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ABSTRACT

The roles that Plk4 plays in cell division and DNA damage pathways have not yet 

been clarified. Results presented provide further insight into this question. Plk4 protein 

levels were seen to decrease in response to UV damage specifically, but not ionizing 

radiation. Additionally, overexpression of Plk4 overrides the Gl-S checkpoint arrest 

induced by DNA damage, leading to an accumulation of cells in the S-phase of the cell 

cycle. This suggests that Plk4 is inhibited by DNA damage, and suggests a possible role 

for Plk4 in S-phase entry.

Thus far only a few interacting partners and substrates are known for Plk4. My 

results show that Plk4 interacts with both Cdc25C and Cyclin B. Furthermore, Cdc25C 

was established to be a substrate of Plk4 through in-vitro kinase assays. The finding that 

Plk4 interacts with these key mitotic proteins provides further evidence that Plk4 may 

play a novel role in cell division.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

Firstly, I would like to extend my appreciation to my supervisor, Dr. John Hudson 

for allowing me this opportunity. I would like to thank him for this learning experience 

and the guidance I needed to succeed. Also, I extend my thanks to my committee 

members Dr. Andrew Hubberstey and Dr. Siyaram Pandey for their helpful guidance and 

suggestions during the course of my masters and to Dr. Dennis Higgs for reading my 

thesis and chairing my defence.

My appreciation is extended to the Dr. Panayiotis Yacratsis for his helpful 

suggestions and to Anna Kozarova for her help and advice. Also, I would like to thank 

the staff of the biology department as well as the graduate students for their support.

Lastly, I would like to thank my friends (in particular Eric) and family as well as 

the Hudson Lab (Melissa, Steve, Al, Alex, Bing, Doreen and Neeraj) for making me 

laugh when all I wanted to do was cry and for their love and support.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

ABSTRACT............................................................................................................................ iii

ACKNOWLEDGEMENTS.................................................................................................... iv

LIST OF FIGURES................................................................................................................vii

CHAPTER

I. INTRODUCTION........................................................................................................1

The Polo-like Kinase Family.......................................................................... 1
The Polo-boxDomain.......................................................................................1
Activation and Phosphorylation of Plks........................................................7
Plk Expression and Localization.....................................................................8
Plk Overexpression and Mutant Phenotypes.................................................9
Plks and Centrosome Amplification.............................................................11
Plks and Cytokinesis......................................................................................13
Plk4 (Sak) Structure.......................................................................................15
Plk4 Expression and Localization.................................................................18
Plk4 Null Phenotype......................................................................................18
Plk4 and Cancer............................................................................................. 19
Plk4 and Centrosome Duplication............................................................... 21
The Plks and DNA Damage Pathways........................................................ 23
The Plks and Entry Into Mitosis.................................................................. 26

II. MATERIALS AND METHODS...........................................................................29

Production of Competent E. Coli Cells........................................................29
Transformation and DNA Purification........................................................29
Cell Culture.................................................................................................... 30
Transfection and Cell Lysis..........................................................................30
UV radiation and IR Damage.......................................................................31
Antibodies..................................................................................................... 31
Immunoprecipitation..................................................................................... 31
Western Blotting............................................................................................32
Flow Cytometry.............................................................................................33
GST-Cdc25C Protein Purification................................................................34
Kinase Assay................................................................................................. 35

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



III. RESULTS 36

Plk4 and DNA Damage Pathways............................................................... 36

UV radiation Inhibits Plk4 Protein Expression........................................ 36
Overexpression of Plk4 Causes Recovery from....................................... 39
DNA Damage Induced Cell Cycle Arrest

Plk4 and Entry into Mitosis..........................................................................42

Interaction of Plk4 and Cyclin B1............................................................. 42
Interaction of Plk4 and Cdc25C................................................................ 46
Plk4 Phosphorylates Cdc25C In-Vitro......................................................48

IV. DISCUSSION............................................................................................................ 50

V. FUTURE DIRECTIONS............................................................................................59

APPENDIX A: Solutions...................................................................................................... 65

REFERENCES...................................................................................................................... 65

VITA AUCTORIS................................................................................................................73

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

CHAPTER

I. INTRODUCTION

Figure 1. Polo-like kinase Structure....................................................................................... 5
Figure 2. Two models for Plkl, Plk2 and Plk3 polo-box domain function........................ 6
Figure 3. Murine Plk4 structure............................................................................................17
Figure 4. Major DNA damage pathways where Plks have been implicated.................... 25

III. RESULTS

Figure 5. Plk4 protein levels decrease with increasing doses of UV radiation...............37
Figure 6. Plk4 protein levels remain constant with increasing doses of IR.................... 38
Figure 7. Overexpression of Plk4 causes recovery from DNA damage

induced cell cycle Arrest.................................................................................... 40
Figure 8. Analysis of Cell Cycle Data Post-UV Irradiation.............................................41
Figure 9. Plk4 domain specific constructs.......................................................................44
Figure 10. Plk4 co-immunoprecipitates with endogenous Cyclin B1.......................... 45
Figure 11. Plk4 co-immunoprecipitates with endogenous Cdc25C..............................47
Figure 12. Plk4 phosphosphorylates GST-Cdc25C.......................................................... 49

IV. DISCUSSION

Figure 13. Alignment of Cdc25C-derived peptide and human Cdc25C protein..........57
Figure 14. Pathway through which Plk4 acts..................................................................58

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER I

INTRODUCTION 

Polo-Like Kinase Family

The Polo-Like kinases (Plks) are a family of serine-threonine kinases which play 

key roles in multiple stages of the cell cycle (Glover et a l, 1998). The founding member 

of this family was named Polo and was originally identified in Drosophila melanogaster. 

Subsequently, structural and functional homologs have been identified in all major model 

systems studied, indicating a conserved function and evolutionarily important role in 

ensuring species survival. Simple eukaryotes such as Saccharomyces cerevisiae and 

Schizosaccharomyces pombe contain one Plk family member, CDC5 and Plol 

respectively (Kitada et al., 1993; Ohkura et al., 1995), while more complex eukaryotes 

contain a higher number of Plk family members. C. elegans and Xenopus laevis have 

three Plk family members, whereas humans and mice contain four (Plkl, Plk2, Plk3 and 

Plk4 or Sak) (Barr et al., 2003).

The Plks play important roles during multiple stages of the cell cycle including 

cytokinesis and mitosis as well as roles in DNA damage response pathways (Barr et al.,

2004). Furthermore, Plks are regulators of bipolar spindle formation, centrosome 

maturation, chromosome segregation and APC/C regulation (Barr et al., 2004).

The Polo-Box Domain

The Plks share two 

kinase domain and one or

1

highly homologous regions including an N-terminal protein 

two non-catalytic C-terminal polo-box domains (Figure 1).
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Plks 1-3 contain two polo-box domains, whereas Plk4 only contains one. Each polo-box 

is -80 amino acids in length separated by a -20 amino acid linker region (Leung et al, 

2002; Cheng et al., 2003). Cheng et al, 2003 revealed that the two polo-boxes of Plkl 

contain a six-stranded anti-parallel beta-sheet and an alpha-helix.

Lie et al., 1998 suggested that the polo-box domain of Plkl is necessary for 

localization. A single amino acid change of a conserved residue at position 414 in the 

polo-box from tryptophan to phenylalanine abrogates P lk l’s localization to the spindle 

pole bodies. Furthermore, this mutation of the human Plkl polo-box domain results in 

P lkl’s inability to complement the temperature sensitive CDC5-1 mutant (Lee et al., 

1998). Complementation assays for the CDC5-1 mutant prove that W414 is the most 

crucial residue for the function of Plkl polo-box domain (Lie et al., 1998). Additionally, 

Hanisch et al., 2006 reported that the catalytic domain of Plkl, lacking the polo-box 

domain is unable to localize to centrosomes and kinetochores. Hanisch et al, 2006 also 

demonstrated that diminishing Plkl or similarly overexpression of the polo-box domain 

of Plkl resulted in mitotic arrest. Interestingly however, overexpression of the polo-box 

domain interfered with chromosome segregation whereas depletion of Plkl impaired 

maturation and separation of centrosomes or bipolar spindle formation (Hanish et al., 

2006). However, on the contrary, it was also found that Plkl protein in which both polo- 

box domains have been deleted still localizes to centrosomes as do the two polo-box 

domains of Plkl expressed as GFP (green fluorescent protein) fusion proteins. This thus 

suggests that the polo-box domains are sufficient but not necessary for localization 

(Hudson unpublished data). The polo-box domain of Plk3 has also been implicated as a 

localization signal to centrosomes and spindle poles (Jiang et al., 2006). Also, it has been

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



shown that both polo-box motifs are necessary for this localization to occur and that the 

polo-box domain is also sufficient for this localization. In addition, overexpression of the 

polo-box domain of Plk3 interferes with cell division and cytokinesis (Jiang et al., 2006).

For P lk l-3, the polo-box domain including the region between them and a portion 

of the linker between the end of the kinase domain and the first polo-box domain, 

functions as a single phosphoserine/threonine-binding module (Elia et al, 2003a). The 

crystal structure of the Plkl polo-box domain showed that the phosphopeptide binding 

motif is located in the interface between the two polo-boxes (Cheng et al., 2003; Elia et 

al., 2003b). For Plkl, a molecular model has been proposed for the substrate binding of 

the kinase. The model proposes that initially the polo-box binds to a previously 

phosphorylated serine/threonine binding motif on the substrate which then positions the 

substrate such that the kinase domain of Plkl can phosphorylate the same protein at a 

different site (Figure 2a) (Elia et al., 2003a). The two residues of Plkl that come in 

contact with the phosphate group are H538 and K540 and mutation of these residues 

results in loss of substrate binding and localization of centrosomes (Cheng et al., 2003). 

If this model is accurate, Plkl substrates should contain polo-box binding motifs and 

kinase phosphorylation motifs. This model thus proves accurate for Plkl substrate 

Cdc25C. Cdc25C is phosphorylated on Thr-130 by Cdkl and this site is involved in the 

interaction with the polo-box domain. Upon binding, Plkl then phosphorylates Ser-198 

of Cdc25C (Elia et al., 2003a). Mutation of the putative Plkl pThr-binding motif in 

Cdc25C abolishes the interaction of the enzyme with its substrate (Elia et al., 2003a). 

Furthermore, mutation of the interaction sites within the polo-box domain of Plkl not 

only abrogates phospho-substrate binding, but also eliminates localization of Plkl to the

3
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centrosomes (Elia et al, 2003b). Also, quite interestingly, upon phospho-peptide binding 

of the polo-box domain of Plkl, Plkl kinase activity is also stimulated (Elia et al, 

2003b). One model for this is that Plkl activity is negatively regulated by the polo-box 

domain (Jang et al, 2002). In the absence of a phosphorylated substrate, the polo-box 

domain interacts with the kinase domain and prevents substrate binding or activation. 

Upon binding of the polo-box domain with a phosphopeptide, the kinase domain is thus 

released and upon phosphorylation of the T-loop, the protein is converted to an active 

form (Elia et al, 2003b).

An alternate model proposes that the polo-box domain phosphoserine / threonine 

substrates are essentially different from the substrates that the kinase domain 

phosphorylates. This model suggests that perhaps polo-box binding to phosphorylated 

docking proteins localizes the kinase domain to its substrates which may or may not be 

tightly associated with the docking protein (Figure 2b).

Trp-414, a key residue which is necessary for polo-box localization along with 

His-538 and Lys-540, residues which bind phosphorylated peptides, are conserved 

residues in Plk 1-3 however not in Plk4. Both Plk2 and Plk3 polo-box domains are found 

to function as phosphoserine/threonine binding motifs thus suggesting a similar 

mechanism of substrate interaction (Cheung et al, 2003).

4
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Kinase Domain Polo-box domain

Figure 1. Polo-like kinase structure. Plks share a highly conserved protein kinase domain 
in the amino-terminal and common structural motifs called polo-boxes in the non-catalytic 
carboxy-terminal region. The kinase domain is represented by the yellow colour and the 
two polo-boxes are shown in red. The region prior to and including the two polo-boxes has 
been renamed the polo-box domain.

5
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Figure. 2. Two models for Plkl, Plk2 and Plk3 polo-box domain function. Plks 1-3 are 
activated through phosphorylation of T-210 and binding of the polo-box domain to 
phosphorylated ligands. Which event occurs first remains to be elucidated. KD refers to the 
kinase domain and PBD refers to the polo-box domain. A. The polo-box domain binds to a 
site on a protein that has been previously phosphorylated by a priming kinase. This 
alleviates inhibition of the kinase domain and allows for phosphorylation of the same 
protein on a different site. B. In this model, the ligand to which the polo-box domain binds 
is different from the substrates which the kinase domain phosphorylates. Priming kinases 
phosphorylate sites on docking proteins and upon binding to the polo-box domain allows 
the catalytic domain of the Plk to phosphorylate the associated substrate.

6
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Activation and Phosphorylation of Plks

Although it is widely known that the Plks require phosphorylation for activation, 

their upstream activating kinases have remained fairly elusive. Among the Plks, the 

mechanistic and structural detail of Plkl activation has been the most extensively 

examined. The activation of other Plk family members is thought to occur through the 

same mechanism (Qian et al., 1999).

A common mechanism for the activation of many protein kinases is 

phosphorylation in their respective T loop. Within the kinase domains of Plks, several 

conserved serine and threonine residues are present which could be potential sites for 

phosphorylation and activation of these kinases. T210 lies within the T-loop of the Plk 

kinase domain and mutation of this residue to Asp mimics phosphorylation and renders 

the kinase constitutively active. It is generally believed that phosphorylation at T210 is a 

requirement for Plk activation (Qian et al., 1999).

Although much remains to be elucidated regarding the full activation of Plks, two 

candidates have been proposed for the phosphorylation of T210. These two candidates 

are human SLK and PKA along with Xenopus Plkkl (Qian et al, 1998).

Although mutation of another site in the kinase domain, S I37 to Asp also renders 

the kinase active, there is no evidence for the direct phosphorylation of this residue. 

Furthermore, mutation of this serine (SI37) to alanine did not prevent activation of 

Plkl/Plxl suggesting that phosphorylation at this residue occurs, but it is not critical 

(Qian et al., 1999). The possibility for additional post-translationally modified sites on 

Plks remains to be determined.

