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ABSTRACT 

 

There are several modalities through which fish can communicate, but oftentimes 

they rely primarily on chemical and visual signaling. The Round Goby (Neogobius 

melanostomus) is a prolific invader of the Laurentian Great Lakes. My goal was 

to examine the behavioural responses of this species to signals from 

conspecifics. Using behavioural assays, I found that visual signals (i.e. nuptial 

colouration) rather than chemical signals (i.e. urine) from males were attractive to 

reproductive females. I also examine the attraction of juveniles to eggs odours; 

individuals significantly preferred conspecific to heterospecific odours. Lastly, I 

compare the allometric relationships between pectoral fins and body length in 

males and females, which may contribute to the reproductive success of an 

individual. My research improves our understanding of the behavioural ecology of 

an invasive species of fish.
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The use of chemical and visual senses in fish: a review
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Abstract 

Communication is a behaviour that exchanges information between two 

individuals. While this can be accomplished using five different signalling 

modalities, environmental constraints limit fish to use either chemical and/or 

visual signals. Alone, these two modalities can facilitate predator recognition, 

foraging and social dominance. Chemical signals, in the form of pheromones or 

kairomones, are released into the environment through faeces, gills or urine, 

whereas visual signals vary in complexity and involve shape and size 

morphology. In this review, I examine how the combined factors affect anti–

predator, courtship, foraging, homing, and species recognition behaviours that 

are fundamental in the behavioural ecology of fish. Chemical and visual 

components studies are summarized in 23 separate fish families, encompassing 

45 species, and their effects on the exhibited behaviours that were observed. 

Behaviours were studies when the ability to use olfaction and/or vision is either 

absent or present, or when observing odours and/or visual cues being used by 

specific species or groups. Overall, chemical and visual signals had neutral or 

positive effects. When used in combination, these two modalities facilitate the 

completion of fundamental behaviours, such as mate attraction, in several 

different fish species. 

  

Introduction 

Communication, a universal behaviour responsible for most of the social structure 

found in animals (Oliveira et al., 1998), is the exchange of information between 
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one signaller to one receiver (Bradbury & Vehrencamp 1998). Among fishes, this 

is accomplished using acoustic, chemical, electrical, mechanical and/or visual 

signalling (Bailey et al., 2007; Hill 1969; Salazar & Stoddard 2009; Wright et al., 

2005; Yavno & Corkum 2010). Due to various constraints, fish use some of these 

signalling modalities less frequently than others. Mechanical signalling requires 

physical contact for signal transmission; acoustic signalling is prone to heavy 

degradation with increasing distance; and, electrical signalling requires 

individuals to possess a specialized organ capable of creating an electrical 

discharge (Bradbury & Vehrencamp 1998). Alternatively, chemical signalling in 

the form of olfaction (Belanger & Corkum 2009) and visual signalling such as 

colouration (Osorio & Vorobyev 2008) are common methods of sending 

information. These two methods enable individual fish to locate food (Burks & 

Lodge 2002), recognize predators (Hall & Suboski 1995), establish territories 

(Meunier et al., 2009), navigate through their surroundings (Wisenden & Dye 

2009), maintain a social dominance (Barata et al., 2007) and identify possible 

mates (Yavno & Corkum 2010). 

 Chemical/olfactory communication was the first signalling modality to 

develop and be identified in fish (Chidester 1924; Bradbury & Vehrencamp 1998). 

Species use semiochemicals called pheromones (Stacey et al., 2003), usually in 

the form of steroids (Corkum et al., 2008), which can significantly affect fish 

behaviour (Barata et al., 2007; Gammon et al., 2005; Johnson et al., 2009; 

Marentette & Corkum 2008; Poling et al., 2001; Sorensen et al., 1988; Sorensen 
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& Stacey 1999). Meanwhile, communication between heterospecific fishes 

involves the use of compounds called kairomones (Wyatt 2003). Most of these 

steroidal odourants are released into the environment through faeces (Brown et 

al., 1995), gills (Barata et al., 2007) or urine (Liley 1982), and are detected by the 

olfactory sensory neurons in the olfactory epithelium (Firestein 2001). However, 

some aquatic environments can diminish the transmission of the chemical signals 

and/or decrease the sensitivity of individuals towards them (Burks & Lodge 2002; 

Heuschele & Candolin 2007). Therefore, fish may choose to communicate 

through the use of a second signalling modality (i.e. visual), increasing the 

chance that information is sent and received (Cardé & Baker 1984). 

 Colour, courtship displays, as well as shape and size morphology are all 

examples of visual signalling (Oliveira et al., 1998; Suk & Choe 2002). They 

range in complexity, duration and intensity, and must be performed under 

sufficient levels of ambient light (Brandbury & Vehrencamp 1998). Males are 

often the conspicuous sex (Maan et al., 2006; Sargent et al., 1998), using vivid 

visual signals to attract discriminatory females (Endler & Houde 1995; Trivers 

1972) that choose mates who provide the highest amount of direct (e.g. 

decreased parasites) and indirect (e.g. better genes) benefits (Sargent et al., 

1998). For example, visual signals from rock–dwelling mbuna cichlids stimulated 

females to choose conspecifics over heterospecifics (Jordan et al., 2003). 

Seehausen et al. (1998) also describe how female mate choice in two 

Haplochromis cichlid species is based solely on body coloration.  



	
  

 5	
  

 Previous reviews of fish communication have focused on general chemical 

signalling (Solomon 1977; Sorensen 1996; Sorensen & Stacey 1999), even 

though studies have shown that many species of fish also rely heavily on vision 

(Davis & Olla 1995; Gonçalves et al., 2002; Plath & Tobler 2007; Ueda et al., 

1998; Yavno & Corkum 2010). In fact, large numbers of fish use chemical signals 

in combination with visual signals, (neutrally or positively) facilitating fundamental 

behaviours such as anti–predation, courtship, foraging, homing, and species 

recognition (Table 1.1). In this paper, I examine how the combined use of 

chemical and visual senses affects fish behaviour, and I outline how these two 

sensory modalities vary among different fish families. 

 

Anti–predatory 

Fish receiving advanced warnings that predators are nearby have the opportunity 

to quickly inspect predators before engaging in evasive behaviours such as 

dashing (Yunker et al., 1999; Pellegrini et al., 2010; Wisenden et al., 2010). 

Injured Cyprinids (minnows) release chemical alarm pheromones (i.e. 

Schreckstoff) into the water (Pfeiffer et al., 1985) from cells found in their skin 

(Chivers & Smith 1998). However, water transports these chemical signals at a 

much slower rate than visual signals (Bradbury & Vehrencamp 1998), and while 

chemical cues alone are often sufficient in alerting individuals to danger (e.g. 

Pellegrini et al., 2010), fish that use two signalling modalities significantly 

decrease their overall predation risk (Brown et al., 2000). This is better 
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demonstrated in two members of the family Cyprinidae: Fathead Minnow 

(Pimephales promelas) and Finescale Dace (Chrosomus neogaeus). Both 

species display significantly higher levels of anti–predatory behaviour after 

exposure to a combination of predator odours from conditioned water and the 

physical presence of a predator, than to chemical cues alone (Brown et al., 1997; 

Brown & Cowan 2000).  

 Interestingly, alarm cues are not entirely species specific; heterospecific 

fish eavesdrop by detecting and reacting to alarm cues used exclusively between 

conspecifics. Field studies conducted by Mathis & Smith (1992) using chemical 

alarm cues from a common heterospecific induced anti–predatory behaviours in 

P. promelas, while cues from an unfamiliar tropical heterospecific did not (Mathis 

& Smith 1993a). Later, laboratory studies by Wisenden et al. (2010) described 

how Glowing Tetras (Hemigrammus erythrozonus) engage in anti–predatory 

inspection behaviours after having been exposed to realistic models of a 

predator. Those fish that have been pre–exposed to heterospecific alarm cues 

(obtained from Blacknose Shiner, Notropis heterolepis) exhibited even higher 

numbers of predator inspections. This reiterates the notion that using two 

different signals, even when one is detected through a form of eavesdropping 

(sensu Oliveira et al., 1998), may benefit individuals through reduced predation 

(Brown et al., 2000). 

 Shoaling fish frequently engage in anti–predatory behaviours, such as 

darting and shoal tightening, when exposed to high predation levels (Lima & Dill 
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1990; Brown & Godin 1999a). Using combined chemical and visual signals, 

Poeciliids, such as Mosquitofish (Gambusia affinis) and Sheepshead Swordtail 

(Xiphophorus birchmanni), have been observed tightening their shoals following 

exposure to conditioned water and the physical presence of predators (Smith & 

Belk 2001; Coleman & Rosenthal 2006). Because predators naturally release 

chemical cues that contain information regarding their diets (Brown et al., 1995), 

“shoalers” that are in the vicinity of these predators may be warned of danger 

(Mathis & Smith 1993b). Predators also easily manipulate visual signals by 

altering their own behaviour (Brown & Godin 1999b) so that prey seeking visual 

information regarding the attack motivation of a predator should engage in risky 

visual inspections (Dugatkin 1992; Murphy & Pitcher 1997). Nevertheless, in 

many behavioural studies (Utne & Bacchi 1997; Utne-Palm 2001; McCormick & 

Manassa 2008), the physical presence of a predator is almost always the visual 

component to successfully induce anti–predatory behaviour (Table 1.1). 

 Finally, chemical and visual signals can induce anti–predatory behaviours 

in juvenile and adult life stages. While adult Northern Pike (Esox lucius) are fish 

predators (Brown & Smith 1995), juveniles face high levels of predation 

(Lehtiniemi 2005). Lehtiniemi (2005) demonstrates how juvenile Northern Pike 

seek refuge following the detection of conditioned water from predatory Yellow 

Perch (Perca flavescens). Moreover, juveniles who have been exposed to visual 

cues spend significantly more time in refuge than fish that do not receive any 

alarm cues. Other examples include juvenile Atlantic Salmon (Salmo salar) that 
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take a significantly longer time to resume foraging following exposure to 

combined chemical (i.e. conspecific odours) and visual (i.e. a novel object) alarm 

signals, than individuals exposed to control stream water (Kim et al., 2009). 

