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ABSTRACT 

A useful model group to examine reproductive plasticity in acoustic 

responsiveness is the family Gobiidae. Male round gobies Neogobius melanostomus emit 

calls and females respond to these calls with high specificity. The current study 

investigates differential attraction between reproductive morphologies of the goby to 

conspecific calls and explores the use of calls to develop a bioacoustic trap. Behavioural 

responsiveness to conspecific calls was tested using playback experiments in the lab and 

field. Females showed a strong attraction to the grunt call in both the lab and field, while 

nonreproductive and sneaker males preferred the drum call in the lab, but favoured the 

grunt call in the field. By determining the relationship between reproductive state and 

auditory responsiveness to conspecific calls, I am further elucidating the function of 

acoustic communication in the round goby and may be essential when creating control 

strategies to prevent the spread of the invasive species.  
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CHAPTER 1: 

GENERAL INTRODUCTION 

Introduction 

 

Fish, like many other taxa use signals in a variety of ways to communicate with 

conspecifics, with acoustic communication working best from a distance (Amorim 2003). 

Fish use acoustic communication in a number of ways, including mate attraction 

(Raffinger and Ladich 2009), courtship (Smith 1992), territorial defense (Amorim and 

Hawkins 2000), and in some cases, exploit sounds via eavesdropping (Myrberg 1981). 

The characteristics of these sounds between conspecifics and heterospecifics have been 

found to differ in ways that allow for not only species recognition, but also mate 

recognition, to prevent costs such as wasted energy and reduced reproductive success 

(Kihslinger and Klimley 2002). The manner in which fish produce sounds varies from 

one species to the next which can encompass the use of the swim bladder (associated 

with sonic muscles) and the rubbing and knocking of hard structures, such as bones, 

together to generate sounds (Kasumyan 2008). Furthermore, the manner in which fish 

detect sound can differ between species as well. For example, some fishes use their swim 

bladder in association with specialized structures to detect the pressure component of 

sound from farther distances, which allows for the detection of higher frequency sounds 

(Popper and Fay 1993, 1999). In contrast, fishes that do not possess these hearing 

specializations are usually restricted to low frequency hearing. In addition, fishes with 

hearing specializations in association with the swimbladder have also been found to 

lower the hearing threshold of fish, which is frequency dependent (Popper and Fay 1993, 

1999). While all fish use their ears to detect sounds in some shape or form, those without 
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a swimbladder must depend on other mechanosensory mechanisms (Popper and Fay 

1993, Popper and Schilt 2008). Despite communication modalities playing a large role in 

the life of organisms, in order for any modality to work efficiently and relay information 

accurately, signal types must be able to transmit through the environment properly.  As a 

result, due to constraints that exist in some habitats, certain forms of communication are 

better suited to one habitat type more so than others, and therefore modalities that prove 

advantageous should be used accordingly (Roger and Cox 1988). In regard to aquatic 

environments, the modality that proves most useful is acoustic communication as sound 

is able to maintain the signal’s integrity in both in the speed of transmission and 

maintaining information within the sound itself, through a variety of novel situations, 

including over varying distances (long and short), depths (shallow and deep), light 

intensity, and turbidity, allowing organisms to interact with their environment and with 

one another (Rogers and Cox 1988). However, while acoustic communication is more 

suitably utilized in aquatic environments, transmission of sound in water is not without its 

problems. The transmission of sound can be affected by fluctuating environmental 

characteristics such as temperature, salinity, and water pressure that changes with depth 

that can alter the ability of the water medium to transmit sounds accurately and thereby 

affecting propagation and attenuation of acoustic signals (Popper and Fay 2011).  

Acoustic communication is very complex in function, production, and interaction 

between conspecifics and heterospecifics. The following review will examine the 

mechanisms used by fishes to produce sounds, what aspects of sound matter to fishes, 

sound propagation in water and how fish hear, uses of acoustic communication in fishes, 
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and provide an overview of my study species, the round goby, Neogobius melanostomus, 

its known background and behaviour, and the objectives of my study .  

Mechanisms of Sound Production in Fishes 

 

Swimbladder and Sonic Muscles  

 

 Fish possess different organs and mechanisms for sound production, and one of 

the best studied mechanisms in fish (and the most commonly used to produce sounds) is 

the swimbladder (Tavolga, 1960). The swimbladder is a gas-filled sac (also known as the 

gasbladder) that’s function is typically to assist with maintaining a fish’s buoyancy within 

the water column (Kasumyan 2008). However, the swimbladder can have a secondary 

function when associated with an anatomical striated structure called sonic muscles, used 

to produce sound in some fishes (Kasumyan 2008). Sonic muscles, when contracting, 

causes vibrations in the swimbladder to occur, that in turn, generates sonic vibrations, 

described as drumming sound similar to the beating of a drum (Tavolga 1960). Sonic 

muscles have been found to be attached to the swimbladder, either directly or indirectly 

(Kasumyan 2008). Sonic muscles connected directly to the swimbladder wall laterally 

have been observed in the grey gurnards, Eutrigla gurnarrdus, and in the family, 

Mormyridae (Amorim et al 2004, Crawford et al. 1986). When these muscles contract, 

sounds are generated by resonation of the swimbladder itself (Tavolga 1971). In other 

species, such as the pigfish, Congiopodus leucopaecilus, striated muscles run between the 

vertebral intercentra and the back border of the pectoral girdle, resulting in a drum-like 

sound through the swimbladder when the muscles contract (Packard, 1960), similar to 

plainfin midshipman, Porichthys notatus.  Indirect connections are associated with the 

bony elements of the axial skeleton, connecting with the swimbladder by means of 
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ligament attachments, such as catfish of the Mochokidae family, where the sonic muscle 

first inserts onto a thin, bony plate (elastic spring) and extends to the swimbladder, where 

rapid contractions of the sonic muscles cause the elastic spring and the swimbladder to 

vibrate (Ladich and Bass 1996, 1998). 

 There is some controversy on how the swimbladder produces sound when the 

sonic muscles contract as it is believed that the size and shape of the swimbladder affects 

sound production in fish (Zelick et al. 1999, Kasumyan 2008, Amorim 2006). In many 

species, the swimbladder possesses protrusions and diaphragms or membranes (Zelick et 

al. 1999, Kasumyan 2008, Amorim 2006). These diaphragms break up the swimbladder 

into a number of chambers, where a small opening surrounded by non-striated muscle, 

allows for gas to move from one chamber to another. Though not experimentally tested, it 

is believed that sounds in fish are produced when gas moves from one chamber to 

another when the sonic muscles are contracting, causing swimbladder volume to change 

rapidly, within a chamber (Green 1924). The more generally accepted idea for sound 

production, instead, deals with vibrations or oscillations of the swimbladder wall when 

the sonic muscles contract (Kasumyan 2008). The sound is seen to increase as a result of 

a resonance that occurs when the frequency of the oscillations produced by the sonic 

muscles and the swimbladder are in tune (Alexander 1966, Demski 1973). Though 

interestingly, upon removal of the gas from the swimbladder of the freshwater goby, 

Padogobius martensii, the amplitude of the sounds produced by this species is greatly 

reduced, while maintaining other sound characteristics, indicating that the gas in the 

swimbladder plays somewhat of a role in how sounds are produced (Lugli et al. 2003). 
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Rubbing and Knocking of Bones 

 

The rubbing and knocking of bones to produce sounds is a commonly used 

specialization for acoustic communication by teleost fish (Kasumyan 2008). The process 

of producing sounds by rubbing and knocking of bones is known as stridulation, which 

can consist of rubbing the teeth, bones of the skull, fin rays, and many more (Kasumyan 

2008). Some examples include rubbing of the first spine (that is ribbed) of the pectoral 

fin, in the sockets of the shoulder girdle as seen in the family Siluriforidae (Brosseau 

1978). Sounds are produced when sliding the ribbed surface of the ray along the rough 

surface of the spinal fossa. Contact between each bony protrusion off the spine results in 

a distinct pulse of sound (Brosseau 1978). Another example of sounds produced by 

stridulation, can be seen in seahorses of the genus Hippocampus, where sounds are 

produced during the movement of two unpaired bones, the supraoccipital and coronet, 

against one another with the assistance of a bony hinge that lies between the two bones 

(Colson et al. 1998).  The movement of the two unpaired bones tends to occur during 

agonistic interactions between males when fighting over a female, producing a cracking 

sound (Masonjones and Lewis 1996). Upon removal of the bony hinge, the sound is no 

longer produced (Colson et al. 1998). Currently, the meaning of the signal is unclear.  

Sounds produced in this manner are often short, wide-band pulses or burst-like 

sounds and can generate higher dominant frequencies than sounds that are produced by 

the swimbladder (Ladich 1999). Sounds that are produced by rubbing teeth together 

usually occur during feeding and chewing of food (Kasumyan 2008). These sounds occur 

involuntarily and therefore are considered unspecialized sounds, however, fishes who 

feed predominantly on hard-shelled organism, such as molluscs, posses a specialized 
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structure known as pharyngeal teeth, that exists deep in the oral cavity along both the 

dorsal and ventral surfaces of the pharynx (Burkenroad 1930). Pharyngeal teeth have also 

been found to be used to generate sound for conspecific communication (Burkenroad 

1930). Pharyngeal teeth are composed of bony plates, that when ground together, produce 

a burst-like sound in nature, often associated with grunts; short, broadband repeated 

pulses. Sounds produced by pharyngeal teeth are lower in energy than sounds produced 

by the swimbladder (Burkenroad 1930).   

Attenuation and Propagation Underwater 
 

Reflection 
 

Reflection of sound refers to the phenomenon where sound waves following 

emission from a sender, rebound off a surface interface, seafloor, or some other solid 

object, as the signal is travelling towards the intended receiver (Rogers and Cox 1988). 

Reflection during transmission of an acoustic signal can pose a problem as it can distort 

and alter the information within the signal produced by the sender, thereby giving the 

receiver incorrect information of the location of the sender itself. However, there are 

some boundaries and objects that can conduct sound waves better than others, causing 

sound waves to be reflected all the more. The surface interface situated at the air-water 

boundary is such a reflector, where sound absorption is smallest, making it an effective 

reflector for long distance transmission. In regard to bottom substrates, however, more 

sound waves are absorbed rather than reflected, and as a result, substrates are better 

suited for propagating sounds over short distances (Rogers and Cox 1988).   
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Scattering  
 

 Scattering, as the name suggests, occurs when sound waves are disrupted during 

transmission, propelling the sound waves into several different directions, causing sound 

to travel in a direction that was not originally intended (Rogers and Cox 1988). Scattering 

usually occurs when sound waves come into contact with objects such as aquatic 

organisms, man-made structures, or disturbances in the water that are generated by ships 

(Richardson et al. 1995). Different substrates, ranging from silt to bedrock, can also cause 

sound waves to scatter, therefore presenting an issue for fishes that depend on sound to 

communicate with conspecifics (Rogers and Cox 1988). To limit the scattering effect of 

substrates, senders, when emitting a vocalization, should reduce the distance between 

themselves and the seabed as much as possible (Mann 2006).  

Refraction  
 

Refraction refers to the direction sound waves are bent when entering a medium 

that differs in speed of sound. The direction in which the sound wave will be bent is 

dependent on the speed of sound of the medium that the waves are passing through 

(Rogers and Cox 1988). For instance, sound waves are bent back towards the original 

medium and refracted in the direction of the interface when the second medium has a 

faster speed of sound. In contrast, if the second medium has a slower transmission rate, 

than the signal will bend away from the interface and move further into the second 

medium (Rogers and Cox 1988).  

Environmental Effects on Sound Propagation  
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The speed of a wave propagating through a medium is not a constant in non-

homogeneous media (Rogers and Cox 1988). In relation to aquatic environments, factors 

such as temperature, salinity, and water pressure can alter the speed of sound of a 

medium and therefore, the distance over which a sound can propagate. As pressure 

increases with depth, the speed of sound also increases (Mann 2006). Conversely, in 

regard to temperature, the opposite trend is apparent, where depth increases, water 

temperatures decline, causing the speed of sound to decrease. For salinity, as it increases, 

the speed of sound also increases, and vice versa. However, salinity varies very little with 

depth, but stronger variations can occur near areas where a high inflow (or outflow) of 

freshwater can alter water salinity (alters the ratio between the amount salt particles 

dissolved in water and the amount of freshwater), such as river estuaries or melting ice 

(Mann 2006). Interestingly, at a depth of approximately 1000 m, there exists a horizontal 

layer of water in the ocean known as the Sound Fixing and Ranging channel (SOFAR). 

The SOFAR channel is where the speed of sound is at its minimum because parameters 

such as temperature, pressure, and salinity are in balance, allowing for sound to propagate 

in a single direction (Rogers and Cox 1988). 

Sound Detection in Fish 

 

Nearfield and Farfield 

 

 Sound is defined as vibrations that travel through a medium. For water, sound is 

composed of two physically linked components: scalar pressure waves and directional 

particle (water) motion, which can differ in the manner required to reach the inner ear of 

a fish (Fay and Popper 1975). The pressure component refers to the true sound where 

movement of the particle velocity is only due to fluid compression by the source itself 
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(Mann 2006). The particle motion component, on the other hand, refers to the flow where 

the particle velocity of sound can be felt by the receiver. However, the manner in which a 

fish hears a sound is highly dependent on particle motion because hair cells in the fish ear 

can only respond to direct movement, on its own. For fish to hear sound pressure, first, 

the sound pressure must be converted from a pressure wave into particle motion. What 

aspects of sound a fish can hear is highly dependent on distance from the sound source, 

known as the nearfield and the farfield. The nearfield is composed of two parts that 

consists of both the pressure and particle motion components. In contrast, the farfield 

consists only of the pressure wave component. In regard to fish hearing, the distinction 

between the two different fields is of importance as the pressure component of sound can 

only be detected indirectly by some fishes via the development of adaptive specialized 

structures (Mann 2006). These adaptive specialized structures allow for the pressure 

wave to be converted into particle motion, to stimulate the hair cells in the inner ear 

(Mann 2006).   

Inner Ear 
 

 All fish ears are internal, consisting of two inner ears with no direct fluid 

connection to their environment (Fay and Popper 1975). Each inner ear is comprised of 

three endolymph-filled semicircular canals and three sound receptive epithelium known 

as the saccule, urticle, and lagena, where the sound receptors are located (Popper and Fay 

1999). The sound receptors that are responsible for hearing in fish are known as hair 

cells, comprised of many stereocillia and a single kinocilium, similar in structure to the 

cells found in the human ear (Fay and Popper 1975). During sound detection, these 

projections off the hair cells are bent during sound detection, opening ion channels and 
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generating an action potential, allowing the recipient to hear the sound (Fay and Popper 

1975). However, sound detection is not as simple underwater as on land and therefore 

poses a problem for fish due to the environment in which they live (Popper and Fay 

1973). For fish, because their body is about the same density as its surroundings, when 

sound vibrations pass through the water, the fish moves along with it, preventing the hair 

cell from being stimulated. To counteract the similarity in densities between the recipient 

and its environment, the fish ear contains a structure known as the otolith, a small, hard 

structure that is situated atop the cilia that makes up the hair cell, which assists fish with 

detecting sound vibrations. The otolith, being heavier and thusly, different in density than 

water, lags behind the motion of water generated by sound vibrations, causing the hair 

cells to bend and the fish to hear (Popper and Fay 1973). 

 Several studies have shown that fish can determine the range and direction of 

sound underwater however the manner in which a fish can directionalize a sound is 

complicated (Popper and Fay 1993, Bleckmann 1993, Mann 2006, Popper and Schilt 

2008). Humans and other terrestrial organisms directionalize sound using interaural 

timing and intensity differences between the two ears (Popper and Fay 2011). However, 

since sound travels five times faster in water than it does on land, the distance between a 

the inner ears of a fish, due to their small head size, is no more than a few centimeters, 

therefore interaural timing and intensity differences are not available for fish to 

directionalize sound and must depend on a different mechanism to do so. In some fishes, 

the mechanism that is thought to be used to directionalize sound is the lateral line 

(Coombs and Conley 1997, Fay 2005). However, some fish are believed to detect the 

direction of particle motion and localize the sound source using a hearing specialization 
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involving the inner ear’s hair cell orientation and the swimbladder; this is known as the 

phase model. The phase model states that when detection of particle motion between the 

hair cells and the swimbladder are in phase, this allows the individual to determine that 

the sound source is situated behind them (Popper and Fay 2008). However, when the two 

structures are out of phase, this indicates that the source is in front of them (Kasumyan 

2008, Popper and Fay 2011), allowing a fish to travel along the axis of particle motion 

and localize the sound source (Fay 2005). 

 In some fish species, the detection of sound pressure has been made possible by 

modification of the swimbladder and it is thought that the use of the swimbladder in fish 

allows for the detection of sound along the horizontal plane; in front or behind (Popper 

and Fay 2011).  All fish can detect particle motion however those species that are able to 

detect sound pressure use the gas within the swimbladder as a means to convert pressure 

waves into vibrations that can be translated by the otolith for the inner ear to detect 

(Popper and Fay 2011). In order for the inner ear to detect the sound, a connection must 

occur between the swimbladder itself and the inner ear. Many different types of structures 

exist that allow communication between swimbladder and the inner ear however they 

vary between fish species but work more or less in the same manner (Popper and Schilt 

2008). For example, direct bony connections between the swimbladder and the ear such 

as Weberian ossicles (a modified vertebrate), the use of auditory bullae (small bubbles 

connected directly attached to the swimbladder and ear), simple swimbladder extensions 

(similar in structure to the swimbladder in the shape of a horn), and branchial bubbles 

(bubbles in the mouth of a fish), have all been found to be used by fishes as a means of 

detecting sound pressure in the environment (Popper and Schilt 2008).   
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Lateral Line 
 

The lateral line is a mechanosensory system that consists of sensory receptors that 

are known as neuromasts that are composed of a number of hair cells and the orientation 

of the lateral line of a fish can differ in location depending on the species (Bleckmann 

1993). Neuromasts, like inner ear hair cells, respond to water motion. Neuromasts, 

similar to the inner ear hair cell, suffers the same concern in regard to density, and as a 

result, each cluster of hair cells has an attached hardened, gelatinous structure known as 

the cupula that acts to offset the density difference between the recipient and its 

environment. The cupula, similar to the otolith of the inner ear, lags behind the motion of 

the water, bending and thereby stimulating the hair cell, allowing the recipient to detect 

the surrounding particle motion.  Depending on how the hair cell bends, different signals 

are sent to the brain and used to interpret the direction and orientation of the disruptions 

within the water column. In fish, there are two types of neuromasts, superficial and canal. 

Superfical neuromasts, as the name suggests, are neuromasts that are situated along a 

fish’s body, exposed to the environment (Popper et al. 2003). Superficial neuromasts are 

sensitive to low frequency sounds (up to 10 Hz), and primarily function as a means for 

rheotaxis. Canal neuromasts, in contrast, are similar in structure to those exposed on the 

body’s surface, but are embedded within the depressive pores situated within a canal 

pathway within the lateral line itself. Canal neuromasts differ from superficial in that they 

can detect higher frequencies (up to 100 Hz) and detect particle gradients from one pore 

to the next (Popper et al. 2003). Although the orientation and position of the lateral line 

varies between species, in some fishes that lack hearing specializations, neuromasts, both 

superficial and canal, can be used to detect disruptions in particle motion and determine 
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the direction in which the sound source is located (Popper et al. 2003). Therefore, sound 

detection in most fish, is comprised of a combination of both the ears itself and the lateral 

line (Bleckmann 1993, Popper et al. 2003, Fay 2005). 

Function of Acoustic Communication in Fishes 

 

Mate Attraction and Territorial Defense 
 

 Fish emit sounds in a variety of situations, usually in conjunction with diverse 

behaviours, performed during agonistic interactions, courtship and spawning in regard to 

mate attraction and territorial defense (Ladich, 1997, Kasumyan 2009). Vocalizations 

performed to attract females are often unique between species and have been found to 

occur during advertisement, courtship, pre-spawning, and spawning phases (Kasumyan 

2009).  However, the structure of these sounds can differ depending on the time in which 

these vocalizations are performed. For instance, advertisement calls are sounds that are 

meant to attract females to their nesting site from a distance, and as a result, these calls 

should be long in duration, and repeated; these are known as call trains (Kasumyan 

2009). The humming vocalization of the plainfin midshipman is a prime example of a 

long duration and loud vocalization that draws females from a distance (McKibben and 

Bass 1998, Sisneros and Bass 2003, Sisneros 2009). Continuously performed 

vocalizations are ideal during the breeding season, as fish often spawn in groups where 

males procure nesting sites in relatively close proximity to one another (Fay 2005). As a 

result, in order for a female to locate the sound source, a continuously performed signal is 

often ideal as it allows the female to concentrate on the male that originally drew her 

interest (Fay 2005). 
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Courtship sounds are often performed by males during the time that they are alone 

in the nest and are used to convey to females that they are ready to mate (Amorim and 

Neves 2007, Malvasi et al. 2009, McKibben and Bass 1998). Interestingly, courtships 

sounds have been found to change once a female has moved into the male’s territory. In 

male haddock, Melanogrammus aeglefinus, males at first will perform a slow interpulse 

duration knocking vocalization when alone, but will alter the call rate of this same call to 

that of rapidly repeated knocks once the female is in close proximity to the vocalizing 

male (Casaretto and Hawkins 2002). Pre-spawning sounds, however, are performed 

before the actual spawning phase once the female has localized the position of the male, 

and are usually performed in conjunction with visual displays (Kasumyan 2009). In 

Hawaiian dascyllus, Dascyllus albisella, males perform rapid up and down migrations to 

and from the water column, known as signal dips and jumps, while vocalizing, once a 

female has approached (Mann and Lobel 1997). In contrast, male green damselfish, 

Abudefduf abdominalis, upon the arrival of a female, will swim looping or zigzagging 

patterns as a means to maintain the female within his territory. If the female responds, 

males will emit long sounds in response, and continue to do so once the female has 

entered the nest (Maruska et al. 1997). Spawning acoustic signals, interestingly, are often 

used to assist with the synchronization of the release of gametes between the male and 

female, commonly performed by broadcast spawners, as seen in Atlantic Cod, Gadus 

morhua. Male cod will perform muffled grunting sounds that signals the female to move 

upward in the water column where spawning occurs (Hutchings et al. 1999) 

Aggressive sounds, in contrast, are implemented in the function of territorial 

defense to maintain spatial relations between conspecifics and can be performed as 
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warning signals to indicate that a site is occupied or during agonistic interactions, usually 

between males, during competitions, or to assert dominance within a hierarchy (Ladich 

1997). Commonly, aggressive sounds that are used for territorial defense are often 

performed during the reproductive season, as a means for males to maintain nesting sites 

from competitors (Ladich 1997). Valinski and Rigley (1981) demonstrated the 

importance of performing sounds to maintain nesting sites; when male skunk loaches, 

Botia horae, are made mute they were unable to protect their territory from other 

conspecifics despite performing aggressive displays. Similarly, in bicolour damselfish, 

removal of the defending fish from a site would result in rapid occupation by other 

conspecifics. Playing recordings of a defending male in the absence of the owner at that 

same site causes other males to take a sufficiently longer time to approach the nest and 

make it their own (Myrberg and Riggio 1985, Myrberg et al. 1997). Interestingly, some 

fishes such as the plainfin midshipman and toadfish, Opsanus tau and Halobatrachus 

didactylus, have been found to perform aggressive grunts when being handled and is 

thought to be performed in fear (Amorim 2006). 

