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ABSTRACT

The Plk family of serine/threonine kinaese are key players in the cell cycle, 

centrosome regulation and DNA damage pathways. Sak's (Plk4) involvement in these 

processes is not fully established. We examined Sak’s role in DNA damage pathways and 

found that full length wild-type Sak protein was found to be subjected to phosphorylation 

both in the presence and absence of UV. This post-translational modification did not 

occur in the Sak polo-box and cryptic polo-box domains. Furthermore, we established 

that Sak interacts with two key DNA damage proteins, ATR and Chkl. Additionally, 

another DNA damage protein Chk2, which also interacts with Sak, was found to be a 

substrate of Sak. Interestingly, UV exposure abolished phosphorylation of Chk2 by Sak, 

suggesting that Sak is in fact inhibited by UV radiation. These findings suggest that Sak 

may play a role in the DNA damage response pathway.
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CHAPTER I 

INTRODUCTION

The Cell-Cycle

Every cell undergoes an orderly sequence of events in which its genomic and 

structural content is duplicated and divided into two. This process is termed the cell- 

cycle and is essential for every living cell. During this process, DNA is replicated into an 

identical copy from the mother strand, then the cell proceeds to mitosis; a phase of the 

cell cycle in which a series of dynamic events leads to the passage of this replicated DNA 

into the daughter cells. This process involving the growth, replication and division of the 

eukaryotic cell requires the correct function of numerous proteins and the sequential 

activation of cyclins and cyclin-dependent kinases (cdks) which drives this disciplined 

transition through the phases of the cell cycle (Obaya et al., 2002).

To ensure that correct cell division occurs, cells have evolved mechanisms which 

make certain the completion of one cell cycle phase prior to initiation of the next stage. 

Termed the cell-cycle checkpoints, the cell is able to halt the progression of cellular 

growth, replication and division at particular phases to ensure DNA damage or cellular 

instability is repaired before proceeding to the following step. Without these checkpoints, 

faulty replicated DNA or incorrect cellular division may lead to aberrant cellular growth 

or tumourigenesis (Kastan et al., 2004).

One of the key regulatory mechanisms that the cell utilizes to control cell cycle

progression is through the phosphorylation and dephosphorylation of key proteins

involved in cell cycle control by several protein kinases and phosphatases respectively.

In general, protein kinases catalyze the transfer of the gamma-phosphate group of

adenosine triphosphate (ATP) to the hydroxyl groups of serine and threonine residues or

1
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the phenolic group of tyrosine residues of proteins (Schlessinger, 2002). Phosphatases 

are involved in the reverse reaction and catalyze the release of a phosphate group from a 

residue. Once proteins are phosphorylated or dephosphorylated, they may undergo a 

conformational change that alters their activity, affinity for substrate, stability or cellular 

localization.

A family of proteins known to be involved in cell cycle regulation are the Polo

like kinases and their specific roles will be examined later in this chapter (Roshak et al., 

2000, Qian et al., 2001, Toyoshima-Morimoto et ah, 2002, Myer et al., 2005).

Polo-like kinases (Plks)

The polo-like kinases (Plks) comprise a family of serine/threonine kinases that are

highly conserved from yeast to humans (Takai et al., 2005). These proteins are involved

in a number of vital processes during the cell cycle such as bipolar spindle formation

(Sunkel and Glover, 1988, Kitada et al., 1993, Ohkura et al., 1995), centrosome

dynamics (Lane and Nigg, 1996, Casenghi et al., 2003), activation of Cdc25C allowing

entry into mitosis (Roshak et al., 2000, Toyoshima-Morimoto et al., 2002), regulation of

the anaphase-promoting complex and cytokinesis (Lee et al., 1998, Golan et al., 2002,

Jiang et al., 2006). In addition, members of the Plk family have been implicated in roles

involving DNA damage response (van Vugt et al., 2001, Xie et al., 2001). The founding

member of this family was first identified in Drosophila melanogaster (fruit fly) and

named Polo due to the protein’s association with the spindle poles. Furthermore,

mutations in Polo resulted in highly branched spindle poles leading to abnormal mitotic

divisions in brain cells, as well as aberrant meiosis in males (Sunkel and Glover, 1988).

Since the discovery of Polo, other Plk family members have been identified in simple

eukaryotes such as Cdc5 in Saccharomyces cerevisiae (Kitada et al., 1993), Plol in

2
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Schizosaccharomyces pombe (Ohkura et al., 1995), tbplk in the protist Trypanosoma 

brucei (Graham et al.., 1998) and PlkA in the filamentous fungus, Aspergillus nidulans 

(Bachewich et al., 2005). Complex eukaryotes contain more than one Plk member and 

indeed, homologues of Polo have been found in various model species indicating a 

conserved function in ensuring species survival (Dai, 2005). In Caenorhabditis elegans 

and Xenopus laevis, three homologues have been identified and denoted Plcl, Plc2 and 

Plc3 (Chase et al., 2000) and Plxl, Plx2 and Plx3 respectively (Duncan et al., 2001). 

Furthermore, four homologues were identified in mammals and named Plkl, Plk2/Snk, 

Plk3/Prk/Fnk and Plk4/Sak (Eckerdt et al., 2005). This chapter aims at introducing the 

the Polo-like kinases found in simple eukaryotes, as well as P lk l-3. However, the focus 

of my research deals directly with Sak (also known as Plk4). As a result, Chapter 2 will 

be entirely devoted to introducing this protein.

The General Structure o f the Plks

In general, the Polo-like kinases are defined as having two distinct features. The 

first is a highly conserved N-terminal serine/threonine kinase domain that most closely 

resembles the kinase domains of Aurora kinases and the calcium/calmodulin-dependent 

kinases (Lowery et al., 2005). In addition, the Plks share one or two C-terminal 

conserved stretches of amino acids termed the polo-boxes (Dai et al, 2006). These polo- 

boxes function as a single unit and as a result, have been named the polo-box domain. 

Unlike the kinase domain, the polo-box domain is less conserved where less than half the 

amino acids are conserved among species (Lowery et al., 2005). (Figure 1)

3
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'  y '  V------------ v------------ '
Kinase Domain Polo-box Domain

Figure 1. The conserved structure of Polo-like kinases (Plk). The structure ofthe Plks is 
conserved from yeast to mammals. A highly conserved protein kinase domain is located at the 
N-tenninal and shown here in blue. The two polo boxes are shown in yellow. These two areas 
and the linking region between them are referred to as the polo-box domain.

4
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The Polo-box Domain

When examining the crystalline structure of the polo-box domain for Plkl, Cheng 

et al. found that each polo-box contains an alpha-helix and a six stranded antiparallel 

beta-sheet. Each polo-box consists of approximately 80 amino acids and the two 

conserved domains are joined together by a highly variable linker region consisting of 

approximately 20 amino acids (Cheng et al., 2003). This six-stranded antiparallel beta 

sheet seems to form a shallow cavity, allowing for peptides to bind. The linker region, 

although highly variable and disordered, joins the two polo-boxes and borders the target 

peptide binding site (Garcia-Alvarez et al., 2006).

Studies have suggested that the polo-box domain is essential for subcellular

localization. When a single point mutation was introduced changing a tryptophan to a

phenylalanine at the conserved amino acid 414, Plkl was no longer able to localize to the

spindle poles and structures thought to be involved in cytokinesis (Lee et al., 1998).

Similarly, this same group found that a mutated polo-box and an inactivating kinase

mutation were unable to rescue the cdc5-defect phenotype although kinase activity was

not needed for Plk localization to the centrosomes and cytokinetic neck filaments of the

budding yeast (Lee et al., 1999). Hanisch et al., (2006) further demonstrated that the

polo-box domain localized to centrosomes, kinetochores and the spindle midzone.

Expression of this construct allowed for proper bipolar spindle formation with proper

chromosome segregation in HeLa S3 cells. However, this expression caused the

appearance of an irregular metaphase plate and the chromosomes were unable to properly

congress causing cells to arrest. That is, although the overexpression of the wildtype

polo-box domain resulted in mitotic arrest similar to the depletion of Plkl, overexpression

of the polo-box still allowed centrosome maturation, separation of the chromosomes and

5
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spindle formation to occur (Hanisch et al, 2006). In addition, the polo-box domain of 

Plk3 has also been found to localize to the centrosome during interphase, the spindle 

poles during mitosis and the midbody during cytokinesis. An intact polo-box domain, 

and not the kinase domain, was required for normal distribution of Plk3 and 

overexpression of the Plk3 polo-box domain induced apoptosis in U20S cells (Jiang et 

al, 2006).

The polo-box domain of Plkl has further been identified as a phospho- 

threonine/serine binding domain allowing for Plkl to recognize its substrates and localize 

to cellular structures (Elia et al, 2003a). This led to the observation that all mammalian 

Plk homologues, as well as the Plk members from Xenopus laevis and S. cerevisiae, 

showed selection for the consensus sequence most generally noted as [Pro/Phe]- 

[cp/Alacdc5/Glnpik2 ]-[Thr/Gln/His/Met]-Ser-[pThr/pSer]-[Pro/X], where cp is any 

hydrophobic amino acid. Upon substrate binding to the Polo-box domain of Plkl, it was 

observed that only His-538 and Lys-540 interact directly with the phosphate group of the 

substrate and mutations of these conserved residues resulted in the abolishment of 

phosphopeptide binding to the polo-box (Elia et al, 2003b). Indeed, when these residues 

were mutated to alanine, the polo-box was unable to localize to the kinetochores and 

localization to the centrosomes was drastically decreased (Elia et al, 2003b, Hanisch et 

al, 2006), thus indicating the importance of binding of the polo-box to substrates 

resulting in its localization.

It has been proposed that the kinase activity of the Plks is regulated by the polo-

box domain. Firstly, Jang et a l (2002) observed that truncated Plk protein lacking the

polo-box domain had increased kinase activity. This suggested that the polo-box may

inhibit the catalytic kinase domain of Plk through intramolecular interactions (Jang et al.,

6
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2002a). Similarly, binding of the polo-box to the phosphopeptide motif of substates also 

increased the kinase acitivity of P lk l. This binding is believed to cause a conformational 

change, and as a result, liberates the kinase domain of Plk allowing phoshorylation of its 

T-loop (at threonine-210) (Elia et al, 2003b). Consequent phosphorylation of Plk in this 

manner leads to its activation where it may phosphorylate the same protein that contains 

the phosphopeptide binding motif resulting in a feedback loop system. In addition, it may 

phosphorylate other associated proteins, acting as a key step in a phosphorylation 

cascade.

Characterizing the Phosphorylation Status o f the Plks

Characterizing the phosphorylation site of a protein is essential in shedding light 

onto the activity and ability of that protein. Thus, determining the phosphorylation status 

of the Plk members has further given insight into how these proteins function and are 

regulated. By mutating threonine on amino acid 210 (a conserved site among the Plk 

members) to an aspartate which mimics phosphorylation, Lee and Erikson (1997) were 

able to greatly increase the kinase ability of Plkl towards casein in vitro (Lee and 

Erikson, 1997). Thus, it has been suggested that this residue is contained within the “T” 

or activating loop in the kinase domain and phosphorylation of this residue is essential for 

triggering the kinase activity of Plkl (Jang et al., 2002b). In addition, the 

phosphorylated T210 residue increased greatly as cells proceed to mitosis, indicating that 

this event assists in activating Plkl during its roles throughout this phase (Jang et al., 

2002b).

Nakajima et al. (2003) were the first group to suggest a crude consensus sequence

for substrate phosphorylation by P lk l. They determined that the sequence [Asp/Glu]-[X]-

[Ser/Thr]-[(p]-[X]-[Asp/Glu] (where X is any amino acid and (p is any hydrophobic amino

7
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acid) to be the optimal phosphorylation sequence by this kinase. Further refinement 

determined the consensus sequence to be [X]-[(p/Glu]-[Asp/Glu]-[Asp/Glu/Ser]- 

[Ser/Thr]-[ cp ]-[Ser/ cp ]-[Ser/Glu/Asp]-[Glu] and revealed that Plk2 and Plk3 have very 

similar substrate specificity (Johnson et al., 2007).

Investigations into the phosphorylation status of P lk l-3 have determined that the 

kinase ability of these proteins is inhibited by Wortmannin. A potent fungal metabolite, 

Wortmannin was once believed to inhibit only the members of the PI 3-kinase family, 

such as ATM and ATR (Liu et al., 2005). Although the protein level did not change, 

surprisingly, this metabolite was found to inhibit the activity of Plkl in intact cells 

resulting in G2/M phase arrest (Liu et al., 2005). Similarly, the kinase ability of Plk3 was 

also potently inhibited by Wortmannin, suggesting a universal ability to block all Plk 

member function (Liu et al., 2007). Indeed, a model has been proposed explaining the 

binding of Wortmannin to P lkl-3. It explains that the Wortmannin molecule associates 

with three conserved amino acid residues (Cys 67, Lys 82 and Cys 133) and interferes 

with the ATP binding ability of these kinases (Johnson et al, 2007).

Normal Gene and Protein Expression o f the Polo-like Kinases

When considering the mammalian Polo-like Kinases, each member is located at 

distinct chromosomal locations. Human Plkl is located at 16pl2.3 (murine Plkl is 

located on chromosome 7), 5ql2.1-13.2 is the chromosomal location of human Plk2 

(chromosome 13 in mice), human Plk3 is at position lp34.1 (murine Plk3 is on 

chromosome 4) and Sak/Plk4 is located on chromosome 4q28 (chromosome 3 in mice) 

(Winkles and Alberts, 2005). The diverse chromosome locations of the mammalian Plk 

members demonstrates the divergence of these proteins during the evolutionary process

and gives further input into their distinct cellular roles.

8

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.



Plkl gene expression during the different phases of the cell cycle has been 

observed. Lake and Jelinek (1993) first reported the regulation of human STPK13 

mRNA, which encoded a protein kinase related to polo and cdc5. They found that the 

mRNA expression of this gene was strictly regulated throughout the cell cycle where it 

was present in growing but not in non-growing cells. Furthermore, they found that the 

expression of STPK13 mRNA was low in G1 phase and began to accumulate in S phase. 

The expression of this gene reached its maximum abundance during G2/M (Lake and 

Jelinek, 1993). These observations were confirmed by Lee et al. (1995), where they 

showed that STPK13 mRNA corresponded to the mRNA expression of Plkl. Using NIH 

3T3 cells, they were able to confirm the work performed by Lake and Jelinek, showing 

that STPK13 corresponded to Plkl gene expression levels and further demonstrated that 

the protein expression and catalytic activity of Plkl followed the same trend (Lee et al., 

1995). From there, it was observed that the expression of Plkl was found in many other 

experimental systems illustrating a positive correlation between the expression of Plkl 

and cell growth (Winkles and Alberts, 2005). Furthermore, Plkl mRNA levels were 

detected in large amounts in mouse testis, and to a weaker extent, in the ovaries, spleen, 

intestine, liver, pancreas and thymus. However, no Plkl gene expression was found in 

non-diseased tissues containing low or non-proliferating cells such as the heart, brain, 

lung, kidney and stomach (Lake and Jelinek, 1993, Winkles and Alberts, 2005).

Plk2 was first identified as an immediate-early response gene whose mRNA level

was induced by growth-stimulating agents such as fetal calf serum. Indeed, it was shown

that the expression of Plk2 mRNA increased dramatically within one hour after the

addition of serum and decreased to almost undetected levels 6 hours post-treatment

(Simmons et al.., 1992). In addition, Plk2 protein levels and activity seem to follow the

9
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same trend. Cells induced with serum contained levels of Plk2 protein just one hour after 

treatment. These levels decreased after 2 hours and were undetectable in cells harvested 

4, 8 or 25 hours post-serum induction or in cells blocked in S phase/M phase with 

hydroxyurea and nocodozale respectively (Ma et al, 2003). Furthermore, Plk2 gene 

expression seems to be tissue specific (Winkles and Alberts, 2005). Levels of Plk2 

mRNA were detected in tissue samples from mouse lung, heart and brain but were not 

detected in thymus, spleen, intestine, kidney and liver (Simmons et al., 1992). Further 

investigation by Liby et al, (2001) detected high Plk2 transcript levels in the testis, 

mammary gland, uterus and trachea (Winkles and Alberts, 2005).

Unlike Plkl and Plk2, the mRNA and protein levels of Plk3 do not follow the 

same trend of expression during the cell cycle. First identified as a fibroblast growth 

factor (FGF) stimulated and early response gene in NIF1 3T3 cells, Plk3 mRNA levels 

expressed very similar patterns to those of Plk2. That is, after the addition of serum in 

serum-starved cells, Plk3 mRNA levels were detected 0.5 hours post treatment and 

gradually decreased until they reached undetectable levels 8 hours later (Donohue et al, 

1995). Conversely, it has been observed that the protein level of this protein is relatively 

constant throughout the cell cycle. It was observed that Plk3 protein is very stable in 

human dermal fibroblasts (Winkles and Alberts, 2005). Further investigations have found 

that the nuclear import of Plk3 is required for degradation of this protein and indeed, 

proteosomal degradation of Plk3 occurs in the nucleus (Alberts and Winkles, 2004). As a 

result, sequestering of this protein in the cytoplasm would explain its relative constant 

levels throughout the cell cycle. Furthermore, the expression of Plk3 transcript in tissues 

from a newborn mouse were found in the intestine, kidney, liver, lung and skin, while

10
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Plk3 in adult tissue was expressed at significant levels only in the brain, lungs and skin 

(Donohue et al, 1995).

