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ABSTRACT 
 
 
Although males can produce many ornaments, the evolution of multiple ornaments is not 

well understood. We investigated achromatic plumage traits in the context of multiple 

ornaments in Arctic-breeding snow buntings (Plectrophenax nivalis). We examined 

whether multiple ornaments: are providing multiple messages, are redundant, are 

unreliable signals or are aimed at different receivers. We measured plumage reflectance 

and pigmentation patterns that are differentially, but conspicuously advertised during 

male inter- and intra-sexual displays. Our results indicate that although several signals are 

redundant, different body regions appear aimed at different receivers. The wings of 

males—displayed during courtship—indicate male expected reproductive performance. 

Conversely, melanin reflectance displayed during intra-sexual threat displays signals 

territoriality. Different information provided by distinctive aspects of plumage may have 

differential importance in inter- versus intra-sexual communication. This study 

demonstrates that even relatively simple plumage traits can serve in complex 

communication. 
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CHAPTER 1—GENERAL INTRODUCTION 
 

 

EVOLUTION OF ORNAMENTS 
The theory of sexual selection serves to propose how secondary sexual traits—such as 

elaborate ornamentation—can evolve (Darwin 1871). Several hypotheses aim to explain 

how elaborate ornaments may be maintained evolutionarily. Fisher’s hypothesis (or 

runaway selection) proposes that elaborate ornaments may exist simply due to female 

preference for their attractiveness (Fisher 1915). The initial cause of preference for a trait 

is not important (i.e. a sensory bias, an honest signal, increased probability of detection, 

etc.), but over evolutionary time and through assortative mating, the genes for the 

elaborate ornament and for the preference of this ornament have become linked through 

positive feedback. Essentially, it is adaptive to possess the trait to gain mating 

opportunities, but it is also adaptive to possess the preference for this trait because these 

females will produce attractive offspring, which will also gain mating opportunities. This 

hypothesis suggests that inter-sexual selective pressures are driving the evolution of 

ornamentation. Conversely, the handicap principle suggests that elaborate ornaments 

have evolved to be honest signals of individual quality. To signal individual quality 

honestly, the production of these ornaments must come at a cost or the ornaments must be 

a handicap (Zahavi 1975). Females can assess individual quality through male-produced 

ornaments that inform mate choice decisions (Hill 1991). This inter-sexual signalling is 

particularly likely to evolve if females gain fitness benefits from mating with high-quality 

males (Fisher 1930). Conversely, intra-sexually selected ornaments can serve as signals 

of status or dominance: conspecific males can assess the competitive abilities of their 

opponents through ornaments (reviewed in Santos et al. 2011). However, the role of inter- 

versus intra-sexual selective pressures in shaping ornamentation is largely under-studied, 

as they can be difficult to tease apart and few signalling studies consider the possibility of 

both occurring simultaneously (discussed in Berglund et al. 1996; although see Jones and 

Hunter 1999, Andersson et al. 2002).   
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INDIVIDUAL VARIATION IN QUALITY AND CONDITION 
There is great interest in the relationship between phenotypic (i.e. individual) variation 

and plumage ornamentation; the concept of ‘individual quality’ is frequently invoked to 

indicate what ornamentation can signal, yet is rarely defined (Lambrechts and Dhondt 

1986; Hill 1991). Wilson and Nussey (2009) reviewed the subject and proposed the 

following definition of individual quality: “the axis of phenotypic variation that best 

explains variance in individual fitness”. There are many downfalls to this definition 

(Lailvaux and Kasumovic 2010), including the difficulty of quantifying both fitness and 

this proposed axis of phenotypic variation. Hill (2011) proposed an alternative definition: 

“the capacity to withstand environmental challenges”. For this thesis, the operational 

definition of individual quality combines the two above ideas as follows: the ability to 

maintain homeostasis through changing environments or life-history stages, and the 

fitness-related consequences of this ability. As Hill (2011) further suggests, individual 

quality combines genotype, somatic state and epigenetic state.  

Similarly, the meaning of ‘individual condition’ is rarely defined explicitly, 

despite being a commonly used term in ecological studies (Jakob et al. 1996; Evans 

1997). When it is defined, this tends to be done vaguely: a recent publication suggests 

that condition may represent “some kind of physiological state” (Garrett and Brooks 

2012). Furthermore, the terms ‘quality’ and ‘condition’ are often used interchangeably 

(Jones and Montgomerie 1992, Hill 2011). Here, I refer to quality and condition as 

separate attributes (as in Andersson et al. 2002)— the term ‘condition’ refers to an 

individual’s current state (physiological or not) that can vary dynamically with 

environmental change. Individuals facing favourable environments are expected to be in 

higher condition than when facing harsh environments.  

Individual quality is repeatable (“the proportion of variance in a character 

[occurring] among rather than within individuals ”; Lessells and Boag 1987) and consists 

of multiple aspects of condition. In this sense, we can use multiple measures of individual 

condition that have fitness-related consequences as proxies for individual quality 

(Simmons 1995, Andersson et al. 2002). It follows that condition-dependent ornaments 

depend on individual condition at the time of production. Therefore, for the purposes of 
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this thesis, I predict that high quality individuals are better able to maintain high-

functioning processes and good condition—even when faced with intrinsic or extrinsic 

stressors—and thus produce relatively better ornaments than lower quality individuals. 

 

MULTIPLE ORNAMENTS 
Previous ornamentation research has largely focused on a single ornament, yet many 

species possess multiple potential ornaments (see Møller and Pomiankowsky 1993; 

Johnstone 1996). Multiple ornaments appear inconsistent with the widely accepted 

handicap hypothesis—many theoretical models have suggested that female preference for 

multiple ornaments is not evolutionarily stable (Schluter and Price 1993; also see 

Johnstone 1996). It seems paradoxical for a species to evolve several handicapping 

ornaments if a receiver is not assessing all of them. However, while multiple 

handicapping ornaments are often believed to be evolutionarily unstable (Iwasa and 

Pomiankowski 1994), Møller and Pomiankowsky (1993) have proposed three hypotheses 

to explain their evolution: 

 

1. Multiple message hypothesis  
The multiple message hypothesis suggests that multiple ornaments may be maintained 

simultaneously when each ornament is indicative of a different aspect of condition. 

Different ornaments could indicate differing aspects of condition that no single ornament 

can reflect simultaneously, or represent condition-dependent traits on different timescales. 

Multiple messages would evolve in species where assessing multiple aspects of condition 

are important for selecting high quality mates and maximizing reproductive success. 

 

2. Redundant signal hypothesis 
The redundant signal hypothesis (or back-up signal hypothesis; Johnstone 1996) predicts 

that multiple ornaments can converge to represent the same or similar aspects of 

condition. For the receiver, using multiple ornaments could be more informative in 

assessing individual condition than relying on a single ornament. Redundant signals 
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would evolve in species where selecting a mate based on more than one signal improves 

the accuracy or reduces the costs of assessing potential mates (Candolin 2003). 

 

3. Unreliable signal hypothesis 
The unreliable signal hypothesis proposes that multiple ornaments may not currently 

reflect individual condition. Many traits could have initially been preferred by females 

due to their attractiveness, honest signalling or sensory biases, but are now simply 

maintained by female preference for a trait that no longer reflects individual condition (as 

in runaway selection). Unreliable signals would evolve in species where producing such 

ornaments is not particularly costly and where variation in mating success continues to be 

linked to ornaments through preference alone. However, the degree to which females rely 

on these ornaments in choosing mates is predicted to decrease slowly over evolutionary 

time (Møller and Pomiankowsky 1993). 

 

MULTIPLE RECEIVERS 
The three hypotheses proposed by Møller and Pomiankowsky (1993) assume that a single 

receiver has shaped male ornamentation (traditionally assumed to be the female; Møller 

and Pomiankowsky 1993). The above hypotheses are not exclusive to inter-sexual 

selection, however, and intra-sexual selection may also play an important role in the 

evolution and maintenance of secondary sexual traits (Smith 1972; also see Berglund et 

al. 1996). Andersson et al. (2002) proposed and found empirical support for a fourth 

hypothesis to explain the evolution and function of multiple ornaments. The multiple 

receiver hypothesis suggests that different ornaments may be selected and maintained by 

separate receivers: that is, both inter- and intra-sexual selection pressures can shape 

multiple ornaments. This hypothesis has been examined in some systems (Andersson et 

al. 2002; Loyau et al. 2005), but largely in relation to relatively highly exaggerated 

ornaments (although see Marchetti 1998). 
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ACHROMATIC PLUMAGE 
Achromatic species are ones with no colour in their plumage (i.e. black, white or grey) 

and are common within and across avian families (Table 1). However, studies of 

achromatic plumage signalling are scarce relative to chromatic signals—perhaps because 

this type of plumage is the ancestral state of plumage colouration (compared to 

carotenoid-based or structural colours; Stoddard and Prum 2011). Nonetheless, 

achromatic plumage remains a strong candidate for an efficient mode of visual 

communication due to the highly conspicuous contrast between black and white body 

regions (Endler 1992; Andersson 2000). Achromatic signals have been studied previously 

in regards to status signalling, relating signals to dominance rank (reviewed in Santos et 

al. 2011). However, recent evidence suggests that achromatic plumage may also act as a 

condition-dependent signal (McGlothlin et al. 2007, Gladbach et al. 2011). Consequently, 

achromatic plumage signals have the potential to provide information relevant to both 

inter- and intra-sexual receivers. 

 

SNOW BUNTINGS 
Snow buntings (Plectrophenax nivalis) are an Arctic-breeding passerine whose range 

extends throughout circumpolar regions. This achromatic species is sexually dimorphic in 

size and plumage—males tend to be heavier and have significantly longer wings (males: 

mass = 40g, wing chord = 110mm; females = 37g, wing chord = 104mm; Montgomerie 

and Lyon 2011). Males also have contrasting black and white plumage, while females are 

largely grey and white. North American populations of this long-distance migrant can 

breed in the low to high Arctic and winter between southern Canada and the northern 

United States. Males arrive to the breeding grounds between March and May, preceding 

female arrival by several weeks (varies geographically; Montgomerie and Lyon 2011).   

 

Snow Bunting Reproduction 
Snow buntings are socially monogamous during the breeding season: females build the 

nest, males feed their incubating mate, and bi-parental feeding is necessary to rear young 

successfully (both quantity and quality of offspring; Lyon et al. 1987). In my focal 
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breeding population at East Bay Island (64°02’N, 81°47’W), the average lay date is June 

19th±3 days (mean±S.E.M. from 2007-2011) and females lay a clutch of 5.6±0.5 eggs (O. 

