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ABSTRACT 

 

Pitx3 is a homeodomain transcription factor with an expression pattern conserved 

across phyla: in the dopaminergic neurons of the midbrain, in the lens during all stages of 

lens development and in the forming somites. In Xenopus laevis, this gene shows novel 

expression areas, such as the pituitary gland, the heart and the gut. Morpholino-based 

knockdown of pitx3 results in phenotypes characterized by small or absent lens, bent 

dorsal axis and randomized coiling of the heart and gut. Comparing gene expression 

changes in wild-type versus knockdown embryos by microarray, we generated a vast list 

of genes possible downstream targets for pitx3. Confirming a number of those genes as 

affected by the absence of pitx3 allowed for positioning pitx3 in a variety of pathways.  

Given that a significant number of these genes were known as major players during 

somitogenesis, corroborated with the bent dorsal axis phenotype initiated the further 

discovery for the role of pitx3 in this developmental process. To determine direct targets 

for pitx3 we needed a reporter assay to test the protein-promoter interaction.  Since the 

existing assays were deemed unsatisfactory in terms of accuracy and sensitivity we 

developed a new technique which permits precise detection of the reporter gene in a 

homogenous population of cells containing both the transcription factor and the reporter. 

This also enables the assessment of cooperativity for the tested transcription factors. 

Lastly, this new technique was employed to examine the promoters of some of the 

microarray candidate genes and to determine new direct targets for pitx3, thus 

redesigning existing pathways to incorporate the new interactions. 
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CHAPTER I 

GENERAL INTRODUCTION 

 

 The blueprint of a mature organism is laid during embryonic development in a 

beautifully orchestrated cascade of genetic interactions that define complex 

developmental processes. One of the participants to this concert of genes is pitx3, a key 

player in the development of the lens and the dopaminergic neurons of the midbrain, 

which acts and is expressed in a conserved fashion across phyla. In this body of research 

I am trying to extend the knowledge about other roles pitx3 might play and factors it 

might interact with, using the African clawed frog, Xenopus laevis, as a developmental 

model for this endeavor. 

  

1. Homeobox transcription factors 

Gene expression and regulation relies on transcription in a well defined temporal 

and spatial manner and is the result of high specificity recognition and subsequent 

recruitment of particular transcription factors, which will cooperate in achieving tight and 

precise transcriptional control. The eukaryotic genome encodes a large number of 

transcription factors capable of binding to consensus DNA motifs and initiating 

transcriptional activity.  

The homeobox family of genes is highly conserved throughout evolution and 

encodes homeodomain proteins, named after a 60- amino acid motif, which represents the 

DNA-binding domain. The 60 amino-acid homeodomain comprises a helix-turn-helix 

structure, where the third helix binds to the major groove of the target DNA.  All 
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homeodomain proteins recognize the conserved bicoid 4bp motif TAAT, while the 

binding specificity for individual proteins is conferred by the following 2bp in the motif 

(Bürglin, 1994; Gehring et al., 1994a). 

Based on the phylogenetic commonality between genes and the presence of 

additional protein domains outside the homeodomain, the homeodomain family has 

futher been classified in smaller subfamilies. The most recognized subfamilies are ANTP 

(antennapedia), PRD (paired), LIM and POU, along with a seven other smaller and less 

homogenous subfamilies (Holland et al., 2007). 

The paired subfamily is characterized by a second DNA binding domain, the prd 

domain, and a residue in the 50
th

 position of the homeodomain which further classifies 

the family further into three subclasses (Treisman et al., 1989). The Pax or prd genes are 

specified by a serine residue in position 50 (S50) of the HD and a second DNA-binding 

prd domain. The second subclass of genes related to Orthodonticle (Otd) is characterized 

by a lysine at position 50 (K50) (Baird-Titus et al., 2006; Hanes and Brent, 1989) and a 

third subclass class is identified by the glutamine residue in position 50 (Q50) (Gehring et 

al., 1994b). The last two subclasses are named paired-like genes, due to the absence of 

sequences to encode the paired domain in their structure, however they encode a second 

shared C-terminal motif – the aristaless motif (OAR), and a 42 bp structure possibly 

responsible for protein-protein interactions (Galliot et al., 1999; Medina-Martinez et al., 

2009). 
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2. Pitx family 

The Pitx family of genes belongs to the K50 paired-like subclass and 

encompasses the three highly conserved paralogs Pitx1, Pitx2, Pitx3. The three members 

share a high degree of similarity in both the encoded homeodomain and the OAR 

domain, with Pitx2 and Pitx3 having 100% identity in the HD and Pitx1 sharing 98% 

similarity to the other two paralogs. (Fig.1.1) The C-terminal regions are also relatively 

conserved in the three genes (55-70%), while the N-terminal is unique to each one. 

Despite partially overlapping in expression, each paralog has a unique spatial and 

temporal expression pattern. (Gage et al., 1999a)  

 

Figure 1.1 Graphic representation of the protein structures of the three Xenopus 

laevis Pitx family members: pitx1 (AAI69747), pitx2 (AAC29426), pitx3 (AAI70172). 

The homeodomain (in red) and the OAR motif (in green) are approximately identical, 

while the amino acid sequences are divergent in the C-terminal. 

 

2.1. Pitx1 

Pitx1 is the first identified gene of the RIEG/ Pitx family and has a high degree of 

conservation of sequence and expression in vertebrates. Murine Pitx1 is expressed in the 

stomodeum and the stomodeal derivatives, such as the nasal pit and Rathke’s pouch and 

it also functions to specify the anterior facial structures (lower mandible, tongue, teeth) 

and to define the identity of the hindlimb mesenchyme (Crawford et al., 1997; Lanctot et 

al., 1997; Lanctot et al., 1999).   
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 Murine Pitx1 is also expressed in the anterior pituitary cells and directly activates 

the pro-opio-melanocortin (POMC) and Pit-1 genes in that region.(Lamonerie et al., 

1996)  Partial expression and functional overlap of murine Pitx1 and Pitx2 in the pituitary 

region has been shown to permit compensation that allows for a Pitx-dosage dependant 

pituitary development (Gage et al., 1999a). These two Pitx genes also work cooperatively 

to promote the growth of the hindlimb and show redundancy in the process (Marcil et al., 

2003).  Pitx1 exerts an auto-regulatory action on its own DNA-binding and 

transactivating domains (Goodyer et al., 2003) and it inhibits the Ras pathway by direct 

activation of the RASAL1 gene, thus being categorized as a tumor suppressor gene 

(Kolfschoten et al., 2005).  

Murine null mutants for Pitx1 exhibit malformed hindlimbs with structures that 

resemble closely the corresponding forelimb, abnormal anterior pituitary and defects in 

the facial structures derived from the first branchial arch (Lanctot et al., 1999; Szeto et 

al., 1999).  Defects in human PITX1 are causative for congenital clubfoot, a limb 

deformity with adjacent soft tissue aberrations (Gurnett et al., 2008). Murine and human 

PITX1 map to a region of high synteny associated with Treacher-Collins syndrome, 

characterized by craniofacial and hindlimb malformations (Crawford et al., 1997). 

In Xenopus laevis, Pitx1 is detected by RT-PCR as a transcript deposited 

maternally and is first visualized by in situ hybridization during the early phases of 

gastrulation as a weak dorsal streak (Chang et al., 2001). The signal becomes stronger in 

the neuroectoderm during late gastrulation stages and the expression is consolidated in 

the cement gland and the stomodeum/pituitary region, lens placode and midbrain tissue 

during the neurulation and tailbud stages. (Hollemann and Pieler, 1999; Schweickert et 
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al., 2001). During later stages of  frog development, the pitx1 transcript is detected in the 

proliferating mesenchyme regions of  the hindlimb buds, being required for the hindlimb 

patterning and regeneration (Chang et al., 2006). 

 

2.2. Pitx2  

The Pitx2 gene has three isoforms in almost all studied organisms, that are the 

result of alternative splicing and differential promoter usage: Pitx2a, Pitx2b and Pitx2c 

(Cox et al., 2002; Gage and Camper, 1997). A fourth isoform PITX2D has been reported 

only in humans and exerts a repressive effect on the other isoforms contributing to the 

tight regulation of the Pitx2 genes (Cox et al., 2002).  The isoforms encode identical 

homeodomain and C-terminae, while the differences in the N-terminus confer specificity 

in expression and transcriptional activity (Arakawa et al., 1998; Gage and Camper, 1997). 

All isoforms can homodimerize or heterodimerize with PITX2B to cooperatively regulate 

target genes (Amendt et al., 1999; Cox et al., 2002; Saadi et al., 2003). The variety of 

possible isoform combinations contributes to the dosage-response model suggested for 

the pituitary and internal organs development (Gage et al., 1999b; Liu et al., 2001) 

Structurally, the native C-terminal tail of Pitx2 is intrinsically folded over the N-

terminal region, whereby it inhibits the access of the homeodomain to the cognate region. 

Protein-protein interactions occurring at the C-terminal OAR domain are required to 

reverse the inhibition and allow for DNA-binding activity during development (Amendt 

et al., 1999). Phoshorylation of the protein kinase C (PKC) sites in the C-terminus can 

also release this intramolecular folding and induce increased transactivation, while   
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phosphorylation of the N-terminus sites results in repressed Pitx2 transcriptional activity 

(Espinoza et al., 2005).  

 The murine Pitx2 isoforms share conserved expression patterns in the anterior 

pituitary, brain, eye, cement gland, stomodeal and maxillary derivatives, teeth, umbilicus, 

and in the myoblasts of the trunk and limbs (Hjalt et al., 2000; L'Honore et al., 2007). 

Only the Pitx2c isoform restricts expression to the left side of the lateral plate mesoderm 

where it contributes to the asymmetrical patterning of the internal organs (heart and gut), 

downstream of the Shh/nodal/lefty1 pathway (Schweickert et al., 2000).  

 The different isoforms have cell-specific transcriptional activities, depending on 

the availability of their interacting partners. PITX2A and PITX2C can synergistically 

activate the promoter of DLX2, a transcription factor present in the epithelial cells of the 

mandibulary and dienchephalic regions and PLOD1, a gene responsible for specifying the 

extracellular matrix (Cox et al., 2002). Pitx2b is the biggest contributor to the regulation 

of the prolactin promoter by interacting with Pit-1 in the OAR domain in mouse (Cox et 

al., 2002). Human PITX2 isoforms synergistically interact with -catenin and LEF-1 to 

activate LEF-1 transcription during tooth morphogenesis (Vadlamudi et al., 2005). Since 

LEF-1 is a transcription factor member of the high mobility group (HMG) of proteins, 

that can only activate targets in collaboration with other DNA-binding proteins to form 

nucleoprotein complexes (Giese and Grosschedl, 1993), the question of a necessary PITX 

partner in other tissues can be raised. 

 Complete loss-of-function of murine Pitx2 is generally fatal, resulting in 

embryonic death around day 13 of development. The embryos fail to close the ventral 

body wall and present heart valve defects and lung isomerism, enophtalmos and 
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hypoplastic pituitary (Kitamura et al., 1999). In humans, a Pitx2 haploinsufficiency is 

responsible for the Axenfeld-Rieger syndrome, an autosomal dominant disease, 

characterized by abnormalities in the anterior segment of the eye leading to glaucoma, 

teeth agenesis and facial and umbilical anomalies (Semina et al., 1996), consistent with 

the anomalies observed in the heterozygous mouse mutants (Gage et al., 1999a).  

 In Xenopus laevis, the pitx2 gene is first detected by RT-PCR at stage 10.5 and by 

ISH around stage 12, anterior of the neuroectoderm (Schweickert et al., 2001). During 

mid and late neurula, it becomes consolidated in the cement gland and pituitary 

primordia, while neural expression is detected first around stage 22 (Schweickert et al., 

2001). While all isoforms express similarly in the stomodeum, cement gland, pituitary, 

eye musculature and midbrain, the  pitx2b expression in the cement gland disappears at 

mid tadpole stages and pitx2c is detected in the lateral plate mesoderm, left side of the 

heart and head mesenchyme (Schweickert et al., 2000; Schweickert et al., 2001). 

 

2.3. Pitx3 

 The third member of the Pitx/RIEG family is Pitx3, a gene sharing a high degree 

of structural, expressional and functional conservation in most species. The almost 100% 

identity in the homeodomain between homologs suggests a similar array of targets in 

various species (Fig.1.2). 
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Figure 1.2 Alignment of Pitx3 protein sequences. Pitx3 amino acid sequence from 

Xenopus pitx3 (AAI70172)/ Xlpitx3 is represented aligned to zebrafish (AAT68296)/ 

DrPitx3, mouse (AAB87380)/ MmPitx3, rat (NP_062120)/ RnPitx3 and human 

(NP_005020)/ HsPitx3. The consensus sequences include the homeodomain (in red) with 

the lysine residue in position 50 (K50 –boxed), the OAR motif (in green) with the non-

conserved aminoacids (in blue) and a potential nuclear localization signal (NLS) 

(underlined). 

 

2.3.1. Genomic and protein structure   

PITX3 has been mapped to the chromosome 10 in humans, chromosome 19 in 

mouse and chromosome 13 in zebrafish, in regions of high synteny (Barbazuk et al., 

2000; Puttagunta et al., 2000). A similar gene structure has been reported in all the 

organisms characterized to date, where it comprises four exons, with the first one being 

untranslated and the translational start site being localized within the second exon. The 

well conserved homeobox is interrupted by the third intron at the codon encoding for the 
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amino-acid located at position 46 of the homeodomain (Semina et al., 2000; Semina et 

al., 1997; Shi et al., 2005). 

Close examination of the murine genomic region adjacent to Pitx3 has revealed 

two other genes flanking and partially overlapping our transcription factor in its 

untranslated regions (Semina et al., 2000; Tvrdik et al., 1999). Cig30 encodes for a brown 

adipose tissue glycoprotein and is located 4.5kb downstream of Pitx3 on the opposite 

strand, and the genes encode 3’-UTRs that overlapp over the last 10bp (Tvrdik et al., 

1999). Gbf1, a guanine nucleotide exchange factor,  member of the ubiquitously 

expressed Sec7 domain family (Mansour et al., 1998) is located approximately 4.2kb 

upstream from the Pitx3 start site, in the opposite direction in a head-to-head 

conformation (Semina et al., 2000) (Fig.3A). The expression pattern of both these genes 

is widely different from that of Pitx3 and no shared regulatory regions have been reported 

to date. Also, no additional transcriptional units could be found in the 22kb flanking Pitx3 

on both ends. (Semina et al., 2000). 

Functional analysis of the presumed promoter, located upstream of the 

transcriptional start site revealed two alternative promoters employed by the murine Pitx3 

depending upon the context of expression. Activity on the promoter region upstream and 

including exon1 is necessary for lens and midbrain expression, while a second promoter, 

located in the intronic region located between exon1-lens and brain specific (EI-l, b) and 

the presumptive translational start site ATG on exon2, has been shown to be capable to 

induce expression in all skeletal muscles (Coulon et al., 2007). That intronic region has 

also been reported to encompass a new exon1-muscle (EI-m), which together with the 

alternative promoter allows for muscle-specific gene expression (Fig.1.3A). The 
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regulatory region within the common promoter and EI-l,b is preferentially utilized even 

for muscle activity, and it is only when a deletion occurs in this region that the second 

promoter/exon takes over to maintain expression during muscle development (Coulon et 

al., 2007). The abundance of active chromatin markers (RNA PolII recruitment, 

H3K4me3 enrichment) on the lens-/brain promoter explains why this promoter is 

preferentially utilized to induce gene expression in all tissues, including muscle (Coulon 

et al., 2007). Following the promoter deletions associated with aphakia, the active 

chromatin signature is transferred to the second promoter, which ensures the maintenance 

of Pitx3 muscle expression in the mutant mouse (Coulon et al., 2007). 

The 302 animo acid Pitx3 protein follows the same structural pattern as all the 

K50 paired-like family members, characterized by two conserved regions: the 

homeodomain, responsible for target DNA recognition and binding and the OAR motif, a 

14 amino-acid sequence of a yet unknown function (Fig.1.3B). In the Pitx2 paralog, the 

OAR motif plays an inhibiting role on the transactivational activity of the homeodomain 

(Amendt et al., 1999; Brouwer et al., 2003), and was found responsible for the interaction 

with partnering proteins, such as Pit-1 and Lef-1 (Amendt et al., 1999; Vadlamudi et al., 

2005).  In Xenopus, the absence of the OAR region in the rax1 gene, resulted however in 

the repression of the target genes, therefore inferring the role for this motif is highly 

speculative (Andreazzoli et al., 1999). Pitx3 is expressed and translocated to the nuclei to 

direct the transcription of downstream targets via a nuclear localization signal (NLS) 

(Messmer et al., 2007; Sakazume et al., 2007). Two sequences have been previously 

reported as possible nuclear localization signals  in homeodomain genes: a conserved 

sequence RRMKWKK, located in the 3
rd

 helix of the homeodomain (Kozlowski and 
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Walter, 2000; Moede et al., 1999) or the conserved motif RLKAK, located inside the 

OAR region (Shi et al., 2005).  There is no precise information on the one used by Pitx3, 

although Pitx3 was shown to localize to the nuclei (Messmer et al., 2007).  

 

Figure 1.2. Genomic and protein structure of mouse Pitx3. A. The genomic 

representation of Pitx3. Gbf1 is overlapping the 5’-UTR of Pitx3 in the opposite direction 

and Cig30 overlaps Pitx3 over a region opposite to the 3’-UTR of Pitx3. The translational 

start site (ATG) is shown in the exon II and all translated regions are represented in the 

dark gray. The two aphakia deletions (ak1, ak2) are shown to remove part of the 

promoter region and the first exon I-l,b. The alternative exon Im for muscle is represented 

in the region covering the first intron.  B. The protein structure of Pitx3. The two highly 

conserved motifs are represented in red –the homeodomain and in green- the OAR 

domain. Also, the two possible nuclear localization signals are shown. Maps are not 

drawn to scale. 

 

2.3.2. Pitx3 expression and mutations 

Pitx3 was initially characterized in mouse after being linked to the aphakia 

mutation where it plays a significant role in lens development (Semina et al., 1997). 

Later, other areas of expression and other phenotypes related to misexpressed Pitx3 have 

added to the picture. With very small inconsistencies, such as expression in the pituitary 

gland of the frog and fish (Dutta et al., 2005; Pommereit et al., 2001), Pitx3 seems to 

display conserved expression and function in all species it was studied. 
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Human 

Based on the high degree of homology in the Pitx3 sequences of various species, 

combined with the phenotypical analysis of the PITX3 perturbation, it can be inferred that 

PITX3 has a similar expression pattern with that of the other vertebrates: lens, midbrain 

dopaminergic neurons and muscle (Semina et al., 1998; Semina et al., 1997; Smidt et al., 

1997), while the pituitary expression appears to have been lost in mammals. 

Three mutations occur in the human PITX3 and cause ocular phenotypes, ranging 

from congenital total cataracts, congenital posterior polar cataracts (CPP4), and anterior 

segmental mesenchymal dysgenesis (ASMD). ASMD is a dominant syndrome, consisting 

of a heterogeneous set of findings including aniridia, abnormal development of the 

anterior ocular structures, iris hypoplasia and central corneal leukoma, which is referred 

to as Peter’s anomaly (Gould and John, 2002; Hittner et al., 1982). A 17-bp duplication in 

exon4 (G219fs) results in a frameshift mutation causing the C-terminal third of the gene 

to be abnormally translated leading to the ASMD and CPP4 phenotypes.  (Semina et al., 

1998) A serine to aspargine substitution (S13N) was identified in the N-terminal end of 

the PITX3 protein and was found to be responsible for congenital total cataract with a 

high incidence of glaucoma at an early age (Berry et al., 2004; Semina et al., 1998; 

Summers et al., 2008). A third mutation characterized by a single nucleotide deletion in 

the C-terminal end of the protein (G217fs) results in a truncated form of the protein and 

elicits various phenotypes in a dose-dependent manner: heterozygotes show congenital 

polar cataract (CPP4) with few cases of associated ASMD (Addison et al., 2005; Berry et 

al., 2004), while homozygous patients exhibit severe microphtalmia and central nervous 

system pathology, with mental retardation and locomotor symptoms resembling advanced 
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Parkinson’s disease (Bidinost et al., 2006). Unlike other Pitx family members, which 

mutate primarily in the homeodomain, there are no reported mutations in the binding 

domain of human PITX3, probably due to a severe phenotype which could cause 

embryonic lethality.  

Two single nucleotide polymorphisms (SNPs), located in intron1 and exon3, have 

been reported to increase the incidence of early onset Parkinson’s disease in a large 

sample of patients, probably since PITX3 assures the survival of dopaminergic neurons 

and these SNPs enhance the risk of early neuronal degeneration (Bergman et al., 2008; Le 

et al., 2009).  

 

Mouse 

The murine embryonic Pitx3 expression in lens starts around the late lens placode 

stage and continues in all phases characterizing the development of the lens. It was 

detected in the detaching lens vesicle and later in the epithelial cells and the fiber cells 

and has continuous expression at low levels throughout adult life (Semina et al., 2000). 

Pitx3 also expresses in the eye muscle and eyelids (Semina et al., 1997). During midbrain 

development, Pitx3 expresses in the dopaminergic neurons pertaining to the ventral 

tegmental area (VTA) and substantia nigra compacta (SNc) of the ventral 

mesenchephalon (Smidt et al., 1997) and where it expresses throughout adult life (Nunes 

et al., 2003). Pitx3 is also present in all skeletal muscle groups, in both the developing 

embryo and the adult mouse. During myogenesis it is first detected in the differentiated 

myotome and in all muscle masses of both fore- and hindlimbs and the forming 

abdominal wall (Coulon et al., 2007; L'Honore et al., 2007).  Aside for the three major 
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areas of expression, the mouse Pitx3 is also found in the head, sternum and vertebral 

mesenchyme, cranio-facial muscles and tongue (Semina et al., 1997). 

Aphakia, a spontaneous recessive phenotype, characterized by small eyes lacking 

lenses and is caused by mutations in the Pitx3 locus (Semina et al., 2000). Mutant mice 

are blind due to abnormalities in a wide range of ocular structures; the lens, the iris, the 

pupil and the anterior chamber are absent, the retina is folded and the eyelids are often 

closed in adults (Rieger et al., 2001). Aphakia is associated with a double deletion 

occurring in the upstream region of Pitx3 – a minor deletion of 625bp, about 2.5kb 

upstream of the transcriptional start site (Semina et al., 2000), and a major deletion of 

1.4kb, which eliminates part of the putative promoter, the untranslated exon1-l,b and a 

portion of the first intron (Rieger et al., 2001). The persistence of very low levels of the 

Pitx3 transcript in whole embryo (about 5% of wild-type) (Rieger et al., 2001), even 

when the major deletion removes a big part of the gene, is likely due to the alternative 

muscle-specific promoter, that allows for Pitx3 expression to be maintained in the 

skeletal muscles (Coulon et al., 2007). The absence of Pitx3 transcript noticed in the 

midbrain of the ak mutant is probably responsible for the degeneration of the primary 

dopaminergic neurons associated with aphakia (Hwang et al., 2003). Interestingly, the 

reported dyskinesia and behavioral changes were not conformant with the dramatic loss 

of dopaminergic neurons in the substantia nigra of the midbrain, likely due to the fact 

that the remainder of the dopamine production pathway is maintained in a relatively 

normal functioning condition (Smidt et al., 2004; van den Munckhof et al., 2003).   

A second spontaneous mutation (eyeless-eyl) with recessive transmission has 

been described in mice with lens and brain phenotype very similar to aphakia (Rosemann 
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et al., 2009). It is the first murine mutation occurring in the coding sequence, more 

specifically a guanine nucleotide insertion at position 416 of the cDNA, resulting in a 

shifted open reading frame (Rosemann et al., 2009). The consequent Pitx3 protein 

maintains an intact homeodomain but loses the OAR motif and subsequently its normal 

functions (Rosemann et al., 2009). In addition to microphtalmia or anophtalmia and the 

loss of dopaminergic neurons, homozygotes for this mutation exhibit liver steatosis, 

reduced locomotor activity and increased pain sensitivity (Rosemann et al., 2009).  

Unlike the ak mice, where the muscle promoter is still intact and therefore the muscular 

activity is relatively unaffected, the eyl mutants show a defective Pitx3 protein in all 

expressing tissues (Rosemann et al., 2009). 

Additional to these two spontaneous murine mutations, three other Pitx3 targeted 

mutations have been reported: two were knock-in reporter mutants, one for GFP (Zhao et 

al., 2004) and one for tau-lacZ (Vives et al., 2008). Both reporters recapitulate the 

expression of Pitx3 and could be used for the visualization of nigrostriatal neurons and 

the dopaminergic pathways both in vivo and in ESC cultures. A conditional Pitx3 knock-

out mutant designed to target the third exon, which encodes part of the homeodomain, 

results in a mutant protein that loses function in lens, brain and muscles (L’Honore et al., 

2007). The null mutants were viable and fertile although they display abnormalities in the 

eye and in a specific subpopulation of midbrain neurons very similar to ak mice, while 

the muscular development and morphology were maintained in a relatively normal range 

(L'Honore et al., 2007). 
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Zebrafish 

 pitx3 expresses at very low levels in zebrafish around the end of gastrulation, 

where it is restricted to a crescent shaped area at the anterior end of the embryo (Zilinski 

et al., 2005). Levels increase by late tailbud stages and are maintained during adulthood 

in the eye and at much lower levels in the internal organs (liver, intestine, pancreas, heart, 

kidneys) (Shi et al., 2005). Throughout the segmentation stages expression progressively 

restricts to the anterior pituitary, the lens and olfactory placodes and the diencephalon 

(Filippi et al., 2007; Zilinski et al., 2005). Later, it disappears from the olfactory placode 

and expresses strongly in a population of cells around the lens equator, the pituitary, the 

ventral diencephalon and the mesenchymal cells specifying the presumptive first brachial 

arch (Dutta et al., 2005).  During the late stages, transcripts have also been detected in the 

mouth cartilage, brachial arches, pectoral fins and trunk musculature; however the 

expression is not maintained in adults in these tissues (Shi et al., 2005). 

Morpholino mediated translational knockdown of pitx3 results in phenotypes with 

a severity proportional to the amount of morpholino injected. The morphants have small 

eyes with lens and retina abnormalities, deficient jaw and pectoral fin development and 

deviated body axis. Subsequent to pitx3 knock-down, the lens epithelial and fiber cells 

fail to undergo complete differentiation and growth - the epithelial cells display a 

disorganized array of actin fibers, while the fiber cells retain their nuclei and fail to 

elongate properly (Shi et al., 2005). Although the lens phenotype in aphakia is more 

severe than the one in zebrafish, the cell death and failed neuronal differentiation 

occurring in the retina results in a bleaker pathology than the retinal folding seen in ak 

mice (Shi et al., 2005). However, since there are no reported retinal defects in 
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mammalian Pitx3 mutants and zebrafish pitx3 expression could not be detected in the 

retinal layers, it is safe to presume that the morphant retinal phenotype is a secondary 

result of aberrant lens development (Shi et al., 2005). A dopaminergic phenotype with 

extensive neuronal apoptosis was initially reported to be a consequence of morpholino-

mediated knock-down of pitx3, however phenotypical rescue by co-injection of p53-

morpholino hints towards non-specific neuronal death with no immediate implication of 

direct pitx3 action (Filippi et al., 2007). 

 

Frog 

In Xenopus laevis, zygotic transcription commences around stage 8.5, as the mid-

blastula transition nears completion. Very low levels of Xenopus laevis pitx3 are first 

detected by RT-PCR shortly before the beginning of gastrulation. The expression 

gradually increases to reach a steady status during neurulation, when the transcript 

becomes detectable by in situ hybridization (ISH) (Khosrowshahian et al., 2005). These 

stages encompass the periods during which lens forming competence (pre-gastrulation 

through gastrulation), bias (neurulation), commitment and differentiation (early through 

late organogenesis) occur (Khosrowshahian et al., 2005). Moreover, pitx3 expresses in 

mesodermal derivatives such as lateral plate mesoderm, pre-somitic mesoderm, and in 

somites as these latter arise in periodic fashion from stage 18 through 42 

(KhosrowShahian et al, 2005; Smoczer et al, In Press; chapter 2).  Elsewhere, the spatial 

expression pattern is similar to the ones previously described in other studied organisms, 

with the exception that pitx3 is expressed in the frog pituitary. pitx3 starts by being 

present early in the pituitary anlage, the stomodeal-hypophyseal anlage, in the eye field 
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and the prechordal plate during the neurulation stage. During the tailbud stage, pitx3 

transcript is detected in the pituitary, head mesenchyme, lateral plate mesoderm, otic 

vesicles, lower jaw and somites (Khosrowshahian et al., 2005; Pommereit et al., 2001),  

while in the late stages of embryonic development, pitx3 expresses in the coiling heart 

and gut (Khosrowshahian et al., 2005). pitx3 plays an important role in lens development 

and is expressed at high levels in all studied organisms (Khosrowshahian et al., 2005; 

Semina et al., 1998). In Xenopus it is identified in most phases of lens development, 

starting with the presumptive lens ectoderm, lens placodes, lens vesicle and finally in the 

anterior epithelial layer, with the exception of the primary fiber cells of the fully 

developed lens (Pommereit et al., 2001). 

Both pitx3 overexpression and morpholino-induced knock-down in Xenopus 

laevis have similar outcomes and they are also comparable to the phenotypes documented 

in the zebrafish morphants. pitx3 misexpression results in craniofacial abnormalities, 

defective lens development and retinal expansion towards the midline at the expense of 

the diencephalon. Midline defects account for a bent dorsal axis and the occasional 

cyclopia, reported as dose-dependent defects associated with abnormal pitx3 expression 

(Khosrowshahian et al., 2005). 