 

Courtship and Species Recognition 

Chemical and visual signals are important components of mate assessment 

(courtship). While signals are costly for males to produce, they are honest 

indicators of quality (Grafen 1990) and enhance the ability of conspicuous males 

to attract choosy females (Trivers 1972; Andersson 1994). Using courtship 

displays and pheromones, male fish can facilitate sex recognition and provide 

information regarding their own physical condition to females (Jordan et al., 2003; 

Gammon et al., 2005; Meunier et al., 2009). For example, in the mating system of 

Threespine Stickleback (Gasterosteus aculeatus), mate choice is based on 

individual chemical and visual signals (Bakker & Milinski 1993; Frommen et al., 

2007), but few studies have examined how combined signals are used by this 

species. Waas & Colgan (1992) examined if both sexes of Threespine 

Sticklebacks could distinguish between displaying and non-displaying males. 

Through the use of olfaction, males and females could recognize displaying 

males, indicating that some reproductive displays involve the simultaneous use of 

visual and chemical signals. 

 Similarly, signaling has been studied in gobiids (Lugli et al., 1995; Suk & 

Choe 2002; Pampoulie et al., 2004) and the simultaneous use of multiple signals 
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has recently been reported. Round Goby (Neogobius melanostomus) males nest 

in cavities (Wickett & Corkum 1998; MacInnis & Corkum 2000) and actively court 

females through the use of olfactory and visual signals (Meunier et al., 2009). 

Yavno & Corkum (2010) tested different combinations of chemical (i.e. urine) and 

visual (i.e. colour) signals to understand which were more attractive to 

reproductive females. Reproductive female Round Goby spent a significantly 

longer period of time near darker coloured males than mottled coloured males 

(regardless of the urine type used), indicating that visual signals are more 

important than chemical signals in attracting females to a nest. However, since 

chemical signals alone are attractive to Round Goby (Gammon et al., 2005; 

Marentette & Corkum 2008), the lack of a combined effect from chemical and 

visual signals may be attributed to insufficient pheromone concentrations (Yavno 

& Corkum 2010). 

 Species discrimination (especially within Cyprinodontidae and Poeciliidae) 

is accomplished through the use of olfaction and vision. Kodric-Brown & Strecker 

(2001) studied isolation mechanisms in two cyprinodontiid species. Using 

conditioned water as the chemical stimulus and the physical presence of fish as a 

visual signal, Maya (Cyprinodon maya) and Thicklip Pupfish (Cyprinodon 

labiosus) strongly preferred conspecifics to heterospecifics. Cyprinodon maya 

appeared to use both olfaction and vision to discriminate between the two 

species, whereas C. labiosus used only odours. In poeciliids, some species 

within the same genera are so closely related that they require combinations of 
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signals even more complex than olfaction and vision. For example, male Sailfin 

Molly (Poecilia latipinna) that live in close sympatry to Amazon Molly (Poecilia 

formosa) cannot differentiate between females from either species using 

combined visual and chemical signals, and instead rely on obtaining additional 

information from tactile signals (Aspbury et al., 2010). Meanwhile, sex 

discrimination does not require a third signal. Discrimination between male and 

female Shortfin Molly (Poecilia mexicana) can be accomplished using vision with 

little reliance on additional olfactory signals (Plath & Tobler 2007). Examples of 

Cichliidae and Pomacentriidae species that also use combinations of chemical 

and visual signals for species recognition are summarized in Table 1.1. 

 

Feeding, Foraging and Homing 

The ability of fish to navigate and capture prey is critical for the growth, 

reproduction and survival of all species (Groves et al., 1968; Grant and Brown 

1998; Gardiner & Atema 2007). Because conditions are often variable, fish may 

rely on the use of multiple sensory modalities (Meager et al., 2005). Salmoniids 

are known to use odours and vision independently to migrate from oceans to 

spawn in their natal streams (e.g. Hasler et al., 1958; Lorz & Horthcote 1965; 

Jahn 1969). Little is known if these two modalities are used simultaneously 

during homing. Field studies have been conducted to determine if Chinook 

Salmon (Oncorhynchus tshawytscha), Chum Salmon (Oncorhynchus keta) and 

Cutthroat Trout (Oncorhynchus clarkii) could return to their own natal areas 
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without the use of olfaction and/or vision. Oncorhynchus clarkii, O. keta and O. 

tshawytscha had their olfactory and visual abilities eliminated by Yano and 

Nakamura (1992), Jahn (1969) and Groves et al. (1968) (respectively). Both 

olfaction and vision were important in O. keta and O. clarkii to successfully lead 

them to their natal areas. Oncorhynchus tshawytscha, on the other hand, were 

unaffected by vision loss and returned to their natal areas using only olfaction. 

Variable results, from similarly designed homing studies, were found within 

Cichlidae, Clupeidae, Gadidae, and Scorpaenidae (Table 1.1). 

 Chemical and olfactory signals are equally as important in feeding and 

foraging behaviours as they are in homing. Several species use prey odours and 

sight to localize their prey. Two examples were identified by Batty & Hoyt (1995), 

who studied the use of olfaction and vision with respect to feeding in closely 

related families of fish, Pleuronectidae and Soleidae. Under normal and infrared 

light, European Plaice (Pleuronectes platessa) and Common Sole (Solea solea) 

were exposed to odours from prey. Both species exhibited higher biting rates 

when odours were present. However, P. platessa required normal light to attack 

and S. solea was capable of biting under infrared light. Another similar fish, 

Tongue Sole (Cynoglossus semilaevis, Cynoglossidae), required light, but not 

prey odours to feed (Wang & Ma 2009). 

 The combined use of chemical and visual signals while feeding or foraging 

has also been documented in Carcharhiniformes, Characiformes, Gadiformes, 

Gasterosteiformes, Perciformes, and Siluriformes (Table 1.1). Studies of primitive 
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families (i.e. Triakidae, Characidae, Trichomycteridae, Gadidae) were more likely 

to observe limited effects from visual signals on behaviour (Meager et al., 2005; 

Tesser & Portella 2006; Gardiner & Atema 2007; Webster et al., 2007). In 

contrast, observed behaviours in advanced families (i.e. Gasterosteidae, 

Percichthyidae, Percidae) were less likely to be affected by chemical signals 

(Liang et al., 1998; Spotte et al., 2001; Mikheev et al., 2006). This is expected 

since olfactory signalling was the first and simplest modality to develop in fish 

(Bradbury & Vehrencamp 1998), so species that are less developed would be 

expected to rely more on chemical rather than visual signals. 

 

Conclusion 

In fish, chemical and visuals senses are often important in mediating anti–

predator and courtship behaviours in aquatic systems (Bradbury & Vehrencamp 

1998; Sorensen & Stacey 1999; Wyatt 2003; Barata et al., 2007; Meunier et al., 

2009). Signals are not necessarily species specific (Mathis & Smith 1992; Jordan 

et al., 2003; Wisenden et al., 2010) and studies have been conducted on 

numerous life stages (i.e. Lehtiniemi 2005). Olfaction and vision enhance 

predator detection (Yunker et al., 1999; Wisenden et al., 2010), yet some species 

rely on one modality over the other (Smith & Belk 2001; Coleman & Rosenthal 

2006). Signals, while often costly to produce, can be honest indicators of quality 

(Frommen et al., 2007; Yavno & Corkum 2010) and assist in facilitating species 

recognition (Kodric-Brown & Strecker 2001). Multiple sensory modalities can 
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assist fish in homing (Groves et al., 1968; Jahn 1969; Yano & Nakamura 1992; 

Meager et al., 2005) when the environment is variable, or help to localize prey 

(Batty & Hoyt 1995). Most of the components of chemical and visual signals have 

either positive or neutral effects on fish behaviours, with no consistent patterns 

(Table 1.1). However, the methods in which they are used is often dependent on 

the species or family in question. 

 

Objectives and Study species 

The Round Goby has been a benthic invader of the Laurentian Great Lakes since 

1990 (Jude et al., 1992). A broad diet and aggressive reproductive strategy have 

contributed to the successful establishment of this species (Charlebois et al., 

1997; MacInnis & Corkum 2000; Corkum et al., 2004). Males are colonial 

breeders, occupying a single cavity or nest (Wickett & Corkum 1998) and are 

capable of spawning with up to 15 females during one season (MacInnis & 

Corkum 2000). Both sexes can detect pheromones (Liley 1982; Murphy et al., 

2001; Belanger et al., 2006), while males use chemical signals to attract females 

(Arbuckle et al., 2005; Gammon et al., 2005), before selectively allowing 

individual females to enter a nest for spawning (Meunier et al., 2009). It may be 

possible to use pheromone traps to control the spread of this fish (i.e. Johnson et 

al., 2009), but we need to first understand how Round Goby respond to 

conspecific signalling. Also, because this species uses more than one 



	
  

 14	
  

communication modality (discussed earlier), it may be more advantageous to bait 

traps with both chemical and visual signals.  

 The objectives of my thesis are to determine how Round Goby respond 

(behaviourally) to signals from conspecifics. Because males possess steroids 

that attract females, I test if mate attraction is based solely on these pheromones 

or if other characteristics are involved (Chapter 2). Secondly, because Round 

Goby are egg predators (Charlebois et al., 1997), I examine if juveniles prefer 

odours from conspecific eggs to those of heterospecifics. This may be indicative 

of a cannibalistic behaviour, often occurring in colonial settings as a means of 

regulating a population (Hunter & Kimbrell 1980). Finally, physiological traits (i.e. 

pectoral fin size) are important in parental care (Meunier et al., 2009) and may 

affect the reproductive success. In Chapter 4, I examine the allometric 

relationship between body length and pectoral fin size, and compare them 

between males and females. These studies are the first to describe the direct 

behavioural responses of Round Goby to various types of chemical and/or visual 

signals, and help us to better understand the role of intraspecific communication 

in this invasive fish.
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Table 1.1 Summary of behavioural responses exhibited by fish following exposure to a combination of a chemical and 

visual stimulus. Families are listed from primitive to advanced following Nelson (2004), while genus and species are listed 

alphabetically within families. Each chemical or visual component that was tested had either a positive (+), neutral (0) or 

negative (–) effect on the behaviour exhibited by each species. Studies reviewed were conducted either in the field (F), 

laboratory (L) or both (FL). 
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CHAPTER 2 

Reproductive female round gobies (Neogobius melanostomus) are 

attracted to visual male models at a nest rather than to olfactory 

stimuli in urine of reproductive males
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Abstract 

Fish are known to communicate in many ways and commonly use olfactory and 

visual signals. When round goby (Neogobius melanostomus) males become 

reproductive, they change from mottled grey to black and release sex steroids in 

their urine. In this study, we conducted a laboratory experiment to determine if 

reproductive female round gobies were attracted to a combination of olfactory 

(urine) and visual (silicone models) stimuli, representing reproductive and non-

reproductive male round gobies. Females spent significantly more time at a nest 

with a black reproductive male model compared with a mottled non-reproductive 

male model. Neither urine type nor the interaction between model type and urine 

affected the time spent by reproductive females at a nest. Knowledge of the 

reproductive habits of the round goby may enable researchers to develop a 

method of species control for this invasive fish by manipulating its breeding 

habits. 