7
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Plk Expression and Localization

The expression and localization patterns of Plks are dynamically regulated in a 

cell-cycle dependent manner. Drosophila Polo localizes to centrosomes at mitotic entry. 

Furthermore, during prometaphase, the protein associated with kinetochores and late in 

anaphase, prior to cytokinesis, it was seen to localize to the central spindle (Glover,

2005).

Yeast Plks have been shown to localize to spindle pole bodies but the timing of 

localization differs between CDC5 (budding yeast) and Plol (fission yeast). CDC5 

localizes to the spindle pole bodies in G1 until the completion of mitosis (Song et al., 

2000). Conversely, Plol localizes to the spindle pole bodies only upon activation of 

Cdc2 and remains associated there until Cdc2 becomes inactive (Mulvihill et al, 1999).

During G2, Plkl localizes to the cytoplasm and the nucleus and is targeted to 

centrosomes (Golsteyn et al., 1995). During prophase and metaphase Plkl has been 

shown to localize to centrosomes and kinetochores where it persists until it is degraded. 

A portion of Plkl relocalizes to the equatorial spindle midzone at anaphase (Lee et al., 

1998). Generally, Plkl expression and activity is low in GO, G1 and S, begins to increase 

in G2 and peaks in M phase. Finally, Plkl is degraded through the ubiquitin - proteasome 

pathway upon completion of mitosis (Lee et al, 1995)

Plk2 and Plk3 most likely have overlapping roles with Plkl as they localize to 

similar intracellular structures. However, Plk2 functions predominantly as a regulator of 

G1 progression in mammalian cells (Ma et al., 2003a). Plk2 and Plk3, similar to Plkl, 

have both been shown to localize to the centrosomes (Wang et al., 2002). In contrast to 

what is found for Plkl and Plk2, the expression of Plk3 protein and mRNA is not cell

8
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cycle regulated. Although Plk3 mRNA expression is only seen in G l, Plk3 protein level 

is seen at all stages of the cell cycle given Plk3s stability (Alberts and Winkles, 2004). 

Furthermore, Plk3 protein is rapidly degraded in the nucleus via the ubiquitin-proteosome 

pathway however, in order to sustain a long half-life, plk3 is most likely sequestered in 

the cytoplasm in a catalytically inactive form.

The multiple sites of the Plks localization patterns and differential expression 

during normal cell cycle progression reflect the many functions that these enzymes 

perform during the cell cycle.

Plk Overexpression and Mutant Phenotypes

Mutations in Drosophila melanogaster Polo, the founding member of the Plk 

family, resulted in several phenotypic defects (Sunkel and Glover, 1988). Although 

homozygous mutants of the gene successfully developed to adulthood, numerous mitotic 

defects were observed during development (Glover, 2005). Additionally, monopolar 

spindles were observed in the mutant cells with centrosomes which failed to separate 

(Llamazares et al., 1991). In the absence of Polo function, several proteins fail to be 

recruited to the spindle pole and abnormal spindle poles form, reflecting the name of this 

protein (Llamazares et al, 1991).

Both the budding yeast and the fission yeast contain Polo homologs with 

significant functional similarities to vertebrates Plks suggesting that the role of Plks is 

largely preserved throughout evolution (Glover et al., 1998). A temperature-sensitive 

CDC5 mutant (the Plk homolog in budding yeast) arrests with a bipolar spindle late in 

mitosis (Byers et al., 1974). Furthermore, in the first division of meiosis, it displays

9
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abnormal behaviour of spindle pole bodies, and in the second division there is a failure of 

the spindles to elongate (Schlid et al., 1980). Interestingly, studies by Lee et al., 1997 

showed that complementation of the temperature sensitive CDC5-1 mutant could be 

accomplished by Plkl. Additionally, Ouyang et al., 1997 showed that Plk3 could also 

rescue this mutant, indicating that Plkl and Plk3 have a conserved function in regulating 

mitotic/meiotic progression. Thus, this demonstrates that Plkl and Plk3 both have 

conserved some CDC5 functions. In contrast, Plk2 and Plk4 do not rescue this mutant 

suggesting divergence of these Plk family members. Furthermore, this suggests that Plk2 

and Plk4 have a non-redundant role in the cell cycle (Swallow et al., 2005).

In fission yeast overexpression, or mutation of Plol resulted in the failure of the 

spindle pole bodies to complete either their duplication or separation resulting in 

monopolar spindles thus indicating the protein is necessary for bipolar spindle formation 

(Ohkura et al., 1995). Also, Plol mutants failed to form the actin ring and septum, both 

of which are prerequisites for cytokinesis. Another consequence of overexpression of 

Plol was multiple septa being formed in cells at any stage of the cell cycle (Ohkura et al., 

1995).

Vertebrate Plk family member’s knockdown and overexpression phenotypes have 

also been extensively examined. With respect to the Plkl knockdown phenotype, 

prominent mitotic arrest was observed. Although Plkl was dispensable for normal 

mitotic entry in human cells, as the majority of cells entered mitosis, Plkl depleted cells 

failed to exit mitosis (Van Vugt et al., 2004). Furthermore, upon entry into mitosis, Plkl 

deficient cells were unsuccessful at forming a bipolar spindle and were incapable of 

aligning their chromosomes. The inability for the cells to align their chromosomes is

10
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most likely caused by a defect in centrosome maturation, consistent with the observation 

that the Plks play key roles in the centrosome cycle (Seong et al., 2002; Llamazares et al., 

1991). Indeed, Li et al., 2002 did report that cells depleted of Plkl by RNAi displayed an 

inhibition in centrosome amplification. Additionally, downregulation of Plkl expression 

or activity in tumour cells induced apoptosis and inhibited tumour cell proliferation (Gray 

et al., 2004). On the other hand, overexpression of Plkl leads to multinucleation and 

enables tumour cells to override mitotic checkpoints leading to genomic instability and 

oncogenic transformation (Gray et al., 2004).

In contrast to Plkl, overexpression of Plk3 leads to apoptosis and suppresses 

cellular proliferation and inhibits colony formation (Conn et al., 2000). The Plk2 

knockdown phenotype has been examined as well, and downregulation of Plk2 by RNAi 

has shown that Plk2 is required for centriole duplication (Wamke et al., 2004). 

Furthermore, Plk2 knockout mice are viable and fertile, however they appear smaller then 

their wildtype littermates. Plk2-/- mice reveal a role for Plk2 in embryonic development, 

as the null embryos display a slight delay in development and exhibit a diminished 

weight of the placentas (Ma et al., 2003).

Plks and Centrosome Amplification

Localization and mutant phenotypes of polo-like kinases reveal a common 

characteristic role for Plks in bipolar spindle formation and centrosome duplication.

Drosophila Polo mutants fail to recruit key proteins to the centrosomes during 

centrosomal maturation. A complex of y-TuRC and CP 190 shows failure of recruitment 

to centrosomes in Polo mutants. This complex is responsible for capping the minus ends

11
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of microtubules on centrosomes a necessary step for their nucleation (Barbosa et al,

2000). Furthermore, Donaldson et al., 2001 show that RNAi directed towards Polo 

results in failure of y-tubulin recruitment to centrosomes. Another protein, Asp (a 

microtubule associated protein) has been found to be a substrate of Polo. Asp is 

necessary for microtubule-nucleating activity. Although Asp is able to localize in the 

absence of Polo, Polo is necessary to activate Asp at the microtubules (Avides et al.,

2001).

Fission Yeast Plk family member Plol associates with spindle poles and Finl has 

a role in this association. Finl is necessary for the regulation of spindle formation. 

Furthermore, increasing the levels of Finl results in recruitment of Plol to the spindle 

pole bodies in wild-type cells (Grallert et al., 2002). One hypothesis is that Finl may 

phosphorylate proteins at the spindle pole bodies providing docking sites for Plol 

(Grallert et al., 2002).

Xenopus Plxl immunodepletion resulted in monopolar spindles with altered 

patterns of a-tubulin around the pole (Qian et al., 1998). The mechanism through which 

this occurs is not completely understood, however it is thought that Plxl affects bipolar 

spindle formation through the regulation of centrosome maturation and separation.

Plkl has been shown to be necessary for the localization of several proteins to the 

centrosomes during the centrosome maturation process. Lane et al., 1996 proved that 

injection of Plkl antibodies into cells resulted in a decrease in the accumulation of y- 

tubulin at the centrosome suggesting that Plkl is necessary for y-tubulin localization. 

Furthermore, the cells had monoastral microtubule arrays and duplicated centrosomes 

which were not separated (Lane et al., 1996). Plkl has also been shown to interact with

12
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and phosphorylate a  and p-tubulins as well (Feng et al., 2002). Another centrosomal 

protein which Plkl has been shown to interact with is Nip (ninein-like protein) (Casenghi 

et al., 2003). This protein interacts with y-tubulin and contributes to the organization of 

microtubules. Plkl has been shown to phosphorylate Nip at the commencement of 

mitosis resulting in the proteins disengagement from centrosomes. Mutation of the Plkl 

phosphorylation sites in Nip hindered spindle formation (Casenghi et al, 2003). Thus, it 

is evident that Plkl is necessary for bipolar spindle formation and centrosome maturation 

and separation.

It is therefore evident, that the polo-like kinase family plays a key role in bipolar 

spindle formation and centrosome (spindle pole body) maturation and separation.

Plks and Cytokinesis

Another common role for Plks is their involvement in cytokinesis. Yeast Plk Plol 

activity is necessary for formation of a division septum whereas overexpression of this 

kinase leads to ectopic septum formation (Ohkura et al., 1995). Furthermore, Bahler et 

al, 1998 show that Plol interacts with Midl/Dmfl. Midl/Dmfl is a protein required for 

positioning of the cell division site. Plol localizes Midl/Dmfl to filamentous actin 

during mitosis from the nucleus (Sohrmann et al, 1996). Two main components of 

septation are equatorial actin ring formation and equatorial microtubule organizing center 

(EMTOC) formation which is similar to the central spindle that forms in animal cells 

(Heitz et al, 2001). Plol is necessary for EMTOC assembly and thus, Plol seems to be 

involved in several pathways which initiate septation (Heitz et al., 2001).
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Weak loss-of-function alleles of Drosophila polo kinase Polo display defects in 

cytokinesis (Carmena et al., 1998). Polo associates with a motor protein Pavarotti 

(Adams et al., 1998). Pavarotti (Pav) mutations result in a defective spindle mid-zone 

region and prevent cytokinesis from occurring (Carmena et al., 1998). Additionally, Pav 

and Polo are dependent on one another for their correct localization. Mutation of either 

protein results in failure of the other to localize to spindle poles and spindle mid-zone 

(Adams et al., 1998).

Xenopus Plxl is localized to the midbody in late mitosis (Qian et al., 1999) 

providing a role for this kinase in cytokinesis. Qian et al., 1998 showed that injection of 

mRNA encoding a kinase active form of Plxl into Xenopus embryos resulted in cleavage 

arrest. Embryos injected with wild-type Plxl however divided normally. Therefore, the 

inactivation of Plxl may be required for completion of cytokinesis in Xenopus embryos.

Mammalian Plks have also been implicated in cytokinesis. Initial support for the 

idea that Plkl was involved in cytokinesis came from the discovery of the Plkl substrate 

CHOl/MKLP-1 (mitotic kinesin-like protein) which induces microtubule bundling (Lee 

et al., 1995). Additionally, overexpression of a dominant negative form of Plkl causes 

cytokinesis failure, similar to the effect which is seen with the depletion of Plkl in cells 

(Van Vugt et al., 2004). Numerous other cytokinesis proteins were found to be 

phosphorylated by Plkl. Phosphorylation of NudC (nuclear distribution gene C) by Plkl 

is essential for the execution of cytokinesis (Zhou et al., 2003). Another protein which 

Plkl phosphorylates is MKLP2. When MKLP2 is phosphorylated, it binds to the polo- 

box domain of Plkl. Depletion of the protein results in failure of cytokinesis and 

furthermore, disrupts Plkl localization.
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Thus, the polo-like kinase family of mitotic regulators are important regulators of 

cytokinesis.

Plk4 (Sak) Structure

Plk4 (Sak) was the last member of the human Plk family to be identified. Human 

and murine Plk4 contain a highly conserved kinase domain and a less conserved polo-box 

domain (Figure 3). Although little is known about the kinase activity of this protein, a 

Plk4 T170D mutation in the T-loop increases kinase activity, whereas a Plk4 K41M 

mutation in the ATP-binding domain eliminates activity (Swallow et al., 2005).

Although Plks 1-3 are quite similar with respect to structure, Plk4 differs in that it 

harbours only a single polo-box motif at its extreme C-terminus (Leung et al, 2002). 

The Plk4 polo-box forms intermolecular homodimers and consists in total of two alpha 

helices and two six-stranded antiparellel beta sheets. Each beta sheet contains four 

strands from one polo-box and two strands coming from the other polo-box. Although 

there are several similaries between the polo-box domain of Plkl and Plk4 numerous 

differences also exist. Though each of the Plkl polo-box domains consists of one six- 

stranded beta sheet and an alpha helix, the organization of the strands between Plkl and 

Plk4 are strikingly different (Leung et al., 2002; Elia et al, 2003b). The two polo-box 

domains of Plkl form an intramolecular heterodimer and in contrast to Plk4, the Plkl 

beta-sheet consisted of six-self contained strands, and no strand exchange was observed. 

Although the polo-box region of Plk4 forms intermolecular homodimers, there is no 

evidence suggesting that the Plk4 polo-box binds phosphorylated peptides which is seen 

in the other Plk family members. Furthermore, the Plk4 polo-box domain is most likely
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not involved in substrate binding, as the residues which are most likely involved in 

phosphopeptide binding by Plkl are not conserved in Plk4 (Elia et al., 2003b). However, 

Swallow et al., 2005 report that the Plk4 polo-box domain is necessary but not sufficient 

for Plk4 binding to its substrate p53, suggesting that the polo-box region is a requirement 

for the binding of the protein to its substrate and interactions between subdomains of Plk4 

are important for binding. However, results published by Habedanck et al., 2005 and 

Leung et al., 2002, support the idea that in contrast to the other Plk family members, loss 

of the polo-box domain of Plk4 does not abolish localization. Subcellular localization 

loss was only seen if a second self-association domain denoted the ‘cryptic polo-box’ was 

also deleted (Habedanck et al., 2005).

