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Abstract 

 

Vocalisations are integral to the workings of social communication in fish.  In round 

gobies (Neogobius melanostomus) males produce acoustic signals for mate attraction. 

This thesis investigates the functions of round goby acoustic signals and explores the use 

of acoustics in developing a trapping system that may help in controlling this invasive 

species.  Round gobies were tested in three different experiments to measure behavioural 

responsiveness. For female playback experiments, goby attractiveness differed between 

call types. The differential responses suggest calls have different functions in goby 

courtship. In male playback experiments, there was an effect of stimulus on calls emitted 

but no difference with male size.  Finally, round gobies were significantly more attracted 

to traps coupled with a conspecific call, suggesting a useful avenue for goby control.  

Understanding communication tactics in gobies aids in understanding information 

processing in fish and may prove essential when assessing control strategies in this highly 

invasive species.  
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Chapter 1: General Introduction 

 

I.  Evidence for the importance of sound in aquatic environments  

Communication modalities, be they visual, olfactory, acoustic, electrical 

reception, or tactile signals, all play a role in allowing an organism to interact with its 

environment. For any modality to be effective at relaying information, the signal type 

must match the transmission properties of the medium and environment (Roger & Cox, 

1988). As such, certain modes of communication are more advantageous and effective 

depending on the constraints imposed by the habitat. This is particularly true in aquatic 

environments due to changes in signal transmission in the aqueous environment. Sound is 

one of many modalities used to communicate underwater. Sound maintains its 

transmission rate and integrity through a variety of conditions, such as different distances 

and depths, varying light intensity, and turbidity (Roger & Cox, 1988), and it is thought 

to be less expensive to produce than other modalities, such as visual or olfactory signals 

(McKibben & Bass, 1998).  

I.i: Attenuation and propagation 

Aquatic environments can be classified into specific habitat types based on 

parameters such as depth, current speed, and available light. Each habitat type (e.g. 

shallow waters, coastal areas, deep ocean, pelagic zones, fast flowing rivers) can affect 

acoustic signal transmission with different levels of attenuation.  Attenuation occurs 

when sound waves are reflected, scattered, or refracted by the habitat thereby decreasing 
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their sound level: this may result in the receiver detecting false information or no 

information at all. Even with these potential drawbacks, acoustic communication remains 

an important stimulus for long-range transmission of information in underwater 

environments (Tavolga, 1977).  

Inversely related to attenuation is the propagation of sound. Propagation must be 

greater than attenuation for sound to be an effective form of communication. Just as 

certain habitat parameters can increase attenuation, others can aid signal transmission 

through propagation. Salt water and freshwater environments also differ in the manner in 

which they affect the ability of sound to propagate. Salt water, being more dense, 

attenuates sound by 1 dB at 100 km (for sound at 500 Hz), whereas freshwater does not 

begin to attenuate a signal at 500 Hz by 1 dB until 10,000 km (Rogers & Cox, 1988). In 

an underwater medium, this would suggest that freshwater species will transmit sounds 

much further through their environment, although underwater depth and physical 

obstructions will greatly affect propagation as well (see below).  

 Noise 

Ambient noise exists in all environments whether the environment is aquatic or 

terrestrial. Noise, in general, is any sound that is not needed or wanted by the receiver. 

Underwater environments have a wide variety of sound, such as man-made noise (ships 

and industrial work), biological sounds (marine mammals, snapping shrimp, etc.), and 

naturally occurring sounds (rain, wind, waves, earthquakes, volcanoes, etc.) (Richardson 

et al., 1995).  Ambient noise is highest in the shallow coastal areas inhabited by the 
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majority of fish species (Rogers & Cox, 1988). Noise can affect hearing by masking 

intended signals and can confuse the receiver about the location of the sound source. 

I.ii: Underwater sound propagation 

Reflection 

Reflection occurs when sound waves bounce off the surface interface, seafloor, or 

any object in their path towards the intended receiver; this can distort the signal and give 

the receiver false information. Some boundaries are better conductors of sound waves 

than others and allow for a greater amount of the sound wave to be reflected.  The surface 

interface is one such reflector and propels sound off the air-water boundary; sound 

absorption is minimal, making the surface border an effective reflector for long distance 

transmission (Rogers & Cox, 1988). This contrasts with the reflection properties of the 

bottom substrate, which often absorbs more of the sound than what is reflected; therefore, 

the substrate may be better suited for short distance propagation.  

Scattering 

Sound waves are scattered by coming into contact with objects such as fish, 

human-made structures and disturbances in the water (e.g. the influence of ships or other 

vessels). Scattering disrupts the original path and propels sound waves off the object in 

many directions; this often causes the sound wave to travel in a direction previously not 

intended (Richardson et al., 1995). Different substrates can also scatter sound waves and 

limit the transmission ability. To avoid this, fish should position themselves at the highest 

point on the substrate to limit the scattering effect.  
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Refraction  

When sound travels through different media having a different sound speed, 

sound waves will bend or refract. The speed of sound in each medium will determine the 

direction in which the wave is bent (Rogers & Cox, 1988). If the second medium has a 

higher transmission rate (speed of sound), the sound waves will be bent back towards the 

original medium and refracted in the direction of the interface. If, however, the second 

medium has a slower sound speed, then the signal will bend away from the interface and 

further into the second medium (Rogers & Cox, 1988). 

Temperature, salinity, and pressure affect long range propagation of sound. As 

pressure increases, with greater depth, the speed of sound increases (Mann, 2006). In 

addition, as temperature increases (e.g. when approaching the surface) the speed of sound 

also increases. Propagation may be maximal in the area known as the SOFAR (Sound 

Fixing and Ranging) channel. This occurs at a depth of approximately 1,000 m (Rogers & 

Cox, 1988). At this depth, both parameters are in balance with each other, neither 

overriding the other, and both existing at high enough levels that they have positive 

effects on sound propagation. 

I.iii: Nearfield and farfield 

The nearfield and farfield are determined by the „type‟ of sound a receiver can 

detect and correlate with the distance from the sound source. The nearfield is comprised 

of two parts that make up the sound heard by the receiver: a pressure component and a 

displacement component (Richardson et al., 1995). The pressure component refers to the 
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„true sound‟ where movement of the particle velocity is only due to fluid compression by 

the source itself. The displacement component refers to the „flow‟ where the particle 

velocity of the sound wave can be felt by the recipient. The farfield does not have a 

displacement (or flow) component as it is solely based on the pressure component 

(Richardson et al., 1995). With respect to discussing fish sound production and hearing in 

teleosts, it is important to make a distinction between these two fields as it is thought that 

only hearing specialists (or fish with special adaptations) can hear in the farfield (Mann, 

2006).  

II. Introduction to fish vocalisations 

Acoustic signals are a primary form of communication in many aquatic animals 

(Bass & McKibben, 2003; reviewed in: Ladich, 2004). Vocalizations can be an ideal way 

to signal to conspecifics and heterospecifics and can convey distress, warn intruders and 

protect territories, attract mates, and potentially assess the qualities of neighbours (Winn 

et al., 1964; Myrberg et al., 1986; Ladich, 1997; Amorim et al., 2003). Fish produce 

different sounds in different behavioural contexts, although not all of these behavioural 

actions are well understood in most fish, as particular sounds have not yet been associated 

with a function in many cases (reviewed in: Bass & McKibben, 2003). Fish produce 

agonistic behaviour calls, advertisement calls (reviewed in: Ladich, 1997) and, to a lesser 

extent, when foraging for food (Amorim & Hawkins, 2000). This review focuses on the 

significance of acoustic signals in fish by highlighting the mechanisms and structures of 

fish sounds, and behavioural studies which demonstrate the many ways fish use this 

modality in social communication. 
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II.i:  Mechanisms of sound production 

The swimbladder 

 Fish produce sounds using a variety of different mechanisms; the best studied of 

which is the swimbladder (reviewed in: Tavolga, 1977). The swimbladder is a gas-filled 

sac, originally evolved as a mechanism to control buoyancy (Tavolga, 1977), and in 

multiple species, the swimbladder has been co-opted to also function in sound production 

(Tavolga, 1977; Bass & McKibben, 2003).  While functioning in slightly different ways 

between species, in general, swimbladder vocalisations typically involve sonic muscles 

causing vibrations in the swimbladder, leading to sonic emissions, much like beating a 

drum leads to sound in air (Tavolga, 1977). Sonic muscles can be attached to the 

swimbladder in a variety of ways. Some sonic muscles are found laterally, as in the grey 

gurnards (Eutrigla gurnarrdus) and Mormyridae (Amorim et al., 2004; Crawford et al. 

1986). When these striated muscles contract, they create sounds by resonating the 

swimbladder (reviewed in: Tavolga, 1977). In other species, such as pigfish 

(Congiopodus leucopaecilus), striated muscles run between the vertebral intercentra and 

the back border of the pectoral girdle (Packard, 1960). The muscles contract 

simultaneously and produce a drum like sound through the swimbladder, as found in 

oyster toadfish (Opsanus tau) and midshipman (Porichthys notatus) (Bass & McKibben, 

2003). 

Structures other than sonic muscles can also have the same vibrating effect on the 

swimbladder. The mechanism of an „elastic-spring‟, created by a thin bone firmly 

attached to the anterior dorsal wall of the swimbladder, vibrates and transfers this motion 
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to the air-filled sac (reviewed in: Tavolga, 1977).  When the muscles around the anterior 

dorsal wall contract, the motion moves the anterior section of the swimbladder and this 

vibration produces the sound (reviewed in: Tavolga, 1977).  

