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ABSTRACT

Oncogenesis, or the development of cancer, can arise when an imbalance exists between
1 v

cellular proliferation and differentiation, with a propensity for accelerated cell division. Critical 

enzymes are in place to ensure that cells progress through the cell cycle in a timely and regulated 

manner; the Polo-like kinases are one family of enzymes that exemplifies this regulatory function. 

Plk4 (Sak) is the most recently discovered mammalian Plk and has been shown to influence 

centrosome dynamics and to aid in mitotic progression. Using a candidate approach, this study 

identified putative interactions between Plk4 and proteins known to associate with other 

established mammalian Plks. Furthermore, in order to facilitate the characterization of Plk4 in 

future experiments, a cell line that stably expresses either wildtype or mutant Plk4 was created.
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CHAPTER I 

REVIEW OF LITERATURE

Polo-like kinases

The polo-like kinases (Plks) are a group of serine-threonine kinases that are highly 

conserved from yeast to humans (Glover et al, 1998). Plks are involved in a number of cell-cycle 

related events including bipolar spindle formation (Hamanaka et al., 1995; Glover et al., 1996), 

chromosome segregation, centrosome maturation in late G2/early prophase (Lane and Nigg, 

1996), activation of Cdc2, regulation of the anaphase-promoting complex, and execution of 

cytokinesis, thus emphasizing the importance of this group of kinases in mitotic progression 

(Lane and Nigg, 1996; Glover et al., 1998; Nigg, 1998). In addition, Plks have been implicated in 

playing major roles during the Gl/S transition as well as in DNA damage pathways (Barr et al., 

2004). Polo, the founding member of the Plk family, was originally identified in the fruit fly 

{Drosophila melanogaster). Mutations in the Drosophila Polo gene were found to produce 

embryos that exhibited abnormal mitotic networks of microtubules, and structural defects in 

centrosomal components (Glover et al, 1998). Plk family members have also been described in 

single cell organisms such as Cdc5 in Saccharomyces cerevisiae (Kitada et al, 1993), Plol in 

Schizosaccharomyces pombe (Okhura et al, 1995), CaCDC5 in Candida albicans (Bachewich et 

al., 2003), tbplk in Trypanosoma brucei (Graham et al., 1998), and most recently PLKA in 

Aspergillus nidulans (Bachewich et al, 2005), whereas in multicellular organisms such as 

Xenopus laevis and Caenorhabditis elegans, three or four homologues o f Plks have been 

described denoted Plxl/Plcl, Plx2/Plc2, and Plx3/Plc3, respectively, as well as the recently 

identified Plx4 (Kumagai and Dunphy, 1996; Ouyang et al., 1999; Chase et al., 2000; Duncan et 

al., 2001). In mammals, four Plk homologues have been identified to date: Plk 1 (Plk), Plk2 

(Snk), Plk3 (Fnk), and Plk4 (Sak), each of which are critical participants in various aspects of cell 

cycle progression. The increased number of Plks in higher organisms is likely directly related to

1
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an increase in the complexity of the cell cycle during the development of multicellular organisms 

and metazoans (Table 1).

Plks all share a high degree of structural homology in their N-terminal kinase domain, 

each containing a critical threonine residue in the activation segment that must be phosphorylated 

for proper activity (Cheng et al, 2003). Another characteristic feature of the Plks is the presence 

of one or two highly conserved, non-catalytic motifs in their C-terminal domains termed polo 

boxes (PB). Structurally, P lkl, 2, and 3 display high similarity in that there are two PB sequences 

designated PB1 and PB2, each comprising -80  amino acids (AA) (Lowery et al, 2005). These 

motifs are separated by a -20  AA linker region and are composed of a continuous six-stranded 

antiparallel p-sheet and an a-helix. Plk4, however, is structurally divergent from the other Plks in 

that it contains only one PB (Cheng et al, 2003; Leung et al, 2002). In terms of the Plk family, the 

remainder of this chapter will focus primarily on the Plks found in single celled organisms and 

Plks 1-3. Since my thesis is focused directly on Plk4, the background for this protein will be dealt 

with separately in Chapter 2.

Polo-box domain fPBD) structure and function

Collectively, the two PBs, the linker region between them, the 45 AAs N-terminal to 

PB1, and the amino acids C-terminal to PB2, all comprise a functional unit designated the PB 

domain (PBD) (Liu and Mailer, 2005). The PBD is a feature unique to the Plk members, as 

revealed by a BLAST search that showed the motifs within this domain do not occur in other 

proteins (Altschul et al, 1990). This is in contrast to other motifs such as the SH2, SH3, or MH2 

domains that are considerably more ubiquitous (Pawson and Nash, 2003). Analysis of the 

crystalline structure of Plkl revealed that its two PBs have identical secondary protein structure 

consisting of antiparallel P-sheets and an a-helix, as previously mentioned (Cheng et al, 2003).

2
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Table 1. Selected Plks and their functions

Organism Plk m em ber Function

Drosophila melanogaster Polo Proper spindle formation

Saccharomyces cerevisiae Cdc5 Bipolar spindle and septal 
formation

Schizosaccharomyces
pombe Plo1

Assembly of mitotic spindle, 
prophase actin ring required 

for cytokinesis, and septation

Mammals Plkl

Mitotic related events e.g. 
centrosom e development, 
bipolar spindle assembly, 
mediating DNA dam age

Plk2

Immediate-early gene; also 
involved in embyonic 

developm ent, centriole 
duplication, and cell cycle 

progression

Plk3

Immediate-early gene; 
mediating DNA dam age 

response, tumor 
suppression; regulating 

mitosis

Plk4 Centriole duplication; M 
phase  progression

Xenopus laevis Plx1

Activation of Cdc25c for entry 
to mitosis; prom otes bipolar 

spindle formation at 
centrosom es; activation of 

APC/C; cytokinesis

Caenorhabditis elegans Plkl Nuclear envelope breakdown 
and completion of meiosis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Structurally, the core of the PBD in Plkl, Plk2, and Plk3 show high resemblance, whereas the 

linker region found between the two PBs is quite dissimilar. As a whole, the PBD appears to be 

critical to the function and localization of the Plk members, as evidenced by mutation and 

deletion studies of this domain. In Plkl, for example, a conserved W414F mutation in the PB 

region of Plkl has been shown to disrupt the enzyme’s ability to migrate to spindle poles and 

cytokinetic filaments during mitosis (Cheng et al, 2003). The same mutation can also disrupt the 

ability of Plkl to complement the Cdc5 temperature-sensitive mutant in budding yeast (Lee et al, 

1998); these data suggest that W414 is one of the residues most critical to the function of the 

PBD. In addition, overexpression of the PBD in Plkl resulted in impaired spindle checkpoints 

and defective cytokinesis (Seong et al, 2002). Jiang et al (2006) reported that the PBD of Plk3 

was sufficient for proper subcellular localization, and that sequence changes to either PB motif 

disrupts proper migration to the centrosomes during interphase, spindle poles during mitosis, and 

midbody during cytokinesis. The PBD of Plk3 also proves to be crucial in regulating the G2/M 

checkpoint upon DNA damage such that its deletion completely eliminates the kinase’s,ability to 

induce a G2/M arrest (Jiang et al, 2006). Furthermore, ectopic expression of Plk3’s PBD in HeLa 

cells caused significant changes in cell morphology such as nuclear condensation and cell 

fragmentation, characteristics of cells undergoing apoptosis.

The PBD has also been suggested to regulate the kinase activity of certain Plk members, 

primarily through an intramolecular association with the N-terminal kinase domain leading to 

inhibition of catalytic activity. HeLa cells expressing C-terminal deletion mutants of Plkl 

exhibited increased kinase activity compared to the wildtype, suggesting that the loss of the PBD 

within this region led to a deregulation of the enzyme (Jang et al, 2001). In P lk l, C-terminal 

inhibition of kinase activity can be relieved through the phosphorylation of Thr210 in the N- 

terminal kinase domain, which impedes its interaction with the C-terminus, or through its 

mutation to an aspartate (Jang et al, 2002).

4
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The critical influence of the PBD in localization may be indicative of its ability to 

recognize specific protein binding partners at particular subcellular structures. Recent studies 

have proposed the PBD may indeed serve as a binding site for effectors Or substrate proteins (Elia 

et al, 2003). Lowery et al (2004) present evidence that characterizes the entire PBD as a binding 

module for phosphoserine/threonine molecules, and suggest that the PBDs of Plkl, Plk2, and 

Plk3 all recognize the same binding motif of Ser-[pSer/pThr]-[Pro/X]; this indicates that a 

‘priming’ phosphorylation of target proteins can enhance its recognition by these Plk members. It 

has been found that other mitotic regulators such as the cyclin-dependent kinases (Cdks) and 

MAP kinases can phosphorylate proteins that in turn bind to the PB domain, prompting 

localization of the Plk to its own substrate thus enhancing its kinase activity. Cdc25c, for 

example, is a confirmed substrate of Plkl that contains the optimal PBD binding site ST130P, 

while also consisting of a Cdk phosphorylation motif; indeed, Cdkl phosphorylates Cdc25c, 

which enhances its interaction with Plkl (Toyoshima-Morimoto et al, 2002) (see below). A study 

by Garcia-Alvarez et al (2007) revealed that the conserved W414 within the PBD originally 

attributed to proper Plkl localization is also critical to its substrate recognition. Mutation at this 

site eliminated P lk l’s ability to identify Cdc25c as its phosphorylation target, thus preventing 

Plkl from assisting in Cdc25c’s nuclear translocation (Garcia-Alvarez et al, 2007). Plk4 differs in 

that it contains only one conserved PB homologous to the PBs found in other Plk members, 

however, a second divergent ‘cryptic PB’ has been suggested to exist, a matter that will be more 

extensively discussed below (Leung et al, 2002).

Analysis of Plk loss-of-function and overexpression

The Plks have been characterized as a critical family of proteins that regulate a variety of 

cell cycle events. Loss-of-function, mutational and overexpression studies for the various Plk 

members have been crucial in dissecting their function within the cell and have highlighted the

5
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significance of these proteins in controlling mitotic progression. In Drosophila, Polo mutants 

resulting from a recessive mutation in chromosome 3 were found to be embryonic lethal; larvae 

homozygous for this mutation failed to develop adult structures and eventually died in later stages 

of development (Sunkel and Glover, 1988). In addition, mutant embryos exhibited strikingly 

abnormal centrosome structures such as branched mitotic spindles and broad, unfocused poles; 

these defects in centrosomal organization would lead to unequal separation o f chromosomes and 

ultimately genomic instability (Sunkel and Glover, 1988). Clearly, Polo has a pivotal role in 

maintaining chromosomal integrity and thus proper development of the organism.

Cdc5 is found in the budding yeast Saccharomyces cerevisiae and is a critical gene 

involved in cell division (Lee and Erikson, 1997). Loss of function studies in CDC5 highlight the 

importance of its activity during mitosis whereby its depletion induced a late nuclear division 

arrest resulting in dumbbell-shaped cellular morphology (Kitada et al, 1993); this abnormal 

phenotype was attributed to nearly-separated nuclei from both parental cell and bud that was 

connected by a thin string of chromatin. Various temperature-sensitive mutants for cdcl5, cdc20, 

and dbf2, all of which affected mitotic progression and led to a defective growth phenotype in 

budding yeast, were able to be rescued by cdc5 (Kitada et al, 1993). Removal of the catalytic 

domain of this Plk member, however, completely abrogated this ability, suggesting that the kinase 

activity of cdc5 is crucial to its proper function. A separate study conducted on a temperature- 

sensitive mutant of cdc5 at its restrictive temperature resulted in a cell division arrest after spindle 

pole body (SPB) duplication, causing a failure of the cell to complete meiosis I (Dai et al, 2002). 

Overexpression of CDC5 resulted in the production of multinucleated cells as well as the 

presence of ectopic cytokinetic structures within abnormally-elongated buds (Kitada et al, 1993; 

Song et al, 2000). The mammalian Plk members Plkl and Plk3 are both able to rescue the cdc5 

temperature-sensitive mutant, thus underlining the conserved function o f these Plk members in 

mitosis (Ouyang et al, 1997; Lee and Erikson, 1997). Plk2 and Plk4, however, are not capable of

6
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complementing the mutant phenotype in a similar manner, suggesting these two mammalian Plks 

likely diverged functionally at some point during the evolutionary process.
t .'H •

In the fission yeast Saccharomyces pombe, the Plk member Plot has several noteworthy 

functions, one of which is proper spindle assembly and function. Deletion o f the Plol gene leads 

to a characteristic phenotype defined by monopolar spindle formation in cells that are blocked in 

mitosis (Ohkura et al, 1995). Furthermore, cells lacking Plol are unable to form both a prophase 

actin ring, which is necessary for initiating the site for cytokinesis, and a septum, the cross-wall 

formed between mother and daughter cell during cell division (Ohkura et al, 1995). Conversely, it 

was found that overexpression of Plol can induce a state of multiple septation during any 

particular phase of the cell cycle (Ohkura et al, 1995). In Caenorhabditis elegans, RNA- 

mediated interference of the Plk homologue PLK-1 significantly disrupted proper embryonic 

development as a result of oocytes that were unable to divide (Chase et al, 2000). Close 

examination of the oocytes revealed an incomplete breakdown of the nuclear envelope prior to
. * , t-

ovulation, although they still remained amenable to fertilization as shown by the presence of 

sperm DNA within the embryo; however, the resulting embryos displayed an inability to progress 

through meiosis, exhibiting defects in chromosomal segregation as well as in expulsion of polar 

bodies (Chase et al, 2000). Ultimately, embryos never progressed beyond the single-cell stage 

and showed signs of multinucleation. In contrast to other Plk members, depletion of PLK-1 did 

not hinder the cell from undergoing centrosome duplication or nucleation o f microtubules (Chase 

et al, 2000). Indeed, in RNAi-treated embryos, the absence of PLK-1 still permitted formation of 

the mitotic spindle and replication of centrosomal structures as expected. These observations 

suggest that the loss of PLK-1 may not be capable of disrupting all aspects of the cell cycle and 

that certain events such as spindle assembly and centrosomal duplication can still prevail.

Plxl is a crucial participant in the cell cycle pathway of Xenopus laevis, having been 

shown to phosphorylate the Cdc25c phosphatase at its N-terminus resulting in its activation 

(Kumagai and Dunphy, 1996). Enhancement of Cdc25c’s activity then triggers a

7
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dephosphorylation event on cyclin B/cdc2 or the mitosis promoting factor (MPF), thus pushing 

cells past the G2/M boundary into the mitotic phase; in turn, MPF induces activity o f  Plxl as part 

of an MPF positive feedback loop (Abrieu et al, 1998). Kumagai and Dunphy (1996) showed 

how treatment of cell extracts with anti-Plxl antibody significantly reduced Cdc25c activation, 

thus demonstrating that Plxl is critical for mitotic progression at the G2/M transition. A separate 

study that focused on the role of Plxl in the MPF amplification loop showed that 

immunodepletion of Plxl with antibodies against its C-terminus (thus eliminating its activation) 

resulted in suppression of MPF activity, arresting cells in the G2 phase and preventing entry into 

mitosis (Abrieu et al, 1998).

Ideally, to gain insight into the critical role the Plks play in mammalian embryonic 

development, a knockout organism would be generated that would enable observation and 

analysis of the resultant phenotype. Given that some of the Plks are essential proteins needed for 

regulating early stages of the cell cycle, however, it may not be feasible to create a null organism, 

since knockout of the alleles would likely be lethal to the developing embryo. Indeed, there are no 

established knockout organisms for Plkl or Plk3 due to their necessity in various critical events 

that enable proper mitotic progression. As a result, depletion of these Plks through antibodies or 

RNA-interference has been the primary method in studying their respective contributions to 

development and cell cycle. Plkl has been the subject of numerous studies and is therefore the 

most well-characterized mammalian Plk. Liu, Erikson, and colleagues (2003) transfected HeLa 

cells with double-stranded RNA targeting Plkl for depletion and discovered that cell proliferation 

was considerably retarded, and the viability of cells was compromised. Furthermore, cells 

deficient of Plk l showed signs of a block in G2/M, along with a propensity for apoptosis (Liu and 

Erikson, 2003). Cellular death was indicated by Caspase 3 induction (an apoptosis instigator), as 

well as fragmented nuclei and dumbbell-shaped chromatin due to unseparated sister chromatids. 

In a previous study, Lane and Nigg (1996) had originally observed a buildup o f cells that were 

unable to enter mitosis, and that contained fragmented and/or inappropriate numbers of nuclei

8
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when Plkl was neutralized by micro7injected antibodies. In addition, cells lacking Plkl displayed 

abnormalities in mitotic spindle formation, as well centrosomes that failed to mature and separate 

(Van Vugt et al, 2004). Conversely, overexpression of Plkl in mammalian cells seems to 

instigate abnormal cellular proliferation and thus has become useful as a prognostic marker in 

tumor formation.

