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ABSTRACT 
 

In studying chemical communication, it is important to characterize how 

olfactory signals are released and dispersed by the producer before investigating 

how signals are interpreted by the receiver. In the present study, I used dye 

injections and a particles image velocimetry technique to characterize the release 

and dispersion of urine signals by male round gobies Neogobius melanostomus. 

I found that male round gobies release urine signals passively and do not 

modulate their urination activity in the presence of reproductive females.  

Additionally, males use repeated tail flippings to generate currents that disperse 

olfactory compounds in the environment and enhance the detection of this 

coumpounds by females. Thus, males can advertise their reproductiveness 

without leaving the nest. Ultimately, the characterization of round goby 

pheromonal communication will improve our understanding of the role of 

chemical signals in animals and will be an important asset for the control of the 

invasive round goby in the Great Lakes. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

1. Pheromones and sexual selection 

The term pheromone was first proposed by Peter Karlson and Martin 

Lüsher in 1959. They defined pheromones as “substances which are secreted to 

the outside by an individual and received by a second individual of the same 

species, in which they release a specific reaction, for example, a definite 

behaviour or a developmental process”. A more recent definition of pheromones 

is ‘odour or mixture of odours released by a sender that evokes in the receiver(s) 

adaptive, specific, and species-typical response(s), the expression of which need 

not require prior learning or previous experience’ (Sorensen and Stacey, 2004).  

Species use chemicals signals in a variety of biological contexts such as feeding, 

navigating toward a distant source, warning conspecifics against predators, 

fighting or mating.  

Darwin (1871) first recognized the particular importance of olfactory 

signals in the process of sexual selection. Since then, sex pheromones have 

been reported in the vast majority of organisms, ranging from insects to 

mammals (Wyatt, 2003; Johansson and Jones, 2007). Like visual and acoustic 

signals, sex pheromone signals play an important role in species recognition, 

mate recognition and mate assessment (Wyatt, 2003; Johansson and Jones, 

2007). 

 

2. Functions of sex pheromones 
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From an evolutionary point of view, two main processes have driven the 

evolution of sex pheromones (Wyatt, 2003; Johansson and Jones, 2007). On one 

hand, sex pheromones involved in species and mate recognition have evolved to 

minimize the cost of searching for, courting and mating with non-suitable partners 

(Cardé and Baker, 1984; Svensson, 1996). For instance, in mammals, female 

receptiveness is often advertised by the release of sex pheromones (Johnston, 

1983; Marchlewska-Koj et al., 2001). Discrimination of reproductive status from a 

distance profits males by minimizing the cost of searching for mates, and also 

profits females by reducing the harassment from males outside the reproductive 

season (Johansson and Jones, 2007). To convey accurate information about 

species, sex and reproductive status of an individual, species and mate 

recognition pheromones must be highly divergent across species, they must be 

sex-specific and show little variation among individuals (Wyatt, 2003; Johansson 

and Jones, 2007).  

On the other hand, sex pheromones involved in mate assessment have 

evolved from the benefit accrued of choosing a higher quality mate (Johansson 

and Jones, 2007). Reproducing with superior mates translate into higher 

offspring fitness. Therefore, advertising mate quality results in higher 

reproductive success. To honestly advertise the relative quality of an individual, 

mate assessment pheromones must vary greatly between individuals and be 

costly to the producer (Grafen, 1990). 

A sex pheromone signal can have more than one function (Johansson and 

Jones, 2007). For instance, in the cockroach Nauphoeta cinerea, the male 
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pheromone advertises the status of an individual in the male hierarchy, attracts 

females and is used by females to assess male quality (Moore and Moore, 

1999). 

 

3. Sex pheromones in fish 

Signals of different nature can be used by species to communicate at 

different spatial scales. For instance, coral reef fish larvae use sound cues to 

orientate and navigate toward reefs located kilometers away (Leis et al. 1996, 

Stobutzki and Bellwood 1998, Tolimieri et al. 2000, Atema et al, 2002) while 

olfactory cues influence their settlement at smaller spatial scale (Sweatman 

1988, Elliott et al. 1995, Arvedlund and Nielsen 1996). In other species, olfactory 

signals are used to communicate at large spatial scale as in the example of 

salmonids homing (Dittman et al., 1996). In water, the exchange of visual 

information and vocal signals can be hampered by turbidity, low light conditions 

or background noise caused by waves (Columbo et al., 1982). Thus, many fish 

species have evolved communicatory systems based on the release of 

pheromones in the water (Sorensen and Stacey, 2006). Contrary to sound and 

visual signals, chemical signals have the advantage of being easily carried over a 

great distance by water currents and can go around physical barriers. (Thornhill 

and Alcock, 1983). 

 Sex pheromones in fish can be produced by specific glands or arise from 

changes in body chemistry (Stacey, 2003; Sorensen and Stacey, 2006; 

Johanssen and Jones, 2007). Specifically, water-borne steroids, prostaglandins 
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and their metabolites have been shown to induce reproductive behavioural and 

physiological responses in many fish taxa including common carp, goldfish, 

catfishes, salmonids, and gobies (Stacey, 2003). Functions of sex pheromones in 

fish include attracting mates to a nesting site, courting, synchronizing spawning 

and stimulating gamete production (Sorensen and Stacey, 2004). 

 The best known fish pheromonal system is the one of the goldfish 

Carassius auratus. In this species, pre-ovulatory females release steroidal 

pheromones in their urine, which stimulate milt production and sperm motility in 

males (Sorensen and Stacey, 2002). During ovulation, female goldfish also 

release prostaglandins in their urine which then induce males into spawning 

(Sorensen and Stacey, 2002). Interestingly, female goldfish actively advertise 

their spawning readiness by controlling where and when they release urine and 

hence any constituent pheromones (Appelt and Sorensen, 2007). A similar 

behaviour is observed in male Mozambique tilapia Oreochromis mossambicus, 

which increase urination activity in the presence of pre-spawning females but not 

in the presence of post-spawning females (Miranda et al. 2005). In both of these 

species, it was shown that individuals modulate their release of pheromone-laden 

urine according to olfactory signals previously released by the other sex (Miranda 

et al. 2005; Appelt and Sorensen, 2007). 

 

4. Dispersion of olfactory signals  

Contrary to sound and light, pheromones excreted in the water (or in the 

air) are not “effectively instantaneous” because potent molecules need to be 
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transported from the producer to the receiver olfactory organs (Wyatt, 2003). The 

transport of pheromonal signals is affected by factors such as ambient flow and 

release rate (Atema, 1996; Webster and Weissburg, 2001). Thus, to characterize 

fish (and other aquatic species) pheromonal systems, it is important to have a 

comprehensive view of the flow fields surrounding producers and receivers and 

of the behavioural mechanisms associated with the release of olfactory 

compounds (Webster and Weissburg, 2001).  

Because pheromones actively released and dispersed will have a greater 

chance of  reaching a targeted receptor than pheromones passively leaked into 

the water, some aquatic species generate their own pheromone excretory 

currents (Atema, 1996). For instance, male lobsters use pleopod fanning at the 

entrance of the nesting cavity to disperse pheromones into the environment and 

advertise their reproductive status to females (Atema, 1986). Additionally, 

controlled release and active dispersion confer a specific structure to the 

pheromone dispersal plume. Spatial and temporal information within pheromone 

dispersal plumes (i.e. pheromone concentration, concentration gradient, flow 

direction) can be exploited by the receiver to locate and navigate toward the 

originator of the olfactory signal. Such behaviour is referred as chemically 

mediated guidance (reviewed in Weissburg, 2000; Zimmer and Butman, 2000).  

 

5. Sex pheromones and control of aquatic pest species 

The study of chemically mediated guidance presents a growing interest for 

the control of aquatic pests (Sorensen and Stacey, 2004, Corkum & Belanger, 
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2007). In fact, sex pheromone attractants could be used to increase the 

efficiency of the current trapping techniques employed in pest management 

programs (Sorensen and Stacey, 2004). The species- and sex-specificity of sex 

pheromones could enable the targeting of reproductive individuals of a particular 

pest species and remove their reproductive contribution from the population 

recruitment (Sorensen and Stacey, 2004). A similar technique is already used 

with great success for the control of pest insects (Wyatt, 2003). A recent study, 

showed that female sea lamprey, a fish invader of the Laurentian Great Lakes, 

can successfully be attracted to traps baited with male mating pheromone 3kPZS 

(7α, 12α, 24-trihydroxy-5α -cholan-3-one 24-sulfate) (Johnson et al., 2009). 

 

6. The round goby 

The round goby Neogobius melanostomus is a small benthic fish of the 

Gobiidae family, which invaded the Laurentian Great Lakes in the 1990’s (Jude 

et al., 1992). Round gobies were accidentally introduced in North America by 

contamination of ballast water of ships coming from the Ponto-caspian region in 

Eastern Europe, their natural range (Charlebois et al., 2001). Since then, the 

species has rapidly spread to the all five Great Lakes (Charlebois et al., 2001). 

The quick success of round goby in the North-American watersheds is due, in 

part, to its well adapted reproductive biology (MacInnis and Corkum, 2000). In 

this species, reproductive males occupy a nest –usually a cavity under a rock– to 

which they attract reproductive females for spawning.  After spawning, males 

aggressively guard the eggs against predators until hatching. A single male can 
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guard eggs from up 15 females at a time (MacInnis and Corkum, 2000). Because 

round gobies spawn in shallow, often turbid waters and males are concealed 

within spawning cavities, finding a mate can be challenging for the members of 

this species. It was shown that nesting males produce pheromones that attract 

gravid females to their nesting cavities (Arbuckle et al., 2005; Gammon et al., 

2005).  

Evidence of sex pheromone attractants in the round goby suggest that a 

pest management strategy based on pheromone baited traps could be 

developed for the control of this invader in the Great Lakes basin. In this 

perspective, research is ongoing to indentify the active compound(s) and 

characterize the odor environment associated with male round goby sex 

pheromones. 

 

7. Objectives of this study 

The objectives of the present study were threefold: 1) To analyse the 

behavioural context in which male round gobies release sex pheromones. 2) To 

characterize the release patterns of pheromone-laden urine by male round 

gobies. 3) To identify and quantify factors that could affect the transport of round 

goby male sex pheromones.  

By getting round gobies to spawn under laboratory conditions, we 

provided the first detailed description of round goby reproduction. We observed 

that, during spawning, the round goby male behaviour is a subtle balance 

between attracting females to the nest for mating, defending the nest against 
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intruders and egg predators and caring for the eggs. We also identified a 

particular fanning behaviour that likely promotes the dispersion of male 

pheromones. In a second behavioural assay we determined that reproductive 

male round gobies do not modulate the release of pheromone-laden urine in the 

presence of reproductive females. This suggests that male round gobies likely 

release sex pheromones spontaneously and not in response to a female stimuli. 

Finally, in a third study, we defined and quantified fanning currents generated by 

nesting male round gobies. We determined that fanning behaviour in this 

species, in addition to other functions, likely evolved to promote the dispersion of 

pheromonal messages by nesting males. 
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CHAPTER 2: FIRST OBSERVATION OF ROUND GOBY SPAWNING AND 

NEST GUARDING IN THE LABORATORY 

 

1. INTRODUCTION 

Since it was first reported in 1990 (Jude et al. 1992), the round goby 

(Neogobius melanostomus) has been a prolific invader in the Laurentian Great 

Lakes (Charlebois et al. 2001). Reasons for the proliferation of the round goby 

include its broad diet and availability of molluscan prey (adults eat mainly 

dreissenids), aggressiveness, high fecundity, multiple spawning (up to six times 

per year), and male parental care (Corkum et al. 2004). .  

Previous field studies have provided evidence for nest defense and egg 

fanning (Wickett and Corkum 1998) but there has been no direct observation of 

the patterns of spawning behaviour by the round goby. In this study, we present 

the first reported account of spawning by the round goby in the laboratory and 

describe agonistic vocalizations, egg care and nest defense by the parental 

male. We also provide a review of common nesting behaviours described in 

other species within the Gobiidae. Understanding the reproductive habits of the 

round goby could enable researchers to control the spread of this invasive 

species by manipulating its reproductive success. 

 

2. METHODS 

In August 2007, round gobies were collected by angling along the 

Canadian shore of the Detroit River at Windsor, ON, and brought to the Animal 
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Care Facility at the University of Windsor. Ten mature fish (3 males and 7 

females) were placed into a 90 L tank lined with aquarium gravel and filled with 

dechlorinated, aerated water; rectangular opaque PVC shelters (16 cm x 11.5 cm 

x 5 cm) served as nests. Fish were fed daily with Nutrafin flakes and kept under 

constant photoperiod (16L:8D ) at 20°C. At this time, none of the fish showed 

reproductive characters as described in Miller (1984). 

