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ABSTRACT 

Oil sands process water (OSPW) is toxic to many aquatic organisms. The goal of 

this study is to determine if or how midge (Diptera: Chironomidae) productivity and 

community assemblages may differ between OSPW and reference wetlands and the 

effects of OSPW wetland water, naphthenic acids (NA), and salts on chironomid growth 

and survival. Although chironomids differed in size, abundance, and community 

composition among wetlands, the differences were not attributable to the presence or 

absence of OSPW. Community composition varied with respect to wetland-specific water 

chemistry attributes (e.g., dissolved oxygen).  Ten-d Chironomus riparius laboratory 

bioassays indicated that larvae grew to a smaller size when exposed to OSPW wetland 

water compared to reference wetland water.  When C. riparius was reared for 10 d in 

water mimicking combinations of salts and NA, survival was significantly negatively 

correlated with salt and NA concentrations, and there was an antagonistic interaction 

between the two toxicants. 
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CHAPTER I: GENERAL INTRODUCTION 

The overarching goal of this research was to determine if oil sands process affected 

wetlands can support a chironomid community with productivity equivalent to that of 

natural wetlands. Whether differences in productivity can be attributed to naphthenic acid 

(NA) concentration, salts, or a combination of the two was also examined. 

Chironomidae 

Chironomidae are a diverse family of non-biting midges, which are ubiquitous and 

abundant in North America (Pinder, 1986; Pascoe et al., 1989).It is estimated that there 

may be up to 15,000 species of Chironomidae world-wide (Cranston, 1995). The life 

cycle of chironomid species varies greatly in duration and timing; for example, 

Chironomus riparius, a species commonly cultured in the laboratory, has a larval 

duration of 10 d at 20 degrees C, and can pass through about 7 generations per year in 

their natural habitat (Learner and Edwards, 1966). At the other extreme, two arctic 

species of Chironomus were found to have a seven year life cycle from egg to adult 

(Butler, 1982). 

 

Adult female chironomids lay their eggs embedded in a gelatinous matrix on 

macrophytes, rocks, or leaf litter close to the shoreline (Nolte 1993). A single egg mass 

can contain between a few dozen eggs for smaller species to several thousand eggs for 

larger species (Pinder, 1995a). Eggs will typically hatch in 2-6 d. At the time of hatching 

and for approximately 24 h, the transparent first-instar larvae are planktonic, which 

causes them to become dispersed via water currents (Pinder, 1995a). Larvae subsequently 

settle to the substrate, and the larvae are benthic for the remainder of their prepupal 
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development. Many chironomid species create tubes of mucus, often incorporating other 

materials. Tubes can secure larvae to substrates, facilitate respiratory efficiency, or 

provide shelter from predators (Oliver, 1971; Hershey, 1987).  

 

After passing through 4 larval instars, chironomids develop into pupae. During the very 

brief pupal stage, an individual rises through water column to the surface where it moults 

and emerges as an adult (Oliver 1971), typically leaving the pupal exuvia floating on the 

surface of the water. The exuviae, collected as floating windrows in backwaters 

(Ferrington et al. 1991), or trapped  with nets anchored in streams (Boerger 1977) can  be 

identified and enumerated and thus provide a measure of  chironomid community 

composition and abundance.   

 

Chironomids are typically among the most numerous benthic invertebrates in freshwater 

systems. Larvae can be present in densities of up to 50,000 individuals m
-2

 (Coffman, 

1995).  The transfer of this aquatic biomass to the terrestrial community through 

emergence creates an important link between aquatic and terrestrial food webs (Oliver 

1971). They are especially important contributors to overall wetland productivity (Pascoe 

et al. 1989), providing energy to higher trophic levels both within and outside of the 

wetland communities in which they develop (Oliver, 1971). Chironomid carcass 

deposition can provide significant nutrient inputs to near-shore terrestrial food webs, and 

these nutrient inputs can be detected in multiple trophic levels (Hoekman et al., 2012). 

Because they are so abundant, they can serve as a primary food source for invertebrate 

predators such as dragonflies (Benke, 1976)) and many vertebrate functional groups, 
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including  dabbling ducks such as mallards (Batzer et al. 1993),  and aerial insectivores 

such as silver-haired bats (Barclay, 1985) and tree swallows (St. Louis et al., 1990). 

Chironomid larvae have potential to be especially useful bioindicators in that species and 

genera are differentially sensitive to both disturbance and to specific classes of pollution 

(Rosenberg 1992, Carew et al. 2007).  

 

Representatives of some multivoltine chironomid genera are amenable to laboratory 

culturing and are commonly used in biomonitoring freshwater ecosystems. Chironomus 

larvae in particular are standard test organisms used to determine aquatic toxicity 

(Environment Canada, 1997; EPA, 1996; OECD, 2004).  

The Oil Sands Industry and Wet Landscape Reclamation 

Unlike traditional oil extraction methods, the shallow nature of the Athabasca oil deposit 

requires open pit mining. The process of extracting bitumen from the mined oil sand ore 

(usually the Clark hot water extraction method) requires large volumes of alkaline, hot 

water and generates large amounts of tailings material. The tailings material is primarily 

composed of water, sand, and clays, but also contains unrecovered bitumen, salts, 

naphthenic acids, and trace metals (FTFC 1995). In 2004, the total volume of tailings 

water on site at Syncrude was approaching 1 billion m
3
 (MacKinnon 2004). 

 

The post-mining landscape must be restored to a function equivalent to its pre-mining 

state, which included 20-40% wetland area (FTFC 1995). Mine tailings material has been 

used as a component of reclaimed demonstration wetlands (FTFC 1995), but the 
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consequences to wetland productivity must be determined before this reclamation 

strategy is implemented on a large scale. 

 

The “wet landscape option” is a proposed reclamation regime comprised of a landscape 

consisting of series of interconnected wetlands that ultimately drain into end-pit lakes 

(lakes created by allowing the mined open pit to partially or completely fill with water) 

(FTFC, 1995). It is currently in the initial stages of being implemented by several oil 

sands companies because it has the potential to use and permanently store large volumes 

of process water (FTFC, 1995). However, the practicality of this option at a full scale, 

however, depends on knowing, among other things, the long-term toxicity of oil sands 

process water and material on aquatic biota. Initial studies on the use of fresh oil sands 

process water (OSPW) in reclamation wetlands indicated that OSPW was toxic to a 

variety of aquatic organisms (MacKinnon and Boerger, 1986).  Of the major constituents 

that comprise OSPW, naphthenic acids (NAs) are commonly cited in the literature as the 

main contributor to the toxicity (Allen, 2008). However, marine sediments from the late 

Cretaceous and Devonian eras are close to the surface in the Athabasca oil sands area 

(Gosselin et al., 2010). Furthermore, sodium hydroxide is used during extraction, and 

calcium sulphate is often added during the consolidation of tailings, which produces a 

subsaline environment that adds to the toxicity by imposing osmotic stress on aquatic 

organisms (MacKinnon et al. 2001).  Sodium, calcium, chloride, sulphate, and 

bicarbonate are the major ions that contribute to the salinity of OSPW (M. MacKinnon, 

Syncrude Canada Ltd., pers. communication, Gosselin et al., 2010). Concentrations of 
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naphthenic acids covary with salts in OSPW, making their individual effects difficult to 

distinguish when conducting field studies (Leung et al. 2003).  

Toxicity of Oil Sands Process Water across Taxa 

Naphthenic acids are a group of alkyl-substituted carboxylic acids that naturally occur in 

petroleum (Clemente & Fedorak, 2005; Seifert & Teeter, 1969). They occur in low 

concentrations (1-2 mg/L) in the Athabasca River and its tributaries, and in natural 

wetlands, but they can be present in OSPW at concentrations of up to 120 mg/L (M. 

MacKinnon pers. communication). Recent improvements in technology indicate that the 

acid extractable portion of OSPW which was previously called NA is not truly NA in its 

entirety (Rowland et al., 2011). However, since this is a very recent finding, the term 

“NA” will be used synonymously with “acid extractable portion of OSPW” in this thesis.  

NAs in freshly produced OSPW are acutely toxic to a variety of microbes, plants, 

invertebrates, fishes, mammals, and amphibians. Leung et al. (2001) studied 

phytoplankton community composition and biomass using microcosms in OSPM-

affected and reference wetlands. They found significant differences in community 

composition between reference and OSPM-affected wetlands but no significant 

differences in biomass.  

 

In yeast, NAs extracted from North Sea oil effluent were found to be weak estrogen 

receptor agonists and androgen receptor antagonists (Thomas et al., 2009). This means 

that NAs bind to the estrogen receptor and disrupt binding at the androgen receptor 

(Thomas et al., 2009). This may explain some of the changes in sex characteristics in 
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higher trophic organisms (explained further below) such as fathead minnows (e.g. 

Kavanagh et al. 2011). 

 

Naphthenic acids are acutely toxic to microorganisms (Clemente et al. 2004). Some 

toxicity assays using Vibrio fischeri (Frank et al., 2008a; Frank et al., 2008b) and 

Photobacterium phosphorem (Holowenko et al. 2002) suggested that low molecular 

weight naphthenic acids are more toxic than higher molecular weight acids. However, 

these findings must be interpreted with caution because the concentrations of the 

fractions were reported in mg/L rather than as molar concentrations. 

 Furthermore, the addition of carboxylic acid, which is expected to reduce 

hydrophobicity, reduces the toxicity of the acid fraction (Frank et al. 2008a). This 

relationship between molecular weight, carboxylic acid content, and toxicity was also 

demonstrated in bioassays using Daphnia magna (Frank et al. 2008a).  

 

Water from OSPM-affected ponds reduced the growth rate and slowed the development 

of  northern Canadian toad (B. boreas) and wood frog (R. sylvatica), tadpoles relative to 

tadpole growth and development in water from reference ponds (Pollet & Bendell-

Young, 2000). When Hersikorn et al. (2010) conducted a similar study, they found that 

wood frog tadpoles only exhibited high mortality when held in young OSPM-affected 

wetlands. Tadpoles held in older (>7 years old) OSPM-affected wetlands appeared to 

have a survival rate similar to tadpoles held in reference wetlands. However, Schock et 

al. (Keyano College, pers. commun.) found that OSPW slowed the development of wood 
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frog tadpoles so much that they were unlikely to be able to metamorphose and disperse 

from ponds prior to winter freeze-up.  

 

The responses of several fish species to OSPW and NA have been studied. Kavanagh et 

al. (2011) reported disturbances in reproduction and secondary sex characteristics in 

fathead minnows (Pimephales promelas) that were exposed to NA concentrations and 

conductivities typical of OSPM-affected wetlands; OSPW with NA concentrations of 

>25 mg/L and conductivities of >2000 µS/cm caused spawning inhibition, lowered sex 

steroid hormone concentrations, and reduced secondary sex characteristics (nuptials) 

(Kavanagh et al. 2011). In another assay in which fish were first acclimated in water that 

was half the conductivity of treatment water prior to the test, spawning and sex steroids in 

males were significantly reduced but not completely inhibited (Kavanagh et al. 2011), so 

native or acclimated fathead minnow populations may not be affected to the same extent 

as those exposed to OSPW quickly. Similarly, fathead minnows in early life stages that 

were exposed to oil sands process sediments and naturally-occurring oil sands showed 

delayed hatching, increased mortality, and increased incidence of malformations 

(Colavecchia et al. 2004). Changes in sex hormone levels detected in goldfish exposed to 

OSPW may explain the changes in reproductive traits seen in fathead minnows. Both 

male and female goldfish caged in experimental ponds containing OSPW exhibited 

significantly lower testosterone and 17β-estradiol concentrations compared to fish held in 

control ponds (Lister et al. 2008). Furthermore, plasma 17β-estradiol levels were 

significantly higher in male goldfish that were exposed to a concentration of 6 mg/L 

naphthenic acids in a 7-d day laboratory bioassay than in fish that were exposed to 
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reference lake water (Lister et al. 2008). However, these changes in sex steroid levels 

were not seen in native slimy sculpin (Cottus cognatus) and pearl dace (Margariscus 

margarita) collected close to oil sands developments compared to fish collected upstream 

of developments (Tetreault et al. 2003). But, EROD activity (a biomarker for chemical 

detoxification of any kind) activity in the liver was significantly higher in slimy sculpin 

and pearl dace that were collected close to the oil sands developments (Tetreault et al. 

2003); this means that although the fish are exposed to potentially toxic chemicals when 

close to the oil sands developments, this exposure does not necessarily manifest itself in 

alteration of the sex characteristics studied.  In contrast to focusing on sexual differences 

fish as did the previously described studies, Nero et al. (2006a) examined gill and liver 

histopathology in goldfish and yellow perch that were held in OSPM-affected and 

reference  ponds. Perch held in a pond with high NA (24 mg/L) concentrations and high 

conductivity (2657 μS/cm) exhibited significantly higher inflammatory and degenerative 

liver response indices and significantly higher gill proliferation than fish held in a ponds 

with lower concentrations of NA and lower conductivities (Nero et al., 2006a). Similarly, 

goldfish gills showed an inflammatory and degenerative response when held in the high 

NA and high conductivity pond (Nero et al., 2006a). Nero et al. (2006b) conducted a 

separate lab bioassay on yellow perch to assess the effect of salinity on NA toxicity.  

They used a low salt and a high salt treatment on 3 different concentrations of extracted 

NA and 3 different concentrations of commercial NA. The authors found that all 

individuals died at 3.6 mg/L NA. However, at lower concentrations of NA the addition of 

salt reduced mortality by 40-50%. Gill surface area was, however, significantly reduced 

by the addition of salts to NA (Nero et al. 2006b). This change in gill morphology was 
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not seen in fathead minnows exposed to OSPW, but the minnows did exhibit very high 

mortality rates when caged in OSPW ponds compared to control ponds (Farrell et al., 

2004). Siwik et al. (2000) conducted two repetitions of a bioassay in which young fathead 

minnows were held in OSPM-affected wetland water, salty reference wetland water, and 

lower salt reference wetland water. In the first bioassay, the investigators did not detect 

any significant differences in growth or survival, but in the second bioassay the minnows 

exhibited significant differences in survival but not growth (Siwik et al., 2000). 

 

Although many researchers have studied the toxicity of OSPW and NA to fishes, studies 

on taxa that may be less directly affected by OSPW, such as mammals and birds, are 

relatively scarce. Rogers et al. (2002) analyzed the short-term toxicity of NA 

consumption (extracted from OSPW) by rodents at dosages of 3, 30 and 300 mg/kg body 

weight. High-dose females had significantly higher ovary and spleen weights and high-

dose males had significantly higher heart and testes weights than control rats. However, 

the high dose (300 mg/kg body weight) corresponds to 50 times a “worst-case single-day 

exposure for wild animals”, so results like this would not be seen in nature. In a 90-d test, 

rats fed 60 mg/kg body weight/d showed increased liver glycogen storage and higher 

liver weights than rats given lower dosages and controls. The authors suggested that the 

liver was likely a target organ for NA toxicity in mammals (Rogers et al. 2002). Birds 

ingest NA in a way similar to mammals-- directly by drinking OSPW, and indirectly by 

consuming food (e.g., emergent insects) that developed in OSPW. Thyroid hormone 

concentration (T4) was significantly higher in tree swallow (Tachycineta bicolour) 

nestlings from two OSPM-affected wetlands compared to concentrations in nestlings 
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from two reference wetlands (Gentes et al. 2007a). However, when tree swallow 

nestlings were directly fed NA at a rate of 1.5 mg/d for 7 d — an amount corresponding 

to ten times the worst case scenario exposure—no negative effects were found in growth, 

organ weight, or blood biochemistry, among other endpoints (Gentes et al. 2007b). 

Collectively, these studies indicate that ingested NA pose minimal acute toxicity to birds 

and mammals. 

Effect of OSPW on Benthic Invertebrates and Chironomidae 

Young (<7 year old) OSPW wetlands support less diverse macroinvertebrate populations 

than naturally-formed reference or older OSPW wetlands (Leonhardt, 2003). This 

suggests that toxicity of OSPW may decline over time; naphthenic acids can biodegrade 

over time (Herman et al. 1994), and this may explain the apparent reduction in toxicity. 

An alternative explanation may be that more tolerant species may be colonizing OSPW 

and after seven years the richness may be equivalent, but community composition may 

still be different. 