The depletion of Plk3 has also been subject to analysis to determine the function of this 

protein in vivo. One study used RNA interference to suppress Plk3 gene expression in human 

mammary epithelial cells and discovered that depleting Plk3 prevented cyclin E expression, a 

confirmed regulator of the G l/S transition, and therefore hindered cells from entering S phase 

(Zimmerman and Erikson, 2007). Furthermore, cells treated with anti-Plk3 lentivirus showed 

significant reductions in the proliferation marker Ki67, indicating these cells were no longer 

actively progressing through mitosis and had entered into a quiescent phase. Overexpression of 

Plk3 produces a contrasting phenotype to that of Plkl in that enforced levels of Plk3 lead to 

inhibited cellular proliferation as a result of apoptosis (Conn et al, 2000). Wang et al (2002) 

confirmed the pro-apoptotic role of Plk3 upon overexpression, revealing that ectopic Plk3 

expression can lead to a disruption of microtubule integrity and subsequently to changes in cell 

morphology such as shrunken cells and unseparated midbody structures; therefore, mitotic 

progression is halted and cellular death is observed (Wang et al, 2002).

The precise function of Plk2 in mammalian cells is relatively unknown. In adult mice, 

Plk2 expression has been detected in the brain. Ectopic expression of Plk2 can induce changes in 

cellular morphology and eventually induce apoptosis (Ma et al, 2003). While attempts to create 

knockout organisms for Plkl and Plk3 have been futile, experimenters have been able to create a 

null organism for Plk2, suggesting that depletion of this protein may not completely abrogate 

cellular proliferation and embryonic development. Ma and colleagues (2003) generated a Plk2 - / -  

mouse line through targeted disruption of the Plk2 gene locus and insertion of ES cells containing 

the perturbed gene into a mouse blastocyst. The result after breeding was a mouse line containing

9
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a mutation in both Plk2 alleles, which could then be assessed for defects in embryonic 

development, mitotic progression, and other aspects of its phenotype. Embryos derived from Plk2 

- / -  mice were analyzed and observed to develop at a slower rate with a subsequent delay'in 

skeletal growth compared to wildtype embryos (Ma et al, 2003). Histological evalutation of Plk2 

- / -  embryos also indicated reduced levels of phosphorylated histone H3, a protein utilized as an 

indicator of cellular proliferation (Ma et al, 2003). Furthermore, Plk2 - / -  embryonic fibroblasts 

exhibited a delayed G1->S progression, suggesting a possible role of Plk2 in promoting cells 

through the cell cycle.

Plks: regulation and cell cycle functions

Expression of the Plks is differentially regulated throughout the cell cycle (Lane and 

Nigg, 1996). Plkl expression, for example, peaks during late G2 and M phase and is involved in 

mitotic-related events such as centrosome development (Lane and Nigg, 1996) and bipolar 

spindle assembly (Ohkura et al, 1995). In addition, Plkl has been shown to phosphorylate cyclin 

B l, a component of mitotis-promoting factor (MPF) when complexed with Cdc2 kinase; the 

result is nuclear accumulation of MPF during prophase and subsequent initiation and coordination 

of M-phase events (Toyoshima-Morimoto et al, 2001). Cdc25c, a protein phosphatase also 

responsible for MPF activation, is phosphorylated by Plkl, being targeted to the nucleus upon 

modification (Toyoshima-Morimoto et al, 2002). In addition to promoting mitotic entry, Plkl 

displays an active role at the metaphase-anaphase transition, primarily by activating components 

of the anaphase-promotic complex (APC) (Nigg, 1998). The APC is an E3 ubiquitin-protein 

ligase responsible for degrading anaphase inhibitors; Plkl has been shown to phosphorylate APC 

components Cdcl6 and Cdc27 in vitro, suggestive of a direct role in APC regulation by Plkl 

(Glover et al, 1998). Plk2 [PCIJexpression occurs largely outside the mitotic stage during G1 

and its protein levels have a rapid turnover rate; data suggest it may aid in propelling cells

10
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through to S phase (Simmons et al, 1992; Liby et al., 2001; Ma et al., 2003). Unlike Plkl, Plk2 

does not contribute significantly to cell division per se, though it has been shown to be activated 

by a p53-mediated DNA-damage checkpoint in mitosis, suggesting a role in halting M-phase 

progression (Bums et al, 2003). Plk3 has been found to associate with mitotic components such 

as the bipolar spindles, spindle poles, and midbody (Glover et al, 1998). Levels of Plk3 were 

originally shown to remain relatively constant throughout the cell cycle, with maximal kinase 

activity occurring in late S and G2 phase (Ouyang et al, 1997). A recently published study, 

however, found that the level of Plk3 protein is in fact cell-cycle regulated, with maximal 

expression occurring during G1 phase (Zimmerman and Erikson, 2007). Data indicate that Plk3 

[PC2]augments cyclin E expression, a regulator of the Gl/S transition, through phosphorylation 

of Cdc25A and that cells depleted of Plk3 after overcoming the G l/S checkpoint can progress 

through the cell cycle unabated, but fail to re-initiate mitosis. Clearly, the Plks each play a unique 

role in controlling aspects of cell cycle progression.

Plks and centrosome regulation

The centrosome is an essential component of the microtubule organization centre 

(MTOC), a unique assembly of proteins that work together to ensure fidelity of cellular division. 

Comprised o f two centrioles surrounded by pericentriolar material, the centrosomes enable 

formation of the bipolar spindle, facilitating segregation of chromosomal material (Blagden and 

Glover, 2003). Numerous families of protein kinases have already been established as key 

regulators of the centrosomal cycle, including the cyclin-dependent kinases (Cdks), Aurora 

kinases, and the NIMA family of kinases (Okuda et al, 2000; Hannak et al, 2001; Fry et al,

2000). Additionally, the Plks have been shown to influence centrosomal dynamics. Nearly all of 

the Plk members have been shown to mediate centrosome duplication, though the precise 

mechanism by which this process occurs remains to be clearly defined. In Drosophila, expression
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of Polo allows for recruitment of essential centrosomal components and for its proper localization 

to the microtubule organization center (MTOC) (Dai et al, 2002). Without Polo, proper spindle 

assembly would be hindered leading to defects in chromosome segregation and cytokinesis. 

Further evidence for the role of Polo in centrosome regulation comes from its ability to 

phosphorylate Asp, a confirmed microtubule-linked protein that associates with centrosomes and 

assists in forming microtubule asters (Gonzales et al, 1998).

In yeast, spindle pole bodies (SPB) are considered to be the functional equivalent to the 

centrosomes found in mitotic-capable cells. The Plk Cdc5 in budding yeast has been linked to 

regulating SPBs, primarily through its functional interaction with verified SPB proteins such as 

dbf2, cdcl5, and M oblp (Luca et al, 2001; Menssen et al, 2001). It appears that Cdc5 enables 

translocation o f certain SPB proteins to its proper structures through phosphorylation of these 

substrates (Dai et al, 2002). Plol in the fission yeast localizes to the SPBs during early mitosis 

and continues its association until anaphase, where it assists in the formation of the mitotic 

spindle (Ohkura et al, 1995). Its association with the SPB is dependent on mitosis-promoting 

factor (MPF), while its dissociation relies on the anaphase-promoting complex (APC) (Mulvihill 

et al, 1999). In vertebrates, Plkl was first suggested to participate in controlling centrosome 

dynamics based on its localization to centrosomal structures when tagged with green fluorescent 

protein (GFP) (Golsteyn et al, 1995; Arnaud et al, 1998). Indeed, Plkl was found to associate 

with spindle components throughout mitosis, with an eventual redistribution throughout the cell 

following the transition from metaphase to anaphase (Golsteyn et al, 1995). Evidence points out 

that Plkl may be involved with promoting centrosome maturation, rather than mediating its 

duplication; depletion of Plkl was shown to cause monopolar spindles derived from centrosomes 

that were properly replicated, but that failed to grow to size and separate (Golsteyn et al, 1995). 

Lane and Nigg (1996) confirmed the role of Plkl in centrosomal maturation, showing that 

injection o f anti-Plkl antibodies into HeLa cells caused monoastral microtubule arrays stemming
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from underdeveloped centrosomes that contained reduced amounts of y-tubulin, a centrosomal 

protein marker.

Plk2 is another mammalian Plk that has been found to play a role in centriole duplication. 

Overexpression of Plk2 in CHO cells was shown to increase the number of centrosomes, while 

transfection o f a kinase-defective Plk2 inhibited centriole duplication in a dominant-negative 

fashion (Wamke et al, 2004). Additionally, silencing of endogenous Plk2 using small hairpin 

RNAs (sh-RNAs) interfered with replication of the centrioles in U20S cells, confirming the role 

of Plk2 in promoting centriolar duplication. Plk3 has also been linked to controlling centrosomal 

dynamics; it is found to localize to the MTOC during interphase, and continues its association 

even after centrosome duplication, eventually migrating to the spindle poles during mitosis and 

the midbody during cytokinesis (Dai et al, 2002). Wang et al (2002) confirmed that Plk3 

maintains association with the centrosomes or spindle poles throughout all phases of the cell 

cycle. They further showed that centrosomal localization by Plk3 is dependent on the 

microtubules, since depolymerization by exposure to low temperatures and nocodazole caused 

Plk3 to disperse throughout the cell. Although both Plkl and Plk3 associate with the centrosomes 

during interphase, the elevated abundance of Plk3 protein may indicate it has a more significant 

contribution in regulating centrosomes during this phase (Dai et al, 2002). Therefore, the Plk 

members may each possess a unique role in regulating centrosome dynamics throughout different 

stages of the cell cycle.

Plks and oncogenesis

Cancer can arise when specific genes involved in cellular proliferation become altered 

through mutation. For example, tumor-suppressor genes encode proteins that regulate abnormal 

propagation of cells by halting their progression through the cell cycle. When these genes become 

mutated and no longer functional, cell cycle progression may remain unchecked resulting in
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tumorigenesis. DNA damage checkpoints also exist within the cell cycle to ensure fidelity of 

DNA replication and correct propagation of genetic material. Genomic instability can ensue when 

heritable changes in genes accumulate as a result of base-pair mutations, chromosomal loss or 

rearrangement (Draviam et al, 2004). One type of genomic instability, called chromosomal 

instability (CIN), occurs when cells suffer from a high rate of chromosomal deletion or additions, 

which causes inappropriate amounts of genetic material to be distributed to dividing cells 

(Draviam et al, 2004). This is a significant contributor to conditions of aneuploidy and polyploidy 

with a potential for tumorigenesis. Draviam et al. (2004) highlight two potential causes of CIN, 

namely defects in spindle checkpoint proteins and changes in centrosomal regulation. The spindle 

checkpoint acts as a sensitive detector of misaligned chromosomes, which when prompted 

subsequently triggers pathways leading to mitotic arrest at anaphase; this ensures that the correct 

number of sister chromatids have attached themselves to the bipolar spindle for eventual 

distribution to daughter cells following cytokinesis. Because the Plks have been implicated in 

bipolar spindle as well as centrosome regulation, their deregulation has the potential to contribute 

to CIN and the development of malignancies, and indeed this seems to be the case. As previously 

described, depletion of Plkl results in monopolar spindles and underdeveloped centrosomes with 

a reduction in centrosomal protein recruitment, all characteristic features o f the CIN phenotype 

(Golsteyn et al, 1995; Lane and Nigg, 1996). Additionally, the failure of sister chromatids to 

separate has also been observed in HeLa cells subject to Plkl reduction by RNAi, which can also 

contribute to cases of CIN and tumorigenesis (Liu and Erikson, 2003). Excessive levels of Plkl 

have been observed in malignancies derived from numerous forms of cancer including gastric 

cancer, melanomas, breast cancer, ovarian cancer, endometrial cancer, gliomas, and thyroid 

cancer (for review see Takai et al, 2005). Plkl was also found to be overexpressed in human 

colorectal cancer, a class of malignancy for which 85% of the cases exhibit the CIN phenotype 

(Takahashi et al, 2003). Overexpression of Plkl has been utilized as a prognostic marker for 

tumor development, since mRNA and protein levels of Plkl have been correlated to accelerated
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cellular proliferation (Holtrich et al, 1994; Wolf et al, 2000). Even following an arrest in G2 

induced by DNA damage, overexpressed Plkl is still able to override the block and propel cells 

through mitosis (Smits et al, 2000). Thus, maintenance of normal Plkl levels proves crucial to 

preventing the abnormal proliferation of transformed cells.

Conversely, Plk3 has been negatively correlated to tumorigenesis and cellular 

proliferation, as evidenced by its downregulation in various cancers such as lung carcinomas (Li 

et al, 1996), rat colon tumors (Dai et al, 2002a), and head and neck squamous cell carcinomas 

(HNSCC) (Dai et al, 2000). Due to its activation upon DNA damage prompting immediate cell 

cycle arrest, Plk3 can be regarded as a tumor suppressor (Eckerdt et al, 2005); additional studies 

demonstrate how overexpression of Plk3 induces a halt in cell cycle progression leading 

eventually to apoptosis (Wang et al, 2002). In addition, Plk3 can phosphorylate the oncogene 

Cdc25c resulting in its downregulation, as well as phospho-activating the tumor suppressor p53,

both of which result in arresting the cell cycle (Ouyang et al, 1999; Xie et al, 2001). Thus, Plkl
. ' . *

and Plk3 can be viewed as exerting antagonistic effects on the progression of tumorigenesis.

Regulating centriole duplication during the cell cycle is also a mechanism of CIN 

prevention. Defects in centriole reduplication have been observed in the human osteosarcoma cell 

line U20S upon the introduction of small hairpin RNAs targeting Plk2, which resulted in 

suppression of its activity (Warnke et al, 2004). The overexpression of a dominant-negative 

mutant of Plk2 also inhibited centrosome duplication, thus confirming the role of Plk2 in 

regulating proper centrosome dynamics and therefore minimizing conditions of CIN (Warnke et 

al, 2004). Thus, it is evident that the Plks are essential regulators of centrosome dynamics and 

may provide insight into the molecular mechanisms driving tumorigenesis.

15
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Cell cycle kinases and the DNA damage response

A cell’s coping mechanism in dealing with DNA damaging agents is a critical process 

that ensures cell survival. Highly conserved pathways involving DNA repair mechanisms and 

cell-cycle checkpoints enable cells to maintain the integrity of its genetic information and ensure 

genomic stability. Without such devices, cancer can arise and threaten survival of the cell and, 

ultimately, the organism. Protein kinases are critical participants in the signal transduction 

pathways triggered in response to DNA damage. Through phosphorylation, these enzymes can 

regulate the activity of other proteins in an intricately coordinated network that enables the cell to 

respond appropriately to defects in genetic material. Key DNA damage proteins include 

phosphoinositide kinase homologs ataxia telangiectasia-mutated (ATM) and ATM- and Rad3- 

related (ATR), the protein kinases Chkl and Chk2, and the tumor suppressor protein p53 

(Elledge, 1996). ATM is primarily involved in repairing double-stranded DNA breaks resulting 

from ionizing radiation (IR), and regulates checkpoints at the Gl/S and G2/M transitions; ATR is 

responsible for monitoring problems in DNA replication forks during S phase due to UV 

exposure (Guo et al, 2000). Activation of ATR and ATM has been shown to phosphorylate other 

checkpoint kinases, namely Chkl and Chk2, which then regulate the G2/M transition through 

phosphorylation of a common target, Cdc25c. Chk2 is the mammalian homolog to Rad53 found 

in S. cerevesiae and upon DNA damage by IR is activated by ATM, however in cases of UV 

damage, activation is mediated by ATR (Matsuoka et al, 2000). Following damaged induced by 

UV, ATR can also phosphorylate Chkl and is involved in its regulation at the G2/M checkpoint.

Plks have been shown to participate in key DNA damage response pathways (Figure 1). 

In mammals, Plkl is inhibited following DNA damage prompting a subsequent arrest in the cell 

cycle during mitosis. Van Vugt et al (2001) showed that this damage-induced Plkl inhibition can 

occur in an ATM- and ATR- dependent manner, which is determined by the type of damage 

induced upon the cell. Since Plkl has been observed to bind and inhibit the tumor suppressor p53,
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Fig. 1. DNA dam age pathways and the elucidated roles of Plks. Genotoxic stress induced by 

ultraviolet (UV) exposure or ionization radiation (IR) triggers a signal transduction pathway that 

is initiated by ataxia telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) proteins. 