Spawning was induced by changing environmental factors. At first, 

photoperiod was lowered  from 16L:8D to 8L:16D, water temperature  from 20°C 

to 10°C and food supply was restricted to simulate “winter conditions”. After 3 

weeks, artificial “spring conditions” were gradually restored (water temperature 

(20°C), light exposure (16L:8D), daily food supply). Within a few days, one male 

started displaying typical reproductive traits as black coloration and territoriality 

(Miller, 1984). During the following weeks, two to three females developed 

swollen abdomens. Spawning was observed  on October 14th, 3 weeks after the 

beginning of spring conditions. The same protocol was repeated with success in 

January 2008 (spawning in March 2008), in March 2008 (spawning in May 2008) 

and November 2008 (spawning in January 2009) using different fish.  Spawning 

typically occurred 3 to 6 weeks after the beginning of artificial spring conditions. 

Once the round goby developed secondary sexual characters, male-

female interactions were monitored every 2 hours (from 9:00am to 12:00pm). 

Video recording was started once spawning behaviour was visually confirmed. In 

October 2007 and May 2008, spawning occurred at night. We were unable to 

observe the egg deposition but video recording started within 2 hours after the 
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female had left the nest. At this time, we observed a single male guarding in a 

nest with eggs deposited on the ceiling. We observed the male fertilizing the 

eggs, fanning the eggs and guarding the nest.  Because the male repeatedly 

opened and closed its mouth while positioned at the nest entrance, we placed a 

hydrophone (Interocean Systems Inc, model 902) in the tank 30 cm from the nest 

entrance to record potential vocalizations.  

In March 2008, spawning occurred in the afternoon. This time, we were 

able to video record egg deposition on the ceiling of the nest by the female and 

the parental care by the male during the days following the eggs deposition. We 

video recorded spawning behaviour in October and March using a colour video 

camera (Hitachi VKC-370) and a DVD recorder (SONY RDR-GX330). In January 

2009, we used a new recording device (HDD SONY recorder) enabling us to 

document, without interruption, the courtship, spawning and parental care of the 

round goby (spawning occurred at night). 

 After analysising the digital images from four spawning events (Oct 07, 

Mar 08, May 08, Jan 09), we were able to describe the main phases of round 

goby reproduction (mate attraction, egg deposition and parental care) as well as 

quantify spawning activity, egg fanning, and aggressive displays against 

intruders. Spawning behaviour recordings may be viewed on the website: 

www.uwindsor.ca/goby.  

 

3. RESULTS AND DISCUSSION 
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Despite our success in documenting the first round goby spawning in a 

laboratory, none of our males completed their brood cycle. We did not observe 

egg hatching. In some cases, eggs were consumed by round gobies that 

successfully entered the nest after spawning despite the male’s vigilance in nest 

guarding. In other cases, the parental male terminated their brood cycle by eating 

the eggs within its nest.  

 

3.1. Spawning Behaviour 

 During the observed spawning bout, only the male and a female were 

present inside the nest for the entire recording. Despite the presence of other 

round gobies in the tank, no intruders entered the nest during the spawning 

event.  

 When spawning, the male and the female alternately flipped over 

(inverted) to deposit their gametes onto the ceiling of the nest. Eggs and sperm 

were released through the urogenital papilla (Fig 1a, 1b) which was erected at 

about 45 degrees from the body to make contact with the nest ceiling. Female 

inversions were almost twice as frequent as male inversions; and, each female 

inversion lasted four times longer than male inversions. For the March 2008 

spawning event, we quantified spawning behaviour over a 30-minute observation 

period. The female inverted 39 times, while the male inverted 21 times. The male 

inverted in the nest less than once per minute, for approximately 5 seconds. The 

female inverted once or twice per minute—a frequency commonly observed in 

females of the monogamous goby (Valenciennea longipinnis) (Takegaki and 
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Nakazono 1999) —for a duration of about 20 seconds. As in other Neogobius 

species, the female we observed deposited eggs on the ceiling of the nest (Biro 

1971, Grabowska 2005); the male divided his time between fertilizing the eggs 

and guarding the entrance of the nest during the spawning period.  

 Whenever the female deposited eggs, she performed small but rapid 

undulating upside down movements on the ceiling, pressing her papilla against 

the roof of the nest. The male made similar undulating movements when 

fertilizing the eggs. During periods in which fish were not inverted, both the male 

and female would rest in the center of the nest. After spawning, the female 

appeared to depart of her own accord and the male continued to guard the nest. 

Observations of round goby spawning events in the Detroit River 

(MacInnis and Corkum 2000) and western Lake Erie (Wickett and Corkum 1998) 

revealed that fertilized eggs were deposited on all surfaces of the interior of a 

nest. Perhaps initial egg deposition begins on the ceiling of the nest and 

subsequent egg deposition by other females fills the remaining available 

surfaces. Eggs of round goby are deposited in a single layer (MacInnis and 

Corkum 2000). 

  

3.1. Parental Care 

3.1.1. Vocalization and other agonistic behaviours 

Vocalization by reproductive round goby males have been previously 

identified (Protasov et al. 1965, Rollo et al. 2007). However, the function of these 

calls and the manner in which calls are produced remain unclear. During our 
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laboratory investigations, video and audio recordings showed that nest-guarding 

males produced vocal pulses by a series of rapid opening and closing of the 

mouth, reminiscent of a dog barking – see Ladich and Myrberg (2006) for review 

on sound production mechanisms in fish.  

Vocalization started after egg deposition and continued for 2 to 3 days 

after the female had left the nest. A spectral analysis of the audio recordings 

revealed the low frequency (1 Hz – 400 Hz) profile of these “barking calls” (Fig. 

2). There were variations within and among individuals in the amplitude of these 

calls and the number of times that they were repeated. However, episodes of 

intense vocalization had a constant period of 0.4 – 0.6 seconds. Vocalization 

episodes by the parental male were always associated with the approach of an 

intruder at the entrance of the nest and typically resulted in the quick retreat by 

the intruder. Whenever the intruder remained, it was attacked by the parental 

male. In these cases, the parental male left the nest for a few seconds to chase 

(and sometimes bite) the intruder.  

Similar vocalizations by nesting male round gobies were previously 

recorded by Rollo et al. (2007) and referred as “pulse series” calls. However the 

behavioural context in which male round gobies produce these calls remained 

unclear. Our laboratory observations in the round goby reveal the agonistic 

nature of these calls. Their function is clearly to discourage intruders from 

entering the nest.  Agonistic vocalizations during territorial defense were 

previously identified in eight others species of the Gobiidae (reviewed in Amorin 

and Neves 2008). 
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 Aggressive behaviour also involved various visual displays. In addition to 

their darkened body and swollen cheeks, threatening nest-guarding males raised 

their pectoral and dorsal fins upon the approach of an intruder, possibly to 

increase their body size and better block the access to their nest. When immobile 

at the nest entrance, one male kept its mouth open continuously, revealing white 

teeth and gums against a black mouth cavity. This hostile display was also 

described in the river bullhead, Cottus gobio (Morris 1954) and in cichlid fish, 

Tilapia natalensis (Baerends and Baerends van Roon 1950).  

On several occasions, we observed intruders entering the nest to feed on 

the eggs despite the vigilance of the guarding male. However, we did not 

observe any intruding males, sneaking into the nest to fertilize eggs. Although 

there is evidence for the presence of sneakers in the round goby (Marentette and 

Corkum 2008), behavioural confirmation is lacking.  

In summary, we identified three levels of agonistic behavior displayed by 

the parental male in response to intruders. Initially, the male passively blocks the 

entrance of the nest with his head and pectoral fins. At the next level, the male 

initiates vocalizations and erects its pectoral and dorsal fins in response to the 

intruder. At the highest aggression level, the male leaves his nest to physically 

confront the intruder.  

 

3.1.2. Fanning and Egg Care 

 Nest fanning is a common behaviour in many species with parental care 

e.g., three-spined stickleback Gasterosteus aculeatus (Reebs et al. 1984), river 
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bullhead Cottus gobius (Morris 1954), cichlid fish Oreochromis niloticus 

(Baerends and Baerends van Roon 1950), bluegill sunfish Lepomis macrochirus 

(Coleman and Fisher 1991), and in several species of Gobiidae (Table 1). 

Ventilation is necessary to prevent sediment build-up inside the nest and to 

supply eggs with a sufficient oxygen flow (especially for cavity spawners (Gibson 

1993)). It has been shown to significantly increase egg survivorship (Östlund and 

Ahnesjö 1998). 

 During our observations, nest guarding male round gobies ventilated their 

nesting cavity using their pectoral and caudal fins (Fig. 1c). Interestingly, we 

observed that fanning activity started before the egg deposition. For instance, in 

the January 2009 spawning event, a reproductive male started fanning his nest 

10 days prior to the first egg deposition.  

In each spawning event, fanning reached a peak activity within a few hours after 

egg deposition, slowly decreased over the following 48 h and eventually stopped 

(Fig. 3). Interestingly, these observations differ from fanning behaviour in other 

gobiids. In the sand goby Pomatoschistus minutus (Lindström and Wennström 

1994, Järvi-Laturi et al. 2008), freshwater goby Padogobius martensii (Toricelli et 

al. 1984) and two-spotted goby Gobiusculus flavescens (Skolbekken and Utne-

Palm, 2001), fanning activity is positively correlated with eggs age and thus 

progressively increases throughout the brood cycle. 

 Several reasons could explain differences in fanning behaviour between 

our observations in Neogobius melanostomus and other gobiids, including clutch 

size, phylogeny, trade-offs with other activities and oxygen concentrations. 
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Previous studies showed a negative association between fanning and oxygen 

concentration in gobiids (Torricelli et al. 1984, Jones and Reynolds 1999a, 

Takegaki and Nakazono 1999, Maruyama et al. 2008). Because our flow-through 

tank ensured a constant high dissolved oxygen level in the water (75% saturated 

or more) our males could have limited fanning expenditures to reallocate their 

efforts to nest defence (Fig. 4). This idea is supported by Lissåker and Kvarnemo 

(2006), who showed that because time and energy are limited resources, 

guarding males face a constant trade-off between nest ventilation and nest 

guarding. Alternatively, it is also possible that fanning patterns vary across 

genera. Unfortunately, species that are most phylogenetically related to the 

round goby, the monkey goby Neogobius fluvialitis and the Caspian goby 

Neogobius caspius (Neilson and Stepien 2006) also lack a detailed description of 

their spawning and egg caring behaviour so that comparisons among these three 

closely related species are not possible. Finally, others have reported a positive 

association between fanning activity and clutch size (Lindström and Wennström 

1994, Karino and Arai 2006). During our laboratory investigation, only a single 

female deposited eggs.  Since a round goby male can guard eggs from up to 15 

females in nature (MacInnis and Corkum 2000), a small clutch size could explain 

the decrease of fanning activity that we observed.  

Other egg care behaviours that we observed were nest excavation and 

cleaning (Fig. 1d) and egg inspection (Fig. 1e). During nest excavation, the 

guarding male picked up gravel in its mouth and spat it out of the nest, creating a 

small mound at the nest entrance. Lissåker and Kvarnemo (2006) reported that 
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egg guarding sand gobies decreased their nest opening by piling sand at the 

nest entrance when egg predators were introduced. A small nest opening may 

also aid in nest concealment (Jones and Reynolds 1999b). However, Svennson 

and Kvarnemo (2007) found no support that nest size opening was related to 

female mating preference, nest concealment or that nest size opening served as 

a physical defence against sneaker males in sand gobies.  

During the egg care process, round goby males were often seen lifting 

their head up to the eggs to “sniff” them and sometimes nibble them (Fig. 1e). 

This behaviour likely corresponds to an inspection from the male trying to spot 

unhealthy or dead eggs (Jones and Reynolds 1999c), preventing the spread of 

diseases in the clutch. 

 

3.2. Filial Cannibalism and Termination of Care 

Round gobies successfully spawned in the laboratory, yet none of our 

males completed their brood cycle and no egg hatching was observed in our 

tank. In some cases, eggs were consumed by nest intruders. In other cases, 

males terminated their brood cycle by cannibalising their eggs (only 3 to 5 days 

after egg deposition). Filial cannibalism is common in many species with parental 

care and occurs when the cost of care exceeds the benefit (Lissåker and 

Kvarnemo 2006). Small clutches have a low reproductive value for nest-guarding 

males (Sargent 1992) and thus have often been associated with filial cannibalism 

(Sargent 1992, Manica 2002, Lissåker et al. 2003, Karino and Arai 2006). During 

our observations, 150 to 680 eggs were deposited by 1 to 2 females. Since male 
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round gobies can guard eggs from up to 15 females (MacInnis and Corkum 

2000), a small clutch size most likely explains the high rate of filial cannibalism 

and the lack of hatching success in our study. Because parental care represents 

an important energetic cost that can compromise the survival of future broods, a 

male may discontinue care if the benefits are too low. Lissåker and Kvarnemo 

(2006) proposed that there must be a minimal clutch size for which males decide 

to discontinue their care. Our observation of round goby spawning showed that 

males would not complete their brood cycle when eggs came from a single 

female with few eggs. 

