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MODULATION OF THE MDM2 SIGNALING AXIS SENSITIZES TRIPLE-NEGATIVE BREAST 

CANCER CELLS TO CARBOPLATIN 

 

Triple-negative breast cancers (TNBCs) are highly refractive to current treatment 

strategies, and new multi-targeted treatments need to be elucidated. Combination 

therapy that includes targeting the murine double minute 2 (Mdm2) signaling axis offers 

a promising approach. Protein-protein interaction inhibitors such as Nutlin-3a block the 

binding of key signaling molecules such as p53, p73α, and E2F1 to the hydrophobic 

pocket of Mdm2 and can lead to activation of cell-death signaling pathways. Since 

clinical trials for TNBC are evaluating the DNA damaging agent carboplatin, the objective 

of this thesis was to evaluate the therapeutic potential and mechanism of action of 

combination carboplatin and Nutlin-3a to treat TNBC. In TNBC cell lines with a mutant 

p53 background, we determined if modulation of Mdm2 function in the context of 

carboplatin-mediated DNA damage resulted in a synergistic inhibition of cell growth. 

Several ratios of carboplatin:Nutlin-3a were strongly synergistic in increasing cell death, 

with combination indices of 0.5 and lower. Mechanistic studies indicated that drug 

sensitivity and Mdm2 expression were dependent on p73. Mdm2 localized to a larger 

degree in the chromatin fraction isolated from cells treated with the combination 

treatment consistent with observations by others that Mdm2 binds to the 

Mre11/Rad50/Nbs1 complex, inhibits the DNA damage response, and increases drug 
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sensitivity.  In vivo efficacy experiments were conducted in the TMD231 orthotopic 

mammary fat pad model in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. For assessment of 

baseline tumor burden and randomization, fluorescent imaging of E2-Crimson 

expressing TMD231 cells was performed. Following Nutlin-3a and carboplatin 

combination treatment, there was a statistically significant reduction in primary tumor 

volume as well as lung metastases with significantly increased probability of survival 

compared to Vehicle and single drug treatments (p<0.001). While there was a decrease 

in bone-marrow cellularity, this did not lead to bone-marrow aplasia, and body weights 

recovered to normal levels within 7 days post-treatment. The present studies 

demonstrate the promise of Mdm2 as a therapeutic target in combination with 

conventional therapy, increase our understanding of how to potentiate DNA damage in 

cancers, and may lead to new clinical therapies for triple-negative primary and 

metastatic breast cancer. 
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SECTION I: INTRODUCTION AND LITERATURE REVIEW  

 

Chapter 1. Breast Cancer Background 

 

Cancer describes a group of diseases in which cells abnormally grow forming 

tumors within the body. The hallmarks of cancer are described as dysregulation of 

proliferative signaling, evading growth suppressive signaling, resisting cell death 

signaling, replicative immortality, pro-angiogenesis signaling, and enabling invasion and 

metastasis 1. Cancer is classified into different stages that can be helpful in deciding 

courses of treatment and prognosis. Stage 0 is defined by carcinoma in situ in which 

there is an abnormal cluster of cells that has not begun spreading to any surrounding 

tissues. Stages I-III are described as more extensive disease in which the size and grade 

of the tumor increases with increasing stage number. Additionally, the spread of cancer 

beyond the organ of origin into nearby lymph nodes and tissues increases with stage. 

Stage IV classifies cancer tumors that have spread to distant tissues or organs through 

the process of metastasis. There are different types of medical tests that can be used to 

determine the stage of cancer including physical exams, imaging tests, lab tests, 

pathology findings, and surgical observations (cancer.gov). The stage of cancer will also 

determine the treatment schema.  

Breast cancer is the second leading cause of cancer related deaths in women 

after lung cancer. It is estimated that in 2014, there will be over 200,000 new cases with 

about 40,000 women succumbing to the disease. Breast cancer is a multi-faceted 
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disease with many different subtypes. There are numerous risks including genetic 

factors, family history, age, age at first menstrual cycle as well as pregnancy. It is 

estimated that 5-10% of all women harbor mutations in the BReast CAncer 1 and 2 

(BRCA1 and BRCA2) DNA repair genes, which has been shown to lead to increased risk of 

breast cancer 2. In cases where there is a family history of breast cancer, specific 

screening strategies are developed, which may include regular breast exams and an 

earlier onset of mammograms. Breast cancer is a highly metastatic disease with 

estimations that 20-30% of all breast cancers will become metastatic 3. It is also 

estimated that upon initial diagnosis, 6-10% of patients already have metastatic lesions 

4. Breast cancers commonly metastasize to the bone, brain, liver, and lungs. There is a 

critical need to research and develop treatment modalities that will not only treat the 

primary tumor but also treat metastatic sites.  