Rubbing and knocking of bones 

A second common mechanism of sound production in teleosts is the rubbing of 

bones together. When rubbed together the bones produce either short wide-band pulses or 

burst-like sounds. The stridulation can be produced by the rubbing of pectoral spines in 

the sockets of the shoulder girdle as seen in many catfishes (Siloridae, Ladich, 2004), by 

rubbing pectoral spines against each other as in croaking gouramis (Ladich, 2004), or by 

smaller bones interacting with parts of the appendicular skeleton (reviewed in: Ladich, 

1997). The use of bones as sound generation devices tends to generate higher dominant 

frequencies than the swimbladder (Ladich, 1999) and tend to result in pulsatile sound 

sources (Ladich, 2004).  

Pharyngeal teeth exist as bony plates on both the dorsal and ventral surfaces of the 

pharynx.  Primarily found in species that use their pharyngeal teeth to masticate hard food 

items, these teeth, when rubbed together, also produce sounds (reviewed in: Bass & 

McKibben, 2003).  The grinding of pharyngeal teeth produces a burst-like sound in 

nature, which has lower energy than sounds produced by the swimbladder. These sounds, 

however, can have sections that reach up to several kHz (Ballantyne & Colgen, 1978). 

While some pharyngeal sounds may be a by-product of feeding (Ladich & Popper, 2001), 

they are also well documented to be used for actual sound generation in communication 

contests (Ladich & Popper, 2001).  
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Novel mechanisms 

A novel mechanism of sound production has recently been discovered in 

damselfish (Parmentier et al., 2007).  Amphiprion, comprised of 27 species, have all been 

found to use vocal communication, but the exact mechanisms of how their sounds are 

produced have not been elucidated until recently. Throughout this group, variation in 

tooth arrangement appears to give each species a unique vocalization (Parmentier et al., 

2006).  One species of damselfish, the clownfish (Amphiprion clarkii), produces a sound 

that is usually higher in frequency than sounds produced with a swimbladder. The sounds 

are created when the fish quickly lowers the hyoid apparatus while closing the mouth at 

the same time (Parmentier et al., 2007). A ligament attached to the hyoid bar and the 

internal section of the mandible pulls the mouth closed. The collision of the teeth as the 

mouth closes produces the sound; here the jaw is suggested to be “the sound radiator” 

(Parmentier et al., 2007). Clownfish are known to produce „chirps‟ and „pop‟ sounds 

when trying to attract mates or when confronted with possible danger. These sounds can 

be in trains (1-8 pulses) and average a frequency between 450-800 Hz (Parmentier et al., 

2007).  

II.ii:  Structure of a fish call 

Fish calls have different components that can be used to classify and distinguish 

one call from another. These different components include the length of the call, the 

intercall duration, the pulse duration, and the interpulse duration (the time in between 

each pulse in a call) which makes up the temporal envelope (Kihslinger & Klimley, 

2002). Fish sounds are pulsed and broadband, or tonal, and vary over a range of 
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frequencies (Kihslinger & Klimley, 2002). It has been suggested that there is not as much 

uniformity when describing fish sounds as is seen in terrestrial animals and birds 

(Kihslinger & Klimley, 2002). Nonetheless, temporal, frequency, and amplitude features 

are part of every call. Bout duration encompasses all the sounds within a series of 

vocalisation and can consist of more than one sound type (Kihslinger & Klimley, 2002).   

A bout can be subdivided into individual units. These units are a string of sounds 

within one type of vocalisation and are (Lindstörm & Lugli, 2000); units are classified by 

Winn (1964) as unbroken segments that can be heard or seen in a spectrogram.  Units can 

be further broken down into pulses. The pulse number refers to the amount of pulses in 

each unit (Kihslinger & Klimley, 2002), which can vary between call types of a given 

species or between species, making pulse number a distinguishing characteristic 

(Myrberg et al., 1986). The silence between the end of one pulse and the beginning of the 

next is termed interpulse interval (Mann & Lobel, 1997). It has been suggested that this 

quiet time, „or off-time‟, may be the feature that holds the most information when 

comparing different calls and species identification (reviewed in: Kihslinger & Klimley, 

2002).  

Finally, when describing a call, frequency modulation (changes in frequency), 

fundamental frequency (natural frequency), and the frequency range are all commonly 

used to quantify call characteristics of fishes (Kihslinger & Klimley, 2002). Frequency is 

often affected by body size and therefore may be involved in female mate choice 

(Amorim & Vasconcelos, 2008; Amorim et al., 2008); however, this size effect is not 

evident in all fish species. Frequency may be an important feature for honest signalling in 
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those species where frequency is negatively correlated with body size. Females could 

assess a male‟s quality during the breeding season; many parental and fitness qualities 

have been associated with male body size, such as foraging abilities, territory and nest 

guarding (Malavasi et al., 2003; Colleye et al., 2009). 

 III. Interspecific difference in calls from different groups 

Fish sounds are generally classified into: tonal sounds, drumming sounds, and 

complex sounds (a combination of tonal and drums), and can be harmonic or non-

harmonic in nature (reviewed in: Bass & McKibben, 2003). Tonal sounds have a high 

pulse repetition rate which results in the pulses blending together to form a sinusoidal-

like waveform (Lugli et al., 1997). The reproductive call of the Arno goby (Padogobius 

nigricans) is characterised as being tonal, lasting 300-400ms, and close in structure to a 

pure sine wave (Lugli et al., 1997). Drumming sounds, characterized as repeating pulse 

trains with a lower pulse repetition rate than that of tonal sounds where each pulse is 

distinct (Lugli et al., 1997), make up the reproductive call of the Panzarolo goby 

(Knipowitschia punctatissima) (Lugli et al., 1997). Complex sounds are a combination of 

tonal and drum vocalisations (Lugli et al., 1997; Amorim & Neves, 2007). Male 

Common gobies (Padogobius martensii) switch between drumming and complex sounds 

during different reproductive stages (Lugli et al., 1997).  

Fish sounds have been further classified into call types associated with specific 

species (examples being grunts, growls, knocks, hums, moans, and boatwhistles) 

(Kasumyan, 2008). While call structure can be defined in discrete categories (as shown 
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above), many fish species can produce more than one call type (Myrberg & Spires, 1972).  

The precise function of many calls remains unclear at this time. Nonetheless, researchers 

have started comparing similar call types in different species to gain insight on the 

behaviours associated with the sounds.  

The two best studied species are the plainfin midshipman (Porichthys notatus) 

and the toadfish (Opsanus spp.) where each produces a distinguishing call (reviewed in: 

Bass & McKibben, 2003). Hums, suggested as advertisement calls of the plainfin 

midshipman, are long in duration and are unmodulated (Bass & McKibben, 2003). Hums 

are harmonic in structure, reaching up to 700 Hz in some individuals, and have a 

fundamental frequency between 90-100 Hz (Bass & McKibben, 2003). These sounds can 

last minutes to an hour in duration (Brantley & Bass, 1994). Only nesting male 

midshipman are known to produce this sound during the breeding season (reviewed in: 

Bass & McKibben, 2003). Toadfish produce a specific complex sound named the 

boatwhistle (reviewed in: Bass & McKibben, 2003). This advertisement call is 

comparable to the hum. It is characterised by being a shorter (500 ms), multi-harmonic 

call with two segments (reviewed in: Tavolga, 1977). The first segment or note, as some 

call it, is a single grunt that leads to the second note, which begins with a grunt then 

switches to a multi-harmonic „hoot‟ (Bass & McKibben, 2003). The initial grunt can be 

followed by another single grunt and the second segment is often followed by a grunt-

hoot combination (reviewed in: Tavolga, 1977). 

The two main types of behaviour classifications associated with sound production 

are mating and defence (reviewed in: Bass & McKibben, 2003). Mating sounds are 
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diverse and are associated throughout the many mating sequences, such as advertisement, 

courtship, pre-spawning, and spawning (Myrberg et al., 1986; Lugli et al., 1996a,b; 

McKibben & Bass, 1998; Amorim & Neves, 2007). Advertisement calls tend to be long 

in duration and are repeated to form call trains (reviewed in: Bass & McKibben, 2003). 

The boatwhistle produced by the toadfish is a prime example (reviewed in: Tavolga, 

1977). Advertisement calls should be long on duration as they act as a beacon for females 

to follow (Fay, 2005). Often breeding areas are densely filled with competing males and a 

female needs a continuous signal to follow and locate the source (Rollo & Higgs, 2008). 

Courtship sounds signal the presence of a male which is ready to mate (Bass & 

McKibben, 2003). These sounds are often produced when a male is alone in his nest; 

once a female enters his territory, courtship sounds may change as he approaches a 

female (Amorim & Neves, 2007). A similar change in sound type with reproductive 

displays has been shown in damselfish.  Damselfish produce different variations of a 

chirp sound (brief multi-pulse broadband) during courtship; the 3-pulsed chirp sound is 

produced while mature males perform a courtship display (termed the dip) (Myrberg & 

Spires, 1972). Males perform the dip to display their nuptial colouration to females and 

this swimming motion has been shown to lead the prospective female back to the nest 

(Myrberg & Spires, 1972). Further work on damselfish chirp sounds have shown four 

temporal structures and frequency modulation differ between species, those being, call 

duration, pulse number, pulse duration, pulse interval, and dominant frequency 

(Kihslinger & Klimley, 2002). 