 

Bendell-Young et al. (2000) found that Chironomidae larvae were the numerically 

dominant invertebrates in seven reference wetlands and five OSPW wetlands. OSPW 

wetlands tended to have lower overall benthic macroinvertebrate diversity, but higher 

chironomid diversity than reference wetlands. Furthermore, OSPW wetlands had greater 

chironomid densities and biomass than reference wetlands. Mouthparts of chironomids 

were also examined for deformities as evidence of teratogenic effects, and no significant 

difference between wetlands was found (Bendell-Young et al. 2000).  Whelly (1999) also 

found that natural reference wetlands supported greater diversity but lower 
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macroinvertebrate abundance than constructed wetlands. However, reference constructed 

wetlands had greater richness than OSPW-affected wetlands of equivalent age. Whelly 

(1999) also found that the incidence of mouthpart deformities was uniformly low across 

multiple genera and in all classes of wetlands that he studied.  

 

Anderson et al. (2011) exposed partially grown (2
nd

-3
rd

 instar) Chironomus dilutus (= C. 

tentans) larvae to water from three different OSPW-affected wetlands, two fresh OSPW 

samples, as well as a freshwater and a saltwater control. No consistent significant 

differences were found in mean survival among water treatments, but larvae grown in the 

two fresh OSPW samples did exhibit a lower wet biomass than larvae grown in water 

from the controls or the reclamation ponds. Larvae grown in two fresh OSPW samples 

and one OSPW-affected wetland water sample exhibited significantly lower emergence 

success than controls (Anderson et al. 2011). 

 

Most relevant to this study is a toxicity test done by Whelly (1999) on a laboratory 

population of Chironomus riparius and lab and field derived C. dilutus larvae. Mean final 

body length and survival were not significantly affected by OSPW concentration in the C. 

riparius larvae. But, growth and survival were significantly reduced in both of the C. 

dilutus populations when exposed to high concentrations of OSPW. At 100% OSPW the 

lab-derived C. dilutus population grew to only 40% the size of controls, whereas the field 

population grew to 75% the size of controls at the same concentration. Whelly (1999) 

also found that 50% of C. dilutus larvae reared in fresh OSPW died at a concentration of 

65% OSPW.  Although naphthenic acid concentrations of the OSPW used in the 
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experiment were not known, given the typical range of fresh OSPW (80-100 mg/L; 

Holowenko et al. 2002), we can estimate that the LC50 of naphthenic acids to C. dilutus is 

likely 52- 65 mg/L.  

 

Mode of Action for Naphthenic Acid Toxicity 

Although the mode of action of NA toxicity is largely unknown, it has been proposed that 

it probably acts by causing narcosis—the disruption of cell membrane function (Roberts, 

1991; Frank et al. 2008a). Because surfactants can interact with proteins, NAs may affect 

cell membrane permeability (Abel, 1974). Low molecular weight NAs are more toxic, 

but are also more readily degraded by microbes (Frank et al. 2008b). The number of 

carboxylic acid groups in the NA molecular structure also plays a role in toxicity; the 

greater the carboxylic acid content, the less toxic the mixture is (Frank et al. 2008a).  

There is also a physical mechanism by which NAs pose stress to aquatic organisms. NAs 

have surfactant properties, which can cause gill damage and death by asphyxiation (Abel, 

1974). 

 

Another alternate mechanism of (sublethal) toxicity was reported recently by Thomas et 

al (2009); in a yeast bioassay, the authors found NAs to be a weak estrogen receptor 

agonist and an androgen receptor antagonist. This may explain some of the sex steroid 

hormone levels and secondary sex characteristic changes in fish that have been detected 

in other studies (e.g. Kavanagh et al. 2011, Lister et al. 2008). Estrogen is not only used 

by vertebrates— insects also depend on estrogen to regulate aspects of reproduction 

(Mechoulam et al. 1984) and may be affected similarly by OSPW. The genomic response 
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of E. coli to NAs was analysed by Zhang et al. (2011) in order to determine how NAs 

interact with organisms on the cellular level. The main molecular responses were up-

regulation of genes involved with NADP or NADPH binding and down-regulation of 

genes involved with ATP binding. 

 

Recent advances in the analysis of the components of the acidic fraction of OSPW have 

indicated that different fractionation techniques can yield a different suite of organic 

acids and not purely NAs (Rowland et al. 2011). Furthermore, the method of analysis 

used to quantify NAs differs broadly within the scientific community, and determining 

exactly which acids comprise the suite of extractable organic acids in OSPW has proven 

to be a very difficult task (Rowland et al. 2011). It is increasingly realized that toxicity 

tests referring to oil sands extracted “naphthenic acids” actually refer to a broad group of 

acids, only some of which are toxic.  

 

Toxicity of Salts to Freshwater Biota 

High salinities in OSPW and OSPW-affected wetlands pose a great challenge in wetland 

reclamation. Like NAs, salts can be toxic to freshwater biota, but, unlike NAs, salts do 

not degrade and therefore decrease in concentration over time. The topography and 

hydrology of watersheds in the Athabasca oil sands region, is such that annual 

evaporation often exceeds precipitation (DeVito et al. 2005). Consequently, salinity of 

wetland waters can increase or remain constant over time. This has been shown to be the 

case with OSPW-affected wetlands (Macyk et al. 2004). 
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Salinity can be measured in concentration of ions (i.e., total dissolved solids; parts per 

thousad (ppt), or mg/L) or by the electrical conductance of the ions in solution, (i.e., 

conductivity; μS/cm); however, the two measures are very highly positively correlated 

(Walker et al. 1995).  

 

High salinity can pose a great challenge for freshwater plants and biota. In plants, the 

sodium, chloride, and sulphate ions can interfere with water transport in a variety of 

boreal plants (Renault et al. 1998). In a group of OSPW wetlands and natural wetlands 

surveyed, salinity was found to be negatively correlated with species richness and peak 

biomass in boreal marsh plants (Trites and Bayley, 2009). 

 

Wojnarowicz (2009) assessed the toxicity of two salts commonly found in OSPW, 

sodium chloride and sodium sulphate, to Ceriodaphnia dubia. She hypothesized that 

specific ions and the interaction between them may better predict toxicity than the overall 

concentration of ions or conductivity. However, the effects of sodium chloride and 

sodium sulphate were additive, and thus there was no interaction between these salts 

(Wojnarowicz, 2009). 

 

Genera of Chironomidae are differentially sensitive to salinity; as such, chironomid head 

capsules in sediment cores are often used in paleolimnology in order to infer the water 

chemistry history of lakes (Walker et al. 1995). For example, highly saline lakes (>10 

ppt) are characterized by abundant Cricotopus or Orthocladius larvae, whereas lakes with 

lower salinity are characterized by Chironomus, Procladius, or Psectrocladius (Walker et 
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al. 1995). Because several genera are tolerant of high salinities, chironomids can make up 

a large component of the benthic fauna in brackish waters (Pinder 1995b). In 

Chironomus, high salinities (conductivity >5000 μS/cm) lower the number of emergent 

adults, delay the time of emergence, and reduce larval growth rate (Hassell et al. 2006).  

Chironomus riparius larvae reared in water with sodium chloride concentrations of 5, 10 

and 20 ppt exhibited significantly reduced survival compared to controls (0 ppt) (Silver et 

al. 2009). This effect, however, was only seen at temperatures of 22˚C and not at lower 

temperatures. Furthermore, the survival rate in the controls at 22˚C was low 

(approximately 30%) (Silver et al. 2009). 

 

Objectives 

Although many studies have been done on the effects of OSPW (particularly with fish), 

the independent and interactive effects of salts and NAs are not well understood. 

Furthermore, one must understand the impact of these interactions on chironomid 

productivity in order to assess the likelihood that wetland reclamation strategies in the 

Athabasca oil sands region can provide enough biomass to support a food web similar to 

that of natural wetlands. Therefore, the objectives of this thesis were to determine 

whether OSPW-affected wetlands differ from natural wetlands in emerging chironomid 

abundance, biomass, and community composition (Chapter II), to assess the effect of 

water from OSPW-affected wetlands on survival and growth of C. riparius relative to the 

water of reference wetlands under controlled laboratory conditions (Chapter III), and to 

assess whether the toxicity of OSPW to chironomids primarily due to naphthenic acids, 

the complement of salts, or an interaction between NAs and salts (Chapter IV). 



 

16 

 

 

In general, my expectations were that NAs and salts would each exert stress on 

chironomid larvae and lower productivity. However, when NAs and salts are present 

together, I expected there to be an antagonistic effect, thus supporting greater 

productivity than if the individual effects were added together.   
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CHAPTER II: ABUNDANCE, SIZE, AND GENUS RICHNESS OF 

CHIRONOMIDAE EMERGING FROM REFERENCE AND OIL SANDS 

PROCESS-AFFECTED WETLANDS 

Introduction 

As part of the lease agreement with the Alberta government, oil sands companies must 

restore land to its original level of productivity before mine closure (FTFC, 1995). This 

means that reclaimed wetlands on site must be as productive as their reference 

counterparts.  As mentioned in the general introduction, one challenge in the reclamation 

strategy is utilizing the enormous volumes of fine fluid tailings in the wet landscape 

option. It is therefore of utmost importance that the OSPM-affected reclaimed wetlands 

sustain a chironomid community.  

 

Biological Productivity and Food Web Structure 

Biological productivity is the accumulation of living tissue over a period of time. It is 

measured in biomass accumulation per unit time per unit area (Huryn and Benke, 2007). 

In other words, measuring productivity usually involves measuring the growth rate (i.e., 

change in biomass), and abundance of a group of organisms. High productivity at the 

bottom of a food web supports greater productivity in the populations at higher trophic 

levels. Net primary productivity—productivity of autotrophs -- in wetlands can vary 

greatly and depends on many factors including light, sediment, nutrient availability, and 

the hydrology of a wetland, i.e., whether it is largely precipitation fed (low primary 

productivity) or whether it receives inputs of nutrient rich water (higher primary 

productivity) (Sharitz & Pennings, 2006).  Heterotrophic bacteria are likely the greatest 
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contributors to biomass in wetlands; bacteria play a fundamental role in nutrient cycling, 

contributing to the decay of organic matter, and providing food for aquatic, detritivorous 

invertebrates including chironomids (Boon, 2006). Aquatic invertebrates, such as 

chironomids, are the most important primary consumers in many wetland ecosystems 

(Jackson & Fisher, 1986), and thus play a major role in food web structure, linking the 

microbial and macrophyte compartments to upper trophic levels. 

The Importance of Chironomidae 

Chironomidae dominate the diets of many predators, including fish, waterfowl, and 

various terrestrial insectivores (spiders, aerial insectivorous birds, bats, etc.) (Hershey, 

1985; Batzer et al., 1993; Barclay, 1985). Their abundance and ubiquity make them 

especially representative of the aquatic emergent component of food webs (Pascoe et al, 

1989). Chironomids make up a large portion of the benthic invertebrate biomass of 

wetlands in northern Alberta, so their productivity influences the overall productivity of 

the wetland as a whole.  In oil sands lease area wetlands, Chironomidae larvae are 

predominant. The subfamilies Tanypodinae and Orthocladiinae are among the most 

common invertebrates in young wetlands and Chironominae among the most common 

invertebrates in older wetlands (Leonhardt, 2003). Chironomids are often the dominant 

benthic organisms in disturbed ecosystems; for example, they comprised 98% of the total 

invertebrate biomass in four brackish, constructed ponds located in England (Rehfisch, 

1994).  
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Quantifying Emergence 

Chironomids spend most of their life cycle living in the sediment of rivers, lakes and 

wetlands, passing through four larval instar stages before they pupate. When ready to 

transform into an adult, a pupa rises to the water surface, sheds its exoskeleton, and 

emerges as an adult fly. The cast skin (exuvia) typically remains floating on the surface 

of the water for 24 h or more. The exuviae therefore provide a quantitative measure of the 

number of chironomids that are emerging per unit area from a wetland (Switerski et al., 

2006). Ferrington et al. (1991) recommended the collection of pupal exuviae as an 

especially effective way of characterizing chironomid community composition.  

 

Because adult chironomids live for only a few days and typically do not feed (Oliver 

1971), larval survival and growth are good predictors of the productivity of a population. 

In a 10-d bioassay, Liber et al. (1996), reared second to third instar Chironomus tentans 

larvae on six different feeding regimes to determine the relationship between larval 

growth and subsequent emergence and ovipositing success.  Survival was >88% in all 

feeding treatments. Larval growth significantly differed among all treatments, and was 

highly correlated with emergence success (R
2
=0.96). Although fewer females emerged at 

the lower feeding regimes and their weights were lower, oviposition success (the ability 

to lay an egg mass) was not affected and second generation larval growth was not 

affected by maternal growth rate (Liber et al. 1996). However, Butler and Walter (1992) 

found that female pupal dry biomass was highly correlated (R
2
=0.76) with fecundity 

(number of eggs). The authors studied the correlation by first collecting a total of 79 
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mature female pupae from three lakes then weighing and dissecting the eggs from these 

pupae (Butler & Walter, 1992). Together, these studies indicate that assessing the number 

and size of emergent pupal chironomids permits one to infer larval growth rate and to 

predict wetland productivity, and ultimately potential adult fecundity.  

Toxicity of Oil Sands Process Water 

As discussed previously, fresh oil sands process water (OSPW) is toxic to chironomids 

(Whelly, 1999). In a 10-d bioassay, the LC50 of OSPW from a tailings pond to 

Chironomus dilutus occurred at a dilution of approximately 65% OSPW: 35% reference 

water (Whelly, 1999). The principal toxic constituent in fresh OSPW is thought to be 

some component of naphthenic acids (Schramm et al., 2000), which is a complex mixture 

of carboxylic compounds (Grewer et al. 2010). However, this toxicity is expected to 

decrease over time as naphthenic acids are readily degraded by microorganisms (Del Rio 

et al., 2006; Frank et al., 2008; Toor 2012). However, naphthenic acids are not the only 

toxic component in OSPW. Because the Athabasca oil sand deposit is derived from 

marine sediment, process water becomes enriched in salts during the extraction process. 

Thus, OSPW contains elevated concentrations of sodium (~500-700 mg/L), bicarbonate 

(~470-950 mg/L), chloride (~75- 550 mg/L), and sulphate (~200-300 mg/L) (Allen, 

2008) typically resulting in conductivity of 1113 to 2400 uS (MacKinnon & Sethi, 1993). 

These salts can impair growth and survival of aquatic plants and other organisms. When 

multivariate statistical analyses were used to separate effects of naphthenic acids and 

elevated conductivity in OSPW, Leung et al. (2001) found that phytoplankton 

communities were more strongly affected by high conductivity. Chironomus plumosus is 

unable to osmoregulate and is therefore intolerant of salinities greater than the internal 
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salinity (Lauer, 1969).  Salt stress has also been shown to negatively affect emergence. 

Bervoets et al. (1996) observed significantly lower emergence of C. riparius from high 

salinity water (12 ppt) than in fresh water. Although most Chironomus species appear to 

be salt-intolerant (Cannings & Scudder, 1978), the genera of Chironomidae are 

differentially sensitive to salt. For instance, Whelly (1999) found that Tanytarsus, 

Derotanypus, and Cricotopus were dominant in salty, OSPW-affected wetlands. Of these, 

only Derotanypus was completely absent in low-conductivity reference wetlands, making 

it an indicator of saline conditions (Whelly, 1999). 

Objectives 

The objectives of this study were to determine 1) whether OSPW-affected wetlands are as 

productive as reference wetlands by monitoring emergent pupal Chironomidae abundance 

and size; 2) if different OSPW-affected wetlands support different chironomid 

community assemblages than reference wetlands; 3) if particular assemblages of 

emergent chironomid genera can be accounted for by specific physicochemical factors. 

Methods 

Study Area and Wetlands 

The study wetlands were all located in the Athabasca oil sands region north of Fort 

McMurray, AB. Four OSPM-affected wetlands were studied - “4-m CT”, “Mike’s Pond”, 

“Natural Wetland”, and “Test Pond 9”. Five reference wetlands were used in this study 

named “High Sulphate”, “North West Interceptor Ditch” or “NWID”, “V-Notch Weir”, 

“Shallow Wetland”, and “Suncor Pond 5 Wetland”.  The details of these wetlands and 

dates sampled are described in Table 2.1.  
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Table 2.1: Description of wetlands used in this study. 