Love, unpubl. data). Nestlings hatch asynchronously and remain in the nest for a period 

of approximately 11 days (range 9-13; Montgomerie and Lyon 2011). Pairs at my study 

site typically successfully fledge 3.8±0.5 offspring (2007-2011; OPL, unpubl. data), 

where brood reduction occurs due to hatching asynchrony and starvation rather than nest 

predation (Hussell 1985; SGP, personal observation). Although East Bay Island is small 

(0.25 km2), it accommodates a relatively high density of 17±4 breeding pairs annually, 

equivalent to approximately 70 pairs/km2 (2007-2011; OPL, unpubl. data). 

 Both incubation feeding as well as chick provisioning by the male are necessary to 

increase reproductive success: males that do not feed their incubating mate lost 

approximately 2 reproductive units due to poor egg development (as a result of poor 

incubation; Lyon and Montgomerie 1985) while a male removal experiment revealed that 

males that could not feed their chicks produced half as many nestlings as ones which 

were allowed to contributed to nestling provisioning (Lyon et al. 1987). Generally, 

females appear to provision nestlings at a faster rate, but have shorter foraging distances 

than males (Falconer et al. 2008). Additionally, both parents tend to increase their feeding 

rate both when a pair has a larger brood, and as nestling age (Falconer et al. 2008). 

Abiotic factors, such as the ambient temperature, can also influence parental feeding 

rates—perhaps through altering the thermoregulatory demands of chicks or the 

development of insects (Hoset et al. 2004). 

 

Male Plumage 
Snow buntings undergo a complete molt once per year, beginning concurrently with 

provisioning their young at the end of the breeding season (Tinbergen 1939; 

Montgomerie and Lyon 2011). The definitive basic plumage that males produce at this 

time consists of black primaries, inner rectrices and alula. The remainder of the tail and 

wings are white, along with the undertail coverts. The head, breast, belly and flanks are 

also white, tipped in brown. Similarly, the nape, mantle, rump and scapulars are black, 

with whitish-brown feather tips. In the spring, on route to the breeding grounds or after 

their arrival, males will actively wear away the brown-tipped body regions to reveal their 
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striking black and white breeding plumage (though some males can retain very faint 

brown feather-tips; Montgomerie and Lyon 2011). Consequently, breeding males are 

entirely white, except for a black mantle and rump (wings and tail remain unchanged; 

Figure 1).   

 

Intra-sexual interactions 
This species is considered nest-site limited since it nests in cavities created by rock 

assemblages (Montgomerie and Lyon 2011). As such, males defend territories—usually 

established before the arrival of females—which exist solely to provide sufficient 

possible nest site choices for females (a single territory may contain many potential 

nesting sites; Tinbergen 1939). Breeding birds forage non-competitively at communal 

feeding ponds. 

Males defend territories from neighbours or intruders with threat displays: when a 

male intruder is observed, the territory owner will turn to face the intruder and lower his 

head, exposing his back (Tinbergen 1939). Males continue to dip their heads up and 

down, as well as lifting their tail. If the intrusion persists, the interaction between the 

territory owner and the intruding male can intensify to a physical fight. During flight, 

fighting males will try to get the other to the ground using their feet and bills (Tinbergen 

1939). On occasion, males will grab each other’s feet and fall to the ground together. 

Male-male fighting generally ends with one male fleeing. Male attacks are always intra-

specific and are restricted to defending territories or social mates from conspecifics 

(Tinbergen 1939). Territory boundaries are defended throughout the breeding season, 

until chick provisioning begins (Tinbergen 1939; although see Romero et al. 1998).  

 

Inter-sexual interactions 
Females arrive to the breeding grounds once most males have already established 

territories and will wander solitarily from feeding flocks to visit occupied territories 

(Tinbergen 1939). Males repeatedly engage in visual displays directed at these visiting 

females: males spread their wings back and down, turning to face away from the female 

(thus displaying the pigmentation patterns on their wings). Males also display this same 

posture after copulating with their social mate. Tinbergen (1939) noted that the courtship 
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display appears to serve in demonstrating “the conspicuous color patterns of the 

plumage”, implying that male snow buntings may advertise their plumage and 

communicate using these behavioural displays.  

 In addition to the threat and courtship displays described above, males will 

occasionally engage in flight song displays characterized by flying upwards, then slowly 

fluttering down while singing. This display has the potential to accentuate both the pattern 

of pigmentation within the wings and the body plumage, although when males are 

moving or high in the sky these plumage traits may be hard to assess. It is unclear who 

the intended receiver of this display may be (Tinbergen 1939), as it is performed when 

both males and females are present (SGP, personal observation). 

 

THESIS GOAL 

The objective of this thesis is to determine whether multiple ornaments may exist in 

an achromatic species. Specifically, I will examine whether black and white plumage 

signals in breeding male snow buntings are correlated to individual quality proxies, and 

whether their plumage may act as multiple signals, redundant signals, unreliable signals 

or may serve in communication with multiple receivers.
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Table 1: The proportion of North American avian species where males exhibit purely 

achromatic plumage during the breeding season (excluding iridescent achromatic 

plumage) by major avian groups defined in National Geographic’s Field guide to the 

birds of North America (2002, 4th edition1). 

Avian Group  # Achromatic 
Species 

# Total 
Species 

%Achromatic 
Species 

Loons 3 4 75 
Grebes 2 7 29 

Albatrosses 2 6 33 
Shearwaters & Petrels 15 24 63 

Storm-Petrels 9 9 100 
Frigatebirds & Tropicbirds 2 3 67 

Boobies and Gannets 1 6 17 
Pelicans 1 2 50 

Anhingas & Cormorants 1 7 14 
Herons, Bitterns & Egrets 4 13 31 

Storks & Flamingos 0 3 0 
Ibises & Spoonbills 0 4 0 

Ducks, Geese & Swans 10 58 17 
Hawks, Kites & Eagles 4 29 13 

Caracaras & Falcons 0 9 0 
Partridges, Grouse & Turkeys 0 17 0 

New World Quails 0 6 0 
Rails, Gallinules & Coots 0 11 0 

Cranes 0 3 0 
Lapwings & Plovers 0 15 0 

Oystercatchers, Stilts & Avocets 2 5 40 
Sandpipers & Phalaropes 1 62 02 

Skuas, Gulls, Terns & Skimmers 45 52 87 
Auks, Murres & Puffins 12 21 57 

Pigeons & Doves 0 16 0 
Parakeets & Parrots 0 16 0 

Cuckoos, Roadrunners & Anis 2 8 25 
Owls 1 19 5 

Nightjars 0 8 0 
Swifts 0 8 0 

Hummingbirds 0 21 0 
Trogons 0 2 0 

Kingfishers 0 3 0 
Woodpeckers 0 23 0 

Tyrant Flycatchers 3 42 7 
Shrikes 2 3 67 
Vireos 1 15 7 
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Avian Group # Achromatic 
Species 

# Total 
Species 

% Achromatic 
Species 

Crows, Jays & Magpies 2 20 10 
Larks 0 2 0 

Swallows 0 10 0 
Chickadees & Titmice 1 12 8 

Verdins & Bushtits 0 2 0 
Creepers & Nuthatches 0 5 0 

Wrens 0 9 0 
Dippers 0 1 0 

Kinglets & Old World Warblers 1 10 10 
Old World Flycatchers 0 5 0 

Thrushes & Robins 0 25 0 
Mockingbirds & Thrashers 0 11 0 

Bulbuls & Starlings 0 5 0 
Wagtails & Pipits 2 10 20 

Waxwings & Silky-flycatchers 0 3 0 
Wood-warblers 1 57 2 
Olive Warblers 0 1 0 

Tanagers 0 6 0 
Towhees, Sparrows & Emberiza 

Buntings 3 58 5 

Cardinals, Grosbeaks & 
Passerina Buntings 0 12 0 

Blackbirds & Orioles 0 24 0 
Finches 0 22 0 

Old World Sparrows & Weavers 0 4 0 
Total 133 874 15 

1 Dunn, J.L. et al. 2002. Field guide to the birds of North America (Fourth edition). 

National Geographic Society, Washington. 
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Figure 1: Male snow bunting breeding plumage regions a) from the back, and b) from the 

side.
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CHAPTER 2—COMPLEX SIGNALING WITH SIMPLE PLUMAGE: 
MULTIPLE ORNAMENTS IN AN ACHROMATIC SPECIES11 
 

ABSTRACT 
Although males can display multiple elaborate ornaments indicative of quality, the 

evolution of multiple ornaments is not well understood. Furthermore, studies of multiple 

ornaments have focused primarily on species with exaggerated, multi-modal traits. We 

investigated whether simple achromatic plumage traits can act as multiple ornaments in 

an Arctic-breeding passerine, the snow bunting (Plectrophenax nivalis). Specifically, we 

used a breeding population in Nunavut, Canada, to examine whether multiple ornaments: 

are providing multiple differing messages, are redundant, are unreliable signals of male 

quality or are aimed at different receivers. We measured plumage reflectance and 

pigmentation patterns made conspicuous during male inter- and intra-sexual displays that 

advertise different plumage regions. Our results indicate that although several aspects of 

male plumage may have redundant messages, different body regions appear aimed at 

different receivers. The wings of males—displayed primarily towards females during 

courtship—appear to indicate male expected reproductive performance. Conversely, 

melanin-based plumage reflectance displayed during intra-sexual threat displays provides 

information on territory features and a male’s capacity to defend it (i.e. territory size, 

territory quality, testosterone levels). Taken together, we suggest that an achromatic 

species can have multiple ornaments that provide information of differential importance 

in inter- versus intra-sexual communication. This study demonstrates that even relatively 

simple plumage traits can serve in complex communication. 

 

KEYWORDS: achromatic plumage, multiple ornaments, multiple receivers, individual 

quality, Plectrophenax nivalis 

                                                
1 This chapter is the outcome of joint research with my adviser, Dr. Oliver Love, and our collaborators Dr. 
Stéphanie Doucet, Dr. Grant Gilchrist and Ms. Sarah Baldo. 
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INTRODUCTION 
Males often display elaborate ornaments that are honest indicators of individual quality, 

where ornament production or maintenance comes at a cost to the bearer (Zahavi 1975; 

Andersson 1994a). These ornaments can be used in inter- and intra-sexual signalling: in 

the former, females can use male ornamentation to assess and choose potential mates 

(Hill 1991; Parker et al. 2003) while in the latter, conspecific males can use 

ornamentation to select territory neighbours (Greene et al. 2000), or assess the dominance 

rank of potential opponents (Mennill et al. 2003; reviewed in Santos et al. 2011).  