Pre-spawning sounds have been shown to accompany other communication 

modes, such as visual displays (Lugli et al., 1997; Lindström & Lugli, 2000). Male green 
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damselfish (Abudefduf abdominalis) try to lead females to their nest by performing a zig-

zag swimming pattern; sounds are always accompanied by the visual display and 

continue into the nest (Maruska et al., 2007). The Canestrini‟s goby (Pomatoschistus 

canestrinii) moves its head rapidly in conjunction with a thump sound while outside the 

nest with a female but then quickly moves inside and continues to call until spawning 

occurs (Malavasi et al., 2009). Some fish species also produce sounds as spawning 

signals (Lugli et al., 1995). Broadcast spawning often accompanies acoustic cues to 

ensure gametes are released simultaneously. Two coral reef fish, the hamlet 

(Hypoplectrus unicolor) and the striped parrotfish (Scams iserti), both produce sound 

during gamete release which are different from their courtship signals (Lobel, 1992).  

Aggressive sounds are typically short in duration which potentially serves to gain 

the attention of the receiver (Ladich, 1997; Sebastianutto et al., 2008). Fish produce 

agonistic sound in response to intruders, during male-male interactions, to assert 

dominance, and when frightened (reviewed in: Ladich, 1997). Dominant male 

midshipman produce growls while building nests in the breeding months (Brantley & 

Bass, 1994). Mormyrids also produce growls during the beginning of the mating season, 

as such; growls may be used to assert dominance and create territories prior to actively 

courting females (Crawford et al., 1997). Grunt trains are thought to be produced by 

males during agonistic behaviour (McKibben & Bass, 1998; Bass & McKibben, 2003). 

Several species produce this type of vocalisation, including the well-studied plainfin 

midshipman (Porichthys notatus) and the toadfish (Opsanus tau) (reviewed in: Bass & 

McKibben, 2003). Only dominant males have been observed making this call during the 

breeding season (reviewed in: Bass & McKibben, 2003). 
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IV. Evidence that temporal or amplitude modulation matters 

To better understand the importance and meaning behind the difference in 

temporal structures, behavioural experiments are essential. Playback experiments allow 

researchers to assess the behaviour of fish and to link this to a particular function 

(Tavolga, 1977). Playback studies can compare the reaction of a fish to intra-or 

interspecific communications. Different damselfish species (Eupomacentrus partitus, E. 

planiforns, and E.leucostictus) can discriminate between conspecific vocalisations; as 

well, it was also shown that E. partitus was able to discriminate wild conspecific calls 

better than unedited conspecific laboratory calls (Myrberg & Spires, 1972). While these 

calls differ in many aspects, the most important difference appears to be the pulse 

interval, with the „off-time‟ being the most sensitive segment to changes in the calls 

(Myrberg & Spires, 1972).  

The unique call of the toadfish, the boatwhistle, was determined to be an 

advertisement call for males to attract gravid females through playback experiments with 

gravid females, non-reproductive females, and males (reviewed in: Bass & McKibben, 

2003). Gravid females are most likely to swim towards a speaker playing the boatwhistle 

call than are the other two groups (reviewed in: Bass & McKibben, 2003). This call not 

only functions as an advertisement call but could contain information for males in the 

area, as males also approached the playing speaker (reviewed in: Bass & McKibben, 

2003). Male midshipman hums were also found to attract gravid females during similar 

playback studies (McKibben &Bass, 1998).  
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Knowing the difference between calls allows the receiver to identify the source, 

especially at long distances where the sender is out of visual range. Hawkins and 

Rasmussen (1978) demonstrate this by classifying the differences between haddock 

(Melanogrammus aeglefish) and cod (Gadus morhua). These two economically important 

fish both produce knocks and grunts; however, the haddock have fewer pulses, and the 

calls are shorter in duration than those of the cod. As well, the duration of a call can be a 

distinct characteristic between certain species, as Ladich (1997) describes, Pimelodus 

pictus displays a stress call 10 times longer than P. blochii.  Being able to distinguish 

ones species from congeners saves the receiver energy by not wasting time investigating 

a signal that was perhaps intercepted by mistake and reduces the chance of hybridization 

(Kihslinger & Klimley, 2002). 

Modulation of the temporal envelope (see above) has been tested to determine its 

overall effects in vocal recognition (McKibben & Bass, 2001a). Temporal envelope 

modulation may be significant as a whole when distinguishing between different call 

types of one species (McKibben & Bass, 2001b). Midshipman modify the drumming 

sounds to produce their three call types as well (Brantley & Bass, 1994). The duration of 

the sound decreases as the midshipman change from hums to growls to grunts (>1 min, 

ms-min, ms, respectively). Each call type also has a unique fundamental frequency 

(Brantley & Bass, 1994). Midshipman grunts and hums are comprised of different 

temporal structures and are thought to have different functions. Continuous tones (hums) 

are more effective at attracting reproductive females than pulsed sounds (grunts) during 

playback studies (McKibben & Bass, 1998; reviewed in: Bass &McKibben, 2003).  
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Call duration may be an indicator of fitness (Lindström & Lugli, 2000). Calling is 

metabolically expensive and muscle fatigue can lead to a decrease in calling rate 

(Lindström & Lugli, 2000). The sand goby (Pomatoschistus minutes) have been shown to 

adjust its calling rate and extend the „off-time‟ between calls to lessen the strain on tired 

muscles (Lindström & Lugli, 2000). However, this is at a cost as female painted gobies 

have been shown to prefer higher calling rates and a mating preference for males with 

increased call rates (Amorim & Neves, 2007).     

V. Future direction overall 

Though our knowledge of encoding temporal structure in fish is still in its 

infancy, approaches taken by other researchers can provide us with clues on the aspects 

likely to be important in fish communication. It is clear that females use the temporal 

structures not only to recognize potential mates but also to detect a preferred male but it 

remains unclear how different conspecific calls affect attraction of females and responses 

of males in species with a broader sound repertoire. It is also unclear how different 

conspecific call types affect the ability of fish to localize conspecifics from a distance. 

Examination of responses of free-swimming fish to different call types will allow the 

beginning of an understanding of how these sounds propagate and how they are 

processed by the intended receiver. In this way, we can best determine how fish decipher 

relevant information from complex calls and how the aquatic features have driven 

evolution of acoustic signals in this speciose group. 

The goals of the present study are twofold. The first is to investigate the affect of 

conspecific vocalisations on the behaviour of round gobies. It is known the round goby 



17 

 

shows higher phonotactic responses to conspecific calls when compared to heterospecific 

calls and can distinguish between conspecific and congeners (Rollo & Higgs, 2008). To 

date, it is unclear if round gobies can distinguish between different signals within their 

own repertoire. Male round gobies are known to produce a reproductive call during the 

breeding season to attract females (Rollo et al., 2007). Round gobies are also very 

territorial and have demonstrated an aggressive display that may accompany a sound as 

well. Here we present different reproductive calls and possible aggressive sounds to 

determine the behavioural attraction of females. To further investigate the round goby 

repertoire, we test males during playback trials to look at the affects different conspecific 

sounds have on male behaviour. By presenting conspecific sounds, we can quantify the 

temporal structures and frequency components in the male vocalisations to determine the 

level of natural variation found within the male sounds. These two experiments will 

demonstrate if signal recognition is capable in the round goby and potentially link sounds 

with a behavioural function, adding to our understanding of information transfer by 

means of acoustic communication. 

The second goal of this thesis is to develop an acoustic trapping device for this 

invasive species. My objectives are to incorporate the sound which shows the highest 

level of phonotaxis in the first sections and test that sound in a trapping device. The trap 

will first be tested in a laboratory environment and then be tested in the field.  

Although these studies focus on different aspects initially (that being behavioural 

ecology and applied conservation), the overall goal is to gain knowledge of the round 

goby to better understand the biology of this invasive fish. As well our study will add to 
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further understanding of the role of acoustics in communication in fish and be 

incorporated into an applied aspect of control strategies of invasive species. 
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Chapter 2: 

 

Behavioural discrimination of conspecific call types and  

its potential use in control strategies of  

the invasive round goby (Neogobius melanostomus)
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Introduction 

Acoustic signals in fishes represent one of many modalities used to communicate 

with hetero-and conspecifics. Although not as well studied as in mammals (Richardson et 

al., 1995; Wyman et al., 2008), birds (Byers & Kroodsma, 2009), and amphibians (Ryan 

& Wilczynski, 1991), research in fish vocalisations highlights the importance of 

communication strategies in an aquatic medium (reviewed in: Popper & Schilt, 2008). 

Sound is not impeded in low light environments such as murky or deep waters where 

visual signal information would be lost and is more directional than chemical cues, which 

can be greatly impacted by currents (Fay & Popper, 2000). Because of this, sound can 

travel great distances between a sender and receiver (Rogers & Cox, 1988) while 

maintaining directional information about the sound source (Fay & Popper, 2000; Popper 

& Schilt, 2008). Transmission distance may be the most advantageous component to 

acoustic communication. The use of advertisement calls in long distance signalling sets 

acoustic communication apart from other aquatic signalling modalities (reviewed in: 

Ladich, 2004).  

Fish use acoustic signalling in both reproductive and agonistic contexts (reviewed 

in: Bass & McKibben, 2003). Males produce advertisement calls to attract females 

(Myrberg et al., 1986; Lugli et al., 1996a,b; McKibben & Bass, 1998; Amorim & Neves, 

2007) and also emit aggressive sounds during male-male competition or territorial 

defence (Winn et al., 1964; Ladich, 1997; Amorim et al., 2003).  Tilapia (Oreochromis 

mossambius) will continue to emit courtship sounds after having courted with a female to 

ward off territorial attacks; this may also allow nearby conspecifics to eavesdrop and 

gather information about neighbouring dominant males (Amorim et al., 2003).  The 
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streaked gurnard (Trigloporus lastoviza) increases its chance of acquiring limited food 

sources by producing agonistic vocalisations (Amorim & Hawkins, 2000; Amorim et al., 

2004); whereas, the topmouth minnow (Pseudorasbora parva) produces sounds during 

feeding to potentially advertise the presence of food (Scholz & Ladich, 2006).  

