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Abstract 

 

Directed cellular migration is a normal process which involves the actin 

cytoskeleton and actin-binding proteins such as WDR1 and cofilin. WDR1 promotes actin 

filament depolymerization by enhancing the severing activity of cofilin, as well as by 

capping barbed ends. My research focuses on understanding the involvement of 

mammalian WDR1 and its truncated isoform, WDR∆35, in cellular migration and 

invasion. It also focuses on understanding the relationship between the WDR1 isoforms 

and cofilin activation. This study found that WDR1 and WDR∆35 may play a role during 

cancer cell motility. Also, it was revealed that cofilin enhances the transcriptional 

expression of WDR∆35. Epidermal growth factor (EGF) stimulation influenced WDR∆35 

to increase total cofilin expression and activation, and caused WDR1 to stabilize the 

inactivation/phosphorylation of cofilin. In general, WDR1 and WDR∆35 may be 

functionally distinct, as their effects on motility, regulation, and cofilin activation were 

notably different.  
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Chapter One: Introduction 

The cytoskeleton is a dynamic structure that is involved in many essential 

processes including cell division, vesicle transport, neurogenesis, and cell migration. 

There are three major components of the cytoskeleton: intermediate filaments, 

microtubules, and microfilaments. Various types of intermediate filaments exist, such as 

keratin and vimentin, and generally possess a structural role within the cell. Microtubules 

are comprised of α– and β-tubulin subunits, and have both dynamic structural and 

regulatory roles. Microfilaments consist of polymerized actin subunits, and have active 

roles pertaining to the structure and regulation of the cell. Each component of the 

cytoskeleton has distinct and separate functions, yet cooperates as a whole system 

(Alberts et al., 2008). 

In order to carry out cellular processes properly, the actin cytoskeleton must 

undergo rapid actin turnover (Wegner, 1976). Alone, the actin filaments are not recycled 

efficiently. Consequently, actin binding proteins (ABPs) are a necessity for proper actin 

dynamics. This includes proteins for actin nucleation, depolymerization, polymerization, 

and severing. One of these proteins, cofilin, acts to sever and depolymerize the filaments 

(Bamburg et al., 1980; Dos Remedios et al., 2003). Another is Aip1, or actin- interacting 

protein-1, which enhances cofilin activity (Rodal et al., 1999; Ono, 2003). Regulation of 

actin turnover leads to the formation of membrane protrusions, allowing for cell 

migration to occur (Svitkina and Borisy, 1999). Furthermore, the actin cytoskeleton and 

many of its associated proteins are necessary during migration and invasion of cancer  
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cells (Condeelis et al., 2005). The purpose of this study is to explore the function of 

mammalian Aip1 and its relationship with cofilin.  

Actin 

Actin is a 42kDa protein, which is highly conserved in all eukaryotes. In humans, 

six genes encode different forms of actin, which are specific to certain tissues. Generally, 

actin is found in two forms, globular or G-actin, and filamentous or F-actin. G-actin is 

bound to ATP, while F-actin is ADP-bound. Relatively flexible microfilaments are 

formed when G-actin, or monomeric actin, polymerizes into F-actin strands with the 

concomitant hydrolysis of ATP to ADP. These strands are wound together in a helix 

formation. Microfilaments have a diameter of 7nm and each turn in the helix occurs every 

37nm. Microfilaments are polarized, meaning that they possess a pointed, or minus end 

and a barbed, or plus end. If actin monomer concentration within the cytosol is above a 

critical concentration (CC), filament elongation can occur. Polymerization is favoured at 

the barbed end, while depolymerization of the filament into actin monomers is favoured 

at the pointed end (Hill and Kirschner, 1982). A process called treadmilling occurs along 

the filament if actin subunit concentration is higher than the barbed-end CC and lower 

than the pointed-end CC. This means that polymerization and depolymerization rates are 

equivalent. Treadmilling results in actin turnover, which is an essential aspect of cell 

migration and other cellular events (Wegner, 1976; Wang, 1985). For this process to be 

efficient, it must be aided by a number of ABPs (Dos Remedios et al., 2003).  
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Actin-Binding Proteins 

The actin cytoskeleton is regulated by several categories of associated proteins. 

Without these proteins, cytoskeletal processes would be highly inefficient. Proteins such 

as actin-related protein-2/3 (Arp2/3) act as actin filament nucleators. Arp2/3 allows for 

new filaments to form and creates branched actin networks within the cell (Welch et al., 

1997; Dos Remedios et al., 2003). Actin-sequestering proteins such as profilin bind to 

actin monomers. Through binding, profilin promotes exchange of ADP to ATP, thus 

allowing addition of the actin monomer to the barbed end (Goldschmidt-Clermont et al., 

1991; Dos Remedios et al., 2003). In contrast, other proteins aid in the severing and 

depolymerization of actin filaments. One such protein, cofilin, severs filaments and also 

promotes depolymerization, thus it largely contributes to treadmilling. Once severing 

occurs, cofilin can bind to ADP-bound actin to inhibit nucleotide exchange once 

disassembly occurs, and thus its availability for polymerization at the barbed end is 

limited (Carlier et al., 1997; Dos Remedios et al., 2003). Depolymerization is also 

promoted when other ABPs, known as filament capping proteins, are recruited by cofilin 

(Dos Remedios et al., 2003). Capping proteins such as CapZ and Aip1 bind to barbed 

ends and prevent addition of actin monomers to the filament, thus enhancing cofilin’s 

depolymerizing function (Sept et al., 1999; Dos Remedios et al., 2003; Ono, 2003). 

Cofilin 

Cofilin is an ABP that was originally discovered in chicken and porcine brain 

tissue (Bamburg et al., 1980; Nishida et al., 1984). In mammals, the actin-depolymerizing 

factor (ADF)/cofilin family consists of three isoforms: cofilin-1, cofilin-2, and ADF. 

Cofilin-1, or nonmuscle cofilin, is the dominant isoform and is ubiquitously expressed in 
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most cell types (Ono et al., 2004). Cofilin-2, or muscle cofilin, is the dominant isoform 

expressed in cardiac muscle cells and the only one expressed in differentiated skeletal 

muscle cells. ADF, also called destrin, tends to show higher levels of expression in 

epithelial and endothelial tissues (Ono et al., 1994; Nakashima et al., 2005; van Troys et 

al., 2008). Although these different isoforms exhibit varied expression, structurally, they 

are highly conserved. Each one is constituted by a single-fold domain called an ADF-

homology domain, which is also known to be present in other ABP families. 

(Lappalainen et al., 1998; Maciver and Hussey, 2003; van Troys et al., 2008). Although 

cofilin itself is conserved, the number and type of isoforms that exist in different 

organisms vary. In Caenorhabditis elegans, the ADF/cofilin gene unc-60 encodes both 

UNC-60A and UNC-60B proteins (Ono and Benian, 1998). In Arabidopsis thaliana, there 

are twelve separate ADF/cofilin genes (Dong et al., 2001). In contrast, the 

Saccharomyces cerevisiae genome contains only one ADF/cofilin gene (Iida et al., 1993; 

Moon et al., 1993). 

Cofilin-1 is a relatively small protein of 19kDa, but plays a significant role in 

actin dynamics. This protein has two major functions that both contribute to actin 

turnover: severing and depolymerizing of F-actin (Carlier et al., 1997; Bamburg and 

Wiggans, 2002; van Troys et al., 2008). In recent years, it has been shown that the 

concentration of cofilin within the cell dictates its activity. At low concentrations, cofilin 

tends to sever filaments, whereas increased polymerizing activity is observed at higher 

levels (Andrianantoandro and Pollard, 2006; van Troys et al., 2008). Severing occurs 

when cofilin binds to F-actin, causing a conformational change, or twisting of the 

filament. The effect of this change is thought to extend hundreds of actin subunits along 
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the filament, forcing the structure to fracture. Cofilin’s severing action ultimately 

generates newly-available barbed ends (van Troys et al., 2008). As a depolymerizing 

protein, cofilin increases the off- rate of ADP-actin at the pointed end by 30-fold. This 

occurs since cofilin has a higher affinity for ADP-actin than ATP-actin, and once bound it 

causes a slight angular rotation of the monomers (Carlier et al., 1997; van Troys et al., 

2008). Furthermore, evidence has also shown that Aip1 can enhance cofilin’s function by 

capping barbed ends of filaments, thus temporarily inhibiting polymerization and 

reassociation of severed ends (Okada et al., 2002; Balcer et al., 2003). Actin filament 

disassembly via filament-bound cofilin is activated by the N-terminal propeller of Aip1 

(Rodal et al., 1999; Li et al., 2007). Ultimately, these cofilin-Aip1-mediated activities 

lead to a net polymerization, since new filaments can grow from severed ones and 

depolymerized actin is recycled (Clark et al., 2006).  

Aip1 

Aip1 was originally discovered in yeast (Amberg et al., 1995). Since then, 

homologs in several other species such as C. elegans, Dictyostelium discoideum, Xenopus 

laevis, Drosophila melanogaster, and Homo sapiens have been studied. Aip1 is a 67kDa 

protein and is part of the tryptophan-aspartic acid (WD) repeat family of proteins (Ono, 

2001; Voegtli et al., 2003). WD40 repeat sequences consist of approximately 40 amino 

acids that form one blade of one overall β-propeller structure. The domains formed by 

these repeats are commonly involved in regulation and reversible binding of target 

proteins (Smith et al., 1999). Aip1 is unique in terms of β-propeller proteins because it 

has two propeller domains each made up of 7 blades (Voegtli et al., 2003; Mohri et al., 
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2004). This distinctive configuration of Aip1 has been described as a clam-shell 

formation, since the two propeller domains are set at a 110o angle. (Voegtli et al., 2003). 

As previously mentioned, Aip1 is an ABP that can associate with both actin and 

cofilin to regulate cofilin-mediated actin filament dynamics (Mohri et al., 2004). Aip1 has 

two separate functions: to enhance cofilin`s ability to sever and disassemble actin 

filaments and to cap barbed ends of cofilin-bound filaments (Rodal et al., 1999; Okada et 

al., 2002; Balcer et al., 2003; Mohri et al., 2006; Li et al., 2007; Tsuji et al., 2009). A 

series of studies examining the functional relationship between C. elegans Aip1/UNC-78 

and cofilin/UNC-60 determined that four conserved Aip1/UNC-78 residues, E126, D168, 

F182, and F192, are responsible for binding to cofilin/UNC-60-bound actin and activating 

disassembly of filaments. These residues are found on the external area of blades 3 and 4 

of the N-terminal β-propeller domain. To further characterize this interaction, it was 

shown that individual point mutations at these residues generally did not affect 

Aip1/UNC-78 function. However, a quadruple mutation of these residues eliminated its 

actin disassembly function altogether. In addition, another residue, G19, was shown to be 

crucial for Aip1/UNC-78`s barbed-end capping ability. All aspects of these studies imply 

that Aip1 is necessary to augment cofilin`s function (Mohri et al., 2004; Mohri et al., 

2006). These findings coincide with other studies concluding that conversely, the  

presence of cofilin induces filament disassembly by Aip1, and that Aip1 alone has 

minimal influence on these dynamics (Mohri and Ono, 2003; Ono, 2003).  

 Aip1 is a well conserved protein that has also been studied using other model 

systems. A Dictyostelium homolog, DAip1, was discovered by Konzok et al. (1999). It 

was suggested to play a contributing role in regulating filament disassembly alongside 
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cofilin, although mutations did not severely affect its function. In contrast, vertebrate 

homologs of Aip1 such as XAip1 in Xenopus, exhibit strong correlations with cofilin-

mediated actin disassembly. XAip1 localizes with cofilin, with higher concentrations in 

cortical regions. XAip1’s association with cofilin-bound actin enables its barbed-end 

capping function, which in turn assists cofilin`s depolymerizing and severing effects 

(Okada et al., 1999; Kueh et al., 2008). In a study on Xenopus blastomeres, increased 

amounts of shortened actin filaments were detected in the presence of cofilin and XAip1 

together compared to filaments subjected to cofilin or XAip1 alone (Okada et al., 1999).  