There are four different breast cancer subtypes with different gene expression 

patterns, which is used to determine the best treatment strategy. Breast cancer can be 

divided into triple-negative/basal-like, human epidermal growth factor receptor 2 

(HER2) positive, luminal A, and luminal B subtypes. Common molecular testing involves 

estrogen receptor (ER), progesterone receptor (PR), and HER2/neu receptor status 

testing. There are specific drug treatments for cancers that express ER, PR, and HER2 

receptors involving antibodies against the receptors; however, these targeted therapies 

are only useful if the target is present.  

Luminal breast cancers present with high levels of hormone receptors and 

comprise about 70% of invasive breast cancers. Luminal breast cancers respond to 
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endocrine therapy due to the high levels of hormone receptors 5. With further gene 

level profiling, Luminal B cancer subtypes express the ER; however, they do not express 

estrogen-regulated genes suggesting that ER signaling is not a major factor in how these 

cancers grow 6. The HER2+ subtype has high levels of HER2 and associated downstream 

gene levels and comprises about 15% of invasive cancers 5. HER2 cancer subtypes 

respond to trastuzumab, which is a monoclonal antibody to the HER2 receptor, but 

generally are associated with poor prognosis 5. Basal breast cancers have high levels of 

basal epithelial genes and have low levels of ER and HER2. Basal breast cancers consist 

of about 15% of invasive cancer with most being triple-negative (ER-, PR-, and HER2 non-

overexpressing) 5. Triple-negative breast cancers (TNBCs) do not respond to endocrine 

therapy due to the lack of hormone receptors. Based on new data analysis, triple-

negative breast cancers are sensitive to platinum-based therapies in conjunction with 

Poly- (ADP) ribose polymerase (PARP) inhibitors especially in cases with BRCA1/2 

mutations 7. PARP is involved in DNA repair, which when inhibited, leads to decreased 

DNA repair leading to increased cell death following treatment with DNA damaging 

chemotherapeutic drugs 7. TNBCs are regarded as more aggressive types of cancer due 

to their lack of targeted therapies as well as the aggressive nature of the cancer cells 8.  

Breast cancer is treated with a combination of surgery, radiation, and 

chemotherapy. Surgery is used to remove the bulk of the tumor from the breast through 

lumpectomy or partial/full mastectomy depending of the invasiveness of the tumor. 

Nearby lymph nodes are also removed as a biopsy to examine if there are any cancer 

cells present to examine the invasiveness of the tumor. Neoadjuvant therapy, or 

 3 



chemotherapy prior to surgery, is used to shrink primary tumors before surgery. 

Radiation therapy can be given internally or externally. Internal radiation therapy 

delivers radioactive substances directly to the cancerous tissue through needles, wires 

or catheters. Chemotherapy is often given throughout the body through intravenous 

(IV) infusion; however, chemotherapy can also be given in a localized area. The type of 

treatment greatly depends on the stage of the tumor. Hormone therapy can be used in 

breast cancers that express hormone receptors, which ablates the naturally occurring 

hormones in the body. Without these hormones circulating in the body, the cancers that 

are dependent on hormone signaling are basically starved causing those cancer cells to 

die.  

Targeted therapies include treatments that affect cells with specific molecular 

characteristics. For example, monoclonal antibodies have been developed against the 

HER2 receptor. This antibody binds to the receptor and blocks the growth signaling used 

by the cancer cells to continue proliferating. A new approach utilizes the concept of 

synthetic lethality to treat cancers. Synthetic lethality is described as the concept that 

mutations in two different genes may not have an effect in cells when only gene is 

mutated, but when both are mutated at the same time, leads cells to cell cycle arrest or 

death 9. It has been described in the literature that the BRCA1/2 genes act as tumor 

suppressors, and people with heterozygous mutations in BRCA1/2 genes have an 

increased risk in breast, ovarian, pancreatic, prostate, and male breast cancer 9. When 

patients have mutations in the DNA repair BRCA1/2 genes, DNA repair is affected, and 