 

4. CONCLUSIONS 

 In this first description of the round goby reproduction in the laboratory, we 

showed that the round goby shares many spawning habits with other members of 

the Gobiidae (Table 1). These spawning habits explain, in part, the success of 

this invasive species in the Laurentian Great Lakes. Nesting males invest 

tremendous energy into parental care which has been directly associated with 

successful establishment of invasive fish species (Drake, 2007). Males use a 

combination of agonistic vocalizations and visual displays to dissuade intruders 

from entering their nest. We identified three levels of aggressive response to the 

approach of intruders. Gradual aggressive responses help males to conserve 

their energy and to minimize the risks involved in physical confrontations with 

other individuals (injuries or eggs left without surveillance). Males consistently 

alternate nest defence and egg care activities. Egg care activities were mostly 
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dominated by nest ventilation. By repeated movement of their pectoral and 

caudal fins, males create a constant flow of water inside the nest which provides 

the eggs with sufficient oxygen and disperses metabolic wastes. We observed 

that fanning activity can vary throughout the brood-cycle and is likely dependant 

on oxygen level and clutch size. Interestingly, we observed fanning activity 

before egg deposition. This suggests that fanning behaviour by male round 

gobies might play a role during the mate attraction process. The association of 

fanning and courtship has been previously documented in other species such as 

the sand goby (Pampoulie et al. 2003)  and the three-spined stickleback 

Gasterosteus aculeatus (Sevenster, 1961). It was found that male sand gobies 

increase their fanning efforts in the presence of potential mates (Pampoulie et al. 

2003). In the three-spined stickleback, males perform courtship fanning even in 

the absence of eggs in their nest (Sevenster, 1961).  

We also observed that male round gobies can terminate their care and 

cannibalize their own brood if the energetic cost of parental care outweighs the 

reproductive value of the brood (as in the example of a small brood).  Sargeant 

(1992) described this filial cannibalism as a highly adaptive reproduction strategy 

which allows males to invest their energy into future broods of higher 

reproductive value. 

Finally the present study showed that it is possible to induce round goby 

reproduction in the laboratory outside of the reproductive season. This finding will 

have important implications in current and future studies that investigate 

mechanisms involved in mate attraction within the round goby. Ultimately, the 
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manipulation of round goby reproductive success could enable researchers to 

control the spread of this species into new areas. 
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FIG 2.1.  Example of spawning and nest-guarding behaviours observed in the 
round goby: A. Egg deposition by the female, B. Egg fertilization by the male, C. 
Nest fanning by the male, D. Egg inspection by the male, E. Nest excavation by 
the male, and F. Photograph of nest-guarding male. Although the nest-guarding 
male is black (as in F), the drawings depict the male in a lighter shade so that 
details of the fish may be seen. 
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FIG 2. Sound spectrogram depicting an example of an agonistic vocalization 
produced by a male round goby during nest defence (“barking call”).  
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FIG 3. Mean (± SE) number of fanning bouts per 5 minutes observed in a nest-
guarding male at 3, 24, 48 and 72 h after spawning. 
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FIG 4. Percentage of time allocated between egg care and nest defense 
observed in a nest guarding male round goby at A. 3 hours post-spawning, B. 24 
hours post-spawning and C. 48 hours post-spawning. 
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CHAPTER 3: ARE URINE PULSES PASSIVE CUES OR SPECIALIZED 

OLFACTORY SIGNALS IN NESTING MALE ROUND GOBY, NEOGOBIUS 

MELANOSTOMUS? 

 

1. INTRODUCTION 

 

Chemical signalling in fish has been linked to many activities, including 

predator avoidance and alarm cues (Chivers and Smith, 1998; Wisenden 2003), 

gender recognition (Liley, 1982), kin recognition (Olsén et al., 1999), 

aggregations prior to reproduction (Taborsky,  1998), and spawning (Stacey and 

Sorensen, 2002; Sorensen and Stacey 2004;). Chemical communication 

between sexes of a given species often consists of individuals of one sex 

releasing odours to attract a receptive mate (Corkum and Belanger, 2007). For 

example, sex pheromones produced by reproductive males attract females to 

spawning sites in several fishes, including Oncorhynchus mykiss (Newcomb and 

Hartman, 1973), Danio rerio (Bloom and Perlmutter, 1977), Gobius jozo 

(Colombo et al., 1980), Pimephales promelas (Cole and Smith, 1992) and 

Neogobius melanostomus (Gammon et al., 2005). Typically, fish release 

pheromones through their urine, faeces, gills, skin and sperm (Sorensen et al., 

1998). Among these, urine seems to be particularly important for the release of 

sex pheromones. Several species release sexual scents via their urine, which 

elicit significant behavioural and/or physiological responses in conspecifics 
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(Colombo et al., 1982; Liley, 1982; Dmitrieva et al., 1988, Miranda et al. 2005; 

Yambe et al. 2006; Appelt and Sorensen, 2007).  

 The success of the small, bottom-dwelling round goby, Neogobius 

melanostomus, as an invader in the Laurentian Great Lakes is, in part, due to its 

colonial breeding habit and parental care, resulting in high reproductive success 

(MacInnis and Corkum, 2000). Like other gobiids (Reese, 1964), reproductive 

males (RM) of the round goby are territorial and occupy nests to which 

reproductive females (RF) are attracted to spawn. The nest typically consists of a 

concealed cavity under a stone with a single opening (Charlebois et al., 2001). 

Round gobies spawn repeatedly throughout spring and summer; and, up to 15 

females may deposit eggs in the nest of a single male (MacInnis and Corkum, 

2000).  Courtship and mate assessment in the round goby, as in other nest-

guarding species, are particularly interesting for the study of animal 

communication as they involve the intimate exchange of visual, vocal and 

chemical signals between males and females (Millers, 1984; Charlebois et al., 

2001; Corkum et al., 2008; Meunier et al., 2009). Chemical signaling is important 

in synchronizing spawning behaviour in the round goby because the fish often 

dwells in turbid waters where visual signals are inefficient.  Specifically, 

reproductive female round gobies are attracted by odours from nesting males 

(Gammon et al., 2005). Behavioural assays showed that odours from 

reproductive male round gobies (RM) evoke a strong behavioural attraction in 

preovulatory RF, inducing observable changes in time spent near the male 
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odour, increased swimming velocities, and directed movement toward the male 

odour source (Gammon et al., 2005).  

 Odour from reproductive round goby males is composed, in part, of a suite 

of putative steroidal pheromones synthesized by specialized cells in the testis 

(Arbuckle et al., 2005). These active compounds are released into the water 

(unpublished data) and elicit strong responses from the RF olfactory system 

(Gammon et al., 2005; Corkum et al., 2008). Although the production of sex 

pheromones by RM testis appears to be specialized, it is unknown whether RM 

round gobies can actively control the release of these compounds in the water. 

For instance, in male Mozambique tilapia Oreochromis mossambicus (Miranda et 

al., 2005) and in female goldfish Carassius auratus (Appelt and Sorensen, 2007), 

fishes increase the release of pheromone-laden urine to actively advertize social 

dominance and/or spawning readiness to potential mates. 

 Ultimately, determining the active or passive nature of a signal in a 

communication dyad comes to resolving which sex signals first.  In fact, signal 

modulation indicates the response of the producer to an earlier signal. For 

instance in the Mozambique tilapia, pre-ovulatory females release olfactory cues 

in the water to which males respond by actively increasing the release of 

pheromone-laden urine (Miranda et al., 2005). Similarly, in the round goby, 

Murphy et al. (2001) and Belanger et al. (2006) found that RM respond to 

gonadal extracts and putative pheromones, estrone, from RF, indicating that RM 

can recognize potential mates based on olfactory cues produced by the RF.  
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Based on these findings, we hypothesised that RM round gobies control 

their release of urinary pheromone to actively signal their spawning readiness to 

potential mates. Hence increasing their reproductive success. If so, RM should 

significantly increase their urine release (in volume and/or frequency) in the 

presence of RF to actively signal their spawning readiness to potential mates. In 

contrast, RM should not modulate their urination activity in the presence of a non-

reproductive female (NRF). In the case that RM cannot discriminate between RF 

and NRF, we expect to observe no significant difference in RM urination activity 

in the presence of a RF and in the presence of a NRF.  

Additionally, we did not expect urine release by non-reproductive males 

(NRM) to change in the presence or absence of gravid females. We also 

investigated the importance of urine as a route of excretion for sex pheromone in 

the round goby by comparing the concentrations of putative steroidal pheromone 

in urine and washings from RM.  

 

2. METHODS 

 

2.1 Experimental animals 

Round gobies were collected twice weekly by angling on the Canadian 

shore of the Detroit River at Windsor, ON (42°20´N, 82°56´W) and on the 

northwest shore of Lake Erie at Leamington Harbour, ON (42°03´N, 82°36´W). 

Fish collection coincided with the reproduction season of round gobies, which 

takes place between early May and late July, in 2007 and 2008. After collection, 
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the fish were brought to the laboratory at the University of Windsor, sorted by sex 

and placed into 95 L communal tanks. Each tank was equipped with flow-through 

dechlorinated water, aquarium gravel and artificial nests (PVC 16 cm x 11.5 cm x 

5 cm). Reproductive males were separated from the other fish and placed into 

individual 20 L tanks with 1 to 3 reproductive females. The reproductive males 

were isolated to avoid aggression as well as to maintain and stimulate the males’ 

reproductive behaviour until the day of the trial. Individual tanks were equipped 

with the same features as the communal tanks. All fish were fed daily with 

Tetramin Flake Food and kept under a constant photoperiod of 16L:8D at 

20±2°C. Individuals were used in an experiment within 7 days of their capture. 

 At first, sex and reproductive status were established based on 

morphological characteristics. Females have a blunt urogenital papilla and their 

abdomen becomes swollen when reproductive, whereas males have a pointed 

urogenital papilla and become black with swollen cheecks when reproductive 

(Miller 1984). Because spawning readiness was a critical factor in the 

experiment, reproductive status was confirmed after each trial by dissecting the 

fish and thoroughly inspecting its gonads. We assumed that a female was 

reproductive (RF) when her gonado-stomatic index (GSI= gonad weight x 100 / 

total body weight) was greater than 7% and/or her ovaries weighted more than 1 

g and were fully vascularized with large bright yellow eggs. Additionally, 

spawning readiness was assessed by applying gentle pressure on the fish’s 

abdomen which, with ripe females, results in the eggs dripping out through the 

urogenital papilla. Female individuals with gonad weight less than 0.5 g and with 
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small grayish eggs that did not drip out when applying pressure to the abdomen 

were considered non-reproductive (NRF). Reproductive male (RM) readiness  

was confirmed when their GSI exceeded 1.3% and/or their gonad weight was 

greater than 0.5 g. Testes had to be fully vascularized, opaque and release 

sperm when gently pressed.  To create a clear contrast between the two male 

reproductive categories (RM and NRM) only juvenile individuals where used in 

the NRM group. The NRM had small body weight (< 20 g) and immature testes 

(<0.05 g).  

 

2.2 Excretion of putative steroidal pheromone in RM urine 

To determine the importance of the urinary route for the excretion of sex 

pheromones in the round goby, we compared the concentrations of 11-oxo-ETIO 

metabolite found in the urine of reproductive males and the concentration 11-

oxo-ETIO metabolite measured in water in which reproductive males have been 

held (washings). Test fish were injected with a solution of gonadotropin-releasing 

hormone (GnRH) (20µg/Kg in 0.9%saline) to stimulate the production of testicular 

steroid (Arbuckle et al. 2003). To collect urine samples, we used dental floss to 

tie urogenital papilla of RM (N=3). The urine, which pooled in the fish bladder, 

was collected after 4 h using a syringe (see methods in Yavno and Corkum, 

2009). Fish washings were collected (N=20) over a period of 16 h during which 

individuals were held in aerated jars filled with 1 L of dechlorinated water. RM 

urine and washings were examined for the presence of 11-oxo-ETIOs using an 

Enzyme-linked immunosorbent assay (ELISA).  
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2.3 Effect of fluorescein injection  

Prior to investigating the urination activity of round goby using fluorescein-

injected individuals, we tested whether round goby biology and behaviour is 

affected by the injection of fluorescein dye. The two following tests were 

conducted on individuals captured and kept in the same conditions described in 

2.1. 

 

2.3. 1 Toxicity 

We tested whether fluorescein has a toxic effect on the round goby, by 

injecting three males of different body sizes (8.6 g, 27.7 g and 61.4 g) with 100 

µL of fluorescein sodium solution (1 mg/mL in 0.9% saline). To be conservative, 

the quantity of fluorescein injected for this test was twice as large as the quantity 

injected for the urination behaviour experiments. After injection, the three males 

were then placed into separate 40 L tanks filled with dechlorinated water and 

equipped with aquarium gravel, shelter and aeration. In each tank, we placed 2 

other males (NRM) and 2 females (NRF) to interact with the injected males. Fish 

were fed every two days with Nutrafin food flakes. During one month we regularly 

monitored weight, general health, social behaviour, and feeding behaviour of 

injected and non-injected individuals to determine if the fluorescein had an 

adverse effect on their biology and behaviour. 