Interspecific Differences for Mate Attraction Calls 
 

A simple difference between interspecific mate attraction calls in fish is the way 

they sound to the human ear (Kasumyan 2009). For example, in the plainfin midshipman, 

toadfish, and damselfish, each species has its own unique calls that are used during the 

breeding season known as hums, boatwhistles, and chirps that are used to attract females 

(Amorim 2006). For the plainfin midshipman, hums, are long in duration, harmonic in 

structure, reaching up to 700 Hz and have a fundamental frequency lying between 90-100 

Hz, depending on the individual performing the sound and can last up to an hour in some 
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cases (Sisneros 2009). As a result, the sound is believed to be a mate attraction call that is 

commonly performed in the plainfin midshipman (McKibben and Bass 1998). In regard 

to the toadfish, males perform a sound known as a boatwhistle that lures females to the 

nest to spawn (Amorim et al. 2006). In comparison to the hum call emitted by 

midshipman, the boatwhistle is shorter (500 ms) in duration (Dos Santos et al. 2000). The 

boatwhistle is a multi-harmonic call, reaching a fundamental frequency of 130 Hz, and is 

composed of two segments (Dos Santos et al. 2000). The first segment is composed of a 

signal grunt while the second component is comprised a multi-harmonic hoot (Tavolga 

1960). Finally, damselfish perform a brief, multi-pulse broadband vocalization known as 

a chirp during courtship, which consists of three pulses that are emitted in conjunction 

with visual displays (Myrberg and Spires 1972). 

Primarily, in relation to mate attraction and recognition by females, there are 

differences in the components that make up these sounds that allow for fish to distinguish 

one call from another (Kihslinger and Klimley 2002). The same can be said when 

differentiating between vocalizations that are emitted by nearby conspecifics and 

heterospecifics. These differences are primarily temporal in nature and include the length 

of a call (call duration), intercall duration, pulse duration, and interpulse duration. 

Furthermore, fish calls differ in being either pulse or tonal and further differences can 

include being broadband can vary with frequencies (Kihslinger and Klimley, 2002).  

In relation to call structures and distinguishing between conspecific and 

heterospecifics calls, the most telling and best understood aspects of fish vocalizations 

are components in relation to pulse characteristics.  Pulse number refers to the amount of 

pulses that occur within a call (Kihslinger and Klimley 2002) and varies between call 
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types within a species as well as between species (Myrberg et al 1978). Pulse rate within 

a call is described by the number of pulses that are performed per second, where each 

pulse individually can vary in length and pulse duration refers to the time at which a 

pulse begins and ends (Kihslinger and Klimey 2002). Interestingly, it has been suggested 

that the silence that elapses from one pulse to another contains the most information 

when distinguishing between different species calls (Myrberg et al. 1978). Furthermore, it 

has been speculated that since these pulse characteristics vary between species, that pulse 

rate provides a means of species recognition and mate choice in fish (Myrberg et al. 

1978), which has been thoroughly investigated with the use of playback experiments 

(Myrberg et al. 1978, 1986, 1993, Crawford et al. 1997, McKibben and Bass 2001). The 

importance of temporal characteristics as a function of species recognition as well as 

mate recognition is better facilitated by examining the response of fish to conspecific 

sounds in contrast to heterospecific sounds in playback experiments found that while fish 

approach conspecific sounds more readily and vigorously (Myrberg and Spires 1972, 

Rollo and Higgs 2008). Furthermore, in relation to recognition of mate attraction sounds, 

this is best shown in playback experiments examined for toadfish and midshipman where, 

upon examining the response of different reproductive morphs to the suspected mate 

attraction call, gravid females approach the speaker play this vocalization more 

frequently than nonreproductive females and other males (Winn 1972, McKibben and 

Bass 1998). 

In relation to mate attraction recognition by females, frequency also plays a role 

in mate recognition, although not as fundamental as temporal characteristics (Kihslinger 

and Klimley 2002). In relation to frequency of a call, many characteristics can be used 
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when describing a fish vocalization. Frequency consists of the dominant frequency, 

frequency modulation, fundamental frequency and the frequency range (Kihslinger and 

Klimey 2002). Dominant frequencies refer to the frequency that occurs most often in a 

fish vocalization, while frequency modulation and fundamental frequency refer to the 

changes in frequencies within a call and the natural frequency, respectively (Kihslinger 

and Klimley 2002). The frequency at which a fish performs is often associated with body 

size and provides a means of individual recognition for conspecifics (Amorim and 

Vasconcelos 2008, Amorim et al 2008). While frequency may indicate the size of the 

individual performing the sound, this pattern does not apply to all fish species. However, 

in regard to reproduction, frequency may act as a function of honest signalling in some 

fishes, as females could assess male size as an indicator of quality (Malavasi et al. 2003, 

Colleye et al. 2009). Foraging abilities, territory, and nest guarding have all been found to 

be associated with male body size that could indicate parental and fitness qualities to 

females. Furthermore, in some fish species, females prefer larger males and are more 

attracted to conspecific males performing low frequency vocalizations rather than high 

frequency sounds (Malavasi et al. 2003, Colleye et al. 2009). However, while frequency 

may track fish size, females would only be able to assess male size using frequency 

characteristics from a vocalization, but not the species of the individual performing the 

sound (Crawford et al. 1997). Fish vary in their ability to detect frequencies since fish do 

not possess any known frequency filtering structure, such as the cochlea in mammals 

(Hawkins 1993), but interestingly, evidence of neurons that are specialized to detect fine 

temporal components of a sound have been found, such as in the family Mormyridae 

(Crawford et al. 1997).  
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Of interest in playback experiments when examining species-specific responses to 

conspecific sounds is when temporal characteristics are altered and how the behavioural 

responses of fish change when presented with these new sounds. For example, in a series 

of studies examining response to a number of different damselfish species to altered 

conspecific calls, Myrberg et al (1978, 1986, 1993) found that when altering the number 

of pulses in a conspecific call, fish responded more discriminately to the sounds that were 

similar to the normal number of pulses that exist within the wild version of the sound. 

However, when conspecific sounds were standardized to each having only four pulses, 

the difference in interpulse interval was used as a means to differentiate between sounds. 

However, when differences in the “off-time” between pulses were eliminated, fish were 

no longer able to differentiate between conspecific and heterospecific vocalizations. The 

same responses were seen displayed by both male and female damselfish in relation to 

the chirp vocalization, as males have been found to intercept other male vocalizations 

used in mate attraction (Myrberg et al. 1978, 1986, 1993).  

 

In plainfin midshipman, alteration of the temporal envelope modulation of their 

vocalizations was found to be a means of examining vocal recognition (McKibben and 

Bass 2001). Temporal envelope modulation is thought to be important in differentiating 

between different call types within a species, such as the grunt and the hum of the 

midshipman (McKibben and Bass 2001). For instance, continuous tones, such as the 

hum, are much more effective in attracting gravid females than simple pulsed sounds, 

such as the grunt, during playback (Bass and McKibben 2003). Interestingly, the hum of 

the midshipman does not contain any means of amplitude fluctuations and therefore lacks 
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any means of temporal envelope modulation. However, hums have been found to be 

adjusted when vocalizing near other performing male and create beats due to interference 

between two sounds that differ slightly in fundamental frequency, generating an 

amplitude and phase modulation (McKibben and Bass 2001). As a result, it is thought 

that females distinguish between frequencies and use that component to recognize the 

sound; when gravid females were presented with the choice between a pulsed or tonal 

vocalization, it was the reduction in beat modulations was the most important 

characteristic in facilitating female response as they were highly sensitive to slight 

increases in beat frequency (McKibben and Bass 2001). An interesting model in the 

investigation of acoustic communication of fishes in regard to both hearing and behaviour 

is the invasive round goby, Neogobius melanostomus, as past studies have found that 

gobies are able to differentiate between conspecific and heterospecific sounds (Rollo and 

Higgs 2008) as well as the ability to localize sound sources (Rollo et al. 2006, Rollo and 

Higgs 2008) despite not having any known hearing specializations. In addition, the 

function of acoustic communication in the round goby is unknown and requires further 

investigation that could be useful in the control of the invasive species.  

The Round Goby 

 

The round goby is a small, bottom-dwelling teleost fish that is believed to have 

first entered the St. Lawrence River by transportation in ballast water of commercial 

ships originating from the Ponto-Caspian region (Vanderploeg et al. 2002). Since its 

establishment in 1990, the round goby has moved into all five Great Lakes (Charlesbois 

et al. 2001). Due to its highly aggressive and competitive nature, round gobies have 

begun to negatively impact the freshwater ecosystems of North America (Jude et al. 
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1992). By outcompeting native species for shelter and food, the round goby has 

successfully increased their population size to an enormous number in a decade after 

being reported (Charlesbois et al. 2001). The rapid population growth portrayed by the 

invasive species is primarily due to the goby’s ability to spawn multiple times in a single 

breeding season, allowing for the rapid population growth of the fish (MacInnis and 

Corkum 2000). Since then, the populations of numerous native species, such as mottled 

sculpins, Cottus bairdii, and logperch, Percina caprodes, have suffered a decline 

(Charlesbois et al. 1997).  

In an attempt to control and prevent the expansion of the round goby into other 

freshwater systems and alleviate the extensive damage the invader has caused in the 

Great Lakes, current research has been lead in the direction of understanding the 

reproductive behaviour of the round goby.  A popular paradigm of research when 

investigating the goby’s reproductive behaviour is often in association with 

communication modalities that are used in mate attraction, where one modality in 

particular has received the most attention; chemical communication.  Chemical 

communication is believed to be used in mate attraction in the round goby due to the 

circumstances of the environment in which they live (Charlesbois et al. 1997). Since 

round gobies live in turbid waters, visual communication would be impracticable. In 

contrast, past studies have found that males are suspected of releasing pheromones in 

their urine as a sex attractant to lure gravid females to their nest to spawn as a much more 

effective means of sending signals between conspecifics (Corkum et al. 2006). Females 

spend more time near synthesized steroids that are representative of compounds that have 

been isolated from reproductive male round goby testes and believed to be released in 
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their urine (Corkum et al. 2008). In addition, female gobies have been found to spend 

more time near washings of RMs than non-reproductive males (Gammon et al. 2005). 

Finally, male round gobies also were found to increase gill ventilation rates when 

exposed to either gonadal extracts of gravid females or estrone (Belanger et al. 2006). 

Currently, investigation of steroids that comprise male pheromones that is responsible for 

attracting gravid females is on-going, following the discovery of female preference 

towards conjugated steroids blends (etiocholanolone glucuronide, etiocholanolone 

sulfate, 11-oxo-etiocholanolone glucuronide, and 11-oxo-etiocholanolone sulfate) and 

avoidance of free steroids (11β-hydroxy-androstenedione, and 11-ketotestosterone) 

(Corkum et al. 2008). Research efforts are now intensifying in an attempt to isolate the 

steroid that facilitates the strongest attraction as well as discovering other sex attractants 

that are likely responsible for initiating courtship and spawning behaviours in females. 

Though lackluster in comparison to the attention that has been directed to 

chemical communication research for the round goby, the use of acoustic communication 

for mate attraction in the species has also undergone investigation.  While investigation 

of round goby hearing has shown poor hearing sensitivity(Belanger et al. 2010) , long 

distance auditory communication is not required since round gobies are colonial and live 

in relatively close proximity to one another (Charlesbois et al. 1997). The very first 

investigation and description of acoustic communication behaviour of the round goby 

was by Protasov et al. (1965), where it was stated that round goby males, to attract 

females to the nest, emit sounds resembling croaking or squeaks, that is than followed by 

the male lashing its tail near the incoming female in an attempt to lead her into the nest to 

spawn. In addition, Protasov et al (1965) was also the first to investigate female response 
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to conspecific male calls using playback experiments, and found that these sounds have 

an attractive effect. Further examination of round goby response to conspecific acoustic 

signals remained stagnant until recently (Rollo et al. 2006, Rollo and Higgs 2008). In the 

field, round gobies show significantly strong phonotactic attraction to the playing speaker 

emitting the conspecific call in contrast to the nearby silent speaker however, due to the 

limitations of field dynamics, quantification of sex could not be determined (Rollo et al. 

2006). Lab playback experiment revealed that while both male and female round gobies 

responded to the conspecific call, females were found to be much more responsive to the 

conspecific call than males were, providing evidence that the vocalization that had been 

recorded from the field could potentially be a mate attraction call (Rollo et al. 2006). To 

further evaluate the specificity and attraction to the same conspecific call implemented in 

Rollo et al. (2006), the response of male and female round gobies to both conspecific and 

heterospecific calls were examined in Rollo and Higgs (2008), where they found that 

both sexes responded to the conspecific call much more vigorously and with a higher 

specificity than to the heterospecific sounds. However, the conspecific sounds again were 

found to elicit the strongest phonotactic response from females, further supporting that 

the call examined had some function in mate attraction (Rollo and Higgs 2008). More 

recently, Kasurak et al. (2012) examined the multimodal response of gravid female round 

gobies to both conspecific odours and sounds. While odours and sounds alone do elicit an 

attractive response, the two elements together elicited a significantly stronger attraction to 

the source itself, thereby supporting the idea that mate attraction behaviour of the round 

goby encompasses both chemical and acoustic communication, rather than implementing 

just the one modality.  While it has been found that both male and female gobies respond 
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to the conspecific sound, the importance of the reproductive status of the fish has not 

been taken into account, behaviourally. By doing so, it can help clarify which gobies are 

attracted to these calls as well as which call is more efficient for mate attraction and 

implement these findings in design of an acoustic trap to use in the control of the round 

goby population.   

Invasive Species 

With the constant transport of invasive species by anthropogenic technologies, 

such as commercial ships, and pleasure crafts, the concern to impede the transport of 

these unwanted species outside their native range has come to a head (Mills et al. 1993). 

Invasive species can include both flora and fauna which, more often than not, are 

deleterious when introduced to environments outside their natal range, as they are able to 

out-compete native species for resources with ease (Mills et al. 1993). The competitive 

edge that many invasive species possess is usually in part due to a number of traits, such 

as fast growth, rapid reproduction, high dispersal ability, robust ecological competence, 

and phenotypic plasticity (Lovell et al. 2006, Olson 2006, Lockwood et al. 2007). As a 

result, because an invasive species’ natural predators are not present to otherwise control 

its rapid expansion and growth, the invaders development in new areas goes unchecked 

and excessive damage to the environment and food webs occur (Lovell et al. 2006, Olson 

2006, Lockwood et al. 2007). Common examples of invasive species that have caused 

excessive damage to environments both ecologically and commercially are the brown 

tree snake, Boiga irregularis, sea lamprey, Petromyzan marinus, and Kudzu, Pueraria 

lobata, that have led to the reduction or eradication of native species populations in a 

number of areas, such as Guam, the Laurentian Great Lakes, and North America as a 
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whole (Lovell et al. 2006, Olson 2006, Lockwood et al. 2007). As a result, invasive 

species, not only impact native flora and fauna directly, but can also indirectly negatively 

affect native food webs extensively and thereby broadens the range in which a invasive 

species does damage.  

While most invasive species are brought into new regions unintentionally, very 

few tried and true strategies have been developed that would otherwise prevent this 

phenomenon from occurring, though attempts have been made (Daunys et al. 2006, 

Madenjian et al. 2008). For example, commercial ships that transport invasive species 

with the intake and release of ballast water from port to port are now required by law, 

upon moving from one body freshwater system to another, to intake a percentage of 

saltwater when crossing the ocean, in the hopes of upsetting the osmotic balance of 

freshwater species within the ballast water, and thereby eradicating any potential invaders 

before being released at port (Daunys et al. 2006, Madenjian et al. 2008). In addition, 

strict rules exist for transporting non-native wood across borders to prevent invasive 

insects from being introduced (Simberloff and Stiling 2006). However, even with these 

preventative attempts, invasive species still manage to get across either due to human 

ignorance or the refusal to take the necessary precautions to prevent an invasive 

introduction from occurring (Daunys et al. 2006, Madenjian et al. 2008). As a result, 

invasion of non-native species still can occur, albeit not as frequently as it has occurred in 

the past (Lovell et al. 2006, Olson 2006, Lockwood et al. 2007). Since eradication of 

invasive species, in most cases, is impossible, regulation of the spread and size of these 

species is often performed. For example, to reduce the impact of sea lamprey on native 

fishes, the use of lampricide, a reproductive inhibitor that targets lamprey larvae, assists 
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with keeping lamprey numbers low and thereby alleviating stress on prey species (Coble 

et al. 1999, Stokstad 2003). Similarly, for invasive brown tree snakes and kudzu, similar 

strategies have been implemented for control purposes, where the use of capturing 

methods (use of mice-baited traps and acetaminophen to increase mortality) and 

herbicides have been constructed to reduce damage on native species that have been 

affected by these invaders presence (Lovell et al. 2006, Olson 2006). However, while 

strategies have been put to use in controlling a number of invasive species, there are still 

those that exist in areas that are far more deleterious than those already mentioned, that 

have gone unchecked for decades (Lovell et al. 2006, Olson 2006); one being the round 

goby (Charlesbois et al. 1997). 

Thesis Objectives 

 

The first objective of the current study was to examine the response of round 

gobies to two suspected mate attraction calls recorded from conspecific males, dubbed 

the “grunt” and the “drum”, in relation to reproductive state and sex. While past studies 

have examined the response of male and female gobies to conspecific calls (Rollo et al. 

2006, Rollo and Higgs 2008, and Kasurak et al. 2012), the important of the reproductive 

state of the individual has yet to be investigated, behaviourally. By investigating both 

reproductive state and sex differences to conspecific calls, it can be better understood and 

more accurately stated what the function of these conspecific sounds are in the round 

goby’s behaviour. Playback choice experiments were used in the lab to determine the 

response of gobies of both sexes to recordings of two conspecific calls suspected to play 

a role in mate attraction, a grunt and a drum, in relation to reproductive status of 

responding fish. I hypothesized that since these calls are suspected to play a function in 
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mate attraction, reproductive females (RFs) should show the strongest response as that is 

its function (high initial response, high number of approaches, and largest time spent at a 

conspecific call). In contrast, reproductive males (RMs) were hypothesized to show the 

lowest response to the conspecific calls, as in nature it is deleterious for a male to leave 

his nest just to investigate another male calling as he exposes his nest to egg predation or 

loss of the male’s nesting site. For nonreproductive males (NRMs), nonreproductive 

females (NRFs) and sneaker males (SMs), it was hypothesized that if these morphs did 

show a positive response to the conspecific calls, then they could potentially be acting as 

eavesdroppers, but for different reasons. Yavno and Corkum (2010) have found that the 

odour of conspecific eggs attract nonreproductive fish significantly, indicating that they 

do in fact use chemical cues to locate conspecific eggs, but the dispersal of chemical 

signals is directionally limited (i.e.: current), making it difficult to locate a nest from a 

distance. Nonreproductive fish could also eavesdrop on calls produced by nest guarding 

males that are trying to attract females to his nest. Since females tend to spawn with 

males that have eggs (Wickett and Corkum 1998), nest-guarding males should continue 

to call when eggs are already in the nest. As a result, nonreproductive fish should 

eavesdrop on these calls and use them as a means to locate the nesting site and use odours 

to determine if eggs are present. As a result, SMs were predicted to perform a similar 

behaviour as NRMs and NRFs, but instead attempt to sneak fertilizations upon 

determining the location of the nest rather than eat the eggs that are present. Results from 

the lab study would later be incorporated into examination of round goby response to 

conspecific calls in the field and facilitate the construction of a bioacoustic trap (objective 
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2) that could be used in population control of the round goby in the Great Lakes by using 

a conspecific call as a lure.  

The second objective of the current study was to design a bioacoustic trap that 

would implement the use of round goby calls as a lure, capturing them in large numbers, 

and be used to regulate the population size of the invasive species. Playback experiments 

using three pairs of traps were used in the field to determine the response of gobies of 

both sexes to recordings of two conspecific calls suspected to play a role in mate 

attraction, a grunt and drum, in relation to reproductive status of responding fish. Though 

it is impossible to eliminate the round goby from the Great Lakes completely, reducing 

their numbers may be a plausible solution. Bergstrom and Mensinger (2009) found that 

native species are able to persist in areas where the population size of the goby is low. 