 However, the evolution of multiple ornaments in numerous species appears 

inconsistent with honest signalling theory. Theoretical models have suggested that 

females should simply favour the most honest and detectable signal, ignoring any others 

(Schluter and Price 1993; also see Johnstone 1996); it would seem suboptimal for males 

to produce multiple costly ornaments if females do not assess them. Three hypotheses 

have been suggested to explain why multiple signals evolve (Møller and Pomiankowski 

1993) and are supported by theoretical models (Johnstone 1995; under certain conditions: 

Johnstone 1996). The multiple message hypothesis states that different signals are 

indicative of different aspects of male condition; the redundant signal hypothesis predicts 

that multiple signals will indicate similar aspects of condition, decreasing the likelihood 

that individual quality will be misassessed; and the unreliable signal hypothesis suggests 

that multiple ornaments do not actually indicate current male condition. However, 

Andersson et al. (2002) also proposed that intra-sexual selection may contribute to the 

maintenance of multiple ornaments: as such, the multiple receiver hypothesis suggests 

that multiple ornaments may be evaluated by inter- and intra-sexual conspecifics 

simultaneously, with males and females selecting for the use of different ornaments. 

 All four hypotheses have been examined in several avian systems, all of which 

display multimodal ornaments: different pigmentation types (i.e. carotenoid and melanin; 

Jawor and Breitwisch 2004; Freeman-Gallant et al. 2010), intrinsic vs. extrinsic signals 

(i.e. plumage and territory or bower quality; Marchetti 1998; Doucet and Montgomerie 

2003), plumage colour vs. length (i.e. badge colour and tail length; Andersson et al. 

2002), or even plumage vs. wattle length (Papeschi and Dessi-Fulgheri 2003). To date, no 

research has examined whether simple black, grey or white patterns (termed achromatic 
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plumage) act as multiple ornaments, despite the apparent use of black and white plumage 

patterns in complex visual behavioural displays (see Galván 2008) and its common 

occurrence within and across avian families. Nonetheless, achromatic plumage remains a 

strong candidate for an efficient mode of visual communication due to the highly 

conspicuous contrast between black and white body regions (Endler 1992; Andersson 

2000). Moreover, although much of the attention focused on achromatic plumage has 

revolved around its function as a status signal (reviewed in Santos et al. 2011), recent 

evidence has demonstrated that achromatic plumage may also act as a condition-

dependent signal (McGlothlin et al. 2007; Gladbach et al. 2011).  

 We investigated the potential for signalling using multiple ornaments in an Arctic-

breeding, purely achromatic species. Breeding male snow buntings (Plectrophenax 

nivalis) are primarily white throughout their head, breast and wings with black on their 

mantle, primaries and inner rectrices (tail feathers; Figure 1a). Furthermore, males have 

alternating black and white areas of plumage within the wing that are conspicuously 

visible when they are displayed during mate-attraction advertisements (Tinbergen 1939). 

Specifically, males have white wings with black primary tips, a black alula (set of two 

black feathers on the leading edge of the wing) and some have black spots within the 

white area of the wing (Figure 1b). Consequently, plumage has the potential to act as an 

achromatic signal of male quality in this species and serve in inter-sexual attraction 

(Tinbergen 1939; see Anderson 2000). Males also defend territories solely for access to 

nesting sites and perform visual intra-sexual threat displays advertising different aspects 

of their plumage: their breast, mantle and rectrices (Tinbergen 1939). As such, we 

considered that males might use multiple achromatic visual signals (wings versus body) 

to advertise different and complex sets of information to different receivers. Accordingly, 

we investigated the potential information content of inter- and intra-sexual signals in the 

context of the multiple message, redundant signal, unreliable signal and multiple receiver 

hypotheses (Table 1). We explored the relationship between achromatic plumage traits 

and male quality using a novel variable selection technique to identify important plumage 

predictors of male quality. Finally, we validated integrative measures of individual 

condition and territoriality that have fitness-related consequences as proxies of male 

quality.  
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METHODS 
Study Species and Sampling 
We studied breeding pairs of snow buntings from late May to August of 2010 (N=17) and 

2011 (N=13) at East Bay Island, Nunavut, Canada (64°02’N, 81°47’W). High breeding 

densities at this location (approximately 70 pairs/km2; OPL, unpubl. data) likely result 

from an abundance of granite rock assemblages, ideal nesting habitat for this crevice-

nesting species (Montgomerie and Lyon 2011). Snow buntings are socially monogamous 

during the seasonally-constrained breeding period: males defend territories, females build 

the nest, males feed their incubating mate and bi-parental feeding is necessary to 

successfully rear young (Lyon et al. 1987). Pairs at our study site attempt a single brood 

each breeding season (OPL, unpubl. data). We trapped males and females following 

arrival in late May with seed-baited potter and walk-in traps, and applied a unique metal 

and colour-band combination to all individuals. We aged birds as either second year (SY; 

inexperienced breeders) or after-second year (ASY; experienced breeders) according to a 

protocol described previously (Smith 1992). At this time, we also collected a small blood 

sample from the brachial vein for hormonal and immunological analyses. Whole blood 

was centrifuged for 10 minutes at 12 000rpm within an hour of sampling, after which 

plasma was isolated and frozen at -20°C. Males were re-trapped during their mate’s egg-

laying period at which point we took a second blood sample as well as feather samples: 

we took a small feather sample (approximately 6-10) from the center of the white breast 

and black mantle in addition to the left and right 3rd rectrices (outermost tail feather that is 

primarily black; Figure 2a). We also took photographs of the left wing, outstretched at a 

perpendicular angle from the body (similar to Hanssen et al. 2009). Wing photographs 

were all taken by a single person (SGP) to reduce variation in wing positioning.  

 

Plumage Analyses 
Body Reflectance 

We quantified the reflectance of three body regions accentuated by the threat display—

the breast, mantle, and rectrices—with an Ocean Optics USB4000 spectrometer and PX-2 

xenon pulsed lamp (Ocean Optics, Dunedin, Florida, USA). We taped six breast or 

mantle feathers to a matte, black piece of cardboard to replicate the overlap of feathers on 
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live birds. Rectrices were taped to the cardboard as single feathers and reflectance was 

measured at the widest part of the feather (Figure 2b). Holding the bifurcated fiber-optic 

probe at a perpendicular angle to the feathers, we took 5 subsequent measures of the same 

region, lifting the probe and repositioning at each measure. Spectrometer operating 

software recorded data (OOIBase 32, Ocean Optics, Dunedin, Florida, USA), where 

reflectance measures represent the percent of light reflected in relation to a white 

Spectralon standard (near perfect reflectance, as in Mennill et al. 2003). Analyses of 

reflectance were restricted between 300nm to 700nm (Figure 3)—the visual spectrum of 

most birds (reviewed in Bennett et al. 1994)—and we smoothed a small blip in the curve 

caused by the light source by averaging the endpoints between 480nm and 486nm. We 

averaged the 5 measurements for each body region and using CLRv1.05 (Montgomerie 

2008), extracted brightness (mean reflectance from 300-700nm) and UV-Chroma 

(proportion of reflectance from 300-400nm) variables for the breast, mantle and rectrices 

(average of left and right rectrices).  

 

Wing Pigmentation Patterns 

To characterize melanized plumage patterns displayed during courtship, we measured the 

area of multiple pigmented regions on the wing of males using a digital tablet to manually 

trace the total area of the wing. We then used a standardized colour-threshold procedure 

to measure areas of black versus white plumage in ImageJ (v1.45 National Institute of 

Health, USA). The output provided both the total wing area, as well as the area of all 

separate black regions (Figure 1b). In total, we defined four measures that characterized 

patterns of black and white pigmentation within wings; the area of the black primaries, 

the average area of each spot within the white area of the wing, the total area of all spots, 

and the area of the alula patch. Each variable was expressed as a proportion of the total 

wing area.  

 

Male Quality 
Our operational definition of individual quality is based on a combination of ideas 

proposed by Hill (2011) and Wilson and Nussey (2009) as follows: the ability to maintain 

homeostasis through changing environments or life-history stages, and the fitness-related 
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consequences of this ability. In an attempt to capture individual variation in male quality 

as holistically as possible, we measured multiple aspects of male condition and 

territoriality that may be important in snow buntings including: individual arrival date, the 

change in immunoglobulin levels from arrival to breeding, the growth rates of feathers, 

testosterone levels at territory establishment, territory size and territory quality. We also 

examined female preference for plumage traits, as well as the direct relationship between 

expected reproductive performance and plumage traits (ignoring any possible 

intermediate effects). See below for an explanation of the inclusion of each of these 

variables. We further separate these traits as providing information that is valuable for 

inter-sexual communication, intra-sexual communication, or both (Table 2) to assess 

whether different plumage traits could provide information to different receivers.  

 

Male Condition 

Individual variation in the arrival date to the breeding grounds can be indicative of 

variation in individual quality in Arctic birds (Bêty et al. 2004) and earlier arrival dates 

may be advantageous in seasonal breeders where reproduction is time-constrained. Early 

males may acquire higher quality territories and breed earlier (Smith and Moore 2005), as 

has been suggested for snow buntings (Montgomerie and Lyon 2011). We began trapping 

males in late May with seed-baited Potter and walk-in traps. Due to a high trapping effort, 

we used the day of first capture as an approximation of the arrival date of individuals. 

Data from a Geolocation-based migratory study in this population confirm that the date of 

first capture represents male arrival date to the breeding grounds, although more 

accurately for later arriving than earlier arriving males (2010-2011; OPL, unpubl. data). 

The latest arriving males overlapped temporally with the earliest arriving females, such 

that these males likely had not yet established a territory once early females had begun 

assessing potential mates. 