 

Introduction 

Fish respond to stimuli in many ways, but rely predominately on vision and 

olfaction to reproduce (Liley & Stacey, 1983). These two signalling modalities 

convey messages between conspecifics to attract mates, initiate courtship and 

spawn; and, depending on the breeding system, to defend fertilized eggs and 

offspring. Male nuptial colouration is designed to both attract females and deter 

male competitors (Kodric-Brown, 1990). Additionally, several species release 
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sexual scents via their urine, which elicit significant behavioural and/or 

physiological responses in conspecifics (Colombo et al., 1982; Almeida et al., 

2005; Appelt & Sorensen, 2007). Sex pheromones play an important role in 

species recognition, mate recognition and mate assessment (Wyatt, 2003; 

Johansson & Jones, 2007). 

 The round goby (Gobiidae: Neogobius melanostomus), a bottom-dwelling 

nuisance fish, entered the Laurentian Great Lakes from Eurasia via ballast water 

(Jude et al., 1992). The success of the invasive round goby in becoming 

established in new areas is due in part to its broad diet, repetitive annual 

spawning, and male parental care (Corkum et al., 2004). This species uses a 

polygynous mating system in which many reproductive females deposit eggs in 

the nests of a single male (MacInnis & Corkum, 2000). Parental males are black; 

whereas non-reproductive males and females are mottled, mimicking colours of 

bottom substrates (Miller, 1984; Wickett & Corkum, 1998). Washings from 

reproductive male round gobies initiate a strong behavioural response in 

reproductive females with observable changes in time spent near the source of 

the male odour (Gammon et al., 2005). Recently, urine has been shown to be the 

main excretion route for sex pheromones in the round goby (Kereliuk, 2009). 

Round gobies pose a threat by feeding on eggs of native fishes (Steinhart et al., 

2004), transferring contaminants up the food chain (Jude et al., 1995), out-

competing other species (Jude et al., 1995; Dubs & Corkum, 1996) and by 

contributing to the bycatch in nets of commercial fishers (Corkum et al., 2004). 
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Knowledge of the reproductive habits of the round goby may enable researchers 

to develop a method of species control by manipulating its breeding habits. 

In this study, we tested the relative strengths of visual (models) versus olfactory 

(urine) stimuli in attracting female round gobies in a laboratory flume. We 

expected that (1) reproductive females should exhibit a stronger attraction to 

urine collected from reproductive males than to urine obtained from non-

reproductive males; and (2) a reproductive (black) model that represents a 

parental male should be more attractive to gravid females compared with a non-

reproductive (mottled) model, resulting in the movement of the female to a nest. 

 

Materials and methods 

Animals 

Round gobies were collected by angling along shoreline areas of the Detroit 

River at Windsor, ON (42O20′N, 82O56′W) and Lake Erie at Leamington, ON 

(42O03′N, 82O36′W) from May to August (2007, 2008) and May (2009). Because 

fish captured were not injured and quickly acclimated to holding tanks (feeding 

immediately and actively swimming), we concluded that angling did not influence 

subsequent behaviour of the fish. 

 Round gobies were sexed by the shape of the genital papilla — broad in 

females and pointed in males (Miller, 1984). Reproductive status was confirmed 

after experimental trials by sacrificing the fish and examining and weighing the 

gonads. In the lab, reproductive and non-reproductive males and females were 
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held in separate holding tanks with a flow-through system, air stone, and gravel. 

Reproductive females were used in experiments within 7 days of capture; urine 

was obtained from males 24 h after capture. Fish were fed daily with Nutrafin® 

fish flakes, and held under a 16/8 h light/dark cycle with water temperature 

18±1OC. These holding conditions were based on previous studies (e.g., 

Gammon et al., 2005). 

 In females, the mass of the ovaries was expressed as a percentage of 

total body mass, the gonadosomatic index, GSI. A value of 8% or higher was 

taken as an indication of reproductive status; i.e., the body cavities of these 

females were filled with ripe eggs (Gammon et al., 2005). The GSI values (mean 

± SE) for all reproductive females used in our experiments were 11.46 ± 0.061%. 

Additionally, the reproductive females had round eggs with a well defined yolk 

centre. There was no significant difference (t40 = 1.249, p = 0.219) in mean (SE) 

GSI of reproductive females collected from the Detroit River (11.96 ± 0.57%, N = 

21) and Lake Erie at Leamington (10.97 ± 0.54%, N = 21) nor in the size (total 

length) of reproductive females (t40 = 0.085, p = 0.932) between the two 

populations (Detroit River: 9.31 ± 0.27 cm, N = 21; Leamington: 9.28 ± 0.29 cm, 

N = 21). 

 

Collection of male urine 

To obtain sufficient amounts of urine from males, we initially anaesthetized the 

males with clove oil, and used dental floss to tie their papillae for 4 h to prevent 
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urination. Urine was extracted from reproductive and non-reproductive male 

round gobies using a syringe (25 gauge needle); samples (including 

dechlorinated control water) were stored at −20OC until needed. In other studies, 

male round gobies were designated as reproductive if the GSI value was ≥1.38% 

and non-reproductive if the GSI value was ≤0.4%; i.e., gonads were transparent 

and miniscule in size (Belanger et al., 2006). In our study, we obtained urine from 

many males but only selected urine samples for experiments from gonadally 

developed (reproductive) and gonadally regressed (non-reproductive) males. 

There was a significant difference (t22 = 16.29, p < 0.0001) between the mean ± 

SE GSI values for reproductive (2.02 ± 0.194%) and non-reproductive (0.22 ± 

0.037%) males from which we obtained urine. 

 

Preparation of models 

To prepare the round goby male models, we mixed USG® regular dental plaster 

to create a mould of the gobies. A non-toxic, odourless silicone compound called 

Oomoo 30® (Smooth-on Plastics, Easton, PA, USA) was used to cast the two 

round goby models. The compound was tinted black while still in the liquid (un-

set) phase to represent the reproductive male model. After the removal of the set 

silicone, the non-reproductive male model was painted with tinted Oomoo 30® to 

create a mottled appearance. The models were designed to represent 

reproductive and non-reproductive males in both total length, 15 cm, and head 

width, 3 cm (Figure 2.1). The mean ± SE total length (TL) of specimens used for 
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urine extraction was 13.53 ± 0.20 cm (reproductive male) and 12.89 ± 0.24 cm 

(non-reproductive male). 

 

Laboratory experiment 

We used a 2 (model) × 3 (urine) factorial ANOVA design to test if reproductive 

female round gobies were attracted to either olfactory or visual stimuli from 

males. Using both reproductive and non-reproductive male models, we 

conducted trials with reproductive urine (N = 7), non-reproductive urine (N = 7) 

and a control, i.e., dechlorinated water (N = 7); i.e., 42 reproductive females were 

used. All 42 trials (3 urine types × 2 male models × 7 replicates) were 

randomized and fish were used only once. All experiments were conducted 

between 09 : 00 and 18 : 00 h. 

 A silicone model (either reproductive or non-reproductive male) was 

placed in a plastic shelter (16 × 11.5 × 5 cm) with opaque walls and transparent 

roof at one end of the flow-through flume (1 m × 30 cm × 30 cm) containing 20 l 

of dechlorinated, aerated water (Figure 2.2). Water flow in and out of the metre-

long tank was controlled with a Gilmont® 6.5 mm industrial flow meter (Gilmont 

Instruments, Racine, WI, USA) and ranged from 40 to 45 ml/min. Valves at the 

opposite end of the flume were set so that water was removed at the same rate 

as it entered. A reproductive female was placed in a shelter at one end of the 

flume. After a 1-h acclimation period, a designated urine type was injected into 

the tube entering the flume behind the shelter containing the model at the 
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opposite end of the tank (Figure 2.2). The two shelters contained small holes 

along their respective rear walls that allowed water to pass through, preventing 

the build up of stagnant water. Water temperature in the flume was maintained at 

18 ± 1OC, a temperature at which round gobies are known to reproduce 

(Charlebois et al., 1997). 

 Trials were conducted under fluorescent lights, consisting of a 1-h 

acclimation period (where dechlorinated water flowed into the flume), and a 15-

min stimulus period in which 0.2 ml (the maximum obtained) of urine from 

reproductive or non-reproductive males or dechlorinated water (control) entered 

the flume. An opaque gate located 50 cm from the odour source, which kept the 

females from visual contact with the model, was lifted immediately following an 

injection of urine or control water into the flume. The final concentration of urine 

and control water in the flume was 0.00001%. 

 The criterion for female mate choice was the total time spent in the area at 

and along the sides or back of the nest. Because our earlier studies on spawning 

behaviour with live parental males (Meunier et al., 2009), showed that females 

and males appeared to evaluate the status of each other before the female 

entered the nest, we selected time spent at the nest occupied by a model as the 

most appropriate surrogate for mate choice. Each trial was videotaped using a 

colour camera (Hitachi VKC-370) positioned above the flume. Trials were 

simultaneously recorded on DVD. The activity of the fish was analyzed using 
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FishTracker software (Shen, 2005). 