The C-terminus of Plk4 contains three PEST sequences. PEST sequences are 

associated with decreased protein stability and the short half-life of proteins. Indeed, 

Plk4 does display a short half-life and the protein is destroyed by the anaphase-promoting 

complex (APC/C) following mitosis. Stability of this kinase is increased when the PEST 

sequences are deleted. Protection from PEST-dependent proteolysis and enhanced 

phosphorylation of the Plk4 kinase domain is observed upon Tec tyrosine kinase binding 

to the cryptic polo-box of Plk4. Subsequently, Plk4 is tyrosine phosphorylated by Tec 

(Yamashita et al., 2001). Tec is the only known kinase that phosphorylates Plk4.
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Kinase domain Cryptic-Pb Pb

Pest 1 Pest 2 Pest 3

Figure 3. Murine Plk4 structure. Plk4 contains a kinase domain at the N-terminus, one 
polo-box domain at the C-terminus and 3 PEST sequences. Upstream of the polo-box 
domain is another self-association domain designated the cryptic-polo-box.
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Plk4 Expression and Localization

Immunofluorescence staining has shown that endogenous Plk4 co-localizes with 

centrosomes throughout the cell cycle (Habedanck et al., 2005). Both the protein and 

mRNA levels of Plk4 are regulated in a cell cycle dependent fashion, quite similar to the 

other Plk family members. Plk4 expression increases gradually from G1 to early mitosis 

after which it is destroyed by the anaphase promoting complex (Fode et al., 1996). In 

mice there are two splice variants produced due to alternative splicing which results in 

the retention of an intron, followed by early termination of transcription in the Plk4-6 

transcript. Specifically, Plk4-a and Plk4-6 transcripts both have exons 1-5 present 

however at which point the transcripts differ. Exons 6-15 complete Plk-a, whereas 147 

base pairs adjacent to exon 5 completes Plk-6 (Hudson et al., 2000). In contrast, human 

Plk4 has only one transcript which has an insertion of 34 amino acids immediately 

contiguous to exon 5 relative to the murine Plk4-a protein sequence. Interestingly, this 

34 amino acid insertion in human Plk4 is highly similar to the intron sequence that is 

retained in murine Plk-6 (Hudson et al., 2000). All of the work in the present study will 

focus on human Plk4 constructs.

Plk4 Null Phenotype

Plk4 was the first polo-like kinase family member to be mutated in vertebrates. 

The murine Plk4 null phenotype was found to be embryonic lethal with embryos 

arresting at E7.5, shortly after gastrulation. Staining for the mitotic markers 

phosphorylated histone H3 and Cyclin B1 showed that a large percentage of the cells 

were blocked in mitosis. Phosphorylated histone H3 is rapidly dephosphorylated upon
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completion of mitosis. The Plk4 null embryos stained positive for phosphorylated 

histone H3 at a much higher frequency then Plk4 wildtype embryos indicating a block or 

delay in exit from mitosis. Also non-degradable forms of Cyclin B1 were seen in 

anaphase and telophase inhibiting exit from mitosis in Plk4 null embryos but not in Plk4 

wildtype embryos (Hudson et al, 2001). Proteolysis of cyclin B1 begins as soon as the 

last chromosome aligns on the metaphase plate and is complete prior to the onset of 

anaphase. Cyclin B1 degradation is required for the onset of anaphase and thus non- 

degradable forms blocks the exit of cells from mitosis (Clute et al, 1999). Therefore, 

Plk4 deficiency leads to an arrest or delay of cell cycle progression in mitosis (Hudson et 

al., 2001). Plk4 null embryo explants displayed a similar phenotype. Blastocyst 

outgrowths stained positive for phosphorylated histone H3 and Cyclin B1 and displayed 

an increase in dumbbell-shaped cells blocked in anaphase or telophase (Hudson et al,

2001). These results suggest that Plk4 is necessary for exit from mitosis and more 

importantly, that Plk4 is essential for cell viability.

Plk4 and Cancer

Plk4 heterozygous mice embryonic fibroblasts (MEFs) also have a unique 

phenotype when compared to wild-type MEFs. Plk4+/‘ MEFs have a much slower growth 

rate, an increased number of centrosomes, abnormal spindles, as well as misaligned and 

misdirected chromosomes. Thus haploid levels of Plk4 are not sufficient to sustain 

wildtype Plk4 phenotype and lead to chromosome instability (Hudson et al., 2001; Ko et 

al., 2005).
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The phenotype of Plk4 heterozygous mice was also examined. Despite the fact 

that Plk4 heterozygous mice have no evident abnormalities at a young age, with increased 

age, the heterozygous mice develop obvious tumours at a rate of 50% compared to only 

3% of their wildtype litter mates (Hudson et al., 2001; Ko et al., 2005). Primary 

heptaocellular carcinoma was the predominant category of tumour formation. The 

second most common lesions were papillary adenocarcinomas in the lungs. Additionally, 

several mice also developed axilla and upper chest wall tumours (Ko et al., 2005). 

Human PLK4 is found on chromosome 4q28. Intriguingly, loss or rearrangement of 

human chromosome 4q28 is common in hepatomas, the same region where PLK4 is 

located (Ko et al., 2005).

Furthermore, a two-thirds partial hepatectomy (PH) model was utilized to 

examine liver regeneration in Plk4 heterozygous and wildtype mice. Interestingly, at 44 

hours the Plk4 heterozygous hepatocytes displayed enlarged cellular and nuclear area 

compared to the wildtype hepatocytes (Ko et al., 2005). This is indicative of cells which 

experience a delay in the cell cycle. Furthermore, at 7 days post-PH the Plk4 +/- 

hepatocytes had atypical morphology compared to the wildype, with the liver architecture 

distorted. Also, the first cell cycle following PH in Plk4 heterozygous hepatocytes 

resulted in a delay of cell cycle progression and in particular a loss in the correct levels of 

Cyclin B, D and E. At 9-12 months, all of the Plk4+/‘ mice had abnormal liver histology 

and 4 of 11 mice had grossly apparent liver tumours. The tumours from Plk4+/' mice 

retained their heterozygosity at four polymorphic markers suggesting that the tumours 

were a result of Plk4 haploinsufficiency. These results all suggest that Plk4
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heterozygosity may be linked to hepatoma development and that deregulation of this 

kinase can contribute to carcinogenesis (Ko et al., 2005).

Plk4 and Centrosome Duplication

Dating back to 1914, Theodor Boveri proposed the idea that there was a 

relationship between the loss of tissue architecture typical of human tumors, aneuploidy 

and centrosomal abnormalities (Boveri et al., 1914). One mechanism in which Plk4 may 

lead to tumour progression is through centriole overduplication. Endogenous Plk4 

localizes to centrosomes throughout the cell cycle. Interestingly, centriole amplification 

occurs in Plk4 heterozygous MEF’s and also with the overexpression of Plk4 (Hudson et 

al, 2001; Ko et al., 2005; Habedanck et al., 2005).

There are two mechanisms in which centrosome overduplication can occur. 

These two mechanisms include legitimate centriole overduplication in S phase or through 

failure of cell division (Nigg et al., 2002). Interestingly, overexpression of Plk4 caused 

centrosome overduplication in the presence or absence of aphidicolin which blocks the 

cells in the S phase of the cell cycle. This indicates that Plk4 indeed caused legitimate 

centriole overduplication in S phase, rather then through failure of cell division 

(Habedanck et al., 2005). Furthermore, centrosome localization of Plk4 required regions 

of the protein that were located upstream of the polo-box domain, in the C-terminal non- 

catalytic domain and centriole amplification could only occur with the kinase domain 

present. Mutants which lacked the kinase domain or the C-terminal region could not 

cause centriole amplification (Habedanck et al., 2005). Additionally, overexpression of 

Plk4 only caused centrosome duplication in the presence of Cdk2. To that end, in the
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absence of Plk4, Cdk2 could not cause centrosome overduplication either. Thus, these 

two proteins must cooperate to cause the centrosome over duplication phenotype which is 

observed with the overexpression of Plk4 (Habedanck et al, 2005).

Loss of function experiments determined that indeed Plk4 is essential for centriole 

amplification. When endogenous Plk4 is depleted in cells, the centrosome amplification 

phenotype is suppressed. Also, cells undergo a reduction in centrosome number with 

each passage through the cell cycle with a predominant phenotype of monopolar spindles 

with a single centriole in the center 48 hours post Plk4 siRNA (Habedanck et al., 2005). 

Thus, with continued passage through the cell cycle, cells depleted of Plk4 undergo a 

reduction of centrioles indicating that Plk4 is indispensable for centriole duplication 

(Habedanck et al., 2005).

Plk4 heterozygous MEF’s also display a similar phenotype such that centrosome 

overduplication is observed. One possible explanation for this is believed to be that Plk4 

heterozygous MEF’s fail to restrict Cyclin E and Cdk2, which results in overduplication 

of centrosomes. This could possibly be an outcome of the decreased p53 and p21 levels 

seen in Plk4 heterozygous MEF’s (Ko et al., 2005). Another explanation for this 

phenotype could be that reduced Plk4 activity causes cell division failure and thus 

centrosomes are overduplicated or vise versa such that cell division failure results as a 

consequence of irregular centrosome duplication (Habedanck et al., 2005). Increased 

centrosome number leads to polyploidy and aneuploidy which in turn can contribute to 

the increased frequency of tumours observed in Plk4+/‘ mice.
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Thus, Plk4 plays a crucial role in centrosome duplication however it is not the 

sole regulator of this phenomenon. Plk4 and Cdk2 presumably cooperate in the 

centrosome duplication pathway.

The Plks and DNA Damage Pathways

One of the most important functions of Polo-like kinases is their involvement in 

DNA damage checkpoint pathways. Cell cycle checkpoints ensure that one stage of the 

cell cycle is completed at high fidelity prior to the initiation of the following stage. A 

loss of checkpoint function can result in genetic instability and/or transformation (Xie et 

al., 2005). Plk 1, 2 and 3 are key proteins that are important to cell cycle regulation and 

have been implicated in DNA damage checkpoint pathways.

Plkl has been shown to physically bind to tumour suppressor p53 and inhibit its 

transcriptional activity. However, upon DNA damage to the cells, critical DNA damage 

sensor proteins are activated such as ataxia telangiectasia mutated protein (ATM) and 

ATM- and Rad3-related protein (ATR). In turn, these kinases phosphorylate downstream 

targets including the polo-like kinases. Plkl has been shown to be inhibited by ATM and 

ATR and thus is inhibited by DNA damage (Smits et al., 2000). This inhibition of Plkl 

by ATM and ATR abolishes P lk l’s inhibition of p53 and as a result p53 levels can 

increase leading to cell cycle arrest or apoptosis. Although these observations implicate 

Plkl as a negative regulator of DNA damaged cell cycle arrest, Plkl may also play a 

positive role in DNA damage checkpoint activation. Plkl has been shown to 

phosphorylate and possibly activate Chk2 (Tsvetkov et al., 2003) which ultimately leads 

to the inactivation of Cdc25C and thus entry into mitosis can no longer occur.
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Other mammalian Plks have also been implicated in the DNA damage checkpoint 

activation pathway. Plk2 mRNA expression is increased in response to cellular stresses 

such as UV damage and this response is dependent on p53 expression. Additionally, p53 

binds to the Plk2 promoter and induces transcription (Bums et al, 2003).

In sharp contrast to Plkl, Plk3 acts as a positive regulator of DNA damage 

pathway activation. Plk3 has been shown to interact and activate p53 and the degree of 

this interaction is increased in response to DNA damage. Also in response to DNA 

damage, Plk3 is activated in an ATM-dependent manner (Xie et al, 2001). Additionally, 

Plk3 has been shown to phosphorylate and activate Chk2 in concert with ATM (Bahassi 

et al, 2002). Thus Plks 1, 2 and 3 all play significant roles in DNA damage response 

pathways (Figure 4).

Plk4 has also recently been implicated in DNA damage pathways. The protein 

has been shown to co-immunoprecipitate with p53 (Swallow et al, 2005). Furthermore, 

through chip profiling Li et al, 2005 have shown that p53 repressed Plk4, through an 

indirect mechanism as direct binding of p53 to the Plk4 promoter region was not seen. 

Plk4 expression was repressed in a p53-dependent manner such that when cells were 

exposed to etoposide to activate p53, a dramatic decrease in Plk4 expression was seen in 

p53 wildtype cells however not in p53 null cells. This indicates a direct relationship 

between p53 status and downregulation of Plk4 expression. Lastly, Li et al, 2005 

showed that Plk4 RNAi induced apoptosis, whereas overexpression of the protein 

attenuated p53-mediated apoptosis indicating that Plk4 repression likely contributes to 

p53-induced apoptosis. Thus, the role of Plk4 in DNA damage has yet to be clearly 

defined and the role this kinase plays in response pathways remains to be elucidated.
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Figure 4. Major DNA damage pathways where Plks have been implicated. Solid 
red arrows indicate positive regulation whereas solid black lines indicate negative 
regulation. Dotted lines indicate proposed regulatory role however the precise role 
remains to be elucidated.
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The Plks and Entry into Mitosis

Mitotic entry requires the activation of the Cdkl /Cyclin B complex in eukaryotic 

cells. The kinase activity of Cdkl /Cyclin B is controlled by phosphorylation and 

dephosphorylation events on Cdkl and the accumulation of Cyclin B protein. Mytl and 

Weel protein kinases phosphorylate Thrl4 and Tyrl5 respectively on Cdkl (Russell and 

Nurse, 1987; McGowan and Russell, 1993; Mueller et al., 1995). Phosphorylation on 

these residues is inhibitory due to the blocking of ATP binding sites (Artherton-Fessler et 

al., 1993). Upon completion of G2, dephosphorylation of inhibitory sites on Cdkl by 

Cdc25C triggers the activation of the Cdc2/Cyclin B complex (Nishida et al., 2002). 