We used an index of humoral immunity, quantified as levels of circulating 

Immunoglobulin Y (IgY) serum proteins, as a measure of current condition. IgY levels 

integrate both genotypic and phenotypic effects (Apanius and Nisbet 2006), thus they 

may be a reliable and useful proxy of individual quality. Notably, increases in plasma IgY 

levels are symptomatic of mounting an immune response (Roitt et al. 1998), and IgY 
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levels are highly dependent on changes in body condition and parasite loads (Bourgeon 

and Raclot 2006; Bourgeon et al. 2006; Tomás et al. 2007; Bourgeon et al. 2010). As 

such, positive increases in IgY levels in snow buntings are indicative of mounting an 

immune response, or having an infection, and would be interpreted as being in lower 

current condition. We measured changes in IgY from arrival to breeding (as a percent 

change) using an in-house enzyme-linked immunosorbent assay (ELISA) that utilizes 

commercial anti-chicken antibody (Martinez et al. 2003; Bourgeon and Raclot 2006; 

Bourgeon et al. 2006). This method has been validated in 6 avian species and we 

optimized it for snow buntings: we diluted our samples at 1:32000, which falls within the 

linear range of a sigmoidal curve in a serial dilution cascade (as outlined in Bourgeon et 

al. 2006). We used a previously described protocol (Martinez et al. 2003; Bourgeon and 

Raclot 2006; Bourgeon et al. 2006) and read absorbance at 405nm—the change in colour 

measured is proportional to the IgY content of the sample and levels are expressed in 

arbitrary absorbance units. The mean intra- and inter-assay coefficients of variation were 

3.0% and 8.9%, respectively.  

Ptilochronology, the study of feather growth rates, is a useful index of past 

condition (i.e., at the time of feather production; Grubb 1989). Males with wider growth 

bars, or faster growth rates, have greater survival and this relationship is repeatable within 

individuals (Takaki et al. 2001) suggesting that growth rates are influenced by both 

genetic and environmental factors and may relate to individual quality. Additionally, 

growth rates can be linked to the quality of feather structure and pigmentation (Hill and 

Montgomerie 1994). We measured feather growth rates as the width of one set of 

alternating dark and light bars in the middle two-thirds of the rectrices (since growth bars 

are difficult to view at the extremities), using a modified protocol by Grubb (1989). 

Growth rates are expressed in bars/mm and are averaged within a feather and between left 

and right rectrices. We took the residual of growth rates on total tail feather length, to 

control for the length of the feather grown (as tail length and growth rate can co-vary, see 

Andersson 1994b). In snow buntings, feather growth rates are indicative of male post-

breeding condition of the previous year (at the time of molt; Montgomerie and Lyon 

2011): males that grew their feathers faster were in better condition at this time. 
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Male Territoriality 

In snow buntings, testosterone levels peak pre-breeding when males are establishing 

territories and females begin arriving to the breeding grounds (Romero et al. 1998). This 

sex steroid is an important driver of intra-sexual aggression and territoriality in many bird 

species (reviewed in Wingfield et al. 1987). We therefore quantified arrival testosterone 

titers as a measure of territoriality and a proxy of male-male aggressive behaviour (as 

suggested by the challenge hypothesis; Wingfield et al. 1990). Male snow buntings that 

have higher arrival plasma testosterone concentrations are expected to be more 

aggressive. We used a commercial ELISA (Cayman Chemical Company, Ann Arbor, 

Michigan, USA) and followed a standard extraction step. Plasma samples were diluted in 

1mL deionized water and homogenized with 5mL of dichloromethane after which the 

lower steroid-containing dichloromethane layer was removed and the dichloromethane 

was evaporated overnight. The assay was optimized for snow buntings and extracted 

samples were reconstituted with assay buffer at a 1:20 dilution. We followed the 

manufacturer’s protocol: 50!L of diluted samples were run in triplicate with 50!L of 

testosterone tracer and 50!L of antiserum, incubated for two hours at 26°C and shaken at 

300rpm. The wells were rinsed five times with a wash buffer, and incubated as before for 

one hour with 200!L of Ellman’s reagent (containing substrate to Acetyl Cholinesterase 

tracer, causing colour change). The absorbance was read at 412nm, where the change in 

colour measured is inversely proportional to free testosterone initially found in the 

sample. Testosterone concentrations (ng/ml) were calculated in reference to a standard 

curve run on each plate. Our average extraction recovery efficiency was 71%, with mean 

intra- and inter-assay coefficients of variation of 7.7% and 10.6%, respectively.  

 We also assessed territory size and quality for each male. We mapped out territory 

boundaries by observing male-male territorial behaviours between neighbours (described 

in Tinbergen 1939)—we focused on how close neighbours could approach each other 

before chasing and fighting one another, determining this point to be a territory boundary. 

We digitized a map of territory boundaries and measured territory area using a tablet and 

the ImageJ tracing tool. In addition, we measured three metrics of potential territory 

quality with the knowledge that the sole function of territories in this species is to provide 

an adequate number of suitable nest sites for females (Tinbergen 1939; Montgomerie and 
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Lyon 2011): the distance from the nearest crevice opening to the closest edge of the nest 

cup, the approximate cover area of the rock directly above the nest, and the proportion of 

rock cover within a 5m radius of the nest. We chose the first two variables given the 

importance of nest microclimate in the Arctic (more sheltered eggs get colder if not 

incubated properly, area of roof keeps eggs free from wind and precipitation; Lyon and 

Montgomerie 1987), while the third is an approximation of the potential number of 

available nest sites within the territory. These three measures, along with territory area, 

were combined in a principal component analysis to summarize territory characteristics 

with multivariate scores: two principal component scores had eigenvalues greater than 

one and explained 41.8% and 31.7% of the variation in territories, respectively. After 

varimax rotation, the first principal component score included the three metrics of 

territory quality (rotated eigenvectors: distance to nest, 0.72; roof area, 0.78; rock cover 

within 5m radius, -0.72) and the second represented territory area (rotated eigenvector, 

0.91). Raw territory area and quality variables were significantly, linearly related to the 

principal component score on which they loaded most heavily (R2 range: 0.52-0.84; 

P<0.0001 for all), thus we took the principal component scores to represent territory 

quality and size, respectively, and used these in all subsequent analyses. A negative 

territory quality score is associated with a better territory, where the nest microhabitat is 

less prone to heat loss and where the territory contains greater access to nesting sites. A 

positive territory size score is associated with a larger territory. 

 

Female Preference and Predicted Reproductive Performance 

We used female arrival date as a proxy for pairing date (Gil and Slater 2000) and female 

mate preference, assuming that females arriving to the breeding grounds earlier had their 

first choice of mate and would pair with the most preferred males (as predicted by Kokko 

et al. 2006). We began trapping snow bunting females in late May with seed-baited Potter 

and walk-in traps, prior to female arrival and used the day of first capture as an 

approximation of the arrival date of individuals. Geolocation-based migratory data at our 

study site show that the date of first capture is a very reliable measure of female arrival 

date to the breeding grounds (OPL, unpubl. data). Males who were paired to earlier 

arriving females would be the preferred social mates.  
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We also tracked the reproductive output of breeding pairs by locating nests and 

visiting them biweekly to determine laying date. As in other Arctic species, earlier 

breeding is expected to provide an advantage in seasonal environments (Lepage et al. 

2000). We visited nests regularly and used the number of nestlings present at 8 days of 

age—the day prior to the earliest fledging date possible (Montgomerie and Lyon 2011)—

as our estimate of the number of fledglings and male predicted reproductive performance. 

While extra-pair copulations have been reported previously for this species (in 1/5 nests; 

see Hofstad et al. 2002) within-pair reproductive success may remain a good estimate of a 

male’s predicted reproductive performance due to the importance of bi-parental care.  

 

Statistical Analyses 
We used least-angle regression models (LARS; Efron et al. 2004) with a least absolute 

shrinkage and selection operator modification (LASSO; Tibshirani 1996)—a newly 

emerging and highly relevant statistical technique for complex ecological data (Murray 

and Connor 2009; Oppel et al. 2009)—to select important plumage predictors of male 

quality (see Appendix 1 for details). We conducted a separate LARS-LASSO model for 

every dependent variable (i.e. male quality proxies), including the ten plumage traits 

assessed, male age and year as our independent variables. We then built models to 

validate our choice of male quality measures, using all male condition and territoriality 

traits, male age and year as our independent variables to predict female preference, laying 

date and reproductive performance (dependent variables). All variables were standardized 

prior to analyses (mean=0, standard deviation=1), and we selected important predictors 

using the parsimonious results of two model selection criteria: Mallows’ Cp and the mean 

squared prediction error (MSPE) (Mallow 1973; Efron et al. 2004). We performed N-fold 

cross-validation to obtain the MSPE, where N is the number of observations used in the 

model—sometimes called ‘leave-one-out cross-validation’. This technique produces 

unbiased results, does not depend on random subgroup selection, and provides a clear 

indication of the influence of individual observations on variable selection. Three males 

returned from 2010 to 2011 and were resampled. We treated these as independent 

observations since all returning males paired with a new female, had a new territory and 

had molted a new set of feathers—removing returning males did not alter our findings. 
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Sample sizes vary for each model as a result of missing data for some snow bunting pairs 

(samples sizes are indicated in Tables 4 and 5). All analyses were run in R 2.14.2 (R 

Development Core Team, Vienna, Austria), using the LARS package (authors: Efron and 

Hastie; available at http://cran.r-project.org/web/packages/lars/). 

RESULTS 
Plumage and Quality  
Male snow bunting plumage traits predicted many proxies of quality (Table 3, 4). We 

found that breast brightness along with wing spotting were important predictors of male 

arrival date, along with male age. Specifically, birds with brighter, whiter breasts and less 

wing spotting arrived to the breeding grounds earlier. Male breast UV-chroma could also 

predict whether males had an immune response over the breeding season, where 

individuals with lower UV reflectance in their breasts showed no signs of an 

immunological response. All plumage traits studied were unrelated to feather growth 

rates, which could only be predicted by year. Similarly, earlier-arriving females appeared 

to have no distinct preference for a particular plumage trait—none of the predictor 

variables were related to female arrival date. The main predictors of increased expected 

reproductive performance were reduced spotting on the wing and lower breast UV-

chroma. Conversely, many male plumage traits predicted territory quality including: the 

proportion of black primaries within the wing, alula size, wing spotting, as well as mantle 

and rectrix brightness. Males had more nesting sites within their territory and a potentially 

favourable nest microclimate when they had a greater proportion of black primaries on 

their wing, a smaller alula, decreased spotting as well as darker rectrices, but a lighter 

mantle. Rectrix brightness, as well as breast and rectrix UV-chroma could also predict 

territory size; males defending a larger territory tended to have lower UV reflectance of 

the breast but higher UV-chroma in their rectrices along with darker rectrices. Lastly, 

male rectrix UV reflectance was selected as an important predictor of testosterone levels 

such that males with lower UV-chroma had higher arrival testosterone titers. 