This indicates that the impact of the round goby is not due to its mere presence, but rather 

their overwhelming number that native species cannot contend with. Therefore, if I 

develop a way to construct a technique that could lower their numbers, the result would 

be the reduction of competitive stress on native species. Using sound as a lure has such 

advantages as species-specific calls will reduce capture of non-target species. Most 

importantly, gravid females may be the most responsive to the call, whose capture and 

removal would greatly reduce the reproductive success of the species. This is because 

round gobies have an extensive breeding season that extends from early May to late 

August and spawn multiple times within a single season, while native species only spawn 

once per year (MacInnis and Corkum 2000). This results in a large population size and is 

responsible for their success as an invasive species. In relation to behavioural responses, I 

quantified the number of individuals captured by treatment, reproductive state, and 
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month. I predicted that since the round gobies reproductive season peaks in May and 

declines continuously into late August, a majority of gobies would be captured in May 

and capture rate would decline progressively by month. Based on previous findings from 

our playback experiment performed in the lab, I predicted that the grunt call would be the 

most effective in attracting round gobies, especially in regard to reproductive females 

(RF), while the drum call would attract the least. In contrast, reproductive males (RMs) 

were predicted to show the lowest response to the conspecific calls, as it is deleterious for 

a male to leave his nest to investigate another male calling as he exposes his nest to egg 

predation or loss of nesting sites to potential competitors in the area. In regard to 

nonreproductive males (NRMs) and sneaker males (SMs), I predicted that these morphs 

would respond the most to the drum call as eavesdroppers, as displayed under lab 

conditions. As for nonreproductive females (NRFs), despite lab results, I predicted that if 

this morph did show a positive response to the conspecific calls in the field, then they 

could potentially be acting as eavesdroppers.  
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CHAPTER 2: 

STATE-DEPENDANT ATTRACTION OF ROUND GOBIES, NEOGOBIUS 

MELANOSTOMUS, TO CONSPECIFIC CALLS  

Introduction 

Fish emit sounds in a variety of ways and the sounds are often associated with 

distinct behaviours (Amorim 2006). Sounds can be expressed during agonistic 

interactions (Raffinger and Ladich 2009), in the presence of predators (Smith 1992), 

when feeding (Amorin and Hawkins 2000), and during courtship (Lobel and Kerr 1999). 

One of the most common purposes of auditory communication is for mate attraction 

(Kasumyan 2008). Usually males of a species call not only to indicate their location but 

also to advertise to females (Amorim 2006). Acoustic signals have been found to play an 

important role in the mating and reproductive behaviour of freshwater fishes (Kasumyan 

2009, Ladich 2004). For example, in the plainfin midshipman Porichthys notatus, during 

the breeding season, Type I males guard nests and emit long duration hums and short 

grunts in the presence of a female, attracting females to the nest to spawn (Brantley and 

Bass 1994; Sisneros 2009; Zeddies et al 2010). Similar behavioural responses of have 

been observed in the Lusitanian toadfish Halobatrachus didactylus, where males are 

believed to perform boatwhistles that are exploited by females for individual recognition 

when selecting a mate (Amorim and Vasconcelos 2008), and male haddock 

Melanogrammus aeglefinus that are known to produce calls described as short repeated 

knocks to indicate location to a female. Furthermore, male haddock are known to alter 

their call to a long series of repeated knocks as the female comes closer to synchronize 

spawning (Hawkins and Amorim 2000). While many studies have examined acoustic 
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communication in association with mate attraction and have determined what types of 

conspecific calls females show favourable response to (Gray and Winn 1961, Myrberg 

and Spires 1972, Myrberg et al. 1986, McKibben and Bass 1998), seldom investigated 

how internal physiological cues, such as hormones, drive female mate choice decisions 

and behaviour. 

Although, female auditory sensitivity has been shown to increase in response to 

male calls during the spawning season in some species (McFadden 1998, Sisneros et al. 

2004), the mechanism that drives this shift in behavioural preference between the 

breeding and non-breeding season remains largely uninvestigated in fishes.  Hormones 

are well known to initiate sexual maturation and the development of secondary sexual 

characteristics in fish (Fostier et al. 1983) however they may also play a role in female 

mate choice behaviour (Nelson et al. 1990, Munakata et al. 2010). For instance, gravid 

female cichlids, Astatotilapia burtoni prefer associating with territorial (reproductive) 

males over non-territorial (non-reproductive) males while non-gravid females show no 

preference (Clement et al. 2004). Similarly, gravid female plainfin midshipmen perform 

robust phonotactic responses to male advertisement calls while spent females never 

approach a speaker playing these calls (McKibben and Bass 1998). Summer 

(reproductive) female midshipman also show strong temporal encoding to acoustic 

signals up to 340Hz while winter females only display temporal encoding up to 100Hz, 

corresponding to enhanced detection of the higher harmonic components of conspecific 

mate attraction calls (Sisneros and Bass 2003). As a result, these studies provide 

behavioural and physiological evidence that responses can differ between reproductive 

females and females that are no longer within their reproductive cycle.  
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A useful model group to examine reproductive plasticity in acoustic 

responsiveness is the teleost family Gobiidae. Male gobies often display elaborate 

vocalizations performed during the breeding season (Malavasi et al. 2008) and construct 

a nest from which they vocalize grunt-like sounds to attract females (Kasumyan 2009). 

Reproductive male Arno gobies, Padogobius nigricans, vocalize almost pure tones 

during the pre-spawning phase of the breeding cycle to lure a female towards his nest 

(Lugli et al 1996). As the distance between the sender and receiver outside of the nest 

decreases, the male responds by increasing the repetition and intensity of the signal, 

suggesting that males enhance their call rate to advertise to the female (Lugli et al 1996). 

Similarly, male black-spotted gobies, Pomatoschistus canestrinii, perform a combination 

of vocal and visual displays when a female is present outside of the nest (Malavasi et al. 

2009). Once the female enters the nest, males continue to vocalize and are thought to 

signal their value as a mate and readiness to spawn, rather than for female stimulation 

(Kasumyan 2009). While the family Gobiidae has been a focal interest of research in 

regard to behaviour and sound generation (Tavolga 1954, 1956, 1958, Lugli et al. 2004, 

Amorim and Neves 2007, Malavasi et al. 2008), state-dependant responses has so far 

been overlooked.  

The focus of the current study is to investigate the response frequency of various 

reproductive morphs of the round goby, Neogobius melanostomus, to conspecific calls 

suspected to be used for mate attraction and how reproductive state affects behaviour. 

The round goby Neogobius melanostomus is a small, bottom-dwelling teleost fish that 

first entered the St. Lawrence River in 1990 (Vanderploeg et al. 2002) and since then 

have invaded all five Great Lakes in little over a decade (Charlesbois et al. 2001). Due to 
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its highly aggressive and competitive nature, round gobies negatively impact the 

freshwater ecosystems of North America (Jude et al. 1992) by outcompeting native 

species for shelter and food due to their large population size (Charlesbois et al. 2001), 

causing native species such as sculpins Cottus bairdii and logperch Percina caprodes, 

populations to suffer a decline (Charlesbois et al. 1997). However, recent studies have 

shown that round gobies have become prey for some native piscivorous fish, leading to 

an increased growth rate in these predator species (King et al. 2006). Since round gobies 

live in turbid waters, visual communication would be impracticable except at extremely 

close distances. Therefore, auditory communication may be an alternative means for the 

species to interact in their environment. Male round gobies have been found to produce 

calls during mate attraction (Rollo et al. 2006) and female round gobies respond to these 

calls with high specificity (Rollo and Higgs 2008). In addition, round gobies approach 

both heterospecific and conspecific calls, but respond to conspecific sounds more 

vigorously and seem to be able to localize the source more readily (Rollo and Higgs 

2008). It has been suggested that these calls serve a reproductive function (Rollo et al. 

2006, Rollo and Higgs 2008) but both males and females respond to acoustic cues, 

leaving the precise function largely unresolved. 

The goal of the current study was to examine differential attraction and state-

dependent response between reproductive morphologies to a range of conspecific call 

types in the round goby. Playback choice experiments were used in the lab to determine 

the response of gobies of both sexes to recordings of two conspecific calls suspected to 

play a role in mate attraction, a grunt and a drum, in relation to reproductive status of 

responding fish. In relation to behavioural responses, I measured the percent of 
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individuals who first responded to a playing speaker (initial response), number of 

approaches, time spent, and path angle deviation in accordance to relative distance 

travelled and time elapsed when travelling to a speaker for the different sound types 

examined. I predicted that since these calls are suspected to play a function in mate 

attraction, reproductive females (RFs) should show the strongest response. In contrast, 

reproductive males (RMs) were predicted to show the lowest response to the conspecific 

calls, as it is deleterious for a male to leave his nest to investigate another male calling as 

he exposes his nest to egg predation or loss of nesting sites to potential competitors in the 

area (Corkum et al. 1998). In regard to nonreproductive males (NRMs), nonreproductive 

females (NRFs) and sneaker males (SMs), it was predicted that if these morphs did show 

a positive response to the conspecific calls, then they could potentially be acting as 

eavesdroppers.  

Materials and Methods 

Animal Housing 
 

Round gobies were collected by angling from the Canadian shore of the Detroit 

River at Windsor, ON [42
o
20ʹN, 82

o
56ʹW] during the morning from early May to mid-

August; when the reproductive season peaks for the species (Charlesbois et al . 2001). 

Fish were kept at the University Animal Quarters in accordance with the University of 

Windsor Animal Care Guidelines. Upon arrival to the laboratory, gobies were housed in 

37.8 litre glass tanks (50.8 cm x 25.4 cm x 30.4 cm) that were aerated and using a 

filtration system. Individual tank bottoms were lined with gravel and water was held at a 

temperature of 18
o
C (± 2

o
C) and a photoperiod of 16h:8h light:dark cycle during the 

experimental period. Gobies were fed Big Al’s Staple Fish Flakes (Big Al’s Aquarium 
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Services Co, Woodridge, ON, Canada) 5 times a week and were tested within a week of 

capture to prevent domestication.   

Gobies that were tested consisted of all possible reproductive morphs that develop 

during their spawning season: reproductive males (RM), reproductive females (RF), non-

reproductive males (NRM), non-reproductive females (NRF), and sneaker males (SM). 

Male and female round gobies were identified based on shape differences of their 

urogenital papillae (Charlesbois et al. 1997). Reproductive males were distinguished from 

NRMs by possessing secondary sexual characteristics such as being dark in colouration 

(usually jet black), having swollen cheeks and a developed papilla, as well as slime 

production (Marentette et al 2009).  Reproductive females, in contrast, were identified 

from NRFs by possessing a swollen papilla (larger and yellow) and belly (Corkum et al 

2008). Finally, SMs were identified as being small in size and mottled colouration 

resembling a female, but possessing a long, developed papilla (Marentette et al 2009). 

Reproductive status was confirmed following a trial by euthanizing the fish with clove oil 

and calculating Gonadal Somatic Index (GSI): GSI = total gonad mass (testes + seminal 

vesicles/ovarian eggs)/total body bass *100 (Schreck and Moyle, 1990). Males that were 

found to have a GSI measurement of  ≥ 1.3% and any female with a measurement of  ≥ 

8.0% were considered to be reproductive (Belanger et al. 2004). If any males or females 

were found to have a GSI of < 1.3% and < 8.0% respectively, they were considered non-

reproductive. Suspected RFs that were found to have a GSI < 8.0%, were not included in 

the analysis to avoid confounding results for NRFs. For SMs, if the GSI was found to be 

≥ 4.0%, then the individual was considered a reproductive sneaker male (spawning 

potential), any SMs that had a GSI < 4.0% were not considered reproductive. (Marentette 
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et al 2009). In regard to nonreproductive fish (both NRM and NRF) following GSI, no 

developed gonads were present (quantified as having a GSI value of zero) assuring the 

individuals were not sexually mature when tested and therefore not affecting their 

response to sounds (Table 2.6).  

Behavioural Trials   
 

Lab experiments occurred in a 1020 liter rectangular (243.8 cm x 91.4 cm x 91.4 

cm) fibreglass tank that was filled to a depth of 33 cm with dechlorinated water, held at 

18
o
C (±1

o
C), to match holding conditions. Two underwater speakers (UW-30, Lubell 

Labs, Columbus, OH, U.S.A) were placed on opposite ends of the tank at a distance of 

243.8 cm from one another (Fig. 2.1). To reduce reverberations generated when the 

speaker was playing, the speakers were set on acoustic foam to muffle vibrations. In 

addition, speakers were placed inside of a small barrier enclosed around all sides, to 

prevent gobies from hiding underneath the speaker and using it as a shelter (Fig. 2.2A). 

The starting area where individual gobies were released was situated at the centre of the 

tank and at a distance of 100.6 cm away from the speakers on either end. The starting 

area was enclosed by a barrier composed of PVC pipe and plastic grating that stood at a 

height of 74.9 cm (Fig. 2.2B). To allow the individual to leave the starting area, opened 

slots were created at the base of each barrier wall at a fixed distance, causing the 

individual to search to locate the exits (Fig. 2.2A). No particular individual was seen to 

have difficulty finding the exits that would cause it to turn from one barrier wall and try 

to escape from the opposite end.  Therefore, the barrier design does ensure that the 

speaker the subject first approaches is preserved as the initial response. Prior to 

performing a trial and during resting periods, the individual was held in 3.8 L tank prior 
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to exposure to a new treatment period for acclimation and to relieve any stress that may 

result from handling, using water from the experimental tank to maintain similar water 

chemistry and temperature. Each trial was recorded using a security camera (EverSecure, 

Model SX-800-HR) positioned directly above the tank, providing a full view of the 

experimental area.  

For behavioural measurements, an approach to a speaker of choice by a fish was 

considered a true approach only if the individual was in relatively close proximity to the 

actual speaker itself. All behavioural responses measured were quantified within a single, 

10-minute treatment per trial, per fish. For first approach to a speaker upon initial 

exposure to a treatment (initial response), a goby approaching the playing speaker was 

considered a positive response (weighted a value of 1) and an approach to a silent speaker 

or remaining in the starting area was considered a negative/no response to a treatment 

(weighted a value of 0). For total number of approaches, a single approach to either the 

playing or silent speaker was quantified as being close in proximity to the speaker itself 

and then returning to the starting area. Time spent at a speaker was quantified from the 

time the subject reached the speaker of choice and ended when the individual returned to 

the starting area. Mean time elapsed when travelling towards a speaker was quantified 

from the time an individual would leave the starting area and ended upon reaching the 

speaker of choice. For mean relative distance travelled, the distance ratio for the fish’s 

swimming path was used to determine how straight the individual’s path to the speaker 

was. This ratio was calculated as: 

     Distance ratio =     Actual Distance Travelled(cm)                     (Speares 2007) 

          Straight line distance to speaker (cm) 
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The actual distance travelled was the sum of the distance traveled each second by 

the fish (as measured by Ethovision XT), from when the fish first left the starting area 

until they stopped in front of the speaker of choice. The straight line distance to a speaker 

was always 100.58 cm, which was the measured distance from one barrier wall to the 

speaker on either side of the tank. A straight path was quantified as being a low ratio 

value (equal to 1) for distance travelled indicating a direct path to the speaker and 

meandering for higher ratio values (greater than 1), displaying an indirect path when 

travelling towards a speaker (Speares 2007). 

The conspecific call, the grunt, was recorded in Lake Michigan from a nest-

guarding male (RM) in the field, via the use of a geophone recorder and corresponds to 

the “Round Goby” call in Rollo et al. (2006). The nest-guarding male was described as 

having eggs present in his nest during the time that the male was vocalizing. The grunt 

call was characterized as being a long, broadband pulse train consisting of 7-8 pulses on 

average (Rollo et al. 2006). The call fundamental frequency was 180Hz, with most of the 

energy falling under 400 Hz. Pulse train duration averaged 0.07 s and the interpulse 

interval was approximately 0.25s. The drum call, recorded in the Higgs lab (University of 

Windsor) from a nest-guarding male in response to a playback recording of another male 

vocalization, was measured to have a fundamental frequency of 160 Hz, with most of the 

energy below 350 Hz, consisting on average of 10-11 pulses. The drum was also 

characterized to be a broadband pulse train but having a pulse train duration and 

interpulse interval shorter than that found in the grunt call (Fig. 2.3). 

A single goby of a particular reproductive status and sex was released into the 

starting area and then exposed to each of four treatments in a randomized order. Each 
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treatment was ten minutes in duration, separated by ten minutes of acclimation, to 

alleviate any stress due to handling before exposing the individual to the next treatment. 

The four treatments were: the grunt call, the drum call, white noise, and a silent control. 

To prevent bias, the speaker that was chosen to be playing was selected at random 

initially and then the ‘playing speaker’ was alternated for each progressive treatment. 

Sounds were played at a continuous rate and at an intensity of 140 decibels (dB re 1µPa) 

at the starting area, which is within the range of the natural calling thresholds of most the 

family Gobiidae (Lugli and Torricelli 1999, Linstrom and Lugli 2000).  Sound intensity 

at the sound source was measured to be ~150 dB re 1µPa and ~130 dB re 1µPa at the 

silent speaker. Prior to performing a trial, gobies were allowed to acclimate to the trial 

room in a small holding tank filled with dechlorinated water from the experimental tank 

for one hour. Sound treatments were tested on 30 females (16 RF, 14 NRF) and 36 males 

(15 RM, 8 SM, 13 NRM) and each individual was only tested once per trial.  

Hormone Assays 

Reproductive and nonreproductive males and females, following a playback trial, 

were anaesthetized with clove oil (~60 mg  L
-1

) to measure hormone levels in the 

individual’s bloodstream and determine if the concentration of sex-related hormones 

affected behavioural responses to conspecific sounds (Zeyl, submitted). Sneaker males 

were not included in hormonal assays as the amount of blood drawn was insufficient to 

perform proper analysis, due to their small size. Males were tested for 11-ketotestoterone 

(11-KT) and testosterone (T) levels, while females were examined for 17β-estradiol (E2) 

and testosterone. Blood was collected from individuals via the use of heparinised 

capillary tubes following removal of the caudal peduncle to allow blood to be drawn from 
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the caudal vein; total volume of plasma collected for fish varied from 5-40 µL. Plasma 

was typically collected in the afternoon between 13:00 and 18:00 h to maintain consistent 

hormone sampling from one fish to the next, as hormone levels can fluctuate depending 

on spawning behaviour of a species.  Blood was spun at 14,500 rpm (Micro-Hematocrit 

Centrifuge LWS-M24, LW Scientific, and Lawrenceville, GA, USA) for ten minutes and 

then stored at -80
o
C and assayed at a later time.  

Diethyl ether was used to extract steroids once prior to assay and samples were 

run in triplicate using enzyme-linked immunosorbent assays (Cayman Chemical, Ann 

Arbour, MI, USA) with individuals randomly assigned to plates. Plasma 17β-estradiol 

and T was assayed from 25 females (16 RF, 9 NRF) while 11-KT and T was assayed 

from 26 males (13 RM, 13 NRM). Extraction recoveries were determined separately for 

each reproductive morph as a result of limited plasma volumes collected from a single 

fish. Therefore, cold spike recoveries on plasma pools consisted of equal volumes from at 

least ten individuals (Bowley et al., 2010). Testosterone extractions for both males and 

females were poor and varied between the reproductive morphs; however, similar 

recoveries for 11-KT and T were collected in regard to male plasma pools, despite 

different dilution and spike amounts.  

Statistical Analysis 
 

All data were analyzed using the statistical software, SPSS (IBM SPSS Statistics, 

v. 19.0). Responses to treatments were analyzed in relation to percent response to a 

playing speaker (initial response), number of approaches, time spent at a playing speaker 

per approach (in seconds), relative distance travelled to a speaker, and time elapsed 

traveling to a speaker. Mean distance travelled to a speaker (path angle deviation) was 
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analyzed in Ethovision XT (Noldus Information Technology, v. 15.0) prior to data 

analysis. Data failed to be normal following transformations so nonparametric tests were 

used to analyze the response of fish for between-morph comparisons. For initial response, 

data were quantified dichotomously as yes or no responses (1 = approach to the playing 

speaker and 0 = no response or approaching the silent speaker) and were analyzed using 

logistic regression, where the least responsive reproductive morph was used as a 

comparison. For number of approaches, time spent at a playing speaker, and time 

elapsed, data were analyzed using Kruskal-Wallis one way analysis and Mann-Whitney 

U-Test post-hoc. For within-morph comparisons, Friedman’s two-way analysis and 

Wilcoxon signed rank post-hoc was used when examining RF responses for number of 

approaches, time spent, time elapsed, and relative distance travelled. Bonferroni 

corrections were applied following all post-hoc tests to avoid inaccurately detecting 

significance when performing comparisons. Finally, hormone data were log-transformed 

for normality and was analyzed using simple regression when quantifying correlations 

between responses and hormones levels by reproductive morph and sex.  

Results 

Reproductive Morph Choice Playback Experiment 
 

 Logistic regression analysis revealed that RFs initially responded to the grunt call 

(Fig. 2.4A) significantly more often than NRMs (Wald = 4.529, P = 0.033, d.f. = 1, Table 

2.1) and SMs initially responded to the drum call (Fig. 2.4B) significantly more often 

than RMs (Wald = 5.113, P = 0.024, d.f. = 1, Table 2.2). There was no significance 

difference between RFs and NRFs for either call type (Wald = 2.257, P = 0.133, d.f. = 1, 

Table 2.3). No significance differences were detected between morphs for either white 
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noise (Wald = 3.623; P = 0.459; d.f. = 4; Fig. 2.4C; Table 2.4) or the control (Wald = 

3.623; P = 0.459; d.f. = 4; Fig. 2.4D; Table 2.5). In regard to RFs, the grunt call elicited 

56.3% response rate in contrast to NRMs that only had a 15.4% response rate and NRFs 

that had a 28.6% response rate. Similarly, SMs displayed a 62.5% response rate to the 

drum call as opposed to RMs that only responded to the drum call 26.6% of the time. 