Wetland 

Name 

Class Substrate Organic 

carbon  

class 

Water Age in 

2010 

(years) 

Location 

(UTM 

Coordinates) 

Property Sampling Dates 

(dd/mm/yyyy) – 

Dates marked (*) 

used in analyses 

4-m CT OSPW Four meters 

of 

consolidated 

tailings with 

small shallow 

areas 

containing 

peat. 

Rich Suncor Oil 

sands 

process 

water. 

13 0467670, 

6316509 

Suncor 

Energy 

06/07/2009*, 

17/06/2010, 

24/06/2010. 

Mike’s 

Pond 

OSPW Clay. Poor Syncrude 

Consolidat

ed tailings 

oil sands 

process 

water. 

18 0458752, 

6330013 

Syncrude 

Canada 

Ltd. 

23/06/2009*. 

Natural 

Wetland  

OSPW Sand and 15 

cm peat 

mineral mix. 

Rich Suncor Oil 

sands 

process 

water 

(seepage) 

>24 0468962, 

6315305 

Suncor 

Energy 

25/07/2009*, 

17/06/2010, 

24/06/2009. 

Test Pond 9 OSPW Clay. Poor Oil sands 

process 

water  

17 0458007, 

6326993 

Syncrude 

Canada 

Ltd 

06/07/2009*, 

16/06/2010, 

24/06/2010, 

29/06/2010. 
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High 

Sulphate 

Constructed 

Reference 

Sodic 

overburden 

and 15 cm 

peat. 

Rich Fresh (but 

may be 

contamina

ted by 

seepage 

from lean 

oil sands 

26 0466395, 

6317235 

Off-site 25/07/2009*, 

17/06/2010, 

25/06/2010. 

North West 

Interceptor 

Ditch 

(NWID) 

Constructed 

Reference 

Sodic 

overburden 

Rich Fresh 18 0458147, 

6330045 

Syncrude 

Canada 

Ltd. 

23/06/2009*. 

Shallow 

Wetland 

Constructed 

Reference 

Sodic 

overburden 

Poor Fresh 18 0458126, 

6326649 

Syncrude 

Canada 

Ltd. 

06/07/2009*, 

16/06/2010, 

23/06/2010, 

29/06/2010. 

V-Notch 

Weir 

Constructed 

Reference 

Peat Rich Fresh 10 0467653, 

6316221 

Suncor 

Energy 

24/06/2010*. 

Pond 5 

Wetland 

Reference 

that 

developed 

opportunist-

ically 

Sodic 

overburden 

Poor Fresh <7 0466472, 

6319087 

Suncor 

Energy 

06/07/2009*. 
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Field Methods 

Pupal emergence traps were built from polyvinyl chloride (PVC) piping (26 mm ID x 3 

mm) bent into a circle to create floating hoops 30 cm in diameter (Swisterski et al., 

2006). Acetate sheets (11 cm wide) were stapled around the circumference of the hoop to 

provide a barrier against the wind and waves. Each wetland was sectioned radially into 

five equal areas, and one hoop was placed in an open expanse of water at the boundary 

between the emergent and submergent vegetation zone of each area at a water depth of 

approximately 40 cm. Three 25-cm long bamboo stakes driven into the sediment were 

used to secure each hoop in place (Fig. 2.1, Fig 2.2). Then, a small aquarium net was 

used to clear the surface of the water of any debris. Material floating on the water surface 

within the area circumscribed by the hoop was collected after 24 h by gently sweeping 

the surface of the water with a 0.4-mm mesh aquarium net. The net was inverted into a 

jar, and 70% ethanol was poured through the net and into the jar. The net was inspected 

for any remaining exuviae adhering to the mesh, and then more ethanol was poured into 

the jar. At the time of collection, water pH, conductivity, temperature, and salinity were 

measured with a YSI model 556MPS meter. Preliminary data indicated that there was 

very little within-wetland variability in these measures. Consequently, only one set of 

measurements per wetland per sampling date was taken. 
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Figure 2.1: Photo of floating hoop emergence traps (Photo by K. Jurkowski, 2009) 

Hoop diameter is 30 cm. 
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Figure 2.2: Schematic diagram of floating hoop emergence trap (from Swisterski et 

al., 2006). 
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Water samples were also taken for later analysis of NA, major ions, dissolved organic 

carbon, and other water quality characteristics. Analyses were performed by the Syncrude 

Canada, Ltd. analytical lab. In cases where current data were not available, 2008 data was 

used instead (see appendix A for all water quality results). If rain occurred during any 24-

h sampling period, exuviae were not collected, and hoops were deployed again until dry 

weather conditions were met.  

Laboratory Methods 

When samples were brought back to the lab, jar contents were poured through a small 

250-µm sieve and emptied into a Petri plate containing water. Exuviae were then counted 

and sorted beneath a dissecting microscope, placed in a petri dish with glycerin to reduce 

movement, and photographed using a mounted digital camera. ImageTool 3.0
©

 software 

(UTHSCSA, San Antonio, TX) was then used to digitally determine the length of each 

exuvia from the images.  

 

Exuviae were mounted on labeled glass microscope slides with a drop of CMC-9AF 

mounting medium (Masters Chemical Co., Wood Dale, IL), covered with a cover slip, 

allowed to dry, and the edges of the cover slip were sealed with nail polish. Pupae were 

identified to genus or species where possible using the keys of Wiederholm (1986). 

 



 

36 

Data Analysis 

Statistical analyses were performed using STATISTICA 7 software (Statsoft, Inc., Tulsa, 

OK). Differences in mean abundance and mean pupal length between wetland classes 

(OSPM vs. reference) were compared by one-way ANOVA. Data were log transformed 

to meet the assumption of equal variances. A type I error value of 0.05 was chosen to 

determine whether wetland classes were significantly different. The influence of various 

water quality parameters (dissolved oxygen, conductivity, salinity, temperature, 

naphthenic acid concentration, and dissolved organic carbon) on mean abundance and 

mean length was estimated using forward stepwise multiple regression. A stepwise 

procedure was used to distinguish among the effects of independent variables that tended 

to be correlated among themselves (e.g., conductivity and NA concentration). 

 

For diversity data, richness was compared between wetland classes using one-way 

ANOVA. The relative abundance of each genus within each wetland was expressed as a 

percentage and transformed to octaves (log2 +1) to reduce the dominance of the most 

common taxa (Gauch 1972). Genera that occurred in two or fewer wetlands were 

discarded from further analysis. The transformed relative abundance data were then 

analysed by Principal Components Analysis (PCA) in order to reduce the number of 

variables/genera to a few independent principal components (e.g. Leonhardt, 2003; Barr, 

2009). Components were rotated using varimax raw rotation. Multiple regression 

analyses were then performed to determine relationships between the principal 
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component scores of the chironomid emergence data (dependent variables) and water 

quality parameters (temperature, dissolved oxygen, naphthenic acid concentration, 

salinity, and conductivity – independent variables).  

Results 

Abundance of Exuviae 

On average, about twice as many exuviae per hoop were collected from OSPM wetlands 

than from reference wetlands (mean ± SE was 10.4 ± 6.1 (n=4) for OSPM wetlands vs. 

5.1 ±1.9 for reference wetlands (n=5) per 732 cm
2
 hoop). The difference was almost 

entirely attributable to the large numbers of exuviae collected in Test Pond 9.  Because 

there was marked among-wetland variation in abundance (Fig 2.3) the difference was not 

statistically significant (p=0.44). There were no significant differences in abundance 

among all nine wetlands (p=0.13; n=9; one-way ANOVA, Fig. 2.4). 
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Figure 2.3: Mean (± SE) number of exuviae per 732 cm2 hoop for 4 OSPM-affected 

wetlands and 5 reference wetlands. 
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Figure 2.4: Mean (± SE; n=5) number of exuviae per 732 cm
2
 hoop in study 

wetlands.  
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Size of Exuviae 

There was no significant difference in mean exuviae length between OSPM wetlands and 

reference wetlands (p=0.13; n=4 OSPM wetlands and n=5 reference wetlands; one-way 

ANOVA; Fig.2.5). However, there was significant heterogeneity in mean exuvia length 

among wetlands (p<0.001; n=9; one-way ANOVA; Fig. 2.6).  

Richness 

There was no significant difference between OSPM and reference wetlands in richness of 

genera (p>0.05; n=4 OSPM wetlands and 5 reference wetlands; one-way ANOVA; Fig. 

2.7). 
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Figure 2.5: Mean exuviae length (± 1 SE) for four OSPM-affected wetlands and five 

reference wetlands (p=0.13). 

 

 

 

 



 

42 

Wetland

L
en

g
th

 (
m

m
)

4mCT

Mike's Pond

Natural

TP9

High Sulphate

NWID

Pond 5

Shallow

Vnotch
0

1

2

3

4

5

6

7

8

 OSPM

 Reference

 

Figure 2.6: Mean exuviae length (± 1 SE) graphed by wetland.  
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Figure 2.7: Genus richness in OSPM and reference wetlands. 
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Water Chemistry 

Water chemistry measured at the time of sample collection included dissolved oxygen 

(mg/L), temperature (˚C), conductivity (μS/cm), and salinity (ppt). Naphthenic acid 

concentrations (mg/L) and dissolved organic carbon (mg/L) values from previous years 

were used to supplement the data set. Organic level (peat or no peat) was included as a 

categorical variable in the data set (present (1) or absent (0), depending on whether or not 

a layer was placed over the inorganic sediments during wetland construction). Water 

quality data are summarized in Appendix A.  

 

The forward stepwise regression of the water chemistry data on the mean abundance of 

exuviae revealed no significant relationships (n=9, p=0.23, R
2
= 0.20, with dissolved 

oxygen as the only step). However, the forward stepwise regression of water chemistry 

data on mean exuviae length revealed a significant relationship with dissolved organic 

carbon (n=9, p=0.015, R
2
=0.67). 

 

Composition of Emergent Chironomidae 

Thirty genera were identified from among the 300+ exuviae examined from the nine 

study wetlands (Appendix B). Twenty-two genera were relatively rare, occurring in only 

one or two wetlands.  Common genera (those that were present in three or more 

wetlands) belonged to the subfamlies Tanypodinae (Ablabesmyia, Guttipelopia, 



 

45 

Neozavrelia, Procladius, Tanypus), Chironominae (Einfeldia, and Tanytarsus) and 

Orthocladiinae (Paracricotopus,).  

 

Covariation in relative abundances among the 8 common genera in the study wetlands 

was summarized by principal component analysis (PCA) of the octave-transformed 

values. Four principal components (PCs) with eigenvalues >1.0 were derived and, 

together, they explained 84% of the variance in the data set (Table 2.2). The relative 

abundance of Einfeldia was positively correlated with PC-I whereas relative abundances 

of Neozavrelia and Paracricotopus were negatively correlated with this principal 

component (Table 2.3). Relative abundances of Ablabesmyia and Tanytarsus were 

positively and negatively correlated with values of PC-II, respectively. The relative 

abundances of both Procladius and Tanypus were positively correlated with PC-III, 

whereas Guttipelopia relative abundance was negatively associated with PC-IV. 

Scatterplots of where each wetland falls with respect to each PC indicate that there was 

no obvious grouping of wetland type with respect to community composition (Figures 2.8 

and 2.9). 

 

Forward stepwise regression was performed on the PC scores for each of the four 

principlal compoents using water quality data (Table 2.4). Scores of PC-I were 

significantly negatively correlated with temperature (p= 0.002) and significantly 

positively correlated with dissolved organic carbon (p= 0.023). Values of PC-II were 
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significantly negatively correlated with dissolved oxygen (p= 0.034) and conductivity (p= 

0.045). The scores of PC-III and PC-IV were not significantly correlated with any of the 

water quality parameters.  
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Table 2.2: Descriptions of four principal components derived log percent abundance 

of eight dominant emergent chironomid genera. 

 Eigenvalue Variance Explained 

(%) 

Cumulative 

Variance Explained 

(%) 

PCI 2.559 32.0 32.0 

PCII 1.721 21.5 53.5 

PCIII 1.252 15.7 69.1 

PCIV 1.162 14.5 83.7 

 

Table 2.3: PC loadings for each of the eight dominant genera. Loadings greater than 

|0.6| are bold faced. 

Genus PCI PCII PCIII PCIV 

Neozavrelia -0.87 0.03 -0.02 0.01 

Paracricotopus -0.68 0.36 -0.25 0.01 

Einfeldia 0.66 0.11 0.17 0.58 

Ablabesmyia -0.28 0.89 -0.05 0.15 

Tanytarsus -0.51 -0.74 -0.01 0.12 

Procladius 0.01 -0.13 0.96 -0.17 

Tanypus 0.26 0.19 0.74 0.49 

Guttipelopia 0.04 -0.02 0.08 -0.94 

Explained 

Variance 
2.07 1.53 1.58 

1.52 

% of Total 

Variance 

Explained 

25.8 19.1 19.7 

19.0 
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Figure 2.8: Wetlands graphed according to PCI and PCII scores. 
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Figure 2.9: Wetlands graphed according to PC III and PCIV scores. 
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Table 2.4: Results of a forward stepwise multiple regression of conductivity, salinity, 

naphthenic acid concentration, dissolved oxygen (D.O.), dissolved organic carbon 

(D.O.C.), and temperature on PCA scores. Statistically significant p-values (<0.05) 

are indicated by an asterisk (*). 

  

 PC-I 

R
2
= 0.898, N= 9, p= 0.006 

 Regression 

Coefficient 

 

S.E. of 

Regression 

Coefficient 

Partial R
2 

t-value p-value 

Intercept 10.06 1.642  6.127 0.002* 

Temperature 

(C)  
-0.497 0.083 0.654 -6.035 0.002* 

Organic 

Level 
0.965 0.296 0.137 3.256 0.023* 

DOC (mg/L) -0.015 0.006 0.107 -2.301 0.070 

 

 PC-II 

R
2
= 0.798, N= 9, p= 0.034 

 Regression 

Coefficient 

S.E. of 

Regression 

Coefficient 

Partial 

R
2 

t-value p-value 

Intercept 1.723 0.793  2.172 0.082 

DO (mg/L) -0.218 0.076 0.510 -2.881 0.034* 

Conductivity -0.001 0.001 0.179 -2.650 0.045* 

DOC (mg/L) 0.021 0.013 0.109 1.648 0.160 
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Discussion 

Exuvial abundance and size were similar between wetland types, indicating that overall 

production was equivalent among wetlands, at least within the areas and at the times 

sampled.  The abundance of chironomids emerging from OSPW wetlands was much 

more variable than abundance of chironomids emerging from reference wetlands but this 

is largely due to Test Pond 9 data. Swisterski et al. (2006) used the same hoops and found 

a mean (±S.E.) of 37 (± 5) chironomid pupal exuviae per hoop across 18 samples, which 

exceeds the mean of this study (7.5 ± 3.0); however, she studied only one wetland 

(Natural Wetland). The chironomids that emerged from reference wetlands tended to be 

smaller than chironomids that emerged from OSPW wetlands, but the trend was not 

statistically significant. The apparent similarity in productivity, as measured by 

abundance and size at time of emergence, between OSPW wetlands and reference 

wetlands suggests that overall productivity was similar between wetland classes, which 

implies similarity at other stages of the life cycle. Adult fecundity is highly correlated 

with pupal size (Butler and Walker 1992) and larval growth rate correlates with 

emergence success (Liber et al. 1996). One factor that may explain the lack of 

relationship between wetland type and emergence is their relatively older age. The 

OSPW wetlands were 13 to 24 years old. Perhaps toxicity of the OSPW with which the 

reclaimed wetlands were originally filled has decreased over time, or the chironomids 

present are tolerant of the water quality in those wetlands. Leonhardt (2003) predicted 

that community composition of reference and OSPW-affected wetlands would become 
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indistinguishable after approximately 18 years. However, water quality data suggests that 

the conductivity has not changed much over time. The conductivities of the OSPW 

wetlands, all of which were >10 years old remained high. Another explanation for the 

high variability is that the limited dudration of sampling was not representative of 

emergence over the season. Different species emerge at different times throughout the 

year, so a 24-h emergence trap collection provides only a small snapshot of the 

community emerging and may be subject to bias in size and abundance of chironomids. 

Assessing emergence over the entire season could indicate how the timing of emergence 

might vary with respect to wetland characteristics. 

 

In general, emergent chironomid abundance is positively correlated with the volume of 

submerged aquatic vegetation (e.g. Gerking 1957, Darby 1962, Krul 1970). Pondweed 

(Potamogeton pectinatus), in particular, offers a habitat with greater surface area for 

colonization than emergent vegetation such as cattail (Typha latifolia) (Wrubleski 1987). 