Overexpression and Loss-of-Function o f the Plks

The expression patterns of the Polo-like Kinases are stringently regulated 

throughout the cell cycle. Investigations into the roles of these members have shed 

insight into their functions and indeed, experiments involving the overexpression and 

loss-of function of Plks have been pivotal in determining their cell cycle roles. Studies 

involving the founding member of this group, Drosophila melanogaster, have shown that 

the original mutation in one polo gene (denoted polo1) was recessive and larvae 

containing this mutation survive through embryogenesis. The few homozygous females 

that survived produced embryos containing abnormal spindle morphology. In addition, 

larvae homozygous for other polo mutations blocked in mitosis and were unable to 

propagate into adult structures resulting in their death (Sunkel and Glover, 1988).

Similar results were obtained from experiments involving Cdc5 and Plol, where

the roles of these members were further characterized. Investigations by Ohkura et al.

(1995), first characterized Plol as a homologue of polo in Schizosaccharomyces pombe.

From there they found that loss-of-function of Plol resulted in cells that arrested in

mitosis. These cells contained over-condensed chromosomes with substandard spindles

irradiating from a single pole. Furthermore, this phenotype was responsible for the

disruption of actin ring and septum formation. As a result, Plol has been implemented in

the proper formation of bipolar spindles and cell cleavage (Ohkura et al., 1995).

Overexpression of this protein resulted in similar phenotypes, primarily mitotic defects

such as the overcondensing of chromosomes with the inability for cells to divide. In

addition, septum formation was induced at inappropriate times during the cell cycle due
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to the overexpression of this protein (Ohkura et al., 1995). Cdc5 has shown very similar 

phenotypes where loss-of function experiments demonstrate cells that have a 

characteristic dumbbell shape and incomplete nuclear division (Kitada et al., 1993) 

arresting at various phases of mitosis (Song and Lee, 2001). Interestingly, wildtype Plkl 

and a kinase active form of this protein were able to completely restore the defect caused 

by the temperature sensitive Cdc5 mutant, similar to endogenous expression of Cdc5 (Lee 

and Erikson, 1997). Similarly, the expression of wildtype Plk3, but not a kinase-dead 

version of this protein, was also able to rescue the Cdc5 mutant defect (Ouyang et al., 

1997).

Overexpression and loss-of function experiments have also shed light on the roles 

of mammalian Plk members. When Plkl was depleted in HeLa cells using siRNA, cells 

arrested at G2/M phase and contained the typical dumbbell morphology. In addition, 

depletion of Plkl caused an increase in apoptosis and these results were consistent among 

other cancer cell lines used (Liu and Erikson, 2003). Further observations reported 

similar phenotypes and outlined P lk l’s role in mitosis. For example, van Vugt and co

workers (2004) reported Plkl depletion caused cells to arrest before the entry of mitosis 

and chromosomes in these cells failed to align, indicating improper mitotic spindle 

formation (van Vugt et al, 2004). Conversely, microinjection of Plkl in quiescent NIH 

3T3 cells under low serum incubation caused these cells to progress into mitosis and 

constitutive expression of this protein caused an increase in cell proliferation (Smith et 

al., 1997).

When examining Plk2, it was determined that wildtype, heterozygous and Plk2

null mice were born at a ratio of 1:2:1, indicating that the deletion of Plk2 was not

embryonically lethal (Ma et al., 2003). In addition, Plk2 null mice were viable with no
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significant difference in there 12 month survival rates compared to their littermates and 

appeared to be fertile. However, closer investigation revealed that Plk2 null mice were 

consistently smaller than there normal littermates. Although no significant change was 

associated with embryonic development of tissues, Plk2 may be involved in embryonic 

growth. In addition to a decrease in the size of the placenta harbouring nutrients to Plk2 

null mice, examinations of Plk2 fibroblasts in vitro displayed a great amount of cells in S 

phase, indicating that Plk2 may have a role in the growth of cells during G1 (Ma et al,

2003). The loss of Plk2 expression has also been characterized in many cancer cell lines 

supporting the notion that Plk2 is a tumour suppressor gene (Syed et al., 2006).

In contrast to the overexpression and loss-of-function of Plkl, Plk3 seems to have 

the opposite effect. That is, examinations into the overexpression Plk3 in HeLa cells 

resulted in the promotion of chromatin condensation. Furthermore, the overexpression of 

this protein also inhibited cell proliferation and induced apoptosis. Interestingly, these 

phenotypes were obtained by overexpressing both the wildtype and kinase inactive forms 

of Plk3, indicating that kinase ability was not necessary in halting cell proliferation (Conn 

etal., 2000).

Centrosome Dynamics and the Plk Members

The centrosome is a dynamic organelle consisting of two centrioles and a 

pericentriolar matrix. The centrioles are cylindrical structures consisting of nine 

microtubule polymers. The matrix contains a variety of proteins including the y-tubulin 

ring complexes from which microtubule nucleation occurs, structural proteins, kinases 

and phosphatases. Similar to the replication process of DNA, centrosomes undergo a 

semi-conservative duplication in S phase of the cell cycle and proper centrosome function
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is a vital process in cellular division. Indeed, centrosome abnormalities can be found in 

almost all cancer types (for review see Nigg, 2002).

When considering the Plk members, the various homologues have been seen to 

localize to the centrosome during early mitosis (Ji et al., 2006). Further experimentation 

has been pivotal in shedding light on their particular function at this organelle. Injection 

of a Plk antibody blocking its function resulted in cells with much smaller centrosomes 

than normal and a decrease in the density of microtubules nucleating from these 

centrosomes. These results suggested a distinct role of Plkl in centrosome maturation. 

Further investigation revealed that Plkl is needed for the recruitment of y-tubulin (a 

protein required for microtubule nucleation) to the centrosomes and thus blocking its 

function resulted in the abnormal phenotype (Lane and Nigg, 1996). Furthermore, Plkl 

was observed to phosphorylate ninein-like protein (Nip), which interacts with the y- 

tubulin ring of centrosomes and promotes microtubule nucleation. On the onset of 

mitosis, Plkl seems to phosphorylate this protein and promote its disassociation from the 

centrosomes, consequently marking another step in the initiation of mitosis (Casenghi et 

al., 2003). Investigation into this process revealed that this phosphorylation event 

prevented Nip to be shuttled to the centrosome by the dynein-dynactin motor complex. 

During interphase, Nip is recruited to the centrosome by this complex and this process 

results in the assembly of centrosomal components at this organelle. Therefore, 

phosphorylation of Nip by Plkl prevents this from occurring and leads to mitotic entry 

(Casenghi et al., 2005). In addition, before the onset of mitosis, Plkl phosphorylates 

CyclinB leading to its translocation from the centrosome to the nucleus (Toyoshima- 

Morimoto et al., 2001).
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Plks and their Roles in Cell Cycle Regulation

The complex regulation of the cell cycle involves a number of proteins. It is 

understood that the entry into mitosis involves the formation of the Cdkl/CyclinB 

complex and this is achieved by the dephosphorylation of Thrl4 and Tyrl5 on Cdkl by 

Cdc25C (Hoffmann et al., 1993). Experiments involving Plkl have shown that the 

activation of Cdc25C is a key event in this process that signals the entry of mitosis. 

Specifically, it was observed that Plkl directly phosphorylates Cdc25C on serine 198 and 

this event leads to the nuclear translocation of this phosphatase (Roshak et al., 2000, 

Toyoshima-Morimoto et al., 2002). In addition, Plkl phosphorylates the Cdkl inhibiting 

kinase, Weel and this event leads to W eel’s subsequent degradation (Watanabe et al. 

2004). Similarly in Xenopus laevis, Plxl is phosphorylated and activated by Plkkl, where 

Plxl then hyperphosphorylates Cdc25C thus initiating Cdkl/CyclinB complex formation 

leading to meiotic maturation of oocytes (Karaiskou et al., 1999). Furthermore, 

microinjection of Plxl into Xenopus oocytes results in the activation of Cdc25C and the 

subsequent initiation of mitosis (Qian et al., 1998a), while immunodepletion of Plxl 

prevents the activation of Cdc25C and the initiation of mitosis; thus emphasizing the 

profound role of this Plk member in cell division (Qian et al., 2001)

As previously indicated, Plkl and Plk3 often play opposite roles in regards to how 

they affect the activity of overlapping targets. As stated above, Plkl phosphorylates 

Cdc25C on SI98 leading to its nuclear translocation (Toyoshima-Morimoto et al., 2002). 

Interestingly, however, Plk3 has also been observed to phosphorylate Cdc25C on Serine 

191 and on Serine 198 leading to its nuclear accumulation (Bahassi et al., 2004). Due to 

Plk3’s constant protein level throughout the cell cycle, it has also been proposed that this

Plk may interact with Cdc25A and regulate the Gl/S transition (Myer et al., 2005).
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Plkl is also involved in the activation of the Anaphase-Promoting 

Complex/Cyclosome (APC/C). Activation of the APC/C occurs at the anaphase- 

metaphase transition and only when all chromosomes are properly attached to the spindle 

(van de Weerdt and Medema, 2006). Plkl, as well as Cdkl/CyclinB, have been observed 

to partially phosphorylate this complex and as a result, partially restore the cyclin- 

ubiquitin ligase activity of dephosphorylated APC/C (Golan et al., 2002). This suggests 

a direct role in APC/C activation. Indirectly, Plkl has been observed to phosphorylate 

Early Mitotic Inhibitor 1 (Emil). This protein is degraded in early mitosis by the Skpl- 

Cullinl F-box protein (SCF) ubiquitin ligase and its degradation is necessary for the 

activation of the APC/C. It has been observed that Plkl phosphorylates Emil targeting 

its degradation (Moshe et al., 2004). Other substrates of the Plk family members have 

been observed, outlining the vital roles these proteins play during the cell cycle. A list of 

protein substrates has been summarized and provided in Table 1.
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Table 1. Substrates of the Mammalian Polo-like Kinase Members
Polo-like Kinase Member Known Substrates Reference

Plkl Cdc25C Roshak et al., 2000
Weel Watanabe et al, 2004
Mytl Nakajimae/a/., 2003
Cyclin B1 Toyoshima-Morimoto et al., 

2001
NudC Zhou et al., 2003
TCTP Yarm et al., 2002
CHOI/mitotic kinesin-like 
protein 1 (MKLP-1)

Lee et al., 1995

a-tubulin Feng etal., 1999
p-tubulin Feng et al., 1999
y-tubulin Feng etal., 1999
Chk2 Tsvetkov et al., 2003
ninein-like protein (Nip) Casenghi et al., 2003
Early Mitotic Inhibitor 1 
(Emil)

Moshe et al., 2004

Pinl Eckerdt et al., 2005
BRCA2 Lin et al., 2003
GRASP65 Lin et al., 2000

Plk2 Spine-associated Rap 
guanosine triphosphatase 
activating protein (SPAR)

P aketal., 2003

Plk3 Cdc25C Bahassi et al., 2004
Chk2 Bahassi et al., 2006
DNA polymerase 5 (pol 5) Xie et al, 2005
p53 Xie et al., 2001

Sak Handl Martindill et al., 2007
Cdc25C Bonni et al, 2007, accepted
p53 unpublished
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Furthermore, Plk members are involved with the process of cytokinesis, which 

marks the end of mitosis and the division of a single cell into two daughter cells. 

Experiments with Xenopus laevis have shown that constitutively active Plxl over

expressed in oocytes results in arrest at the cleave furrow stage of development This 

suggests that Plxl deactivation is necessary for the exit from mitosis and emphasizes its 

role in cytokinesis (Qian et al., 1999).

Plkl was first suggested to play a role in cytokinesis by Lee et al., (1995) when 

this group observed Plkl co-localizations and co-immunprecipitation with CHOI /mitotic 

kinesis-like protein (MKLP-1) from anaphase to cytokinesis. CHOl/MKLP-1 is known 

to be involved in microtubule dynamics during cytokinesis, thus this interaction implies 

the involvement of Plkl in this process (Lee et al., 1995). Consistent with this, Plkl has 

also been observed to interact with RhoA, a member of the Rho GTPase family. 

Overexpression of RhoA causes defects in the completion of cytokinesis. Both Plkl and 

RhoA were found to co-localize to the midbody during telophase and the interaction 

between these proteins increased during mitosis (Dai et al., 2007). In addition, Plkl has 

been found to bind with microtubule associated protein regulating cytokinesis (PRC1) 

(Neef et al., 2007). While these results together highly suggest that Plkl plays a major 

role in cytokinesis, observations by van Vugt et al., (2004) seem to present uncertainty to 

P lkl’s direct involvement in this process. In Plkl depleted cells, the cleavage furrow still 

forms and ingression still occurrs. Furthermore, proteins known to be necessary for 

cytokinesis still localize to the cleave furrow indicating that the defects in cell division 

might be an indirect consequence of defective bipolar spindle formation by Plkl and not 

its role in cytokinesis (van Vugt et al., 2004).
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DNA Damage Checkpoints

The DNA content within cells is periodically encountered with metabolic and 

environmental stress. These factors may cause thymine dimers, mismatches between base 

pairs, or single-stranded or double stranded DNA breaks (Li and Zou, 2005). If they are 

not corrected, DNA damage may lead to tumourigenesis, immuno-deficiencies, 

neurodegenerative diseases or germ-line mutations passed on to the next generation 

resulting in genetic defects. DNA damage checkpoints have equipped species with a 

means of correcting potential harm before these defects occur. A simplified mechanism 

is proposed here where upon DNA damage, a cascade of events is initiated in order to 

protect the integrity of the genome (Figure 2).

Initially, the presence of DNA damage is recognized by sensor proteins (Niida and 

Nakanishi). These proteins associate near the sight of DNA damage and recruit mediator 

proteins. As a result, mediators act as bridges in this molecular cascade to facilitate 

signalling and accumulation of another group of proteins denoted transducers (Niida and 

Nakanishi, 2006). That is, mediators act through protein-protein interactions to recruit 

transducers in order to assist in DNA damage response.

The main signal transducer proteins within the DNA damage response cascade are

two members of the phosphatidylinositol 3-kinase (PI-3 K) family, namely Ataxia

telangiectasis mutated (ATM) and Ataxia telangiectasis and Rad3-related (ATR). ATM

derived its name from the characteristic disease with the same name that results when a

mutation in this protein occurs (Friend and Tapscott, 1998). Similarly, ATR was first

identified in human and mouse by sequence similarity to ATM and Rad3 in

Schizosaccharomyces pombe (Wright et al., 1998). As members of the

phosphatidylinositol 3-kinase (PI-3 K) family, they are characterized by their large
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protein size and a conserved C-terminal catalytic domain. Yet unlike other members of 

the PI-3 K family, ATM and ATR do not function as lipid kinases, but rather as 

serine/threonine kinases phosphorylating peptides at particular SQ/TQ sites (Yang et al.,

2004). Ionizing radiation, telomere erosion and substances that generate double-stranded 

breaks activate ATM, where ultraviolet radiation, replication stress and certain other 

chemicals activate ATR. Upon DNA damage, activated ATM and ATR are both known 

to phosphorylate and co-localize with many proteins (Niida and Nakanishi, 2006).

One important set of proteins in which ATM/ATR phosphorylate are Checkpoint 

kinase 1 (Chkl) and Checkpoint kinase 2 (Chk2). Although structurally unrelated, Chkl 

and Chk2 play functionally similar roles in DNA damage response. Originally, it was 

thought that there existed distinct roles in response to certain types of DNA damaging 

agents, where ATM would phosphorylate Chk2 and ATR would activate Chkl (Bartek 

and Lukas, 2003). However, recent evidence has shown that there exists intersecting 

communication between these kinases, particularly in the activation of Chkl by ATM in 

response to ionizing radiation (Gatei et al., 2003) and activation of Chk2 in an ATM- 

independent manner (Hirao et al., 2002). Depletion of Chkl causes chromosome 

misalignment, kinetochore defects and mitotic arrest (Tang et al., 2006), while Chk2 

depletion resulted in a failure to induce p53 mediated G1 arrest and apoptosis (Bahassi et 

al., 2006). Furthermore, Chkl and Chk2 are seen to phosphorylate many of the same 

known substrates including p53, E2F1 transcription factor (Bartek and Lukas, 2003), 

Cdc25A, Cdc25B and Cdc25C (Niida and Nakanishi, 2006) and Plk3 (Xie et al., 2002) 

further emphasizing their roles in cell cycle progression, apoptosis and the DNA damage 

response.
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In addition to Chkl/Chk2, ATM and ATR are known to phosphorylate members 

of the Polo-like kinase family. Studies have shown that Plkl becomes inhibited by either 

ATM or ATR in response to specific types of DNA damage. This inhibition is believed 

to be critical in blocking DNA damaged cells from entering mitosis (Smits et al., 2000, 

van Vugt et al., 2001). In addition, studies have shown that increasing amounts of ATM 

blocks P lk l’s ability to inhibit p53-dependent transcriptional activation. As a result, the 

inhibition of Plkl by ATM restores p53 activity (Ando et al., 2004).