 

Results 

Observations obtained from the video images of the reproductive females 

showed that females moved from one end of the flume to the other by swimming 

along the bottom and along the side walls of the tank. The dependent variable, 

time spent at the nest, included the total time at the nest entrance and between 

the front of the nest and the back of the flume where the nest was positioned. 

Results of the ANOVA test showed that model type (visual signal) had a 

significant effect on the length of time females spent at the shelter (nest) at the 

opposite end of the flume (F1,41 = 7.957; p = 0.008). In contrast, neither urine type 

(F2,41 = 1.677; p = 0.201) nor the interaction term of model × urine type (F2,41 = 

0.0753; p = 0.928) had any effect on the time spent by the female at the nest. 

Overall, reproductive females spent the most time at a nest when it was occupied 

by a parental (black) male model, regardless of the chemical stimuli (urine from 

either reproductive or non-reproductive male or control water; Figure 2.3). 

Results of Duncanʼs post-hoc test showed a significant difference in time spent 

by reproductive females at the nest between treatments with the reproductive 

black male model with urine from reproductive males (628±29 s) and the non-

reproductive mottled model with urine from non-reproductive males (320 ± 104 s), 

p = 0.017. Also, there was a significant difference between the time that 

reproductive females spent at the nest with a black male model with reproductive 
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male urine and the non-reproductive male mottled model with control water 

(303±64 s), p = 0.014. There was no correlation between the GSI values of the 

reproductive females and time spent at the nest (r = −0.179, p = 0.256) nor 

between female size (total length) and time spent at the nest (r = 0.150, p = 

0.342).  

 

Discussion 

This study showed that the round goby model type (a visual signal) was more 

effective than urine type (an olfactory signal) in attracting conspecific 

reproductive females to a nest in a laboratory flume. Specifically, reproductive 

females spent more time at a nest when it was occupied by a black round goby 

model than a mottled one. Not all black round gobies are reproductive, but 

reproductive parental, nest-holding males have black nuptial colouration 

(MacInnis & Corkum, 2000; Marentette & Corkum, 2008; Marentette et al., 2009). 

Parental males are black throughout the breeding season from early May until 

the end of the summer. Sexual selection tends to favour conspicuous colouration; 

i.e., in our study, a black or contrasting colour if the male leaves the nest, 

whereas a mottled pattern favours crypsis with bottom substrates (cf., Endler, 

1991). 

 Marentette et al. (2009) present morphological evidence, supporting the 

existence of male alternative reproductive tactics in the round goby. The parental 

dark male morph with secondary sexual traits have larger investment in 
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accessory glands and elevated 11-ketotestosterone levels compared with the 

parasitic light morph that invests more in testes mass and sperm volume 

(Marentette et al., 2009). Black parental male morphs defend nests during 

courtship, spawning and development of gametes, unlike the lighter mottled 

morph that may sneak fertilizations or non-reproductive mottled males that may 

temporarily occupy shelters (Meunier et al., 2009; Corkum, personal 

observations). 

 The mean time spent by a reproductive female at a nest with a 

reproductive male model was longer in the presence of reproductive than non-

reproductive male or control urine, but differences were not significant. Why was 

the response of the reproductive females to a nest not significantly enhanced in 

the presence of urine from reproductive males? Previously, Arbuckle et al. (2005) 

identified a suite of steroids that are synthesized in the testes of sexually mature 

male round gobies as well as the presence of steroid producing cells in the 

testes. Recently, Katare (University of Windsor, unpublished data) reported an 

unknown sulphated conjugate of 11-oxo-etiocholanolone in round goby male 

urine. Thus, at least one of the steroids synthesized in the testes is released into 

the environment via urine. In other studies, we have shown that reproductive 

females spent more time in the far half of a flow-through tank when washings 

from reproductive rather than non-reproductive male round gobies were 

introduced (Gammon et al., 2005), but not when offered a choice of blended 

synthesized steroids known to occur in the testes of reproductive males (Corkum 
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et al., 2008). Both studies (Gammon et al., 2005; Corkum et al., 2008) conducted 

under the same environmental conditions (clear water, same temperature) as 

ours, lacked males or fish models. Interestingly, Kereliuk et al. (2009) recently 

showed that reproductive female round gobies were attracted to high-

performance liquid chromatography fractions of conditioned water (which 

includes urine) from gonadotropin releasing hormone (GnRH)-injected 

reproductive males; GnRH is known to increase the release of steroids. The lack 

of a significant response by reproductive females to male urine in our study may 

be explained because the males were not treated with GnRH, there was variation 

in steroid concentrations among reproductive males and/or because the key 

steroid was not present in sufficient concentrations to initiate a response. 

Moreover, male stimuli (vision and odour) may result in differential responses by 

reproductive females given their distance to a nest. We showed that the 

presence of a visual signal (i.e., male nuptial colouration) is attractive to 

reproductive females when they are near a nest. 

 Time spent at the nest by females is assumed to be a good predictor of 

mating preference (Meunier et al., 2009). Colouration has been shown to 

influence mate choice in several fishes, including threespined sticklebacks, 

Gasterosteus aculeatus (Baube et al., 1995); guppies, Poecilia reticulata (Houde 

& Endler, 1990); tailspot wrasse, Hailchoeres melanurus (Kuwamura et al., 

2000); bluegills, Lepomis macrochirus (Cogliati, 2009) and others. In contrast to 

vibrant colours of other fishes, cavity nesting parental males such as mottled 
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sculpins, Cottus bairdii; upland bullies, Gobiomorphus breviceps; fathead 

minnows, Pimephales promelas and round gobies are typically black (Page & 

Burr, 1991; McDowall, 2001), presumably to blend in with dark interior of the nest 

to avoid predation. A nest-holding male protrudes its head from the cavity and 

briefly exits the nest (Corkum, personal observation), enabling the male to be 

visible to approaching females. 

 In the present study, females swam to stimuli by moving along the bottom 

of the flume and at the junction of the floor and walls of the flume. Such 

thigmotactic behaviour is typical of many bottom-dwelling species (i.e., sea 

lamprey, crayfish) and is advantageous in avoiding predators (Alberstadt et al., 

1995; Vrieze & Sorensen, 2001). Round gobies lack a swim bladder and although 

they are able to enter the water column briefly and ʻflitʼ from one spot to another, 

all but the early larval stages are benthic (Hensler & Jude, 2007). 

Animals have an array of signalling modalities (acoustic, hydrodynamic, 

pheromonal, visual); however, the main sense organ used depends on the 

medium in which the signal is transmitted. Reproductive females may process 

multiple signals when approaching nest-holding parental males and signal 

strength of a given stimulus may vary with distance from the nest. Once the 

female is near the nest, nest entry decisions may be determined by colour (as 

shown in this study), and sounds (Rollo et al., 2007). Also, behavioural displays 

(pectoral or tail fin fanning) by the male could be detected by the lateral line of 

females (Meunier et al., 2009). Owing to the parental investment provided by 
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nest-holding round gobies, mutual mate choice that is known to occur in other 

resource-based mating systems (Kraak & Bakker, 1998) also may occur in this 

species. Courtship behavioural displays and responses between males and 

females need to be explored more fully to understand the reproductive habits of 

this species. 
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Figure 2.1 Dorsal (A) and anterior (B) views of reproductive (black) male and 

non-reproductive mottled male round goby are presented.
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Figure 2.2 Sketch of flume indicates the relative positions of the holding shelter 

for the reproductive female and the shaded shelter for the male model. Urine type 

(reproductive, non-reproductive or control water) was added at the end of the 

nest where male models were positioned.
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Figure 2.3 Mean + SE time (s) spent by reproductive females at the nest with the 

fish model at the far end of the flume. Black bars represent cases with 

reproductive (black) males; open bars represent non-reproductive mottled males. 

Urine was obtained from reproductive males (R), non-reproductive males (NR) 

and control (dechlorinated water). The letters ʻaʼ and ʻbʼ represent significant 

differences in responses by reproductive females at the nest.
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CHAPTER 3 

Round Goby (Neogobius melanostomus) attraction to conspecific 

and heterospecific egg odours 
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Abstract 

The Round Goby (Neogobius melanostomus), a fish invader, owes its success to 

its parental care, colonial breeding habits and broad diet. Parental males guard 

and maintain fertilized eggs, but may exhibit filial cannibalism when costs of care 

exceed benefits. Field observations show that whenever parental males leave 

nests to chase intruders, juvenile Round Goby enter nests to consume eggs. 

Thus, egg odours may be attractants and cannibalism could be adaptive for 

species with high site fidelity or high population densities. I hypothesized that 

chemical cues released by fertilized eggs of conspecifics and heterospecifics are 

equally attractive to Round Goby. Using a lab flume, I tested if juvenile Round 

Goby (either those provided or withheld from receiving food) showed an 

increased preference to washings of conspecific (Lake Erie) eggs compared with 

washings of heterospecific, Rainbow Trout (Oncorhynchus mykiss), (hatchery) 

eggs. I also examined preference between egg washings vs. lake water. Fed 

juvenile Round Goby spent significantly more time (t1,11 = 2.11; p = 0.05) near 

washings of conspecific egg odours compared with control lake water, but 

preferred control lake water significantly more (t1,11 = -3.10; p = 0.01) than 

washings of heterospecific egg odours. Also, there was a significant difference in 

time spent by fed (t1,11 = 2.19, p = 0.05), but not food withheld (t1,11 = -0.023, p = 

0.98), fish towards conspecific rather than heterospecific egg odours when stimuli 

were presented simultaneously. The mean time spent near Round Goby egg 

odours was 1.5 times that spent near Rainbow Trout egg odours. Our findings 
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show that conspecific egg odours attract fed juveniles, and that there is a 

potential to lure fish to odours traps as a means of control. 