ATM phosphorylates the downstream checkpoint kinase Chk2, resulting in its activation and 

subsequently causing it to suppress activity of Cdc25c, but enhance activity of p53; ultimately, 

both result in arresting the cell cycle at the G2/M transition, thus preventing damaged DNA from 

being propagated. ATR phosphorylates Chkl in a similar manner, which also results in Cdc25c 

being inhibited. Plkl and Plk3 have both been implicated as intermediary participants in the DNA 

damage response. Plks have opposing effects on Cdc25c activity with Plkl inhibiting Cdc25c 

upon phosphorylation, while Plk3 induces its activation upon phosphorylation. Plkl and Plk3 

share similar roles in phosphorylating Chk2, albeit on different residues, with both contributing 

to activation of this checkpoint kinase thus leading to mitotic arrest. The role of Plk4 in the DNA 

damage pathway has not been clearly identified; to date, no putative interacting partners for Plk4 

have been described. By analyzing whether or not Plk4 has a functional association with 

established participants of the DNA damage response, a more accurate characterization of this 

relatively elusive protein may be achieved. Black arrows denote activation; red bars denote 

inhibition.
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it is deemed to have a counteracting effect on DNA-damaged induced cell cycle arrest (Dai and 

Cogswell, 2003). Plk3 is also a key participant in the response pathways to DNA repair,
I .j, .

becoming rapidly activated by ATM when cells are exposed to IR and oxidative stress (Xieef al,

2001). In contrast to Plkl, Plk3 has an activating effect when it phosphorylates p53 upon DNA 

damage, which contributes to the tumor-suppressing response (Xie et al, 2001). In addition to the 

phosphoinositide kinases ATM and ATR, Chk2 is another component of the DNA response 

pathway that has been shown to associate with certain Plk members. Studies have demonstrated 

that overexpression of Plkl enhances phosphorylation of Chk2 at T68, a site that is involved in 

Chk2 localization to centrosomes and midbody, as well as in Chk2 activation, which ultimately 

induces a halt in mitotic progression; in this respect, Plkl has a positive effect on cell cycle arrest 

(Tsetkov et al, 2003). Although Plk3 targets a different residue on Chk2 for phosphorylation, its 

effects on the activation of this kinase are similar to that observed by P lk l, though in vivo its 

interaction requires ATM as a mediator (Bahassi et al, 2002). Despite the elucidated roles of 

certain Plk members in the DNA damage response pathways, the role of Plk4 has yet to be clearly 

defined.
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CHAPTER II 

PLK4/SAK

Protein Structure

Plk4 is found on chromosome 3 in mice, and chromosome 4q27-28 in humans, a location 

that is susceptible to chromosomal deletions and reorganizations characteristic o f human cancers 

(Swallow et al, 2005). Within the kinase domain is a critical Lys41 residue that, when mutated, 

results in complete inactivation of the enzyme (Figure 2). The T-loop at the C-terminus in turn 

consists of a required Thrl70 residue that results in increased kinase activity as a result of 

mutation. Plk4 is structurally distinct from its family members in that it contains only one PB 

domain. Despite this structural distinction, a ‘cryptic’ PB domain has been suggested that 

encompasses amino acid residues 596-836 within the C-terminal domain; it is believed to enable 

self-association of the enzyme, namely through interaction with the enzyme’s kinase domain 

(Leung et al, 2002). Plk4’s single PB region is comprised of a cluster of hydrophobic residues 

that are conserved amongst several Plk family members; it also contains two conserved charged 

residues—Asp868 and Lys906—that interact to form a salt bridge, facilitating the dimerization of 

the PB domain both in vitro and in vivo (Leung et al, 2002). This novel dimer then localizes to 

various cellular structures including the nucleolus during G2, centrosomes during early G2/M 

phase, and to the cleavage furrow during cytokinesis (Leung et al, 2002; Hudson et al, 2001). 

Localization studies o f the isolated PB domain of Plk4 have shown that the protein can still 

migrate to the centrosomes during mitosis. Expression of a truncated Plk4, which lacks the PB 

domain, still exhibits proper localization; however, a more extensive C-terminal deletion o f the 

region downstream of the kinase domain up to and including the PB resulted in mislocalization of 

the enzyme (Leung et al, 2002). In this respect, Plk4 may be distinct to other Plk members in that 

the PB is necessary, but not sufficient, for proper localization and that regions outside the PB may 

assist in this process.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Kinase Domain Cry-pb pb

596_______ 836 847 911

jaa

Lys 41 Thr170 272-300 808-832 840-878

Fig. 2. Plk4 protein structure. Plk4 contains an N-terminal kinase domain, a single C-terminal 

polo-box domain (pb), as well as three PEST sequences associated with protein stability. A 

cryptic pb is also located within the C-terminus. Within the kinase domain are two conserved 

residues, Lys 41 and Thr 170, that when mutated render the kinase catalytically-inactive and 

constitutively-active, respectively. Numbers indicate the amino acids comprising the designated 

regions.
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Regulation of Plk4 and its role in mitosis

Regulation of Plk4 expression occurs at both the pre- and post-transcriptional levels. Two 

isoforms of murine Plk4 exist, Plk4-a and Plk4-b, which differ in their stability at the post- 

transcriptional level. Structurally, these two isoforms of Plk4 are distinct in that Plk4-a comprises 

three PEST sequences that correlate to its susceptibility to degradation. One PEST cluster resides 

in the N-terminus, while the other two are in close proximity at the C-terminus. The Plk4-b 

isoform is significantly less abundant than its Plk4-a counterpart (Fode et al, 1996). Plk4-a 

exhibits a very short half-life of approximately 2-3 hours, being subject to multiubiquitination 

that targets the protein for eventual proteolysis. Removal of these sequences in human Plk4 can 

relieve PEST-related protein degradation and can improve the stability o f the protein when 

overexpressed (Yamashita et al, 2001). In addition, Tec protein tyrosine kinase effectively 

thwarts PEST-dependent proteolysis upon phosphorylation of Plk4, while also increasing Plk4’s 

kinase activity (Yamashita et al, 2001).

At the transcriptional, mRNA level, Plk4 expression varies throughout the cell cycle, 

with a gradual increase occurring from S through M phase (Fode et al, 1996). Following 

ubiquitination, Plk4 is degraded by the anaphase promoting complex (APC) and returned to 

resting phase levels (Swallow et al, 2005). Peak levels of Plk4 during M phase suggest its 

presence is necessary for completion of mitosis (Hudson et al, 2001). A murine Plk4 null mutant 

was generated through targeted mutation of the Plk4 gene locus to study the phenotypic effects of 

Plk4 loss-of-function. Cells derived from Plk4 - / -  mice in fact showed signs o f mitotic failure, as 

well as elevated levels of cyclin B1 and phosphorylated histone H3, proteins indicative of an 

arrest in anaphase (Hudson et al, 2001). Furthermore, rounded, dumbbell-shaped cells were 

observed in Plk4—/— blastocyst cultures, which suggests a telophase arrest (Hudson et al, 2001). A 

block in the cell cycle due to the absence of Plk4 would subsequently trigger pathways leading to 

apoptosis, as is in fact seen in null embryos displaying a high rate of cellular death. As a result,
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observed in Plk4—/— blastocyst cultures, which suggests a telophase arrest (Hudson et al, 2001). A

block in the cell cycle due to the absence of Plk4 would subsequently trigger pathways leading to
*

apoptosis, as is in fact seen in null embryos displaying a high rate of cellular death. As a result, 

Plk4 null embryos were found to arrest 7.5 days into embryonic development (Hudson et al, 

2001). Evidently, Plk4 is necessary for the cyclic destruction of cyclin B1 and therefore crucial 

for allowing cells to properly exit from mitosis.

Plk4 in tumorigenesis

The significance of Plk4 in cancer and tumorigenesis has also been observed in 

experiments with mice which contain only one functional Plk4 allele (Plk4 +/-). Greater than 

50% of 22-24 month old heterozygous Plk4 mice develop tumours primarily in the liver and lung 

tumors compared to less than 3% of their wildtype littermates (Ko et al, 2005). In addition, cells 

obtained from the maligpant tissue in Plk4 + /- mice displayed high mitotic irregularities such as 

multiple centrosomes and multipolar spindles. Examination of [PC3]Plk4 + /-  mouse embryonic 

fibroblasts (MEFs) exhibited increased incidences of mis-segregated chromosomes and aberrant 

centrosome number (Ko et al, 2005). These cell cycle defects would likely contribute to cases of 

aneuploidy or polyploidy and thus enhance development of chromosomal instability and 

contribute to tumorigenesis. Indeed, it was found that defects in mitotic lesions excised from Plk4 

+ /- mice livers exhibited primary hepatocellular carcinomas, while papillary adenocarcincomas 

were observed peripherally in lung tissue. Multifocal tumors were prevalent in the malignant liver 

tissue of heterozygous Plk4 mice, displaying high disorganization of cells that were arrested in 

mitosis (Ko et al, 2005). Liver cells from Plk4 + /-  mice livers that were subjected to partial 

hepatectomy displayed multipolar spindle structures, a disordered array of hepatocytes, as well as 

a high incidence of aberrant mitotic figures; this indicated a gross deficiency in cells progressing 

through mitosis (Ko et al, 2005). Additionally, cancerous lung tissue showed signs of atypical
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cells when compared to normal tissue derived from wildtype mice. These observations point to a 

haploinsufficient condition for Plk4, in which one functional allele is not adequate to produce the 

normal phenotype. Undoubtedly, Plk4 is a critical factor in cell cycle progression such that its 

absence can lead to mitotic abnormalities and subsequently contribute to oncogenesis.

Plk4 in centriole duplication

Recent evidence highlights the role of Plk4 in regulating centriole duplication during S 

phase of the cell cycle. Endogenous Plk4 has been found to associate with centrioles, as 

evidenced by its colocalization with structure-specific proteins such as centrin and y-tubulin 

(Hudson et al 2001; Leung et al 2002; Habedanck et al, 2005). Abrogation of Plk4 function has 

been shown to cause a gradual decrease in centriole numbers following successive rounds of 

mitosis, and/or the appearance of abnormal mitotic spindle morphology (Habedanck et al, 2005). 

This resulted in many cells left with acentriolar poles or monopolar spindles, both conditions that 

inhibit proper segregation of sister chromatids and contribute to aneuploidy and CIN. 

Bettancourt-Dias and colleagues (2005) further supplemented these findings with evidence of 

reduced centriolar numbers in HeLa and U20S cells following the silencing of Plk4 using 

siRNA, which may be the result of defective centrosome duplication, separation, or segregation. 

Again, the abnormal spindle organization that would result from the loss of centrioles 

demonstrates the importance Plk4 may have in preserving mitotic fidelity in cells.

Candidate Approach to elucidating Plk4 interacting partners

Plks play a significant role in regulating crucial aspects of the cell cycle as well as in 

mediating DNA-damage responses. As part of an expansive network of proteins that participate in 

these regulatory events, it is no surprise that Plks have functional interactions with a variety of 

other kinases, which can affect the protein’s activity, stability, localization, or other protein 

associations. Various studies have already confirmed that different Plk members can target
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common substrates in pathways triggered by DNA-damage as well as common components of 

cell cycle regulation (Table 2). Some candidate substrates of Plks have been described in studies, 

including Cdc25c (Plxl, Plkl, Plk3) (Abrieu et al, 1998; Toyoshima-Morimoto et al, 2002; 

Ouyang et al, 1997), p53 (Plkl, Plk3) (Ando et al, 2004; Xie et al, 2001), and P-tubulin (Polo)
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Table 2. Plks and candidate substrates

Candidate
Substrate Plk M ember Proposed Function

Cdc25c Plxl Activation of Cdc25c

Plkl Nuclear translocation of Cdc25c to 
allow activation of MPF

Plk3 Nuclear translocation o f Cdc25c to 
allow activation of MPF

p53 Plkl Inhibits transactivation activity and 
pro-apoptotic function of p53

Plk3
Promotes apoptotic function o f p53 in 

response to DNA damage

Chk2 Plkl Cell cycle arrest via Cdc25c inhibition

Plk3 66

a-tubulin Plkl Mediating spindle assembly

P-tubulin Polo ?

Plkl Mediating spindle assembly

y-tubulin Plkl Mediating spindle assembly
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(Tavares et al, 1996). In addition, Chk2, has been shown to be phosphorylated by both Plkl and 

Plk3 upon DNA damage, albeit on different residues, which as a result triggers a cell cycle block 

through inhibition of Cdc25c (Tsetkov et al, 2003; Bahassi et al, 2002). In addition, ATM is 

involved in mediating inhibition of Plkl upon IR damage, as well as in activating Plk3 to induce 

DNA repair and an arrest in the cell cycle (Van Vugt et al, 2001; Xie et al, 2001). Little is known 

about whether or not Plk4 also participates in these major pathways that control the cell cycle or 

the response to DNA damage. The major focus of my research was to determine whether or not 

Plk4 also targets some of these common substrates. This provides a basis for elucidating novel 

substrates of Plk4 and allows for a more defined characterization of this relatively unknown 

kinase.

Plk4-Expressing Stable Cell Lines

Obtaining significant expression levels of Plk4 in transient systems has been a significant 

and ongoing problem faced in early phases of this study. This presented set-backs when 

attempting to perform experiments requiring overexpression of Plk4 protein such as in co- 

immunoprecipitation studies that typically require ample levels of protein in order to detect 

transient protein:protein interactions in vivo. In addition studies with Plk4 have been problematic 

in that there are no suitable antibodies available for these co-immunoprecipation-based screens 

for interacting partners.

The ability to express high levels of a gene of interest is an important tool in molecular 

biology. To accomplish this, the foreign DNA must somehow be introduced into the cell in order 

to be transcribed by the host’s expression machinery. Most applications of transfection require 

only that the gene be transiently expressed, however, inconsistent gene expression and low 

protein yield are common disadvantages associated with such transient methods. The 

establishment of a stably-transfected cell line greatly enhances the level of gene expression in
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cases where high levels of purified protein are required. Therefore, another objective of this study 

was to establish and optimize a stable expression system for Plk4 constructs that would help to 

circumvent the problems experienced with minimal and inconsistent gene expression.

Generally, to establish a stable cell line, the gene of interest must be cloned into a vector 

containing a gene conferring resistance to a certain agent. The expression vector is then 

transfected into the desired cell line and permitted to undergo overexpression. Subsequently, 

those cells that successfully incorporated the foreign DNA into its genome can then be selected 

for upon addition of the selective agent, resulting in a population of cells stably expressing the 

desired gene. Additionally, the stable expression system can be made inducible through the 

incorporation of a repressor protein that will inhibit transcription of the foreign gene; this allows 

for tighter controls over the expression system, particularly when toxic proteins are generated.

One means of regulation typically employed in mammalian expression systems is based 

on the bacterial tetracycline operon (Figure 3). Cultured cells containing the plasmid encoding the 

tetracycline repressor (tetR) are grown in the absence of tetracycline. Binding of, the tetR 

homodimers to the inducible expression plasmid prevents expression of the gene of interest. Only 

upon addition of tetracycline to the medium will a conformational change in the repressor protein 

result, permitting induction of gene expression.

A problem often encountered with the establishment of stable cell lines is that 

overexpression of the protein of interest creates an unfavourable condition for the cell. Studies 

that required imposed expression of Plks in mammalian cells presented evidence that such a 

condition can be detrimental to a cell’s survival. For example, enforced expression of Plk3 in 

mammalian cells results in suppressed proliferation and inhibits colony formation, which upon 

further analysis is attributed to chromatin condensation and apoptosis (Conn et al, 2000). Thus, 

constitutive overexpression of Plk3 would be lethal to the cell and hinder the possibility for 

further experimentation. Overexpression of Plk4 has been shown to induce the formation of 

multiple centrosomes, a condition that would eventually give rise to aberrant chromosomal
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segregation and contribute to chromosomal instability (Habedanck et al, 2005). It is likely that the 

continued production of Plk4 protein, as would be seen in a stable expression system, would have 

disruptive effects and greatly compromise the cell’s survival. Therefore, a supplementary focus of 

the present study was to establish stable cell lines that are inducible rather than constitutive for 

Plk4 expression. This provides an invaluable tool in our ongoing studies.
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Fig. 3. Mechanism of repression of the inducible expression vector utilized for stable cell 

line creation. Brief descriptions of the repressive mechanism are included in the diagram. 

P Cmv indicates the cytomegaloviral promoter that regulates transcription o f  the repressor 

gene. TetR represents the tetracycline repressor proteins that bind to the tandem tetracycline 

operator sites (TetCh) situated upstresam of the gene of interest in the inducible expression
. 1 . t

vector. Red triangles represent the tetracycline (Tet) molecules that can bind tetR and induce 

its conformational change. Ultimately, the effect of tetR modification is to derepress 

expression of the gene of interest.
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CHAPTER III 

AIMS OF THIS STUDY 

To date, no known interacting partners have been identified for Plk4; therefore, to clearly 

define its function in the cell cycle and in DNA damage pathways still remains an elusive task. 