 

2.3.2 Olfactory response 
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We used an electro-olfactogram method (EOG) adapted from Belanger et 

al. (2004) to investigate the olfactory response of round goby to fluorescein. The 

presence of an olfactory potent dye in the experimental tank could disturb the 

behaviour of test individuals and adversely affect the results of our experiment. 

We used three stimuli solutions of fluorescein sodium: C1=10-4g/L; C2=10-3g/L; 

C4=10-1g/L. Stimuli were introduced in the olfactory system through the posterior 

nostril and the EOG response was recorded differentially using glass electrodes. 

The recording electrode was placed on the surface of the olfactory mucosa 

through the posterior nostril while the reference electrode was placed on the fish 

skin. Differential EOG responses to the three solutions of fluorescein were 

recorded and compared to responses to a standard solution of alanine (10-5M); 

three females were tested. 

 

2.4 Male’s urination behaviour 

2.4.1 Male urination in response to conspecific females 

In this experiment, male round goby urination behaviour was investigated 

in isolation and in the presence of a female. To visualize the release of urine by 

male round gobies, individuals were injected with fluorescein, an innocuous dye, 

which fluoresces under UV light. Males were anesthetized by immersion in a light 

solution of MS-222 (10 mg in 1 L of water) and injected intramuscularly in the 

dorsal region (between head and dorsal fine) with 50 µL of fluorescein sodium 

solution (1 mg/mL in 0.9% saline). Subsequently, the injected fish were placed 

into the experimental tank to acclimatize and allow time for fluorescein to be 
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excreted in the urine. The experimental tank was a 40 L aquarium filled with 

dechlorinated, aerated water and a rectangular, U-shaped PVC shelter set on the 

bottom. Experiments were conducted in low-light conditions (2 ultra-violet “black-

light” lamps) so that the fluorescein could be observed in the excreted urine. The 

tank was placed on a glass-top table and video recordings were made from 

underneath. This setup enabled the urogenital papilla, located on the ventral 

surface of the fish, to be seen when the male rested on the bottom of the tank. 

A trial started once fish began to release fluorescent urine (45 to 60 min 

after dye injection). During each trial, a reproductive (RF) and a non-reproductive 

female (NRF) was sequentially introduced in the experimental tank and allowed 

to interact with the injected male for 30 min. Each female treatment period (RF 

and NRF) was preceded by a 30-min isolation period, which served as a control 

(CtrlNRF and CtrlRF). The order of the stimulus treatments was randomized. 

Fish (males and females) were used only once. Each trial was video-recorded 

using a colour video camera (Hitachi VKC-370) and a DVD recorder (SONY 

RDR-GX330). 

 

2.4.2 Male urination in response to conspecific males  

Round goby reproductive males may release urine signals in the 

presence of any fish, not just female conspecifics. Thus, urine signals may 

be released during social interactions, not just sexual interractions. To test 

the response of male urination in the presence of male conspecifics,an 

experiment was conducted during summer 2008  by Lisa Isabella-Valenzi 
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(BSc. Thesis). The protocol was similar to the one described above but 

reproductive and non-reproductive males were introduced in the tanks as 

stimuli instead of females. Only urination frequency of the resident males 

was investigated; the volume of urine released was not quantified. 

 

2.4.3 Data analyses 

Video-recordings of the trials were examined to determine the frequency 

at which males urinate and the duration of each urination event (UE). Males 

typically urinate in two distinctive ways such that males either release a weak 

stream of urine passively or expel urine with a force as a potent burst. We used a 

correction factor (1 or 2) to describe these two types of urine discharge (1, weak 

stream, 2, burst) and then applied this factor to the duration of each UE to obtain 

an objective estimate of the volume of urine released at each UE. After 

transformation (Sqrt (UE frequency +1) and Log10 (UE volume +1.1)) to ensure 

normality and homoscedasticity, data were analyzed using ANOVA (for 

randomized block design) and a priori orthogonal comparison (Statistica, 

Statsoft, 1998). For each data set (Frequency and Volume), we performed five 

comparisons (Table 1) to test the following postulates: 

1- Males (NRM and RM) increase urination in the presence of a 

female (regardless of her reproductive status) because they 

use urinary pheromones as intraspecific signals (planned 

comparison #1). If both RM and NRM significantly increase 

their urination activity in the presence of a female 
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(regardless of her reproductive status) then we proved that 

urine signals are not produced in a reproductive context. In 

this case, I anticipate that RM and NRM will increase their 

urination activity in the presence of another male too. 

2- Only RM increase their urination in the presence of a female 

because they use urinary pheromones as sexual signals. 

(planned comparison #2 and 3) 

3- Only RM increase their urination in the presence of RF to 

actively signal their spawning readiness to potential mates. 

(planned comparison #4 and 5) 

 

Variation in the urination frequency of RM in the presence of male 

conspecifics was tested using a two-way randomized block ANOVA 

followed by a post-hoc test. 

 

TABLE 1: Results of ANOVA and a priori orthogonal contrasts for the difference 
in urination frequency and volume of urination released by male round gobies 
(RM, NRM) in isolation (CtrlRF, CtrlNRF) and in the presence of a female (RF, 
NRF). 
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3. RESULTS 

 

3.1 Reproductive status and morphological traits of males and females 

In males, the mean GSI± SE of RM (2.21± 0.24%; N=31) was significantly 

different from NRM (0.09± 0.02%; N=20) (t49=7.22, p < 0.001). Additionally, RM 

mean body weight (BW±SE), 28.91 ± 2.52 g, and total length (TL± SE), 127.00 ± 

3.97 mm, were significantly higher than in NRM (BW:14.05± 0.74g; t49=4.65, p < 

0.001; TL:104.30± 1.79 mm; t49=4.39, p < 0.001). 

In females, RF mean GSI (11.77 ± 0.55%; N = 51) was also significantly 

higher (t100 =17.87, p < 0.001) than NRF (1.49 ± 0.17%; N=51). However, there 

was no significant difference in mean body weight (t100=-0.67, p = 0.50) or in total 

length (t100=1.21, p=0.23) between the two reproductive states. Thus, only 

reproductive status differed between treatments. RF had a mean body weight of 

10.26 ± 0.59 g and mean total length of 88.14± 0.240 mm, whereas NRF had a 

mean body weight of 9.73 ± 0.51 g and a mean total length of 92.25 ± 0.240 mm. 

 

3.2 Concentration of putative pheromone in the urine 

The analyses of fish washings collected over 16 h showed that the total 

excretion rate of putative pheromonal steroid 11-oxo-ETIO conjugates by GnRH 

injected RM round goby ranged between 3-36 ηg/h. A similar excretion rate (7-29 

ηg/h) of 11-oxo-ETIO conjugates was reported from urine collected from the 

bladder of RM. These findings suggest that urine is likely the main route by which 
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RM round goby excretes the putative steroidal pheromone 11-oxo-ETIO 

conjugate. 

 

3.3 Effect of fluorescein injection 

3.3.1 Toxicity 

We found no adverse effect of the fluorescein injection on the health and 

behaviour of male round gobies. Fluorescein was circulated throughout the fish 

body within a few minutes after injection and the fish skin became yellow/green. 

The fluorescein started being released through the fish urine and slime within 45 

min.  Individuals displayed normal feeding and social behaviour. The two largest 

individuals displayed territorial behaviour immediately after injection. No trace of 

fluorescein was observed in the urine or skin after 3 days in one male (61.4 g) 

and after 6 days in another (27.7 g), suggesting that all the dye had been 

excreted.  After 1 month, no dye could be found in the smallest individual’s urine 

(8.6 g), but yellow coloration could still be seen on its skin. No significant change 

in body weight was observed throughout the test.  

 

3.3.2 Olfactory response 

The differential olfactory responses of round goby to fluorescein solutions 

were compared to the responses to a standard solution of alanine (10-5mol/L) 

(fig. 1). Responses to the fluorescein solution C1=10-4g/L ranged between 10-

38% of the response to Alanine; C2=10-3g/L between 20-39%; C4=10-1g/L 

between 29-92%. These results suggest that the round goby olfactory system 
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detects fluorescein when highly concentrated. Therefore, it is unlikely that the 

presence of fluorescein dye in the experimental tank had a disruptive effect on 

the results of the present experiment. 
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Fig. 1:  Electro-olfactogram traces representing the differential olfactory 
responses of a round goby to solutions of fluorescein (10-4 M and 10-5 M), a 
standard solution of L-alanine (10-5 M) and background water. For each trace, 
the horizontal line represents a 5 second delivery of the stated compounds and 
the vertical bar correspond to a 1 mV calibration. 
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3.4 Urination behaviour analysis 

 Overall, males (regardless of their reproductive status) urinated more 

frequently in the presence of females (regardless of their reproductive status) 

(mean± SE; N=95) (0.97 ± 0.107) than during isolation periods (0.63 ± 0.094) (p 

= 0.0058) (Fig. 2). The volume of urine released also increased significantly 

(p=0.0062) between isolation (13.00 ± 2.247) and female treatment periods 

(16.10 ± 1.797) (Fig. 3).  

Within male reproductive status (RM and NRM), we observed a similar 

trend for the general urination activity to increase in the presence of females 

(Figs.4, .&  5). However, this trend was only partially supported by statistical 

tests. For instance, in RM, there was no significant difference in urination 

frequency between female treatments and isolation (p = 0.114), but there was a 

significant rise in the volume of urine released in the presence of a female (p= 

0.022). On the other hand, NRM did significantly increase their urination 

frequency in the presence of females (p = 0.022) but did not significantly increase 

their volume of urine released (p= 0.0914). Although some of these cases were 

not statistically significant at the 0.05 level, there was consistent trend for the 

mean values to increase during female treatment periods. 

When a male round goby was introduced into the tank instead of a female, 

we observed a similar increase in urination by resident males (RM +NRM) 

compared with the isolation period (Fig. 2). However, this difference was not 

significant. These additional experiments exhibited higher variability due to a 

lower number of replicates (N=25 for RM and N=7 for NRM). 
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Across treatment groups (RF and NRF), female reproductive status had 

no influence on RM and NRM urination behaviour (Figs. 6 & 7). Although mean 

urination activity was systematically higher during RF than during NRF treatment, 

statistical tests showed that NRM and RM did not urinate more frequently or 

release larger volume of urine in the presence of a RF than in the presence of 

NRF.  

The histograms of the temporal urine release pattern (Fig 8) revealed no 

particular effect of the treatment order on males’ urination behaviour. The 

operation of introducing or removing a female from the tank did not affect the 

urine release pattern either.  
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FIG. 2: Mean number of urination events per 20 min period (Sqrt ±SE) by male 
round gobies (NRM + RM) during isolation period, in the presence of a female 
conspecific (NRF + RF) or in the presence of a male conspecific. Nfemale=95.  
Nmale=64. Letters a and b denote significant differences (p < 0.05). 
 

 

FIG. 3: Mean volume of urine release per 20 min period (Log ± SE) by male 
round gobies (NRM+RM) during isolation period and in the presence of a female 
conspecific (NRF+RF). N=95. Letters a and b denote significant differences (p < 
0.05). 
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FIG. 4: Mean number of urination events per 20min period (Sqrt ±SE) by NRM 
and RM during isolation period and in the presence of a female conspecific (NRF 
+ RF). NRM=58. NNRM=39. Letters a and b denote significant differences (p < 
0.05). 
 

 

 

FIG. 5: Mean volume of urine released per 20min period (Log ±SE) by NRM and 
RM during isolation period and in the presence of a female conspecific 
(NRF+RF). NRM=58. NNRM=39. Letters a and b denote significant differences (p < 
0.05). 
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FIG. 6: Mean number of urination events per 20 min period (±SE) by RM and 
NRM when held in isolation (Ctrl), in the presence of a non-reproductive female 
conspecific (NRF) and in the presence of a reproductive female conspecific (RF) 
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FIG. 7:  Mean volume or urine released per 20 min period (log ±SE) by RM and 
NRM when held in isolation (Ctrl), in the presence of a non-reproductive female 
(NRF) and in the presence of a reproductive female (RF)
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FIG. 8: Temporal urine release pattern by RM and NRM during stimuli (grey 
area) (NRF, RF) and control periods (white area) (Isolation). T=0min correspond 
to the beginning of a trial and T=120min correspond to the end of a trail. Column 
height represents the fraction (in %) of the total number of urination events for 
each 10 min interval.
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4. DISCUSSION 
 

4.1 Evidence that round goby use non-reproductive pheromones. 

Our findings showed that round goby males altered their urination activity 

in the presence of a conspecific. However, contrary to our predictions, variation 

of the urination activity did not occur in a sexual context. Instead, when a female 

round goby (regardless of her reproductive status) was introduced into the 

experimental tank, both reproductive and non-reproductive males urinated more 

frequently and overall released larger volumes of urine than when isolated. 

Similarly, round goby males tended to urinate more frequently in the presence of 

other male conspecifics than in isolation but the difference was not statistically 

significant. These results contrast with findings from two similar studies which 

investigated urination activity in male Mozambique tilapia Oreochromis 

mossambicus (Almeida et al., 2005) and in female goldfish Carassius auratus 

(Appelt and Sorensen, 2007). In these studies, fishes increased their urination 

activity to actively advertize social dominance and/or spawning readiness to 

potential mates.  