cells with BRCA1/2 mutations are more sensitive to ionizing radiation and 
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chemotherapeutic drugs that induce DNA double strand breaks (DSBs) 9. In the clinic, 

patients are screened for BRCA1/2 mutations, and studies have shown that combination 

treatment with PARP inhibitors will lead to synthetic lethality when coupled with a DNA 

damaging drug, such as platinum drugs 7,9. Both BRCA1/2 and PARP are involved in DNA 

repair pathways and when mutated singly, there is an increased risk of genomic 

instability. However, when BRCA1/2 is mutated and PARP is inhibited together, coupled 

with increased DNA damage induced by chemotherapeutic drugs, the cells are unable to 

cope with the DNA damage and leads to increased cell death 9. The use of genetic 

testing continues to be important as we increase our understanding of cancers and how 

expression profiles affect therapeutic strategies. 

As mentioned earlier, targeted therapies are used including endocrine therapy 

for those types of cancers that express the hormone receptors. There are numerous 

types of treatments for non-endocrine therapies including signal transduction inhibitors, 

gene expression modulators, apoptosis inducers, mitotic inhibitors, angiogenesis 

inhibitors, and immunotherapies. Some of these treatments are FDA approved for 

treating cancer while others are still in development or clinical trials. The first line 

treatment for early stage TNBC include combination cytotoxic chemotherapies 10. 

Taxanes are commonly used in breast cancer treatments and act as a mitotic inhibitor. 

The mechanism of action for the taxanes is the stabilization of microtubules leading to 

interference with normal microtubule deconstruction during cell division. As with any 

drug treatment, there are numerous side effects; however, the most notable is 

neurotoxicity leading to peripheral neuropathy. There has been recent data to suggest 
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that platinum agents used in combination with standard of care drugs offer enhanced 

tumor effects 11,12. This is especially true in those patients who have mutations in 

BRCA1/2 since there is defective DNA repair making the DNA-damaging drugs more 

effective in those patient tumors 13. There are numerous ongoing clinical trials using 

carboplatin specifically treating TNBCs with metastases: NCT01881230, NCT00691379, 

and NCT01281150 (clinicaltrials.gov). Platinum agents are effective by forming DNA-

platinum adducts resulting in intra- and interstrand crosslinks in the DNA leading to 

double strand breaks, which ultimately leads to cell death 14. Later platinum generation 

drugs from cisplatin are often used in clinical settings due to the decreased side effects. 

The toxicity associated with cisplatin is most profound in the kidney whereas carboplatin 

causes little to no nephrotoxicity 15. New treatment modalities need to be developed to 

decrease toxicity and increase efficacy.  
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Chapter 2. Models for Studying Breast Cancer 

 

There are numerous in vitro and in vivo methods to study breast cancer. Many 

researchers begin initial studies utilizing human breast cancer cell lines grown in culture 

due to the quick experiment time and data generation. This method is commonly known 

as 2D monolayer cell growth in which cells are grown on plastic. These methods are 

inexpensive and high throughput with a wide range of experiments that can be derived 

from cells. However, some would argue that cells grown in 2D do not fully represent the 

tumor microenvironment due to the lack of stroma and that cell sensitivity to drugs is 

increased compared to sensitivity in vivo 16. It has been reported by numerous 

laboratories that up to 80% of the breast tissue and the tumor microenvironment is 

comprised of stroma, suggesting that the stroma may play an important role in 

promoting growth of breast cancer cells. To circumvent these limitations, many 

investigators use 3D cultures in which the cells are grown in a matrix allowing the cells 

to grown in 3-dimensional space. With the addition of support cells, there are cell-cell 

and cell-matrix interactions that are able to occur naturally 16. In these 3D settings, 

structure-function responses to drugs can be evaluated more accurately. There are 

numerous methods to study cancers in 3D including scaffold-based, spontaneous cell 

aggregation, and liquid overlay culture 16. There are advantages and disadvantages to 

each of these methods. Briefly, scaffold-based methods can be very costly due to 

purchasing the extracellular matrix scaffold. Spontaneous aggregation only occurs in 

some types of cells, and these aggregates of cells do not form spheroids but only 
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clusters of cells. Also, spontaneous aggregation is an inexpensive and quick assay. Liquid 

overlay methods are also quick and relatively inexpensive. However, this method is a 

static method and only produces a small number of spheroids. It can be difficult to then 

collect these spheroid cells and examine further with Western blot, for example. The 

specific scientific question will determine ultimately which model would be best to use.  