This study aimed to investigate putative interacting partners for Plk4 in the hopes elucidating a 

more precise role of the protein in responding to genotoxic stress and in regulating mitosis. On the 

basis of the candidate approach, experiments were performed to determine if, in addition to Plkl 

and Plk3, Plk4 can also interact with some of the same interacting partners. In addition, a human 

embryonic kidney cell line was established that stably expresses Flag-Plk4 and Flag-K41M.
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CHAPTER IV 

MATERIALS AND METHODS 

Preparation of competent Escherichia coli (E. coli) cells

Glycerol stocks of Top 10 F’ Pilus E.Coli cells were used to inoculate 10 mL of TYM 

media in a 50 mL Erlenmayer flask and allowed to grow in a shaking incubator for 16 hours at 

37°C. After incubation, 1 mL of the culture was subsequently added to 100 mL of TYM media 

that was prewarmed in a 500 mL flask. Cultures were again grown at 37°C and ODs6oo were 

intermittently taken until a value of 0.5 was attained. After cooling the flasks through gentle 

agitation on ice, the cultures were transferred to sterile Oakridge tubes and centrifuged at 4°C for 

10 minutes at 4000 x g. Subsequently, the supernatant was decanted gently to prevent any 

disturbance to the pellet. 4 mL of ice-cold TFBII buffer (30 mM potassium acetate, 100 mM 

rubidium chloride, 10 mM CaCl, 50 mM MnC12, 15% glycerol) was added to each tube and used 

to resuspend the pelleted cells through repeated pipetting, all completed while tubes were on ice 

to ensure a cold environment for the cells. After resuspension, 100 uL of the cells were quickly 

but carefully aliquoted into sterile microcentrifuge tubes and subjected to flash-freezing in liquid 

nitrogen. The prepared cells were then stored at-80°C.

Standard Bacterial Transformation

100 uL of Top 10 F’ Pilus E.Coli cells were transformed with 1 ug o f  DNA and allowed 

to sit on ice for 30 minutes. After incubation, the cells were then heat shocked at 37°C for 30 

seconds. 500 uL of LB was added to transformed cells, which was then incubated at 37°C for 45 

minutes. The sample was spun at 750 x g in a table-top microcentrifuge for 5 min, and pelleted 

cells were resuspended in 100 uL of LB broth. After plating the cells onto LB-Amp plates using 

sterile technique, the culture dishes were then incubated at 37°C overnight to permit the growth 

of transformed colonies.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

Boiling mini preps ,

For a boiling mini prep protocol, a standard bacterial transformation method was first 

performed using the desired DNA vector. Any colonies that were observed after 18 hrs at 37°C 

were picked and grown in 2 mL of LB broth containing 100 ug/mL ampicillin overnight. Each 2 

mL growth culture was centrifuged at 4000 x g for 5 min to pellet the cells and the supernatant 

was then carefully decanted. 100 uL of boiling mini prep solution (8% glucose, 5% Triton X-100, 

50 mM EDTA, 50 mM TRIS pH 8.0, 10 mg/mL lysozyme) was used to resuspend the pelleted 

cells, which were then boiled for 30 sec in a hot water bath. Lysed cells were placed on ice for 30 

minutes, and then spun in a cold microcentrifuge for 15 min at 4000 x g. The supernatant, which 

contained the plasmid DNA, was then transferred to a fresh Eppendorf tube.

Standard Transfection protocol and SDS-PAGE

Human embryonic kidney (HEK-293) cells were maintained in Dulbecco’s Modified 

Eagle’s Media (DMEM) {Sigma) containing 10% fetal bovine serum, 2 mM L-glutamine, 1%. 

Pen-Strep {Sigma), 250 ug/mL Gentamacin {Sigma), 250 ug/mL Fungizone {Sigma), and stored 

in a 37°C and 5% CO2 humidified incubator. The day before transfection, cells were trypsinzed 

and counted on a hemocytometer, then seeded onto 10 cm tissue culture dishes at a density of 1 x 

106 cells per plate. The next day, fresh, complete medium was replenished onto plates and 6 ug of 

Flag-Plk4 and its various constructs were transfected using Effectene™ {Qiagen) according to the 

manufacturer’s protocol; non-transfected cells were included as a negative control. After 18 hrs, 

cells were lysed with 1 mL lysis buffer (50 mM Tris-Cl, 100 mM NaCl, 500 mM EDTA, 1% 

Triton-X) on ice for 20 min. Lysates were spun in a microcentrifuge at 4000 x g for 20 min at 4°C 

to remove any cellular debris. IX loading buffer containing 5% (3-mercaptohethanol was added to
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20 uL of the lysates, and the samples were boiled for 5 min; 20 uL o f the sample was loaded onto 

an 8% protein gel and subjected to SDS-PAGE for 90 min at 115 V.

Western blot analysis

After SDS-P AGE, the proteins were then transferred onto PVDF membrane using a semi

dry method at 12 V for 45 min, and the membranes were then blocked with Tris-buffered Saline 

and Tween (TBST) buffer for 1 hr at room temperature with gentle agitation. Blots were 

incubated with Anti-FLAG M2 monoclonal antibody (mouse) in TBST buffer (1:10,000) for 1 hr 

at room temperature, washed three times for 5 min each with TBST, and probed with anti-mouse 

horseradish peroxidase as a secondary antibody (1:60,000) for 45 min. Membranes were again 

washed 3 times and incubated with 1 mL SuperSignal West Femto Maximum Sensitivity 

Substrate (Pierce) dilution for 5 min to allow for reaction between the anti-mouse horseradish 

peroxidase and its substrate. Proteins were then visualized by chemiluminesence.

Stripping of Western Blots for re-probing

When a blot was required to be re-probed with a different primary antibody, a stripping 

protocol was used to remove any bound primary and secondary antibodies from the initial 

Western Blot. After washing the blot three times with TBST for five minutes each, 20 mL of 

stripping buffer (lOOmM p-mercaptoethanol, 2% SDS, 62.5mM Tris HC1 at a pH of 6.8) pre

warmed to 50 °C was added to the blot, which was then incubated with gentle agitation for 30 

min at 50 °C. The stripping buffer was then discarded, and the blot was washed 3 times with 

warm TBST (50 °C) in 10 minute intervals. Blots were then ready to be probed with the 

appropriate antibody.
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Creation of Stable Cell Lines 

Site-directed mutagenesis

As an initial step in the creation of a tetracycline-inducible stable cell line, the Stratagene 

QuikChange site-directed mutagenesis protocol was used to introduce an A flll site into constructs 

encoding either a wildtype Flag-Plk4 or a kinase-dead FLAG-K41M protein. PrimerX, a web- 

based primer-design program (Lapid, 2002), was utilized to design the introduction of the A flll 

site (CTTAAG) upstream of the open reading frame that encoded the FLAG-tagged protein. The 

site was introduced in a manner that would allow the entire coding sequence, including the FLAG 

epitope, to be shuttled into the inducible expression vector PCDNA4/TO (Invitrogen). The 

forward and reverese primers designed are listed as follows respectively: 5’-

GAGGT CT ATAT AAGC AGAGCTCGCTT AAGG AACCGTC AGAATT AACC ATGG AC-3 ’ 

(designated ‘ForPFU’) and 5’-GTCCATGGTTAATTCTGACGGTT

CCTTAAGCGAGCTCTGCTTATATAGACCTC-3’ (designated ‘RevPFU’). Briefly, the 

mutagenesis reaction was setup as follows: each reaction contained 50 ng of Plk4 template DNA, 

125 ng of forward and reverse primer, 1 X PFU polymerase buffer (Stratagene•), lOOmM dNTP 

(dATP, dGTP, dTTP, dCTP), and 2.5 U of cloned Pfu DNA polymerase in a total volume of 50 

uL. PCR cycling conditions were performed as follows: segment 1, 1 cycle at 95°C for 30 sec, 

and segment 2, 12 cycles of the following: 95 °C for 30 sec, 55°C for 1 min, and 68 °C for 13 

min. After the PCR reaction was complete, 10 U of Dpnl restriction enzyme (NEB) was added to 

the amplified samples in order to digest any methylated, nonmutated parental DNA. Samples 

were pipetted up and down gently, spun at 4000 x g for 1 min, and then placed at 37°C for 1 hour.

Various aliquots of the Dpnl (NEB) digested PCR product (5 uL, 10 uL, and 20 uL) were 

individually transformed into Top 10 F’ Pilus E. Coli competent cells, which were prepared 

according to standard transformation protocol. After an overnight incubation individual 

transformed colonies were carefully picked with a sterile pipette tip and singly dispensed into a 2 

mL culture of LB-Amp containing 100 mg/mL of ampicillin in a round bottom polypropylene
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tube. Cultures were placed in a shaking incubator at 37 °C for 18 hrs and plasmid DNA was 

isolated from grown samples using the standard boiling mini prep protocol, as described 

previously. To analyze the DNA for successful mutagenesis, A flll (NEB) and EcoRI (NEB) 

restriction enzymes were used to digest 1 ug of each DNA sample for 2 hours at 37°C. The 

reaction mixtures were then analyzed on a 1% agarose gel to confirm that the A flll restriction site 

had been properly introduced. Any positive clones were then propagated by transforming 5 ug of 

the remaining boiling miniprep sample as per standard procedure. Plasmid DNA was then 

isolated using the QiaPrep Spin MiniPrep Kit from Qiagen according to the manufacturer’s 

instructions.

Cloning o f Flag-Plk4 constructs into PCDNA4/TO vector

To extricate the gene of interest into the inducible expression vector, 5 ug Flag-tagged 

Plk4 construct (with A flll site introduced) and PCDNA4/TO vector (Invitrogen) were each 

digested with 1 U each of A flll + Smal, and A flll + EcoRV (NEB), respectively, at 37°C.for 2 hrs 

according to standard methods. Samples were placed on the heating block at 80°C for 20 min to 

heat inactivate all restriction enzymes used in the reaction. 400 ng from each digest reaction were 

subsequently loaded onto a 1% agarose gel and separated through electrophoresis to confirm 

complete digestion. The remaining digested sample was used to perform two sets of ligation 

reactions: 150 ng of Flag-Plk4(4/?/7) [or Flag-Plk4-K41M(4/7Z/)] digest mixture was combined 

with 50 ng of the PCDNA4/TO digest to make a 3:1 ratio of insert:vector. Similarly, a 1:1 ratio of 

insert:vector was also tested using 50 ng of each DNA component. The reaction also contained 

IX T4 DNA Ligase buffer and 1 U of T4 DNA ligase (NEB) in total volume of 20 uL, and was 

allowed to incubate at room temperature O/N. After approximately 18 hr o f incubation, T4 DNA 

ligase was heat-inactivated at 65 °C for 20 min. 1 U each of BlpI (NEB) and PstI (NEB) restriction 

enzymes were added to each ligation mixture to eliminate any remaining vector backbone, and 

the samples were incubated at 37°C for 2 hrs. 100 uL of Top 10 F’ Pilus E.Coli competent cells
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were transformed with the ligated samples according to standard protocol and plated onto LB- 

Amp plates for O/N incubation at 37°C. Plasmid DNA from any observed colonies was isolated 

through a boiling mini-prep procedure, then digested with Apal and EcoRI restriction enzymes to 

screen for positive clones. The plasmid DNA from those positive clones were then used for 

transformation and subsequently isolated through the QiaPrep Spin MiniPrep Kit from Qiagen. 

To confirm proper ligation of Flag-Plk4 or Flag-K41M into PCDNA4/TO vector, 300 ng of 

plasmid DNA samples from each successful clone, as determined by restriction digest, were sent 

to ACGT (Toronto, ON) for sequencing. Reactions were performed using standard forward CMV 

and reverse BGH primers, as well as customized primers designed specifically to sequence 

critical regions of the construct. (Appendix A).

Transient transfection and induction o f expression vector containing Flag-Plk4 and Flag-K41M 

T-REX™-293 cells (Invitrogen) were maintained in Dulbecco’s Modified Eagle Medium 

(D-MEM) supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 1% Pen-Strep, 250 

ug/mL Gentamicin, 250 ug/mL Fungizone, and 5 ug/mL of blasticidin and stored in a 37°C and 

5% CO2 humidified incubator. Cells were then transfected with either PCDNA4/TO Flag-Plk4 or 

PCDNA4/TO Flag-K41M according to standard transfection protocol as stated above. 24 hrs 

post-transfection, tetracycline at a final concentration of 100 ng/mL was added to the cells to 

induce expression of PCDNA4/TO-Flag Plk4; a plate of non-induced, transfected cells was also 

maintained as a control. After 18 hrs, cells were lysed and subjected to SDS-P AGE and Western 

blot analysis as previously described.

Determination o f selective antibiotic sensitivity

Optimal levels of Zeocin antibiotic required to eradicate untransfected host cells were 

determined by subjecting cells to a range of concentrations. Seven plates of T-REx™-293 cells 

were each seeded to 25% confluency and maintained in complete medium containing either 0, 50,
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125, 250, 500, 750, or 1000 pg/ml Zeocin™. Media was replenished every 3 days and cell 

survival was monitored every 24 hours. After seven days, the number o f viable cells maintained 

in each Zeocin test plate was counted, and the appropriate concentration o f antibiotic that 

inhibited cell proliferation was determined.

Selection o f stable integrants

Once successful transfection and induction of the PCDNA4/TO-Flag hPlk4 construct was 

attained, the protocol was repeated to begin selection of the stable integrants and to establish a 

stable cell line. Again, T-REx™-293 cells were maintained in complete DMEM containing 5 

ug/mL blasticidin but without Zeocin. 24 hours following transfection, the cells were washed 

once with Hank’s Balanced Salt Solution (HBSS) and fresh medium was added. 48 hours after 

transfection, the cells were either split and seeded to 25% confluency in complete media now 

containing 250 ug/mL of Zeocin, or were just replenished with the selective media depending on 

cell confluency. Fresh, selective media was added every three days to maintain antibiotic potency. 

When distinct cellular foci were observed, these colonies were scraped, trypsinzed, and 

transferred to 6.4 mm cell culture plates and allowed to proliferate. These original foci were 

subsequently expanded onto 14 mm, 31 mm, and eventually 100 mm dishes. 100 ng/mL of Tet 

was added to the stably-transfected cells to induce transcription o f the Flag-Plk4 and Flag-K41M 

genes and assayed for gene expression; a plate of non-induced stable transfectants was included 

in the analysis. Positive clones were then propagated to make frozen stocks.

Co-immunoprecipitation of Plk4 with putative interacting proteins

6 ug of Flag-Plk4 constructs were transfected into HEK-293 cells plated at a density o f 1 

x 106 cells per 100 mm dish. Various Flag-tagged constructs were tested, including wildtype 

(Flag-Plk4), kinase dead (Flag-hK41M and Flag-154N), kinase active (Flag-T170D), polo box
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only (Flag-PB), Plk4 minus polo box (Flag-APB), and cryptic polo box only (Flag-Rl) constructs. 

Flag-hYVHl, a human protein phosphatase[PC4], was used as a negative control. Approximately 

18 hrs post-transfection, cells were lysed and 1 mg of protein lysates was incubated with 1 ug of 

the antibodies listed in Appendix B. 60 uL of a 1:5 slurry of Protein G Sepharose 4 Fast Flow 

beads (Amersham Biosciences) diluted in TNT buffer (50mM Tris-Cl, 100 mM NaCl, 1% Triton- 

X) was added to each sample and incubated for 45 min with gentle rocking. Samples were spun at 

4000 x g in a cold microcentrifuge for 1 min, and the beads were washed three times with TNT 

buffer. Samples were boiled for 5 min following the addition of loading buffer, and were 

separated through SDS-PAGE. Western blot analysis was performed using anti-Flag primary 

antibody diluted in TBST (1:10,000) for 1 hr at room temperature, and anti-mouse or anti-rabbit 

(1:60,000) secondary antibody for 45 min. Proteins were subjected to chemiluminesence for 

visualization and analysis.
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CHAPTER V 

RESULTS

Chk2 interacts with Plk4

On the basis that Chk2 is a physiological substrate of Plkl and Plk3, this study attempted to 

investigate if Plk4 shares a physical association with this DNA-damage checkpoint kinase. 

Tsetkov et al (2003) first reported a functional interaction between Plkl and Chk2 based on their 

overlapping subcellular localization patterns to the centrosomes and midbody during mitosis. Their 

data showed that Plkl overexpression in the absence of genotoxic stress enhanced T68 

phosphorylation of Chk2 at these critical mitotic structures, pointing to a role of Chk2 outside of 

the context of DNA damage. Additionally, Bahassi and co-workers (2006) revealed that Chk2 is 

phosphorylated at S73 and S62 residues by Plk3 as well, a modification that facilitates Chk2 

phosphorylation by ATM in response to DNA damage (Bahassi et al, 2006). [H5] To offer a 

preliminary assessment of Plk4’s association with Chk2, full length, truncated, and mutant forms 

of human Flag-Plk4 were transiently overexpressed in HEK-293 cells. Specifically, Flag-Plk4, 

Flag-K41M, Flag-154N, Flag-T170D, Flag-APB, Flag-Rl, Flag-PB, and Flag-hYVHl constructs 

were utilized for transient transfection, all of which are depicted in Figure 4 (except Flag-hYVHl). 

