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Abstract 

Sexual selection has led to the evolution of elaborate signals which enhance mate 

attraction and reproductive success. Often there is marked variation in signal quality 

between individuals yet little is known about the physiological mechanisms underlying 

this variation. Bird song is a signal used to attract mates and repel rivals and can vary 

between individuals in both content and performance. Oxidative stress is a potential 

mechanism that may affect song content and performance, explaining some of the 

inter-individual variation in signal quality. I investigated the relationship between song, 

oxidative status, and reproduction in the Snow Bunting (Plectrophenax nivalis) and 

found support for the Oxidation Handicap Hypothesis. Birds that sang at a higher rate 

had higher levels of reactive oxygen metabolites, but also had higher anti-oxidant 

capacities. Therefore, the ability to avoid oxidative stress is reliably indicated via song 

performance and reactive oxygen species may be the handicap ensuring signal honesty. 
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“No shore seems too desolate, no rock ledge too bare, for the snow-bunting. Everywhere 

through-out the North, wherever man has been in summer, the snow-bunting has 

greeted him. Even the explorers who have crossed the ice-cap of Greenland have 

reported hearing his song, or seeing him, as they sledged along their lonely, dreary way. 

The snow-bunting, and the poppy, and the [Inuit], are all alike in their fearlessness, their 

cheeriness, and their love of the North.”   

   -Walter Elmer Ekblaw, 1919 
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Chapter 1 – General Introduction 

Darwin (1871) proposed the theory of sexual selection to explain the evolution of 

elaborate ornaments and displays. Individuals, usually males, often possess exaggerated 

ornaments or perform complex displays that may decrease their probability of survival, 

but are beneficial because they serve as signals to rivals and potential mates, and can 

thereby increase reproductive success (Andersson and Iwasa 1996). However, despite 

the potential benefits, there still exists a large degree of inter-individual variation in the 

quality of elaborate ornaments and displays, and an important area of behavioural 

ecology aims to understand the causes and consequences of this variation. 

Zahavi (1975) proposed the handicap principle as a means of explaining inter-

individual variation in the quality of secondary sexual signals. The handicap principle 

states that ornaments and displays carry an underlying production or maintenance cost, 

so that low quality individuals are unable to produce high quality signals because of an 

inability to afford these costs (Zahavi 1975). Many studies have supported the idea that 

some sexual signals are influenced by the handicap principle (e.g. Pryke et al. 2001; Berg 

et al. 2005). Alternatively, signal honesty can exist for reasons outside of the traditional 

explanation of signal costs (Hill 2011). The honesty of an ‘index signal’, for example, is 

maintained by a physical or physiological constraint that cannot be altered, such as body 

size. These constraints render index signals honest advertisements of individual quality 

without invoking a direct cost (i.e. without creating a handicap; Smith and Harper 1995; 

Vehrencamp 1999; Hill 2011). Many studies have demonstrated that some sexual signals 
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are physically or physiologically constrained to provide honest information, and as such, 

serve as index signals (e.g. Zimmitti 1999; Scheuber et al. 2003). 

Acoustic Communication and Bird Song 

Acoustic communication is a widespread form of signalling used by many animals. Birds 

rely heavily on vocalizations to facilitate various functions, including individual 

recognition (e.g. parent recognition: Aptenodytes patagonicus; Jouventin et al. 1999), 

and to convey rank (e.g. submissive calls: Copsychus saularis; Kumar and Bhatt 2001), as 

well as to inform other individuals about environmental factors, such as predation 

threat (e.g. alarm calls: Sericornis frontalis; Leavesley and Magrath 2005) and food 

sources (e.g. food calls: Corvus corax; Bugnyar et al. 2001). Bird vocalizations are divided 

into two categories: calls and songs (Catchpole and Slater 2008). Calls are typically 

shorter and simpler vocalizations used to fulfill a wide variety of functions, while songs 

are generally longer and more complex vocalizations used primarily for territory defence 

and mate attraction (Tinbergen 1939; Smith 1959; Marler 1970; Catchpole and Slater 

2008). 

The Order Passeriformes, or songbirds, consists of oscine passerines and 

suboscine passerines (Gill 2007). In general, oscine passerines learn their song, while 

suboscine passerines are born with innate song (Catchpole and Slater 2008). The 

‘auditory template model’ suggests that oscines are born with a crude template of 

species-specific song which becomes more refined as young birds memorize and begin 

producing songs to match the initial template (Marler and Tamura 1964; Konishi 1965; 
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Marler 1970). As song develops, it becomes louder and less variable; a young bird first 

produces subsong, then plastic song, and lastly full adult song, in an ontogenetic pattern 

that mirrors the development of human speech (Marler and Tamura 1964; Konishi 1965; 

Marler 1970; Nottebohm 1970). Most oscines are thought to learn song within their first 

year of life, after which point song content (see list of key terms in glossary contained in 

Chapter 1 Appendix) is rather invariable (Catchpole and Slater 2008; but see Payne 

1985; McGregor and Krebs 1989; Gil et al. 2001; Beecher and Brenowitz 2005). Bird song 

provides an excellent study system for investigating how natural and sexual selection 

shape animal communication as it is comprised of multiple traits shaped by a variety of 

factors at different life history stages (Gil and Gahr 2002). Factors as diverse as habitat 

structure, weather, developmental homeostasis, tutor availability, female preferences, 

conspecific interactions, and hormone levels all influence the songs produced by adult 

birds (Beecher and Brenowitz 2005; Catchpole and Slater 2008). In the temperate zone, 

song is produced primarily by males, stimulated, at least in part, by testosterone, and is 

tightly associated with breeding behaviour (Foerster et al. 2002; Catchpole and Slater 

2008; Fusani 2008). 

Recent technological advances have made studying song increasingly feasible as 

recording, playback, and analysis equipment become less expensive and more widely 

available. Additionally, powerful sound analysis software facilitates increasingly accurate 

and quantitative measurement of song (Mennill 2011). Song quality can be measured in 

two ways: on the basis of content or performance (see glossary; Ritschard et al. 2011). 

Song content deals with song structure (see glossary) and complexity (see glossary). For 
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example, song content measurements may include song length, note duration, 

repertoire size, and song versatility. Song performance deals with the quantity and 

amplitude of song. For example, song performance measurements may include song 

rate or total output. Because multiple constraints shape song traits, different traits 

comprising song or associated with singing behaviour may convey different messages to 

receivers (Gil and Gahr 2002; Catchpole and Slater 2008). Taken together, the 

measurement of both song content and performance can potentially provide an 

integrated measure of an individual’s “quality” as advertised via song. Song content 

represents, at least in part, a bird’s past developmental condition, whereas song 

performance may better represent an individual’s current condition (Ritschard et al. 

2011). As such, by studying both content and performance, we may gain insight into the 

past and current pressures shaping song quality, making song a very informative signal 

for research (Gil and Gahr 2002). 

Bird Song, Intra-sexual Competition, and Inter-sexual Choice 

The structure and complexity of secondary sexual signals and the way in which they are 

used can have pronounced effects on conspecific interactions and ultimately fitness. 

Song is no exception, as both content and performance can affect the outcome of intra-

sexual competition and inter-sexual choice. In terms of male-male competition, birds 

use song to repel rivals from their territories (e.g. Plectrophenax nivalis; Tinbergen 1939; 

Ammodramus savannarum; Smith 1959; Mionectes oleagineus; Westcott 1992; 

Melospiza melodia; Nowicki et al. 1998; de Kort et al. 2009). While singing behaviour 
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during contests can greatly influence intra-sexual encounters (e.g. song type and 

repertoire matching: Melospiza melodia; Burt et al. 2001; overlapping and frequency 

matching: Poecile atricapillus; Mennill and Ratcliffe 2004), song content and 

performance are also important factors which may deter competitors. For example, 

song content appears influential in intra-sexual encounters, as speakers broadcasting 

larger repertoires in speaker-replacement experiments successfully defend territories 

longer than those broadcasting smaller repertoires (e.g. Parus major; Krebs et al. 1978), 

and playback of longer songs elicits stronger responses from resident males than shorter 

songs (Sylvia communis; Balsby and Dabelsteen 2001). Song performance also appears 

related to male-male competition, as song bout length has been found to correlate with 

male status (dominance rank: Poecile atricapillus; Otter et al. 1997), and song rate with 

the quality of defended resources (nest site quality: Sylvia atricapilla; Hoi-Leitner et al. 

1995). 

In terms of inter-sexual choice, many studies have demonstrated female 

preference for certain song attributes. For example, male songbirds that sing larger 

repertoires often pair earlier (e.g. Sturnus vulgaris; Mountjoy and Lemon 1996; 

Acrocephalus schoenobaenus; Buchanan and Catchpole 1997), have higher annual and 

lifetime reproductive success (e.g. Melospiza melodia; Hiebert et al. 1989), and sire 

more extra-pair offspring (e.g. Acrocephalus arundinaceus; Hasselquist et al. 1996). Song 

versatility (number of different syllables in a song or a sample of songs/total number of 

syllables in a song or a same sample of songs, respectively) and song length are other 

song content measures of interest to females, with preference for more versatile over 
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less versatile songs (e.g. Phylloscopus trochilus; Järvi 1983; Ficedula hypoleuca; Lampe 

and Espmark 2003), and for long over short songs (e.g. Taeniopygia guttata; Neubauer 

1999; Ficedula hypoleuca; Lampe and Espmark 2003; Carpodacus mexicanus; Nolan and 

Hill 2004; but see Phylloscopus trochilus; Järvi 1983). In addition to song content, song 

performance also influences female choice and, consequently, male reproductive 

success. Song rate, for example, is a well-studied performance measure which appears 

to play an important role in mate choice. Male songbirds that sing at a faster rate often 

pair earlier (e.g. Phylloscopus trochilus; Radesäter et al. 1987), pair to earlier breeding 

females (e.g. Plectrophenax nivalis; Hofstad et al. 2002; Tyrannus tyrannus; Murphy et 

al. 2008), receive more copulation solicitations (e.g. Carpodacus mexicanus; Nolan and 

Hill 2004), and pair to females that lay larger clutches (e.g. Tyrannus tyrannus; Murphy 

et al. 2008).  