In this project, TNBC cell lines developed from patients were used as a model to 

study human breast cancer in vitro and in vivo to examine the effects of combination 

Nutlin-3a and carboplatin treatment. MDA-MB-231 and MDA-MB-468 cells were 

purchased from American Type Tissue Culture (ATCC). Both of these adenocarcinoma 

cell lines were developed from metastatic pleural effusions. Due to their highly 

tumorigenic ability, the MDA-MB-231 cells have been used by many laboratories to 

study TNBC primary tumors.  For the in vivo studies in this thesis, we utilized the 

TMD231 cell line, which was derived from the parental MDA-MB-231 cell line 17. The 

TMD231 cell line was a kind gift of Harikrishna Nakshatri (IUSM) and was established in 

his laboratory as a cell line that grows consistently in the appropriate microenvironment 

(i.e. mammary fat pad) and has a propensity to metastasize to the lung.  The TMD231 

cell line is more aggressive and has increased growth rates in culture compared to the 

parental MDA-MB-231 cells. To generate the TMD231 cells, MDA-MB-231 cells were 

implanted into the mammary fat pad of Nude mice, and the tumors were allowed to 

grow for a period of 6 weeks. The tumors were resected, dissociated, and grown in 

culture. The surviving cells became known as the TMD231 for ‘tumor’ MDA-MB-231 cells 

(Figure 1). In vivo models of metastasis to lungs, bone, and brain have been studied 
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using either tail vein injections or intracardiac injections of the cells into mice. The MDA-

MB-468 cells are less invasive in vivo compared to the TMD231 cells, and typically 

metastasize to the lymph nodes following mammary fat pad implant 18. Both the MDA-

MB-231 (mtp53 R280K) and MDA-MB-468 (mtp53 R273H) cells have missense 

mutations within p53 in the DNA binding domain leading to abnormally functioning p53 

19. The MDA-MB-231 cells have heterozygous mutations in BRAF and KRAS and 

homozygous mutations in TP53, CDKN2A, and NF2 20. The MDA-MB-468 cells express 

homozygous mutations in PTEN, RB1, SMAD4, and TP53 20. A summary of the cellular 

model systems can be found in Table 1. These cell lines were used to explore to what 

extent nutlin3a could decrease resistance to carboplatin and to evaluate potential 

mechanisms of action associated with this promising combination therapy.  
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Figure 1. TMD231 triple-negative cell line is derived from MDA-MB-231 parental cells. 

Nude mice were implanted with 1x106 parental MDA-MB-231 cells into the mammary 

fat pad, and the tumors were allowed to grow for 6 weeks. Tumors were surgically 

resected and grown in culture and expanded forming the TMD231 cell line after the 

‘tumor’ MDA-MB-231 cells.  
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Table 1. Cellular models of triple-negative breast cancer. Both MDA-MB-231 and MDA-

MB-468 cell lines were derived from human triple-negative breast cancer samples. Both 

cell lines have mutations in the DNA binding domain of p53 as well as other mutations 

that may play a role in dysregulation of signaling pathways required for growth, survival, 

and metastasis.  
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While in vitro experiments are clearly important for screening novel therapies 

and for interrogating potential therapy-mediated mechanisms, the need for further 

exploration using animal models is also very important for studying pharmacokinetic 

and pharmacodynamic relationships, efficacy, biomarker development, and off-target 

toxicity. With the generation of highly immune-compromised mouse models, xenograft 

animal models in which human cancers are implanted in mice have improved greatly 

over the years. Ectopic tumors describe tumors that are implanted and propagated in an 

anatomical location of the animal that does not represent the original 

microenvironment of the primary tumor tissue type. For example, a flank tumor of 

breast cancer cells would be considered to be an ectopic tumor. Conversely, if the 

tumor were located within the tissue of origin such as the mammary fat pad for breast 

cancer, the tumor would be considered to be an orthotopic tumor. Initial human cancer 

mouse models utilized Nude athymic mice. These mice are somewhat immune 

compromised compared to other mouse strains. However, Nude mice still have an intact 

innate immune system with circulating natural killer (NK) cells 21. Another downside is 

hematopoietic cancer cells do not engraft efficiently in Nude mice. Nod/scid mice were 

developed following the development of Nude mice to provide an enhanced immune-

compromised mouse strain better equipped to study human cancers. Nod/scid mice 

produce defective NK cells; however, these mice have a high incidence of thymic 

lymphoma and ultimately a short lifespan 22. While the Nod/scid mice produce defective 

