrogate model rk+1(w) such that TRSPk+1 is compatible. Set

k := k + 1 and go to step 2.

5.3 Implementation

The TRF method, as shown in Section 5.2 has been implemented in Python/Pyomo. Py-

omo (Python Optimization Modeling Objects) is an open source framework for modeling

and analyzing mathematical programming problems [79, 80]. The implementation within

Python, a full-featured high-level programming language, provides great flexibility to re-

searchers and practitioners compared to other modeling platforms. In addition, Pyomo

includes interfaces to many of the most popular mathematical programming solvers. This

is especially well suited to the TRF method, where models are repeatedly solved with

small modifications, and a user has freedom to select a particular solver for the subprob-
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lem. By default, all subproblems are solved with IPOPT 3.12.4 [12], although any other

Pyomo-supported solver may be substituted by the user. The criticality check (4.7) re-

quires the derivatives of the problem evaluated at a point; these are obtained using the

AMPL pseudo-solver gjh.

5.3.1 Polynomial Interpolation Models

One of the advantages of the TRF method is the flexibility for using many types of surro-

gate models. If any particular structure or information is known, a user may define her

own function to construct a surrogate model using that information. The TRF method

assumes that the result will satisfy the κ-fully linear property.

Computational experience suggests polynomial surrogate models are most suitable for

general problems. The current implementation of the TRF method includes methods for

building linear and quadratic interpolation models. With linear interpolation models, we

use a forward difference perturbation with magnitude equal to the sampling radius. If us-

ing quadratic interpolation, the method uses a fixed, a priori calculated sample geometry

at every iteration. In typical derivative free codes, the geometry is allowed to adapt, re-

using points from previous iterations when possible. The fixed geometry is a simplifying

assumption, showing the resulting behavior with well-poised sample geometry at every

iteration, and this could be treated as an upper bound to the computational expense of

a more careful implementation. However, the use of a sampling region makes it highly

unlikely that points will be available for re-use.

The fixed sample geometries are designed to interpolate the trust region center and

points on a sphere of radius σk. For a black box with input dimension m, linear mod-

els require at least m+ 1 function evaluations per trust region iteration, whereas quadratic

interpolation models require (m + 1)(m + 2)/2 function evaluations. Note however that
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the TRF method is in no way restricted to these polynomial surrogate models. The sample

geometry consists of (m+1)(m+2)/2−1 points on the unit sphere {w : ‖w‖ = 1, w ∈ Rm}.

Together with the origin, this forms the full interpolation set. At each iteration, these sam-

ple points are scaled multiplicatively by the sampling radius, then shifted to the sample

region centerwk. The black box is evaluated at these points, then the interpolation problem

can be uniquely solved.

This paragraph briefly reviews polynomial interpolation: Consider the approximation

of a black box function d̄(w) : Rm → R using a polynomial in P lm, the space of polynomials

in Rm of degree l or less with real valued coefficients. We define

φ(w) = {φ1(w), φ2(w), . . . , φq(w)}T

as a vector of basis functions for P lm evaluated at a particular point w ∈ Rm. Denote the

sample set W = {w1, w2, . . . , wp} ⊂ Rm. Let d̄(W ) denote the vector whose elements

are the black box outputs d̄(wi), i = 1, . . . p. The interpolation matrix M has entries

mi,j = φj(w
i). Thus, given a polynomial basis set φ and sample set W the interpolating

polynomial may be found from solving the linear system

Mα = d̄(W ) (5.18)

If M is square and nonsingular, we say that W is poised for polynomial interpolation.

The sample setW is always a fixed geometry in our implementation, so the matrixM for

each dimension of quadratic polynomial is stored on disk and retrieved at the beginning

of the TRF method. The interpolation problem is solved for the normalized sample set

around the origin, then the polynomial coefficients are modified to account for the scaling

and shifting to the sample region center.
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5.3.2 Restoration Phase

The restoration phase is normally designed to minimize infeasibility measure θ. In the im-

plementation for general problems, the restoration algorithm works as follows: The com-

patibility check (4.5) is solved repeatedly, using the classical trust region update formula

(4.12) and (4.13) to update the trust region. This is repeated until either the compatibility

check shows that the trust region subproblem is compatible or the trust region shrinks to a

small tolerance, at which point the algorithm terminates at a local minimum of infeasibil-

ity.

5.3.3 Convergence Properties

All the modifications can be applied without modifying the core elements of the conver-

gence proof. The only significant change is that now the sampling region radius σk is

driven to zero instead of the trust region radius ∆k. Lemma 4.3.2 is therefore can be re-

written

Lemma 5.3.1. Assume that Algorithm 2 is applied to problem (4.2) and that finite termination does

not occur. Suppose that (A1), (A2), (A3), (A4), and (A6) hold, and that there exists a subsequence

{ki} such that TRSPki is compatible for all ki, and

lim
i→∞

χki = 0, lim
i→∞

θki = 0, and lim
i→∞

σki = 0. (5.19)

Then every limit point of the subsequence {xki} is a first order critical point for problem (4.2).

5.4 Numerical Results

In order to test the effectiveness of proposed modifications to the TRF algorithm, a set of

test problems was assembled. There is no known standard library of test problems for
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glass box/black box optimization, so a test set has been developed from modified versions

of established NLP benchmarks from the CUTEr and COPS sets [81, 82].

22 problems from the CUTEr set were modified through the replacement of one or sev-

eral nonlinear constraints with a black box. The black box constraint or expression was

chosen to be sufficiently nonlinear so as to be challenging, but not to include all variables

as arguments, thus preserving a “glass box” portion of the model. As an example, consider

the problem hs100lnp. The original CUTEr problem is given as follows,

min
x∈R7

(x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5 + 7x2
6 + x4

7 − 4x6x7 − 10x6 − 8x7

s.t. 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 − 127 = 0

−4x2
1 − x2

2 + 3x1x2 − 2x2
3 − 5x6 + 11x7 = 0

(5.20)

This can be transformed into a glass box / black box problem by assuming the first con-

straint as black box. The output of this constraint is x3, which will be relabeled as y. Then,

labeling w = [x1, x2, x4, x5] and z = [x6, x7], we know that d(w) = 127− 2w2
1− 3w4

2− 4w2
3−

5w4 and the whole problem (5.20) can be rewritten as:

min
w,y,z

(w1 − 10)2 + 5(w2 − 12)2 + y4 + 3(w3 − 11)2 + 10w6
4 + 7z2

1 + z4
2 − 4z1z2 − 10z1 − 8z2

s.t. −4w2
1 − w2

2 + 3w1w2 − 2y2 − 5z1 + 11z2 = 0

y = d(w)

(5.21)

Six parameter estimation problems were also adapted into glass box/black box models.

They consist of four problems from the COPS [82] test set (marine, methanol, gasoil, pinene),

one epidemiology example (disease) [83], and a final example, (paramest), which is problem

5 from [84]. These problems are discretized into several finite elements. One of the finite

elements is then treated as a black box, while the dynamics in the remaining elements are

CHAPTER 5. IMPLEMENTATION AND IMPROVEMENTS

75



5.4 NUMERICAL RESULTS

Figure 5.1: Converting dynamic models to glass box black box problems

handled explicitly with collocation using Radau roots. As shown in Figure 5.1, the inputs

to the black box are the values of the parameters and the values of the states at time ti,

where ti is the beginning of finite element i. The outputs after integration are the states at

time ti+1. Within the black box time horizon, the differential equations are integrated using

SciPy’s odeint function. Any data within finite element i are neglected for the parameter

estimation.

For each of the parameter estimation problems, different variants were created by mak-

ing each of the finite elements black box, except for the first finite element i = 0 and the

last finite element. In Table 5.1, the number after the problem name refers to which finite

element is treated as the black box. The total number of finite elements can then be inferred

from the number of problem variants by adding 2 (the first and last finite element). For

example, the problem methanol used 6 finite elements because there are 4 variants of the

problem. When adding the CUTEr problems to our test set, we get a total set size of 62.

The problems are listed in Table 5.1.

Table 5.1: Test Set

Problem nw ny nz Alg 1, Linear Alg 1, Quad Alg 2, Linear Alg 2, Quad

Iter Evals Iter Evals Iter Evals Iter Evals

marine-1 23 8 328 – – – – 31 727 – –

marine-2 23 8 328 – – – – 11 299 – –
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Problem nw ny nz Alg 1, Linear Alg 1, Quad Alg 2, Linear Alg 2, Quad

Iter Evals Iter Evals Iter Evals Iter Evals

marine-3 23 8 328 – – – – 12 324 – –

methanol-1 8 3 129 – – – – 94 922 – –

methanol-2 8 3 132 – – – – 4 49 5 203

methanol-3 8 3 135 – – – – 4 49 – –

methanol-4 8 3 135 – – – – 3 39 11 434

paramest-1 4 2 116 7 47 8 113 48 293 41 311

paramest-2 4 2 116 7 47 – – 3 23 2 37

paramest-3 4 2 118 7 47 7 97 12 77 10 105

paramest-4 4 2 118 7 47 7 97 10 65 10 105

paramest-5 4 2 118 7 47 7 97 10 65 12 117

paramest-6 4 2 118 7 47 7 97 10 65 12 117

paramest-7 4 2 118 7 47 – – 11 71 13 123

paramest-8 4 2 116 7 47 – – 11 71 13 123

disease-1 5 3 249 – – – – 5 41 4 79

disease-2 5 3 249 – – – – 6 48 4 79

disease-3 5 3 249 – – – – 6 48 4 79

disease-4 5 3 249 – – – – 5 41 4 79

disease-5 5 3 249 – – – – 6 48 4 94

disease-6 5 3 252 – – – – 6 48 4 94

disease-7 5 3 252 – – – – 7 55 4 94

disease-8 5 3 246 – – – – 7 55 4 94

disease-9 5 3 249 – – – – 8 62 4 94
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Problem nw ny nz Alg 1, Linear Alg 1, Quad Alg 2, Linear Alg 2, Quad