Furthermore, phosphorylation of Cdkl is also needed to activate the kinase. In addition 

to the accumulation of Cyclin B and activation of Cdc2, nuclear localization of 

Cdc2/Cyclin B and Cdc25C are thought to be essential for the induction and coordination 

of M-phase events (Li et al., 1997). During interphase, Cdc25C is mainly cytoplasmic 

due to the phosphorylation of S216 by checkpoint kinases Chkl/2 and CTAK-1 which 

creates a binding site for 14-3-3 protein (Peng et al., 1997). Similarly to Cdc25C, Cyclin 

B is also cytoplasmic during interphase due to the existence of a cytoplasmic retention 

sequence and a nuclear exclusion motif (Hagting et al., 1999). During mitosis, Cdc25C 

and Cyclin B are both localized to the nucleus. Activation of these proteins and 

localization to the nucleus is done primarily through phosphorylation of key residues on 

the protein (Li et al., 1997). Although it is thought that one of the enzymes which 

activates Cdc25C at G2/M is Cdkl (thus creating a positive feedback loop), other 

activating kinases of Cdc25C exist (Peng et al., 1997). Cyclin B1 is thought to be 

phosphorylated in the nuclear exclusion motif at four conserved residues which promotes
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nuclear import. Mutation of these four residues (Ser 126, 128, 133 and 147) to alanine 

abolishes the nuclear import of the protein (Hagting et al, 1999). Furthermore, although 

initial activation of Cdkl/Cyclin B occurs at the centrosomes, many of the kinases 

responsible for this activation remain to be elucidated (Hagting et al., 1999). The polo­

like kinases are one group of kinases that have been implicated in the phosphorylation 

and localization of Cdc25C and Cyclin B.

Plx, the Xenopus polo-like kinase family member, was the first to be implicated in 

the interaction with Cdc25C and Cyclin B (Abrieu et al., 1998). Abrieu et al., 1998 

showed through immunodepletion studies that Plx is indeed indispensable for activation 

of Cdkl/Cyclin B. Furthermore, the study showed that the Cdkl/Cyclin B complex 

promotes activation of Plx which in turn leads to Cdc25C activation. As mentioned, 

Cdc25C activation leads to the dephosphorylation and activation of Cdkl/Cyclin B thus 

creating a positive feedback loop (Abrieu et al., 1998).

Plk4 family members Plkl and Plk3 both have significant roles in the entry into 

mitosis. Roshak et al., 2000 showed that Plkl phosphorylates Cdc25C; however which 

sites Plkl phosphorylates was not determined. Phosphorylation of Cdc25C by Plkl 

resulted in the activation of this phosphatase as was assessed by dephosphorylation of 

Cdkl/Cyclin B (Roshak et al., 2000). Additionally, Toyoshima-Morimoto et al., 2002 

showed that Plkl phosphorylates S I98 of Cdc25C which is located in the nuclear export 

signal of the phosphatase, leading to nuclear localization of the protein. One possibility 

for the nuclear accumulation of Cdc25C is that phosphorylation of S I98 of Plkl inhibits 

14-3-3 binding. Furthermore, an interaction between Plkl and Cyclin B has also been 

determined. Plkl phosphorylates Cyclin B1 on a serine residue (SI47) in the nuclear
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export signal, and induces its nuclear entry during prophase (Toyoshima-Morimoto et al, 

2001).

Bahassi et al., 2004 have shown that Plk3 co-fractionates and co- 

immunoprecipitates with Cdc25C. Furthermore, they have shown that Plk3 

phosphorylates Cdc25C on S I91, and to a lesser extent on S I98, sites located within the 

proteins nuclear exclusion motif. Mutation of S I91 to alanine abolishes the localization 

(Bahassi et al„ 2004). Furthermore, overexpression of wildtype Plk3 induces nuclear 

accumulation of Cdc25C however this accumulation is however not seen with 

overexpression of kinase-dead Plk3. Nuclear accumulation of Cdc25C is abrogated when 

Plk3 is inhibited with siRNA further supporting Plk3’s involvement in Cdc25C 

phosphorylation and nuclear localization (Bahassi et al, 2004).

Evidence suggests that Plk4 kinase regulates both Cdkl and APC/C and thus 

suggests a possible role for Plk4 in the entry and perhaps exit from mitosis. Plk4 

heterozygous hepatocytes also have a loss of acuity of Cyclin B1 levels suggesting a 

further role of Plk4 in entry into mitosis. Plk4 is primarily found to localize to 

centrosomes, the site at which activation of Cdkl/Cyclin B initially occurs (Jackman et 

al, 2003). These observations along with Plk4 family member’s interactions with 

Cdc25C and Cyclin B1 suggest a possible role for Plk4 in entry into mitosis.

Therefore, given that Plk4 family members play key roles in DNA damage 

checkpoint responses and mitotic entry, the purpose of the present study is to elucidate a 

role for Plk4 in DNA damage pathways and entry into mitosis.
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CHAPTER II 

MATERIALS AND METHODS

Production of Competent Escherichia coli (E. coli) cells

In order to obtain competent E. coli for subsequent transformation the procedure outlined 

below was followed. 10 mLs of TYM broth in a 50 mL flask was inoculated with E coli 

cells from glycerol stocks and grown for 16 hours at 37°C. 1 mL of the resultant culture 

was added to 100 mL prewarmed TYM broth in a 500 mL flask and grown at 37°C until 

an OD600 of 0.5 was reached. Cultures were then cooled on ice with gentle swirling for 

five minutes and then transferred to a sterile, round-bottom centrifuge tube. The cells 

were centrifuged for 10 minutes at 4000 x g  at 4°C, the supernatant decanted and the 

pellet resuspended gently in 30 mL cold TFB1. The cells were then collected by 

centrifugation for 10 minutes at 4000 x g  at 4°C with the supernatant carefully discarded. 

Bacterial cells were kept on ice throughout the procedure. The cells were then 

resuspended in 4 mL ice-cold TFB2 buffer and 100 uL aliquots were placed in sterile 

microcentrifuge tubes. The aliquots were frozen in liquid nitrogen and stored at -80°C.

Transformation and DNA purification

In order to obtain plasmid DNA needed for subsequent experimental procedures, 

competent E-coli cells (ToplO F’) were transformed as follows: Approximately 10-100 

ng of plasmid DNA was added to the competent cells and incubated on ice for 30 

minutes. Following this, the cells were heat shocked at 42°C for 40 seconds and then 

placed immediately back on ice. 500 uL of Luria-Bertani (LB) broth was then added and
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the cells were incubated at 37°C for 45 minutes. 100 uL of cells were subsequently 

plated on LB agar plates supplemented with 100 ug/mL ampicillin and incubated over 

night at 37°C. The following day, a single colony was inoculated with 100 mL LB 

supplemented with 100 ug/mL ampicillin and grown for 16 hours at 37°C. The DNA was 

purified using a QIAGEN Plasmid Maxi Prep Kit (Qiagen Inc.) in compliance with the 

manufacturer’s specifications.

Cell Culture

HEK-293 and NIH-3T3 cells were maintained in Dulbecco’s Modified Eagle’s Medium 

(Sigma) supplemented with 10% fetal bovine serum (Sigma). In order to aid in the 

prevention of contamination the media was also enriched with penicillin (100 U/mL) / 

streptomycin (100 ug/mL) (Gibco), amphotericin B (2.5 ug/mL) (Mediatech) and 

gentamycin (50 ug/uL) (Hyclone). Cell cultures were maintained at 37°C with 5% CO2 .

Transfection and Cell Lysis

Twenty-four hours prior to transfection, cells were seeded onto 100 mm tissue culture 

dishes at a density of lxlO6 cells / dish (~20-40% confluence). Cells were routinely 

transiently transfected with approximately 6ug of the FLAG vector (Invitrogen) using 

Effectene transfection reagent (Qiagen Inc.) in compliance with the manufacturer’s 

specifications. All other FLAG-tagged constructs were transfected using equimolar 

amounts relative to the vector control. At the indicated times post transfection, cells were 

washed three times with ice cold PBS and then lysed on ice for 20 minutes with 1 mL 

lysis buffer. Cells were then scraped off the plate and lysates were clarified by
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centrifugation for 20 minutes at 13,000 x g  at 4°C.

UV and IR damage

In order to induce DNA damage, cells were exposed to ultra-violet radiation at the 

indicated doses using a Stratalink UV crosslinker (Stratagene), or similarily, cells were 

exposed to the indicated doses of ionizing radiation (Faxitron X-ray Corp., R650). Cells 

were then incubated at 37°C with 5% CO2 for the indicated times (6 or 16 hours) and 

lysed as previously described. Following lysis, immunoprecipitation, Western blot 

analysis or flow cytometry analysis was performed.

Antibodies

For immunoprecipitation reactions, 1 ug of anti-Cdc25C (Santa-Cruz), anti-FLAG 

(Sigma) or anti-Cyclin B1 (Sigma) were incubated with 1 mg of lysate. For Western blot 

analyses, 1 ug of the specified primary antibody was incubated in 10 mL of TBST and a 

dilution of 1:60000 was used for the appropriate anti-mouse or anti-rabbit secondary 

antibodies which were conjugated to horseradish peroxidase (HRP) (Amersham). This 

was dependent on the species of the primary antibody. Alternatively, protein A HRP 

(Amersham) was used as secondary antibody at a dilution of 1:10000.

Immunoprecipitation

Following cell lysis and centrifugation, immunoprecipitation of FLAG-tagged expression 

plasmids and endogenous Cdc25C and Cyclin B1 was performed by incubating 

approximately 1 mg of lysate with 1 ug of the indicated antibody for 1 hour at 4°C on a
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vertical rotator. Immunocomplexes were then precipitated with 60 uL of a 20% protein 

G-sepharose slurry (GE lifesciences) at 4°C for one hour. Following the one hour 

incubation with the protein G-sepharose beads, the immunocomplexes were pelleted at 

13,000 x g  at 4°C for 1 minute. The precipitates were then washed three times at 4°C 

with 500 uL of TNT buffer. Following this, the immunoprecipitates were resuspended in 

15 uL of 2X SDS sample buffer and boiled for 5 minutes. The proteins were then 

separated by SDS-polyacrylamide gel electrophoresis and Western blot analysis was 

performed.

Western Blotting

Cell lysates and immunocomplexes were resupended in 20 uL of sodium dodecyl 

sulphate (SDS) sample buffer and incubated at 100°C for five minutes. Proteins were 

then resolved by SDS-polyacrylamide gel electrophoresis. Gels were subsequently 

incubated in transfer buffer for 15 minutes at room temperature on a shaker. In the 

meantime, polyvinylidene fluoride (PVDF) membrane was activated with methanol for 

20 seconds and then equilibrated for 10 minutes in transfer buffer. Transfer of the 

proteins from the gel to the membrane was done using a semi-dry transfer apparatus 

(Biorad). Three whatman filters were immersed in transfer buffer and then placed on the 

transfer apparatus. PVDF membrane was then placed on top of the three filters and the 

gel was placed on top of the membrane. Three additional whatman filters were immersed 

in transfer buffer and then placed on top of the gel. The filters were then hand rolled to 

ensure no air bubbles were trapped in any layer. The gel was transferred to the 

membrane at a suitable voltage and time depending on the number of membranes
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transferred. Following transfer of the proteins to the PVDF membrane, the membrane 

was blocked using TBST for one hour at room temperature in order to reduce non­

specific binding sites on the membrane. Following blocking, the membrane was 

incubated with primary antibody for one hour. The membrane was then washed three 

times for ten minutes and subsequently incubated with the appropriate secondary 

antibody which was conjugated to horseradish-peroxidase for 45 minutes. After an 

additional three 10 minute washes with TBST, the proteins of interest were visualized 

using enhanced chemiluminscent substrate (Pierce).

Flow Cytometry

For cell cycle analysis purposes, a flow cytometer (Beckman Coulter, FC500) was 

utilized. Cells were prepared as follows: At the indicated times post transfection, NIH- 

3T3 cells were collected and pelleted at 500 x g for 5 minutes. Cells where then washed 

with 10 mL room-temperature PBS and pelleted again at 500 x g  for 5 minutes. 

Supernatant was carefully removed and cells were fixed by resuspending in 1 mL 3.7% 

paraformaldehyde and kept on ice for 1 hour. Cells were then centrifuged at 500 x g  for 

5 minutes and washed in 10 mL cold PBS. Supernatant was removed and cells were 

resuspended in 1 mL cold 70% ethanol and kept on ice for 1 hour. Cells were then 

pelleted at 500 x g  for 5 minutes, resuspended in 1 mL PBS and DNA was stained with 

10 uL of propidium iodide (5 mg/mL stock) for 1 hour at room temperature.
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GST-Cdc25C Protein Purification

To maximize expression of recombinant proteins E. coli BL21 cells were utilized which 

allow for optimal expression of recombinant protein. E. coli BL21 backgrounds are 

deficient in a number of proteases. This allows them to accumulate recombinant proteins 

at a high rate and help reduce the degradation of some proteins during purification. 

Therefore the pGEX2T-Cdc25C plasmid was introduced into this cell type by 

transformation (see above). A single colony was inoculated overnight in 50 mL of LB 

supplemented with 100 ug/mL of AMP. The following day 1 L of LB was inoculated 

with 10 mL of overnight culture. Cultures were grown at 37°C to an Agoo of 0.6 and 

IPTG (Fisher) was added to a final concentration of 0.5 mM. The temperature was then 

dropped to 25°C to improve solubility of the protein, and the cultures were induced for 

another 16 hours. Cells were then pelleted at 5000 x g for 15 minutes at 4°C, the 

supernatant discarded and the cells were resuspended in 20 mL cell lysis buffer. The 

cells were then sonicated on ice, centrifuged at 10 000 x g  for 30 minutes at 4°C, and the 

supernatant was added to a column containing GST-agarose beads. The column was then 

placed on a vertical rotator for four hours to allow the protein to bind to the beads. The 

supernatant was then allowed to flow through the column and the beads were washed two 

times with column wash buffer. 3 mL’s of elution buffer were added to the column and 

incubated at 4°C overnight. The following day, the protein was eluted. SDS-PAGE and 

Western blot analyses were performed to visualize the purified protein.
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Kinase Assay

In order to detect Plk4 kinase activity, HEK-293 cells were transiently transfected with 

FLAG-Plk4, FLAG-K41M and FLAG-T170D expression plasmids. 16 hours post 

transfection cells were lysed and the cell lysate was incubated with 1 ug anti-FLAG 

antibody at 4°C for 45 minutes and precipitated with 60 uL of a 20% protein G-sepharose 

slurry (GE lifesciences) at 4°C for 45 minutes. The immunoprecipitates were washed 

three times in TNT buffer and once in kinase buffer. The immunocomplexes were 

resuspended in 20 uL of kinase buffer and the reaction was started by incubation with 10 

uCi [y-32P] ATP (Amersham Biosciences) and 5 ug of GST-Cdc25C. After incubation 

for 45 minutes at 30°C, 20 uL of 2X SDS sample buffer was added to stop the reaction. 