Oxidative Stress and Bird Song 

Reactive oxygen species (see ‘reactive oxygen metabolites’ in glossary), or pro-oxidants, 

are unstable molecules that can detrimentally affect cells, and consequently organism 

health, by damaging various biomolecules, such as proteins, lipids, and DNA (Nordberg 

and Arnér 2001; Monaghan et al. 2009). Anti-oxidants are molecules that neutralize 

reactive oxygen species preventing oxidative damage (Silverthorn 2007). An individual’s 

oxidative status (see glossary) depends on the interplay between the two, and oxidative 

stress can result from “a disturbance in the pro-oxidant/anti-oxidant systems in favour 

of the former” (Sies 1985). In mammals, oxidative stress is thought to contribute to the 
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development of a number of ailments, such as muscular dystrophy, liver cirrhosis, 

hemolytic anemia, cataracts, and cancer, and is also thought to be a cause of cellular 

and whole organism senescence (Sies 1985, 1991; Finkel and Holbrook 2000). Although 

a heavily studied topic in medical and biochemical research, oxidative stress has not 

been well-studied in ecological and evolutionary studies on non-human animals despite 

its potential role in driving life history trade-offs and shaping organism phenotype 

(Costantini 2008; Monaghan et al. 2009; Metcalfe and Alonso-Alvarez 2010). 

Reactive oxygen species are by-products of normal cellular metabolism, as well 

as products of detoxification pathways and immune systems, produced to destroy toxins 

and pathogens (Finkel and Holbrook 2000; Costantini and Dell’Omo 2006). Von Schantz 

et al. (1999) suggested that underlying genetic differences, which relate to the tolerance 

and resistance of the detoxification and immune systems, may affect the expression of 

secondary sexual signals, as less tolerant individuals will generate more reactive oxygen 

species promoting oxidative stress, and many signals are sensitive to oxidative stress. 

Although von Schantz et al. (1999) did not name this concept, I refer to this idea as the 

Oxidation Sensitivity Hypothesis throughout my thesis.  

The Oxidation Handicap Hypothesis was later formulated by Alonso-Alvarez et al. 

(2007) proposing another way in which signal quality may be related to oxidative stress; 

individuals with lower resistance to reactive oxygen species display lower quality 

secondary sexual traits because of their inability to afford the oxidative stress inducing 

costs associated with signal production or maintenance caused by elevated levels of the 
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steroid hormone testosterone (Alonso-Alvarez et al. 2007). Metcalfe and Alonso-Alvarez 

(2010) later added that signals which are unrelated to testosterone, but increase the 

activity level of an individual, could also cause an increase in reactive oxygen species as 

a result of increased oxygen consumption and energy expenditure, rendering these 

signals most affordable to high quality individuals. 

The Oxidation Sensitivity Hypothesis suggests that low quality individuals may be 

prevented from producing high quality signals because of a physiological inability to 

“cheat” (i.e. cannot prevent signal quality from reliably revealing oxidative stress), while 

the Oxidation Handicap Hypothesis suggests that low quality individuals cannot afford 

to produce high quality signals (i.e. do not have sufficient anti-oxidant capacity (see 

glossary) to bear the cost of higher song production). Several components of song are 

predicted to function as honest signals providing information regarding an individual’s 

oxidative status in at least two ways based on the aforementioned hypotheses: 

(1) The Oxidation Sensitivity Hypothesis. Von Schantz et al. (1999) suggested that 

song repertoire size may honestly reflect an individual’s level of oxidative stress. The 

brain is particularly vulnerable to oxidative stress because it (i) consumes a large 

amount of oxygen, (ii) contains enzymes which produce reactive oxygen species, and (iii) 

contains high levels of polyunsaturated fatty acids which are especially vulnerable to 

oxidative damage (von Schantz et al. 1999). Because neurogenesis is associated with 

song development and maintenance throughout a bird’s life (e.g. Nordeen and Nordeen 

1990; Scharff et al. 2000) and is negatively affected by reactive oxygen species (Saito et 
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al. 1997), a large repertoire may be indicative of low oxidative stress. Song features 

other than repertoire size are also associated with neurogenesis (e.g. Scharff et al. 2000) 

and, therefore, I predict that other song content measures of potential importance to 

females (e.g. song length, note duration, and song versatility) may also be sensitive to 

oxidative stress and consequently serve as honest signals of oxidative status. The 

Oxidation Sensitivity Hypothesis (von Schantz et al. 1999) is in line with the idea that a 

signal does not need to be costly per se, to serve as an honest signal (Vehrencamp 1999; 

Hill 2011). 

(2) The Oxidation Handicap Hypothesis. Alonso-Alvarez et al. (2007) promoted 

the idea that high levels of testosterone, which enhance the expression of many 

secondary sexual characteristics and behaviours, may induce oxidative stress by 

inhibiting anti-oxidant defences or increasing reactive oxygen species production. 

Therefore, testosterone-enhanced song traits may be indicative of an individual’s ability 

to combat the actions of reactive oxygen species production. More recently, it has been 

suggested that traits which are unrelated to testosterone, but increase the activity level 

of an individual, could also serve as an honest signal of an individual’s ability to manage 

the cost of increased reactive oxygen species, because these traits may generate higher 

levels of reactive oxygen species as a result of increased metabolic activity (Metcalfe 

and Alonso-Alvarez 2010). Song rate has been shown to be related to testosterone 

concentration (e.g. Agelaius phoeniceus; Johnsen 1998; Vireo solitarius; Van Roo 2004; 

Parus caeruleus; Foerster et al. 2002; but see Kunc et al. 2006) and oxygen consumption 

is higher during singing compared to oxygen consumption prior to singing (Oberweger 
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and Goller 2001). As such, I predict song rate may reflect an individual’s ability to avoid 

oxidative stress, as song rate has often been shown to be promoted by testosterone and 

also relates to the activity level of an individual. The Oxidation Handicap Hypothesis 

(Alonso-Alvarez et al. 2010) is in line with Zahavi’s (1975) suggestion that signal 

production or maintenance is associated with a direct cost which is more affordable to 

high quality individuals. 

Both males and females may benefit from being able to use inter-individual 

variation in song traits to distinguish between conspecific males of differing quality. For 

example, rival males would benefit from an ability to distinguish between males with 

differing fighting ability, which could be communicated via inter-individual variation in 

song quality. Oxidative stress affects individual condition (Costantini et al. 2007) and 

potentially song, and as such may link song quality and fighting ability. Females also 

stand to benefit from using variation in song to distinguish between males of differing 

quality. Females may be able to compare males using song and obtain indirect benefits 

(e.g. good genes) if song quality is indeed sensitive to oxidative stress which in turn is 

associated with genetic differences in detoxification and immune system resistance (von 

Schantz et al. 1999). Using song, females may also be able to discriminate between 

males that would provide differing levels of direct benefits. If song rate is subject to the 

handicap of increased reactive oxygen species, females may gain social partners better 

able to invest in reproduction by choosing males singing at higher rates as they may 

have higher anti-oxidant capacities (Nolan and Hill 2004; Alonso-Alvarez et al. 2007). 

Thus, a signal providing information about oxidative status could prove beneficial to 
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both rivals and potential mates as it could provide valuable information relating to male 

condition or potential benefits. 

Study Species 

Snow Buntings (Plectrophenax nivalis) are circumpolar Arctic-breeding songbirds. Males 

are slightly larger than females (males: mean mass=40 g, mean wing chord=110 mm; 

females: mean mass=37 g, mean wing chord=104 mm; Montgomerie and Lyon 2011) 

and arrive on the breeding grounds several weeks earlier than females (Tinbergen 1939; 

Meltofte 1983; Montgomerie and Lyon 2011). Snow Buntings are socially monogamous, 

but genetically promiscuous (Tinbergen 1939; Espmark and Moksnes, unpublished data 

cited in Hofstad et al. 2002). Females lay a single clutch per season (Tinbergen 1939; 

Sutton and Parmalee 1954; but see Nethersole-Thompson 1966) and are solely 

responsible for nest-building and incubation (Tinbergen 1939; Sutton and Parmalee 

1954). Males are responsible for mate feeding during incubation and biparental care, 

both of which are required to maximize reproductive success (Tinbergen 1939; Hussell 

1972; Lyon and Montgomerie 1985). 

 My study was conducted on East Bay (Mitivik) Island (64°02’N, 81°47’W), 

Nunavut, Canada. East Bay Island is largely covered by loose granite rock which provides 

ideal nesting habitat for Snow Buntings and is thought to contribute to the high 

breeding density on the island (~65 pairs/km
2
, 2008-2011; Love, unpubl. data). The 

detailed reproductive ecology of this population has been studied via the individual 

marking of breeding adults using unique colour-band combinations since 2008. Snow 
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Buntings arrive at East Bay Island from wintering grounds in late-May to early-June. 

Females lay a single clutch of approximately 6 eggs (5.9±0.8 eggs, n=51 nests, 2008-

2011; Love, unpubl. data) in mid-June (mean Julian lay date: 169.6±0.5, n=37 nests, 

2008-2011; Love, unpubl. data) and on average, 4 nestlings fledge from each nest 

(number of fledglings/nest: 4.0±1.6, n=55 nests, 2008-2011; Love, unpubl. data). 