Although we showed that urine is likely the main excretion route for 

putative sex pheromone in the round goby, the fact that both RM and NRM 

altered their urine release in the presence of conspecifics (regardless of the 

conspecific sex or reproductive status) suggests that male urine also carries 

pheromonal products that are unrelated to reproduction. Such species-specific 

non-reproductive odours have been previously identified in other fishes such as 

goldfish and common carp (Saglio and Le Martret, 1982; Saglio and Blanc, 
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1983), Ictalurid catfishes (Bryant and Atema, 1987), Zebrafish Danio rerio (Mann 

et al., 2003), freshwater eel Anguilla rostrata (Sorensen, 1986), sea lamprey 

Petromyzon marinus (Li et al., 1995), banded kokopu Galaxia fasciatus (Baker 

and Montgomery, 2001) and also various salmonids (Selset and Doving, 1980; 

Courteney et al., 1997; Olsen, 1999). In these species, pheromone signals were 

shown to serve a wide range of biological functions, including anti-predatory and 

alarm signalling, species and kin recognition in shoaling and dominance 

hierarchies, species aggregation and migratory attraction (Sorensen and Stacey, 

2004). 

 Because round gobies live in large colonies, it is reasonable to assume 

that the species would evolve some form of intraspecific communication, 

enabling individuals to recognize, locate and aggregate with one another. Like 

shoaling, aggregation of conspecifics is an adaptive cooperation allowing both 

mature and immature individuals to increase foraging success and reduce 

predation risk (Pitcher and Parrish, 1993). Others have suggested the possible 

use of non sex-related pheromones by the round goby (Gammon et al., 2005; 

Corkum et al. 2006). Behavioural experiments conducted by Gammon et al. 

(2005) showed that NRF exposed to RF scent spent significantly more time near 

the odour source compared with control water. Using electro-olfactogram 

techniques, Belanger et al. (2004) found that both RF and NRF responded to 

HPLC fractionated odours from RM. On the other hand, Marentette and Corkum 

(2008) found no clear attraction of male round goby to odours originating from a 

single male or female conspecific.  



 

 58 

Future studies should examine attraction of non-reproductive individuals to 

odours coming from groups of conspecifics. In a study investigating chemical 

communication in immature goldfish and common carp, Sisler and Sorensen 

(2008) found that non-reproductive intraspecific chemical signals in these two 

closely related species were highly species specific. Goldfish were attracted to 

conspecific odours, but not to common carp odour, and vice versa. Therefore, 

intraspecific attractants are of special interest because they could be use to 

control populations of invasive species in North American watersheds such as 

the common carp and the round goby. 

 

4.2 Elaboration of sex pheromone signals in male round goby. 

Results did not support our prediction that only RM should increase their 

urination in the presence of RF to actively signal spawning readiness. Although 

mean urination frequency and mean volume of urine released by RM was higher 

in the presence of RF than in the presence of NRF, the difference was not 

statistically significant. Similar urination patterns were observed in RM and NRM, 

thus further rejecting our original hypothesis.  

If sex pheromones in RM round gobies had evolved as elaborate 

communicatory signals, one would have expected RM to significantly increase 

the potency of their signals when presented with RF by increasing their release 

of pheromone-laden urine. Although, RF round goby do not develop 

morphological secondary sexual characters (Miller, 1984), Murphy et al. (2001) 

and  Belanger et al. (2006) found that RM respond to gonadal extracts and 
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putative pheromones, estrone, from RF. This suggests that RM round gobies, 

like male Mozambique tilapia (Almeida et al., 2005), can recognize reproductive 

females based on olfactory cues. Therefore, it is surprising that RM hormonal 

metabolites would not evolve beyond the level of passive chemical cues, 

especially since males would benefit from it.  

 

4.3 Possible evolution of sex pheromone signalling in male round goby 

 We propose that a different evolutionary pathway explains why RM 

chemical signals are not modulated by changes in the urination activity like in the 

Mozambique tilapia (Almeida et al., 2005) and the goldfish (Appelt and Sorensen, 

2007). Sorensen and Stacey (1999) suggested that the evolution of pheromones 

is mainly influenced by interactions between conspecifics (intrinsic factor) and 

abiotic pressures (extrinsic).  

In the round goby, cavity spawning behaviour represents a strong 

environmental challenge. Although a concealed nest makes it easier for males to 

protect their eggs against predators or conspecific sneakers, it also makes it 

more difficult for reproductive females to locate a potential mate.  Therefore, 

male round gobies face a reproductive trade-off between concealing themselves 

in a nesting cavity and advertising their spawning readiness to the females. We 

propose that the male concealment in a nesting cavity was a strong extrinsic 

factor which has driven the evolution of pheromonal signals in the round goby. 

Therefore, the elaboration of urinary signals has evolved differently in the round 

goby than in other species in which individuals are not concealed inside 
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spawning cavities (i.e. Mozambique tilapia, the goldfish). Release of sex 

pheromone plumes would allow RM round goby to advertise their spawning 

readiness beyond the entry of their nest without leaving it. Accordingly, a male 

could increase his reproductive success not only by releasing stronger signals 

but also by enhancing the dispersion of his reproductive scents to reach a larger 

number of females. If so, evolution in the round goby must have produced a 

specialized mechanism allowing RM to enhance their reproductive success. 

Such a mechanism could exist in the fanning behaviour observed in nesting male 

round gobies and in many other gobiids and nest-guarding species (reviewed in 

Meunier et al., 2009). Fanning behaviour was originally thought to serve in 

cleaning and oxygenating fertilized eggs. However, recent laboratory 

observations by Meunier et al. (2009) showed that fanning activity by RM round 

goby starts days before the first egg disposition. This suggests that fanning 

behaviour might serve to disperse reproductive scents to attract potential mates 

to the nest. To better understand the level of specialization involved in the sex 

pheromone signalling by round goby, future studies should focus on the fanning 

behaviour exhibited by RM and in particular on the possible synchronization 

between pheromone production, urination activity and fanning activity. 

 

4.4 Summary 

This study provides new evidence that round goby may release non-

reproductive pheromones during intraspecific encounter. The use of such 

pheromones have been previously identified in other fishes and has been shown 
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to play a role in shoaling, species recognition, and conspecific aggregation 

(Sorensen and Stacey, 2004). The hypothetical use of aggregation pheromones 

is consistent with the colonial habits of round gobies and the need  to maintain a 

relative proximity among individuals to communicate.  

We also found that RM round gobies do not actively advertise their 

spawning readiness to RF by increasing their release of pheromone-laden urine. 

These findings contrast with the results of other studies investigating the 

urination behaviour of other fish species (Almeida et al., 2005; Appelt and 

Sorensen, 2007). Instead, we suggest that the evolution of sex pheromone 

signalling in the round goby was driven by extrinsic factors such as the 

concealment of males within a nesting cavity. Instead of modulating their 

urination activity, we propose that RM round gobies have evolved other 

specialized mechanisms such as fanning strokes to better diperse their 

reproductive scents and advertise their spawning readiness outside the nest 

without leaving it. Further research is needed to better understand the 

significance of these mechanisms in the elaboration of pheromonal signals by the 

round goby and other cavity spawning species. 
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CHAPTER 4: QUANTIFICATION OF FANNING CURRENTS BY PARENTAL 

MALE ROUND GOBY, A CAVITY SPAWNER. 

 

1. INTRODUCTION 

 

 Odour tracking behaviours are particularly well developed in aquatic 

species. In many fishes and crustaceans, individuals use spatio-temporal 

information contained in odour plumes to navigate toward odour sources such as 

food or mates (Weissburg, 1997; 2000; Zimmer and Butman, 2000). This mode 

of communication enables conspecifics to interact and navigate even in dark or 

turbid environments (Wyatt, 2003; Stacey and Sorensen, 2005).  Although 

olfactory compounds may carry qualitative information about a signaler (i.e., 

reproductive status in the case of a sex pheromone), the compounds do not 

provide directional guidance for a receiver. Therefore, olfactory compounds must 

be released in a structured way so that a receiver can extract the spatio-temporal 

information needed to locate an odor source (Webster and Weisburg, 2001). 

 It is unkown how individuals interpret the information contained in olfactory 

plumes. Different species likely use different strategies (i.e. lobsters and 

estuarine crabs, see Weissburg, 1997) to track odours.  Some receivers exploit 

variations in the odour concentration to infer a general direction of travel 

(chemotaxis) (Atema, 1996; Vickers, 2000; Webster and Weissburg, 2001). In 

other cases, reception of olfactory stimuli triggers a locomotory response of the 

receiver guided by the direction of the ambient flow (odor-triggered rheotaxis) 
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(Zimmer et al., 1995; Atema, 1996; Vickers, 2000). Finally, olfactory plume 

structures may be interpreted using a combination of ambient flow and an odour 

concentration gradient (odor-gated rheotaxis) (Atema, 1971).  

Odour plume structure is strongly affected by the characteristics of the 

odour released and by the ambient flow surrounding the odour source (Webster 

and Weissburg, 2001; Weissburg, 2000). Odours can be actively expelled in the 

environment as pulses or jets (Moore and Atema, 1991; Weissburg and Zimmer-

Faust, 1994) or odour can be passively released in a leaky manner (Atema 

1966). The active and passive release of odours results in different plume 

properties (Finelli et al., 1999). Therefore, prior to investigating how individuals 

track odours in a plume, it is critical to quantify the odour plume release 

characteristics of the signaler (Webster and Weissburg, 2001). 

The round goby Neogobius melanostomus is a small benthic fish of the 

Gobiidae family. During reproduction, male round gobies occupy and defend a 

nesting cavity –usually a cavity under a rock– to which they attract females for 

spawning (Miller, 1984; Charlebois et al., 2001). Because round gobies spawn in 

shallow turbid waters and males are concealed in a nesting cavity, finding a mate 

is a challenge for members of this species. Yet, field observations showed that a 

male round goby can guard eggs from up to 15 different females (MacInnis and 

Corkum, 2000).  Male round gobies produce sex pheromones, which attract 

gravid females to their nest (Arbuckle et al., 2005; Gammon et al., 2005). 

However, it is unknown how males release and disperse these pheromones and 

how females exploit the pheromone plume to navigate toward the males.  
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 We investigated the flow field patterns in the vicinity of a round goby nest.  

Specifically, we described and quantified the fanning currents generated by male 

round gobies (Wickett and Corkum, 1998; Meunier et al., 2009). Fanning is a 

common behaviour in fishes with male parental care (present in 30 bony fish 

families; Blumer, 1979). Fanning consists of the male flipping his fins over the 

egg mass to oxygenate them and to remove waste (i.e. urine, faeces, sediments) 

from the nest cavity (Gibbson, 1993). Meunier et al. (2009) showed that fanning 

activity in the nest-holding male starts before eggs are deposited, suggesting that 

fanning behaviour might have an additional function of dispersing a sex 

attractant. We hypothesized that male round gobies use fanning behaviour to 

actively disperse olfactory compounds in a controlled way that enables gravid 

females to locate the nest in turbid or dark conditions. We use a flow visualization 

technique to reveal the fanning current plume structure in a static environment.  

Because odour plumes are affected by both ambient flow and release 

characteristics, we specifically selected a static environment to separate the 

effect of these two factors on the plume structure. 

 

2. METHODS 

 We used an optical technique adapted from the field of flow dynamic 

science (Breithaupt and Ayers, 1996; Bergman et al., 2004) to observe and 

quantify the currents generated by nest guarding male round gobies. This 

technique, known as Particle Image Velocimetry (PIV) consists of video tracking 
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the trajectories of small tracer particles previously added into the water and 

dispersed by the fanning actions of an organism. 

 

2.1.  Experimental setup. 

 Round gobies were collected by angling on the northwest shore of Lake 

Erie at Leamington Harbour, ON (42°03´N, 82°36´W). After collection, the fish 

were brought to the laboratory at the University of Windsor. A reproductive male 

round goby was placed with 4 gravid females in a 35 L tank. The tank was filled 

with dechlorinated water at 20±1°C (a temperature favorable to round goby 

reproduction in the laboratory, Meunier et al., 2009) and a 21 cm x 11.5 cm x 4.5 

cm PVC shelter to be used as nest by the male. The shelter entrance was 

rectangular and measured 50 x 45 mm. Five circular holes were drilled at the 

back of the nest (3 mm) to allow water circulation inside the nest. The water was 

continuously aerated, insuring a dissolved oxygen level of 75% saturation or 

more. The bottom of the tank was lined with black aquarium gravel to provide 

spawning substrate and insure good contrast with the white tracer particles when 

recording from above the tank. The fish were monitored until spawning occurred. 

Once eggs were deposited, females were removed from the tank so that the 

observed currents were generated by the nest-guarding male only.  