 

Introduction 

In fish, different strategies for feeding and reproduction often lead to different 

types of egg cannibalism (Smith and Reay 1991). If there is a decrease in food 

availability or an increase in population density, cannibalistic behaviours may 

become more prevalent, and fish may begin to prey on conspecifics and their 

eggs (i.e. non-kin intercohort cannibalism) (Wootton 1971; Smith and Reay 1991; 

Elgar and Crepsi 1992). Other fish, incurr high energetic costs due to parental 

care and engage in filial egg cannibalism to improve their ability to reproduce in 

the future (Sargent 1992; Klug et al. 2006; Chin-Baarstad et al. 2009). In order to 

increase the probability their offspring will survive, some fishes guard their nests 

(Takegaki 2000; Cheney 2008) since eggs are often palatable to predators (Acha 

et al. 2002). Still, eggs are often lost, especially to conspecifics, when individuals 

are in close proximity to each other or in a colony (Valdés et al. 1987; Slotte et al. 

2006; Cheney 2008; Meunier et al. 2009). Furthermore, when eggs are lost to 

conspecifics due to cannibalism, there is an overall reduction in intraspecific 

competition (Kinzler et al. 2009), which is a useful strategy for an invasive 

species when the population density is high. 

 The Round Goby (Neogobius melanostomus), a colonial breeding fish that 

successfully invaded the Laurentian Great Lakes, has a broad diet that includes 
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dreissenids, invertebrates and fish eggs (Charlebois et al. 1997; Corkum et al. 

2004). In the laboratory, Round Goby have been known to consume eggs of 

conspecifics (Meunier et al. 2009) and heterospecifics such as Rainbow Trout 

(Oncorhynchus mykiss) (Chotkowski and Marsden 1999; Fitzsimons et al. 2006). 

Organisms that prey upon aquatic eggs often detect the chemical cues that are 

naturally given off during egg development (Mirza and Chivers 2002; Ferrari and 

Targett 2003). Field observations in western Lake Erie reveal that Round Goby 

feed on conspecific eggs deposited in nests (Wickett and Corkum 1998). 

Therefore, the Round Goby is believed to be an opportunist predator, attracted to 

the chemical cues released by fertilized conspecific and heterospecific eggs. 

Previous studies have demonstrated that Round Goby are attracted, albeit not 

significantly, to food odours from co-occurring heterospecific species of the Great 

Lakes (Sreedharan et al. 2009).  

 In this study, I examined the behavioural responses of juvenile Round 

Goby (fed and food deprived), a life stage capable of exhibiting non-kin 

intercohort cannibalism, to water washings of fertilized eggs from conspecifics (N. 

melanostomus), heterospecifics (O. mykiss) and control lake water. I expect that 

(1) fish will engage in opportunistic feeding behaviour, and would therefore 

exhibit a higher attraction to washings of eggs than to control lake water. (2) 

Juvenile Round Goby, having been previously exposed in their colonies to odours 

from conspecific eggs, will be more attracted to washings of conspecific rather 
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than heterospecific eggs. Moreover, this preference should be even more 

pronounced in starved rather than fed fish. 

 

Materials and methods 

Experimental animals and fish eggs 

Juvenile Round Goby were collected using a seine net along the Detroit River at 

Windsor, ON (42º18´ N, 83º04´ W) from June to August and November (2009). 

The net was 9.1 m long x 1.8 m deep (mesh size = 6.4 mm) and had a 1.8 m 

long × 1.8 m deep (mesh size = 3.2 mm) bag. Fish were brought back to the 

laboratory holding facility and placed randomly into flow-through equipped tanks 

under a constant 16:8 h light-dark cycle, 22oC temperature, and fed daily with 

Nutrafin® flakes.  

 Seven sets of artificial nests were built allowing us to collect fertilized 

Round Goby eggs. Each set was composed of five polyvinyl chloride (PVC) 

cylindrical tubes (7.5 cm diameter, 29 cm length) secured together through two 

plastic plates. One end of the PVC tubes was sealed, while the other end had a 

removable cap with a circular opening (3 cm diameter) for fish to enter (Figure 

3.1). I inserted an acetate sheet into each PVC tube to act as a substrate for egg 

deposition, allowing us to remove any eggs from the tube without damaging 

them. Nests were deployed on June 5th, 2009 at a depth of 7-8 m on the north 

shore of the central basin of Lake Erie at Erieau, ON (42o15´ N, 81o54´ W), and 

retrieved June 29th, 2009. Acetate sheets containing developing Round Goby 
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eggs (eggs with clearly visible embryos) were removed from the artificial nests. 

The eggs, deposited in a single layer on the surface of sheet, were gently 

removed from the surface of the sheet and transferred to 50 mL sterile Cellstar® 

test tubes containing fresh lake water. Tubes were immediately frozen on site in 

dry ice, thereby killing the embryos but maintaining the integrity of the egg 

membrane. Chemical stimuli that have previously been frozen have still been 

known to elicit behavioural responses in Round Goby (Yavno and Corkum 2010). 

Fertilized eggs of Rainbow Trout, a species that can be found in the same 

waterways as the Round Goby, were obtained from the Ringwood Fish Culture 

Station (Stouffville, ON) and also frozen until needed. 

 

Water washings of eggs 

In the lab, I selected 5 random Round Goby egg samples collected from different 

nests. Similar to the protocol of Mirza and Chivers (2002), 4 g of eggs were 

removed from each sample, pooled together (20 g total), and placed in 2 L of lake 

water collected where nests were deployed. The eggs were aerated in the water 

for 15 min, after which the supernatant was poured off into 50 mL aliquots to be 

used for stimuli. All aliquots were stored at -20oC until needed. I similarly placed 

20 g of Rainbow Trout eggs in 2 L of lake water, and aerated the eggs for 15 min. 

The supernatant was also poured off into 50 mL aliquots to be used for stimuli, 

and stored at -20oC. Lake water was selected as a control and a carrier for egg 

odours since the developing eggs were collected from (and frozen in) lake water 
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in the field. Control lake water was poured into 50 mL aliquots and stored at -

20oC until needed. 

 

Behavioural experiments 

Tests were conducted to examine the attraction of Round Goby juveniles to 

randomly paired chemical stimuli from eggs of conspecifics (RG; n = 12), 

heterospecifics (RT; n = 12) and control water (CNT; n = 12). Also, I conducted 

trials using fish that were fed, and those withheld from receiving food for 36 

hours, to examine Round Goby attraction to paired chemical stimuli from eggs of 

conspecifics (food provided, n=12; food withheld, n=12) and heterospecifics (food 

provided, n=12; food withheld, n=12). Fish were sacrificed at the end of each trial 

to determine the mass of their gonads, expressed as a percentage of total body 

mass (the gonadosomatic index; GSI). With respect to Round Goby, GSI values 

of less than 1.3% in males and 8% in females are indications of non-reproductive 

status (Belanger et al. 2006). Fish had a mean (± SE) total length 7.31 ± 0.11 cm, 

with equal numbers of males (n = 24; GSI = 0.17 ± 0.04%) and females (n = 24; 

GSI = 2.02 ± 0.41%). Fish were used in trials only once, and within 7 days of 

capture. Each trial was performed in a 1 m long flow-through flume, with an inflow 

valve on each side and one outflow valve located on the bottom in the center. I 

randomized the pairing of stimuli for each treatment, along with the end of the 

flume in which odours were released. Trials consisted of a 1 h acclimation period 

with dechlorinated water flowing, followed by a 15 min stimulus period (based on 
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dye trials). Stimuli were introduced directly into tubing carrying dechlorinated 

water over the course of the stimulus period. Fish were held in the center quarter 

of the flume (acclimation area) by transparent gates during the acclimation 

period. Immediately following the introduction of stimuli, the gates were 

simultaneously lifted using a remote pulley system, limiting any physical 

disturbance to the fish. Fish were observed for the amount of time spent in left 

and/or right three eighths of the flume (stimulus areas) using a video camera 

(Hitachi VKC-370) mounted above the flume (Figure 3.2), and simultaneously 

record onto DVD for analysis using FishTracker software (Shen 2005). 

 

Results 

Data were Log(x + 1.1) transformed and analyzed using a paired t-test. I found 

that juvenile Round Goby spent significantly more time (t1,11 = 2.11; p = 0.05) on 

the side of the flume containing stimuli from Round Goby eggs (285 ± 66.8s) vs. 

control lake water (89.25 ± 26.3s), and significantly preferred (t1,11 = -3.10; p = 

0.01) control lake water (394.75 ± 52.41s) vs. Rainbow Trout stimuli (201.5 ± 

31.33s). Also, fed juveniles showed a significant preference (t1,11 = 2.19, p = 

0.05) towards stimuli from Round Goby eggs vs. Rainbow Trout stimuli (Figure 

3.2). The mean time spent associated with the Round Goby egg odours (310.08 

± 44.33s) was 1.5 times that spent with Rainbow Trout egg odours (204.16 ± 

49.27s). Interestingly, the fish that that had food withheld did not show any 

significant preference (t1,11 = -0.023, p = 0.98) towards either Round Goby 
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(132.33 ± 36.22s) or Rainbow Trout stimuli (food withheld, 187.33 ± 57.58s) 

(Figure 3.4). 

 

Discussion 

Egg cannibalism, a process that regulates fish populations (Hunter and Kimbrell 

1980), becomes more frequent when the density of a population increases (Elgar 

and Crepsi 1992). In a colony, dense numbers of fish not only limit the amount of 

food available (Alexander 1974; Tyler 1995), but also tend to overwhelm 

individuals engaged in nest defense (Cheney 2008). Therefore, individuals have 

more opportunities to prey on the eggs of nearby conspecifics (Pájaro et al. 

2007). Our findings indicate that juvenile Round Goby are significantly attracted 

to odours of conspecific (285 ± 66.8s) over control lake water (89.25 ± 26.3s), 

while significantly preferring control lake water (394.75 ± 52.41s) to odours of 

heterospecific eggs (201.5 ± 31.33s). Also, juveniles prefer odours of conspecific 

eggs (310.08 ± 44.33s) to those of heterospecifics (204.16 ± 49.27s). 