Samples were boiled for 5 minutes and then analyzed by SDS-polyacrylamide gel 

electrophoresis. The gel was then transferred to a membrane and a phosphoimager was 

utilized to visualize the bands. Following this, the membrane was then probed with an 

anti-FLAG antibody in order to detect the immunoprecipitated protein. The same blot 

was subsequently probed with an anti-Cdc25C antibody to confirm equal loading of the 

protein.
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CHAPTER III 

RESULTS

Plk4 and DNA Damage pathways

UV Radiation Inhibits Plk4 Protein Expression

On the basis of the role of Plkl, 2 and 3 in DNA damage pathways and the 

interaction of Plk4 with checkpoint effector p53, the effects of DNA damage on Plk4 

protein expression was investigated. To this end, NIH-3T3 cells were transiently 

transfected with an expression plasmid for FLAG-Plk4. 16 hours post transfection, cells 

were exposed to varying doses of ultra-violet (UV) and ionizing radiation (IR). Six hours 

post irradiation, cells were lysed and immunoprecipitation was done using an anti-FLAG 

antibody. As can be seen in Figure 5, with increasing doses of UV radiation, Plk4 protein 

expression decreases. At a dose of 70mJ/cm2 Plk4 protein was no longer present.

In order to determine if the decrease in protein levels found with increasing doses 

of UV radiation also occurred with other types of DNA damage, Plk4 protein levels were 

examined in response to ionizing radiation. NIH-3T3 cells were transiently transfected 

with FLAG-Plk4 and exposed to increasing doses of ionizing radiation. Six hours post 

irradiation, cells were lysed and immunoprecipitation using an anti-FLAG antibody was 

performed to examine Plk4 protein levels. Surprisingly, Plk4 protein levels remained 

constant with increasing doses of ionizing radiation (Figure 6).
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Figure 5. Plk4 protein levels decrease with increasing doses of UV radiation.
NIH-3T3 cells were transiently transfected with an expression plasmid for Flag-Plk4. 
16 hours post transfection cells were exposed to increasing doses of UV radiation. 
Cells were incubated for another six hours and then lysed. Immunoprecipitation and 
Western blot analysis were performed using an Anti-Flag antibody. Lysates were 
probed with an anti-GAPDH antibody as a loading control.
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Figure 6. Plk4 protein levels remain constant with increasing doses of IR. NIH- 
3T3 cells were transiently transfected with Flag-Plk4. 16 hours post transfection cells 
were exposed to increasing doses of IR. Cells were incubated for another six hours 
and then lysed. Immunoprecipitation and Western blot analysis were performed using 
an anti-Flag antibody. Cell lysates were probed using an anti-GAPDH as a loading 
control.
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Overexpression o f Plk4 Causes Recovery from DNA Damage Induced Cell Cycle Arrest 

To further investigate the function of Plk4 in DNA damage response pathways, 

the role of Plk4 in cell cycle arrest after DNA damage was investigated. To explore this,

NIH-3T3 cells were transfected with an expression plasmid for GFP-Plk4. Untransfected
# 2

cells were used as a control. 10 hours post transfection cells were exposed to 20 mJ/cm

of UV radiation or left untreated and 16 hour post irradiation cell cycle profiles were 

analyzed using a flow cytometer. A dose of 20 mJ/cm2 was chosen since the cells did not 

undergo apoptosis 16 hours post UV radiation at this dose. Furthermore, examining the 

previous experiment, Plk4 protein still persists at this dose. Examining Figure 7A, non­

transfected, non-treated control cells had a similar cell cycle profile to non-treated cells 

over-expressing Plk4. This thus suggests that Plk4 overexpression in the absence of 

DNA damage does not disturb the cell cycle. In the non-transfected control cells, 16 

hours post irradiation approximately sixty percent of the cells remained arrested in G0/G1 

and forty percent in G2/M thus exhibiting cell cycle arrest as would be expected with 

DNA damage (Figure 8). In contrast, in cells that overexpress Plk4 protein, a strikingly 

different cell cycle profile was obtained upon exposure to UV damage. Interestingly, 

when cells overexpressing Plk4 were subjected to radiation, rescue of the cell cycle block 

imposed by DNA damage was observed (Figure 7B). Cells that were overexpressing 

Plk4 pushed the cell cycle through the Gl-S cell cycle block and lead to an accumulation 

of cells in the S phase of the cell cycle however almost no cells were seen in G2/M 

(Figure 7B).
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Figure 7. Overexpression of Plk4 causes recovery from DNA damage induced cell 
cycle arrest. The experiment was repeated three times and shown here is 
representative data from one trial. A. NIH-3T3 cells were transiently transfected with 
an expression plasmid for GFP-Plk4 or left untransfected. Cell cycle analysis was 
done in the absence of DNA damage. B. Cells were transiently transfected with GFP- 
Plk4 or left untransfected. 10 hours post transfection cells were exposed to 20mJ/cm2 
of UV or left untreated. The cells were then incubated for another 16 hours following 
which cell cycle analysis was performed using flow cytometry.
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Figure 8. Analysis of Cell Cycle Data Post-UV Irradiation. With no irradiation, 
both transfected and non-transfected cells exhibited normal cell cycle profiles. 
However, 16 hours post irradiaton, non-transfected cells were blocked in the cell 
cycle, whereas GFP-Plk4 transfected cells did not exhibit DNA damage induced cell 
cycle arrest. The experiment was repeated three times.
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Plk4 and Entry into Mitosis

Interaction o f  Plk4 with Cyclin B1

Plkl has been shown to phosphorylate SI47 in the nuclear export signal of Cyclin 

B1 and induce the proteins nuclear translocation (Toyoshima-Morimoto et al, 2001). 

This observation of Plkl prompted us to investigate a possible interaction between Plk4 

and Cyclin B l. To further investigate this possibility, HEK-293 cells were transiently 

transfected with expression plasmids for FLAG-tagged Plk4 domain specific constructs 

(Figure 9). The expression of the FLAG constructs was confirmed in cell lysate by 

immunoblot analysis with an antibody against the FLAG epitope followed by probing 

with an anti-GAPDH antibody to confirm equal protein loading (Figure 10A). Whole 

cell lysates prepared from transfected cells were immunoprecipitated with an anti-Cyclin 

Bl antibody and Western blot analysis was performed using an anti-FLAG antibody. As 

shown in Figure 10B, FLAG-Plk4, FLAG-154N, FLAG-APb, FLAG-K41M and FLAG- 

T170D were co-immunoprecipitated with the endogenous Cyclin B l. However, co- 

immunoprecipitation of deletion constructs FLAG-R1 or FLAG-Pb was not seen with 

Cyclin Bl (Figure 10B). FLAG-YVHI was used as a negative control to ensure that the 

interaction which was observed was not due to the FLAG-tag. After probing with an 

anti-FLAG antibody to show co-immunoprecipitation with cyclin B l, the membrane was 

stripped and probed with an anti-Cyclin Bl antibody to ensure an equal amount of protein 

was immunoprecipitated. These results clearly demonstrate that Plk4 interacts with 

Cyclin Bl however the polo-box domain is not necessary for this interaction to occur. 

Furthermore, the cryptic polo-box or the polo-box domain are not sufficient for this
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interaction to occur, suggesting that perhaps the interactions of sub-domains of Plk4 are 

necessary for this interaction to occur.

Kinase Domain Cryptic-Pb Polo-Box KDa

WT (1-970)

APb (1-839)

R1 (596-836) 

Pb (839-925)

T170D

K41M

D154N

100j  |  Wild-type Plk4

Plk4 minus the polo-box domain 85

n

Cryptic polo-box of Plk4 30

18Polo-box region o f Plk4 

Activating mutation in the T-loop 100

100Inactivating mutation in the 
ATP binding domain

Inactivating mutation in the 
kinase domain

100

Figure 9. PIk4 domain specific constructs. A schematic representation of Plk4 
deletion mutants and Plk4 kinase dead and kinase active mutants.
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Figure 10. Plk4 co-immunoprecipitates with endogenous Cyclin B l. HEK-293 
cells were transiently transfected with expression plasmids for FLAG-Plk4 proteins. 
16 hours post transfection cells were lysed. (A) Lysates of transfected proteins were 
immunoblotted with an anti-FLAG antibody to determine the transfection efficiency 
and then probed with anti-GAPDH to ensure equal protein loading.
(B) Immunoprecipitation was performed using an anti-Cyclin Bl antibody. The 
immunocomplexes were resolved by SDS-PAGE and immunoblotted with anti-FLAG 
antibody. Full length Plk4, kinase dead Plk4 (K41M), kinase active Plk4 (T170D), 
APb-Plk4 (deletion of polo-box domain of Plk4) and an alternate kinase dead Plk4 
(154N) all co-immunoprecipitated with endogeous Cyclin B l. Co- 
immunoprecipitation of the deletion constructs, cryptic-polo-box domain (Rl) and the 
polo-box domain (Pb) was not observed. Whole cell lysates of non-transfected cells 
and the transfected construct encoding FLAG-YVHI protein served as negative 
controls. After immunoblotting with an anti-FLAG antibody to show the interaction, 
the membrane was stripped and reprobed with an anti-Cyclin Bl antibody.
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Interaction o f  Plk4 with Cdc25C

Nuclear localization of Cdc25C plays an essential role in maintaining the activity 

of Cdc2/Cyclin B in the nucleus during mitosis by counteracting inhibitory 

phosphorylation (Toyoshima-Morimoto et al., 2002). Plkl and Plk3 have both been 

shown to phosphorylate phosphatase Cdc25C. These observations prompted us to 

investigate possible interactions between Plk4 and Cdc25C. For this purpose, HEK-293 

cells were transiently transfected with expression plasmids for FLAG-tagged Plk4 

domain specific constructs. Cell lysates were initially probed with an anti-FLAG 

antibody to ensure expression of the plasmids followed by probing with a GAPDH 

antibody to ensure equal protein loading (Figure 11 A). Whole cell lysates prepared from 

the transfected cells were immunoprecipitated with an anti-Cdc25C antibody and 

Western blot analysis was performed using an anti-FLAG antibody. Similar to the results 

observed with the Cyclin Bl co-IP, FLAG-Plk4, FLAG-154N, FLAG-APb, FLAG- 

K41M and FLAG-T170D were co-immunoprecipitated with endogenous Cdc25C. Non­

transfected cell lysate and FLAG-YVHI were used as negative controls (Figure 1 IB). 

Co-immunopreciptation of the deletion constructs FLAG-R1 and FLAG-Pb was not 

observed (Figure 11B). After the initial Western blot analysis using the anti-FLAG 

antibody was performed to show the interaction between these two proteins, the 

membrane was stripped and probed with anti-Cdc25C to ensure equal amounts of protein 

was immunoprecipitated (Figure 11B). These results confirm that Plk4 interacts with 

Cdc25C while in the case of both the polo-box domain and the cryptic-polo box no 

interaction was detected.
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Figure 11. Plk4 co-immunoprecipitates with endogenous Cdc25C. HEK-293 cells 
were transiently transfected with expression plasmids encoding FLAG-Plk4 protein. 
16 hours post transfection cells were lysed. (A) Whole cell lysates were 
immunoblotted with an anti-FLAG antibody to show the levels of FLAG-tagged 
proteins, followed by probing with an anti-GAPDH antibody to confirm equal protein 
loading. (B) Immunoprecipitation was performed using an anti-Cdc25C antibody on 
prepared lysates and western blotting was perfomed using an anti-FLAG antibody. 
Full length Plk4, kinase dead Plk4 (K41M), kinase active Plk4 (T170D), APb-Plk4 
(deletion of polo-box domain of Plk4) and an alternate kinase dead Plk4 (154N) all co- 
immunoprecipitated with endogeous Cdc25C. Co-immunoprecipitation of the deletion 
constructs, cryptic-polo-box domain (Rl) and the polo-box domain (Pb) was not 
observed. Whole cell lysates of non-transfected cells and a transfected construct 
encoding FLAG-YVHI protein served as negative controls. The membrane was 
probed with an anti-Cdc25C antibody to ensure an equal amount of immunprecipitated 
protein.
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Plk4 Phosphorylates Cdc25C In-Vitro

The interaction of Cdc25C and Plk4 suggests the possibility that Cdc25C may be 

a substrate of Plk4. To test this hypothesis, firstly the GST-Cdc25C fusion protein was 

purified for use as substrate. To confirm the purity of the protein, SDS-PAGE was 

performed and the gel was Coomassie stained (Figure 12A). Immunoblotting was 

performed using an anti-Cdc25C antibody to further confirm the purity of the GST- 

Cdc25C protein. Purified GST-Cdc25C protein yielded primarily a protein product of 

83kDa and a 55 kDa proteolytically cleaved product, corresponding to the size of the 

cleaved Cdc25C protein (Figure 12B). FLAG-Plk4, FLAG-T170D and FLAG-K41M 

were transiently transfected into HEK-293 cells and immunoprecipitation was performed 

using an anti-FLAG antibody. The bacterially produced GST-Cdc25C was incubated 

with the respective FLAG-Plk4 immunoprecipitated constructs in the presence of [y- P] 

ATP and subjected to SDS-PAGE. Figure 12C shows that GST-Cdc25C is 

phosphorylated by FLAG-Plk4 and FLAG-T170D however not by the kinase dead Plk4 

mutant, FLAG-K41M. In addition to phosphorylation of the full-length GST-Cdc25C 

and GST-Cdc25C cleavage products, Plk4 autophosphorylation was observered as 

evident by the strong band at lOOkDa (Figure 12C). The membrane was probed with an 

anti-FLAG antibody to confirm the expression of FLAG-Plk4, then stripped and re­

probed with an anti-Cdc25C antibody to ensure equal protein loading (Figure 12D). 