By observation, wetlands in this study with very little submerged aquatic vegetation, such 

as Mike’s Pond, supported fewer emergent chironomids than wetlands with a greater 

abundance of submerged aquatic vegetation such as Test Pond 9 and High Sulphate. 

When analyzing water chemistry data that may have influenced chironomid pupal size 

and abundance, the only significant relationship detected was between mean length (mm) 

and dissolved organic carbon (mg/L). This may reflect a difference food quality. 

Chironomids predominantly feed on detritus, and high dissolved organic carbon can 
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result in greater bacterial biomass, which is an important, nutritious component of 

detritus (Boon, 2006; Daly, 2007). Therefore, it is logical that dissolved organic carbon 

and chironomid size are correlated with one another.  

 

The PCA and forward stepwise multiple regressions on the PCA scores (dependent 

variables) using the water quality parameters (independent variables) indicated that the 

relative abundance of Einfeldia, as summarized by PC1, was negatively associated with 

temperature and positively associated with organic level (peat presence or absence); the 

presence of Neozavrelia, also summarized by PC1, was positively associated with 

temperature and negatively associated with organic level; relative abundance of  

Paracricotopus, the third genus summarized by PC1, was positively associated with 

temperature and negatively associated with organic level; Ablabesmyia, as summarized 

by PCII, had negative relationships with both dissolved oxygen and conductivity; and 

finally, the relative abundance of Tanytarsus, as summarized by PCII, was positively 

associated with both dissolved oxygen and conductivity. There were no consistent results 

regarding community assemblages that were specific to one wetland class (OSPW versus 

reference) or the other. 

 

Certain assemblages of Chironomidae are usually so closely associated with conductivity 

that they are used to infer lake history (Walker et al. 1995). Walker et al. (1995) analyzed 

the chironomid community in 86 British Columbia lakes of varying salinities. Einfeldia 
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are burrowers, so the presence of organic material could make the habitat at the sediment 

level more favourable—this could explain the positive relationship we see with organic 

level. Relative abundances of both Neozavrelia and Paracricotopus were negatively 

associated with organic level. Ablabesmyia is a predacious chironomid and since it does 

not feed on detritus directly, as the other common genera do, this could explain the lack 

of relationship with organic level. Only two of the common genera exhibited a significant 

relationship with conductivity; Ablabesmyia relative abundance was negatively related to 

conductivity, and Tanytarsus relative abundance was positively related. This indicates 

that Tanytarsus is a salt-tolerant genus whereas Ablabesmyia is salt-intolerant. Similar 

relationships were found between these two genera and dissolved oxygen; Ablabesmyia 

had a negative relationship with dissolved oxygen levels whereas Tanytarsus exhibited a 

positive relationship. Whelly (1999) found that Tanytarsus was a common genus in both 

OSPW and reference wetlands. However, Tanytarsus was the only predominant genus 

found in common between the study by Whelly (1999) and the present study. It is 

noteworthy that Derotanypus, whose occurrence is strongly associated with elevated 

salinity (Walker et al., 1995; Whelly, 1999) was not collected on the sampling dates of 

this study. Clearly, examination of trends throughout the emergence season would 

strengthen the conclusions of this study. 

Conclusion 

It appears that reclaimed wetlands affected by OSPW and other process materials do not 

significantly differ in the abundance of chironomids emerging or the size at time of 
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emergence over the time period sampled. Reference wetland waters supported 

chironomids with smaller pupae than did OSPW wetlands. This may be a function of the 

species present. Dissolved organic carbon concentration was significantly correlated with 

mean length of chironomid pupae; this is likely related to better food quality in wetlands 

with high dissolved organic carbon. Differences in chironomid community among 

wetlands did not correspond to wetland class (OSPW versus reference wetlands), but the 

relative abundances of certain genera tended to be correlated with some water quality 

parameters; of particular interest was that Ablabesmyia was relatively uncommon in 

wetlands with high conductivity whereas Tanytarsus were most abundant in high 

conductivity conditions. 
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CHAPTER III 

GROWTH RATE AND SURVIVAL OF CHIRONOMUS RIPARIUS WHEN 

EXPOSED TO OIL SANDS PROCESS-AFFECTED WETLAND WATER IN 

A 10-D BIOASSAY 

Introduction 

Chironomids play an important role in ecosystems by providing food for higher trophic 

level organisms (Batzer et al., 1993) and by linking terrestrial and aquatic components of 

the food web. They are abundant and ubiquitous in water bodies, making them a highly 

applicable study group (Pascoe et al. 1989). In this study, Chironomus riparius larvae 

were used to assess the interaction of two key toxicants found in oil sands process 

waters—naphthenic acids and salts—and their individual and combined effects on larval 

biomass and survival. 

 

The Use of Field Level Bioassays 

Laboratory bioassays are useful in assessing toxicity because they are controlled, i.e., 

responses to the variable of interest are not confounded by the many factors that influence 

growth and survival under field conditions. However, results from a laboratory bioassay 

may not be fully transferable to the field precisely because natural variability in factors 

such as temperature, dissolved organic carbon, environmental heterogeneity, and the 

effects of other species may alter the organism’s response.  Whole-effluent toxicity 

(WET) testing provides a holistic, environmentally-realistic test that can integrate many 
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interactions of contaminants (Chapman, 2000). This makes whole effluent toxicity testing 

especially appropriate for determining toxicity in the wetlands of the oil sands region. 

 

Wetland Reclamation in the Athabasca Oil Sands 

As part of the lease agreement with the Alberta government, all leased land must be 

functionally restored to a level of productivity equivalent to what it was before mining 

took place (FTFC, 1995). Therefore, terrestrial and aquatic reclamation strategies have 

become an important-- and necessary-- stage of mine closure. Due to the nature of the 

bitumen extraction process, large volumes of fluid tailings material are generated by the 

oil sands refining process. Since wetland area comprised 20-40% of the pre-mining 

landscape (FTFC, 1995), constructing wetlands that incorporate this tailings material and 

the associated mine process water has become a major goal of landscape reclamation.  

With the goal of reclamation research in mind, Syncrude Canada Ltd. and Suncor Energy 

both constructed a series of demonstration OSPM (oil sands process material)-affected 

and reference wetlands. Natural wetlands that formed opportunistically in the area are 

also used in this study. 

 

Two components of OSPW can be particularly toxic to aquatic biota—naphthenic acids 

and salts (Allen 2008, Leung et al. 2001), both of which occur naturally in the oil sands 

ore but become concentrated by the mining process. Naphthenic acids are a complex 

mixture of alkyl-substituted carboxylic acids (Holowenko et al., 2002). Due to their 

surfactant nature, naphthenic acids are expected to cause respiratory stress to 

chironomids, whereas high ionic concentrations may affect osmoregulation. There is 
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evidence, however, that there may be an antagonistic relationship between these two 

compounds (Turcotte et al., 2009). Although studies on the interaction between 

naphthenic acids and salts are scarce, an antagonistic interaction between other 

surfactants and salts has been documented in bluegill (Hokanson & Smith, 1971) and 

goldfish (Gafa Riv, 1974). The reason for this is likely due to precipitation of the 

surfactant out of solution caused by interactions with bivalent cations (e.g. Ca
2+

 and 

Mg
2+

), which causes a reduction in bioavailability (Verge et al. 2001). 

 

 Whelly (1999) conducted a 10-d dilution series bioassay of OSPW with several 

populations of Chironomus. He found that fresh OSPW reduced survival and growth. The 

LC50, that is, the lethal concentration for 50% of organisms, was found to be 

approximately 65% OSPW (Whelly, 1999), which would correspond to an NA 

concentration of approximately 32 mg/L given the concentrations of the source process 

water around the time of the study (Holowenko et al., 2002). 

 

The majority of OSPW or OSPM-affected wetlands in the area contain both NA and salts. 

As wetland waters age, naphthenic acid concentrations tend to decline over time due to 

microbial degradation (Del Rio et al. 2006; Frank et al. 2008), but salinity should remain 

relatively unchanged in the closed systems of constructed study wetlands.  

 

The goal of this study was to determine what toxic effects, if any, are associated with 

naphthenic acids and salinity. Survivorship and growth rate of C. riparius in wetland 

water that contains a range of naphthenic acids (NAs) and conductivities was studied. 
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Wetland waters used as replicates in toxicity bioassays as opposed to a dilution series is a 

novel and highly applicable approach to the question at hand.  

 

It was expected that there would be significant negative relationships between survival 

and conductivity, biomass and conductivity, survival and NA concentration, and biomass 

and NA concentration. Both salts and NAs were expected to pose lethal and sublethal 

toxicity to C. riparius larvae, resulting in lower survival and lower final biomass due to 

reduced growth rate. However, salts and NAs were expected to react antagonistically and 

yield higher survival and biomass than if their individual effects were added together. 

This was expected to be reflected in a positive interaction term in the multiple regression 

on conductivity and NA concentration with both biomass and survival as dependent 

variables. This antagonism between salts and NAs has been demonstrated in preliminary 

studies on Ceriodaphnia dubia by Turcotte et al. (2009). Other surfactants have also been 

shown to interact antagonistically with salts (Hokanson & Smith, 1971; Gafa Riv, 1974).  

Methods 

Organism Origin and Maintenance 

Chironomus riparius eggs were provided from a culture maintained at the National Water 

Research Institute of Environment Canada (Burlington, ON). One set of eggs was used 

immediately for studies conducted in July 2009. Another set of eggs was used to generate 

a self-sustaining culture maintained at the University of Windsor following Environment 

Canada protocols. Studies conducted during July 2010 used first instar larvae hatching 

from egg masses derived from the University of Windsor daughter culture.  
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Study Wetlands  

Twelve wetlands were selected for this experiment. Wetlands were chosen to represent a 

broad range of combinations of naphthenic acids (NA) and conductivities. Conductivity 

was chosen over Total Dissolved Solids (TDS) in this case because insufficient data were 

available to characterise the concentration of major ions prior to the experiment. Each 

wetland’s class, age, conductivity, concentration of NA, major ions (when data were 

available), and UTM coordinates are listed in Table 3.1. 
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Table 3.1: Descriptions of the study wetlands. 

Wetland 

Name 

Class Conductivity 

(µS/cm) 

NA 

(mg/L) 

Lease 

Property 

Geographic 

Coordinates 

(UTM) 

Major 

Cation(s) 

(>100 mg/L) 

Major 

Anion(s) 

(>100 mg/L) 

Recycle 

Pond 

OSPW and 

OSPM 

3430 80
c 

Syncrude 0460010, 

6323321 

Not Available Not Available 

Trench 4 OSPW 795 22.0
 b 

Suncor 0469261, 

6315323 

Na
+
  

(b) 
HCO3

-
, SO4

2-
 
 

(b) 

Dyke 4 

Reservoir 

OSPW 855 23.0
 b 

Suncor 0467776, 

6316302 

Na
+
, Ca

2+   (b) 
SO4

2-
, HCO3

-
 
(b) 

4-m CT OSPM and 

OSPW 

4523 41
 b 

Suncor 0467670, 

6316509 

Na
+
, Mg

2+  (b) 
HCO3

-
, SO4

2-
 
 

(a) 

Test Pond 

9 

OSPW 2067 20.4
a 

Syncrude 0458007, 

6326993 

Na
+
 
(a) 

HCO3
-
 , Cl

-
  

(a) 

High 

Sulphate 

Reference 

(but may be 

contaminated) 

3025 12
b 

Off-site 0466395, 

6317235 

Na
+
, Ca

2+   (b) 
SO4

2-
, HCO3

-
  

(b) 

(SO4>>HCO3) 

Shallow 

Wetland 

Reference 370 2.3
a 

Syncrude 0458126, 

6326649 

None 

>100mg/L
(a) 

HCO3
-  (a) 

Natural 

Wetland 

OSPW 1234 64.0
b 

Suncor 0468962, 

6315305 

Na
+  (b) 

HCO3
-
  

(b) 

V-Notch 

Weir 

Reference 1004 7.0
b 

Suncor 0467653, 

6316221 

Ca
2+  (b) 

Not Available 

Peat Pond Reference 1743 1.0
 a 

Syncrude 0462075, 

6316867 

Na
+
 
(a) 

SO4
2-

, HCO3
-
  

(a) 

Golden 

Pond 

Reference 1874 3.7
a 

Syncrude 0462066, 

6317226 

Na
+
 
(a) 

SO4
2-

, HCO3
-
  

(a) 

Salt 

Marsh 

Reference 1238 5.0 Suncor 0467442, 

6316830 

Na
+
, Ca

2+   (b) 
Not Available  
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Mildred 

Lake 

Reference 331 0.9 Syncrude 0463618, 

6323259 

Not Available Not Available 

a
Mackinnon, 2008, 

b
Martin, 2011, 

c
Birks, 2010.
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Bioassay Procedures 

This study was conducted over a two years. The first 10-d trial occurred in July 2009 and 

the second 10-d trial occurred in July 2010.  Egg masses were placed in Petri dishes filled 

with dechlorinated tap water and checked daily for evidence of hatching. When first 

instar chironomids hatched from the eggs, 20 planktonic larvae were collected using a 

glass Pasteur pipette. In trial one, the chironomids were transferred to a 30-mL holding 

vial containing dechlorinated tap water before they were gently poured into treatment 

jars. In trial two, larvae were transferred directly from the Petri dish in which they 

hatched into the treatment jar. For each egg mass, two sets of 20 larvae were preserved 

per day to provide a measure of initial size.  

 

New 1-L Mason jars were scrubbed with Fisherbrand Sparkleen detergent and tap water, 

rinsed with tap water, then triple rinsed with deionized water. Coarse silica sand was used 

as a substrate with 100 mL of sand in each jar which produced a depth of approximately 2 

cm. Jars were then filled with 500 mL of wetland water, which had been filtered through 

a 280-μm fabric sieve. Five replicate jars per wetland were used. Jars were kept in an 

evaporation tank 120 cm in diameter filled with 7.5 cm of water to facilitate temperature 

control. The experiment was done in an unheated trailer on Syncrude Canada Ltd’s 

Mildred Lake site.  Jars were aerated for a minimum of 24 h before the addition of larvae 

and continuously thereafter throughout the study. A branched aeration method as 

described in Corkum and Hanes (1989) was used. Dissolved oxygen, conductivity, 

salinity, and pH were measured on days 1 and 0 of the experiments. Larvae were fed a 

volume of slurry solution equivalent to 10 mg tropical fish flakes per jar, per day.  After 
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10 d, larvae were removed by sieving the contents of each jar through a 250-um sieve and 

using forceps to remove larvae. Larvae were preserved in chilled Carnoy’s solution (3:1, 

ethanol: glacial acetic acid), which was changed 1 h and 24 h after initial preservation.  

 

Laboratory Procedures 

Survival was determined by counting the number of living larvae found after day 10. 

Final chironomid size was determined by photographing each chironomid using a digital 

camera mounted on a dissecting microscope. Images of larval length were then measured 

digitally using ImageTool software. Biomass was then calculated from larval length using 

the following conversion equation: 

  Biomass = 0.0018 x (Length)
2.617 

where biomass is in mg (dry mass) and length is in mm (Benke et al., 1999).  

 

Statistical Analyses 

Log-transformed survival ratio (survival divided by mortality plus one) and log-

transformed mean biomass across log-transformed NA concentrations and log-

transformed conductivities and the interaction term (i.e., the product of NA concentration 

and conductivity) were analyzed by forward stepwise multiple regression. The class of 

wetland from which source water was taken (OSPW or reference) and year were included 

in the regressions as dummy variables, indicated in the model as 0 or 1. Linear regression 

was also used to determine whether there was a relationship between length and 

survival—in other words, a density-dependent effect. STATISTICA 7 software was used 
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for all statistical analyses and a p-value of less than 0.05 was considered statistically 

significant. 

 

Results 

Survival of Chironomid Larvae 

Results of the forward stepwise multiple regression of log-transformed survival ratio 

(survival/mortality) versus log-transformed conductivity, log-transformed naphthenic 

acid concentration, and their interaction term as well as the class and year dummy 

variables indicated that chironomid larval survival was affected only by conductivity 

(Table 3.3). Log survival ratio was positively associated with log conductivity. This 

indicates that chironomids exhibited higher survival in higher conductivity wetland 

waters (Fig. 3.1). There was no significant relationship between log NA concentration 

and survival (Fig. 3.2).  