Song in Snow Buntings 

As with the majority of temperate passerines, only male Snow Buntings sing. Males 

produce the majority of their songs from several favoured song perches, often atop 

rocks or boulders (Tinbergen 1939; Nethersole-Thompson 1966). Each male, with rare 

exception, produces a single song type (Espmark 1995, 1999). Although syllable sharing 

does occur, most males’ songs are easily distinguished from one another as “an 

enormous amount of individual variation in song” exists (Tinbergen 1939; Borror 1961; 

Drury 1961; Nethersole-Thompson 1966; Espmark 1995; Fig. 1.1), although occasionally 

neighbours’ songs can be nearly identical (Tinbergen 1939). Tinbergen (1939) noted the 

occurrence of restricted, local dialects in Greenland, as did Montgomerie and Lyon 

(2011) in the Canadian Arctic, although Espmark (1995, 1999) did not find evidence of 

dialects in Norway. 

Snow Buntings use song for both intra-sexual purposes (territory defence) and 

inter-sexual purposes (mate attraction; Tinbergen 1939; Nethersole-Thompson 1966). 

Although males generally sing from perches, they also produce songs during song-flights 

in response to male intruders, supporting the idea that song has a territorial function 
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(Tinbergen 1939). If intruders do not retreat, chase and attack ensues (Tinbergen 1939). 

Additionally, males begin singing before females arrive on the breeding grounds, and 

intruders that sing elicit stronger responses than silent males (Tinbergen 1939). 

Moreover, after territory establishment, newcomers cause changes in the singing 

positions of territory owners, which begin singing closer to the contested boundaries 

than before (Tinbergen 1939). Ekblaw (1919) also writes of “males engage[ing] in 

competitive antiphonal concert”, which likely refers to territorial counter-singing 

interactions. 

Snow Bunting song also serves a mate attraction function. Males that have 

attracted females generally sing less, but increase singing intensity when visually 

separated from their mates (Tinbergen 1939). Additionally, Tinbergen (1939) noted that 

males resumed singing during the laying period of their social mates, perhaps 

attempting to attract extra-pair partners. However, Espmark (1995) wrote that male 

Snow Buntings in Spitsbergen, Norway, maintain their singing activity after pairing and 

suggested that this may be the case in areas of high breeding intensity, where extra-pair 

mating is more prevalent, and mate guarding more important. 

Hofstad et al. (2002) explored the relationship between song and reproduction 

and found several results supporting the idea that song is important to females as a 

means to assess individual male quality. First, higher song rate (songs/minute) predicted 

earlier breeding in males, suggesting that females prefer males that can sing at higher 

rates. Secondly, song rate was found to be positively correlated to male feeding rate of 
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8-9 day old nestlings, illustrating a potential benefit to females for discriminating 

between males using song (Hofstad et al. 2002). Lastly, a near significant relationship 

was reported between song length and the number of fledglings produced, indicating a 

potential link between some aspect of male quality and fitness (Hofstad et al. 2002). 

Although other measures of song content were also explored, they were not found to 

correlate with parental effort or reproductive output. However, the authors suggest 

that findings may vary depending on how complexity is measured, and that their lack of 

findings could be an artefact of a small sample size or a short study period (Hofstad et 

al. 2002). 

Although the study conducted by Hofstad et al. (2002) is interesting, there are a 

number of improvements which could be made. Firstly, birds were not banded and as 

such individual identification relied solely on song content. Although male Snow 

Buntings sing individually distinctive songs, songs are occasionally nearly identical 

between neighbours (Tinbergen 1939). Thus, individual marking of birds (via distinctive 

colour-banding) would significantly strengthen identification ability and certainty. 

Secondly, many males received a song rate score of zero songs/minute if they did not 

sing during recording sessions. While these song rates may certainly reflect performance 

during the specific recording sessions in this study, these rates are not representative of 

the rate at which birds sing during actual song bouts. As such, a measure of zero songs 

per minute could be a significantly biased underestimate of a given male’s true song 

performance potential. Lastly, Hofstad et al. (2002) did not examine possible 

mechanisms underlying their observed relationships. As such, we know little about the 
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evolutionary pressures shaping song content and performance in this species. Thus, the 

relationship between Snow Bunting song and reproduction warrants further 

investigation, with particular attention paid to the proximate reason(s) for the presence 

of inter-individual variation in song. 

Research Questions 

My research explores a potential proximate mechanism underlying inter-individual 

variation in song content and performance in Snow Buntings and investigates how this 

variation relates to fitness-related measures. Specifically, I examine whether Snow 

Buntings can be discriminated between using song content. I then investigate two 

hypotheses concerning oxidative stress and signal expression to understand the 

underlying mechanism driving individual variation in song content and performance: (1) 

Following from the Oxidation Sensitivity Hypothesis, I predict that oxidative stress 

negatively affects song content measures, potentially as a result of impaired 

neurogenesis, (2) Following from the Oxidation Handicap Hypothesis, I predict that the 

cost of enhanced reactive oxygen species production or reduced anti-oxidant capacity, 

either through testosterone or increased activity, ensures the honesty of song 

performance. Finally, my research investigates the relationship between Snow Bunting 

song and reproductive measures attempting to elucidate a link between signal quality 

and fitness. To the best of my knowledge, my thesis is the first to use any behavioural 

signal to investigate either the Oxidation Sensitivity Hypothesis or the Oxidation 

Handicap Hypothesis and adds to an emerging body of literature examining the 
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mechanisms behind complex signals, as well as to oxidative stress ecological research in 

general.  
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Chapter 1 Appendix – Glossary of Terms 

The following terms are defined specifically for use in this thesis: 

Physiology Terms: 

Reactive oxygen metabolites (ROM): An early marker of oxidative damage caused by 

reactive oxygen species which damage biomolecules such as proteins, lipids, and DNA, if 

not neutralized by anti-oxidants. In this thesis, I measured reactive oxygen metabolites, 

primarily hydroperoxides, in plasma. 

Total anti-oxidant capacity (TAC): A measure of an individual’s enzymatic and non-

enzymatic anti-oxidant capacity to combat reactive oxygen species. In this thesis, I 

assessed total anti-oxidant capacity as the plasma’s ability to absorb hypochlorous acid, 

a powerful pro-oxidant. 

Oxidative status: The balance between oxidative damage and anti-oxidant capacity, 

assessed in this thesis as the ratio between reactive oxygen metabolites and total anti-

oxidant capacity. 

Song Terms 

Song content:  A measure of the make-up of song, assessed in this thesis as song 

structure and complexity (see below). 

Song structure: A component of song content related to the temporal and 

frequency components of song. In this thesis, I assessed song structure by 

measuring song length and note duration. 

Song complexity: A component of song content related to the number and kinds 

of sounds produced by an animal within songs. In this thesis, I assessed song 

complexity by measuring syllable repertoire size and song versatility. 

Song performance: A measure of a bird’s singing behaviour in terms of output; assessed 

in this thesis using song rate. 

Fitness-related Terms 

Arrival date: The day a bird arrived at the study site from migration; approximated in 

this thesis using banding date. Geolocator data has confirmed that banding date is an 

appropriate estimate of arrival date. 

Clutch size: The number of eggs in a nest upon clutch completion. 

Fledglings: Nestlings that successfully leave the nest; calculated on day 7 or 8 of post- 

natal development, as birds are sufficiently active by day 9 to leave the nest. 
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Fig. 1.1  Each male Snow Bunting produces a single song type which is individually 

distinctive. Shown here are sound spectrograms of eight males’ songs recorded on East 

Bay Island, Nunavut. 
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Song performance as an honest indicator of oxidative damage and anti-oxidant 

capacity: support for the Oxidation Handicap Hypothesis 
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Chapter 2 – Song performance as an honest indicator of oxidative damage and 

anti-oxidant capacity: support for the Oxidation Handicap Hypothesis 

Chapter Summary 

Elaborate secondary sexual signals are used by males across a wide variety of species for 

mate attraction and the quality of these signals is often condition-dependent. Variation 

in signal quality can have a substantial effect on male reproductive success, as females 

can use this variation to assess male quality and make reproductive choices. Bird song is 

a mate attraction signal, and both song content and performance have been shown to 

accurately reflect various aspects of male quality, potentially providing valuable 

information to prospective mates. Fairly recently, oxidative stress has been proposed as 

a mechanistic basis for ensuring the honesty of many secondary sexual signals, including 

bird song. We investigated two hypotheses which relate oxidative stress to signal 

quality: the Oxidation Sensitivity Hypothesis and the Oxidation Handicap Hypothesis. 

Our results do not support the Oxidation Sensitivity Hypothesis, as song content was 

unrelated to oxidative stress. However, song performance reflected oxidative damage 

and total anti-oxidant capacity, supporting the Oxidation Handicap Hypothesis; males 

that sang at a faster rate had higher levels of reactive oxygen metabolites as well as 

higher anti-oxidant capacities, allowing them to avoid increased levels of oxidative 

stress. Song content and song performance did not relate to reproductive measures, 

although future studies incorporating extra-pair paternity and offspring recruitment 

would yield more comprehensive fitness estimates. This research investigates oxidative 

status as a potential mechanism shaping bird song, and suggests that oxidative stress 
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may be an underlying physiological cost preventing low quality individuals from 

producing high quality signals.  
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Introduction 

The theory of sexual selection explains the adaptive advantage of producing seemingly 

maladaptive, conspicuous signals; individuals producing the most elaborate ornaments 

and displays often achieve the highest reproductive success (Darwin 1871; Andersson 

1994). Many secondary sexual signals are thought to be effective at attracting mates or 

repelling rivals because they are condition-dependent (Andersson 1994; Garratt and 

Brooks 2012), condition being defined as a physiological state “that relates to health, 

vigour, acquired resources and ultimately reproductive value” (Garratt and Brooks 

2012). As such, condition-dependent signals can be important components of mate 

choice allowing females to accurately assess the direct and indirect benefits individual 

males may provide (Darwin 1871; Andersson 1994; Garratt and Brooks 2012). 