NK cells, there are still some functioning NK cells 23. NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) 

mice were developed more recently in an effort to create a mouse strain that would be 
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suitable to study human hematopoietic stem cells. NSG mice allow for the engraftment 

of human peripheral blood and bone marrow 23. NSG mice do not develop NK cells and 

have a very low incidence of thymic lymphoma with increased life expectancy compared 

to Nod/scid mice 23. With these changes in immune system functions, the NSG mouse 

strain has been an ideal mouse model to study human cancers since there are less 

immune cells able to inhibit the human tumor engraftment. While mouse models allow 

for a more clinically relevant model, there are still disadvantages to using mouse 

models. While there is a tumor microenvironment in vivo, it is not a complete tumor 

microenvironment that one would find in humans due to the lack of immune and 

inflammatory cells as well as the fact that it is a mouse cell microenvironment. The 

immune system of mice must be suppressed in order for the human tumors to grow and 

there have been numerous studies to show the effects of the immune system on 

cancers. There are ongoing efforts to provide animal models with a humanized immune 

system 24.  

The use of animal models allows for tumor growth and metastasis to be 

evaluated as well as the efficacy of drug treatment strategies. While there continues to 

be great discussion on the predictive value of mouse models in regards to clinical 

treatment, it is clear these models offer an opportunity to gain an understanding of 

pharmacokinetics (PK) and pharmacodynamics (PD), assess off target effects, and 

demonstrate the therapeutic potential and promise of new treatment strategies for 

cancer. However, animal studies are costly and therefore, appropriate preliminary data 

is needed before moving forward with in vivo animal models. Also, the personnel with 
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the appropriate training need to be utilized so that the animal study is completed in the 

most ethical manner possible. Pharmacokinetic studies of the drugs of interest need to 

be performed as well as animal model validation. The tumor growth kinetics need to be 

evaluated in order to properly assess tumor take rate and variability of base line tumor 

sizes, which ultimately dictate numbers of animals that must be included on a given 

study. The use of animal studies also allows for the drug dosing treatment strategy to be 

evaluated for drug efficacy, normal tissue toxicity in the mice as well as the evaluation 

of the pharmacokinetic properties of the compound in the mice and pharmacodynamic 

effects on the tumor. Additionally, with the use of in vivo models, there exists a tumor-

extracellular matrix interaction that is lacking with traditional in vitro models, as well as 

the appropriate cell-matrix interactions and fluidics with the circulatory system. The 

tumor cells are able to shed naturally into the circulatory system and seed in near and 

distant locations, which better represents what occurs in human disease.  

There are several types of clinical imaging used to visualize tumors including X-

rays, CT scans, MRI, and PET scans. X-ray images are produced due to differential 

absorption of x-rays by different tissues. X-rays can be used to in chest radiographs and 

mammograms. Mammograms use X-rays to look for tumors in the breast area. Tumors 

in the lungs can be visualized easily due to the fact that air absorbs the least amount of 

X-rays, and therefore, the chest often looks black. However, tumors would appear 

shadowy on the films. Computed tomography (CT) scans are computer-controlled X-rays 

forming 2D mages. Multiple scans can be collected forming a 3D picture allowing for the 

size and depth of a tumor to be evaluated. Magnetic Resonance Imaging (MRI) utilizes 
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radio waves in combination with a strong magnetic field. Tissues differentially emit radio 

waves allowing for 3-dimensional images to be visualized. Positron emission 

tomography (PET) scans utilizes nuclear imaging. Low amounts of radioactive sugar 

substances are taken into the body, and when these radioactive substances collect in 

areas of the body and the sugar is metabolized, these collections can be visualized in the 

images. PET scans are more beneficial to detecting larger tumors than small tumors due 

to the nature of the sugar metabolism.  