WDR1 

WD40 Repeat protein 1 (WDR1) is the ~67kDa vertebrate homolog of yeast Aip1 

and was first noted in chickens by Adler et al. (1999). WDR1 contains nine WD repeats 

of 30-40 amino acids, each of which comprises a single blade of the β-propeller domain 

structure (Adler et al., 1999; Smith et al., 1999; Voegtli et al., 2003). Six kelch- like 

motifs have also been identified in human and rat WDR1 and are adjacent to the WD 

motifs (Noone and Hubberstey, unpublished). Kelch motifs are generally 44-56 amino 

acids in length, repeat in groups of 5-7, and much like WD repeats, each form a blade as 

part of a β-propeller structure. Many kelch proteins bind F-actin and may have specific 

binding partners (Prag and Adams, 2003). In the case of WDR1, its binding partner would 

be cofilin, further suggesting it is a kelch- like protein. 

 WDR1 has been actively studied. Overall, when compared to Aip1, WDR1 

exhibits similar roles in cofilin-mediated actin dynamics. In rat pheochromocytoma cells, 

WDR1 co- localizes with actin (Shin et al., 2004). In mouse megakaryocytes and 

neutrophils, mutating WDR1 causes macrothrombocytopenia and autoinflammatory 
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disease due to impaired cofilin-mediated actin processes (Kile et al., 2007). Other studies 

have indicated that WDR1 may have additional roles within the cell. Expression was 

upregulated after chicks were subjected to noise trauma, indicating that a stress response 

function through increased actin turnover is a possibility for WDR1 (Adler et al., 1999; 

Adler et al., 2008). 

 Additionally, a study by Noone and Hubberstey (unpublished) has investigated the 

function, localization, and expression of a 60kDa WDR1 in rats and humans. In rat 

fibroblast cells, WDR1 localizes to the ends of actin filaments and is distributed along the 

filaments themselves. These findings are consistent with actin disassembly and capping 

functions. Direct actin-WDR1 interactions were also observed. Furthermore, human 

WDR1 is not expressed in heart or skeletal muscle tissue. Generally, many aspects of 

WDR1 are still unclear, including its interaction with cofilin, effect on cytoskeletal 

processes like migration, and more specific expression levels and patterns. In addition, 

more mutational analyses of WDR1 would shed light on any functions that are specific to 

higher eukaryotes.  

WDR∆35 

Recently, a truncated isoform of human WDR1 named WDR∆35 was discovered.  

Exons three, four, and five (421-840bp) are excised from this isoform, yielding a protein 

of ~42kDa. While all six kelch- like regions are preserved in WDR∆35, splicing removes 

three of the nine WD repeats (Noone and Hubberstey, unpublished). More information is 

required to determine if WDR1 and WDR∆35 arise from different transcriptional start 

sites or through alternative splicing. It is not known if this second isoform is also 

expressed in other organisms besides mammals, as it has only been studied in humans and 
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rats. Interestingly, WDR∆35 is expressed in heart and skeletal muscle tissue, the same 

two tissues that lack expression of WDR1 (Noone and Hubberstey, unpublished). Cofilin-

2 (muscle cofilin) is also the only isoform expressed in skeletal muscle, and is expressed 

dominantly in cardiac muscle (Ono et al., 1994; Nakashima et al., 2005). Thus, specific 

expression of cofilin and WDR1 isoforms in these tissues may allude to the function of 

WDR∆35. Additionally, WDR∆35 expression is significantly higher than WDR1 

expression in other human tissues and cell lines (Correa and Hubberstey, unpublished 

data). Although its function is entirely unknown, these data suggest the possibility that 

WDR∆35 may be the dominant mammalian isoform or that its role within the cell differs 

from WDR1. 

Actin-Based Cell Migration 

Cell migration is necessary for such processes as wound-healing, development, 

and immune response. In order for directed cell migration to occur, the cell must first 

become polarized. Polarization is instigated when cells receive extracellular stimulation 

from chemoattractant gradients via membrane receptors. Cells that migrate by crawling 

do so in four general steps: protrusion, adhesion, translocation, and retraction (Figure 

1.1). The actin cytoskeleton plays a major role during each step (Yamazaki et al., 2005). 

Membrane protrusions such as lamellipodia, filopodia, podosomes, and invadopodia form 

at the leading edge of migratory cells. Formation of all protrusions relies on rapid actin 

turnover signalled by extracellular stimulants. Lamellipodia are flat, sheet- like structures 

and are the most common protrusion. They contain dense actin networks, which are 

regulated by the Arp2/3 complex (Machesky et al., 1997). Signal transduction from 

extracellular growth factors via G-protein coupled receptors to Arp2/3’s effector, 
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Wiskott-Aldrich syndrome protein (WASP), enables nucleation and elongation of new 

actin filaments. These new filaments are nucleated alongside an established filament, and 

polymerize at a 70o angle to form branched actin networks (Goley and Welch, 2006).  

Filopodia are long spindle- like projections at the cell front that act to integrate 

extracellular stimulants such as growth factors and nutrients. With regard to the 

cytoskeleton, filopodia contain long bundles of actin filaments. Their formation relies on 

actin polymerization being unimpeded by capping proteins at certain points along the 

leading edge (Lundquist, 2009). Podosomes are typically found in monocytes and 

osteoclasts (Linder and Kopp, 2005), while invadopodia are exclusive to cancer cells. 

Both of these protrusion types have a rich actin core regulated by Arp2/3, which is 

encompassed by integrins and integrin-related proteins (Lundquist, 2009). They also have 

extracellular matrix-degrading capabilities and their formation may be coupled between 

independent cells via paracrine signalling (Yamaguchi et al., 2006).  

During migration, adhesion structures such as focal complexes, focal adhesions, 

and fibrillar adhesions, form at the leading edge and disengage at the cell’s trailing end. 

These structures are linked to the actin cytoskeleton by integrins. Stress fibres consist of 

actin and myosin bundles and work synergistically with focal adhesions. Adhesions 

promote stress fibre formation, and are sustained by mechanical tension created by those 

same fibres (Le Clainche and Carlier, 2008). Regulatory proteins that control Arp2/3  



11 
 
 

 
Figure 1.1: The process of actin-based cellular migration. Protrusion initiates when 

chemotactic factors induce signal transduction pathways involving Rac and Cdc42. 

Downstream ABPs like cofilin and Arp2/3 promote actin polymerization and branching at 

the leading edge (inset). Adhesion relies on integrins to mediate cell- to-matrix contact. 

Within the cell, integrins are linked to actin networks. During translocation, the cell body 

shifts forward via the actomyosin complex. Retraction involves disassembly of any 

previously formed adhesions at the trailing edge. Together, these steps allow the cell to 

detach and reattach in a coordinated and directed fashion.  

Retraction 

Translocation 

Adhesion 

Protrusion 

Adapted from Yamazaki et al. (2005) 

and from Wang et al. (2007) 
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activity are also responsible for the formation of stress fibres in association with focal 

adhesions (Pring et al., 2003). Together, membrane protrusions, adhesion structures, and 

stress fibres work in concert to enable directed migration. Furthermore, ABPs are also 

critical for proper actin remodelling during migration (Alberts et al., 2008). 

The Role of Cofilin during Cell Migration 

Cofilin plays a key role in rearranging actin architecture, which is necessary for 

directed cell migration. At the leading edge of the cell where Arp2/3-mediated actin 

networks form, cofilin severing of actin produces new barbed ends. Severing stimulates 

new filament elongation, thus contributing to the formation of membrane protrusions 

(Figure 1.1). Here, cofilin also works to depolymerize aged actin filaments, and recycle 

the subunits for rapid network formation (Zebda et al., 2000).  

Directed migration via actin rearrangement is activated through signal 

transduction cascades. These pathways are initiated by the binding of growth factors to 

their extracellular receptors. Figure 1.2 depicts the EGF-induced pathway that regulates 

cofilin and actin-based migration. Inside the cell, phosphoinositide-3-kinase (PI3K) is 

activated, which then stimulates downstream RhoGTPases such as Rho, Rac, and Cdc42. 

Rho governs assembly of stress fibres, while Rac and Cdc42 pathways regulate 

lamellipodia and filopodia formation, respectively (Yamazaki et al., 2005). With regard 

to cofilin regulation, RhoGTPases activate Rho-associated coil-coil- forming kinase 

(ROCK). When ROCK is inhibited, filamentous actin aggregates within the cell and focal 

adhesion and membrane protrusion formation increases (Hopkins et al., 2007). This 

coincides with ROCK’s function as a regulator of downstream LIM-kinase (LIMK). 

LIMK becomes active when phosphorylated at certain threonine residues (Amano et al., 
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2001; Ohashi et al., 2002). In cells that have increased motility, expressing dominant 

negative forms of LIMK or creating knock-downs results in decreased locomotion 

(Yoshioka et al., 2003; Suyama et al., 2004). Importantly, LIMK inactivates cofilin by 

phosphorylating it on serine 3. Cofilin can be dephosphorylated, and thus activated, by a 

phosphatase called Slingshot (SSH). Knock down of SSH increases cofilin activity, 

causing multiple lamellipodia to form. Therefore, cofilin hyperactivity impairs directional 

migration (Nishita et al., 2005). As suggested, the phosphorylation state of cofilin has a 

major impact on migration. When activated, cofilin can contribute to migration by 

severing and disassembling actin filaments at the leading edge of polarized cells (Nishita 

et al., 2005; Hopkins et al., 2006). Phosphorylated ADF/cofilin is not able to sever 

filaments or induce actin disassembly (Morgan et al., 1993). Also, overexpression of 

LIMK increases cofilin phosphorylation, leading to a decrease in free barbed ends due to 

a lack of cofilin severing capabilities. Thus, actin polymerization at the leading edge 

ceases, and lamellipodia fail to develop (Zebda et al., 2000; Samstag et al., 2003). 

In addition, cofilin is activated by another pathway. Although still unclear, 

evidence has shown that some cofilin is bound to phosphotidylinositol 4,5-bisphosphate 

(PIP2) at the plasma membrane. Cofilin is released and activated upon PIP2 hydrolysis by 

phospholipase C (PLC) into diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3) 

(Yonezawa et al., 1990; Wang et al., 2007; Alberts et al., 2008). The PIP2 and F-actin 

binding sites on cofilin overlap, suggesting that this PLC-mediated pathway regulates  
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Figure 1.2: The cofilin regulation pathway. Cofilin activity is controlled by EGF. EGF 

binds to and activates its receptor tyrosine kinase, which subsequently activates PI3K in 

the cytosol. PI3K has many downstream effectors, including RhoGTPases. During cofilin 

regulation, these effector proteins phosphorylate ROCK. Active ROCK can 

phosphorylate LIMK, which then inactivates cofilin by phosphorylating it. Phosphatases 

such as SSH dephosphorylate cofilin, therefore rendering it active and able to sever and 

disassemble actin filaments. EGF-binding can also activate cofilin through the PLC 

pathway. PLC hydrolyzes PIP2 into IP3 and DAG. Cofilin that was bound to PIP2 is 

activated upon release. 

Adapted from Wang et al. (2007) 



15 
 
 

actin-cofilin dynamics (Yonezawa et al., 1990).  Leyman et al. (2009) demonstrated that 

directional migration via lamellipodia formation was in fact regulated by sequestration 

and release of cofilin by PIP2. When cofilin was bound, protrusive activity was reduced. 

Ultimately, the two different cofilin activation pathways described, as well as the Arp2/3-

mediated pathway, work simultaneously to promote directed cell migration (Yamaguchi 

and Condeelis, 2006). 