A more thorough characterization of the Plk4 mutant and deletion constructs will be provided in 

later sections. Originally, mouse fibroblast 3T3 cells were utilized as an expression system for the 

Plk4 constructs, however, were observed to produce lower transfection efficiencies relative to the 

HEK-293 cells (data not shown). Hence, future experiments requiring overexpression of Plk4 

were performed in the human embryonic kidney cell line. Following transfection and the 

allowance for expression of the Flag-tagged constructs mentioned above, cells were lysed and a 

small fraction of the collected proteins, both endogenous and overexpressed, were separated by 

SDS-PAGE; non-transfected cells were included as a negative control. Subsequently, Western 

blot analysis with an anti-Flag M2 monoclonal antibody (mouse) (Sigma) was performed to
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Fig. 4. Schematic representation of Plk4 constructs used in co-immunoprecipitations. Plk4

consists of a Ser/Thr kinase domain (KD) in the N-terminus, a polo-box region (pb) in the C- 

terminus, as well as a region defined as a ‘cryptic pb’ (cry-pb) upstream of pb. Cry-pb and pb are 

said to participate in the self-association of Plk4. The constructs were expressed individually in 

HEK-293 cells as fusion proteins in frame with an N-terminal with a 3X Flag-tag (Sigma). 

Numbers indicate the amino acid position defining the specified region. Asterisks represent the 

relative position of the single amino acid changed to generate a kinase-defective (D154N, K41M) 

or kinase-activating (T170D) mutant.
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confirm that transient transfection was successful. The presence of a positive band of the 

appropriate size in the lanes corresponding to transfected cells, verified that consistent and 

efficient expression of the Flag-tagged protein had occurred. (Figure 5 A, upper panel). No band 

was detected in the lane containing non-transfected cells, confirming that the observed bands in 

fact depicted the overexpressed protein and not non-specific, endogenous protein (Figure 5A, 

upper panel, ‘cells’ lane). Upon verification that the various Flag-tagged proteins were indeed 

expressed at effective levels, co-immunoprecipitation assays with the remaining lysate sample 

were performed using antibodies specific for the putative interacting partners. The rationale for 

this approach was that that if any Plk4 protein normally interacts with a candidate partner in cells, 

it could theoretically remain in contact with Plk4, be co-immunoprecipitated, thus pulling Plk4 

down with it, and later detected upon immunoblotting with an anti-Flag antibody. Co- 

immunoprecipitation experiments were performed using an anti-Chk2 monoclonal antibody 

(mouse) (Sigma.) Monoclonal antibodies were utilized when possible in co-immunoprecipitation 

experiments to ensure targeting of only a single epitope, thereby decreasing the chances of non

specific binding. In addition, precipitated proteins were washed at minimum three times with 

nonionic-detergent-containing buffers (1% Triton-X) to obtain the cleanest sample of the 

immunoprecipitated proteins. Western blot analysis with an anti-Flag M2 monoclonal antibody 

(Sigma) confirmed the existence of an interaction between Chk2 and various Flag-tagged Plk4 

constructs. Specifically, full length Flag-Plk4, Flag-D154N and Flag-K41M (both kinase 

defective mutants) as well as Flag-APB (which lacks the conserved PB in the C-terminus) all co- 

immunoprecipitate with Chk2 (Figure 5A &B, lower panels). Flag-T170D, which contains a 

kinase activating mutation in the T-loop, also displays a physical interaction with Chk2 (Figure
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. Fig. 5. Co-immunoprecipitation of Chk2 and Plk4. A C. HEK-293 cells were transiently 

tranfected with the expression plasmid encoding Flag-tagged domain specific Plk4 constructs. 18 h 

post-transfection, whole cell lysates were prepared and immunoprecipitated (IP) with monoclonal 

anti-Chk2 antibodies (Sigma). Whole cell lysates and IPs were immunoblotted (IB) with 

monoclonal anti-Flag antibodies to confirm expression of the Flag-tagged proteins. Flag-hYVHl 

was used as a negative control. D. The blot was stripped and re-probed with an anti-Chk2 antibody 

to confirm equal levels of protein in each lane. Light chain immunoglobulins (IgG) are shown to 

verily that equal amounts of antibody were added to each sample
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5A, lower panel). In other Plk members, the polo box has been characterized as a binding region 

for substrate proteins, enabling proper subcellular localization of the protein (Lowery et al, 2004; 

Elia et al, 2003). Therefore, in order to determine whether the polo box region is critical for 

interaction in Plk4, cells were transiently transfected with Flag-PB, which encodes only the polo 

box region of Plk4. Immunoblotting confirmed that Chk2 does not interact with the polo box of 

Plk4. (Fig. 5C, lower panel, ‘Flag-PB’ lane). Similarly, Flag-Rl, which contains the region 

encoding the cryptic polo box of Plk4, also does not co-immunoprecipitate with anti-Chk2 

(Figure 5C, lower panel). To strengthen the findings that the observed co-immunoprecipitations 

indeed represented bona fide  physical interactions between Chk2 and Plk4, the experiments were 

performed at minimum three times, and each repeat was shown to produce identical results to 

what was originally observed (replicate experiments not shown). In addition, a Flag-tagged 

protein unrelated to Plk4 called Flag-hYVHl was incorporated as a negative control. hYVHl is a 

41 kDa dual-specificity protein-tyrosine phosphatase that is the human counterpart to YVH1 

protein found in the budding yeast Saccharomyces cerevisiae (Muda et al, 1999). The Flag- 

tagged hYVHl construct was a generous gift to the Hudson Lab by Dr. Otis Vacratsis (Dept, of 

Biochemistry, University of Windsor, ON). Flag-hYVHl was also overexpressed in HEK-293 

cells and subjected to co-immunoprecipitation assays with anti-Chk2 antibody but did not show a 

physical association similar to Flag-Plk4 (Figure 5A-C, ‘Flag-hYVHl’ lanes). This finding 

enhances the significance of the interaction observed between wildtype and mutant Plk4 with 

Chk2, indicating that the antibody was not binding non-specifically or through the FLAG epitope. 

Furthermore, the blot exhibited in Figure 5A was subject to antibody stripping as described in 

Materials and Methods, then re-probed with anti-Chk2 antibody at a recommended dilution of 

1:8000. This was done to ensure that equal levels of Chk2 protein were present in each sample, 

thereby eliminating the possibility that the negative results observed in the ‘cells only’ and ‘Flag- 

hYVHl’ lanes were simply due to reduced amounts of precipitated Chk2 protein. After stripping 

the blot, but prior to re-probing with anti-Chk2, chemiluminesence was performed to ensure that
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the stripping protocol was indeed effective and that no remaining signal could be detected (data 

not shown). Subsequent immunoblotting with anti-Chk2 antibody verified that each lane was 

loaded with equal levels of immunoprecipitated Chk2 protein, therefore suggesting that the bands 

originally observed were in fact due to a bona fide  physical association between Plk4 and Chk2 

(Figure 5D).

ATM interacts with Plk4

ATM is an upstream checkpoint kinase that initiates a signaling cascade leading to cell 

cycle arrest in response to ionizing radiation (IR) (Rotman and Shiloh, 1999). Upon triggering of 

ATM activity by damage-sensing proteins, the signal is then amplified to downstream[H6] kinases 

such as Chkl and Chk2, resulting in their phosphorylation and subsequent activation (Zhou and 

Elledge, 2000). Van Vugt et al (2001) provided evidence that Plkl kinase activity is reduced in 

response to adriamycin-induced DNA-damage, and that this catalytic suppression is mediated by 

ATM. When expressed in ATM-deficient cells, Plkl was no longer inhibited and its kinase activity 

remained deregulated. No defined role of Plk4 has thus far been established with respect to the 

DNA-damage response. This study attempted to provide insight on how Plk4 may participate in 

signal transduction pathways involving ATM by first examining if these two proteins can 

physically interact. Whole cell lysates obtained from HEK-293 cells were transiently transfected 

with various Plk4 constructs and 18 hrs post-transfection an anti-ATM monoclonal antibody 

(mouse) (Sigma) was used in co-immunoprecipitation assays; subsequent immunoblotting with 

anti-Flag (Sigma) confirmed an association between these two proteins. In addition to full-length 

Plk4, various deletion and point mutants were also overexpressed to help characterize which 

domains are critical for interaction. Pull down assays revealed that Flag-Plk4, Flag-K41M and 

Flag-T170D all interact with ATM, as evidenced by their co-immunoprecipitation (Figure 6A, 

lower panel). Additionally, Flag-D154N and Flag-APB can also interact with endogenous ATM
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protein (Figure 6B, lower left-hand panel). Although Flag-PB did not pull down with the anti- 

ATM antibody, the construct expressing the cryptic polo box of Plk4 (Flag-Rl) did exhibit an 

interaction (Figure 6B, lower right-hand panel). Flag-hYVHl, expressed as a negative control 

vector, did not co-immunocprecipitate with ATM. (Figure 6 A & B, lower panels,)

ATR interacts with Plk4

ATR is a phosphoinositide kinase structurally-related to ATM that also shares common 

functions in the response pathway to genotoxic stress, such as the phosphorylation and activation 

of tumor suppressors p53 and BRCA1 (Zhou and Elledge, 2000). ATR, however, appears to 

mediate repair of lesioned DNA in response to ultraviolet radiation (UV) rather than ionizing 

radiation (IR), the primary instigator of ATM activity (Van Vugt et al, 2001). ATR has also been 

recognized as a potential suppressor of Plkl kinase activity following DNA-damage caused by UV 

irradiation (Van Vugt et al, 2001). Evidence showed that Plkl activity was still attenuated in UV- 

treated ATM - / -  cells, suggesting the presence of ATR was able to assume the inhibitory role. 

Following the addition of caffeine, however, which blocks activity of ATM/ATR in the DNA- 

damage response, Plkl kinase activity was no longer reduced (Van Vugt et al, 2001). Given the 

evident correlation between ATR and Plkl activity, this study analyzed the possibility of a 

putative relation between ATR and Plk4. Therefore, to determine if Plk4 can interact with ATR in 

vivo, various constructs encoding wildtype Plk4 as well as mutated and deleted forms, were 

expressed in HEK-293 cells. Co-immunoprecipitation with a polyclonal anti-ATR antibody 

(mouse) (Calbiochem) was performed on lysates obtained from these cells 18h after transfection. 

Western blotting with the anti-Flag antibody revealed any potential interactions between ATR and 

Plk4. Full length Flag-Plk4, kinase dead Flag-K41M, and kinase active Flag-T170D all co-
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Fig. 6. Co-immunoprecipitation of ATM and Plk4. A & B. HEK-293 cells were transiently 

tranfected with the expression plasmid encoding Flag-tagged domain specific Plk4 constructs. 18 

h post-transfection, whole cell lysates were prepared and immunoprecipitated (IP) with 

monoclonal an anti-ATM antibody (Sigma). Whole cell lysates and IPs were immunoblotted (IB) 

with a monoclonal anti-Flag antibody to show expression of the Flag-tagged proteins. Flag- 

hYVHl was used as a negative control. Light chain immunoglobulins (IgG) are shown to verify 

equal amounts of antibody were added to each sample
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immunoprecipitate with ATR (Figure 7). Steven Petrinac of Dr. Hudson’s lab (University of 

Windsor, ON) followed this experiment by performing co-immunoprecipitations with anti-ATR on 

lysates obtained from Flag-Plk4, Flag-154N, Flag-APB, Flag-Rl, Flag-PB, and Flag-hYVHl 

overexpression; his results indicate that Flag-154N and Flag-APB show an interaction with ATR, 

while Flag-PB, Flag-Rl and Flag-YVHl do no show up in co-immunoprecipitates with ATR (data 

not shown).

Plk4 does not interact with the tubulin proteins. BRCA2. or Rb

It has been shown that Plk family members can interact with common proteins resulting 

in either similar or opposing effects on that substrate’s regulation. Many of these targeted proteins 

have been linked to regulating various aspects of mitotic progression and in mediating DNA- 

damage responses. Plkl, for example, has been shown to physically associate with a- and P- 

tubulin, the monomeric subunits that comprise the microtubules of the mitotic spindle, as well as 

y-tubulin, which enables the microtubules’ nucleation and polar orientation (Feng et al, 2001). It 

was found that Plkl exists in a stable complex with the tubulins and that during mitosis, can 

phosphorylate the proteins, suggesting a role in regulating microtubule dynamics and spindle 

assembly. In addition, the breast cancer susceptibility protein BRCA2, an essential protein in 

repairing DNA double-strand breaks and preserving chromosomal stability, has also been found to 

be a substrate of Plkl, and that its phosphorylation is enhanced by mitotic progression but 

inhibited by DNA damage (Lee et al, 2004). Retinoblastoma protein (Rb) is a crucial cell cycle 

regulator at the G1 restriction point of the cell cycle whose inactivation can lead to uncontrolled 

proliferation (Wiman, 1993). Gunawardena et al (2004) demonstrated that Plkl is regulated by the 

Rb tumor suppressor pathway and that activation of Rb pocket proteins p l07/pl30 suppresses Plkl 

activity. Since the tubulins, BRCA2, and Rb have been demonstrated to associate with Plks, each
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Fig. 7. Co-immunoprecipitation of ATR and Plk4. HEK-293 cells were transiently tranfected 

with an expression plasmid encoding Flag-tagged domain specific Plk4 constructs. 18 h post

transfection, whole cell lysates were prepared and immunoprecipitated (IP) with polyclonal anti- 

ATR antibodies (Calbiochem). Whole cell lysates and IPs were immunoblotted (IB) with 

monoclonal anti-Flag antibodies to show expression of the Flag-tagged proteins. Flag-hYVHl 

was used as a negative control. Light chain immunoglobulins (IgG) are shown to verify equal 

amounts of antibody were added to each sample.
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with unique consequences, these proteins provide a basis for which to ascertain putative 

interacting partners for Plk4.

In an attempt to identify potential interacting partners with Plk4, various Flag-tagged 

constructs encoding the protein as represented in Figure 4 were transiently transfected into HEK- 

293 cells. Lysates obtained from transient overexpression of full-length, truncated, and mutant 

forms of Flag-Plk4 were then used in co-immunoprecipitation experiments with the following 

antibodies: monoclonal anti-a-tubulin from mouse {Sigma), monoclonal anti-y3-tubulin from mouse 

(Sigma), monoclonal anti-y-tubulin from mouse (Sigma), polyclonal anti-BRCA2 from rabbit 

(Sigma), and monoclonal anti-Rb from rabbit (Sigma). Western blot analysis with anti-Flag M2 

monoclonal antibody (Sigma) indicated that no physical interaction was detected between any of 

the Plk4 constructs and these candidate interacting partners (data not shown).

Establishment of a stable cell line for inducible Plk4 expression.

Creation o f PCDNA4/TO Flag-Plk4 and PCDNA4/TO Flag-K41M vector

To establish cell lines that stably express wildtype and kinase-dead Plk4, Flag-tagged 

constructs encoding these proteins first had to be released from their existing vector for eventual 

sub-cloning into the PCDNA4/TO (Invitrogen) expression vector. Plk4 and its kinase-defective 

counterpart K41M were originally cloned into separate p3XFlag-CMV™-7.1 Expression Vectors 

(Sigma) through a BamHI site located within the multiple cloning region (Figure 8A & B). These 

constructs were designed and created by Dr. Hudson and co-workers (Samuel Lunenfeld 

Research Institute of Mount Sinai Hospital, Toronto, ON). To facilitate the introduction of the 

Flag-tagged gene encoding wildtype and kinase dead Plk4 into the inducible expression vector, 

mutagenic primers were first designed against Flag-Plk4 and Flag-K41M. These synthetic, 

oligonucleotide primers were so designed that they would mutate three nucleotides within the six- 

base-pair region‘TTTAGT’ in to ‘CTTA/4<j’, which corresponds to an
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3X Flag-K41M
7 7 4 8  b p

Flag-K41M

3X Flag-Plk4
7 7 4 8  b p

Fig. 8. A & B. Schematic diagrams of 3X Flag-Plk4 and 3X Flag-K41M constructs. Selected 

key components of the Vectors are depicted. Base pairs 877-3999 (red arrow) represent the region 

encoding Flag-Plk4 (A) (wildtype) or Flag-K41M (B) (kinase-dead) protein. P cm v  is a 

cytomegalovirus promoter that regulates transcription of the Flag-Plk4 and Flag-K41M genes.' 