Contrary to this, Plk3 interacts with p53 in a positive manner. That is, in response 

to DNA damage, the kinase activity of Plk3 is increased in an ATM-dependent manner 

and the physical interaction between Plk3 and p53 increases significantly (Xie et al., 

2001). In addition, Plk3 was found to phosphorylate DNA polymerase 8 (pol 5), 

suggesting a potential role in responding to DNA damage and Plk2 is a transcriptional 

target of p53, although its role is unclear (Xie et al., 2005).

Member of the Plk family have also been observed to interact with Chkl and 

Chk2. Plkl and Chk2 were found to physically interact in HEK 293 cells and colocalize 

to the centrosomes. Furthermore, overexpression of Plkl induced phosphorylation of 

Chk2 and Plkl was observed to phosphorylate Chk2 in vitro (Tsvetkov et al., 2003). Plk3 

has also been observed to phosphorylate Chk2 at residues S73 and S62. This 

phosphorylation event is thought to aid in ATM-mediated phosphorylation of Chk2 at 

T68. In response to phosphorylated T68, Chk2 is deemed active and able to respond to 

DNA damage (Bahassi et al, 2006). In regards to Chkl, this protein negatively regulates 

Plkl activity in response to ultraviolet radiation. Furthermore, depletion of Chkl allows 

Plkl to remain active and cells proceed to mitosis even after exposure to UV radiation 

(Tang et al. 2006).
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The association of the Plk members with vital cell cycle regulators and DNA 

damage response proteins implies a vital role for this family of kinases in cellular growth, 

progression and the DNA damage response. Further characterization of these proteins 

can aid in increasing our understanding of cellular functions and help in our battle against 

diseases such as tumourigenesis.
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Figure 2. The Association of Plkl-3 in DNA Damage Pathway. The solid black 
lines denote a positive regulation event while the red perpendicular lines indicate a 
negative regulatory response. The dotted green lines represent known interactions 
between the proteins yet the functional significance is yet to be elucidated (Smits et 
a/., 2000, van Vugt efo/., 2001, Xie ef a/.,2001,Hirao e ta l, 2002, Bartek and Lukas, 
2003, Gatei et al., 2003, Tsvetkov et al., 2003, Ando et al., 2004, Li and Zou, 2005, 
Xie et al., 2005, Niida and Nakanishi, 2006, Bahassi et al., 2006, Tang et al., 2006).
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CHAPTER II 

SAK/PLK4 BACKGROUND

The Structure o f  Sak

Sak (also known as Plk4) was the last member of the Polo-like kinase family to be 

identified in vertebrates and is observed to be the most structurally divergent. Indeed, 

unlike Plkl and Plk3, expression of Sak was not able to rescue the temperature sensitive 

Cdc5 mutant from growth and mitotic defects suggesting a novel role for this kinase 

(Swallow et al., 2005). Its N-terminal kinase domain is highly conserved when compared 

to the other Plk members and this observation first prompted researchers to name it 

Snk/Plk-akin kinase or Sak (Fode et al., 1994). Within the conserved kinase domain lies 

a critical lysine at amino acid 41 that is required for proper ATP binding. Indeed, 

mutating this amino acid to a methionine leads to its inactivation rendering the protein 

kinase-dead. Furthermore, a mutation at the T-loop from a threonine to a phospho- 

mimicking aspartate leads to an increase in kinase activity (Swallow et al., 2005).

The structural distinction between Sak and the other Plk family members lies

within the C-terminus of these proteins. That is, unlike the other polo-like kinases that

include two polo-boxes, Sak possesses only one polo box motif. Leung et al, found the

crystal structure of the Sak polo-box to be dimeric, containing two alpha-helices and two

six-stranded beta-sheets. Harbouring a hydrophobic core, four of the six beta-strands

from one polo-box interact with two beta-strands from another Sak polo-box forming an

intermolecular homodimeric structure (Leung et al., 2002). This organization is quite

different from that of the other Plk members that form intramolecular heterodimers

through the interactions of conserved hydrophilic amino acids (Cheng et al., 2003, Elia et

al., 2003a). Furthermore, the polo-box domain of Plkl-3 is believed to play a significant
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role in controlling the catalytic activity of these kinases (Jang et al., 2002a, Elia et al, 

2003b). Recognized as a phosphopeptide binding motif, the polo-box of Plkl has been 

observed to bind to particular substrates, resulting in the liberation of its kinase domain. 

This event causes the phosphorylation of the T-loop of Plkl and results in its activation 

allowing for subsequent substrate phosphorylation. Contrary to this, no such results for 

Sak have been observed.

In support of the observation that the Sak polo-box domain forms a dimer, both 

full length Flag-tagged Sak and a Flag-tagged polo-box domain co-immunoprecipitated 

with the myc-tagged forms. However, a construct containing a deletion of the polo-box 

domain still interacted with the full length construct (Leung et al., 2002). This 

association was dependent on a region N-terminal to the polo-box, denoted as the cryptic 

polo box and indeed this domain along with the polo-box are able to self associate (Leung 

et al., 2002, Swallows et al., 2005). Furthermore, the cryptic polo-box and polo-box 

constructs were observed to co-localize to the centrosomes and the cleavage furrow 

demonstrating that both were sufficient for localization. Interestingly, deletion of both 

drastically decreased this localization (Leung et al., 2002, Habedanck et al., 2005). As a 

result, both these domains of Sak may be needed in order for proper localization of this 

protein.

In addition, Sak contains three PEST sequences that are not found in the other 

members of the polo-like kinase family. These motifs are rich in proline, aspartate, serine 

and threonine and are associated with decreased protein stability (Fode et al., 1994). 

Indeed, Sak displays a short half-life of 2-3 hours in cells and is subject to ubiquitination 

and consequent proteolytic degradation during mitosis (Fode et al., 1996). Furthermore,
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deletion of these PEST sequences result in an increase in Sak protein levels (Yamashita et 

al., 2001) (Figure 3).
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Figaro 3. Human Sak Structure. Sak is the most structurally divergent member of the 
Polo-like kinases. A highly conserved kinase domain is located at its N-tenninal and shown 
hero in dark blue. The polo-box domain is located at the lar C-terminus o f this protein and 
depicted here in lighter blue. In addition, the area denoted as the cryptic polo-box is located 
N-tenninally to the polo-box and is seen hero in aqua. Sak also contains throe unique PEST 
sequences shown hero in red that are not found in the other Plk members (Swallow et al.,
2005).
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Normal Gene and Protein Expression o f Sak

The Plks likely arose as a result of gene duplication events as they are found at 

distinct chromosomal locations, with human Sak located on chromosome 4q28 

(chromosome 3 in mice). Interestingly, this is an area that often undergoes chromosomal 

deletion in hepatocellular carcinomas (Ko et al., 2005).

In regards to Sak, studies have revealed that its mRNA expression is similar to 

that of Plkl. As NIH-3T3 cells exit the cell cycle, Sak mRNA levels decrease 

dramatically indicating that Sak expression may be absent from cells exiting the cell cycle 

(Fode et al., 1996). In order to confirm this result, serum starved cells that were quiescent 

were examined and no Sak mRNA was detected. Cells were then released from Go by 

introducing serum and monitored at different time points. As cells began to exit G1 and 

enter S phase, the level of Sak mRNA began to increase. Cells blocked in mitosis with 

nocodazole also displayed high levels of Sak mRNA. As these cells were released from 

this metaphase-block, the levels of Sak significantly decreased in G1 and disappeared by 

mid-Gl phase. These observations indicated that the expression of Sak mRNA is cell 

cycle regulated (Fode et al, 1996).

In addition to being cell cycle regulated, the expression of Sak is tissue specific,

with the highest levels of mRNA found in the testes. Lower levels were also detected in

the spleen, thymus and ovary, while Sak mRNA levels were undetectable in the heart,

liver, brain or kidneys (Fode et al., 1994). It was also observed that Sak expression is

developmentally regulated. The expression in testes is low until day 8 of development (a

time before meiosis begins), at which time it increases significantly in correlation to

meiotic activity of this tissue as the mouse ages. In situ hybridization of murine embryos

indicated that Sak was expressed in various organs during their proliferative stages (Fode
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et al, 1994). Taken together, these results indicate that Sak expression may be critical for 

cellular proliferation.

The murine Sak gene consists of 15 exons and this single gene encodes two 

alternatively spliced isoforms of this protein (Hudson et al., 2000). The Sak-a transcript 

encodes a 925 amino acid protein of 103 kDa. The smaller isoform, denoted Sak-b, 

encodes a 53 kDa protein. The kinase domains of these isoforms are identical as the 

proteins encode the same first 5 exons or 416 amino acids. The difference between these 

isoforms exists in their C-terminus where Sak-a encodes the rest of the exons (exons 6- 

15) resulting in the full length protein. Sak-b, however, encodes the 147 base pairs 

contiguous with exon 5 or rather, exon 6 and the two introns flanking this exon encoding 

an additional 48 amino acids. The Sak-b isoform does not contain a cryptic polo-box 

domain or polo-box domain (Hudson et al., 2000). In contrast, there is only one human 

Sak isoform that has been detected. Human Sak-a differs from the murine Sak-a in that it 

retains an intron of 102 base pairs immediately adjacent to exon 5 relative to the murine 

protein sequence. Interestingly, this insert encodes a 34 amino acid sequence that is quite 

similar to the intron sequence of murine Sak-b (Hudson et al., 2000).

Catalytic Activity and Substrates o f Sak

There are less than a handful of known substrates for Sak. Similar consensus

substrate motifs for Sak have been proposed in an attempt to shed further light on Sak

interacting partners and its potential role in the cell cycle. Leung et al., performed in

vitro kinase assays on peptide spots arrays to determine the Sak consensus

phosphorylation motif. From their observation, they proposed that Sak has a potential

context dependent specificity and the ability to phosphorylate several different consensus

sequences. That is, depending on the net charge of the peptide sequence, Sak may prefer
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either acidic or basic residues. This similar behaviour has been shown to exist in other 

kinases such as c-ABL protein tyrosine kinase and the Ca -dependent protein kinases. In 

general, they have determined the optimal substrate consensus sequence to be [¥]-[£]- 

[Ser/Thr]-[(p]-[cp]-[X]-[¥/Pro], where ¥ represents a charged residue, C, is any amino acid 

except isoleucine, leucine or valine, (p denotes a hydrophobic residue (with a preference 

to a large hydrophobic group) and X is any amino acid. Furthermore, it is worth noting 

that the charged residue is influenced by the context of the surrounding sequence. When 

peptides contain a net positive charge, Sak favours basic residues (such as Lysine, 

Histidine and Arginine), while Sak favours acidic residues (Aspartic acid, Asparagine, 

Glutamic acid and Glutamine) for peptide sequences exhibiting a net negative charge 

(Leung et al., 2007).

Similarly, Johnson et al., examined substrate specificity for all the mammalian Plk 

members. It was observed that the substrate consensus motif of Sak differed significantly 

from Plk 1-3. They concluded that the optimal substrate consensus sequence is [X]- 

[Arg/Lys]-[Asp/Glu]-[X]-[Ser/Thr]-[(p/Tyr]-[(p/Tyr ]-[X]-[Ser/Thr/Ala], where (p denotes 

a hydrophobic residue and X is any amino acid (Johnson et al., 2007).

In determining the optimal substrate consensus sequence, previously determined 

substrates of the Plk members were used. Cdc25C is known to be phosphorylated by both 

Plkl and Plk3. When Cdc25C was used as a substrate for bacterially expressed Sak, no 

phosphorylation was observed (Johnson et al., 2007). However, recently we 

demonstrated that Sak and Cdc25C associate in HEK-293 cells and that Sak expressed in 

these cells is able to phosphorylate Cdc25C in an in vitro kinase assay (Bonni et al., in 

press 2007). As a result, the substrate binding motif of Sak may prove to be inaccurate as 

novel substrates for this kinase emerge.
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Studies involving the inhibition of the kinase ability of the Plk family members 

have also been examined. Through in vitro kinase assays using a peptide library as a 

substrate, Johnson et al. (2007) demonstrated that Wortmannin inhibits the kinase ability 

of Plkl-3. However, Sak was found to display a dissimilar first-order binding of 

Wortmannin compared to the other mammalian Plk members. Unlike Plkl-3, Sak seems 

not to be inhibited by this metabolite. Examination of the structure of Sak revealed that 

one of the cysteine residues conserved in Plkl-3 and seen to play a role in Wortmannin 

binding is replaced by a larger valine in Sak. As a result, this larger valine may cause 

steric hinderance prohibiting the binding of Wortmannin (Johnson et al., 2007).

Recently, Martindill et al., (2007) have observed a novel substrate for Sak. Handl 

is an essential protein for placenta formation and cardiac morphogenesis in the 

developing embryo. This protein is sequestered in nucleoli during cell proliferation and 

its release into the nucleus leads to the differentiation of cells. Sak was found to 

phosphorylate Handl in trophoblast stem cells resulting in its release from the nucleolus 

and committing these cells for differentiation. Overexpression of Sak prompted Handl 

release from the nucleoli and Sak inhibition resulted in a sequestering of Handl and 

continued proliferation of undifferentiated cells (Martindill et al., 2007).

To date, there is only one protein that is known to phosphorylate Sak. Tec, a 

cytoplasmic tyrosine kinase, is found to be activated by stimulations of cell surface 

receptors on blood cells. Tec was found to tyrosine phosphorylate Sak and regulate Sak 

protein levels. It achieves this by binding to the cryptic polo-box of Sak, phosphorylating 

its kinase domain and thus, protecting its PEST sequences from PEST-dependent 

proteolysis (Yamashita et al., 2001).
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Sak and Embryonic Development

Sak was the first mammalian polo-like kinase member whose gene expression was

depleted at the whole organism level (Hudson et al, 2001). Sak null mice are embryonic

lethal arresting at E7.5 with an increase of mitotic cells (Hudson et al., 2001). Sak null

embryos display a six-fold greater incidence of phosphorylated histone H3 in comparison

to their wildtype littermates. This result indicates that Sak null embryos arrest before

histone H3 is rapidly dephosphorylated following the destruction of Cyclin B by the

Anaphase Promoting complex (APC), suggesting that the cells arrested before anaphase

(Hudson et al., 2001).

Interestingly, Sak null embryos undergo many cell divisions before arresting and

many theories have been proposed to explain this observation. It has been suggested that

Sak may be maternally supplied at the first stages of embryonic development. Secondly,

Sak activity may not be required until the embryo begins to undergo morphogenesis

(Swallow et al. 2005). New evidence indicating Sak phosphorylation of Handl

(Martindill et al. 2007) suggests that this explanation may be quite possible. Lastly, it

has been suggested that Sak may be required during the whole course of embryonic

development. However, checkpoints in the early embryo are delayed and the outcome of

no Sak expression may not be observed until this later stage of development (for review

see Swallow et al., 2005). Regardless of the means, the absence of Sak in the developing

embryo is lethal indicating a critical role in development as well as in mitotic regulation.

Sak and Tumourgenesis

In contrast to Sak null embryos, Sak heterozygous (Sak-/+) embryos develop into

viable, fertile mice displaying no obvious abnormalities in their early life (Hudson et al.,

2001, Ko et al., 2005). However, with the onset of age, mice ages 18-24 months began
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to develop tumours at a rate of 50% compared to 3% in their wildtype littermates. The 

development of hepatocellular carcinomas (HCC) in the liver was the most common type 

of tumour growth. The second most common location for tumour development in Sak -/+ 

mice was the lungs with the development of papillary adenocarcinoma. Lastly, large soft 

tissue tumours in these mice were also found in the axilla and upper chest wall (Ko et al,

2005).

In order to further study Sak -/+ mice and their predisposition for increased 

incidence of tumour formation, a two-thirds partial hepatectomy (PH) was performed. 

After 44 hours the heterozygous Sak hepatocytes had a 29% incidence of aberrant spindle 

and mitotic complexes and cellular/nuclear hypertrophy, compared to only 4% of the 

wildtype cells. Examining the molecular status of the heterozygous hepatocytes revealed 

a loss in the levels of Cyclins D l, E and B l, prolonged phosphorylation of Aurora A and 

Cdkl and suppression of the p53, p21 and BubRl activity, as well as a delayed cellular 

progression through the cell cycle. In addition, normal liver mass and morphology was 

restored in the wildtype hepatocytes by day 7 after the partial hepatectomy while the 

heterozygous cells experienced poor organization and delays in cell cycle progression. 