 

2.3.3. Pitx3 interactions and functions 

Midbrain differentiation  

The majority of dopaminergic neurons (DA) are located in the midbrain in two 

areas: the Substantia Nigra compacta (SNc) and the Ventral Tegmental Area (VTA) 

(Wallen and Perlmann, 2003). During mammalian embryonic development, the DA 
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precursors migrate from the neuroepithelium to the presumptive midbrain, where 

neuronal induction is initiated by sonic hedgehog (Shh) – a diffusible molecule secreted 

in the floor plate, and  by the activity of fibroblast growth factor 8 (Fgf8) – secreted in 

the isthmus (midbrain-hindbrain boundary) (Hynes et al., 1995a; Hynes et al., 1995b; Ye 

et al., 1998).  Fgf8 activates the expression of Lmx1a and Lmx1b, the earliest markers of 

DA neuronal differentiation, which in turn induce the expression of Wnt1, a gene that 

promotes neurogenesis by increasing the proliferation of the neuronal precursors (Chung 

et al., 2009). These factors are also responsible for initiating the exit of the subset of 

neurons from the cell cycle, with the concomitant expression of the transcriptional factors 

responsible for terminal DA differentiation: Pitx3 and Nurr1 (Andersson et al., 2006). 

These proteins might work in cooperation to ensure the dopaminergic phenotype by 

regulating tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine synthesis 

(Jacobs et al., 2009). Pitx3 plays also an important role in the survival of the DA, with the 

ak phenotype characterized by marked cell death of the TH expressing neurons from the 

SNc and to a lesser extent from the VTA (van den Munckhof et al., 2003). Although both 

areas of the midbrain express Pitx3, they have different dependencies upon Pitx3 and 

therefore are affected differently by mutations in this gene (Smits et al., 2006). Pitx3 also 

supports mesDA throughout the adult life as part of a tightly regulated network 

responsible for the maintenance and survival of this subcategory of midbrain neurons (Li 

et al., 2009).  

 Lmx1a and Lmx1b, genes encoding members of the LIM homeodomain family of 

transcription factors, specify the mesDA neurons and have a spatial and temporal 

expression partially overlapping with that of Pitx3. Loss-of-function experiments for 
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Lmx1b result in a complete absence of Pitx3 in TH+ neurons and a dramatic loss of 

dopaminergic neurons (Smidt et al., 2000). Wnt1 knock-out, as well as a mutation of the 

Lmx1a gene, have outcomes identical to Lmx1b loss with respect to Pitx3 expression in 

the dopaminergic neurons (Prakash et al., 2006). Both LIM genes work cooperatively on 

the promoter of their target sharing redundant functions. They directly bind tothe 

promoter of Pitx3, creating a Wnt1-Lmbx1a/b-Pitx3 pathway that is responsible for 

neuronal differentiation (Chung et al., 2009). The interaction between the lmxb1 and 

pitx3 genes seems to be conserved in zebrafish, where lmxb1 knock-down results in low 

levels of pitx3 transcript in the diencephalon, and where none of the players is expressed 

in the dopaminergic neurons (Filippi et al., 2007). 

Another regulator of Pitx3 is FoxP1, a transcription factor belonging to the 

forkhead winged-helix domain family, mainly involved in the development and 

differentiation of immunity cells, but also recognized as a marker for the midbrain 

dopaminergic neurons (Carlsson and Mahlapuu, 2002; Hu et al., 2006; Shi et al., 2008). 

High expression levels of FoxP1 are found in the intermediate zone cells of the ventral-

most region of the mesenchephalon, the area of nascent dopaminergic neurons. Over-

expression of FoxP1 in mouse embryonic stem cells induces the ectopic formation of 

tyrosine hydroxylase (TH)+/Pitx3+ cells, followed by neuronal differentiation (Andersson 

et al., 2006; Parmar and Li, 2007). FoxP1 is also capable of inducing the expression of 

Pitx3 in both TH- neuronal and non-neuronal cells, therefore it can be inferred that FoxP1 

regulates Pitx3 independent of the dopaminergic phenotype. Two high-affinity binding 

sites in the Pitx3 promoter were shown to recruit FoxP1 and thus promote transcriptional 

activation (Konstantoulas et al., 2010). Also, FoxP1 changes the chromatin signature at 



 

21 

the Pitx3 locus from bivalent, characterized by  simultaneous presence of both active and 

inactive histone markers, to significantly higher levels of active chromatin markers, thus 

heightening the active transcriptional profile of Pitx3 (Konstantoulas et al., 2010). 

While the relationship between Pitx3 and Nurr1 is somewhat controversial, as to 

whether they synergistically collaborate in regulating downstream genes, or they have a 

hierarchical relation, there is a general consensus regarding their role in the terminal 

differentiation and maturation of the midbrain neurons (Cazorla et al., 2000; Messmer et 

al., 2007; Smidt et al., 1997). Nurr1 is a member of the nuclear receptor family that 

precedes temporally the expression of Pitx3 in the DA neurons by about one 

developmental stage (Smits et al., 2003) and the knock-out mice exhibit progressive loss 

of TH+ neurons in both VTA and SNc, with only a transient expression of Pitx3 before 

complete disappearance (Saucedo-Cardenas et al., 1998). Nurr1 directly activates Pitx3 

by specificaly binding to its promoter (Volpicelli et al., 2012), while Pitx3 acts as a key 

regulator of the Nurr1-mediated transcription through protein-protein interaction (Jacobs 

et al., 2009; Martinat et al., 2006). Both Nurr1 and Pitx3 are known to interact with the 

PSF co-repressor and form a complex that binds to the promoters of Nurr1 target genes 

(Jacobs et al., 2009). By default Nurr1 is maintained in an inactive state by the presence 

of SMRT, a co-repressor known to bind to unliganded nuclear receptors (Nishihara et al., 

2004) and to exert its repressive activity by recruitment of histone deacetylases (HDAC) 

(Guenther et al., 2001). When Pitx3 binds to the PSF-Nurr1 complex, it mimics the effect 

of a ligand on the nuclear receptor and results in the dissociation of SMRT/HDAC from 

the Nurr1 transcriptional complex with subsequent activation of the target genes (Jacobs 

et al., 2009).  
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The major gene targeted by Pitx3 is TH, the rate-limiting enzyme in dopamine 

biosynthesis and a marker for dopaminergic neurons (Fig. 1.4). Both TH and Pitx3 are 

expressed in the VTA and SNc dopaminergic neurons with a different hierarchical 

relationship in the two midbrain regions. In the VTA both Pitx3 and tyrosine hydroxylase 

express simultaneously and TH expression is unaffected by the absence of Pitx3. By 

contrast, in the SNc, expression of Pitx3 precedes the TH and the neurons in this area fail 

to produce TH as a consequence of the Pitx3 knock-out (Maxwell et al., 2005; van den 

Munckhof et al., 2003). The appropriate conclusion is that the presence of TH is 

dependent upon the expression of Pitx3 only in the SNc. In tissue cultures, Pitx3 is 

capable of recognition, direct binding and modulation of the TH promoter, and the 

subsequent response is strongly influenced by the co-factors present in the tested cellular 

environment (Messmer et al., 2007). While Pitx3 has the capability of acting alone on the 

TH promoter (Lebel et al., 2001), Nurr1 can cooperate with it to enhance its 

transcriptional activity (Cazorla et al., 2000). Other findings show that once bound to the 

bicoid site on the TH promoter, Pitx3 recruits the co-activator complex MTA1/ DJ1 

through direct interaction with MTA1. Subsequently, the complex releases the HDAC2 

(histone deacetylase 2) which maintains it in a repressed state and recruits the RNA pol II 

to initiate the activation of the TH production (Reddy et al., 2011).  

Vesicular monoamino transporter 2 (VMAT2) and dopamine transporter (DAT) 

are genes involved in dopamine storage and reuptake in the synaptic vesicles of the 

dopaminergic neurons and are drastically down-regulated in ak mouse and also in the 

adult midbrain of mice lacking Pitx3 (Hwang et al., 2009). Not only is the synthesis of 

dopamine required for normal DA differentiation, the re-uptake and transportation of this 
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neurotransmitter is equally important. These two processes are also under the control of 

Pitx3, which directly regulates the genes responsible for these processes, VMAT2 and 

DAT (Hwang et al., 2009) (Fig. 1.4). Both the Nurr1 null mouse and the ak mouse show 

drastically reduced levels of both VMAT2 and DAT and it was shown that Pitx3 

modulates the potency of the Nurr1 transcriptional activity on these genes (Hwang et al., 

2009; Jacobs et al., 2009; Smits et al., 2003). 

Brain derived neurotrophic factor (BDNF) and glial cell line derived neurotrophic 

factor (GDNF) are key factors involved in the process of protection and survival of 

dopaminergic neurons (Lin et al., 1993; Seroogy et al., 1994). Reduced levels of these 

neurotrophic factors in the substantia nigra of the midbrain have been observed in 

Parkinson’s disease models (Gash et al., 1996). Since Pitx3 knock-out mouse exhibits 

phenotypes similar to Parkinson’s disease, with a drastically decreased number of the 

SNc neurons that also fail to express tyrosine hydroxylase (Smidt et al., 2004), the 

question of Pitx3 regulating BDNF and GDNF in that region was raised. Although studies 

have shown that Pitx3 up-regulates both factors in both neuronal cells and astrocytes 

(Peng et al., 2007; Yang et al., 2008), in vivo Pitx3 is activated by GDNF via NF-B 

mediated signaling and subsequently, regulates the transcription of BDNF during both 

embryogenesis and adulthood (Peng et al., 2011) (Fig.1.4). Pitx3 loss results in a drastic 

decrease of BDNF in MesDA neurons, with consequently impaired protection response to 

neurotoxins and increased cell death (Yang et al., 2008), however exogenous application 

of BDNF rescues the survival of the Pitx3-/- neurons (Peng et al., 2011). 

ADH2 is a gene encoding for aldehyde dehydrogenase 2, an enzyme necessary to 

convert retinol into retinoic acid (RA) and it was shown to be expressed in the ventral 
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SNc and VTA of the midbrain, the exact regions where neurons disappear in the ak 

mutant mice (Niederreither et al., 2002a). RA is necessary for neuronal patterning and 

terminal differentiation and is detected in the midbrain during both the early embryonic 

stages and as well as during adulthood. Since it follows the same temporal and spatial 

expression as ADH2 it can be inferred that ADH2-dependant RA production is important 

for the dopaminergic neurons (McCaffery et al., 2003; Niederreither et al., 2002b). ADH2 

expressing neurons have been differentiated in vitro and in vivo after transplantation in 

the mouse striatum as a result of transgenic expression of Pitx3 in ES cells (Chung et al., 

2005). Pitx3 is binding to the proximal promoter of ADH2 and directly inducing its 

transcription, while exogenous administration of RA results in an increase of TH-

expressing neurons and rescue of the defects induced by Pitx3 null mutation (Jacobs et 

al., 2007) (Fig.1.4). However, not all genes downstream of Pitx3 recover post-treatment 

with RA: while TH increases as a result of exogenous RA, VMAT2, DAT and Adh2 

remain largely unaffected, suggesting RA-dependant and -independent modes of 

regulation for Pitx3 (Jacobs et al., 2011).  

While the pathway established for the development and regulation of the midbrain 

includes a cascade of many well characterized transcription factors, post-translational 

modifications are also known to play a role in the process of specification, differentiation 

and maintenance of the mesencephalic dopaminergic neurons. A miRNA precursor, miR-

133b is expressed in the dopaminergic neurons of both rodents and humans and exhibits 

significantly diminished levels in Parkinson’s patients (Kim et al., 2007). While in ak 

mice the expression of miR-133b drastically decreases, Pitx3 overexpression in ES cells 

results in transcriptional activation of the microRNA, due to direct activity upon its 
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promoter (Kim et al., 2007). Furthermore, the 3’-UTR region of Pitx3 possesses a direct 

target of miR-133b completing a negative regulatory feed-back loop: Pitx3 induces the 

activity of miR-133b, which in response suppresses the Pitx3 activity at the post-

transcriptional level (Kim et al., 2007). Since the levels of expressed Pitx3 have major 

consequences in the maintenance of the dopaminergic neurons, a microRNA feed-back 

regulatory loop likely fine-tunes this circuit, with Pitx3 activating the locus for miR-133b 

microRNA and in turn being subsequently regulated by it (Kim et al., 2007) (Fig. 1.4). 

This system ensures an increase in the stability of the Pitx3 response and action to 

specific triggers. 

 Pitx3 is part of the complex network of gene responsible for the differentiation, 

survival and maintenance of the midbrain dopaminergic neurons and its role is evident by 

the Parkinson’s-like symptoms associated with its mutation. 
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Figure 1.3. The position and role of Pitx3 in the gene regulatory network governing 

the differentiation and survival of the dopaminergic neurons. Adapted from (Li et al., 

2009) 

 

Eye development 

Pitx3 plays a key role at different levels responsible for the regulation of the eye 

development in most species. The development of the lens is a process that begins with 

the formation of lens placode by juxtaposition of the optic vesicle with the surfacing 

ectoderm. This is followed by a progressive invagination of the lens cup and finally, 

closure and detachment from the ectoderm which results in the formation of the lens 

vesicle. The epithelial cells residing in the anterior equator of the lens vesicle begin to 

proliferate and subsequently differentiate into lens fibers to fill the lens cavity. The 

differentiation process includes elongation, loss of nuclei, cell cycle arrest and the 

expression of crystallins – the fiber specific genes (McAvoy et al., 1999). 
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The expression of Pitx3 is consistently reported during lens development in 

several vertebrate species; however there are subtle differences in the expression pattern 

and role between mammals and lower organisms. In amphibians and fish pitx3 expresses 

early in the presumptive lens ectoderm during the lens induction phase and it gradually 

restricts to the epithelial layer of the lens anterior equator during the differentiation stage. 

Also, knocking-down Pitx3 results in morphants with both lens and retina defects 

(Khosrowshahian et al., 2005; Shi et al., 2005). Mouse Pitx3 is first detected during the 

late lens placode stage and mostly during the lens fiber differentiation stages. The mouse 

mutants exhibit only lens defects, while their retinas are largely unaffected (Semina et al., 

1997). 

The exact position of Pitx3 in the gene pathways that regulate the development of 

the lens in various models is still unknown, but the functional involvement with other 

players has been explored. Pitx3 is operating through at least two different pathways:  a 

widely general pathway for fiber cell differentiation and growth, and for maintenance of 

lens transparency and a pathway specific to only a few species, where perturbed lens 

development interferes with the induction of normal retina.   

The observed lens abnormalities in ak mouse were thought to be a consequence of 

the deletion of the binding sites for L-maf and AP-2alpha, two transcription factors 

responsible for lens differentiation, in the Pitx3 promoter (Semina et al., 2000). However, 

latest reports show that AP-2alpha is not capable of recognizing the binding site on the 

Pitx3 promoter and does not affect its expression in the lens, leaving L-Maf as a possible 

candidate for Pitx3 regulation (Munster, 2005; Pontoriero et al., 2008) (Fig. 1.5). 
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Pax6, the eye master homeobox gene responsible for proper eye development, 

overlaps in expression domain with Pitx3, however their relationship needs to be 

evaluated more in depth. Pitx3 expression is downregulated in Pax6 heterozygous mice 

(Chauhan et al., 2002a; Chauhan et al., 2002b) and Pax6 protein is capable of directly 

binding to and repressing Pitx3 in cell culture (Munster, 2005). However, there is also a 

line of evidence for Pitx3 influencing the expression of Pax6.  The ak mice and the pitx3-

morphant frogs show altered Pax6 expression, but since the lens morphology is severly 

distorted in both cases it is hard to evaluate the influence of Pitx3 on Pax6 without 

acknowledging the possibility of the changes being indirectly due to the rudimentary 

lenses (Grimm et al., 1998; Khosrowshahian et al., 2005). Also, knowing that 

homeodomain proteins have a tendency to heterodimerize we can hypothesize a 

synergistic relationship between these two paired-related genes in regulating common 

targets (Fig. 1.5). 

FoxE3/Lens1 encodes a forkhead domain transcription factor conserved in 

vertebrates, which plays a role in the lens development process: a mutation of the gene is 

responsible for anterior segmental dysgenesis (ASMD) and cataracts in humans (Semina 

et al., 2001). Mouse FoxE3 and Pitx3 share a similar expression pattern, with FoxE3 

preceding Pitx3 in the lens placode, while at later stage both are present in the anterior 

lens epithelium and the primary fiber cells (Brownell et al., 2000; Semina et al., 1997). 

Both ak and FoxE3 knock-out mice have comparable phenotypes with small or absent 

lenses and persistent attachment to the surface ectoderm, however superposition of both 

mutations does not aggravate the previously existing phenotype (Medina-Martinez et al., 

2009; Semina et al., 2000). Since FoxE3 expression is lost in ak mice, it can be inferred 
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that Pitx3 is necessary for the expression of FoxE3 through a direct interaction, however 

this has not been experimentally evaluated yet (Ho et al., 2009). This presumption is 

supported by the work done in zebrafish, where pitx3 morphants fail to express foxE3, 

while foxE3 morphants have normal levels of pitx3 (Shi et al., 2006). FoxE3 is 

responsible for regulating the proliferative activity of the epithelial cells through the 

inhibition of  p27Kip1 and p57Kip2 (Ho et al., 2009) (Fig. 1.5). Both these genes are 

known cell cycle suppressors and are ectopically activated in the anterior lens epithelium 

of the Pitx3 null mouse, explaining the drastic decrease in the number of proliferative 

cells in the anterior epithelial lens (Ho et al., 2009). This inhibition of proliferation is 

combined with an increase in apoptotic activity in the lens epithelium which accounts for 

the small lenses in the absence of Pitx3 (Medina-Martinez et al., 2009).  

MIP/Aquaporin O is a highly conserved gene expressed in the lens fibers of major 

vertebrates. It acts as a water channel and adhesion molecule to preserve the transparency 

of the lens (Chepelinsky, 2009). With an expression pattern in mouse and zebrafish 

overlapping with that of pitx,  and with mutations in the MIP/Aqp0 gene resulting in lens 

phenotypes, it readily identifies as a likely downstream target for Pitx3. The first 500bp 

promoter sequence upstream of the transcriptional start site of this gene possesses two 

bicoid-related binding sites (Sorokina et al., 2011). Pitx3 physically binds to these 

evolutionary conserved bicoid sites in human cell lines, while functional analysis of the 

binding activity showed Pitx3- specific transactivation of the promoter (Sorokina et al., 

2011). Zebrafish pitx3 morphants also exhibit alteration of expression in the mip1 gene in 

the early stages of lens development.  Therefore, MIP/Aqp0 is a direct transcriptional 
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target of Pitx3 in different species and Pitx3 mutations are likely to produce a lens 

phenotype through this interaction (Sorokina et al., 2011) (Fig. 1.5). 

A fine balance between the proliferative state of the epithelial cells and the 

differentiation of the fiber cells has to be maintained for the development of a functional 

lens. Pitx3 acts as an important player in the regulation the fiber cell differentiation by 

controlling the spatial and temporal expression of the crystallins, which are the markers 

of a normal terminal differentiation process. Reduced protein and transcript levels of α 

and β-crystallin have been noted in ak mice and zebrafish morphants and are probably 

responsible for the high rate of fiber cell death, given the known anti-apoptotic role of 

these genes (Grimm et al., 1998; Medina-Martinez et al., 2009; Morozov and 

Wawrousek, 2006). Pitx3 could regulate the crystallins either directly, indirectly by 

controlling one of the two crystallin activators, Prox1 and L-Maf,  or by cooperation with 

Pax6, a known crystallin inhibitor (Cui et al., 2004; Ho et al., 2009; Medina-Martinez et 

al., 2009) (Fig. 1.5). Pitx3 is also responsible for the maintenance of lens transparency 

through the regulation of another major component of the differentiated fiber cells, the 

MIP/AQP0 gene, however there are still unknowns regarding the integrative mechanism 

of the fiber organization to ensure appropriate transparency and diffraction (Sorokina et 

al., 2011) (Fig. 1.5). 

Both zebrafish and Xenopus pitx3-morphants exhibit malformed retinas, however 

since pitx3 expression has not been detected in either fish or frog retina, it is likely that 

the retina phenotype is a secondary inductive effect of the lens abnormalities resulting 

from pitx3 misexpression (Khosrowshahian et al., 2005; Shi et al., 2005). Unlike the 

laminated multilayered wild-type retinas, the zebrafish morphant retinas lack lamination 
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and organization with a significant number of pyknotic nuclei in the cells of all layers, 

indicative of cell death (Shi et al., 2005). In amphibians, the retina phenotype appears 

even more severe, with complete absence of differentiated retina structures, phenotype 

that is completely rescueable by grafting normal competent pre-lens ectoderm 

(Khosrowshahian et al., 2005). This supports the presumption that retina defects are a 

secondary effect of the damaged lens and it is interesting to determine the mechanism 

that allows mammalian retinas to evade this influence. 

 

Figure 1.4. Pitx3 and its role in the cascade responsible for lens development. 
Adapted from (Ho et al., 2009) 
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Myogenesis 

The third major network in which Pitx3 operates is the one responsible for the 

skeletal muscle development. Skeletal muscles originate from the dermomyotome, the 

dorso-lateral compartment of the mature somites. The primary progenitor muscles cells 

express Pax3 and Pax7 and obtain their final identity as myoblasts when they start the 

myogenic differentiation program, initiated by Pax3 and Pax7 downregulation and 

concomitant expression of the myogenic regulatory factors (Mrf4, Myf5, MyoD). 

Eventually the myoblasts irreversibly arrest their division and aggregate to form 

multinucleated myotubes (Buckingham, 2001). 

Pitx3 is expressed in the somites and the trunk and limb muscle groups in a 

conserved fashion, from zebrafish to Xenopus and mouse (Pommereit et al., 2001; Shi et 

al., 2005; Zhao et al., 2004). While the specific cell expression and function in muscle 

development have not yet been researched in amphibians and fish, initial steps towards 

defining the role and regulation of Pitx3 during the mouse myogenic differentiation 

program have been made. Murine Pitx3 is first expressed in the differentiated myoblasts, 

which form the myotome and the developing muscle masses of the fore- and hindlimb 

and is maintained in most adult myotubes (Coulon et al., 2007). Since no muscle 

abnormalities have been reported in Pitx3 knock-out mice, despite the complete loss of 

the muscle transcript, the position of Pitx3 in the myogenic regulatory network has been 

assessed.  Pitx3 is initially detected in the myoblasts and later in the myotubes, while its 

paralog, Pitx2 is expressed earlier in the multipotent muscle progenitors and is gradually 

replaced by Pitx3 by the time the myotube organization is definitive (L'Honore et al., 

2007) (Fig. 1.6). Pitx2 expression is enhanced and persistent in the already differentiated 
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muscle of the Pitx3 knock-out mice (L'Honore et al., 2007), and conversely,  Pitx3 

expresses to compensate in the muscle progenitors of Pitx2 null mice (Lozano-Velasco et 

al., 2011), suggesting the presence of a compensatory mechanism set into place to 

guarantee the maintenance of at least one of the Pitx transcription factors during the 

myogenic program (L'Honore et al., 2007). Since the wild-type expression of these two 

family members is very well defined to certain stages of muscle development, it seems 

likely for Pitx2 to operate in the pathway controlled by Pax3 and Pax7 to maintain the 

proliferative status of the myogenic precursors (Lozano-Velasco et al., 2011), while Pitx3 

operates in the pathway governed by the muscle regulatory factors, more specifically 

MyoD, to induce and maintain the final myogenic differentiation (Coulon et al., 2007) 

(Fig. 1.6).  

MyoD and Pitx3 are co-expressed in myotome and the forelimb muscles (Coulon 

et al., 2007) and several E-boxes, the MRFs-specific binding sites, have been found in the 

Pitx3 muscle-specific promoter (Blais et al., 2005). High levels of MyoD present in 

differentiated muscle cell lines result in induction of the Pitx3 reporter gene (Coulon et 

al., 2007). MyoD directly binds to a specific region upstream of the exon1-m on the Pitx3 

promoter and directs transcriptional activation to assist the differentiation program 

(Coulon et al., 2007). Since the overexpression of Pitx3 in myoblasts results in a drastic 

decrease of MyoD expression (Lozano-Velasco et al.), Pitx3 and MyoD are likely to 

operate in a feed-back mechanism to initiate and maintain the myogenic differentiation 

program. Pitx family members and dimerized bHLH transcription factors are known to 

physically interact to control transcription of downstream genes (Poulin et al., 2000). 

Therefore, a synergistic interaction between the MRFs (bHLH factors) and Pitx3 could be 
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responsible for the activation of muscle-specific genes such as myogenin, and structural 

proteins like fast and slow troponins (L'Honore et al., 2007). 

 

Figure 1.5. The sequential expression of Pitx2 and Pitx3 during the muscle 

development process. Adapted from (L'Honore et al., 2007) 

 

Other functions 

Unlike mouse and humans where the pituitary expression is restricted to Pitx1 and 

Pitx2, in zebrafish and Xenopus the anterior pituitary also expresses pitx3. The 

adenohypophysis (AH) in fish and amphibians originates in the placode located between 

the ectodermal midline and the anterior hypothalamus. pitx3 is expressed in a crescent-

shaped anterior area during gastrulation defining a domain of progenitors for both lens 

and pituitary lineages (Dutta et al., 2005). sonic hedgehog (shh) sets a gradient that 
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allows for pitx3 to specify the early pituitary placode, while inhibiting its expression in 

the presumptive lens ectoderm, to prevent lens differentiation (Dutta et al., 2005). shh 

inhibition results in the absence of pitx3 in the pituitary pre-placode with blocked AH 

development, while its expression in the lens placode is largely extended to the midline, 

resulting in fused lenses (Varga et al., 2001; Zilinski et al., 2005). Given that pitx3 

morphants lack the expression of the early AH marker lim3, the main characteristic of the 

murine Pitx1 and Pitx2 double mutants, it is safe to assume that pitx3 in fish has assumed 

their functions in the development of the anterior pituitary (Dutta et al., 2005; Pogoda and 

Hammerschmidt, 2007). Also, the relationship with shh, a midline-specific gene 

combined with the findings that Xenopus pitx3 morphants exhibit a similar phenotype of 

cyclopia at the expense of diencephalon, make pitx3 a possible candidate in the gene 

nexus that maintains the midline identity (Khosrowshahian et al., 2005). 

 

3. Aim of research 

Aside from the known phenotypes generated by a mutated Pitx3 in different 

species, a morpholino-mediated knock-down of pitx3 in Xenopus laevis had a few 

outcomes that have not been characterized to date (Smoczer et al, In Press, Chapter 2).  

The lack of pitx3 resulted in a bent dorsal axis, probably due to defective somitogenesis 

and myogenesis, and consequently the replacement of the sigmoidal swimming of the 

tadpoles by uncontrolled twitching.  I also observed inverted looping of the heart and gut, 

most likely a consequence of anomalous laterality and midline set-up. My quest was to 

determine co-players for pitx3 in the networks that govern these developmental processes 

and we began by employing a microarray experiment to allow us to find genes influenced 
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by the absence of pitx3 at embryonic stages 19 and 27. This generated a large data-set of 

putative targets and the most affected genes that shared a common expression pattern 

with pitx3 were chosen for further investigation (Hooker et al., 2012, Chapter 3). The 

potential interactants for our gene were subsequently assessed for changes in expression 

by RT-PCR and ISH, and we detected trends of action for pitx3.  Key players in the eye 

develoment, such as pax6, crybb1/B1-Crystallin, genes that patterns the midbrain-

hidbrain boundary, such as hes7.1, and a large number of genes that play a role in both 

the segmentation clock (hes4/hairy2b, hes7.2/esr-4, and ripply2.1/stripy) and the 

positional identity of the dorsal axis (hoxA11) confirm the developmental processes 

where pitx3 operates.  

The curved dorsal axis and twitching phenotype, described also in the zebrafish 

morphants (Shi et al., 2005), was corroborated with the presence of the large number of 

genes in the microarray responsible for precise segmentation and inferred a role for pitx3 

in the somitogenesis and myogenesis processes.  Also, the expression of pitx3 in the 

lateral plate mesoderm (Pommereit et al., 2001) combined with the defects in the rotation 

of the heart and gut suggests that pitx3 might be involved in the correct set-up of the 

laterality cascade. The second part of my research focuses on finding a position for pitx3 

in these complex genetic networks. 

 The most accurate way of characterizing a transcription factor is by finding its 

direct targets and the most common approach for this is employing a reporter assay. All 

reporter assays utilized to date take an average reading of the reporter output in a 

heterogenous population of cells and are insensitive to slight changes in gene expression.  

My quest was to generate a more precise technique that allows for the selection of a 
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homogenous population, expressing both the transcription factor and reporter gene driven 

by the test-promoter, in which the reporter output can be measured more accurately. The 

third part of my work focuses on the development and calibration of this system on the 

known Pitx3-TH interaction, with subsequent testing on new putative direct target genes. 

The gene that was most dramatically affected by the pitx3 knock-down, crybb1, was the 

obvious choice as a possible direct target for pitx3. 

 The general objective of this work is to shed a light on new roles for pitx3 during 

the Xenopus embryogenesis and to find direct and indirect targets for this transcription 

factor in the complex web of genes that govern various developmental processes.  
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CHAPTER II 

THE XENOPUS HOMEOBOX GENE PITX3 IMPINGES UPON 

SOMITOGENESIS AND LATERALITY 

 

1. Introduction 

During a study on the role of Pitx3 in Xenopus lens development we noticed several 

other defects that indicated diverse roles for the gene, particularly during the 

segmentation of paraxial mesoderm and the development of organ asymmetries 

(Khosrowshahian et al. 2005). The Pitx genes encode paired-like K50 homeodomain 

proteins, and three members of the Pitx family (Pitx1, Pitx2, and Pitx3) have been cloned 

in vertebrates.  Pitx1 plays an important role in the development of the pituitary gland, 

lower mandible, and hindlimb (Lamonerie et al. 1996; Szeto et al. 1996; Lanctot et al. 