 

Male Quality 

When validating our choice of proxies for male quality, we found that most of the 
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condition and territoriality traits investigated related to female preference or reproductive 

performance (Table 5). Females appeared to prefer to pair with males in higher condition: 

earlier arriving females paired with males that arrived earlier to the breeding grounds and 

did not mount an immune response over the breeding season (as indicated by changes in 

their IgY levels), although these males also had slower feather growth rates. Three 

aspects of male quality were also important predictors of female laying date, with 

physiological measures having the greatest predictive ability. Females initiated 

reproduction earlier when their mate had an earlier arrival date, lower arrival testosterone 

levels and a decrease in IgY levels from arrival to breeding. Lastly, male current 

condition—as approximated by the change in IgY levels—was the only significant 

predictors of within-pair annual reproductive performance where males that did not 

mount an immune response fledged a greater number of young.  

 

DISCUSSION 
Multiple Achromatic Ornaments  
Our findings support the occurrence of multiple ornaments in an achromatic species—all 

measured plumage traits were predictors of at least some of the quality-related measures 

that we considered (Figure 4). Although previous work implies that a purely achromatic 

species can have multiple achromatic plumage signals of quality (i.e. Pärt and 

Qvarnström 1997; Török et al. 2003), our study is the first to explicitly consider these in 

the context of multiple ornament hypotheses. Specifically, we found evidence for three of 

the four hypotheses that explain the evolution of multiple ornaments: the multiple 

message, redundant signal and multiple receiver hypotheses (Table 1).  

We found limited evidence of multiple messages in snow buntings, where breast 

UV-chroma was the only plumage trait able to predict the change in IgY levels and 

rectrix reflectance was the only trait able to predict testosterone levels. These findings 

suggest that different plumage traits may provide different types of information in snow 

buntings. However, we found strong support for the multiple receiver hypothesis, which 

is consistent with the inter- versus intra-sexual displays of our study species: the mantle 

and rectrices advertised to males during threat displays convey information about 
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potential aggression and territoriality, while the wing patterns presented solely to females 

during courtship indicate a male’s potential within-pair reproductive performance. 

Information that may be of value to both males and females, such as territory quality and 

arrival date, was signalled through both wing patterns and body reflectance. Male and 

female snow buntings may focus on different signals, specifically targeting ones that 

communicate information relevant to their sex-specific interactions during breeding. We 

were surprised to find that male condition was largely unrelated to wing pattern variables, 

as paternal condition at the time of pairing is often thought to be important in socially 

monogamous species where bi-parental care is necessary (Hill 1991). Perhaps signal 

content for a male’s expected reproductive performance is more important to females than 

an indirect assessment of potential parental abilities through his current condition.  

Finally, we also found strong support for the redundant signal hypothesis as more 

than one plumage ornament could predict most quality-related traits.  Territory quality 

was predicted by five plumage traits, including both wing patterns and body reflectance. 

Similarly, most ornaments examined were correlated to multiple proxies of quality; the 

plumage trait able to predict the greatest variety of quality-related information was breast 

reflectance, where this body region was an important predictor of multiple measures of 

both inter- and intra-sexual importance. Breast brightness was the most inter-individually 

variable plumage trait measured (range: 29-50% reflectance), and the breast is the most 

visible plumage trait to receivers facing a male. Breast variability and visibility may 

explain why both males and females may rely on this trait to gather information about 

conspecifics.  

 

Snow Bunting Quality 
Our measures of male condition and territoriality appear to collectively represent male 

quality, since almost all selected traits were related to reproduction—as per our 

operational definition of ‘quality’—and many related to female preference. The only traits 

unrelated to reproductive performance were territory quality and size, which may not be 

limited in a population such as the one at East Bay Island (nest sites are seemingly 

abundant; SGP, personal observation). Similarly, snow buntings defend territories solely 

to access potential nesting sites, such that defending a territory with a certain threshold of 
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nesting sites may be all that is required to secure a mate (providing little additional 

fitness-related benefits). However, we believe territory quality and size could still relate 

to territoriality and male quality in our population given that very large territories, or 

higher quality territories, can require greater time and energy to defend (Ewald et al. 

1980). Again, further examination of the use of territories and potential costs of defending 

these (i.e. intermediate effects) may be necessary to understand how or if snow bunting 

territoriality can influence reproduction. 

Although support for the redundant signal hypothesis could result from the 

inability to measure quality effectively (since by measuring multiple proxies of quality we 

may be measuring multiple redundant traits), we would argue that the quality-related 

measures chosen in our study differ in the aspects of quality they represent. For example, 

feather growth rates and current immunoglobulin level changes differed temporally (at 

time of feather growth versus during breeding season, respectively), and yet both 

represent individual condition (Grubb 1989; Bourgeon et al. 2010). Similarly, additional 

quality-related traits differed in their information content, such as testosterone as a 

measure of aggression versus male arrival date, which may relate to migratory decisions 

(Petersen 2009). Lastly, quality proxies measured were uncorrelated amongst one another 

(pair-wise correlations, P>0.05). This suggests that the quality-related traits we chose 

represent independent aspects of condition and territoriality, and that only by examining 

them together can we gain a better understanding of what represents a high quality male 

snow bunting. 

 

Female Preference 
While females appeared to show a preference for condition-dependent traits (male arrival 

date, changes in immunoglobulin levels, feather growth rates), earlier-arriving females 

did not appear to choose males with particular plumage traits. This finding is surprising 

given that we expected to see a relationship between plumage traits and female 

preference, particularly if females use plumage in assessing male quality (as suggested by 

our finding that plumage traits can predict eventual reproductive performance). However, 

our measure of female preference is an indirect one, and mate choice trials may provide 
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an alternative means to determining whether females show direct preferences for certain 

plumage characteristics.  

Recent evidence has suggested that female preference for a given plumage trait 

may vary adaptively inter-annually (Chain and Lyon 2008), and therefore more than two 

years of data may be necessary to understand social mate selection in snow buntings. 

Although females can show consistent preferences for male quality-related traits, they 

may use different specific plumage traits inter-annually for mate selection, particularly if 

signals tend to be redundant (i.e. Marchetti 1998). This possibility could explain why we 

did not find a clear female preference for any particular plumage trait. Alternatively, male 

mate choice may occur simultaneously (Jones et al. 2001)—ignoring the possibility of 

mutual mate selection could explain our finding that female mate choice alone does not 

correlate to a particular plumage trait. While we were unable to control for female quality 

in our current analyses, variation in inter-female quality may be an important 

consideration for future studies of snow bunting mate selection.  

 

Condition-dependent Achromatic Signals 
Previous studies of melanin- and carotenoid-based signals have suggested that melanin-

based plumage is not condition-dependent (Hill and Brawner 1998; Badyaev and Hill 

2000). Contrary to this conclusion, our findings support those of recent studies indicating 

that achromatic plumage may serve as a condition-dependent signal (also Török et al. 

2003; McGlothlin et al. 2007). The primary difference between previous studies and ours 

stems from our choice of a purely achromatic species rather than one that exhibits both 

melanin- and carotenoid-based ornaments. In a species that only has black and white 

plumage available to use as a signal, the evolution of condition-dependent achromatic 

plumage may be more likely than one with additional carotenoid-based signals.  

We also show that achromatic plumage can signal both condition and territoriality, 

something that few studies of achromatic plumage consider simultaneously—

consequently, it is difficult to say whether this finding is common among other species. In 

collared flycatchers (Ficedula albicollis), the white wing patch size is a signal of 

condition (Török et al. 2003) while the size of the forehead patch is a badge of status (Pärt 

and Qvarnström 1997). Likewise, the proportion of white within the tail of dark-eyed 
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juncos (Junco hyemails) can be used in signalling both status (Balph et al. 1979) and 

condition (McGlothlin et al. 2007). The latter example, along with our study (i.e. breast 

reflectance), are the only documented cases of the same achromatic plumage trait being 

indicative of both condition and territoriality. This occurrence may simply be rarely 

observed because researchers only choose to consider condition or dominance in their 

studies of achromatic plumage signalling. However, if this phenomenon is indeed rare, it 

may be because common mechanisms driving plumage production, dominance, and 

condition simultaneously are rare—drivers of social interactions and individual condition 

may differ too greatly to influence the production of a single plumage signal.  

 

The Evolution of Multiple Ornaments 
Our finding that redundant signalling may be common in snow buntings could occur 

because producing black and white feathers may be more mechanistically similar than 

producing multi-modal ornaments (i.e. bower versus plumage reflectance; Doucet and 

Montgomerie 2003). Signals that are relatively inexpensive to produce, although less 

informative, may remain honest (Zahavi 1993)—achromatic plumage signals may be 

redundant as a result of the low relative cost of producing pigment-less or melanin-based 

feathers (Hill and Brawner 1998). This can result from a selective trade-off for signal 

efficacy versus content (Andersson 2000), where signals that emphasize content should 

be more costly, yet may be less conspicuous while signals that emphasize detection 

efficacy should be more conspicuous but potentially less costly. Redundant ornaments 

may also result from common upstream cellular processes, influencing male quality (and 

thus condition or territoriality traits) and the production of multiple plumage traits (shared 

pathway hypothesis; Hill 2011).   

 Multiple messages should evolve when distinctions between multiple aspects of 

quality are important for the receiver (Møller and Pomiankowsky 1993). In snow 

buntings, it appears that two physiological measures—immunoglobulin levels and 

testosterone—can only be signalled through differing plumage traits. Similarly, multiple 

receivers may select different signals of male quality relevant to intra- versus inter-sexual 

interactions. In this sense, the multiple receiver hypothesis is really an extension of the 

multiple message hypothesis to include more than one receiver. Different ornaments 
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predicting different aspects of quality may have evolved because males and females 

require information about a signaller that is unrelated (or trade-off). Pre-breeding 

territoriality may be unrelated to, or even trade-off with, eventual reproductive output 

such that males and females have evolved preferences for different ornaments (see 

Anderson et al. 2002). A potential trade-off may be the immunosuppressive effects of 

elevated testosterone, where males with high testosterone may better defend territories 

(Wingfield 1985), but have suppressed immune responses (although this trade-off may be 

complex; see Peters 2000).  