Signals need distinct characteristics to allow a receiver the ability to discriminate 

variations within a call (Amorim & Vasconcelos, 2008). Changing the characteristics of a 

call can change the signal content (Amorim et al., 2006) and temporal coding can be 

changed to vary a call and perhaps increase information content (Wysocki & Ladich, 

2002). Temporal structures play an important role in acoustic communication in many 

fish species (mormyrids, batrachoids, damselfish, gobiids - Bass & McKibben, 2003). 

Temporal patterns, frequency range, amplitude levels, and distribution of energy, may all 

be important for signal identification (Ladich, 2004) and species (Myrberg & Spires, 

1972; Lugli et al., 1997; McKibben & Bass, 2001a,b; Rollo & Higgs, 2008) and 

individual recognition (Myrberg & Riggio, 1985).  For example, three groups of 

Mediterranean gobies can be identified by similarities in their calls; larger sized species 

produced both tonal and grunt sounds unlike smaller species which only produce grunts 

and larger species produce grunts with a lower duration than smaller species (Malavasi et 

al., 2008). Overall, acoustic signalling may provide vital information used by 

conspecifics to assess a sender‟s location, fighting ability, sex, readiness to mate, body 

size, and individual identity (Amorim et al., 2003; de Jong et al., 2007; Colleye et al., 

2009). 

 Phonotaxis, through playback experiments, has proven that fish directionalize 

sound and potentially use information in the signals to assess the sender (reviewed in: 
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Tavolga, 1977; Lugli et al., 1996a; McKibben & Bass, 1998; Rollo & Higgs, 2008). 

Coral reef pomacentrid larvae use acoustic cues from reefs to locate habitats after the 

pelagic phase (Tolimier et al., 2004; Wright et al., 2010). Fishes from the families 

Pomacentridae, Apogonidae, Lethrinidae, and Gobiidae, orient towards high-frequency 

(570-2000 Hz) reef noises as compared to low-frequency (<570 Hz) sounds or no sound 

at all (Simpson et al., 2008). Localisation is vital in the success of mating in many fish 

species where males produce advertisement calls to attract females (Crawford et al., 

1986; Myrberg et al., 1986; reviewed in: Bass & McKibben, 2003). Females can locate a 

preferred male by positive phonotaxis. Without acoustic cues, females might suffer a 

diminished capacity to hone in on the position of a desired mate. This concept is well 

studied in the reproductive tactics of the toadfish (Batrachoididae) (reviewed in: Bass & 

McKibben, 2003; Amorim et al., 2006, 2008a); all male oyster toadfish (Opsanus tau) 

produce acoustic cues however only mature males can produce the boatwhistle 

advertisement call to attract females to their nest (Maruska & Mensinger, 2009). 

In the present study, I investigate the behavioural responses of the round goby to 

known conspecific sounds. Round gobies (Neogobius melanostomus), originating from 

the Ponto –Caspian Sea, were first discovered in the St. Clair River in 1990 (Jude et al., 

1992) and quickly invaded the Laurentian Great Lakes (Charlebois et al., 2001). Round 

gobies are prolific breeders, mating several times in a season and have an extensive range 

in diet (Jude et al., 1992; reviewed in: Charlebois et al., 2001); this has aided their spread 

into North American waterways (Charlebois et al., 2001). The round goby has had 

extensive effects on native populations in the Great Lakes (Jude et al., 1995); their 

territorial nature has depleted the sculpin (Cottus bairdi) population (Janssen & Jude, 
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2001) and has caused great concern to species of commercial importance (as cited in 

Corkum et al., 2004).  Male round gobies are known to produce reproductive calls (Rollo 

et al., 2007; Speares, 2007); other sounds have been documented though have not been 

fully described (Meunier et al., 2009). The mechanisms used to produce these sounds are 

unknown at this time; nonetheless, round gobies do show clear directional responses to 

conspecifics calls (Rollo et al., 2007) and also have the ability to differentiate goby calls 

from other sounds (Rollo & Higgs, 2008).  

In the current study, three different experiments explore the behavioural response 

of female and male round gobies to conspecific acoustic emissions. Females were used in 

choice experiments to determine attractiveness to four male sounds; two reproductive 

calls, a possible aggressive sound and a vocalisation recorded in lab while a male was 

exposed to a female (stimulus 4). Male playback trials focused on male-male interactions 

to determine if males are more likely to respond to neighbouring advertisement calls or 

possible agonistic cues. Data from these studies were used in the final experiment to 

design a preliminary acoustic trap.  Determining the acoustic cue which exhibited the 

highest phonotactic response can aid in developing a trapping system to decrease the 

threat of their spread further into the Great Lakes systems.   

Material and methods 

Study species 

 All round gobies were caught in the Detroit River on the Canadian border either 

by seining or angling from May to October 2007 and 2008. The fish were housed at the 

University of Windsor‟s animal quarters facility and all animal care procedures were 
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followed as approved by the University of Windsor Animal Care Committee. Gobies 

were kept in aerated tanks with carbon filtration systems. The temperature was kept at 

20
o
C (±1

o
C) to mimic the river water temperatures during the summer months, and 

photoperiod was set to a 12:12 light cycle. The gobies were fed Nutrifin fish flakes 

(Hagen Pet Foods Inc.) and were held a minimum of a week before being tested to 

acclimate to the lab conditions. 

Sound types   

 Gobies were presented with four different conspecific sound types. Stimuli 1 and 

2 are reproductive in nature as males were observed actively guarding nests when 

producing the vocalisations. The stimulus 1 call was recorded in the wild in Lake 

Michigan by John Janssen (University of Wisconsin). Stimulus 1 has a fundamental 

frequency of 180 Hz and is characterised by having long pulse trains (Rollo et al., 2007) 

with most of the energy occurring below 400 Hz (Figure 1, A-B). The sound is broad-

band and pulse trains contain an average of eight pulses per train. Pulse train duration is 

an average of 0.07 s and the „off-time‟ between the pulse trains is around 0.25 s. Stimulus 

2 was recorded in the Higgs lab at the University of Windsor and has a fundamental 

frequency of 160 Hz (Figure 1, C-D). Broad-band pulse trains are again evident; 

however, the interpulse train duration is smaller than those in stimulus 1. Most of the 

energy of the call is found below 350 Hz. The stimulus 3 sound, (acquired from John 

Janssen and Greg Andraso) consist of one group of pulses with a fundamental frequency 

of 102 Hz with most of the energy occurring below 400 Hz (Figure 1, E-F). This sound 

may be a by-product of the goby hitting its tail on the substrate as it is accompanied by a 

flipping motion where the goby quickly twisted its body. The function of stimulus 3 may 
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communicate aggression; however this is still unclear. Stimulus 4is a potential novel 

vocalisation and has no known function. Recorded in the Higgs lab at the University of 

Windsor, stimulus 4 was first observed while a male patrolled the area around his nest but 

was not actively guarding his nest as there were no eggs present. It is clear stimulus 4 is a 

vocalisation and not a by-product from body movement because the sound was associated 

with the male moving his mouth. Stimulus 4 contains fewer pulse trains and greater 

interpulse train intervals (averaging 0.75 s between each pulse train) than either stimulus 

1 or 2. The fundamental frequency of stimulus 4 is approximately 118 Hz with most of 

the energy occurring below 400 Hz; pulse amplitude is largest during the final pulse train 

of the call (Figure 1, G-H). Sound production mechanisms for all sounds are unknown at 

this time. 

Female choice experiment 

 Female choice trials consisted of four types of sound treatments (stimulus 1, 

stimulus 2, stimulus 3, and stimulus 4) and a control silent treatment. Females were put 

into groups of five and one group was tested per week to ensure all five females in a 

given group received the same acclimation conditions and sound treatment on a given 

day. This was done to decrease the chance that a female‟s response to sound was affected 

by environmental conditions. A total of 32 females were tested however only 12 females 

were exposed to the each of the five treatments so only these 12 are analysed here. At the 

beginning of a new group, treatment order was selected at random. Trials lasted a total of 

10 minutes with the sound alternating one minute on and one minute off for the duration.  

Two underwater speakers (UW-30 Electo-Voice, 30W, Lubell Labs Inc. Columbus OH, 

USA) were in the tank at all times; an active speaker playing the sound and a silent 
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Figure 1: Oscillograms (left) and power spectra (right) of the Stimulus 1 (A-B), Stimulus 

2 (C-D), Stimulus 3 (E-F), and Stimulus 4 (G-H) sounds produced by male 

round gobies. Power spectra are summed across the entire sound duration. 

Janssen and Flip sounds received from John Janssen (University of Wisconsin) 

and Greg Andraso (Gannon University).   
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speaker, which served as a control. The active speaker was chosen at random by drawing 

a piece of paper from a container before every trial.  The sound was played from a 

Durabrand CD player (model CD-566, Lenoxx Electronic Corp, N.J., USA) which passed 

through a Phase Linear amplifier (model UPA 424CS, Audiovox Electronic Corp, N.Y., 

USA) to the speaker. The amplifier was powered by a MotoMaster Eliminator car battery 

(part# 10-2500-4). Background and sound levels were recorded by a hydrophone (model 

902, Inter Ocean Systems, CA, USA) prior to the beginning of each trial and all sounds 

were played at 150 dB re 1µPa at the starting point of the fish (see below). The responses 

of fish during all trials were recorded for further analysis by a Sony digital Handycam 

Recorder (model DCR-TRV27) or an EverSecure video camera (SX-800-HR). 