 Polyamide particles were added in the water (Dantec Dynamics, 

Danemark) to achieve a seeding density in the plane of observation of 3-4 

particles/cm2. These particles (with a relative density of 1.03 g.cm-3), are virtually 

neutrally buoyant in water. This property allows them to stay in suspension in the 
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water for an extended period of time. Particle diameter of 50 µm was selected so 

that the particles had negligible drag in water, yet would still be visible for video 

recording. The trajectories of the tracer particles were observed in the vertical 

and the horizontal dimensions. The planes of observation were created by 

illuminating a thin layer of water (3 mm) using a 500 W slide projector (Kodak 

Carousel 800) and a narrow slit (0.5 mm) consisting of 2 razor blades mounted in 

parallel on a photographic slide mount. A color video camera (Hitachi VKC-370) 

was placed perpendicular to the plane of observation to record the movement of 

the particles. Footages were recorded on DVD (SONY RDR-GX330).  A square 

ruler was immersed in the field of view of the camera to calculate the scale of the 

particles’ displacement and to correct for any visual distortions due to the 

perspective.  
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FIG. 1: PIV image analysis setup. 
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After recording, the videos were transferred to a computer for analysis. 

The software Image Video Machine (DanDans Digital Media) was used to 

capture snapshots of a video at regular interval of time (1/25 s). The resulting 

series of pictures were then processed using JPIV, a Java Particle Image 

Velocimetry software (Peter Vennemann, http://www.jpiv.vennemann-online.de/). 

During the PIV image analysis, two consecutive pictures are compared to 

determine the “start” and “end” position of each tracer particle in the plane of 

observation. Based on these two positions, the JPIV algorithm calculates the 

trajectory of the particle and the total displacement during the time laps 

separating the two pictures.  

 For the purpose of the analysis, JPIV first divides the plane of observation 

into rectangular “interrogation windows.” The size of the interrogation window is 

set by the operator before the analysis and must be chosen according to the 

seeding density and the relative speed of the particle. The direction and total 

displacement of particles are then calculated and averaged for each interrogation 

window and eventually displayed as vectors. The origin of each velocity vector is 

at the center of the corresponding interrogation window. An example of the 

resulting vector field is illustrated in Figure 2. 

 To characterize the currents generated by nest-guarding male round 

gobies, we monitored the fanning activity of our individual male for one hour, 3 h 

after egg deposition. We determined the frequency and the duration of the 

fanning bout and performed a PIV analysis for one randomly selected fanning 

bout every 10 min of video. In JPIV’s setting frame, we assigned the interrogation 
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window size at 64 x 64 pixels or 22 x 22 mm (scale 1pixel/0.343mm). For each 

fanning bout, we extracted 25 pictures per second of video and performed a PIV 

image analysis between each consecutive picture during the entire duration of 

the fanning bout.  

 

2.2. Data Analysis 

 All vector fields were calculated for a given fanning bout (25 vector fields 

per second) and averaged using the “average vector field” function in JPIV. The 

resulting average vector field showed the time-averaged velocity of the current 

surrounding the nest. Variations in the current intensity on the horizontal axis (Vx) 

were displayed using a color scale. The spatial and temporal data provided by 

the average vector field were used to measure the various parameters that 

characterize the currents created by fanning the male round goby. Specifically, 

we used JPIV’s “Velocity profile” tool to estimate the flow of water (cm2/s) in 

various regions of the experimental tank.  

 We estimated the pumping rate of the fanning male round goby by 

calculating the average flow of water in the vicinity of the nest entrance.  

Because currents directly at the nest entrance were too turbulent, the velocity 

profile was calculated at 100 mm from the nest entrance. We estimated the 

average distance of propagation of the currents generated by the fanning male 

by measuring the decay of velocity as a function of the distance from the nest. 

Velocity profiles were measured on the average vector field at 100 mm, 150 mm, 



 

 74 

200 mm and 250 mm. We used a quadratic polynomial regression to estimate 

the decay rate of the velocity as the distance from the nest increased.  

  Vx= a.L2 + b.L + c 

 where:   Vx is the current velocity on the horizontal axis; and,  

  L is the distance from the nest. 

  a, b, and c are coefficients of the polynomial equation.  

We then extrapolated the propagation distance of particles by solving the 

regression equation for Vx =0.  We estimated the aperture of the current plume 

by measuring the angle between the right and left edges of the plume.  Angle 

measurements were determined using the image processing software ImageJ 

(Wayne Rasband, National Institutes of Health, USA). Finally, we calculated the 

average vorticity (measurement of the local angular rate of rotation in the fluid) in 

the vicinity of the nest using JPIV’s “orthogonal vorticity” tool.  

 

3. RESULTS  

 

3.1. Fanning bouts frequency and Duration 

 Over a period of one hour, we recorded 50 fanning bouts by the nest-

guarding male round goby.  The male performed 32 bouts using the caudal fin 

(CF) and 18 bouts using the pectoral fins (PF). Each fanning bout lasted in 

average 44 (±5) s  for CF and 19 (±4) s for PF.  In total, the male spent 49% of 

the time fanning (39% CF and 10% PF) and the remaining time caring for the 

eggs (see Meunier et al., 2009). 
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3.2. Caudal Fanning 

 Horizontal PIV analysis of six randomly selected CF bouts revealed two 

general current directions generated during fanning (Fig.  2). Most flow was 

observed leaving the nest cavity (outflow current),  but we also observed one or 

two inflow streams entering the nest from each side of the nest entrance.  

 Inflow currents had a time-averaged (±SE) maximal velocity of 5.4 (±0.78) 

mm.s-1. The location of inflow currents varied between fanning bouts. When the 

male performed fanning strokes on the right side of the nest entrance, inbound 

currents entered the nest on the left side and vice versa (e.g. Fig. 2B). When the 

male performed fanning strokes at the centre of the nest entrance, we observed 

inbound currents on each side of the nest entrance (e.g. Fig. 2C).  

 Steady strokes of the caudal fin generated a strong outflow current 

originating at the nest entrance and propagating outside the field of view of our 

camera. Outflow currents were characterized by a uniform direction of the 

velocity vectors. The time averaged maximal velocity at the centre of the flow of 

13.84 (±0.78) mm.s-1 and sharp velocity gradients at the edges. Overall, direction 

and shape of the outflow current plumes varied between fanning bouts. The 

average opening angle of these plumes on the horizontal plane was 57.6° (±1.8). 

On the vertical plane, PIV analysis revealed that the outbound currents had a 

limited vertical propagation (Fig 3).  Most of the flow occurred in a 50 mm water 

layer at the bottom of the experimental tank. 
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 Analysis of the flow vorticity revealed two distinct areas of turbulence in 

the nest vicinity (Fig 4). Turbulence was created by velocity shears at the 

interface between the outflow current and the stagnant ambient water. In the 

turbulent area at the left edge of the outflow current plume, the mean vorticity 

was 0.066 (±0.002) (anti-clockwise rotation). At the right edge of the outbound 

current, mean vorticity was -0.063 (±0.002) (clockwise rotation). The mean 

vorticity at the center of the outflow current was null. This pattern was consistent 

among fanning bouts. 

 

3.3. Pectoral fanning 

 In contrast with CF bouts, horizontal PIV analysis of the currents 

generated by PF bouts revealed no flow exiting the nest cavity (Fig 5). Pectoral 

fin strokes did not create a well-defined water circulation as seen with CF. 

Instead we observed a weak stream entering the nest with a maximal velocity of 

4.11 mm.s-1.  

 

3.4. Estimated caudal fanning pumping rate 

 Velocity profiles at 100 mm from the nest entrance revealed an average 

flow velocity in the observation plane of 7.7 (±0.66) mm.s-1. Assuming that the 

current plume is uniform in the z dimension and is constrained by the nest 

opening dimensions (48 cm2), we estimated the average CF pumping rate of the 

male round goby at 36.7±3.2 cm3. s-1.  
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3.5. Estimated distance of propagation 

 Velocity profiles calculated at increasing distances from the nest revealed 

that a maximum flow rate in the current plume was reached at 150 mm from the 

nest. Beyond 150 mm, flow rate in the current plume started to decrease. This 

pattern was consistant between fanning bouts (Fig 6). A polynomial regression 

showed that the velocity decay in the current plume along the x axis followed the 

equation:  

V=-2.5 x10-4 L2 + 7.84 x 10-2 L + 2.33  (Fig. 6) 

Where V is the velocity and L the distance from the nest. The regression 

equation accounted for 18.8% of the variance of velocity between fanning bouts 

and the coefficient of correlation R was 0.43. Based on this regression equation, 

outbound currents generated by the fanning male round goby propagated to a 

distance of 344 mm from the nest entrance.  
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FIG. 2:  Horizontal flow visualization: Time-averaged velocity fields for 6 different 
caudal fanning bouts. The nest entrance is on the left side of each diagram. The 
scale of the coordinate system is 1 pixel/0.343 mm (Top and left axis). The color 
code represents the velocity of the particles in the X direction. The temporal 
resolution is 0.04 s (25 frames per sec). T is the duration of the fanning bout in 
seconds. The orange shape is the velocity profile at 100mm from the nest 
entrance. The surface area of the velocity profile is proportional to the in-plane 
flow per unit length in the Z-direction.
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FIG. 3:  Vertical flow visualization: Time-averaged velocity field during a caudal 
fanning bout. The nest entrance is on the left side of each diagram. The scale of 
the coordinate system is 1 pixel/0.343 mm (top and left axis). The temporal 
resolution is 0.04 s (25 frames per sec). T is the duration of the fanning bout. The 
color code represents the time-averaged velocity of the particles in the X 
dimension. 

T=2 min 10 s 
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FIG. 4: Horizontal flow visualization: Time-averaged vorticity fields for 6 different 
caudal fanning bouts. The nest entry is on the left side of each diagram. The 
scale of the coordinate system is 1 pixel/0.343 mm (top and left axis). The 
temporal resolution is 0.04 s (25 frames per sec). T is the duration of the fanning 
bout in seconds. The color code represents the orthogonal vorticity of the flow. 
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FIG. 5: Horizontal flow visualization: Time-averaged velocity fields for a pectoral 
fanning bout. The nest entry is on the left side of the diagram. The scale of the 
coordinate system is 1pixel/0.343mm (top and left axis). The temporal resolution 
is 0.04 s (25 frames per sec). The color code represents the velocity of the 
particles in the X dimension. T is the duration of the fanning bout. 

T=13 sec  
secsec 
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FIG. 6:  Decay rate of time-averaged velocity (V) function of the distance from 
the nest (L). A polynomial regression showed that the time-averaged velocity of 
the fanning currents follows the equation: V=-2.5 x10-4 L2 + 7.84 x 10-2 L + 2.33. 
The estimated distance of propagation of fanning currents is 344 mm. 
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4. DISCUSSION 

 

 Our results showed that fanning strokes performed by a nest–guarding 

male round goby created strong circulatory currents in the nest vicinity. We 

demonstrated that caudal fanning generates currents entering and exiting the 

nest. Pectoral fanning also generated an inflow current but no outflow current. 

These results are consistent with the egg oxygenation and waste removal 

function proposed by others for the fanning behaviour of many cavity-spawning 

fishes (Jones and Reynolds, 1999; Gibson 1993).  

The round goby male pumped “waste water” out of the nest by repeated 

tail flippings. Low pressure resulting from water leaving the nest cavity generates 

currents of opposite direction, bringing “fresh water” inside the nest. With some 

assumptions, we estimated that the male used in this study pumped an average 

36.7 mL.s-1 during each fanning bout. However, this pumping rate likely varies 

with male characteristics (larger males likely pump at a higher rate), age of eggs 

(i.e. time after egg deposition) and environmental factors. In the sand goby 

Pomatoschistus minutus (Lindström and Wennström 1994, Järvi-Laturi et al. 

2008), freshwater goby Padogobius martensii (Toricelli et al., 1984), two-spotted 

goby Gobiusculus flavescens (Skolbekken and Utne-Palm, 2001) and a 

landlocked goby Rhinogobius sp (the orange form) (Maruyama et al., 2008), 

fanning activity is positively correlated with egg age and/or negatively correlated 

with the oxygen concentration.  

 Interestingly, we found that pectoral fanning does not produce a strong 
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water circulation in comparison with caudal fanning. Instead, we observed a 

weak current entering the nest and did not detect any current exiting the nest. 

This result suggests that the waving of the pectoral fin in a typical figure 8 pattern 

(Meunier et al., 2009) does not serve the same function as the flipping of the 

caudal fin in the round goby. The hydrodynamic effect of pectoral fins waves is 

not expressed outside the nest and thus must be expressed inside the nest 

cavity. Because we observed that caudal fanning always followed pectoral 

fanning, we suggest that male round gobies use pectoral fanning to stir solid 

wastes that settled in the nest cavity (i.e. faeces, sediments) and facilitate their 

transport by the exiting current generated during caudal fanning. Similarly, male 

bluegills Lepomis macrochirus fan theirs eggs with their pectoral fins, not to 

aerate them (sunfish eggs hatch well in low oxygen conditions), but likely to 

reduce siltation (Breder, 1936).  