With the use of animal models, there needs to be sensitive and non-invasive 

methods to determine tumor burden. With in vivo studies, it is more challenging to 

image mice not only due to their small size but difficulty for high throughput imaging so 

that sufficient sample numbers can be generated. Additionally, the cost of small animal 

imaging is quite high per animal. To this end, the need for non-invasive small animal 

imaging that is feasible and cost effective is needed. Bioluminescent imaging (BLI) is a 

sensitive manner in which to measure tumor burden. Tumor cells, which stably express 

luciferase via lentiviral vectors, would be implanted into mice. At the time of imaging, 

mice are injected with the enzyme substrate, luciferin, to be catalyzed by luciferase 

present in the tumor cells. The tumor cells express luciferase, which when exposed to 

luciferin, use ATP and oxygen and catalyze two chemical reactions resulting in light 

being emitted. The light can then be detected by in vivo imaging. The peak of light 

emission can be used to determine the amount of tumor burden. Bioluminescent 

imaging is quite sensitive with signal detected from very small tumor burdens 25. 

However, there are some drawbacks to this method of in vivo animal imaging. The basis 
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of bioluminescent imaging is that the substrate, luciferin, reaches the tumor at maximal 

capacity and while this may be true for tumors at baseline, once therapy ensues, the 

blood supply to the tumors could vary greatly mouse to mouse. Differences in blood 

flow could limit uptake of luciferin and produce confounding data. The blood supply to 

tumors is often leaky and the blood pressure going to the tumor could be a lot different 

than that of the rest of the mouse. There is no way of knowing if the whole tumor is 

exposed to the substrate. Also, bioluminescent imaging can be lengthy and stressful to 

the mouse due to the fact that every tumor will reach the peak of bioluminescence 

emission at a different rate; therefore, multiple snapshots over a predetermined time 

frame (typically 20-45 minutes) need to be taken to evaluate bioluminescent signal. 

With bioluminescent imaging, the imaging times can be quite lengthy compared to 

other imaging modalities, which is an increased stressor to the mice due to long periods 

of time that they are exposed to anesthesia.  

Fluorescent imaging improves upon some of the drawbacks of BLI. A fluorescent 

protein of choice is stably expressed in cancer cells. The excitation and emission spectra 

would be evaluated for optimal use with the optical imaging platform. The use of optical 

imaging would allow for the substrate injection to be removed. In optical imaging, the 

imager has a laser component that acts to excite the fluorescent protein out of the 

resting state into the excited state. As the excited protein moves back to the resting 

state, the protein emits energy, which can be captured and measured. The fluorescent 

intensity would be the read out value for the in vivo imaging. This method would be 

non-invasive and more time saving as a single fluorescent imaging scan can take around 
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5-10 minutes, which is significantly less time than bioluminescent imaging (20-45 

minutes) and ultimately less time under anesthesia for the mice. Fluorescent proteins 

that are in the near-infrared (NIR) spectra would be the best choice for fluorescent 

protein as there is less fluorescent signal lost to surrounding tissues as well as reduced 

autofluorescence 26. However, several fluorescent proteins in the red spectra including 

E2-Crimson 27, mCherry 28, and mPlum 28 have been successfully used for in vivo imaging. 

A disadvantage to fluorescent imaging is the limiting factor of the depth of signal. It is 

unclear at this time the depths to which fluorescent signal can be measured. In some 

animal models, windows are created in the skin to image organs within the mice. Also, 

the sensitivity of the optical imaging apparatus will also need to be validated for each 

fluorescent protein used. Additionally, we have seen some instances in which the 

fluorescent protein levels leads to cellular toxicity. There are clearly advantages and 

disadvantages to both types of in vivo imaging. However, some of these are model 

dependent and validation is necessary for any type of animal model and imaging 

approach.  
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Chapter 3. Targeting the Mdm2 Signaling Network 

 

Targeting the mouse double minute 2 (Mdm2) signaling axis is a novel 

therapeutic approach in cancer since Mdm2 is a multi-faceted protein involved in 

determining cell fate. The mdm2 gene was first described as the gene responsible for 

transforming 3T3 cells 29. In the spontaneously transformed 3T3 cells, it was found that 

the cells expressed 25-30 copies of paired, acentric chromatin bodies, which are known 

as double minutes (DMs). The cell line became known as 3T3-DM for the increased 

levels of double minutes 29. The genes responsible for the production of the double 

minutes was determined to be mdm1 and mdm2 29. Overexpression of mdm2 in cell 

lines led to tumor development in Nude mice showing the growth advantage of mdm2 

overexpressing cells 30. mdm2 knockout mice are embryonic lethal; however, dual 

knockout of p53 results in viable offspring 31,32. Over a third of sarcoma tumors have 

overexpression of Mdm2 while maintaining wild-type p53, which would lead to 

decreased functionality of p53 due to the high levels of Mdm2 33,34. Mdm2 is often 

overexpressed in tumors and in a p53-independent manner can lead to increased 

genome instability by inhibiting Nbs1 function required for repair of DNA double-strand 

breaks 35. There is mounting evidence demonstrating the important role Mdm2 has in 

cell growth regulation and cancer.  