The Role of Aip1/WDR1 during Cell Migration 

Aip1 and its homologues have been shown to interact with cofilin and cofilin-

bound actin, which are essential to directional cell migration. Although the regulation and 

activation of Aip1/WDR1 is largely unstudied, a role in cell migration alongside cofilin is 

suspected. For example, while caspase-11 is generally a regulator of inflammatory and 

apoptotic events, it has been shown that migrational defects occur in caspase-11-null 

leukocytes. Caspase-11 appears to regulate Aip1/WDR1’s interaction with cofilin by 

interacting with F-actin and Aip1/WDR1 to increase proximity to actin-bound cofilin. 

Coimmunoprecipitation assays revealed that the C-terminal propeller domain of 

Aip1/WDR1 directly interacts with the N-terminal CARD domain of caspase-11 (Li et 

al., 2007).  

There is considerable support for Aip1/WDR1’s functional involvement in cell 

motility. In Dictyostelium, localization of DAip1 is specifically seen in anterior 

protrusions in cells stimulated or unstimulated by a chemotactic gradient. Locomotion in 

DAip1 wild-type cells is 46% faster than in DAip1-null cells. Also, despite DAip1 levels 

being higher when DAip1 is overexpressed in null cells compared to the wild-type, 

motility is approximately the same. Overall, DAip1 is necessary for cell motility (Konzok 
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et al., 1999). In Drosophila S2 cells, Aip1 is required, along with cofilin, for actin 

remodelling involved in formation of lamella. When Aip1 is knocked-down, actin 

turnover is impaired (Rogers et al., 2003). A study by Tsuji et al. (2009) established that 

elongation of actin responsible for lamellipodia expansion was dependent upon regulation 

of Aip1 barbed-end capping. Also, disruption of actin by Aip1 occurred faster than 

Arp2/3-mediated nucleation. Phalloidin staining of actin and fluorescent speckle 

microscopy showed that Aip1 was evenly distributed within the lamellipod structure, 

while Arp2/3 was more concentrated immediately at the leading edge. Together, this 

indicates that Aip1 promotes efficient actin turnover during migration simultaneously 

with actin nucleation mechanisms. 

 WDR1’s involvement in directional migration has become apparent with recent 

evidence. In murine macrophage cells, knocking down WDR1 decreased migration rate in 

the presence and absence of macrophage chemoattractants. Formation of membrane 

ruffles, which are associated with migration, was lessened in these WDR1 knock-downs 

(Li et al., 2007). In neutrophils with non-functional WDR1, F-actin levels increase, 

migration rates are reduced, and cofilin mislocalizes (Kile et al., 2007). Furthermore, 

WDR1 expression is upregulated in chick basilar papilla after noise damage. Avian 

auditory hair cells are capable of regeneration, thus increased WDR1 in association with 

actin remodelling is likely due to necessary migration during cell repair processes (Lomax 

et al., 2001). WDR1’s localization patterns during cell migration further support its 

functional interactions. WDR1 is present at cell adhesion sites, becomes more 

concentrated in cortical regions at the leading edge during membrane protrusion 
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development, and becomes diffuse within the cell when actin-based migratory structures 

begin to disassemble (Noone and Hubberstey, unpublished).  

Cancer and Metastasis 

Cancer is characterized by several general traits or behaviours. First, unrestrained 

cell proliferation occurs due to a disregard for regulatory mechanisms. Cells also avoid 

programmed cell death and differentiation to become immortalized. Genetic instability is 

necessary for cancer development as well, and is manifest as irreparable DNA damage or 

replication errors, or even as aberrant karyotypes. Finally, if cancer cells are defined as 

malignant, they are capable of invading their surrounding environment and will relocate. 

Malignancies are also able to fully metastasize and proliferate at foreign locations. The 

progression of invasion and metastasis is complex and requires highly-coordinated 

processes (Hanahan and Weinberg, 2000). In general, a tumour cell from the primary 

lesion must be able to invade and remodel the surrounding three-dimensional 

extracellular matrix (ECM). For successful invasion, tumour cells must develop 

invadopodia, podosomes, and lamellipodia. A defining characteristic of invadopodia is an 

increased ability to degrade and remodel the ECM (Yilmaz and Christofori, 2009). This is 

made possible through the upregulated expression of matrix metalloproteinases (MMP) 

such as MT1-MMP collagenase (Kelly et al., 1998), and through MMP recruitment by 

actin-network formation near adhesion sites (Yilmaz and Christofori, 2009). Invasive 

cells must then intravasate into a blood or lymph vessel using the same principles for 

invasion into the ECM (Yamaguchi and Condeelis, 2006; Alberts et al., 2008). Entrance 

into the circulation is critical, and is the next step that allows for potential metastasis to 

occur. Metastatic success is achieved if the circulating cells then extravasate out of 
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vessels and invade tissue or the ECM at another location. Relocated tumour cells also 

must proliferate by evading apoptosis and survive by recruiting blood vessels via 

angiogenesis (Hanahan and Weinberg, 2000).  

Different types of malignant cancers have distinct invasive capabilities and individual 

metastatic profiles. Human MCF7 cells are derived from a pleural effusion that originated 

from a mammary gland adenocarcinoma. In vitro, MCF7 cells have relatively low 

invasive capabilities, most likely in part due to a lack of matrix metalloproteinases, 

although metastases are observed in vivo. These cells also retain many characteristics of 

the mammary epithelium, their originating tissue (Soule et al., 1973). Another human cell 

line, Hs578T, is derived from a mammary ductal carcinoma. This line is highly invasive 

and metastatic in vitro and in vivo (Hackett et al., 1977). Both of these breast cancer lines 

possess epidermal growth factor receptors (EGFR), which play a role in the signalling 

processes necessary for invasion (Smith, 1979; Bacus et al., 1990; van Dijk et al., 1997). 

MCF7 and Hs578T are the two breast cancer cell lines used as models for cell migration 

and invasion in this study. 

Actin-based Cell Motility in Cancer 

 Generally, cells become cancerous by exploiting normal, regulated cell 

machineries. These include pathways involved in proliferation, growth, cell death, and 

motility. In order for cancer cells to become malignant, regulatory mechanisms for cell 

motility are taken over to promote migration and invasion. Targeting the actin-based 

cytoskeleton is particularly important in this endeavour, as it is required for cell 

remodelling during normal directed migration. Using lamellipodia and filopodia, cancer 

cells can migrate two-dimensionally along the ECM. Podosomes, found in highly-motile 
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but noncancerous cell types, and invadopodia, seen in cancer cells, are required for actual 

invasion into the ECM and other three-dimensional substrates (Yamaguchi and 

Condeelis, 2006).  

Like other membrane protrusions, invadopodia rely on extracellular chemotactic 

gradients to stimulate actin assembly, as well as the PI3K-RhoGTPase pathways that 

regulate Arp2/3 nucleation and cofilin activity. Cancer cells can self-stimulate by 

producing growth factors. In addition, a paracrine signalling loop is established between 

tumour-associated macrophages (TAM) that emit growth factors such as EGF, and 

tumour cells that attract TAMs by releasing chemokines such as colony-stimulating factor 

1 (CSF1) (Yamaguchi et al., 2006; Yilmaz and Christofori, 2009). PI3K plays a key role 

in cancer cell motility. Various types of cancers exhibit overexpression of PI3K or 

mutations that heighten its role as a kinase (Shayesteh et al., 1999; Ma et al., 2000). 

Moreover, inhibiting PI3K activity leads to decreased tumorigenicity (Lemke et al., 1999; 

Hu et al., 2000). Overexpression or hyperactivity of RhoGTPases, including Rho, Rac, 

and Cdc42, is also seen in many types of cancers such as breast, lung, and liver, and can 

lead to metastasis (Barber and Welch, 2006). There is plenty of evidence to also suggest 

that ROCK inhibition reduces the invasive ability of cancer cells (Hopkins et al., 2007). 

Arp2/3-mediated actin nucleation and network establishment is crucial to both migration 

and invasion of cancer cells. Arp2/3 is distinctly present in invadopodia, and deregulatio n 

of its upstream effectors can interfere with a cell’s invasive capabilities. When Cdc42 is 

knocked-down, Arp2/3 complex assembly is inhibited and leads to defective actin-

network branching (DesMarais et al., 2004; El-Sibai et al., 2007).  
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Importantly, it has become clear that LIMK-cofilin and PIP2-cofilin regulation are 

essential for invasion and metastasis. Wang et al. (2006) provided evidence of LIMK and 

cofilin involvement in malignancies. When LIMK expression was increased in cancerous 

lung cells, invasion and metastasis was restricted. If cofilin was subsequently 

overexpressed in the same cells, malignant phenotypes were rescued. Furthermore, 

invadopodia were more transient and less invasive when cofilin levels were diminished 

(Yamaguchi et al., 2005). Together this information strongly suggests that cancer cell 

motility is in direct relation to the regulation of cofilin phosphorylation (Wang et al., 

2006). On the contrary, PLC regulation of cofilin, and not cofilin phosphorylation status, 

may also be responsible for motility in cancer. Since the PLC-regulated pathway of 

cofilin activation is not well understood, the definitive role of this cofilin regulatory 

mechanism remains elusive. Despite this, information collectively demonstrates a 

necessity for cofilin in malignant cancers (Song et al., 2006; van Rheenan et al., 2007).  

Finally, evidence is slowly emerging to support the role of Aip1/WDR1 in cancer 

cell motility. Mouse embryos transformed using insoluble nickel compounds exhibit 

differential expression of several genes, including WDR1, which is overexpressed. 

Typically, exposure to these compounds increases the risk of lung and nasal cancers 

(Landolph et al., 2002).  With regard to motility, the knock-down of Aip1 results in the 

reduction of chemotactic migration in lymphoma cells, and the formation of multiple 

membrane protrusions along the cell’s perimeter. It is likely then, that Aip1 is not only 

essential for migration of cancer cells, but also for the directionality of the migration 

(Kato et al., 2008).  
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Summary 

 Evidence has implicated the regulation of cofilin activity as essential to cancer cell 

migration and invasion. Data suggest that Aip1/WDR1 may also be involved in cancer 

cell motility, although more information is needed for corrobora tion. Specifically, a 

correlation between WDR1 and invasion and metastasis has yet to be explored. 

Furthermore, the cofilin-WDR1 relationship is not fully understood. In addition, 

WDR∆35 is not well characterized and further exploration of its structure, localization, 

and function is imperative. 

There are two main research objectives described in this thesis: 

1. To examine the role of WDR1 isoforms in cancer cell migration and invasion 

2.  To clarify the relationship between WDR1 isoforms and cofilin in terms of 

expression and activation.  
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Chapter Two: Materials and Methods 

 

Cell Culture 

Hek293 (Human embryonic kidney 293 cells) and Hs578T cell lines were cultured 

in Dulbecco’s modified Eagle’s medium (DMEM), and MCF7 cells were cultured in 

RPMI-1640 medium. All media were supplemented with 10% fetal bovine serum (FBS) 

and 1% penicillin/streptomycin. Cell cultures were incubated at 37oC in a 5% CO2 

atmosphere. At approximately 90% confluency, cultures were sub-cultivated at a ratio of 

1:2, 1:5, or 1:10 using trypsin-ethylenediaminetetraacetic acid (EDTA). All reagents were 

obtained from Sigma-Aldrich. 

DNA Extraction 

 Two millilitres of Luria-Bertani (LB) broth was inoculated with 10µl of 

Escherichia coli glycerol stock and incubated overnight (approximately 16hr) at 37oC.  

Twenty microlitres of overnight culture was used to inoculate 100ml LB, which was 

subsequently incubated overnight (approximately 16hr) at 37oC.  Ampicillin or 

kanamycin was added to LB to a concentration of 100 µg/ml or 50µg/ml, respectively. 

Overnight cultures were then pelleted, and DNA was extracted using the GenElute HP 

Plasmid Maxiprep Kit from Sigma.  