By 9-12 months after the partial hepatectomy, 6 of the 7 wildtype mice had regained 

normal liver morphology, while all of the Sak -/+ mice displayed abnormal liver 

morphology. It was also observed that 4 of the 11 mice had developed multifocal 

anaplastic tumours containing abnormal mitotic organization (Ko et al., 2005). Thus, 

these observations provide evidence that Sak is haploinsufficient for liver regeneration 

and proper gene dosage is essential for cellular progression and the suppression of 

tumourigenesis.
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Sak and Centrosome Dynamics

First examined in NIH 3T3 cells, Sak conjugated to green-fluorescence protein 

(GFP) was observed to localize to centrosomes during early M phase (Hudson et al., 

2001). Further experimentation has confirmed this result revealing that endogenous Sak 

associates with the centrosomes throughout the cell cycle as observed by its co

localization with both y-tubulin and centrin (Habedanck et al., 2005).

Habedanck et al., (2005) found that overexpression of Sak in U20S and HeLa 

cells caused centrosome amplification while overexpression of a kinase inactive form of 

this protein showed only two centrioles. As a result, it was conceived that Sak catalytic 

activity plays a significant role in centrosome duplication (Habedanck et al., 2005). In 

order to determine whether over-duplication occurred during the S phase of the cell cycle 

by Sak or through a defect in cellular division, the phenotypic effect of the 

overexpression of Sak was examined in the absence or presence of aphidicolin, an S 

phase inhibitor. Since the same phenotypic results occurred without the presence of this 

drug, the overduplication of centrosomes is thus caused by overexpression of this kinase 

(Habedanck et al., 2005). Similar results were obtained in Drosophila where 

overexpression of Sak resulted in multiple centrosomes emphasizing Sak’s role in 

centrosome duplication (Bettencourt-Dias et al., 2005).

Scientific contributions outlining the loss-of-function of Sak have also 

emphasized its role in centrosome duplication. When Sak expression was blocked with 

siRNA in both human and Drosophila cells, a decrease in centrosome number was 

observed. Knocking down Sak in these cells led to a decrease in y-tubulin at the spindle 

poles and proteins normally found at the centrosomes during mitosis or in the

pericentriolar material were absent (Bettencourt-Dias et al., 2005).
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Furthermore, Habedanck et al, (2005) demonstrated that the catalytic activity of 

Sak was needed for centrosome amplification. Constructs lacking the kinase domain 

could not cause centrosome overduplication. In addition, the construct lacking the cryptic 

polo-box and the polo-box domain could not localize to the centrosomes and 

overduplication did not occur. These results suggest that Sak needs to phosphorylate 

particular substrates at the centrosome in order to cause centrosome amplification 

(Habedanck et al., 2005).

Interestingly, a contrary phenotype was observed in mouse embryonic fibroblasts 

(MEFs). Sak heterozygous MEFs grew slower than normal cells. Furthermore, five 

times the amount of Sak -/+ MEFs in interphase contained greater than two centrosomes 

compared to their normal counterparts and abnormal chromosome segregation was 

observed to be three times greater (Ko et al, 2005). Two possible explanations have 

been proposed to explain this phenotype. Firstly, reduced Sak activity causes abnormal 

centrosome duplication resulting in cell division failure. Failure in cellular division can 

then lead to polyploidy and aneuploidy. This may in turn cause the increased incidence 

of tumour formation in Sak heterozygous mice (Habedanck et al, 2005). Secondly, Sak 

heterozygous MEFs may cause deficient levels or activation of p53 and/or p21 resulting 

in uncontrolled centrosome replication by Cdk2 and cyclin E at the onset of S phase (Ko 

etal., 2005).

Indeed, Sak and Cdk2 have been shown to cooperate in centrosome duplication. 

It was observed that overexpression of Sak could not cause centrosome overduplication in 

the absence of Cdk2 activity. In addition, in the absence of Sak, Cdk2 was also unable to 

cause centrosome amplification. These observations provided strong evidence indicating

a connection between Cdk2 and Sak in centrosome duplication (Habedanck et al, 2005).
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Sak and the DNA Damage Pathways

The formation of tumours in Sak heterozygous mice and the role of Sak in

centrosome dynamics emphasizes its potential role in the DNA damage response

pathway. Indeed, Sak has been observed to co-immunoprecipitate with p53 (Swallow et

al., 2005) and has also been identified as a p53-repressed gene. p53 is a vital tumour

suppressor gene that induces cellular growth arrest allowing cells to repair DNA damage.

If the damage is irreparable, p53 then induces cell apoptosis (Sun, 2006). Li et al. (2005)

observed the regulation of Sak expression to be p53-dependent. Although a direct

interaction between p53 and the Sak promoter was not observed, the repression of Sak

was found to be controlled by p53-mediated recruitment of HDAC transcriptional

repressors. Furthermore, silencing Sak by siRNA contributed to p53-induced apoptosis

and conversely, overexpression of Sak resulted in the attenuation of p53-induced

apoptosis (Li et al., 2005). These results lead to the notion that Sak regulation may be

controlled by a well characterized tumour suppressor gene. Indeed this interaction may

link Sak activity to the DNA damage pathway.

Objectives o f This Study

In addition to Sak’s interaction with p53, previous results from our lab have

identified associations between Sak and well-characterized DNA damage response

proteins. The role of the other Plk family members in the DNA damage pathway has

been studied to a greater extent. Plkl and Plk3 have been shown to be targets of ATM

and ATR and have been observed to interact with Chkl and Chk2 in response to DNA

damage (Smits et al., 2000, van Vugt et al., 2001, Tsvetkov et al., 2003, Bahassi et al.,

2006). Therefore, the purpose of this study is to elucidate the role of this Plk member in

the DNA damage pathway. The phosphorylation status of Sak was thus examined in the
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absence and presence of UV, as well as in the presence of Wortmannin. Furthermore, 

novel interactions between Sak and DNA damage response proteins including ATR, Chkl 

and Chk2 were investigated with the hopes of shedding light on Sak’s involvement during 

DNA damage.
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CHAPTER III 

MATERIALS AND METHODS

Preparation o f Escherichia coli (E. coli) competent cells

Competent E. coli cells, Top 10 F Pilus E. Coli cells from glycerol stocks were

streaked onto LB agar and incubated at 37 C overnight. A single colony was used to

inoculate 10 mL of TYM media which was incubated for 16 hours at 37°C. After this

initial incubation period, 1 mL of the culture was added to 100 mL of prewarmed TYM

media and incubated at 37°C until an Aeoo of 0.5 was obtained. The cell cultures were

then cooled by swirling the flasks on ice for 5 minutes, transferred to Oakridge tubes and

centrifuged at 4000 x g for 10 minutes at 4°C. The supernatant was gently decanted and

the resulting pellet was resuspended in 30 mL of TFB1. The cells were again centrifuged

at 4°C for 10 minutes at 4000 x g and the supernatant was carefully discarded to avoid

disturbing the pellet. While on ice, the pelleted cells were resuspended in 4 mL of ice-

cold TFBII by repeated pipetting. 100 uL aliquots of the resulting cells were quickly

placed into sterile mircocentrifuge tubes and flash-frozen by liquid nitrogen. The

resulting compotent cells were stored at -80°C until needed.

Transformation and DNA purification

Top 10 F Pilus competent E. coli cells were transformed in order to obtain

plasmid DNA required for subsequent experimental procedures. Approximately 0.1-1 ug

of DNA was added to 100 uL of competent cells and allowed to incubate on ice for 30

minutes. After this time period, the cells were heat shocked at 42°C for 40 seconds and

then placed immediately back on ice. 500 uL of LB media was added and the cells were

incubated at 37°C for 45 minutes. IOOuL was plated onto an LB-agar plate containing an

appropriate concentration of antibiotic for selection of positive cells. The plate was
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incubated at 37°C overnight allowing for the growth of bacterial colonies containing the 

desired plasmids. The following day, a single colony was picked and inoculated in 100 

mL of LB media containing 100 ug/mL of ampicillin for 16 hours at 37°C. QIAGEN 

Plasmid Maxi Prep Kit (Qiagen Inc.) was used to purify the DNA according to the 

manufacturer’s protocol. DNA was dissolved in ultra pure water (DIUF) and 

spectrometry was used to determine the DNA sample’s concentration.

Cell Culture

Human Embryonic Kidney (HEK-293) cells were maintained at 37°C with 5% 

CO2 to ensure optimal growth conditions. Furthermore, these cells were maintained in 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma) comprising of 10% fetal bovine 

serum (Sigma). Penicillin/streptomycin, Gentamycin and amphotericin B were also 

added to the media to prevent contamination of the cells.

Transfection o f Plasmid DNA and Cell Lysis

The day prior to transfection, cells were washed with HBSS and trypsinized.

They were then plated onto 10 cm tissue culture dishes at a density of 1 x 106 cells per

plate. The following day, fresh media was added to the plates and 6 ug of DNA per plate

was transfected using Effectene™ (Qiagen) according to the manufacturer’s

recommendations. Approximately 12 to 16 hours post-transfection, the cells were

washed three times with 10 mL of cold Tris-Buffer Saline (TBS) and then supplemented

with 1 mL of lysis buffer and allowed to sit on ice for 20 minutes. The lysed cells were

then scraped off the plate and collected in eppendorf tubes which were spun in a

microcentrifuge at 12 000 x g for 20 minutes at 4°C in order to separate the lysate from

cellular debris. 5 uL of 6X loading buffer containing 5% Beta-Mercaptoethanol was

added to 30 uL of lysate and the samples were boiled for 5 minutes. Following this, the
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lysate samples were loaded into a gel and subjected to SDS-electrophoresis for 1 hour at 

180 volts.

Exposure to UV radiation

In order to induce DNA damage, the Stratalink UV Crosslinker (Stratagene) was

used to expose cells to ultra-violet radiation. Cells were subjected to various amounts of

UV radiation and then were either lysed immediately or at the indicated time points.

Immunoprecipitation and Co-immunoprecipitation:

In order to enrich for the protein of interest or associated proteins,

immunoprecipitation (IP) and Co-immunoprecipitation (Co-IP) reactions were conducted

in which 1 ug of anti-FLAG (Sigma), anti-ATR (Santa Cruz and Calbiochem), anti-Chkl

(Sigma), anti-Chk2 (Sigma), anti-pChk2 T26 (Abeam) or anti-GAPDH (Cell Signaling)

were incubated with 1 mg of total protein lysate for 2 hours at 4°C. The protein-antibody

complex was then precipitated out of solution by the addition of 20 % Protein G-

Sepharose slurry (Amersham) to the lysate and incubation on a vertical nutator was

performed for an additional hour at 4°C. Following this period, the immunocomplexes

were centrifuged at 3000 x g for 2 minutes at 4°C allowing separation of the

immunocomplex from the rest of the lysate. The supernatant was then carefully decanted

and the beads were gently washed three times with 400 uL of 150 mM TNT wash buffer.

The immunoprecipitates were resuspended with 5 uL of 6 X SDS loading buffer and

boiled for 5 minutes. 15-20 uL of each sample was loaded into the SDS-polyacrylamide

gel and ran for 1 hour at 180 volts.

Western Blot Analysis

Following the completion of SDS-PAGE, the resulting gels were incubated in

transfer buffer for 15 minutes. Simultaneously, polyvinylidene fluoride (PVDF)
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membranes were activated by incubating the membranes in methanol for approximately 

20 seconds. The membranes were then equilibriated in transfer buffer for 5 minutes. 

Depending on the size of the protein, transfer of the proteins from the gel to a membrane 

was performed using a semi-dry method at 11 Volts for 45 minutes or a wet transfer 

method at 45 Volts for 3 hours.

After transferring of the protein to a PVDF membrane was complete, the 

membranes were re-activated with methanol for 20 seconds and then blocked with Tris- 

buffered Saline and Tween (TBST) containing 1% skim milk for 1 hour to reduce the 

expression of non-specific proteins. The membranes were then incubated with primary 

antibody for one hour. That is, detection of the protein of interest by Western Blot 

Analysis was achieved in which 1 ug of each particular primary antibody was incubated 

in 10 mL of TBST with 1 % skim milk. The membranes were washed three times for ten 

minutes with TBST and then incubated with the appropriate secondary antibody for an 

addition 45 minutes. Anti-mouse secondary antibody conjugated to horseradish 

peroxidise (Amersham) was diluted to a final concentration of 1:60 000 in TBST with 1 

% Skim milk. Similarly, anti-rabbit secondary antibody conjugated to horseradish 

peroxidise was diluted to a final concentration of 1:45 000. The different secondary 

antibodies used were dependent upon the specific species of the primary antibody. This 

was followed by an additional three washes with TBST of ten minutes each. In order to 

detect protein, the blots were incubated with SuperS ignal West Femto Maximum 

Sensitivity Substrate (Pierce) dilution for five minutes and visualization was achieved by 

chemoiluminescense.
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Stripping o f  Western Blots fo r  Re-probing

In order to ascertain the presence/levels of additional proteins, previously probed 

membranes were stripped in order to remove any bound antibodies and re-probed with a 

different primary antibody. This was achieved by incubating the membrane with 

stripping buffer with gentle agitation for 30 minutes at 55°C, followed by three washes 

with TBST for 10 minutes at 55°C. The blots were then ready to be re-probed with the 

appropriate primary antibody.

Flag-Agarose Affinity Purification o f Flag-Tagged Protein

HEK293 cells were plated and transfected with Flag-tagged human Sak as 

previously described. In order to induce DNA damage, 16 hours post transfection the 

cells were exposed to various amounts of UV radiation. The cells were then lysed with 

lysis buffer, scraped off the plates and centrifuged at 12 000 x g for 20 minutes at 4 °C in 

order to remove the lysate from the cellular debris. The lysate was then incubated at 4°C 

with 1:1 M2-Flag slurry (Sigma) and allowed to rotate on a vertical nutator for 2 hours. 

The samples were then centrifuged at 3000 x g for 1 minute and the supemantant was 

carefully decanted. Following this, the beads were washed three times with 400 uL of 

TNT Wash Buffer.

The desired Flag-tagged protein of interest was then eluted by the addition of 3 X 

Flag peptide (Sigma). Briefly, 35 uL of 3 X Flag peptide diluted in 1 X TBS to a 

concentration of 5 ug/uL was added to each sample and allowed to sit on ice for 1 hour 

with occasional agitation. This step was repeated an additional time to ensure the Flag- 

tagged protein was eluted from the 1:1 M2-Flag slurry beads. The samples were then 

spun down at 3000 x g for 1 minute and the resulting supernatant containing the eluted

protein was transferred to a fresh Eppendorf tube.
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In order to precipitate the eluted protein out of solution, 3 X the volume of acetone 

was added to the supernatant and allowed to sit at -20 °C overnight. The following 

morning, the samples were centrifuged at 10 000 x g for 15 minutes and three-quarters of 

the supernatant was carefully decanted. Samples were lyophilized (Speedvac, Biorad) in 

order to remove excess acetone. Following this, 15 uL of 2 X SDS loading buffer was 

added to each sample, the sample was boiled for 5 minutes and then subjected to SDS- 

PAGE.

In-Gel Detection o f Phoshoproteins

Following SDS-PAGE, the gel was subjected to Pro-Q Diamond Phosphoprotein 

Gel Stain (Invitrogen) in order to detect the presence of phosphoproteins. The gel was 

first immersed in 100 mL of Fix solution and incubated with gentle agitation at room 

temperature for 1 hour. The gel was then washed with ultrapure distilled water for 10 

minutes. This step was repeated two more times for a total of three washes. Following 

this, the gel was subjected to 15 mL of phosphoprotein gel stain and microwaved for 10 

seconds. The gel was then incubated in the absence of light at room temperature with 

gentle agitation for 15 minutes. This step was repeated an additional two times. The gel 

was then immersed in 100 mL of destain solution and allowed to incubate in the absence 

of light for 1 hour. Following this, the gel was then washed twice with ultra-pure water 

for 5 minutes. In order to obtain a phospho-image, the gel was scanned at 532 nm using 

the Molecular Imager FX (Biorad). After a phospho-image was produced, gels were 

subjected to 100 mL of Coomassie Blue stain, incubated at room temperature with gentle 

agitation for 1 hour and then subjected to various washes with destain solution in order to 

remove any background staining.
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Preparation for Mass Spectroscopy

In order to extract the protein for Mass Spectroscropy, the particular band(s) of 

interest were excised from the gel and placed in Eppendorf tubes. They were then 

incubated in 100 uL of destain solution and allowed to sit for 35 minutes at 37 °C. This 

procedure was repeated a second time, followed by repeated changes of 100% acetonitrile 

to dehydrate the excised gel until it became opaque. The pieces were then lyophilized for 

20 minutes to ensure that the excised gel was completely dried.