Trials took place in a 1020 L rectangular fibreglass tank which was filled to a 

depth of 33 cm with dechlorinated tap water (Figure 2). Water was kept at 20
o
C (±1

o
C) to 

match that of the holding tanks. Two underwater speakers, 26 cm apart, were hung at one 

end of the tank. A mesh net bisected the tank at 144.78 cm from the speakers; the 

experimental area kept the fish in view during recordings and allowed the sound to travel 

through the rest of the tank to reduce reverberations at the starting zone. An arbitrary line 

at 114.3 cm from the speakers denoted the „positive zone‟ for all experiments.   

Females were given a minimum of two hours to acclimate to the tank water in a 

separate plastic container prior to all treatments. Females were tested individually and 

were given an additional five minutes in the experimental tank before the start of the trial 

to allow for adjustments to the new environment. Female length was measured to keep 

track of each individual for further analyses. To start a trial females were placed at the 

back of the experimental area, 144 cm from the speaker; however, if the fish moved into 
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Figure 2:  Experimental tank for female choice trials. Bold line denotes beginning of 

positive area (Zone 1).  Females were placed against the net for the acclimation 

period and start of trial; however gobies could move anywhere within the 

„Starting Area‟ before the trail began. L= left speaker, R= right speaker. A 

video recorder was suspended over the tank to monitor goby movement. 
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the „positive‟ zone (denoted Zone 1) before the start of the trial, the fish was removed and 

used later in the day. The positive zone area was chosen to allow a clear distinction 

between actively approaching the sound source and arbitrarily swimming in the tank.  

Female responsiveness was quantified as the percent that swam into Zone 1, the length of 

time spent in Zone 1, minimum distance approach to the active speaker, swimming speed, 

swimming path and mean path angle. Females were only exposed to one treatment sound 

per day. 

Statistical analysis 

Logistic regression (SPSS Statistics 17.0, Chicago, IL, USA) was used to analyse 

the percent response rate of females to the different treatments. A positive response 

occurred when a goby swam into Zone 1. Repeated measures ANOVA was used to analyse 

all other tests as all females were exposed to each sound type.  All gobies who were 

exposed to all five treatments (n=12) were used in repeated measures ANOVA analyses to 

quantify time spent in Zone 1, minimum distance approached to sound source, swimming 

speed, swimming path (distance ratio) and mean path angle. If a female did not elicit a 

positive response during the percent response rate analysis, a value of zero was given for 

time spent in Zone 1. Swimming speed, swimming path and angle were first determined 

using Fish Tracker software (obtained from Dr. Lynda Corkum and developed by Pauline 

Shen, University of Windsor), which monitored the movement of the females during the 

trials. The distance ratio, an estimate of directionality, (Speares, 2007) was calculated as 

follows: 

Distance Ratio = potential distance travelled – distance from speaker 

                                           total distance travelled 
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Where potential distance travelled is the distance from the starting line to the speaker 

(144.78 cm), distance from speaker is the distance the fish stopped in front of the speaker, 

and total distance travelled is the sum of all swimming during the trial, as calculated in 

Fish Tracker, until the fish stopped at the speaker of choice. Calculation of the mean path 

angle accompanied the distance ratio values; a path angle equalling 0
o
 represented a 

perfect linear line and an angle of 90
o
 denoted no movement towards the signal source. 

Male vocalisations to playback 

Recordings 

To ascertain the effect of different sound presentations on goby vocalisations and 

the effect of body size on temporal structures, playback experiments were conducted on a 

series of male gobies in the lab. Males ranged in size from 14.9 g to 42.1 g. Experiments 

took place in a glass tank (38 X 85 cm) filled to a depth of 27 cm; temperature was 20
o 
C 

and water was treated as was the water in the holding tanks. An UW-30 Underwater 

speaker was placed in the tank to present the sounds to the male gobies. The speaker was 

connected to an Alesis RA 300 amplifier (Alesis Studio Electronics, Santa Monica CA, 

USA) which was connected to a laptop computer (Hewlit-Packard Palo Alto, CA, USA). 

All sounds were presented to the gobies at an output amplitude of 150 dB re 1µPa at the 

speaker. 

After a 20 minute acclimation period, a male was exposed to one of three 

conspecific sound types (from the above study): stimulus 1 (reproductive call), stimulus 3 

(potential aggressive sound), and stimulus 4 (unknown sound). Stimulus 2 was not used 

in the male playback study because the female choice trials were on going and the 

attracted nature of the reproductive vocalisation was not yet determined; as well, stimulus 
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1 has been used as a reproductive cue in past experiments (Rollo & Higgs, 2008). All 

males (n=6) were exposed to each sound type a total of three times. Trials began with the 

sound playing for one minute followed by 1.5 minutes of silence and finished with one 

minute of sound. Male responses were recorded for a total of 20 minutes at the end of the 

trial. This protocol was repeated an additional two times for each sound type giving a five 

minute rest period between each trial repeat. The order of the three sound types was 

chosen at random and males were only exposed to one sound per day. 

Analysis of goby calls 

Vocal responses to the playbacks were recorded by a Reson TC 4032 hydrophone 

(Reson Inc. USA) attached to a solid state recorder (model PMD670, Marantz Inc.). 

Background noise was removed after recording with the noise reduction setting in Adobe 

Audition (Adobe Systems Inc. USA).  A 1 s sample of the recording before sound was 

played was used to capture the noise reduction profile and then applied to the entire 

recording to filter this “noise” from the recording with 4096 points in the FFT profile.  

Four sound structures were assessed: number of calls per trial, call duration, intercall 

interval, and fundamental frequency. For this experiment, a call was categorized as any 

pulse (sound) separated from the previous or next pulse (sound) by one second or more. 

A pulse was characterized as any sound (peak) equal to or above an arbitrary amplitude 

of -30 dB on Adobe Audition. An intercall interval is the silent time or off time between 

each call which must be a length of one second or greater. Interpulse interval is the time 

between each pulse; this is measured from the last peak at -30 dB or above to the next 

pulse at -30 dB. The fundamental frequency is the first frequency with the most energy 
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(usually the first dominant frequency after 60 Hz [electrical noise]) produced for a given 

call.  

Statistical analysis 

 All body size and call structure analyses were done using Linear Regression 

(SPSS Inc.). Separate regressions were run to quantify if body size affected fundamental 

frequency, call duration, and number of calls produced by males when exposed to each of 

the sound types. Repeated measures ANOVA (SPSS Inc.) were run to quantify differences 

of each sound structure with respect to stimuli 1, 3, and 4. Missing values were generated 

by the missing values application in SPSS. 

Acoustic trap  

Design and set up 

 The potential use of acoustic cues to control behaviours in the round goby was 

also assessed.  A black, plastic bucket (30.5 x 34.3 x 25.4 cm) was converted into an 

acoustic trap (Figure 3). There were two circular openings (4.5 cm diameter) on each of 

the four sides made from PVC piping; holes were fit with elbow shape PVC pipe (2.54 

cm diameter) that pointed up inside the trap. The outer openings were close to the bottom 

of the trap for ease of entrance and the interior holes were 5 cm above the bottom (Figure 

3). This made it more challenging for the gobies to exit once inside because, as benthic 

dwelling fish, they would swim to the bottom of the trap. An UW-30 underwater acoustic 

speaker rested on three rods 17.78 cm above the bottom (Figure 3). The top of the trap 

had a clear plexiglass window to make the inside visible during trials. The speaker cable 

exited through a small hole in the lid and attached to a portable Phase Linear car stereo 
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Figure 3: Schematic diagram of the acoustic trap showing the exterior and interior 

workings. Drawing was produced by Amanda Barkley (University of 

Windsor). 
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amplifier. A MotoMaster Eliminator car battery powered the amplifier and a Durabrand 

CD player, attached to the amplifier, played the sound files.  

Experimental procedures 

 Laboratory studies took place during the summers of 2006-2008 and were run in 

the behaviour tank described above. Stimulus 2 was used as the acoustic cue as females 

showed the highest phonotactic response to this sound over all other conspecific sounds 

(Experiment 1). Background noise was measured using a hydrophone (model 902, Inter 

Ocean Systems, San Diego, CA, USA) and sound was played 10dB above ambient noise 

(118 -123 Hz) to ensure fish could clearly hear the vocalisations. 

Trap trials mimicked the same protocol set up for all sound equipment as in the 

female choice trials described above. Each trial contained ten gobies. Gobies were held in 

a plastic holding tank, containing the same water as in the experimental tank, for a two 

hour acclimation period prior to the trials. After the acclimation time, the gobies were 

moved into the experimental tank (Figure 4) for an additional five minutes and kept 

behind a plexiglass divider to keep them separate from the trap before the start of the 

trial. Just before the sound started playing, the divider was removed. All trials were 10 

minutes in length with the sound alternating one minute on followed by one minute of 

silence. No sound was present for silent treatments and lasted 10 minutes as in the other 

sound treatment trials. During this time, a Sony digital Handycam Recorder (model DCR-

TRV27) placed over the tank recorded the trials for further analysis. A plastic circle 

(71.12 cm diameter) was placed around the trap to indicate a positive zone which was 

used to count the number of approaches to the trap.  