 

 

DNA Transfection 

Cells were grown to approximately 60-80% confluency prior to transfection, 

except for cells cultivated for the purpose of in vitro wound-healing scratch assays, which 

were grown to 100% confluency. For stable and transient transfections, p lasmid DNA 
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constructs were transfected into Hek293, MCF7, and Hs578T cell lines using 2mg/ml 

sterile, filtered branched polyethylenimine (PEI; Aldrich) as a transfection reagent. For 

Hek293 and Hs578T cells, ~8µg of plasmid DNA was used, while ~16µg of plasmid 

DNA was used for MCF7 cells. First, in a separate reaction, DNA and PEI were added to 

the appropriate medium for each transfection. Then, after ~10min, this reaction was added 

to cells on a plate containing enough medium to dilute DNA and PEI to the specified 

concentrations. For stable and transient transfections, cells were given 24-36 hr to 

integrate and express the DNA before replacing the medium.  

 Specifically, for producing transient MCF7 cell lines, 16µg of either peGFP-C1, 

peGFP-WDR1, or peGFP-WDR∆35 plasmid DNA was transfected into cells. For 

transient Hs578T cell lines, 8µg of this plasmid DNA was transfected into cells. 

Expression of the GFP-fusion proteins was driven by a CMV promoter. Cells were tested 

for transfection efficiency by transfecting with various concentrations of PEI and of pCI-

βgal, a vector that constitutively expresses lacZ.  

A second transfection method using Lipofectamine 2000 (Invitrogen) instead of 

PEI was used for Hek293 cells. In this case, 4-8µg of plasmid DNA, 10-20µl of 

Lipofectamine 2000, and serum-free medium (SFM) was used. After 4-6 hr of 

transfection, the medium was replaced with regular DMEM. 

Stable Cell Line Selection 

 MCF7 cells were transfected with  pcDNA6/TR vector (Invitrogen) containing the 

reverse tetracycline transactivator gene driven by a CMV (Cytomegalovirus) promoter, as 

well as the blasticidin resistance gene. Cells were selected with 10µg/ml blasticidin 

(Invivogen). To confirm expression of the vector, cells were cotransfected with 
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pcDNA4/TO/lacZ vector (Invitrogen) containing a lacZ gene and tetracycline operator 

driven by a CMV promoter. Cells were stained using potassium cyanide (KCN) and X-gal 

(Fisher Scientific).  

 MCF7 cells that successfully integrated the pcDNA6/TR vector were  

cotransfected with pcDNA4/TO vector (Invitrogen). This vector contained either a GFP, 

GFP-WDR1, or GFP-WDR∆35 gene, and a tetracycline operator, with expression being 

driven by a CMV promoter. Cotransfected MCF7 cells were also selected with 75µg/ml 

zeocin (Invivogen). Several colonies were selected from the total population of 

cotransfected cells on a 10cm plate. Colonies were mechanically removed with a pipette, 

and were transferred to a 24-well plate containing ~200µl of trypsin-EDTA. After ~1min 

of trypsinization, 1ml RPMI was added to stop the reaction. Each colony was grown to 

confluency before being trypsinized and transferred to a 60mm plate, and eventually 

again to a 10cm plate.  To induce expression of GFP-tagged genes, 1µg/ml doxycycline, 

or dox (Invivogen), was introduced into the medium for at least 18-24 hr.  

 For TREX cells (Hek293 cells expressing the reverse tetracycline transactivator), 

either pcDNA4/TO/lacZ or pcDNA4/TO vector was transfected. Stable cells were 

selected with 25µg/ml blasticidin, 150µg/ml zeocin, and by using the same colony 

selection process described for stable MCF7 cell lines.  

X-gal Staining of Mammalian Cells 

 After at least 24hr, cells transfected with either pcDNA4/TO/lacZ or pCI-βgal 

vector were rinsed twice with 1x phosphate-buffered saline (PBS). Cells were then fixed 

using 0.05% glutaraldehyde (Sigma) for 5-10 min, and rinsed again three times with 

1xPBS. Then 20mg/ml X-gal was added to KCN solution (0.164% w/v ferrocyanide, 
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0.211% w/v ferricyanide, 1M MgCl2) at a ratio of 1:20, and 1-2ml was added to fixed 

cells for at least 24 hr. Cells were then examined for X-gal (blue) staining using an 

inverted bright field microscope (Axiovert 25, Zeiss). To preserve stained cells, X-gal-

KCN solution was removed and 1-2ml of 80% glycerol was added. 

Protein Extraction 

 Cells were grown to approximately 80-90% confluency before extraction. Cells 

used for EGF time courses were extracted at a slightly lower density to ensure cofilin-

related cellular processes were not hindered by proximity of adjacent cells. Cells were 

rinsed twice with 1xPBS. For cells on 60mm plates, 160-250µl of 

radioimmunoprecipitation assay (RIPA) buffer (150mM NaCl, 0.1% sodium dodecyl 

sulphate (SDS), 50mM Tris-pH 7.4, 1% NP-40 (IGEPAL CA-630; Sigma), protease 

inhibitor cocktail tablet; Roche) was added after media was aspirated. After mechanical 

removal from the plate, the cell-RIPA solution was pulse-sonicated using a sonic 

dismembrator (Fisher Scientific) for ~30sec. Cellular debris was pelleted at 10000 rpm 

for 2min, and the protein supernatant was stored at -20oC. 

Immunoblotting 

 Total protein extracts were denatured in 1x Laemmli sample buffer by boiling for 

approximately 3min. Protein samples were separated by SDS-PAGE (sodium dodecyl 

sulphate – polyacrylamide gel electrophoresis) on a 10% or 12% polyacrylamide gel in 1x 

running buffer (25mM Tris-HCl, 250mM glycine-pH 8.3). A pre-stained protein ladder 

(Fermentas) was used as a marker.  

 Protein was blotted onto a nitrocellulose membrane (Fisher Scientific) in a Bio-

Rad transfer apparatus containing 1x transfer buffer (25mM Tris-HCl, 192mM glycine-
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pH 8.3, 20% methanol) at 4oC for approximately 1hr. The membrane was incubated in 

5% blocking solution (5% w/v fat- free skim milk powder in 1xTris-buffered saline with 

Tween 20 (TBST)) for at least 1hr. Primary antibody incubation followed in either 

1xTBST (Tris, NaCl, 0.05% Tween 20) for 1hr or in primary dilution buffer (5% bovine 

serum albumin (BSA), 0.1% Tween 20, 10% TBS) overnight at 4oC. The membrane was 

rinsed 3x5min with 1xTBST followed by a 1hr incubation with a horseradish peroxidase 

(HRP)-conjugated secondary antibody in either 1xTBST or secondary blocking solution 

(5% w/v fat- free skim milk powder, 0.1% Tween 20, 10% TBS). For a description of all 

primary and secondary antibodies used, see Appendix A. For a loading control, samples 

were probed with an anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

antibody. The membrane was again rinsed 3x5min with 1xTBST before visualizing 

proteins using Lumi- light Western blotting substrate (Roche). AlphaEase FluorChem 

HD2 software and camera apparatus (AlphaInnotech) were used to expose the membrane 

and perform densitometric analysis. Densitometry output data was further analyzed using 

Microsoft Excel. 

Immunofluorescence 

 Cells transfected with HA (hemagglutinin) constructs were plated onto sterile 

16mm round glass coverslips (CS; Fisher) and grown until approximately 50-60% 

confluent. CS were immersed in 3.7% formaldehyde solution in 1xPBS for 10min. CS 

were then incubated in 0.5% Triton X-100 for 10min, followed by a 2min wash in 1xPBS. 

Cells were then covered in 40µl of 1:200 anti-HA (12CA5) primary antibody and 

incubated for 30min at 37oC. Cells on the CS were then washed in 0.05% Tween 20 for 

10min before incubating with 40µl of 1:200 Alexa Fluor 488 goat anti-mouse secondary  
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antibody (Molecular Probes) for 30min at 37oC. Again, CS were washed in 0.05% Tween 

20 for 10min, then were rinsed in 1xPBS for 5min before briefly rinsing several times in 

ddH2O. CS were mounted on slides using anti- fade reagent, then sealed after 24hr before 

observing cells under a fluorescent microscope.  

 For visualizing cells expressing GFP, cells on CS were immersed in 3.7% 

formaldehyde solution in 1xPBS for 10min, then rinsed in 1xPBS for 2min. CS were 

briefly washed in ddH2O several times and mounted as described above.  

EGF Induction Time Course 

 Cells were grown to approximately 70-80% confluency before EGF induction and 

serum-starved for ~3hr. MCF7 cells were stimulated with 5ng/ml EGF (Sigma) in SFM, 

and Hs578T cells with 10ng/ml in SFM, for 0sec, 30sec, 1min, 2min, 5min, and 15min. 

EGF-SFM was aspirated and protein or RNA was then extracted from cells according to 

specified protocols.  

RNA Extraction 

 Cells were grown to approximately 80-90% confluency before extraction. As was 

done for protein extractions, cells used for EGF time courses were extracted at a slightly  

lower density. Cells were first rinsed with 1xPBS. Approximately 250µl of 1% 2-

mercaptoethanol in lysis buffer (Sigma) was added to each 60mm plate of cells on ice. 

Cells were mechanically removed from plates using a cell scraper, and total RNA was 

extracted using the Sigma GenElute Mammalian Total RNA Miniprep kit. RNA aliquots 

were stored at -80oC. 
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RT-PCR 

 RNA was converted to cDNA using the High Capacity cDNA Reverse 

Transcription kit from Applied Biosystems. Each reaction contained 1µl reverse 

transcriptase, 2µl random primers, 2µl 10x reverse transcription buffer, 0.8µl dNTP mix, 

4.2µl ddH2O, and approximately 10µl of total RNA extract. A 2720 Thermal Cycler 

(Applied Biosystems), set at 25oC for 10min, 37oC for 120min, and 85oC for 5min, was 

used to carry out the reaction. cDNA samples were stored at -20oC. 

Quantitative Real-Time PCR 

 Each duplex qRT-PCR (quantitative real- time polymerase chain reaction) reaction 

contained 1µl GAPDH control primer-probe mixture, 1µl target primer-probe mixture, 

10µl TaqMan gene expression analysis master mix, 7µl ddH2O, and 1µl cDNA, per well. 

Target primer-probes used included H. sapiens cofilin, WDR1, and WDR∆35.  To ensure 

specificity, the WDR1 primer-probe set was designed against the exon 3-4 junction, while 

the WDR∆35 primer-probe set was designed across the exon 2-6 junction. All reagents 

used were from Applied Biosystems. Each cDNA sample reaction was run in triplicate 

within the same plate. Transcriptional expression analysis was then performed using the 

7300 Real Time PCR System and Sequence Detection Software from Applied 

Biosystems. This software determined the relative quantification (RQ) values of gene 

expression by calculating the ∆∆CT  values. Output data was further analyzed using 

Microsoft Excel, where the log of the RQ values were calculated (logRQ).  

Wound Healing Assay 

 Cells were plated onto gridded coverslips (Millennium Sciences, Inc.), displaying 

a 1mm x 1mm grid, divided into 100µm units. At 90% confluency, cells were transfected 
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and given 24-36hr to transiently express the appropriate GFP-fusion protein. A small 

wound, or scratch, was created mechanically in the fully confluent monolayer using a 

pipette tip, which uncovered 3-5 units across the grid. At 0hr, 12hr, 24hr, and 48hr, 

images of the wound and surrounding expressing and non-expressing cells were taken 

using a fluorescent microscope (CX41, U-RFLT50, Olympus) with QCapture Pro 

imaging software, and using a confocal microscope (IX81, Olympus) with FluoView 

software. For cells imaged using confocal microscopy, glass-bottom culture dishes 

(MatTek Corporation) with high optical clarity were used without gridded coverslips.  