These results show that Cdc25C is indeed a substrate of Plk4. Further experimentation is 

required to determine if  the site of phosphorylation is similar to that of Plkl or Plk3.
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Figure 12. Plk4 phosphorylates GST-Cdc25C. (A) GST-Cdc25C was expressed in and 
purified from bacteria using varying concentrations of IPTG. The fusion protein was purified 
using a GST column and SDS-PAGE was performed. Purification resulted primarily in an 
83kDa band corresponding to GST-Cdc25C and a band at 55kDa corresponding to cleaved 
Cdc25C. (B) Western blot analysis was performed with the fusion protein to ensure that the 
observed bands were in fact GST-Cdc25C. Varying dilutions of the protein were loaded onto 
a gel and SDS-PAGE was performed. GST-Cdc25C was detected using an anti-Cdc25C 
antibody. (C) Bacterially produced GST-Cdc25C was incubated with or without FLAG-Plk4 
in the presence of ATP, subjected to SDS-PAGE, transferred to a membrane and then 
analyzed using a phosphoimager (Alpha-Imager). (D) The membrane was then subjected to 
Western blot analysis with an anti-FLAG antibody to ensure transfection efficiency, and then 
stripped and re-probed with anti-Cdc25C to ensure equal protein loading.
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CHAPTER IV

DISCUSSION

One of the main roles of the polo-like kinase family is their involvement in DNA 

damage pathways. In response to DNA damage, Plkl activity is inhibited, whereas Plk3 

is activated (Xie et al., 2001; Ando et al., 2004). Since Plkl has been shown to 

phosphorylate and inactivate the tumour suppressor p53, the inhibition of Plkl activity in 

response to DNA damage consequently leads to the activation of p53 (Xie et al., 2001). 

Furthermore, Plk3 has been shown to phosphorylate and activate p53 and thus, activation 

of Plk3 in response to DNA damage leads to further p53 stabilization (Ando et al., 2004). 

Plk4 has also recently been implicated in DNA damage response pathways. An 

association between Plk4 and p53 protein has been established and the observation that 

p53 is a substrate of Plk4 has been previously documented (Swallow et al., 2005). Plk4 

has also been shown to be transcriptionally repressed by p53 and Plk4 mRNA levels 

decrease in response to DNA damage in a p53-dependent manner (Li et al., 2005). 

Although Plk4 mRNA levels in response to DNA damage have been previously 

examined, protein levels in response to damaged DNA have not been determined. To this 

end, it was of interest to determine if the protein level of Plk4 also decreased in response 

to DNA damage. Unfortunately, endogenous Plk4 protein levels could not be examined 

due to the unavailability of a suitable Plk4 antibody. Thus, Plk4 protein was 

overexpressed in NIH-3T3 cells and overexpressed protein levels were examined in 

response to DNA damage. Through Western blot analysis, it was determined that 

overexpressed Plk4 protein levels do indeed decrease with increasing doses of ultra-violet
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radiation, however protein levels remain constant in response to ionizing radiation. 

Although Li et al, 2005 observed a decrease in Plk4 mRNA levels in response to DNA 

damage in a p5 3-dependent manner, the decrease in protein levels observed with UV 

radiation cannot be explained by a decrease in the amount of translated protein since the 

NIH-3T3 cell line utilized is inactive in p53. Hence, this decrease in Plk4 protein level 

seen with UV radiation must occur through a p53 independent mechanism. One 

hypothesis for this could be that Plk4 protein is subjected to post-translational 

modification upon exposure to ultra-violet radiation and targeted for ubiquitin-mediated 

degradation. Also, it is interesting to note that the decrease in Plk4 protein was only seen 

with UV radiation however was not seen with ionizing radiation. An explanation for this 

observation could include that UV light and x-rays, which respectively induce pyrimidine 

dimers and DNA double strand breaks, use different signaling factors (Lakin et al., 

1999). For example, in response to ionizing radiation, ATM is activated; however, UV- 

damaged DNA activates ATR protein kinase (Lakin et al, 1999; Canmann et al., 1998; 

Tibbetts et al., 1999). Furthermore, in contrast to ionizing radiation, a role for p53 in 

response to UV radiation has not been clarified. UV radiation induces a G1 arrest in cells 

with wild-type p53. However surprisingly, this same G1 arrest is also seen in cells which 

p53 is inactivated (Chang et al., 1999). Thus, the decrease in Plk4 protein level must 

have occurred through a p53 independent mechanism and Plk4 conceivably acts through 

p53 dependent and p53 independent pathways.

Upon exposure of cells to DNA damage reagents, the genomic stability of cells is 

threatened. In order to effectively repair damaged DNA, and hence protect genomic 

integrity, cells undergo transient cell cycle arrests (Lindahl et al., 1993). The two major
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DNA damage cellular checkpoints occur at the Gl-S transition and at the G2-M transition 

(Kaufmann et al, 1996). These arrests allow cells time to repair the damaged DNA prior 

to replicating DNA or commencing mitosis. Cells which are exposed to the DNA 

damaging agents UV and ionizing radiation undergo G1 and G2 phase cell cycle blocks 

(Maki et al, 1997). These responses are under the control of a variety of genes which 

belong to different overlapping pathways. The Plk family has been implicated in the 

involvement of cell cycle arrest upon DNA damage. As previously stated, Plkl is 

inhibited in response to DNA damage (Ando et al., 2004). Furthermore, overexpression 

of Plkl was shown to overcome DNA damage cell cycle arrest (Smits et al., 2000). 

Since Plk4 has also been implicated in DNA damage response pathways, it was 

interesting to determine if Plk4 overexpression also pushes the cells through the cell 

cycle when exposed to DNA damage. Upon exposing untransfected cells to UV and 

ionizing radiation, an obvious G1 and G2/M cell cycle block was observed. Quite 

interestingly, overexpression of Plk4 rescued the cells from DNA damage induced cell 

cycle arrest. More specifically, these results indicate that overexpression of Plk4 appears 

to drive cells past the Gl-S DNA damage checkpoint and leads to the accumulation of 

cells in the S phase. Additionally, as is apparent by the absence of cells in G2/M, entry 

into G2/M is halted, however entry into G1 can still occur. One explanation for these 

observations could be that DNA damage inhibits Plk4, and overexpression of the protein 

overcomes this inhibition and drives cells past the Gl-S cell cycle checkpoint, suggesting 

a role for Plk4 in the entry into S phase. Moreover, this hypothesis is somewhat 

supported by the fact that overexpression of Plk4 leads to multiple centrosomes since 

centrosome duplication occurs in S phase (Habedanck et a l,2005; Hudson et al., 2001).
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Quite interestingly, Plk4 expression is increased in colorectal tumours (Macmillan et al, 

2001). One mechanism in which an increased expression of Plk4 could lead to tumour 

formation is if  overexpression of Plk4 pushes cells past the Gl-S checkpoint in the 

presence of damaged DNA, this could ultimately lead to genomic instability. A second 

mechanism in which Plk4 overexpression could lead to cancer may perhaps be the 

previously mentioned overduplication of centrosomes in the S phase which thus leads to 

aneuploidy. Consequently, the observation that overexpression of Plk4 drives cells past 

the Gl-S checkpoint has vast implications such that Plk4 overexpression could lead to a 

novel means by which chromosomal instability and eventually cancer occur.

Cdc25C is a key protein involved in mitotic entry. Moreover, this mitotic 

regulator serves as a target of checkpoint pathways delaying entry into mitosis in 

response to DNA damage or stalled replication. Under normal (non-stressful) conditions 

dephosphorylation and activation of the Cdkl/Cyclin B complex by phosphatase Cdc25C 

ultimately leads to mitotic entry (Dalai et al., 1999). Cdc25C localization and activation 

is dependent on phosphorylation and dephosphorylation events and many of the enzymes 

responsible for these events remain to be elucidated.

In interphase, Cdc25C is phosphorylated on S216 by CTAK-1 which allows for 

the binding of 14-3-3 protein and maintains cytoplasmic localization of this protein (Peng 

et al., 1997). Also in response to DNA damage, Cdc25C is phosphorylated by 

checkpoint kinases Chkl/2 on S216 which leads to the cytoplasmic localization and 

ultimately inactivation of this protein (Peng et al, 1997). However, upon completion of 

G2 Cdc25C is activated and localized to the nucleus. Phosphorylation of this protein is a 

key event leading to its nuclear accumulation (Dalel et al, 1999). Quite similar to
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Cdc25C, Cyclin Bl nuclear accumulation is also necessary for mitotic entry to occur. 

Interestingly, evidence indicates that the initial activation of the Cdkl/Cyclin B complex 

occurs at the centrosome (Jackman et al., 2003), the main site of Plk4 localization. To 

this end, it was of interest to determine if Plk4 interacted with these mitotic regulators 

and DNA damage checkpoint targets. Quite interestingly, full length Plk4 was found to 

co-immunopreciptate with both Cdc25C and Cyclin B l . Although the polo-box region of 

other Plk family members has been implicated as a phosphopeptide substrate binding 

motif (Hanisch et al, 2006), the polo-box region of Plk4 was not necessary or sufficient 

for this interaction to occur. A potential problem could arise when the reciprocal co- 

immunoprecipitations would be performed. Considering the molecular weight of 

Cdc25C is 55kDa, the signal corresponding to this protein would be masked by the IgG 

heavy chain. Attempts using protein-A as a secondary antibody in place of anti-rabbit 

proved unsuccessful and a prominent band masking the Cdc25C signal was detected in 

the non-transfected control lane (data not shown).

The association of Plk4 with these proteins indicates that Plk4 could regulate 

these mitotic proteins. Furthermore, it sheds light on a novel role for Plk4 in the entry 

into mitosis.

The interaction of Plk4 with Cdc25C suggests that Cdc25C may be a substrate of 

Plk4. Indeed, Cdc25C was found to be a substrate of Plk4 through in-vitro kinase assays. 

Transport of proteins which contain a nuclear export signal is often times modulated by 

phosphorylation of amino acids within this motif, leading to nuclear import (Schwindling 

et al., 2004). Phosphorylation of sites within the nuclear export signal of Cdc25C can 

abolish 14-3-3 binding and may ultimately lead to the nuclear accumulation of Cdc25C.
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As previously discussed, S216 phosphorylation of Cdc25C occurs in interphase and 

phosphorylation of this residue leads to binding with 14-3-3 protein and thus cytoplasmic 

localization (Peng et al., 1997). Quite interestingly, S191 and S198, residues found in the 

nuclear export signal of Cdc25C, are phosphorylated by Plkl and Plk3 and lead to the 

nuclear accumulation of the protein (Toyoshima-Morimoto et al, 2002; Bahassi et al., 

2003).

Although it has not been currently determined which sites Plk4 phosphorylates 

on Cdc25C, it was serendipitously determined that Plk4 phosphorylates a Cdc25C- 

derived peptide (Cell Signalling Technology, datasheet). Figure 13 shows the alignment 

of this peptide with a portion of the human Cdc25C protein. Intriguingly, this peptide 

corresponds to a region of the nuclear export signal of Cdc25C, which is the main motif 

responsible for Cdc25C nuclear import and export. Of the two serine residues found 

within the nuclear export signal of Cdc25C, S I91 but not S I98, is conserved in the 

peptide which was shown to be phosphorylated by Plk4 (Figure 13). These results 

suggest that Plk4, similar to its family members Plkl and Plk3 phosphorylate Cdc25C 

and furthermore, this phosphorylation event could perchance occur at S I91. Moreover, if 

Plk4 phosphorylates Cdc25C in its nuclear exclusion motif it could further promote 

nuclear accumulation of this protein.

Although the synthesis and destruction of regulatory proteins such as cyclins is 

important for cell cycle regulation, localization of these proteins to the right place at the 

right time is a fundamental step in ensuring proper cell cycle controls. Often times, this 

localization is accomplished through phosphorylation and dephosphorylation events.
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Thus, one hypothesis could be that Plk4 could act as an important coordinator for 

intracellular localization of Cdc25C to activate Cdc2/Cyclin B at the centrosomes.

Although further experimentation is necessary, a hypothesis for the observations 

observed could be that DNA damage may prevent activation of Cdc25C through 

inhibition of Plk4, if in fact Plk4 is an activating kinase for Cdc25C as is it’s family 

member Plkl (Toyoshima-Morimoto et al, 2002). Perhaps the inhibition of Plk4 has a 

critical role in establishing the cell cycle block seen after DNA damage. All of these 

results suggest that Plk4 inhibition is an important event in DNA damage-induced cell 

cycle arrest. On the basis of these findings, a possible model in which activation of 

Cdc25C is prevented in response to DNA damage through interference with Plk4 

activation is proposed (Figure 14).

Furthermore, the implications of these results are that Plk4 could thus, similar to 

its family members Plkl and Plk3, lead to the activation or inactivation of key mitotic 

regulators. The elucidation of proteins leading to the activation or inactivation of these 

mitotic proteins leads to a further understanding of the events which lead to cellular 

division. Uncontrolled cellular proliferation is a hallmark on the journey towards tumour 

development. Therefore further characterization of the key proteins involved in 

regulating cell proliferation will provide critical insight into identifying potential 

therapeutic targets for intervention.
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Cdc25C-derivedpeptide I S D E L M D A T F A D Q E A K

Figure 13. Alignment of Cdc25C-derived peptide and human Cdc25C protein.
The top panel (blue) depicts a partial sequence of the human Cdc25C protein. The 
nuclear export signal is blocked in grey. The bottom sequence depicts the Cdc25C- 
derived peptide implicated as a substrate of Plk4 {Cell Signalling Technology, 
datasheet). Asterisks (*) indicate Plkl and Plk3 phosphorylation sites.
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DNA D am age

H ATM/AT

/
Chk1/2 * *

M itotic Entry

Figure 14. A proposed pathway through which Plk4 acts.
Red lines indicate proposed positive regulation whereas black lines indicate proposed 
negative regulation. In this proposed model Plk4 is involved in the activation of 
Cdc25C which leads to mitotic entry. Thus, in response to DNA damage, activation o f  
Cdc25C is prevented through inhibition of Plk4 via ATM/ATR checkpoint kinases 
and mitotic entry is halted.
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CHAPTER V 

FUTURE DIRECTIONS

A reduction in overexpressed Plk4 protein level was observed in response to UV 

damage. Ideally, this experiment would be conducted looking at endogenous Plk4 

protein levels; however a suitable Plk4 antibody has yet to be optimized. Given that a 

reduction in overexpressed Plk4 protein level was seen in response to UV radiation and 

not ionizing radiation suggests a role for Plk4 in UV DNA damage pathways. Several 

unanswered questions remain and it would thus be interesting to explore if this decrease 

in protein level seen was in fact due to ubiquitination. In order to determine this, after 

transfection cells would be subjected to UV radiation at increasing doses. Six hours post 

radiation, cells would be lysed and immunoprecipitation would be performed using anti- 

FLAG antibody, followed by western blotting using an anti-ubiquitin antibody. It can 

also be further determined if this decrease in protein level was dependent on the 

proteasome, by using a proteasome inhibitor such as MG-132. If in fact this decrease in 

Plk4 protein was dependent on ubiquitin-mediated proteasomal degradation, the decrease 

in protein level would not be seen in the presence of this inhibitor. Ideally, this 

experiment would be performed using endogenous Plk4 protein, however at this time this 

is not an option due to the unavailability of a suitable Plk4 antibody. Additionally, seeing 

as this experiment was performed in NIH-3T3 cells, one can assume that the decrease in 

Plk4 protein level is occurring in a p53-independent manner since these cells contain 

inactive p53. Supporting this, a role for p53 has not been clarified in UV damage 

response pathways (Chang et al., 1999). However, Lie et al, 2005 determined that p53
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represses Plk4, thus implying Plk4 in p53-dependent and p53-independent response 

pathways. It would thus be interesting to test this experiment in a p53-null cell line such 

as Saos-2 and a p53 wildtype cell line such as U-20S, to see if this response is entirely 

p53 independent. Furthermore, Li et al., 2005 found that Plk4 mRNA levels decrease in 

cancer cell lines in response to the DNA damaging agent etoposide. To this end, it would 

be appealing to determine if UV and ionizing radiation in turn cause a decrease in Plk4 

mRNA level and a decrease in the kinase activity of the protein.