The dehydrated bands were then rehydrated in trypsin digestion buffer and 

incubated on ice for 30 minutes. After this period, an addition 20 uL of 50 mM 

ammonium bicarbonate was added to the gel pieces. Subsequently, the tubes were 

parafilmed and incubated in a shaker at 37 °C overnight. The following morning, the 

samples were briefly vortexed and the spun down. The supernatant containing the 

extracted peptides was collected and transferred to a fresh siliconized eppendorf tube 

containing 5 uL of 5% Formic Acid. In order to maximize the amount of peptide 

extraction, 200 uL of 60 % acetonitrile and 1% Formic Acid were added to the gel pieces 

and allowed to incubate at 37 °C for 45 minutes. This step was repeated an additional 

time. The gel pieces were then vortexed, spun down and the supernatant was collected 

and added to the peptides collected and placed in the siliconized eppendorf tubes. These 

pooled samples were then concentrated by subjecting them to the Speed Vac until only 10 

uL of supernatant remained. luL of each sample was spotted directly on a MALDI plate 

and subjected to Mass Spectroscopy.

In-Vivo Phosphomapping

In order to determine which part of Sak was subjected to phosphorylation, various

Flag-tagged Sak constructs were transfected in HEK293 cells as previously described.
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The following morning, the transfected cells were washed three times with phosphate-free 

media (Gibco) and subsequently incubated with 10 mL of phosphate-free media 

containing 10 % dialysed Fetal Bovine Serum (Hyclone) for 2 hours. After this period, 

the volume of media was reduced to 5 mL and 1 mCi of ortho-phosphate inorganic P32 

was added to each plate. The cells were thus allowed to incubate at 37 °C with 5 % CO2  

for 3 hours. Succeeding this incubation period, the cells were washed twice with 10 mL 

of 1 X TBS and lysed as previously described. The lysates were then subjected to 

immunoprecipitation and SDS-PAGE. The resulting gel was then transferred to a PVDF 

membrane and the membrane was exposed to a phospho storage screen overnight with 

visualization of phosphorylated bands on a phosphoimager (PerkinElmer). The following 

day, Western Blot analysis confirmed the presence of the Flag-tagged Sak constructs. 

Site-Directed Mutagenesis

GST-Chk2 was a gratious gift from Dr. Bonni from the University of Calgary.

In order to generate a kinase deficient version of Chk2, specific primers were designed 

(Primer3) to create the most optimal primers used to introduce the specific mutation at 

amino acid 368. The forward and reverse primers are listed respectively: 5’- 

gtcttataaagattactgcgtttgggcactccaag-3 ’ and 5 ’ -cttggagtgcccaaacgcagtaatctttataagac-3 ’. 

After the primers were designed, they were created by ACGT Corp. Subsequently, 50 ng 

of GST-Chk2 template DNA, 125 ng of forward and reverse primers, 1 X PFU 

polymerase buffer (Stratagene), 100 mM dNTP (dATP, dCTP, dGTP, dTTP), as well as 

2.5 U of Pfu DNA polymerase was added together to a total volume of 50 uL. From 

there, the samples were subjected to Polymerase Chain Reaction (PCR) for a total of 18 

cycles. Once PCR was complete in order to digest the non-mutated, methylated parent
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DNA strands, 10 U of Dpnl restriction enzyme (NEB) was added to each sample, gently 

pipetted and left at 37°C for one hour.

The digested PCR products were then transformed into Top 10 F’ Pilus E. Coli

competent cells are previously described. After an overnight incubation period at 37°C,

individual colonies were picked and inoculated in 2 mL of LB media containing 100

ug/mL of ampicilin. Cultures were incubated at 37°C for 16 hours and the DNA was

isolated using the QiaPrep Spin MiniPrep Kit from Qiagen according to the

manufacture’s protocol. The DNA product was then run on a 1% agarose gel against

wildtype GST-Chk2 to ensure the insert was still intact. From there, 10 uL aliquots of the

isolated DNA were sent for sequencing by ACGT.

GST-Fusion Protein Purification

BL21 E. Coli cells lack many proteases and are thus, an optimal way to express

and purify GST-fusion proteins. These cells transformed with plasmid DNA allow the

expression and accumulation of fusion proteins and minimize the level of degradation.

As a result, BL21 RIL E.Coli cells were transformed with GST-Chk2 and GST-D368A

plasmid DNA as previously described. A single colony was picked and inoculated

overnight at 37°C in 100 mL of LB supplemented with 100 ug/mL of ampicilin. The

following day, the 100 mL starter culture was added to 1 L of LB and grown at 37°C to an

Agoo of 0.7. After the indicated Aeoo value was obtained, IPTG (Fisher) to a final

concentration of 0.5 mM was added and allowed to incubate with agitation at 25 °C for 7

hours. The drop in incubation temperature was adjusted for maximum solubility of the

protein. Following this period, the cells were pelleted at 6000 x g for 15 minutes at 4 °C

and the resulting supemantant was carefully decanted as to not disturb the pellet. The

pellet was then resuspended in 20 mL of cell lysis buffer and sonicated on ice with 10
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second pulses. The resulting lysate was then centrifuged at 10 000 x g for 30 minutes at 4 

°C. Glutathione-Sepharose beads (GE) prepared according to the manufacturer’s protocol 

were carefully added to the resulting supernatant and placed on a vertical rotator for 2 

hours in order to allow binding of the fusion protein. The beads were then washed three 

times with column wash buffer. 1 mL of elution buffer was then added to the beads and 

allowed to incubate on a vertical rotator for an additional hour. The beads were spun 

down at 200 x g and the supernatant was removed and stored at 4 °C overnight. 

Simultaneously, an additional 1 mL of elution buffer was added to the beads and allowed 

to incubate with gentle agitation overnight. The following day, the resulting supernatant 

was run through spin columns in order to concentrate the eluted protein. SDS-PAGE, 

Coomassie Blue Stain and Western Analysis was performed as previously described in 

order to visualize the resulting GST-fusion purified protein.

In vitro Kinase Assay

In order to determine the kinase activity of the Flag-Sak constructs, in vitro kinase assay

was performed. Briefly, FLAG-hSak, FLAG-T170D and FLAG-K41M expression

plasmids were transiently transfected into HEK 293 cells as previously described. These

cells were then lysed 16-hours post transfection and the cell lysate was incubated with 1

ug of anti-FLAG antibody for 45 minutes at 4 °C. Following this, 65 uL of a 20% protein

G-sepharose slurry (GE lifesciences) was added to each sample and allowed to incubate

at 4°C for 45 minutes. The immunocomplexes were precipitated out of solution as

previously described and washed twice with 150 mM TNT wash buffer, twice with 150

mM TNT wash buffer containing 500 mM of LiCl and once with kinase buffer. The

immunocomplexes were then resuspended in 30 uL of kinase buffer, 2.5 uL of cold ATP

and 8 ug of the specified GST-fusion protein. In addition, various concentrations of
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Wortmannin (1 nM, 10 nM, 25 nM, 50 nM, 100 nM and 1000 nM) were added to test its 

ability to inhibit Sak autophosphorylation. The kinase reaction was started by the 

addition of 10 uCi [y-32P] ATP (Amersham Biosciences) and the samples were then 

allowed to incubate at 35 °C from 35 minutes. In order to stop the kinase reaction, 6 uL 

of 6 X SDS loading buffer was added to each sample and boiled for 5 minutes. The 

samples were then subjected to SDS-polyacrylamide gel electrophoresis and the resulting 

gel was transferred to a PVDF membrane as previously described. The membrane was 

then incubated overnight in the dark with a phospho-imager in order to visualize 

phosphorylation of the protein. Subsequently, the membranes were subjected to Western 

Blot Analysis in order to detect the immunoprecipitated proteins and the GST-fusion 

substrates.
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CHAPTERIV 

RESULTS

Characterizing the Phosphorylation Status of Sak

Sak is Phosphorylated in the Absence and Presence o f Ultraviolet Radiation

Little is known about the phosphorylation status of Sak and how this affects Sak 

activity, stability, localization and interactions with other proteins. As an initial step, it 

was therefore of interest to examine and characterize the phosphorylation of Sak both 

under normal conditions, as well as upon exposure to DNA damaging agents. On this 

basis, HEK 293 cells were transiently transfected with an expression plasmid containing 

Flag-tagged human Sak. Untransfected, asynchronous cells were used as a control. 16 

hours post transfection, the cells were exposed to 35 mJ/cm2, 70 mJ/cm2 or 120 mJ/cm2 of 

ultraviolet (UV) radiation or left unexposed. Thirty minutes after exposure to UV, the 

cells were lysed and the lysates were incubated with 1:1 M2-Flag slurry. The desired 

Flag tagged human Sak protein was then eluted from the beads with the addition of 3 X 

Flag peptide and concentrated by acetone precipitation. In order to detect phosphorylated 

proteins, the resultant concentrated protein was then subjected to SDS-PAGE and the gel 

was stained using Pro-Q Diamond Phosphoprotein Gel Stain (Invitrogen). As seen in 

Figure 4 A, human Sak is phosphorylated in asynchronous cells in the absence of UV 

exposure, as well as after UV exposure. Furthermore, increasing the dosage of UV 

exposure did not alter the phosphorylation status of Sak.

In order to ensure that the phosphorylated band seen was indeed Sak, the gel was 

subjected to Coomassie Blue staining (Figure 4B) and the corresponding bands were 

excised. Following this, the protein was extracted from the gel and trypsin digested in
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order to prepare the sample for mass spectrometry. A MS peptide fingerprint was 

produced displaying distinct peaks varying in intensity.

Mass/charge ratios were then examined and input into MS-FIT Protein Prospect 

which takes the MS results and matches the peptide-mass fingerprinting data from MS to 

known amino acid sequences in proteins. Investigating seven distinct peaks from the 

peptide-mass fingerprint revealed that the corresponding sequences most likely belonged 

to Sak (data not shown).

Although, MS fingerprinting supported the notion that the phosphorylated bands 

were indeed Sak, the primary purpose of employing Mass Spectrometry was to attempt to 

characterize the actual site of phosphorylation of Sak. Unfortunately, the abundance of 

phosphorylated Sak was not great enough to detect the actual phosphorylated peptide 

through these means (data not shown).
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Figure 4. Phosphorylation o f Sak. HEK 293 cells transfected with expression 
plasmids for Flag-tagged human Sak protein were exposed to different amounts 
(35 mJ/cm2, 70 mJ/cm2 and 120 mJ/cm2) o f ultraviolet radiation. Cells were lysed 
and the lysates were incubated with 1:1 M2-Flag slurry. Flag-hSak protein was 
eluted from the beads with 3 X Flag peptide and concentrated by acetone 
precipitation. The resultant concentrated protein was then subjected to SDS- 
PAGE. Cells alone were used as a negative control. (A) The resultant gel was 
subjected to Phosphoprotein Gel Staining in order to detect the presence o f 
phosphorylated protein and exposed to a phospho-imager. Ovalbumin and BSA 
were used as a positive and negative control for phosphorylation respectively. A  
positive signal for phosphorylation was detected at 100 kDa in the lanes 
corresponding to immunoprecipitated human Sak both with or wilhout exposure to 
UV radiation. No such band was present in cells alone. (B) The same gel was 
Coomassie Blue stained to ensure proper protein loading. The bands detected at 
100 kDa (not seen in the cells alone lane) were then excised and subjected to Mass 
Spectrometry. MS-fingerprinting supported that the positive signal at 100 kDa 
corresponded to hSak (data not shown).
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In Vivo Phosphorylation o f Sak Domain-Specific Constructs

In order to characterize which domain of Sak was subjected to phosphorylation, in 

vivo phospho-mapping was employed. Flag-tagged Sak domain specific constructs were 

transiently transfected into HEK 293 cells (Figure 5). Specifically this included several 

different polypeptides. Firstly, a kinase active form of Sak (Flag-T170D) which has a 

single point mutation in its catalytic loop was utilized. Substitution of the threonine 

residue with a negatively charged aspartate mimics a phospho-residue and renders the 

protein kinase active. Secondly, two kinase dead forms of Sak (Flag-K41M and Flag- 

D154N) were utilized. Flag-K41M has a point mutation in which the critical lysine 

residue is mutated to a methionine; Flag-D154N also has a point mutation in which the 

aspartate in the activation loop was mutated to an arginine. Both of these mutations 

rendered the protein kinase dead .Flag-APb was also utilized which consists of the Sak 

protein lacking the C-terminal polo-box domain. Finally, Flag-Rl and Flag-Pb were used 

which are proteins consisting of only the cryptic polo-box and the polo-box domain 

respectively.

These cells were then incubated in the presence of ortho-phosphate inorganic P32,

lysed and immunoprecipitation was performed with an anti-Flag antibody. Exposure to a

phosphoimager (PerkinElmer) revealed distinct phosphorylation patterns. As seen in

Figure 6A, all the full length Sak constructs except the mouse kinase dead protein are

phosphorylated. However, a contaminating band in the cells alone and YVH1 negative

control lanes at the approximate size of the full length Sak constructs was also observed.

In contrast, a distinct signal for phosphorylated APb construct is observed indicating that

this result is conclusive. Interestingly, the cryptic polo-box domain (Rl) and the polo-

box domain (Pb) display no phosphorylation (Figure 6C). Taken together, these results
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demonstrate that the ability for Sak to be phosphorylated is independent of Sak’s own 

kinase ability. That is, the human kinase-dead construct was phosphorylated. This result 

shows that Sak is indeed being phosphorylated by an endogenous protein and not by its 

own ability to autophosphorylate. Furthermore, Pb and R1 are not phosphorylated and 

thus, indicate that under these conditions Sak is phosphorylated upstream of these 

domains.
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Figure 5
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Figure 5. Schematic representation of domain specific Sak protein. cDNA 
encoding M l length, mutated or domain specific Sak protein were cloned into the 
3X FLAG expression plasmid (Leung et aL, 2002; Swallow et aL 2005). Outlined 
above is a schematic representation o f the various Sak proteins encoded by the 
vector used in these experiments.
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Figure 6. /it Prvo Phospho Mapping of Sak. HEK 293 cells were transiently 
transfected with the various Sak constructs. The cells were incubated with ortho
phosphate inorganic P32 and subjected to in vivo phospho-mapping as described. Non
transfected cells and YVH1 were used as negative controls. (A) Immunoprecipitaled 
fell length Flag-Sak protein was resolved by SDS-PAGE. The corresponding 
membrane was exposed to a phosphoimager(PerkinElmer) in order to examine their 
phosphorylation status. Apositive signal for phosphorylation was detected at 100 kDa 
for all the fell length Flag-tagged Sak protein and Flag-APb. (B) Western Blot Analysis 
using an anti-Flag antibody was performed. (C) Immunoprecipitated Flag-polo-box 
(Pb) and Flag-cryptic polo-box (R.1) were subjected to SDS-PAGE, transferred to a 
PVDF membrane and exposed to a phosphoimager (PerkinElmer). No positive signal 
was detected for these domains. (D) Subsequent Western Blot Analysis using an anti- 
Flag antibody was performed in  order to detect the presence o f  transiently expressed 
Flag-Pb and Flag-Rl. Red arrows indicate the position of the expected positive signal 
in the corresponding lanes.
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Autophosphorylation o f  Sak in the Presence ofWortmannin

Wortmannin is a potent inhibitor of the PI-3 kinase family and various studies 

involving its inhibitory effects on the kinase ability of ATM and ATR have been 

examined. Indeed, ATM/ATR kinase activity is blocked by Wortmannin with 

concentrations as low as 5 nM (Sarkaria et al., 1999). In addition, Wortmannin has been 

observed to block the kinase activity of members of the Polo-like kinase family. In 

particular, experiments on Plkl and Plk3 have shown a 100% inhibitory rate by 

Wortmannin at a concentration of 1000 nM (Liu et al., 2005, Liu et al., 2007). We tested 

the phosphorylation status of Sak in the presence of various concentrations of 

Wortmannin (0 nM, 1 nM, 10 nM, 25 nM, 50 nM, 100 nM and 1000 nM) utilizing casein 

(Sigma) as a substrate. Firstly, HEK 293 cells stably expressing Flag-hSak were induced 

by the addition of tetracycline. 16 hours post-induction, the cells were lysed, subjected to 

immunoprecipitation and incubated in the presence of [y-32P] ATP, Casein substrate and 

Wortmannin. SDS-PAGE was performed, the resultant gel was transferred to a 

membrane and exposed to a phosphoimager. Unfortunately, the image produced had 

various phosphorylated bands around approximately 25 kDa (corresponding to the 

molecular weight of Casein) in the presence and absence ofWortmannin. In addition, 

these bands (although not as intense) were seen in the negative control lane producing an 

inconclusive result as to whether phosphorylation of Casein by Sak occurred in the 

presence ofWortmannin (data not shown). However, Figure 7 depicts 

autophosphorylation of Sak in the absence and presence of this inhibitor. In addition, 

increasing the concentration ofWortmannin to levels known to inhibit Plkl and Plk3, had 

no effect on the autophosphorylation status of Sak. Western blot analysis was performed

to ensure that adequate levels of Sak expression.
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At the same time this study was performed, Johnson et al. published results 

indicating that, unlike the other members of the mammalian Plk family, Sak was not 

inhibited by Wortmannin. An in vitro kinase was performed using a peptide library as the 

substrate. Wortmannin was added to the assay and time-dependent inhibition of ATP was 

examined. Their results indicated that Sak was not inhibited by Wortmannin (Johnson et 

al., 2007).
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Figure 7
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Figure 7. Phosphorylation of Sak in the Presence ofWortmannin. Lysates from HEK 
293 cells stably expressing hSak were incubated with anti-Flag antibody. The Flag-hSak 
immunoprecipitates were incubated in kinase buffer containing [y-32P] ATP and the various 
concentrations ofWortmannin for 35 minutes at 35°C. The reactions were terminated by 
the addition of 6 X loading buffer, resolved by SDS-PAGE and phosphorylation was 
visualized by a phosphoimager (PerkinElmer). Autophosphorylation of Sak was detected in 
the absence and presence ofWortmannin. Subsequent Western Blot Analysis was 
performed using an anti-Flag antibody in order to detect Flag-hSak protein levels..
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Sak and DNA Damage Response

Interaction o f Sak with ATM and Rad3-Related (ATR)

Plkl has been observed to interact and become inhibited by ATR after exposure to

UV radiation and increasing amounts of adriamycin. When ATM null cell lines were

exposed to UV, Plkl activity was attenuated in the absence of ATM, suggesting that

under these conditions, ATR is the primary inhibitor of this Plk member (van Vugt et al.,

2001). Given the known interaction between Plkl and ATR, a previous study in our lab

investigated the potential interaction between Sak and ATR, thus giving insight into Sak’s

role during DNA damage response. A putative interaction between wildtype, kinase

active and kinase-dead hSak and ATR was identified by Melissa Ganuelas in Dr.