Iter Evals Iter Evals Iter Evals Iter Evals

disease-10 5 3 249 – – – – 11 77 4 94

disease-11 5 3 249 – – – – – – 5 116

gasoil-1 5 2 146 – – – – 3 27 4 94

gasoil-2 5 2 146 7 55 – – 4 34 4 94

gasoil-3 5 2 146 – – – – 4 34 4 94

gasoil-4 5 2 144 7 55 – – 4 34 7 145

gasoil-5 5 2 144 7 55 – – 4 34 6 138

gasoil-6 5 2 146 7 55 – – 4 34 6 123

gasoil-7 5 2 148 7 55 – – 4 34 6 123

gasoil-8 5 2 146 7 55 – – 3 27 4 94

pinene-1 10 5 245 8 107 8 437 5 71 3 212

pinene-2 10 5 245 8 107 8 437 5 71 3 212

pinene-3 10 5 245 8 107 8 437 5 71 3 212

pinene-4 10 5 245 8 107 9 493 5 71 3 212

pinene-5 10 5 245 9 119 13 772 5 71 3 212

pinene-6 10 5 245 11 143 20 1241 6 83 3 212

hs0801 2 1 3 – – 11 77 7 31 6 42

fletcher1 4 1 0 – – – – – – 11 161

allinitc1 3 1 1 24 124 28 300 42 214 5 65

bt11 2 2 1 – – 12 84 17 71 6 48

hs046 2 1 3 – – – – 8 35 4 34

hs047 2 2 3 19 73 20 131 21 84 47 251
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Problem nw ny nz Alg 1, Linear Alg 1, Quad Alg 2, Linear Alg 2, Quad

Iter Evals Iter Evals Iter Evals Iter Evals

hs107 4 2 5 – – – – 7 47 – –

hs100lnp 4 1 2 – – 13 193 – – 6 111

rk23 3 1 14 – – – – 8 44 4 54

hs99exp 7 7 24 – – – – – – 10 406

hs067 3 1 6 – – – – – – 4 54

dnieper 5 1 55 11 83 – – 3 27 2 65

bt6 2 1 3 9 39 8 53 7 31 4 34

csfi2 2 1 2 – – – – 9 39 6 48

csfi1 2 1 2 – – 11 74 99 399 8 62

bt9 2 1 1 – – 4 31 – – 2 20

hs111lnp 4 1 6 – – – – – – 24 399

hs0781 2 1 3 10 43 8 53 10 43 4 34

hs0751 2 1 2 – – – – 3 15 3 27

hs0741 2 1 2 – – – – 3 15 3 27

hs0771 2 1 3 – – – – 16 67 7 55

hs0811 2 1 3 – – 11 77 7 31 6 42

This test set is used to compare Algorithm 1 to the modified Algorithm 2. The original

algorithm and the modified version are run using both linear and quadratic surrogate

models for a total of four algorithmic variants. The default tolerances are listed as follows:

feasibility εθ = 10−6, criticality εχ = 10−5, maximum sample radius for termination ε∆ =

10−5, and minimum allowable sampling region/trust region radius ∆min = 10−6.

For the algorithms that do not use a sampling region, very few problems are solvable at
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this tolerance level. The algorithms get close to optimality then proceed to take a sequence

of very small f -type steps. The steps all remain successful but the rate of convergence is

too slow to reach the desired tolerance in the limit of 10000 black box function evaluations.

For the results obtained here for Algorithms 1 and 2, the tolerance εχ is relaxed to 10−3 in

order to recognize that the solver had nearly identified an optimal solution before being

trapped in the slow convergence pattern.

The full list of test problems and performance of each of the four methods (Algorithm

1 with Linear/Quadratic surrogate models, and Algorithm 2 with linear/quadratic surro-

gate models) is listed in Table 5.1. For all test problems, at least one of the four methods was

able to solve the problem in under the 10000 function evaluation limit. The table presents

the number of iterations and number of black box evaluations required to reach the so-

lution. These results are also plotted using Dolan-Moré performance profiles in Figures

5.2 and 5.3. The performance measure τ represents the number of black box evaluations

(Figure 5.2) or the number of iterations (Figure 5.3) required to solve the problem divided

by the number of evaluations / iterations required by the best method for the given prob-

lem. The horizontal axis is log(τ). The vertical axis represents the percentage of problems

solved within that function evaluation / iteration budget. So higher lines on the left rep-

resent faster methods, while higher lines on the right side represent more robust methods.

The results indicate that the recent improvements to the algorithm have successfully im-

proved the performance on this test set. Algorithm 2 is significantly more efficient (fewer

function evaluations) and more robust (more problems solved) than Algorithm 1 with both

linear and quadratic surrogate models. From Figure 5.3, it is clear that quadratic surrogate

models reduce the iteration requirement for Algorithm 2. The number of iterations acts as

a proxy for the computational expense of solving the subproblems. Normally we assume

that sampling the black box is significantly more expensive, but if black box evaluations
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Figure 5.2: Performance profile for black box calls
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Figure 5.3: Performance profile for iterations
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are relatively cheap then considering the number of iterations becomes important. Algo-

rithm 2 with quadratic surrogate models is the clear choice in this case. However, Algo-

rithm 2 with linear models generally requires fewer black box evaluations as shown on

Figure 5.2 because fewer samples are needed to construct the surrogate model. In terms

of robustness, Algorithm 2 with linear and quadratic models are roughly the same, with

quadratic models slightly more robust. This makes sense as the quadratic models are able

to solve some highly nonlinear problems that may fail with linear surrogate models. We

note that all four methods were initialized with the same starting points and initial trust

region, and all test problems are solvable by at least one of the four methods. Moreover, we

observed that Algorithm 2 was more robust to different initializations than Algorithm 1.

Nevertheless, there is still some room for improvement, since neither approach can solve

all problems.

Finally, note that the termination tolerance for Algorithm 1 (without the sampling re-

gion) is looser than Algorithm 2. Despite this, the modified algorithm with sampling re-

gion greatly outperforms Algorithm 1. Without loosening the tolerance, the convergence

of Algorithm 1 is too slow to be competitive with Algorithm 2. The sampling region was

originally motivated by this very behavior, so the results indicate that it is successful in

mitigating the problem. Without a sampling region, the test set on average does suffer

from slow local convergence as a result of the small trust region. When adding the sample

region, the bigger steps allow for much better local convergence behavior.

5.5 Conclusions

The trust region filter (TRF) method for glass box/black box optimization problems can

be improved by adding various algorithmic modifications, including a sampling region,
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step size adjustment strategy, and filter specifications. The sampling region allows de-

coupling the two purposes of the trust region, leading to larger steps and more robust

convergence. The various other modifications helped keep the trust region size appro-

priate and terminate quickly. In addition, a Pyomo-based implementation of the method

has been developed along with a set of 62 test problems. Using this test set as a guide,

different versions of the algorithm can be benchmarked. The algorithmic modifications

discussed in this chapter more than double the number of problems that are successfully

solved compared to the vanilla Algorithm 1. Future directions include further tuning of

the algorithm, and consideration of automatic or adaptive choices of functional forms for

the surrogate models.
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Chapter 6

Case Studies

In this chapter, several case studies of black box / glass box optimization are presented.

The trust region filter (TRF) algorithm is applied to solve problems in chemical process

optimization, carbon capture power generation, and efficient physical property models.

In most of these case studies, equation oriented process models are used to handle stan-

dard unit operations, while reactor models are treated as black box. For chemical pro-

cesses, the concept of sequential modular simulation provides a robust method for finding

feasible flowsheets, and is used here to find a feasible point as part of a restoration proce-

dure.

6.1 Williams-Otto

The Williams-Otto process is a classical example problem for process optimization. This

model is used as a simple example to demonstrate the TRF approach and compare to al-

ternative optimization approaches. Even though the full equation oriented formulation is

available, the reactor is treated as a black box. Therefore, the performance of Algorithm

1 can be compared to solution of the original problem. In this chemical process, a feed

stream is mixed with a recycle stream and fed into a reactor. Three sequential second or-

CHAPTER 6. CASE STUDIES

85



6.1 WILLIAMS-OTTO

R
e

a
ct

o
r

C
e

n
tr

if
u

g
e

S
e

p
a

ra
to

r

FA, FB

FP

Fpurge

FG
FR

Feff

Figure 6.1: Williams-Otto flowsheet

der reactions occur, of which the third reaction produces an unwanted byproduct.

A+B → C,

B + C → P + E,

P + C → G.

The reactor effluent passes through a heat exchanger before the byproduct is precipitated

out. Finally a separator uses a fixed split fraction to separate the product and recycle

streams.