 

Biomass of Chironomid Larvae 

Forward stepwise multiple regression (results in Table 3.4) indicated that mean biomass 

varied significantly both between years and with respect to wetland class-- larvae attained 

higher biomass in the 2010 trial than in the 2011 trial-- and reference wetland waters 

yielded larger chironomids than OSPW wetland waters. There was also a significant, 

positive relationship between conductivity and chironomid biomass, indicating that 

chironomid larvae reared in water with higher conductivities grew larger than those 

reared in lower conductivity wetland water (Fig. 3.3), even after taking into account the 

differences due to wetland class. There was also a significant, positive effect of log-NA 
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on log-biomass—this indicates that chironomids grew larger in high NA wetland waters 

than in lower NA wetland waters (Fig. 3.4). Log conductivity and log NA had a 

significant, negative interaction on log biomass. 
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Table 3.2: Results of a forward stepwise multiple regression on log(survival ratio + 

1) with class (OSPW or reference), year, log(NA), log(conductivity), and the 

interaction term of log(NA) and log(conductivity) as independent variables. 

Significant p-values are indicated by an asterisk (*). 

 Regression 

Coefficient 

S.E. R
2 

t-value p-value 

Intercept -0.6174 0.5535  -1.11 0.269 

Log(Conductivity) 0.3571 0.1758 0.246 2.03 0.0463* 

Total   0.246   

 

 

Table 3.3: Results of a forward stepwise multiple regression with log(biomass) as the 

dependent variable and class (OSPW or reference), year, log(NA), 

log(conductivity), and the interaction term of log(NA) and log(conductivity) 

as independent variable. Significant p-values are indicated by an asterisk (*). 

 Regression 

Coefficient 

S.E. Partial 

R
2 

t-value p-value 

Intercept 0.0589 0.3000  0.1966 0.8450 

Year -0.3603 0.0445 0.4680 -8.0916 <0.0001* 

Log(Conductivity) 0.0082 0.1146 -0.4145 0.0718 0.9430 

Wetland Class -0.1923 0.0721 0.9774 -2.6665 0.0104* 

Log(NA) 0.8794 0.2246 0.0313 3.9147 0.0003* 

Log(NA)*Log   

(Conductivity) 
-0.2812 0.0826 0.0789 -3.4044 0.001* 

Total   0.6731   
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Figure 3.1: Percent larval survival per jar across a range of conductivities (μS/cm) 

of thirteen wetland waters. 



 

73 

 

 

Figure 3.2: Percent larval survival per jar across a range of naphthenic acid 

concentrations (mg/L) of thirteen wetland waters. 
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Figure 3.3: Mean larval biomass (mg) per jar across a range of conductivities of 

thirteen wetland waters. 
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Figure 3.4: Mean larval biomass (mg) per jar across a range of naphthenic acid 

concentrations (mg/L) of thirteen wetland waters. 
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Correlation between Length and Survival 

In order to determine whether the density of larvae, (which was very variable both among 

and within treatments) affected their size, a linear regression was performed .Mean length 

per jar was not significantly related to number of larvae per jar surviving to the end of the 

bioassay (p=0.664; Figure 3.3). This indicates that surviving larvae in each jar did not 

consume proportionally more food per individual when larvae in the same jar died. The 

two variables appear to be independent of one another
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Figure 3.5: Relationship between mean length of chironomids per jar (mm) and the 

number of individuals surviving to the end of 10-d bioassay. 
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Discussion 

Chironomid larvae survival was low overall, but was significantly positively related to 

conductivity. In other words, larvae reared in high conductivity wetland waters survived 

better than those in low conductivity wetland waters. This was unexpected because many 

species of the genus Chironomus are among the least salt tolerant of the family (Cannings 

and Scudder, 1978). Survival was not significantly affected by year, class, or NA 

concentration. There was no significant interaction between NA and conductivity on 

larval survival. 

 

There was a significant positive logarithmic relationship between NA and biomass and 

between conductivity and biomass. This was contrary to the expectation that these two 

toxicants would pose sublethal stress leading to lower growth rate. There was also a 

negative interaction between NA and conductivity—this indicated that there was a 

synergistic effect and that the two are more likely to limit growth when combined than 

expected if the effects of each were added together. The 2010 trial yielded larger 

chironomids than the 2011 trial. This may have been due to temperature differences or 

the wetlands chosen in each year. Chironomid larvae that were held in reference wetland 

waters grew to a larger size than those that were held in OSPW wetland waters. This may 

indicate a sublethal toxicity of OSPW wetland waters from components other than NA 

and conductivity.  
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Preliminary findings by Turcotte et al. (2009) indicated that there was an antagonistic 

interaction between the effects of salts and NA on survival of Ceriodaphnia dubia in the 

laboratory. They hypothesized that the presence of salts caused the acids to precipitate 

out of solution (Turcotte et al. 2009). If the acids did precipitate out of solution, a 

planktonic animal such as C. dubia would no longer be in contact with the salt-bound 

acid, but a benthic invertebrate such as C. riparius would still be in contact with the 

surfactant. It is also possible that C. riparius are more resilient to these concentrations of 

salts and NA. 

 

Anderson et al. (2011) studied survival, growth, and emergence of Chironomus dilutus 

exposed to fresh and treated OSPW. There was no consistent, significant trend to indicate 

that OSPW negatively affected survival, but it did reduce larval size. In the same study, 

also found that exposure to a saltwater control did not significantly impair growth, 

survival, or emergence of C. dilutus larvae, but concentration of NA did correlate 

significantly with reductions in these three endpoints (Anderson et al. 2011). The findings 

of Anderson et al. (2011) are not consistent with the findings of this study.  

 

The effect of naphthenic acids and conductivity on biomass and survival of chironomid 

larvae did not prove to be significant in this study. Overall, there was high mortality in 

every treatment, including controls, and this more likely led to non-significant results. 

This high mortality may have been the result of residual detergent in the jars which may 

have caused stress to the larvae. Alternatively, the stress caused by handling and 
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transferring chironomid larvae that were only a few hours hold, may have been 

responsible for the consistently high mortality. 

 

There was no significant relationship between length and survival of chironomids. This 

indicates that chironomids did not grow more quickly when other chironomids in the jar 

died. This is confounded with the overall high mortality, but indicates that adequate space 

and food was provided for each larva.  

 

Conclusion 

Larvae reared in water from wetlands containing OSPW tended to be smaller than larvae 

reared in water from reference wetlands, all other things being equal. However,  low 

survivorship of the chironomid larvae overall compromised this study and prevented an 

adequate assessment of the interaction between naphthenic acids and salts and their 

combined and separate effects on biomass and survival. Limited evidence suggests that 

C. riparius larvae may survive better in water with conductivity higher than the controls 

used in this study.  
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CHAPTER IV: ASSESSING INDEPENDENT AND INTERACTIVE EFFECTS OF 

NAPHTHENIC ACIDS AND SALTS ON LARVAE OF CHIRONOMUS 

RIPARIUS (DIPTERA: CHIRONOMIDAE) IN LABORATORY 

BIOASSAYS 

 Introduction 

Oil sands process water contains a mixture of potential toxicants including, but not 

limited to, high concentrations of naphthenic acids and salts. The purpose of this study 

was to determine the independent and combined effects of these two toxicants on the 

growth and survival of the benthic macroinvertebrate Chironomus riparius in the 

laboratory. 

Chironomus riparius as a Study Species 

Chironomids often dominate the benthic invertebrate community biomass, so their 

productivity has potential to influence overall wetland ecosystem productivity and 

productivity of surrounding terrestrial food webs (Pascoe et al., 1989). For example, 

Hoekman et al. (2012) found that the deposition and accrual of dying, postmating 

chironomids can enrich plant and arthropod communities in terrestrial food webs. Their 

abundance makes large chironomids an important prey species for mallards (Batzer et al., 

1993). Adult chironomids are a dominant part of the diets of silver-haired bats (Barclay, 

1985) and tree swallows (St. Louis et al., 1990). Chironomus riparius is a commonly-

used toxicity test organism, so toxicants can be easily compared within this species 

(Pascoe et al. 1989). 
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The Toxicity of Oil Sands Process Water 

The extraction and refining of oil from mined oil sands generates large volumes of fine 

fluid tailings material (FTFC, 1995). Oil sands industries then face the challenge of 

storing the tailings material and process water in an environmentally sound manner. 

However, oil sands process water/ material (OSPW or OSPM, respectively) contains high 

concentrations of salts and naphthenic acids and some trace metals, which can cause 

adverse effects to aquatic biota (reviewed in the General Introduction). 

Oil sands process water (OSPW) and water from OSPM-affected wetlands can be toxic to 

a variety of organisms across several trophic levels. Northern Canadian toad (Bufo 

boreas) and wood frog (Rana sylvatica) tadpoles held in OSPM-affected ponds exhibited 

reduced growth and development (Pollet & Bendell-Young, 2000).  Similarly, wood frog 

tadpoles have exhibited delayed metamorphosis in young OSPM-affected wetlands 

whereas older OSPM-wetlands had similar metamorphosis timing to reference wetlands 

(Hersikorn and Smits, 2011). In fathead minnows, OSPW with NA concentrations of >25 

mg/L and conductivities of  >2000 µS/cm caused a variety reproduction-associated 

effects including lowered spawning success and reduced sex steroid hormone levels 

(Kavanaugh et al., 2011). In the laboratory, 96-h exposure to as little as 6.3 % OSPW 

significantly reduced mean final length and survival of larvae of black flies (Simulium 

vittatum) (Sabo 2003). In one study, first instar Chironomus dilutus larvae exhibited a 10-

d LC50 of 65% OSPW (Whelly, 1999). However, Chironomus riparius were more 

tolerant than C. dilutus, exhibiting relatively minor reductions in survival and growth in 

100% OSPW (Whelly 1999). 
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The Toxicity of Salts 

There are several ways of measuring the amount of salt in solution (Mackie, 2004). 

Specific conductance or conductivity measures the flow of electrons through the water 

usually in microsiemens per centimeter (µS/cm). Second, salinity refers to the 

concentration of dissolved salts, usually expressed in parts per thousand (ppt). Third, 

total dissolved solids (TDS) also refers to the concentration of dissolved salts, but it is 

measured by mass as opposed to number of ions per volume of water and is usually 

expressed as milligrams per liter (mg/L) (Mackie, 2004). 

  

The marine origin of the oil sands mined in northeastern Alberta causes OSPW to be 

saline, which results in characteristically elevated conductivity (FTFC, 1995). 

Chironomids can tolerate varying degrees of salinity, and several species thrive in 

intertidal or marine conditions (Pinder, 1995). Fourth instar Chironomus riparius can 

tolerate salinity of up to 10 ppt without increases in mortality or reductions in emergence 

success (Bervoets et al., 1996). The presence of salts, especially particular ions may 

reduce the bioavailability of other constituents that may themselves be toxic. For 

example, Hall and Anderson (1995) found that the toxicity of most metals to aquatic 

biota decreases as salinity increases, likely because metals are more bioavailable in the 

free ion form (Hall & Anderson, 1995). This suggests that the toxicity of trace metals in 

OSPW-affected wetlands that contain higher salinities may be lower than metal toxicity 

in reference wetlands.  
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The Toxicity of Naphthenic Acids 

Naphthenic acids (NAs) are “alkyl-substituted cyclic and aliphatic carboxylic acids that 

are removed from bitumen during the extraction process” (Allen, 2008). They occur 

naturally in low levels (<1 mg/L) in waters of the oil sands area but become concentrated 

in OSPW (reaching concentrations as high as 120 mg/L) during the refining process 

(M.D. MacKinnon, Syncrude Canada Ltd., unpublished; Headley & McMartin, 2004).  

In a 96-h toxicity test, NAs had LC50 of <10 mg/L in trout (Schramm et al. 1984). The 

mode of toxicity of NAs has seldom been addressed. One possibility is that the 

amphipathic nature of NAs causes disruption at the cell membrane (narcosis) which could 

ultimately lead to cell death (Frank et al., 2008). Zhang et al. (2011) used a genetic 

approach in order to determine the mode of toxicity for NAs. They found that genes 

involved in NADP or NADPH binding were up-regulated and genes involved in the 

ATP-binding cassette transporter complex were down-regulated when E. coli was 

exposed to naphthenic acids (Zhang et al., 2011). Because of the surfactant nature of NA, 

gill damage and death by asphyxiation is likely the cause of toxicity (Abel, 1974). 

Surfactants like NA can also interact with proteins and affect the permeability of cell 

membranes (Abel, 1974). 

Objectives 

The objectives of this study were to determine the toxicity of naphthenic acids and total 

dissolved solids to Chironomus riparius midge larvae and to determine the relationship of 

these toxicants when combined. The response variables studied were 10-d survival and 

larval final length at the end of a standard laboratory bioassay. It was expected that alone, 

high concentrations of naphthenic acids and added salts would reduce larval survival and 
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growth due to increased narcosis at the cell membrane and osmoregulation-related stress, 

respectively.  

Methods 

Study Organisms 

Egg masses from a Chironomus riparius culture at the University of Windsor, Windsor, 

Ontario were used in this study. These insects were originally derived from a lab-reared 

culture at Environment Canada, Burlington, Ontario. Freshly-laid egg masses were 

incubated individually in Petri dishes containing dechlorinated tap water at room 

temperature and were monitored every 12 h until hatching occurred. Planktonic newly 

hatched larvae that had finished feeding on the gelatinous egg matrix (>12 h old) were 

removed from their Petri dish by pipette and gently placed in experimental jars in groups 

of 20. Two groups of 20 newly hatched larvae from each egg mass were preserved in 

Carnoy’s solution (3:1 v/v, acetic acid: ethanol) at this time to be later measured as a 

proxy for initial size.  

Sources of Chemicals and Preparation of Water Treatments 

Naphthenic acids were extracted from Mildred Lake Settling Basin fluid tailings and 

concentrated into a stock solution by Richard Kavanagh (Canadian Natural Resources 

Limited) in 2008 using methods described by Frank et al. (2006). The salt solution was 

created by looking at the concentrations of individual ions recorded from Natural 

Wetland in 2008, which receives OSPW as seepage from an adjacent tailings pond on the 

Suncor Energy, Inc lease area (MacKinnon, 2008). This yielded a stock salt solution with 

the same ionic composition and total dissolved solids of a real oil sands process affected 
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wetland. The concentrations of individual ions in Natural Wetland are listed in Table 4.1 

and the salts added to ultrapure water to yield these concentrations are listed in Table 4.2. 
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Table 4.1: Concentrations of major ions in Natural Wetland. 

Ion 

Concentration in 

Natural Wetland 

(mg/L) 

Na
 

482 

K 15 

Mg 16 

Ca 23 

Cl 82 

SO4 240 

CO3 38 

HCO3 908 

 

Table 4.2: Salts added to Millipore filtered water to match major ion concentrations 

listed in Table 4.1 to yield 10L stock solution. 

Salt Mass (g) 

KCl 0.4944 

CaCl2 0.6369 

NaCl 0.4687 

NaHCO3 12.6971 

Na2CO3 0.6712 

Na2SO4 2.1805 

MgSO4 0.5910 
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Experimental Design 

Several assays were conducted in this study (Table 4.3). The following assays were 

conducted in a randomized block design in which replicates were blocked through time 

and space. Jars were randomly arranged under fluorescent light in an environmental 

chamber under a photoperiod of 16 hours light and 8 hours dark and kept at a constant 

temperature of 21˚C. The replicated sets of 25 treatments were randomly arranged 

through space. One-L Jars were washed with Sparkcleen soap, triple-rinsed with 

dechlorinated tap water, rinsed with 10% HCl, and triple-rinsed with high purity, 

Millipore-filtered water. A 2-cm depth of autoclaved fine silica sand was placed on the 

bottom of each jar, after which 1 L of treatment water was added. Jars were aerated 

individually with capillary tubing using the method of Corkum and Hanes (1989). 

Twenty newly hatched larvae (<24 h old; previously counted into a holding container) 

were carefully transferred into each jar. Ten mg of ground Nutrifin7 tropical fish food in 

a slurry solution was added to each jar daily (0.5mg/larvae/day).  