Interestingly, RFs had a 0% response rate upon initial exposure to the drum call.  

There was a significant difference between reproductive morphs in the mean 

number of approaches to a playing speaker in regard to the grunt call (X
2

4, 66 = 11.597; P 

= 0.021; Fig. 2.5A). No significance differences were detected between morphs for either 

the drum call (X
2

4, 66 = 4.371; P = 0.358; Fig. 2.5B), white noise (X
2

4, 66 = 4.334; P = 

0.363; Fig. 2.5C) or the control (X
2

4, 66 = 4.375; P = 0.358; Fig. 2.5D).  Reproductive 

females approached the grunt call significantly more than RMs (U1, 31 = 64.50; Z = -

2.432; P = 0.015) and NRFs (U1, 30 = 49.0; Z = -2.938; P = 0.003), after calculating for 

Bonferroni correction (P = 0.016). An average of 0.9 approaches to the grunt call speaker 

was displayed by RFs in contrast to RMs (µ = 0.4 approaches) and NRFs (µ = 0.2 

approaches). 

For mean time spent at the playing speaker, there was a significant difference 

between morphs for the drum call (X
2

4,30 = 15.516; P = 0.004, Fig. 2.6B) and white noise 

(X
2

4,30 = 14.966; P = 0.005, Fig. 2.6C), but not for the grunt (X
2

4,30 = 7.677; P = 0.104, 

Fig 2.6A) or the control (X
2

4,30 = 6.495; P = 0.165; Fig. 2.6D) Post-hoc tests revealed that 

for the drum call, RFs spent significantly less time at the playing speaker than SMs (U1, 24 

= 0.000; Z = -3.496; P < 0.01) and NRMs (U1, 29 = 4.500; Z = -3.011; P = 0.003). 

Similarly, RFs spent significantly less time at white noise than NRFs (U1, 30 = 0.000; Z = -



 

54 
 

3.286; P = 0.001) and NRMs (U1, 29 = 1.00; Z = -2.984; P = 0.003) and approached 

significance relative to RMs (U1, 31 = 6.00; Z = -2.349; P = 0.019), following Bonferroni 

correction (P = 0.016). The RFs spent an average of 0 s at the drum call playing speaker, 

while SMs and NRMs spent an average of 70.2s and 502.75s, respectively. In 

comparison, RFs spent an average of 6.5 s at the white noise playing speaker followed by 

RMs (188.4s), NRMs (201.6s), and NRFs (273.5s).  

There was no significant difference between morphs for mean time spent at the 

grunt playing speaker, but RFs were observed to have spent the most time at the grunt 

call than any other morph and were examined as a within-morph analysis. The RFs spent 

significantly more time at the grunt call playing speaker than at the drum call silent 

speaker (Z = -2.66; P = 0.008), drum call playing speaker (Z = -2.66; P = 0.008), grunt 

call silent speaker (Z = -2.66; P = 0.008), and white noise playing speaker (Z = -2.66; P = 

0.008), following Bonferroni correction (P = 0.0125). The RFs spent an average of 

234.6s at the grunt playing speaker (Fig. 2.7) as compared to the drum silent speaker 

(42.9s), drum playing speaker (0s), grunt silent speaker (29.8s), and white noise playing 

speaker (6.6s).  

 With respect to path angle deviation in accordance to relative distance moved 

when travelling towards a speaker, there was no significance difference between morphs, 

but examining within-morphs showed an overall significance for RFs (X
2

7,9 = 22.081; P = 

0.002; X
2

7,9 = 31.365; P < 0.01 respectfully). For relative distance moved, RFs had a 

significantly straighter path when travelling to the speaker playing the grunt call than 

when travelling towards the drum call playing speaker (Z = -2.66; P = 0.008). In addition, 

RFs also displayed a significantly straighter path when travelling towards the drum call 
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silent speaker in contrast to the speaker playing the drum call (Z = -2.366; P = 0.018), 

following Bonferroni correction (P = 0.025). The RFs travelled a relative distance of 2.3 

towards the grunt call playing speaker (Fig. 2.8) relative to the drum playing speaker. In 

addition, RFs also travelled a relative distance of 7.0 towards the drum silent speaker 

relative to the drum playing speaker.  

The RFs moved significantly slower when travelling towards the grunt call 

playing speaker than when travelling towards the white noise playing speaker (Z = -

2.549; P = 0.011; Fig. 2.9), the left silent control speaker (Z = -2.547; P = 0.011), and 

approaching significance in regard to the right silent control speaker (Z = -2.371; P = 

0.018), following Bonferroni correction (P = 0.0125). For RFs, 64.2 seconds elapsed 

when travelling towards the grunt call playing speaker more so than when travelling 

towards the white noise playing (7.1s), and the left silent control speaker (9.6s).  

For hormone assays, there were no significant correlations between male and 

female hormones levels and behaviour parameters measured, but a positive pattern was 

seen in regard to E2 levels and mean time spent at the grunt call in regard to RFs (P 

=0.328; R = 0.398; R
2
 = 0.159; AR

2 
= 0.018; Fig. 2.10A) and pooled female data (P = 

0.609; R = 0.174; R
2
 = 0.030; AR

2 
= -0.078; Fig. 2.10B), largely due to the influence of 

the one female with the largest E2 level. No pattern was detected for T levels and mean 

time spent at the grunt call for RFs (P = 0.777; R = 0.111; R
2
 = 0.012; AR

2 
= -0.129; Fig. 

2.11A) and pooled females (P = 0.542; R = 0.196; R
2
 = 0.038; AR

2 
= -0.058; Fig. 2.11B).  

Discussion 

State-dependant responses to acoustic signals are rarely investigated in freshwater 

fishes in association with behaviour and tend to focus on male or female response alone. 
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The underlying issue with male- or female-focused studies on behavioural responses to 

acoustic signals is that the effect of acoustic communication within a species’ community 

is only partly investigated. For instance, differentiating the response between a 

reproductive and nonreproductive female to playback of a male call, may only determine 

that the call has some function in mate attraction if gravid females show favor towards it, 

leaving males, nonreproductive fish, and alternative reproductive tactics if they exist 

within the target species, out of the investigation entirely.  To think of any form of 

communication as being a simple one to one relationship (a single sender and receiver), is 

unrealistic as the signal is still audible to conspecific individuals, and therefore can be 

understood, allowing a non-target to  respond. Interception, more commonly known as 

eavesdropping, was first proposed by Myrberg (1981) whereby conspecific receivers that 

are the unintended target of the sender’s signal, detect the signal and respond to it. If the 

response is beneficial to the non-target receiver, then eavesdropping should evolve in that 

species’ population, and trigger the response when detecting the signal (Earley 2010). 

Such examples of beneficial eavesdropping are seen in the bicolour damselfish, 

Pomacentrus partitus, whereby males intercept grunt calls (indicates the presence of a 

female) emitted by other males as a means to interfere with courtship and gain a possible 

spawning partner (Kenyon 1994). In contrast, Siamese fighting fish, Betta splendens, 

females have been found to eavesdrop on male-male displays as a means to assess male 

mate quality (Doutrelant and McGregor 2000). Failure to investigate the full-scope of 

responses to conspecific signals within a species, may lead to undocumented behaviours 

and the effects those behaviours may have on senders beyond simple predictions 

observed at the surface. The current study provides evidence that may indicate a 
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relationship between reproductive state and auditory responsiveness to conspecific calls 

in the round goby and provides a model of how reproductive state can affect phonotactic 

response between the sexes. Furthermore, results may also provide some insight on 

function of the conspecific calls examined.  

Courtship signals are believed to have evolved in relation to female preference 

that triggers a sensory bias coded in the female’s behaviour and that once heard elicits a 

robust response to the signal upon recognition (Ryan and Hector 1992). In the current 

study, RFs displayed a significantly strong attraction to the grunt call in a number of 

behavioural measures examined, including strong initial response to the grunt call which 

may indicate recognition, attraction, and an attempt to locate the male that is producing 

the call. Similarly, in the plainfin midshipman, gravid females display the most robust 

and consistent phonotaxis in response to male courtship hums upon initial exposure to the 

sound in contrast to spent females (McKibben and Bass 1998).  In bicolour damselfish, 

Pomacentrus partitus, females display a highly attracted response to male chirps and are 

thought to assess male quality via the signal itself (Myrberg et al 1986). Therefore, RFs 

may be displaying a triggered response elicited by characteristics in the male’s call given 

its sensitive and robust phonotactic response to the grunt call.  

The RFs were also found to approach the grunt call significantly more often than 

NRFs and RMs (Fig. 2.4A), though rarely did a RF approach the sound source more than 

twice (Fig. 2.5A). It seems the initial exposure to the sound elicits the strongest response, 

and failure to locate the male results in fewer responses from RFs. While it has not been 

documented in the round goby, other members of the family Gobiidae, often use acoustic 

communication as a means of drawing the female to the nesting site, which is then 
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followed by a visual display. For example, the painted goby, Pomatoschistus pictus, 

following vocalization, will display erect fins and perform a quivering motion towards 

the female in front of the nest (Amorim and Neves 2007). Similarly, Padogobius 

martensii, when the female is in the nest, will perform head raising and covering the 

opercula of the spawning partner (Lugli et al. 1995). It is speculated that females assess 

male quality based on these visual displays. Round goby males have been observed to 

perform a head shaking, moving in and out the nest, and undulating fins following 

vocalizations usually within vicinity of females (personal observation). Interestingly, 

nest-guarding males, while in their nuptial colouration (jet black), have prominent white 

bands along the edge of the dorsal, pectoral, and caudal fins and may be an ornament that 

female’s assess as part of a visual display (personal observation). Furthermore, RFs 

spending a large amount of time at the grunt call (Fig. 2.7) may indicate possible 

searching behaviour. For example, after locating the sound source, RFs may be 

examining the vicinity of the speaker area to locate the male, but after following failure to 

do so, the RF loses interest and eventually leaves. Similarly, responding female plainfin 

midshipman spend only a short period of time (an average of 30 seconds) at the sound 

source emitting a male call upon investigation, indicating that the sound alone is not 

enough to maintain the female’s interest and requires the male’s physical presence 

(McKibben and Bass 1998). Within-morph responses for mean time spent were examined 

for RFs which were found to spend the largest amount of time at the grunt call upon first 

exposure to a sound treatment (Fig. 2.6A, Fig. 2.7). These results show that RFs display 

the highest level of attraction to the grunt call and may be a mate attraction call. These 

results are consistent with findings from Rollo et al. (2006) where both male and female 
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gobies responded to the conspecific call, the grunt more vigorously, but females were 

significantly more attracted to the playing speaker than were males. Thus, the RFs in the 

current study may be approaching the speaker in response to the acoustic cue but then 

leaving when not getting the visual reinforcement of a calling male.  

The RFs were found to show no initial response to the alternative conspecific call, 

the drum (Fig. 2.4B). Reproductive females instead were found to either avoid the sound 

stimuli by moving towards the silent speaker on the opposite side of the tank or remain in 

the starting area. The RFs lack of interest in the drum call may indicate that this call is 

unattractive, as a spawn-ready female would be more likely to seek out the male upon 

initial recognition of the sound. Instead, RFs display the opposite response to the drum 

call (ignore or avoid), providing some evidence that the drum call has no function in mate 

attraction as previously thought. Given the context in which the drum call was recorded, 

it is possible that the drum call is for territorial defense given that it performed in 

response to another male call. For example, red-finned loaches, Yasuhikotakia modesta, 

during agonistic encounters, perform two kinds of vocalizations during aggressive 

encounters, which consist of butting sounds during physical contact with an intruder and 

clicking sounds for long distance communication (Raffinger and Ladich 2009). Similarly, 

in oyster toadfish, Halobatrachus didactylus, parental males emit mostly boatwhistles 

along with other sounds when conspecific male intruders are present near their nesting 

sites, often joined by additional threatening behaviours (Vasconcelos et al. 2009). Thus, 

RFs may be displaying avoidance behaviour when presented with the drum call as it may 

be a means to ward away intruders.  
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Generally, fish without hearing specializations or a swimbladder are thought to be 

unable to localize the sound source properly and must depend on other means of 

detecting particle motion (Popper and Schilt 2008). Despite the lack of hearing 

specializations or swimbladder, round gobies, both male and female, have been found to 

localize the sound source quickly and with minimal meandering when travelling towards 

the sound source (Rollo et al. 2006, Rollo and Higgs 2008). Our data showed RFs 

travelled the straightest path when moving towards the grunt playing speaker (Fig. 2.8) 

but travelled the slowest when approaching the grunt call (Fig. 2.9). The RFs displayed a 

stop and go motion of travel when moving towards the playing speaker. Fish that do not 

possess hearing specializations or a swimbladder are thought to localize a sound source 

by sampling different points within the soundscape and determining location by 

differentiating where the sound was loudest using the lateral line (Sand and Bleckman 

2008). For example, mottled sculpins, Cottus bairdii, a species that also does not possess 

a swimbladder, when approaching a dipole source, approaches the sound source 

indirectly (described as a zigzag pattern) and were speculated to be sampling the sound 

environment via the use of their lateral line to assist with orientation (Coombs and 

Conley 1997). In contrast, the plainfin midshipman, were found to perform a fairly direct 

and straight path when travelling towards a sound source via the assistance of their 

swimbladder and ears (Zeddies et al. 2010). While not the zigzagging pattern displayed 

by sculpins, the stop and go motion of movement displayed by RFs, may be a means to 

sample the soundscape using their lateral line to differentiate where the sound is the 

loudest to assist with localization. Sampling the soundscape may be the reason why RFs 

display a slower paced movement when in response to the grunt call, despite other 
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measures indicating a positive phonotactic attraction. Differences in my results from 

Rollo and Higgs (2008) in regard to time elapsed when travelling to the playing speaker 

may be due to experimental design. In Rollo and Higgs (2008), the playing and silent 

speakers were both on the same side of the experimental arena as opposed to my design 

where each speaker was situated on opposite ends from one another (Fig. 2.1). My design 

may have been more difficult for individuals to locate the sound source as they must 

determine if the sound is loudest from the left or right side as opposed to a single option, 

resulting in slower paced movement to better assess the location of the sound source.  

In midshipman, summer females, in association with hormones levels, are better 

suited to detect the higher harmonics of a male’s call than non-gravid females, and 

therefore are more sensitive to mate attraction calls (Sisneros and Bass 2003). Hormone 

assays in the current study, however, did not show such a relationship between E2 levels 

(Fig. 2.10) or T levels (Fig. 2.11) for either RFs or pooled female data. A recent study 

(Maruska et al. 2012) examined the response of African cichlid females, Astatotilapia 

burtoni, where only sexually mature females were found to significantly prefer courtship 

calls over brown noise. Given that, RFs spent the least amount of time at an alternate 

sound type (Fig. 2.7) in the current study indicates that RFs are not just responding to 

sound in general and are displaying a higher specificity in their response to conspecific 

calls, at least for the grunt call, which may be facilitated by naturally circulating steroids 

in the blood.  

Sneaker male preference to the drum call (Fig. 2.4B) may be a means of 

eavesdropping that allows SMs to intercept a male’s call and locate the nesting site.  

Round gobies are colonial living in large groups within rocky and turbid substrates, 
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providing a difficult task for SMs to locate a male’s nest (Young et al 2009). In addition, 

parental males heavily guard the nest entrance from all intruders (excluding gravid 

females), making it difficult for a SM to fertilize the eggs, undetected (Wickett and 

Corkum 1998). Since spawning events are relatively short-lived, approximately 30 

minutes (Meunier at al. 2009), localizing a nesting site must occur quickly. As a result, 

SMs would need to depend on cues emitted during spawning, such as auditory signals as 

sounds travel faster and farther from its sound source than chemical cues from eggs 

odours, allowing for rapid localization (Tavolga 1971). Interestingly, Meunier et al 

(2009) recorded “barking calls”, reported as a pulse series, being emitted from a nest-

guarding male before, after, and during the spawning process. Therefore, SMs may be 

able exploit sexual signals produced by parental males as a means of pinpointing the nest 

and sneak fertilizations once located; a common behaviour displayed by males that 

utilizes alternative reproductive tactics in other species (Brantley and Bass 1994, 

McKibben and Bass 1998, Alonzo and Warner 1999, Bass and McKibben 2003). Round 

goby SMs may attempt to intercept spawning events by eavesdropping on male calls as a 

means of fertilizing eggs. While no physical evidence of a round goby performing 

sneaking behaviours has been recorded, physiological evidence has been found that 

indicates that sneaking tactics may exist in the species. Marentette (2009) examined the 

physiological difference between a dark male vs. a light morph males (commonly 

referred to as RMs and SMs) and found that dark males invested more in larger body 

size, accessory glands, and higher concentrations of 11-ketotestoterone in the blood, 

while light morphs invest more in testes mass and a greater volume of sperm per 

ejaculate than dark males.  These findings are indicative of alternative reproductive 
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tactics and sperm competition theory (Parker 1970), supporting the potential existence of 

sneaking males in the round goby.  

Similarly to SMs, NRMs may also be performing eavesdropping behaviour when 

responding to the drum call (Fig. 2.6B), but for another purpose. Round gobies are 

aggressive egg predators of both heterospecific and conspecific fishes (Charlesbois et al. 

1997), and it has been found that nonreproductive gobies are highly attracted to egg 

odours (Yavno and Corkum 2011). Given that round gobies live in large aggregations and 

in turbid conditions (Young et al 2009), locating a nest visually would not be an easy task 

for any reproductive morph. As a result, they must depend on other modalities, such as 

chemical or auditory signals to locate the nest-guarding male, but the dispersal of 

chemical signals is directionally limited and can be difficult to use for locating a nest 

from long distances (Bossert and Wilson 1963). Nonreproductive fish could also 

eavesdrop on calls produced by nest guarding males that are trying to attract females to 

his nest. Since females tend to spawn with males that have eggs (Wickett and Corkum 

1998), nest-guarding males should continue to call when eggs are already in the nest. As 

a result, non-reproductive fish could eavesdrop on calls and use them as a means to locate 

the nest site from a distance and then use chemical cues to determine if eggs are present, 

which my results may indicate in regard to the drum call.  

As to the reduced response of RMs to conspecific sounds (Fig. 2.4A-B, 2.5A-B, 

2.6A-B) two different possibilities exist. It may be that hearing in RMs is poorer than the 

other morphs. The hearing ability of RMs has recently been shown to have the worst 

hearing than any other morph examined and may be an evolutionary deterrent to prevent 

triggering agonistic behaviours upon recognition of conspecific calls (Zeyl, submitted). 
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Alternatively, it may be deleterious for a male to leave his nest to investigate another 

male calling as he exposes his nest to egg predation or may lose the nesting site to a 

potential competitor. In the field, round gobies are colonial and live in close proximity to 

one another even during the breeding season, whereby parental males will build nests 

right next to one another, increasing the probability of agonistic interactions (Wickett and 

Corkum 1998). Despite living in close proximity to one another, parental males were 

rarely seen to leave the nest or interact with neighbours (Wickett and Corkum 1998), 

indicative of the dear-enemy effect that facilitates to reduce aggression between familiar 

conspecific neighbours (Temeles 1994). As a result, the low phonotactic response of RMs 

to conspecific calls (Fig. 2.4A-B, 2.5A-B, 2.6A-B) may be a result of poor hearing 

sensitivity, and therefore investigative or territorial behaviour is triggered infrequently. 

While NRMs and SMs displayed positive phonotaxis to the drum call and RFs 

performed the opposite response (Fig. 2.4B, 2.6B), the function of the drum call still 

remains unclear. Given the context that the drum call was recorded under (see methods), 

it could play a role in territorial defense, which would initially confound SM and NRM 

results for this study. Why would an RM perform the drum call if it is supposedly 

deleterious? Round gobies live in large colonial aggregations and in close proximity to 

nesting sites during the breeding season (Charlesbois et al. 1997). The overlying issue 

that SMs and NRMs face when attempting fertilizations or egg predation is the size of a 

nest-guarding male. Nest-guarding males are two to three times the size of SMs and 

NRMs (Charlesbois et al. 1997, Marentette 2009) and an attack on a male’s nest by a 

single goby is rarely successful (Wickett and Corkum 1998). In nature, when a male’s 

nest is successfully attacked, it is the result of a large number of gobies working together 
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as the nest-guarding male becomes overwhelmed, exhausted, and most importantly, 

distracted (Wickett and Corkum 1998). While a single performance of the drum call may 

deter conspecifics away from the nest, constant performance, as this study presented, of 

the sound may indicate stress and failure to frighten intruders. Consequently, NRMs and 

SMs may cue in on the male’s stress and investigate the sound, and may present an 

opportunity that is not always readily available to these morphs. Future studies should 

investigate eavesdropping behaviour on acoustic signals in the round goby more 

extensively in relation to egg predation and sneaking behaviour. Juvenile round gobies 

are attracted to conspecific egg odours (Yavno and Corkum 2011), but chemical 

communication is restricted to short distances as odour disperse slowly from its source. 

By incorporating long distance signals (acoustic communication) in conjunction with egg 

odours it can be determined that egg predators (and potentially sneaking behaviour) use 

sound to pin-point the location of a nest, and then uses chemical cues to confirm if eggs 

are present. In addition, group effects and call rate can be incorporated in SM 

eavesdropping studies to better establish if indicators of nest-guarding male stress and 

distraction plays a role in facilitating eavesdropping behaviour.  