 For cells grown on the CS, rate of migration was determined by using the 

microscopic grid to measure the width of the closing wound at several time points. Using 

the 100µm unit-grid, average total distance travelled by the cells was determined at 0, 12, 

24, and 48hr by counting the number of visible grid squares across the wound several 

times per plate. Migration rate (µm/hr) for each plate of cells was calculated by dividing 

this average total distance travelled by total time (48hr). Wound-healing assays were 

repeated three times for each GFP-fusion protein cell line, and the final migration rate 

was then calculated by taking the average of the migration rate from each replicate.  

Invasion Assay 

 The CytoSelect 24-well cell invasion assay (Cell Biolabs, Inc.) was used to carry 

out invasion experiments and analysis. First, cells were given 24-36hr to transiently 

express the appropriate GFP construct. Cells were then allowed to grow on 60mm culture 

dishes to a concentration of 0.5-1.0x106 cells/ml and serum-starved for ~3hr. This cell 

suspension in SFM was then added to the top section of a cell culture insert lined with 

basement membrane. To the lower chamber containing the insert, media containing 10% 
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FBS was added. This media also contained either 5ng/ml EGF for MCF7 cells or 10ng/ml 

EGF for Hs578T cells to further stimulate invasion. Cells were incubated at 37oC in 5% 

CO2 atmosphere for 24-48hr to allow for invasive cells to move through the basement 

membrane. Cells that did not invade the membrane were removed. Invasive cells were 

then stained and extracted from the bottom of the cell culture insert. The optical density 

(OD) at 590nm was measured using a microplate reader and Workout software (Perkin 

Elmer Life Sciences). Cell extraction solution was used as a blank measurement. Two 

OD590 measurements were taken for each repeat of each sample. Output data was further 

analyzed using Microsoft Excel. 
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Chapter Three: Results 
 

Stable MCF7 cell line generation to express WDR1 proteins 

 In order to study the effects of WDR1 and WDR∆35 on various cell functions, 

these genes were overexpressed in a variety of mammalian cell lines. For stable 

overexpression, a tetracycline- inducible expression system was implemented in Hek293 

cells. GFP-tagged WDR1 or WDR∆35 was co-expressed in Hek293 cells that already 

expressed a reverse tetracycline transactivator gene (TREX cells). GFP-WDR1 and GFP-

WDR∆35 were stably integrated and expressed to create two individual cell lines. A GFP-

expressing control cell line was also created. Western blot analys is determined that 

expression levels of GFP-WDR1, GFP-WDR∆35, and the GFP control were upregulated 

in the presence of doxycycline (a tetracycline derivative). Minimal expression was 

observed in the absence of doxycycline which arose due to leakiness of the expression 

system. These results confirmed that the inducible expression system can function 

properly in a human cell line in order to express GFP-tagged genes of interest (Figure 

3.1).  

For these studies, MCF7 cells that stably expressed GFP-tagged WDR1 or 

WDR∆35 were attempted. However, setting up the same tetracycline- inducible 

expression system in MCF7 cells to achieve stable expression of GFP-fusion proteins 

proved to be largely unsuccessful. In the first attempt to create stable MCF7 cell lines, it 

was discovered that the MCF7 cells being used were not of human origin (data not  
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Figure 3.1: Stable GFP fusion proteins can be inducibly expressed in Hek293 cells. 

GFP (control), or GFP-tagged WDR1 or WDR∆35 were stably integrated into Hek293  

cells containing the reverse tetracycline transactivator gene (TREX cells), and were 

overexpressed using a tetracycline-on inducible expression system. Expression of GFP-

WDR1 (88kDa), GFP-WDR∆35 (70kDa), and GFP (28kDa) in the presence (dox) or 

absence (-) of doxycycline was analyzed by Western blotting. Actin was used as a loading 

control. 
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shown). qRT-PCR analysis verified that the original cells in question were undoubtedly 

of rodent origin, implying that these were in not MCF7 cells (data not shown). Since the 

cell type of these potentially-stable cells was not identified, they were terminated. The 

results of the second attempts are shown in Figures 3.2 and 3.3. Western blotting was 

used to screen various MCF7 lines that potentially expressed the GFP, GFP-WDR1, or 

GFP-WDR∆35. Densitometric analysis was performed to quantify expression levels that 

were normalized to GAPDH. Although one GFP control line (GFP-4) showed successful 

stable integration, stable lines expressing GFP-WDR1 and GFP-WDR∆35 could not be 

generated (Figure 3.2). Despite the relative expression levels of doxycycline- induced 

GFP-WDR1-1 and GFP-WDR1-4 being upregulated, repeated Western blotting and 

immunofluorescence could not confirm inducible expression. Furthermore, HA-tagged 

WDR1 or WDR∆35 fusion proteins were introduced into MCF7 cells expressing the 

reverse tetracycline transactivator gene. Western blotting (Figure 3.3) and 

immunofluorescence (not shown) revealed that none of the cell lines potentially 

expressing either of the HA fusion proteins were stable. Overall, these results indicated 

that only one MCF7 stable cell line was created containing GFP, which was not sufficient 

for further analysis, therefore transient transfections were employed.  

GFP-fusion proteins are transiently expressed and maintained in MCF7 and 

Hs578T cells 

Since stable breast cancer cell lines could not be established, it was therefore 

necessary to transiently express GFP, GFP-WDR1, or GFP-WDR∆35 in different cancer 

cell lines. To examine the effects of overexpression in cancer cell lines with different  
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Figure 3.2: Only one stable MCF7 cell line, GFP-4, was successfully created. (A) 

MCF7 cells expressing the reverse tetracycline transactivator gene were transfected with 

GFP, GFP-WDR1, or GFP-WDR∆35 to create potentially-stable cell lines. Each cell line 

was then induced with doxycycline (dox). Western blot analysis using a GFP antibody 

was using to detect GFP expression and screen these potentially-stable cell lines in the 

presence (+) or absence (-) of doxycycline.  (B) Induced expression of GFP-fusion 

proteins was quantified using densitometry and compared to quantified levels of 

uninduced GFP-fusion protein expression. GFP, GFP-WDR1, and GFP-WDR∆35 

expression values were normalized to GAPDH (loading control) expression values to 

determine relative expression levels.  
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Figure 3.3: No stable HA MCF7 cell lines were successfully created. Establishing 

MCF7 cells stably expressing HA-WDR1 (60kDa) or HA-WDR∆35 (42kDa) instead of 

GFP-fusion proteins was attempted using the same inducible expression system. Each cell 

line was induced with doxycycline (dox), and Western blot analysis was used to screen 

these potentially-stable cell lines in the presence (+) or absence (-) of doxycycline. Cells 

that constitutively overexpressed HA-fusion proteins (HA-WDR1 and HA-WDR∆35) 

were used as positive controls for expression. GAPDH was used as a loading control.  
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invasive properties, both MCF7 and Hs578T breast cancer lines were chosen. To test the 

endurance of transient GFP expression in a cell line, MCF7 cells were transfected with 

GFP control, GFP-WDR1, or GFP-WDR∆35. Images of expressing cells were captured 

every 24hr over a seven day period. Figure 3.4 shows that GFP expression remained 

relatively constant for up to 96hr for the GFP control, and up to 72hr for GFP-WDR1 and 

GFP-WDR∆35 cell lines. Expression levels noticeably declined after these particular time 

points and remained low. This result confirmed that expression of a transiently 

transfected GFP-fusion protein endured within the cell for a length of time suitable for 

examining migration, invasion and the cofilin-WDR1 relationship.  

 To verify that these GFP-fusion proteins were indeed being transiently expressed, 

Western blot analysis was necessary. GFP, GFP-WDR1, and GFP-WDR∆35 could all be 

individually expressed in MCF7 (Figure 3.5A) and Hs578T cells (Figure 3.5B), although 

at different expression levels. Expression levels of GFP-WDR1 and GFP-WDR∆35 were 

noticeably lower than the control. Along with MCF7 imaging, fluorescent confocal 

imaging of GFP, GFP-WDR1, and GFP-WDR∆35 expression in Hs578T cells confirmed 

the expression patterns seen with Western blotting. Approximately 30% of transfected 

cells expressed GFP-WDR1 or GFP-WDR∆35.  

WDR1 or WDR∆35 overexpression does not affect migration rate or invasiveness 

 Recent findings suggest that Aip1/WDR1 is involved in cancer cell migration and 

directionality, but its role has not been fully explored (Landolph et al., 2002; Kato et al.,  
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Figure 3.4: GFP-WDR1 and GFP-WDR∆35 maintained consistent levels of transient 

expression for up to 72hr. MCF7 cells were transiently transfected with GFP, GFP-

WDR1, or GFP-WDR∆35 to achieve temporary overexpression of the GFP-fusion 

proteins. GFP-fusion protein expressing cells were examined after every 24hr over a 7d 

period.  At each 24hr time point, fluorescent images of live cells were taken to determine 

how long expression would endure.  
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Figure 3.5: GFP-WDR1 and GFP-WDR∆35 are expressed in MCF7 and Hs578T 

cells after transient transfection. Using Western blot analysis, a GFP antibody detected 

GFP and GFP-tagged WDR1 and WDR∆35 expression in (A) MCF7 and (B) Hs578T cell 

lines. As a positive control for GFP-fusion protein expression, Hek293 GFP-WDR1 (dox) 

and Hek293 GFP-WDR∆35 (dox) samples were combined in the same lane (TREX 

control). GAPDH was used as a loading control. Fluorescent confocal images were taken 

to examine GFP-fusion protein expression in MCF7 and Hs578T cells in vitro. 
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 2008). As well, the function of WDR∆35 has not been studied, therefore it was necessary 

to determine the effects of overexpressing WDR1 or WDR∆35 on migration rate.  

Before performing in vitro wound-healing scratch assays, cells were transiently 

transfected with GFP, GFP-WDR1, or GFP-WDR∆35. Migrating cells at the wound edge 

were imaged and measured at 0, 12, 24, and 48hr. These assays revealed that 

overexpression of WDR1 or WDR∆35 in 30% of MCF7 or Hs578T cells did not 

significantly affect rate of migration compared to the migration rate of GFP control cells 

(Figure 3.6A). Also, there was no significant difference in migration rate between 

WDR1- and WDR∆35-overexpressing cells. Finally, MCF7 and Hs578T cell lines 

expressing GFP-fusion proteins did not exhibit any difference in migration rate compared 

to one another, however untransfected Hs578T cells migrated significantly faster than 

untransfected MCF7 cells. Fluorescent confocal imaging of migrating MCF7 cells over 

48hr demonstrated that cells with upregulated WDR1 expression did not migrate faster. 

Approximately 1.6% of cells overexpressed GFP-WDR1 near the wound edge compared 

to 8% overexpressing GFP after 48hr, suggesting that WDR1 may actually slow 

migration. However, 15.52% of cells overexpressed GFP-WDR∆35 at the wound edge. 

Thus, MCF7 cells expressing GFP-WDR∆35 appeared to migrate faster than surrounding 

control cells after 48hr (Figure 3.6B). Confocal microscopy also revealed that expressing 

GFP-WDR1 in Hs578T cells increased migration rate compared to surrounding non-

expressing control cells after 12hr, when 12.5% of cells at the wound edge were 

overexpressing compared to only 4.89% of GFP-expressing cells in the control (Figure 

3.6C). This trend continued at 24hr and 48hr, with 33.75% and 43.52% of cells  
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Figure 3.6: Transient overexpression of WDR1 isoforms  does not significantly affect 

migration rate of MCF7 or Hs578T cells. (A) Wound-healing assays were used to 

determine the average migration rate of MCF7 and Hs578T cell lines transiently 

expressing GFP-WDR1 or GFP-WDR∆35 over a 48hr timecourse. Distance of migration 

was measured at 0, 12, 24, and 48hr using a microscopic grid. Average total distance 

travelled was determined by counting the number of visible grid squares across the 

wound several times per plate, where each square was equal to 100µm. Migration rate 

(µm/hr) for each plate of cells was calculated by dividing this average total distance 

travelled by total time (48hr). Migration rate for each GFP-fusion protein cell line was 

then calculated by taking the average of the migration rates calculated for each replicate. 