 Since the size of a fish limits its ability to capture larger prey (DeVries et 

al. 1998; Grabowska et al. 2009), eggs are often lost to small juvenile fish that 

sneak into nests (Ferrari and Targett 2003; Meunier et al. 2009). The diet of 

juvenile Round Goby, such as those used in our study, includes invertebrates 

and fish eggs (Wickett and Corkum 1998; Fitzsimons et al. 2006), whereas larger 

Round Goby (total length > 8 cm) feed predominantly on Dreissena spp. (Kovtun 

et al. 1974; Ray and Corkum 1997). Because of their body size, many fish are 
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limited to feeding on smaller prey (Deudero and Morales-Nin 2001). Juvenile fish, 

in particular, will feed exclusively on small eggs, invertebrates and zooplankton 

(Dittman et al. 1998; Foote and Brown 1998), which are easier to catch, handle 

and consume (Nunn et al. 2007). Also, in many cases, those fish will use a 

specialized sensory modality to assist them in the detection of prey. For example, 

Dittman et al. (1998) discovered that two species of sculpin (Cottus aleuticus and 

Cottus cognatus) detect salmonid eggs using only chemical cues (odours) 

released by the eggs, and not visual cues. The fish in our study also appear to be 

capable of detecting eggs based on chemical cues alone. 

 Round Goby that were provided food were significantly attracted to 

conspecific eggs over lake water using egg odours alone; there were no visuals 

cues to indicate the presence of conspecific eggs in the flume. Meanwhile, 

juveniles that had food withheld did not prefer conspecific egg odours to 

heterospecific egg odours. Because these fish were captured in November, as 

opposed to the fed juveniles that were captured between June and August, 

previous exposure to odours of conspecific eggs may not have occurred. During 

the reproductive season, parental male Round Goby engage in fanning behaviour 

to remove debris and promote oxygenation of eggs (Meunier et al. 2009). Thus, 

males pump water out of their nests at a rate of 36.7 mL/s (Meunier 2009), 

exposing juveniles in the surrounding colony to conspecific egg odours. Exposure 

to heterospecific egg odour, such as those of Rainbow Trout, also occurs less 
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frequently and juveniles may have had more exposure to conspecific egg odours 

in the field compared with heterospecific egg odours. 

 Although Rainbow Trout are found in the same waterways as Round Goby 

(Kelch et al. 2006), and juvenile Round Goby consume eggs of Rainbow Trout in 

the laboratory (Fitzsimmons et al. 2006), few studies have demonstrated a direct 

attraction of Round Goby to odours from Rainbow Trout. Sreedharan et al. (2009) 

lured Round Goby to minnow traps using food odours, and while they did not test 

Round Goby eggs, they did find that traps baited with Rainbow Trout eggs 

attracted the fewest numbers of fish. In our study, heterospecific (Rainbow Trout) 

egg odours did not significantly attract juveniles over other odours (control lake 

water), indicating that juveniles may not completely associate odours from 

heterospecific (Rainbow Trout) eggs with food. When simultaneously comparing 

both types of egg odours, fish favoured conspecific over heterospecific egg 

odours. Some studies have shown that components from water-hardened 

salmonid eggs are not fully soluble in water, and therefore olfactory cues may not 

be easily detectible (Hemming and Buddington 1983). In our study, odours were 

collected using fresh eggs, which emit strong olfactory cues that attract predators 

(Mirza and Chivers 2002). Moreover, the increased variability observed in the 

treatment containing both types of fresh egg odours could be explained by 

interference created from the strong olfactory cues being released, thereby 

making it difficult for juvenile fish to distinguish one type of odour from another. 
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 While it is clear that Round Goby respond to odours of fertilized fish eggs, 

we do not know what specific components found in eggs elicit these behaviours. 

Eggs of some aquatic species contain proteins that are detected by predators 

(Ferrari and Targett 2003); other eggs may contain steroidal compounds (Lucas 

et al. 1979). This study showed that odours from conspecific eggs attract juvenile 

Round Goby, indicating the presence of one or more chemoattractants being 

released by fertilized Round Goby eggs. Ultimately, there is a potential to use the 

attractants found in Round Goby eggs as a means to lure juveniles to traps, and 

thereby control the spread of this invasive fish. 
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Figure 3.1 Example of one set of artificial nests built to collect fertilized Round 

Goby eggs. Each set contained five nests composed of polyvinyl chloride (PVC) 

cylindrical tubes (7.5 cm diameter, 29 cm length). One end of the tube was 

sealed, while the other end had a removable cap with a circular opening (3 cm 

diameter) for fish to enter.
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Figure 3.2 Sketch of flume used in behavioural experiments. Paired stimulus 

odours (conspecific eggs, heterospecific eggs or control water) were introduced 

at the ends of the flume into tubing carrying dechlorinated water.
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Figure 3.3 Mean (+ standard error) time (seconds) spent by juvenile fish in the 

area of the flume containing egg odour stimuli during each paired treatment. 

Black bars represent conspecific (Round Goby; RG) egg odour stimuli; grey bars 

represent heterospecific (Rainbow Trout; RT) egg odour stimuli; open bars 

represent control (CNT) lake water stimuli. Asterisks indicate significant 

differences between preferences towards odour stimuli (*, p = 0.05; **, p = 0.01).
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Figure 3.4 Mean (+ standard error) time (seconds) spent by juvenile fish, which 

were either provided or withheld from receiving food, in the area of the flume 

containing egg odour stimuli during each paired treatment. Black bars represent 

conspecific (Round Goby; RG) egg odour stimuli; grey bars represent 

heterospecific (Rainbow Trout; RT) egg odour stimuli. Asterisks indicate 

significant differences between preferences towards odour stimuli (*, p = 0.05). 
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CHAPTER 4 

Allometric relationships in the secondary sexual characteristics of 

Round Goby (Neogobius melanostomus) 
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Abstract 

The Round Goby, a prolific invader of the Laurentian Great Lakes, is a species 

that exhibits uniparental care. Males use pectoral fins to aerate egg clutches and 

help prevent intruders from entering their nests. Although the morphology of 

Round Goby has been described, little is known about the differences in the 

relationships between surface area of pectoral fins and body length for males and 

females. I hypothesized that males will exhibit proportionately larger pectoral fins 

than females and that reproductive (i.e. nest guarding) males will exhibit 

proportionately larger fins than non-reproductive males. Individuals that do not 

engage in egg care or nest defense, such as females and non-reproductive 

males, would not gain any reproductive benefits from having larger fins. Using 

digital measurements, I examined if relationships existed between the pectoral 

fins (used during nest defense and egg care) and total body length in males and 

females. In general, males (r2 = 0.75, p < 0.001, n = 43) and females (r2 = 0.28, p 

= 0.005, n = 26) had a significant positive association between total body length 

and total surface area of pectoral fins. However, males exhibited a stronger 

allometric relationship than females, given that the male slope of the line between 

variables was 1.8 times greater than the slope for females. Moreover, 

reproductive males (r2 = 0.78, p < 0.001, n = 31) and non-reproductive males (r2 

= 0.34, p = 0.047, n = 12) had significant positive associations between the total 

body length and the total surface area of pectoral fins. Reproductive males 

exhibited a stronger allometric relationship than non-reproductive males (given by 
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a 1.67 times greater slope). These results suggest that reproductive (spawning 

males) males might increase their chances of reproductive success by investing 

more in their external reproductive morphology than non-reproductive males. 

 

Introduction 

Organisms exhibit physiological differences in the size and proportions of their 

traits (Gould 1966). These differences, referred to as allometric relationships, 

may improve the reproductive success of an individual. In fish, traits such as 

large fins have been shown to benefit males during territory defense (OʼConnor et 

al. 1999), courting females (Suk and Choe 2002), and caring for young (Meunier 

et al. 2009). Large or elaborate fins give the impression that an individual has an 

overall larger body size (MacLaren and Daniska 2008) and in the case of 

parental males, allow them to better control the conditions inside their nests, such 

as the flow of water (Meunier 2009), which may improve the overall reproductive 

success of males. 

 Few details are known about the specific morphological differences in fish 

fins (Bakker and Mundwiller 1999), especially in species that exhibit parental 

care. Sexual selection only accounts for a few of the size differences observed 

(Smith et al. 2002), while different growth patterns in males and females are 

believed to account for the rest. For example, Threespine Stickleback 

(Gasterosteus aculeatus) males experience an increased growth rate in their fins 

during the breeding season (Guderley and Foley 1990). In other species of fish, 
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males are simply bigger than females: territorial male Bluegills (Lepomis 

macrochirus) grow bigger than females of the same age (Spotte 2007). 

Furthermore, some invasive fish exhibit morphological plasticity, and are capable 

of adapting their fin morphology to better suit their environment (Bhagat et al. 

2006). 

 First discovered in Lake St. Clair in 1990, the Round Goby (Neogobius 

melanostomus) is now found throughout the Laurentian Great Lakes (Jude et al. 

1992). Males can nest in any enclosed cavity (Wickett and Corkum 1998) and 

provide sole parental care for their offspring. Using their pectoral fins, males 

block the nest opening from intruders and remove metabolic wastes from the 

nest by circulating fresh water to the developing embryos (Meunier et al. 2009). 

Females spawn with some males more than others, and are capable of spawning 

with several males during the reproductive season (MacInnis and Corkum 2000). 

While Round Goby morphology has been described (Charlebois et al. 1997), data 

are lacking on the morphological relationships that exist between sexes. 

Moreover, males invest into internal morphological structures such as testes and 

accessory glands (Marentette et al. 2009), but there have not been any similar 

observations with respect to external characteristics. Males and females possess 

several different fins on their bodies, but I elected to analyze only pectoral fins 

due to their obvious involvement during nest defense and egg care (Meunier et 

al. 2009). I hypothesize that (1) males will exhibit larger fin morphology than 

females at any given total body length, since males rely heavily on their fins 
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during parental care and females do not. Also, (2) reproductive (i.e. nest 

guarding) males rather than non-reproductive fish (i.e. fish not presently using 

fins for nest defense or egg care) will exhibit larger fin morphology at any given 

total body length. 