 

The assays ran for 10 d. On the 11th day of the study (240 h post inoculation) larvae were 

recovered by pouring the water and sand from a jar through a 250-µm mesh sieve and 

examining the material retained. Larvae were enumerated, immediately preserved in 

chilled Carnoy’s solution (3:1 v/v acetic acid: ethanol) and stored refrigerated. Larvae 

were then digitally photographed at 60x magnification beneath a dissection microscope. 

The body length (distance from posterior end of the anal proleg to the anterior margin of 

the head) of each larval image was measured to the nearest 100 µm using ImageTool 

3.0© (UTHSCSA, San Antonio, TX) image analysis software. 
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Table 4.3:  Description of the concentrations of potentially toxic constituents in each 

series 

Assay Naphthenic Acids Total Dissolved 

Solids 

Number of 

Replicates 

Completed 

Number 

of 

Replicates 

used in 

Analysis 

Concentration 

(mg/L) 

Percent of 

Maximum 

(%) 

TDS 

(mg/L) 

Percent of 

Maximum 

(%) 

Naphthenic 

Acid Assay 

0 0 335 0 4 3 

10 13 335 0 4 4 

18 22 335 0 4 2 

29 36 335 0 4 4 

48 60 335 0 3 2 

80 100 335 0 4 2 

Salt Assay 0 0 335 0 3 3 

0 0 523 13 4 4 

0 0 651 22 3 2 

0 0 853 36 4 4 

0 0 1199 60 3 3 

0 0 1774 100 4 4 

Combination 

Assay 

0 0 335 0 4 4 

0 0 1774 100 4 3 

10 13 1199 60 4 3 

18 22 853 36 4 3 

29 36 651 22 4 4 

48 30 523 13 3 2 

80 100 335 0 2 2 
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Statistical Analyses 

In order to analyze independent effects of NA and TDS on length and survival, the single 

toxicant bioassays were analyzed using linear regression on log transformed variables. A 

survival ratio (number of larvae that survived divided by number of larvae that died) was 

used in analysis and an arithmetic mean was taken as average length. Log transforming 

both the independent (NA and TDS) and dependent (length and survival) variables should 

produce a dose-response relationship that follows a linear model (De Lean et al., 1978). 

Two multiple linear regression analyses were performed, to relate each of the two 

dependent variables (larval survival and mean length-- both log-transformed) to 

concentrations of NA and TDS and their interaction (NA x TDS).  

Results 

In all three assays, larval survival was quite low, even in controls, ranging from 0 to 35 

percent in controls and 0 to 80 percent overall, with an overall mean of 19 percent. 

Furthermore, survival was highly variable. It is possible that first instar larvae were so 

fragile that handling stress occurred early on when larvae were transferred into test jars. 

Consequently, results should be interpreted with caution. Appendix G provides detailed 

survival and growth data. Temperature stayed constant over the course of the study 

beginning at 22.8 ± 1.1˚C and ending at 22.8 ± 1.8˚C. Because water was not changed 

throughout the 10 d, some evaporation occurred, and conductivity was slightly higher at 

the end of the experiment than at the beginning. On day 1 the control jars had a mean 

(±SD) of 470 ± 7 µS/cm, and this increased to 518 ± 43 µS/cm by day 11 Appendix F 

provides detailed water quality data. 
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Single Toxicant Bioassays 

 There was no significant relationship between the concentration of NA alone and larval 

survival [(Log (survival)/Log(mortality)] (Fig. 4.1; table 4.4). There was also no 

significant relationship between the concentration of NA and mean larval length (Fig. 

4.2; table 4.5). 

 

There was also no significant relationship between TDS alone and larval survival (Fig. 

4.3; table 4.6). However, there was a significant, negative relationship between mean 

larval length (mm) and TDS (p=0.01; Fig. 4.4; table 4.7).  
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Figure 4.1: Larval survival (percent) in each jar in which at least one larva survived 

to the end of the study the naphthenic assay series.  

 

 

 

 



 

96 

 

 

Figure 4.2: Geometric mean body length (mm) of larvae for each jar in which at 

least one larva survived in the naphthenic acid assay.  
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Table 4.4: Linear regression results of log transformed NA on log-transformed 

survival ratio (survival/mortality). Statistically significant p-values (<0.05) are 

indicated by an asterisk (*). N= 17, df=15. 

 Regression 

Coefficient 

S.E. R
2 

t-value p-value 

Intercept -0.94 0.32  -2.9 0.009* 

Log(NA+1) 0.23 0.24 0.057 0.95 0.36 

 

Table 4.5: Linear regression results of log transformed NA on log-transformed 

mean length (mm). Statistically significant p-values (<0.05) are indicated by an 

asterisk (*). N=17, df=15. 

 Regression 

Coefficient 

S.E. R
2 

t-value p-value 

Intercept 0.90 0.05  16.9 <0.0001* 

Log(NA+1) -0.01 0.04 0.012 -0.43 0.67 

 

 

 

 

 

 

 



 

98 

 

 

Figure 4.3: Larval survival (percent) in each jar in which at least one larva survived 

to the end of the study the salt assay series. 
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Figure 4.4: Geometric mean body length (mm) of larvae for each jar in which at 

least one larva survived in the salt acid assay. Note the log scale on the X axis. 
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Table 4.6: Linear regression results of log transformed TDS on log-transformed 

survival ratio (survival/mortality). Statistically significant p-values (<0.05) are 

indicated by an asterisk (*). N=20, df=18. 

 Regression 

Coefficient 

S.E. R
2 

t-value p-value 

Intercept 0.17 0.94  0.18 0.86 

Log(TDS) -0.32 0.32 0.05 -0.98 0.34 

 

Table 4.7: Linear regression results of log transformed TDS on log-transformed 

mean length (mm). Statistically significant p-values (<0.05) are indicated by an 

asterisk (*). N=20, df=18. 

 Regression 

Coefficient 

S.E. R
2 

t-value p-value 

Intercept 1.44 0.21  6.98 <0.0001* 

Log(TDS) -0.19 0.07 0.29 -2.73 0.01* 
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Combination Bioassay 

In the salt and NA combination bioassay, there was a significant negative relationship 

between NA concentration and survival (p<0.001; Fig. 4.5) and TDS and survival 

(p=0.02) (Fig. 4.6; Table 4.8). There was also a significant, positive interaction effect 

between NA and TDS with respect to survival (p<0.001). This indicates that there was an 

antagonistic relationship between NA and TDS resulting in greater larval survival in 

treatments in which the two toxicants were combined. In other words, there was a “rescue 

effect” of the salts on the toxicity of NA. Mean larval length was not significantly 

influenced by NA concentration (Fig. 4.7), TDS (Fig. 4.8), or the interaction between the 

two (Table 4.9). 
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Figure 4.5: Larval survival (%) versus NA in the combination bioassay in which 

salts (TDS) and NAs were combined.  
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Figure 4.6: Larval survival (%) versus TDS in the combination bioassay in which 

salts (TDS) and NAs were combined.  
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Figure 4.7: Geometric mean larval length (mm) versus NA in the combination assay 

in which salts (TDS) and NAs were combined. 
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Figure 4.8: Geometric mean larval length (mm) versus TDS in the combination 

assay in which salts (TDS) and NAs were combined. 
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Table 4.8: Multiple regression results of log transformed NA, TDS, and interaction 

effect on log-transformed survival ratio (survival/mortality). Statistically significant 

p-values (<0.05) are indicated by an asterisk (*). 

 Regression 

Coefficient 

S.E. R
2 

t-value p-value 

Intercept 1.41 0.85  1.66 0.12 

Log(NA+1) -4.22 1.01 0.07 -4.18 <0.001* 

Log(TDS) -0.75 0.30 0.29 -2.51 0.02* 

NA*TDS 1.49 0.37 0.18 4.06 <0.001* 

Total   0.53   

Table 4.9: Multiple regression results of log transformed NA, TDS, and interaction 

effect on log-transformed mean length (mm). Statistically significant p-values 

(<0.05) are indicated by an asterisk (*). 

 Regression 

Coefficient 

S.E. R
2 

t-value p-value 

Intercept 0.69 0.32  2.14 0.047* 

Log(NA+1) -0.10 0.38 -- -0.25 0.81 

Log(TDS) 0.07 0.11 0.05 0.60 0.55 

NA*TDS 0.03 0.14 -- 0.19 0.85 

Total   0.08   
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Discussion 

In all three bioassays, survival was low.  First instar larvae are more sensitive to stress 

than later instars; handling stress or contamination posed to all larvae possibly caused the 

low survival rate. Nebeker et al. (1984) found that first instar C. tentans larvae were the 

most sensitive to acute copper exposure followed by second, third, and fourth instars. It is 

unlikely that dilution water was contaminated by trace metals because salts were added to 

ultrapure water in order to create reconstituted wetland water. Though unlikely, it is 

possible that contamination by residual HCl or detergent in the jars from the cleaning 

process may have been the cause for the low survival rate. The most plausible 

explanation for the low survival rate is handling stress. Second to third instar C. tentans 

that were transported from the lab to the field for a series of 7-d in situ bioassays 

exhibited low survival (31.7 ± 21.5%) even when test tubes were used to hold the larvae 

in an effort to reduce physical stress of sediment contact (Chappie & Burton, Jr., 1997). 

Given that first instar larvae are more sensitive to chemical stress than later instars 

(McCahon & Pascoe, 1991; Nebeker et al. 1984), it is expected that they would be more 

sensitive to physical stress as well. 

Single Toxicant Bioassays 

In the NA assay, no significant relationship was found between NA concentration and 

survival or mean larval length. This may mean that the naphthenic acid concentrations 

used were not high enough to induce a strong response from the larvae. Alternatively, 

background sources of mortality exceeded the toxic potential of NAs. Another 

explanation is that the naphthenic acids used contained a low proportion of the lower 
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molecular weight acids that have been shown to be more toxic and biodegradable by 

bacteria (Frank et al, 2008). Because these acids were extracted approximately three 

years prior to this bioassay, it is also possible, though unlikely, that degradation by 

bacteria may have reduced the stock solution toxicity. The stock solutions were held 

refrigerated for the entire period since extracted.  

 

In the salt assay, no significant relationship was found between TDS and survival. There 

was, however, a significant negative relationship between TDS and mean larval length 

(p= 0.01). This may be evidence that salt stress was high enough to reduce growth but not 

high enough to meaningfully reduce survival. This is not surprising as C. riparius is 

somewhat tolerant of increased salinities (Bervoets et al., 1996). Furthermore, these 

results are consistent with those of Hassell et al. (2006) who conducted a bioassay on 

Chironomus sp. with 8 conductivity treatments ranging from 150-25,000 µS/cm. As a 

frame of reference, conductivities in the present salt assay ranged from 503- 2322 µS/cm. 

Hassell et al. (2006) found that Chironomus larvae growth rate (mm/d) steadily declined 

with increased salinity. Time to emerge was also negatively affected by increased 

salinity, but size at time of emergence did not depend on salinity (Hassell et al., 2006). 

The reduction in growth could cause longer emergence times as well as reduced 

emergence success; third and fourth instar C. tentans larvae that were manipulated to 

grow more slowly than controls exhibited a longer emergence time and drastic reductions 

in 10-d emergence success (Liber et al. 1996). Oviposition success— the ability to 

produce an egg mass-- was not found to be correlated with growth rate (Liber et al. 
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1996). However, the number of eggs produced, or fecundity, of C. cucini was negatively 

affected by reduced size at time of emergence (Butler & Walter, 1992). 

Naphthenic Acid and Salt Combination Bioassay 

In the combination assay, both NA and TDS had significant negative effects on survival 

(p<0.001 and p=0.02, respectively). There was also a significant positive interaction 

effect of NA with TDS on larval survival. This indicates that there was an antagonistic 

interaction between NA and salts. The salts may have induced a rescue effect that 

ameliorated the toxicity of the NA. This effect has also been observedin Ceriodaphnia 

dubia (Turcotte et al., 2009) exposed to NA and salts in OSPW. This indicates that the 

results of toxicity tests performed using NAs alone may not be applicable to OSPW-

affected wetlands and to do so may exaggerate toxicity. 

Conclusion 

Overall survival in controls was fairly low, due either to the fragility of first instar larvae 

or to handling stress. Future studies should use later instar larvae with the understanding 

that these will not be as sensitive to toxicity as first instar larvae. 

 

Salts were found to reduce chironomid larval growth. This is consistent with other 

findings in the literature (Hassell et al. 2006). This finding also has implies that 

emergence (Liber et al. 1996) and adult fecundity (Butler & Walter, 1992); may be 

reduced by the effects of salts. 

In the combination assay, salts and NAs were each found to reduce survival, but this 

effect was reduced when the two classes of compounds  were present together 

(antagonistic interaction). This interaction has seldom been studied, but those that have 
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investigated this interaction in zooplankton have found similar results (Turcotte et al., 

2009). 
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CHAPTER V: GENERAL DISCUSSION 

Goals 

The goals of this study were to determine a) how emerging chironomid abundance, 

biomass, and community composition differ between young reference and OSPW 

wetlands, b) how levels of conductivity and naphthenic acids in OSPW and reference 

wetland waters affect survival and growth of chironomids, and c) whether an interaction 

between naphthenic acids and salts affects chironomid sensitivity to the two potential 

toxicants. 

Discussion of Key Findings 

Chapter II 

Neither the abundance nor the length of chironomids that emerged from OSPW wetlands 

differed from those emerging from reference wetlands. However, there was a non-

significant trend towards smaller (shorter length) chironomids emerging from reference 

wetlands compared to OSPW wetlands. This was not expected given the water quality-

related stress posed to chironomids in OSPW wetlands. Because the community 

composition between OSPW and reference wetlands did not significantly differ, the 

difference in size is unlikely to be attributable to different species inhabiting the wetland. 

However, the trend may be the result of increased predation by ducks or other predators. 

Some ducks, such as mallards, selectively forage on large chironomids (Batzer et al. 

1993) so this foraging activity would make the average biomass of emerging chironomids 

smaller. 
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Mean length was significantly positively correlated with dissolved organic carbon 

concentration. This may be related to food quality. Bacterial biofilm is considered the 

most nutritious component of detritus and high dissolved organic carbon can result in 

greater bacterial biomass (Boon, 2006). 

 

Although community composition did not significantly differ between reference and 

OSPW wetlands, the abundance of certain genera was correlated with certain water 

quality parameters. The abundance of Einfeldia was found to be positively associated 

with the addition of peat to the wetland whereas Neozavrelia and Paracricotopus were 

negatively associated with peat. Einfeldia also seemed to be more abundant in cool 

waters whereas Neozavrelia and Paracricotopus were more abundant in warm waters. 

Tanytarsus was found to be intolerant of low dissolved oxygen whereas Ablabesmyia 

seems to be abundant in low dissolved oxygen conditions. In contrast, Tanytarsus was 

found to be salt-tolerant and Ablabesmyia is salt-intolerant. This finding is supported by 

Cannings and Scudder (1978), who found that Ablabesmyia larvae were present only in 

waters with very low conductivities whereas Tanytarsus larvae were either present in all 

waters or only those with higher conductivities, depending on the species. 

Chapter III 

In the wetland water bioassay, survival was low and this may have confounded results. 

There were no significant effects of conductivity, naphthenic acids, or any significant 

interaction between the two in survival or biomass endpoints. However, there was a slight 

non-significant trend that chironomids survived better in high conductivity wetland 
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water. Among all chironomids, Chironomus is among the least salt-tolerant genera but it 

can be found in lakes with conductivities between about 400 and 4100 μS/cm (Cannings 

and Scudder, 1976), which fall within the approximate range of the conductivities of the 

wetland waters in this study. The trend towards higher survival in high conductivity 

wetland waters may be due to the decreased availability of metals when salts are present. 

The free metal ion is a metals most toxic form and the bioavailability, and thereby 

toxicity, is greatly reduced when metallic salts are formed (Hall & Anderson, 1995). 

Although pore waters of constructed wetlands may contain metal concentrations in 

excess of Canadian drinking water guidelines, there is no evidence that trace metals reach 

toxic concentrations in OSPW wetlands (Baker et al. 2012). 