(B-C) Imaging of (B) MCF7 and (C) Hs578T cell lines expressing GFP, GFP-WDR1, or 

GFP-WDR∆35 was done over the 48hr time course using a confocal microscope (shown) 

and a fluorescence microscope.  
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overexpressing GFP-WDR1, respectively. Also, cells overexpressing GFP-WDR∆35 

clearly migrated into the wound faster than surrounding control cells and at faster rates 

than cells expressing GFP-WDR1. At the wound edge, approximately 44.05%, 65.48%, 

and 56.73% of cells were overexpressing GFP-WDR∆35 after 12hr, 24hr, and 48hr, 

respectively. These observations suggest that in MCF7 and Hs578T cells, WDR1 and 

WDR∆35 may play a regulatory role during migration. Along with previous evidence 

supporting a role for Aip1/WDR1 in cell migration, these results suggest that WDR∆35 

may play a role in the process of cell migration. 

The role of Aip1/WDR1 during invasion is still unclear. To gain insight into a 

possible function related to invasiveness, invasion assays were performed. With MCF7 

cells generally being uninvasive to mildly invasive, and Hs578T cells being highly-

invasive, it was possible to examine the effects of WDR1 and WDR∆35 overexpression 

in cells with different predispositions to invasiveness. MCF7 cells transiently expressing 

GFP-WDR1 or GFP-WDR∆35 did not exhibit increased invasive capabilities compared 

to either control, and were not significantly different from each other (Figure 3.7). As 

expected, all Hs578T lines were more invasive than all MCF7 lines. However, despite 

Hs578T GFP-WDR1 and GFP-WDR∆35 cell lines showing lower invasiveness than the 

untransfected control, they did not show any significant differences from the GFP control 

cells. Overall, these invasion assays demonstrated that WDR1 or WDR∆35 does not have 

an overall effect on the invasive property of cancer cells with inherently different invasive 

qualities, at least when cells were transiently transfected. This suggested that both WDR1 

isoforms are likely not involved or play a minor role in the invasion and migration 

process, although further studies are necessary to examine these properties.  
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Figure 3.7: Transient overexpression of WDR1 or WDR∆35 does not significantly 

affect MCF7 or Hs578T invasiveness . MCF7 and Hs578T cell lines expressing GFP-

fusion proteins were serum-starved for approximately 3hr, and a suspension of 

approximately 7x107 cells/ml was plated onto polycarbonate basement membrane inserts. 

Medium containing appropriate serum and EGF concentrations stimulated migration of 

cells over 48hr. To quantify cells that successfully invaded through the basement 

membrane, the OD at 590nm was measured. For each sample in each trial, two OD590 

readings were taken, and the average was used. Invasiveness of cells expressing GFP-

WDR1 or GFP-WDR∆35 was compared to invasiveness of GFP control cells.  
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A regulatory relationship exists between WDR1, WDR∆35, and cofilin in Hek293 

cells 

 To elucidate the relationship between WDR1 isoforms and cofilin, it was essential 

to examine expression at transcriptional and translational levels. To study this relationship  

initially, Hek293 GFP-WDR1 and GFP-WDR∆35 cell lines were examined. Using qRT-

PCR analysis, the log of the relative quantification value (logRQ) of gene expression was 

compared (Figure 3.8). For stable GFP, GFP-WDR1, and GFP-WDR∆35 cell lines, the 

doxycycline- induced sample was calibrated to the corresponding uninduced sample. For 

example, gene expression in GFP(+) cells was calibrated to expression in GFP(-) cells. 

Gene expression in cells overexpressing HA-tagged human cofilin (HA-cofilin) was also 

calibrated to GFP(-) cells. Remarkably, endogenous WDR∆35 transcription increased 

almost 3-fold when cofilin was constitutively overexpressed as an HA-fusion protein, 

while endogenous WDR1 transcription was not affected. However, doxycycline- induced 

expression of GFP-WDR∆35 had no affect on endogenous cofilin, but did cause a 

moderate decrease in endogenous WDR1 transcription. Induction of GFP-WDR1 

expression did not exhibit a reciprocal affect on endogenous WDR∆35 transcription, but 

did cause a slight increase in endogenous cofilin transcription. In general, it was observed 

that cofilin affected WDR∆35, which in turn affected WDR1, and subsequently WDR1 

affected cofilin. Together, these data are evidence for a possible transcriptional regulatory 

interaction between cofilin and both WDR1 isoforms.  

 In addition, through Western blot analysis and densitometry, the translational 

relationship was also observed between WDR1 isoforms and cofilin (Figure 3.9).  
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Figure 3.8: In stable Hek293 cells, cofilin upregulates WDR∆35 and WDR∆35 

downregulates WDR1 at the transcriptional level. Total RNA was extracted from 

stable Hek293 cells containing GFP, GFP-WDR1, or GFP-WDR∆35 after doxycycline-

induced expression (+) or in the absence of doxycycline (-), and from cells transiently 

expressing HA-tagged cofilin (HA-cofilin). HA-cofilin was used as a positive control for 

cofilin expression. cDNA was then analyzed by qRT-PCR to detect cofilin, WDR1, and 

WDR∆35 gene expression. Expression is represented by the log of the relative 

quantification value (logRQ). For each GFP cell line, the doxycycline- induced sample 

was calibrated to its corresponding uninduced sample. GAPDH was used as the 

endogenous control gene.  
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Figure 3.9: In stable Hek293 cells, the affects of GFP-WDR1 or GFP-WDR∆35 on 

cofilin translation are negligible. (A) Western blotting detected cofilin expression in the 

presence (+) or absence (-) of doxycycline and (B) expression was quantified using 

densitometry. HA-cofilin expression was used as a positive control. Cofilin expression 

values were normalized to GAPDH to determine relative cofilin expression.   
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Densitometric values for cofilin were normalized to GAPDH to determine relative 

expression. In both cases, when exogenous WDR1 or WDR∆35 expression was induced 

by doxycycline, cofilin translation increased only slightly, but not significantly. Also, 

when comparing cofilin upregulation between cells stably expressing GFP-WDR1 and 

GFP-WDR∆35 expressing cells, levels in GFP-WDR∆35 cells were only slightly higher, 

suggesting that any effect WDR1 or WDR∆35 may have on cofilin translation is 

negligible.  

WDR∆35 and cofilin may transcriptionally regulate each other in MCF7 cells 

 To determine if the WDR1 isoform-cofilin relationship trends seen in Hek293 cell 

lines also exist in different breast cancer cell lines, gene expression analysis was 

conducted in MCF7 cells transiently transfected with GFP-WDR1 or GFP-WDR∆35 

using qRT-PCR. It was important to quantify transcription levels of WDR1, WDR∆35, 

and cofilin in GFP-WDR1 and GFP-WDR∆35 cells compared to GFP control cells 

(Figure 3.10). In MCF7 cells, transient expression of GFP-WDR1 upregulated WDR∆35 

transcription, but downregulated cofilin. Transient expression of GFP-WDR∆35 lead to 

an expected significant increase in WDR∆35 transcription and a downregulation of 

cofilin and WDR1. When cells were transiently transfected with HA-cofilin, endogenous 

WDR∆35 was upregulated to nearly the same expression levels seen during GFP-

WDR∆35 expression, while WDR1 transcrip tion levels remained unaffected. Therefore, 

these data suggest that WDR∆35 transcription levels are regulated by cofilin, and cofilin 

transcription may be influenced by WDR1 and WDR∆35. Furthermore, WDR1 

expression may be controlled by WDR∆35 levels within the cell. 
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Figure 3.10: In MCF7 cells, WDR1 and WDR∆35 downregulate cofilin, and cofilin 

upregulates WDR∆35. Total RNA was extracted from MCF7 cells transiently 

expressing GFP, GFP-WDR1, GFP-WDR∆35, or HA-cofilin. Gene expression analysis 

of cofilin, WDR1, and WDR∆35 in each transient cell line was done using qRT-PCR. 

Expression of each gene is represented by the logRQ value. All samples were calibrated 

to GFP control cells, and GAPDH was used as the endogenous control gene.  
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Cofilin upregulates WDR∆35 and WDR1 downregulates WDR∆35 in Hs578T cells  

 As with MCF7 cells, WDR1, WDR∆35, and cofilin expression levels were also 

quantified in transiently transfected Hs578T cell lines expressing GFP, GFP-WDR1, or 

WDR∆35 (Figure 3.11). In Hs578T cells, GFP-WDR1 expression downregulated 

WDR∆35 transcription, but did not change cofilin transcription levels. When cells 

expressed GFP-WDR∆35, WDR∆35 was predictably upregulated, while endogenous 

cofilin and WDR1 expression was not affected. When Hs578T cells were transiently 

transfected with HA-cofilin, there was a significant 3-fold increase in endogenous 

WDR∆35 transcription similar to the increase seen when GFP-WDR∆35 was transiently 

expressed. However, WDR1 transcription remained unaffected by HA-cofilin 

overexpression. Therefore, in Hs578T cells cofilin upregulates WDR∆35 transcription, 

while WDR1 downregulates it. Also, cofilin and WDR1 expression levels are not affected 

by each other or by WDR∆35 expression.  

WDR1 and WDR∆35 transcription is not affected by brief activation of the EGF-

cofilin pathway 

 To further explore the relationship between both WDR1 isoforms and cofilin 

activation, MCF7 and Hs578T cell lines were subjected to EGF treatments at various time 

points. EGF is known to activate the cofilin pathway, therefore these treatments were 

necessary to see how stimulating this pathway affected WDR1 and WDR∆35. RNA was 

extracted from untreated cells (0sec) and from cells after 30sec, 1min, 2min, 5min, and  
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Figure 3.11: In Hs578T cells, cofilin and WDR1 expression have opposite effects on 

WDR∆35 transcription levels. Total RNA was extracted from Hs578T cells transiently 

expressing GFP, GFP-WDR1, GFP-WDR∆35, or HA-cofilin. Gene expression analysis 

of cofilin, WDR1, and WDR∆35 in each transient cell line was done using qRT-PCR. 

Expression of each gene is represented by the logRQ value. All samples were calibrated 

to GFP control cells, and GAPDH was used as the endogenous control gene.  
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15min of EGF stimulation, then was converted to DNA for qRT-PCR analysis. To 

determine if WDR1 or WDR∆35 transcription could be influenced by cofilin, gene 

expression assays were performed on EGF-stimulated untransfected MCF7 or Hs578T 

cell lines (data not shown). Gene expression analysis was also done in EGF-treated MCF7 

and Hs578T cells transiently expressing GFP, GFP-WDR1, or GFP-WDR∆35 (data not 

shown). Quantitative analysis revealed that there was no significant relationship between 

either of the WDR1 isoforms and cofilin activation at early time periods following EGF 

stimulation. Therefore, during the brief time course after EGF addition, WDR1 and 

WDR∆35 expression remained unchanged. 