The initial response may be more indicative of round goby behavior since RFs 

were seen to investigate the sound source only once and rarely approached the speaker a 

second time. The tendency for RFs to investigate the sound source once may be the result 

of RFs spending more time at the grunt call playing speaker, indicating possible 

searching behaviour. Therefore, RFs are more likely to ignore the sound following initial 

investigation as they may be aware that no male is actually present at the sound source. 

Another variable that is useful in describing goby behaviour is mean relative distance 
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travelled as it reiterates that gobies can in fact directionalize and localize the sound 

source. However, since gobies have no apparent hearing specializations, they may use 

their lateral line to sample the sound source, since females were found to travel the 

slowest when approaching the grunt call sound source, facilitated by a stop and go 

travelling pattern. In conclusion, initial response and mean distance travelled behavioural 

measurements examined in the current study should be considered the most useful when 

describing round goby behaviour. 

The current study provides new evidence of state-dependent response to 

conspecific calls as a model and in the round goby, as well as provides some insight into 

the function of the calls examined. The results show that RFs display the strongest 

phonotactic response to the grunt call (Fig. 2.4A, 2.5A, 2.7, 2.8, 2.9) supporting that the 

call plays a function in mate attraction, which is consistent with Rollo et al (2006) and 

Rollo and Higgs (2008). Furthermore, hormone assays revealed seasonal plasticity may 

be playing somewhat of a role in affecting the behaviour of RFs in their response to the 

grunt call, similar to plainfin midshipman (Sisneros and Bass 2003) and to an extent, 

Astatotilapia burtoni cichlids (Maruska et al 2012). Reproductive males, on the other 

hand, showed a low response to either conspecific calls (as was predicted) given that in 

nature, it would be deleterious to investigate conspecific calls as it exposes a nest to 

predation and theft by other males. In contrast, RFs showed poor phonotactic response to 

the alternative conspecific call, the drum (Fig. 2.4B, 2.7), disproving my prediction of 

having a function in mate attraction. However, SMs and NRMs exhibited a robust 

attraction to the drum call (Fig. 2.4B, 2.6B) and may be intercepting these signals as a 

means of locating a nest to feed on eggs and sneak fertilizations. 
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Finally, to further understand female response to conspecific acoustic signals, call 

rates should be examined as different call rates can have various meanings depending on 

the species (Seyfarth and Cheney 2006), which is currently unknown in the round goby. 

In addition, behavioural response to different sound intensities should also be examined 

as intensity threshold for the round goby has yet to be investigated, at least behaviourally. 

In conclusion, the current study provides new insight into state-dependent responses to 

acoustic signals as well as provides a model for other fishes in relation to both behaviour 

and physiology. While few and far between, previous studies have found that seasonal 

plasticity plays a role in driving reproductive behaviour of female plainfin midshipman 

and cichlids in response to sexual signals facilitated by differences seen between gravid 

and non-gravid females during the breeding season (Brantley and Bass 1994, McKibben 

and Bass 1998, Bass and McKibben 2003, Sisneros and Bass 2003, Maruska et al 2012) 

and should be investigated more thoroughly in other fish species. Moreover, these 

findings provide further understanding of acoustic communication in the round goby and 

some insight into call function of the sounds examined as well as supports that acoustic 

communication can be used for mate attraction in the species. By understanding the 

behavioural responses and function of acoustic communication, I can determine how 

gobies interact in nature.  Using this knowledge, I can create new ways and techniques in 

controlling the number and spread of the round goby in the freshwater systems of North 

America. 
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Figures and Tables 

 

Figure 2.1: Depiction of trial set-up. A single tank (1020 litres; 243.8 cm x 91.4 cm x 

91.4 cm) with two underwater speakers placed on opposite sides of the tank. Two barrier 

walls are placed at the centre of the tank acting as the starting area. A single camera was 

suspended above the tank to allow full-view recording of all goby activity within the 

experimental area.  
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Figure 2.2: A) Depictions of barrier wall used to delineate the starting area (74.9 cm x 

12.7 cm x 63.5 cm) constructed from PCV piping and plastic grating. B) Depiction of 

speaker barricade (35.6 cm x 24.3 cm x 22.9 cm), constructed from PCV piping and 

plastic grating. 
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Figure 2.3: Oscillograms (left) and power spectra (right) of the Grunt (A-B), and Drum 

(C-D) sounds produced by male round gobies. Grunt call received from John Janssen 

(University of Wisconsin).   
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Figure 2.4: Percent (± S.E.) first approach response rate of reproductive and 

nonreproductive males (15 RM, 13 NRM), females (16 RF, 14 NRF), and sneaker male 

(8 SM) round gobies to: A) Grunt Call, B) Drum Call, C) White Noise, D) Silence. 

Gobies approaching the playing speaker were considered a positive response (weighted a 

value of 1) and the silent speaker or remaining in the barrier was considered a 

negative/no response (weighted a value of 0), over a 10-minute treatment period.  

Reproductive females initially responded to the grunt call significantly more so than 

NRMs (p = 0.033) while SMs initially responded to the drum call significantly more so 

than RMs (p = 0.024). Letters denote significant differences. 
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Figure 2.5: Mean (± S.E.) number of approaches to a playing speaker of reproductive 

and nonreproductive male (15 RM, 13 NRM), female (16 RF, 14 NRF), and sneaker male 

(8 SM) round gobies to: A) Grunt Call, B) Drum Call, C) White Noise, D) Silence. A 

single approach to either the playing was quantified as being in relatively close proximity 

to the speaker itself and returning to the starting area, over a 10-minute treatment period.  

Reproductive females approached the grunt call playing speaker significantly more often 

than RMs (p = 0.015) and NRFs (p = 0.003). Letters denote significant differences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

81 
 

Figure 2.6: Mean (±S.E.) total time (seconds) spent by reproductive and nonreproductive 

male (5 RM, 5 NRM), female (9 RF, 6 NRF), and sneaker male (5 SM) round gobies to: 

A) Grunt Call, B) Drum Call, C) White Noise, D) Silence. Time spent was quantified 

from the time the subject reached a speaker to and returned to the starting area, over a 10-

minute treatment period. Reproductive females spent significantly less time at the drum 

call playing speaker than SMs (p < 0.01) and NRMs (p = 0.003). In addition, RFs were 

found to spend significantly less time at white noise than NRFs and approaching 

significance for RMs.  Letters denote significant differences. 
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Figure 2.7: Mean (±S.E.) total time (seconds) spent by reproductive females (9 RF) for a 

single treatment for all possible approaches: grunt call playing speaker (GruntP), grunt 

call silent speaker (GruntS), drum call playing speaker (DrumP), drum call silent speaker 

(DrumS), white noise playing speaker (W.NoiseP), white noise silent speaker 

(W.NoiseS), and left (SilentL) and right silent (SilentR) speakers for the control. Time 

spent was quantified from the time the subject reached a speaker to and returned to the 

starting area, over a 10-minute treatment period. Reproductive females spent significantly 

more time at the grunt call playing speaker than at the drum call silent speaker (p = 

0.008), drum call playing speaker (p = 0.008), grunt call silent speaker (p = 0.008), and 

white noise playing speaker (p = 0.008). Letters denote significant differences. 
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Figure 2.8: Mean (±S.E.) relative distance (cm) travelled to a speaker (first approach 

only) by reproductive females (9 RF) for a single treatment for all possible approaches: 

grunt call playing speaker (GruntP), grunt call silent speaker (GruntS), drum call playing 

speaker (DrumP), drum call silent speaker (DrumS), white noise playing speaker 

(W.NoiseP), white noise silent speaker (W.NoiseS), and left (SilentL) and right silent 

(SilentR) speakers for the control, per trial over during a 10-minute treatment. A straight 

path was quantified as being low in value for distance travelled and meandering for high 

values. Reproductive females were found to have a significantly straighter path when 

travelling towards the grunt call playing speaker than when travelling towards the drum 

call playing speaker (p = 0.008). Furthermore, RFs displayed a significantly straighter 

path when travelling towards the drum call silent speaker in contrast to the drum call 

playing speaker (p = 0.018). Letters denote significant differences. 
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Figure 2.9: Mean (±S.E.) time elapsed (seconds) for first approach when travelling to a 

speaker by reproductive females (9 RF) for all possible approaches: grunt call playing 

speaker (GruntP), grunt call silent speaker (GruntS), drum call playing speaker (DrumP), 

drum call silent speaker (Drums), white noise playing speaker (W.NoiseP), white noise 

silent speaker (W.NoiseS), and left (SilentL) and right silent (SilentR) speakers for the 

control, per trial over during a 10-minute treatment. Time elapsed when travelling 

towards a speaker was quantified from the time an individual would leave the starting 

area until reaching the speaker. Reproductive females travelled significantly slower when 

travelling towards the white noise playing (p = 0.011) and the left silent control speaker 

(p = 0.011). Letters denote significant differences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

85 
 

                 

Figure 2.10: Linear regressions of mean time spent in seconds (first approach only) at the 

grunt call for 17β-estradiol on A) reproductive females (9 RF) B) pooled females (9 RF, 3 

NRF). Each data point represents a single individual. 
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Figure 2.11: Linear regressions of mean time spent in seconds (first approach only) at the 

grunt call for testosterone on A) reproductive females (9 RF), B) pooled females (9 RF, 3 

NRF). Each data point represents a single individual.  
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Table 2.1: Percentage of RMs, RFs, NRFs, and SM round gobies that elicited a positive 

response during the grunt call sound treatment when compared to response rate of NRMs 

for percent first approach to a playing speaker. Positive responses were denoted when a 

goby swam into Zone 1.  B – b coefficient ; S.E – standard error; Wald – Wald statistic; 

d.f. - degrees of freedom;  Exp(B) – odds ratio. 

 

Reproductive Morph B S.E. Wald d.f. Sig. Exp(B) 

 NRM   5.928 4 .205  

RM .693 .965 .516 1 .473 2.000 

RF 1.956 .919 4.529 1 .033 7.071 

SM .606 1.121 .292 1 .589 1.833 

NRF .788 .970 .661 1 .416 2.200 

Constant -1.705 .769 4.918 1 .027 .182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

88 
 

Table 2.2: Percentage of RFs, NRMs, NRFs, and SM round gobies that elicited a positive 

response during the grunt call sound treatment when compared to response rate of RMs 

for percent first approach to a playing speaker. Positive responses were denoted when a 

goby swam into Zone 1.  B – b coefficient; S.E – standard error; Wald – Wald statistic; 

d.f. - degrees of freedom;  Exp(B) – odds ratio. 

Reproductive Morph B S.E. Wald d.f. Sig. Exp(B) 

 RM   5.759 4 .218  

NRM 1.061 .969 1.200 1 .273 2.889 

RF -19.331 10048.243 .000 1 .998 .000 

SM 2.383 1.054 5.113 1 .024 10.833 

NRM .573 1.001 .327 1 .567 1.773 

Constant -1.872 .760 6.073 1 .014 .154 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

89 
 

Table 2.3: Percentage of RFs, NRMs, RMs, and SM round gobies that elicited a positive 

response during the grunt call sound treatment when compared to response rate of NRFs 

for percent first approach to a playing speaker. Positive responses were denoted when a 

goby swam into Zone 1.  B – b coefficient; S.E – standard error; Wald – Wald statistic; 

d.f. - degrees of freedom;  Exp(B) – odds ratio. 

Reproductive Morph B S.E. Wald d.f. Sig. Exp(B) 

 NRF   5.928 4 .205  

RM -.095 .831 .013 1 .909 .909 

RF 1.168 .777 2.257 1 .133 3.214 

SM -.182 1.008 .033 1 .857 .833 

NRM -.788 .970 .661 1 .416 .455 

Constant -.916 .592 2.399 1 .121 .400 
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Table 2.4: Percentage of NRFs, NRMs, RMs, and SM round gobies that elicited a 

positive response during the white noise sound treatment when compared to response rate 

of RFs for percent first approach to a playing speaker. Positive responses were denoted 

when a goby swam into Zone 1.  B – b coefficient; S.E – standard error; Wald – Wald 

statistic; d.f. - degrees of freedom;  Exp(B) – odds ratio. 

Reproductive Morph B S.E. Wald d.f. Sig. Exp(B) 

 RF   3.623 4 .459  

RM .455 .867 .275 1 .600 1.576 

NRM .996 .857 1.350 1 .245 2.708 

 SM .956 .971 .968 1 .325 2.600 

 NRF 1.466 .834 3.089 1 .079 4.333 

Constant -1.466 .641 5.241 1 .022 .231 
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Table 2.5: Percentage of NRFs, NRMs, RFs, and SM round gobies that elicited a positive 

response during the control when compared to response rate of RMs for percent first 

approach to a playing speaker. Positive responses were denoted when a goby swam into 

Zone 1.  B – b coefficient; S.E – standard error; Wald – Wald statistic; d.f. - degrees of 

freedom;  Exp(B) – odds ratio. 

Reproductive Status B S.E. Wald d.f. Sig. Exp(B) 

 RM   3.623 4 .459  

RF -.455 .867 .275 1 .600 .635 

NRM .542 .816 .440 1 .507 1.719 

SM .501 .935 .287 1 .592 1.650 

NRF 1.012 .792 1.633 1 .201 2.750 

Constant -1.012 .584 3.002 1 .083 .364 
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Table 2.6: Tablulation of gonadsomatic index (GSI) measurements taken from round 

goby morphs used in behavioural trials, including reproductive males (RM) and females 

(RF), sneaker males (SM) nonreproductive males (NRM) and females (NRF). Males with 

a GSI of ≥ 1.3% and females with a GSI of  ≥ 8.0% were reproductive. Nonreproductive 

fish (NRMs, NRFs) were included in the analysis if and only if gonads were absent. For 

SMs, if the GSI was ≥ 4.0%, then the individual was a reproductive sneaker male.  

Reproductive Morph (Males) GSI (%) Reproductive Morph (Females) GSI (%) 

RM 1.39 RF 8.16 

RM 1.35 RF 9.81 

RM 1.46 RF 10.13 

RM 1.53 RF 10.84 

RM 1.63 RF 12.29 

RM 1.72 RF 12.90 

RM 1.79 RF 13.28 

RM 1.91 RF 13.45 

RM 1.93 RF 13.48 

RM 1.97 RF 13.60 

RM 2.24 RF 13.79 

RM 2.46 RF 13.88 

RM 2.56 RF 14.98 

RM 2.66 RF 16.73 

SM 4.05 RF 17.46 

SM 4.23 RF 17.80 

SM 4.29 NRF 0.00 

SM 4.66 NRF 0.00 

SM 4.68 NRF 0.00 

SM 6.01 NRF 0.00 

SM 6.51 NRF 0.00 

SM 6.69 NRF 0.00 

NRM 0.00 NRF 0.00 

NRM 0.00 NRF 0.00 

NRM 0.00 NRF 0.00 

NRM 0.00 NRF 0.00 

NRM 0.00 NRF 0.00 

NRM 0.00 NRF 0.00 

NRM 0.00 NRF 0.00 

NRM 0.00   

NRM 0.00   

NRM 0.00   

NRM 0.00   

NRM 0.00   

NRM 0.00   
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CHAPTER 3: 

ATTRACTION OF ROUND GOBIES, NEOGOBIUS MELANOSTOMUS, TO 

CONSPECIFIC SOUNDS IN THE FIELD 

Introduction 

 

The role of invasive species in ecosystem disruption is of increasing concern as 

species are transported from one region to another (Mills et al. 1993). The movement of 

individuals is often the result of anthropogenic actions, especially where commerce is 

concerned (Mills et al. 1993). Under normal circumstances, natural barriers exist that 

prevent or impede the migration of species to non-native areas (Lovell et al. 2006, Olson 

2006, Lockwood et al. 2007) as these barriers cannot readily be crossed by organisms 

unassisted due to either physically or chemically restrictions (Mills et al. 1993). For 

example, to cross an ocean successfully, an organism must be physically able to travel 

over long distances and even for a bird, traveling over a vast body of water would be 

difficult as they require a place to rest when travelling over long distances, otherwise 

fatigue and drops in altitude will occur (Bruderer and Liechti 1998). However, aquatic 

species face a more prominent concern. Migration of fishes is limited by the chemical 

characteristics of water (Marshall and Grosell 2006). Many freshwater species cannot 

move into salt water and vice versa as their osmotic balance would be offset, causing cell 

damage and ultimately death (Marshall and Grosell 2006). With increasing commerce 

and technology that allows for humans to conduct business with neighbouring countries 

and even with those that are overseas, these barriers are often eliminated (Koler and 

Lodge 2001), providing an outlet for invasive species to sidestep natural barriers and span 

areas with relative ease (Mills et al. 1993), often having profound negative impacts on the 
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native environment and community; an ever-growing concern for environmental 

biologists (Lovell et al. 2006, Olson 2006, Lockwood et al. 2007). 

A major problem with invasive species is they are often the root cause of 

widespread disturbance in native species populations that both affect natural ecosystems 

and give rise to concerns for commercial industries (Lovell et al. 2006, Olson 2006, 

Lockwood et al. 2007). Invasive species have been shown to adversely affect aquatic 

populations and caused significant economic damage to commercial fisheries in the 

Laurentian Great Lakes (Scholesser et al. 2006, Daunys et al. 2006, Coble et al 1999, 

Madenjian et al. 2008). With the overlaying issue of invasive species problems persisting 

in the Laurentian Great Lakes basin, means of eliminating or controlling the spread and 

population size of the invaders are of great interest. Many mechanisms of invasive 

species management are currently in effect and range from the use of natural, chemical, 

and mechanical control (Simberloff and Stiling 1996, Allendorf and Lundquist 2003), 

with the two latter methods being most commonly applied. For example, in relation to 

chemical control, the use of lampricide, a chemical designed to target the larvae of 

invasive sea lamprey, Petromyzan marinus, in river systems before their recruitment as 

parasitic adults, effectively reduces their population size (Christie et al. 2003). In regard 

to mechanical control, the use of electric barriers is applied as a means to prevent the 

spread of Asian carp of the genus Hypophthalmichthys, into new Great Lakes habitats 

(Stokstad 2003). For the most part, mechanical and chemical control are typically well-

suited methods in controlling the spread and size of invasive species populations, 

however, these methods are not without their faults. Lampricides have been found to 

produce problems for amphibians, such as mudpuppies, Necturus maculosus, and fishes 
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such a sturgeon, Acipenser fulvescens, (the latter an endangered species), which often 

share the same habitats (Boogaard et al. 2003). In addition, lampricide, specifically of the 

TFM variety (3-trifluoromethyl-4-nitrophenol), has been found to drop pH levels 

wherever released, greatly affecting fish populations that are sensitive to pH changes, 

thereby harming non-target native species (Bills and Johnson 1992). In regard to electric 

barrier in the use of preventing the further spread of Asian carp, while it is successful in 

preventing the species from moving into new bodies of water, it also impedes the 

movement of migratory fish species from doing the same (Pimental 2005). Furthermore, 

electric barriers can be prone to failure in that a simple power outage would provide 

Asian carp the opportunity to cross the barrier unharmed (Stokstad 2003). As a result, 

mechanical and chemical control methods can be unreliable and most importantly, 

unpredictable, leading to the development of natural control techniques for invasive 

species management.  

For natural control methods sensory modalities may be exploited, with the use of 

species-specific pheromones most often being implemented as a means of attracting the 

appropriate sex, capturing them in large numbers, and actively removing them (El-Sayed 

et al. 2006). The use of naturally occurring chemical signals (isolated pheromones) as 

bait lures to traps have seen success when controlling invasive insects (Witzgall et al. 

2008) terrestrially. Similarly, intraspecific chemical communication methods have been 

implemented in aquatic system traps, especially for sea lampreys that possess male-

released pheromones that are synthesized and implemented in traps as a means of 

collecting receptive females, and by doing so, reducing the number of females available 

for males to spawn with and reducing recruitment into the population (Johnson et al. 
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2008). Despite the success of the synthetic pheromones, this method has its 

shortcomings, especially in aquatic systems, as the process can be time-consuming and a 

lengthy process at best, due to financial, logistical, or ethical reasons. Of potential greater 

utility is the use of bioacoustics but this important modality has been largely ignored for 

invasive control. Bioacoustics refers to the sounds organisms use to communicate with 

one another, and the most common use of acoustic communication in fishes is mate 

attraction, often produced by males (Myrberg 1980). Past studies have found that females 

are highly attracted to conspecific mate attraction calls and are able to localize the sound 

source in an effort to locate the males (McKibben and Bass 1998, Fine 1978, Rollo et al. 

2006, Rollo and Higgs 2008). Despite evidence of attractive localization to conspecific 

sounds, fish sounds have not been used in the control and capture of invasive species, 

although artificial sounds have been used as barrier deterrents (Nestler et al. 1992, Ross 

et al. 1993, Ross et al. 1996, Maes et al. 2004). The overlying issue with deterrent 

methods for invasive species control is that eventually, fish may habituate to these 

unnatural sounds and does not eliminate or deplete an already established population; it 

merely slows down spread. The advantage of bioacoustics is that they are species-specific 

and naturally occurring, so no adverse effect should occur on freshwater ecosystems and 

non-target native species. By implementing acoustic communication into invasive species 

programs, one could use naturally occurring sounds as a lure to attract conspecifics to the 

sound source, trap them within that area, and actively remove them; a strategy that the 

current study discusses in regard to one of the most successful and deleterious invaders to 

the Great Lakes, the round goby, Neogobius melanostomus.  
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The round goby is a small, bottom-dwelling teleost fish that is believed to have 

first entered the St. Lawrence River by transportation in ballast water of commercial 

ships originating from the Ponto-Caspian region (Vanderploeg et al. 2002). Since its 

establishment in 1990, the round goby has moved into all five Great Lakes and has begun 

to travel into the Mississippi basin (Charlesbois et al. 2001).  Due to its highly aggressive 

and competitive nature, round gobies have begun to negatively impact the freshwater 

ecosystems of North America (Jude et al. 1992). By outcompeting native species for 

shelter and food, the round goby has successfully increased their population size to an 

enormous number in a decade after being reported (Charlesbois et al. 2001). This is 

primarily due to the goby having multiple spawning periods in a single breeding season, 

allowing for the rapid population growth of the fish (MacInnis and Corkum 2000). Since 

then, the populations of numerous native species, such as mottled sculpins Cottus bairdii 

and logperch Percina caprodes, have suffered a decline (Charlesbois et al. 1997). 