Hudson’s Laboratory (unpublished data). However, determining which domain of Sak

interacts with ATR was not studied in this investigation. Therefore, in order to determine

the domain specific interactions between Sak and ATR, the various domain-specific Flag-

tagged Sak constructs were transiently expressed in HEK 293 cells. The cells were lysed

and co-immunoprecipitation was performed using a polyclonal anti-ATR antibody

(Calibiochem or Santa Cruz). Western blot anaylsis was then performed and involved

probing the membrane with anti-Flag, detecting any of the Flag-Sak constructs.

As seen in Figure 8B, Flag-hSak, Flag-T170D and Flag-K41M all co-immunoprecipitated

with ATR, confirming previous results. In addition, Flag-Sak, Flag-D154N, Flag-APb

and Flag-Rl show association with ATR. However, the polo-box construct did not co-

immunoprecipitate with ATR. Flag-YVHl was used as a negative control to ensure that

these interactions were not between the Flag-tag and ATR. Furthermore, Figure 8 A

shows the transfection efficiency for each of the constructs. GAPDH was probed and

used as a loading control. Taken together, it is observed that the kinase status of Sak does
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not influence the association between these two proteins. Furthermore, the cryptic polo- 

box was found to be sufficient for Sak interaction as seen in Figure 8B. However, the 

association between ATR and Flag-APb and the observation that Flag-Pb does not co- 

immunoprecipitate, indicates that the polo-box domain is not necessary or sufficient for 

this interaction to occur.
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Figure 8. Sak Interacts with AI R. HEK 293 cells were transiently transfected with 
expression plasmids for various Flag-tagged Sak proteins and lysed 16 hours later. (A)
Cell lysates were subjected to SDS-PAGE and immunoblotled with anti-Flag antibody in 
order to determine the transfection efficiency of the Flag-tagged constructs. The blots 
were then stripped and re-probed with anti-GAPDH to ensure equal loading of the protein. 
(B) Cell lysates expressing the Flag-tagged Sak proteins were subjected to 
immunoprecipitation using an anti-ATR. antibody. The immunoprecipitates were resolved 
by SDS-PAGE, transferred to a PVDF membrane and immunoblotted using an anti-Flag 
antibody. Wildtype hSak and Sak, kinase active Sak (T170D) and the two kinase dead 
Sak proteins (K41M and D154N) all co-immunoprecipitated with ATR. Sak lacking the 
polo-box domain (APb) and the cyrptic polo-box (R1) also co-immunoprecipitated with 
ATR. The polo-box alone was not observed to interact with ATR. Cell lysate fiom non
transfected cells and Flag-YVHl were negative controls. Red arrows indicate the position 
of the expected positive signal in the corresponding lanes..
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Sak Interacts with Chkl

Chkl has been found to block Plkl activity in response to UV radiation 

preventing cells to enter mitosis (Tang et al., 2006). This interaction with Plkl led to the 

assumption that a potential interaction between Sak and Chkl may exist. To test this 

hypothesis, the various Flag-tagged Sak constructs were transfected in HEK 293 cells and 

lysed 16 hours after tansfection. Cell lysates were probed with an anti-Flag antibody to 

ensure transfection efficiency of the various Sak constructs. This was followed by 

probing for GAPDH to ensure proper loading of the proteins (Figure 9A). Co- 

immunoprecipitation was performed on whole lysates with an anti-Chkl monoclonal 

antibody (Sigma). Similar to the results obtained with ATR, Flag-hSak and Flag-Sak, 

Flag-T170D, Flag-K41M, Flag-D154N and Flag-APb all co-immunoprecipitated with 

endogenous Chkl. No interaction was observed with Flag-Pb and the negative control 

Flag-YVHl (Figure 9B). These results indicate that the kinase ability of Sak is 

independent of its association with Chkl. Flag-Rl interacts with Chkl indicating that the 

cryptic polo-box is sufficient for Chkl interaction. However, the lack of association 

between Chkl and the polo-box domain suggests that this motif is not sufficient for 

interaction. In addition, Flag-APb co-immunoprecipitating with endogenous Chkl 

indicates that the polo-box domain of Sak is not necessary for this novel association.
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Figure 9. Sak Co-Immunoprecipitates with Chkl. Cells were transiently transfected with 
various expression plasmids for wildtype, kinase active (T170D), kinase dead (K41M and 
D154N) and domain specific Sak proteins and lysed 16 hours later. (A) Cell lysates were 
subjected to SDS-PAGE and immunoblotted with anti-Flag antibody in order to determine the 
transfection efficiency of the Flag-tagged constructs. The blots were then stripped and re- 
probed with anti-GAPDH to ensure equal loading of the protein. (B) Cell lysates expressing 
the Flag-tagged Sak proteins were subjected to immunoprecipitation using an anti-Chkl 
antibody. Resulting immunocomplexes were resolved by SDS-PAGE and Western Blot 
analysis was performed using an anti-Flag antibody. Wildtype hSak and Sak, kinase active 
Sak (T170D) and the two kinase dead Sak proteins (K.41M and D154N), as well as the 
domain specific Sak protein lacking the polo-box (APb) and the cyrptic polo-box (Rl) co- 
immunoprecipitated with Chkl. The domain specific polo-box protein was not observed to 
interact with Chkl. Cell lysate from non-transfected cells and Flag-YVHl were utilized as 
negative controls. Red arrows indicate the position of the expected positive signal in the 
corresponding lanes.
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Protein Expression o f  Sak, ATR and Chk2 After Exposure to UV Radiation

In addition to ATR, novel interactions between Sak and Chk2 have been observed 

by Melissa Ganuelas from Dr. Hudson’s Laboratory (unpublished data). The observed 

co-immunoprecipitation of Sak with endogenous ATR and Chk2 under normal 

asynchronous conditions prompted the idea that these interactions may be changed in 

response to UV radiation. To test this hypothesis, cells were either left alone or

transfected with Flag-hSak. 16 hours post-transfection, the cells were exposed to 25

0 • • •mJ/cm of UV radiation and lysed at the indicated time points. Cell lysate was then

subjected to SDS-PAGE and the resulting membranes were blotted using anti-Flag

(Sigma), anti-Chk2 (Sigma), and anti-ATR (Santa Cruz). Lastly, the blots were probed

with an anti-GAPDH antibody in order to measure protein levels. As seen in Figure 10A,

protein levels of all four proteins remain relatively constant until 4 hours after UV

exposure. At this time period, Sak levels remain relatively constant, while ATR and

Chk2 proteins were not detectable. In addition, GAPDH levels, although present at 4

hours post UV exposure, showed a slight decrease in expression at this time, most likely

the result of increased apoptosis due to UV exposure. This is in contrast to the protein

levels in our control cells. Endogenous levels of ATR, Chk2 and GAPDH are relatively

constant at all the times post UV exposure including 4 hours after UV. Interestingly,

these results present the idea that cells over-expressing Sak and exposed to UV radiation

may be more susceptible to UV radiation.

The striking difference in ATR protein levels in cells overexpressing Sak

compared to cells absent of exogenous Sak expression led to the assumption that UV

radiation may affect the association between these two proteins. As a result, cells were

transiently expressed with Flag-Sak, exposed to UV 16 hours after transfection and lysed
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at the indicated time points after exposure. Immunoprecipitation was performed using an 

anti-ATR polyclonal antibody (Santa Cruz) and the resulting immunoblot was probed 

with an anti-Flag antibody. The blot was then re-probed with an anti-ATR antibody to 

determine the levels of this protein. Interestingly, Flag-hSak co-immunoprecipitated with 

endogenous ATR at every time point. However, the level of Flag-hSak began to decrease 

4 hours post UV radiation and ATR was not detected at this time (Figure 11). Taken 

together, the association between Sak and ATR does not change due to the presence of 

UV radiation. However, similar to the observations in Figure 10, the levels of ATR 

decrease in cells overexpressing Sak indicating that this association in the presence of UV 

exposure may affect overall protein levels or cell viability.
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Figure 10. Time Scale Observations of the Interaction Between Sak, Chk2 and ATR. 
Cells were transiently transfected with the expression plasmid for hSak protein and exposed 
to 25 mJ/cm2 of UV radiation 16 hours after. The cells were then lysed immediately after 
UV exposure or at the indicated time points (15 min, 30 min, 1 hour, 1.5 hours, 2 hours and 
4 hours). (A) Whole cell lystates were immunoblotted with anti-Flag antibody in order to 
display Flag-hSak protein levels. The blot was then stripped and re-probed with anti-ATR, 
anti-Chk2 and anti-GAPDH in order to detect endogenous levels o f these proteins. ATR and 
Chk2 protein levels were not detected 4 hourspost-UV exposure. (B) Whole cell lystates 
from non-transfected cells were lysed at the indicated time points after UV exposure and 
resolved by SDS-PAGE. Subsequent immunoblotting with anti-ATR, anti-Chk2 and anti- 
GAPDH antibodies were done in order to detect endogenous levels o f these proteins.
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Figure 11
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Figure 11. Sak Interacts with ATR After Exposure to UV. Cellswere transiently 
transfected with the expression plasmid for hSak protein and exposed to 25 ml/cm2 of UV 
radiation 16 hours after. The cells ware then lysed immediately after UV exposure or at the 
indicated time points (15 min, 30 min, 1 hour, 1.S hours, 2 hours and 4 hours). Whole cell 
lysates wore subjected to imnumopreeipitation with an anti-ATR antibody and the resultant 
jmcounocontplexes were resolved by SDS-PAGE. Western Blot Analysis was performed 
using an anti-Flag antibody. Flag-Sak co-immunoprecipitated with ATR at every time point 
after UV exposure. The membrane was then probed with anti-ATR in order to detect 
endogenous levels o f AIR protein.
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Creation o f  GST-D368A, a Kinase Inactive Form o f  GST-Chk2

Chk2 is a vital DNA damage response protein and is a known target of ATM/ATR 

(Bartek and Lukas, 2003, Hirao et al., 2002). In addition, Plkl and Plk3 were both 

observed to interact and phosphorylate this kinase (Tsvetkov et al., 2003, Bahassi et al., 

2006). This prompted us to investigate the potential interaction between Sak and Chk2, 

and indeed an interaction has been observed. Since both these proteins are kinases, we 

investigated whether one or both are prospective targets for phosphorylation. In order to 

perform this assay, recombinant GST-Chk2 was given to us as a gracious gift by Dr.

Bonni from the University of Calgary.

It has been observed, however, that bacterially expressed GST-Chk2 

autophosphorylates (Xu et al., 2002). As a result, in order to truly assess which protein is 

the substrate, a kinase-dead version of Chk2 was created. In order to do this, the 

Stratagene QuickChange Mutagenesis approach was utilized. Primers were designed to 

introduce a mutation into GST-Chk2 plasmid DNA in which the codon for an aspartate in 

the activation loop of the kinase domain was mutated to a codon for an alanine. 

Polymerase Chain Reaction (PCR) using Pfu DNA polymerase (Stratagene) allowed for 

the incorporation of the mutagenic primers. Following PCR, the DNA was incubated 

with Dpnl which digested the methylated parental DNA not containing the mutation 

allowing for the selection of newly synthesized mutated DNA. Top 10 F’ Pilus E. Coli 

competent cells were transformed with the resulting PCR products. Individual colonies 

were picked and incubated overnight in LB media containing 100 ug/mL of ampicillin. 

DNA was then isolated from these cultures using the QiaPrep Spin MiniPrep Kit (Qiagen) 

and the resulting DNA was sent for sequencing by ACGT Corp.
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The inferred proteins sequence was determined by translating the sequence results 

from ACGT Corp and comparing it to the translated DNA sequence from the wildtype 

GST-Chk2 (ExPASy). As seen in Figure 12, the aspartate at amino acid 368 is mutated to 

an alanine indicating that site-directed mutagenesis was successful and Chk2 is 

theoretically now rendered kinase inactive. In order to distinguish between the two GST- 

Chk2 constructs, the kinase-dead construct was named GST-D368A.

This DNA was then transformed into BL21 E. Coli cells for the purpose of 

expressing and purifying GST-fusion protein. BL21 E. Coli cells lack many pro teases, 

thus making them an optimal system to express protein for the purpose of purification.

0.5 mM IPTG (Fisher) was added in order to induce the cells to translate the GST-fusion 

DNA into protein. After an induction period of 7 hours, the cells were spun down and 

sonicated in order to break open the cells and remove the protein. In order to enrich for 

the GST fusion proteins, the resulting lysate was incubated with Glutathione-Sepharose 

beads (GE) which bound the GST-fusion protein. The resulting complex was washed, 

followed by elution of the GST-fusion protein. The resulting lysate was subjected to a 

spin column for the purpose of concentrating and purifying the GST-fusion protein. 

Through this process, GST-Chk2, the kinase defective form GST-D368A and GST-vector 

fusion proteins were purified and Bradford Assays were performed in order to determine 

their concentrations (data not shown).

Before these GST-fusion proteins were used in in vitro kinase assays, the protein

products were run on an SDS-PAGE gel along with samples from the various stages of

protein purification. This was performed in order to ensure that the proteins induced and

were purified. Figure 13A depicts the resultant Coomassie Blue stained gel for GST-

vector. Samples from the various stages of protein purification of GST-vector were taken
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and subjected to SDS-PAGE. No GST-vector protein is detected in the uninduced lane. 

However, as protein purification proceeded, the band at 27 kDa increasing becomes more 

abundant with less contamination. Furthermore, Figure 13B depicts the final purified 

protein products of GST-Chk2 and GST-D368A, depicting a band at 93 kDa. Uninduced 

Cells were run as a negative control. In addition, the purified protein was subjected to 

Western Blot Analysis where it was probed with an anti-Chk2 monoclonal 

antibody to ensure that the purified protein was indeed GST-Chk2 fusion protein. As 

seen in Figure 13C, bands in both the GST-Chk2 and GST-D368A at 93 kDa correspond 

to the GST-fusion proteins. These results indicate that GST-Chk2 and the kinase-dead 

construct, GST-D368A, have been bacterially expressed, harvested and purified.
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Figure 12. llte  Sequencing Results From Site-Directed Mutagenesis of GST- 
Chk2. The Stratagene QuickChange Mutagenesis approach was used in order to 
design primers introducing a mutation Mo GST-€hk2 plasmid DNA. Polymerase 
Chain Reaetion (PCR) using P& DNA polymraase (Stratagene) allowed for the 
incoiparationoftoe mutagenic primers. Sequential incubation with Dpnl, digested the 
methylated parental DMA. not containing the mutation allowing tor the selection of 
newly synthesized mutated DNA. Top 10 F’ Pilus £. Coli competent cells ware 
transformed with toe resulting PCR products. Individual colonies were picked, 
incubated ovemigjht in LB media containing 100 ug/mL of anqpicillin and DNA was 
isolated using toe QiaPrep Spin MiniPrep Eat (Qiagen). Die resulting DNA was 
sequenced by ACGT Corp., translated and compared to toe translated DNA sequence 
from wildtype GST-Chk2 (ExPASy). Die aspartate at amino acid 368was mutated to 
an alanine theoretically rendering it kinase defective.
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Figure 13. Purification of the GST-Fusion Proteins. Wildtype GST-Chk2, kinase dead 
GST-Chk2 (GST-D368A) and GST-vector were expressed in BL21 E. Coli cells using 0.5 
mM of IPTG The resulting fusion proteins were purified using Glutathione-Sepharose 
beads (GE), the beads were washed and the GST-fiision proteins were eluted. (A)
Samples woe taken from every step of the purification process of GST-vector, SDS- 
PAGE was performed and the resulting gel was then Coomassie Blue stained.
Purification of GST-vector protein yeilded a band seen at 27 kDa in every lane after 
induction. The final protein product yields a band at the corresponding weight with very 
little contamination. (B) The final protein purification products of GST-Chk2 and GST- 
D368Awere resolved by SDS-PAGE and subjected to Coomassie Blue staining. 
Uninduced cells were used as a negative control. Corresponding bands at 93 kD can be 
seen. (C) Western blot analysis was performed using an anti-Chk2 antibody to ensure 
that the observed bands at 93 kDa were in fact the GST-Chk2 fusion proteins. HC and LC 
denote heavy chain and light drain respectively.
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Sak Phosphorylates Chk2 In Vitro

In order to determine whether the association between Sak and Chk2 led to the 

subsequent phosphorylation of one of these proteins, the purified GST-fusion proteins 

were used in an in vitro kinase assay. HEK 293 cells were transfected with Flag-hSak, 

Flag-T170D and Flag-K41M and lysed 16 hours after. Whole cell lysates prepared from 

these transfected cells were immunoprecipitated with anti-Flag antibody. From there, the 

bacterially expressed GST-Chk2 or GST-D368A were incubated with the

TOimmunoprecipitated Flag-tagged Sak constructs in the presence of [y- P] ATP 

(Amersham Biosciences), SDS-PAGE was performed and the resulting membrane was 

exposed using a phosphoimager (Perkin Elmer). Subsequently, the membranes were 

probed sequentially with an anti-Flag antibody and anti-Chk2 antibody to confirm the 

presence of the Flag-tagged Sak proteins and Chk2 protein respectively. Figure 14A 

depicts the Flag-Sak constructs without the presence of a GST-fusion protein substrate. 