Zahavi (1975) proposed the handicap principle to explain how the honesty of 

secondary sexual signals might be ensured. If signal production or maintenance imposes 

a cost on the signaller, and that cost increases with signal expression, then individuals 

with more elaborate signals are demonstrating their ability to afford larger handicaps 

(Zahavi 1975). Alternatively, a signal may still be honest and condition-dependent even 

if it is not costly per se; ‘index signals’ are honest signals because signal production is 

physically or physiologically constrained, independent of any cost of signal production 

(Smith and Harper 1995; Vehrencamp 1999; Hill 2011). Recently, there has been a 

growing emphasis placed on integrating function and mechanism, as researchers 

recognize how integrating ultimate and proximate questions enhances our 
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understanding of behavioural ecology (Ricklefs and Wikelski 2002; McNamara and 

Houston 2009; MacDougall-Shackleton 2011). 

Bird song is a well-known sexual signal (Tinbergen 1939; Smith 1959; Marler 

1970a; Catchpole and Slater 2008) and is composed of a large number of traits that 

make it an ideal model for examining the underlying mechanisms driving the honesty of 

sexual signals. Much observational and experimental evidence confirms that bird song 

plays a critical role in mate attraction, and certain song features play a particularly 

important role, such as song length (Neubauer 1999; Lampe and Espmark 2003; Nolan 

and Hill 2004), repertoire size (Hiebert et al. 1989; Reid et al. 2004; Hasselquist et al. 

1996), and song versatility (Järvi 1983; Poesel et al. 2001; Lampe and Espmark 2003). In 

addition to song content, song performance, most often measured as song rate (Berg et 

al. 2005), also appears important for mate attraction (Radesäter et al. 1987; Nolan and 

Hill 2004; Murphy et al. 2008). In general, many female songbirds demonstrate a 

preference for increased complexity and increased output (Nowicki et al. 2002) and 

many studies have revealed inter-individual variation in song content and song 

performance (e.g. Espmark 1995; Otter et al. 1997), providing the basis for female 

choice and subsequent variation in male reproductive success. 

The Order Passeriformes, or songbirds, can be broken down into two 

subdivisions: the oscine passerines and the suboscine passerines (Gill 2007). One main 

differentiation between oscine passerines and suboscine passerines is that oscines must 

hear conspecific tutors to learn normal adult song, whereas suboscines can develop 
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normal adult song without tutoring (Gill 2007). Most oscine passerines are thought to 

learn songs early in life (Catchpole and Slater 2008; Beecher and Brenowitz 2005) and 

various factors affect the quality of song development including social, environmental, 

and physiological factors (e.g. tutor availability and interaction: Baptista and Morton 

1981; nutritional stress: Nowicki et al. 2002; testosterone concentration: Korsia and 

Bottjer 1991). Like content, song performance is also affected by various factors, again 

including social, environmental, and physiological factors (e.g. neighbour 

aggressiveness: Hyman and Hughes 2006; temperature: Reid 1987; testosterone 

concentration: Ritschard et al. 2011). Ritschard et al. (2011) suggested that measures of 

song content may better represent an individual’s past condition because song content 

is largely established early in life, whereas measures of song performance may better 

represent an individual’s current condition, as it is more flexible. 

A condition-related mechanism with a strong potential to explain the honesty of 

song as a sexual signal, and hence the basis for individual variation in signal quality, is an 

individual’s oxidative status (i.e. the balance between reactive oxygen species and anti-

oxidant capacity; von Schantz et al. 1999; Alonso-Alvarez et al. 2007; Metcalfe and 

Alonso-Alvarez 2010; Garratt and Brooks 2012). Pro-oxidants are by-products of normal 

cellular metabolism and are also produced by the immune and detoxification systems to 

destroy pathogens and toxins (Finkel and Holbrook 2000; Costantini and Dell’Omo 

2006). Oxidative stress results when the production of pro-oxidants, or reactive oxygen 

species, overwhelms an individual’s anti-oxidant capacity and ability to avoid negative 

oxidative effects (Sies 1985, 1991; Monaghan et al. 2009). Oxidative stress has been 
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linked to a number of diseases in humans, in addition to cellular and whole organism 

senescence (Sies 1985, 1991; Finkel and Holbrook 2000). Although a longstanding focus 

of biomedical research, oxidative stress has only recently become a focus in ecological 

studies, with a relatively new field of oxidative stress ecology emerging over the past 

several decades (Metcalfe and Alonso-Alvarez 2010; Beaulieu et al. 2010; Haussmann et 

al. 2012). It has been argued that secondary sexual signals may be sensitive to, or 

handicapped by, oxidative stress costs (von Schantz et al. 1999; Alonso-Alvarez et al. 

2007). Moreover, oxidative stress is thought to be an important factor affecting multiple 

components of individual fitness (Finkel and Holbrook 2000). 

Von Schantz et al. (1999) predicted that differences between individuals in the 

tolerance and resistance of their immune and detoxification systems are responsible for 

variation in signal quality between individuals, and that oxidative stress is a mechanism 

constraining signal quality. For example, a less tolerant immune system generates more 

reactive oxygen species, leading to higher oxidative stress, which detrimentally affects 

signal quality. Here we formalize this concept as the Oxidation Sensitivity Hypothesis. 

Alonso-Alvarez et al. (2007) later proposed the Oxidation Handicap Hypothesis, arguing 

that testosterone is associated with sexual signaling and also actively promotes 

oxidative stress as a by-product by generating increased reactive oxygen species or 

suppressing anti-oxidant capacity. Metcalfe and Alonso-Alvarez (2010) recently 

broadened this hypothesis by adding that signals that increase an individual’s activity 

level (i.e. increased oxygen demand and metabolic activity) should also generate higher 

levels of reactive oxygen species, independent of testosterone. Both the Oxidation 
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Sensitivity Hypothesis and the Oxidation Handicap Hypothesis suggest that oxidative 

stress may be responsible for inter-individual variation in signal quality. Each suggests a 

different mechanistic pathway by which oxidative stress and signal quality are related, 

yet the two hypotheses are not mutually exclusive. Studies to date linking oxidative 

stress and secondary sexual signals have focused on visual signals, particularly 

carotenoid-dependent signals (Metcalfe and Alonso-Alvarez 2010), and more recently 

melanin-based signals (Garratt and Brooks 2012). Although the authors that proposed 

these hypotheses have suggested that there may be a relationship between an 

individual’s oxidative status and song (von Schantz et al. 1999; Alonso-Alvarez et al. 

2007; Metcalfe and Alonso-Alvarez 2010), this relationship has not yet been 

investigated. 

Here we explore the relationship between song quality (in terms of both song 

content and song performance), individual oxidative status, and fitness-related 

measures in the Snow Bunting (Plectrophenax nivalis). Snow Buntings are oscine 

passerines which use song for both mate attraction and territory defence (Tinbergen 

1939; Nethersole-Thompson 1966). We first confirm the long-held qualitative assertion 

that male Snow Buntings sing individually distinctive songs (Tinbergen 1939; Borror 

1961; Drury 1961; Nethersole-Thompson 1966; Espmark 1995). Following this, our 

primary objective was to explore the Oxidation Sensitivity and Oxidation Handicap 

Hypotheses by investigating the relationships between song and oxidative status. We 

focus on song features predicted to be attractive to females, including both features 

related to song output and song complexity. Our song content measures were song 
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length, note duration, syllable repertoire size, and song versatility, and our song 

performance measure was song rate. According to the Oxidation Sensitivity Hypothesis, 

the quality of song content may be negatively affected by oxidative stress via the 

negative effects oxidative stress can have on neurogenesis, and therefore reactive 

oxygen species and oxidative stress should be higher in males with lower quality songs 

(i.e. shorter songs, shorter notes, smaller syllable repertoire, less versatility; Table 2.1). 

Following from the predictions of the Oxidation Handicap Hypothesis, we predict that 

song performance will be positively correlated with levels of reactive oxygen species 

(Table 2.1), a result of either elevated testosterone levels or the increased level of 

activity and oxygen consumption caused by higher song output. Importantly, males with 

higher song performance should be able to afford the cost of higher song rates via 

higher anti-oxidant levels.  

Our second objective was to investigate the relationship between song and 

fitness-related measures using measures of song content and song performance shown 

to relate to female choice and reproductive success in other species. As such, we 

predicted a negative relationship between song quality measures and female arrival 

date, a proxy for pairing date. Pairing date is an important measure that can have 

subsequent effects on reproductive output because earlier breeding birds often achieve 

higher reproductive success (e.g. Lepage et al. 2000; Descamps et al. 2011). Additionally, 

we predicted a positive relationship between song quality measures and reproductive 

output, because females should preferentially chose to mate with males that will 

maximize their reproductive success. This research represents the first investigation of 
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oxidative stress as a proximate mechanism for honest song production, and attempts to 

couple function and mechanism by exploring the relationship between signal quality, 

oxidative status, and reproduction. 