However, recent studies have shown that round gobies have become prey for some native 

piscivorous fish, leading to an increased growth rate in these predator species (King et al. 

2006). Since round gobies live in turbid waters, visual communication is limited and 

auditory communication may be an alternative means for the species to interact in their 

environment. Male gobies have been found to produce calls during mate attraction (Rollo 

et al. 2006) and female gobies respond to these calls with high specificity (Rollo and 

Higgs 2008). In addition, round gobies approach both heterospecific and conspecific 

calls, but respond to conspecific sounds more vigorously and are able to localize the 

source more readily (Rollo and Higgs 2008). 
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The goal of the current study was to design an acoustic trap that would implement 

the use of round goby calls as a lure, capturing them in large numbers, and potentially 

using this strategy to regulate the population size of the invasive species. Playback 

experiments using three pairs of traps were used in the field to determine the response of 

gobies of both sexes to recordings of two conspecific calls suspected to play a role in 

mate attraction, a grunt and drum, in relation to reproductive status of responding fish. In 

relation to behavioural responses, I quantified the number of individuals captured by 

treatment, reproductive state, and month. I predicted that since the round goby 

reproductive season peaks in May and declines continuously into late August 

(Charlesbois et al. 1997, Corkum et al. 1998), a majority of gobies would be captured in 

May and capture rate would decline progressively by month. Based on previous findings 

from my playback experiment performed in the lab that examined the response of round 

gobies to these same conspecific calls (see chapter 2), I predicted that the grunt call 

would be the most effective in attracting round gobies, especially in regard to 

reproductive females (RF), while the drum call would attract the least. In contrast, 

reproductive males (RMs) were predicted to show the lowest response to the conspecific 

calls, as it is deleterious for a male to leave his nest to investigate another male calling as 

he exposes his nest to egg predation or loss of nesting sites to potential competitors in the 

area. In regard to nonreproductive males (NRMs) and sneaker males (SMs), I predicted 

that these morphs would respond the most to the drum call as eavesdroppers, as displayed 

under lab conditions. As for nonreproductive females (NRFs), despite lab results, I 

predicted that if this morph did show a positive response to the conspecific calls in the 

field, then they could potentially be acting as eavesdroppers.  
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Methods and Materials 

 

Field Site and Goby Identification 
 

Field experiments consisted of deploying six acoustic traps (see below) overnight 

at Detroit River (McKee Park) at Windsor, ON [42
o
20ʹN, 82

o
56ʹW] during the morning 

from early May to late June; when the reproductive season peaks for the species 

(Charlesbois et al. 1997). Traps were collected the following morning after a period of 20 

hours and any gobies that had been trapped were collected and quantified in regard to 

date captured, water temperature of day captured, total number of individuals caught, sex, 

and reproductive status using secondary sexual characteristics as visual cues (Charlesbois 

et al. 2001). Fish were kept at the University Animal Quarters in accordance with the 

University of Windsor Animal Care Guidelines, kept for behavioural experiments 

(chapter 2).  

Gobies that were captured consisted of all possible reproductive morphs that 

develop during their spawning season, which were reproductive males (RM), 

reproductive females (RF), non-reproductive males (NRM), non-reproductive females 

(NRF), and sneaker males (SM). Male and female round gobies were identified by 

examining the shape of their urogenital papillae where males are identified as having a 

pointed urogenital papilla, while the females’ are blunt and rounded (Charlesbois et al. 

1997). Reproductive males can be distinguished from NRMs by possessing secondary 

sexual characteristics such as being dark in colouration (usually jet black), having 

swollen cheeks and a developed papilla, as well as slime production (Marentette et al 

2009). Reproductive females, in contrast, were identified from NRFs by possessing a 

swollen papilla (larger and yellow) and belly (Corkum et al 2008). Finally, SMs can be 
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identified as being small in size and mottled colouration resembling a female, but 

possessing a long, developed papilla (Marentette et al 2009). 

Field Setup 
 

Acoustic traps were composed of a steel, rectangular framework (62.2 cm x 44.7 

cm x 20.8 cm) and enclosed by plastic mesh netting, mimicking a standard fish box trap 

using funnel entrances (Fig. 3.1). Each trap retained 2.5 cm of steel lining at its base to 

allow the structure to sink into the silt and lock in place, reducing any movement 

following deployment and prevent gobies from hiding underneath the trap. A total of six 

funnel entrances were situated throughout the perimeter of the trap near its base, to allow 

gobies to easily find and swim into the entrances and also reduce capture of non-target 

species. Funnel openings were designed to be positioned low near the base of the trap and 

large in diameter for entry, but to be elevated and smaller in diameter at the end leading 

into the trap. As a result, when a fish swam into the funnel to enter the trap, the weight of 

the fish acted to displace the funnel’s position, thereby lowering it downwards. Once the 

fish entered the trap, the funnel returned back to it elevated state, trapping the fish and 

making escape difficult. Each trap had a single underwater speaker (UW-30, Lubell Labs, 

Columbus, OH, U.S.A) situated at its center, suspended by steel cables at a fixed height 

of 3 cm to prevent the speaker from making contact with the bottom of the trap, thereby 

reducing vibrations that may deter gobies from approaching. Underwater speakers were 

powered by an electronic rig (held within a waterproof container) situated on shore that 

consisted of 12V-7.2AH/20HR sealed lead acid battery (Leoch LP-12, Leoch Battery Co. 

Ltd. Shenzhen ,China), 300-watt stereo amplifier (Scosche SA-300, Scosche Industries, 
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Oxnard, CA, U.S.A ), and an mp3 player (Sony Digital Media Player NWZ-E464, Sony 

Entertainment Network, Los Angeles, CA, U.S.A). 

A single trial was composed of three trap pairs placed in three different inlets 

along a rock island that were sheltered from the main river channel (Fig. 3.2). Two pairs 

of traps acted as treatments, composed of a playing trap and a silent trap. Additionally, 

the third pair of traps was treated as a true control consisting of two silent traps, to assure 

that gobies were actively responding to the sound and not using the trap as a shelter. 

Conspecific sounds, the grunt and drum call, were used to test the attractive response of 

round gobies in the field and to determine if results differed from that seen in the lab. 

Sound, control, and trap trial locations as well as the trap types (the grunt treatment, drum 

treatment, or control) were selected randomly by alternating inlet deployment by 

treatment from day to day and dropping traps within the inlets by using a tossing method 

(while maintaining a fixed distance between the playing and silent traps per treatment) to 

prevent sampling bias. Background noise levels in the field varied between 120 and 130 

dB re 1µPa, depending on boat or wave activity, therefore conspecific sounds were 

played at 140 dB re 1µPa (mimicking lab settings) to assure that sounds always played 

above the background noise and are within the range of natural calling thresholds within 

the family Gobiidae (Lugli and Torricelli 1999, Lindstrom and Lugli 2000).  Sounds were 

played continuously to also mimic methodology used in lab trials. 

Data from playing and silent traps per treatment (control being two silent traps) 

were added together to represent the total number of gobies trapped in a given inlet, as 

the sound may have attracted gobies to the silent trap in the pair. Population assessment 

sampling per inlet at the field site was attempted using multiple methods (angling, 
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umbrella net, and seine net) in the morning and during the day but failed due to a number 

of difficulties ranging from inconsistent sampling attempts between inlets, awkward 

sampling conditions of the waterbed and environment, and seine net tangling; as a result, 

attempts were abandoned. I speculated that the sound was attracting gobies into the inlet 

during overnight trials, but due to poor propagation and background noise, gobies are 

unable to localize the sound source properly and enter the silent trap for a sound 

treatment incorrectly (discussed more below).  

Presently, sound production of the round goby is poorly studied and as a result, 

the peak of male calling activity during their spawning season is unknown. Since most 

freshwater species of fish have been found to perform vocalizations ranging between late 

evening and early morning (Kasumyan 2009), overnight deployments were chosen to 

allow trials to cover the full range of potential calling periods and to mimic a nest 

guarding male emitting vocalizations more naturally. Furthermore, overnight trials were 

performed to reduce the amount of background noise generated by boat traffic and wave 

action during trials, assuring that goby calls could be heard from a distance. A 

hydrophone (Interocean Inc., San Diego, CA, U.S.A) was used to determine the 

appropriate distance a silent trap should be placed away from the sound trap in a single 

location to prevent sounds from interacting with the silent trap. Sounds were found to 

propagate less than 182.8 cm away from sound trap, measuring below 120 dB and 

becoming indistinguishable from background noise when quantified with a hydrophone.  

As a result, treatment traps were initially placed 182.8 cm or farther away from the silent 

trap in a single location to prevent confounding results as it put the sound pressure well 
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below the background noise. Control traps were placed at a similar distance from one 

another to maintain trial consistency in conjunction to treatment traps.  

Sound Types 
 

The conspecific call, the grunt, was recorded in Lake Michigan by John Janssen at 

the University of Wisconsin from a nest-guarding male (RM) in the field, via the use of a 

geophone recorder. The nest-guarding male was described as having eggs present in his 

nest during the time that the male was vocalizing. The grunt call was characterized as 

being a long, broadband pulse train consisting of 7-8 pulses on average (Rollo et al. 

2006). Its fundamental frequency was 180Hz, with most of the energy falling under 400 

Hz. Pulse train duration was an average of 0.07 s and the interpulse interval 

approximately 0.25s. The drum call, was recorded in the Higgs lab (University of 

Windsor) from a nest-guarding male (RM) in response to a playback recording of another 

male vocalization. The drum call had a fundamental frequency of 160 Hz, where most of 

the energy was below 350 Hz, consisting on average of 10-11 pulses. The drum call was 

also characterized to be a broadband pulse train but having a pulse train duration and 

interpulse interval shorter than that found in the grunt call (Fig. 3.3).  

Statistical Analysis 
 

All data were analyzed using the statistical software, SPSS (IBM SPSS Statistics, 

v. 19.0). Responses to sound treatments (grunt and drum call traps) and the control (silent 

traps) were analyzed in relation to total number of gobies captured regardless of sex or 

morph and total of number of gobies captured in relation to sex and morph.  Data from 

each pair of traps for a treatment was quantified as a sum of gobies captured within an 
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inlet per trial. In regard to data analyzed in relation to total of number of gobies captured 

regardless of sex or morph, data were analyzed by total number of gobies that were 

captured and accumulated in three months by trap type, total number of gobies that 

captured in the months of May, June, and July per trap type, and total number of gobies 

captured in the month of May only for the grunt call trap. For total number of gobies 

captured, data were transformed using the square root function to normalize data, and 

analyzed with a two-way ANOVA for total of gobies captured in all months by trap type, 

one-way ANOVA for both total number of gobies captured in the month of May, June, 

and July by trap type and capture in the grunt call trap only by month. Tukey post-hoc 

was applied for each analysis. For total number of gobies captured in relation to sex and 

morph, data were analyzed in two different ways: within-morph and between-morph for 

sound and control traps. For within morph comparisons, data were analyzed in relation to 

the number of each morph captured by month for the grunt trap. For between morph 

analysis, data were examined in relation to number of morphs captured in each trap type 

for the month of May. Data failed to be normal following transformations so Kruskal-

Wallis nonparametric tests and Mann-Whitney U-test post hoc were used to analyze the 

response of fish for between-morph and within-morph analysis. Bonferroni corrections 

were applied following all post-hoc tests to avoid inaccurately detecting significance 

when performing comparisons.   

Results 

 

Total Number of Gobies Captured 
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There was no significant difference in the total number of gobies captured by 

treatment (F2, 60 = 2.554; P = 0.088) or by month (F2, 60 = 2.230; P = 0.118) alone for the 

grunt, drum, and control traps, but there was a significant interaction between treatment 

and month (F4, 120 = 2.581; P = 0.048), where the effect by treatment was found to be 

dependent on the month the traps were deployed for total number of gobies captured.  

Due to the significant interaction term, treatment and month effects were analysed 

independently. When examined by treatment, there was a significant effect of month on 

capture in the grunt call treatment (F2, 22 = 7.025; P = 0.005; Fig. 3.4A), with significantly 

more gobies captured in May than in June (P = 0.013; Fig. 3.4B) and July (P = 0.009; 

Fig. 3.4A), but not between June and July (P = 0.963; Fig. 3.4A). There was no 

significant month effect for the drum call treatment (F2, 19 = 0.935; P = 0.413; Fig. 3.4B) 

or the control (F2, 19 = 0.248; P = 0.783; Fig. 3.4C). For the grunt call (Table 3.1), an 

average of 23 (±2.6 SE) gobies was caught in May in contrast to June during which an 

average of 10.5 (± 2.4 SE) gobies were captured, and July during which an average of 10 

(± 2.9 SE) gobies were captured in total.  

For capture rate for treatment effect by month, an overall significant difference 

was detected for the month of May (F2, 15 = 8.369; P = 0.005), where significantly more 

gobies were captured in the grunt call traps than in the drum call trap (P = 0.006; Fig. 

3.4B) or the control (P = 0.049; Fig. 3.4C), but no difference was found between the 

drum call trap and the control (P = 0.567; Fig. 3.4D). No overall significant differences 

were detected for June by treatment (F2, 22 = 0.069; P = 0.993) or July by treatment (F2, 23 

= 0.072; P = 0.930), following Bonferroni correction (P = 0.025). For the month of May, 

the grunt call (Table 3.1) captured an average total of 23 (±2.6 SE) gobies in contrast to 
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the drum call (Table 3.2) that captured an average of 7.6 (±2.3 SE) gobies and the control 

(Table 3.3) that captured an average 11.8 (± 3.5 SE) gobies. 

Within-Morph Captured  
 

Examining only morphs captured in the grunt call trap there was an overall 

significant difference between months for RFs (X
2

2, 22 = 10.712; P = 0.005; Fig. 3.5A) 

and SMs (X
2

2, 22 = 15.257; P < 0.01; Fig. 3.8B), and RMs (X
2

2, 22 = 6.286; P = 0.043; Fig. 

3.5C), but not for NRMs (X
2

2, 22 = 4.300; P = 0.116; Fig. 3.5D), or NRFs (X
2

2, 22 = 0.212; 

P = 0.900; Fig. 3.5E). For RFs, significantly more RFs were captured in May (5 ± 1.6 SE; 

Table 3.1) than in June (0.8 ± 0.4 SE; Table 3.1; U1, 15 = 7.50; Z = - 2.443; P = 0.015; Fig. 

3.5A) and July (U1, 14 = 2.00; Z = -2.978; P = 0.003; Fig. 3.5A), but not between June and 

July (0.3 ± 0.2 SE; Table 3.1; U1, 15 = 22.5; Z = -0.763; P = 0.446; Fig. 3.5A), following 

Bonferroni correction (P = 0.016). For SMs, significantly more SMs were captured in 

May (2 ± 0.4 SE; Table 3.1) than in June (0.4 ± 0.2 SE; Table 3.1; U1, 14 = 0.00; Z = - 

3.377; P = 0.001; Fig. 3.5B) or July (0 males; Table 3.1; U1, 15 = 4.50; Z = - 2.875; P = 

0.004; Fig. 3.5B), but not between June and July (U1, 15 = 17.50; Z = -1.750; P = 0.08; 

Fig. 3.5B), following Bonferroni correction (P = 0.016). For RMs, significantly more 

RMs were captured in May (2.1 ± 1.2 SE; Table 3.1) than July (0 males; Table 3.1; U1, 14 

= 10.5; Z = -2.241; P = 0.025, Fig. 3.5C), but following Bonferroni correction (P = 

0.016), the difference was no longer significant. There was no significant difference 

between May and June (0.3 ± 0.2 SE; Table 3.1; U1, 15 = 16.0; Z = - 1.574; P = 0.116; Fig. 

3.5C) or June and July (U1, 15 = 21.0; Z = - 1.373; P = 0.170; Fig. 3.5C) for RMs.  
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Between-Morph Captured 

  

Kruskal-Wallis one-way analysis for the number of morphs captured for all 

treatments per month revealed that for May, an overall significant difference was found 

for the grunt call trap (X
2

2, 21 = 10.789; P = 0.005; Fig. 3.6A) and the control (X
2

2, 12 = 

7.853; P = 0.020; Fig. 3.6B), but not for the drum call trap (X
2

2, 12 = 5.308; P = 0.07; Fig. 

3.6C). For the grunt call, NRMs were captured significantly more than RMs (U1, 14 = 4.5; 

Z = - 2.581; P = 0.010; Fig. 3.6A) and SMs (U1, 14 = 1.50; Z = - 2.989; P = 0.003; Fig. 

3.6A). For the control, the differences between morphs was no long truly significant, 

following Bonferroni correction (P = 0.016). For the grunt call, an average of 8.4 (±1.6 

SE) NRMs was captured in May in contrast to an average of 2.1 (±1.2 SE) RMs and an 

average of 2 (± 0.4 SE) SMs captured. 

Non-targets Captured 
 

For the number of non-target organisms captured in all trap types, there was no 

overall significant difference in the number of nontargets captured for month (X
2

2, 60 = 

0.471; P = 0.790; Fig. 3.7A; Table 3.1, 3.2, 3.3) or treatment (X
2

2, 60 = 0.986; P = 0.611; 

Fig. 3.7B; Table 3.1, 3.2, 3.3). The most commonly captured non-targets consisted of 

aquatic species such as rock bass, Ambloplites rupestris, yellow perch, Perca flavescens, 

common mudpuppy, Necturus maculosus, and signal crayfish, Pacifastacus leniusculus 

(Table 3.4).  

Discussion 

 

The current study, to my knowledge, is the first application of conspecific 

acoustic signals as a lure to attract an invasive fish species. Interestingly, recent work on 
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invasive amphibians have successfully used conspecific calls as a lure and implemented 

these sounds in traps as a population control strategy (Schwarzkopf and Alford 2007). 

Particularly in May, the trap playing the grunt call captured significantly more gobies 

than the other two traps (Fig. 3.3), showing positive phonotaxis and a selective trapping 

mechanism. The success in May, particularly of reproductive individuals such as RMs, 

SMs, and RFs (Fig. 3.4, 3.5A), is most likely due to preferred water temperatures for 

breeding in this species (Charlesbois et al. 1997) and further indicates the selective utility 

of this trap. The grunt call, long suspected to have a function in mate attraction, (Rollo et 

al. 2006, Rollo and Higgs 2008, and chapter 2), could be used to lure females to a sound 

source, capture them, and actively remove them from key areas where goby populations 

have a large impact on native fishes. However, while the trapping mechanism used in the 

current study did capture a frequent number of RFs in May when using the grunt call as a 

lure (Fig. 3.3A), the sound was also successful in capturing a large total number of gobies 

(both reproductive and nonreproductive) in contrast to the drum call (Fig. 3.3B) and the 

control (Fig. 3.3C). In addition, a similar number of RFs and NRFs were captured in the 

grunt call in May, indicating that the grunt call can be used to capture all females (Fig. 

3.5A). Therefore, this strategy could be used as a means to capture and reduce the 

number of gobies at key areas, such as shared spawning beds where native species also 

reside. In addition, due to the minimal capture of non-target species (Fig, 3.6), the use of 

conspecific signals is a practical tactic in capturing invasive species without harming 

native species. 

Successful capture of all gobies by treatment was found to be highly dependent on 

the month in which the traps were deployed (Fig, 3.3), indicating a potential relationship 
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between time of spawning season and effective response to conspecific sounds. 

Interestingly, the month of May (Fig. 3.3D) was found to be more successful in capturing 

gobies than June or July (Fig, 3.3A). The round goby spawning season locally is between 

early May and late August (Charlesbois et al. 2001), but the time at which the goby’s 

breeding season begins and ends can fluctuate with water temperature (Charlesbois et al. 

1997) and varies depending on geographic location (Miller 1986). It seems that round 

gobies are more responsive to conspecific acoustic signals early in the spawning season 

and declines over the progression of the summer months, further supported by results 

seen in chapter 2. The onset of May brings about warmer water temperatures and it is 

speculated that once water temperatures reach 10 degrees Celsius, the onset of the round 

gobies’ reproductive cycle is triggered (Charlesbois et al. 1997). However, since round 

gobies typically spawn in shallow waters (MacInnis and Corkum 2000), water 

temperatures increase as the summer progressives, causing shallow bodies of water to be 

too warm for the round goby to spawn in comfortably and they are believed to move to 

deeper waters where it is cooler (Charlesbois et al. 1997, Corkum et al. 1998), due to a 

shift in spawning site preference as a result of rising temperature. In the current study, 

trials were restricted to shallow water along a rock island where water temperature 

increased substantially in the months of June and July (May, µ = 16
o
C; June, µ = 21

o
C; 

July, µ = 22
o
C; Table 3.1, 3.2, 3.3), which may have caused gobies to leave the field site 

and move into deeper and cooler waters. Past studies have shown a trade-off exists 

between optimal reproduction and temperature preference in temperate area fish, leading 

to a reduction in reproductive output in both disruptions of gonad development and egg 

quality (Sandstrom et al. 1997, Davies and Bromage 2002, Vlaming 2006, Van der Kraak 
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and Pankhurst 1997). A study has yet to be performed that provides evidence of rising 

temperature conflicting with the round goby’s reproductive output, however, since round 

gobies spawn throughout the entire summer, raising temperature may have some adverse 

effect on gonad development and egg quality as it has been found to disrupt the 

reproductive cycle of other species, and therefore may cause goby’s to move into deeper 

and cooler waters. Gobies have been found to spawn in a wide range of temperatures 

from 9
o
C to 26

o
C (Charlesbois et al. 1997, MacInnis and Corkum 2000), however, while 

gobies may be able to spawn in higher temperatures, the frequency of spawning events 

with rising temperatures has not been taken into account, thusly it may be possible that 

while gobies spawn in very warm water, the number of gobies spawning declines as 

others move to preferable cooler, temperature waters. Kulikova (1985) found that over a 

progressing spawning season, the number of gravid females near its start is highly 

abundant at a site, but as the summer progresses, a rapid decline is observed and by July, 

gravid females all but disappear. Furthermore, Young et al. (2009) found that round goby 

abundance in shallow areas was related to temperature with the highest capture rate was 

seen at water temperatures between 15 and 17
o
C during the breeding season. Therefore, it 

may be possible that the decline in gravid females in my study, could explain the decline 

in the number of reproductive gobies that were captured in June and July, regardless of 

being initially high in the month of May (Fig. 3.4).    