1997; Tremblay et al. 1998; Hollemann and Pieler 1999; Lanctot et al. 1999; Logan and 

Tabin 1999; Szeto et al. 1999; Chang et al. 2001).  Similarly, Pitx2 plays a role in the 

development of pituitary, eye, dentition and the maxilla, however, it also regulates the 

establishment of left-right asymmetry during development (Semina et al. 1996; Gage and 

Camper 1997; Logan et al. 1998; Yoshioka et al. 1998; Campione et al. 1999; Lin et al. 

1999; Essner et al. 2000; Schweickert et al. 2000; Campione et al. 2001).  

In mice, Pitx3 is unique in the family for not expressing in the mammalian Rathkes 

pouch or in pituitary adenomas. It is expressed primarily in mesencephalic dopaminergic 

neurons of midbrain, in somites, lens placode, and forming lens pit (Semina et al. 1997; 

Smidt et al. 1997; Smidt et al. 2004). In mice, Pitx3 has been identified as the causative 

locus for aphakia, a recessive deletion mutation resulting in small eyes that lack lenses, 

however no vertebral anomalies arise despite its expression during normal somitogenesis 



46 

 

46 

(Semina et al. 1998). In humans mutation of Pitx3 has been tied solely to substantia nigra 

deficits, autosomal dominant mesenchymal dygenesis, and congenital cataracts (Semina 

et al. 1998; van den Munckhof et al. 2003). During myogenesis, both Pitx2 and Pitx3 

participate in the differentiation of skeletal muscles (Coulon et al. 2007; L'Honore et al. 

2007). In frog, Pitx3 expresses in lens, lateral plate mesoderm, differentiating somites, 

craniofacial regions, and in looping heart and gut (Pommereit et al. 2001; 

Khosrowshahian et al. 2005). 

When we manipulated Pitx3 expression in frog embryos (Khosrowshahian et al. 

2005) we frequently observed craniofacial, and midline phenotypes reminiscent of Shh 

mutants (Ahlgren and Bronner-Fraser 1999), as well as impaired midline integrity and/or 

laterality (Chiang et al. 1996; Essner et al. 2000; Dubourg et al. 2004). In addition, Pitx3 

and morpholino (PitxMO) injected embryos frequently exhibited a bent dorsal axis – 

embryos reflect inwards on the side of injection and often develop spinal kinks by the 

time somites had differentiated. Severely kinked embryos die by the time cardiac looping 

should have completed. 

The mechanisms underlying these additional Pitx3 defects are unknown, and are 

not seen in the human and mouse mutants. Indeed irrespective of whether the whole 

coding region or just the homeodomain is disrupted, Pitx3 null mutant mice are both 

fertile and superficially appear morphologically normal except for the eye defects (Zhao 

et al. 2004; L'Honore et al. 2007). Why would Xenopus present a different phenotype?  

 We used a panel of probes, some of which we had archived from a subtractive 

cloning project, to monitor the changes that result as a consequence of Pitx3 mis-

expression.  Our hope was to distinguish whether in Xenopus, Pitx3 uniquely impedes the 
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evolutionarily conserved molecular clock mechanism that underlies segmentation, or if 

the later phase of pre-somitic rotational behaviour is affected.  We identified markers of 

somitogenesis by subtractive cloning, namely desmin, creatine kinase, and a troponin C 

variant, each of which undergo modified expression during somitogenesis as a 

consequence of Pitx3 mis-regulation. This modification of gene activity is preceded by 

anomalies in pre-somitic rotation and organization in Pitx3-expressing pre-somitic 

mesoderm, however the early molecular signaling steps necessary to initiate the 

segmentation clock appear to function relatively normally.  

 

2. Materials and Methods 

Subtractive Cloning. The subtractive cloning was undertaken in an earlier project to 

identify eye-specific genes.  Uncharacterized clones were archived and resurrected to 

serve as probes in this project.  Briefly, RNA samples were derived from RNA pooled 

from stage 14, 20, 27, and 32 embryos.  Embryos had been injected at the 1 cell stage 

with either Pitx1 or Pitx3, and all were co-injected with GFP which served as a marker 

for successful injection and distribution of transcript.  RNA was purified using RNAwiz 

(Ambion/ Life Technologies Inc. Burlington, Canada), and poly-adenylated RNA was 

isolated from the aqueous fraction using columns (Ambion, Poly(A)Purist). RNA was 

reverse transcribed and the cDNA library was constructed according to manufacturer’s 

instructions (Clontech, Mountain View, USA: PCR-Select). To confirm the legitimacy of 

the candidate clones, dot blots were performed and successively probed with radio-

labeled cDNA derived from one or other of the original stocks of pooled RNAs (Pitx1 vs 

Pitx3 injected embryos).  Clones that demonstrated different hybridization profiles were 
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submitted for sequencing. Selected clones of interest were then tested by in situ 

hybridization to confirm that they did indeed undergo differential expression following 

mis-regulation of Pitx3. 

Embryos  Embryos were staged, fertilized, dejellied in 2% cysteine and cultured as 

previously described (Nieuwkoop and Faber 1967; Drysdale and Elinson 1991). Animals 

were reared and used in accordance with University, Provincial, and Federal regulations. 

Microinjection  Synthetic capped mRNA of Pitx3, Pitx3-engrailed repressor 

(Khosrowshahian et al. 2005), and/or Green Fluorescent Protein (GFP) transcript was 

made from linearized template using mMessage Machine (Ambion, Life Technologies 

Inc. Burlington, Canada) driven by a SP6 promoter.  Capped mRNA or morpholino was 

resuspended in water and injected into embryos with a Drummond nanoinjector 

(Drummond Scientific Co., Broomall, USA). Injections were made into the animal pole 

of embryos at either the 1-cell or 2-cell stages.  Concentrations of the capped mRNA 

injected ranged from 60 pg to 1.2 ng. Injection volumes never exceeded 9.2 nl. Injected 

embryos were cultured in 0.3 X MBS (1X Modified Barth’s Saline:  88 mM NaCl; 1 mN 

KCL; 1 mM MgSO4; 5mM HEPES pH 7.8; 2.5mM NaHCO3; 0.7mM CaCl2) and 2% 

Ficoll-400 (Sigma-Aldrich Canada Ltd., Oakville, Canada) at 12 
o
C for at least 1 hr to 

allow healing before being removed and allowed to develop at room temperature.  At this 

point the solution was changed to 0.1 X MBS.  When injected embryos were intended for 

comparisons of one treatment to a control, the embryos were injected in one blastomere 

at the 2-cell stage with the transcript of interest and GFP marker for identification and 

separation later.  The contra-lateral side served as a control. For translation knockdown 

assays, a previously characterized and specific Pitx3 antisense morpholino 
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oligonucleotide sequence was employed and in addition, a second morpholino was 

designed to confirm specificity as well as a mis-match control (Khosrowshahian et al. 

2005). Morpholinos employed were: Pitx3 specific-

TGGGCTAATCCTGGTTGAAGGGAAT and CCTCTATTTGTTAAATCCTTCCTGC; 

mis-match control CCaCaATTTcTTAAATCCTTCgTcC; and general morpholino 

control CCTCTTACCTCAGTTACAATTTATA) (Gene Tools LLC, Philomath, USA). 

Whole-mount in situ hybridization and sectioning  In situ hybridizations were 

performed according to established protocols (Harland 1991) using digoxygenin labeled 

riboprobes. Delta2 and Hairy2b/Hes4 were kind gifts of Dr. T. Kinoshita and the NIBB 

respectively. Hybridizations were conducted at high stringency (65
o
 C). After 

photography, whole mount specimens were embedded either in 5% agarose or paraffin, 

and then sectioned either at 30 um using a vibratome (Leica VT 1000s, Leica 

Microsystems, Oakville, Canada), or at 10 um using a manual rotary microtome 

(American Optical Co. 820 Spenser). 

Hoechst Stain  Hoechst 33258 (bis benzamide) dissolved in methanol (5ug/ml) was 

employed to stain specimens of embryos either after fixation or following riboprobe in 

situ hybridization.  After sectioning, nuclei were visualized under filtered UV light and 

photographed.  

Embryo and Immunocytochemistry  Whole embryos were fixed in 4% MEMPFA 

overnight at 4
o
C and incubated with mouse 1-integrin antibody (Drs. P Hausen and V. 

Gawantka - 8C8 diluted 1:400, Developmental Studies Hybridoma Bank, Iowa City, 

USA). After extensive washing, the whole embryo preparations were stained with a 

secondary antibody, namely anti-mouse Cy3 conjugate (Sigma C-2181, 1:200). Nuclei 
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were stained with Hoechst 33285 (1:1000). Embryos were imaged as whole-mounts or 

subsequent to paraffin-embedding and sectioning at 14um thickness. The images were 

captured on a Zeiss Axioskope fluorescent microscope using Northern Eclipse software 

(Empix, Mississauga Canada). Sections through lens were developed from the same 

specimens, but were stained with anti mouse tubulin as primary (Dr. M. Klymkowsky 

- antibody E7 diluted 1:200; Developmental Studies Hybridoma Bank) followed by anti-

mouse Cy3 conjugate (diluted 1:200, Sigma C-2181). Nuclei were stained with Hoechst 

(diluted 1:1000, Sigma H-33258). 

Tissue Cuture Immunocytochemistry  HEK 293 cells were grown on glass 

coverslips in 60mm dishes, in Dulbecco’s modified Eagle’s medium (DMEM), 

supplemented with 10% fetal bovine serum, 100 units/ml Penicillin, 100 µg/ml 

Streptomycin and 2.5ug/ml Amphotericin B at 37
o
C in a humidified 5% CO2 incubator. 

HEK293 cells were transfected either with pCINeo/IRES-GFP vector (kind gift of Dr. 

Jan Eggermont, from University of Leiwen, Belgium) or pCINeo/ xPitx3-IRES-GFP 

vector using the polyethylenimine method.  Shortly before transfection, cells were 

transferred to serum-free and antibiotic-free medium. The PEI-DNA complexes were 

prepared by diluting 6.5ug of plasmid DNA in 250ul serum-free DMEM and adding 

12.5ul PEI.  The mixture was incubated for 20 min at room temperature prior to adding to 

the cells. Four hours later the serum-free medium was replaced with complete medium 

with antibiotics and cells were incubated for an additional 48 hours. Post-transfection, 

HEK293 cells were fixed with 3.7% PFA: cells were stained for actin filaments (30min) 

with Phalloidin Alexa 647 (A22287 diluted 5:200; Molecular Probes, Life Technologies 
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Inc. Burlington, Canada). Nuclei were stained with Hoechst 33285 (1:1000) followed by 

mounting of the cover slips for fluorescence microscopy analysis. 

Cell Counts in Somites  In the segmentation zone, boxes were superimposed over 

images of Hoechst stained longitudinal coronal sections of newly emerging somites. The 

box borders were centred between somites and they were registered to enclose two of 

them. Once control nuclei were counted, the boxes were then moved to cover the 

contralateral region on the injected side of the embryo to delimit an equivalent area of 

counting for the injected side. The number of nuclei per section was averaged for areas 

spanning two somite-equivalents on either side of section in both pre- and post-somitic 

regions.  Ten specimens were assessed.  

 

3. Results 

Unilateral injection at the two cell stage using in vitro transcribed Pitx3 RNA, 

repressor chimeras lineage tagged with GFP, or Pitx3 antisense morpholinos, causes 

embryos to undergo abnormal dorsal axis formation:  embryos curve inwards on the side 

of injection. Phenotypes vary depending upon morpholino and mRNA concentration, and 

upon the degree of dispersion and longevity of the reagent in the injected embryos. 

Optimal concentrations for generating phenotypes using morpholinos or RNA were 

obtained in a previous study (Khosrowshahian et al. 2005).  For example, cardiac and gut 

laterality deficits required substantially more injected mRNA to generate an effect than 

needed to reliably produce the bent axis phenotype (300 versus 100 pg).  This likely 

reflects the longer developmental time and the attrition of RNA by degradation between 

the early somite versus later cardiac stages.  In those studies where long cultivation was 
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required solely in order to study somite differentiation, we elected to minimize cardiac 

deficits (and later stage lethality) and to inject RNA at a lower dose.   

Hypothetically, injection could cause a small degree of cytoplasmic leakage 

resulting in a slightly smaller volume of blastomeres being available to contribute to the 

embryo on the injected side.  This population anomaly might persist and later engender 

impediments to normal morphological modeling either through a reduction in blastomere 

number, or by alterations in the bilateral timing of the mid-blastular transition due to 

altered nuclear: cytoplasmic ratios.  Moreover, the action of RNA species injected might 

not be specifically attributable to Pitx3, but rather the result of ectopic expression and 

mimicry of other Pitx gene family members, or even of other paired-like relatives.  

Having previously established parameters for the use and specificity of a Pitx3 antisense 

morpholino (Pitx3MO) (Khosrowshahian et al. 2005), we injected embryos at the two cell 

stage so that one side was Pitx3-impaired and the other normal. Experiments were further 

controlled through deployment of a second Pitx3 morpholino (no difference in effect 

discernable compared to the first), and a mis-match control. Injection of antisense 

morpholino results in curvature of the dorsal axis so that the injected side is convex 

relative to control side. This occurred more frequently in Pitx3MO than in control 

injected embryos (Table 2.1; Figs 2.1, 2, 3). Moreover, when the progression of 

somitogenesis was monitored using morphological or molecular markers, only Pitx3, 

Pitx3-engrailed, or either of the two Pitx3MO injected embryos underwent anomalous 

segmentation and patterning: control injected embryos underwent normal and bilaterally 

symmetrical somitogenesis (compare Fig 2.1a - control injected with 1b - Pitx3MO 

injected, and Fig 2.3). The effects of Pitx3 perturbation by means of morpholino 
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mediated knockdown were rescue-able by co-injection with Pitx3 mRNA. The 

consequence of this early perturbation was irregular axis formation both in the dorso-

ventral, but particularly in the lateral planes (Fig 2.1b, c, e). Somitogenesis was perturbed 

irrespective of whether Pitx3 mRNA or Pitx3MO was injected unilaterally into the left or 

right blastomere at the two cell stage (Table 2.1). Experiments were repeated a minimum 

of three times, although for the controls, several more repetitions were employed to 

garner a larger sample size.  Given the similar effects elicited by either morpholino or 

mRNA, it is perhaps surprising that the two together nullify to some extent. 
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Figure 2.1:  Effect of morpholinos on dorsal axis differentiation. Embryos injected 

unilaterally on the left at the two-cell stage with control morpholino (Cont MO) develop 

normally or with a mild dorsal curve (a) while those injected with Pitx3 MO reflex 

dramatically inward on the side of injection (b).  Late into somitogenesis, Pitx3MO 

injected embryos exhibit abnormal lateral curvature (compare c to d) as well as dorso-

ventral kinks (compare e with d).  White line demarcates left from right sides of the 

embryos. 
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 Treatment 

Cont 

MO 

(20ng) 

Pitx3 

MO 

(20ng) 

Pitx3 

MO 

(15ng) 

Pitx3 MO 

(11.5 ng) 

Pitx3 MO 

(11.5 ng) + 

Pitx3 RNA  

(100 pg) 

Bent Axis 

 

Suppressed 

Rotation/Depressed 

Somitogenesis 

19% 

 

0% 

76% 

 

100% 

38% 

 

100% 

57% 

 

84% 

 

26% 

 

60% 

 

 

Table 2.1:  Effect of unilateral injection of morpholino upon dorsal axis patterning. 

 

Pitx3MO injected embryos displayed movement disorders.  While the severely 

curved embryos would no doubt be mechanically inhibited from swimming normally, 

even mild phenotype embryos responded to startle by twitching spasmodically – 

swimming movements were not sigmoidal. 

In addition to dorsal axis patterning anomalies, injection of Pitx3 transcript or Pitx3 

morpholino had effects upon the patterning of left/right asymmetrical organs.  These 

anomalies were induced if injections were made at either the 1 or 2 blastomere stages of 

development. If injections were performed unilaterally at the 2 cell stage, both treatments 

had the potential to randomize situs irrespective of the side of injection.  Incomplete 

inversion often occurred, and this was manifest in the abnormal morphologies that were 

the consequence of abnormal cardiac and gut looping (Table 2.2).  
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 Injected Transcript 

(Injected at 2 cell stage) 

Injected Morpholino 

(Injected at 1 cell stage) 

Phenotype Pitx3  

left side 

(300pg) 

Pitx3  

right 

side 

(300)pg 

GFP 

(300pg) 

Pitx3MO 

(15 ng) 

Pitx3MO 

(18 ng) 

Control 

(18ng) 

Aberrant 

   

Heart  

Looping 

31% 

 

(15%) 

22% 

 

(7% 

0% 47% 

 

(22%) 

49% 

 

(25%) 

0% 

Aberrant 

    

Gut  

Looping 

38% 

 

(18%) 

31% 

 

(14%) 

4% 71% 

 

(3%) 

53% 

 

(10%) 

4% 

Complete 

Situs 

inversus 

(all visceral 

organs   

inverted) 

12% 6% 0% 12% 12% 2% 

n 206 217 80 186 51 120 

 

Table 2.2: Effects of ectopic Pitx3 expression/knockdown on the patterning of 

asymmetrical organs.  Percentages in brackets represent the subset of organs that, 

although inverted, are otherwise normally patterned. The compound nature of the 

phenotypes means that the different categories of anomalies can sum to more than 100% 

if a single embryo is affected in more than one organ system. 

 

Three of the Xenopus subtraction clones isolated had been similarly identified in a 

zebrafish study as early markers of myogenic lineages in somites, namely desmin, fast 

skeletal troponin C, and creatine kinase, (Xu et al. 2000).  Desmin is a very early marker 

of the myotome and serves to couple one somite to the next (Cary and Klymkowsky 

1994). Although inhibition of desmin impedes myoblast fusion (Li et al. 1994), it does 

not appear to impede the early stage of somitogenesis (Cary and Klymkowsky 1995). 

Both creatine kinase and troponin C express slightly later during somitogenesis.  In 

embryos that were unilaterally injected with control morpholino at the 2 cell stage, both 

left and right sides of the embryos demonstrate equivalent expression of desmin (Fig 
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2.2a), and identical results were seen for troponin C  and creatine kinase control injected 

embryos.  Ectopic over-expression or inhibition of Pitx3 activity appears to have roughly 

similar effects: when either Pitx3 transcript or PitxMO are injected, expression of all 

three myogenic marker genes are inhibited, although generally speaking, antisense 

morpholino has more severe inhibitory effects (Figs 2.2b-g). This pattern of unilateral 

inhibition persists through to stages in the mid 30s. Whether or not the resultant somite 

perturbation evident at stages 22-32 would eventually lead to vertebral column 

dysgenesis could not be reliably determined: attendant laterality defects precluded 

survival to stages past cardiogenesis.  Where the laterality phenotypes were mild, and 

embryos survived to feeding stage, the spinal column posterior to the abdomen was 

kinked. 
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Figure 2.2: Effect of Pitx3 perturbation upon myogenic/somite markers. Pitx3 

ectopic mRNA expression as well as Pitx3 MO inhibit expression of the early myogenic 

marker desmin (compare a to b, c), as well as the fast and slow skeletal markers 

troponin C (d, e), and creatine kinase (f, g). Dorsal view of left injected whole embryos 

with head oriented to the top. All embryos have been unilaterally injected on the left 

side. 
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Not only is expression of somitic and myogenic markers diminished, but somite 

organization is impaired: in Hoechst labeled longitudinal coronal sections, somitogenesis 

is both retarded and out of registry on the injected relative to the contralateral control side 

(compare control Fig 2.3a to b c, d).  By the time somites have formed discrete bodies on 

the control side, disorganization of intersomitic adhesion and somites is severe on the 

morphant side (Fig 2.3e).  The same effect is elicited by injection of Pitx3-engrailed 

repressor mRNA (not shown).  Instead of organizing into a smoothly rotating cohort with 

elongating nuclei, pre-somitic cells instead seem to aggregate slowly and clumsily, and 

their nuclei remain small and fail to elongate.  Counts of nuclei in laterally matched 

somite-forming regions indicate that there is no statistically significant difference 

between experimental and control sides at the axial level at which presomitic mesoderm 

begins to rotate (Fig 2.4).  Apoptosis is not the cause of retarded somitogenesis. 
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Figure 2.3: Effect of Pitx3 perturbation upon somite formation. Pitx3 ectopic 

mRNA expression as well as Pitx3 MO inhibit the normal assembly of cells into somites 

indicated in Hoechst-stained coronal sections. Compare controls to left injected GFP 

mRNA and Pitx3 mRNA embryos (compare a to b).  In coronal sections (top is rostral), 

both mRNA and morpholino treatments appear to impair the organized rotation of pre-

somitic mesodermal cohorts on the left injected side (c, d). The poor organization of 

somites into aligned and rotating cellular cohorts is evident at higher magnification 

(20x) (e) where nuclei are stained with Hoechst (blue) and inter somitic borders are 

indicated by b1-integrin staining (red).  
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Figure 2.4: Graph comparing pre- and post somitic nuclear counts on either side of 

unilaterally injected Pitx3 MO embryos. Axially paired counts were made using 

coronally sectioned embryos stained with the nuclear stain Hoechst.  There is no 

significant difference in cell number between control and Pitx3 MO injected sides for 

pre-somitic (rotating) nor for post-rotation perpendicular arrays of somite cells.  The 

sample size for each treatment was 10 specimens. 

 

Pitx3 is expressed just prior to gastrulation – the image in Fig 2.5a illustrates light 

staining in stage 10 and 12 embryos, and little background staining in a stage 35 embryo 

processed in the same vial.  Although mesodermal and somitic expression of Pitx3 is not 

superficially evident during the early stages of somitogenesis, nevertheless Pitx3 is 

visible in cleared whole mounts (Fig 2.5b). This agrees with RT-PCR data which reveals 

expression of Pitx3 as early as stage 8, and that substantially increases by stage 18 and 

into somitogenesis (Khosrowshahian et al. 2005). In cleared specimens, somite 

expression gradually wanes until stage 31 whereupon it almost immediately re-expresses 

at higher levels coincident with the myogenic program, and commencing at the anterior 
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end. Both Pitx2 as well as Sonic hedgehog (Shh) expression are perturbed by Pitx3 mis-

regulation, and in the case of Shh, both Pitx3-engrailed repressor as well as antisense 

morpholino injection have a similar inhibitory effect (Figs 2.5 c, d, e).    Genes in the 

upstream portion of the segmentation clock appear to express in a normally arrayed and 

periodic fashion, although in extreme cases, the downstream effectors can be diminished 

in intensity or even abolished (Figs 6a, b).  
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Figure 2.5: Pitx3 is detectable by in situ hybridization in early stages commencing 

just before gastrulation and through stages 10 and 12 (a).  These four embryos were 

processed in the same vial, and the specificity of staining in the stage 35 embryo (lens 

and somites) as well as low background serves to indicate the legitimacy of staining at 

the earlier stages. Pitx3 expression is expressed in re-somitic mesoderm and transiently in 

somites (b). Its activity affects both Pitx2 as well as Sonic hedgehog.  Pitx2 normally 

expresses in paired arrays along the dorsal axis, however this is abolished by Pitx3 

knockdown on the injected side (c). A section through Pitx2 expressing somites is 

provided in the insert.  Pitx3-engrailed repressor mRNA as well as Pitx3MO inhibit Sonic 

hedgehog on the injected side (d, e).   
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Figure 2.6: Pitx3MO has mixed effects upon the segmentation clock, and alters 

patterns of tissue differentiation. The characteristic periodic expression patterns of the 

upstream element of the clock (Delta2) were unaffected, while the downstream efector 

(Hairy2b/Hes4) was reduced or abolished by Pitx3MO.  (a, b).  Lens vesicle formation 

is similarly impaired on the left side compared to the control right (c) In lens, -tubulin 

is red, blue is Hoechst. Transfected HEK293 cells (arrows) acquire a normal 

morphology when they express GFP alone, but cells co-expressing GFP and Pitx3 are 

less stellate and tend to form fewer and smaller intercellular junctions (compare d with 

e). Actin filaments are red, and nuclei stained with Hoechst are blue. 
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Perturbation of Pitx3 activity in both embryos and tissue culture suggests that Pitx3 

plays a role in mediating cytoskeletal architecture (Fig 2.3 e and 2.6c, d, e). Pitx3MO 

appears to inhibit the normal morphological progression of lens fiber differentiation, and 

this appears to have its roots early since cells fail to enter into the lumen post-

vesiculation, a step coincident with primary lens fiber elongation (Zelenka, 2007). Over-

expression in tissue culture causes changes in cell shape – cells are retracted and more 

compact relative to un-transfected peers, and they appear poorly equipped to form 

intercellular contacts (Fig 2.6 d, e). 

 

4. Discussion 

In vertebrates, segmentation of the presomitic paraxial mesoderm is the first overt 

step in the generation of vertebrae.  Generally, it occurs in an anterior to posterior 

direction as two long bars of mesoderm on either side of the notochord and neural tube 

synchronously pinch off to form pairs of epithelialized balls called somites.  As the 

somites mature, they lose their epithelial morphology and differentiate into three distinct 

populations: sclerotome, myotome, and dermatome which migrate and re-segment to 

contribute respectively to the vertebra and proximal ribs, the skeletal muscle precursors, 

and dorsal dermis and skeletal muscle (Brent and Tabin 2002). There are qualitative 

differences in the somitogenic process in the trunk versus the tail (Cunningham et al. 

2011). 

In Xenopus laevis, somitogenesis proceeds over a long time in developmental terms 

– somites segment as matched pairs from paraxial mesoderm from stage 19 to 42 – one 

pair emerges approximately every 45 minutes. Interestingly, rotation of pre-somitic 
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cellular cohorts by means of cell elongation and bending to form somites is slower during 

early compared to late somitogenesis (Afonin et al. 2006). Somitogenesis in Xenopus is 

different from amniotes in substantial ways.  There is little in the way of an obvious 

dermatome – this is present as a separate sheet of cells lying between the myotome and 

dermis (Hamilton 1969).  The somites don’t ball up and pinch off as with chicks and 

mammals, but rather, from a long file of cells along the dorsal axis, cohorts of 

approximately ten cells undergo coordinated rotation on either side of the neural tube - 

nuclei that were formerly aligned along the dorsal axis are broken into smaller groups 

that become perpendicularly arrayed (Hamilton 1969).  Each rotating cellular cohort 

defines a somite pair with a somite forming on either side of the dorsal axis. Another 

difference resides in the myotome: it comprises the dominant component of Xenopus 

somites until the tailbud stage (Newman et al. 1997).   

The conserved cues that drive segmentation are thought to involve the rostral to 

caudal progression of a wave front of intersecting and anti-parallel gradients that render 

presomitic mesoderm competent to respond to a molecular oscillator.  Anterior 

expression of a retinaldehyde dehydrogenase (like Raldh2) builds a gradient of retinoic 

acid synthesis that is anti-parallel to the regressing and posterior dominance of FGF and 

Wnt – the gradients intersect at a threshold called determination wave front (reviewed by 

Pourquie, 2011; Dubrulle and Pourquie 2004). Cyclically expressed members of the 

Notch/Delta, Wnt, and FGF pathways induce segmentation behaviour in cells at the 

determination wave front as it moves caudally. Retinoic acid plays a role in generating 

the wave front, but it also buffers the symmetrically emerging somite pairs from the 



67 

 

67 

asymmetrical cues necessary to organ asymmetry (Pourquie, 2011). When we manipulate 

Pitx3 expression in frog embryos we frequently notice somite and laterality defects.   

Embryos with a mild phenotype (straight axis) also manifest spastic behaviour 

when stimulated to a startle reflex.  Interestingly, disruption of Pitx3 activity in humans 

sometimes leads to movement disorders and spasticity, presumably reflecting abnormal 

patterns of neuronal differentiation that extend beyond the substantia nigra (Bidinost et 

al. 2006). 

Is pre-somitic recruitment and rotation affected by Pitx3 mis-regulation? 

In cleared Hoechst stained whole mounts as well as in sectioned material, it is 

apparent that although pre-somitic mesoderm aligns parallel to the dorsal axis, cells 

experiencing Pitx3 mis-regulation do not rotate normally in cohorts.  Non-specific 

morpholino effects (Robu et al. 2007) are unlikely to be the cause: first, the same effects 

are elicited by two different Pitx3 morpholinos but not by mis-match nor general 

controls; second, the same phenotype is elicited in specific manner by Pitx3-engrailed 

repressor as well as by Pitx3 mRNA.  Moreover, cohorts of the correct cell number are 

both recruited and attempt to rotate perpendicular to the dorsal axis, even though 

subsequent differentiation is adversely affected.  In the milder phenotypes that survive 

past cardiac development, deficits are posterior to the trunk.  In those embryos where the 

phenotype is anterior and profound, somites do not form normally, and the resulting 

structures show poor definition and integration.  Given the consistency of population 

numbers, neither apoptosis nor altered rates of cell division seem likely to be acting to 

retard somite differentiation. These effects are manifested during a phase of development 

when Pitx3 is transiently expressing in both pre-somitic mesoderm and in new somites 
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where it gradually fades as they differentiate. By the end of stage 25, Pitx3 is hard to 

detect, and by stage 31, expression in somites has disappeared until it resurges again in 

the mid-30s (Khosrowshahian et al. 2005), presumably as part of the myogenic program 

(L'Honore et al. 2007).  