Methods 

Study Site and Species 

We studied Snow Buntings on East Bay (Mitivik) Island in Nunavut, Canada, from June to 

August of 2010 and 2011. This small island (800 m × 400 m) is located in the low 

Canadian Arctic (64°02’N, 81°47’W) and is covered largely by loose granite rock, 

providing ideal nesting habitat for Snow Buntings. Snow Buntings are socially 

monogamous, although occasionally polygyny does occur (Tinbergen 1939; Hofstad et 

al. 2002). Males do not assist with either nest-building or incubation (Tinbergen 1939; 

Sutton and Parmalee 1954), but do partake in incubation feeding and offspring 

provisioning, both of which are necessary to maximize a pair’s reproductive success 

(Tinbergen 1939; Hussell 1972; Lyon and Montgomerie 1985). Male Snow Buntings use 

song for mate attraction and territory defence (Tinbergen 1939; Nethorsole-Thompson 

1966). Each male typically sings a single song type (Espmark 1995, 1999), and while 

syllable sharing does occur between individuals, many researchers have anecdotally 

noted the individuality of each male’s song (Tinbergen 1939; Borror 1961; Drury 1961; 

Nethersole-Thompson 1966; Espmark 1995). 
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Trapping, Banding, and Blood Sampling 

We trapped Snow Buntings on arrival from spring migration using baited ground traps 

(Potter and walk-in) and banded each bird with an aluminum Canadian Wildlife Service 

band and three colour bands to facilitate individual identification. We took standard 

morphometric measurements (mass, wing chord, tarsus length) and determined sex and 

age using plumage characteristics (Montgomerie and Lyon 2011). We collected blood 

samples from the brachial veins of all breeding male Snow Buntings using heparinised 

microcapillary tubes between June 9 and June 24 in 2010, and between June 26 and July 

14 in 2011, during the egg-laying or incubation period. We centrifuged whole blood 

(10,000 RPM for 10 minutes) within an hour of collection and stored plasma at -20°C in 

the field and at -80°C in the laboratory until analyses. All animal work used Canadian 

Council on Animal Care-approved techniques under Animal Care Committee approval 

from Environment Canada (Canadian Wildlife Service permits: NUN-SCI-08-04 and NUN-

SCI-11-05) and the University of Windsor (permit: 09-14). 

Reproductive Measures 

We used female arrival date (first trapping date) as a proxy for pairing date, implying 

female mate choice under the assumption that the earliest-arriving females have the 

choice of the highest quality males to pair with and that breeding earlier is 

advantageous (e.g. Lepage et al. 2000; Descamps et al. 2011). Geolocation studies in 

2010-12 indicate that the first trapping date is a highly accurate measure of female 

arrival (i.e. within hours; Macdonald and Love, unpubl. data). We located all Snow 
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Bunting nests in 2010 and 2011, and noted clutch size and the number of nestlings 

reaching day 7 or 8 of post-natal development, which we used as an estimate of the 

number of fledglings as nestlings are sufficiently active to leave the nest by day 9 

(Hussell 1985). There were 26 nests where we counted the number of fledglings 

directly. For 1 nest, we visited the nest too late and the nestlings had already fledged. 

For this nest we estimated the number of fledglings based on the average loss between 

hatchlings and fledglings calculated from nests where both values were known (average 

loss between number of hatchlings and number of fledglings within a nest was one 

nestling; mean: 1.1±0.2 nestlings, n=26 nests from 2010 and 2011). 

Song Recording 

In June and July 2010 and 2011, 24 different males were recorded using a directional 

microphone (Sennheiser K6/ME66) and a solid-state digital recorder (model: Marantz 

PMD 660; recording settings: 44,100 Hz sampling rate, 16 bits, WAVE format). Three 

males were recorded in both years. Focal recording took place opportunistically, but the 

majority of focal recording was conducted in the morning. Male identification (i.e. 

colour band combination) was noted whenever bands were visible. In 2011, we 

supplemented directional-microphone recordings with 24-hour recordings obtained at 

nine recording locations spread across the island using autonomous digital recorders 

(model: SM2-GPS; recording settings: 22,050 Hz sampling rate, 16 bits, WAVE format). 
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Analysis of Song Content 

All recordings were filtered to remove background noise outside of the range of Snow 

Bunting song (high-pass frequency: 867 Hz; low-pass frequency: 13,939 Hz). Recordings 

were normalized to -3 dB in Audition (Adobe, San Jose, CA, USA) prior to analysis. We 

performed detailed measurements of song structure (i.e. length and frequency 

measures) in Avisoft SAS Lab Pro (R. Sprecht, Berlin, Germany) using the ‘automated 

parameter measurement’ tool which minimizes human measurement error and 

subjectivity (temporal resolution: 5.8 ms; frequency resolution: 86 Hz). Syllable counts 

and typing were determined by visual inspection; syllables are elements or several 

elements that fall out into clear groupings, and syllables that looked different from one 

another were considered to be different types. The following song features were 

measured: (1) song length, calculated as the time elapsed from the start to the end of a 

song (sec); (2) note duration, calculated as the sum of all note lengths (sec); (3) total 

number of syllables, calculated as the total number of syllables within a song; (4) 

number of different syllables, calculated as the number of unique syllable types within a 

song; (5) minimum song frequency, calculated as the minimum frequency of a song; (6) 

maximum song frequency, calculated as the maximum frequency of a song; (7) average 

minimum syllable frequency, calculated as the average minimum syllable frequency 

within a song; (8) average maximum syllable frequency, calculated as the average 

maximum syllable frequency within a song; (9) syllable repertoire, calculated as the total 

number of unique syllables produced across a sample of 10 songs; and (10) song 
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versatility, calculated as the number of unique syllables in a sample of 10 songs divided 

by the total number of syllables in the same sample of 10 songs. 

Most content measures were determined from a sample of 10 songs for each 

male (following from Espmark et al. 1995, 1999; Hofstad et al. 2002). To measure 

syllable repertoire size and song versatility, songs did not need to be of extremely high 

quality because the ‘automated parameter measurement’ tool was not used; 21 males 

had at least 10 songs of sufficient quality to assess song complexity. However, because 

the ‘automated measurement tool’ was used to measure length and frequency 

measures, in those cases songs had to be of very high quality (i.e. high signal-to-noise 

ratio). In a few cases (n=2), we recorded fewer than 10 songs of high enough quality to 

be measured using the ‘automated measurement tool’. Consequently, on average, 

9.7±0.2 songs per individual were analysed to measure structural traits (i.e. song length 

and note duration: range=6-10 songs/individual). 

Analysis of Song Performance 

Song rate was calculated as the number of songs divided by recording length (min). 

Estimates of song rate were based on song bouts with a minimum of 7 songs (mean: 

16.1±1.0 songs, range: 7-71 songs), and calculated over multiple bouts for each 

individual (mean number of bouts: 5.5±0.3 bouts/individual, range: 4-10 bouts; mean 

bout length: 4.3±0.3 min, range: 1-27 min), recorded on multiple days (mean: 3.7±0.2 

days, range: 3-5 days). A song bout was considered finished when a period of silence 

longer than 60 seconds began or the focal male flew away. In 2010, all song rates were 
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calculated from focal recordings; in 2011, song rates were calculated from both focal 

and autonomous recordings (individual identity in autonomous recordings was readily 

assessed using both song content and recording location). Song rates were assessed 

from recordings obtained over an approximate two-week period (in 2010, between June 

10 and June 28; in 2011, between June 16 and June 30), and between 02:30 and 11:30 

in 2010, and 02:30 and 23:30 in 2011, although most recordings were obtained before 

10:00 in both years (88% of recordings in 2010 and 90% of recordings in 2011). We used 

Syrinx-PC (J. Burt, Seattle, WA, USA) to assess song rate. 

Testosterone Assay 

Dichloromethane extractions were performed to extract testosterone from plasma 

samples using a modified protocol from Wingfield and Farner (1975; mean extraction 

efficiency: 71.4 ± 27.9%, n=16). We measured plasma testosterone in triplicate using a 

previously validated commercially-available enzyme-linked immunoassay (Cayman 

Chemicals, USA, Item No. 582701; Pryke et al. 2007) optimized in-house for Snow 

Buntings. Briefly, 50 µl of plasma was added to each sample well, combined with 

testosterone AChE tracer (50 µl), except for the Total Activity and Blank wells, and 

testosterone EIA antiserum (50 µl) was then added. Plates were incubated for two hours 

at 25°C and then emptied and rinsed five times with Wash Buffer. Ellman’s Reagent (200 

µl) was added to all wells and tracer (5 µl) was added to Total Activity wells. Plates were 

incubated for one hour at 25°C and read at a wavelength of 412 nm. Mean intra- and 

inter-assay coefficients of variation were 7.7% and 10.6%, respectively. 
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Reactive Oxygen Metabolite and Total Anti-oxidant Capacity Assays 

Our measure of pro-oxidants was reactive oxygen metabolites (ROM) which we 

measured in plasma samples using a previously validated d-ROM kit (Diacron, Grosseto, 

Italy; Costantini et al. 2006) modified for 96-well microplates and optimized for avian 

plasma. Reactive oxygen metabolites are derivatives of reactive oxygen species which 

are more easily measured than reactive oxygen species because they are more stable. 

The test primarily measures the concentration of hydroperoxides, which are the 

resulting metabolites of lipid peroxidation and provide an early marker of oxidative 

damage. Plasma samples were thawed and 15 µL of each was diluted with 300 µL of 

working solution (solution consisted of a chromogenic solution diluted 1:100 in acetate 

buffer). Each tube was vortexed and incubated at 37°C for 75 minutes. Tubes were 

centrifuged at 10,000 RPM for 30 seconds and 290 µL of the supernatant pipetted into a 

new tube. Tubes were then vortexed and 125 µL was pipetted into the plate in 

duplicate. Plates were subsequently read at a wavelength of 490 nm. Concentrations 

were determined using a standard curve (range: 0.28125–18 mg H2O2/dL) generated 

using a stock solution of 18 mg H2O2/dL; colour intensity is proportional to the 

concentration of reactive oxygen metabolites and measurements are expressed in mg of 

H2O2/dL. Mean intra- and inter-assay coefficients of variation were 4.9% and 3.0%, 

respectively. 