Although the present study was conducted only 3 h after egg deposition 

and in relatively high oxygen conditions (75% saturation), the focal male spent as 

much as 49% of his time fanning. This value is much higher than those reported 

in other gobiids with freshly laid eggs in high oxygen concentration 

(Pomatoschistus minutus, 16% (Lindstrom and Wennstrom, 1994; Jones and 

Reynolds, 1998); Gobiusculus flavescens , 18% (Skolbekken and Utne-Palm, 

2001); Rhinogobius sp: 32% (Maruyama et al., 2008)).  Meunier et al. (2009) also 

reported a high fanning activity by spawning male round gobies in similar 

conditions. These studies suggest that male fanning behaviour may play a 

secondary role in the biology of the round goby such as the dispersal of olfactory 
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signals. 

 Our results showed that currents produced by a nest-guarding male round 

goby can maximize the dispersion of chemical signals. The male was able to 

propagate a current as far as 35 cm from his nest, over a surface area of 987 

cm2 and had a limited vertical (50mm) propagation. Although, these values likely 

vary with male’s characteristics and vigour at fanning, it is reasonable to assume 

that male round gobies exploit these currents to better “cast” their reproductive 

scents and attract a larger number of mates. Laboratory observations by Meunier 

et al. (2009) showed that fanning activity of breeding male round gobies started 

well before the first egg deposition. This reinforces the case that male fanning 

behaviour plays a key role in the mate attraction process in the round goby. The 

association of fanning and mate attraction has been previously documented in 

the sand goby, whose males increase their fanning efforts in the presence of 

potential mates (Pampoulie et al. 2003) and in the three-spined stickleback 

Gasterosteus aculeatus where males perform courtship fanning even in the 

absence of eggs in their nest (Sevenster, 1961).  

 Although the association of nest fanning and sex pheromone dispersal 

has yet to be reported in fish, some aquatic species are known to generate their 

own excretory currents to disperse odours (Atema, 1996). For instance, male and 

female lobsters can inject urine into their gill current to disperse pheromonal 

signals during courtship (Atema, 1986; Atema, 1995). Male lobsters also use 

pleopod fanning at the shelter entrance to disperse odours into the environment 

and advertise their reproductive status (Atema, 1986). The release velocity of an 
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odour and the distance of the odour source over the substrate dramatically affect 

the character of a dispersion plume (Webster and Weissburg, 2001). In the case 

of an active release (release velocity superior to ambient flow velocity) with a 

source sitting on the substrate (i.e. a male round goby releasing urine and 

fanning), experiment showed that high velocity shear results in more 

homogenous odour concentration in the dispersion plume (Webster and 

Weissburg, 2001). Thus, fanning behaviour could serve to homogenize odor 

plumes and enhance their detectability by receivers.  

 Beyond the dispersal of olfactory signals, fanning currents themselves 

carry directional information that can be exploited by receivers to navigate toward 

an odour source (Atema, 1996). Our results showed that time-averaged current 

plumes generated by male round gobies have a constant pattern that is 

characterized by a strong linear flow at the center of the plume and areas of 

turbulence at the edges. In these conditions, it is likely that round goby females 

use a combination of olfactory and mechanical cues –referred as chemo-

rheotaxis (Atema, 1996; Webster and Weissburg, 2001)– to find mates in turbid 

or dark environments.  In the slow moving waters inhabited by the round goby 

(Miller, 1984; Skazkina, 1972; Charlebois et al., 2001), an active dispersal area 

dominated by a sharp flavored current likely provides better directional 

information than loose patches of odours passively drifting in the ambient flow 

(Atema, 1996).  Round gobies are particularly well suited for the detection of 

modulations in the ambient flow pattern. The abundance of superficial 

neuromasts throughout the body of round gobies makes them more sensitive to 
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hydro-mechanical stimuli than other fishes with neuromasts enclosed in the 

lateral line canal (Jones and Janssen, 1992; Hoekstra and Janssen, 1985, 1986; 

Janssen et al., 1990). Finally, the release velocity of an odour and the distance of 

the odour source over the substrate dramatically affect the character of the 

dispersion plume (Webster and Weissburg, 2001). In the case of an active 

release (release velocity superior to ambient flow velocity) with a source sitting 

on the substrate, experiment showed that high velocity shear results in more 

homogenous odour concentration in the dispersion plume (Webster and 

Weissburg, 2001).  

 

5. CONCLUSION AND FUTURE DIRECTIONS 

 

 In this study we showed that a simple and low cost technique adapted 

from the field of fluid mechanics could be applied effectively to study the 

biological flow fields in the vicinity of round goby nests.  

 We demonstrated that fanning behaviour by a nesting male round goby 

produces the effect proposed by other studies. Specifically a water circulation 

which conveys well oxygenated water inside the nest and flushes wastewater 

outside the spawning cavity.  We also provide the first evidence to support the 

hypothesis that fanning behaviour plays an important role in courtship behaviour 

of male round gobies. In addition to the active dispersal of olfactory compounds, 

fanning currents could also serve as hydro-mechanical stimuli to carry directional 

information enabling a female to locate a nesting male. Hence, we propose that 
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female round gobies use a combination of chemotaxis and rheotaxis to find 

potential mates or to move within range of other male sensory signals (i.e. visual, 

vocal). 

 Further research is needed to fully understand the role of fanning 

behaviour in the mate attraction process in the round goby. Variations in the 

fanning activity between different males (i.e. age, morphometry) before and after 

spawning need to be investigated. Questions, such as how males orchestrate 

fanning behaviour and pheromone release (i.e. urine release) and how females 

use these signals to navigate needs to be answered. Finally, to fully understand 

the structure of odour plumes released by male round gobies, future 

investigations should define and quantify the typical ambient flow dynamic in the 

round goby habitat.  

 Most of these questions can be addressed using the same PIV technique 

described in this experiment. Yet, some simple modifications could increase the 

precision and accuracy of future results.  A larger experimental flume would 

avoid the creation of recirculation currents by the reflection of the fanning current 

against the end of the flume. A high-speed camera would enable the operator to 

sample more than 25 frames per seconds so that faster fanning currents could 

be analysed at a finer scale. Finally, a wide-angle lens would enable the 

visualization of the entire fanning plume and better assess the range of attraction 

of sex pheromones released by the male round goby. 
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CHAPTER 5: GENERAL DISCUSSION 

 

In studying chemical communication, it is important to characterize how 

olfactory signals are released and dispersed by the producer before investigating 

how these signals are interpreted by the receiver (Atema, 1996; Vickers, 2000; 

Webster and Weissburg, 2001). The study of a sensory system function and 

operation first requires one to characterize the nature of the input to the system 

(Webster and Weissburg, 2001). In the case of chemically mediated guidance, a 

receiver exploits spatio-temporal information contained in odor plumes to locate 

and navigate toward an odour source. The patterns and distribution of odours 

within plumes are mainly affected by the ambient flow and by the release 

characteristics of the originator of the signal (Webster and Weissburg, 2001). 

Thus, it is important to characterize ambient flow and release characteristics of 

the signaler to understand how receivers exploit odor plumes to locate and 

navigate toward distant objects. 

In the present study, we characterized the release and dispersion of 

olfactory urine signals by nesting male round gobies. We determined that urine is 

the main excretion route for sex pheromones in male round gobies. We found 

that male round gobies release pheromone-laden urine spontaneously and do 

not modulate their urination activity in the presence of reproductive females. In 

other words, urine releases are not triggered by reproductive female stimuli. This 

result is consistent with the idea that nesting male round gobies release 

pheromones as chemical guidance cues to attract remote females to the nest in 
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turbid water. In such conditions and because reproductive male round gobies are 

concealed in their nest, the males likely see, hear or smell gravid females within 

a short range.  Thus, males initiate communication by releasing urinary sex 

pheromones and attract gravid females within range of other sensory cues. The 

fact that reproductive males do not modulate their urine release in the presence 

of a reproductive female suggests that male urinary signals are not active signals 

intended to court a nearby individual. Instead, urinary signals are passively 

released to create an odor track enabling distant reproductive females to 

navigate toward the nesting cavity.  

Based on our research findings, we suggest that  a reproductive round 

goby male may enhance his reproductive success by increasing the potency of 

his olfactory signal and/or by enhancing the dispersion of his pheromones. In 

other words, olfactory signal potency and dispersion must vary substantially 

according to male reproductive qualities. The study of male round goby urination 

activity (chapter 3) confirmed that there were significant variations in the volume 

and frequency of urine releases between individuals of the same reproductive 

status. During a typical behavioural assay, males urinated up to 25 times in 20 

min. Male urine samples collected over 4 h contained up to 117 ηg of putative 

sex pheromone 11-oxo-ETIO-conjugate. By increasing the frequency or volume 

of urine release, a male could increase the potency of his signal and thus 

increase the chances that a nearby female would detect his presence. 

Alternatively, by enhancing the dispersion of his pheromones, a higher quality 

male could increase his “area of influence” and reach more potential mates 
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nearby. Because round gobies inhabit slow moving waters (Millers, 1984) of the 

boundary layer (the water layer closest to the substrate) (Denny, 1993; Vogel, 

1993), ambient flow is likely a poor vector for the horizontal transport of 

pheromonal attractants (Weissburg, 1997, 2000; Vickers, 2000). Thus, we 

hypothesized that male round gobies must have evolved a mechanism enabling 

reproductive individuals to actively “cast” their smell at a greater distance from 

the nest.  

To identify such a dispersal mechanism, we investigated the reproductive 

behaviour of round goby. We presented the first detailed description of the round 

goby spawning behaviour and defined how nesting males allocated their time 

and energy to different reproductive activities (Chapter 2). Specifically, we found 

that parental activities by male round gobies are dominated by fanning 

behaviour. In cavity-spawning species (this breeding system is characterized by 

many Gobiidae, Cottidae and others), fanning is believed to enhance egg 

survival by bringing oxygen and removing wastes from the nesting cavities 

(Gibson, 1993; Torricelli et al., 1984; Jones and Reynolds 1999a; Takegaki and 

Nakazono 1999; Maruyama et al. 2008). Interestingly, we observed that round 

goby fanning behaviour starts well before the first egg is deposited (chapter 2) 

and is more intense than in other gobiids with freshly laid eggs and in high 

oxygen conditions (discussed in  chapter 4) (Lindstrom and Wennstrom, 1994; 

Jones and Reynolds, 1998; Skolbekken and Utne-Palm, 2001; Maruyama et al., 

2008). These novel observations suggest that fanning in the round goby must 
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have an additional function, other than nest aeration, and is likely involved in the 

mate attraction process.  

We proposed that fanning currents are generated by nesting male round 

gobies to enhance the dispersal of pheromonal products and to attract mates to 

their nest. Thus, fanning could be an adaptive behaviour whereby nesting males 

combine parental care (specifically nest maintenance) and mate attraction. From 

an evolutionary point of view, this raises the question of which function evolved 

first. Fanning is a common behaviour shared by at least 30 bony fish families with 

parental care (Blumer, 1979). The involvement of fanning in the mate attraction 

process has been shown in at least two species: 1. Male sand gobies increase 

their fanning efforts in the presence of potential mates (Pampoulie et al. 2003). 2. 

Male three-spined stickleback Gasterosteus aculeatus perform courtship fanning 

even in the absence of eggs in their nest (Sevenster, 1961). Some crustaceans 

also produce their own current to disperse odours. For instance, male lobsters 

Homarus americanus use pleopod fanning at the shelter entrance to disperse 

odours into the environment and advertise their reproductive status (Atema, 

1986). However, further research is needed to investigate the association of 

fanning and pheromone dispersion in fish.  

Odours can be actively expelled in the environment as pulses or jets 

(Moore and Atema, 1991; Weissburg and Zimmer-Faust, 1994) or odours can be 

passively released in a leaky manner (Atema 1966). The release velocity of an 

odour and the distance of the odour source over the substrate dramatically affect 

the character of a dispersion plume (Webster and Weissburg, 2001). In the case 
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of an active release (release velocity superior to ambient flow velocity) with a 

source sitting on the substrate (i.e. a male round goby releasing urine and 

fanning), experiments showed that high velocity shear results in more 

homogenous odour concentration in the dispersion plume (Webster and 

Weissburg, 2001). Thus, fanning behaviour could serve to homogenize odor 

plumes and enhance their detection by receivers. 