Ectopic mRNA or dominant negative constructs might exert non-specific and 

ectopic effects (competing for Pitx2 response elements for example), however it is hard 

to imagine how the highly specific Pitx3 morphants could elicit similar results. We 

propose two explanations. First, analogous to the clock/wavefront model for 

somitogenesis, exquisitely regulated and transient expression of Pitx3 might be required 

for pre-somitic mesoderm to remodel to form somites. If the timing and pattern of 

somitogenesis is dose-sensitive, then either protracted elevation or depletion of transcript 

by ectopic agents would obscure necessary differentiation cues. Certainly, Pitx3 has 

markedly different effects upon the tyrosine hydroxylase promoter in different cell lines – 

it can either activate or repress the reporter (Messmer et al. 2007). Perhaps some of these 

regulatory differences are attributable not merely to the presence or absence of 

transcriptional co-factors, but to levels of Pitx3 relative to partners in these different 

contexts. A sensitivity to multiple thresholds is not without precedent: dpp mediates three 

different threshold-dependent responses upon the target gene C15 that are mediated by 

cumulative and combinatorial effects of its activating and repressing partners (Lin et al. 

2006).  

The second possibility relates to the ability of the Pitx2 isoforms to heterodimerize 

(Cox et al. 2002; Saadi et al. 2003; Lamba et al. 2008).  Perhaps Pitx3 and Pitx2 isoforms 
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form heterodimers that are necessary for somite differentiation - when Pitx3 is either too 

scarce or superabundant, the regulation of targets that require heterodimers are impaired.  

Does Pitx3 mis-regulation perturb the segmentation clock? 

We assessed a broad panel of segmentation genes, and found that while there are 

Pitx3MO-induced changes to the size of some expression domains, nevertheless the 

placement and periodicity of segmentation signals remains intact for the primary 

patterning genes such as Delta2. For at least one of the induced downstream players, 

Hairy2b/Hes4, expression was blurred and often obliterated. Recently, in a microarray 

study, we have also identified a second gene, Hes7 as well as confirmed that 

Hairy2b/Hes4 are perturbed by Pitx3 mis-expression (Hooker et al. 2012): the two Hes-

related genes perform in the Notch/Delta pathway.  Therefore it seems unlikely that Pitx3 

affects the initiators of the conserved segmentation clock in frog, but that they may 

disrupt the effectors necessary to segmentation. In our experiments, Pitx3 mis-regulation 

in frog results in changes to the expression of Sonic hedgehog – a gene that has been 

implicated in modulation of both laterality and the segmentation clock (van den Eeden et 

al. 1998; Tsukui et al. 1999; Christ et al. 2000; Dubrulle et al. 2001; Roessler and 

Muenke 2001) 

Post-segmentation differentiation of somites 

Once somites have formed, Pitx3 is activated by myogenic bHLH proteins, and in 

turn it likely activates some of them too (Coulon et al. 2007; L'Honore et al. 2007).  

Myogenesis and muscle patterning, as well as laterality, appear to proceed normally, and 

this has been ascribed to a compensatory increase of Pitx2 expression (L'Honore et al. 

2007).  In this respect, Xenopus somitogenesis is distinct: not only does Pitx3 mis-
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regulation result in anomalous development, morpholino mediated translational 

knockdown is not compensated by increased Pitx2 activity.  Indeed in frogs, Pitx3 

appears to be necessary for Pitx2 expression in early stage somites since Pitx3 morphants 

demonstrate abolition of Pitx2 in somites on the injected side: this particular regulatory 

link must behave differently than in mice.  

 In embryos where desmin, TnnC, or creatine kinase have been knocked down, 

levels remain persistently low up beyond stages in the late 20s.  All three of these genes 

serve as markers of later somite differentiation (well past segmentation).  Desmin, an 

early myogenic marker, is suppressed by both Pitx3MO and Pitx3 mRNA.  This 

suppression alone, however, is unlikely to be the cause of early somite perturbation: early 

stage somites are normal looking in desmin null mutant mice (Li et al. 1994), and 

although interference with the transcript in frogs impedes later stage myogenesis and 

inter-somitic adhesion, anomalous rotation of somites has not been reported (Cary and 

Klymkowsky 1995). Whatever the impact of these marker genes upon myogenesis, the 

effects on somitogenesis preceded their expression. In this context, it is interesting to note 

that the effects of Pitx3 knockdown are more severe than Pitx3 ectopic expression when 

assessed by creatine kinase expression.  Presumably, Pitx3 is playing a role not merely in 

the inhibition of normal segmentation, but also in regulation of the myogenic 

differentiation that subsequently occurs (compare Fig 2f and g).   

Some “recovery” of somite segmentation appears possible: in our experiments, 

stage 27 somitic nuclei are grouped, but inter-cellular adhesion is impaired such that 

individual somites do not form monolithic aggregates, but display aberrant clefts, cellular 

mis-alignments, and inter-compartmental bridges of tissue. Often, there is no clear 
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delineation of somites whatsoever. The result of this disorganization is curvature of the 

dorsal axis – a phenotype previously reported for Pitx3 morphant zebrafish (Shi et al. 

2005).  1-integrin stained specimens demonstrate many attributes of normal somites, but 

on the whole, lack normal organization: the adherent complexes that normally form 

between somites are either absent or lack focus.  Similarly, lens vesicles are disorganized 

on the morphant side, but in contrast to affected somites, demonstrate cavities that appear 

to be the remnants of cells, as well an unusual distribution of the remaining cells that is 

suggestive of aberrant cell sorting and cell shape changes. For example, the coincident 

elongation and migration of primary lens fibers into the lumen does not take place. 

Previous studies on Pitx3 morphants in zebrafish demonstrated an identical lens 

phenotype (Shi et al. 2005).  

We wondered if these effects were induced or cell autonomous.  We turned to 

tissue culture (HEK293 cells) to see if ectopically expressed Pitx3 affected morphology. 

HEK293 cells were used because they are serving as a mesoderm model, and because 

preliminary experiments suggested that partners necessary to Pitx function were present 

(data not shown).  Transfected cells are less stellate and appear to form fewer and smaller 

junctions with their counterparts.  This phenomenon resonates with the frayed appearance 

of affected myotome in embryos. Apparently Pitx3 normally modulates cytoskeletal 

architecture, cell-cell, or cell-substrate adhesion: mis-regulation appears to change 

behaviour sufficiently that presomitic mesoderm cannot rotate in an organized fashion. 

Interestingly, Shroom3, a mediator of cytoskeletal remodeling, is activated by Pitx1, 2, 

and 3 (Chung et al. 2010), so we might speculate that Pitx3 perturbation effects are 

mediated by one of the growing family of Shroom genes.  
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What causes the Xenopus laterality defects? 

Pitx3 can have either activating or repressive effects upon target genes in a context-

specific manner (Messmer et al. 2007). In the context of these experiments, injection of 

Pitx3MO or of Pitx3-engrailed mRNA have similar effects upon Sonic hedgehog 

expression, suggesting that one role for Pitx3 is to activate the pathway for this gene. Shh 

plays a relatively upstream role in the cascade of signals that direct laterality and midline 

integrity in several organisms (Casey and Hackett 2000), so the abrogation of early Shh 

expression by Pitx3 mis-expression could have elicited the observed laterality defects. 

Cyclopia and laterality defects can be elicited by mutation of several different genes, but 

a unifying theme for several appears to be that they impair midline integrity (Chiang et al. 

1996; Ahlgren and Bronner-Fraser 1999; Essner et al. 2000; Dubourg et al. 2004). In our 

embryos, elicited phenotypes include heterotaxia in addition to eye defects – the effect 

upon Shh suggests a role in midline integrity. Given the catastrophic effects of Pitx3MO 

upon somite formation, it is easy to imagine that it might also undermine integrity of the 

midline and render it leaky to asymmetric cues. Sonic hedgehog signaling is multifaceted 

though – perturbation of its pathway also retards the segmentation clock in chicks 

(Resende et al. 2010), albeit only to a recoverable degree. Finally, laterality deficits in 

morphants could indicate that symmetrically expressed Pitx3 protein modulates activity 

of asymmetrically expressed Pitx2 in lateral plate mesoderm, perhaps by means of 

heterodimerization. 

We have recently completed a microarray-based screen to identify possible 

downstream targets of Pitx3 in both the segmentation and laterality pathways (Hooker et 

al. 2012). The results confirm a role for the gene in mediating both the retinoid as well as 
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segmentation clock/wave front pathways. We are presently working to characterize the 

promoters of candidate target genes. 
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CHAPTER III 

MICROARRAY BASED IDENTIFICATION OF PITX3 TARGETS 

DURING XENOPUS EMBRYOGENESIS 

 

1. Introduction 

Pitx3 encodes a bicoid-like transcription factor that is characterized by a lysine 

residue at position 50 of the homeodomain. The aphakia (ak) mouse represents a natural 

Pitx3 mutant model that is the result of two deletions in its regulatory region that abolish 

eye and brain expression, but leave muscle expression intact (Semina et al., 2000; Rieger 

et al., 2001; Coulon et al., 2007). This genotype displays microphthalmic eyes that lack 

developed lenses. They also display impaired differentiation of dopaminergic neurons in 

the substantia nigra: mutants mimic the symptoms of Parkinson’s disease (PD) (Varnum 

and Stevens, 1968; van den Munckhof et al., 2003).  In humans, PITX3 disruption can 

lead to congenital cataracts, anterior segment mesenchymal dysgenesis (ASMD), Peter’s 

anomaly, and/ or microphthalmia (Sakazume et al., 2007). This implicates PITX3 as a 

major player in the control of gene transcription in lens fibers. In the ventral tegmental 

area (VTA) and substantia nigra compacta (SNc) regions of the midbrain, PITX3 is 

necessary for the terminal differentiation and survival of mesencephalic dopaminergic 

neurons (mDA) (van den Munckhof et al., 2003; Hwang et al., 2009). Zebrafish pitx3 

morphants also exhibit small eyes with lens degeneration, along with misshapen heads, a 

bent dorsal axis, and reduced jaws and fins (Shi et al., 2005). Disruption of Pitx3 in 

Xenopus laevis impedes development of lens and retina, and recent evidence suggests an 

additional role in dorsal axis segmentation and in laterality (Khosrowshahian et al., 2005; 

Shi et al., 2005; Smoczer et al., 2012). In zebrafish, Pitx3 expresses in the hypoblast of 
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gastrulating embryos (Dutta et al., 2005), and the transcript is detectable by RT-PCR in 

pre-gastrula Xenopus (Khosrowshahian et al., 2005).  These two studies suggest an earlier 

involvement for the gene in dorso-anterior patterning than is generally understood. 

Pitx3 binds target DNA to regulate transcription of downstream genes via bicoid 

binding elements (BBE; TAATCC)(Lamonerie et al., 1996; Amendt et al., 1998).  Pitx3 

directly regulates MIP/Aquaporin O, which encodes an abundant protein in the lens that 

functions as an osmotic regulator and cell adhesion molecule (Chepelinsky, 2009; Huang 

and He, 2010; Sorokina et al., 2011). In zebrafish, pitx3 acts upstream of the transcription 

factor foxe3, which is necessary for the transition of lens epithelial cells into 

differentiated secondary lens fibres via nuclear degradation (Shi et al., 2005). Pitx3 is 

also thought to regulate the balance between mitosis and terminal differentiation in the 

equatorial region of the lens: here it operates upstream of cell cycle inhibitors p27Kip1 

and p57Kip2 (Ho et al., 2009).  Within midbrain regions, it directly regulates tyrosine 

hydroxylase (TH) expression, the rate-limiting enzyme in dopamine production (Landis et 

al., 1988; Lebel et al., 2001; Messmer et al., 2007). It also controls the neurotransmission 

of dopamine in mDA neurons via regulation of vesicular monoamine transporter 2 

(VMAT2) and dopamine transporter (DAT) (Hwang et al., 2009). Direct regulation of 

Adh2 in mDA neurons affects the production of retinoic acid that is necessary for proper 

neuron development (Jacobs et al., 2007). To complicate matters, Pitx3 is a versatile 

transcription factor: depending upon signalling context, it can act as either a 

transcriptional activator or as a repressor (Cazorla et al., 2000; Messmer et al., 2007).  

We performed a microarray analysis to compare the transcriptomes of Pitx3- and 

control-morphants at stages 19 (when eye development is commencing) and 27 (when 
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lens differentiation begins) (Nieuwkoop and Faber, 1967).  We elected to employ 

morpholinos since ectopic expression and dominant negative approaches could affect the 

response elements of other Pitx family members: the ectopic expression approach is 

impossible to restrict solely to Pitx3 expression domains, and the homeodomain 

sequences of Pitx2 and 3, for example, are identical. Pitx2 and 3 differ from Pitx1 by a 

single amino acid in the turn between helices I and II.  

Although the preponderance of literature regarding the gene relates to lens and 

mDA neurons, Pitx3 also expresses broadly throughout gastrulation, and later in somites, 

and lateral plate mesoderm (Pommereit et al., 2001; Khosrowshahian et al., 2005; 

Smoczer et al., 2012). In zebrafish, Pitx3 expresses in the demarcation of the 

mesendoderm-derived polster (Dutta et al., 2005). Ectodermal explants have been useful 

as source material for Xenopus microarray experiments in the past, but this restriction to a 

single germinal layer would miss some likely Pitx3 targets, and in addition would require 

the complicating necessity of neural inducing agents.  That said, the interpretation of 

results can also be confounded by the feature that morpholino mediated translational 

knockdown, unlike RNAi approaches, solely affects translation and does not appear to 

affect mRNA degradation rates.  Indeed, some embryos are suspected to compensate for 

morpholino mediated knockdown by releasing more transcript into circulation (Eisen and 

Smith, 2008).  

We designed our search for Pitx3 targets to be as broad as possible, and 

consequently we sampled from whole embryos.   The results generated a long list of 

genes that are affected by Pitx3 mis-regulation. We characterized novel transcripts that 
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represent putative targets of Pitx3 and report plausible genetic pathways that are 

regulated by this multifaceted transcription factor. 

  

2. Results and Discussion 

2.1 Microarray Analysis 

            Morpholino specificity has been previously published and reported to selectively 

reduce Pitx3 transcript and protein levels, with the control-morpholino having none of 

these effects  (Khosrowshahian et al., 2005). This specificity has subsequently been 

confirmed using a second Pitx3 morpholino and mis-sense control (Smoczer et al., 2012). 

Xenopus microarray GeneChips (Affymetrix) were employed, and the data were analyzed 

comparing control-morpholino treatments to Pitx3-morpholino treatments. The threshold 

for consideration was set at a 2-fold cut-off with a p-value of < 0.05.  We categorized the 

top 100 up- and down-regulated transcripts at each stage, with regards to function, and 

generated pie charts to show their distribution (Fig 3.1).  
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Figure 3.1: Microarray data represented according to putative gene function.  The 

100 most up- and down-regulated transcripts affected by Pitx3-morpholino-mediated 

knockdown were categorized by sequence analysis for stages 19 and 27 of X. laevis 

embryonic development. Colors correspond to functional groups in the legend (right). 

 

Among gene categories, the largest group affected consists of transcripts with 

unknown function (expressed sequence tags; ESTs).  Other transcripts encoded secreted 

factors and ligands, transport and binding proteins, and modifying enzymes. In sum, 

changes in expression profiles for these genes implicate Pitx3 in some of the indirect 

controls upon morphogenesis such as those exerting an effect via regulation of secreted 

morphogens.  

When assessed in broad strokes, the secreted factors and ligands are notably less 

up-regulated in morphants at stage 27 than at stage 19; however by contrast, transcription 

factors are more up-regulated at stage 27. At stage 19, structural proteins were more 

profoundly affected (both up- or down-regulated) as a consequence by Pitx3 knockdown 
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than at stage 27. A similar picture developed for signal transduction. The disruptions are 

consistent with embryos experiencing impaired movement, signaling and morphological 

changes during neurulation at stage 19, when the body plan is arguably at its most ductile 

phase. Overall, chromatin modifying genes were up-regulated more than down-regulated 

at both stages.  

Our aim was to use the microarray experiments to deduce novel Pitx3 pathways, 

so we first focused upon the transcripts that were most up- and down-regulated in 

response to morpholino-mediated knockdown of Pitx3. In published studies involving 

samples from rapidly developing systems, microarray and RT-PCR results have 

occasionally been at odds.  Moreover, microarrays are likely to be sensitive to subtle 

differences in the staging of developmental samples: quantitative data might not be fairly 

interpreted in absolute terms.  We elected to categorize on the basis of trend: if gene 

expression levels were altered 2 fold or more relative to controls, and this was repeated in 

a second experiment, we pursued the gene for further analysis using semi-quantitative 

RT-PCR analysis and riboprobe in situ hybridization. Genes that expressed in expression 

patterns that overlapped with Pitx3 were deemed possible direct target genes of Pitx3. Of 

this subset, we focused upon those that also possessed putative Pitx3 binding motifs in 

their 5’-UTR X. tropicalis sequences. These were employed for the reason that they were 

uniformly available, and all of the X. laevis ESTs and genes that we have examined to 

date enjoy near perfect homology (Table 3.1). We then looked deeper into the data set to 

see if genes in the same signaling pathway or developmental process were similarly 

affected (Table 3.2). If the behaviors of the expanded set grouped in a logical manner, 



85 

 

85 

and if the behaviors were consistent with the Pitx3 knockdown phenotypes, these genes 

were further analyzed by RT-PCR or in situ hybridization.   

Gene ID UniGene 

ID 

Gene 

Highest 

BLASTn 

Hit 

(Xenopus 

laevis) 

Microarray 

Ratio 

C
o

in
ci

d
en

t 

P
a

th
w

a
y
 

In
d

u
ct

iv
e
 

S
ec

o
n

d
a

ry
 

RT-PCR 

Confirms  

Change in 

ISH 

expression 

pattern 

 

BBE 

sites in 

5kb of 

5’UTR 

 

xGsc 

 

Xl.801 Goosecoid 

(gsc) 

 

2.328 (19) 

4.743 (27)* 

2.267 (27)* 

          

          √                    

No  

 

N/A 

 

15 

 

Bix4 Xl.399 homeobox 

protein BIX4 

(bix4) 

0.363 (27)  

          √             

No N/A N/A 

xLim1 Xl.21652 EST - LIM 
class 

homeodomain 
protein 

(Lim5/Lhx5) 

(lhx1)(Xlim-
2B) 

2.046 (27) 
 

 
          √                            

√ 

No 
 

Yes 
 

5 

xVent2 Xl.37 VENT 

homeobox 2, 

gene 2 
(ventx2.2) 

Xom protein 

0.406 (27) 

 

 

      √   √        √              

√           

Yes 

 

Ambiguous 

 

17 

 

xPax6 Xl.647 Paired box 6  
(pax6-b) 

0.226 (19) 
0.477 (27) 

 
√                √ 

No (19) 
Yes (27) 

Yes 11 

XL-Maf 

 

Xl.767 neural retina 

leucine zipper 

(nrl) 
bZIP 

transcription 

factor L-Maf 
(maf) 

0.357 (19) 

 

 

 √ 

No 

 

N/A 

 

19 

 

Crybb1 Xl.21502 Beta B1-

crystallin  
(Crybb1) 

0.325 (27) √ Yes (27) Yes 13 

xHey1 Xl.15572 EST - 

Moderately 

similar to 
transcription 

factor HES-
7.1-B (XHR1) 

0.211 (27)  

 √    √ 

Yes Yes 

 

N/A 

xSpr1 Xl.17379 Sp5 

transcription 

factor (sp5) 
Sp1-like zinc-

finger protein 

XSPR-1  

 

0.441 (19) 

    

          √           

No 

 

Ambiguous 

 

N/A 

 

XeFGF Xl.1181 fibroblast 

growth factor 

4B (fgf4-b) 
XeFGF(ii) 

embryonic 

fibroblast 
growth factor 

0.406 (19)  

            √                                

No N/A 5 

xRXRa Xl.877 retinoid X 

receptor, alpha 

(rxra) 

0.319 (19)              √                             No N/A 1 

Stripy Xl.9206 Ledgerline 

(Stripy) 

2.014 (19) √          √                    

√ 

Yes (19) Ambiguous 20 

Hes4 Xl.25977 basic-helix- 0.299 (27) √          √                    Yes (27) Yes (27) 7 
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loop-helix 

transcription 
factor hairy2b 

(hairy2) 

√ 

Hes7 Xl.15142 EST - Highly 

similar to 
Xenopus laevis 

Esr-4 

0.381 (27)                               

√ 
        √   

No (27) Yes 16 

xObscnl Xl.13958 EST - Weakly 
similar to 

obscurin, 

cytoskeletal 
calmodulin and 

titin-interacting 

RhoGEF 

6.211 (19) √      No (19) Yes (27) N/A 

xHoxA11 Xl.266 Homeobox 
A11  

(HoxA11) 

0.423 (27)             √               No No  10 

xSpr2 Xl.2755.1 Sp1-like zinc-

finger protein 

XSPR-2 

GLI family 
zinc finger 1, 

gene 2 (gli1.2) 

0.396 (27) 

 

 

            √            

No 

 

Yes 

 

N/A 

 

xRbp4l Xl.17576 EST 
Weakly similar 

to RET_B 

Human plasma 
retinol-binding 

protein 

precursor 
(PRBP) 

6.164 (19) 
4.429 (27) 

 
√ 

Yes N/A 
 

N/A 
 

xGalectinIX Xl.15089 EST - Fish-egg 

lectin-like 

isoform 1 

0.154 (19) 

0.246 (27) 

 

                       

√       √ 

No (19) 

Yes (27) 

N/A 

 

N/A 

 

xBaz2b Xl.19899 EST - 

Moderately 

similar to 

bromodomain 

adjacent to zinc 

finger domain, 
2B 

0.400 (19)                              

√  

√ 

         √                   

No Yes N/A 

 

xRdh16 Xl.5553 EST - retinol 

dehydrogenase 

16 (all-trans) 
(rdh16) 

6.288 (19) 

2.758 (27) 

√                    

√    

No N/A 

 

N/A 

 

 

Table 3.1: Data summary for genes analyzed for microarray confirmation. 

Combined in situ hybridization results with RT-PCR outcome, compared to the 

microarray prediction of gene transcript behavior in response to xPitx3 knockdown.  

Highlighted genes represent the best-fit candidates for putative direct targets of Pitx3 

since in situ hybridization and RT-PCR confirm the microarray data. Only the genes that 

had statistically significant RT-PCR results across 3 replicates were indicated on table as 

“Yes” confirmed by RT-PCR. For promoter analysis, putative Pitx3 and bicoid-binding 

elements (BBE) were searched in the 5000bp upstream region from ATG of X. tropicalis 

homologs where available at Ensembl.org ( TAATCC, TAATCT, TAATGG, TAATCA, 

and putative binding sites for Pitx3; (Lebel et al., 2001)). (*) Designate multiple 

Affymetrix probe sets that identify to the same gene transcript.  (†) Hes7 and Hes7.1 are 

discrete products arising from separate genes and that share only 40% amino acid 

identity. Hes7 shares 90% identity with murine Hes7 
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Table 3.2: Additional genes identified in the microarray data that pertain to genetic 

pathways implicated in this study.  

 

The affected genes can be classified as: potential direct targets of Pitx3; genes that 

operate within a Pitx3 regulated pathway; or genes that are affected indirectly and outside 

of the domain of Pitx3 expression as a result of grossly perturbed patterns of organ 

differentiation. Only four genes with putative Pitx3 binding motifs displayed both RT-

PCR and riboprobe in situ hybridization patterns that were unequivocally consistent with 

the microarray trend: Pax6,  b1 Crystallin (Crybb1), Hes7.1, and Hes4. Two others, 

Vent2, and Ripply2 (aka Ledgerline or Stripy) displayed altered in situ hybridization 

patterns that were difficult to interpret with respect to expression level since their 

respective patterns were affected differently in disparate domains (Table 3.1).  For 

example, although Vent2 expression is obliterated in the optic region consistent with the 

microarray trend, the gene is up-regulated in the posterior endoderm.  Similarly, the 

Gene ID UniGene ID Gene 

Highest BLASTn Hit (Xenopus laevis) 

Microarray 

Ratio 
Rax1 Xl.186 Retina and anterior neural fold homeobox (Rax-a) 2.148 (19) 

B3-

crystallin 

Xl.26355 Crystallin, beta B3 (crybb3) 0.366 (27) 

-crystallin-
like 

Xl.23710 Transcribed locus, strongly similar to NP_001087320.1 
crystallin, gamma A (X. laevis) 

0.140 (19) 

B-crystallin Xl.21441 Crystallin, gamma B (crygb) 0.298 (19) 

B3-
crystallin-like 

Xl.26349 69% similar to beta-crystallin B3 (H. sapiens) 3.800 (27) 

A4-

crystallin 

Xl.19126 (retired) replaced 

Xl.67080 

Crystallin, beta 4 (cryba4) 0.223 (19) 

2.741 (27) 

B1-

crystallin-like 

Xl.1337 Transcribed locus, strongly similar to XP_002938264.1 

predicted: beta-crystallin B1-like (X. tropicalis) 

2.122 (27) 

Tbx4 Xl.21543 T-box 4 (tbx4) 0.436 (27)* 
0.237 (27)* 

Tbx5 Xl.529 T-box 5 (tbx5-b) 0.432 (27) 

HoxA10 Xl.21639 Homeobox A10 (hoxa10) 0.373 (27) 
HoxA13 Xl.21581 Homeobox A13 (hoxa13) 2.337 (27) 

Galectin I Xl.747 Lectin, galactoside-binding, soluble, 1 (lgals1) 2.264 (19) 

0.436 (27) 
Galectin IIa Xl.17371 Galectin family xgalectin-IIa (xgalectin-IIa) 0.291 (19) 

Galectin IIb Xl.21879 Galectin 4 (lgals4-a) 2.367 (19) 

Galectin IIIa Xl.15364 Lectin, galactoside-binding, soluble, 9c (lgals9c-a) 0.414 (27) 
Galectin IIIb Xl.21878 Lectin, galactoside-binding, soluble, 9c (lgals9c-b) 0.304 (19) 
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banded pattern of Ripply2 expression is anteriorized and delayed by morpholino at early 

stages, but appears to recover to some extent by stage 27.  

In X. laevis, Pitx3 expresses in the developing lens, the otic vesicle and head 

mesenchyme, as well as in the branchial arches and along the anteroposterior axis in the 

developing somites (Pommereit et al., 2001; Khosrowshahian et al., 2005). Insofar as 

Pitx3 is critical to lens placode function, it plays a critical role in frog retina induction 

(Khosrowshahian et al., 2005), so one might expect gene expression in retina to be 

indirectly affected as well. Eye pathway genes Pax6, L-Maf, and Crybb1, express in the 

developing lens, and thus are good candidates for Pitx3 targets. Vent2, Rbp4l (purpurin), 

Galectin IX, and Rax1 express in early retina, and are all affected in morphants. They 

likely represent examples of the indirect consequences of Pitx3 perturbation. Moreover, a 

microarray survey of Aphakia mice revealed a link between Pitx3 perturbation and 

regulation of Pax6 and Rbp4 (Münster, 2005). All of the aforementioned provide 

validation for the efficacy of the microarray. Unfortunately, none of the previously 

published and characterized targets of Pitx3 are represented on the microarray, however 

one of the probe sets is to an EST that has homology to MIP/Aquaporin O, and it is 

down-regulated consistent with expectation. 

 

2.2  Riboprobe in situ Hybridization 

We assessed the effect of Pitx3 perturbation by injecting embryos at the 2-cell 

stage such that the left and right sides of the developing embryo could be compared as 

embryogenesis ensued: morphant phenotypes were monitored on the “mutant” side 

relative to the contra-lateral control.  Candidate gene expression patterns were assessed 
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for perturbation in morphants and for a role in developing eye (Figs. 3.2-7), brain (Fig 

3.8), somite (Fig 3.9), and tailbud (Fig 3.10). 

 

2.2.1 Eye development 

Among other domains, Vent2 (a.k.a. Ventx2) is expressed in the dorsal retina (Fig 

3.2F, G) and it shows structural and functional homology to two Drosophila proteins, 

Om1D and BarH1, which are necessary for the differentiation of photoreceptor cells in 

the eye (Ladher et al., 1996). Along with Vent2, Pax6 and Crybb1 are perturbed in Pitx3 

morphants (Fig 3.2H, I, J). 

 

 

 

 

 

 

 



90 

 

90 

 

Figure 3.2: In situ hybridization analysis for putative targets of Pitx3 involved in eye 

development. Visual comparisons of gene expression patterns between right-side 

injected control-morpholino (Cmo) or Pitx3-morpholino (Pmo) embryos and their 

untreated contralateral control. A-E: Pitx3 expression patterns are presented for 

comparison (adapted from KhosrowShahian et al., 2005, and Smoczer et al., 2012). (A) 

demonstrates faint but detectable signal throughout the ectoderm and in agreement with 

RT-PCR results. (B) Expression is detactable throughout neural ridge, while at stage 22, 

the gene is expressed in a cleared specimen where an arrow indicates pre-somitic 

mesoderm. By stage 27 (D), Pitx3 is detectable throughout much of the head ectoderm, as 

well as in branchial arches and somites.  This pattern restricts later to somites, otic 

vesicle, lens, and brain (D).F-G’: Vent2 expression is reduced in the developing eye field 

at stage 19 for the Pitx3-morpholino (Pmo) injected side (F’ white arrow) and at stage 27 

(G’ black arrow), when compared to control-morpholino (Cmo) injected embryos (A, B).  