The total anti-oxidant capacity (TAC) of plasma samples was measured using a 

previously validated OXY-adsorbent kit (Diacron, Grosseto, Italy; Costantini et al. 2006) 
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modified for 96-well microplates and optimized for avian plasma. The OXY-adsorbent 

test measures a sample’s ability to “absorb” and quench the oxidizing ability of 

hypochlorous acid (HClO), a powerful pro-oxidant. Plasma samples were thawed, 2 µL 

was diluted 1:100 by adding 198 µL of distilled water with vortexing, and then 5 µL of 

each sample was loaded in duplicate followed by 200 µL of HClO oxidant solution. Plates 

were shaken for 10 seconds at 450 RPM and incubated at 37°C for 10 minutes. Before 

reading at 490 nm, 2 µL of chromogenic solution was added to each well and plates 

were shaken for 30 seconds by a plate reader. Concentrations were determined using a 

standard curve (range: 0.4702–5.7500 µmol HClO/mL) generated from a stock solution 

of 230 µmol HClO/mL. The chromogenic solution changes colour upon reacting with the 

remaining HClO. Therefore, colour intensity is inversely proportional to the plasma’s 

anti-oxidant capacity (i.e. ability to neutralize the acid). Measurements were multiplied 

by 100 to account for dilution and are expressed in µmol of HOCl/mL neutralized. Mean 

intra- and inter-assay coefficients of variation were 5.1% and 0.9%, respectively. 

Oxidative status was calculated using ROMs/TAC × 1000 (an index of oxidative 

stress used by Costantini et al. 2006), where higher values equate to higher oxidative 

stress. 

Statistical Analyses 

We recorded 24 different male Snow Buntings in 2010 and 2011. Three males were 

recorded in both years so one year of data was excluded for each male (for two birds 

the recording quality was markedly better in one year so data from years with poorer 
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quality were excluded; a random number generator determined which year of data to 

exclude for the third bird). Sample sizes for our analyses vary, as indicated below, due to 

the fact that we were not able to obtain all acoustic, hormonal, and fitness measures for 

all males.  

To examine whether Snow Bunting songs can be discriminated on an individual 

basis, we conducted a canonical discriminant function analysis to test whether songs 

could be correctly assigned to the males which produced them using the following eight 

content measures: song length, note duration, total number of syllables, number of 

different syllables, minimum song frequency, maximum song frequency, average 

minimum syllable frequency, and average maximum syllable frequency. The analysis 

was based on 10 songs from each of 19 males recorded in 2010 and 2011; only 19 males 

were used because we excluded males with fewer than 10 high quality songs recorded. 

We ran the discriminant analysis using a cross-validation approach. We randomly 

selected 75% of the data and performed the discriminant analysis on these data. We 

then tested the accuracy of the discriminant analysis on the remaining 25% of the data. 

To investigate the Oxidation Sensitivity Hypothesis and the Oxidation Handicap 

Hypothesis, we first ran a principal component analysis, with varimax rotation, to 

summarize the four song content variables which we predicted females may be 

attentive to as they relate to output and complexity. Details of the principal component 

analysis, including the loadings of the four song content variables on the two principal 

component factors that had eigenvalues > 1.0, are given in Table 2.2. Factor 1 
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summarized song length and note duration and explained 53% of the variance; higher 

Factor 1 scores correspond to longer songs with greater note duration, and we labelled 

this factor song structure. Factor 2 summarized syllable repertoire and song versatility 

and explained an additional 44% of the variance; higher Factor 2 scores correspond to 

larger syllable repertoires with higher song versatility. We labelled this second principal 

component song complexity. Song rate was not included in this principal component 

analysis because we were interested in analyzing song content (i.e. the above principal 

component factors) and song performance (i.e. song rate) separately. In the end, we 

had three song measures: two principal component factors that summarized variation in 

song structure and complexity providing a measurement of song content, and song rate 

providing a measurement of song performance. 

We used standard least squares models to test for relationships between 

oxidative status measures and song structure (Factor 1). We included year as a fixed 

effect in these analyses because the variables that loaded onto Factor 1 showed 

significant differences between years. We used linear regressions to explore the 

relationships between oxidative status measures and song complexity (Factor 2), as the 

variables that loaded onto Factor 2 did not differ between years. We used standard 

least squares models to investigate the relationships between song rate and oxidative 

status measures, with testosterone level included as a covariate, given it has been 

shown to relate to both song rate and oxidative status measures. 
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We used standard least squares models to test for relationships between song 

measures and relative female arrival date (i.e. female arrival date relative to mean intra-

annual arrival dates), our proxy for pairing date. We included relative male arrival date 

(i.e. male arrival date relative to mean intra-annual arrival dates) in all models including 

relative female arrival date to control for residual male quality independent of song. We 

used ordinal logistic models to explore the relationships between song measures and 

reproductive output (i.e. clutch size and number of fledglings). We controlled for year in 

all ordinal logistic models including Factor 1, as the variables that went into creating 

Factor 1 differed significantly between years. We included relative hatch date (i.e. hatch 

date relative to mean intra-annual hatch dates) in all models with number of fledglings 

because laying/hatching date can influence fledging success (Lepage et al. 2000; 

Descamps et al. 2011). All statistical analyses were performed in JMP v. 9.0.2. (SAS 

Institute, Cary, NC). 

Results 

Individual Distinctiveness of Songs 

The discriminant analysis confirmed that male Snow Buntings sing individually-

distinctive songs (Fig. 2.1), with cross-validation assigning 91.5% of songs to the correct 

male, significantly higher than the 5.3% expected by chance for 19 males (binomial test, 

p<0.0001). Variables that contributed most strongly to the first canonical axis were 

‘average minimum syllable frequency’ and ‘average maximum syllable frequency’, and 

this axis explained 32% of the variation between males’ songs; variables that 
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contributed most strongly to the second canonical axis were ‘number of different 

syllables’ and ‘average maximum syllable frequency’, and this axis explained 27% of the 

variation between males’ songs. 

The Oxidation Sensitivity Hypothesis  

The Oxidation Sensitivity Hypothesis states that secondary sexual signals are sensitive to 

oxidative stress and thus individuals experiencing oxidative stress should display lower 

quality signals. This led to our prediction that song structure (i.e. song length and note 

duration) and song complexity (i.e. syllable repertoire and song versatility) would be 

negatively related to reactive oxygen metabolites and oxidative stress (Table 2.1). 

However, in our analysis of Snow Bunting song content we found no significant 

relationship between reactive oxygen metabolites and song structure (Factor 1; whole 

model: F2,15=1.8, p=0.20, n=18; year: F1,1=3.2, p=0.09; ROM: F1,1=0.7, p=0.42; Fig. 2.2), 

total anti-oxidant capacity and song structure (Factor 1; whole model: F2,16=0.7, p=0.51, 

n=19; year: F1,1=1.4, p=0.25; TAC: F1,1=0.3, p=0.61; Fig. 2.2), or oxidative stress and song 

structure (Factor 1; whole model: F2,14=2.0, p=0.17, n=17; year: F1,1=3.6, p=0.08; 

oxidative stress: F1,1=1.9, p=0.19; Fig. 2.2). We also found no relationship between 

reactive oxygen metabolites and song complexity (Factor 2; ROM: R
2
=0.07, p=0.28, 

n=18; Fig. 2.2), total anti-oxidant capacity and song complexity (Factor 2; TAC: R
2
=0.002, 

p=0.84, n=19; Fig. 2.2), or oxidative stress and song complexity (Factor 2; oxidative 

stress: R
2
=0.12, p=0.17, n=17; Fig. 2.2). These analyses, therefore, provide no support 

for the Oxidation Sensitivity Hypothesis. 
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The Oxidation Handicap Hypothesis 

The Oxidation Handicap Hypothesis states that secondary sexual signal expression may 

generate increased levels of reactive oxygen metabolites creating a handicap, and that 

only individuals able to afford this cost (via higher anti-oxidant capacities) will be able to 

produce and maintain high quality signals. This lead to our prediction that song 

performance (i.e. song rate) would be positively related to both reactive oxygen 

metabolites and total anti-oxidant capacity (Table 2.1). Additionally, we predicted that 

oxidative stress levels would be unrelated or negatively related to song rate (i.e. males 

that sang at a high rate would be able to afford the costs of increased reactive oxygen 

metabolites without having higher oxidative stress; Table 2.1). We found a significant 

positive relationship between song performance and reactive oxygen metabolites 

(whole model: F2,14=2.4, p=0.13, n=17; testosterone: F1,1=0.02, p=0.65; song rate: 

F1,1=4.7, p=0.049; Fig. 2.3), and between song performance and total anti-oxidant 

capacity (whole model: F3,13=4.4, p=0.02, n=17; testosterone: F1,1=0.007, p=0.93; song 

rate: F1,1=9.6, p=0.008; Fig. 2.3). There was no significant relationship between song rate 

and oxidative stress (whole model: F2,13=0.5, p=0.64, n=16; testosterone: F1,1=0.007, 

p=0.93; song rate: F1,1=0.9, p=0.36; Fig. 2.3). We, therefore, found support for the 

Oxidation Handicap Hypothesis. 