 

Materials and methods 

Experimental animals 

Round Goby were collected by angling along shoreline areas of Lake Erie at 

Leamington, ON (42º03´ N, 82º36´ W) from May to August (2008) and June 

(2009). Fish were brought back to the laboratory holding facility and placed 

randomly into flow-through equipped tanks under a constant 16:8 h light-dark 

cycle, 20 ± 2oC temperature, and fed daily with Nutrafin® flakes. All fish used in 

this study were adults and were previously used in behavioural trials within 7 

days of capture. Fish were sexed by the shape of the genital papillae, pointed in 

males and broad in females (Miller 1984). Fish were sacrificed, after their use in 

other experimental trials, to confirm their reproductive status (Table 4.1) by 

examining and weighing the gonads, i.e. small and transparent in non-

reproductive fish. Total body length measurements were taken for each fish and 

the pectoral fins were removed and preserved in 70% ethanol for morphometric 

analysis. 
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Secondary Sexual Characteristic Assessment 

To estimate the differences in secondary sexual characteristics of Round Goby, 

preserved fins were photographed using a digital camera (Sony HDR SR8). 

Under standardized light conditions, fins were opened to their maximum and laid 

out on a flat surface. All fins were photographed from above at a fixed height (75 

cm). The total surface area (mm2) and circularity were determined from the digital 

images using NIH Image analysis software ImageJ® (http://rsb.info.nih.gov/nih-

image/). Circularity is expressed as a percentage, where a value of ʻ1ʼ indicates 

the fin is in the shape of a perfect circle (fin with a narrow base) and any values 

approaching ʻ0ʼ indicating a lopsided shape (fin with a broader base) (Figure 4.2). 

Values for surface area and circularity were regressed against total body length 

in an ANCOVA, and a comparison of intercepts and slopes of lines was 

conducted.  

 

Results 

I tested for differences in the slopes of the lines, between the total body length of 

each fish and the total surface area of pectoral fins of males and females (Figure 

4.1A), which were significantly different from each other (ANCOVA, F1,65 = 4.65, 

p = 0.03). Males, reproductive and non-reproductive, (y = 0.96x – 6.93, r2 = 0.75, 

p < 0.001, n = 43) and females (y = 0.53x – 2.25, r2 = 0.28, p = 0.005, n = 26) 

had significant positive associations between these values. The slope of the 

relationship between variables for males (0.96) was 1.8 times greater than the 
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slope for females (0.53), indicating that males had proportionally larger pectoral 

fins than females at any given total body length. The mean (± SE) pectoral fin 

surface area for males and females was 611.85 ± 41.57 mm2 and 271.44 ± 30.34 

mm2, respectively.  

Reproductive males (RM; y = 0.94x – 6.45, r2 = 0.78, p < 0.001, n = 31) and non-

reproductive males (NRM; y = 0.57x – 2.67, r2 = 0.34, p = 0.047, n = 12) had 

significant positive associations between the total surface area of pectoral fins 

and total body length (Figure 4.1C). The intercepts of the lines were significantly 

different from each other (ANCOVA, F1,40 = 4.37, p = 0.04), indicating that the 

surface area of RM (678.68 ± 50.95 mm2) was larger than NRM (439.20 ± 34.89 

mm2).  

 There was a significant negative association between the total body length 

and the circularity of the pectoral fins for reproductive and non-reproductive 

males combined, (y = -0.008x + 0.96, r2 = –0.19, p = 0.003, n = 43), but not 

females (y = -0.006x + 0.92, r2 = 0.12, p = 0.08, n = 26) (Figure 4.1B). There was 

no significant difference in either the slopes (ANCOVA, F1,65 = 0.05, p = 0.81) or 

intercepts (ANCOVA, F1,66 = 2.57, p = 0.11) between lines. The mean (± SE) 

circularity for male and female pectoral fins was 0.85 ± 0.007 % and 0.87 ± 0.004 

% respectively. In contrast, there was a significant relation between the total body 

length and the circularity of the pectoral fins for RM (y = -0.008x + 0.96, r2 = 0.18, 

p = 0.017, n = 31), but not NRM (y = -0.004x + 0.91, r2 = 0.07, p = 0.41, n = 12) 

(Figure 4.1D). However there was no significant difference between slopes 
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(ANCOVA, F1,39 = 0.16, p = 0.68) or intercepts (ANCOVA, F1,40 = 0.07, p = 0.79) 

of the lines. The mean (± SE) circularity for RM and NRM pectoral fins was 0.85 ± 

0.007 % and 0.86 ± 0.007 % respectively. 

 

Discussion 

Males of several gobiid species provide sole parental care to their offspring 

(Takegaki 2000; Meunier et al. 2009). Their nests often occupy enclosed cavities 

(Miller 1984) where stagnant water may cause metabolic wastes to accumulate 

and oxygen levels to decrease (Lissa ̊ker et al. 2003), threatening offspring 

survival. As a result, spawning males use their fins to fan inside the nest, thereby 

circulating water and providing adequate nutrients to the developing eggs and 

larvae (Jones and Reynolds 1999; Wickett and Corkum 1998). Round Goby have 

been described using their pectoral fins to fan their egg clutches (Meunier et al. 

2009). Since larger fins are capable of moving larger volumes of water (Bakker 

and Mundwiler 1999), reproductive (i.e. nesting) males should benefit the most 

from having larger fins. Our findings indicate that while all Round Goby (i.e. 

males and females) have significant allometric relationships between pectoral fin 

surface area and total body length, male pectoral fins were generally 1.8 times 

larger than female pectoral fins at any given body length. Furthermore, RM 

pectoral fins were 1.67 times larger than NRM pectoral fins for any given total 

body length.  
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 Larger secondary sexual characteristics, such as fins, may improve the 

overall reproductive success of fish that guard eggs (Guderley and Foley 1990; 

Naesje et al. 1988; Westley et al. 2008). Only recently have specific Round Goby 

external morphological investments been described. Marentette et al. (2009) 

describe two distinct male Round Goby morphs: one incorporating larger physical 

traits (i.e. significantly larger total body length and body mass), suggesting 

individuals engage parental male tactics, while the other morph is physically 

smaller, with characteristics suggestive of a sneaker male tactic. Moreover, 

parental (RM) gobiids invest more in their gonads than NRM (Belanger et al. 

2006) and have higher levels of plasma testosterone (Marentette et al. 2009). 

Our findings suggest that parental males also invest more than NRM into their 

external reproductive morphology through stronger allometric relations (i.e. 

between pectoral fin size and total body length).  

 There was a significant negative relation between the percent circularity of 

RM pectoral fins and total body length, resulting in the base of the fin becoming 

increasingly broader and lopsided (Figure 4.2). Round Goby males engaged in 

nest guarding use their pectoral fins to block the nest opening from intruders 

(Meunier et al. 2009). Since pectoral fins that are wider would help to block a 

larger portion of the nest entrance, males with wider fins could increase their 

reproductive success by decreasing number of offspring lost to intruding 

predators. In most fish, pectoral fins also have the second largest surface area 
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behind the caudal fin (Tucker et al. 2002), and in Round Goby, both fins are used 

by nest guarding males during egg care (Meunier et al. 2009).  

 In this study, caudal fins for each fish were not preserved along with the 

pectoral fins, so there were no measurements to compare the allometric 

relationships between the surface area of the caudal fin and total body length. 

Since caudal fins are used to create the strongest water currents out of the nest 

(Meunier 2009), any relationship between caudal fin morphology and total body 

length may be just as significant as those relationships observed in our study. In 

fact, caudal fins are often important for more than just egg care: their size can 

influence female mating preferences (Basolo 1991) and in some cases affect the 

survival individuals (Tucker et al. 2002). Nevertheless, secondary sexual traits 

linked to reproductive morphology in RM Round Goby (i.e. the sex that provides 

sole parental care) have stronger allometric relationships than in NRM. Males are 

thereby increasing their chances of reproductive success, not only by invest 

energy in their reproductive organs, but also into their external reproductive 

morphology. 
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Table 4.1 Sample sizes, means and associated standard error of the 

gonadosomatic index (GSI) of male (reproductive, non-reproductive) and female 

Round Goby. 

Sex N GSI 
  Mean SE 

Females 26 11.26 0.43 
Males    
    Reproductive 31 0.13 0.027 
    Non-reproductive 12 1.97 0.11 
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Figure 4.1 A) Plot of total body length (cm) vs. surface area (mm2) of pectoral 

fins for males (closed circles) and females (open circles). B) Plot of total body 

length (cm) vs. circularity (%) of pectoral fins for males (closed circles) and 

females (open circles). C) Plot of total body length (cm) vs. surface area (mm2) of 

pectoral fins for reproductive (RM, closed circles) and non-reproductive (NRM, 

open circles) males. D) Plot of total body length (cm) vs. circularity (%) of 

pectoral fins for reproductive (RM, closed circles) and non-reproductive (NRM, 

open circles) males.
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Figure 4.2 Comparison of non-reproductive (A) and reproductive (B) male fins. 

Reproductive male pectoral fins are broader (i.e. wider) at the base of the fin 

(within dotted elliptical area), resulting in fins that are lopsided and less circular 

than non-reproductive male fins.
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CHAPTER 5 

General Discussion
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Since 1990, the Round Goby has been a prolific invader of the Laurentian Great 

Lakes and surrounding waterways (Jude et al., 1992), with several factors having 

contributed to their successful establishment: they feed primarily on invasive 

dreissenids (Charlebois et al., 1997; Corkum et al., 2004), multiple females can 

deposit eggs in a single nest (MacInnis & Corkum, 2000) and reproductive males 

aggressively defend their egg clutches (Meunier et al., 2009). In an effort to better 

understand their communication strategy, and as a possible means of controlling 

their spread (Corkum et al., 2008), researchers have begun to examine the use 

of pheromones by Round Goby. Through the use of electro-olfactogram and gill 

ventilation experiments, studies have demonstrated that Round Goby are 

capable of detecting steroids (Murphy et al., 2001; Belanger et al., 2006). More 

specifically, reproductive females respond strongly to water washings from 

reproductive males (Gammon et al., 2005) and to specific blends of steroids 

(Corkum et al., 2008).  