The full optimization formulation from [2] is given as follows:

maxROI = 100(2207FP + 50Fpurge − 168FA − 252FB

− 2.22F sumeff − 84FG − 60V ρ)/(600V ρ)
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The kinetics, given by the following equations, are treated as a black box. The y variables

in formulation (4.2) correspond to the extents of reaction y = [r1, r2, r3] and the w variables

correspond to reactor conditions w = [T, xA, xB, xC , xP , V ]. Therefore, the right hand side

of these constraints is the black box function d(w) : R6 → R3 :

r1 = a1 exp(−120/T )xAxBV ρ,

r2 = a2 exp(−150/T )xBxCV ρ,

r3 = a3 exp(−200/T )xPxCV ρ.

where ρ = 50, a1 = 5.9755, a2 = 2.5962 × 1012, and a3 = 9.6283 × 1015 are constants. The

remaining process models are all glass box. All remaining variables not classified above

correspond to the z variables in formulation (4.2). The constraints are given as follows:

Reactor balance equations:

FAeff = FA + FAR − r1,

FBeff = FB + FBR − (r1 + r2),

FCeff = FCR + 2r1 − 2r2 − r3,

FEeff = FER + 2r2,

FPeff = 0.1FER + r2 − 0.5r3,

FGeff = 1.5r3,

F sumeff =
∑
j

F jeff , j ∈ {A,B,C,E, P,G}

F jeff = F sumeff xj

Waste Stream:

FG = FGeff
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Table 6.1: Williams-Otto flowsheet optimization

Type of surrogate Iterations d(w) function calls

Kriging (average) 123 3141

Linear, perturbation size: 1e-5 13 91

Linear, perturbation size: ∆k/2 92 644

Other solvers:

fmincon ‘sqp’ (finite difference gradients) 15 210

Pattern Search 158 15190

fminsearch failed failed

Product Stream:

Fpurge = η(FAeff + FBeff + FCeff + 1.1FEeff ).

Recycle Stream:

F jR = (1− η)F jeff , j ∈ {A,B,C,E, P,G}.

Bound Constraints:

V ∈ [0.03, 0.1], T ∈ [5.8, 6.8], FP ∈ [0, 4.763],

Fpurge, FG, F
j
eff ≥ 0, FA, FB ≥ 1.

First, this problem was used to compare the performance of Algorithm 1 for three strate-

gies for building surrogate models. For black box/glass box optimization, the metric for

evaluating algorithmic performance will be primarily the number of black box function

evaluations required to reach the optimum solution. As in derivative free optimization,

88
CHAPTER 6. CASE STUDIES



6.1 WILLIAMS-OTTO

the cost of evaluating the black box usually outweighs any computational effort expended

in the optimization algorithm proper.

The first method used Kriging models (Gaussian process regression), constructed with

the DACE MATLAB toolbox [85]. The Kriging hyper-parameters were optimized with the

default DACE settings within the range [0.01, 20]. At each iteration, Latin hypercube sam-

ples (n = 18) were generated around the trust region center, which almost surely guaran-

tees a well-posed positive spanning set and therefore fully linear models [74]. To further

increase accuracy, points were re-used from previous iterations whenever the points lay

within the trust region. Points cannot be re-used when they lie within some threshold dis-

tance of another sample point (to prevent ill-conditioning in construction of the Kriging

model). Because of the random nature of Latin hypercube samples, the overall optimiza-

tion was run 10 times and the average results are given in Table 6.1. The same optimum

solution, in agreement with the original model, was obtained for each of the 10 runs with

an average expense of 3141 function evaluations of the kinetics model.

The second surrogate modeling approach uses a linear model built with finite difference

perturbations. Note that one may assume that the derivative is sufficiently accurate and

the trust region does not have to be forced to zero, i.e. Step 4 of Algorithm 1 may be

omitted. (For this problem, omitting Step 4 did not impact the results). As shown in

Table 6.1, this achieves a drastic reduction in the number of function calls to reach the

correct solution. This suggests several explanations: a) the linear functional form of the

surrogate model decreases the nonconvexity of TRSPk and allows for longer steps, or b)

the accurate derivative information allows for better search directions. To test this, the

following strategy was proposed.

The third surrogate strategy uses forward differences with a perturbation size of ∆k/2.

This maintains the linear functional form, but relies on the κ-fully linear property and
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the trust region must go to zero to guarantee convergence. The performance degrades

in comparison to the finite difference derivatives, but the linear models still outperform

the Kriging models. Any additional information in the nonlinear Kriging models fails to

offset the performance penalty from more complicated subproblems. There may also be

an issue with multiple local minima in the trust region subproblem due to the high degree

of nonlinearity of the Kriging models. In any case, the results suggest that the value of the

derivative at the trust region center cannot be over-emphasized and the finite difference

case offers superior performance.

If derivative estimates are obtained, one may ask whether Algorithm 1 offers any benefit

over competing NLP approaches. The derivative estimates may be given to a nonlinear

programming solver directly and treated as a typical glass box NLP. MATLAB’s fmincon

SQP algorithm was applied to the problem directly using finite difference derivatives for

the kinetics equations. Since the solver makes no distinction between the glass box and

black box constraints, the black box is called more often than when using the trust region

filter (210 calls vs. 91). This demonstrates the benefit of Algorithm 1 to exploit the structure

of the problem by isolating the black box constraints and only calling the black box when

absolutely necessary.

The final two rows in Table 6.1 show the performance when MATLAB’s derivative

free solvers ‘fminsearch’ and ‘patternsearch’ are applied to the problem. To apply the

derivative free methods, inequality constraints are moved to the objective function using

a penalty function as introduced in Chapter 2. Then, a set of independent variables are

fixed and the flowsheet is converged. The independent variables in this case were FA, FB ,

T , V , and η. Unconstrained derivative free techniques may then be applied to the five di-

mensional problem. The pattern search algorithm successfully found the same solution as

the trust region filter method in 158 iterations. However, the flowsheet must be converged
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multiple times at each iteration, and each converging each flowsheet requires multiple calls

to the black box function. The ‘fminsearch’ algorithm (based on the Nelder-Mead simplex

approach) converges a point where the penalized inequalities are significantly violated.

Changing the penalty parameter could not correct this behavior. From the high cost of the

pattern search method and the failure of the Nelder-Mead method, it is concluded that

treating this problem as a black box is not an efficient solution technique. Recognizing

the glass box/black box structure and using it in the trust region filter method can greatly

reduce the computational effort required to obtain a solution.

6.2 Ammonia Synthesis

The ammonia synthesis process was used as a second chemical process optimization case

study for the trust region filter method. Ammonia is synthesized at high pressure from

gaseous nitrogen and hydrogen at high pressure in a fixed bed reactor. The ammonia prod-

uct is purified with a sequence of two flash vessels and remaining reactants are recycled

(see Figure 6.2).

Standard process units, consisting of three compressors, four heat exchangers, and two

flash units, were modeled in the GAMS-based equation oriented process optimization

framework presented in [86]. This framework generates process models for these units

using the SRK equation of state as the thermodynamic model. The objective function max-

imizes revenue from ammonia sales minus the utility costs.

For the ammonia synthesis reactor, a differential algebraic model was adapted from

Murase et al. [87]. The reactor model captures complex trade-offs between temperature,

pressure, composition, and conversion, which are crucial for overall process economics.

The differential equations of the reactor (describing heat transfer and reaction rate) were
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discretized sing Radau IIa collocation [88]. The resulting system of algebraic equations can

then be solved independently as a system of nonlinear equations or alternatively included

as constraints in the simultaneous collocation approach. This simultaneous approach (first

shown for the ammonia process in [89]) generates an NLP with 2,281 variables and 2,297

constraints, This model is straightforward to solve with an equation oriented solver. On

a desktop with Intel i7-4770 CPU with 16 GB of RAM, the problem takes only 0.548 CPUs

in GAMS 24.2 using CONOPT 3.15M. However, if the reactor model is too large or if the

details of the model are unavailable, the simultaneous approach may not be possible. Con-

sequently, we treat the reactor as a black box in order to demonstrate the glass box/black

box approach. The solutions may then be verified against the simultaneous case.

The discretized differential algebraic equation system to model the ammonia reactor is

given as follows. First, introduce the set of components

c = {H2, N2, NH3, Ar, CH4},

the set of finite elements,

t = {1, ..., 15},

and the set of collocation points

j = {1, 2, 3}.

Define partial pressures:

Pc,t,j = Ptot
Nc,t,j∑
c
Nc,t,j

∀t, j (6.1)

Component balances:

NH2,t,j = N0
H2 − 3(N0

N2 −NN2,t,j) (6.2)

NNH3,t,j = N0
NH3 + 2(N0

N2 −NN2,t,j) (6.3)

NAr,t,j = N0
Ar (6.4)
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NCH4,t,j = N0
CH4 (6.5)

Rate expressions:

rate1
t,j = exp(k1

t,j) (6.6)

rate2
t,j = exp(k2

t,j) (6.7)

k1
t,j = 9.7923− 20800/(RT gt,j) (6.8)

k2
t,j = 37.7858− 47400/(RT gt,j) (6.9)

Rt,j = rate1
t,j

PN2,t,j(PH2,t,j)
1.5

PNH3,t,j
− rate2

t,j

PNH3,t,j

(PH2,t,j)1.5
(6.10)

Differential Equations:

Ṫ ft,j =
−S1

WCpf
U(T gt,j − T

f
t,j) (6.11)

Ṫ gt,j =
−S1

WCpg
U(T gt,j − T

f
t,j) +

∆HS2

WCpg
Rt,j (6.12)

Ṅt,j = −Rt,j (6.13)

Collocation:

T ft,j = T f0
t + h

3∑
k=1

ωj,kṪ
f
t,k (6.14)

T gt,j = T g0t + h
3∑

k=1

ωj,kṪ
g
t,k (6.15)

NN2,t,j = N0
N2,t + h

3∑
k=1

ωj,kṄt,k (6.16)

Continuity:

T f0
t = T ft−1,3 t ≥ 2 (6.17)

T g0t,j = T gt−1,3 t ≥ 2 (6.18)

N0
N2,t = NN2,t−1,3 t ≥ 2 (6.19)

T fNE,3 = T finit (6.20)
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T g01 = T f0
1 (6.21)

N0
N2,0 = N0

init (6.22)

sBased on the Williams-Otto results, the trust region filter method uses linear surrogate

models in place of the reactor. The black box function d(w) outputs the extent of reaction

and conditions as a function of inlet stream conditions. Each time the black box is called,

the differential algebraic system is solved to return the reactor effluent stream conditions.