H-I’: Pax6 shows reduced expression in eye field on Pmo side of embryos at stage 19 

(H’ black arrow) and 27 (I’ white arrow). J-J’: Crybb1 shows drastic loss of expression 

in the eye vesicle on the Pmo treated side of stage 27 embryo (J’) and no difference 

caused by Cmo treatment (J). Dotted line represents the midline of the embryo, 

separating injected right side from contra-lateral left side control. 
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Pax6 is required and sufficient for the initiation of eye development where it 

specifies the lens and retinal primordia (Halder et al., 1995), and it too is perturbed in our 

assays. The microarray and RT-PCR data regarding L-Maf’s response to Pitx3 

perturbation was ambiguous but is nevertheless worth following up: its relationship to 

Pitx3 has not been directly assessed, however Maf binding sites are deleted in the 

promoter of a naturally occurring mouse Pitx3 mutant (Semina et al., 2000) and L-Maf 

itself appears to reciprocally possesses 12 putative Pitx3 binding motifs in its 5’UTR.  L-

Maf is expressed in the developing lens in response to inductive events from the optic 

vesicle, and it is directly targeted by Pax6 in chicks (Reza et al., 2002). Maf acts 

specifically in the lens fiber cells, where it can induce the expression of structural 

proteins such as the y- and b1-crystallins (Crybb1) (Ishibashi and Yasuda, 2001; Cui et 

al., 2004). Given the presence of numerous potential Pitx3 binding sites in the Crybb1 

promoter, and the response of this gene in our Pitx3 morphants, we speculate that Maf 

and Pitx3 act in tandem to activate the Cry genes.  It is worth noting that other Cry genes 

represented on the microarray also underwent significant fractional change, albeit at less 

spectacular levels, namely :  crystallin (0.14),  B crystallin (0.3),  B3 crystallin (3.8), 

 A3 crystallin (2.74), and species weakly similar to human  B1 crystallin (2.12), and  

B3 crystallin (0.37).   

 

Novel Xenopus retinol-binding protein Rbp4l is expressed in lens 

The microarray indicated that an EST sequence encoding a 197 amino acid 

protein (GenBank CD362061) was up-regulated at stages 19 and 27 by 6.2 and 4.4 fold, 

respectively.  We obtained a clone from NIBB (XL060f11) and after sequencing it, we 
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identified it as a member of the lipocalin protein family, namely RBP4-like (Retinoid 

binding protein 4 like -Rbp4l) or purpurin.  These small extracellular proteins 

characteristically bind hydrophobic molecules and are typically known as transport 

proteins (Flower, 1996).  Fig. 3 shows that Rbp4l shares 73% residue identity with 

goldfish and salmon, 75% identity with zebrafish, and 78% similarity to chick Rbp4l. The 

similarity to human and murine retinoid-binding protein precursor is on 55 and 54% 

respectively.  Rbp4l consists of three conserved motifs that create a cup-shaped cavity, 

enabling the protein to bind retinol, and the protein possesses a signal peptide for 

secretion (Berman et al., 1987).  In zebrafish, rbp4l is transcribed in photoreceptor cells, 

and the protein is diffusely detectable in all retinal layers (Tanaka et al., 2007). As a 

supplier of retinol, a precursor of retinoic acid, this protein activates the retinoic acid and 

retinoid receptor pathway (RAR and RXR, respectively) (Nagy et al., 1996).  Rbp4l 

functions as an extracellular matrix protein in the inter-photoreceptor matrix, and it 

appears to be necessary for cell adhesion and for the survival of photoreceptor cells in the 

neural retina (Berman et al., 1987; Nagy et al., 1996).  Photoreceptor cells require retinol 

for phototransduction and retinol is carried to them from the pigmented retinal layer, 

through the matrix, bound to Rbp4l.  In contrast, the other RBP’s, including Rbp4l’s 

closest human homologue RBP4, are synthesized in the liver, bind to retinol in the blood 

(serum RBPs), and they transport retinol throughout the body to target cells (Goodman, 

1981). Human PITX3 maps to10q25, and this is close to human RBP4 and several 

retinoid synthetic CYP loci at 10q24 (Gray et al., 1997). According to the Ancora 

resource, the region near Pitx3 is replete with highly conserved non-coding elements, so 
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it is tempting to speculate that the genes are embedded within a conserved genome 

regulatory block (Kikuta et al., 2007; Engstrom et al., 2008) 

Expression of Rbp4l is first detected by RT-PCR around stage 17 and increases 

past stage 35 (Fig 3.3B).  In situ hybridization shows that expression of this transcript 

concentrates in the lens area and as a pronounced spot along the midline on the top of the 

brain.  It expresses at lower levels in the craniofacial region and somites (Fig 3.3C-E). 

These expression patterns are distinct from those reported for RBP4 and purpurin. RT-

PCR analysis was performed and confirmed microarray trends: morphants demonstrated 

an increase in expression at stage 19 (1.84 fold) and 27 (2.88 fold) (Fig 3.3B).  Consistent 

with the microarray and RT-PCR data, the gene undergoes up-regulation as a 

consequence of Pitx3 knockdown (Fig 3.3F).  Since Rbp4l expression in Pitx3 morphants 

is broadly up-regulated in the craniofacial region, our supposition is that Pitx3 exerts its 

effects upon this gene earlier than the lens stage, and when Pitx3 expression is more 

expansive. The murine homolog, Rbp4, is also affected by Pitx3 depletion in Aphakia 

mutants (Münster, 2005).Taken together, the results for this novel retinol binding protein 

show the possibility of acting downstream of Pitx3 in lens developmental pathways, 

where both genes are expressed. 
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Figure 3.3: Characterization of a novel transcript, Rbp4l, in X. laevis.  A: Protein 

alignment showing distinct groups between retinol binding proteins and purpurin family 

members. B: Temporal expression of Rbp4l throughout embryonic stages of 

development, showing slight detection at stages 17 and 24, and an increase in expression 

at stages 31 and 35. Confirmation of microarray predictions via RT-PCR, showing an 

increase in Rbp4l expression in response to Pitx3-morpholino (Pmo) at stages 19 and 27, 

when compared to wild-type (WT) and control-morpholino (Cmo) treatments. C-E: In 

situ hybridization with antisense riboprobe against Rbp4l transcript, shows expression at 

stages 27 (C), 31 (D), and 35 (E) concentrated in the developing lens (white arrows, D 

and E) and at the dorsal midline of the developing midbrain region. F: An embryo 

injected unilaterally with Pitx3 morpholino on its right side (left of the dotted line) 

displayed enhanced and general expression in the craniofacial region.G: A schematic 

diagram of Rbp4l protein depicting a secretory signal at the N-terminus (red) and three 

characteristic lipocalin motifs (blue) that classify this protein as a member of the kernel 

subfamily of lipocalins. GenBank accession numbers used to generate phylogenetic tree 

(A) are as follows: xRbp4l CD362061 (X. laevis), rRbp4 plasma BC167099 (rat), mRbp4 
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BC031809 (mouse), hRBP4 plasma AL356214 (human), cRbp4 precursor NM_205238 

(chick), xlRbp4 precursor NM_001087726 (X. laevis), xlRb4 plasma NM_001086998 (X. 

laevis), xtRbp4 plasma NM_001015748 (X. tropicalis), zRbp4 NM_130920 (zebrafish), 

zpurpurin AB242211 (zebrafish), spurpurin NP_001135080 (salmon), ccpurpurin 

NP_001187969 (channel catfish), gpurpurin BAD42450 (goldfish), bcpurpurin 

AD028302 (blue catfish), cpurpurin P08938 (chick). 

 

 

Galectin IX is expressed in eye field and retina 

One of the EST sequences from the microarray data identified mostly with the 

Galectin family, and represents a new family member (Fig 3.4).  We identify this 

sequence as a Galectin IX (Genbank Accession JN975639). It is related to the tectonin 

family that encode beta-propeller repeats: the microarray reports a change in transcript 

levels at stage 19 (diminished to a fractional level of 0.15) and stage 27 (diminished to 

0.25 of its former level). The function of a galectin can be extremely varied: it has 

intracellular and extracellular functions in cell adhesion, migration, proliferation, and 

apoptosis and that are stage- and tissue-specific (Cooper and Barondes, 1999). 
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Figure 3.4: Characterization of a novel transcript Galectin IX in X. laevis.  

A: Protein alignment showing amino acid similarities between Xenopus Galectin family 

members. B: Temporal expression of Galectin IX throughout embryonic stages of 

development, shows expression beginning at gastrulation (stage 10), decreasing at stage 

12, and expressing consistently at stages 17 through 35. Confirmation of microarray 

predictions via RT-PCR, detect an increase in expression at stage 19 and a decrease at 

stage 27 for Pitx3-morpholino (Pmo) treated samples, compared to wild-type (WT) and 

control-morpholino (Cmo). C-E: Galectin IX transcript expresses at stages 24 (C), 27 

(D), and 31 (E) concentrated in the developing eye (white arrows) and presumptive 

pronephros, persisting in the nephric tubules and ducts. GenBank accession numbers used 

to generate phylogenetic tree (A) are as follows: xGalectinIa AB056478, xGalectinIb 

AB060969, xGalectinIIa AB060970, xGalectinIIb AB080016, xGalectinIIIa AB060971, 

xGalectinIIIb AB080017, xGalectinIVa AB060972, xGalectinVa M88105, xGalectinVb 

AB080018, xGalectinVia AB080019, xGalectinVIIa AB080020, xGalectinVIIIa 

AB080021, xGalectinIX BJ056659. 
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Galectin IX, a gene uncharacterized with regard to expression patterns until this 

study, expresses in eye field and later in both lens and retina (Fig 3.4). Little is known of 

its promoter structure, so it is early to speculate whether or not the gene is a direct target 

of Pitx3. In Xenopus alone, twelve (12) different galectin proteins have been identified, 

numbered in order of discovery, and can be identified via galactose-binding ability and 

protein motifs, specifically carbohydrate recognition domains (Shoji et al., 2003). Other 

Galectin family members are expressed throughout the embryo in specific spatiotemporal 

patterns, suggesting varied developmental roles for each protein (Shoji et al., 2003).  

Additional galectins were identified in the microarray data: Galectin IIb (St.19 2.37 

Fold), Galectin I (St.19 2.26 Fold, St.27 0.44 Fold), Galectin IIIb (St.19 0.30 Fold), 

Galectin IIa (St.19 - 0.29), Galectin IIIa (St.27 - 0.41). As a candidate Galectin, further 

functional assessment for galactose-binding affinity will be necessary to firmly classify 

this novel protein within the galectin family (Cooper and Barondes, 1999). Using an 

NIBB clone (XL103j23) we performed in situ hybridization to visualize the expression 

pattern of this novel transcript, which appears to be concentrated in the presumptive 

pronephros and eye regions (Fig 3.4C-E).   Expression begins at gastrulation, fades and 

then increases gradually beginning at neurulation (Fig 3.4B). Curiously, RT-PCR for 

microarray confirmation (Fig 3.3B) shows a fractional increase in expression at stage 19 

(5.28), but the expected slight decrease at stage 27 (0.83) in morphants. This interaction 

is likely indirect since even though expression patterns of Pitx3 and Galectin IX overlap, 

in situ hybridizations do not demonstrate obvious changes of Galectin IX  expression in 

morphants. 
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Novel Xenopus Retinol Dehydrogenase (Rdh16) 

An EST sequence found in the microarray data can be identified as retinol 

dehydrogenase 16 (Rdh16) (Fig 3.5). Since retinoic acid is pertinent to many 

developmental processes, and Pitx3 has already been shown to regulate an aldehyde 

dehydrogenase, AHD2 (Jacobs et al., 2007), this sequence is interesting as a putative 

downstream target of Pitx3.  Retinol dehydrogenases are enzymes that catalyze the 

conversion of retinol (vitamin A) to retinal, an intermediate in the biosynthesis pathway 

of retinoic acid (Pares et al., 2008).  These enzymes belong to the short-chain 

dehydrogenase/reductase (SDR) family.  Their substrate is retinol bound to CRBP 

(cellular retinol binding protein) (Napoli et al., 1991) and they appear to be differentially 

expressed in different tissues (Chai et al., 1996).  Their differential expression suggests 

tissue-specific roles for different family members.  Xenopus Rdh16 shows 51% similarity 

to human 11-cis RDH. 11-cis RDH is: expressed in the retinal pigmented epithelium; is 

necessary for the generation of 11-cis retinaldehyde from retinol; and binds visual 

pigments in the eye (Wald, 1968; Simon et al., 1995; Simon et al., 1996). Microarray 

predicts a fold change of 6.288 at stage 19 and 2.758 at stage 27 for this transcript. We 

were unable to confirm this by RT-PCR (Fig 3.5B) or in situ hybridization. We rule this 

gene out as a Pitx3 target.  

The expression of this retinol dehydrogenase appears only in tailbud stages and is 

concentrated in the retinal layer of the developing retina, peripheral lens, otic vesicle, 

branchial arches and along the antero-posterior axis in a gradient intensified at the 

posterior half (Fig 3.5C-E).  If this gene is a homolog of human 11-cis RDH, the 

expression in the eye would support a conserved functional role.  
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Figure 3.5: Characterization of a novel transcript, Rdh16, in X. laevis. A: Protein 

alignment showing amino acid similarities between Xenopus retinol dehydrogenase (rdh) 

family members. B: Temporal expression of Rdh16 throughout embryonic stages of 

development shows faint expression beginning at stage 24 and 27, then increasing at 

stages 31 and 35. B We were unable to confirm the microarray predictions via RT-PCR, 

as no change in expression was detected between wildtype (WT) control-morpholino 

(Cmo), or Pitx3-morpholino (Pmo) embryos. C-E: In situ hybridization with antisense 

riboprobe against Rdh16 transcript, shows expression at stages 27 (C), 31 (D), and 35 (E) 

concentrated in the eyecup, branchial arches, and otic vesicle, as well as along the lateral 

plate mesoderm, with a focus on the posterior half (D), and on in the developing 

myotomes. GenBank accession numbers used to generate phylogenetic tree (A) are as 

follows: xRdh16 NP_001083356, xRdh7 NP_001079189, xRdh13 NP_001085680, 

xRdh5 NP_001086194, xRdh9 NP_001090337, xRdh10 ACN32204. 
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Novel Xenopus Genes Oscurin-like and Chromatin-Remodeling Protein Baz2b 

Other genes may be indirect targets of Pitx3 such as obscurin-like (Obscnl) in the 

eye field and branchial arches (Fig 3.6A), and a chromatin remodeling gene Baz2b (Figs 

3.6B, 7). Obscnl, is an EST weakly similar to obscurin, cytoskeletal calmodulin and titin-

interacting RhoGEF. Since neither gene’s expression pattern is altered in all Pitx3-

expressing domains, it seems likely that they are affected by the morphological changes 

induced by Pitx3 knockdown, and thus should be considered indirectly affected.  
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Fig 3.6: In situ hybridization analysis for putative Pitx3 target genes Obscnl and 

Baz2b. Visual comparisons of gene expression patterns between control-morpholino 

(Cmo) and Pitx3-morpholino (Pmo) right side-injected embryos.  Obscnl shows a loss of 

expression in the branchial arches (black arrow), otic vesicle, and retina when treated at 

stage 27 with Pmo (A’) versus Cmo (A).  Baz2b is substantially reduced in response to 

Pmo (B’) in the retinal layer of the optic protuberance (white arrow), as well as in the 

pronephros and in the anterior region of the dorsal axis, when compared to Cmo (B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



102 

 

102 

The EST with homology to the BAZ family of bromodomain-containing proteins 

(bromodomain adjacent to zinc finger) is tentatively assigned the designation Xenopus 

Baz2b (GenBank Accession JN975638). The clone represents the 5’ half of a sequence 

encoding the N-terminus (921aa). This protein family contains a conserved bromodomain 

at the C-terminus, adjacent to a PHD zinc finger motif (Fig 3.7F). Bromodomains, 

capable of binding acetyl-lysine residues, are often found in proteins with histone 

acetyltransferase (HAT) activity and they are thought to play a role in chromatin-

dependent gene regulation by unwinding histone-DNA complexes (Zeng and Zhou, 

2002). Baz2b may have the ability to bind methylated CpG regions through a methyl-

CpG binding domain (MBD) (NCBI) (Fig 3.4F). There is some evidence of BAZ proteins 

having the ability to interact with human homologs of ISWI which in Drosophila, binds 

the BAZ1 protein homolog Acf1 to form the ACF chromatin remodeling complex (Ito et 

al., 1999; Jones et al., 2000a; Jones et al., 2000b). 

The microarray predicts that at stage 19 this transcript decreases in morphants to a 

fraction of 0.4 and at stage 27 to a fraction of 0.27. Unfortunately, by RTPCR stage 19 

transcript is just at the limit of detectability. RT-PCR shows expression throughout 

embryogenesis, beginning as a maternal transcript in the oocyte and persisting through 

tailbud stages, and confirms the microarray data by showing a drastic decrease in 

expression at stage 27 (to a fraction of 0.086), with undetected expression at stage 19 (Fig 

3.7B). Its spatial expression pattern, initially quite diffuse (not shown), condenses around 

the developing eye and pronephric structures during tailbud stages (Fig 3.7C-E). 

Since Pitx3 has been shown to play major roles in both the lens and retina 

development, these genes correlate with a role for this transcription factor in specifying 
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lens placode, initiating lens differentiation, and in inducing retina (Khosrowshahian et al., 

2005).  

.  
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Figure 3.7: Characterization of a novel transcript, Baz2b, in X. laevis.  A: Protein 

alignment showing amino acid similarities between Baz2B homologs across organisms.  

B: Temporal expression of Baz2b throughout embryonic stages of development show 

expression as a maternal transcript in the egg “E” and throughout development to tailbud 

stage, with slight reductions in transcript level at stages 10 and 19. B Confirmation of 

microarray predictions via RT-PCR show abolished expression at stage 27 in response to 

Pitx3-morpholino (Pmo) when compared to control-morpholino (Cmo) and wild-type 

(WT) embryos. C-E: Baz2b expression at stages 21 (C), 31 (D), and 35 (E) is 

concentrated in the developing eye, as well as the branchial arches and otic vesicle. Dark 

expression is seen in the pronephros, persisting in the tubules (E). F: A schematic 

diagram of Baz2b protein depicting various domains characteristic of Baz2B: methyl-

CpG binding domain (MBD), DNA binding domain (DDT), zinc finger domain (Z), 

adjacent to the bromodomain (BR). GenBank accession numbers used to generate 

phylogenetic tree (A) are as follows: xBaz2b BQ400337 (X. laevis), mBaz2b BC150814 

(mouse), rBaz2b NM_001108260 (rat), hBAZ2B NM_013450 (human), cBaz2b 

NM_204677 (chick), xtBaz2b BC166361 (X. tropicalis). 
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2.2.2 Brain expression 

One candidate sequence was highly similar to Hes-related 1, and is tentatively re-

assigned the name Hes7.1 based upon homology to the X. tropicalis and human genes. 

This gene likely specifies the frog midbrain/hindbrain boundary, or isthmus (Shinga et 

al., 2001; Takada et al., 2005). The isthmus is an important organizer of brain 

regionalization and consequent patterning (Nakamura and Watanabe, 2005). When 

murine Hes1 is disrupted, brain patterning mediated through the isthmus is damaged, and 

the mesencephalic dopaminergic (mesDA) neurons fail to thrive. The same authors report 

that expression of both Pitx3 and tyrosine hydroxylase is abnormal (Kameda et al., 2011). 

Since the related Xenopus homolog possesses 11 putative Pitx binding motifs, future 

studies should be sensitive to the possibility that Hes1/Hes7.1 and Pitx3 are engaged in a 

reciprocally regulatory relationship.  Spr1, a Xenopus laevis transcription factor that is 

related to the human Sp1 and mouse Sp5 zinc finger proteins, is expressed in the 

forebrain as well as the isthmus, where eFGF also plays a role (Isaacs et al., 1992; 

Ossipova et al., 2002). Both Spr1 and Hes7.1 show decreased expression in the isthmus 

in response to Pitx3-morpholino as assessed by in situ hybridization (Fig 3.8).  
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Figure 3.8: In situ hybridization analysis for putative brain targets of Pitx3. 
Comparisons of gene expression patterns between right-side injected control-morpholino 

(Cmo) or Pitx3-morpholino (Pmo) embryos and their untreated contra-lateral control. A-

B’: Hes7.1 at stage 19 shows decreased expression in the midbrain hindbrain boundary or 

isthmus (black arrow) in response to Pmo (A’) versus Cmo (A) and again at stage 27 Pmo 

(B’) (black arrow) versus Cmo (B). C-D’: Spr1 stained embryos show increased 

expression (black arrow) at stage 19 when treated with Pmo (C’), where no change in 

expression is observed with Cmo (C). At stage 27, Spr1 expression in the isthmus is 

abolished on the Pmo side (D’) (white arrow). Dotted line represents the midline of the 

embryo, separating injected right-side from contra-lateral left-side control. 
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Unfortunately, tyrosine hydroxylase, a gene critical to differentiation of 

dopaminergic neurons (mDA) of the substantia nigra, is not represented on the 

microarray. However, Wnt1, an early stage marker for murine isthmus  (Würst et al., 

1994), is both represented on the microarray and down-regulated (Table 3.2). Only an 

unworkably small fragment of the gene has been cloned in frog (Wolda and Moon, 1992).  

Since Pitx3 is especially pertinent for the differentiation and maintenance of mDA 

neurons and since the isthmus is critical to development of the substantia nigra 

(Marchand and Poirier, 1983), it is tempting to speculate that this Pitx3 effect is mediated 

through control of isthmus patterning at early developmental stages. 

The expression patterns of Lim1 will be discussed a greater length later, however it 

is worth noting in the context of isthmus and substantia nigra (structures that are induced 

and patterned early by Lim1 (Shawlot and Behringer, 1995)), that although the RT-PCR 

assays did not confirm the microarray data, nevertheless, in situ hybridization did.  

Moreover, Lim1 possesses 5 evolutionarily conserved Pitx3 binding motifs. Based upon 

our preliminary slate of putative signaling partners, our suspicion is that Pitx3 plays a 

heretofore uncharacterized role during gastrulation to pattern anterior-most structures – 

previous work has indicated that it expresses in fish hypoblast (Dutta et al., 2005), and 

somewhere in Xenopus pre-gastrula (RT-PCR, uncharacterized and low-expression 

location) (Khosrowshahian et al., 2005).  

 

2.2.3 Segmentation and tailbud signaling 

The Ripply family, Ripply 1 (bowline), Ripply2 (ledgerline, stripy) and Ripply3 

serve as transcriptional repressors that are necessary for proper boundary formation 
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during somitogeneisis.  The Ripply genes appear to act by balancing the FGF/RA 

signaling wave front and thereby regulate the emergence of new somites: this regulation 

is likely mediated by interaction with T-box genes (Chan et al., 2006; Kawamura et al., 

2008; Hitachi et al., 2009). It is interesting that both Tbx4 and Tbx5 go down in our data 

set (0.237 and 0.436 for each of the two Tbx4 probands, and 0.432 for Tbx5).  Ripply2, 

Hes4, and Hes7 are perturbed in Pitx3 morphants (Fig 3.9), and Ripply2 possesses 20 

Pitx3 binding sites in its 5’UTR. Hes7 expression patterns confirmed the microarray data, 

however triplicate RT-PCR reactions did not substantiate this statistically. We note that 

RT-PCR consistency has historically been a problem in microarray studies (Altmann et 

al., 2001; Buchtova et al., 2010), and given the presence of 10 Pitx3 binding motifs 

within the 5’UTR of Hes7, we are inclined to pursue this gene’s candidacy further. 

Perturbation of Hes4 is complex: it appears to up-regulate at early stages, to remain 

unchanged through neurulation, but to be inhibited at tailbud stages (Smoczer et al., 

2012).  Hes4 and Hes7 are factors that function downstream of the Notch pathway during 

somitogenesis and that mediates segmental patterning of the presomitic mesoderm where 

they serve as components of the segmentation clock (Jen et al., 1999; Tsuji et al., 2003; 

Murato et al., 2007).  Recently, pre-somitic expression has been reported for Pitx3 and its 

perturbation results in anomalous segmentation presenting as a bent dorsal axis and 

aberrant somite morphogenesis (Smoczer et al., 2011). Ripply2 morphants also produce 

bent dorsal axes and shift Hes4 and Hes7 expression patterns anteriorly (Chan et al., 

2006). Further research is necessary to deduce which of these are direct downstream 

targets of Pitx3, but a good starting point would be to test if Pitx3 modulates Ripply2 and 

thereby indirectly alters expression of the Hes genes. 
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Figure 3.9: In situ hybridization analysis for putative segmentation targets of Pitx3. 
Visual comparisons of gene expression patterns between right-side injected control-

morpholino (Cmo) or Pitx3-morpholino (Pmo) embryos and contralateral control. A-B’: 

Ripply2 expression, showing as two stripes in the pre-somitic mesoderm, shows an 

anterior shift (black arrow) in expression at stage 19 when treated with Pmo (A’) instead 

of Cmo (A). At stage 27, Ripply2 expression pattern loses its distinct shape and becomes 

unrestricted in response to Pmo (B’), whereas with Cmo treatment, precise patterning of 

this gene expression remains intact (B). C-D’: Hes4 expression becomes blurred in Pmo 

treated embryos at stage 19 (C’) and at stage 27 (D’) Hes4 expression is absent in the 

presomitic mesoderm (black arrow) and pronephros areas, compared to Cmo treated 

embryos (D).  E-F’: Hes7 no longer expresses in the most anterior stripe (black arrow), 

and the remaining two stripes are shifted anteriorly in comparison to the contralateral 

control (E’). At stage 27, on the Pmo side of the embryo (F’), Hes7 shows increased 

expression in the presomitic mesoderm (white arrow) and again an anterior shift of the 

striped pattern (black arrow). Dotted line represents the midline of the embryo, separating 

injected right-side from contralateral left-side control. 
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Both eFGF and RXRα are transcribed in the tailbud and thus may be factors that 

are affected by Ripply2 (Chan et al., 2006). eFGF extends to the posterior of the body 

axis and into the proliferating tailbud where notochord and somites continue to emerge. 

eFGF is also expressed later in the myotome of the trunk (Isaacs et al., 1992). Both eFGF 

and RXRα appear regulated by Pitx3 in the microarray dataset, but neither confirm by 

RT-PCR.  The expression levels are too low to be reliably detected by in situ 

hybridization at stage 19 and 27, however both possess consensus Pitx3 binding motifs in 

their respective 5’UTR. Given the effects of Pitx3 perturbation upon the somitogenesis- 

and tailbud-expressing genes HoxA11, Spr2, and Lim1 (Fig 3.10), it might be worth re-

examining their failed candidacy at targets.  
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Figure 3.10: In situ hybridization analysis for putative tailbud targets of Pitx3. A-

B’:  HoxA11 shows decreased posterior expression in the tailbud region (white arrows) 

of Pmo embryos at stages 19 (A’) and 27 (B’);C-D’: Spr2 displays a broader and larger 

domain of expression (black arrows) when treated with Pmo, both at stage 19 (C’) and 27 

(D’), compared to Cmo treated embryos (C, D). E-F’: Lim1 expression disappears from 

paraxial mesoderm (red arrow) and is up-regulated in lateral mesoderm (black arrow) at 

stage 19 when treated with Pmo (E’). At stage 27 (F’), Pmo reduces Lim1 expression in 

the developing pronephros (black arrow) and in the head mesenchyme and along the 

dorsal axis. 
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Spr2 and HoxA11 are affected by Pitx3 mis-regulation (Fig 3.10). HoxA11 

specifies positional identity along the antero-posterior axis and is largely expressed in the 

posterior notochord and tailbud mesoderm (Lombardo and Slack, 2001). Other Hox genes 

are affected to a lesser, though still significant fractional degree: HoxA13 (2.4), and 

HoxA10 (0.37). The differential effect upon these genes renders an indirect mediation by 

retinoid metabolism unlikely. Lim1 expression undergoes a complex modulation of 

expression: lateral mesoderm expression increases, while in paraxial mesoderm, 

expression is abolished. Spr2 and Vent2 are expressed in the developing tailbud (Ladher 

et al., 1996; Ossipova et al., 2002), so effects in this domain would also be reflected in 

the microarray.  

 

2.2.4 Indirectly characterized early perturbation effects 

Although the microarray data was analyzed for embryos at stages 19 and 27, a 

significant number of candidates are pertinent for early patterning of the embryo, and 

moreover, are known to interact with each other in a manner consistent with Pitx3 

impinging upon their respective regulatory networks.  Pitx3 has been detected at early 

stages in the embryo (stage 8) (Khosrowshahian et al., 2005) implying an unknown 

function for this transcription factor at earlier stages. One of our candidate targets, Vent2, 

provides ventralizing information and perhaps signals for the differentiation of the 

epidermis (Ladher et al., 1996).  This factor directly down-regulates the homeobox gene 

Goosecoid (Gsc), which is expressed in Spemann’s organizer and then becomes 

undetectable as the embryo undergoes neurulation (Cho et al., 1991; Trindade et al., 

1999). Gsc is responsible for the development of dorsal structures (Cho et al., 1991). 
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These two genes, Vent-2 and Gsc, play antagonistic roles in the establishment of the 

dorsoventral axis. Lim1 expression peaks at gastrulation in Spemann’s organizer, and has 

the ability to directly activate Gsc and maintain its expression in the prechordal plate 

(Mochizuki et al., 2000). All three are represented as Pitx3-sensitive in the microarray, 

however Gsc expresses too early to have been monitored in our riboprobe in situ 

hybridization although it should be noted that Gsc possesses 14 Pitx3 motifs in its 

5’UTR.  

Bix4 is a Brachyury-inducible homeobox-containing gene and is thought to induce 

both mesoderm and endoderm formation depending on the concentration of its encoded 

protein (Tada et al., 1998). It expresses earlier than we monitored by in situ hybridization 

at stages 19 or 27. Similarly, eFGF and RXRα are also expressed early in development, 

well before the stages that we assessed.  eFGF is most similar to FGF-6 and FGF-4 in 

mammals, yet may represent a novel FGF secreted factor that has both mesoderm-

inducing properties and roles in anterior-posterior patterning (Isaacs et al., 1994). RXRα 

encodes a retinoid X receptor that is part of the nuclear receptor family that mediates the 

effects of retinoic acid upon embryos. Expression of RXRα begins as a maternal transcript 

in the oocyte, and then is temporarily abolished before gastrulation, leading to a role for 

this receptor in early patterning of the embryo (Blumberg et al., 1992). RA provides 

positional information and helps to pattern the anteroposterior body axis, mostly by 

mediating posterior transformation of the embryo (Durston et al., 1989).  
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2.4 Conclusion 

Microarray analysis is a useful tool to monitor the influence of a gene upon the 

entire transcriptome of an organism.  However, the generated data set is quite elaborate 

and deducing pertinent trends can be a challenging process.  The information represented 

in this study provides a global view of general developmental processes in which Pitx3 

may be involved.  New genetic players have been identified as putative Pitx3 targets in 

the already established eye and brain developmental processes.  In addition, based on 

genes identified by the microarray, novel roles for Pitx3 can be inferred for regulation of 

early patterning events and the development of the anterior-posterior body axis.  