 Alternatively, multiple ornaments may result when the mechanism of ornament 

production differs between the ornaments visible during ritualized intra- and inter-sexual 

displays (see Galván 2008). Although all plumage traits examined in snow buntings are 

produced approximately synchronously (i.e., post-breeding molt), the differing 

mechanisms by which black feather reflectance and wing patterns are produced could 

explain the difference between the information content of these signals. While both the 

reflectance of mantle feathers and the pigment patterns of the wings are melanin-based, 

the localized deposition of some melanin in different wing feathers may rely on 

melanocyte control (Ito 2003), while the quality of reflectance of mantle feathers may 

depend on concentrations of pigments in these feathers, or the ratio of two melanin 

pigments within the feathers (eumelanin and pheomelanin; McGraw et al. 2005).  This 

suggestion is consistent with a recent meta-analysis showing that eumelanin-based 

plumage reflectance may not relate to reproduction while melanin patch sizes do 

(Meunier et al. 2011). Our findings are similar, where the area of spots predicts expected 

fledging success whereas mantle and rectrix reflectance do not. 

 

Conclusion 
In summary, we find that an achromatic species that is relatively simple in appearance 

can use plumage reflectance and pigmentation patterns to signal complex information. 

We provide the first evidence that purely black, grey and white birds can exhibit multiple 

ornaments, and we suggest that the evolution of these ornaments may largely depend on 

the mechanisms of plumage production, as well as differing intra- and inter-sexual 

selective pressures. We provide new evidence that achromatic plumage can signal 
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condition-dependent information, and that breast plumage can signal condition and 

territoriality simultaneously. We urge researchers to consider achromatic plumage as a 

potentially complex form of visual communication and to investigate the production 

costs, as well as fitness consequences, of this type of plumage signal. These studies will 

contribute significantly to elucidating why some species have evolved alternative 

plumage colours while some remain entirely achromatic. 
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Table 1: Hypotheses for the evolution and maintenance of multiple ornaments (as 

described in Møller and Pomiankowski 1993; Andersson et al. 2002), evidence that would 

support each hypothesis, and examples within our study that support each hypothesis. 

 

Hypothesis Evidence Support? Example in snow buntings 

Multiple 
Message 

Different quality-related traits 
predicted by different plumage 
ornaments or ornament types 

! 

Breast UV-chroma 
predicts IgY levels while 

rectrix UV-chroma 
predicts testosterone 

    

Redundant 
Signal 

Quality-related traits predicted by 
many plumage ornaments ! 

Primaries, alula, spots, 
mantle brightness and 

rectrix brightness can all 
predict territory quality 

    

Unreliable 
Signal 

Some plumage ornaments 
unrelated to quality-related traits 

yet preferred by females 
" N/A 

    

Multiple 
Receiver 

Different plumage ornaments 
relate to quality-related traits 

that are differentially useful for 
inter- and intra-sexual signaling1 

! 

Melanized plumage 
predicts territoriality vs. 

wing patterns predict 
expected reproductive 

performance 
1See Table 2 for a description of which quality proxies may provide inter- versus intra-
sexual information 
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Table 2: Information content for quality proxies used in this study and justification for 

the classification of each as inter-sexual, intra-sexual or mixed information. 

 

 Trait Justification References 

In
te

r-
se

xu
al

 In
fo

rm
at

io
n 

Female 
Preference 

Earlier arriving females should prefer to 
mate with higher quality males first 

Kokko et al. 
2006 

Immune 
Response  

Females should pair preferentially with a 
male that is currently in good condition; i.e. 
combating an immune challenge may impair 

his ability to provide paternal care 

Råberg et al. 
2000 

Feather 
Growth Rates 

Females should pair with a male that was in 
good condition during the previous breeding 

season; i.e. at the time of feather growth 

Takaki et al. 
2001 

Expected 
Fledglings 

Females should preferentially pair with 
males that have high expected reproductive 

performance 
Hill 1991 

M
ix

ed
 In

fo
rm

at
io

n Male Arrival 
Date 

Females should pair with a male that has 
already established a territory and is ready to 

breed  
Male arrival date may impact the ability to 
acquire a higher quality territory (although 
some males have been displaced upon the 

later arrival of a higher quality male) 

Alataro et al. 
1984; 

Smith and 
Moore 2005 

Territory 
Quality 

Females should pair with a male able to 
defend the minimum number of possible 
nesting sites to find one that is suitable 

Males should fight preferentially over higher 
quality areas 

Tinbergen 
1939; 

Lanyon and 
Thompson 

1986 

In
tra

-s
ex

ua
l 

In
fo

rm
at

io
n Testosterone 

Titers 

Males should forgo fighting with a higher 
quality male in order not to be injured, or to 
save time and energy once a social hierarchy 

has been established  

Rohwer 1975 

Territory  
Size 

Males that defend a larger territory may have 
to spend more time confronting territory 
intruders or working harder to defend a 

larger area 

Ewald et al. 
1980 
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Table 3: Variation in male plumage traits is related to quality; standardized parameter coefficients of LARS-LASSO models that used 

year, male age and all plumage measures as predictor variables. All blank cells represent a coefficient of zero. In parentheses, we 

indicate the step at which each predictor variable is added (although this is not a strong indicator of variable importance).  

 

Predictor 
Variables 

Dependent Variables 
Arrival 

Date 
Growth 

Bars 
Change 
in IgY 

Arrival 
Testosterone 

Territory 
Quality 

Territory 
Size 

Female 
Preference 

Chicks 
Fledged 

Year  0.914 (1)       
Male Age -0.414 (2)        

         
Black Primary     -0.116 (4)    

Alula Size     0.090 (5)    
Average Spot     0.516 (1)   -0.254(2) 
Total Spotting 0.195 (1)       -0.522 (1) 

         
Breast 

Brightness -0.181 (3)        

Breast UV-
Chroma   0.400 (1)   -0.201 (3)  -0.153 (3) 

         
Mantle 

Brightness     -0.150 (2)    

Mantle UV-
Chroma         

         
Rectrix 

Brightness     0.137 (3) -0.199 (1)   

Rectrix UV-
Chroma    -0.272 (1)  0.249 (2)   
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Table 4: Model summary and selection criteria for variables outlined in Table 3; Mallows’ Cp values and cross-validation results for 

the LARS-LASSO model selected for each dependent variable examined. Model consistency refers to the proportion of N-fold cross-

validation test groups that were parsimonious with the top model.  

 

 
Dependent Variables 

Arrival 
Date 

Growth 
Bars 

Change 
in IgY 

Arrival 
Testosterone 

Territory 
Quality 

Territory 
Size 

Female 
Preference 

Chicks 
Fledged 

Selected Model Summary   
Residual Sum 

of Squares 19.3 17.9 15.1 26.4 15.8 18.5 28.0 15.7 

Mallows’ Cp 2.25 -5.49 -2.83 -0.0369 3.59 -0.146 -2.42 5.37 
Df 4 2 2 2 6 4 1 4 
N 29 29 24 24 29 29 29 26 

N-Fold Cross-Validation   
Model 

Consistency 0.897 1.00 1.00 0.917 0.862 0.966 N/A 0.808 

Mean Squared 
Prediction Error 

(±S.E.) 
1.00±0.26 1.03±0.2

1 
1.04±0.6

4 1.10±0.34 1.12±0.42 1.01±0.31 0.92±0.23 1.04±0.50 
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Table 5: Variation in male quality-related traits is related to female preference and 

reproductive performance; results of LARS-LASSO models that used year, male age and 

all proxy measures of quality as predictor variables. Standardized parameter coefficients 

are presented for all the important predictors identified (not indicated are all other 

parameters with a value of 0). In parentheses, we indicate the step at which each predictor 

variable is added. Model summary and cross-validation results are included. Model 

consistency refers to the proportion of N-fold cross-validation trials that were 

parsimonious with the top model. 

 

Predictor Variables 
Dependent Variables 

Female 
Preference Laying Date Chicks Fledged 

Standardized Model Coefficients 
    

Year    
Male Age    

    
Change in IgY 0.290 (3) 0.048 (1) -0.305 (1) 
Arrival Date 0.564(1) 0.075 (3)  
Growth Bars -0.321 (2)   

    
Arrival Testosterone  -0.142 (2)  

Territory Quality    
Territory Size    

Selected Model Summary 
Residual Sum  

of Squares 12.5 13.9 12.2 

Mallows’ Cp -0.67 11.5 3.19 
Df 4 4 2 
N 24 21 21 

N-Fold Cross-Validation 
Model  

Consistency 1.00 0.801 0.952 

 
Mean Squared 

Prediction Error 
(±S.E.) 

0.98±0.34 1.22±0.34 0.63±0.22 

 

 

 



 

 45 

a) 

 

 

 

b) 

 

Figure 1: Male snow bunting breeding plumage traits measured: a) body regions from 

which feather samples and reflectance measurements were taken and b) wing 

pigmentation pattern variables assessed using wing photographs and ImageJ.  
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a) 

 

 

 

b) 

 

 

 

Figure 2: Male snow bunting a) rectrix pigmentation patterns and the b) area of the third 

rectrix (R3) used for spectral analyses. The shaded circle represents the positioning of the 

light probe and the smaller center circle represents the area of the feather where 

reflectance is measured. 
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Figure 3: Mean snow bunting plumage reflectance spectra over the visual range of birds 

(300-700nm) for the a) white breast, b) black mantle and c) black rectrices (all N=29). 

Brightness is calculated over the entire range of the spectrum (300-700nm) while UV-

chroma is calculated over the UV range of the spectrum (300-400nm).
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 Figure 4: Male snow bunting plumage traits can act as multiple ornaments. Arrows arbitrarily point to the dependent variable and 

represent correlations with plumage predictor variables identified by the LARS-LASSO models. Dependent variables for which no 

predictor was selected are not shown (see table 3). Arrows are relatively proportional to the absolute value of standardized parameter 

coefficients (!), and thus can be compared across models (see legend for magnitude). Table 3 should be consulted for the direction of 

these relationships and the Methods section should be consulted for their biological significance. 
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APPENDIX 1 

LEAST ANGLE REGRESSION AND THE LASSO MODIFICATION 

 

Variable Selection Techniques 

Variable-selection techniques commonly used in ecological studies are inadequate for the 

type of variable selection we required: stepwise variable selection is biased and 

inconsistent (Whittingham et al. 2006; Mundry and Nunn 2009) while information 

criterion model selection procedures (i.e., BIC or AIC) rely on strong a priori predictions 

and are not designed for data exploration (Anderson and Burnham 2002). Alternatively, 

building a single model to include all plumage variables does provide unbiased 

parameters yet may not be the optimal model and is likely to include many extraneous 

variables. As an alternative, bio-statisticians have recently urged ecologists to consider 

the use of algorithmic models to select important predictor variables (Murray and Conner 

2009; Oppel et al. 2009). Presented here are several currently accepted options, and our 

justification for selecting the least angle regression algorithm with a least absolute 

shrinkage and selection operator modification to identify important plumage predictors of 

individual quality. 