The observation that overexpression of Plk4 pushes cells through the Gl-S DNA 

damage checkpoint in the presence of damaged DNA suggests a possible role for Plk4 in 

the entrance into the S-phase of the cell cycle or possibly that Plk4 is inhibited in 

response to DNA damage. It would thus be of interest to determine if Plk4 

phosphorylates and activates (or inactivates) Cdk2 or Cyclin E leading to entry into S- 

phase. In order to determine this, co-immunoprecipitation assays would initially be done 

to show that Plk4 interacts with these proteins. Following this, in-vitro kinase assays 

could be performed to establish if Cdk2 and Cyclin E are in fact substrates of Plk4. The 

observation that the overexpression of Plk4 causes centrosome overduplication in the 

presence of Cdk2 (Habedanck et al., 2005) further supports this hypothesis.

One possible mechanism by which Plk4 is involved in mitotic entry is through 

interaction with key mitotic proteins Cdc25C and Cyclin B. These proteins are in turn 

targets of DNA damage pathways. Co-immunoprecipitations were initially done to 

determine that Cdc25C and Cyclin B interact with Plk4. Furthermore, it was determined 

that the polo-box domain was not necessary for these interactions to occur. It would 

however be interesting to determine if the ‘cryptic’ polo-box region of Plk4 is necessary
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for these interactions to occur. Additionally, whether Cdkl is an interacting partner of 

Plk4 and if Cyclin B is a substrate of Plk4 remain to be elucidated through co- 

immunoprecipitation experiments and in-vitro kinase assays.

Co-immunoprecipitation assays determined that Cdc25C is indeed an interacting 

partner of Plk4. Interestingly through in-vitro kinase assays, Cdc25C was found to be a 

substrate of Plk4. Therefore, it is of interest to establish which sites Plk4 phosphorylates 

on Cdc25C. This can be done by site directed mutagenesis of potential sites or truncation 

mutants of the phosphatase. Upon determining which sites Plk4 is responsible for 

phosphorylating the next question which needs to be answered is what effect this 

phosphorylation has on Plk4. For example, this site may lead to the activation of Cdc25C 

in turn leading to mitotic entry. On the contrary, Plk4 may inactivate Cdc25C (similar to 

Chkl) and prevent mitotic entry. If the site which is being phosphorylated is within 

Cdc25C’s nuclear exclusion motif, phosphorylation of this site may change the 

localization pattern of this protein. Perhaps this phosphorylation event leads to the 

accumulation of Cdc25C in the nucleus, similar to Plk4 family members Plkl and Plk3 

(Toyoshima-Morimoto et al., 2002; Bahassi et al., 2004). Phosphorylation of Cdc25C by 

Plk4, and interaction of Plk4 with Cyclin B, may suggest that Plk4 is important for 

mitotic entry and DNA damage response pathways.
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APPENDIX A: Solutions

LB Media (1L)
10 gtryptone 
5 g yeast extract 
lOgNaCl
Adjust pH to 7.0 and autoclave.

LB-AMP Plates (1L)
10 g tryptone 
5 g yeast extract 
lOgNaCl 
15g Agar
Autoclave and add AMP to a concentration of 100 ug/mL after cooling.

Lysis Buffer
50 mM Tris-HCl pH 7.4 
150 mMNaCl 
1 mM EDTA 
1% Triton X-100
1 protease inhibitor tablet (Roche) per 10 mL buffer

PBS
pH 7.4
137 mMNaCl 
2.7 mM KC1
4.3 mM Na2H P04
1.4 mM KH2P 0 4

TNT
0.1% Triton X-100 
50 mM Tris-HCl pH 7.4 
150 mMNaCl

Running Buffer
25 mM Tris 
250 mM Glycine 
0.1% SDS

Transfer Buffer (1 L)
3.03 g tris base
14.4 g glycine 
200 mL methanol
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2 X SDS-PAGE sample buffer (10 mL)
125 mM Tris pH 6.8
2.0 mL 100% glycerol
4.0 mL 10% (w/v) SDS
0.5 mL 0.1 % bromophenol blue

1 X TBST (Tris buffered saline and tween)
100 mM Tris-Cl pH 7.5 
150 mMNaCl 
0.1% Tween

Kinase Buffer
60 mM HEPES pH 7.5
3 mM MgCl2 
3 mM MnCl2 
50 mM NaF 
1.2 mM DTT
1 protease inhibitor tablet (Roche) per 10 mL buffer

GST-Protein Purification Buffers

Cell Lysis Buffer 
100 mMNaCl 
50 mM Tris pH 7.5 
0.1 mMEDTA 
0.1% Triton X-100
2 mM DTT
1 protease inhibitor tablet (Roche) per 10 mL buffer

Column Wash Buffer
100 mMNaCl 
50 mM Tris pH 7.5 
1 mM DTT

Elution Buffer
100 mMNaCl 
50 mM Tris pH 7.5 
10 mM Glutathione

Competent Cell Solutions

TFB1
30 mM KOAc 
50 mM MnC12
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100 mM KC1 
10 mM CaC12 
7% glycerol

TFB2
10 mM MOPS pH 7.0 
75 mM CaC12 
lOmMKCl 
7% glycerol

TYM broth
2% bactotryptone 
0.5% yeast extract 
0.1 MNaCl 
10 mM MgS04

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

Abrieu, A., Brassac, T., Galas, S., Fisher, D., Labbe, J. C., Doree, M. The Polo-like 
Kinase Plxl is a component of the MPF amplification loop at the G2/M phase transition 
of the cell cycle in Xenopus eggs. J. Cell Sci. I l l ,  1751-1757 (1998).

Adams, R., Tavares, A., Salzberg, A., Bellen, H., Glover, D. Pavarotti encodes a 
kinesin-like protein required to organize the central spindle and contractile ring for 
cytokinesis. Genes and Dev. 12,1438-1494 (1998).

Ando, K., Ozaki, T., Yamamoto, H., Furuya, K., Hosoda, M., Hayashi, S., Fukuzawa, M., 
Nakagawara, A. Polo-like kinase 1 (Plkl) inhibits p53 function by physical interaction 
and phosphorylation. J. Biol.Chem. 279, 25549-25561 (2004).

Atherton-Fessler, S., Parker, L. L., Geahlen, R. L., Piwnica-Worms, H. Mechanisms of 
p34cdc2 regulation. Mol. Cell Biol. 13,1675-1685 (1993).

Avides, M. C., Tavares, A. A., Glover, D. M. Polo kinase and Asp needed to promote the 
mitotic organizing activity of centrosomes. Nat. Cell Biol. 3,421-424 (2001).

Bahler, J., Steever, A. B., Wheatley, S., Wang, Y. I., Pringle, J. R., Gould, K. L., 
McCollum, D. Role of polo kinase and Midlp in determining the site of cell division in 
fission yeast. J. Cell Biol. 143,1603-1616(1998).

Bahassi, E. M., Hennigan, F. R., Myer, L. D., Stambrook, J. P. Cdc25C phosphorylation 
on serine 191 by Plk3 promotes its nuclear translocation. Oncogene 23, 2658-2663 
(2004).

Bahassi, E. M., Conn, C. W., Myer, D. L., Hennigan, R. F., McGowan, C. H., Sanchez, 
Y., Stambrook, P. J. Mammalian Polo-like kinase 3 is a multifunctional protein involved 
in stress response pathways. Oncogene 21,6633-3340 (2002).

Barbosa, V., Yamamoto, R., Carpenter, A. T. C., Henderson, D. S., Glover, D. M. 
Mutation of a Drosophila gamma tubulin ring complex subunit encoded by discs 
degenerate-4 differentally disrupts centrosomal protein localization. Genes Dev. 14, 
3126-3139(2000).

Barr, F. A., Sillje, H. H., Nigg, E. A. Polo-like kinase and the orchestration o f  cell 
division. Nat. Rev. Mol. Cell Biol. 5,429-440 (2004).

Boveri, T. The Origin o f Malignant Tumors. Williams and Wilkins, Baltimore, 
Maryland, 1914.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Byers, B., Goetsch, L. Duplication of spindle plaques and integration of the yeast cell 
cycle. Cold Spring Harbor Symp. Quant. Biol. 38, 123-131 (1974).

Bums, T. F., Fei, P., Scata, K. A., Dicker, D. T., El - Diery, E. Silencing of the novel p53 
target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Mol. 
Cell. Biol. 23, 5556-5571 (2003).

Canmann, C. E., Lim, D. S., Cimprich, K. A., Taya, Y., Tamai, K., Sakaguchi, K., 
Appella, E., Kastan, M. B., Siliciano, J.D. Activation of the ATM kinase by ionizing 
radiation and phosphorylation of p53. Science 281,1677-1679 (1998).

Carmena, M., Riparbelli, M. G., Minestrini, G., Tavares, A., Adams, R., Callaini, G., 
Glover, D. Drosophila polo kinase is required for cytokinesis. J. Cell Biol. 143,659-671 
(1998).

Casenghi, M. et al. Polo-like kinase 1 regulates Nip, a centrosome protein involved in 
microtubule nucleation. Dev. Cell 5,113-125 (2003).

Chang, D., Chen, F., Zhang, F., McKay, B. C., Ljungman, M. Dose-dependent effects of 
DNA-damaging agents on p53-mediated cell cycle arrest. Cell Growth Differ. 10, 155- 
162(1999).

Cheng, K-Y., Lowe, D. E., Sinclain, J. Nigg, E. Johnson, N. L. The Crystal structure of 
the human Plkl polo box domain and its phosphor-peptide complex. The EMBO Journal 
22,5757-5768 (2003).

Conn, W. C., Hennigan, F. R., Dai, W., Sanchez, Y., Stambrook, J. P. Incomplete 
cytokinesis and Induction of Apoptosis by Overexpression of Mammalain Polo-like 
Kinase, Plk3. Cancer Research 60, 6826-6831 (2000).

Dalai, N. S., Schweitzer, C. M., Gan, J, DeCaprio, J. A. Cytoplasmic Localization of 
Human Cdc25C during Interphase requires an Intact 14-3-3 Binding Site. Mol. Cell Biol. 
19,4465-4479 (1999).

Donaldson, M. M., Tavares, A. A., Ohkura, H., Deak, P., Glover, D. M. Metaphase 
arrest with centromere separation in polo mutants of Drosophila. J. Cell Biol. 153, 663- 
677 (2001).

Elia, A. E., Cantley, L. C., Yaffe, M. B. Proteomic screen finds pSer/pThr-binding 
domain localizing Plkl substrates. Science 299, 1228-31 (2003a).

Elia, A. E., Rellos, P., Haire, L. F., Chao, J. W., Ivins, F. J., Hoepker, K., Mohammad, 
D., Cantley, L. C., Smerdon, S. J., Yaffe, M. B. The molecular basis for 
phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. 
Cell 115, 83-95 (2003b).

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Feng, Y., Hodge, D. R., Palmieri, G., Chase, D. L., Longo, D. L., Ferris, D. K. 
Association of polo-like kinase with alpha-, beta- and gamma-tubulins in a stable 
complex. Biochem J. 339, 435-442 (1999).

Fode, C., Binkert, C., Dennis, J. W. Constitutive expression of murine Sak-a suppresses 
cell growth and induces multinucleation. Mol. Cell. Biol., 16, 4665-4672.

Glover, M. D. Polo kinase and progression through M phase in Drosophilia: A
prespective from spindle poles. Oncogene 24,230-237 (2005).

Glover, M. D., Hagan, M. I., Taveres, A. M. A. Polo-like kinases: A team that plays 
throughout mitosis. Genes and Dev. 12, 3777-3787 (1998).

Glover M. D., Ohkura, H., Tavares, A. Polo kinase: the choreographer of the mitotic 
stage? J. Cell Biol. 135,1681-1684(1996).

Golsteyn, R. M., Mundt, K. E., Fry, A. M., Nigg, E. A. Cell cycle regulation of the 
activity and subcellular localization of Plkl, a human protein kinase implicated in mitotic 
spindle function. J  Cell Biol. 129,1617-28 (1995).

Golsteyn R. M., Schultz, S. J., Bartek, J., Ziemiecki, A., Ried, T., Nigg, E. A. Cell cycle 
analysis and chromosomal localization of human Plkl, a putative homologue of the 
mitotic kinase Drosophila polo and Saccaromyces cerevisiae Cdc5. J. Cell Sci. 107, 
1509-1517(1994).

Grallert, A., Hagan, I. M. Schizosaccharomycespombe NIMA-related kinase Finl, 
regulates spindle formation and an affinity of Polo for the SPB. EMBO J. 21, 3096-3107 
(2002).