In MCF7 cells, WDR1 protein expression stabilizes inactivation of cofilin, while 

WDR∆35 expression increases active cofilin levels 

In order to study the role of WDR1 and WDR∆35 in cofilin activation, transiently 

transfected MCF7 cell lines were subjected to treatment with EGF to activate the cofilin 

regulatory pathway. Cofilin exists in the cell in two forms: dephosphorylated (active) and 

phosphorylated (inactive). To further uncover the details of a WDR1 isoform-cofilin 

relationship in terms of activation, it was necessary to analyze cofilin and phospho-cofilin 

protein expression in GFP-WDR1 and GFP-WDR∆35 cell lines using Western blots 

(Figures 3.12A), which were further analyzed using densitometry (Figure 3.12 B-C). All 

active and inactive cofilin expression levels at different time points were compared to 

unstimulated cells (0sec) as a negative control, and to cells transiently transfected with  
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Figure 3.12: During induction of the cofilin regulation pathway in MCF7 cells, GFP-

WDR1 stabilizes inactive cofilin, while GFP-WDR∆35 increases active cofilin. MCF7 

cells were transiently transfected with GFP, GFP-WDR1, or GFP-WDR∆35. Each cell 

line was serum-starved, then stimulated with 5ng/ml EGF for 30sec, 1min, 2min, 5min, 

and 15min. As a negative control, unstimulated cells (0sec) were used. HA-cofilin 

expression was used as a positive control (not shown). (A) Western blotting detected 

cofilin (active) and phospho-cofilin (inactive) expression in MCF7 cells transiently 

expressing GFP-fusion proteins. (B) Expression levels were quantified using 

densitometry. Active and inactive cofilin expression values were normalized to GAPDH 

expression to determine their relative expression in GFP, GFP-WDR1, and GFP-

WDR∆35. Expression levels in GFP-WDR1 and GFP-WDR∆35-expressing cells were 

compared to GFP expression levels.  
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GFP to control for transfection. Therefore, any changes in active or inactive cofilin levels 

were attributed to transiently transfected GFP-WDR1 or GFP-WDR∆35 expression 

during EGF stimulation of the cofilin regulatory pathway. When cells transiently 

transfected with GFP-WDR1 were treated with EGF, inactivation of cofilin appeared to 

be maintained and increased moderately but not significantly over time compared to cells 

transfected with GFP. However, total cofilin expression levels were not affected 

significantly. In contrast, when the cofilin activation pathway was stimulated by EGF in 

cells expressing GFP-WDR∆35, total cofilin expression increased moderately. Inactive 

cofilin was again sustained and increased slightly compared to expression levels in GFP 

control cells. Overall, data suggested that WDR1 and WDR∆35 promoted the 

stabilization of inactive cofilin levels, however WDR∆35 also upregulated expression of 

total cofilin. 

In Hs578T cells, WDR1 protein expression stabilizes inactivation of cofilin, while 

WDR∆35 increases total cofilin 

The effect of WDR1 and WDR∆35 expression on cofilin activity in EGF-

stimulated Hs578T cells transiently transfected with GFP-fusion proteins was also 

studied. It was necessary to investigate cofilin and phospho-cofilin protein expression in 

GFP-WDR1 and GFP-WDR∆35 cell lines using Western blots (Figure 3.13A), followed 

by quantification of expression using densitometry (Figures 3.13B-C). All active and 

inactive cofilin expression levels at different time points were compared to unstimulated 

cells (0sec) as a negative control, and to cells transiently transfected with GFP to control  
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Figure 3.13: During induction of the cofilin regulation pathway in Hs578T cells, 

GFP-WDR1 stabilizes inactive cofilin, while GFP-WDR∆35 increases active cofilin. 

Hs578T cells were transiently transfected with GFP, GFP-WDR1, or GFP-WDR∆35. 

Each cell line was serum-starved, then stimulated with 10ng/ml EGF for 30sec, 1min, 

2min, 5min, and 15min. As a negative control, unstimulated cells (0sec) were used. HA-

cofilin expression was used as a positive control (not shown). (A) Western blotting 

detected cofilin (active) and phospho-cofilin (inactive) expression in Hs578T cells 

transiently expressing GFP-fusion proteins. (B) Expression levels were quantified using 

densitometry. Active and inactive cofilin expression values were normalized to GAPDH 

expression to determine their relative expression in GFP, GFP-WDR1, and GFP-

WDR∆35. Expression levels in GFP-WDR1 and GFP-WDR∆35-expressing cells were 

compared to GFP expression levels.  
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for transfection. When the cofilin activation pathway was stimulated by EGF in cells 

transiently expressing GFP-WDR1 or GFP-WDR∆35, inactivation of cofilin was 

downregulated after EGF stimulation, but was maintained compared to GFP control cells. 

Quantification of total cofilin expression in Hs578T cells transiently transfected with 

GFP-WDR∆35 showed that cofilin levels increased moderately after 15min of EGF 

stimulation. In summary these data indicated that WDR1 and WDR∆35 promoted the 

stabilization of inactive cofilin levels, while WDR∆35 also increased expression of 

cofilin.  

When data from MCF7 and Hs578T protein expression studies are taken together, 

results suggest that in different types of breast cancer cell lines, there is an intimate 

regulatory network set up between cofilin activation/inactivation and the amount of 

WDR1 and WDR∆35 present within the cell. Further studies are required in order to fully 

understand these interactions and their significance.  
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Chapter Four: Discussion 

Despite plenty of evidence to support the existence of an Aip1 homolog in higher 

eukaryotes called WDR1, little has been confirmed about its function, expression, and 

regulation in mammals. There is a lack of information regarding WDR1’s relationship 

with cofilin, as well as the functional characterization of WDR1’s truncated isoform, 

WDR∆35. Results from this study provide evidence that WDR1 and WDR∆35 both 

participate in the regulation of cofilin activity in different ways.  

As mentioned previously, WDR∆35 has 419bp of the cDNA sequence removed, 

from 421-840 nucleotide bases (Noone and Hubberstey, unpublished). This excised 

section represents exons three, four, and five. Extensive studies on Aip1/WDR1 in C. 

elegans revealed that five residues are responsible for its association with cofilin-bound 

actin and its ability to promote disassembly: E126, D168, K181, F182, and F192 (Mohri 

et al., 2004). These specific residues are conserved between C. elegans Aip1 and human 

WDR1. Interestingly, splicing of WDR∆35 removes all of these amino acids, except for 

F192 (Figure 4.1). Continued mutational studies of Aip1 by Mohri et al. (2006) 

demonstrated that a single point mutation of any one of the residues in question failed to 

fully disrupt Aip1 activity. Single mutations also did not hinder the rescue of null Aip1 

phenotypes. Most importantly, collective mutation of four of the five Aip1 residues 

entirely abrogated actin disassembly and the ability to rescue null phenotypes. As 

WDR∆35 splicing removes these residues in such a way that mimics the simultaneous 

mutations performed by Mohri et al. (2006), it is likely that the truncated isoform may 

also lack actin binding  
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WDR1    MPYEIKKVFASLPQVERGVSKIIGGDPKGNNFLYTNGKCVILRNIDNPALADIYTEHAHQ 60 

WDR∆35  MPYEIKKVFASLPQVERGVSKIIGGDPKGNNFLYTNGKCVILRNID-------------- 46 

                            

WDR1    VVVAKYAPSGFYIASGDVSGKLRIWDTTQKEHLLKYEYQPFAGKIKDIAWTEDSKRIAVV 120 

WDR∆35  ------------------------------------------------------------ 

                                                                             

WDR1    GEGREKFGAVFLWDSGSSVGEITGHNKVINSVDIKQSRPYRLATGSDDNCAAFFEGPPFK 180 

WDR∆35  ------------------------------------------------------------ 

                                                                             

WDR1    FKFTIGDHSRFVNCVRFSPDGNRFATASADGQIYIYDGKTGEKVCALGGSKAHDGGIYAI 240 

WDR∆35  ------DHSRFVNCVRFSPDGNRFATASADGQIYIYDGKTGEKVCALGGSKAHDGGIYAI 100 

                    

WDR1    SWSPDSTHLLSASGDKTSKIWDVSVNSVVSTFPMGSTVLDQQLGCLWQKDHLLSVSLSGY 300 

WDR∆35  SWSPDSTHLLSASGDKTSKIWDVSVNSVVSTFPMGSTVLDQQLGCLWQKDHLLSVSLSGY 160 

              

WDR1    INYLDRNNPSKPLHVIKGHSKSIQCLTVHKNGGKSYIYSGSHDGHINYWDSETGENDSFA 360 

WDR∆35  INYLDRNNPSKPLHVIKGHSKSIQCLTVHKNGGKSYIYSGSHDGHINYWDSETGENDSFA 220 

              

WDR1    GKGHTNQVSRMTVDESGQLISCSMDDTVRYTSLMLRDYSGQGVVKLDVQPKCVAVGPGGY 420 

WDR∆35  GKGHTNQVSRMTVDESGQLISCSMDDTVRYTSLMLRDYSGQGVVKLDVQPKCVAVGPGGY 280 

              

WDR1    AVVVCIGQIVLLKDQRKCFSIDNPGYEPEVVAVHPGGDTVAIGGVDGNVRLYSILGTTLK 480 

WDR∆35  AVVVCIGQIVLLKDQRKCFSIDNPGYEPEVVAVHPGGDTVAIGGVDGNVRLYSILGTTLK 340 

              

WDR1    DEGKLLEAKGPVTDVAYSHDGAFLAVCDASKVVTVFSVADGYSENNVFYGHHAKIVCLAW 540 

WDR∆35  DEGKLLEAKGPVTDVAYSHDGAFLAVCDASKVVTVFSVADGYSENNVFYGHHAKIVCLAW 400 

              

WDR1    SPDNEHFASGGMDMMVYVWTLSDPETRVKIQDAHRLHHVSSLAWLDEHTLVTTSHDASVK 600 

WDR∆35  SPDNEHFASGGMDMMVYVWTLSDPETRVKIQDAHRLHHVSSLAWLDEHTLVTTSHDASVK 460 

              

WDR1    EWTITY 606 

WDR∆35  EWTITY 466 

 
 

Figure 4.1: Human WDR1 and WDR∆35 protein sequence alignment and proposed 

functional residues. This ClustalW alignment illustrates the location of the amino acids 

demonstrated by Mohri et al. (2004; 2006) to be responsible for actin binding activity of 

Aip1/WDR1. Functional residues are highlighted in red. Dashed lines represent the 

section removed from WDR∆35 due to splicing of exons three, four, and five.  

and disassembly-enhancing abilities. These observations defend a role for WDR∆35 that 

is entirely different from that of WDR1. However, alternative splicing does not remove 
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any of the kelch- like motifs found in WDR1 (Noone and Hubberstey, unpublished), 

implying that WDR∆35’s role is likely also one involving protein-protein interactions. 

Other data support the theory that the WDR1 isoforms may have similar 

functions, but in different cell types. RT-PCR analysis has shown that WDR1 isoforms 

are differentially expressed in a tissue-specific manner. WDR∆35 was the only isoform 

expressed in cardiac and skeletal muscle tissues (Noone and Hubberstey, unpublished). 

Quantitative RT-PCR expression analysis indicated that WDR1 was in fact expressed in 

these two tissues, but at significantly lower levels than WDR∆35. These transcription 

levels were also much lower than WDR1 and WDR∆35 expression levels seen in other 

tissues, including brain, breast, lung, and testis (Correa and Hubberstey, unpublished 

data). In these same two tissue types (cardiac and skeletal muscle), cofilin-2 is the only 

cofilin isoform being expressed (Ono et al., 1994; van Troys et al., 2008). It is possible 

that WDR1 evolved in higher eukaryotes in parallel to cofilin’s tissue-specific expression. 

In addition to differential expression in normal tissues, Correa and Hubberstey 

(unpublished data) showed that when gene expression analysis of WDR1 and WDR∆35 

was done using qRT-PCR analysis in various breast cancer lines, including Hs578T cells, 

WDR∆35 transcription levels were always higher than WDR1 levels. However, 

expression levels of both genes were notably higher in normal human breast tissue than in 

any of the breast cancer cell lines.  

The first aim of this study was to determine if mammalian WDR1 and/or 

WDR∆35 are involved in cell migration and invasion processes. Although a great deal of 

evidence has confirmed a role for Aip1/WDR1 during cell migration and a likely role 

during invasion, WDR∆35’s influence on these processes is completely unknown. One 
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study showed that overexpressing Aip1 in Dictyostelium rescued migration defects in 

null-mutants, suggesting that Aip1 promotes cell motility (Konzok et al., 1999). Several 

different studies employing overexpression of GFP-tagged Aip1/WDR1 to examine 

localization patterns during migration revealed that Aip1/WDR1 associated with actin 

networks in membrane protrusions (Tsuji et al., 2009), and that WDR1 was generally 

localized to the leading edge of migrating fibroblasts (Noone and Hubberstey, 

unpublished). Another study showed that when murine neutrophils experienced a partial 

loss of WDR1 function, cell migration rates decreased and F-actin accumulated (Kile  et 

al., 2007). Also, Kato et al. (2008) demonstrated that mammalian WDR1 plays a critical 

role in the directional migration of Jurkat T- lymphoma cells by enhancing cofilin activity 

during membrane protrusion formation.  