Another reason as to why a decline in capture rate was observed from May to July 

is that while the round goby is known to spawn multiple times throughout a single 

breeding season, the number of times an individual spawns in a single summer before 

reproductive reception decreases is poorly understood. In other words, as the 
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reproductive season progresses from one month to the next, the number of receptive 

gobies present later in the season may change as conditions change. Under most 

circumstances, ideal conditions for breeding is earlier in the season when water 

temperatures, food availability, and spawning sites are stable and then decline as the 

summer progresses as habitat changes and resources are depleted (Lee and Johnson 

2005). While a majority of fishes spawn once during a single breeding season, 

indeterminate multiple spawning native species, will only spawn multiple times when the 

productivity of a stream is high and optimal abundance of food sources are available (Fox 

1978, Mann et al. 1984, McEvoy and McEvoy 1992). Therefore, a change in productivity 

in the spawning site with altering habitat may cause gobies to leave the present spawning 

site as a result of suboptimal abundances of food sources and/or possible presence of 

predators in the area. At the field site where the current study was performed, in May, the 

surrounding habitat consisted of a silt bed with rocks scattered about the river floor. 

However, as the summer progressed, vegetation began to grow and altered the habitat 

(pers. obs.). Ideally, gobies prefer living and spawning in areas that are composed of 

hard, rocky substrates, where substantial food sources, such as molluscs, would be more 

likely to thrive (Charlesbois et al. 1997, MacInnis and Corkum 2000). An increase in 

vegetation and alteration of habitat may have not been ideal for adult, sexually mature 

gobies to remain in high abundance, resulting in lower densities of gobies present at 

shallower sites. In addition, an increase in vegetation for the habitat may have attracted 

more predator species, such as largemouth bass, Micropterus salmoides, and smallmouth 

bass, Micropterus dolomieu, that feed on round gobies (Belanger and Corkum 2003), as 

the round goby has been observed to decline from a site, usually at night, when 
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piscivorous predators are in abundance (Ray and Corkum 2001). In addition, since round 

gobies are colonial and spawn in large groups, food resources, such as molluscs could 

have declined to an extent that could no longer sustain a large group of fish in a single 

area; as it has been found with rising water temperature (up to 26
o
C), the food 

consumption rate of gobies increases (Lee and Johnson 2005). In the round goby, these 

ideal conditions are present usually in May (when water temperatures reach 10 degrees 

Celsius) and decline substantially with upcoming months locally (Charlesbois et al. 

1997). Peak spawning activity in May can be further understood when examining the 

capture rate of gobies in relation to reproductive morph observed in the current study.  

The very first and only examination of round goby response to conspecific sounds 

in the field was performed by Rollo et al. (2006), where gobies were found to be highly 

attracted to conspecific calls. Unfortunately, neither reproductive state nor sex could be 

quantified in the field, causing female preference to be later determined in the lab (Rollo 

and Higgs 2008). In the current study, the use of acoustic traps allowed for the 

quantification of reproductive state and sex (henceforth referred to as reproductive 

morph), in response to two conspecific sounds, known as the grunt and the drum call, 

suspected to play a role in mate attraction. Furthermore, the grunt call used in the current 

study is the “Round Goby” call referred to and tested in Rollo et al. (2006) and Rollo and 

Higgs (2008). When examining May captures for reproductive state, the number of RFs 

captured were higher than SMs and RMs, but more NRFs and NRMs were captured 

overall (Fig. 3.5; Table 3.1, 3.2, 3.3). Further examination of reproductive morph 

captures in the month of May revealed that the most successful trap type at catching 

reproductive individuals was the grunt call (Fig. 3.3D). As stated earlier, the grunt call is 



 

113 
 

suspected to be for mate attraction as females display robust phonotactic response when 

presented with the call (Rollo et al. 2006, Rollo and Higgs 2008, see chapter 2 results). A 

similar behaviour has been found to be displayed by female plainfin midshipman, 

Porichthys notatus, where both under lab and field conditions, gravid females display 

robust phonotactic response when presented with humming vocalizations performed by 

Type I males (Brantley and Bass 1994; Sisneros 2009; Zeddies et al 2010). It seems that 

females display a strong phonotactic response to the grunt call also in the field, but 

declines progressively from June to July (Fig. 3.4A). It was observed when capturing 

gobies and quantifying their reproductive state from trap to trap, that all RFs were 

substantially gravid, however, as the months progressed, this level of gravidity in RFs 

declined as well (pers. obs.). Interestingly, with the onset of June, RFs were absent for the 

first two weeks of that month, and then returned the last two weeks of June (Table 3.1, 

3.2, 3.3). However, by July, RFs completely disappeared (Table 3.1, 3.2, 3.3). Female 

round gobies have a quick turnover of eggs once their reproductive season is over 

(Kulikova 1985), with the percentage of gravid females present dropping to substantially 

low numbers by the end of July in local waters (MacInnis and Corkum 2000), and 

therefore response to conspecific calls may drop substantially as the summer progresses 

simply because there are fewer gravid females that are not present in high numbers, 

therefore reducing the probability of capture. Similar to the changes in responsiveness 

with reproductive state in midshipman to conspecific sounds (McKibben and Bass 1998, 

Sisneros and Bass 2003), peak gravidity in females should facilitate a stronger 

phonotactic response to male signals as females would warrant deposition of eggs upon 

reaching full maturation, providing a potential explanation for the significantly large 
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number of females captured in May and the decline into June and July as a result of 

declining female presence. Furthermore, with declining availability of gravid females to 

spawn with at a given site, this may have also caused the reduction in the number of 

reproductive gobies (RMs and SMs) in that same area and could be another possible 

explanation as to why capture rates of reproductive fish were high in May, but then suffer 

a decline from June to July in the current study.  

The SMs and NRMs were also captured in the grunt call trap significantly in the 

month of May (Fig. 3.4B, 3.5A), and may be performing eavesdropping behaviour, but 

for different reasons. In regard to SMs, it has been suggested that intercepting mate 

attraction calls produced by nest-guarding males provides a means for a localization of a 

spawning event by males who practice alternative reproductive tactics (Myrberg 1981). 

In plainfin midshipman, Type II males (sneaker males) have been found to respond to the 

hum call (mate attraction call), and display behaviours that are indicative of sneaking 

activity, indicating that Type II males may intercept sexual signals to locate spawning 

events and sneak fertilizations (McKibben and Bass 1998). In the round goby, spawning 

events are short in duration (30-minutes) (Meunier et al. 2009) and require quick 

localization by sneaker males to perform fertilizations. To locate a spawning event 

quickly, SMs would need to depend on cues emitted during spawning, such as auditory 

signals as sound travels faster and farther from its source than chemical cues from eggs 

odours (Tavolga 1971). Nest-guarding males have been described to perform “barking 

calls”, reported as a pulse series, before, after, and during the spawning process (Meunier 

et al. 2009) therefore SMs may locate a nest by exploiting sexual signals, providing an 

opportunity to sneak fertilizations. The exploitation and interception of sexual signals in 
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fish is a common behaviour displayed by males that utilize alternative reproductive 

tactics in other species (Brantley and Bass 1994, McKibben and Bass 1998, Bass and 

McKibben 2003, Alonzo and Warner 1999). Presently, no physical evidence of actual 

sneaking behaviour performed on spawning events has been recorded for the round goby, 

however, evidence that indicate sperm competition theory (Parker 1970) and alternative 

reproductive tactics has been found (Marentette et al. 2009). The NRMs may also be 

performing eavesdropping behaviour, but with an ulterior purpose which is egg 

predation. Round gobies are known egg predators of both conspecifics and 

heterospecifics (Charlesbois et al. 1997) and nonreproductive gobies are highly attracted 

to conspecific egg odours (Yavno and Corkum 2011). Nonreproductive fish could 

eavesdrop on male calls as a means to locate a nest with eggs, since males have been 

found to emit calls and attract females when eggs are already present in the nest (Wickett 

and Corkum 1998). Since chemical cues from eggs are slow to disperse and therefore are 

restricted to short distances, nonreproductive fish could eavesdrop on calls and use them 

as a means to locate the nest site from a distance, and then depend on chemical cues to 

determine if eggs are present in the nest. Interestingly, though contradictory to results 

seen in the lab (see chapter 2), SMs and NRMs did not show a strong phonotactic 

response to the drum call in the field (Fig. 3.5C, Table 3.2). It is difficult to determine 

why the contrast in phonotactic attraction exists between the lab and the field other than 

the conspecific sounds was presented to the SMs under a more natural setting, and 

therefore more indicative of natural behavioural responses. In addition, multimodal cues 

from conspecifics in the trap, such as odours, may have facilitated a stronger phonotactic 

response to the grunt call that was not present in lab trials (see chapter 2).  
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For RMs, the successful capture of this morph to a suspected mate attraction call 

(Fig. 3.5A) was not expected. In most cases, a male that has acquired a nest should not be 

seeking out the sound source as it may be deleterious for a male to abandon their nest to 

investigate another male calling, as it exposes the nest to egg predation and theft 

(Charlesbois et al. 1997). Unfortunately, whether the RMs had a nesting site prior to 

investigating the grunt call trap is unknown, so it is possible the RMs that were captured 

may have been potential floaters (adult males who had yet procured a nesting site) and 

used the trap as a shelter, given that the number of RMs captured in May was very low. It 

is currently not known whether male calling frequency alters with size in the round goby, 

but some evidence suggests that with larger body size, males produce lower frequency 

sounds (Speares 2007); therefore floater RMs may have investigated the sound source in 

relation to frequency: size differences. For example, bicolour damselfish, Stegastus 

partitus, and Lusitanian toadfish, Halotrachus didactylus, females prefer courtship chirps 

of lower frequency that indicate a larger male body size and male condition (Myrberg et 

al. 1986, Myberg et al. 1993), and males of bicolour damselfish are known to intercept 

the following grunt call that is emitted by males during actual courtship of the female 

(Kenyon 1994). While the size of the male that produced the grunt call used in the current 

study is also unknown, it is possible that the frequency of the grunt call provided size 

information to floater males that indicated that the male performing the call was smaller 

than themselves and therefore would be able to commandeer the nesting site from the 

“performing male”. In addition, the capture of RMs may have been random as an 

unexpected large quantity of RMs were captured in a single trap one day when traps were 

retrieved, and may have been the result of new RMs moving into the field site, and 
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procuring the trap as a nesting site.  

To prevent confounding results between the playing and silent trap for a 

treatment, traps were placed at fixed distance that put the sound pressure well below the 

background noise. However, the hydrophone is not an accurate representation of the 

components of sound that a fish can detect and as the hydrophone only measures sound 

pressure, which the goby is not likely to detect. The round goby, as far as I know, has no 

hearing specializations that allow the species to detect sound pressure and is mostly likely 

detecting particle motion, which the hydrophone cannot quantify. Therefore, it is possible 

that particle motion that was generated by playing sounds were still available for gobies 

to detect from a distance using the lateral line similar to other fishes (Sand and Bleckman 

2008). Furthermore, the sounds may have been distorted by the background noise and 

made finding the location of the sound source difficult, resulting in incorrect localization 

of the sound source by gobies and error when entering the silent trap for a treatment.  

Since the control trap did not show the same level of success in either capture of gobies 

by total number or morph captured, I can say with certainty that higher capture in the 

grunt call trap was due to the attraction to the sound alone and individuals were not 

attracted to trap as a shelter. In contrast, the drum call attracted the least gobies both in 

total and by morph in May and seemed to deter gobies from approaching it. Given the 

manner in which the drum call was recorded (see methods), it is possible that the call 

plays a role in territorial defence, thereby explaining the low capture rate in the drum call 

trap for May (Fig. 3.3D). For example, in red-finned loaches, Yasuhikotakia modesta, 

during agonistic encounters, two kinds of vocalizations are performed during aggressive 

encounters, which consist of butting sounds during physical contact with an intruder and 
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clicking sounds for long distance communication (Raffinger and Ladich 2009). Similarly, 

in the painted gobies, Pomatoschistus pictus, parental males emit drumming 

vocalizations, joined by threatening visual displays, when intruders are near their nest 

(Amorim and Neves 2008). While the current study suggests using acoustic signals to 

capture round gobies as a population control strategy, the trap design can be modified to 

implement any type of lure (whether be conspecific odours, food, etc), for control of 

other invasive species. The only modification that would be required in relation to 

capture of other invasive species would be altering the height of the funnel entrances as 

they are situated for benthic species to enter the trap more easily. The trap design itself 

may provide an alternative and safer technique to deleterious methods of controlling 

invasive species, such as reproductive disruptors (Bills and Johnson 1992, Boogaard et al. 

2003) or poison (Zavaleta et al. 2001). 

Due to the turbidity of water at the field site where the current study was 

conducted, video recording of overnight trials could not be performed and therefore I was 

unable to quantify the number of gobies that approached the trap in contrast to the 

number of gobies that were captured. While the trap was designed to make it easier for 

round gobies to find the entrances upon localizing the sound source, there may still be 

unforeseen difficulties in locating the funnel entrances, since they are spaced out to 

maintain volume in the trap and prevent the funnels from blocking one another. Li et al. 

(2006) examined the catch efficiency of a commercial trap used for the capture arabesque 

greenling, Pleurogrammus azonus, and found a relationship between funnel angle/length 

and capture efficiency. Li et al. (2006) suggested that commercial traps used to capture 

greenlings, should be modified so that the inclination angle of traps were less steep and to 
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keep funnel length short (but slightly longer than funnels were presently), to maximize 

catch efficiencies. As a result, it is possible that unforeseen design flaws may be present 

in my trap design, despite high capture rate of gobies in May. Furthermore, while 

overnight trials were chosen to cover all possible calling activity of the round goby as it 

has yet to be investigated, I was unable to determine the time of day capture and 

approaches to the trap mostly occurred. On average, most vocalizing fish tend to perform 

at twilight (Kasumyan 2009) however it is currently unknown when males of the round 

goby vocalize. Future studies could implement the use of underwater cameras in areas 

with higher water clarity to determine if traps are designed sufficiently to maximize goby 

capture as well as determine when peak response to the conspecific sounds occur to better 

determine when to deploy the trap and when to play the sound.   

 While the trap was successful in capturing gobies, the strategy of using acoustic 

traps as a means of controlling round goby populations is not without its flaws. The 

overlying issue with using an acoustic trap or any baited traps is that while sound does 

travel farther and faster in water than odours and on land (Kasumyan 2009), the range of 

the round goby’s call is restrictive. Sound propagation in the field was measured using a 

hydrophone, where it was found that the sound usually did not travel farther than six feet 

away from the sound source, due to the shallow water environment in which the trials 

were conducted. The overlaying issue with shallow water habitats is that they restrict the 

distance that an acoustic signal can travel due to the numerous reflections off the 

substrate and rocks situated in a habitat (Rogers and Cox 1988, Thorne 1998). For the 

round goby, the short distance propagation of acoustic signals is not detrimental as the 

species is colonial and therefore live in close proximity to one another (Wickett and 
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Corkum 1998), therefore sounds do not necessarily need to travel far for an individual to 

hear the sound. In addition, trials conducted in shallow water were unavoidable since 

round gobies typically spawn in that type of habitat, as long as water temperatures remain 

low (Charlesbois et al. 1997). The inability for sound to propagate over long distances 

and the manifestation of acoustic noise within shallow water is further elaborated when 

comparing capture rates of round gobies between a playing and silent trap released in the 

same inlet. Oddly, gobies tended to be captured in the silent trap more often when paired 

with a playing trap, regardless of the sound being played, but when combining the 

number of gobies captured in each pair of traps by treatments (grunt, drum, control), an 

obvious difference in quantity captured was apparent. Given that more gobies were 

captured in the grunt call trap in the month of May, but no difference was seen for the 

control, it seems that the sound lures the gobies into the inlet, but they are unable to 

localize the sound source properly and error when entering the trap. The hearing 

sensitivity of the round goby is poor in comparison to other species that use acoustic 

communication (Belanger et al. 2010) since they do not possess a swimbladder or any 

form of hearing specializations that we are aware of (Charlesbois et al. 2001). Gobies 

may use a combination of their ears and the lateral line to detect intensity differences 

within the near field soundscape, to localize the sound source. Similarly, mottled 

sculpins, Cottus bairdii, a species that also does not possess a swimbladder, when 

approaching a dipole source, were speculated to use their lateral line as a means to 

sample the sound environment to assist with localizing the sound source, made apparent 

when fish approached the speaker indirectly, described as a zigzag pattern (Coombs and 

Conley 1997). As a result, the round goby may use their lateral line as a means to sample 
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the soundscape to localize a sound source. Nevertheless, round gobies may be able to 

hear the sound from a distance and locate the inlet where the traps are located, but 

because shallow water restricts acoustic communication and results in overlapping 

acoustic noise, gobies are unable to localize the sound source properly, and as a result, 

move into the wrong trap. Despite the inability of the round goby to localize the playing 

trap properly, it does not disregard the success of acoustic trap, but rather indicates that 

for acoustic traps to be successful, traps must be deployed in pairs, one playing while the 

other is silent, to maximize capture rate. In addition, because the sound only propagates 

over a short distance as a result of habitat, field sites where goby densities are high must 

be located prior to deployment in order for the trap to work efficiently.  

Although the trapping mechanism using acoustic signals as a lure requires further 

investigation in the field, a potential strategy that could be used when deploying these 

traps along a spawning bed can be suggested. Before trap deployment can take place, the 

location of the nesting sites of RMs needs to be assessed at a spawning bed. Locating the 

nesting sites will reveal the position of the goby colony since RMs move into the shallow 

waters first with females and other gobies preceding them (Charlesbois et al. 1995, 

Corkum et al. 1998). Round gobies, females in particular, are thought to remain in the 

deeper waters to avoid predation and move into the shallow water only when ready to 

spawn (Kulikova 1985). Given that the conspecific sounds only propagate over a short 

distance (six feet as determined by the current study), traps must be deployed close 

enough to the spawning bed as sound propagation allows. Moreover, traps should be 

deployed lying between the shallow and deep water boundary where gobies are likely to 

cross when travelling to and from the spawning beds, to ensure that gobies will interact 
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with the trap itself. As for the number of traps that would need to be deployed to have an 

effect on the goby population would depend on the numbers of gobies that reside in the 

location of interest. I suggest that for every 200 gobies, six traps should be present and 

deployed near the spawning bed. Furthermore, the number of traps should be adjusted 

relative to the size of the spawning area, so that complete coverage of the site itself can 

transpire. I suggest six traps per 200 gobies simply because the traps used in the current 

study have captured ~30 gobies per trap pair itself (Table 3.1, 3.2, 3.3), and therefore six 

traps should be reasonable to avoid carrying capacity of the traps and reduce the 

probability of diminishing capture. Furthermore, in the current study, the total number of 

gobies captured using two traps and the grunt call over three months captured ~300 

gobies, therefore six traps should capture three times that number in a single summer 

(Table 3.1). The current study showed that round gobies are unable to differentiate 

between the playing and the silent trap, but are able to localize the sound source within an 

inlet. Therefore, I suggest that instead of using a single playing speaker per trap, use a 

single playing speaker situated at the center of a group of six traps that are spaced apart, 

as to lure gobies into an inlet where the traps are situated, thereby reducing deployment 

costs.  

In conclusion, the current study provides the first application of conspecific 

acoustic signals as a lure for the capture and control of the round goby and also provides 

a trapping model that can be used for the control of other invasive species, implementing 

the use of other naturally occurring attractants. In addition, the current study provides 

additional insight for attractive phonotactic response to conspecific sounds by the round 

goby in the field, and provides further supporting evidence that the grunt call plays a role 



 

123 
 

in mate attraction facilitated by a successful capture rate of female gobies. Finally, upon 

examination of the number and types of gobies captured through the summer, results 

show that maximum capture efficiency and phonotactic attraction to conspecific sounds 

occurs early in the spawning season of the round goby and declines as the summer 

progresses. By implementing the use of conspecific acoustic signals as a lure to attract 

and capture round gobies as well as applying a mate attraction call that attracts gravid 

females, may provide a strategy to capture and control round goby populations in key 

areas, that could be used as a means to reduce the impact of the round goby in freshwater 

systems of North America.  
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Figures and Tables 

 

Figure 3.1: Depiction of trap design used in field experiment, displaying A) Top View, 

and B) Side View. Acoustic traps were composed of a stainless steel, rectangular 

framework (62.2 cm x 44.7 cm x 20.8 cm) and enclosed by plastic mesh netting, 

mimicking a standard fish box trap using funnel entrances.  
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Figure 3.2: Depiction of field site (McKee Park), located on the Detroit River at 

Windsor, ON [42
o
20ʹN, 82

o
56ʹW]. Each trial consisted of three pairs of traps, which 

included two treatments (grunt and drum call) and a control (silence). Each treatment 

consisted of a playing trap and a silent trap, while the control consisted of two silent 

traps. Traps (T) were released randomly in one of each three inlets along the field site and 

electronic rig (R) containing equipment (12-V battery, car amp, mp3 player) was situated 

on the island itself, hidden from view. All trials were deployed at night and then picked 

the following morning, for a period of 20 hours.  
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Figure 3.3: Mean (±S.E.) total number of gobies captured for all treatments per month 

for A) Grunt Call (n =22), B) Drum Call (n = 19), C) Control (n = 19), and total number 

of gobies captured in D) May (n = 15) for all trap types. For the grunt call, significantly 

more gobies were captured in May than in June (P = 0.013) and July (P = 0.009), but not 

between June and July (P = 0.963). No overall significant differences were found for the 

drum call treatment (P = 0.413) or the control (P = 0.783) by month. For the month of 

May, a significant number of gobies were captured more in the grunt call traps than in the 

drum call trap (P = 0.006) or the control (P = 0.049), but no difference was found 

between the drum call trap and the control (P = 0.567). Letters denote significant 

differences. 
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Figure 3.4: Mean (±S.E.) number of reproductive morphs captured in the grunt call trap 

over three months (n = 22) for A) Reproductive females (RFs), B) Sneaker males (SMs), 

C) Reproductive males (RMs), D) Nonreproductive males (NRMs), and E) 

Nonreproductive females (NRFs). Significantly more RFs were captured in May than in 

June (P = 0.015) and July (P = 0.003), but not between June and July (P = 0.446). 