The ampicillin gene confers antibiotic resistance to the vector allowing for its selection.
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Aflll restriction site (Figure 9A). PfuTurbo1 DNA polymerase and the QuikChange Site-Directed 

Mutagenesis method (Stratagene) were utilized in a polymerase chain reaction (PCR) that would 

extend the mutagenic primers and replicate the parental plasmid strand. After being subject to 

PCR, the product was digested with Dpnl enzyme, which specifically recognizes methylated, 

parental DNA and thus enables the selection of newly-synthesized, mutated DNA (Nelson and 

McClelland, 1992). It is worthwhile to mention that the A flll site was introduced 25 base pairs 

upstream of the ‘Met’ start site of the 3X Flag epitope in Flag-Plk4 and Flag-K41M vector 

(Figure 10). This was done to ensure that Plk4 and K41M retained the Flag tag when released 

from their original vectors, enabling them to be utilized in future experiments that may require 

immunoprecipitation of the protein with a commercially-available antibody after sub-cloning; 

PCDNA4/TO inducible expression vector itself does not encode a fusion tag that may be 

exploited in such a manner. Once the replicated DNA containing the A flll site was selected for, it 

was transformed into E. coli cells in order to propagate the vector, which was then purified 

through a standard boiling mini prep procedure. Restriction analysis o f the DNA with A flll and 

Apal enzyme (NEB) produced a 3221 bp and 4925 bp digest product, verifying the A flll site was 

properly introduced (Figure 9B). Following confirmation that the new site was indeed present, the 

Flag-Plk4(4/7Z/) and Flag-K41M(Aflll) vectors were again propagated and purified through a 

plasmid maxi prep kit (Qiagen). The resultant plasmid DNA was subsequently cut with A flll and 

Smal in order to extricate the Flag-tagged genes. The fragments were then ligated into the 

inducible expression vector PCDNA4/TO (Invitrogen) that would eventually be used for 

establishing the stable cell lines; the multiple cloning site contained recognition sequences for 

A flll and EcoRV, which were both exploited to facilitate the introduction o f  the newly-released 

Flag-Plk4(4/W7) and Flag-K41M(4/7//) segments (Figure 11). Ligation reactions were performed 

in ratios of 3:1 and 1:1 of insert:vector to maximize the potential of successful cloning. After 

transformation of the ligation mixtures, plasmid DNA isolated from numerous colonies was 

subjected to restriction digest with Apal and EcoRl enzymes; successful clones were found to
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Afi li (904)

3X FLAG-Plk4

7747 bp

CAGAGCTCGTTTAGTGAACCGTCA

Site-Directed Mutagenesis
Plk4Sma I (4088)

CAGAGCTCG"TTA»CGGAACCGTCA

B

5000 bp *  
4000 bp * 
3000 bp

- 4563 bp 

-3184 bp

Fig. 9A &B. A, Schematic diagram of 3X Flag-Plk4 vector with A flll recognition site. The

3X Flag vectors (Sigma) encoding either Plk4 or K41M (kinase dead) were subjected to site- 

directed mutagenesis using Pfu polymerase (Stratagem). An A flll restriction site (CTTAAG) was 

introduced at position 904 of the Flag vector to facilitate the subcloning o f Flag-Plk4 or Flag- 

K41M into the inducible expression vector PCDNA4/TO (Invitrogen). The position of the Smal 

restriction site is also indicated and was used, in addition to the A flll site, for diagnostic digests of 

the PCR product. The correct restriction digest yielded a 4563 bp and a 3184 bp product.
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8 5 3  GCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGrTTAGTGjAACCGTCAG

ForPFU

9 2 0  AATTAACCATGGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGATTACAAGGATG 
------

98  6 ACGATGACAAGCTTGCGGCCGCGAATTCATCGATAGATCTGATATCGGTACCAGTCGACTCTAGAGG

1 0 5 3  a t c c c c c g g a g a a c c c a g g c c a g a g c c t g g a a a t a t g g c g a c c t g c a j c g g g g a g a a g a t c g a g g a  

1 1 1 9  t t t t a a a g t t g g a a a t c t g c t t g g t a a a g g a t c a t t t g c t g g t g t c t a c a g a g c t g a g t c c a t t c a

Fig. 10. Partial nucleotide sequence of 3X Flag-Plk4. The region corresponding to positions 

853-1185bp of the 3X Flag-Plk4 construct are represented. The thick, bolded arrow indicates the 

binding region of only the forward mutagenic primer ‘ForPFU’ utilized in the QuikChange Site- 

directed mutagenesis reaction {Stratagem) (Reverse primer not shown). The nucleotides bolded 

in red correspond to the region targeted for mutation, transforming the six-base pair region 

(boxed area) into an Aflll restriction site. Highlighted yellow is the ATG start site of the 3X Flag 

epitope, indicating its close proximity to the intended Aflll restriction site to be utilized for 

extricating the Flag-Plk4 and Flag-K41M gene for sub-cloning. The region shaded grey indicates 

the initial region encoding the Plk4 protein. Sequence is read 5’ ->3’.
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Afll l
(904) MCS

FLAG-Plk4-Aflll PCDNA4/TO

7747 bp 5078 bp

Plk4Sma I 
(4088)

♦ ♦
■ Restriction digest and 
#  ligation

..EcoRI (1008)

PCDNA4/TO-FLAG Plk4'

7747 bp

Flag-Plk4

A pal (4125)
EcoRI (3234)

Fig. 11. Schematic representation of the subcloning of Flag-Plk4-v4/7// into the 

PCDNA4/TO vector. Restriction sites in red indicate those used for subcloning reactions; sites in 

green represent those used for diagnostic purposes. Numbers in brackets indicate the relative 

positions of the restriction sites on the vector.
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generate a 5089 bp, 2226 bp, and 891 bp band (Figure 12), indicating that Flag-Plk4 and Flag- 

K41M were properly ligated in frame upon cloning. Samples from both clones were then sent to 

ACGT Corporation (Toronto, ON) for sequencing of the entire vector; results showed that both 

Flag-Plk4 and Flag-K41M were cloned in proper frame with the PCDNA4/TO vector (Figure 13),

1) Transfection o f PCDNA4/TO-Flag-Plk4 and PCDNA4/TO-Flag-K41M

The newly-synthesized PCDNA4/TO-Flag-Plk4 and PCDNA4/TO-Flag-K41M vectors 

were then transiently transfected into the T-Rex™ 293 cells (Invitrogen), which stably express a 

PCDNA6/TR vector (Figure 14). The plasmid contains a gene that encodes a tetracycline 

repressor (tetR), which is under the control of a CMV promoter, as well as a gene for blasticidin 

antibiotic resistance . When cultured in the presence of blasticidin-containing media, the T-Rex™ 

293 cells maintain the PCDNA6/TR vector and continually express tetR. Because the 

PCDNA4/TO vector contains two tetracycline operator 2 (Tet02) sites within the human 

cytomegalovirus immediate-early (CMV) promoter, expression of the gene of interest (ie. Flag- 

Plk4 and Flag-K41M) can be repressed by binding of tetR protein expressed from PCDNA6/TR 

(Yao et al., 1998). Transfected cells were grown in the presence of Zeocin™ antibiotic 

{Invitrogen) in order to select for successful integrants of the inducible expression vector. 

Zeocin™ is a broad-spectrum antibiotic derived from a family of related bleomycin/phleomycin- 

type antibiotics isolated from Streptomyces, and exhibits strong toxic effects against bacteria, 

fungi (including yeast), plants, and mammalian cells (Baron et al., 1992; Drocourt et al., 1990; 

Mulsant et al., 1988; Perez et al., 1989). In this study, Zeocin™ is used as a selection agent for 

non-resistant cells, thus allowing propagation of those cells that effectively retained the 

PCDNA4/TO-Flag Plk4 and PCDNA4/TO-Flag-K41M vectors. A Zeocin sensitivity assay was 

performed to determine the minimum concentration needed to eradicate untransfected cells, and 

was found to be 250 pg/mL. Sensitive cells exhibited abnormal morphology upon exposure to 

Zeocin, as well as an increase in size, and the formation of large vesicles and the appearance of

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

holes within the cytoplasm. Prolonged Zeocin exposure (~ 7-10 days) caused any sensitive cells 

to eventually disintegrate due to a complete breakdown of cellular structures such as the 

endoplasmic reticulum, Golgi apparatus, and plasma membrane. Isolated colonies of those stable 

transfectants were then picked and subcultured onto 6.4 mm plates, and eventually propagated 

onto 14 mm, 31 mm, and 100 mm dishes. Cells required passaging every 3-5 days. 17 clones of 

PCDNA4/TO-Flag-Plk4 and 23 clones of PCDNA4/TO-Flag-K41M were competent to reach the 

100 mm dish stage. Before expression of PCDNA4/TO-Flag-Plk4 and PCDNA4/TO-Flag-K41M 

could be quantified, the CMV promoter region controlling transcription of both genes’ needed to 

be derepressed. Addition of tetracycline (Tet) to the medium would cause the TetR homodimers 

that were bound to the operator sites of the expression vector to change conformation. Upon 

modification of the repressor protein, it would no longer be able to block expression of the Flag- 

Plk4 and Flag-K41M gene, thus allowing for their transcription to occur. Initially, lOOng/mL of 

Tet was added to the media of each of the clones to induce gene expression, and incubated for 18 

hrs prior to lysing cells. Proteins obtained from lysed samples were separated through SDS- 

PAGE and subjected to immunoblotting. Of the 40 clones that were tested in total for both 

wildtype and kinase-dead Plk4, two clones for each construct were chosen (designated Plk4-E 

and Plk4-F; K41M-B and K41M-S) that effectively produced a protein of -100 kDa, 

corresponding to the protein size of Flag-Plk4 and Flag-K41M (Figure 15, upper panel). Non

transfected (+Tet and -Tet) as well as transfected (-Tet) T-Rex™ 293 cells were used as negative 

controls and in fact did not express a 100 kDa protein that would indicate the presence of Flag- 

Plk4 or Flag-K41M. These results provide further validity that the observed proteins in the 

transfected, induced lanes were Flag-Plk4 and FIag-K41M. Furthermore, immunoprecipitation of 

the lysates and subsequent immunoblotting with monoclonal anti-Flag M2 antibody (mouse) 

(Sigma) confirmed the observed bands were in fact the desired Flag-tagged protein and not a non

specific band coincidentally running at the same size (Figure 15, lower panel). After the
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6000 bp 
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4000 bp
3000 bp 
2500 bp

2000 bp

1500 bp

—  Flag-Plk4

  ............... J 5089 bp

2226 bp

1000 bp 

750 bp
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Fig. 12. Diagnostic restriction digests of ligated PCDNA4/TO-Flag-Plk4 and PCDNA4/TO- 

Flag-KIM plasmid DNA. After the introduction of the A flll restriction site, Flag-Plk4 and Flag- 

K41M were each digested with 1 U of A flll and Smal (NEB), while PCDNA4/TO was subjected 

to Aflll and EcorV (NEB) digestion. Ligation reactions in both 3:1 and 1:1 ratios of insert:vector 

were tested and subsequently transformed into E. coli cells. Plasmid DNA was isolated and 

digested with Apal and EcoRI (NEB) to confirm proper ligation of Flag-Plk4 and Flag-K41M into 

the inducible expression vector. Digested products were run on a 1 % agarose gel, which indicated 

the presence of a 5089 bp, 2226 bp, and 891 bp fragment for each vector, as would be expected.
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Actual sequence —'VYISRAXPISDRDLPISDRDRilRARLVHRQIAKRRHPRCFDLKRRHRDRSSLRTLAFK 
Theoretical sequence WEVYISRA1PISDRDLPISDRDRRRARLVNRQIAKRRHPRCFDLRFRHRDRSSLRTLAFK

LKEPSEFTMDYKDHDSDYKDffDIDYKDDDDKLAMNSSIDLISVFVDSRGSFGEFRPEPG
IKEPSELTKDrKDHMSYKDHDIDyKDMSKLmHSSIDLISVFVDSRGSPGEPRPEPG
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

NMATCIGEKIEDFXVGNLLGKGSETUJVTfaAESIHIGIXVaiKMIDKKAJfi'KRGH’/^V Q NNKilOeEKIEDJiŴJLL̂SFÂaAESlHTGLEVAIHXiaKKiUimttM̂'.VgN

nTrrP̂miPSTta::T.YŷDSMYVmVÎ gâ ^̂ IJâKPFSO«ÊiiPl{HOE'̂ fiî F̂SILEI.YKCTEDSMlTiîVI£Ki3?K3Ef3iRYLKI'!SV5[PFSFJ'.TE:<\RHnnHQ

IIIiaiLYLHSHGILHFiLlLSKLL-LTBlfl^IKIADS^ATCUQ^niEiG-iyiLCGTPN'flS
IIIGKLYUiSHGILt!RDL2LS}ILLLTBNKHIKIADFGLAIQL«HP!5S!-QiYTLC5TPNYI5

i£IAIRSMGIIŜ L̂SC35FmiĴPFDT3rVKHXU!KmftOYEK?rEL3IEJIKKXATB=M5LZ5!Tv̂SL5GKr/TIiISÎPri>IpmKIlHKt/,/IAD'(TK?IFLSIEAK

DLiaQX.LRRNPAI«LSl.S3VlMPnSSEK?SIK3EDLSTVEDSIDS<jiaTIST&ITASS3
DUHQLlBRBPAr«LSLSSVLIfflPreSRKSSTXSmCTVEDSTDaSHATISTAITASSS

TS1 SSSLPT»<RRLLrGQPLi»HE{Ki:VPPKaaSSI 5)F3SSSI>SKS m -QtfSK$ETS HSSRSR 
TSISGStFDKE&IAIGSPLFitKKIVITKHIGSTDFSSSG-lXiNSFYTSfRGil^ETSilSGRSR

VICg»2ZaraSRyîPA?SSDêSKB̂J£̂MaYIKERCH3ftEMLSVBKRS'3GGENEER 
i9I?PiSERPaSR213aJlYSSi»SSTSHR^2SQM{T?31iERCHSaEI«iSV3KBS3&3EHESa 
******************** *******•********-**** + *-************•* ******

Y S P T D H H A K i n i F F K E K T S S S S C r S F E R P n K H 2 f t L S N a L C P S S I P F P F A D ? T P Q T E T ' / ^ K 3 f
YSPT£aJKANIiyFn<EKISSSSGSEERK)lWfiM̂tIHJiCPGKTPFPFADPXPQTETV̂{5
I ! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Actual sequence rGHLQIH^aLRKTIEiDSISKW.DFftGHPDL.^OTSffilAK’IDXK'.’KKISDilS^JAHSVIQ:■ 
Theoretical sequence FGHLQIHMU^TEYDSISFKRDFQcHPDL^P^SKl^AKTOTKVKKIISDAS^AHSVKQ' 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * *

5!KIi3fY5fTALKSRP'SIIQviECVT5SDPLSEftSKTRGMEPP'5?SY>3’iRTLRSITSPL'VAHKLCJrr̂ K̂YK7ftLaSKTErîCVTG5DFL3EQSKTRGHEPF5f>3Ŷ*RTLRSIT3PL‘VAHPX
**A!i***********?«ri*'** **********!»**■**** ****** *****************

KPIRQCT̂IAWSILDSEHr̂CVEtVIiYiSQEXV̂Vl̂ISSDQlXIXIYYPBSSRSFPL KPIRQKTKK̂WSILDSEE'/rVZLVKEYASQEYVK̂JLOISSDSHTillYYPNGGRSFPL 
*.*** *******'»•***'**** ******* ***■***.********'*•*****+****»* *******

AiJRPPSPIEWISP.YSFONLPEKYWRKYQYASRFVQLLRSEfSPKITYFTRYAKCSL^WSPADS.PPSnDNISRYSFD>0,EEKYi9RKrerA5RF'/!yiLRSKSPKIlYmYAKCIltiENSP

GADrEWrfSGrKIHKIEDFIQVISKTGKSYILKSESSrwrSLKE^iaiYKXaAHESgRlC^£&DFirt,̂*?JYril?/lCI!JKTEDFIQ,/IESISK3YTt.kSES57̂SiKEEXK4rêlŜSBRiG

LALESIISEEERKTRSAPFFFIIIGRKPGSISSHGlLSPPPSTOSHYFIRER&SniKiW SUlcSnSEEERKTR3APFFPIIISRKF5ST33PKAÎ???S'̂ )3NYKRDRASrNRSWM
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

HSDA3FT0SBI1.^Stfn’HESI.GLTITASSTDIS3HSl5CpCI.PKSAQLLKSVrVlQJV5WA 
HSDAS F I Q A F I I ^ S l^ T H E G I S m T  A5G3 D t ^ S i i B K l S f C S M ^ ^  ; :

T̂-“SGAV»VOn'IDGSyLVV̂ASVSSISYT3EIGCTYRYGB3IERLPDYIÎ<LQCtSSILTQT.TSfir̂ /rjnJD̂SQLWOAGVSSTSYTSPHGOIlRYî IEW.PDYIKCSaQâSn-
* * * * * * * * * * * * * * * * * * * * * * * + * * * * * * * * * * * * * * * * * * *

LM f'SHHHJFH-LKLLSDI-V— IIFLLTFK K K K K IL^W IPSSrV iA A R V -R A R lilPLI 
I4^F3NETPifFH-LKLLSDI-V— ITFLLIFK K K K K Tl^R IPSSIV aftA FV -R A R IO TLI 
* * * * * * * * * * >  * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * *

Fig. 13. Alignment of amino acid sequence of PCDNA4/TO-Flag-Plk4. After subcloning of 

Flag-Plk4 into the inducible expression vector PCDNA4/TO, the plasmid DNA was purified and 

sent to ACGT (Toronto, ON) for sequencing. Standard CMV and BGH primers, as well as 

customized primers, were utilized to fully sequence the entire region encoding Plk4. The resultant 

DNA sequence was inputted into a protein translation program, Expasy, in order to obtain the 

corresponding amino acid (AA) sequence. A bioinformatics program called Vector NTI 