Chapter IV 

In the salt assay, TDS had a negative effect on larval growth/final size. This finding is 

consistent with those of Hassell et al. (2006) who found that Chironomus riparius growth 

rates were reduced with increased conductivity. This result differs from my findings from 

Chapter II, which showed a non-significant trend towards larger size in wetland waters 

that had higher conductivity. In the combination bioassay, both TDS and NA had a 

significant, negative influence on survival, and there was a significant positive interaction 

between TDS and NA. This means that alone, salts and NAs may each negatively affect 

survival, but that there was an antagonistic interaction between these two toxicants. When 

salts and NAs occur together, chironomids survived better than would be expected if the 

individual effects were added together. This indicates that OSPW may be less toxic than 

individual laboratory toxicity tests may imply. No significant negative effect of either 

toxicant was found in the bioassay tests of whole wetland waters (Chapter III), and also 
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suggests that the two classes of compounds have mitigative effects on one another. This 

antagonistic interaction between salts and NAs has also been reported in Ceriodaphnia 

dubia (D. Turcotte, University of Saskatchewan, unpublished data and 2009). Turcotte 

(2009) proposed that salts caused NAs to precipitate out of solution.  

 

Implications 

There were very few differences in the size and length of chironomids emerging from 

OSPW wetlands compared to reference wetlands. Water chemistry factors that were not 

specific to OSPW apparently had a greater impact on emerging chironomid numbers than 

wetland class (OSPW or reference). Dissolved organic carbon had a positive correlation 

with mean emergent chironomid length. Future research might investigate the value of 

adding a source of dissolved organic carbon in the reclamation process to facilitate 

chironomid productivity. 

 

Lower growth in high TDS conditions could be manifested as reduced population size of 

future generations. Larval size at pupation is highly correlated with eventual emergence 

success (Liber et al. 1996) and fecundity (Butler and Walker, 1992) so even slight 

changes could potentially influence future generations of chironomids.  This lowered 

growth rate in high TDS conditions and lowered survival rate in both high TDS and high 

NA conditions also means that OSPW food webs may be less productive. Ganshorn 

(2002) analyzed chironomid productivity and food web structure using carbon isotope 

signatures in many of the same wetlands used in this study. He found no consistent 

differences between OSPW and reference wetlands in their productivity, but did find that 
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they had different food web structures. Not only do chironomids contribute to aquatic 

food web productivity as a food source for higher trophic organisms, but nearby 

terrestrial ecosystems will gain nutrient inputs from dead chironomid deposition in both 

plant and insect trophic levels (Hoekman et al., 2012). 

Future Studies 

There was a low survival rate in the pilot study related to Chapter IV, Chapter IV itself, 

and Chapter III. This may be due to use of newly hatched first instar chironomid larvae 

across all of these studies. Although it is common to use first instar larvae in aquatic 

toxicity tests, later instars tend to be less sensitive to handling stress and therefore may 

have a higher survival rate. Future studies using Chironomus riparius larvae should 

therefore use older larvae in order to protect against mortality caused by handling.  

Chironomus riparius may possibly be more tolerant than other benthic invertebrate 

species in the wetlands studied. This may explain the lack of significant differences in 

growth and survival observed in the naphthenic acid bioassay contrasting OSPW and 

reference wetland waters. Perhaps more a sensitive indicator of toxicity should be used in 

future in order to ensure that all invertebrates, no matter what their tolerance to pollution 

is, will be protected. Whelly (1999) found that Chironomus dilutus was slightly less 

tolerant of OSPW than C. riparius.  

The mode of action for NA toxicity should be researched further in order to elucidate the 

mechanism behind the antagonistic relationship with salts if it is confirmed in other 

bioassays (those supporting higher survival overall). Turcotte (2009) speculated that NAs 

may precipitate out of solution in the presence of salt but showed no supporting evidence. 
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Alternatively, results from studies of stoichiometrically similar synthetic detergents 

(Abel, 1974) may help explain how NA causes toxicity through surfactant action and may 

shed light on the antagonistic interaction with salt. Surfactants have the potential to 

interact with proteins and alter the permeability of the cell membrane (Abe,l 1974). 

Surfactants also cause gill damage and death by asphyxiation (Abel, 1974). However, it is 

unknown if or how these mechanisms would be alleviated by the presence of salts. 

 

Fresh naphthenic acids may have a different toxicity than the naphthenic acid stock 

solution used in this study as microbial decomposition can degrade and detoxify these 

acids. Fresh tailings are not often added to wetlands, but in order to investigate “worst-

case scenario” situations, fresh naphthenic acids should be tested for toxicity. Recent 

studies also indicate that what has previously been thought to be naphthenic acids is 

actually a broad suite of acids and the composition of these acids differ greatly across the 

industry depending on refinement techniques used (Rowland et al., 2011). The 

identification of exactly what constitutes the acid extractable portion of OSPW is 

essential before toxicity tests can be done on these acids and reclamation procedures 

reducing the most toxic of these acids can take effect. 

 

Of the 300+ exuviae counted, 257 were identifiable and thirty genera were found. This is 

on the lower end of typical community assembly studies. Researchers often have to 

choose between sampling a constant area sampled and collecting a constant number of 

insects. Because wetlands can be quite variable in chironomid abundances, sampling 

methods that use the constant number collected approach (such as 300 insects per 
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wetland) can provide more accurate assessments of community composition. In future 

studies, an equal number of chironomids per wetland (as opposed to an “equal area” 

sample) should be sampled and these should be counted in the field in order to ensure all 

genera have an equal opportunity to be accounted for. 

Conclusion 

Available data indicated that oil sands process water in itself did not negatively affect 

chironomid species composition, abundance, size at emergence, larval biomass, or 

survival. Water chemistry variables such as conductivity affected larval biomass and 

better accounted for the distribution of common genera among wetlands. Wetlands with 

higher dissolved organic carbon concentration supported larger chironomid pupae. 

Organic material, dissolved oxygen, and temperature were also correlated with which 

genera were collected. These limited results indicate that the OSPW-affected wetlands 

can support chironomid assemblages that are not consistently different from those in 

reference wetlands. However, there was limited laboratory evidence that NA and salt 

concentration individually reduced survival at high concentrations, and there was an 

antagonistic effect when the two were combined. 
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APPENDICES 

APPENDIX A: WATER QUALITY OF WETLANDS STUDIED IN CHAPTER II 

Wetland 

Type Wetland 

Conductivity 

(µS/cm) 

Salinity 

(ppt) 

N.A. 

(mg/L) 

D.O. 

(mg/L) 

D.O.C. 

mg/L 

Temp 

(C) 

Organic Level 

(Peat=1, No 

Peat=0) 

OSPM 4mCT 4523 1 41 4.6 86 18.7 1 

OSPM Test Pond 9 2067 1.1 20.4 11.6 48 19.4 0 

OSPM Mike's Pond 1936 2.4 26.2 9.5 43 19 0 

OSPM Natural 1234 0.6 64 4.4 74 22 1 

Reference High Sulphate 3025 1.6 12 6.4 39 22.2 1 

Reference NWID 701 0.3 0.2 3.3 29 19.3 1 

Reference Pond 5 1265 0.6 4 10.1 24 22.5 0 

Reference Shallow 371 0.2 2.3 8.7 18 17.6 0 

Reference V-notch 1004 0.5 7 6.3 22 19.3 1 
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APPENDIX B: ABUNDANCE OF EMERGENT CHIRONOMID GENERA OF NINE WETLANDS 

 4mCT 

Test 

Pond 9 

Mike's 

Pond Natural 

High 

Sulphate NWID Pond 5 Shallow V-Notch 

Procladius 9 7 0 0 1 1 3 2 0 

Tanytarsus 1 64 1 0 15 0 2 0 0 

Ablabesmyia 0 1 0 4 1 4 0 0 0 

Neozavrelia 0 3 0 1 1 0 3 0 0 

Einfeldia 6 8 0 0 0 1 0 0 1 

Guttipelopia 0 2 0 0 5 0 0 8 0 

Paracricotpus 0 27 0 2 3 0 0 0 0 

Tanypus 1 5 0 0 0 1 0 0 0 

Diplocladius 0 3 0 0 0 1 0 0 0 

Doithrix 0 1 0 0 0 1 0 0 0 

Endochironomus 1 0 0 0 0 0 0 1 0 

Labrundinia 0 0 0 0 2 0 0 0 1 

Nanocladius 1 4 0 0 0 0 0 0 0 

Neostempellina 0 2 0 0 1 0 0 0 0 

Orthocladius 0 0 0 0 2 1 0 0 0 

Paratanytarsus 2 0 0 0 1 0 0 0 0 

Psectrocladius 0 11 0 0 0 0 0 0 1 

Psectrotanypus 0 0 0 1 1 0 0 0 0 

Xenopelopia 0 1 0 0 1 0 0 0 0 

Zavrelia 0 0 0 0 8 0 2 0 0 

Brillia 0 1 0 0 0 0 0 0 0 

Chironomus 0 0 0 0 0 1 0 0 0 
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Cryptochironomus 0 0 0 0 1 0 0 0 0 

Glyptotendipes 0 0 0 0 0 0 1 0 0 

Lipinella 0 1 0 0 0 0 0 0 0 

Monopelopia 0 0 0 0 0 1 0 0 0 

Nilothauma 0 0 0 0 2 0 0 0 0 

Omisus 0 0 0 0 0 1 0 0 0 

Rheotanytarsus 0 1 0 0 0 0 0 0 0 

Telmatopelopia 0 2 0 0 0 0 0 0 0 
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APPENDIX C: MAJOR IONS IN WETLAND WATERS USED IN CHAPTER III 

 Major Cations (mg/L) Major Anions (mg/L) 

Wetland Na K Mg Ca NH4 F CL SO4 CO3  HCO3 

Recycle 

Pond N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Trench 4* 291.0 9.7 20.7 36.6 0.3 0 100.0 118.0 36.30 538.0 

Dyke 4 

Reservoir* 217.0 7.3 45.5 127.0 0.2 0 25.0 542.0 0 359.0 

4-m CT* 647 21.3 121 44.8 0.1 0 88 737 N/A N/A 

Test Pond 

9 492 1.0 8.7 5.4 0.3 0 230 115 133 525 

High 

Sulphate* 401 15.4 114 146 0.7 0 7.9 1410 0 144 

Shallow 

Wetland 44.9 0.5 11.4 31.9 0.0 0 8.4 18.9 0 232 

Natural 

Wetland* 383 17.8 15 22.1 2.2 0.82 28 64.5 27 834 

V-Notch 

Weir* 76.8 5.9 35.8 114 0.2 0 1.3 312 N/A N/A 

Peat Pond 
155 5.0 38.1 90.5 0.1 0 37.0 368 0.0 316 

Golden 

Pond 208 5.3 57.9 142 
0.3 

0 45.0 783 0 221 
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Salt 

Marsh* 206.0 13.7 53.0 144.0 0.630 0.0 2.8 703.0 N/A N/A 

Mildred 

Lake N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 

Note: Wetlands marked with an asterisk (*) are from Martin (2010) Suncor Energy Ltd., unpublished data. All other wetland data are 

from MacKinnon, (2008), Syncrude Canada Ltd. N/A= Not Available 
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APPENDIX D: MEASURED WATER QUALITY PER JAR IN WETLAND WATER BIOASSAY 2011 

  Starting Water Chemistry    

Wetland 

Water Jar 

Conductivity 

(µS/cm) 

Dissolved 

Oxygen (mg/L) 

Temperature 

(˚C) 

Salinity 

(ppt) Start Date End Date 

 

Mildred 

Lake 1 335 7.03 18.1 0.1 17-Jun-11 27/06/2011 

 

Mildred 

Lake 2 325 7.05 18 0.2 18-Jun-11 28/06/2011 

 

Mildred 

Lake 3 327 7.05 18.3 0.1 18-Jun-11 28/06/2011 

 

Mildred 

Lake 4 343 6.45 18.3 0.1 17-Jun-11 27/06/2011 

 

Mildred 

Lake 5 327 6.12 18.3 0.2 18-Jun-11 28/06/2011 

 

Dyke 4 

Resevoir 1 863 6.24 18.5 0.4 17-Jun-11 27/06/2011 

 

Dyke 4 

Resevoir 2 878 6.04 18.5 0.4 17-Jun-11 27/06/2011 

 

Dyke 4 

Resevoir 3 839 6.06 18.4 0.4 17-Jun-11 27/06/2011 

 

Dyke 4 

Resevoir 4 852 6.29 18.4 0.4 17-Jun-11 27/06/2011 

 

Dyke 4 

Resevoir 5 843 6.3 18.4 0.4 18-Jun-11 28/06/2011 

 

Recycle 

Pond 1 3091 6.8 18.2 1.9 17-Jun-11 27-Jun-11 
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Recycle 

Pond 2 3647 3.52 18.5 1.9 17-Jun-11 28/06/2011 

 

Recycle 

Pond 3 3632 6.23 18.5 1.9 17-Jun-11 27/06/2011 

 

Recycle 

Pond 4 3122 5.09 18.5 1.6 17-Jun-11 27-Jun-11 

 

Recycle 

Pond 5 3659 6.48 18.5 1.9 17-Jun-11 27/06/2011 

 

Trench 4 1 797 6.24 18.4 0.4 17-Jun-11 27/06/2011 

 

Trench 4 2 794 6.26 18.7 0.4 18-Jun-11 28/06/2011 

 

Trench 4 3 792 6.22 18.4 0.4 17-Jun-11 27/06/2011 

 

Trench 4 4 793 6.39 18.7 0.4 18-Jun-11 28/06/2011 

 

Trench 4 5 797 6.06 18.4 0.2 17-Jun-11 27/06/2011 

 

Peat Pond 1 1753 6.57 18.5 0.8 18-Jun-11 28/06/2011 

 

Peat Pond 2 1737 6.69 18.6 0.4 18-Jun-11 28/06/2011 

 

Peat Pond 3 1723 6.15 18.4 0.4 17-Jun-11 27/06/2011 

 

Peat Pond 4 1756 6.57 18.5 0.9 18-Jun-11 28/06/2011 

 

Peat Pond 5 1747 6.25 18.5 0.9 17-Jun-11 27/06/2011 
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Golden 

Pond 1 1869 6.5 18.5 1 18-Jun-11 28/06/2011 

 

Golden 

Pond 2 1886 6.35 18.5 1 18-Jun-11 28/06/2011 

 

Golden 

Pond 3 1877 6.32 18.4 1 18-Jun-11 28/06/2011 

 

Golden 

Pond 4 1852 6.26 18.5 0.9 18-Jun-11 28/06/2011 

 

Golden 

Pond 5 1890 6.36 18.5 1 18-Jun-11 28/06/2011 

 

Salt Marsh 1 1234 6.06 18.5 0.6 17-Jun-11 27/06/2011 

 

Salt Marsh 2 1252 5.8 18.4 0.6 17-Jun-11 27/06/2011 

 

Salt Marsh 3 1243 6.11 18.5 0.6 18-Jun-11 28/06/2011 

 

Salt Marsh 4 1230 6.29 18.5 0.6 18-Jun-11 28/06/2011 

 

Salt Marsh 5 1229 6.32 18.5 0.6 18-Jun-11 28/06/2011 

 

 

 

  Ending Water Chemistry  

Wetland 

Water Jar 

Conductivity 

(µS/cm) 

Dissolved Oxygen 

(mg/L) 

Temperature 

(˚C) 

Salinity 

(ppt) End Date 

Mildred Lake 1 466 6.62 17.7 0.2 27/06/2011 
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Mildred Lake 2 460 6.51 16 0.2 28/06/2011 

Mildred Lake 3 456 2.67 16.2 0.2 28/06/2011 

Mildred Lake 4 425 6.82 17.5 0.2 27/06/2011 

Mildred Lake 5 445 6.52 16.1 0.2 28/06/2011 

Dyke 4 

Resevoir 1 916 2.24 17.9 0.5 27/06/2011 

Dyke 4 

Resevoir 2 931 4.88 18 0.4 27/06/2011 

Dyke 4 

Resevoir 3 909 3.23 18 0.4 27/06/2011 

Dyke 4 

Resevoir 4 958 0.36 18 0.3 27/06/2011 

Dyke 4 

Resevoir 5 905 5.95 16.3 0.4 28/06/2011 

Recycle Pond 1 3634 6.12 17.9 1.9 27-Jun-11 

Recycle Pond 2 3605 6.35 16 2 28/06/2011 

Recycle Pond 3 3678 6.23 17.8 1.9 27/06/2011 

Recycle Pond 4 3744 6.58 17.9 2 27-Jun-11 

Recycle Pond 5 3715 5.79 17.7 1.9 27/06/2011 

Trench 4 1 857 6.66 17.7 0.4 27/06/2011 

Trench 4 2 878 3.11 16.2 0.4 28/06/2011 

Trench 4 3 852 6.41 17.5 0.4 27/06/2011 

Trench 4 4 849 6.26 16.1 0.4 28/06/2011 

Trench 4 5 857 6.27 17.8 0.4 27/06/2011 

Peat Pond 1 1820 6.55 16 0.9 28/06/2011 

Peat Pond 2 1806 4.74 16.3 0.9 28/06/2011 

Peat Pond 3 1782 0.37 18 0.3 27/06/2011 

Peat Pond 4 1817 5.64 16.1 0.9 28/06/2011 
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Peat Pond 5 1808 5.32 17.9 0.6 27/06/2011 