 

3. Experimental procedures 

3.1 Embryo collection and manipulation 

Staging, de-jellying, and culturing of Xenopus laevis embryos were conducted as 

previously described (Nieuwkoop and Faber, 1967; Drysdale and Elinson, 1991). 

Animals were reared and used in accordance with University, Provincial, and Federal 

regulations. Fluorescently labeled morpholinos for either control or experimental Pitx3 

treatments were injected as previously described (Khosrowshahian et al., 2005; Smoczer 

et al., 2012).  Essentially, 4.6nL injections were made into the animal pole of embryos at 

the 1-cell stages for RNA collection and 1- or 2-cell stages for in situ hybridization. 

Injected embryos were cultured in 0.3 X MBS and 2% Ficoll-400 (Sigma) at 17
o 
C for at 

least 1 hr to allow healing before being removed and allowed to develop at 12
o 
C in 0.1 X 

MBS.  
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3.2 RNA Preparation and Microarray Analysis 

At staged intervals, embryos were removed for RNA isolation, lysed, and 

processed in Trizol as per manufacturer’s instructions (Invitrogen). We then used 

DNAseI to remove genomic DNA, and ran the product over Qiagen RNeasy columns for 

purification. RNA quality was assessed using the Agilent 2100 Bioanalyzer (Agilent 

Technologies Inc., Palo Alto, CA) and the RNA 6000 Nano kit (Caliper Life Sciences, 

Mountain View, CA). 

All GeneChips were processed from 2 biological replicates at the London 

Regional Genomics Centre (Robarts Research Institute, London, Ontario, Canada; 

http://www.lrgc.ca). Biotinylated complimentary RNA (cRNA) was prepared from 10 μg 

of total RNA as per the Affymetrix GeneChip Technical Analysis Manual (Affymetrix, 

Santa Clara, CA). Double-stranded cDNA was synthesized using SuperScriptII 

(Invitrogen, Carlsbad, CA) and oligo(dT)24 primers.  Biotin-labeled cRNA was prepared 

by cDNA in vitro transcription using the BioArray High-Yield RNA Transcript Labeling 

kit (Enzo Biochem, New York) incorporating biotinylated UTP and CTP. 15 μg of 

labeled cRNA was hybridized to Xenopus laevis GeneChips for 16 hours at 45°C as 

described in the Affymetrix Technical Analysis Manual (Affymetrix, Santa Clara, CA).  

GeneChips were stained with Streptavidin-Phycoerythrin, followed by an antibody 

solution and a second Streptavidin-Phycoerythrin solution, with all liquid handling 

performed by a GeneChip Fluidics Station 400.  GeneChips were scanned with the 

Affymetrix GeneChip Scanner 3000 (Affymetrix, Santa Clara, CA). 

Signal intensities for genes were generated using GCOS1.2 (Affymetrix Inc., 

Santa Clara, CA) using default values for the Statistical Expression algorithm parameters 

http://www.lrgc.ca/
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and a Target Signal of 150 for all probe sets and a Normalization Value of 1. 

Normalization was performed in GeneSpring 7.2 (Agilent Technologies Inc., Palo Alto, 

CA).  Data were first transformed, (measurements less than 0.01 set to 0.01) and then 

normalized per chip to the 50
th

 percentile, and per gene to control samples for each stage.  

We performed two biological replicates and filtered the data based upon fold change with 

a cut off P-value set at 0.05. 

 

3.3 RT-PCR 

cDNA was made using Omniscript reverse transcriptase (Qiagen) and Oligo(dT)18 

primers (Sigma) from 1ug total RNA for microarray confirmation and from 10uL mRNA 

further isolated (GenElute Direct mRNA Miniprep Kit – Sigma) for stage analysis of 

novel EST sequences.  RT-PCR was performed at various annealing temperatures and 

cycle numbers, resulting in 5 time-points that were ultimately graphed.  A cycle at the 

linear phase of amplification was selected for each gene and standardized against ODC.  

Fold change for microarray confirmation was determined by comparing gene 

amplification of control-morpholino treated samples with Pitx3-morpholino treated 

samples. Primers and parameters are outline in Table 3.3. 

Gene Primers Size 
Anneal 

Temp 

GenBank 

     # 
Reference 

ODC 
 

Sense:  

5’ - GTC AAT GAT GGA GTG TAT G - 3’ 
Antisense:  
5’ - TCC ATT CCG CTC TCC TGA - 3’ 

3

385bp 

5

57
o

C 
 XenBase 

Lim1 

Sense:  

5’ - CCG ACA CAT AAG GGA GCA GC - 3’ 
Antisense:  
5’ - CTG GTG GGT GTG ACA AAT GG - 3’ 

573bp 60
o

C X63889 Homemade 

Spr1 

Sense:  

5’ - CCA GGT ACA AGT CCT ACT GA - 3’ 
Antisense:  

5’ - GAG TGC CAC CTC AAA TGA GC - 3’ 

752bp 54
o

C AY062264 
Ossipova et al., 
2002 
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Spr2 

Sense:  

5’ - CAA ACT GTT GCC TCT CAT GAG - 3’ 
Antisense:  

5’ - CAC TTA CAC CTC CGG CAG CGC - 3’ 

380bp 54
o

C AY062263 
Ossipova et al., 
2002 

Vent2 

Sense:  

5’ - GCT TTC TCC TCG GTT GAA TG - 3’ 
Antisense:  
5’ - TCT CCT TCA GGG GCT GTA GA - 3’ 

461bp 57
o

C X98454 Homemade 

Hes4 

Sense:  
5’ - GCA CGA ACG AAG TCA CAC GA - 3’ 
Antisense:  

5’ - GCT GGG TTG GGA ATG AGG AAA G - 3’ 

297bp 65
o

C AF139914 Homemade 

Hes7.1  

Sense:  
5’- TGT AAT GTG CTC AAA TGG CG  - 3’ 
Antisense:  

5’ - TCC GTC AGC CCT ACA AAG AC – 3’ 

336bp  54
o

C BJ088128  
Homemade 

 

Obscnl 

Sense:  

5’ – ACA GTA TGG TTC ACA GCC – 3’ 
Antisense:  

5’ – CAG TTG GCA CAT CAA TCC AG – 3’ 

283bp 57
o

C BJ085487  
Homemade 

 

Gsc 

Sense:  

5’ - ACA ACT GGA AGC ACT GGA - 3’ 
Antisense:  
5’ - TCT TAT TCC AGA GGA ACC - 3’ 

279bp 52
o

C M81481 XenBase 

RXR 

Sense:  

5’ - AAG ATA CTT GAG GCG GAG CA - 3’ 
Antisense:  

5’ - TTC GGG GTA TTT CTG TTT GC - 3’ 

531bp 54
o

C L11446 Homemade 

L-Maf 

Sense:  
5’ - CTT GCT CCT CCT CAA TCT CTG G - 3’ 
Antisense:  

5’ -CCG ACA AAG GCG AAA GCT GGT G - 3’  

331bp 54
o

C AF202059 
Ishibashi and 

Yasuda, 2001 

eFGF 

Sense:  

5’ - TTA CCG GAC GGA AGG ATA - 3’ 
Antisense: 

5’ - CCT CGA TTC GTA AGC GTT - 3’ 

222bp 56
o

C X62594 Kroll Lab 

Bix4 

Sense:  
5’ - CAG AAC AGG AGA TCA AAA GC - 3’ 
Antisense:  

5’ - CGG GTA GGT ACT AGA TGC TG - 3’ 

414bp 54
o

C AF079562 Homemade 

Hes7 

Sense:  

5’ – TGT TGG CTT GAA AGG TTT GT - 3’ 
Antisense:  
5’ – CTC AAA ATG TGT CAT AAT CCA  - 3’ 

394bp 60
o

C BJ058661 
Homemade 

 

Ripply2 

Sense:  

5’ – ATG GAG CCG AAT CAA CAG C - 3’ 
Antisense:  
5’ – TGT CTT CCT CTT CAG AGT CA - 3’ 

352bp 57
o

C AB073615 
Homemade 

 

Crybb1 

Sense:  

5’ – CGT GGT GAG ATG TTT ATC CTG GAG - 3’ 
Antisense:  

5’ – CCT TCT GGT GCC ATT GAT TGT CTC - 3’ 

394bp 60
o

C 
CD303346 

 
Homemade 

 

Pax6 

Sense:  

5’ – GCA ACC TGG CGA GCG ATA AGC  - 3’ 
Antisense:  

5’ –CCT GCC GTC TCT GGT TCC GTA GTT - 3’  

448bp 56
o

C 
U77532 

 

Zuber, M.E. et 

al., 2003 

HoxA11 

Sense:  

5’ – AAT CCC TCC AAT GTC TAC CAC C - 3’ 
Antisense:  

5’ – CTG GTA TTT GGT ATA CGG GCA C – 3’ 

363bp 56
o

C AJ319668  

Slack, J.M.W. 

et al. 2001 

 

Rbp4l 

Sense:  
5’ –  AGA TGC AAT GCT CAG TCC T – 3’ 
Antisense:  

5’ –  GCG GGA GAA TAT AAT AGA ATA – 3’ 

432bp 54
o

C CD362061 
Homemade 
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 Table 3.3: Parameters and primer sequences used in RT-PCR experiments. 

 

3.4 Whole-mount in situ hybridization 

In situ hybridizations were performed according to established protocols 

(Harland, 1991) using digoxygenin labeled riboprobes. We probed genes that were either 

two times up- or down-regulated as a consequence of Pitx3-morpholino perturbation, 

deemed by the microarray analysis.  The probes used were generated from plasmids that 

were either the generous gifts of colleagues, the NIBB/NIG/NBRP Xenopus laevis EST 

project, or were purchased from ATCC (see Table).  When a probe revealed a temporal 

and spatial expression pattern that overlapped with the known activity of Pitx3, further in 

situ hybridizations were conducted on specimens that had been unilaterally injected with 

morpholino (control- or Pitx3-morpholino) at the 2 cell stage: expression on the perturbed 

side could be compared to the contra-lateral control, and the trend predicted by the 

microarray thereby confirmed.  Probes were prepared from vectors as outlined in Table 4. 

 

3.5 Identification of Novel Genes 

Some of the most differentially expressed but previously uncharacterized EST 

sequences were explored.   Their spatial expression pattern was visualized via in situ 

hybridization and the temporal expression pattern was then investigated using RT-PCR 

Galectin 
IX 

Sense:  

5’ –  CCC GTG CCT GGT ATT TCA – 3’ 
Antisense : 

5’ –  ACC TGG CTG GAG TGA ACA – 3’ 

448bp 55
o

C BJ056659 
Homemade 

 

Baz2b 

Sense:  

5’ –  AAG ATG ATG ATG AGG ACG A – 3’ 
Antisense:  

5’ –  CCA TTT TAG CCT GCT GTT TC – 3’ 

837bp 55
o

C BQ400337 
Homemade 

 

Rdh16 

Sense:  
5’ –  CTG CGA CTC TGG GTT TGG A – 3’ 
Antisense:  

5’ –  TCA TAG CCG GCA GAG TAG – 3’ 

750bp 57
o

C BG514525 
Homemade 
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throughout embryonic stages of development.  Varied stages were utilized to determine 

specific developmental events: unfertilized egg (E) and stage 5 for maternal transcripts, 

stage 10 (early gastrula), stage 12 (neural anlage), stage 17 (onset of somitogenesis), 

stage 19 (neural tube), stage 24 (tail bud), stage 27 (lens differentiation), stage 31 

(cardiac looping), stage 35 (blood supply) (Nieuwkoop and Faber, 1967). Phylogenic 

profiles and functional attributes were deduced using Blastp searches within GenBank 

and homolog alignments using the Megalign program of DNASTAR Lasergene 7.2.  
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CHAPTER IV 

DIRECT TARGETS OF PITX3 IDENTIFIED USING A NOVEL CELL-

SPECIFIC REPORTER ASSAY 

 

1. Introduction 

The Pitx gene family belongs to the OAR (Otx, Arx, Rax) subgroup of paired-like 

transcription factors (TF). In addition to a paired-like homeodomain, the genes encode a 

transactivation domain that may also participate in protein-protein interactions, as well as 

a nuclear localization signal (Medina-Martinez et al., 2009). In mammals, one member of 

this family, Pitx3, is expressed in the Substantia nigra compacta area of the midbrain 

where it is responsible for the maturation and final differentiation of mesencephalic 

dopaminergic neurons and also for the subsequent regulation of the dopamine rate-

limiting enzyme, tyrosine hydroxylase (Maxwell et al., 2005; Smidt et al., 2004; van den 

Munckhof et al., 2003). Pitx3 also expresses in developing somites, lens placode, and in 

forming lens pit (Semina et al., 1998; Smidt et al., 2004; Smidt et al., 1997). In mice, 

Pitx3 has been identified as the causative locus for aphakia, a recessive deletion mutant 

resulting in small eyes that lack lenses (Semina et al., 1998). In humans, mutations are 

tied to defective differentiation of dopaminergic cells of the Substantia nigra, and to 

autosomal dominant anterior eye compartment dygenesis and congenital cataracts 

(Semina et al., 1998; van den Munckhof et al., 2003). During myogenesis, both Pitx2 and 

Pitx3 participate in the differentiation of skeletal muscles (Coulon et al., 2007; L'Honore 

et al., 2007). In frog, pitx3 expresses additionally in pre-somitic mesoderm, lateral plate 

mesoderm, differentiating somites, craniofacial regions, and in looping heart and gut 

(Khosrowshahian et al., 2005; Pommereit et al., 2001; Smoczer et al., 2012).  
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Murine Pitx3 is directly regulated by FoxP1 (Konstantoulas et al., 2010), 

myogenic helix loop helix proteins (Coulon et al., 2007), and is reciprocally interactive 

with miR-133b: Pitx3 activates transcription of miR-133b and miR-133b in turn represses 

translation of Pitx3 (Kim et al., 2007). Many other relationships have been inferred from 

mutant phenotypes but not proven by direct molecular analysis. Since Pitx1 and Pitx2 

generate several different isoforms via differential promoter usage and alternative 

splicing (7 and 12 respectively) (Cox et al., 2002; Thierry-Mieg and Thierry-Mieg, 2006), 

we must entertain the possibility of multiple Pitx3 isoforms and heterodimerization. 

Murine Pitx3 is known to directly regulate tyrosine hydroxylase expression (Lebel 

et al., 2001), however transgenic studies document that Pitx3 is necessary but not 

sufficient to activate this gene (Zhao et al., 2004). Reporter assays of the tyrosine 

hydroxylase promoter give results that differ in a context-specific manner: Pitx3 protein 

can either activate or repress, presumably depending upon the availability of co-factors in 

the various cell lines utilized (Messmer et al., 2007). Other characterized targets of Pitx3 

include: VMAT2 (vesicular monoamine transporter 2) and DAT (dopamine transporter) 

(Hwang et al., 2009); Aldehyde dehydrogenase 2 (Ahd2) (Jacobs et al., 2007); and 

MIP/Aquaporin O (an intrinsic protein of lens fibers) (Sorokina et al., 2011).  Pitx3 has 

the ability to either activate or to repress target genes in a context-specific manner 

(Messmer et al., 2007).  Clearly, the presence or absence of interacting partners must play 

a role in this regulatory specificity, however to date, Pitx3 interacting partners include 

only Sox15 (by yeast two hybrid) (Ravasi et al.), SFPQ and NONO (by affinity capture) 

(Jacobs et al., 2009), and MTA1 and PARK7/DJ1 (by co-IP) (Reddy et al. 2011). So far 
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there does not appear to be overlap among the partners identified for Pitx1, Pitx2, or 

Pitx3: this may, in part, explain their developmentally specific functions. 

We have been studying the role of pitx3 during Xenopus laevis embryogenesis 

where perturbation has an effect upon both eye development as well as upon laterality 

(left-right organ asymmetry) and somitogenesis. Somite and laterality phenotypes are 

specific, and remarkably, they are elicited by both gain of function as well as by 

morpholino-mediated translational knockdown (Smoczer et al., 2012).  We performed a 

microarray-based search for potential downstream target genes and defined a preliminary 

list of potential target genes based upon near-coincident timing and domain of 

expression.  This list initially comprised roughly 80 candidates, however it was refined 

using RT-PCR followed by riboprobe in situ hybridization to those most likely to 

perform as legitimate pitx3 targets (Hooker et al., 2012). We then further selected a 

subset of 4 genes, namely lhx1, gsc, nodal5 and crybb1 that possess pitx3 binding motifs 

in their respective promoter/enhancer regions (based upon elements identified in X. laevis 

or tropicalis sequences and conserved in mammalian species). All four are likely to play 

a role in one or more of patterning the eyes, somites, or early asymmetry. The 4 newly 

identified putative target genes possess between 4 to 13 Pitx3 binding motifs. 

A drawback of most reporter assays is that reporter gene expression is assayed in 

a heterologous population of transfected and untransfected cells, where estimation of the 

ratio between populations is difficult. To circumvent this shortcoming, a dual luciferase 

reporter assay was developed where in addition to the reporter vector another 

bioluminescent gene driven by a constitutive promoter was introduced to serve as control 

for transfection efficiency (Stables et al., 1999). Although widely employed, this assay 
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relies upon the presumption that both vectors have identical or at least similar 

transfection properties. Finally, since lysates function to homogenize and average cellular 

results of transcription factor activity, it is hard to assess quantitative effects on a per-

cell-basis. For example, some of our putative targets have multiple candidate response 

elements and transcription factor cooperativity (for example see Beachy et al., 

1993)would not be easily discerned using standard assays. 

 In order to address these shortcomings, we devised a novel flow cytometry-based 

protocol that works exquisitely well to link transcription factor input to promoter reporter 

output on a cell-by-cell basis. By counting only those cells that are co-transfected, we can 

estimate how promoters work even if responses are non-linear.  The system relies upon 

co-transfection of two plasmids: one comprises a CMV-GFP IRES unit that is 

bicistronically linked to the cDNA for pitx3 (input); the other houses CMV-HcRed1 in 

opposite orientation to a test-promoter driven reporter, DsRed (output). Since only those 

cells that are co-transfected are analyzed, differences in transfection efficiency between 

treatments are rendered irrelevant. In addition, a ratio between the two transfected 

plasmids can be generated for each cell. As proof of principle, we carefully calibrated our 

system against a well characterized promoter, murine tyrosine hydroxylase (TH). We 

have defined the range of transfection parameters within which the system reports with 

fidelity and in linear fashion – in other words with the range at which GFP does not 

accumulate and fluoresce more than pitx3 is detectable on Western blots.   

We can confirm three new direct targets for pitx3 and show that the factor acts as 

either an activator or repressor, contingent upon the context of its environment, including 

the promoter at hand. Translated pitx3 represses both crybb1, a lens-specific 
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differentation marker and nodal5, an early inducer of mesendoderm formation, while it 

activates lhx1, a factor present early in the Spemann organizer and later in the pronephric 

kidney (Taira 1992). Based upon our preliminary slate of putative signaling targets, our 

suspicion is that pitx3 plays a heretofore uncharacterized role during gastrulation – 

previous work has indicated that it expresses in fish hypoblast (Dutta et al., 2005), and 

somewhere in Xenopus pre-gastrula (Khosrowshahian et al., 2005; Smoczer et al., 2012). 

 

2. Materials and methods 

Plasmid constructs  

Expression plasmid (pPitx3-IRES-GFP). The pitx3 coding sequence was PCR-

amplified from pBSK-pitx3 homegrown plasmid (NM_001088554) with primers 

harboring adaptors for XhoI and EcoRI, and cloned into the pCI-Neo/IRES-GFP 

[F64L/S65T] bicistronic vector (kindly provided by Dr. J. Eggermont). The rationale for 

using a bicistronic vector as opposed to a fusion protein lies in the known intramolecular 

folding that occurrs in the murine Pitx2 protein. In the absence of cofactors binding to it, 

the C-terminal region of the protein comes in direct contact with the N-terminus and 

masks the homeodomain preventing the transcriptional activation of the target genes 

(Amendt et al., 1999). A DNA binding mutant was produced through site-directed 

mutagenesis, by mutating the leucine into a proline at the inter-helix hinge position 39 of 

the pitx3 homeodomain sequence (L99P).   

Reporter plasmid. The pCS2-HcRED1 vector was generated through PCR-

amplification of the HcRED1 sequence from pCAG-HcRed1 (Addgene collection) and 

subsequent ligation into the XhoI/ClaI sites of pCS2-. The reporter cassette was built by 
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PCR-amplifying 1.5kb upstream from ATG of the murine tyrosine hydroxylase promoter 

off the 3805-4 mTH vector (kind gift from Dr. R. Palmiter). The amplicon was subcloned 

into the EcoRI/SmaI restriction sites of pDsRED-express-N1 (Clontech). Subsequently 

the mTH-DsRed-express reporter cassette was PCR-amplified out of the previous vector 

and cloned in opposite orientation to HcRED1 using the SacII/KpnI restriction sites of a 

second multiple cloning site of pCS2-HcRED1.  This produced the dual-fluor vector 

pHcRED1/mTH-DsRed.  For a control, a critical Pitx3 binding motif (underlined) in the 

TH promoter (Lebel et al., 2001) was mutated (small case) to form a KpnI site (bold). I 

thereby also introducing a KpnI site (CTTGGGTAATCCAGC  

CTTGGGTAccCCAGC). 

Lhx1  promoter and mutant (pHcRed/lhx1-DsRed) The lhx1 reporter plasmid was 

created by PCR amplification of the lhx1 promoter from plasmid xLim1:luciferase Ex-

1:A (gift from Dr. Igor Dawid) and cloned into EcoRI and BamHI sites of pDsRED-

express-N1. The lhx1:DsRED transcription cassette was again PCR amplified and blunt 

cloned in reverse direction into the PvuII site of pCS2-HcRED1.  An lhx1 mutant 

promoter was generated via site-directed mutagenesis (small case) utilizing mutated 

oligonucleotides to introduce an NcoI restriction site (bold) into the bicoid-motif 

(underlined) (GTGCTTAATGGTTTA  GTGCTccATGGTTTA). 

nodal5 promoter and mutant (pHcRed/Xnr5-DsRed).  The nodal 5 promoter was 

PCR-amplified using adaptors for KpnI and BamHI using Xenopus laevis gDNA template 

isolated from adult Xenopus laevis liver.  The resulting 773bp amplicon (-12 to -785 from 

ATG) was cloned into pDsRed-express-N1.  The nodal5:DsRed transcription cassette 

was PCR-amplified off nodal5-pDsRed-express-N1 template using adaptors for KpnI and 
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SacII and cloned into pCS2:HcRed1 in opposite orientation. Site-directed mutagenesis 

(small case) was used to create the nodal5 mutant promoter situated at the bicoid motif 

(underlined), introducing a novel SalI site (bold) 

(TGAAGTAAGCTTCTGTGAAGTcgaCTTCTG). 

gsc promoter (pHcRed/xGsc-DsRed_The gsc promoter was PCR-amplified from -

1553gsc pOLuc (kind gift from Dr. K.Chow) using adapters for KpnI and BamHI and 

ligated into corresponding restriction sites of pDsRed-express-N1. The gsc:DsRed 

transcription cassette was again PCR-amplified using gsc-pDsRed-express-N1 as 

template and inserting adaptors for KpnI and SacII whereupon it was cloned into the 

pCS2:HcRed1 vector in opposite orientation. 

Crybb1  promoter and mutants (pHcRed/crybb1-DsRed) The crybb1reporter 

cassette was generated by cloning the 3.5kb SacI/ApaI digested promoter out of the X. 

laevis crybb1 promoter (kindly gifted by Dr. H. Kondoh) into the multiple cloning site of 

pDsRED-express-N1. The transcription cassette was PCR amplified, cloned into the 

PvuII site of the pCS2-HcRED1 and selected for a reporter cassette inserted in reverse 

orientation to the CMV-HcRed1. Crybb1mutant A was generated by deleting the last 

750bp containing six binding site with restriction enzymes BlpI and SpeI. Crybb1mutants 

B and C were produced by site-directed mutagenesis (small case) using mutated primers 

to introduce new EcoRV  and HindIII restriction sites (bold) into the bicoid motif 

(underlined) respectively (GTACTGCATTATCAA   GTACTGCgaTATCAA and 

TTAAAACATTATTTC  TTAAAAgcTTATTTC).  

All vectors were sequenced for verification of cloning and mutagenesis accuracy. 

Plasmid DNA was purified using Qiagen Maxi/Midi preparation columns. 
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Cell cultures  

HEK293 cells (kindly gifted by Dr. O. Vacratsis) were cultured in high glucose 

DMEM (Fisher Scientific) supplemented with 10% fetal bovine serum (Invitrogen) and 

Penicillin-Streptomycin (Sigma-Aldrich), 500UI Penicillin and 500ug Streptomycin, 

under standard conditions. 

The SK-N-BE(2)c neuroblastoma cell line (kind gift from Dr. L.Porter) was 

cultured under standard conditions in DMEM/Ham’s F-12 (Sigma-Aldrich)  

supplemented with 2mM L-Glutamine (invitrogen) and 10% fetal bovine serum 

(Invitrogen), and Penicillin-Streptomycin (Sigma-Aldrich). 

Transient transfections  

HEK293 cells were split 24 hours prior to transfection and were 40% confluent at 

the day of transfection. For the reporter assays, cells grown in 100mm dishes were 

transfected with 13ug DNA in 750uL DMEM with 25uL 1mg/ml polyethylenimine 

(Sigma). A combination of 9ug: 4ug reporter vector to expression vector was found to be 

optimal for the flow cytometric detection of both GFP and HcRed transfection control 

fluors. The DNA-PEI complexes were introduced to cells in plain media and 4-6 hours 

post-transfection the serum-free media was replaced with complete media. To the 

tyrosine hydroxylase experiments 10uM forskolin (LLC Lab) was added after 24 hours 

and cells were analyzed 48 hours post-transfection. To increase the basal activity of the 

nodal5 promoter, 2ug of vegT plasmid were transfected together with 9ug of reporter 

vector and 2ug of expression plasmid. For dilution experiments, various concentrations of 

expression vector were transfected in combination with corresponding titres of pCS2- to 

total 13ug of DNA. 48 hours post-transfection cells were trypsinized and separated: 2ml 
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were reserved for flow cytometry and 8ml for protein isolation. Time-point experiments 

were conducted similarly, with cells transfected with 13ug of DNA and analyzed 24, 36 

and 48 hours post-transfection by flow cytometry and Western blotting. 

SK-N-BE(2)c cells were transfected using METAFECTENE EASY+ (Biontex 

Laboratories Gmbh) as described by the manufacturer. The lipoplexes, representing a 

combination of 1.5ml 1xbuffer, 42ul transfection reagent and 42ug DNA (30ug:12ug 

reporter plasmid: expression plasmid), were added to a cell suspension of 7x10^5 cells/ml 

the day of splitting. The cells were washed with Hank’s and media was replaced about 7 

hours post-transfection to minimize the autofluorescence caused by the transfection 

reagent. The experiment was run through the flow cytometer 48 hours after transfection, 

following extensive washes with PBS. 

Immunoblotting  

Total protein was isolated from cell lysates and 50ug was loaded for SDS-PAGE. 

Proteins were detected as follows: 32kDa pitx3 1:2000 (ProSci Inc. 1
0
 Rabbit Antibody: 

PAS 3131/3132), 47kDa a-actin 1:10,000 (Sigma 1
0
 Rabbit Antibody: A2066), 27kDa 

eGFP 1:5000 (Torrey Pines Biolabs Inc. 1
0 

Rabbit Antibody: TP401), Chemicon 

International 2
0
 Goat Antibody: AQ132P (1:10,000).  Protein bands were detected with 

SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) using an Alpha 

Innotech imager equipped with AlphaEase Fluor Chem HD2 software. 

Flow Cytometry  

Transfected cells grown for 48 hours in a dark environment were washed with 

PBS, trypsinized, and re-suspended in the appropriate volume of PBS to conduct flow 

cytometry utilizing a Beckman Coulter Cytomics FC500 system and the filter/detector 
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system in Table 4.1 for maximum detection and separation of the three fluors used.  Both 

the uniphase Argon ion and coherent red solid state diode lasers were enabled.  Using 

CXP software (Beckman Coulter), forward and side scatter enabled the gating of viable 

single cells. Samples containing each plasmid transfected individually were employed to 

set gates for the respective fluor, to subtract background fluorescence, and to allow for 

compensation of their overlapping emission spectra. For each treatment, 10,000 co-

transfected cells expressing both GFP and HcRed1 were collected and the total 

fluorescence intensity for the reporter gene DsRed was calculated. The ratio between 

fluorescence intensities for the promoter reporter DsRed and its in-vector transfection 

control gene, HcRed, were related to the fluorescence intensity for GFP (indicative of 

transcription factor Pitx3) using Weasel software (Walter and Eliza Hall Institute of 

Medical Research).  All experiments were conducted in triplicate. 