Significantly more SMs were captured in May than in June (P = 0.001) or July (P = 

0.004), but not between June and July (P = 0.08). Significantly more RMs were captured 

in May than July (P = 0.025). No significance was found between May and June (P = 

0.116) or June and July (P = 0.170) for RMs. Letters denote significant differences.  
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Figure 3.5: Mean (±S.E.) number of reproductive morphs captured in May (n = 12) for 

A) Grunt Call, B) Silence (control), and C) Drum Call. For the grunt call, NRMs were 

captured significantly more than RMs (P = 0.010) and SMs (P = 0.003). Letters denote 

significant differences.  
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Figure 3.6: Mean (±S.E.) number of non-target organisms captured in all traps, in A) All 

traps per month (n = 60), and B) Three months per treatment (n = 60). Capture rate for all 

treatments per month, no overall significant differences were found for either May (P = 

0.753), June (P = 0.875), or July (P = 0.329). For capture rate for all months per 

treatment, no overall significant differences were detected for either the grunt call (P = 

0.668), drum call (P = 0.295), or the control (P = 0.809). 
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Table 3.1: Tabulation of all gobies captured in the field during the summer of 2012 for 

the grunt call displaying: capture by date deployed and retrieved, water temperature, 

reproductive morph captures, total gobies captured, and non-targets captured. 
 

Date Water Temp (oC) RM NRM SM RF NRF Total Non-targets 

May 8, 9 16 1 5 1 10 7 24 2 

May 10, 11 16 3 16 1 9 1 30 8 

May 16, 17 16 0 11 2 9 8 30 1 

May 17, 18 17 2 9 3 1 9 25 0 

May 28, 29 21 9 6 3 3 2 23 2 

May 30, 31 17 0 9 3 1 6 19 2 

May 31, June 1 17 0 3 1 2 4 10 1 

June 4, 5 18 0 1 1 0 3 5 1 

June 7, 8 20 0 1 0 0 8 9 2 

June 11, 12 21 0 6 1 2 1 10 2 

June 14, 15 21 1 5 0 0 3 9 0 

June 18, 19 22 0 5 0 2 7 14 4 

June 21,22 21 1 10 1 2 11 25 2 

June 25, 26 21 0 2 0 0 1 3 3 

June 28, 29 23 0 4 0 0 5 9 3 

July 3, 4 21 0 13 0 1 11 25 2 

July 9, 10 21 0 7 0 0 9 16 3 

July 12, 13 23 0 5 0 0 2 7 2 

July 16, 17 24 0 3 0 1 3 8 3 

July 19, 20 19 0 3 0 0 5 8 2 

July 24, 25 19 0 3 0 0 0 3 2 

July 26, 27 19 0 1 0 0 2 3 0 

Total N/A 17 128 17 43 108 315 47 
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Table 3.2: Tabulation of all gobies captured in the field during the summer of 2012 for 

the drum call displaying: capture by date deployed and retrieved, water temperature, 

reproductive morph captures, total gobies captured, and non-targets captured.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Date Water Temp (oC) RM NRM SM RF NRF Total Non-targets 

May 8, 9 16 0 2 0 1 1 4 5 

May 10, 11 16 2 4 0 1 3 10 1 

May 16, 17 16 0 7 0 2 4 13 2 

May 31, June 1 17 0 0 0 0 4 4 1 

June 7, 8 20 0 2 0 0 6 8 2 

June 11, 12 21 1 1 0 0 0 2 3 

June 14, 15 21 1 9 0 1 7 18 3 

June 18, 19 22 0 3 0 0 2 5 2 

June 21,22 21 1 8 0 1 3 13 3 

June 25, 26 21 0 7 2 2 10 21 2 

June 28, 29 23 0 11 0 1 6 18 1 

July 3, 4 21 0 1 0 1 8 10 4 

July 5, 6 22 0 7 0 0 4 11 0 

July 9, 10 21 0 2 0 1 2 5 2 

July 12, 13 23 0 3 0 0 3 6 1 

July 16, 17 24 0 10 0 0 1 11 0 

July 19, 20 17 0 5 0 0 0 5 0 

July 24, 25 19 0 3 0 0 5 8 3 

July 26, 27 19 0 3 0 0 6 9 1 

Total N/A 5 88 2 10 150 181 36 
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Table 3.3: Tabulation of all gobies captured in the field during the summer of 2012 for 

the control displaying: capture by date deployed and retrieved, water temperature, 

reproductive morph captures, total gobies captured, and non-targets captured.  
 

Date Water Temp (oC)  RM NRM SM RF NRF Total Non-targets 

May 17, 18 17 0 6 0 2 1 9 9 

May 28, 29 21 1 6 0 5 10 22 3 

May 30, 31 19 0 5 2 0 3 10 0 

May 31, June 1 17 0 2 1 1 2 6 2 

June 4, 5 18 2 6 1 0 6 15 1 

June 7, 8 20 0 1 0 0 1 2 2 

June 11, 12 21 0 6 0 0 6 12 1 

June 18, 19 22 0 0 0 2 1 3 3 

June 21, 22 21 0 10 1 2 4 17 1 

June 25, 26 21 0 10 0 3 3 16 3 

June 28, 29 23 0 5 2 0 8 15 3 

July 3, 4 21 0 3 1 0 5 9 4 

July 5, 6 22 0 4 0 0 3 7 2 

July 9, 10,  22 0 12 0 1 7 20 4 

July 12, 13 23 0 2 0 0 7 9 3 

July 16, 17 24 0 0 0 0 1 1 2 

July 19, 20 17 0 9 0 0 3 12 0 

July 24, 25 19 0 1 1 0 6 8 3 

July 26, 27 19 0 4 0 0 5 9 1 

Total N/A 3 92 9 16 89 202 47 
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Table 3.4: Tabulation of all non-targets captured in the field during the summer of 2012 

for all three treatments (drum call, grunt call, and silence) for the four most commonly 

captured native species, being rock bass, yellow perch, common mudpuppy, and signal 

crayfish. 

Date Trap Type Rock Bass Yellow Perch Mudpuppy Crayfish 

May 8, 9, 2012 Drum Call 4 0 1 0 

May 10, 11, 2012   1 0 0 0 

May 16, 17, 2012   1 0 0 1 

May 31-June 1, 2012   1 0 0 0 

June 7, 8, 2012   0 0 0 2 

June 11, 12, 2012   2 0 1 0 

June 14, 15, 2012   0 0 0 3 

June 18, 19, 2012   0 0 0 2 

June 21,22, 2012   2 1 0 0 

June 25, 26, 2012   1 0 0 1 

June 28, 29, 2012   0 1 0 0 

July 3, 4, 2012   4 0 0 0 

July 5, 6, 2012   0 0 0 0 

July 9, 10, 2012   0 0 0 2 

July 12, 13, 2012   0 0 0 1 

July 16, 17, 2012   0 0 0 0 

July 19, 20, 2012   0 0 0 0 

July 24, 25, 2012   1 0 0 2 

July 26, 27, 2012   1 0 0 0 

Date Subtotal 18 2 2 14 

May 8, 9, 2012 Grunt Call 1 0 0 1 

May 10, 11, 2012   7 0 1 0 

May 16, 17, 2012   1 0 0 0 

May 17, 18, 2012   0 0 0 0 

May 28, 29, 2012   1 0 0 0 

May 30, 31, 2012   1 0 1 0 

May 31, June 1, 2012   1 0 0 0 

June 4, 5, 2012   1 0 0 0 

June 7, 8, 2012   0 0 1 1 

June 11, 12, 2012   1 0 0 1 

June 14, 15, 2012   0 0 0 0 

June 18, 19, 2012   0 0 4 0 

June 21,22, 2012   0 0 1 0 

June 25, 26, 2012   2 0 0 1 

June 28, 29, 2012   1 0 0 0 

July 3, 4, 2012   0 0 0 2 
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July 9, 10, 2012   0 0 0 3 

July 12, 13, 2012   0 0 0 2 

July 16, 17, 2012   0 0 0 3 

July 19, 20, 2012   1 0 0 1 

July 24, 25, 2012   0 0 0 2 

July 26, 27, 2012   0 0 0 0 

Date Subtotal 18 0 8 17 

May 17, 18, 2012 Silence 4 2 1 2 

May 28, 29, 2012   0 0 0 3 

May 30, 31, 2012   0 0 0 0 

May 31, June 1, 2012   0 0 0 1 

June 4, 5, 2012   0 0 0 1 

June 7, 8, 2012   1 0 0 0 

June 11, 12, 2012   0 0 0 1 

June 18, 19, 2012   0 0 1 2 

June 21, 22, 2012   1 0 0 0 

June 25, 26, 2012   1 0 0 2 

June 28, 29, 2012   0 0 1 1 

July 3, 4, 2012   0 0 0 4 

July 5, 6, 2012   2 0 0 0 

July 9, 10, 2012   0 0 0 3 

July 12, 13, 2012   2 1 0 0 

July 16, 17, 2012   1 0 0 1 

July 19, 20, 2012   0 3 0 0 

July 24, 25, 2012   0 0 0 1 

July 26, 27, 2012 Subtotal 12 6 3 22 

Overall Total   48 8 13 53 
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CHAPTER 4: 

THESIS FINDINGS AND SIGNIFICANCE 

Function of Acoustic Communication and State-Dependant Responses  

 

The round goby, Neogobius melanostomus, as far back as the first assessment of 

goby acoustic behaviour by Protasov (1965), has been speculated to use acoustic 

communication as a function of mate attraction (Rollo et al. 2006, Rollo and Higgs 

2008); a common occurrence in the teleost family Gobiidae (Lugli et al. 1995, Lindstrom 

and Lugli 2000, Lugli et al. 2004, Amorim and Neves 2007, Malavasi et al. 2009). Many 

sound types have been recorded from male round gobies and explored as to what 

information these signals contain that allow for gobies to communicate with each other. 

One such call that has been recorded and is thought to play a role in mate attraction is 

known as the grunt call given the context it had been recorded (see chapter 2 and 3 

methods). While behavioural responses to the grunt call have been performed in the past 

via the use of playback experiments (Rollo et al. 2006, Rollo and Higgs 2008), the 

importance of differentiating behavioural responses by reproductive state had yet to be 

performed in regard to these sounds, and was merely speculation derived from female 

preference (including both reproductive and nonreproductive females; RFs and NRFs, 

respectively) seen in past studies. However, Chapter 2 showed RFs preferred the grunt 

call in a number of behavioural measures examined in contrast to NRFs who did not 

display a preference to any sounds, and no other reproductive morphs examined 

displayed the same preference for the grunt call. Furthermore, strong phonotactic 

attraction to the grunt call was also seen in the field by RFs in May, early in the goby’s 

spawning season. Courtship signals are thought to have evolved in conjunction with 
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female preference for particular male traits, and that upon recognition of a signal, elicit a 

robust response by triggering sensory bias coded in the female’s behaviour (Ryan and 

Hector 1992). Similar behaviours have been seen in gravid females of other species in 

response to conspecific male mate attraction signals that trigger a robust phonotactic 

response when the sound is heard (McKibben and Bass 1998, Myrberg et al. 1986); with 

much reduced response by other conspecifics of differing reproductive state and sex. 

Therefore, RFs may be displaying a triggered response elicited by characteristics in the 

male’s call due to its sensitive and robust phonotactic response to the grunt call. In 

contrast, RMs displayed no preference to any conspecific call and behavioural responses 

to sounds were found to be low (as was predicted) as  in nature, it would be deleterious to 

investigate conspecific calls as it exposes a nest to predation and theft by other males. 

Given RFs preference for the grunt call and evidence found in past studies (Rollo et al. 

2006, Rollo et al. 2008), it can be said with more certainty that the grunt call may play a 

role in mate attraction. Another round goby call that has been discovered and recorded 

recently, known as the drum call, was also suspected to play a role in mate attraction after 

preliminary investigation of the sound in the lab (Mancini 2010), however, in the current 

study, RFs were found to either ignore the sound altogether or avoid it, potentially 

disproving the claim that the drum call played a role in mate attraction, as the intended 

recipient did not appear to care for it.  

The nonreproductive males (NRMs) and sneaker males (SMs) were found to 

display somewhat of an attraction to the drum call and was speculated that non-target 

receivers may intercept the sound as means of eavesdropping to locate a nest with eggs, 

as males have been found to vocalize to females while eggs are within the nest (Meunier 
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et al. 2009, Wickett and Corkum 2008). Surprisingly, the same behaviour was not 

displayed towards the drum call in the field as NRMs and SMs seemed to intercept the 

grunt call instead. However, intercepting of the grunt call does not disregard the 

eavesdropping claim, as it as it still provides a means to localize the nesting site for egg 

predation and sneaking fertilizations (Brantley and Bass 1994, McKibben and Bass 1998, 

Alonzo and Warner 1999, Bass and McKibben 2003). The field results are probably more 

indicative of accurate behavioural responses to conspecific sounds since it’s performed 

under a more natural setting. Interestingly, the drum call had the lowest capture rate of 

gobies in contrast to the other two traps types (see chapter 3). In Chapter 2, it was 

speculated that female avoidance of the drum call may indicate that the drum call plays a 

role in territorial defense due to the manner it was recorded (see chapter 2 and 3 

methods). Using acoustic signals in territorial or aggressive displays is also a common 

occurrence in the family Gobiidae (Lugli 1997, Sebastianutto et al. 2008, Amorim and 

Neves 2008). In regard to NRMs and SMs, the fact that the drum call did not deter these 

morphs from approaching the sound source, however, the results in the lab and field may 

have differed simply due to the “environment”; water in the lab was clear while in the 

field, it was turbid. Potentially, after determining that no physical male was present at the 

sound source, NRMs and SMs approached the drum call regardless, while in the field, 

turbidity of the water prevented visual determination of the nest-guarding male’s 

presence and chose to avoid the trap playing the drum call. The same cannot be said for 

RFs as they never attempted any investigative behaviour towards the drum call. With 

these results in mind, the current study provides some insight and clarity into the function 
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of the two round goby calls, the grunt and the drum call, given responses seen both in the 

lab and the field.  

Secondly, Chapter 2 provides new evidence of state-dependent response to 

conspecific calls as a model in the round goby, given the differential levels of phonotactic 

responses to conspecific sounds displayed in the lab and to a degree in the field. Evidence 

of state-dependent responses to acoustic signals is of interest as it is rarely investigated in 

freshwater fishes in association to behaviour (Sisneros and Bass 2003, Bass and 

McKibben 2003, Clement et al. 2004). Instead, behavioural responses to conspecific calls 

via playback studies tend to either be male or female focused. The problem with 

separating male and female behavioural responses to acoustic signals is that the full scope 

of the function of acoustic communication within a community is investigated 

haphazardly and only provides part of the story. For example, to truly determine if a male 

call is for mate attraction, the response between reproductive and nonreproductive 

females should be different, as the function of the call is to attract gravid females. As a 

result, mate attraction calls should facilitate a stronger phonotactic response due to 

hormones responsible for reproductive maturity circulating in the blood. However, by 

doing so, alternative reproductive morphs that exist within the goby population are 

disregarded from the investigation entirely, such as males, both reproductive and 

nonreproductive, and alternative reproductive tactics. To think of any form of 

communication as of occurring between a single sender and receiver is unrealistic in 

nature, as any vocalization performed by an individual is audible to any conspecific 

within range of hearing the sound, and therefore can be understood. Unintended 

recipients of the vocalization can then intercept these signals and respond to them. 
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Myrberg (1981) when first stating his idea on signal interception, also known as 

eavesdropping, speculated that males that practiced alternative reproductive tactics 

(sneaker males) should intercept sexual signals as it provides information on the location 

of a potential spawning event and therefore an opportunity for a male to sneak 

fertilizations; a claim while reasonable is rarely investigated due to male or female 

focused studies. Realistically, if responding to an acoustic signal is beneficial to the non-

target recipient, eavesdropping should evolve, and therefore trigger the response when 

the sound is heard. Disregarding the investigation of responses to conspecific signals by 

all members within a species may lead to overlooked and undiscovered behaviours and 

the effect those behaviours may have on senders beyond predictions that are made at the 

surface. To further understand female response to conspecific sounds, call rates should be 

examined as different call rates can have various meanings (Seyfarth and Cheney 2006), 

which is currently unknown in the round goby. In addition, intensity threshold responses 

should be investigated to sounds played at different intensities, as it has yet to be 

investigated behaviourally in the round goby. The current study provides evidence that 

may indicate a relationship between reproductive state and auditory responsiveness to 

conspecific calls in the round goby and provides a model of how reproductive state can 

affect phonotactic response between the sexes. Furthermore, results may also provide 

some insight on function of the conspecific calls examined. 

Population Control Strategy Using Acoustic Signals in a Trapping Mechanism 

 

Chapter 3 examined the response of round gobies to conspecific calls in the field 

and examined the use of acoustics as a lure in a trapping system to be used in the control 

and capture of the invasive species. Since the 1990s, the round goby has been a 
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prominent and deleterious invader in the Laurentian Great Lakes (Jude et al. 1992, 

Charlesbois et al. 2001), however, strategies to reduce the negative impact the species has 

had on freshwater ecosystems has yet to be fashioned. The current study, to my 

knowledge, is the first application of conspecific acoustic signals as a lure to attract and 

capture an invasive fish. The grunt call in May was found to capture significantly more 

gobies than the other two traps (drum call and the control), showing a positive 

phonotactic response and a selective trapping system. Successful capture of reproductive 

individuals, in particular RMs, SMs, and RFs in the grunt call trap, was most likely due to 

preferred water temperatures for spawning in this species and provides further evidence 

in the selective utility of this trap. While the goby is a voracious and aggressive 

competitor (Charlesbois et al. 2001), the true nature of its impact is not due its presence 

in the Great Lakes, but rather the number of individuals that are present in areas where 

native species thrive (Bergstrom et al. 2008). The round goby’s extensive range and 

population size is a result of the species ability to spawn multiple times in a single 

breeding season, causing a high recruitment rate from one year to the next and 

outnumbering native fish populations that only spawn once per breeding season 

(Charlesbois et al. 1997). Bergstrom and Mensinger (2009) found that where density of 

the invasive species was low, native species were able to compete for limited resources 

and persist despite the round goby’s presence, while in areas where goby density was 

high, native species were outcompeted and driven to extinction.  Since complete removal 

of the round goby from freshwater systems in likely impossible, a means of reducing the 

round goby’s population size may be a good strategy in reducing the species’ impact on 

the Great Lakes. In regard to the round goby, the most successful method in controlling 
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population size of a species that spawns multiple times in a single season is to reduce the 

number of gravid females available for nest-guarding males to spawn with. By reducing 

female availability, I could potentially reduce round goby impact in key sites and 

alleviate competitive stress on native fish. In the current study, while the trapping 

mechanism used did capture a large number of RFs in May when using the grunt call as a 

lure, the sound was also successful in capturing a large total number of gobies (both 

reproductive and nonreproductive) in contrast to the drum call and the control; therefore, 

using the grunt call as a lure is a good strategy as a means to capture and remove a large 

number of gobies of all reproductive morphs from key areas, thus alleviating competitive 

stress on native species and reducing the round goby’s negative effect on freshwater 

ecosystems. Furthermore, non-target capture of species was found to be minimal when 

implementing this trapping design and is therefore a practical tactic in selectively 

capturing the round gobies without harming native species in the process. Furthermore, 

the trapping mechanism used in the current study could also be used in the control of 

other invasive species by implementing the use of natural occurring attractants. Future 

directions should focus on recording overnight trials to determine if the number of gobies 

attracted to the traps was higher than that what was captured and make modifications to 

increase capture efficiencies. In addition, underwater cameras could also be used to 

determine when peak response to conspecific sounds occurs in the field and deploy traps 

and play sounds appropriately, as the calling activity of the round goby is currently 

unknown.  

The current study also provides additional insight of phonotactic response to 

conspecific sounds by the round goby in the field in relation to reproductive state, which 
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is the first of its kind. Finally, when examining the amount of gobies captured both in 

regard to successful capture rate and by reproductive state, results show that maximum 

capture efficiency and phonotactic attraction to conspecific sounds occurs early on in the 

spawning season of the round goby and declines as the summer progresses. By 

implementing the use of acoustic signals as a lure to attract and capture round gobies as 

well as applying a mate attraction call that attracts gravid females and other reproductive 

morphs, I can reduce the number of females available for spawning and cause a decline in 

recruitment. In addition, by reducing the density of round gobies in key areas, I can 

alleviate competitive stress on native species and the impact of native species in 

freshwater systems of North America.  
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