Despite this evidence supporting a role for WDR1 in cell motility, wound-healing 

and invasion assays in this study indicated that WDR1 or WDR∆35 did not affect overall 

migration rate or the invasiveness of MCF7 or Hs578T cells (Figure 3.6 and Figure 3.7). 

However, confocal imaging revealed that cells expressing GFP-tagged WDR∆35 

migrated into the wound more efficiently than surrounding untransfected cells. MCF7 

cells overexpressing GFP-WDR1 showed a decrease in migration rate, while 

overexpressing Hs578T cells showed an increase. Since only 30% of MCF7 or Hs578T 

cells overexpressed WDR1 or WDR∆35, it may explain why overall migration rates on 

the plates remained unaffected. If GFP-WDR∆35 was more highly expressed, the 

observed movement of overexpressing cells into the wound would likely have been 

corroborated with an increase in migration rate. It is likely that expression of GFP-

WDR∆35 in these cells did promote migration, but did not make a significant impact on 
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overall migration rate since 70% of cells remained untransfected and therefore exhibited 

normal WDR∆35 expression levels.  Furthermore, GFP-fusion protein overexpression 

itself was transient, and although our other observations confirmed prolonged expression 

(Figure 3.4), cell proliferation during wound closure would increase the number of non-

expressing cells, especially if proliferation was inhibited by WDR∆35 in overexpressing 

cells. Overall WDR1 and WDR∆35 may be involved in cell motility, however more 

research is necessary to confirm these findings.  

 The second aim of this research was to understand the regulatory and activation 

relationships between WDR1 and WDR∆35 and cofilin. Other research groups have 

alluded to the fact that information regarding Aip1/WDR1 regulation is lacking (Mohri et 

al., 2006; Clark and Amberg, 2007). To determine the regulatory relationship of WDR1 

and WDR∆35 with cofilin and each other, it was necessary to examine transcriptional 

expression. In stable TREX cell lines (Figure 3.8) and transient MCF7 (Figure 3.10) and 

Hs578T (Figure 3.11) breast cancer cell lines, the major result was that an increase in 

cofilin significantly upregulated WDR∆35 transcription. Also, in the stable TREX and 

transient MCF7 cell lines, upregulation of WDR∆35 caused a slight but significant 

downregulation of WDR1 transcription. In conclusion, these transcriptional studies 

indicate that WDR1 and WDR∆35 exhibit differences in expression and regulation. It is 

unclear exactly how cofilin or these WDR1 isoforms are involved in transcriptional 

regulation or what other factors may be involved. Other studies have indicated that cofilin 

contains a nuclear localization signal and that it is distributed in the nucleus (Nishida et 

al., 1987; Okada et al., 1999). Since our results indicate that cofilin clearly regulates  

WDR∆35 in all cases, it is possible that cofilin aids in the regulation of transcriptional 



69 
 
 

machinery. Many other proteins containing WD40 repeat motifs have been shown to be 

involved in RNA synthesis, processing, and chromatin assembly. Studies have 

demonstrated that these WD repeats are located on some transcription factor subunits and 

associated factors (Yamamoto and Horikoshi, 1997; Roberts, 2000; Li and Roberts, 

2001). Although WDR1 has been characterized as a cytoplasmic protein, Okada et al. 

(1999) demonstrated that Xenopus Aip1/WDR1 is found in nuclei, and actually 

colocalizes with nuclear cofilin. WDR1, WDR∆35, and cofilin may also act within a 

signal transduction cascade that promotes transcriptional control of one another. Thus, 

transcriptional regulation would depend on WDR1, WDR∆35, and/or cofilin protein 

levels within the cytoplasm.  

One problem to note during these transcriptional studies involves the 

overexpression of WDR1. It was very clear that each time WDR1 was overexpressed in 

MCF7 or Hs578T cells, total WDR1 transcription levels were decreased. If WDR1 was 

being successfully overexpressed in a cell line, transcription should have been 

significantly upregulated. It is unclear why this result was obtained repeatedly. All GFP-

tagged WDR1 expressing cells exhibited expression levels comparable to those seen in 

GFP-WDR∆35 cells. There were likely no technical issues with qRT-PCR, as 

upregulation of WDR1 transcription could be demonstrated in other cells (data not 

shown). Thus the WDR1 primer-probe set was functional.  

In the literature, an overwhelming amount of data support Aip1/WDR1 as an 

enhancer of cofilin activity (Okada et al., 1999; Rodal et al., 1999; Mohri et al., 2004; 

Mohri et al., 2006; Clark et al., 2006; Clark and Amberg, 2007), but no information is 

available to explain how WDR1 isoforms actually affect the activation or translation of 
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cofilin. Clark and Amberg (2007) suggest that Aip1/WDR1-enhanced, cofilin-mediated 

actin turnover is likely dependent upon Aip1/WDR1 and cofilin protein concentrations. 

They also propose that this mode of actin turnover may be moderated by other regulatory 

proteins or even by other actin- interacting proteins. Therefore, in addition to examining 

transcriptional relationships, it was essential to assess the relationship between both 

WDR1 isoforms and cofilin activation status at the protein level in order to determine 

whether or not WDR1 and WDR∆35 were a part of the EGF-regulated signal transduction 

cascade that controls cofilin activity. The affects of overexpressing WDR1 or WDR∆35 

on the activation status were examined by quantifying both cofilin and phospho-cofilin 

expression in MCF7 and Hs578T cells (Figure 3.12 and Figure 3.13). Our results suggest 

that expression of WDR∆35 during EGF stimulation promotes cofilin activation by 

upregulating total protein expression, while WDR1 regulates cofilin activity by 

stabilizing inactivation/phosphorylation of cofilin.  

In short, the amounts of WDR1 and WDR∆35 expressed within the cell can 

closely regulate cofilin’s activation status. Clark and Amberg (2007) further suggest that 

regulation of Aip1/WDR1 and cofilin concentrations within the cell may dictate whether 

actin filaments are severed, polymerized, or capped at the barbed end. It has been shown 

that cofilin concentration can in fact regulate its own activity. Cofilin-mediated filament 

severing tends to occur at lower concentrations, while increased cofilin levels promote its 

actin-assembling abilities (Andrianantoandro and Pollard, 2006; van Troys et al., 2008). 

Taking this into account along with our results, it is possible that WDR1 expression levels 

regulate cofilin-mediated F-actin severing versus polymerization since it regulates the 

inactivation levels of cofilin.  
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As for WDR∆35, how and why it may upregulate cofilin expression and/or 

activation remains unclear. An extensive study by van Rheenen et al. (2007) elucidated a 

model for EGF-regulated cofilin activity involving LIMK phosphorylation mechanisms 

as well as PIP2-cofilin binding working as one regulatory system. To summarize their 

model, EGF-induced PIP2 reduction releases cofilin from the plasma membrane. Cofilin 

then severs and disassembles F-actin, remaining bound to the resulting depolymerized 

actin monomers. LIMK phosphorylates cofilin to release it from the actin monomer, and 

SSH subsequently dephosphorylates cofilin. Active, or dephosphorylated, cofilin can then 

bind again either to PIP2 to be sequestered, or to another actin filament for further 

depolymerization. Structurally, WDR∆35 retains the residues predicted to be responsible 

for its binding to cofilin (Mohri et al., 2004; Clark et al., 2006; Mohri et al., 2006; Clark 

and Amberg, 2007). Based on this information, WDR∆35 could increase cofilin 

expression and/or activation in order to promote cofilin-G-actin association and/or to 

enhance cofilin’s reassociation with F-actin or PIP2. Despite any speculation, more 

information is required to accurately identify how WDR1 and WDR∆35 regulate cofilin 

expression and activation.  
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Chapter 5: Conclusions 

In summary, this research demonstrates that cofilin transcription can promote 

upregulation of WDR∆35 transcription. Also, during EGF induction, WDR1 expression 

stabilizes cofilin inactivation, while WDR∆35 promotes cofilin expression and/or 

activation. In addition, this study reveals that WDR1 may play a role during cancer cell 

migration and invasion, and is the first to provide evidence of the role of WDR∆35 in 

these processes. Overall this study indicates that WDR1 isoforms are functionally 

distinct. Further research is required to fully understand how and why regulation of 

WDR1 and WDR∆35 and their effects on cell motility and cofilin activity differ.  

More information is required to fully understand the differences in WDR1 

isoforms suggested here. Using a more specific WDR1 antibody that targets an area 

within exons 3-5, and developing a WDR∆35-specific antibody raised against the exon 2-

6 junction would enable further translational studies. Western blotting to detect WDR1 

and WDR∆35 protein expression would then fully coincide with transcriptional studies. 

Examining transcriptional expression and regulatory relationships between WDR1 

isoforms and cofilin in other breast cancer cell lines and in normal breast tissue may also 

provide a more comprehensive analysis. Specifically, this could be done in the Hs578Bst 

cell line, which is the normal breast cell line derived from the same patient as Hs578T 

tumour cells. Despite the research presented here, continued studies to characterize the 

differences between WDR1 isoforms will be essential. Employing the cap-dependent 

RACE (Rapid Amplification of cDNA Ends) technique would be useful for determining 

whether WDR1 and WDR∆35 are products of different transcription start sites or of 

alternative splicing. 
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Also, to complement the research presented in this study, it will be critical to 

examine the effects of silencing WDR1 isoforms on cell motility and regulatory 

interactions with cofilin. Applying RNA intereference techniques to create WDR1 and 

WDR∆35 knock-downs will further illustrate the involvement and necessity of WDR1 

isoforms in various cellular processes. In addition, repeating many of these experiments 

using stable GFP-fusion protein cell lines would corroborate the data analyzed for the 

research discussed here, in which cell lines transiently expressing GFP-fusion proteins 

were utilized. Finally, conducting further long-term live-cell imaging during unstimulated 

and EGF-stimulated wound-healing assays would provide a clearer analysis of cell 

migration over an extended period of time. Individual cells expressing GFP-WDR1 or 

GFP-WDR∆35 could then be monitored constantly.  

Overall, understanding the underlying mechanisms that allow for cancer cells to 

migrate and become invasive is critical. To further define whether WDR1 isoforms are an 

essential part of these mechanisms or not and how they are regulated, research in this area 

must be continued. Since invasion and subsequent metastasis are the distinguishing 

characteristics of malignant tumor cells, learning how to inhibit these acquired traits is an 

important step in metastatic cancer prevention.  
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Appendix A 
 

List of antibodies and their specifications  

 

Primary Solution Ratio Company 

anti-Cofilin TTBS 1:1000 Cytoskeleton, Inc. 

anti-GAPDH TTBS 1:1000 
Santa Cruz 
Biotechnology 

anti-GFP TTBS 1:5000 Rockland, Inc. 

anti-HA TTBS 1:10000 n/a 

anti-phospho-
cofilin Dilution buffer 1:1000 

Cell Signalling 
Technology 

anti-actin TTBS 1:1000 Chemicon International 

    Secondary Solution Ratio Company 

goat anti-rabbit TTBS 1:4000 Invitrogen 

goat anti-mouse TTBS 1:4000 Invitrogen 

goat anti-rabbit TTBS 1:5000 Invitrogen 

goat anti-mouse TTBS 1:4000 Invitrogen 

goat anti-rabbit 
Blocking 
solution 1:2000 Invitrogen 

goat anti-mouse TTBS 1:4000 Invitrogen 
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