To construct the linear models, the following strategies were compared: forward difference

perturbations of 0.8∆k, forward difference perturbations of min[0.01, 0.8∆k], and linear re-

gression models using Latin hypercube samples. In the first two cases, the trust region

filter method converges in 30 iterations without rejecting a single step or calling restora-

tion as shown in Table 6.2. The similar performance suggests that the reactor model is

relatively smooth and the perturbation size does not greatly impact the linearizations. The

linear regression models perform slightly worse due to several rejected steps and a more

prolonged sequence of criticality steps. Regression models do not appear to offer a ben-

efit for the increased sampling effort (15 samples were used per iteration compared to 8

samples for interpolation). All instances of the trust region filter method converged to the

same solution as the simultaneous approach, thus validating the results. However, the

interpolation scheme that favors smaller perturbations is able to reduce the calls to the re-

actor model (168 vs. 240) because it is not always necessary to rebuild the surrogate model

when the trust region shrinks in a criticality step. This suggests the later development of

the sampling region. The trust region subproblems have 1,257 variables and 1,289 con-

straints and are solved by CONOPT in 0.133 CPUs. This problem demonstrates that the

trust region filter method can work well as an alternative to the simultaneous approach

when the reactor model is very large, or when the model details are not available to con-

struct an equation-based discretization. The next case study provides such an example.
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Figure 6.2: Ammonia synthesis flowsheet

Table 6.2: Ammonia synthesis optimization using TRF method

Type of surrogate Iterations d(w) function calls

Linear, perturbation size: 0.8∆k 30 240

Linear, perturbation size: min [0.01, 0.8∆k] 30 168

Linear, regression to Latin hypercube sample (n = 14) 46 690
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6.3 Power Plant Optimization

The algorithm was used for optimization of an oxycombustion power plant. In oxycom-

bustion, a mixture of purified oxygen and recycle carbon dioxide is used to combust fuel

in a boiler. This results in a flue gas that is primarily water and CO2. The water is easily

separated and the task of purifying the CO2 is greatly simplified because most nitrogen

was removed before combustion. Compared to conventional air fired power plants, the

oxycombustion process has several key differences. The introduction of new separation

tasks, namely an air separation unit and a compression and purification unit, lower the

overall power output of the plant due to the energy required to run them. In addition, the

recycle loop further couples the temperature and composition of pre- and post- combus-

tion gas streams. Finally, the oxy-fired boiler behaves differently than air-fired boilers, and

it is necessary to consider the effect of these changes on the rest of the power plant design.

To rigorously manage the interactions between these subsystems and reduce the cost of

carbon capture, a comprehensive optimization approach is proposed. Optimization of a

conventional air-fired power plant is also conducted to analyze the cost of carbon capture

on a consistent basis (i.e. using the same models and assumptions).

Most unit operations in a power plant can be modeled using algebraic equations. As

in the ammonia case study, units such as heat exchangers and turbines are modeled using

the equation-oriented modeling framework of [86]. However, modeling the boiler presents

special challenges, and detailed first principles models are required. A full scale CFD sim-

ulation including reactions and transport behavior in three dimensions can take several

weeks to solve. Instead, we use a hybrid 1D/3D zonal boiler model as described in [90].

The hybrid boiler model uses a series of nine vertical zones to model reactions and parti-

cle/gas flow and integrates the radiation PDE in three dimensions with the discrete ordi-

nate method on 21888 finite elements. The resulting model can converge in about 1 CPU
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minute on a desktop computer. The model is custom built in C++ with specialized meth-

ods to help guarantee robustness when converging the simulation. Both design and opera-

tional decisions can be modified for the boiler. For this study, boiler design was fixed, using

the geometry and burner configuration of an existing utility boiler (Pacificorp’s Hunter 3

unit). The hybrid 1D/3D boiler model is approximated with surrogate models and used

to solve a plant-wide optimization problem with the trust region filter method.

For the purposes of the optimization problem, the boiler model can be viewed as a func-

tion from Rm → Rp, where the input and output variables are chosen to capture the inter-

actions of the boiler with the rest of the power plant. These inputs and output variables

are given below (corresponding to the w and y variables in the glass box/black box formu-

lation (4.2)):

Boiler Inputs:

1. Primary air temperature

2. Secondary/over-fired air temperature

3. Average temperature of boiling water inside water wall tubes

4. Average secondary superheater steam temperature

5. Primary air component flowrates (O2, N2, H2, CO, CO2, H2O, SO2, H2S, CH4, Ar)

6. Secondary air component flowrates (same components as primary air, but different

compositions)

7. Over-fired air total flowrate (same composition as secondary air)

Boiler Outputs:

1. Boiler enclosure water wall heat duty

2. Secondary superheater heat duty

3. Flue gas component flowrates (same components as primary air)
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4. Flue gas temperature

The primary air is the gas stream into the boiler that carries the pulverized coal particles,

whereas secondary and over-fired air streams are added into the boiler directly to aid in

combustion. The temperature and composition of these streams have strong impact on

the combustion behavior in the boiler. In general, higher heat transfer through the boiler

enclosure wall is better, but the flue gas temperature must remain below a bound for mate-

rials considerations. The compositions flowing into the boiler are indirectly coupled with

the composition leaving the boiler through recycle, and the heat transfer behavior is also

indirectly coupled with the average temperature of water in the water wall tubes through

the steam cycle. The use of detailed process models helps capture these interactions accu-

rately.

Figure 6.3 shows the general configuration of the steam and gas sides of the steam cycle.

On the steam side, high pressure water enters at the bottom of the boiler and steam exits

the boiler after the secondary superheater. The turbines are divided into high, intermedi-

ate, and low pressure sections (HP, IP, and LP respectively). Steam extraction is considered

with a superstructure of potential steam extraction sites between stage groups. The ex-

tracted steam may be sent to the boiler feedwater heaters. Heat exchangers are modeled

with heat exchanger halves, specified either as heater or cooler. The heating and cool-

ing duties are matched for certain streams that are known to use a single heat exchanger

in most power plants, including the primary superheater, reheaters, and the economizer.

The remaining heat exchanger halves are integrated with a pinch-based model. This heat

integration model is developed using the Duran-Grossmann formulation [91]. The deaer-

ator is simply modeled as a flash vessel, and the outlet stream is bounded between 4.8-9.3

bar and 420-450 K, to be consistent with the recommendation of [92]. Then, the water is

pumped to high pressure before entering the boiler.
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Figure 6.3: The water/steam and gas sides of the steam cycle
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On the gas side, Figure 6.3 considers both of air- and oxy-fired configurations. The input

stream on the left, either air or purified oxygen, is split to be sent to primary and secondary

air. Primary air flow rate is bounded below to ensure at least a 2:1 gas-to-coal ratio to

ensure that the gas can carry the coal. For safety reasons, the primary air stream also has

upper bounds on temperature and (in oxy-fired mode) O2 mole fraction of 400 K and 35%,

respectively. In the oxyfired case, the oxygen is then mixed with recycled flue gas. This also

allows primary and secondary air streams to have different compositions. In either firing

mode, the flue gas is split to two series of heat exchangers, then sent to pollution controls.

After sulfur dioxide is removed in the Wet Flue Gas Desulfurization (WFGD) unit, the air

fired configuration will send all flue gas to the stack, perhaps recovering some heat for

pollution control processes on the way. In the oxy-fired configuration, the flue gas is again

split to two streams. One stream is sent to the direct contact cooler/polishing scrubber

(DCCP), which removes much of the water from the flue gas as well as any residual SO2.

The ratio of flue gas sent for cooling is also a key decision variable due to the role of water

vapor in the radiation behavior in the boiler. Then, some flue gas is sent for compression

and purification while the rest is recycled to the boiler. Additional assumptions about the

model are listed in Table 6.3.

The trust region filter algorithm was used to maximize the thermal efficiency of a double

reheat oxy-fired steam cycle. The optimization problem is summarized in (6.23). Both de-

sign and operational decisions could be modified for the boiler, but we consider the case

where boiler geometry and burner configuration match an existing utility boiler (Pacifi-

corp’s Hunter 3 unit).

The objective was to maximize thermal efficiency with a fixed coal feed flow rate, with
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Table 6.3: Assumptions for steam cycle optimization case study

Steam Side Pressure Drops

Primary Superheater (HX200) 2.5% Reheaters (HX201 & 202) 8%

Feed Water Heaters (HX203 - 205) 4% Economizer (HX206) 4%

Throttle Valve (Vlv200) 4% IP/LP Crossover (Vlv201) 3%

Gas Side Pressure Drops

Primary Superheater (HX400) 2 % Reheaters (HX403) 2%

Economizer (HX401 & 405) 2% Air Heaters (HX402 & 406-408) 2%

a small penalty for utility consumption.

max Thermal Efficiency + ρwQw

s.t. Thermal Efficiency =

∑
Wturbine −

∑
Wpump −

∑
Wfan −WCPU −WASU

Thermal Input Rate

Fixed Thermal Input Rate

Steam Turbine Model

Pump and Fan Models

Pinch-Location Heat Integration Equations

Flue Gas Thermodynamics Model

Steam Thermodynamics

Hybrid Boiler Model

Correlation Model ASU (oxy-fired configuration only)

Correlation Model CPU (oxy-fired configuration only)

(6.23)

where ρw is a small penalty term for cooling water usage. The air separation unit (ASU)

CHAPTER 6. CASE STUDIES

101



6.3 POWER PLANT OPTIMIZATION

and carbon dioxide processing unit (CPU) are modeled with correlations derived from [86]

and [93]. Both steam thermodynamics (using steam tables) and the hybrid boiler model

are incorporated into (6.23) using linear surrogate models. For the steam thermodynamics,

enthalpy and entropy are approximated as linear functions of temperature and pressure.