Song and Fitness-related Measures 

We found no relationship between song structure (Factor 1) and relative female arrival 

date (whole model: F3,17=2.37, p=0.11, n=20; year: F1,1=0.01, p=0.92; relative male 
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arrival date: F1,1=6.5, p=0.02; Factor 1: F1,1=0.002, p=0.97; Fig. 2.4), clutch size (whole 

model: χ
2
=2.2, p=0.33, n=17; year: χ

2
=0.4, p=0.52; Factor 1: χ

2
=1.1, p=0.29; Fig. 2.4), or 

number of fledglings (whole model: χ
2
=13.3, p=0.004, n=13; year: χ

2
=0.9, p=0.34; 

relative hatch date: χ
2
=12.0, p=0.0005; Factor 1: χ

2
=1.9, p=0.17; Fig. 2.4). We also found 

no relationship between song complexity (Factor 2) and relative female arrival date 

(whole model: F2,18=4.3, p=0.03, n=21; relative male arrival date: F1,1=7.7, p=0.01; Factor 

2: F1,1=0.7, p=0.40), clutch size (χ
2
=0.2, p=0.63, n=17; Fig. 2.4), or number of fledglings 

(whole model: χ
2
=10.7, p=0.005, n=13; relative hatch date: χ

2
=8.7, p=0.003; Factor 2: 

χ
2
=1.6, p=0.21; Fig. 2.4). Finally, we found no relationship between song rate and 

relative female arrival date (whole model: F3,15=8.2, p=0.004, n=19; relative male arrival 

date: F1,1=9.7, p=0.007; song rate: F1,1=2.8, p=0.11; Fig. 2.4), clutch size (χ
2
=1.3e-5, 

p=1.0, n=15; Fig. 2.4), or number of fledglings (whole model: χ
2
=5.5, p=0.06, n=11; 

relative hatch date: χ
2
=4.9, p=0.03; song rate: χ

2
=0.01, p=0.93; Fig. 2.4). 

Discussion 

Male Snow Buntings sing individually distinctive songs and males performing at higher 

rates exhibit higher levels of reactive oxygen metabolites and higher total anti-oxidant 

capacities, but not oxidative stress, than males performing at lower rates. These results 

suggest that males that sing at higher rates may be bearing the cost of increased 

reactive oxygen species, but that they have higher or up-regulated anti-oxidant 

capacities which allow them to afford singing at a faster rate without suffering the costs 

of elevated levels of oxidative stress. This is in line with Vehrencamp’s (1999) assertion 
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that song rate is likely a quality handicap, whereby some cost prevents low quality 

males from singing at a high rate. To the best of our knowledge, our investigation is the 

first to provide support for the Oxidation Handicap Hypothesis using a behavioural 

secondary sexual signal; previous studies investigating the relationship between 

oxidative status and signal quality have focused on morphological signals (e.g. Pike et al. 

2007; Galván and Alonso-Alvarez 2008; Alonso-Alvarez et al. 2010). Furthermore, this 

study lends support to the idea that sexually-selected signals can be reliable indicators 

of individual quality, the honesty of which is ensured via physiological costs that are not 

equally affordable to all individuals. 

Although testosterone and song performance have been found to be associated 

in some passerine birds (e.g. Johnsen 1998; Van Roo 2004; Foerster et al. 2002; 

Ritschard et al. 2011; but see Kunc et al. 2006), we found no effect of testosterone on 

song rate when we included it in our Standard Least Squares Models. As such, we found 

no evidence for the notion that testosterone causes an increase in reactive oxygen 

metabolites or enhances signal expression, a prediction of the original Oxidation 

Handicap Hypothesis (Alonso-Alvarez et al. 2007). There are a number of possible 

explanations for this. First, testosterone may be unrelated to song production in Snow 

Buntings. We find this possibility unlikely because Snow Bunting song output mirrors 

gonadal growth (P. Johnsen 1953 in Nethersole-Thompson 1966) and testosterone 

implants have been shown to enhance singing in male Snow Buntings during periods of 

low testosterone (Romero et al. 1998). However, testosterone may be important for 
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stimulating song production, but once a threshold is reached, the exact concentration of 

testosterone may be unrelated to variation in song production (Hews and Moore 1997). 

Alternatively, because blood samples collected in 2010 were not all obtained 

within ten minutes of capture, testosterone levels could have been affected by capture 

stress (Wingfield et al. 1982; Deviche et al. 2010; but see Hasselquist et al. 1999). All 

samples in 2011 used for testosterone analyses were obtained in less than 10 minutes, 

and in this restricted subset the effect of testosterone on reactive oxygen metabolites 

approached significance, suggesting that capture stress may be a confounding effect. 

Another methodological issue may be that a male’s testosterone concentration was 

calculated from a single sample, which may not be an adequate representation of an 

individual’s testosterone level, because testosterone levels change with time of day 

(Foerster et al. 2002) and the behavioural state of an individual (Wingfield et al. 1990). 

The relationship between testosterone and behaviour is complex and many researchers 

have found contradictory patterns on what factors affect testosterone levels and also 

how testosterone subsequently affects behaviour (Kempenaers et al. 2008), warranting 

further investigation. Regardless, Metcalfe and Alonso-Alvarez (2010) noted that 

testosterone need not be a driver of the relationship between signal expression and 

oxidative costs if energetically-costly signals (i.e. those which require increased oxygen 

demand, such as song production; Oberweger and Goller 2001) generate higher levels of 

reactive oxygen species. 
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 We found no support for the Oxidative Sensitivity Hypothesis, as song content 

measures were unrelated to reactive oxygen metabolites and level of oxidative stress. 

However, song structure or complexity may still be sensitive to oxidative stress. Most 

oscine passerines learn song during their first year of life (e.g. Taeniopygia guttata; 

Immelmann 1969; Zonotrichia leucophrys; Marler 1970b; Fringilla coelebs; Nottebohm 

1970; Catchpole and Slater 2008; but see Beecher and Brenowitz 2005). Unfortunately, 

no information on song learning in Snow Bunting exists. However, if Snow Bunting song 

is learned early in life, as we expect based on the widespread pattern in other 

temperate oscine Passeriformes, then song content could be related to the oxidative 

stress levels experienced during song development but not the oxidative stress levels 

experienced as an adult. Longitudinal studies are necessary to determine when Snow 

Bunting song development occurs and whether oxidative status measures are 

repeatable across an individual’s life. 

Although many studies have demonstrated a link between song rate and pairing 

date (e.g. Mountjoy and Lemon 1996; Buchanan and Catchpole 1997), we found no 

relationship between Snow Bunting song rate and female arrival date, which we used as 

a proxy for pairing date. Perhaps song rate does not relate to pairing date, although 

Hofstad et al. (2002) found that song rate was negatively related to laying date. 

Alternatively, female arrival date may be an inappropriate proxy for pairing date. We 

also found no significant relationship between any song measure and clutch size. In 

laboratory experiments, song quality has been shown to differentially stimulate egg 

production in Common Canaries (Serinus canarius; Kroodsma 1976). However, 
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Kroodsma (1976) exposed females to a single stimulus type (low or high quality), while 

in a natural environment, females are able to hear many males simultaneously. We also 

found no relationship between any song measure and number of fledglings. High 

breeding density, like that found on East Bay Island, likely provides ample opportunity to 

obtain extra-pair fertilizations. Consequently, our measure of apparent reproductive 

success may not be representative of a male’s actual reproductive success. Future work 

should assess extra-pair paternity to determine a male’s true, genetic reproductive 

success. Also, measuring offspring recruitment the following breeding season may 

provide a more accurate fitness estimate than number of fledglings. However, the 

content measures we explored in our study may be unimportant to females, and could 

potentially be signals directed at rivals rather than mates. 

 Oxidative stress ecology is a relatively new field of research and as such there 

are many avenues in need of further investigation (Monaghan et al. 2009; Beaulieu et al. 

2010; Haussmann et al. 2012). For one, longitudinal studies investigating how oxidative 

stress changes within an individual and in relation to signal expression over time would 

enhance our understanding of the possible effects oxidative stress may have on 

signalling and vice versa (Metcalfe and Alonso-Alvarez 2010). Future studies should 

continue to explore signals other than visual signals, particularly those which may 

increase an individual’s oxygen consumption, such as energetically demanding displays 

(Metcalfe and Alonso-Alvarez 2010). An investigation of song amplitude may yield 

further support for the Oxidation Handicap Hypothesis, as it is a meaningful signal 

(Ritschard et al. 2010; Brumm and Ritschard 2011) which has been shown to relate to 
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oxygen consumption (Oberweger and Goller 2001). Costantini (2008) urges 

collaboration between ecology, biochemical, and medical disciplines, suggesting that in 

vivo and in vitro laboratory tests would complement ecological studies, providing a 

more holistic understanding of oxidative stress. As our knowledge of reactive oxygen 

species, anti-oxidants, and oxidative stress continues to evolve, and our ability to 

measure each improves, we are sure to better understand the signalling implications 

individual oxidative status may have. 
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Table 2.1   Predictions following from the Oxidation Sensitivity Hypothesis and the 

Oxidation Handicap Hypothesis between song measures and reactive oxygen 

metabolites (ROM), total anti-oxidant capacity (TAC), and oxidative stress. 

– and + indicate directionality of predicted relationships; NR=no relationship; 

grey shading indicates no predicted relationship. 
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Table 2.2   Factor loadings for four song content variables after varimax rotation. Bolded 

values indicate variables that loaded strongly onto principal component 

factors. Factor 1 (song structure) explained 53% of the variation and Factor 2 

(song complexity) explained an additional 44% of the variation. 

 

Song Content Variable Factor 1 Factor 2 

Song length 0.97 -0.03 

Note duration 0.96 -0.05 

Syllable repertoire size 0.14 0.96 

Song versatility -0.24 0.94 

     Eigenvalue 2.12 1.75 

     Percentage of variation explained 52.95 43.83 

     Cumulative variation explained 52.95 96.79 
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Fig. 2.1  Male Snow Buntings’ songs can be accurately discriminated between using song 

content. Shown here are the first and second canonical axes from a discriminant 

analysis based on songs recorded from 19 different Snow Buntings. Circles 

represent the 95% confidence region containing the true mean for each male. 