 



40 

 

 

 

 

 

 

 

Figure 4:  Experimental tank for lab acoustic trap trials. Dash line denotes plexiglass 

barrier which kept gobies away from trap while acclimating in the tank; it was 

removed at the start of a trial. Black circle denotes the approach area around 

trap. Gobies were free to swim in and out of the approach area at will for the 

length of the 10 minute trial. A video recorder was suspended above the tank to 

monitor all trials. 
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Statistical analysis  

Videos of all trials were reviewed; the number of gobies that entered the trap and 

the total number of approaches made by the gobies to the trap was quantified for percent 

response. An approach was counted when a goby crossed into a designated circle 

surrounding the trap. If a goby left the defined area, any re-entry was counted as a 

separate approach. The number trapped, time at first approach, number of approaches at 

five and ten minutes and total number of approaches were recorded and analysed using an 

independent t-test (SPSS Inc.). 

Results 

Female choice experiment 

Overall when exposed to stimulus 2, females entered the positive zone 

significantly more often than during any other conspecific sound or silent trial (p = 0.045, 

Logistic Regression) (Table 1). Stimulus 2 elicited a 92% response rate while only 50% 

responded to the control (Figure 5).  Stimuli 1 and 3 also showed similar patterns to 

stimulus 2, with both having a response rate of 75%; however, neither showed a 

significance difference from silent trials (p = 0.213). The Stimulus 4 sound showed no 

difference from control trials (p = 0.410) and attained a 67% response rate.  

  Females spent the most time in Zone 1 when exposed to the stimulus 3, with an 

average of 219.08 seconds in the positive area compared to an average of 95.42 seconds 

during control trials (F = 5.587, p = 0.038; repeated measures ANOVA) (Figure 6). 

Stimulus 2 elicited the second longest response with an average of 160.75 seconds and 

was significantly different from the control (F = 4.750, p = 0.05; repeated measures 

ANOVA). Stimuli 1 and 4 did not show any difference from the control trials (F = 0.551, 
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Table 1: Logistical regression comparing the response rate of females during sound trials 

to the response rate of control trials. Positive responses are calculated by the 

percentage of trials where the female crossed into Zone 1 (see Figure 2 for tank 

diagram).  B – b coefficient , S.E – standard error; df - degrees of freedom; 

Exp(B) – odds ratio 

  

 

  

B S.E. df Sig. Exp(B)   

Step 1
a
 Treatment   4 .321  

Stimulus 1 .693 .842 1 .410 2.000 

Stimulus 2 2.398 1.193 1 .045 11.000 

Stimulus 3 1.099 .882 1 .213 3.000 

Stimulus 4 1.099 .882 1 .213 3.000 

Constant 1.058 .328 1 .001 2.880 

a.Variable(s) entered on step 1: Treatment. 
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Figure 5: Mean (± S.E.) percent response rate of female round gobies to four conspecific 

sounds and control trials. Response rate is calculated by the percentage of trials 

where females entered the positive area, denoted Zone 1 (see Figure 2 for tank 

diagram). An * indicates significance from control. 
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Figure 6: Mean (±S.E.) total time (s) spent by female round gobies in Zone 1 per sound 

type. Total time calculated over a 10 minute trial. Stimuli 2 and 3 affected the 

duration in Zone 1. An * indicates significance from control. 
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p =0.473; F = 0.062, p = 0.808, respectively; repeated measures ANOVA) with an average 

time 137.42 and 107.33 seconds, respectively, in the positive zone. 

Females swam significantly closer to the sound source during exposure to 

stimulus 2 when compared to control trials (F = 7.899, p = 0.017, repeated measures 

ANOVA); stimuli 1, 3, and 4 did not display this trend (p > 0.05, repeated measures 

ANOVA) (Figure 7). On average, when hearing stimulus 2, the gobies swam closest to the 

speaker, with a distance of 14.0 cm away from the sound source. Stimuli 1 and 3 elicited 

similar responses with a distance of 49.8 cm and 42.9 cm, respectively. Females stayed 

further away from the speaker when hearing stimulus 4, only approaching the speakers a 

distance of 67.8 cm and stayed furthest from the sound source during silent trials, with an 

average distance of 70.3 cm from the speakers.  

Distance ratio showed gobies swam in a more straight line towards the sound 

source upon hearing stimuli 2 or 3 when compared to silent trials (F = 13.160, p = 0.004; 

F = 5.322, p = 0.042, respectively; repeated measures ANOVA) (Figure 8). Stimulus 2 

elicited the largest distance ratio at 0.82 and stimulus 3 attained 0.67. Stimulus 1 was not 

significantly different from the control trials at α=0.05 level (F = 3.318, p = 0.096); 

however, stimulus 1 elicited a distance ratio of 0.71. Stimulus 4 showed no difference 

from the control (F = 0.566, p = 0.468) with a distance ratio of 0.51. Silent trials attained 

the lowest distance ratio at 0.38 showing the most zigzag pattern while swimming. 

Stimuli 1 and 2 were significantly different from the control trials (F = 5.968, p = 0.033; 

F = 17.811, p = 0.001, respectively, repeated measures ANOVA) in terms of mean path 

angle (Figure 9). Stimulus 2 also elicited the smallest mean path angle at 18.50
o
 and was 

followed by stimulus 1 with an angle of 20.96
o
. Stimulus 3 elicited a mean path angle of 
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Figure 7: Mean (±S.E.) distance (cm) of closest approach of female round gobies to the 

speaker during a 10 minute trial when exposed to each of the five treatments 

(Stimulus 1, Stimulus 2, Stimulus 3, Stimulus 4, and Control). A distance of 

zero indicates that the goby swam under the speaker. Approach to speaker was 

affected by stimulus 2. An * indicates significance from control. 
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Figure 8: Mean (±S.E.) distance ratio displayed by female round gobies when 

approaching the speaker during sound and control trials. Paths were tracked 

by monitoring software from beginning of the trial until the goby reached the 

speaker or the trial ended. Stimuli 2 and 3 were significantly different from 

control trials. An * indicates significance from control. 
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Figure 9: Mean (±S.E.) path angle (degrees) of first approach of female round gobies to 

the speaker during sound and control trials. Paths analyzed for angle direction 

were the same as those used in distance ratio calculations (Figure 12). Stimuli 

1 and 2 were significantly different from control trials. An * indicates 

significance from control.  
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Figure 10: Mean (±S.E.) swimming speed (cm/s) of female round gobies when 

approaching the speaker during sound and control trials. Stimulus 2 did 

increase swimming speed as compared to the control trials. An * indicates 

significantly different from control. 
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38.23
o
 but did not differ significantly from silent trials (F = 2.397, p = 0.150). When 

exposed to the stimulus 4 sound, mean path angles did not differ at all from the silent 

trials (F = 0.636, p = 0.442). Stimulus 4 elicited a mean path angle of 42.43
o
 and control 

trials produced the highest mean path angle at 55.47
o
 when swimming towards a silent 

sound source. 

During the sound trials, stimulus 2 was the only sound type which affected 

swimming speed. Stimulus 2 showed the highest mean swimming speed at 5.61 cm/s and 

was significantly different from the control (F = 4.633, p = 0.05, repeated measures 

ANOVA) (Figure 10). All other sound types did not show a significant difference when 

compared to the control trials (p > 0.05, repeated measures ANOVA). Stimulus 1 elicited 

an average speed of 4.22 cm/s and stimulus 3 attained 3.66 cm/s as an average swimming 

rate. Gobies swam an average speed of 2.79 cm/s during stimulus 4 trials and silent trials 

produced an average speed of 2.61 cm/s. 

Male playback experiments 

All males produced acoustic emissions during all playback trials. Fundamental 

frequency of emitted sounds did not show a significant correlation with body size for any 

of the sound types presented (p > 0.05, Regression) (Figure 11A). Stimulus 4 showed a 

positive trend between fundamental frequency and body size (p = 0.057) but was not 

statistically significant. When collapsed across body size, presentation of different call 

types had no effect on the average fundamental frequency of sound emissions (p > 0.05, 

repeated measures ANOVA) (Figure 11B). The stimulus 4 sound playback yielded the  
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Figure 11: A) Mean fundamental frequency (Hz) as a function of size of emitted sounds 

from male round gobies [Stimulus 1-n=5, ○; Stimulus 3-n=6, □; Stimulus 4-

n=6, ▲]. B) Mean (±S.E.) fundamental frequency (Hz) of emitted sounds of 

male gobies, collapsed across size, when exposed to three call types used in 

the current study. Stimulus 1 had n=5 because of death as stated in text. 
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Figure 12: A) Mean call duration (s) as a function of size of emitted sounds from male 

round gobies [Stimulus 1-n=5, ○; Stimulus 3-n=6, □; Stimulus 4-n=6, ▲]. B) 

Mean (±S.E.) call duration (s) of emitted sounds of male gobies, collapsed 

across size, when exposed to three call types.  See Fig.11 for n values. 
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highest frequency at 101.2 Hz, followed by stimulus 1 at 97.6 Hz and stimulus 3 at 90.3 

Hz. 

The duration of calls produced during playback experiments did not differ 

significantly as a result of male size (p > 0.05, Regression) (Figure 12A). Stimuli 3 and 4 

showed a negative relationship between the length of a call and the increase in size; while 

stimulus 1 showed a positive relationship between these variables. No significant 

difference was found between presented sound types (Stimuli 1, 3, and 4) with respect to 

call duration (p > 0.05, repeated measures ANOVA) (Figure 12B). Overall, stimulus 3 

elicited the longest calls averaging 0.68 s, followed by stimulus 4 at 0.59 s and stimulus 1 

with 0.45 s in duration.  