Gray, J. P., Bearses, J. D., Han, H., Nagle, R., Tsao, M. S., Dean, N., Yon Hoff, D. D. 
Identification of human Plkl as a potential therapeutic target in pancreatic cancer. Mol. 
Cancer Ther. 3, 641-646 (2004).

Habedanck, R., Stierhof, Y. D., Wilkinson, J. C., Nigg, A. E. The Polo kinase Plk4 
functions in centriole duplication. Nat. Cell Biol. 7(11), 1140-6 (2005).

Hanisch, A, Wehner, A., Nigg, E. A., Sillje, H. H. Different Plkl functions show distinct 
dependencies on Polo-Box domain-mediated targeting. Mol. Biol. Cell 17, 448-459 
(2006).

Hagting, A., Karlsson, C., Clute, P., Jackman, M., Pines, J. MPF localization is 
controlled by nuclear export. J. Curr. Biol. 9, 680-689 (1999).

Heitz, M. J., Peterson, J., Valovin, S., Hagan, I. M. MTOC formation during mitotic exit 
in fission yeast. J. Cell Sci. 114,4521-4532(2001).

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Hoffman, I., Clarke, R. P., Marote, M. J., Karsenti, E., Draetta, G. Phosphorylation and 
activation of human Cdc25C by cdc2-cyclin B and its involvement in the self 
amplification of MPF at mitosis. EMBO Journal 12, 53-63 (1993).

Hudson, J. W., Kozarova, A., Cheung, P., Macmillan, C. J., Swallow, J. C., Cross, C. J., 
Dennis, J. W. Late mitotic failure in mice lacking Sak, a polo-like kinase. Current 
Biology 11,441-6(2001).

Hudson, J. W., Chen, L., Fode, C., Binket, C., Dennis, J. W. Sak kinase gene structure 
and transcriptional regulation. Gene 241,65-73 (2000).

Jackman, M., Lindon, C., Nigg, A. E., Pines, J. Active cyclin Bl-Cdkl first appears on 
centrosomes in prophase. Nature Cell Biology 5,142-148 (2003).

Jane, Y. J., Lin, C. Y., Ma, S., Erickson, R. L. Functional studies on the role of the C- 
terminal domain of mammalian polo-like kinase. Proc. Natl Acad. Sci. USA. 99,1984- 
1989 (2002).

Kaufimann, W. K., Paules, R. S. DNA damage and cell cycle checkpoints. FASEBJ. 10, 
238-247 (1996).

Kitada, K., Johnson, A. L., L. H., Sugino, A. A multicopy suppressor gene of the 
Saccharomyces cerevisiae G1 cell cycle mutant gene dbf4 encodes a protein kinase and is 
identified as CDC5. Mol Cell Biol 13,4445-57 (1993).

Ko, A. M., Rosario, O. C., Hudson, J. W., Kulkami, S., Pollett, A., Dennis, J. W., 
Swallow, J. C. Plk4 Haploinsufficiency causes mitotic infidelity and carcinogenesis. 
Nature Genetics 37, 883-8 (2005).

Lakin, N.D., Jackson, S. P. Regulation of p53 in response to DNA damage. Oncogene 
18,7644-7655 (1999).

Lane, H. A., Nigg, E. A. Antibody microinjection reveals an essential role for human 
polo-like kinase 1 (Plkl) in functional maturation of mitotic centrosomes. J. Cell Biol. 
135,1701-1713 (1996).

Lee, K. S., Erikson, R. L. Plk is a functional homolog of Saccharomyces cerevisae Cdc5, 
and elevated Plk activity induces multiple septation structures. Mol Cell Biol 17, 3408- 
17(1997).

Lee, K. S., Grenfell, T. Z., Yarm, F. R., Erikson, R. L. Mutation of the polo-box disrupts 
localization and mitotic functions of the mammalian polo kinase Plk. Proc. Natl. Acad. 
Sci, USA 95, 9301-9306.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lee, K. S., Yuan, Y. O., Kuriyama, R., Erikson, R. L. Plk is an M-phase-specific protein 
kinase and interacts with a kinesin-like protein, CHO/MKLP-1. Mol. Cell Biol. 15, 
7143-7151 (1995).

Leung, G. C., Hudson, J. W., Kozarava, A., Davidson, A., Dennis, J. W., Sicheri, D. The 
Sak polo-box comprises a structural domain sufficient for mitotic subcellular localization. 
Nature Struct. Biol. 9, 719-724 (2002).

Li, B., Ouyang, B., Pan, H., Reissmann, P.T., Slamon, D.J., Arceci, R., Lu, L., Dai, W. 
Prk, a cytokine-inducible human protein serine/threonine kinase whole expression 
appears to be down-regulated in lung carcinomas. J. Biol. Chem. 271, 19402-19408 
(1996).

Li, J., Meyer, N. A., Donoghue, J. D. Nuclear localization of cyclin Bl mediates its 
biological activity and is regulated by phosphorylation. Proc. Natl. Acad. Sci, USA 94, 
502-507 (1996).

Li, J., Mingjia, T., Ling, L., Pamarthy, D., Lawrence, S. T., Sun, Y. Sak, A new Polo­
like kinase, Is transcriptionally repressed by p53 and induces apoptosis upon RNAi 
silencing. Neoplasia 7, 312-323 (2005).

Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709-715 
(1993).

Llamazares, S., Moreira, A., Tavares, A., Girdham, C., Spruce, B., Gonzalez., C., Karess, 
R. E., Glover, D. M., Sunkel, C. E. Polo, a mitotic mutant of Drosophila displaying 
abnormal spindle poles. Genes Dev. 5,2153-2165 (1991).

Lowe, S. Activation of p53 by oncogenes. Endocrine-Related Cancer 6, 45-48 (1999).

Lowery, M. D., Lim, D., Yaffe, M. Structure and function of Polo-like kinases.
Oncogene 24,248-59 (2005).

Ma, S., Charron, J., Erikson, L. R. Role of Plk2 in Mouse Development and Cell 
proliferation. Mol. Cell. Biol. 23, 6936-6943 (2003).

Macmillan, C. J., Hudson, J. W., Bull, S., Dennis J. W., Swallow, J. C. Comparative 
expression of the mitotic regulators SAK and PLK in Colorectal Cancer. Annals o f  
Surgical Oncology 8, 729-740 (2001).

Maki, C. G., Howley, P. M. Ubiquitination of p53 and p21 is differentially affected by 
ionizing radiation and UV radiation. Mol. Cell Biol. 17, 355-363 (1997).

McGowan, C. H., Russell, P. Human Weel kinase inhibits cell division by 
phosphorylating p34cdc2 exclusively on Tyrl5. EMBOJ. 12, 75-85 (1993).

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Morgan, D. Principles of CDK regulation. Nature 374,131-134 (1995).

Mueller, P. R., Coleman, T. R., Kumagai, A., Dunphy, W. G. Mytl: a membrane- 
associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine- 
15. Science 270, 86-90 (1995).

Mulvihill, D. P., Petersen, J., Ohkura, H., Glover, M. D.., Hagan, M. I. Plol kinase 
recruitment to the spindle pole body and its role in cell division in Schizosaccharomyces 
pombe. Mol. Cell Biol. 10,2771-2785 (1999).

Nigg, E. A. Centrosome Aberrations: cause or consequence of cancer progression? 
Nature Rev. Cancer 2, 815-825 (2002).

O’Connell, M. J., Walworth, N. C., Carr, A. M. The G2-phase DNA damage 
checkpoint. Trends Cell Biol. 10, 296-303 (2000).

Ohkura, H., Hagan, I.M., Glover, D. M. The conserved Schizosaccharomyces pombe 
kinase plol, required to form a bipolar spindle, the actin ring, and septum, can drive 
septum formation in G1 and G2 cells. Genes Dev 9,1059-1073 (1995).

Peng, C. Y., Graves, P. R., Thoma, R. S., Wu, Z., Shaw, A. S., Piwnica-Worms, H. 
Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by
phosphorylation of Cdc25C on Ser-216. Science 277, 1501-1505 (1997).

Qian, Y. W., and Erikson, E., Mailer, J. L. Purification and cloning of a protein kinase 
that phosphorylates and activates the polo-like kinase Plxl. Science 282, 1701-1704 
(1998).

Qian, Y. W., and Erikson, E., Mailer, J. L. Mitotic effects of a constitutively active 
mutant of the Xenopus polo-like kinase Plxl. Mol. Cell. Biol. 19,4262-4271 (1999).

Russell, P., Nurse, P. Negative regulation of mitosis by Weel+, a gene encoding a 
protein kinase homolog. Cell 49, 559-567 (1987).

Schlid, D., Byers, B. Diploid spore formation and other meiotic effects for two cell 
division cycle mutations of Saccaromyces cerevisiae. Genetics 96, 859-876 (1980).

Seong, Y. S., Kamijo, K., Lee, J. S., Fernandez, E., Kuriyama, R., Miki, T., Lee, K. S. A 
Spindle Checkpoint arrest and a cytokinesis failure by the dominant-negative polo-box 
domain of Plkl in U-2 OS cells. J. Biol. Chem. 277, 32282-322293 (2002).

Schwindling, L. S., Noll, A., Montenarh, M., Gotz, C. Mutation of CK2 phosphorylation 
site in Cdc25C impairs importin a/B binding and results in cytoplasmic retention. 
Oncogene 23,4156-4165 (2004).

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Smits, V. A., Klompmaker, R., Amaud, L., Rijken, G., Nigg, E. A., Medema, R. H. Plkl 
is a target of the DNA damage checkpoint. Nat. Cell Biol. 2, 672-676 (2000).

Sohrmann, M., Fankhauser, C., Brodbeck, C., Simanis, V. The dmfl/midl gene is 
essential for correct positioning of the division septum in fission yeast. Genes Dev. 10, 
2707-2719(1996).

Song, S., Grenfell, T. Z., Garfield, S., Erikson, R. L., Lee, K. S. Essential function of the 
polo box of Cdc5 in subcellular localization induction of cytokinetic structures. Mol. 
Cell Biol. 20, 286-298 (2000).

Sunkel C. E, Glover D. M. Polo, a mitotic mutant of Drosophila displaying abnormal 
spindle poles. J. Cell Sci., 89 (Part 1), 25-38. (1988).

Swallow, J. C., Ko, A. M., Najeeb, U. S., Hudson, J. W., Dennis, J. W. Sak /Plk4 mitotic 
fidelity. Oncogene 24, 306-312 (2005).

Tibbetts, R. S., Brumbaugh, K. M., Williams, J. M., Sarkaria, J. N., Cliby, W. A., Sheih, 
S. Y., Taya, Y., Prives, C., Abraham, R. T. A role for ATR in the DNA damage-induced 
phosphorylation of p53. Genes Dev. 13, 152-157 (1999).

Toyoshima-Morimoto, F., Taniguchi, E., Nishida, E. Plkl promotes nuclear translocation 
of human Cdc25C during prophase. EMBO reports 3(4), 341-48 (2002).

Toyoshima-Morimoto, F., Taniguchi, E., Shinya, N., Iwamatsu, A. Nishida, E. Plkl 
phosphorylates Cyclin B1 and targets it to the nucleus during prophase. Nature 410, 215- 
220 (2001).

Tsvetkov, L., Xu, X., Li, J., Stem, D., F. Polo-like Kinase 1 and Chk2 Interact and Co- 
localize to Centrosomes and the Midbody. J. Biol. Chem. 278, 8468-9475 (2003).

Vugt van, M., Smits, A. J. V., Klompmaker, R., Medema, R. Inhibition of Plkl by DNA 
damage occurs in an ATM- or ATR-dependent fashion. J. Biol. Chem. 276, 41656-41660
(2001).

Vugt van, M., Weerdt van de, B., Vader, G., Janssen, H., Calafat, J., Klompmaker, R., 
Wolthuis, R., Medema, R. Plkl is Required for Bipolar Spindle Formation but is 
Dispensible for APC/Cdc20 Activation and Initiation of Cytokinesis. J. Biol. Chem. 279, 
36841-36854(2004).

Wang, Q., Xie, S., Chen, J., Fukasawa, K., Naik, U., Traganos, F., Darzynkiewicz, Z., 
Jhanwar-Uniya, M., Dai, W. Cell cycle Arrest and Apoptosis Induced by Human Plk 3 is 
Mediated through Perturbation of Microtubule Integrity. Mol. Cell. Biol. 22, 3450-3459
(2002).

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Wamke, S., Kemmler, S., Hames, S. R., Tsai, H-L., Hoffman-Rohrer, U., Fry, A. M., 
Hoffmann, I. Polo-like kinase-2 is Required for Centriole duplication in Mammalian 
Cells. Current Biology 14, 1200-1207 (2004).

Xie, S., Xie, B., Marietta, Y. L., Dai, W. Regulation of cell cycle checkpoints by polo­
like kinases. Oncogene 24,277-286 (2005).

Xie, S., Wu, H., Wang, Q., Cogswell, J. P., Husain, I., Conn, C, Stambrook, P., Jhanwar- 
Uniyal, M., Dai, W. Plk3 Functionally links DNA damage to cell cycle arrest and 
apoptosis at least in part via the p53 pathway. J. Biol. Chem. 276,43305-43312 (2001).

Yamashita, Y., Kajigaya, S., Yoshida, K., Ueno, S., Ota, J., Ohmine, K., Ueda, M., 
Miyazato, A., Ohya, K., Kitamura, T., Ozawa, K., Mano, H. J. Biol. Chem. 276, 39012- 
39020 (2001).

Zhou, T., Aumais, J. P., Lie, X., Yu-Lee, L. Y., Erikson, R. L. A role for Plkl 
phosphorylation of NudC in cytokinesis. Dev Cell 5,127-138 (2003).

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA AUCTORIS

Name:

Place of Birth: 

Year of Birth: 

Education:

Sepal Bonni 

Windsor, Ontario 

1981

Belle River District High School, Belle River Ontario 
Sept. 1995-Jun . 2000

University of Windsor, Windsor, Ontario 
Sept. 2000 - Apr. 2004 B.Sc.

University of Windsor, Windsor, Ontario 
Sept. 2004 -  May 2007 M.Sc.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	University of Windsor
	Scholarship at UWindsor
	1-1-2007

	The role of Plk4 in DNA damage pathways and entry into mitosis.
	Sepal Bonni
	Recommended Citation


	tmp.1507664919.pdf.l_KHY