The finite difference perturbation size for the boiler was set as min{0.1, 0.8∆k}, while steam

table perturbation size was fixed at 10−5. Note that the default perturbation size for the

boiler is larger in order to compensate for greater numerical noise in the boiler model

outputs. The boiler simulations are run in parallel on 4 cores when collecting samples to

construct the surrogate model.

The details of the optimization solution are provided in Table 6.4. As would be expected

when maximizing thermal efficiency, the flue exit gas temperature and steam exit temper-

atures are pushed to their upper bounds of 1600 K and 835 K, respectively for both case

studies. The value of these bounds has a great impact on the overall steam cycle perfor-

mance, but comes at the expense of material costs to withstand the high temperatures.

For the purposes of this study, these parameters are assumed fixed. Interestingly, we only

have a 5.7% penalty for oxycombustion. In carbon capture studies, penalties closer to 10%

are more common. These simulation studies often treat the boiler as an equilibrium reac-

tor and its radiative characteristics are ignored (see [94] for a review). Here, the oxy-fired

configuration is able to recover more energy from the fuel, before accounting for ASU and

CPU energy usage. This is largely due to the beneficial effect of higher emissivity and heat

capacities of the recycled CO2 and water as compared to air. Without using a detailed

boiler model, these interactions may be neglected.

Each trust region subproblem is an NLP with 4204 variables and 4680 constraints for the

air fired case, and slightly higher for oxy-fired. The NLP subproblems are built in GAMS

version 24.2 and solved with CONOPT 3 [95]. The boiler simulations are run in parallel on
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Table 6.4: Steam cycle optimization results

Air Oxy

Flue exit gas temperature (K) 1600 1600

Steam exit temperature (K) 835 835

Steam exit pressure (bar) 223 223

Work from Turbines (MW) 525.4 570.3

Pumping Work (MW) 11.0 12.4

Heat from Boiler (MW) 650.8 531.3

Boiler Walls 575.6 457.3

Secondary Superheater 75.2 74.0

Fuel Heat Rate (MW) 1325.5 1325.5

Net Power (MW) 515.5 440.4

Thermal Efficiency (HHV) 38.9% 33.2%

Trust region filter optimization

Solution time (CPUh) 9.8 8.6

Boiler simulations 759 598

4 cores when collecting samples to construct the surrogate model.

It would be difficult to solve a glass box/black box problem of this size using existing

tools. The number of variables is far beyond the scope of derivative free optimization. To

apply derivative free optimization methods, one could instead identify independent vari-

ables and optimize in that reduced space. However, this involves converging the remain-

ing constraints (i.e. converging the flowsheet) for every function call in the optimization,

which is prohibitively expensive. Alternatively, finite difference derivative estimates of
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the black box functions could be given directly to an NLP solver. However, NLP solvers

always assume that the derivative is accurate and judge progress based on these deriva-

tives. If the black box model derivatives from finite differences are inaccurate, the NLP

solver may fail. By contrast, the trust region inherently plans for possible inaccuracies in

the surrogate model and the filter judges progress without using derivatives. Therefore,

the proposed glass box/black box method leads to a solution of this problem.

One may ask what the optimizer found to enable the better efficiency than literature re-

ported designs. The optimization model can be easily modified to quantify the effect of

several design choices. Consider this example, where the effect of oxygen purity from the

ASU is examined. Optimization problem (6.23) was solved in oxy-fired configuration for

two different scenarios. In Case A, the oxygen purity supplied by the ASU was fixed at

97 mol%, which means that the power requirement of the ASU is only dependent on the

flowrate of oxygen supplied. In Case B, the oxygen purity was allowed to vary between 90

mol% and 98 mol%. This allows the optimizer to trade-off the pre- and post-combustion

separation tasks, while simultaneously considering the interactions with the detailed ki-

netics and radiation behavior in the boiler. In the lower oxygen environment, gasification

reactions are more favored and the emissivity of the gas mixture changes. In Case A, the

optimum design found by the trust region filter algorithm is an oxy-fired power plant

with a net power output of 437.4 MW and net efficiency of 33.0%. In Case B, the optimum

solution has a net power output of 440.4 MW and efficiency of 33.2%1. Interestingly, in

Case B the oxygen composition is pushed to its lower bound of 90 mol%. In both sce-

narios the optimizer pushes the steam temperatures leaving the secondary superheater

and reheaters to their upper bounds of 835 K and 867 K, respectively, as expected when

maximizing thermal efficiency. Similarly, the lower bound of 0.068 bar for the condenser

1Higher heating value basis
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operating pressures is active. The optimizer also pushes the temperature and oxygen con-

tent of the primary flue gas recycle streams (S408) to their upper bounds of 400 K and 35

mol%. Another interesting conclusion is in the recycle distribution of the flue gas. The

temperature and composition of the flue gas (influenced by drying) has complex interac-

tions with the detailed boiler model. By optimizing using the hybrid boiler model, these

interactions can be considered and additional efficiencies are identified. However, it is also

important to validate these predictions with detailed CFD simulations or pilot scale data.
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Table 6.5: Power plant optimization results.

Case A: fixed oxygen purity. Case B: variable oxygen purity

Case A Case B

Work from Turbines (MW) 568.2 570.3

HP 94.5 94.5

IP 267.3 267.7

LP 206.4 208.1

Pumping Work (MW) 12.4 12.4

Fan Work (MW) 3.6 3.7

Heat from Boiler (MW) 520.6 531.3

Boiler Walls 446.4 457.3

Secondary Superheater 74.2 74

Heat from Flue Gas (MW) 659.2 653.0

Primary Superheater 201.0 220.5

Reheater (HX201) 168.6 168.7

Reheater (HX202) 146.6 148.4

Economizer 143.0 115.4

Heat Rejected (MW) 620.9 623.3

Fuel Heat Rate (MW) 1325.5 1325.5

ASU Power (MW) 71.2 65.6

CPU Power (MW) 43.6 48.2

Net Power (MW) 437.4 440.4

Thermal Efficiency (HHV) 33.0% 33.2%
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Flue Gas Recycle Distribution

Bypasses DCCP, to Secondary Rec. 29.7% 31.3%

To CPU after DCCP 28.0% 29.9%

To Primary Recycle after DCCP 23.6% 25.3%

To Secondary Recycle after DCCP 18.7% 13.5%

6.4 Solid Sorbent Carbon Capture System

In this case study, we consider an alternative carbon capture technology. CO2 is captured

from a flue gas stream using solid sorbent. The system consists of two bubbling fluidized

beds as shown in Figure 6.4. The first bubbling fluidized bed is the adsorber that removes

CO2 by contacting solid sorbent with flue gas from a power plant. The second column is

Figure 6.4: Carbon capture system, regenerator column is treated as black box
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the regenerator, which is used to remove theCO2 from the solid sorbent. TheCO2 can then

be sent for sequestration or utilization. The adsorber is cooled with cooling water to pro-

mote CO2 adsorption, while the regenerator is heated with steam to promote desorption.

The sorbent is transported between the two columns with a heat exchanger in between to

preheat (precool) the sorbent before entering the regenerator (adsorber).

Both the adsorber and regenerator are modeled as bubbling fluidized bed reactors. The

model was developed by NETL [96, 97] to predict axial and temporal variations in concen-

trations and temperatures. For this case study, the adsorber is modeled as a fully equation

oriented glass box model, while the regenerator is considered to be black box. In the ad-

sorber model, solid sorbent is added at the top of the column, while flue gas is added at

the bottom. The amine adsorption reactions occur in the solid phase:

H2O(g) −−⇀↽−− H2O(phys)

2 R2NH+CO2 −−⇀↽−− R2NH +
2 + R2NCO −

2

R2NH + CO2 + H2O(phys) −−⇀↽−− R2NH +
2 + HCO −

3

(6.24)

where R is an organic functional unit. Flow within the column is modeled using three

flow regimes: a downward flowing emulsion region (containing solids), upward flowing

bubble region (containing no solids), and upward flowing cloud wake region (containing

some solids). Heat and mass transfer among these regions are described by a set of 20

partial differential equations. The full model is presented elsewhere [97], but as an example

consider the gas phase mass balance for the bubble region:

∂cb,j
∂t

δAx = −
∂Gbyb,j
∂x

−AxδKbc,j(cb,j − cc,j) +Kg,bulk,j (6.25)

The left hand side accounts for the accumulation of component j in the bubble region,

where cb,j is the concentration of component j in the bubble region, δ is the volume fraction

of the bubble region, and Ax is the cross-sectional area. The first right hand side represents
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the upward gas flow in the bubble region, where Gb is the axial flow rate and yb,j is the gas

mole fraction for component j in the bubble region. The second term on the right hand

side represents the mass transfer between the bubble and the cloud-wake regions, where

Kbc,j is the mass transfer coefficient and cc,j is the concentration of component j in the

cloud-wake region. The final term Kg,bulk,j represents the bulk flow of component j from

the emulsion region into the bubble region.

In addition to partial differential equations, the model contains algebraic equations, in-

cluding empirical correlations to describe the hydrodynamics, heat and mass transfer coef-

ficient relations, gas phase properties including viscosity, thermal conductivity, heat capac-

ity, empirical correlations to describe the cooling tubes within the adsorber, and detailed

nonlinear reaction kinetics for reactions (6.24). In this work, the model is considered in

steady-state mode (all time derivatives are set to zero). The resulting differential algebraic

equations are discretized using collocation on finite elements. Full details of the model

and discretization scheme can be found in [96, 97, 98].