Golden Pond 1 1935 6.46 16.1 1 28/06/2011 

Golden Pond 2 1941 6.69 16.1 1 28/06/2011 

Golden Pond 3 1933 7.05 16.2 1 28/06/2011 

Golden Pond 4 1908 0.37 16.4 1 28/06/2011 

Golden Pond 5 1944 6.54 16 1 28/06/2011 

Salt Marsh 1 1275 2.41 17.9 0.6 27/06/2011 

Salt Marsh 2 1291 6.72 17.7 0.6 27/06/2011 

Salt Marsh 3 1305 1.09 16.3 0.7 28/06/2011 

Salt Marsh 4 1304 6.77 16 0.7 28/06/2011 

Salt Marsh 5 1285 6.6 16.3 0.3 28/06/2011 
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APPENDIX E: SURVIVAL AND MEAN FINAL SIZE IN WETLAND WATER BIOASSAY 

Class 

 

Wetland 

 

Survival 

(# of 

larvae) 

Percent 

Survival 

(%) 

Length 

(mm) 

 

Mean 

Biomass 

(mg) 

Year 

 

Naphthenic 

Acids 

(mg/L) 

Conductivity 

(μS/cm) 

OSPM 

Dyke 4 

Resevoir 0 0 N/A N/A 2011 23.0 855 

OSPM 

Dyke 4 

Resevoir 1 5 7.06 0.300 2011 23 855 

OSPM 

Dyke 4 

Resevoir 7 35 8.47 0.483 2011 23 855 

OSPM 

Dyke 4 

Resevoir 0 0 N/A N/A 2011 23 855 

OSPM 

Dyke 4 

Resevoir 11 55 7.97 0.412 2011 23 855 

OSPM 

Recycle 

Pond 17 85 6.01 0.197 2011 80 3430.2 

OSPM 

Recycle 

Pond 6 30 5.10 0.128 2011 80 3430.2 

OSPM 

Recycle 

Pond 12 60 5.29 0.141 2011 80 3430.2 

OSPM 

Recycle 

Pond 16 80 4.91 0.116 2011 80 3430.2 

OSPM 

Recycle 

Pond 0 0 N/A N/A 2011 80 3430.2 

OSPM Trench 4 9 45 8.70 0.517 2011 22 794.6 

OSPM Trench 4 4 20 9.36 0.627 2011 22 794.6 

OSPM Trench 4 5 25 8.03 0.420 2011 22 794.6 

OSPM Trench 4 11 55 7.99 0.415 2011 22 794.6 
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OSPM Trench 4 3 15 8.13 0.434 2011 22 794.6 

OSPM 4mCT 0 0 N/A N/A 2010 24.9 4523 

OSPM 4mCT 0 0 N/A N/A 2010 24.9 4523 

OSPM 4mCT 16 80 10.61 0.869 2010 24.9 4523 

OSPM 4mCT 14 70 10.05 0.755 2010 24.9 4523 

OSPM 4mCT 7 35 8.92 0.552 2010 24.9 4523 

OSPM 4mCT 1 5 10.22 0.788 2010 24.9 4523 

OSPM Natural 13 65 9.19 0.597 2010 11.7 1233.8 

OSPM Natural 4 20 10.66 0.880 2010 11.7 1233.8 

OSPM Natural 5 25 8.64 0.508 2010 11.7 1233.8 

OSPM Natural 5 25 7.80 0.389 2010 11.7 1233.8 

OSPM Natural 13 65 10.93 0.940 2010 11.7 1233.8 

OSPM TP9 8 40 8.67 0.514 2010 20.4 2067.4 

OSPM TP9 2 10 9.25 0.607 2010 20.4 2067.4 

OSPM TP9 17 85 9.22 0.603 2010 20.4 2067.4 

OSPM TP9 3 15 9.35 0.624 2010 20.4 2067.4 

OSPM TP9 0 0 N/A N/A 2010 20.4 2067.4 

Reference 

Mildred 

Lake 1 5 6.07 0.201 2011 0.9 331.4 

Reference 

Mildred 

Lake 8 40 8.74 0.524 2011 0.9 331.4 

Reference 

Mildred 

Lake 9 45 7.54 0.356 2011 0.9 331.4 

Reference 

Mildred 

Lake 0 0 N/A N/A 2011 0.9 331.4 

Reference 

Mildred 

Lake 6 30 9.29 0.614 2011 0.9 331.4 
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Reference Peat Pond 10 50 8.17 0.439 2011 1 1743.2 

Reference Peat Pond 8 40 7.17 0.312 2011 1 1743.2 

Reference Peat Pond 3 15 6.58 0.249 2011 1 1743.2 

Reference Peat Pond 4 20 5.00 0.121 2011 1 1743.2 

Reference Peat Pond 5 25 5.48 0.155 2011 1 1743.2 

Reference 

Golden 

Pond 10 50 7.40 0.338 2011 3.7 1874.8 

Reference 

Golden 

Pond 16 80 7.24 0.320 2011 3.7 1874.8 

Reference 

Golden 

Pond 12 60 8.40 0.472 2011 3.7 1874.8 

Reference 

Golden 

Pond 3 15 7.38 0.336 2011 3.7 1874.8 

Reference 

Golden 

Pond 12 60 9.71 0.689 2011 3.7 1874.8 

Reference Salt Marsh 4 20 8.11 0.431 2011 5.0 1237.6 

Reference Salt Marsh 2 10 9.76 0.700 2011 5.0 1237.6 

Reference Salt Marsh 0 0 N/A N/A 2011 5.0 1237.6 

Reference Salt Marsh 10 50 8.57 0.497 2011 5.0 1237.6 

Reference Salt Marsh 5 25 8.50 0.486 2011 5.0 1237.6 

Reference Vnotch 3 15 11.14 0.987 2010 5.7 1003.6 

Reference Vnotch 5 25 9.42 0.638 2010 5.7 1003.6 

Reference Vnotch 14 70 11.99 1.197 2010 5.7 1003.6 

Reference Vnotch 0 0 N/A N/A 2010 5.7 1003.6 

Reference Vnotch 10 50 N/A N/A 2010 5.7 1003.6 

Reference 

High 

Sulphate 14 70 11.27 1.018 2010 17.8 3025.2 



 

 

135 

Reference 

High 

Sulphate 6 30 11.14 0.988 2010 17.8 3025.2 

Reference 

High 

Sulphate 11 55 11.41 1.052 2010 17.8 3025.2 

Reference 

High 

Sulphate 6 30 11.38 1.044 2010 17.8 3025.2 

Reference 

High 

Sulphate 0 0 N/A N/A 2010 17.8 3025.2 

Reference Shallow 8 40 10.65 0.877 2010 2.3 370.54 

Reference Shallow 7 35 11.95 1.187 2010 2.3 370.54 

Reference Shallow 10 50 10.91 0.936 2010 2.3 370.54 

Reference Shallow 6 30 9.91 0.727 2010 2.3 370.54 

Reference Shallow 0 0 N/A N/A 2010 2.3 370.54 
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APPENDIX F: MEASURED WATER QUALITY FOR CHAPTER IV TEST JARS 

  Initial Final 

Rep Treatment 

Temp. 

(˚C) 

Conductivity 

(µS/cm) 

DO 

(mg/L) pH 

Temp. 

(˚C) 

Conductivity 

(µS/cm) 

DO 

(mg/L) pH 

1 0NA (Control) 22.84 464 7.35 8.42 22.77 532 7.86 7.62 

2 0NA (Control) 23.21 462 6.56 8.38 23.44 485 7.1 7.81 

3 0NA (Control) 22.44 482 8.23 8.01 22.8 572 7.86 7.8 

1 13NA     23.62 465 7.32 7.62 

2 13NA 22.7 459 7.1 8.45 23.11 550 7.52 7.85 

3 13NA 22.77 484 10.79 7.47 22.3 555 8.84 7.51 

4 13NA     22.33 542 11.06 7.43 

1 22NA 22.78 472 7.07 8.32 22.71 566 7.15 7.55 

2 22NA 22.77 470 6.47 8.47 23.33 562 7.6 7.82 

3 22NA 22.88 480 8.2 7.95 22.42 550 8.23 7.76 

4 22NA 22.91 497 8.3 7.71 21.48 558 8.1 7.63 

1 36NA 23.03 477 6.24 8.45 22.9 554 7.17 7.78 

2 36NA 23.36 473 6.01 8.49 23.67 556 7.62 7.76 

3 36NA 22.42 429 8.61 7.78 22.11 570 8.17 7.74 

1 60NA 22.6 485 7.16 8.37 22.41 562 8.07 7.71 

2 60NA 23.48 490 7.01 8.44 23.52 413 7.37 7.72 

3 60NA 22.05 500 8.52 7.53 22.07 566 8.56 7.66 

1 100NA 22.87 512 7.23 8.55 22.53 590 7.68 7.81 

2 100NA 23.24 496 7.07 8.36 24.55 588 7.76 7.49 

3 100NA 21.85 510 8.53 7.77 22.04 583 8.5 7.62 

4 100NA 22.9 532 7.21 7.9 22.04 599 8.66 7.73 

1 0S (Control) 23.2 480 7.16 8.3 23 568 7.74 7.72 
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2 0S (Control) 23.16 462 6.74 8.23 24.25 450 8.01 7.39 

3 0S (Control) 21.97 478 7.96 7.84 21.93 537 8.65 7.69 

1 13S 22.44 706 7.3 8.45 22.77 733 7.79 7.91 

2 13S 23.22 715 6.87 8.31 23.71 784 7.61 7.79 

3 13S 22.79 713 8.16 7.91 21.67 755 8.4 7.81 

4 13S 22.06 711 7.41 7.89 21.75 748 8.07 7.73 

1 22S 22.77 891 7.04 8.24 22.57 937 7.87 7.86 

2 22S 22.89 984 8.17 7.88 22.69 1034 8.67 7.97 

3 22S 22.61 889 7.38 7.92 22.74 919 8.07 7.91 

1 36S 22.66 1133 6.92 8.15 23.78 1194 8.19 7.89 

2 36S 23.19 1106 6.77 8.33 23.98 1172 7.4 7.95 

3 36S 22.67 1145 8.57 7.95 22.83 1266 7.93 8.05 

1 60S 22.7 1534 6.72 8.29 22.59 1617 7.63 8.1 

2 60S 23.97 1528 7.07 8.18 23.21 1573 7.15 8.08 

3 60S 22.89 1555 8.24 8.01 22.02 1583 8.05 8.1 

1 100S 22.99 2208 6.6 8.24 23.37 2136 7.64 8.25 

2 100S 22.79 2246 7.7 7.78 22.74 2275 8.33 8.02 

3 100S 23.04 2217 8.85 8.03 22.08 2297 8.23 8.14 

4 100S 23.12 2269 8.73 8.08 21.41 2281 8.18 8.2 

1 

0NA + 0 S 

(Control) 23.25 476 7.14 8.33 23.05 447 7.89 7.3 

2 

0NA + 0 S 

(Control) 23.2 466 6.86 8.41 23.58 525 7.17 7.7 

3 

0NA + 0 S 

(Control) 23.11 465 7.94 7.85 22.57 536 7.98 7.71 

4 

0NA + 0 S 

(Control) 22.08 470 7.58 7.91 22.31 530 7.66 7.64 

1 0NA + 100S 22.53 2211 7.08 8.36 23.18 2294 7.35 8.19 
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2 0NA + 100S 23.44 2282 7.53 7.77 23.55 2406 9.45 8.19 

3 0NA + 100S 22.51 2228 7.8 7.9 21.95 2269 8.04 8.13 

1 100NA+ 0 S 22.8 492 6.81 8.44 23.94 447 7.61 7.56 

2 100NA+ 0 S 23.52 541 7.29 8.41 25.04 622 7.56 7.79 

3 100NA+ 0 S 22.81 538 7.97 7.77 22.07 573 8.56 7.59 

4 100NA+ 0 S 22.94 536 8.01 7.74 21.63 595 8.16 7.64 

1 13NA+ 60S 22.72 1539 6.55 8.3 22.93 1602 7.53 8.07 

2 13NA+ 60S 22.88 1575 6.95 8.2 24.54 1641 7.86 8.14 

3 13NA+ 60S 22.44 1504 8.64 7.71 22.15 1606 8.87 7.89 

4 13NA+ 60S 22.97 1575 7.55 8.04 21.79 1604 8.24 8.05 

1 22NA + 36S 22.55 1119 7.05 8.24 22.85 1188 7.16 7.92 

2 22NA + 36S 23.33 1149 6.85 8.39 23.79 1051 7.42 7.87 

3 22NA + 36S 22.59 1076 7.73 7.96 21.71 1122 8.74 7.94 

4 22NA + 36S 23.13 1143 7.51 7.94 21.76 1191 8.48 7.9 

1 36NA+ 22S 22.87 903 6.33 8.33 22.72 1019 8.66 7.71 

2 36NA+ 22S 22.97 902 6.52 8.32 23.13 860 7.66 8 

3 36NA+ 22S 22.75 888 8.43 7.78 22.61 939 8.33 7.82 

4 36NA+ 22S 21.91 900 8.41 7.86 22.91 955 8.29 7.88 

1 60NA + 13 S 22.7 736 7.03 8.36 22.67 678 7.35 7.83 

2 60NA + 13 S 22.61 709 6.63 8.44 22 793 7.58 7.88 

3 60NA + 13 S 22.63 731 7.35 8.01 21.64 787 8.66 7.97 

4 60NA + 13 S 23 744 8.33 8.01 21.84 800 8.44 7.88 
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APPENDIX G: SURVIVAL AND MEAN LENGTH 

FOR CHAPTER IV BIOASSAYS 

Salt Assay  

TDS (mg/L) Rep 

Mean Length 

(mm) % Survival 

 

335 1 8.94 15 

 

335 2 9.77 10 

 

335 3 7.16 30 

 

523 1 9.88 5 

 

523 2 7.98 10 

 

523 3 7.08 45 

 

523 4 7.40 15 

 

651 2 8.32 5 

 

651 3 6.71 20 
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853 1 8.86 10 

 

853 2 8.79 20 

 

853 3 7.61 35 

 

853 4 8.20 50 

 

1199 1 6.27 10 

 

1199 2 8.64 15 

 

1199 3 9.53 10 

 

1774 1 6.63 5 

 

1774 2 4.27 15 

 

1774 3 6.63 10 

 

1774 4 5.85 10 

 

    

 

NA Assay  

NA (mg/L) Rep 

Mean Length 

(mm) % Survival 
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0 1 8.04 5 

 

0 2 10.99 5 

 

0 4 6.71 15 

 

10 1 6.14 5 

 

10 2 7.52 5 

 

10 3 6.04 15 

 

10 4 7.00 60 

 

18 2 7.03 15 

 

18 4 9.05 45 

 

29 1 9.73 5 

 

29 2 7.84 35 

 

29 3 9.65 10 

 

29 4 8.28 80 

 

48 3 7.08 20 
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48 4 7.54 65 

 

80 2 7.12 5 

 

80 3 8.92 5 

 

     

Combination Bioassay 

NA 

Concentration TDS Rep 

Average Length 

(mm) 

% 

Survival 

0 335 1 9.13 20 

0 335 2 6.36 35 

0 335 3 8.00 20 

0 335 4 5.84 25 

0 1774 1 8.87 5 

0 1774 2 9.01 15 

0 1774 3 7.57 5 

10 1199 2 5.38 25 

10 1199 3 7.65 15 

10 1199 4 6.62 35 

18 853 2 6.91 60 

18 853 3 10.68 20 

18 853 4 6.82 15 

29 651 1 10.61 5 

29 651 2 6.79 10 

29 651 3 4.88 10 

29 651 4 6.89 20 
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48 523 3 9.47 5 

48 523 4 8.91 10 

80 335 3 6.33 5 

80 335 4 4.55 5 
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