Channel 

Detector 

Fluorescent 

Protein 

Colour Excitation 

Peak (lmax) 

Emission 

Peak 

(lmax) 

Filter Voltage Gain 

FL1 eGFP 

[F64L/S65T

] 

Red-

shifted 

Green 

490nm 510nm 525B

P 

329 1.0 

FL2 DsRED-

Express 

Red-

orange 

557nm 579nm 575B

P 

332 1.0 

FL5 HcRED-1 Far-red 588nm 618nm 640L

P 

500 1.0 

 

Table 4.1. Flow cytometry system standardization. Different types of optical filters 

(Band-pass (BP) and long-pass (LP)) are employed to achieve optimal fluor separation. 
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Statistical calculations  

SPSS software was used to assess statictical differences in the total DsRed 

fluorescence generated in the different conditions of the reporter assay. To determine the 

effect of pitx3 on a promoter, we used a one-way ANOVA test corroborated with a 

contrast test to compare the basal levels of the promoter reporter. This was assessed after 

pitx3 exposure following co-transfection with the wild type or homeodomain binding 

mutant. For the binding site mutants we employed a T-test to compare the DsRed output 

of the mutant under basal conditions with the one exposed to pitx3. Tests were 

considered significant when p<0.05.  

 

3. Results 

3.1 Construction of the expression and reporter vectors.    

Our system relies on two participating plasmids. The first is a bicistronic 

expression vector, which harbors the transcription factor pitx3 and GFP  (Fig.4.1A) and 

simultaneously produces two proteins from a single mRNA transcript (Trouet et al., 

1997). A corresponding pitx3 binding mutant was constructed by inserting a mutated 

form of pitx3 as the first coding sequence of the bicistronic unit. The point mutation 

within the DNA-binding homeodomain was modeled after one described for mix1, shown 

to hinder binding of the transcription factor to its target DNA sequences and thereby 

serves as a dominant inhibitor of normal activity (Mead et al., 1996). This mutation 

encodes a L99P substitution that is situated between helices II and III of the 

homeodomain. The second vector harbours the promoter reporter and a transfection 

calibration fluor (Fig.4.1B). Mutants were also generated for promoters to serve as 
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specificity controls by prohibiting pitx3 binding: TH mutant (-350bp from ATG: 

TAATCC TAccCC), lhx1 mutant (-709bp from ATG: TAATGG TccaTGG), nodal5 

mutant (-94bp from ATG: TAAGCT TcgaCT), crybb1 mutant (-1156bp from ATG: 

ACATTA AgcTTA). 

 

Figure 4.1:  Expression and reporter plasmids.  A. Expression plasmid with pitx3 

bicistronically linked to GFP.  B. Reporter plasmid with the reporter gene DsRed-express 

driven by the tested promoter, cloned in opposite orientation from the transfection control 

gene HcRed1 driven constitutively by CMV.  

 

 

3.2 Calibration of pitx3 relative to GFP in cells transfected with the bicistronic expression 

plasmid.   

 In order to ensure the reliability of the system, we established the correlation 

between the levels of the two proteins produced by the bicistronic vector. We assessed 

the ratio of GFP and pitx3 in two separate experiments: one to determine plasmid 

concentration dependence, and a second to ensure that the ratio remains constant over 

time.  
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HEK293 cells are transiently transfected with four different 1.3 fold dilutions of 

pPitx3-IRES-GFP and assessed by Western blotting. This series allowed the maximum 

number of dilutions resulting in observable protein by pitx3 antibody. The protein band 

intensities for GFP and pitx3 proteins were compared and linear regression analysis 

revealed a strong and consistent correlation between the two proteins across all 

concentrations (Fig. 4.2A). 

Moreover, at these transfection concentrations both proteins have parallel 

accumulation rates across time. A set amount of pPitx3-IRES-GFP was transfected into 

HEK293 cells and cell lysates were collected at 24 hours, 36 hours and 48 hours. The 

ratio between the pitx3 and GFP proteins levels is constant, with no statistically 

significant differences between time-points (Fig. 4.2B) However,  it can be noted that a 

reduction in the ratio between pitx3 and GFP protein levels at the 48 hour time-point 

could suggest unequal degradation rates for the two proteins. 
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Figure 4.2:  Correlation between the pitx3 and GFP proteins. The proteins were 

assayed by Western blotting and the amount of each protein was assessed as the optical 

density of the respective band.  A. Regression analysis to correlate the levels of pitx3 and 

GFP proteins in cells transfected with different concentrations of expression vector:    = 

5.48ug;      = 7.31ug;      = 9.75ug;      =13ug. B. Ratios between the levels of Pitx3 and 

GFP protein in cells transfected with a set concentration of expression vector and 

analyzed at 24 (medium gray), 36 (black) and 48 hours (light gray)post-transfection 

 

 

 

 



139 

 

139 

3.3 GFP protein concentrations correlate with GFP fluorescence in transfected cells. 

The total fluorescence for each population of transfected cells in the dilution and 

time-point experiments was plotted relative to the GFP protein band intensity analyzed by 

immunoblotting. This determines if changes in GFP fluorescence are accurately 

reflecting changes observed at the protein level. In triplicate experiments, regression 

analysis revealed a very strong correlation between GFP protein and fluorescence 

irrespective of the amount of vector that was transfected or post-transfection time of 

analysis (Fig. 4.3A and B).  
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Figure 4.3:  Correlation between eGFP protein detected by Western blot and eGFP 

fluorescence monitored by flowcytometry.  The eGFP protein levels were determined 

by Western blotting and evaluated as the optical density of the band on the blot. A 

percentage of the total cells were used to detect the fluorescence using flow cytometry.  

A. Regression analysis to correlate eGFP protein levels and eGFP fluorescence in cells 

transfected with 4 decreasing concentrations of expression vector by 1.3 fold:      = 

5.48ug;      = 7.31ug;      = 9.75ug;      =13ug.B. Linear regression between the eGFP 

protein and fluorescence in cells transfected with equal concentrations of expression 

vector and evaluated at 3 different times post-transfection: 24h = medium gray, 36h = 

black, 48h =light gray. 
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3.4  Flow cytometry protocol for the three-fluor reporter assay.  

For acquisition of accurate signals from each fluorescent protein, we developed an 

optimal flow cytometry protocol to separate the three fluors into discrete channels with 

minimal spectral overlap. The forward versus side scatter data is used to restrict the 

selection solely to viable cells.  Each fluor is analyzed in a separate control and the 

appropriate voltage necessary for optimal fluor excitation is established (Table 4.1). As 

controls to set-up experimental parameters, we used cells transfected separately with each 

of the vectors pIRES-GFP, pHcRED1, pDsREDN1, as well as with a combination of the 

pIRES-GFP and pHcRED1 empty vectors.  The GFP signal is collected in FL1, the 

HcRED1 in FL5 and the DsRed in FL2 (Fig. 4.4A and B). This allows us to gate on each 

fluor in order to minimize background fluorescence and to establish proper compensation 

for each signal to reduce spillover into other channels. These controls were run prior to 

each individual experiment. From the cells that were co-transfected with both GFP and 

HcRED1 control vectors we collected 10
4
 cells in the gate with active signal for both 

fluors (Fig.4.4C) and this co-expressing population was plotted on a FL2 histogram to 

collect the total background DsRed fluorescence that was subsequently subtracted from 

each experimental data set (Fig. 4.4D).  

The final step for each reporter experiment was to assess the level of cooperativity 

of the transcription factor on the tested promoter. The cells expressing all three fluors 

were represented on a dot-plot with the DsRed as ratio of HcRed fluorescence: this 

accounted for the amount of promoter plasmid transfected (reporter output) correlated to 

GFP fluorescence (transcription factor input). A linear regression of the analysis permits 
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us to discriminate between the possibilities of cooperative or linear modes of activation 

or repression. 

 

Figure 4.4:  Flow cytometer set-up to detect the three fluors in the new reporter 

assay.  A. Gate set-up for eGFP in FL1 for cells transfected with the pCI-Neo/IRES-

eGFP control vector.  B. Cells transfected with pCS2-HcRed1 control plasmid, recorded 

in FL5 and gated for HcRed1 expression.  C. Gated population of 10,000 cells expressing 

both eGFP and HcRed1.  D. Histogram of DsRed output in FL2 for the population of 

eGFP and HcRed co-expressing cells. 
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3.5 Calibration utilizing the previously characterized effect of Pitx3 upon the murine 

Tyrosine hydroxylase promoter.  

To test our new technique, we used the well-studied activity of Pitx3 upon the 

tyrosine hydroxylase (TH) promoter. The two players in our system include the 1.5kb 

mouse TH promoter, which is sensitive via an active Pitx3 binding site (Lebel et al., 

2001), and the Xenopus pitx3 coding sequence. The homeodomains of murine and frog 

pitx3 are share 100% identity.  

The first experiment was conducted in HEK293 cells, where Pitx3 is known to act 

as a repressor for TH (Cazorla et al., 2000). The endogenous levels of the TH reporter 

were found to be very low in this cell line and therefore the repression induced by pitx3 

was very small, although significant. Given the strong TH activation by cyclic AMP 

independent of Pitx3 (Cazorla et al., 2000), we chemically activated the TH promoter 

with forskolin and thus allowed for a potentiation of pitx3 repressive activity. Using the 

novel reporter assay, we show that pitx3 represses TH output by approximately 80%, 

while the pitx3 homeodomain mutant leaves expression unchanged (Fig. 4.5A). 

Conversely, by site-directed mutagenesis we mutated the known pitx3 binding site 

(TAATCC TAccCC) within the TH promoter (Lebel et al., 2001) and, as expected, 

pitx3 has no significant effect on TH promoter activity in the absence of this particular 

binding site ( (Fig. 4.5B). Plotted cells expressing both the expression and the reporter 

vectors and subjected to linear regression analysis reveal no cooperativity but rather an 

all-or-nothing repression (Fig. 4.5C).  
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 To address the possibility of pitx3 acting as either an activator and repressor on 

the same promoter depending on the cellular context, we replicated the experiment in a 

second cell line, the human neuroblastoma SK-N-BE(2)c. Although the relationship 

between pitx3 and TH in these cells has not been reported to date, we hypothesized that 

pitx3 will serve as an activator. As expected, we determined a 30% increase in the TH 

output in the pitx3 transfected sample, while both the homeodomain and the binding site 

mutants reporter levels were indistinguishable from wild-type (Fig.4.5D) 
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Figure 4.5:  Calibration of the new technique using the known xPitx3 – tyrosine 

hydroylase (TH) interaction.  A. pitx3 represses TH in HEK293 cells, under both basal 

and forskolin-treated conditions. The pitx3 binding mutant (BM) restores the constitutive 

expression of TH.  B. The mutant for the known pitx3 binding site on the TH promoter 

prevents the repressive activity of pitx3 on TH in forskolin-treated HEK293 cells.C. 

Transcription factor cooperativity assessed in HEK293 cells expressing all three fluors, 

by plotting the normalized DsRed output to the GFP input and determining the generated 

trendline. D. pitx3 activates TH in SK-N-BE(2)c cells, while both the pitx3 binding 

mutant and the binding site mutant on the TH promoter restore the basal TH activity. (*) 

p<0.05, (**) p<0.01, (***) p<0.001, (****) p<0.0001 
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3.6  Promoters tested as novel direct targets of pitx3.  

Selected genes were part of a data set generated in a pitx3 morpholino knockdown 

microarray experiment. Xenopus laevis promoters for lhx1, gsc, nodal5 and B1-crys 

were cloned into the reporter plasmid and when assessed for reporter activity we 

determined three direct targets of pitx3. Lhx1 is significantly activated by pitx3 

(Fig.4.6C), while crybb1 is inhibited in the HEK293 cell context (Fib.4.7B). The basal 

activity of the nodal5 promoter did not allow for a conclusive assessment, and therefore 

required an initial activation by vegT. Following this activation, we could observe a 

small, though significant and consistent inhibition of the nodal5 reporter activity when 

co-transfected with pitx3 (Fig.4.6B).  gsc showed no significant transcriptional regulation 

by pitx3 in this environment (Fig.4.6D). To determine the site responsible for pitx3 

binding in each targeted promoter, we started by searching the ENSEMBL.org datebase 

for the respective promoter sequences in Xenopus tropicalis and zebrafish. They were 

subsequently aligned using the MULAN software (Ovcharenko et al., 2005) and searched 

for conserved known Pitx3 binding sequences (TAAT(C/G)N) (Lebel et al., 2001). The 

sites that were found to be conserved in all three organisms were mutated by site-directed 

mutagenesis and assessed for where pitx3 binding effects (Fig.4.6A and 4.7A). In the 

case of all three mutated promoters, pitx3 influence on the reporter activity can be 

abolished and the DsRed output returns to basal levels. pitx3 input and the reporter output 

was linear for each of the influenced promoters, pointing towards the absence of Pitx3 

cooperativity in the regulation of these genes (Fig.4.8).  
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Figure 4.6:  New pitx3 targets in early embryonic development.  A. Diagramatic 

representation of the tested promoters with the location of the putative pitx3 binding sites. 

Promoter sequences for X.laevis, X.tropicalis and D.rerio were aligned using the 

MULAN software and conserved binding sites in 2 (*) or 3 (**) organisms are marked on 

the diagram. Graphs are not to scale.  B. nodal5 is repressed by pitx3 by approximately 

20% and the pitx3 binding mutant abolishes the repression. By site-directed mutagenesis 

we have found the site responsible for binding pitx3 at –94bp upstream of ATG. The 

mutated promoter becomes unresponsive to the repressive activity of pitx3.  C. pitx3 

activates lhx1 promoter and induces a 50% increase in DsRed output, while the pitx3 

binding mutant reverses this effect. The site located at -709bp upstream of the 

translational start site is found responsible for binding pitx3, since an induced mutation 

here restores the basal promoter levels. D. gsc promoter does not show significant 
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response due to pitx3 in HEK293 cells, nor does it display putative pitx3 binding sites. 

The p-values for effects in graphs B and C are (*) p<0.05, (**) p<0.01, (***) p<0.001. 

 

 

Figure 4.7:  New pitx3 target during lens development. A. crybb1 promoter 

represented as a diagram with the location of both conserved and non-conserved possible 

pitx3 binding sites. The position of the deletion (SpeI) and site-directed mutagenesis 

mutants is also shown (arrows).  B. pitx3 inhibits the crybb1 activity by 50%, while its 

binding mutant recovers this effect.  C. Mutant A eliminates the last 750bp of the 

promoter, harboring 6 possible pitx3 binding sites, and is shown to not contribute to the 

binding of pitx3. Mutants B and C were created by site-directed mutagenesis of 

conserved binding sites and we show that the site responsible for the binding of pitx3 is 

the sequence obliterated in mutant C. The p-values for effects in graphs B and C are (*) 

p<0.05, (**) p<0.01. 
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Figure 4.8: Cooperative mode of action for pitx3 on the new targets Target promoter 

fluorescence output (FL2) was normalized against promoter availability (FL5), and 

plotted against pitx3/GFP presence (FL1) for promoters The major conclusion is that 

Pitx3 does not act in a cooperative way on the tested promoters nodal5 (A), lhx1 (B) and 

crybb1(C). The absence of hyperbolic curves suggests a linear all-or-nothing response. 
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4. Discussion 

We have developed a novel and innovative reporter technique and tested its 

efficacy using a known pitx3 interaction before then utilizing the assay to assess new 

potential targets for this transcription factor. An IRES plasmid could introduce a few 

variables since the two separately translated proteins might be post-translationally 

modified at different rates. Moreover, the translated products could saturate and degrade 

at different rates. Before making this plasmid a component of our system, we ensured that 

the detected GFP fluorescence accurately reflects the titres of pitx3 protein present in 

cells, by demonstrating that the ratio between pitx3 and GFP is a reliable parameter 

within the concentration ranges deployed, and was independent of concentration and time 

of analysis (Fig. 4.2, 3).  

The novelty of the technique is enhanced by the introduction of a reporter plasmid 

which itself contains a constitutively driven fluorescent protein, HcRed1, to serve as an 

indicator for transfection efficiency. Flow cytometry permits us to gate such that we 

analyze only the populations that are co-transfected, and the analysis is facilitated by 

delivering quantitative data regarding transcription factor concentrations (input) and 

candidate promoter reporter activity (output) (Fig.4.4).  

To calibrate the specificity and sensitivity of the newly developed method, we 

tested the interaction between Pitx3 and the tyrosine hydoxylase promoter. Pitx3 operates 

by association with other co-factors such as MTA1 and Nurr1 to ensure efficient 

activation of TH (Cazorla et al., 2000; Reddy et al., 2011), and therefore the outcome of 

this interaction is highly dependent upon the cellular context (Messmer et al., 2007 

Medina-Martinez, 2010). We chose to test the pitx3-TH relationship in two different cell 
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lines. In the non-neuronal HEK293 cells line the interaction has been previously analyzed 

by luciferase assay where Pitx3 is known to inhibit the TH transcription (Cazorla et al., 

2000).  Although this interaction has not reported in the neuroblastoma line SK-N-

BE(2)c, these cells have the same enzymatic makeup as the SY-SH5Y cells (Ciccarone et 

al., 1989), where Pitx3 slightly activates TH (Reddy et al., 2011). 

In order to increase the basal activity of the TH promoter we used forskolin to 

boost the levels of cAMP,  which is known to bind to the cAMP-response element (CRE) 

on the TH promoter and induce its activation (Cazorla et al., 2000). Our data confirms a 

70-80% repression by pitx3 in both basal and  forskolin activated states; levels identical 

to those observed by luciferase assay (Cazorla et al., 2000) (Fig.4.5A). The 30% 

activation of TH by pitx3 in the SK-N-Be(2)c cells (Fig. 4.5D) matches the results 

reported in SY-SH5Y (Reddy et al., 2011).  Mutating a site known to be responsible for 

Pitx3 binding (Lebel et al., 2001), we were able to also confirm the specificity of our 

technique by prohibiting pitx3 interaction with the TH promoter (Fig.4.5B).  Finally, we 

further confirmed specificity by showing that the mutated homeodomain cannot induce 

transcriptional change. These results also suggest that the regulation of dopamine 

production is conserved across species.  

We investigated four genes as possible direct pitx3 targets: lhx1, nodal5, gsc and 

crybb1, based on the three requirements for a transcription factor (TF)-target relationship 

to be considered direct (Loose and Patient, 2004). They are all affected by the pitx3 

knockdown (changes assessed by in situ hybridization, RT-PCR or both (Hooker et al., 

2012), their expression patterns overlap with pitx3 (either during early gastrulation or 
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during lens development), and all contain multiple putative binding motifs in the 

analyzed promoters.  

nodal5 is a Nodal related ligand/signaling molecule that controls the early 

mesendoderm induction program (Luxardi et al., 2010). Its expression begins at stage 8.5 

and ends around stage 10 (Takahashi et al., 2000), leaving a very short time-frame during 

early development for a possible interaction with pitx3.  nodal5 represents the first 

zygotically expressed gene activated by maternal factor vegT and it in turn activates 

nodal1 and nodal2 in a feed-forward system that influences the expression of gsc and 

lhx1 (Luxardi et al., 2010; Skirkanich et al., 2011) . We show here that nodal5 is a direct 

target of pitx3, repressed by 20% in HEK293 cells and we identify the critical one of 

three putative pitx3 binding sites in the 775bp tested promoter located at -94bp from 

ATG (Fig.4.6A, B).  

lhx1 is a LIM-class homeodomain TF that is expressed in two waves, the first at 

early gastrula in Spemann’s organizer, and the second during tailbud stages in the 

pronephric kidney and brain (for-, mid-, and hind-brain) where it is responsible for the 

maintenance of the differentiated state of the neural tissue (Cirio et al., 2011; Taira et al., 

1992).  Our experiments do not distinguish between these two developmental phases, 

however lhx1 shows a strong 50% activation by pitx3 in the reporter assay and a highly 

conserved binding site located at -709bp from the translational start site seems to be 

responsible for this interaction (Fig.6A, C). Pitx3 may therefore exert both a direct and 

indirect regulation of lhx1 (by also controlling via nodal5 activity), however we cannot 

conclude if this occurs concomitantly or differentially in a tissue-specific manner. 
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gsc (Goosecoid) is a homeodomain TF, known as an organizer gene since it is 

capable of producing axis duplications and of executing organizer functions when mis-

expressed in ventral cells (Cho et al., 1991). It is expressed as early as stage 8.5 and is not 

detectable once neurulation begins (Cho et al., 1991). gsc expression is initially induced 

in the organizer by dorsalizing wnt signals and it is then maintained through direct 

regulation by lhx1 (Mochizuki et al., 2000; Taira et al., 1992). Using our reporter assay to 

test 1.4kb of the gsc promoter, we observed no changes in HEK293 cells that can be 

ascribed to the presence of pitx3, despite 9 putative homeodomain binding sites 

(Fig.4.6A, D). Looking at the genetic pathway of the early patterning, we can explain the 

changes observed in the gsc embryonic expression (Hooker et al., 2012) in the context of 

gsc being a player in the pathway governed by nodal5 and lhx1, and therefore an indirect 

target of pitx3. That said, we are planning to assess the promoter’s activity in other cell 

lines. 

Crybb1 is a lens specific marker, and it represents a major structural protein of the 

lens. Expression of crybb1 begins in the lens around stage 26 and increases over time 

until stage 38, when its expression gradually starts to decrease to stable but lower levels 

in the differentiated primary and secondary fiber cells of the adult lens (Altmann et al., 

1997; Zhao et al., 2011). The overlapping expression of pitx3 in the lens and the loss of 

B1-crys expression in the lenses of pitx3 morphants make it a good candidate for direct 

interaction (Hooker et al., 2012). Using a 3.5kb promoter previously tested in vivo by 

transgenesis to reproduce crybb1 expression patterns (Mizuno et al., 2005), we were able 

to demonstrate direct regulation by pitx3. A 50% decrease in reporter output by pitx3 is 

maintained in a variety of tested promoter mutants, however the mutation of one 
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conserved site located at –1165bp for the ATG, in close proximity to the pax6 and prox1 

binding sites (Mizuno et al., 2005), abolishes repression by pitx3 (Fig.4.7). 

The described reporter assay is unique in that it has the potential to reveal 

information regarding cooperativity of transcription factors upon tested promoters. 

Cooperativity is a well known process used by transcription factors to enhance binding 

specificity and subsequently increase their effect on the transcription of the target gene in 

a combinatorial manner (Courey, 2001). Once the binding of one TF monomer occurs it 

induces conformational changes in the DNA to facilitate the binding of a second TF on a 

nearby binding site, through dimerization (Courey, 2001). This results in a sharp increase 

in transcriptional response even in the smallest changes of the monomeric TF 

concentration (Georges et al., 2009). Since we examine a homogenous population of cells 

expressing both the TF and the target promoter, we can easily correlate any increase in 

TF concentration with the reporter output and draw conclusions regarding cooperativity. 

Despite the wide array of information regarding homodimerization of murine Pitx2 

(Saadi et al., 2003) and cooperative regulation of transcription in ultrabithorax genes 

(Beachy et al., 1993), pitx3 appears so far to operate as a monomer on target genes 

(Sakazume et al., 2007). Also, it is known that bicoid proteins bind cooperatively to head-

to-tail and tail-to-tail DNA target sites separated by 7 to 36 bp and to head-to-head sites 

separated by only 3 bp (Yuan et al., 1999). Since none of our tested promoters have 

neighboring binding sites that meet this criteria, the lack of observable cooperativity in 

our tested promoters is perhaps not surprising (Fig.4.8).  

Making use of different fluorescent proteins, spread on a wide range of excitation 

and emission ranges, and the powerful tool of flow cytometry, we created a new tool to 
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evaluate the output of a reporter gene on a cell-by-cell basis. In essence, each cell harbors 

an individual reporter assay, producing a cumulative, extremely accurate result that is 

derived from a selective and homogenous population. The assay also confers the benefit 

of permitting analysis in cases where high transfection efficiency is not possible while 

also permitting the detection of very slight variations of reporter output that would not be 

distinguishable by conventional methods.  
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

In this thesis I explore new phenotypes observed in Xenopus pitx3 morphants and 

identify new direct and indirect downstream targets for pitx3. My ultimate goal is to 

characterize the gene regulatory networks (GRNs) for developmental processes in which 

pitx3 plays a role, and to thereby separate the direct effects of the gene from the indirect 

consequences of its perturbation upon inductive and morphogenic pathways. .  

A gene regulatory network represents the gene circuit that defines the timing and 

specific outcomes for a developmental process. These networks are generally deeply 

layered and hierarchical, employing sub-circuits responsible for individual tasks. Some of 

these sub-circuits are very malleable and can be used in various developmental contexts, 

while others are less flexible and are responsible for similar biological functions 

wherever they are deployed. The terminal periphery of a GRN tends to be shallow with 

only a small number of transactions that activate differentiation genes and thereby the 

cellular type specified early in the network hierarchy (Davidson, 2010; Levine and 

Davidson, 2005). 

Changes in network structure have outcomes that are dependent upon the 

hierarchical operating level of the altered gene. In the big scheme of a developmental 

process, the hierarchical position of a gene is sometimes more important than its identity, 

since its connections are critical for its function. Mutations of key regulatory genes that 

intersect multiple sub-circuits and that are subject to feedback from other players can 

yield dramatic morphological changes with possible catastrophic outcome (Hanks et al., 
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1995).  However, advantageous mutations in these regulatory genes can also have a 

major evolutionary impact and drive morphological innovations responsible for 

differences between species (Carroll, 1995).  Meanwhile, changes in effector genes are 

generally non-detrimental, affecting only the module in which they operate and resulting 

in a change in the type of cells they specify (Davidson, 2010; Davidson and Erwin, 2006; 

Davidson and Erwin, 2010; Nowick and Stubbs, 2010).  

Elucidating a GRN requires identification of the involved players and their 

relationships in a developmental process by methods of prediction and authentication. 

Usually, perturbation of a regulatory gene generates a cascade response that can be 

assessed both phenotypically and by the anomalous effect it propagates upon downstream 

linkages. In general, a high-throughput assay such as a microarray generates a list of 

genes perturbed by a specific regulator. The steps necessary to elucidate a GRN involve 

assessment of: overlapping spatial and temporal expression among the involved factors; a 

change in a downstream partner’s expression commensurate with proximity to the 

mutated transcription factor; and in the case of direct linkages, physical binding of the TF 

to the cis-regulatory sequence of the target gene. A more global view of a network is 

generated by mining the literature for data that hopefully predicts nodes that can be 

authenticated experimentally (Levine and Davidson, 2005; Li and Davidson, 2009).  

While trying to situate pitx3 in previously established networks responsible for 

the embryonic development of amphibians, a few major questions were raised by my 

research. My goal was to determine approximate positions for pitx3 in GRNs that are 

responsible for patterning different organs. These positions are not always predictable 
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due to non-linear dynamics or redundant functionality in the nodes (Hanks et al., 1995; 

Wurst et al., 1994).   

Following the general rules for building a GRN, I started by correlating the 

morphology of the pitx3 morphants’ phenotypes with the genes responsive to pitx3 

perturbation in the microarray experiment. Those genes that were confirmed by means of 

in situ hybridization and RT-PCR, and were most likely to serve as direct targets for pitx3 

contributed valuable information to partnering nodes for pitx3. The rest permitted me to 

refine a more concrete role in likely downstream pathways for pitx3. There are a few 

developmental processes where pitx3 is indisputably a key player with an already 

established role - and we are adding to that knowledge, while also contributing pathways 

that have not been previously described. Since pitx3 functions in other developmental 

processes, for example in the midbrain where the pathways are well understood both in 

frog and other organisms, the focus of this study centers upon the new additions to 

knowledge. 

 

1. GRNs defining developmental processes where pitx3 plays a role 

1.1 Gastrulation 

 While pitx3 is first detectable in mammals around the somitogenesis stage, in frog 

and zebrafish it is first expressed much earlier at mid-gastrula stages. This raises the 

question of what role it could be playing at this stage (Dutta et al., 2005; Khosrowshahian 

et al., 2005). The anomalous expression of a subset of gastrulation markers, namely 

nodal5, gsc, lhx1, suggests that pitx3 functions in this process, however it is interesting to 

speculate the reason behind its apparent loss of function in mammalian gastrulation. 
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Possibly pitx3 activity has not been detected in mammalian gastrula simply because it is 

expressed at levels undetectable by in situ hybridization and it has not been tested by RT-

PCR yet. Alternatively, amphibians and fish might deploy slightly different pre-

gastrulation cues. During gastrulation, complex cell movements are strictly coordinated 

by strict genetic signals that establish the three germinal layers of the embryo. While the 

GRN responsible for this process is generally well conserved, some differences in early 

patterning have been reported across species (Davidson and Erwin, 2006). A significant 

point of departure could be the positioning of pitx3 directly upstream of both nodal5 and 

lhx1 in frogs, thus explaining the change in their expression and consequently also of gsc 

in pitx3 morphants (Luxardi et al., 2010; Mochizuki et al., 2000) (Fig.5.1). 

 

Figure 5.1.  Graphic representation of a general molecular mechanism responsible 

for gastrulation. Genes represented in blue are found in the microarray data, while the 

red arrows signify direct or indirect interactions tested in this research. 
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 It will be interesting to investigate the molecular signals responsible for the 

morphogenetic rearrangements that characterize convergent extension during this process 

and to determine if the absence of pitx3 in Xenopus perturbs cellular organization 

(Wallingford et al., 2002; Wyczalkowski et al., 2012). RhoA is a gene that operates 

downstream of Wnt11 in the planar cell polarity pathways (PCP) required for correct 

convergent extension (Wallingford et al., 2002) (Fig.1), and it shows a significant fold-

change in the microarray data. More investigations are necessary to confirm the change in 

spatial and temporal expression and to determine if it is due to direct interaction or if it 

represents an indirect result of pitx3 is regulating nodal5 (Xnr5). Morphant dorsal lip 

explants plated onto blastocoel roof matrix could be used to differentiate signalling from 

cell polarity and migration effects (Shi et al., 1987).  

Since formation of the axes and the germinal layers are inextricably linked, the 

potential for a modulator of early gastrulation to exert multiple downstream effects would 

be large. If the modulating gene redeploys again at later stages, then separating direct 

from indirect and early from late effects presents significant challenges. 