 

Ridge Regression 

Ridge regression is a type of penalized regression that may be used to circumvent the 

problems of multicollinearity (Hoerl and Kennard 1970)—where many predictor 

variables are correlated amongst one another, leading to decreased accuracy in estimating 

coefficients or excluding important predictors from the final model (i.e. when both 

correlated independent variable are equally important predictors of the dependent variable 

yet only one is identified to be so; Blalock 1963). Essentially, ridge regression modifies 

the residual sum of squares used in traditional ordinary least square regression with a 

constant (K, the ridge parameter) that penalizes large parameter estimates (ones with high 

variance). This introduces a bias in calculating the parameter estimates (since estimates 

are multiplied by a constant; Hoerl and Kennard 1970), but reduces the variance of 

estimates—known as the bias-variance trade-off. Ridge regression alone does not act in 
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variable selection, however, and an additional modification is necessary for this to be 

accomplished.  

 

Least Absolute Shrinkage and Selection Operator—LASSO 

Least Absolute Shrinkage and Selection Operator (LASSO) is also a form of penalized 

regression where weak predictors of the dependent variable have their coefficients shrunk 

to reduce variance (although increase bias). LASSO differs from ridge regression, 

however, as it can shrink parameters to zero and act in selecting important variables (ones 

with non-zero parameters; Tibshirani 1996). This is achieved through minimizing the L1-

norm (the rectilinear distance) rather than the L2-norm (i.e. as in ordinary least squares 

regression and ridge regression; the Euclidean distance). The primary difference between 

minimizing the L1- versus L2-norm stems from the geometry that each uses: rectilinear 

distances, also called taxicab distances, work on a predetermined grid where you can only 

move on up-and-down or side-to-side axes, whereas Euclidean distances are the shortest 

distances between two points or as the crow flies. Formally, rectilinear distances are the 

absolute sum of their coordinates (Krause 1987), whereas Euclidean distances are 

calculated by Pythagoras’ theorem as the shortest distance between two coordinates 

(Coxeter 1961). Constraining parameter estimates by a constant in rectilinear distances 

has the tendency to drive many of the parameter estimates to zero. Unfortunately, LASSO 

regression alone has several limitations including being computationally expensive, 

difficult to optimize (i.e. select the shrinkage coefficient) and having limited means to 

evaluate the model selected (Efron et al. 2004).  

 

Forward Stagewise Regression 

Alternatively, forward stagewise regression can select variables in a manner similar to 

forward selection. Forward selection acts by adding the predictor most correlated to the 

dependent variable into the model. It then identifies the next predictor that, when added to 

the model, will ameliorate the model by minimizing the sum-squared-error. This process 

continues until no additional predictor can be added to improve the model. Forward 

selection is problematic because once a variable is added to the model it cannot be 

dropped. It is important to realize that as new predictor variables are added to the model, 
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the estimated parameters (!) of previous predictors are modified—they can even decrease 

substantially such that the parameter of the first variable added to the model, the one most 

correlated to the dependent variable, can end up with the lowest parameter estimate. 

Consequently, parameter estimates may be unreliable in identifying the most important 

predictors or important predictors may even be excluded, and largely as an artefact of 

trying to compute the full ordinary least squares estimate.  

Forward stagewise regression overcomes these problems by only adding part of a 

variable, or as much of a variable as needed, to the model at a given time (Hastie et al. 

2001). Forward stagewise regression begins as in forward selection by selecting the 

predictor variable most correlated with the dependent variable. However, rather than 

adding the entire variable to the model, stagewise regression only adds as much of a 

variable as needed until the residuals of this regression are as correlated with a second 

predictor as the first predictor is to the dependent variable. At this point, the second 

predictor is added until a third variable is as related to the residuals and so on. Again, this 

process will continue until no additional variable can explain the remaining residuals, or 

until a stopping rule is reached. The only disadvantage of using forward stagewise 

regression is that in order to add only as much of a variable as needed, it proceeds in tiny 

incremental steps—this can be computationally cumbersome (Hastie et al. 2001).  

 

Least Angle Regression (LARS) 

Least Angle Regression (LARS) is an efficient algorithm that is computationally as 

straightforward as stepwise methods yet less ‘greedy’ (Efron et al. 2004). LARS, like 

forward stagewise selection, will add only as much of a predictor variable as necessary. 

Unmodified, LARS will continue on for s steps, where s is the number of predictors 

included in the model; in other words LARS can act to select all predictor variables in 

order of importance. 

The LARS algorithm can be modified to provide solutions for LASSO and 

forward stagewise regression, but has the advantage of eliminating the computational 

limitations of both techniques. The performance of the LARS algorithm with a LASSO 

modification or with a forward stagewise modification are highly comparable (Hastie et 

al. 2001), but we chose to use LARS with a LASSO modification simply because this 
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technique is not restricted to linear relationships (due to rectilinear geometry). In addition, 

LARS-LASSO allows variable selection to move both forwards and backwards (as 

opposed to forward only): if the parameter of a predictor drops to 0 in LARS-LASSO 

models, then the predictor is dropped from the model. In other words, with the LASSO 

modification, LARS allows parameters to enter and drop from the model instead of 

simply adding parameters until s is reached.  

Selecting a model using the LARS-LASSO procedure can be done in one of two 

ways (similar performances, Madigan and Ridgeway 2004; although see Ishwaran 2004): 

through minimizing Mallows’ Cp (Mallow 1973) or minimizing the mean squared 

prediction error (MSPE) with cross-validation (Efron et al. 2004). The Cp is an unbiased 

estimate of the sum of squared errors at each step, penalized for the number of predictors 

included in the model. In essence, minimizing Cp is almost identical to minimizing the 

AIC parameter during information criterion analyses. Conversely, k-fold cross-validation 

divides the data into k equal groups, where each group is used in succession as the test 

group, while all others are used to build the model. For each of the k-folds, the model is 

calculated and used to predict the dependent variables of the test group. The MSPE is 

calculated as the average difference between the observed and predicted values (using the 

test group). Like Cp, MSPE is a measure capturing both the variance and bias of the 

model (analogous to precision and accuracy, respectively).  

In summary, we chose to use the LARS algorithm with a LASSO modification to 

identify important plumage predictors of quality for many reasons: it is more conservative 

than stepwise selection, robust to multicollinearity, did not make distributional 

assumptions about variables, and allowed for selection of predictor variables in forward 

and backward directions. 

 

 



 

 53 

References 

Anderson, D.R., and Burnham, K.P. 2002. Avoiding pitfalls when using information-

theoretic methods. J. Wildl. Manage. 66:912-918.  

Blalock, H.M.Jr. 1963. Correlated independent variables: the problem of 

multicollinearity. Social Forces. 42:233-237. 

Coxeter, H.S.M. 1961. Introduction to Geometry. Wiley, New York. 

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. 2004. Least angle regression. Ann. 

Statist. 32:407-499. 

Hastie, T., Tibshirani, R., and Friedman, J. 2001. The Elements of Statistical Learning; 

Data mining, inference and prediction. Springer, New York. 

Hoerl, A.E., and Kennard, R.W. 1970. Ridge regression: Biased estimation for 

nonorthogonal problems. Technometrics. 12:55-67.  

Ishwaran, H. 2004. Discussion of “least angle regression” by Efron et al. Ann. Statist. 

32:452-458. 

Krause, E.F. 1987. Taxicab geometry: an adventure in non-Euclidean geometry. Dover 

Publications, New York. 

Madigan, D., and Ridgeway, G. 2004. [Least angle regression]: discussion. Ann. Statist. 

32:465-469. 

Mallows, C.L. 1973. Some comments on Cp. Technometrics. 15:661-675. 

Mundry, R., and Nunn, C. 2009. Stepwise model fitting and statistical inference: turning 

noise into signal pollution. Am. Nat. 173:199-123. 

Murray, K., and Conner, M.M. 2009. Methods to quantify variable importance: 

implications for the analysis of noisy ecological data. Ecology. 90:348-355. 

Oppel, S., Strobl, C., and Huettmann, F. 2009. Alternative methods to quantify variable 

importance in ecology. University of Munich Technical Report 65:1-6.  

Tibshirani, R. 1996. Regression shrinkage and selection via the Lasso. J. R. Statist. Soc. 

B. 58:267-288. 

Whittingham, M.J., Stephens, P.A., Bradbury, R.B., and Freckleton, R.P. 2006. Why do 

we still use stepwise modeling in ecology and behaviour? J. Anim. Ecol. 75:1182-

1189. 



 54 

CHAPTER 3—GENERAL DISCUSSION 
 

 

OVERVIEW AND IMPLICATION OF RESULTS 

In Chapter 2, we provide the first empirical evidence that an achromatic species possesses 

plumage traits that can act as multiple ornaments indicative of male quality. Specifically, 

in male snow buntings (Plectrophenax nivalis), we find evidence to support the multiple 

receiver hypothesis since melanin-based mantle and rectrix reflectance are predictors of 

territoriality, while wing pigmentation patterns are indicators of expected reproductive 

performance. We suggest that this finding, along with the knowledge of previously 

described inter- and intra-sexual displays (Tinbergen 1939), indicates that male and 

female snow buntings may both act as receivers and may use different plumage signals 

that relate to sex-specific signal content. We also found support for the multiple message 

and redundant signal hypotheses, where a number of measures of male quality are 

signalled by a single plumage trait, whereas others by more than one plumage traits.  

 Our results have important implications for the study of animal communication 

since we demonstrate that a relatively simple type of non-coloured plumage can be used 

in complex communication. This possibility has often been ignored, or overlooked, in the 

past given that the current appreciation of how achromatic signalling functions is limited 

compared to our understanding of chromatic colour signalling. The results from Chapter 2 

are a perfect example that even systems that are assumed to be relatively simple may be 

more complex than previously thought, and that exploring this complexity can lead to 

furthering our understanding of basic biological concepts. 