(Invitrogen) was utilized to generate the theoretical DNA sequence that should be obtained 

following proper ligation of Flag-Plk4 into the PCDNA4/TO vector. This sequence was also 

translated and then aligned with the AA sequence obtained from ACGT. AAs are represented by 

their single letter codes. Asterisks indicate a matching residue. The region highlighted yellow 

represents the actual Plk4 protein sequence. Similar alignments were performed with 

PCDNA4/TO-Flag-K41M (data not shown).
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PCDNA6/TR

Fig. 14. Schematic representation of the PCDNA6/TR vector. Select key components of the 

vector are depicted. The TetR gene (bases 1684-2340) encodes the tetracycline repressor 

responsible for regulating transcription of the gene of interest when co-transfected with the 

PCDNA4/TO inducible expression vector. PCMV (bases 232-819) is the cytomegalovirus 

promoter which governs TetR transcription. Ampicillin (bases 5666-6526 on complementary 

strand) and blasticidin (bases 3782-4180) are genes that confer resistance to the plasmid and 

allow for its selection in the presence of these antibiotics.
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Fig. 15. Stable expression of Flag-Plk4 and Flag-K41M in T-Rex™-293 cells. T-Rex™-293 

cells (.Invitrogen) stably expressing a tetracycline repressor (Tet) were transfected with either 

PCDNA4/TO-Flag-Plk4 or PCDNA4/TO-Flag-K41M, which both contain Tet binding sites. 24 h 

post transfection, tetracycline was added at a final concentration of 100 ng/mL to induce 

expression of the gene. After 18 h, whole cell lysates were prepared, subjected to SDS-PAGE and 

then immunoblotted with an anti-Flag M2 monoclonal antibody (Sigma) to confirm stable 

expression of Flag-Plk4 and Flag-K41M (upper panel). Subsequently, an immunoprecipitation 

with an anti-Flag antibody (Sigma) was performed to confirm the observed bands were indeed 

overexpressed Flag-tagged proteins (lower panel).
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establishment o f  the successful clones, cells were propagated to generate frozen stocks for future 

use. As a supplementary experiment, various concentrations of tetracycline (0, 25, 50,100, and 

200 ng/mL) were administered to one clone (Plk4-F) to determine the optimal concentration to 

induce expression. After 18 h, cells were lysed and the proteins were separated through SDS- 

PAGE and subject to immunoblotting. Western blot analysis revealed that 100 ng/mL produced 

the highest level of induction for PCDNA4/TO-Flag Plk4 expression (Figure 16).
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Fig. 16. Optimizatipn' df PCDNA4/TO-Flag-Plk4-F gene expression. Once positive clones for 

Plk4 and K41M gene expression were obtained, one clone was chosen (Plk4-F) to assay for 

optimal tetracycline-induced expression. Varying concentrations of tetracycline were added to’ 

each plate (0, 10, 25, 50, 100, and 200 ng/mL) followed by induction o f protein for an 18 hr 

period. Cells were lysed, the proteins separated through SDS-PAGE, and then detected by 

Western blotting. A positive signal at 100 kDa corresponds to the expressed Flag-Plk4 protein.
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CHAPTER VI 

DISCUSSION
t A-'

Putative interacting partners of Plk4

The major goal of this study was to identify and characterize putative interacting partners 

for Plk4. Plk4 is the least well-characterized member of the mammalian Plks. The protein 

partners with which it physically and/or functionally interacts with in vivo, as well as the 

mechanisms by which it is regulated, still remain to be elucidated. Because Plk family members 

have been found to target the same or functionally-related proteins, thereby exerting either similar 

or opposing effects on the interacting partner, it was worthwhile to ascertain whether Plk4 also 

associated with these candidate proteins and, if they exist, to define the mode of these 

interactions.

A key area of interest wa6 the putative interactions of Plk4 with proteins involved in the 

the cellular response to DNA-damage. The Plks have been shown to be involved with the 

coordination o f  a multitude of protein pathways that function to induce cell cycle arrest, promote 

apoptosis or DNA repair. Checkpoints are implemented at the G l, S, or G2/M phases in order to 

halt further progression when activated and prevent lesioned DNA from being propagated, thus 

ensuring proper repair of damaged strands and promoting genomic stability. The earliest step in 

the pathway to DNA-damage repair is the detection of impaired DNA by sensor proteins, crucial 

initiators of the damage response whose identities currently remain elusive (Zhou and Elledge, 

2000). More extensively characterized are the transducer proteins, which function by relaying the 

initial signal detected by the sensor proteins, and the effector proteins, ultimately responsible for 

executing the response by arresting the cell cycle. Key transducers of the DNA-damage response 

include the phosphoinositide kinase homologs ataxia telangiectasia-mutated (ATM) and ATM- 

and Rad3-related (ATR), as well as the more downstream protein kinases Chkl and Chk2.

i.) Chk2 physically associates with Plk4
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The results presented in this study provide novel evidence for Chk2 being an interacting
\

partner for Plk4, implicating a role of Plk4 in key DNA damage pathways. Chk2 is activated in 

cases of double-stranded breaks caused by ionizing radiation (IR), but is also induced upon 

ultraviolet exposure (UV) and treatment with the ribonucleotide reductase inhibitor hydroxyurea 

(HU) (Matsuoka et al, 2000). The Plks have been implicated as intermediary regulators in DNA- 

damage response pathways common to Chk2. Previously, Plkl and Plk3 were shown to 

phosphorylate Chk2 at distinct residues (Tsetkov et al, 2003; Bahassi et al, 2006). In the case of 

Plkl, Chk2 phosphorylation occurred at residues normally phosphorylated by ATM and ATR in 

the DNA-damage response (Thr-68 and Thr-26 or Ser-28), but in the case of Plkl modification of 

these residues occurred in the absence of DNA-damage at the centrosomes and midbody (Tsetkov 

et al, 2003). These findings suggest a role of Plkl and Chk2 in regulating chromosomal dynamics 

outside of the DNA-damage response. Similarly, Plk3 phosphorylates Chk2 at residues Ser-62 

and Ser-73, which results in the enhancement of DNA-damaged induced phosphorylation by 

ATM at Thr-68 (Bahassi et al, 2006). Upon mutation of Ser-73 to alanine in Chk2, Plk3 

phosphorylation at this site was prohibited, leading to a decrease in Chk2 activity, as well as an 

inability of the checkpoint kinase to be activated by ATM’s phosphorylation at Thr-68.

To further map out the region required for Plk4’s interaction with Chk2, full-length Plk4 

as well as deletion and point Plk4 mutants were expressed in HEK-293 cells, and the resultant 

lysates were subject to co-immunoprecipitation assays with anti-Chk2 antibody. Wildtype Plk4 

was found to associate with Chk2 as revealed by immunoblotting analysis (Figures 5A & B, 

‘Flag-Plk4’ lanes). The two kinase dead constructs utilized in the assays—D154N and K41M— 

were rendered catalytically-inactive through alteration of a charged residue (either Asp or Lys) to 

an uncharged one (Asn or Met) within the ATP-binding domain of Plk4; the resulting effect of 

this mutation is to incapacitate the enzyme from properly phosphorylating its substrate. Various 

point mutations in the kinase domain did not seem to hinder any interaction between the
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candidate protein and Plk4 (Figure 5A, lower panel, ‘Flag-K41M’ lane; Figure 5B, lower panel, 

‘Flag-154N’ lane) as evidenced by their co-immunoprecipitation. A previous study conducted by 

Tsetkov et al (2005) also showed that a kinase defective Plkl mutant was still able to pull down 

with Chk2. In addition, a study of the Plk homolog Plol in fission yeast showed that a kinase- 

dead mutant, as well as Plol lacking the entire kinase domain, were still able to associate with 

known interacting partners Cut23 and Dmfl/Midl (Reynolds and Ohkura, 2002). Additionally, 

co-immunoprecipitation studies with Plkl and the tubulin proteins showed that a kinase-dead 

Plkl mutant was greatly enriched in the tubulin immunoprecipitates (Feng et al, 1999). The 

results in this study imply that the kinase activity of Plk4 is not imperative for its binding to 

Chk2. A defective kinase domain does not preclude the possibility that these potential interacting 

partners may still be a substrate of Plk4; immunoprecipitation assays are limited in that they can 

demonstrate a physical interaction between two proteins, but fail to characterize the nature or 

consequence of that interaction. Therefore, further analysis on the interaction between Chk2 and 

Plk4 would be required to conclusively identify the manner in which the two proteins associate.

In addition to a catalytically-inactive mutant, a kinase-activating Plk4 mutant was also 

shown to co-immunoprecipitate with Chk2 (Figure 5B, lower panel, ‘Flag-T170D’ lane). Flag- 

T170D contains a point mutation in the T-loop activation domain of Plk4 that modifies a Thr at 

position 170 to an Asp; replacement of Thr by a charged residue mimics the effect of T-loop 

phosphorylation. Previous studies revealed that in Plkl, intramolecular association of the PBD 

with the T-loop in the kinase domain suppresses Plkl catalytic activity (Tsetkov et al, 2001). 

Phosphorylation of Thrl70 in the T-loop relieves the autoinhibitory effect of the PBD, resulting 

in a kinase that is hyperactive (Jang et al, 2001). Indeed, Swallow et al (2005) confirmed this 

mutation in Plk4 renders the kinase constituitively active. One explanation for the physical 

interaction that was observed with Chk2 is that a constitutively-active Plk4 mutant may indicate 

an inability of the kinase to dissociate from its targeted protein. This would cause a virtually
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permanent association between Plk4 kinase and its substrate that would be detected by a co-

immunoprecipitation experiment, as was observed in this study.
' \ 

Previous studies have defined the PB of Plk4 as a critical region for the formation of

intermolecular homodimers of the kinase (Leung et al, 2002); it is also an essential component to

the domain that enables proper subcellular localization of the protein. Pull down assays with only

the PB region of Plk4 did not show an interaction with Chk2, suggesting it may not be required

for their physical interaction in vivo (Figure 5C, lower panel, ‘Flag-PB’ lane). Indeed, deletion of

the PB of Plk4 did not affect the protein’s ability to bind to any of the proposed interacting

partners (Figure 5B, lower panel, ‘Flag-APB’ lane). A study conducted on Plkl and its interaction

with a-, P-, and y-tubulin, however, showed that deletion of the PB from Plkl did not

significantly affect its association with the tubulin proteins (Feng et al, 1999). These results

concur with the observations of this study, which confirmed that FLAG-APB maintained a

physical interaction with Chk2 despite the absence of the PBD. In a separate study, a yeast-two

hybrid assay was performed that revealed an interaction between full-length Plk2 and calcium-

and integrin-binding protein (CIB); the evidence showed that sole expression of the C-terminal

domain, which retained an intact polo-box and other conserved sequences, was no longer able to

physically associate with CIB (Ma et al, 2003). These results agree with the findings obtained in

this study that showed Chk2 did not pull down with the Flag-PB construct of Plk4. Some

contradictory evidence does exist, however, obtained from previous studies on other Plks, such as

the findings published by Reynolds and Ohkura (2003), which showed that mutations of

conserved residues within the PB region of Plol disrupted the association between this Plk

member and its potential interacting partners. Similarly, inactivating point mutations in the PBD

of Plkl also hindered its immunoprecipitation with Chk2, as well as with known substrates

Cdc25C and Mklp2, as demonstrated in previous experiments (Tsetkov et al, 2005; Elia et al,

2003; Neef at al, 2003). The fact that Plk4 was not able to associate with Chk2 when expressed

solely as the PB suggests that regions outside this conserved motif are necessary for their physical
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interaction. One possibility is that these kinases phosphorylate Plk4 within its catalytic domain; 

thus, the loss of this fundamental region from the Flag-PB construct would eliminate any 

potential for physical association. Perhaps Chk2 exists merely as an ‘adaptor’ protein rather than 

a direct substrate/kinase to Plk4. Therefore, regions outside the PB may act as attachment sites for 

these proteins; without these regions present, they cannot bind and recruit bona fide  

substrates/kinases of Plk4. Thus, the mechanism of interaction between Plk4 and these 

potentially associated proteins merits further investigation.

Plk4 is unique from the other Plk members in that it contains a single conserved PB, and 

a divergent PB region designated as the cryptic PB (cry-pb). Leung et al (2002) propose that the 

cry-pb and PB together are essential for Plk4’s self-association in vivo. Results indicate that the 

cry-pb alone does not pull down with Chk2 (Figure 5C, lower panel, ‘Flag-Rl’ lane), suggesting 

this region is not sufficient for interaction. Previous studies support the idea that the PB motifs 

individually expressed are not sufficient for proper function of the Plks, but rather the C-terminus 

expressed as a whole unit (ie. regions upstream of the PB, the linker region, as well as both PBs) 

that contributes to its phosphopeptide binding ability (Tsetkov et al, 2005). This may explain 

why Chk2 was not able to co-immunoprecipitate with only the cry-pb of Plk4, indicating a 

necessity of the other PBD components.

Reciprocal co-immunoprecipitations were also performed to confirm the validity of the 

interactions that were observed between Plk4 and Chk2, but unfortunately were unsuccessful. 

Originally, pull down assays were conducted by immunoprecipitating Chk2, followed by 

immunoblotting with an anti-Flag antibody to detect the presence of Flag-Plk4. Subsequent to 

immunoblot analysis, it was shown that wildtype, kinase-dead, kinase-active, and PB-deleted 

Plk4 proteins effectively co-immunoprecipitated with Chk2, as depicted in Figure 5A & B. 

Numerous attempts to detect an interaction by immunoprecipitating Flag-Plk4 constructs and 

probing with anti-Chk2, however, proved futile. Possible explanations for the observed 

phenomenon may be that endogenous Chk2 levels were too minimal to be co-immunoprecipitated
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with Plk4, making it difficult to experimentally capture a physical interaction between the two 

proteins. Originally, monoclonal anti-Chk2 antibody was employed to immunoprecipitate any 

endogenously-expressed Chk2 protein, while the overexpressed Plk4 was examined for a 

potential interaction. Conversely, the reciprocal experiment involved pulling down an already 

overexpressed Plk4 protein with a monoclonal anti-Flag antibody, then attempting to detect a 

potential association with endogenous Chk2. In the former case, both proteins are likely more 

abundant due to antibody-targeting of Chk2 coupled with the overexpression o f Plk4, relative to 

the latter case. Chk2 remains relatively inactive in the absence of DNA damage; only upon 

exposure to genotoxic stresses such as UV or IR does the kinase become activated upon 

phosphorylation by more the upstream checkpoint kinases ATM and ATR (Tsetkov et al, 2003). 

It is possible that inducing DNA-damage prior to co-immunoprecipitation assays would greatly 

enhance endogenous Chk2 levels, thereby increasing the likelihood that a physical association 

can be detected upon pulling down Plk4. In addition, a positive interaction result from 

overexpressing a tagged Chk2 construct and performing co-immunoprecipitations. with an 

antibody against endogenous Plk4 would also enhance the validity that Chk2 and Plk4 physically 

interact in vivo. Currently, however, no effective endogenous antibody for Plk4 exists, precluding 

a means of detecting Plk4 other than through an overexpression system.

ii) ATM physically associates with Plk4

As mentioned earlier, ATM is crucial for the initiation o f signaling pathways in 

mammalian cells following exposure to ionizing radiation (IR) and to other agents that introduce 

double-strand breaks into cellular DNA (Kastan and Lim, 2000). Upon activation, ATM triggers a 

signal transduction pathway that ultimately leads to repair of DNA lesions, one pathway being the 

phosphorylation of the tumor suppressor p53; this results in increased stability o f the protein and 

more pronounced transcriptional activity, eventually giving rise to a G1 cell-cycle arrest. (Zhou 

and Elledge, 2000). Additionally, activation of the checkpoint kinases Chk l and Chk2 by ATM is
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an intermediary step in the pathway leading to mending unstable DNA. Previous studies have 

provided evidence that ATM can mediate inhibition of Plkl in response to DNA damage (Van 

Vugt et al, 2001). It was shown that when ATM - / -  cells are exposed to the DNA-damaging 

agent adriamycin, Plkl is no longer effectively inhibited, implicating ATM as a key regulator of 

Plkl repression. In this study, similar co-immunoprecipitation experiments to those conducted 

with Plk4 and Chk2 were performed with ATM to determine if it also is a candidate interacting 

partner. Evidence showed that full-length Flag-Plk4, kinase-dead Flag-K41M and Flag-154N, and 

kinase-active Flag-T170D can all pull down with immunoprecipitated ATM (Fig. 6A & B, lower 

panels). One notable observation was that the kinase-active mutant of Plk4 showed higher levels 

of immunoprecipitated ATM protein relative to the other constructs (Figure 6B, lower panel, 

‘Flag-T170D’ lane). As mentioned earlier, Plkl kinase activity is suppressed by the 

intramolecular association of the PBD with the T-loop, and that phosphorylation of Thrl70 in the 

T-loop relieves the autoinhibitory effect (Tsetkov et al, 2001; Jang et al, 2001). It is possible that 

Plk4 experiences a similar effect and that release from autoinhibition upon a T170D mutation (as 

exhibited in the Flag-T170D construct) favours a more open structure o f Plk4. This in turn may 

facilitate its association with other proteins, and possibly explain why co-immunoprecipitation 

assays with ATM revealed a stronger interaction with the kinase-active Flag-T170D mutant of 

Plk4. Deletion of the PB did not hinder an interaction with ATM and Plk4, as was also observed 

with Chk2 (Figure 6B, lower left-hand panel, ‘Flag APB’ lane.). However, ATM was able to bind 

with Flag-Rl, the construct expressing the cry-pb of Plk4 (Figure 6B, lower right-hand panel, 

‘Flag-Rl’ lane). Conversely, Chk2 did not associate with the cry-pb. This indicates that the cry- 

pb region of Plk4 may be critical to its physical association with ATM, and suggests that Plk4 

may interact in a different manner with ATM than with Chk2. It would be interesting to observe 

whether expression of a deletion construct that lacks the cry-pb would preclude an interaction 

between Plk4 and ATM. A construct expressing Flag-Acry-pb was not available at the time 

experiments for this study were being performed, though a HEK-293 cell line stably expressing
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this protein is currently being developed by Doreen Ezeife (University of Windsor, ON).