  

1.2 Eye development 

 pitx3 expression and function in eye development is well documented and is 

highly conserved in all organisms, with the few exceptions of the retinal defects 

presented in frog and zebrafish pitx3 morphants (Khosrowshahian et al., 2005; Shi et al., 

2005). This unique phenotype requires a closer examination to determine if pitx3 protein 

is necessary for retina induction.  
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 From my present studies, not a lot of information can be added to this network; 

however a GRN is never definitive unless all the direct interactions between nodes are 

known. Here we confirmed the suspicion that B1-crystallin is directly regulated by 

pitx3, subsequently proving that this transcription factor is responsible for the terminal 

differentiation of lens fibers and the maintenance of their transparency. This could have 

interesting implications for the understanding and treatment of cataracts. It will be worth 

examining the signalling hierarchies and cooperation necessary to regulate the crybb1 

promoter: both l-maf and prox1 serve as activators, whereas pax6 acts as repressor (Chen 

et al., 2001; Cui et al., 2004; Duncan et al., 1998) (Fig.5.2). The relationship between 

pitx3 and pax6 remains controversial and needs a close dissection of the developmental 

stages where they are influencing each other. For example, does this influence occur by 

direct cooperation on the target promoter or by indirect cues deriving from other genes 

that they each regulate? Coimmunoprecipitation in combination with mass-spectroscopy 

characterization could prove fruitful in assessing the degree of interaction occuring as 

these factors collaborate or compete to activate specific targets. 
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Figure 5.2. Graphic representation of the lens fiber differentiation pathway. Genes 

represented in blue are found in the microarray data, while the red arrow signifies a direct 

interaction demonstrated in this research. 

 

 Similar to the zebrafish phenotype (Shi et al., 2005), Xenopus pitx3 morphants 

exhibit abnormal cellular adhesion in the lens vesicle with an absence of the concentric 

organization of fiber cells and remnants of undifferentiated cells. We suspect that chd2 

could be one of genes responsible for this disarray, since the murine cdh2 mutant lens 

closely resembles the aphakia phenotype (Pontoriero, 2008; Pontoriero et al., 2008). The 

relationship between pitx3 and pax6 can also shed light upon the  involvement of pitx3 in 

these events since pax6 directly regulates 1-integrin in the lens to ensure the 

maintenance of the normal fiber cells organization (Duncan et al., 2000) (Fig.5.4). 

cdh2(N-cadherin)and a few members of the integrin family (3-integrin, 5-integrin, 
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2-integrin, 6-integrin) are part of the microarray data and they all possess putative 

binding motifs for pitx3 in their promoters. The next step would be to assess whether 

their temporal and spatial expression changes if pitx3 is absent and to employ a reporter 

assay and promoter analysis for each. This would illuminate the possible role that pitx3 

plays in the cytoskeletal regulation pathway. 

 

1.3 Segmentation and myogenesis 

 A specific role for pitx3 in muscle development has already been demonstrated in 

mouse, where it is responsible for the differentiation of myoblasts into myotubes (Coulon 

et al., 2007; L'Honore et al., 2007), however its function in Xenopus myogenesis has not 

yet been described.  Given the unusual segmentation mechanism that produces somites in 

amphibians (Hamilton, 1969), we suspected that pitx3 might play a distinct role in frog 

metamerism and muscle development. While mouse Pitx3 mutants do not exhibit any 

muscle anomalies, presumably due to a compensatory mechanism involving Pitx2 

(L'Honore et al., 2007), Xenopus and zebrafish pitx3 morphants display a bent dorsal axis 

and difficulties swimming due to defective somitogenesis (Shi et al., 2005) (Chapter 2).  

 In the quest to determine the cause for axis curvature in pitx3-MO injected 

embryos, we used markers for different components of the somitogenesis process and 

determined that pitx3 plays a role in the pathway that controls cytoskeletal 

rearrangements during cell rotation and in the terminal differentiation of the myotome. 

Hoechst staining revealed aberrant nuclear rotation, and staining against 1-integrin 

distribution revealed a lack of cellular cohesion in somites on the injected side.  This led 

to defective intersomitic boundary formation. The fast muscle specific antibody 12/101 
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exposed a reduced size as well as disorganization of myotome on the injected side: the 

somitic metamerism was hardly detectable (Appendix B, Fig.1C and D). 

As expected, key components of the segmentation clock, delta2 and notch are 

unaltered, while some of their downstream targets, hes4 (hairy2b), hes7.2  and Ripply2 

(ledgerline/stripy) shift expression rostrally, presumably due to a shift in the 

segmentation front (Appendix B, Fig.1C, C’ and D) (Fig.5.3).  The front is established at 

the intersection between the anterior expression of retinoic acid (RA) and the posterior 

expression of fgf (Fig.5.3). The segmentation clock can act at this front to position the 

segmental boundary and thereby to initiate budding of a new somite from the presomitic 

mesoderm (Pourquie, 2001). Since Pitx3 operates upstream of RA in the murine midbrain 

(Jacobs et al., 2007), the anteriorized behaviour of the wave front can be explained by 

decreased levels of RA in the pitx3 morphants (Duester, 2007; Moreno and Kintner, 

2004). It will be interesting to test whether the treatment with exogenous RA resolves the 

shift in the expression of the segmentation genes or whether pitx3 affects their expression 

in a RA-independent manner (Jacobs et al., 2011). Similarly, a plethora of RA and 

retinoid receptor agonists and antagonists could be employed for an exquisite dissection 

of this pathway (Collop et al., 2006). These experiments will also answer the question of 

whether the effect of pitx3 on the Hox genes, responsible for positional identity, is direct 

or mediated by RA (Kessel and Gruss, 1991) (Fig.3).  
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Figure 5.3. Graphic representation of the interacting pathways responsible for 

somitogenesis and myotomal differentiation. Genes represented in blue are found in 

the microarray data. 

 

Following indirect disruption of notch signalling by treatment of embryos with  

the -secretase inhibitor DAPT (N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-

phenylglycine t-butyl ester) we observed increased pitx3 expression in the somites and in 

the immature mesoderm of the tailbud region where pitx3 expresses at very low levels, 

observed only in cleared specimens (Appendix B, Fig.1D, D’, E and E’). Notch inhibits 

Pitx2 expression in the murine lateral plate mesoderm (Sakano et al., 2010) and given its 

known interaction with a Pitx3 paralog, I can speculate that notch also restricts the 

expression of pitx3 to formed somites. Notch is a known repressor of myogenic 
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differentiation (Shawber et al., 1996) and therefore inhibition of pitx3 expression in the 

presomitic mesoderm likely alters the timing for the onset of the myogenic program. 

Pitx3 is directly regulated by MyoD in mouse (Coulon et al., 2007) and also it 

reciprocally regulates myod expression in frog (Appendix B, Fig.2A, A’ and C) 

suggesting a tight level of control during muscle specification and differentiation. This 

reciprocal interaction may also indicate a possible collaboration on the downstream 

promoters where myoD needs a resident factor to gain access to the target sequences 

(Berkes and Tapscott, 2005). The myogenic markers assessed and downregulated in pitx3 

morphants are more likely a result of this latter collaboration (Fig.5.3). Both desmin and 

troponin C are regulated by myoD during zebrafish myogenesis (Maves et al., 2007), 

while troponin C and creatine kinase are also a targets of mimecan (Tasheva et al., 

2004a), a small leucine-rich proteogylcan (SLRP) that is directly regulated by pitx3 

(Tasheva et al., 2004b). 

The cell rotations that precede the separation of the newly formed somite from the 

presomitic mesoderm involve changes in cell shape, motility and adhesion (Wilson et al., 

1989). The lack of cohesion during rotation could be a result of inhibited cdh2, a cell-cell 

adhesion molecule that appears to be downregulated by pitx3 perturbation in the 

microarray and RT-PCR data. Cdh2(N-cadherin) is required for cellular adhesion during 

rotation and boundary formation and a phenotype that is produced by a dominant-

negative form of it is very similar to the pitx3 phenotype (Giacomello et al., 2002). 

Members of the integrin family are associated with a tightly orchestrated tissue 

morphogenesis and disruption of this signal results in chaotic somite formation through 
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aberrant cell-cell adhesion and notch induced segmentation cues (Marsden and 

DeSimone, 2003; Rallis et al., 2010) (Fig.5.4).  

 

Figure 5.4. Graphic representation of the GRN sub-circuit responsible for cellular 

adhesion and cytoskeletal integrity. Genes represented in blue are found in the 

microarray data. 

 

The list of microarray genes responsible for myogenic differentiation (titin, 

calmodulin, myosin heavy chains) and cytoskeletal reconfiguration (integrins, cdh2) is 

large and more genes need to be confirmed for a more concrete positioning of pitx3 in the 

somitogenesis network. Genes from this large list could be tested for a change in 

expression due to pitx3 knock-down. For those genes that show a drastic response, direct 

regulation by pitx3 protein can be assessed via reporter assays. 
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1.4 Heart and gut rotation 

    A surprising phenotype that arose in response to pitx3 knock-down is the 

aberrant looping of heart and gut. First assumptions of this being an artifact of additional 

repression of pitx2, the paralog responsible for the left-right asymmetry and proper 

rotation of these organs (Schweickert et al., 2000) were easily dismissed since two 

different sets of morpholinos targeting a non-conserved region in the 5’-UTR of pitx3 

resulted in identical outcomes. However, the next question that needs to be asked is 

whether this anomaly is the result of early defective specification of the laterality 

pathway or whether the differentiated cell movements necessary to sustain the looping 

are prevented from acting under normal parameters. 

 The left-right patterning of the embryo is established early during gastrulation 

within the embryonic organizer (node) and the cues for laterality are transmitted to the 

left lateral plate mesoderm where nodal, lefty (antivin) and pitx2 are asymmetrically 

expressed (Campione et al., 1999; Ryan et al., 1998) (Fig.5.5). For proper lateralization, 

expression of the midline marker Shh is necessary in mammals (Bisgrove et al., 2003). 

Abnormal shh expression infrog and zebrafish pitx3 morphants can explain the complete 

situs inversus phenotype which is characteristic of perturbation of the earliest steps of the 

laterality signalling pathway reported in other organisms (Bisgrove et al., 2003). Given 

the large number of putative bicoid binding sites in the shh promoter it is interesting to 

test the possibility of direct interaction between pitx3 and shh. This might account for the 

abnormal expression of shh downstream genes, such as nodal-related genes and Pitx2, in 

pitx3 morphants. 
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 Both heart and gut looping involve cell shape changes to cumulatively direct the 

bending and rotation movements that characterize these processes (Wyczalkowski et al., 

2012). As seen in eye and somites, pitx3 is part of genetic system that influences 

cytoskeletal modifications and any pitx paralog can target the expression in the gut of 

shroom3, a gene that regulates actin-based cytoskeletal organization and works 

cooperatively with chd2(N-cadherin) to regulate cellular rearrangement during gut 

morphogenesis (Chung et al., 2010; Plageman et al., 2011).  

 

Figure 5.5. Graphic representation of a generalized laterality pathway responsible 

for the correct heart and gut looping. Genes represented in blue are found in the 

microarray data. 
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Is aberrant looping just a result of randomized laterality cues or are the 

mechanical changes to cells also responsible for the rotation problems? It is necessary to 

compare the phenotypes generated by mutating the genes in the laterality pathway with 

the one in pitx3 knockdown embryos and to employ complementation or rescue studies to 

approximate the level at which pitx3 operates. Also, changes in expression of these genes 

following knock-down of pitx3 can be investigated and employing heart and gut specific 

antibodies would allow for the exact characterization of the aberrations present in cell 

morphology. 

 

2. Evolutionary view on pitx3 function 

From an evolutionary stand-point, the discovery in fly and tunicates of a pitx gene 

is evidence for the existence of this family before the divergence between the 

invertebrates and vertebrates (Christiaen et al., 2002; Vorbruggen et al., 1997). However, 

the lack of an apparent morphological phenotype resulting from gain- or loss of function 

of the fly pitx gene suggests that the common ancestor was not a player in patterning 

process of the embryonic body (Vorbruggen et al., 1997). An evolutionary assessment of 

the Pitx3 gene reveals that the human and mouse orthologs are strikingly divergent from 

those in non-mammalian vertebrates with respect to expression in the pituitary (Angotzi 

et al., 2008) (Fig.5.6).  
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Figure 5.6. Phylogenetic tree for Pitx3 protein underlines the clear divergences 

between mammalian and non-mammalian organisms. Danio rerio Pitx3 AAT68296; 

Bos Taurus Pitx3 DAA14908; Xenopus laevis Pitx3 AAI70394; Mus musculus Pitx3 

AAB87830; Homo sapiens Pitx3 NP_005020; Rattus norvegicus Pitx3 NP_062120; Ovis 

aries Pitx3 CBA 10131; Gallus gallus Pitx3 XP_421631; Pan troglodytes Pitx3 

XP_521591; Haplochromis burtoni Pitx3 ACZ51351; Salmo salar Pitx3 alpha 

ABW37418; Salmo salar Pitx3 beta ABW37419. 

 

pitx3 in lower vertebrates is found in a genomic region that exhibits greater 

plasticity comparative to mammals. The region of synteny extends over only 200kb in 

amphibians and fish, with a lot of genomic reshuffling occurring in the vicinity of the 

pitx3 gene (Jaszczyszyn et al., 2007).  This signifies weaker constrains upon the 

regulatory regions surrounding the gene, possibly allowing for less restrictive expression 

and comparatively relaxed conservation between species (Jaszczyszyn et al., 2007). 

Moreover, the protein structure of Pitx3 is very similar in all studied organisms, with 

almost identical homeodomain and OAR motifs, and with very similar expression 

patterns. However, the C-terminal region between the HD and the OAR in Xenopus and 

zebrafish pitx3 is more similar to pitx1 and pitx2 than to the human and mouse Pitx3 

sequences, indicating that a relatively recent change in this region may account for the 

loss of Pitx3 expression and function in mammalian pituitaries (Smits et al., 2006).  I 

speculate that while pitx3 assumes more general roles, that somewhat overlap with those 
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of pitx2 in non-mammals, following divergence in mammals, the role of the Pitx genes 

became more specialized. Pitx3 appears to be confined to the late stages of tissue 

differentiation, while Pitx2 holds greater sway during early patterning and organogenesis.  

 

3. General conclusions 

1. While expression of pitx3 is first observed during gastrulation in amphibians 

and fish (Dutta et al., 2005; Khosrowshahian et al., 2005), in mouse and humans the 

expression is first detected during organogenesis (Semina et al., 1997). Pitx3 expression 

is restricted to brain, lens and somites in mammals (Semina et al., 1998; Semina et al., 

2000; Smidt et al., 2004), while in the lower vertebrates it can be detected in additional 

regions such as the pituitary, head mesenchyme, jaw, lateral plate mesoderm and heart 

(Dutta et al., 2005; Khosrowshahian et al., 2005; Pommereit et al., 2001). Also, 

interestingly, in amphibians and fish pitx3 also expresses earlier during lens and somite 

development, suggesting the possibility of a more foundational role in these 

developmental processes. 

2. pitx3 appears to be key regulator in various GRNs in lower vertebrates, while in 

higher vertebrates it seems to have redirected the strategic role of central coordinator 

towards a more peripheric position, where its responsibility lies primarily in the terminal 

differentiation program. Since cellular differentiation is usually characterized by an 

arrested cell cycle, an intriguing question is whether pitx3 is the factor responsible for 

halting proliferation or if its expression only becomes present in the cells that are ready 

for terminal differentiation.  pitx3 also appears to be a player in the sub-circuit that 

employs cdh2(N-cadherin) and integrins and that is utilized by various developmental 
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processes to establish cellular adhesion and cytoskeletal integrity (Fig.5.4). It remains to 

be determined if pitx3 operates in a conserved pathway that dictates cell morphology or if 

different interactants are required for each specific process. The common theme of cdh2 

sensitivity in the development of all aforementioned processes combined with the 

similarities between the phenotypical outcomes for both pitx3 and cdh2 knockdown, 

makes it worth-while to test the possibility of direct relationship between these genes.  

3. Pitx3 mutants in mice and humans exhibit dosage dependant phenotypes that 

are never lethal, indicating a more peripheral role for Pitx3 in mammals. While 

heterozygotes show no morphological defects, homozygotes will show a defective 

differentiation of the lens fibers and mesDA (Semina et al., 1998; Semina et al., 2000).  

Xenopus and zebrafish pitx3 morphants also display dose-dependent penetration of the 

morphological defects; however the phenotypes are generally more dramatic, with high 

mortality rates during gastrulation. In lens and somites, the absence of pitx3 has also 

more drastic results – the lens phenotype is accompanied by retinal defects 

(Khosrowshahian et al., 2005; Shi et al., 2005), and the somitic phenotype is represented 

by a bent dorsal axis that induces difficulties in swimming. Interestingly, in these organs, 

pitx3 seems to have a very complex relationship with the “master regulators” of the 

respective processes. Pitx3 is directly regulated by both Pax6 (Munster, 2005) and MyoD 

(Coulon et al., 2007), while it concomitantly induces changes in their expression either by 

feed-back regulation or cooperation on common target promoters.  

Taking into account this new data, it will be of high interest to determine the 

cause for the evolutionary loss-of-function and repositioning of pitx3 inside some well-

conserved developmental networks, and the mechanism by which this occurred in the 
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course of evolution. Scarce information regarding post-translational regulation by 

miRNA and epigenetic control of pitx3 indicates that a more attentive approach is 

necessary to investigate these regulatory mechanisms in pitx3-associated developmental 

processes. 
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APPENDIX B 

ADDITIONAL DATA FOR CHAPTER II 

 

The bent dorsal axis phenotype in pitx3 morphants raised the question of a novel 

role for this gene in Xenopus somitogenesis.  Although the molecular pathways for 

segmentation are relatively conserved, in frog somitogenesis and myogenesis are unique 

in that: somitic cells undergo rotation before budding off; somites do not epithelialise; 

and they are formed primarily of myotome (Hamilton, 1969). While a role for pitx3 has 

been confirmed in Chapter 2, additional data was collected in order to gain more fulsome 

understanding. The results were not unambiguous, however they contributed to the 

general view of the role that Pitx3 plays in this process and certain possibilities were 

ruled out. 

Given the strong pitx3 expression in formed somites (Fig.1A), combined with the 

bent axis phenotype, the level of action for pitx3 in somitogenesis had to be analyzed. In 

Chapter 2 we demonstrated using nuclear counts that defective somitogenesis in pitx3 

morphants is not the result of excessive cell death or proliferation in somitic cells on the 

injected side. I confirmed this conclusion by employing TUNEL assay (terminal 

deoxynucleotidyl transferase–mediated deoxyuridinetriphosphate nick end-labeling) to 

visually assess patterns of cell death.  The pattern of TUNEL staining is conformant with 

the wild-type  (Hensey and Gautier, 1998), with a low cell death evident only in the 

developing tailbud; the somites are largely unaffected (Fig.1B). To examine the effect of 

pitx3 morpholino on the patterning and morphology of somites, I used the skeletal muscle 

specific antibody 12/101 (Kintner and Brockes, 1984). Both in whole-mounts and in 
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sections we observed weaker staining on the injected side, with disorganized and 

significantly reduced somites (Fig. 1C and D).  This suggests that pitx3 plays some role 

in normal muscular differentiation and its absence results in disrupted myogenesis. 

 

 

 

 

 

 

 

 

 

 

 

 



195 

 

195 

 

Figure1. A. Section of somites in embryo stained for pitx3 by in situ hybridization. B. 

Cell death assessed in the somites of stage 28 pitx3 morphant embryo, with the injection 

side indicated by the arrow. C.  Dorsal view of stage 24 embryo with pitx3 morpholino 

and stained with the 12/101-DAB antibodies. D.  Transversal section of morphant 

embryo stained with 12/101-Cy3 antibodies. 
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To investigate if Pitx3 disturbs either the segmentation or the myogenic signalling 

pathways, we analyzed the expression pattern of two major players in these pathways, 

notch and myoD. While the spatial and temporal expression of notch remains unchanged 

in morphants (Fig. 2B, B’ and C), myoD expression strongly decreases in the absence of 

Pitx3 (Fig. 2A, A’ and C), suggesting a positive control of this factor.  Since MyoD binds 

on the murine Pitx3 promoter and directly regulates it (Coulon et al., 2007) a closer 

investigation of the interaction between MyoD and Pitx3 will be necessary.  

While notch expression is unaltered by the pitx3 depletion, chemical inhibition of 

notch by the -secretase inhibitor DAPT (N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-

phenylglycine t-butyl ester) results in a stronger expression of pitx3 in the myotome and 

extended expression in the presomitic mesoderm (Fig. 2 D, D’and C, C’). I speculate that 

motch prohibits the differentiation program to occur prematurely in the presomitic 

mesoderm, while restricting the differentiating role of pitx3 to the mature somites. 

 

 

 



197 

 

197 

 

Figure 2. A, A’. Dorsal view of stage 19 and 27 morphants stained for myoD by in situ 

hybridization  (arrow points to the side of injection). B, B’. In situ hybridization of notch 

– lateral view of unilaterally injected embryos. C. RT-PCR for notch and myoD at stages 

19 and 27. D, D’ and E, E’. pitx3 in situ hybridization on embryos treated with DMSO 

and DAPT respectively at stages 27 and 32.  
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 To further investigate the cellular adhesion defects observed in the somites of 

embryos stained for 1-integrin and the suspected role of pitx3 in cytoskeletal 

organization I employed an array of antibodies against various players in these processes.   

Given the changes observed in HEK293 cells expressing pitx3 and stained with 

phalloidin (Chapter II), I decided to determine if pitx3 controls other areas of cytoskeletal 

regulation. Antibodies against 1-integrin and its ligand fibronectin were used to confirm 

the abnormalities observed in embryos, however no changes were detectable when 

overexpressing pitx3 in cells. Vinculin, a protein that links 1-integrin to actin and 

control focal adhesion, appears similarly unaffected by pitx3 as is -tubulin, a protein 

responsible for microtubules formation (Fig.3).  Since the defects observed in the somites 

were the result of pitx3 knock-down and here I report the effects of pitx3 overexpression, 

I speculate that the necessity of pitx3 in the cytoskeletal integrity is dose-dependent or it 

operates with interactants that are as yet unknown. 

 While the role of pitx3 in the Xenopus somitogenesis is indubitable, more 

experiments are required in order to indentify its specific function and exact co-players. 
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Figure 3. Immunocytochemistry on HEK293 cells transfected with either an IRES-GFP 

control or a Pitx3-IRES-GFP vector and stained for various antibodies. Separate images 

were collected for GFP, Hoechst and the respective antibody and images were merged 

using the Northern Eclipse software. 
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Materials and methods 

Riboprobe synthesis. Antisense DIG-labeled riboprobes for pitx3, notch and myoD were 

generated by digesting the respective plasmids with PvuII, ClaI or BamHI and 

transcribing with SP6 or T3 RNA polymerase. Probes were visualized using anti-DIG 

antibody coupled to alkaline phosphatise (Roche 1:2000) and BM Purple (Roche). 

Stained embryos were paraffin wax embedded and sectioned at 35-um thickness. 

TUNEL staining.  The whole-mount TUNEL staining was carried out following the 

protocol previously described (Hensey and Gauthier 1997). Stained embryos were 

cleared in benzyl benzoate/benzyl alcohol 2:1 and subsequently wax embedded and 

sectioned at 15-um thickeness. 

Whole-mount immunostaining. Embryos fixed in MEMPFA were incubated with muscle 

specific antibody 12/101 (DSHB, 1:1000) and with anti-mouse secondary horseradish 

peroxidase-conjugated antibody (Chemicon 1:250) or with anti-mouse Cy3 secondary 

antibody (Chemicon 1:200). Diaminobenzidine (DAB) was used as HRP substrate for 

color reaction. Wax embedded embryos were sectioned at 15-um thickness. 

RT-PCR. cDNA was made using Omniscript reverse transcriptase (Qiagen) and 

Oligo(dT)18 primers (Sigma) from 1ug total RNA isolated at stages 19 and 27 using 

Trizol (Invitrogen). RT-PCR was performed using corresponding primers at appropriate 

annealing temperatures (myoD (57C) F 5’-AGCTCCAACTGCTCCGACGGCATGAA-

3’, R 5’-AGGAGA GAATCCAGTTGATGGAAACA-3’; notch (57C) F 5’-

GCTGTGAAGGCGATGTGAACGAG-3’, R 5’-CGTCAAACCCAGGAGGGCATTT-

3’) 
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DAPT treatments  DAPT (N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-

butyl ester, Sigma-Aldrich) was disolved in DMSO at the stock concentration of 100 uM. 

Embryos at stages 9-10 were treated with DAPT diluted at 4uM in MBS and grown to the 

developmental stages of interested. For controls, the appropriate volume of DMSO was 

added to MBS and embryos were grown in identical conditions to their counterparts. 

Immunocytochemistry HEK 293 cells were grown on glass coverslips in 60mm dishes, in 

Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% fetal bovine 

serum, 100 units/ml Penicillin, 100 µg/ml and  were transfected either with 

pCINeo/IRES-GFP vector or pCINeo/ pitx3-IRES-GFP vector using the 

polyethylenimine method.  48 hours post-transfection, HEK293 cells were fixed with 

3.7% PFAand following primary antibodies were used: anti-fibronectin (1:100), anti-1-

integrin (1:20), anti-vinculin (1:100) and anti-b-tubulin (1:100) (all from DSHB). After 

washing, cells were incubated with anti-mouse Cy5 secondary antibody (Chemicon, 

1:200). Nuclei were stained with Hoechst 33285 (1:1000) followed by microscopy 

analysis. 
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APPENDIX C 

PLASMID MAPS 

 

 

 

pCS2-HcRed. The pCS2-HcRed1 vector was generated by PCR-amplifying the HcRed1 

coding sequence out of  pCAG-HcRed1 (Addgene collection) using the following 

primers harboring adapters: F 5’-CCATCGATGGATCCTGAGCGGCCTGCTGAA-

3’with ClaI adapter and R 5’-CCGCTCGAGCGGGCTTCAGTTGGCCTTC-3’ with XhoI 

adapter, and subsequent ligation into the ClaI/XhoI sites of the pCS2 vector. 
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pCiNeo-IRES-Pitx3 BM The Pitx3 coding sequence containing the T->C mutation was 

PCR-amplified of the  homemade pBSSK-Pitx3 BM plasmid using the following primers 

harboring adapters: F 5’-CCGCTCGAGCTGTTGCCACATGGATTTCAATCT-3’with 

XhoI adapter and R 5’-CGGAATTCCGTCCTTCATACTGGCCGATCCA-3’ with EcoRI 

adapter, and subsequent ligation into the XhoI/EcoRI sites of the pCiNeo-IRES-GFP 

vector (kindly gifted by Dr. J. Eggermont). 
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pDsRED-XlCrybB1 The CrybB1 reporter cassette was generated by cloning the 3.5kb 

SacI/ApaI digested promoter out of the X. laevis Crybb1 promoter plasmid (kindly gifted 

by Dr. H. Kondoh) into the multiple cloning site of the pDsRED-express-N1 vector. 
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pCS2-HcRED/CrybB1-DsRED The CrybB1-DsRED cassette was PCR amplified using 

the following primers: F 5’-ACAATCAGAAGGTACAAGGCCC-3’ and R 5’-

CCCTATCTCGGTCTATTC-3’, blunt cloned into the PvuII site of the pCS2-HcRED1 

vector and selected for a reporter cassette inserted in reverse orientation to the CMV-

HcRed1. 
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pCS2-HcRED/CrybB1-DsRED mutant A  Mutant A was generated by deleting the last 

750bp containing six binding sites out of the pCS2-HcRED/CrybB1-DsRED vector, 

using the restriction enzymes BlpI and SpeI. 
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pCS2-HcRED/CrybB1-DsRED mutants B and C Mutants B and C were produced by 

site-directed mutagenesis using mutated primers to introduce new EcoRV  and HindIII 

restriction sites respectively (GTACTGCATTATCAA   GTACTGCgaTATCAA and 

TTAAAACATTATTTC  TTAAAAgcTTATTTC).  
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pCS2-Xt Hairy2  The Hairy2 promoter was PCR-amplified from Xenopus tropicalis 

genomic DNA using the primers: F 5’-TTACCGAGGGAATGCACTC-3’ and R 5’-

GGGGTACCCCATCAGTCTTGCATATTCC-3’ and blunt-cloned into the PvuII site of 

the pCS2 vector.  
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pDsRED-XtHairy  The Xt Hairy reporter cassette was generated by PCR amplifying the 

XtHairy2 promoter from the pCS2-Hairy plasmid using the following primers: F 5’-

CCGCTCGAGCGGTTACCGAGGGGAATGCACTC-3’ with XhoI adapter and R 5’-

GGGGTACCCCATCAGTCTTGCATATTCC-3’and cloning into the XhoI and and SmaI 

sites of the pDsRED-ExpressN1 vector (Clonetech) 
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pBSSK+SceI/ XtHairy-DsRED  The XtHairy-DsRED cassette was PCR-amplified from 

the pDsRED-XtHairy vector using the following primers: F 5’-

TTACCGAGGGAATGCACTC-3’ and R R 5’-CCCTATCTCGGTCTATTC-3’ and 

blunt cloned into the EcoRV site of the pBSSK+SceI vector (kind gift from Dr. T. Pieler) 
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pBSSK+SceI/ CMV-DsRED  The CMV-DsRED cassette was PCR-amplified from the 

pDsRED-XtHairy vector using the following primers: F 5’-

GATAACCGTATTACCGCC-3’ and R R 5’-CCCTATCTCGGTCTATTC-3’ and blunt 

cloned into the EcoRV site of the pBSSK+SceI vector (kind gift from Dr. T. Pieler) 
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