 The use of chemical and visual senses in fish behaviour has been studied 

in several taxa (Chapter 1), with the vast majority examining endemic species 

(e.g. Barata et al., 2007; Gardiner & Atema 2007; Kim et al., 2009; Wisenden et 

al., 2010). Few studies have detailed how signaling affects the behaviour of a 

non-indigenous fish, and how this can ultimately contribute to the spread of the 

species. The goal of my research was to determine which chemical and/or visual 

signals are the most attractive to Round Goby and investigate their effects on the 

behaviour of this species. My studies indicate that male colouration (visual 
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signals) and egg odours (chemical signals) are potent attractants of Round Goby 

(Chapter 2, 3). Moreover, the surface area and circularity of reproductive male 

pectoral fins, which are both significantly smaller in females and non-reproductive 

males (Chapter 4), may enhance reproductive success. Using combined 

chemical (urine) and visual (model) signalling, my findings indicate that 

reproductive females spend significantly more time in the vicinity of a nest 

containing a reproductive male model rather than a non-reproductive male model, 

regardless of the added chemical stimulus. Secondly, juvenile Round Goby are 

significantly attracted to odours of conspecific eggs over control lake water, and 

are 1.5 times more attracted to conspecific over heterospecific egg odours. 

Lastly, when comparing the positive allometric associations between fin 

morphology and body size in both sexes, males have significantly higher 

association than females. 

 

Conspecific Signals 

My research suggests that visual and chemical signals from conspecifics are 

attractive to reproductive female and juvenile Round Goby, respectively. Based 

on my results in Chapter 2 and 3, the physical characteristics of males (i.e. 

nuptial colouration) are significant visual attractants, while developing egg odours 

are significant chemical attractants. Nest-guarding Round Goby males have a 

black nuptial colouration (MacInnis & Corkum 2000; Marentette & Corkum 2008; 

Meunier et al., 2009). In many species, males possess conspicuous visual traits 
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(i.e. colouration and shape) (Kodric-Brown 1990; Sargent et al., 1998) that help 

discriminatory females to assess male quality (Trivers 1972), ultimately 

influencing female mate choice (Oliveira et al., 1998; Cogliati 2009). 

 In my first study, conducted under low turbidity, the dark pigmentation of a 

reproductive male is an obvious attractant of gravid females (Chapter 2). 

Contrary to the expectations of my study, and because Round Goby can spawn 

at depths where visual signals are difficult to transmit (Bradbury & Vehrencamp 

1998; Wickett & Corkum 1998), chemical signals should have been more 

effective in attracting females than actually observed. The decreased response to 

the chemical (urine) signals I observed is most likely attributed to insufficient 

levels of chemoattractants present in male urine. 

 Round Goby are capable of detecting various types of chemical stimuli 

(Murphy et al., 2001; Gammon et al., 2005), and the species is a known 

consumer of fish eggs (Wickett & Corkum 1998). I demonstrated that juvenile 

Round Goby spend significantly more time in the vicinity of odours from 

conspecific eggs over control lake water (Chapter 3). Furthermore, juveniles 

spend fifty percent more time in the vicinity of conspecific egg odours than 

heterospecific (Rainbow Trout) egg odours. Olfaction is important in locating food 

(Burks & Lodge 2002) and several studies have demonstrated that predators are 

attracted to olfactory cues released by eggs (Ferrari & Targett 2002; Mirza & 

Chivers 2002). Because Round Goby are colonial spawners (Charlebois et al., 

1997), the availability of food may be low due to high population densities (Smith 
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& Reay 1991; Elgar & Crepsi 1992). Individuals are expected to engage in 

cannibalization, using olfactory cues dispersed by parental males (Meunier 2009; 

Meunier et al., 2009), by preying on nearby conspecific eggs. This form of 

cannibalization, termed non-kin intercohort cannibalism, may regulate the 

population of a species (Hunter and Kimbrell 1980). In other words, by 

consuming conspecific eggs, juvenile Round Goby are reducing future levels of 

intraspecific competition. 

 

Allometry 

Male Round Goby invest in internal morphological structures, such as testes and 

accessory glands (Marentette et al., 2009), however little is known about 

changes in the external morphology of this species. In Chapter 4, I demonstrated 

that allometric relationships exist between pectoral fin surface area and total 

body length in both Round Goby sexes. At any given body length, male pectoral 

fins had a surface area 1.8 times larger than the pectoral fins of females, while 

reproductive male pectoral fins were 1.67 times larger than non-reproductive 

male pectoral fins. A Round Goby nest may contain up to 10000 eggs (MacInnis 

& Corkum 2000), all of which require continuous care. The fin size of fish is often 

correlated with fanning efficiency (Bakker & Mundwiler 1999) and field and 

laboratory studies have demonstrated that in the Round Goby, only the male 

provides egg care by moving large volumes of water with their fins (Wickett & 

Corkum 1998; Meunier et al., 2009). Fanning with pectoral fins allows a male to 
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circulate water within the nest (Meunier 2009); this provides the eggs with a fresh 

supply of oxygen by preventing water from stagnating. Therefore, with respect to 

male Round Goby nest-guarders, larger fins may correlate with an increased 

reproductive success because fish can provide more oxygen to their eggs. 

 Also, males continually defend their nests by using pectoral fins to block 

the nest opening (Wickett & Corkum 1998; Meunier et al., 2009). I have shown 

that a negative relationship exists between the circularity pectoral fins and total 

body length in reproductive males (Chapter 4); fins become broader at the base 

(less circular) with increasing body length. Wider fins may allow males to block 

larger portions of the entrance to their nests, potentially decreasing the number of 

intrusions by juvenile Round Goby that are attracted to the odours released from 

fertilized eggs (Chapter 3). As a result, males with wider fins should have an 

increased reproductive success. 

 

Summary and Significance 

Using behavioural assays, I have identified two conspecific signals that affect the 

behaviour of Round Goby. Reproductive females are more affected by visual 

male characteristics rather than chemicals found in male urine, whereas 

conspecific egg odours affect the behaviours of juvenile fish significantly more 

than lake water or heterospecific egg odours. In both studies, fish respond by 

spending significantly more time in the vicinity of the above-described signals. 

While the behavioural responses of males were not tested, individuals appear to 
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possess physiological characteristics that enhance their reproductive success 

(Marentette et al., 2009; Yavno & Corkum 2010). 

 These findings are important to consider in developing tools to control the 

spread of this species into new areas. While continuing to spread into waterways 

adjacent to the Laurentian Great Lakes and the Mississippi River (Charlebois et 

al., 1997), the Round Goby poses a significant threat to the populations of native 

fishes (Steinhart et al., 2004). However, we may be able to take advantage of 

their behaviours by mimicking the signals used by this fish. Using field traps, 

baited with models of reproductive males and/or fertilized eggs, Round Goby 

could be actively caught. Removing juveniles may prevent future establishment of 

this species, while reproductive females may be removed to limit the number of 

potential mates available and also reduce the number of eggs laid during the 

reproductive season. Furthermore, my research helps us to better understand the 

behavioural ecology of invasive fish by examining how chemical and visual 

signals affect fish behaviour, before and after reproduction. 

 

Future Directions 

There are several opportunities to continue this research using both field and 

laboratory studies. First, it is important to determine why the urine used in my 

study did not affect the behaviour of females as strongly as visual signals 

(Chapter 2). Using conditioned water from males that had been injected with 

gonadotropin releasing hormone (GnRH), Kereliuk (2009) demonstrated that high 
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performance liquid chromatography (HPLC) fractions attract females. Because 

GnRH increases the release of steroids, we could determine the levels of steroids 

present in the urine of GnRH-injected males and compare them with urine from 

males caught in the wild. This may tell us if the volume of urine I obtained from 

wild-caught males contained sufficient quantities of pheromones. Also, 

Marentette et al. (2009) recently described the presence of two distinct types of 

male Round Goby: a ʻlightʼ morph with the characteristics of a sneaker, and a 

ʻdarkʼ morph, characteristic of a parental male with plasma containing 

significantly higher levels of a fish androgen. Behavioural assays could be 

conducted to compare female responses to urine from both male morphs, which 

would better indicate if female choice is based on the hormonal levels of males. 

 Round Goby are efficient predators of eggs, capable of not only 

consuming an entire nest full of native fish eggs (Charlebois et al., 1997; 

Steinhart et al., 2004), but also cannibalizing on the eggs of conspecifics (Wickett 

& Corkum 1998; Meunier et al., 2009). In Chapter 3, I provided evidence that fed 

juveniles are not only attracted to the odours of conspecific eggs, but they 

significantly prefer them to odours of heterospecific eggs. However, when fish are 

starved, they do not prefer one egg odour to the other. These fish in particular 

were caught outside of the reproductive season, thereby raising possibility that 

they have not been previously exposed to odours of fertilized conspecific eggs. 

This experiment should be redone, using fish that have been captured between 

June and August. Also, behavioural assays could be used to test how Round 
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Goby respond to other heterospecific egg stimuli. While Round Goby will feed on 

Rainbow Trout eggs in the laboratory (Fitzsimons et al., 2006), encounters with 

this species occur infrequently in the wild. It may be more prudent to test juvenile 

attraction to egg odours from heterospecific species that are more common, and 

thereby susceptible to egg predation by Round Goby (i.e. Smallmouth Bass, 

Micropterus dolomieu) (Steinhart et al., 2004).  

 Finally, the Round Goby is not the only species known to engage in egg 

predation. Roseman et al. (2006) documented predation of Walleye (Sander 

vitreus) eggs by thirteen different species, including Round Goby. Often times, 

analyzing the stomach contents reveals that the highest numbers of Walleye 

eggs were consumed by species from the same order (Wolfert et al., 1975; 

Roseman et al., 2006). While fish may opportunistically feed on eggs (Acha et al., 

2002), we do not know if the eggs of all species are preyed upon equally. Are the 

eggs from any heterospecific species attractive to a fish predator, or is predation 

more likely to occur on conspecific eggs? To answer this question, studies could 

be conducted to test the behavioural responses of several different species of 

fish that are given a choice between either conspecific and heterospecific egg 

odours. Moreover, HPLC analyses could reveal the specific egg compounds that 

are attractive to predators, which in previous studies have possibly identified as 

complex proteins (Ferrari & Targett 2003). This may provide insight into the 

behavioural ecology of several fish species, including those that are considered 

to be non-indigenous. Ultimately, the goal of any future study should be to 
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determine how best to use chemical attractants, in combination with other 

signaling modalities (i.e. visual), to control the spread of invasive fish such as the 

Round Goby.
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