The analysis classified 91.5% of songs correctly; binomial test, p<0.0001. 
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Figure 2.2  Reactive oxygen metabolites (ROM; mg H2O2/dL), total anti-oxidant capacity 

(TAC; µmol of HOCl/mL neutralized), and oxidative stress were unrelated to 

a-c) song structure or d-f) song complexity, providing no support for the 

Oxidation Sensitivity Hypothesis. See Results for statistical details. 
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Figure 2.3  Song rate (songs/min) was positively related to a) reactive oxygen 

metabolites (ROM; mg H2O2/dL) and b) total anti-oxidant capacity (TAC; µmol 

of HOCl/mL neutralized), but unrelated to c) oxidative stress, supporting the 

predictions of the Oxidation Handicap Hypothesis. See Results for statistical 

details.  
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Figure 2.4  Song structure (Factor 1), song complexity (Factor 2), and song rate 

(songs/min) were all unrelated to a-c) relative female arrival date, d-f) clutch 

size, and g-i) number of fledglings. See Results for statistical details. 
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Chapter 3 – Summary and Future Directions 

Oxidative stress has long been important in biomedical research, known to affect 

individual health (Harman 1956; Sies 1985). In recent decades, increasing attention has 

been paid to the potential ecological and evolutionary implications of oxidative stress in 

non-human animals (Costantini 2008). The Oxidation Sensitivity Hypothesis and the 

Oxidation Handicap Hypothesis both predict relationships between oxidative status and 

the quality of secondary sexual signals (von Schantz et al. 1999; Alonso-Alvarez et al. 

2010). The ideas comprising the Oxidation Sensitivity Hypothesis were proposed by von 

Schantz et al. (1999) and suggest that secondary sexual signals are sensitive to oxidative 

stress which detrimentally affects signal quality. The Oxidation Handicap Hypothesis was 

later proposed by Alonso-Alvarez et al. (2010), and broadened by Metcalfe and Alonso-

Alvarez (2010), and suggests that secondary sexual signals promote oxidative stress by 

generating increased reactive oxygen species or suppressing anti-oxidant capacity, and 

as such, only high quality individuals can afford to produce and maintain high quality 

signals.  

My thesis provides the first test of either the Oxidation Sensitivity Hypothesis or 

the Oxidation Handicap Hypothesis that focuses on song as the sexual trait. Song 

content (i.e. song structure and complexity) was unrelated to any measure of oxidative 

status providing no support for the Oxidation Sensitivity Hypothesis. However, song 

performance (i.e. song rate) was positively correlated to both reactive oxygen 

metabolites and total anti-oxidant capacity, yet unrelated to overall oxidative stress, 
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providing support for the Oxidation Handicap Hypothesis. These results suggest that 

high quality individuals may be advertising their ability to combat the negative 

consequences of increased reactive oxygen metabolites (i.e. the handicap) via higher or 

up-regulated anti-oxidant capacities, allowing them to avoid higher levels of oxidative 

stress. 

Although my findings are based on correlative data, and as such cannot confirm 

causation, they add to a growing body of literature demonstrating a relationship 

between secondary sexual signals and individual oxidative status (Markó et al. 2011; 

Moreno et al. 2011; Garratt and Brooks 2012). Correlative data obtained from 

observational field studies, as described in this thesis, are necessary for demonstrating 

that relationships between animal signals and oxidative status are biologically relevant 

and hold true under natural conditions (Searcy and Yasukawa 1996). Additionally, 

longitudinal studies which measure signal quality and oxidative status of the same 

individuals across years would yield valuable insight into the relationship between the 

two.  

In the future, manipulative studies that alter either signal quality or oxidative 

status could provide experimental support that complements my observational 

research. Altering song quality will be particularly challenging; manipulating song 

content in many species would require raising birds from nestlings in order to alter song 

development, while altering song performance often involves some type of 

supplemental administration (e.g. food: Reid 1987; hormone: Van Roo 2004) which 
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could have confounding effects on oxidative status. Alternatively, interactive playback 

experiments simulating territorial intrusions could be conducted to alter song 

performance (e.g. Wunderle 1978; but see Romero et al. 1998). However, the frequency 

and duration of simulated intrusions needed to cause a sufficient change in song 

performance to alter oxidative status measures is unknown. Manipulating some 

component of individual oxidative status and observing the effects on song quality may 

be easier, although not free from complications. Increasing exogenous anti-oxidant 

intake can negatively affect endogenous anti-oxidant production and pharmacological 

dosages of anti-oxidants can lead to enhanced oxidative damage (Herbert 1994). 

Exposing birds to detrimental environmental conditions (e.g. ultraviolet light, ionizing 

radiation, environmental toxins; Finkel and Holbrook 2000) may increase reactive 

oxygen species production, but would likely cause other damaging effects which could 

independently affect signal quality and would be of questionable ethical integrity. Some 

signals, such as morphological traits, can be relatively easily manipulated (e.g. tail length 

manipulation: Andersson 1982), and may provide a more feasible starting point for 

investigating the relationship between oxidative status and signal quality. 

One area for continued research is the exploration of that factors which cause 

inter-individual differences in oxidative damage and anti-oxidant capacity. Research, 

largely conducted over the past decade, has helped to elucidate some of the many 

factors affecting individual oxidative status, which include both genetic and 

environmental factors. For example, selective breeding has created lines of mice (Mus 

musculus) with different anti-oxidant capacities (Costantini et al. 2008) supporting the 
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idea that there is a genetic component to oxidative status. Neonatal nutrition, laying 

order, and rearing conditions all affect the anti-oxidant capacities of birds (Blount et al. 

2003; Rubolini et al. 2006), while brood size affects levels of reactive oxygen metabolites 

and oxidative stress, the effect being attributed to the intensity of sibling rivalry 

(Costantini et al. 2006). The factors affecting individual oxidative status are many and 

can be complicated by additional variables such as species, sex, and age (Costantini et al. 

2006; Rubolini et al. 2006; Costantini et al. 2007; Markó et al. 2011). I was unable to 

conduct a compelling analysis of the relationship between age and oxidative status due 

to the low incidence of second-year males and the inability to differentiate between 

males two years and older based on plumage (Montgomerie and Lyon 2011). Future 

studies should investigate the potential effect of age using a species where a more 

definitive ageing method exists or where long-term data can be used to determine the 

age of individuals. 

The relationship between reactive oxygen species and anti-oxidants, and the cost 

and benefit of each, also warrants further investigation. Although reactive oxygen 

species are traditionally understood to have negative health consequences, a more 

recent understanding shows that low to moderate levels of reactive oxygen species are 

beneficial and necessary for normal cell signalling, effective immune and defence 

systems, muscle force, and exercise-related endurance (Finkel and Holbrook 2000; 

Brigelius-Flohé 2009). Additionally, the relationship between physical activity and 

oxidative stress is not as straightforward as once thought. While exercise and physical 

activity generate reactive oxygen species, low to moderate increases in pro-oxidants can 
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cause an up-regulation in anti-oxidant capacity, priming an individual for future pro-

oxidant exposure (Brigelius-Flohé 2009). This phenomenon, termed hormesis, is 

analogous to how a vaccination primes an individual for a future antigen attack and 

subsequently leaves the individual more prepared to deal with immune challenges 

(Finkel and Holbrook 2000; Brigelius-Flohé 2009). 

Although methods for measuring oxidative status are continuously improving, 

there are still several methodological issues which require further attention. Though 

widely used, there have been questions concerning what the d-ROMs test (Diacron, 

Grosseto, Italy) is actually detecting. Harma et al. (2006) deny its validity claiming that it 

measures ceruloplasmin, a copper-carrying protein. However, although Kostikas et al. 

(2006) admit that the test may measure ceruloplasmin in addition to reactive oxygen 

metabolites, they claim the difference in absorbance as a result of ceruloplasmin is 

small. Additionally, the OXY-Adsorbent test (Diacron, Grosseto, Italy) may 

underestimate lipid-soluble anti-oxidants as it only measures the anti-oxidant capacity 

of serum or plasma (Bartosz 2010; but see Cohen et al. 2007). Recently, Costantini and 

Dell’Omo (2006) have suggested measuring pro-oxidant and anti-oxidant levels in 

various tissues to obtain a more comprehensive measure of oxidative status. Even more 

recent, is the suggestion that measuring the activity of specific anti-oxidants may be 

more valuable than measuring total anti-oxidant capacity (Garratt and Brooks 2012; but 

see Constantini and Verhulst 2009). Lastly, measuring both oxidative damage and anti-

oxidant capacity is critical in order to determine oxidative status. Measuring only one 

component yields incomplete and potentially misleading results, and although this point 
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is widely recognized, it is still often overlooked (Costantini and Verhulst 2009; 

Monaghan et al. 2009). 

Oxidative damage, anti-oxidant capacity, and oxidative stress have been linked 

to signal quality (Garratt and Brooks 2012), individual condition (Costantini et al. 2007), 

ageing (Finkel and Holbrook 2000), reproduction (Wiersma et al. 2004), and even 

personality (Costantini et al. 2008), and thus are important physiological factors which 

can have fitness implications (Metcalfe and Alonso-Alvarez 2010). Oxidative stress 

ecology is a promising new field that will likely continue to pervade many streams of 

ecology and, although great progress has been made over the past several decades, 

there are still many exciting avenues for future research (Costantini 2008b; Metcalfe 

and Alonso-Alvarez 2010). My research investigated oxidative stress as a mechanism 

ensuring signal honesty and was the first to do so using song. My findings revealed that 

reactive oxygen metabolites may be a proximate cost associated with signal quality, and 

that higher quality individuals may be better able to afford this cost through higher anti-

oxidant capacities. 
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