The phosphorylated bands at 100 kDa correspond to the autophosphorylation of wildtype 

Sak and kinase active Sak (T170D). Incubation of the Flag-Sak constructs with GST- 

Chk2 is seen in Figure 14B. Phosphorylation of GST-Chk2 is observed in every lane 

including the untransfected control, indicating that Chk2 is autophosphorylated. In 

addition, no phosphorylation of kinase-dead Sak was detected, indicating that Chk2 does 

not phosphorylated Sak. However, the kinase dead version of Chk2, GST-D368A, is 

observed to be phosphorylated by the wildtype Flag-hSak construct (Figure 14C). 

Interestingly, phosphorylation of D368A by kinase active T170D is not observed. Taken 

together, these results reveal that Chk2 is indeed a substrate of Sak.

Previous studies have also revealed that the phosphorylation of Chk2 by Plkl

occurs at T26 or S28. This phosphorylation is involved in the localization of Chk2 to
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centrosomes (Tsvetkov et al., 2003). Since Plks are known to target the same residues on 

particular targets, we examined the possibility that Plk4 may target Chk2 at the same site 

that Plkl does. In order to test this hypothesis, the membranes from the previous kinase 

assay were stripped and re-probed with the anti-Chk2 phospho T26 specific antibody 

(Amersham). No bands were detected on any of these blots suggesting that a phospho- 

T26 residue on GST-D368A was not present. However, the lack of a positive control 

prohibits us stating with certainty that the site of phosphorylation of Chk2 by Sak is not 

T26 (data not shown).
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Figure 14. Sak Phosphorylates GST-Chk2 In Vitro. HEK 293 cells were transiently 
transfected with expression plasmids for either Flag-hSak, Flag-T170D or Flag-K41M The 
cells were lysed and immunoprecipitation was performed using an anti-Flag antibody. (A) 
Immunoprecipitated Flag-hSak protein were incubated in the presence o f ATP without any 
substrate. SDS-PAGE was performed and the membrane was exposed using a phosphoimager 
(PerkinElmer). A positive signal was detected at 100 kDa in the lanes corresponding to 
wildtype and kinase active hSak (T170D). The blots were then probed with anti-Flag 
antibody to ensure transfection efficiency. (B) Purified wildtype GST-Chk2 was incubated 
with or without the immunoprecipitated Flag-tagged hSak protein in the presence of ATP, 
subjected to SDS-PAGE, transferred to a membrane and viewed using a phosphoimager 
(PerkinElmer). A positive signal for phosphorylation was observed at 100 kDa in the 
wildtype hSak and T170D lanes and in every lane at 93 kDa Western Blot analysis was then 
performed with an anti-Flag antibody to ensure transfection efficiency. The blot was then 
stripped and re-probed with anti-Chk2 antibody. (C) Purified kinase dead GST-€hk2 (GST- 
D368A) was incubated with or without the immunoprecipitated Flag-tagged hSak protein in 
the presence of ATP. SDS-PAGE was performed andthe subsequent membrane was analyzed 
using a phosphoimager (PerkinElmer). A positive signal for phosphorylation was observed at 
100 kDa in the wildtype hSak and T170D lanes. Apositive signal was also detected at 93 
kDa in the Flag-hSak lane. Immunoblotting was performed with an anti-Flag antibody to 
ensure transfection efficiency, followed by re-probing with anti-Chk2 antibody. .

ImnnmoblotRadiography
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In Vitro Phosphorylation o f Chk2 by Sak is Abolished in the Presence o f UV

To further characterize the interaction between Sak and Chk2, it was of interest to 

determine if Chk2 is still phosphorylated by this Plk member in response to UV radiation. 

Classical understanding of the DNA damage pathway emphasizes that Chk2 is activated 

in response to ionizing radiation. However, recent finding have suggested that Chk2 is 

activated in an ATM-independent manner. That is, in response to UV radiation, Chk2 

was found to be phosphorylated by ATR (Matsuoka et al., 2000, Hirao et al, 2002). As 

a result, cells transiently expressing the Flag-tagged constructs were exposed to 25 

mJ/cm UV radiation and lysed one hour later. Immunoprecipitation was performed using 

an anti-Flag antibody and Flag-HSak, Flag-T170D and Flag-K41M were incubated with 

GST-Chk2 or GST-D368A in the presence of [y-32P] ATP (Amersham Biosciences). The 

resulting blots were subjected to autoradiography and Western Blot Analysis to ensure 

protein levels. As seen in Figure 15 A, autophosphorylation of Chk2 remains in the 

absence or presence of UV radiation. Interestingly, however, phosphorylation of the 

kinase inactive Chk2 construct, D368A, by Sak was abolished in the presence of UV 

(Figure 15B). It is also worthy to note, that Flag-Sak was also incubated with column 

purified GST protein, to ensure that the observed phosphorylation of GST-D368A was 

not with the GST tag. As seen in Figure 15C, Sak does not phosphorylate the GST 

protein thus confirming that the phosphorylation event was on Chk2.
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Figure 15. Phosphorylation ofChk2 by Sak is Abolished in the Presence ofUV.HEK 293 
cells were transfected with expression plasmids for either Flag-hSak, Flag-T170D or Flag- 
K41M 16 hours after transfection, the cells were exposed to UV, allowed to sit for an 
additional hour, lysed and immunoprecipitation using an anti-Flag antibody was performed. (A) 
Purified wildtype GST-Chk2 was incubated with or without the Flag-tagged constructs in the 
presence of ATP, subjected to SDS-PAGE and viewed using a phosphoimager (PerkinElmer). 
The blots were then probed with anti-Flag and anti-Chk2 antibodies. (B) Immunoprecipitated 
Flag-tagged Sak protein was incubated with purified kinase dead GST-Chk2 (GST-D368A) in 
flie presence of ATP, resolved by SDS-PAGE and viewed using a phosphoimager (PerkinElmer). 
Apositive signal at 93 kDa was not detected in any of the lanes containing Flag-hSak protein 
♦hat had been exposed to UV. Subsequent Western Blotting performed using an anti-Flag 
antibody and then re-probed with an anti-Chk2 antibody. (C) For a negative control, 
immunoprecipitated Flag-hSak protein incubated in the presence of purified GST-vector and 
AIT were subjected to SDS-PAGE and subsequent exposure using a phosphoimager 
(PerkinElmer). Western Blot Analysis was then performed using an anti-Flag antibody, stripped 
and re-probed with an anti-GST antibody.
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CHAPTER V 

DISCUSSION

Characterizing the Phosphorylation Status of Sak

Phosphorylation and dephosphorylation are vital mechanisms that may alter a 

protein’s stability, activity, cellular localization and affinity for substrates. This post- 

translational event can alter the structure of a protein rendering it in an active or inactive 

state. Like many other kinases, members of the polo-like kinase family are also known to 

be regulated by phosphorylation. Little is known however, about the phosphorylation 

status of Sak and characterizing this would prove useful in shedding light on its potential 

interacting partners and cellular pathways that it plays a role in. Therefore, a goal of this 

study was to determine the phosphorylation status of this kinase and identify particular 

residues targeted by this event.

As an initial step we examined whether Sak is phosphorylated in an asynchronous 

population of HEK-293 cells. Under these conditions Sak was found to be a target of 

phosphorylation (Figure 4A).

In order to assess whether the observed phosphorylation of Sak was the target of

other kinases or a result of autophosphorylation mutations that affected Sak activity, as

well as domain-specific constructs were utilized in an in vivo phosphomapping

experiment. Constructs encoding numerous Sak proteins were transfected into HEK 293

cells and subjected to in vivo phosphomapping. All the full length proteins except the

mouse kinase dead version of Sak displayed a positive signal for phosphorylation. These

results suggest that this phosphorylation is independent of Sak activity, therefore

implying that Sak is a target of another endogenous kinase. While this is true for the

human kinase dead Sak protein, a kinase dead version of the murine form of Sak did not
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display a positive signal. It is possible that the mouse kinase dead Sak protein is subjected 

to different protein folding preventing it from being phosphorylated on a particular 

residue. A major problem with this study was the presence of a background signal which 

was close to the same size as Sak. This contaminating signal was difficult to discern from 

the Sak signal and it was also present in the cells alone and YVHI negative controls. We 

were however detecting a positive signal on the Sak protein as Flag-APb was found to be 

phosphorylated (Figure 6 A). Phosphorylation was not detected in the Flag-Pb and Flag- 

R1 proteins under these conditions (Figure 6 B). Taken togethether these results imply that 

the phosphorylated residue is located N-terminally to the polo-box domain.

Further studies are needed in order to properly assess the phosphorylation status of 

Sak. Experiments in this study were performed under asynchronous conditions. 

Performing this experiment after synchronizing cells to particular phases of the cell cycle 

may result in different observations. For example, the phosphorylation status of Plkl has 

been shown to be cell cycle dependent where it was observed not to be phosphorylated in 

S phase and becomes phosphorylated at the onset of mitosis (Hamanaka et al., 1995, 

Roshak et al, 2000). This phosphorylation event then activates Plkl where it was 

observed to phosphorylate Cdc25C leading to the initiation of mitosis (Roshak et al., 

2000). As a result, performing the in vivo mapping approach with subsequent Mass 

spectrometry Analysis in synchronized cells may produce different results then those 

observed in this study.

Furthermore, exposure of DNA damaging agents may also profoundly change this

phosphorylation pattern, as Sak may be targeted in response to DNA damage and

upstream kinases may phosphorylate different residues. DNA damage has been shown to

alter the phosphorylation status of numerous kinases (Smits et al., 2000, van Vugt et al.,
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2001, Bartek and Lukas, 2003, Bahassi et al., 2006). For example, Plkl and Plk3 have 

been shown to display changes in their phosphorylation status in response to DNA 

damage (Smits et al, 2000, van Vugt et al., 2001). Indeed, this study addressed this 

issue where HEK 293 cells overexpressing Flag-tagged human Sak were exposed to 

various amounts of UV and subjected to Phospho Gel Staining. Sak was observed to 

further be a target of phosphorylation (Figure 4A). These novel results show that Sak is 

phosphorylated both in the absence or presence of UV.

The possibility that Sak is phosphorylated on alternate residues in response to 

different environmental conditions and DNA damaging agents, led us to attempt to 

characterize the particular residues using Mass Spectrometry. Signature motifs for 

numerous kinases are well established and determining the residues of Sak that are 

phosphorylated can suggest which kinases are targeting this Plk member. As a result, the 

bands from the phospho-stained gel corresponding to Sak were excised, subjected to 

trypsin digestion and introduced to a PHOS-Select Iron Affinity Gel (Sigma). This 

chelated matrix is positively charged and binds to the negatively charged phosphorylated 

residues allowing the other peptides to be washed and removed. The phosphorylated 

peptides are then eluted from the matrix and subjected to Mass Spectrometry. 

Unfortunately, the intensity of the phosphorylated peaks was too low to give a positive 

result in this manner.

Low endogenous levels of Sak proved to be problematic in these experiments as

well as the lack of a suitable Sak antibody. Transient expression of Sak protein proved to

be a well suited substitute in determining its phosphorylation status and identifying the

bands through Mass Spectrometry. However, generally speaking, the stoichiometry of

phosphorylated peptides only represents a very small fraction of the total peptide pool
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obtained for this procedure (Mann et al., 2002). Thus, the actual amount of 

phosphorylated Sak protein is assumed to be much less than the total amount of protein. 

In addition, Sak has a very short half life of 2-3 hours (Fode et al., 1996) resulting in sub- 

optimal experimental conditions. The phospho-stain is able to detect minimal amounts of 

phosphorylation, however Mass Spectrometry requires a larger amount in order to work 

properly. On a positive note, stable cell lines expressing Sak have recently been created 

in our lab and may prove to be a valuable tool in overcoming this obstacle. Presently, 

experimentation utilizing the stable cell lines is underway and may provide enough 

phosphorylated peptides to positively identify the particular residue(s).

Sak Remains Phosphorylated in the Presence ofWortmannin

Wortmannin was originally thought to be a specific and potent inhibitor of the 

PI3-Kinase family (Sarkaria et al., 1999). Recent findings, however, have indicated that 

Plkl-3 are also inhibited by this fungal metabolite (Liu et al., 2005, Liu et al, 2007). It 

was therefore of interest to determine if Wortmannin had an effect on the activity of Sak. 

This possibility was examined by first incubating Flag-tagged human Sak with Casein as 

a substrate in the presence of [y-3 2 P] ATP. Interestingly, a positive signal for 

phosphorylation was seen at 100 kDa in every lane except the negative control. After the 

membrane was subjected to Western Blot Analysis using an anti-Flag antibody, it was 

confirmed that this positive signal corresponded to autophosphorylation of Sak (Figure 7). 

Previous results from our lab and others have reported the presence of Sak 

autophosphorylation (Bonni et al.2007, accepted, Leung et al., 2007) and this study 

revealed that Sak autophosphorylation was not abolished in the presence of Wortmannin 

(Figure 7).
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In addition, many phosphorylated bands were observed at approximately 25 kDa

in every lane including the lanes with cells alone or in the absence or presence of

Wortmannin (data not shown). This observation led to an inconclusive result in

determining how Sak phosphorylated Casein. Another possible way to overcome this

was to test Sak’s kinase ability with a known substrate. Unfortunately, no known

substrates of Sak were known at the time this study was conducted. Yet the positive

signal obtained at 100 kDa corresponding to autophosphorylation of Sak leads us to

assume that this Plk member is not inhibited by Wortmannin. Indeed, at the same time

this study was performed, it had been reported that the kinase activity of Sak on a peptide

library substrate had not been inhibited by Wortmannin (Johnson et al, 2007). In

contrast to Plkl that exhibited time-dependent inhibition by this metabolite, they observed

that Sak was not be affected by Wortmannin. Based on the known binding mode of

Wortmannin with members of the PI3-K family, a model for binding to the Polo-like

kinases has been proposed indicating an interaction between three amino acid residues

conserved in P lkl-3. Cys 67 is one of the residues and found to interact with two methyl

groups of Wortmannin through van der Waals interactions. This residue is replaced with

a valine in Sak and the larger size of this amino acid causes steric hinderance preventing

any such binding (Johnson et al., 2007).

Sak and the DNA Damage Response

The Interaction Between Sak and ATR

The DNA damage response pathway is a critical function of cells in order to retain

its genomic integrity and cellular viability. A major contributor in this process is the

activation of larger signal transducers which receive information about DNA damage

from upstream sensor and mediator proteins and respond by targeting critical downstream
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targets (Figure 2) (for review see Niida and Nakanishi, 2006., Bartek and Lukas, 2007). 

The key signal transducers of the DNA damage pathway include ataxia telangiectasia- 

mutated (ATM) and ATM and Rad3-related (ATR). These proteins have been found to 

interact with various targets including members of the Polo-like kinase family. In 

addition, ATM/ATR, the Plk family members and other DNA damage response proteins 

such as Chkl and Chk2 are all known to localize to the centrosomes. As a result, recent 

evidence supports the idea that the centrosome plays a major role as the centre for cellular 

control and DNA damage responses (Kramer et al, 2004, Loffler et al., 2006). As 

previously stated, ATM/ATR are known to inhibit Plkl resulting in the G2/M phase arrest 

of cells exposed to DNA damage (Smits et al., 2000, van Vugt et al., 2001), while Plk3 

is positively regulated by these signal transducers in response to DNA damage (Xie et al, 

2001).