The structure of the regenerator model is the same except with different boundary con-

ditions described in [97]. This regenerator model is solved independently as a black box

and the adsorber/regenerator system creates a process flowsheet where glass and black

box portions interact through the cycling of the solid sorbent. The model is used for mini-

mization of utility usage subject to a 48% CO2 capture constraint. The size of the problem

is given as follows: Black box inputs nw = 6 black box outputs ny = 5 and other variables

nz = 5144. The reduced models were constructed by linear interpolation.

Both Algorithms 1 and 2 were applied to the BFB system to compare their performance

on a large-scale chemical process example. Algorithm 1 was stopped after 26 iterations

because progress to the solution was too slow (step size below tolerance of 10−6 for two

consecutive iterations). When Algorithm 2 was applied to the carbon capture system, the
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(a) Algorithm 1 (b) Algorithm 2

Figure 6.5: Convergence metrics

optimal solution was found in 16 iterations. The performance of the two algorithms can

be compared with Figures 6.5 and 6.6. Figure 6.5 focuses on the NLP convergence metrics,

while Figure 6.6 focuses on the sequence of step sizes. In both figures, the abscissa repre-

sents the iteration count and the ordinate is the value for the metrics. All the values are

shown in log scale for a better sense of the convergence behavior.

In Figure 6.5, we plot infeasibility measure θk, the criticality measure χk as defined in

(4.7) and |f(xk)− f(x∗)| as a measure of the convergence of objective function. Both algo-

rithms converge to feasibility relatively quickly, but Algorithm 1 slows down significantly

and does not make much progress towards the optimal solution. The iterates stay within

feasibility tolerance εθ = 10−6 for most iterations.

In Figure 6.6, the trust region radius ∆k, sample region radius σk and the step size ‖sk‖

are plotted to show the interactions. In Figure 6.6b, the sample radius is shown to suc-

cessfully control the accuracy of the surrogate model while trust region allows larger step

sizes. In many iterations, step size ‖sk‖ is much larger than the sample radius σk while

still staying in the trust region ∆k. The trust region constraint is only active at iteration

110
CHAPTER 6. CASE STUDIES



6.4 SOLID SORBENT CARBON CAPTURE SYSTEM

(a) Algorithm 1 (b) Algorithm 2

Figure 6.6: Trust and sample region radius shown together with step length ‖sk‖

8. This is because the algorithm takes mostly f -type steps (when very close to feasibility,

f -type steps only require small decrease in the objective function). Since the trust region

radius does not shrink on f -type steps, progress continues without updating the trust re-

gion. When the trust region is updated, for example at iteration 8, the trust region update

is based on the step size. This results in a large change in the trust region radius in one iter-

ation. The trust region update also requires the sample region to adjust so that the sample

region lies within the trust region.

By contrast, Figure 6.6a shows that the step size in Algorithm 1 is restricted by the trust

region radius. The “sample radius” in this case represents the perturbation size used to

construct a surrogate model, and is directly tied to the trust region radius. Hence, the trust

region constraint is consistently active in Algorithm 1, resulting in small step sizes and

very slow convergence, as shown in Figure 6.5a for the objective function and criticality

measure χk.
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6.5 Surrogate Equations of State

Besides computationally expensive unit models, another common use case of surrogate

models is for physical property models. Many equations of state exhibit several volume

roots, which need to be either identified with their corresponding phases or ignored as

physically irrelevant. Sequential modular approaches attempt to find all roots and use

logical conditions to identify the phases, but the equation-oriented approach requires a

customized model and implementation for the specific form of an equation of state. For

cubic equations of state, [99] and [86] develop phase identification conditions using the

sign of the first and second derivatives of the cubic equation. These conditions can then be

included in the optimization models as inequality constraints to automatically enforce cor-

rect phase identification. However, for many fluids, such as polar or large-chain fluids, cu-

bic equations of state are not always satisfactory. The IUPAC reference [100] reviews these

methods in depth. However, when moving to more complex functional forms, the prob-

lem of phase identification becomes more serious. For example, the PC-SAFT equation can

have up to five real roots for pure components [101]. Even outside of the equation-oriented

context phase identification is non-trivial.

Sometimes, these issues have been avoided by using surrogate models of physical prop-

erties. However, these models are inherently local in nature, and the construction of suit-

able approximations becomes significantly more difficult as the number of components in

a mixture increases. In addition, by independently fitting thermodynamic state variables,

the laws of thermodynamics relating these state variables are often ignored, so extrapola-

tion is limited. We propose instead to use surrogate equations of state (SEOS) fit within the

trust region framework. This allows the properties derived from the surrogate equation of

state to follow from basic laws of thermodynamics and have better extrapolation potential.

We note that for this application, the key motivation of surrogate models is not for com-
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putational efficiency, but rather to enable EO optimization technology for properties that

typically are calculated procedurally.

It is desired to base the surrogate equations of state on well-known simple functional

forms for equations of state. The most logical choices for the simple functional form are

the virial equation and cubic equations of state. We will consider cubic equations with the

Peng-Robinson form of the attractive term. This functional form will be tuned to match

thermodynamic data (either generated from a complex equation of state or experimental

data) in a local space, thus providing a surrogate equation of state. Of course, the simple

functional form of the SEOS is not able to accurately describe all possible states. Instead,

we fit over a local region of temperature, pressure, and concentration, and rely on the trust

region filter approach introduced in 4 to control the error and guarantee accurate solutions.

6.5.1 Cubic Equations of State

The basic cubic functional form first proposed by van der Waals has been modified to

produce many equation of state models. A review of these variations is given in [102],

showing the great flexibility of cubic equations of state to predict the behavior of many

systems. In this work, we will choose the Peng-Robinson equation of state functional form,

although the methods can easily be used for other cubic equations of state.

The Peng Robinson equation of state for a pure component takes the form:

P =
RT

v − b
− αa

v2 + 2bv − b2
(6.26)

where

α =

[
1 + (0.37464 + 1.54226ω − 0.26992ω2)

(
1−

√
T

Tc

)]2

(6.27)

was modified by Peng and Robinson from the SRK equation and ω is the Pitzer accentric

factor.
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Equation (6.26) can be reformulated to the standard cubic form in Z by multiplying

through by the denominator and rearranging terms.

The parameters a and b in the PR equation (6.26) can be uniquely determined by impos-

ing the criticality conditions. The criticality conditions state that at the critical point, we

know that (
dP

dv

)
Tc

=

(
d2P

dv2

)
Tc

= 0 (6.28)

Using these equations, we can show that

a = 0.45724
R2T 2

c

Pc

and

b = 0.07780
RTc
Pc

From fitting the critical conditions, we can see how the cubic equation of state follows

the principle of corresponding states. This principle states that if the reduced conditions

T/Tc and P/Pc and the accentric factor ω are the same, then the thermodynamic properties

are (nearly) the same, regardless of the type of fluid. This means that a fluid is completely

parameterized by its critical temperature, critical pressure, and accentric factor. This prin-

ciple can be derived from molecular thermodynamics with assumptions including uni-

versal pairwise potential functions (see [103]). However, real fluids can vary in behavior

depending on quantum effects, polarity, etc. To capture these deviations, we propose tun-

ing the critical properties to fit the observed behavior of a fluid locally. For mixtures, we

also tune binary interaction parameters ki,j .

6.5.2 Parameter estimation formulation

In this section, a parameter estimation formulation for tuning cubic equations of state for

vapor-liquid equilibrium calculations is proposed. Note that we redefine a few symbols
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for ease of presentation, see Table 6.6 for details. Because cubic equations of state are pa-

rameterized by critical properties, we seek adjusted values for the pure component critical

temperatures Ti, pure component critical pressures Pi, and binary interaction parameters

ki,j to minimize the squared error in fugacity coefficient for one phase. This requires VLE

data as input; for the purposes here the input data is generated by the PC-SAFT equation

of state. The values associated with each data point k are system temperature T̂k, system

pressure P̂k, composition x̂i,k, compressibility factor Ẑk, and fugacity coefficient φ̂i,k. Note

that the compositions, compressibility factor, and fugacity coefficient are specific to one

phase, so the parameter estimation problem is separately applied to both liquid and vapor

data. The subscript i represents the components and subscript k represents the data points.

All symbols with a hat, for example Ẑk are parameters associated with a data point. The

parameter estimation model is presented as follows:
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min
∑
k

∑
i

(φ̂i,k − φi,k)2 + ρ(f(Ẑk))
2 (6.29)

s.t. ai,k = 0.45724
mi,kR

2T 2
i

Pi
(6.30)

bi = 0.07780
RTi
Pi

(6.31)

mi,k =

1 + (0.37464 + 1.54226ωi − 0.26992ω2
i )

1−

√
T̂k
Ti

2

(6.32)

amk =
∑
i

∑
j

x̂i,kx̂j,k
√
ai,kaj,k(1− ki,j) (6.33)

bmk =
∑
i

x̂i,kbi (6.34)

αk =
amk P̂

R2T̂ 2
(6.35)

βk =
bmk P̂

RT̂
(6.36)

f(Ẑk) = Ẑ3
k + (βk − 1)Ẑ2

k + (αk − 2βk − 3β2
k)Ẑk − αkβk + β2

k + β3
k (6.37)

ln(φi,k) =
bi
bmk

(Ẑk − 1)− ln(Ẑk − βk)−
αk

2
√

2βk

2
√
ai,k

amk

∑
j

x̂j,k
√
aj,k(1− ki,j)

− bi
bmk


× ln

(
Ẑk + (1 +

√
2)βk

Ẑk + (1−
√

2)βk

)
(6.38)

The objective function consists of two terms. The first term minimizes the squared rela-

tive deviation in fugacity coefficient, while the second term enforces the root of the cubic

equation using a penalty parameter ρ. Note that the compressibility factors in the cubic

equation are parameters given by data; it is the cubic equation itself that changes during

optimization. If instead a constraint was added to enforce f(Ẑk) = 0 for all k, the problem
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would be over-specified as there may be many more data k than degrees of freedom.