Body size did not significantly affect the number of calls produced during 

playback experiments (p > 0.05, Regression) (Figure 13A). Stimuli 1 and 4 showed a 

positive relationship between male size and number of calls, with stimulus 3 showing 

only a slight negative relationship. Sound type showed trends of having an effect on the 

number of vocal emissions (Figure 13B); Stimulus 4 elicited an average of 7.3 calls 

during playback trials yet stimulus 1 only elicited an average of 3.5 calls (p = 0.078, 

repeated measure ANOVA). Stimulus 3 did not differ in vocal emissions when compared 

to stimuli 1 or 4, with an average production of 5.3 calls during a trial. 

Acoustic trap 

Number of gobies which entered the trap showed no difference between sound 

and silent trials. When presented with an acoustic trap playing stimulus 2, gobies 

approached the trap more quickly than during silent trials (p = 0.021, t-test) (Figure 14).  
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Figure 13: A) Mean number of calls produced by round goby males in relation to body 

size [Stimulus 1-n=5, ○; Stimulus 3-n=6, □; Stimulus 4-n=6, ▲]. B) Mean 

(±S.E.) of the number of emitted calls, collapsed across size, when exposed to 

three call types. See Fig. 11 for n values. 
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Figure 14: Mean (±S.E.) time (s) until the first approach by a round goby to the trap 

during 20 minute trials. Gobies approached the trap significantly more quickly 

during sound trials then control trials. 
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Figure 15: Mean (±S.E.) of the total number of approaches made by round gobies to the 

trap at 5, 10, and 20 minutes during 20 minute trials. Round gobies 

approached the playing trap significantly more often than the silent trap over 

the total 20 minute trial. An * indicates significance from control. 
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On average, gobies approached the trap within 72.00 seconds from the beginning of 

stimulus 2 trials and 176.60 seconds during control trials.  

Total number of approaches was also quantified and overall, gobies approached 

the playing trap significantly more often than the control trap during 20 minute trials (p = 

0.049, t-test) (Figure 15). Approach number was further divided into approaches within 

the first five minutes and the ten minute halfway point to further quantify attraction 

timing. Number of approaches within the first five and ten minutes did not show any 

difference between playing and control trials (p = 0.147; p = 0.14, respectively; t-test); 

however, on average gobies approached the trap more often during stimulus 2 trials than 

in control trials by the end of the 20 minute trial period (Figure 15).  

Discussion 

Female choice experiment  

Overall, females had a higher response rate, spent more time in the positive zone, 

swam closer to the sound source, and had a more linear swimming path when exposed to 

stimulus 2. This suggests stimulus 2 may elicit a greater phonotactic response than all 

other conspecific sounds and silent trials. These results show round goby females can 

directionalize a sound source and demonstrate that sounds affect female behaviour. 

Conspecific cues showed different levels of attraction compared to the control trials, 

which suggests that different vocalisations carry different communication functions. 

Rollo and Higgs (2008) saw similar behavioural responses in the round goby when 

playing conspecifics compared to either a heterospecific tone burst or white noise, where 

a higher number of gobies showed a positive response when hearing a conspecific call. 
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Similar findings were shown in the sand goby, Padogobius martensii, when presented 

with either a tonal reproductive call, white noise, or silent treatment; female sand gobies 

responded significantly more often to a tonal sound over white noise or silent trials (Lugli 

et al., 1995).  The current study shows stimuli 1 and 3 do attract female gobies at a 

similar rate, but possibly for different reasons. The structure of the stimulus 1 call is long 

and repetitive, allowing a female to localise a male‟s territory. The stimulus 3 sound is a 

single, short pulse and may be better suited to gain attention of an intruder.   

The phonotactic response elicited by the stimulus 1 call, a known reproductive 

call (Rollo et al., 2007), was not as strong as seen in stimulus 2, suggesting certain 

advertisement calls are more attractive than others.  There has been some discussion that 

individuals will respond best to sounds from within their population, rather than 

conspecific calls from other populations (Amorim et al., 2008b). This may be the case 

with our findings: stimulus 2 was recorded from a Detroit River population goby, 

whereas stimulus 1 was produced by a goby in Lake Michigan. Many species of fish 

produce more than one reproductive sound (reviewed in: Bass & McKibben, 2003; 

Finstad & Nordeide, 2004; Amorim & Neves, 2007, 2008; Amorim et al., 2008a,b). Male 

sand gobies also produce different courtship calls, a broad-band pulse sound and a 

drumming sound (similar to stimulus 4); the drumming sound is only produced in certain 

reproductive contexts, such as when a female is close to the nest (Lugli et al., 1995). 

Females showed more positive phonotactic responses to the drumming cues than to the 

silent trials (Lugli et al., 1995); however, the tonal and drumming sounds were not tested 

against each other. Male painted gobies also produce two different courtship sounds 

depending on whether  the male is alone in the nest or outside courting a female (thumps) 
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or displaying by a female (drums) (Amorim & Neves, 2007). Drums were never produced 

without a female present, suggesting the drum sounds are used in face to face (short 

range) interactions, whereas the thump sound is produced to attract females to the nest 

(Amorim & Neves, 2007).  

The stimulus 3 sound, in the current study, did elicit positive phonotactic 

responses and shows potential as an attractant sound but not to the same extent as 

stimulus 2. One reason is stimulus 3 may play a role in male-male interactions more so 

than female attraction; the sound is potentially a by-product of the caudal fin hitting the 

substrate during the flipping motion (Andraso et al., submitted). Females may approach 

the nest of territorial males but keep a distance from aggressive male-male interactions so 

as to not become injured. By observing aggressive exchanges between two males, 

females may gain information about the individuals which may have an effect on mate 

choice. Female cichlids (Pundamilia nyererei) from Lake Victoria have been shown to 

approach males during aggressive displays to potentially eavesdrop on agonistic 

communications (Verzijden et al., 2010). However, some males of other species also 

produce aggressive acts towards females (Crawford et al., 1986); this may explain why 

the females in the present study stayed further away from the sound source during the 

trials. 

Females showed no preference towards stimulus 4, suggesting this vocalisation is 

not an important attractive cue. Nonetheless, the stimulus 4 sound may still have a 

function in reproductive vocalisations. There is increasing evidence which suggests 

acoustic communication has different roles in the many stages of mating besides 

attraction and courtship but also in pre-spawning and spawning (Lobel, 1992; Lugli et al., 
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1995, 1996a). Male gobies have been shown to change acoustic cues in reference to a 

female‟s position in the territory (Lindström & Lugli, 2000). Stimulus 4 may be produced 

in the last stages of courtship when a female is in front of a male‟s nest; furthermore, 

visual cues may accompany this sound for proper information transfer as the male was 

seen moving his head up and down and swimming in and out of his nest quickly during 

recording (pers. observation). Padogobius martensii produces both acoustic and visual 

modalities when a female is in his nest; common visual cues include head raising and 

covering the opercula of the mate (Lugli et al., 1995). The less frequent drum sounds by 

the male painted goby were only produced when a male was outside his nest displaying 

erect fins and making a quivering motion towards the female (Amorim & Neves, 2007), 

suggesting the drum sounds accompany select visual cues. These examples suggest that 

some species of gobiids do use multi-modal signalling in courtship communication. If 

stimulus 4 is part of a multimodal signal, playback trials would have to accompany both 

visual and acoustic parameters to assess the attractiveness of the sound.  

 

Male playback experiments 

Fundamental frequency of recorded sounds was not a strong indicator of body 

size in round gobies. Male sound emissions showed trends of a positive relationship 

between body size and fundamental frequency, which is contrary to most findings in the 

literature where fundamental frequency shows a negative correlation with body size 

(Crawford et al., 1997; Bass & McKibben, 2003; Malavasi et al., 2003; de Jong et al., 

2007; Amorin et al., 2008b).  Frequency has been correlated with body size in many 

species such as gouramis (Ladich et al., 1992), mormyrids (Crawford et al., 1997) and 
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weakfish (Cynoscion regalis) (Connaughton et al., 2000). In the damselfish (Dascyllus 

albisella), size effect on frequency did not differ between species but did for individuals 

(Mann & Lobel, 1998), suggesting females could assess the size of males through 

acoustic communication. Female damselfish prefer low frequency acoustic cues over high 

frequency ones during playback studies, and low frequency emissions were associated 

with increased courtship rates in males (Maruska et al., 2007). Myrberg et al. (1986) 

showed a negative relationship between the peak frequency of a sound and body size in 

damselfish (Eupomacentrus partitus). As well, sound peak frequency was found to be 

negatively correlated with male body size in five species of cichlids (Pseudotropheus 

spp.) (Simões et al., 2008). All of these examples suggest frequency may be an accurate 

predictor in individual recognition and females may be able to assess a male‟s body size 

by the frequency of his calls in some species. That this was not found in the round goby 

may indicate that fundamental frequency is not an honest indicator of male size in this 

species or that our sample size was not adequate to discern this relationship. All sound 

types would benefit from larger sample sizes to verify this trend in the round goby as the 

importance of fundamental frequency in individual recognition is found in other species 

(Mann & Lobel, 1998). As well, we are certain that the sounds recorded and analysed are 

indeed vocalisations produced by the males and not simply by-product sounds made from 

male movement in the tank. Sound emissions were linked to mouth movement by the 

males through video assessment.  

Call duration and number of calls produced are among many temporal aspects 

discussed in the literature with respect to individual recognition (Myrberg & Riggio, 

1985), signal recognition (reviewed in: Bass & McKibben, 2003), and species recognition 
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(Verzijden et al., 2010). In the present study, body size and sound stimuli were not 

effective predictors of call duration in the round goby. This suggests call duration may 

not be an important temporal structure for individual or signal recognition in the round 

goby. Larger males, in theory, would produce longer calls as body size is an indicator of 

fitness (Lindström & Lugli, 2000). Similar to our findings, Malavasi et al. (2003) did not 

find a correlation between body size and call duration in male grass gobies; call duration 

did not differ between larger parental males and alternative tactic, smaller sneaker males. 