Expression of this construct and co-immunoprecipitations with anti-ATM would confirm whether
' \  

or not this region is indispensable for associating with ATM.

iii.) ATR physically associates with Plk4

ATR is structurally similar to ATM, with a similar role in inducing a G2/M cell cycle 

arrest in cases of genotoxic stress, however is primarily triggered upon UV exposure rather than 

IR, which is the case with ATM (Van vugt et al, 2001). As with ATM, ATR was also found to be 

a direct regulator of p53 through its phosphorylation of the tumor suppressor, implying it is an 

important link between the DNA damage response and cell cycle arrest (Tibbetts et al, 1999). 

Van vugt and co-workers (2001) showed in their study that ATR mediates inhibition of Plkl in 

response to UV damage. In ATM - / -  cells that were subjected to UV treatment, Plkl activity was 

still suppressed, suggesting the presence of ATR was able to maintain its inhibition; however 

upon administration of caffeine, which blocks activity of ATM/ATR in the DNA-damage 

response, Plkl was no longer suppressed. This study found that full-length, kinase-dead, and 

kinase-active Plk4 all display a physical interaction with ATR Experiments were performed in the 

absence of UV damage, which is the key inducer of ATR activity; despite this fact, an association 

with Plk4 was still detected, indicating that that the interaction between ATR and Plk4 may not 

be entirely DNA-damage-dependent. These two proteins may form an association that maintains 

itself throughout the cell cycle and upon UV-induced damage, may alter their interaction with 

each other. The precise effects of genotoxic stress to the interaction between Plk4 and ATR 

remains to be elucidated.

As with Chk2, reciprocal co-immunoprecipitations were also attempted with ATM and 

ATR, namely by pulling down Flag-Plk4 and analyzing if ATM/ATR was able to co- 

immunoprecipitate with the targeted protein. Again, the co-immunoprecipitations performed in 

this manner were ineffective and no ATM/ATR protein was able to be detected by Western
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blotting (data not shown). One ratiqnalization for this may be that because ATM and ATR both 

have relatively high molecular masses of -370 kDa (Chen and Lee, 1996), these proteins may not 

have been effectively transferred from the polyacrylamide gel used in SDS-PAGE onto the PVDF 

membrane during the semi-dry transfer. Indeed, the large size of ATM and ATR introduces some 

difficulties when performing immunoprecipitation assays, therefore scrupulous measures need to 

be undertaken to optimize experiments with these proteins in the future.

iv.) a-, (1-, y-tubulin, BRCA2, and Rb do not physically associate with Plk4

Numerous other proteins were tested as putative interacting partners with Plk4 on the 

basis of existing data showing direct or indirect association with other Plks. Feng and colleagues 

(1999) presented evidence that Plkl can physically associate with the tubulin proteins in a stable 

complex that persists during iiiterphase and mitosis. It was found that Plkl was able to 

phosphorylate the tubulins, which functions to adjust the stability and organization of microtubule 

structures that form the mitotic spindle (Feng et al, 1999). This is a particular significant event 

during mitosis since it ensures proper spindle assembly and thus accurate segregation of 

chromosomes to dividing cells. Spindle assembly initiates from the centrosomes, which are 

designated the ‘microtubule organizing centre’ (MTOC). y-tubulin is particularly ubiquitous at 

these structures, since it exists as part of a meshwork of proteins within the pericentriolar material 

of the centrosome; the spindle itself is composed of a- and p-tubulin protein as its monomeric 

subunits (Varmark, 2004). Plk4 has been confirmed to localize to centrosomes where it mediates 

its duplication during mitosis; overexpression of Plk4 can produce an excess of centrioles, while 

depletion of the protein through siRNA can cause progressive centriolar reduction (Bettancourt- 

Dias et al, 2005; Habedanck et al, 2005). The fact that Plk4 can localize to centrosomes makes 

the tubulin proteins reasonable candidates for interaction with Plk4. Co-immunoprecipitation 

assays, however, showed there was in fact no physical association between Plk4 and any of the 

tubulin proteins (data not shown). These results do not completely exclude the possibility of a

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

putative association between Plk4 and a-, 0-, or y-tubulin. The centrosomes and mitotic spindle 

are structures that mature concomitantly with cell cycle progression. As the bipolar spindle
v

progressively lengthens, the need for a- and P-tubulins to polymerize the microtubules is greater, 

which should prompt an increase in their protein levels during M phase. Studies have confirmed a 

twofold increase in tubulin protein synthesis during mitosis in HeLa cells (Bravo and Celis, 

1980). If an interaction does exist between Plk4 and any of the tubulin proteins, and that 

association is highly transient, it may be necessary to enrich for cells in the mitotic phase through 

the addition o f nocodazole, for example; this would capture cells in a phase when maximal 

tubulin protein synthesis is occurring, and could increase the likelihood of capturing short-lived 

interactions between Plk4 and the tubulins.

BRCA2 is a tumor suppressor protein that functions by repairing double-stranded breaks 

in DNA, thus helping to maintain genomic stability and cell cycle progression (Lin et al, 2003). 

Evidence shows that Plkl is able to phosphorylate BRCA2 and that this association results in 

modulation of the tumor suppressor’s activity (Lin et al, 2003). A physical interaction between 

Plk4 and BRCA2 was not observed to occur based on the presented co-immunoprecipitation 

results (data not shown). In the study conducted by Lin and co-workers, however, cells were 

initially synchronized in G2/M phase prior to assessing for any putative interactions between Plkl 

and BRCA2; this represents the stage of maximal Plkl expression. Similarly, Plk4 exhibits the 

highest proteins levels at M phase (Hudson et al, 2001). It is possible that no physical association 

was observed between Plk4 and BRCA2 because the majority of cells were asynchronous, 

suggesting that expression of either gene may not be at its maximum potential. Cell 

synchronization through the addition of nocodazole, a microtubule-depolymerizing agent that 

induces G2/M block (Cooper, 2003), followed by release arrested cells, may enhance the 

potential for BRCA2 to associate with Plk4 if it is indeed a bona fide  interacting partner .

Retinoblastoma (Rb) is a classical tumor suppressor protein that suppresses the 

transcription of critical targets in a cell cycle-dependent manner and thus prevents abnormal

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

cellular proliferation (Wiman et al, 1993). In early G l, Rb exists in an unphosphorylated state; 

however, the protein progressively attains a hyperphosphorylated condition in late Gl that
» - v '

persists until the end of M phase (Weinberg, 1995). One study showed how Plkl is a target of the 

Rb tumor suppressor pathway such that Rb activation leads to suppression of Plkl activity 

(Gunawardena et al, 2004). Conversely, loss of Rb deregulates Plkl repression. To determine if 

Plk4 shows an association with Rb, various constructs encoding Plk4 protein were transfected 

into mammalian cells and lysates were subjected to co-immunoprecipitation. No physical 

association was detected between Rb and Plk4. Although Plk4 was not found to interact directly 

with Rb, it does not rule out the possibility that Plk4 still participates in the Rb transduction 

pathway and that intermediary proteins may be involved linking the two proteins in an indirect 

manner. Plkl repression by Rb was discovered to require a chromatin remodeling complex called 

SWI/SNF, which was in fact responsible for the histone deacetylation of the Plkl promoter region 

that prevented Plkl transcription (Gunawardena et al, 2004). Without SWI/SNF present in cells, 

Rb was no longer able to mediate inhibition of Plkl activity. It is possible that Plk4 is indirectly 

related to Rb activity rather than through a direct physical association and that third-party proteins 

are required for a functional link between Rb and Plk4 to be witnessed (Table 3).
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Table 3: Potential Candidate Interacting Partners of Plk4

Candidate P artner Tested Interaction with 
Plk4 

observed? (+/-)

Region of Plk4 
not required for 

interaction
Chk2 + Polo box 

Cryptic polo box

ATM + Polo box

ATR + Polo box

a-tubulin - N/A

P-tubulin - N/A

y-tubulin - N/A

BRCA2 - N/A

Rb - N/A
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Establishment o f  stable cell line expressing Plk4 and kinase dead K41M mutant

Previous experiments involving transient transfection of Flag-Plk4 vectors into various 

cell lines such as HEK-293, U20S, and mouse fibroblast 3T3 cells displayed very poor and 

inconsistent transfection efficiencies, as revealed by immunoblotting analyses. Decreased cell 

viability due to contamination or overconfluency may have contributed to such low gene 

expression, which often posed difficulties in performing further experiments that required ample 

protein levels; establishing a HEK-293 cell line that consistently retained the Plk4 gene would 

help circumvent those problems. Creating a cell line that stably expresses a gene of interest 

provides numerous advantages over the more transient methods typically used in molecular 

biology studies. Habedanck et al (2005) were able to establish inducible osteosarcoma epithelial 

U20S cell lines that stably express both Flag-Plk4 and a kinase dead Flag-D154A mutant Plk4, 

which were then utilized to study the effects of Plk4 overexpression on centrosome duplication. 

Two separate human embryonic kidney 293 (HEK-293) cell lines containing either a tetracycline- 

inducible Flag-Plk4 or a kinase defective Flag-K41M vector were generated in this study. Full- 

length Flag-Plk4, as well as the kinase defective Flag-K41M mutant, were both cloned into an 

expression vector that was under control of a tetracycline repressor. By making the expression of 

Plk4 as part of an inducible system, potential toxicity to the cells due to prolonged Plk4 

expression could be avoided. For example, previous experiments have shown that exogenous 

Plk4 expression can induce the formation of multiple centrioles, which can cause aberrant mitotic 

spindle assembly and subsequently contribute to genomic instability (Habedanck et al, 2005). 

Without a means of temporally modulating the expression of Plk4 in the stable cell lines, it is 

possible that mitotic defects will amplify with each round of cell division, thus making the cells 

severely compromised for further experimentation. Therefore, by making the expression of Plk4 

under control of a tetracycline (Tet) repressor, one can manipulate when the protein is expressed 

and limit the exposure of the cell to potential adverse effects associated with overexpression.
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CHAPTER VII 

FUTURE DIRECTIONS 

The results described in this study provide preliminary evidence for Chk2, ATM, and 

ATR being interacting partners with Plk4. To extend the relevance of these findings, one 

important question that should be addressed is: does Plk4 phosphorylate these candidate partners 

or vice versa? Plk4, Chk2, ATM, and ATR are all protein kinases, which function by adding a 

phosphate to their respective substrates, generally leading to a change in the substrate’s 

regulation, activity, or stability. As previously mentioned, Plkl and Plk3 both physically interact 

with Chk2, leading to its phosphorylation (Tsetkov et al, 2003; Bahassi et al, 2006). In vitro 

kinase assays examining Chk2 as a substrate of Plk4 would supplement the observed physical 

association with a functional relevance. Similar investigations on potential kinase:substrate 

relations between Plk4 and ATM/ATR can also be conducted. Conversely, the possibility remains 

that Chk2, ATM, and ATR may in fact phosphorylate Plk4, leading to potential changes in its 

regulation within the cell. Tec, a protein tyrosine kinase (PTK) critically involved in mediating 

cytokine and antigen receptor signaling, currently remains the only enzyme known to 

phosphorylate Plk4 (Yamashita et al, 2001). Yeast two-hybrid analysis and immunoprecipitation 

detected Plk4 as an interacting partner of Tec kinase, while in vitro kinase assay confirmed Tec 

can phosphorylate and induce activity of Plk4 (Yamashita et al, 2001). Therefore, it seems that in 

vitro kinase assays are a logical next step to the presented findings. The experiments conducted in 

this study reveal that Plk4 can interact with each of these proteins independently of one another. 

Chk2, ATM, and ATR, however, are well-characterized participants in the DNA-damage 

response pathway with clearly defined functional associations. ATM and ATR are both 

responsible for phosphorylating Chk2 at Thr-68, a modification that transforms Chk2 into its 

active form (Matsuoka et al, 2000). Whereas Chk2 is phosphorylated by ATM upon IR exposure, 

ATR interacts and phosphorylates Chk2 when prompted by UV damage (Tsetkov et al, 2003).
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Despite the findings o f this study, the possibility remains that the association of Plk4 with these 

checkpoint kinases cannot simply be defined as a direct, linear interaction, but rather as a 

component of a larger complex of proteins consisting of bridging associations. To investigate this 

possibility, interactions between Plk4 and a particular candidate partner should be analyzed in the 

absence of the other proteins to determine if the physical association is retained. For example, 

ATM-deficient cell lines can be employed as an overexpression system for Plk4 followed by pull

down assays of the whole cell lysates with Chk2 antibody; if Plk4 and Chk2 are still able to co- 

immunoprecipitate in cells lacking ATM, this would corroborate the findings that these two 

kinases have a physical interaction. Analyzing the effects of ATM- and ATR-inhibiting agents 

such as caffeine (ATM and ATR) and Wortmannin (ATM) on the associative status between Plk4 

and Chk2 would offer similar evidence. Furthermore, co-expression of differentially-tagged 

constructs for Plk4 and Chk2 (of ATR or ATM) in HEK-293 cells and subsequent in vitro co- 

immunoprecipitation and immunoblotting analyses would reveal if the observed physical 

interactions persist independently. In addition, the effects of radiomimetic agents such as 

adriamycin on Plk4 kinase activity should be explored. This would lend itself to investigating 

how genotoxic stress would affect Plk4’s physical and potentially functional association with 

ATM, ATR, and Chk2, should these proteins be revealed to be putative substrates. Reciprocal co- 

immunoprecipitations would also significantly bolster the findings of a physical interaction with 

Plk4 and the candidate partners. Efforts to reciprocally immunoprecipitate Chk2 with Plk4 were 

futile. In addition, attempts to pull down Plk4 and detect a co-immunoprecipitation with ATM or 

ATR were also unsuccessful, likely due to the large size (370 kDa) of these kinases. It would be 

worthwhile to rigorously optimize this experiment so as to provide further validity to the physical 

interaction that was originally observed. Although no physical interaction was detected with Plk4 

and BRCA2, Rb, a-, P-, or y-tubulin in this study, sub-optimal conditions may have precluded the 

detection of possibly low-affinity or transient interactions. As described previously, the 

enrichment of cells arrested at the G2/M phase through nocodazole addition may greatly enhance
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the likelihood of revealing a physical association, since Plk4 is expressed at maximal levels 

during this phase.

Finally, the creation of the Plk4 stable cell lines as achieved in this study will be an 

invaluable tool in pursuing the aforementioned experiments. The enhanced and consistent gene 

expression afforded by these cell lines facilitate further studies that require the presence of a 

tagged Plk4 protein such as in protein interaction assays, as well as localization experiments, 

kinase assays, cell cycle analyses, and DNA damage experiments.
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APPENDICES 

APPENDIX A

Customized primers used for sequencing of PCDN4/TO Flag Plk4

Primer
name

Sequence Tm

ET281 5’ GAT AAG AAA GCC ATG TAC AAA GCA GGA ATG G 3’ 60 °C

ET282 5’ CAG GTC TTT CAA AAG ATC CAG AAC TAC TGG 3’ 60 °C

ET283 5 ’ TGT CGT AAT AAC CCC GCC CCG 3 ’ 58°C

ET284 5 ’ CGC ATC TTC AAT CAC TCT CCC CCG 3 ’ 61 °C

* Primers were designed using Primer3, a web-based program used to facilitate the creation 
of oligonucleotide sequences utilized specifically for the sequencing of desired regions within 
DNA (Rozen and Skaletsky, 2000).
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APPENDIX B

Antibodies against putative interacting partners used in co-immunoprecipitation assays

Antibody Polyclonal or 
Monoclonal

Origin Company

Anti-ATM Monoclonal Mouse Sigma

Anti-ATR Polyclonal Mouse Calbiochem

Anti-Chk2 Monoclonal Mouse Sigma

Anti-a-tubulin Monoclonal Mouse Sigma

Anti-p-tubulin Monoclonal Mouse Sigma

Anti-y-tubulin Monoclonal Mouse Sigma

Anti-BRCA2 Polyclonal Rabbit Sigma

Anti-Rb Monoclonal Rabbit Sigma
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