An alternative formulation could define a new variable Zk for each datum k and add

constraints to require each Zk to be a root of the cubic equation at the corresponding tem-

perature and pressure. However, this introduces the issue of root selection and the large

number of nonlinear constraints can be difficult to converge. By contrast, the presented

formulation can be solved as an unconstrained optimization problem through simple vari-

able elimination and is found to be quite robust. Although the problem is nonconvex and

the existence of several local minima has been observed, very good initialization can be

derived by using the literature-reported critical temperatures, pressures, and binary inter-

action parameters. Formulation (6.29) has been implemented in Pyomo, and the parameter

estimation problem is solved using IPOPT.

Note that the objective function of (4.2) can be re-scaled as follows, which can give better

performance in practice:

min
∑
k

∑
i

(1− φi,k/φ̂i,k)2 + ρ(f(Ẑk))
2

6.5.3 Numerical testing

To use cubic equations of state as surrogates in an optimization framework, they must be

sufficiently accurate to recover correct solutions. With the aim of showing the κ-fully linear

property can hold, several empirical numerical tests are run with using cubic equations in

place of detailed thermodynamics. A case study is taken from the polyethylene production

process. This flash model is used to separate unreacted monomer (ethylene) and chain

transfer agent (hydrogen) from solvent (hexane) for recycle to the reactor. VLE data were

gathered using a PC-SAFT flash model with a 3-level full factorial design on temperature,

pressure, and component flowrates. The levels of each variable are shown in Table 6.7.
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Table 6.6: Nomenclature Table

Symbol Explanation

Z = PV/RT Compressibility factor

Ti Critical temperature of component i

Pi Critical pressure of component i

ki,j Binary interaction parameters

f(Z) Cubic equation of state

φi Fugacity coefficient for component i

Out of the 243 points in the full factorial design, two fell outside of the two-phase region

and were discarded. The flash model outputs both liquid and vapor phase concentra-

tions, compressibility factors, flowrates, and fugacity coefficients. Formulation (6.29) was

applied to fit SEOS for both liquid and vapor phases. The root error fitting parameter ρ

was set to 100000. Both problems were initialized with the literature values for critical

properties and binary interaction coefficients. In the liquid phase, there was insufficient

information in the data (degeneracy in the reduced Hessian) to obtain unique values for

hydrogens critical properties, so these were fixed at their literature values. The resulting

parameters are shown in Table 6.8.

Figure 6.7 compares the fugacity coefficients varying with temperature for PC-SAFT,

the SEOS, and untuned Peng-Robinson when the pressure is fixed at 3.85 bar. The SEOS

matches very well over the temperature range, but the untuned PR deviates significantly.

Another comparison was made with the flash temperature kept constant at 378K and the

pressure was varied. This result is shown in Figure 6.8
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Figure 6.7: Change in liquid fugacity coefficient as flash temperature changes
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Figure 6.8: Change in liquid fugacity as flash pressure changes
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Table 6.7: Full factorial design on flash input conditions

Input variable Values Explanation

T̂k [362.15, 372.15, 382.15] Flash temperature (K)

P̂k [3.5, 4.0, 4.5] Flash pressure (bar)

F1 [0.093, 0.186, 0.373] Input flowrate hydrogen

F2 [3.01, 6.02, 12.05] Input flowrate ethylene

F3 [112.8, 141.0, 169.2] Input flowrate hexane

6.5.4 Flash model

The resulting surrogate equations of state are used in an optimization formulation of a

flash drum. The objective is to minimize the amount of monomer in the liquid phase while

maintaining a lower bound on mass flow of this stream such that the polymer product (not

included in equilibrium calculations) remains a slurry. The model is given as:

min
T,P

xC2H4L (6.39)

s.t. F̃ = L+ V (6.40)

F̃ z̃i = Lxi + V yi (6.41)

0 =
∑
i

(yi − xi) (6.42)

∑
i

MWixi ≥ c (6.43)

yi =
φL,i
φV,i

xi (6.44)

whereMWi is the molecular weight of component i and c is a constant to keep the product

polymer suspended in slurry. Feed flowrate F̃ and feed composition z̃ are fixed parame-
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Table 6.8: Results of fitting SEOS

Parameter Literature Liquid fit Vapor fit

TH2 (K) 33.0 33.0 76.54

TC2H4 (K) 283 347.5 342.3

Tn−hexane (K) 507.5 506.9 649.7

PH2 (bar) 13.2 13.2 10.1

PC2H4 (bar) 51.2 62.4 84.8

Pn−hexane (bar) 30.1 30.0 61.9

kH2,C2H4 0.022 2.8×10−6 0.509

kH2,n−hexane 0.02917 0.513 0.972

k2H4,n−hexane 0.1144 0.179 0.158

ters. φL,i and φV,i are functions as follows:

φLi := φLi(T, P, xi, TL,i, PL,i, k
L
i,j)

φVi := φVi(T, P, yi, TV,i, PV,i, k
V
i,j)

T , P are the system temperature and pressure (decision variables for the optimization).

TL,i, PL,i, k
L
i,j , TV,i, PV,i, k

V
i,j are the tuned parameters for the surrogate equations of state,

and ZL and ZV are the compressibility factors. The value of φV,i and φLi can be determined

by solving the following system of equations. In fact, these equations can be substituted

out to form one large expression, so the functional relationship to determine the φ values

is well defined.
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aL,i =0.45724
mL,iR

2T 2
L,i

PL,i
(6.45)

aV,i =0.45724
mV,iR

2T 2
V,i

PV,i
(6.46)

bL,i =0.07780
RTL,i
PL,i

(6.47)

bV,i =0.07780
RTV,i
PV,i

(6.48)

mL,i =

1 + (0.37464 + 1.54226ωi − 0.26992ω2
i )

1−

√
T̃

TL,i

2

(6.49)

mV,i =

1 + (0.37464 + 1.54226ωi − 0.26992ω2
i )

1−

√
T̃

TV,i

2

(6.50)

amL =
∑
i

∑
j

xixj
√
aL,iaL,j(1− kLi,j) (6.51)

amV =
∑
i

∑
j

yiyj
√
aV,iaV,j(1− kVi,j) (6.52)

bmL =
∑
i

xibL,i (6.53)

bmV =
∑
i

yibV,i (6.54)

(6.55)

ln(φL,i) =
bL,i
bmL

(ZL − 1)− ln(ZL − βL)− αL

2
√

2βL

2
√
aL,i

amL

∑
j

xj
√
aL,j(1− kLi,j)

− bL,i
bmL


× ln

(
ZL + (1 +

√
2)βL

ZL + (1−
√

2)βL

)
(6.56)

ln(φV,i) =
bV,i
bmV

(ZV − 1)− ln(ZV − βV )− αV

2
√

2βV

2
√
aV,i

amV

∑
j

yj
√
aV,j(1− kVi,j)

− bV,i
bmV


× ln

(
ZV + (1 +

√
2)βV

ZV + (1−
√

2)βV

)
(6.57)
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αL =
amL P̃

R2T̃ 2
(6.58)

αV =
amV P̃

R2T̃ 2
(6.59)

βL =
bmL P̃

RT̃
(6.60)

βV =
bmV P̃

RT̃
(6.61)

0 =Z3
L + (βL − 1)Z2

L + (αL − 2βL − 3β2
L)ZL − αLβL + β2

L + β3
L (6.62)

0 =Z3
V + (βV − 1)Z2

V + (αV − 2βV − 3β2
V )ZV − αLβV + β2

V + β3
V (6.63)

0 ≤3Z2
L + 2(βL − 1)ZL + αL − 2βL − 3β2

L (6.64)

0 ≤3Z2
V + 2(βV − 1)ZV + αV − 2βV − 3β2

V (6.65)

0 ≥6ZL + 2(βL − 1) (6.66)

0 ≤6ZV + 2(βV − 1) (6.67)

Optimization problem (6.39)-(6.44) was run in three different modes: using un-tuned

Peng-Robinson (the above model with literature critical properties and binary interaction

parameters), the tuned SEOS model, and a model from [104] where the fugacity coefficients

are calculated with PC-SAFT directly. We note however that the PC-SAFT equation of

state is difficult to use in equation-oriented optimization due to the presence of multiple

volume roots. Through careful initialization, a result was obtained that was validated

against Aspen Plus to have found the correct roots of PC-SAFT.

Table 6.9 shows that the results of using Peng-Robinson and PC-SAFT can vary by as

much as 36%. Using the SEOS parameters shown in Table 6.8, the maximum error relative

to PC-SAFT at the optimal solution is reduced to 6%. Then, more data were gathered from

PC-SAFT, in a full factorial design centered at the solution of the first SEOS optimization

problem, with the width of data range cut in half. This simulates the behavior of the trust

region subproblem, where a smaller trust region should increase optimization accuracy.
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Table 6.9: Flash optimization results, errors are measured relative to PC-SAFT

PC-SAFT PR Error SEOS Error Re-tuned SEOS Error

xH2 4.6210-5 6.310-5 36% 4.3410-5 6% 4.6210-5 0.03%

xC2H4 0.0127 0.0974 23% 0.0125 1.86% 0.0127 0.04%

xhexane 0.9872 0.9902 0.3% 0.9875 0.02% 0.9873 <0.01%

T 351.67 349.68 0.6% 351.38 0.08% 351.64 <0.01%

P 2.5 2.5 0% 2.5 0% 2.5 0%

Then the SEOS is re-tuned using the data in the region of the solution, and the maximum

error is reduced to 0.04%. This indicates the potential of using automatic update strate-

gies in a trust region framework to control the optimization error introduced by the SEOS

approximation.