Lindström and Lugli (2000) suggest call duration is associated with the cost of sound 

production and, in turn, the physiological constraints of the task; male sand gobies were 

reported to increase the interpulse interval (or „off-time‟) and shorten burst lengths to rest 

fatigued muscles. Manipulation in burst length suggests some variation in sound duration 

is common, and as a result may not be a good indicator for individual or signal 

recognition (Lindström & Lugli, 2000). Conversely, call duration may be an important 

characteristic in species recognition. Mean body size was an effective predictor of sound 

duration between different species of Mediterranean gobies (Malavasi et al., 2008). 

Morphological constraints on sound production mechanisms may affect call duration 

more so than that of size variation within a species. Size variation within a species may 

be too small to show significant effect on sound duration, whereas size variation between 

species is more vast and can thus be used to distinguish heterospecifics.    

Call production rate in round gobies may aid females in locating a male‟s nest 

rather than identifying a particular individual. Number of sound emissions by other 

gobiid males has been shown to correlate with his location in his territory (Lugli et al., 

1995); the common goby and panzarolo goby (Knipowitschia punctatissima) produced 
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the highest number of calls when in their nest. This may guide a female to the nest 

location within the territory. We did not see this trend, however, as the males were alone 

in the tanks during playback trials. Sound production rate may also affect mating success; 

male painted gobies increased their courtship rate as they increased the frequency of 

acoustic signalling (Amorim & Neves, 2007). In addition, males who produce more calls 

may signal a higher level of fitness as sound production is costly; females may choose 

males with greater courtship intensity which is an indicator of higher genetic quality and 

parental care capabilities (Malavasi et al., 2003; Amorim & Neves, 2007).   

There are many advantageous reasons for a male to listen, respond (call back), or 

approach another signalling conspecific male; information gained may indicate location 

of nearby breeding sites and food sources, and may aid in assessing the qualities of 

neighbouring males (Bass & McKibben, 2003). Sneaker males benefit from 

eavesdropping on territorial, parental males to gain access to spawning females (Amorim 

et al., 2003). Males can gather information about the fighting ability of aggressors before 

a fight escalates (Ladich, 1997; Amorim & Neves, 2008). Fighting is costly; therefore, 

males should only engage in aggressive acts if there is something to gain, such as a mate, 

nest site, or food resources (Ladich, 1997).  Mozambique tilapia (Oreochromis 

mossambicus) males will emit agonistic sounds to retain their social status and 

dominance (Amorim et al., 2003); this suggests males should respond to other male 

vocalisations to possibly remind nearby males of their presence and status. Certain call 

characteristics may send honest signals, as frequency has been correlated with body size 

in some species (reviewed in: Ladich, 1997).  Sound pressure level and production rate 

may, however, be better indicators of fighting ability over frequency: Ladich (1997) 
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reports smaller males that produce more intense sounds often „win‟ against larger males, 

even though body size would presume otherwise, especially if there are no visual cues 

present. In the current study, male gobies emitted sounds continuously during all 

playback trials and no body size correlation was found, suggesting round goby call rate 

may correlate with wiliness to defend a territory. 

 

Acoustic trap 

 Although no significant difference was found between number of gobies which 

entered the trap during sound and silent trials, the acoustic trapping device developed 

here did show a significant increase in the number of approaches made by the gobies over 

silent trails. This suggests that the use of acoustic cues alone shows promise in 

development of a selective trapping device. Male-male fighting and the flip display were 

also observed during a few trials where the sound was playing (pers. observation); 

however, no recording device was present to confirm the possible sound associated with 

the flipping motion.  

Preliminary field trials showed similar success as lab trials with limited 

occurrences of gobies entering the trap but a potential different between the number of 

gobies attracted to the trap during sound trials compared to silent trials. One reason may 

be the effects of different environments on the attraction of the stimuli. Popper and Schilt 

(2008) suggest that results obtained at one site may not hold true against different 

backgrounds; therefore, transmission properties of sound frequency are dependent on the 

environment (Rogers & Cox, 1998). Round gobies are primarily found in shallow waters, 

an environment which greatly affects sound transmission. Replicating natural 
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environments in a laboratory setting can prove to be difficult; thus, the roles of sound 

transmission and dynamics in the natural environment must be taken into account when 

performing laboratory experiments. Further lab trials may be improved with the addition 

of a rocky substrate and other shelters to be more comparable with their natural habitat. 

Moreover, this would further eliminate any question that the gobies were attracted to the 

trap because it was the only form of shelter available.   

Sensory modalities, such as vision, olfaction, acoustics, electroreception, and 

pressure, have been shown to modify fish behaviour (Popper & Carlson, 1998). However, 

not all fish can detect all modalities and the range of detection for particular stimuli is 

often species specific (Popper & Carlson, 1998; Bullen & Carlson, 2003). Thus far, light 

has been the main modality tested for use in manipulating fish behaviour. Doherty (1987) 

used light traps to assess the abundance of larval fish. The use of sound, on the other 

hand, allows the manipulation and control of fish behaviour from further distances than 

do light traps.  

Sound as a tool to control or manipulate the behaviour of fish has had limited 

success to date. Primary areas of study have concentrated on industrial projects such as 

dams, locks, water intake areas, and hydrodynamic flows (Popper & Schilt, 2008). Before 

acoustics can be used in behaviour control programs, a thorough understanding of the 

behavioural responses in the target species is needed. Acoustic cues, primarily high-

frequency sounds, have shown some success and have been tested to manipulate and 

reroute swimming paths of fish away from hydropower plant turbines (Nestler et al., 

1992; reviewed in: Popper & Carlson, 1998). Nestler et al. (1992) tested high-frequency 

sound on behaviour responses in blueback herrings (Alosa aestivalis) and found high-
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frequency sounds deterred the herrings from entering turbine areas. Devices which emit 

high-frequency sound could be used as non-physical barriers to stop or impede certain 

species from entering into non native streams. The behavioural responses of fish to sound 

must be well understood before any acoustic devices can be used to control fish 

behaviour. If sound can repel fish from certain potentially dangerous areas like turbine 

intake bays, then can sound also be used to draw fish into a particular area? We know 

female round gobies show positive phonotactic responses to male courtship calls (Rollo 

et al., 2007; Rollo & Higgs, 2008); we may be able to manipulate this behaviour to attract 

and trap round gobies. The main purpose of trapping this highly invasive species is to 

reduce the population numbers and potentially decrease the chance of gobies spreading 

into new habitats. As well, non-physical barriers are essential to not disturb native species 

and the natural habitat. 

Conclusions 

Sound is an important modality in the goby communication system in their social 

communities.  Sound has been shown to play an important role in their mating strategies, 

from advertisement and courtship calls, to possibly pre-spawning courtship calls.  Males 

are extremely territorial and sound production rate may be an indicator of their fighting 

ability, as it indicates their motivation to defend their territories and nests.  With 

additional playback experiments, we can better understand the temporal characteristics 

that are most important in their call structure and use this to further develop an acoustic 

control program.   
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Round gobies are able to distinguish between conspecific and heterospecific calls 

(Rollo & Higgs, 2008). Female round gobies do show preference to certain male calls 

over others (Rollo et al., 2007); this suggests that information encoded within the calls 

may indicate individual characteristics of sender. The round goby may have different 

variations of the reproductive vocalisations and these variations may affect the level of 

attraction. Here, we have potential found an aggressive vocalisation produced by males as 

males responded more intensely to stimulus 4 then females.  To further investigate these 

findings, stimuli 1 and 2 could be tested against each other to explore how the degree of 

variation within reproductive calls affects the intensity of female attraction. Stimulus 4 

should be presented to females with visual cues, as was seen during recording and further 

tested with males in a resident-intruder type study.  

As fundamental frequency was not a good indicator of body size in the round 

goby, dominant frequency of emitted sounds may be a better indicator of body size as this 

has been tested in other gobiids.  Call production rate may be an effective predictor of 

signal recognition in the round goby, as different call types show trends of eliciting 

longer call rates than others.  Other temporal structures to investigate would include 

sound pressure level and interpulse interval.  Both of these have been shown to correlate 

with production rate, and as such they may be better indicators of fitness.   

Since round gobies live in dense colonies, it is important for females to be able to 

locate preferred males.  Only a few fish species have been shown to distinguish 

individuals; however, this ability is common in other taxa, such as mammals, birds, and 
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insects.  As such, further investigations regarding individual recognition in fish are 

warranted.   

The above studies demonstrate the importance of acoustic communication in the 

social communities of the round goby. Females showed a higher preference towards 

certain male calls over others by the degree of phonotaxis elicited by each vocalisation. 

Males produced sound when presented with conspecific emissions. All of these 

behaviours suggest that round gobies will change their behaviour depending on the 

acoustic signal presented. These results do suggest different call types possess different 

information which gobies can interpret. Therefore, sound as a modality to control their 

behaviour should be further investigated to be incorporated into a trapping device.   

In recent years, round gobies have had a serious effect on native fish populations 

in the Great Lakes.  This has impacted several aspects of this resource, such as fisheries, 

recreational fishing, and the overall ecosystem of the habitat.  Control programs are 

needed to decrease the threat of this invasive species entering new waterways.   Here, we 

have shown the use of acoustics may be advantageous when designing a trapping device, 

as round gobies approach an acoustic trap more often than a silent trap.  Acoustics are an 

important modality to manipulate goby behaviour, as sound transmits well in turbid, low-

light environments.  Acoustic traps are also a good form of non-physical barriers and are 

species specific.   
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