Associations between these proteins and the observation that members of the 

Polo-like kinase family have overlapping protein partners, led us to believe that ATR may 

be an interacting partner of Sak. Indeed, through a co-immunoprecipitation based 

approach, we found an interaction between these two proteins (Hudson et al, 

unpublished). Further characterization of this interaction revealed that ATR interacted 

with wildtype, kinase active and both kinase dead forms of Sak. This indicates that the 

kinase activity of Sak is not necessary for this interaction to occur.

We next examined the interaction between specific Sak domains and ATR. The

APb construct of Sak also associated with ATR indicating that the polo box domain was

not necessary for this interaction. In support of this the Sak pb domain did not interact

with ATR. Examination of the crystalline structure of the Sak polo-box suggested that

this domain contains an interfacial cleft and pocket region assumed to be important for
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ligand binding (Leung et al., 2002). However, overexpression of Sak containing a 

deletion of the polo-box was still observed to localize to the centrosomes and cause 

centrosome overduplication, indicating that the polo-box is not necessary for this 

particular function (Habedanck et al., 2005). The results of this particular study have 

implemented that the polo-box domain is not needed for this particular interaction. Thus, 

the polo-box domain of Sak is not necessary or sufficient for its interaction with ATR.

Although direct interactions between the polo-box domain of Plkl and ATR have 

not been observed, this domain was found to play a key role in recognizing Plkl 

substrates and localizing it to subcellular locations (Elia et al, 2003a). Site directed 

mutagenesis of key amino acid residues in the polo-box of Plkl rendered it unable to bind 

to particular substrates (Elia et al., 2003b). Studies comparing the Polo-box domain of 

Plkl to that of Sak reported striking differences in the organization, architecture and 

overall net charge of their polo-boxes (Elia et al., 2003a). In addition, sequence 

alignment of the Sak polo-box with that of polo-box 1 motif and polo-box 2 motif in this 

domain of Plkl revealed a sequence identity of 22% and 8 % respectively (Cheng et al., 

2003). As a result, it is possible that the cryptic polo-box of Sak may be closer related to 

the polo-box domain of Plkl. In addition, it is possible that the cryptic polo-box may be 

responsible for protein-protein interactions. Indeed, the domain-specific cryptic polo-box 

protein was found in this study to be sufficient for ATR interaction (Figure 8 ). Co- 

immunoprecipitation of the cryptic polo-box with ATR further demonstrates the 

importance of this domain in protein interactions and function.

The previously stated co-immunoprecipitation experiments were performed in

asynchronous cells under normal conditions. However, ATR is known to primarily

become activated during UV-induced DNA damage (Niida and Nakanishi, 2006). In
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regards to the other Plk members, ATR is known to inhibit Plkl upon UV exposure 

hampering its kinase ability and preventing cells from progressing into mitosis (van Vugt 

et al, 2001). This observation suggested that it would be interesting to examine the 

nature of the interaction between Sak and ATR upon UV-induced DNA damage. Co- 

immunoprecipitation performed after UV exposure revealed that full-length wildtype Sak 

continued to associate with endogenous ATR. However, the levels of ATR and Sak 

began to significantly decrease 4 hours post UV radiation (Figure 11). As a result, the 

association between these two proteins seems to diminish at this time point after UV 

exposure. An explanation could be that upon DNA damage, cells are prone to apoptosis 

and protein levels consequently decrease. Thus, the interaction between ATR and Sak 

protein would consequently be reduced 4 hours after UV exposure.

We then further examined the effects of overexpressing Sak in cells exposed to

UV radiation. Whole cell lysates were resolved by SDS-PAGE and immunoblotted with

anti-ATR (Santa Cruz), anti-Chk2 and anti-Flag (Sigma) antibodies in order to determine

their protein levels. Similar to the results obtained from the co-immunoprecipitation,

ATR protein levels were relatively constant until 4 hours after UV exposure, at which

ATR protein was not detected. Chk2, a downstream effector protein that is also activated

in response to UV exposure, displayed the same pattern as ATR. Levels of Sak also

began to decrease 4 hours post UV exposure. Similarly, the same pattern was observed

for our GAPDH loading control leading to inconclusive results regarding overexpressing

Sak and ATR and Chk2 protein levels (Figure 10A). Contrary to this, in cells that only

contained normal endogenous levels of Sak, the levels of ATR and Chk2 were similar at

every time point (Figure 10B). It is known that overexpression of Sak is seen to have a

profound effect on cell viability resulting in multinucleation (Fode et al., 1996) and
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centrosome overduplication (Habedanck et al, 2005). Taken together, these results 

imply that in the presence of UV, overexpression of Sak may render cells more 

susceptible to UV radiation.

Further experimentation is necessary to provide greater insight into the association 

between Sak and ATR. This study revealed the domain specific interaction between these 

proteins, as well as characterized its interaction in the presence of UV-induced DNA 

damage. Future experimentation is needed to examine how the interaction between ATR 

and Sak affects their functions within the cell, as well as ATR's possible affects on the 

kinase ability of Sak or vice versa. Similar to other Plk family members, Sak may be a 

target of ATM/ATR phosphorylation in response to DNA damaging agents. These 

experiments could further characterize the relationship between ATR and Sak and specify 

a direct role for Sak in the DNA damage pathway.

Sak Interacts with Chkl

Based on our aforementioned assumptions it was also of interest to test for a 

potential interaction between Chkl and Sak. For example, recent studies have indicated 

that Chkl negatively regulates Plkl in response to DNA damage (Tang et al., 2006). 

Chkl is a known downstream effector protein in DNA damage response and becomes 

activated primarily in response to UV radiation. Our results were strikingly similar to 

that which we found for ATR. Regardless of its kinase status, Flag-Sak interacted with 

endogenous Chkl. Furthermore, Flag-APb associated with Chkl, while Flag-Pb did not. 

Therefore, as with ATR, the polo-box domain was not necessary or sufficient for Chkl 

interaction. In addition, Flag-Rl was found to interact with Chkl indicating that the 

cryptic polo-box is sufficient for this interaction. These results indicate that the mode of

interaction between Sak and Chkl may be the same as that between ATR and Sak.
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Interestingly, similar co-immunoprecipitation experiments in our laboratory between Sak 

and Chk2 and Sak and ATM revealed no interation with the cyptic polo-box and these 

proteins (Hudson et al., unpublished). Further characterization of this interaction is 

necessary to determine the effects resulting from this association. In vitro kinase assays 

would prove to be a useful tool to determine if Sak is regulated by this effector in the 

same manner as P lk l.

Chk2 is Phosphorylated by Sak

Chk2 is another important protein involved in DNA damage response. Although 

inactive in the absence of DNA damage, this protein is classically believed to become 

activated by ATM in response to ionizing radiation (for review, see Bartek and Lukas, 

2003). However, recent studies have revealed that Chk2 becomes activated in an ATM- 

independent manner (Hirao et al., 2002). Upon UV radiation, Chk2 becomes activated 

and this is speculated to be mediated by ATR (Shiloh, Y., 2001). Furthermore, both Plkl 

and Plk3 interact with and phosphorylate this kinase (Tsvetkov et al., 2003, Bahassi et al, 

2006). We therefore tested the ability of Sak to interact with Chk2 and indeed, novel 

results show that this association occurs (Hudson, unpublished). Furthermore, we have 

established in the present study that Chk2 is a substrate of Sak. Previous literature has 

established that bacterially expressed GST-Chk2 has a tendency to autophosphorylate (Xu 

et al, 2001). As a result, a kinase dead version of Chk2 was created by mutating the 

critical aspartate of its activation loop to an alanine (GST-D368A). It is noted that both 

Sak and Chk2 are kinases, therefore the creation of this mutant allowed us to ascertain 

which protein was the kinase and which was the substrate in this interaction.

Figure 14 depicts the in vitro kinase assay where Chk2 has been identified as a

substrate of Sak. As predicted, wildtype GST-Chk2 displayed autophosphorylation in
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every lane. In the same experiment, a positive signal for phosphorylation was not detected 

for kinase dead Sak (K41M) indicating that Sak was not a substrate for Chk2 under these 

conditions. Furthermore, the GST-D368A mutant was unable to autophosphorylate and 

thus any positive signal we obtained would be a direct result of Sak activity. 

Interestingly, Sak wild type protein was able to target Chk2 while the kinase active form 

of Sak, Flag-T170D showed no phosphorylation of Chk2. In order to explain this odd 

occurrence, two possible explanations have been proposed. Firstly, the site-specific 

mutation of Flag-T170D may cause this construct to have a different confirmation than its 

wildtype counterpart. As a result, Flag-T170D may not be able to associate with Chk2 in 

a manner that allows phosphorylation to occur. Secondly, the initial phosphorylation of 

Chk2 may in turn create a positive feed-back loop, resulting in the phosphorylation of Sak 

at an unknown residue. The phospho-mimic mutation may have rendered this association 

from occurring.

In order to determine if this association still persists in the presence of DNA

damage, cells transfected with the various Flag-Sak constructs were exposed to 25

mJ/cm2 of UY radiation one hour prior to lysing. Findings from our lab and this study

revealed that Sak expression still persists after this time and amount of UY exposure. In

addition, Sak was still observed to associate with ATR after this time period post UV

exposure. Thus, if Chk2 phosphorylation by Sak was dependent upon ATR, this period

between initial exposure and lysing would still allow ATR and Sak to associate.

Fascinatingly, phosphorylation of Chk2 by Flag-Sak was abolished when cells were

exposed to UV prior to the kinase assay (Figure 15) while autophosphorylation of Sak

was still present. This novel result presents many intriguing possibilities. As previously

mentioned and displayed in this assay, Sak remains phosphorylated in the presence of
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UY. The specific phosphorylated residue(s) of Sak is/are unknown and are quite 

possibily different in response to UV then in normal conditions. UV exposure may cause 

upstream kinases to target Sak marking it for degradation. Furthermore, in response to 

UV, the confirmation of Sak may change and render it unable to phosphorylate Chk2. 

Regardless of the means, the outcome remains the same; the abolishment of 

phosphorylation of Chk2 by wildtype Sak in response to UV.

Taken together, these novel results observed from the kinase assays show that 

under normal asynchronous condition, Chk2 is a substrate of Sak. However, further 

experimentation is needed to solidify these novel findings. ATR is thought to 

phosphorylate Chk2 (Shiloh, Y., 2001, Hirao et al., 2002), and one may argue the 

possibility that ATR is brought down with Sak during the initial immunoprecipitation. As 

a result, ATR may be the active kinase. Extensive washing during the initial 

immunoprecipitation was done in order to prevent this from occurring. In addition, future 

experiments could be performed in ATR deficient cell lines or in the presence of caffeine 

or Wortmannin to block ATR kinase ability. However, the results presented from this 

study shy away from the possibility that ATR is the active kinase. That is, ATR is known 

to become activated during UV exposure (Niida and Nakanishi, 2006) and thus would 

phosphorylate Chk2 in its presence. Yet this study observed the opposite to occur. If 

indeed ATR was phosphorylating Chk2 instead of Sak, phosphorylation would be 

observed in the presence of UV.

Nevertheless, the possibility that ATR has a role in these observations is quite

possible. Under normal conditions, phosphorylation of Chk2 by Sak may be inhibitory.

Upon UV exposure, ATR may interact with Sak resulting in a change in its confirmation

hindering it from phosphorylating Chk2. This relief from Sak phosphorylation may then
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allow Chk2 to become active and proceed with its duty of repairing DNA damage (Figure 

16). In addition, the phosphorylation of Chk2 by Sak under normal conditions may act as 

a means of localizing Chk2. This may be analogous to the situation for Plkl where 

phosphorylation of Chk2 by Plkl has also been observed and is suggested to result in 

localizing Chk2 to the centrosomes (Tsvetkov et al., 2003). Thus, Sak phosphorylation of 

Chk2 may act in a similar manner.

An attempt to identify the residue targeted by Sak phosphorylation was made 

using a Chk2 phospho-specific antibody. Studies involving Plkl and Chk2 have reported 

that this Plk member phosphorylates Chk2 on either T26 or S28 (Tsvetkov et al., 2003). 

Thus, the membranes from the kinase assay showing phosphorylation of Chk2 by Sak 

were stripped and re-probed with an anti-Chk2 phospho-T26 antibody. No signal was 

detected when this was performed. The lack of a positive control, however, prevents us 

to state with certainity that Sak does not phosphorylate Chk2 at T26 (data not shown).

The results presented here open exciting new possibilities involving Sak’s role in 

the DNA damage response. Further experimentation is currently underway in the hopes 

of characterizing the particular residues of Chk2 that are targeted during this 

phosphorylation event. Chk2 domain specific constructs may prove to be useful in 

narrowing down the particular residue. In addition, Mass Spectrometry may prove to be a 

valuable tool in discovering this new site. Yet the implementations of these results 

already present exciting novel assumptions. These results have placed Sak as an 

interacting partner with proteins vital in maintaining cellular integrity and imply that it 

has a novel functional role in response to DNA damage. Increasing our knowledge of 

Sak is essential to our understanding of DNA damage response and may help in our battle 

against tumourigenesis.
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Figure 16A

Figure 16B

UV

Figure 16. Proposed Pathway through which Sak is affected by UV. (A) In the
absence of UV, Chk2 is phosphorylated by Sak. It is hypothesized that this event may 
inhibit Chk2 under normal conditions. (B) This proposed model places Sak in the DNA 
damage response pathway. Upon UV exposure, Sak phosphorylation of Chk2 is 
abolished. Green arrows indicate positive regulation whereas the red perpendicular lines 
indicates negative regulation. The dotted black arrows represent known interactions 
between the proteins yet the functional significance is yet to be elucidated. Dotted red 
lines represent proposed regulatory interactions.
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Appendix A: Solutions

Competent Cell Solutions 

TFB1
30 mM KOAc 
50 mM MnC12 
lOOmMKCl 
10 mM CaC12 
7% glycerol

TFB2
10 mM MOPS pH 7.0 
75 mM CaC12 
10 mM KC1 
7% glycerol

TYM broth
2 % bactotryptone 
0.5% yeast extract 
0.1 MNaCl 
10 mM MgS04

Transformation

LB-AMP Plates (1L)
1 0  g tryptone 
5 g yeast extract 
lOgNaCl 
15g Agar 
Autoclave.
After the solution has cooled, ampicilin was added to a final concentration of 100 ug/mL. 

Cell Culture 

Cell Media
500 mL Dulbecco’s Modified Eagle’s Medium (DMEM)
50 mL (10%) Fetal Bovine Serum 
5 mL (1%) Penicillin/Streptomycin 
5 mL (1%) Amphotericin B 
500 uL Gentamycin

Cell Lysis and Immunoprecipitation

Lysis Buffer
50 mM Tris-HCl pH 7.4 
150 mMNaCl
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1 mM EDTA 
1% Triton X-100
1 protease inhibitor tablet (Roche) was added to every 10 mL of buffer 

PBS
137 mMNaCl 
2.7 mM KC1
4.3 mM Na2 HP0 4

1.4 mM KH2PO4  

pH to 7.4

Tris Buffer Saline (TBS)
100 mM Tris-Cl pH 7.5 
150 mMNaCl

TNT
0.1% Triton X-100 
50 mM Tris-HCl pH 7.4 
150 mMNaCl

6 X SDS-PAGE sample buffer (10 mL)
1 M Tris pH 7.5 
3.0 mL 100% glycerol 
1 g SDS
1 0 0  mg bromophenol blue
Ultrapure water was added to a final volume of 10 mL 

Western Analysis

Running Buffer
25 mM Tris 
250 mM Glycine 
0.1% SDS

Transfer Buffer (1 L)
3.03 g tris base
14.4 g glycine 
200 mL methanol

1 X TBST (Tris buffered saline and tween)
100 mM Tris-Cl pH 7.5 
150 mMNaCl 
0.1% Tween

Stripping Buffer
10 mL 10% (w/v) SDS
6.25 mL 0.5 M Tris-HCl (pH = 6.7)
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342 uL Beta-Mercaptoethanol 
Filled to 50 mL with ddH20

In-Gel Detection o f Phoshoproteins

Fix Solution 

Coomassie Blue Stain
0.2 % (w/v) Coomassie Blue
7.5 % Glacial Acetic Acid 
50 % Ethanol

Destain Solution
0.75 % Glacial Acetic Acid 
10 % Ethanol

GST-Protein Purification Buffers

Cell Lysis Buffer
100 mMNaCl 
50 mM Tris pH 7.5 
0.1 mMEDTA 
0.1% Triton X-100
2 mM DTT
1 protease inhibitor tablet (Roche) per 10 mL buffer

Column Wash Buffer
100 mMNaCl 
50 mM Tris pH 7.5 
1 mM DTT

Elution Buffer
100 mMNaCl 
50 mM Tris pH 7.5 
10 mM Glutathione

In Vitro Kinase Assays

Kinase Buffer
6 0  m M  H E P E S  p H  7 .5
3 mM MgCl2  

3 mM MnCl2  

50 mM NaF 
1.2 mM DTT
1 protease inhibitor tablet (Roche) per 10 mL buffer
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