We used a flow visualization technique (particle image velocimetry) to 

investigate the fanning currents generated by a nesting male round goby. We 

found that the characteristics of these currents were consistent with the function 

proposed above. The waving action of the male’s tail generated strong currents 

that propagated from the nest.  Currents produced by an experimental male 

propagated horizontally as far as 35 cm from the nest entrance and had limited 

vertical propagation. We estimated that the male could expel up to 36.7 mL.s-1 of 

water from his nest during a fanning bout. The limited vertical propagation of 

these currents results in most of the fanning energy to be dissipated in the 

direction of the longitudinal axis. This supports the idea that male round gobies 

use fanning currents to “cast their odour” as far as possible from their nest and 

as close as possible to the substrate (round gobies are benthic) to reach remote 

reproductive females. We found that the time-averaged current plumes had a 

constant pattern characterized by a strong linear flow at the center of the plume 

and areas of turbulence at the edges. We concluded that, in addition to 

enhancing the dispersal of pheromones, these currents could also be exploited 

by females to infer a direction of travel and navigate toward males (Atema, 1996; 
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Webster and Weissburg, 2001). In fact, flow can provide an additional source of 

information that can be integrated with the detection of olfactory signals (Vickers, 

2000).  In the slow moving waters inhabited by round goby (Miller, 1984; 

Skazkina, 1972; Charlebois et al., 2001), an active dispersal area dominated by a 

sharp flavored current likely provides better directional information than loose 

patches of odours passively drifting in the ambient flow (Atema, 1996). The 

combination of chemotactic (odor mediated) and rheotactic (flow mediated) 

mechanisms to locate odour source appears to be common in many fish species 

(Vickers, 2000). For instance, rainbow trout Oncorhynchus mykiss (Emanuel and 

Dodson, 1979) and sharks (Hodgson and Mathewson, 1971) use odour detection 

and up-current movement to locate sources of odour. However, for a substrate-

dwelling species such as round goby, benthic crustaceans are perhaps better 

comparative models. Specifically, chemotaxis and rheotaxis in crabs and lobsters 

have been particularly well studied (Weissburg and Zimmer-Faust, 1993, 1994; 

Zimmer-Faust et al., 1995; Moore et al., 1991). Experimental designs and results 

of these studies could inspire future studies to explore odour and flow-modulated 

navigation in female round gobies. 

 

Overall, this study provided the first description of the release and the 

dispersion of urinary signals by nesting male round gobies. The significance of 

these results resides in the understanding and the characterization of the round 

goby pheromone communication system. These results could find a practical 

application in the design of pheromone baited traps to control the spread of this 
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invasive species into new areas. We developed new techniques for rearing round 

gobies in the laboratory, visualizing urinary signals and quantifying biological flow 

fields. These methods will find direct applications in future studies investigating 

pheromone signaling in the round goby and other aquatic species.  

Additionally, our research findings raise new questions about the evolution 

of sex pheromone signals in fish. In contrast with female goldfish (Appelt and 

Sorensen, 2007) and male Mozambique tilapia (Miranda et al., 2005), 

reproductive male round gobies do not modulate their urinary signals in the 

presence of a potential mate. An explanation could be that urinary signals do not 

perform the same function in these species. In the study of pheromonal systems, 

it is important to make the distinction between sex attractants (signals that lure 

conspecifics in the general vicinity of the male) and courtship pheromones that 

function once the mate has been identified and preliminary courtship behaviour 

are initiated (Houck, 1987; Houck et al., 2007). Male Mozambique tilapia and 

female goldfish release a urine signal to advertise their quality as a mate, social 

dominance and spawning readiness (Miranda et al., 2005; Appelt and Sorensen, 

2007). Thus, the function of urinary signals in Mozambique tilapia and goldfish is 

related to courtship and mate assessment. On the other hand, male round gobies 

release urinary signals to attract female individuals that otherwise could not 

detect the males because of the nest concealment and the ambient turbidity. 

Thus, the function of urinary signals in male round gobies appears to be mate 

attraction. We proposed that the evolution of pheromone signals in cavity 

spawners was mainly driven by extrinsic factors (i.e. the male concealment in a 



 

 99 

nesting cavity) instead of intrinsic factors (i.e. intra-specific interaction). For cavity 

spawning species with parental care, finding a mate can be challenging. Nest 

guarding males face a reproductive trade-off between providing care to the eggs 

inside the nest and advertising their spawning readiness outside the nest to 

attract females to spawn. Thus, some cavity spawning species (if not all) must 

have evolved mechanisms enabling males to advertise their presence without 

leaving the nest. This study showed that in the round goby, pheromonal 

attractants are released through the urine and actively dispersed by reproductive 

males from within the nesting cavity.  

Further research is needed to fully characterize the round goby 

pheromonal system. The chemical identification of the active compounds 

composing male round goby pheromonal blend is in progress (B. Zielinski, 

University of Windsor).  A colleague, Dr. J. Ackerman (University of Guelph), is 

investigating the influence of ambient flow on the dispersion of pheromone 

signals in typical round goby riverine habitats. The results of Dr. J. Ackerman’s 

study will help to understand how round goby pheromones are dispersed after 

dissipation of the male fanning currents. Ultimately, the characterization of both 

fanning currents and ambient flow in round goby habitat will help to determine the 

range of attraction of male round goby pheromone.  

Future studies should examine how urine release and fanning behaviour 

are synchronized, how females exploit pheromone plumes to navigate toward a 

nest and how other signals (i.e., vocal, visual) are involved in the mate attraction 

and mate selection processes in the round goby. The synchronization of urine 
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signals and fanning currents could be investigated using a combination of the 

urine release visualization and flow field visualization techniques developed in 

this study (chapter 3 and 4). The transport of urine signals by fanning currents 

could be documented by using a fluorescein injected male in a tank equipped for 

PIV analysis and UV light. New techniques such as the planar laser-induced 

fluorescence (LIF) technique (see Weissburg, 2000) could also be used to 

quantify concentration of olfactory compounds within the dispersion plume. 

Characterization of the concentration patterns within the dispersion plume would 

enable future studies to understand how female round gobies exploit patterns in 

male odour plumes to navigate toward a nest. By altering plume characteristics 

(release rate, ambient flow, odor concentration), future studies could examine the 

relative importance of chemotactic and rheotactic mechanisms for the orientation 

of gravid females in a turbid environment. Finally, the combined role of visual, 

vocal and chemical signals in the spawning behaviour of the round goby could be 

investigated using realistic models, audio recordings and male urine samples (or 

artificial pheromones) as experimental stimuli. 

From a conservation point view, the characterization of the round goby 

pheromonal system will be a significant asset to control the round goby 

population in the Laurentian Great Lakes and elsewhere. Future pheromone 

baited traps could be used to control the spread of this invader to new areas or 

locally to protect sensitive areas where native species spawn. Ultimately, the 

understanding of the round goby pheromonal system will improve our 
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understanding of the critical role that chemical signals play in orchestrating many 

animal interactions. 
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APPENDICES 

 
APPENDIX A: NUMBER AND DURATION OF URINATION EVENTS BY 

REPRODUCTIVE AND NON-REPRODUCTIVE MALES ROUND GOBY. 
2008 AND 2007 DATA.  
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APPENDIX B: STEP-BY-STEP PROTOCOL FOR PARTICLE IMAGE 
VELOCIMETRY ANALYSIS 
 

PRE-PROCESSING: 
-STEP 1: Extract a PIV video clip using FLASH DVD-RIPPER 
FLASH DVD-RIPPER is used to extract video clips of chosen length from a DVD 
format to MPEG format. 

-  Insert a DVD 
-  Open DVD-ripper 
-  Click on OPEN DVD and select the Chapter of interest 
-  Make sure the option “MPEG” is selected on the main window of FLASH 

DVD-RIPPER (AVI format result in lower video quality) 
-  Select a folder location where to save the video clip using the “save as” 

bar at the bottom of the main window  
-  Click on the “convert” button to open the “Output Parameters” window 
-  On the chapter section, select “Select a clip” and click on the “select” 

button 
-  Use the cursor to select the “start point” and “end point” of the video clip of 

interest (note that FLASH DVD-RIPPER calculate the number of frames in 
the selected video clip). Click “OK” 

-  For better video quality, select the “MPEG 2” option in the “MPEG format” 
section 

-  In the “outpout video size” section, select “resize output video” and video 
size 720 x 480 (Best quality with the HITACHI video) 

-  Click OK 
-  FLASH DVD-RIPPER automatically extracts the selected video clip in the 

chosen folder. It usually takes 1min to extract a 1min video clip 
 
-STEP 2: Create snapshots of the MPEG video clip using IMAGE VIDEO 
MACHINE 
IMAGE VIDEO MACHINE is used to capture consecutive snapshots of a video 
clip at a chosen frequency. With a regular camera the maximum sampling 
frequency is 25 images/second. A high sampling frequency is necessary to 
perform PIV analysis.  

-  Click on the “Image  Video” tab and use the input video field to open a 
MPEG PIV video clip. 
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-  In the “Output option” section, select a picture format. The PNG offers the 
best picture quality. 

-  Choose 25 images per second 
-  Finally select an output folder and click “Extract Images” 

 
-STEP 3: Subtract the picture background using IMAGEJ 
Bright objects in the picture’s background result in unwanted correlations during 
the PIV analysis. The background of a picture can be erased using the “image 
calculator” function of IMAGEJ. This function can be automatically applied to a 
sequence of pictures called “stack”. However, because of memory limitation, this 
process can be applied only to stacks of 350 pictures at a time (14 s of video 
sampled at 25 pics/sec). Thus, the process must be repeated several times for 
PIV clips longer than 14s. 

‐ In IMAGEJ choose File/Import/Image Sequence 

‐ Open the first image extracted in STEP 2 
‐ In the panel “sequence option”, enter the number of image (maximum 

350) and the starting image (for instance 1) and click OK to created an 
images stack 

‐ Now that the images stack is created, click on the menu Image/Stacks/ Z 
project 

‐ Select “start slice” 1, “stop slice” 3 and “Projection type: Min intensity”. 
Click OK to create an image named MIN_[name of you file] 

‐ Click on the menu Process/Image Calculator 
‐ Select “image 1” the name of your image stack, “operation: subtract” and 

“Image 2” the image named MIN_[name of you file]. Click OK and OK 
again to process the entire images stack 

‐ You get a new images stack without background. Save the images by 
clicking File/Save as/Image Sequence. Choose the PNG format for the 
best quality image 

‐ If your PIV clip was longer than 14s (more than 350 images), repeat the 
same process until every images have been “cleaned” 

 
PIV ANALYSIS WITH JPIV 

The application JPIV can be downloaded at: http://www.jpiv.vennemann-
online.de/. Follow the instruction on the website to install the application and 
set the library file 

 
- STEP 1: JPIV settings 



 

 110 

‐ In the Settings frame of JPIV, click on “General” and select the option 
“Consecutive” 

‐ In the Settings frame of JPIV, Click on “Interrogation Window” 
‐ In the “Multipass” field choose 1 
‐ In the interrogation window width field write 64 
‐ In the interrogation window height field write 64 
‐ In the search domain field width write 32 
‐ In the search domain field height write 32 
‐ In the horizontal vector spacing field write 32 
‐ In the vertical vector spacing field write 32 
‐ In the “between passes” field select the options “Normalized median test”, 

“replace invalid vectors by median” and “3 x 3 smoothing” 
‐ Do not change the other option on this page 

 
- STEP 2: Run the PIV analysis 

‐ Click on file/choose files and open the images created during the pre-
processing (use the shift key to select a range of files) 

‐ In the Files frame select the files that you just opened (use the shift key to 
select a range of files) 

‐ Click on PIV/Run PIV image analysis. The save window opens 
‐ In the save window choose the destination folder for the PIV vector files 

that JPIV will create. Name the vector file: [name of your file]_vector 
‐ JPIV analyze the PIV images two by two. Depending of the number of 

images to analyze, this process can take from a few minute to a few 
hours. 

 
- STEP 3: Filter the vector files 

‐ In the Files frame select the vector files created in the previous step 
‐ Click on Script/Batch_vector_filtering 
‐ In the “edit parameters” window choose the following filtering parameters: 

normMedTst 1 

invIsolated 1 

replByMed 1 
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rmInvalid 1 

medFilt 0 

medFiltAll 0 

smooth 0 

smoothAll 0 

‐ Click Execute. In the save window, choose a destination folder and name 
the file: [name of your file]_vector_filtered 

 
- STEP 4: Create a time-average vector file 

‐ In the files frame, select the filtered files created in the previous step 
‐ Click on Vector/Average vector field 
‐ In the save window, choose the destination folder and name the file: 

[name of your file]_vector_filtered_averaged 
 
- STEP 5: Use a color scale to display the flow velocity Vx 

‐ In the settings frame, click on Preferences/Vector plot 
‐ In the Background section, select the option “background picture” and 

select an image file to be used as a background for the PIV vector file 
‐ Select the option “color coding” and in the field “data column” write 2 

(When creating a PIV vector file, JPIV sorts data into four columns: 
Columns #0 and #1 correspond to the x and y coordinates of each velocity 
vectors. Columns #2 and 3 correspond to the Vx and Vy components of 
each velocity vectors. A column #4 can be created for example when 
calculating vorticity) 

‐ Set the maximum and the minimum values for the flow velocity (for 
example -3 and 8) 

‐ In the Files frame, click on the time-average vector file created in step 4 to 
observe the final result of the PIV analysis. 

 
- STEP 6: Create an image file from the PIV vector file 

‐ In the Files frame, click on the time-average vector file created in step 4 
‐ Place the cursor on the vector image and right-click 
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‐ Click on the option “export as a pixel image” to save the file as an image 
file that can then be displayed with any other software (i.e. MS Word, 
Excel, Powerpoint) 
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