To date, only eight empirical studies (including this thesis) have focused on visual 

communication in purely black, white or grey species. Our study provides new insight 

into the evolutionary role of achromatic plumage signalling, and provides potential 

clarification to areas of research that are currently disputed. For example, researchers 

have debated whether achromatic plumage acts as a condition-dependent signal for over a 

decade (Hill and Brawner 1998; Badyaev and Hill 2000). Unfortunately, support against 
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the condition-dependence of achromatic signals has relied on data from species exhibiting 

both melanin- and carotenoid-based plumage ornaments. As such, current findings may 

be specific to species that have both carotenoid- and melanin-based signals. In a species 

that is entirely achromatic, black and white ornaments may indeed serve an entirely 

different purpose (i.e. may act in a condition-dependent manner). In fact, if we consider 

that five of the six current studies assessing the condition-dependence of black and white 

plumage in achromatic species have supported this long-refuted concept (including our 

own; see Table 1), we would draw a very different conclusion about the use of achromatic 

plumage in condition-related signalling. Furthermore, it is even less well understood how 

achromatic species may signal territoriality and condition simultaneously, either through 

different ornaments, or through the same plumage trait. Researchers have only considered 

the possibility that achromatic species can signal both dominance and condition in three 

species (including our own; Table 1). Again, our study supplements the single previous 

study that has demonstrated that a single achromatic plumage trait may both signal 

territoriality and condition.  

 I hope that our results will inspire the design of future research projects to 

consider both dominance and condition as the potential information content of achromatic 

signals. Many currently published projects on plumage signalling in achromatic species 

remain inconclusive as to whether or not achromatic plumage can act to simultaneously 

signal condition and dominance (Table 1). In many of these cases, the authors may 

already have additional data on condition (i.e. body condition, fat scores, parasite loads) 

and could easily assess the relationship between plumage and these condition-related 

measures without any additional data collection. Revisiting these studies within a new 

paradigm—that achromatic plumage may be an efficient simultaneous signal of 

dominance and condition—would greatly contribute to our understanding of visual 

communication and the evolution of plumage colouration as a whole.     
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LIMITATIONS OF THE STUDY AND FUTURE DIRECTIONS 

Correlative Study 
The primary limitation of our study, as in the majority of previous studies that have 

examined multiple ornaments, is its correlative nature (although see Andersson et al. 

2002). It is difficult to perform an experimental manipulation in a wild population without 

a prior understanding of naturally occurring relationships; this is even truer in a system 

where we are examining multiple plumage traits simultaneously. Consequently, this study 

should be considered as the first part of many in understanding the role of plumage 

signalling in driving territorial interactions, mate choice and fitness in snow buntings. To 

address this drawback, I suggest that mate choice experiments be performed over several 

years (due to potential inter-annual variation in mate preferences; Chain and Lyon 

2008b). Similarly, plumage ornament manipulations (i.e. manipulating plumage area size 

on the wing with paint or bleach; altering the UV-reflectance of plumage with UV-

blocking chemicals; see Vedder et al. 2008) should be performed at different times (i.e. 

before males begin setting up territories or once territories are established but before 

female arrival to the island) to explore both the intra- and inter-sexual consequences of 

variation in plumage traits.  

 
Plumage Measurements 
One weakness of our choice of plumage traits was that we measured the area of some 

plumage traits (i.e. wing patterns), and the reflectance of others (i.e. body regions) 

without considering the reverse—the reflectance of wing pattern areas and the area of the 

black mantle or white breast may also serve as visual signals (as in Mennill et al. 2003; 

Gladbach et al. 2011). This limitation is an artefact of logistical constraints, as we did not 

feel confident in reliably measuring these alternative characteristics of wing and body 

plumage. The pigmentation within the wing areas can be highly variable—which specific 

region within the primaries or the alula do we measure to capture reflectance holistically? 

Furthermore, some were too small to measure or non-existent in some males (i.e. wing 

spots). Similarly, measuring the area of body feather regions would be very difficult both 

in positioning the birds consistently and in standardizing the way we arrange these highly 

flexible feathers. The body of the bird—unlike the wing—could not be held in a 2D 
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plane, which would add uncertainty to our measurements of mantle or breast area. 

Nevertheless, receivers might use these added plumage characteristics to evaluate 

individual quality; only measuring wing pattern areas and body reflectance may add to 

the uncertainty in our data and limit our understanding of visual communication in snow 

buntings. It is possible that trait area in combination with trait reflectance may contribute 

to assessing individual quality (Mennill et al. 2003; Calkins and Burley 2003; Doucet et 

al. 2005).   

 
Behavioural Displays 
Display quality may also contribute to effective signalling and may be an important 

consideration for conspecifics during social breeding interactions (Chargé et al. 2010; 

Cornuau et al. 2012). Both plumage signal quality and the ability to show off this signal 

may contribute to inter- and intra-sexual communication; our study was only able to 

assess the former. Again, the primary reasons for not examining behavioural aspects of 

the display were logistical; hours of consistent focal observations would be necessary to 

reliably extract behavioural variables such as display rate or display intensity, and we 

simply did not have the time. In addition, courtship displays are rarely observed at East 

Bay Island and birds can be very hard to spot amongst the rocks when they perform this 

display or copulate (I personally observed 2 snow bunting copulations for 28 nests that 

produced hatchlings). Collecting these correlative data may be possible in the future, with 

a larger field team dedicated to documenting snow bunting behaviour. An experimental 

approach may also be possible, where males within their territories may be presented with 

a model female or male specimen to assess inter- and intra-sexually specific behavioural 

responses in a timelier, albeit artificial manner. 

 A second, less obvious behaviour that may influence plumage quality is the 

rubbing of the feather tips to transition from the wintering plumage to breeding plumage 

(Montgomerie and Lyon 2011). Inter-individual variation in both the timing of this 

behaviour and the quality of active feather wearing may influence perceived plumage 

quality, and may contribute to unexplained variation in plumage and individual quality. 

Observing the wearing behaviour of individual males at arrival and documenting the rate 
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of feather wearing may provide a better idea of how this behaviour can influence 

perceived plumage quality and impact male reproductive success. 

 
Honest Signalling 
Our study was not focused on elucidating the mechanistic linkages between plumage trait 

production and male quality. Consequently the exact nature of the relationship between 

these traits and the underlying mechanism enforcing the honesty of these signals (if they 

are honest signals) remains unclear. Many authors still debate whether black and white 

plumage may act as honest signals since the costs of producing these types of feathers are 

largely unresolved (see Tickell 2003; Meunier et al. 2011). Suggested costs of melanin 

plumage production include limited dietary mineral acquisition, limited dietary amino 

acids or pleiotropic hormonal trade-offs (testosterone; Jawor and Breitwisch 2003; 

McGraw 2008). Additional costs of melanin-based plumage may include social 

reinforcement (McGraw et al. 2003) and parasite loads during molt (Fitze and Richner 

2002). Perhaps even less understood are the costs of producing white feathers—suggested 

costs of pigment-less feathers include reduced resistance to wearing, greater difficulty in 

keeping feathers clean, and that white feathers may be conspicuous to predators 

(reviewed in Tickell 2003). Recent evidence also suggests that diet at the time of molt 

may alter the size of white plumage patches (McGlothlin et al. 2007). Investigating the 

production costs of these signals may be important—while more challenging, I believe 

that understanding the mechanisms of ornament production in terms of cellular processes 

and relating these to individual quality as suggested by Hill (2011) would be novel and 

would contribute to addressing unanswered questions about achromatic plumage 

production costs. 

 

Fitness Consequences 
This study was also not aimed at exploring the reproductive consequences of inter-

individual variation in plumage. While we did examine the direct relationship between 

plumage and reproductive performance, this in no means provides a clear understanding 

of how plumage relates to reproduction—in this context, we used the number of 

fledglings as a measure of expected reproductive performance rather than as a proxy for 
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fitness. Instead, I suggest that future studies should consider intermediate effects and 

explore how plumage can predict quality and how both plumage and quality influence 

reproductive success. Doing this (perhaps through partial correlation coefficients; see 

Møller et al. 2003) would elucidate the relationships between male plumage and fitness 

more clearly than ignoring intermediate effects (as done in Chapter 2).  

 

Repeatability 
Our data were collected over 2 years, with an unusually low return rate for adult males. 

As such, we were unable to examine repeatability (Lessells and Boag 1987) in plumage 

traits and male quality. My definition of ‘quality’ in Chapter 1 suggests that this trait is 

repeatable—while previous studies have suggested that many of the quality proxies we 

chose to measure are repeatable (i.e. growth bars: Takaki et al. 2001; arrival date; 

Lourenço et al. 2011), verifying these assumptions would provide further support for our 

choice of quality-related proxies. The repeatability of a character or a behaviour will 

suggest whether or not selection may act on it; understanding the repeatability of plumage 

traits, individual quality and mate choice in snow buntings will be essential to understand 

how sexual selection may act in this system (Boake 1989).  

 

SUMMARY 
In conclusion, my thesis provides novel evidence that achromatic plumage traits may act 

as multiple ornaments and may be used by multiple receivers. Some of these plumage 

traits may also function as redundant ornaments, simultaneously indicating aspects of 

male territoriality and condition. I provide many avenues for future research, including 

mate choice experiments, incorporating behavioural observations as well as plumage 

ornament manipulations; these research projects would contribute to our current 

understanding of visual communication in achromatic species and the evolution of 

plumage colouration in birds.  
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Table 1: Literature review of studies of achromatic species examining dominance or 

condition-related plumage signalling in males. ‘None found’ indicates that authors 

assessed at least one measure of condition/dominance, but did not find a relationship with 

the studied plumage trait, while ‘None investigated’ indicates that authors did not attempt 

to investigate the indicated relationship.  

 

 Species Signal of 
Condition 

Signal of 
Dominance Reference(s) 

Si
gn

al
s c

on
di

tio
n 

&
 

do
m

in
an

ce
 

Ficedula albicollis 
Wing patch 

size 

Forehead 

patch size 

Pärt and Qvarnström 

1997; Török et al. 2003 

Junco hyemails 
Proportion of 

white tail 

Proportion of 

white tail 

Balph et al. 1979; 

McGlothlin et al. 2007 

Plectrophenax 

nivalis 

Breast 

reflectance 

Tail 

reflectance 
SGP, unpubl. 

In
co

nc
lu

siv
e 

St
ud

ie
s 

Aethia pusilla 
None 

investigated 

Belly patch 

size 
Jones 1990 

Chloephaga picta 
Wing patch 

reflectance 

None 

investigated 
Gladbach et al. 2011 

Struthio camelus 
Wing patch 

reflectance 

None 

investigated 
Bonato et al. 2009 

Calamospiza 

melanocorys 

Not 

investigated 

Black rump 

size 
Chaine and Lyon 2008a 

Lanius minor None found 
None 

investigated 
Kri"tín et al. 2007 
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