These results demonstrate the potential of using a cubic equation of state to locally rep-

resent thermodynamic behavior directly from data. Tuning parameters for the cubic equa-

tion are selected based on their interpretation in terms of the principle of corresponding

states. Then, an effective and reliable parameter estimation formulation is proposed. The

formulation can be naturally converted to an unconstrained optimization problem for ease

of initialization and solution. Finally, SEOS models are demonstrated for optimization of

a flash unit in a polymerization system, and the SEOS gives accurate results with the po-

tential for refinement by gathering more data.

More broadly, this suggests that the framework of κ-fully linear models with trust re-

gions may be applicable outside of the typical domain of polynomial approximations of

black box functions. As presented, using cubic equations of state and a parameter esti-

mation formulation, the κ-fully linear prop The SEOS concept is not restricted to cubic

functional forms and it may be worthwhile to consider virial-type equations as well. In
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addition, it is important to consider what theoretical guarantees can be made on the SEOS.

One approach could be through the use of thermodynamics. It may be possible to posit

functional forms for equations of state that allow for first-order consistent matching of a

thermodynamic property of interest. This can guarantee that the surrogate model is κ-fully

linear and then the models can be freely used in the trust region framework.

6.6 Conclusions

In this chapter, we have summarized our experiences applying Algorithms 1 and 2 to

practical problems in engineering. The Williams-Otto problem allowed us to compare the

glass box/black box approach via the trust region filter method against other optimiza-

tion approaches for this problem. The ammonia process further verified that the algorithm

converges quickly and reliably on larger problems. Then, the power plant optimization

case study applied the TRF method to a problem that could not be handled with previ-

ously existing optimization solvers. Integrating the detailed boiler model with process

models through the TRF method allowed for significant efficiency improvements in the

oxycombustion power plant. Next, a solid sorbent carbon capture process was used to

demonstrate the improvements of Algorithm 2. Finally, the extension of this framework

to physical properties is discussed. The complexity of physical property models is often

a barrier to building and using optimization models. Surrogate models combined with a

trust region are shown to be promising in reducing model building complexity and opti-

mization robustness.
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Chapter 7

Conclusions

This thesis can be summarized as follows. In Chapter 1, the concept of glass box / black

box optimization is introduced along with motivation in engineering. A common bot-

tleneck in applying large-scale optimization is the near-requirement that models be con-

ceived in equation oriented form and implemented in algebraic modeling languages. When

this is true, modern automatic differentiation methods provide accurate first and second

derivatives. Nonlinear programming solvers may utilize these derivatives and exploit

sparsity to provide fast and accurate optimization.

However, equation oriented representations are not always available for all models in

a system. Examples of non-EO models include thermodynamic function calls, models of

proprietary unit operations, or inherently procedural models. Ideally these closed models

could be opened, i.e. transformed into an equation-based representation and included in

the EO process model. For example, partial differential algebraic equations can be dis-

cretized and transformed into algebraic equations. But often this transformation is not

possible or not desirable. Moreover, highly specialized (often procedural) methods exist

for solving computational fluid dynamics or molecular simulation problems. For reliable

and accurate solutions, these systems must be solved outside of the optimization model-

ing framework, and derivative information is often unavailable. This gives rise to a class

of problems we term glass box/black box optimization, or gray-box optimization.

In Chapters 2 and 3, we review background material about nonlinear optimization and
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surrogate modeling. Past efforts in the realm of surrogate-based optimization are re-

viewed. Researchers have approached this question from several angles. Applied math-

ematicians working in the field of numerical optimization are currently interested in the

topic of constrained derivative free optimization. A good method for constrained DFO

should be able to solve a glass box / black box problem. However, these works normally

ignore the potential to exploit the glass box structure and speed practical solution methods.

On the other hand, engineers often encounter problems that could be solved with this

type of optimization. The most common approach in practice is the use of surrogate mod-

els, or reduced order models, to transform the glass box / black box problem into a fully

equation oriented form suitable for NLP solvers. Aerospace engineers approach from the

direction of multi-fidelity optimization, where a large scale PDE model is discretized at

both coarse and fine resolution. The coarse grain discretization can act as a surrogate for

the fine grain, and correction terms may be added to help performance in optimization.

Chemical engineers often face this problem when dealing with specialized unit operation

models. Reactor models may be tailor-made for a process, and the reaction and trans-

port equations may require specialized simulation techniques. These simulations may be

treated as black boxes, and through computational experiment data may be generated and

surrogate models fit. Popular forms include polynomials, neural networks, and Kriging

and Gaussian process regression.

However, problems are often encountered when using surrogate models in optimization

as the optimizer can exploit errors in the surrogate to artificially improve the objective. The

most common approach to regulate this behavior is through the use of trust region meth-

ods. However, past efforts usually required derivative information from the black box to

verify convergence properties. Finally, concepts from derivative free optimization were

reviewed. The κ-fully linear property provides a general yet powerful method to drive
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convergence of surrogate-based optimization without explicit access to derivative infor-

mation. However, few works have considered the use of κ-fully linear surrogate models

in constrained derivative free optimization or glass box / black box optimization.

To address this gap in the literature, a novel trust region filter algorithm for glass box

/ black box optimization was presented in Chapter 4. The algorithm is based on trust

region filter methods from sequential quadratic programming, except the quadratic pro-

gramming subproblems are replaced by surrogate-based nonlinear optimization problems.

The main contributions are as follows:

1. Proposed a novel trust region filter method for glass box / black box optimization

2. Proved convergence, using the original trust region filter convergence proof modi-

fied to support κ-fully linear models through use of a unique criticality phase.

In Chapter 5, the practical behavior of the trust region filter method is examined in more

detail. Several algorithmic modifications/enhancements are introduced and numerical

performance is tested. The main contributions are as follows:

1. Proposed the sampling region concept for the trust region filter. By not requiring the

trust region to tend to zero, behavior of the algorithm is improved near the solution.

2. Modified step acceptance and trust region update criteria. This helps keep the trust

region at an appropriate radius such that the algorithm quickly recovers after one

rejected step.

3. Implemented TRF algorithm in Pyomo. The software automatically locates and re-

places external function calls with surrogate models and applies the TRF algorithm.

4. Developed a test problem set for glass box / black box optimization. These 63 prob-

lems may be used to compare the TRF code against alternative methods.

5. Results show the advantage of the sampling region, modified step acceptance, and

trust region update criteria.
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In Chapter 6, the trust region code was applied to a variety of case studies. These studies

are designed to both examine the performance of the algorithm as well as demonstrate its

capability to solve practical problems. Key results are:

1. Demonstrated the benefit of a specialized glass box / black box solver over a fully

DFO approach on the Williams-Otto flowsheet.

2. Showed fast convergence on a full-scale process optimization of the ammonia pro-

cess.

3. Successfully optimized a large-scale power plant model in both carbon capture and

conventional configurations.

4. Identified oxycombustion systems design reducing the carbon capture efficiency penalty

to 5.7%.

5. Analyzed the effect of the sampling region on a solid-sorbent carbon capture process

optimization problem.

6. Proposed the use of trust region concepts with physical property calculations through

the framework of surrogate equations of state.

7.1 Recommendations for Future Work

In this section, we conclude with thoughts on interesting directions for future work.

7.1.1 Multiple black boxes

The first direction of future work would be to address the case when the black box function

d(w) is in fact made of several black box functions di(wi). Each of these black boxes may

be scaled differently, and different surrogate construction strategies should be applied to

each. This impacts the geometry of samples, because now samples need to be poised in
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subspaces rather than the full space Rm. This also suggests the use of separate trust regions

and sampling regions to govern each black box di.

A theoretical framework to accomplish this would be through the use of uniformly

equivalent norms [78]. This means that there exists an α ≥ 1 such that for all k, maxi ∆i,k ≤

αmini ∆i,k. If this condition is satisfied, and as long as limk→∞ σi,k = 0, there is consider-

able flexibility to design an effective update strategy.

7.1.2 Building SEOS

The concept of a surrogate equation of state, introduced in Chapter 6, has great potential

to ease the effort in building thermodynamic models for optimization. Through allowing

a fixed functional form to be tuned to data, the task of formulating the thermodynamic

model only needs to be completed once and then many systems can easily be handled.

However, the question of what that functional form should be remains somewhat open.

This thesis used cubic equations of state for simplicity, but there may be thermodynamic

justification for another functional form.

The κ-fully linear property can be considered from the thermodynamic perspective. In

other words, the effect of the equation of state on the various properties and their partial

derivatives can be considered in such a way that there is some assurance that the SEOS

can be tuned sufficiently well to match the first order behavior of a physical property of

interest.

7.1.3 Noise in function calls

One of the greatest challenges areas for future work in this field is on the question of noise

in the black box calls. Optimization of noisy black box were thoroughly reviewed in [106].

However, little work has been done extending this to the context of constrained black box
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optimization. The concept of including a stochastic function in a constraint is not on the

surface well-posed. Statements need to be made about whether the constraint should hold

in expectation, or perhaps at a confidence level. With additional inputs from the DFO

community in this area (see e.g. [107]), this is an active area of research. However, the

appropriate strategies do seem highly dependent on the application at hand.

A closely related but distinct challenge is that of “deterministic” noise. This is seemingly

noisy behavior caused by numerical tolerances used in black box simulations. In this the-

sis, black box simulations were modified to tighten internal tolerances so that a relatively

smooth response was obtained. However, this may not always be possible in practice.

Smoothing or weighted regression methods may be considered to try to find approxima-

tions of the smooth function underlying the numerical noise.
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