Mdm2 has been described as an oncogene since increased levels of mdm2 led to 

tumor development in nude mice 30. Mdm2 has been found to be overexpressed in a 

number of tumor types 36. Specifically in breast cancers, studies have shown Mdm2 
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protein levels and mdm2 gene amplifications ranging from 10-60% with some studies 

indicating a worse prognosis with overexpression of Mdm2 or gene amplification 36. 

There are also numerous studies suggesting that overexpression of Mdm2 leads to 

increased distant metastasis in vivo 36. A proposed mechanism by which Mdm2 

upregulated metastasis was through a vascular endothelial growth factor (VEGF) 

dependent manner in which increased Mdm2 led to increased VEGF production, which 

led to increased metastatic potential 36. Additionally, it was shown in breast cancer 

patients that Mdm2 levels correlated with disease-free survival with Mdm2 

overexpression leading to decreased survival 37. Chen and colleagues also showed a 

direct relationship between Mdm2 levels and matrix metalloproteinase 9 (MMP9) levels 

in which increased Mdm2 led to increased MMP9 and increased cell migration and 

invasion in vitro 37. Mdm2 plays an important role in cell regulation; however, when 

Mdm2 is dysregulated, the oncogenic functions of Mdm2 can lead to increased 

tumorigenesis.  

The mdm2 gene is located on chromosome 12 and encodes for a 491 amino acid- 

protein with several different domains (Figure 2). Mdm2 has two different promoters, 

P1 and P2, which encode for a shorter, 75kDa, and full-length, 90kDa, proteins, 

respectively. The P1 promoter encodes for a housekeeping version of the protein while 

the P2 promoter leads to full-length protein, which is regulated by p53-mediated 

signaling 38,39 The p53 binding domain of Mdm2 is located at the N-terminal of the 

Mdm2 protein within a deep hydrophobic pocket. This hydrophobic pocket is where 

Mdm2 antagonist Nutlin-3a was designed to bind thus inhibiting the binding of Mdm2 to 
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p53 40,41. Mdm2 is regulated by numerous post-translational modifications, which help 

to determine different cellular processes 42. Mdm2 also has nuclear localization signal 

(NLS) and nuclear export signal (NES) domains, which are posttranslationally modified to 

signal the movement of Mdm2 in and out of the nucleus. It has been shown that 

phosphorylation of S166 and S186 located near the NLS and NES domains of Mdm2 by 

Protein kinase B (Akt) leads to Mdm2 localization to the nucleus 43,44. Mdm2 is able to 

monoubiquitinate p53 while p300 is necessary for polyubiquitination of p53.The C-

terminal RING domain is important for Mdm2 E3 ubiquitin ligase activity to negatively 

regulate p53 due to the interaction of zinc with the RING finger domain 45-48. Within the 

Acidic domain, there is a cluster of phosphorylation sites (Serines 240, 242, 246, 253, 

256, 260, 262), which under normal conditions are phosphorylated. However, following 

DNA damage, these sites become hypophosphorylated leading to decreased p53 

degradation but does not affect the ability of Mdm2 to ubiquitinate p53 49. There are 

upstream effectors that modulate Mdm2 activity including alternate reading frame 

protein (Arf) and Ataxia telangiectasia mutated (ATM), which are important for Mdm2 

localization from the nucleus and phosphorylation-mediated inhibition of p53 

degradation, respectively 50. ATM also indirectly leads to the phosphorylation of two 

tyrosine residues through c-abl, which is also necessary to allow levels of p53 to rise 

following DNA damage 51. The c-abl-mediated phosphorylation of Y394 leads to 

inhibition of ubiquitination of p53 by Mdm2 as well as inhibition of p53 nuclear exports 

52. Also, phosphorylation of Y276 increases interactions with Arf leading to increased 

Mdm2 in the nucleus and decreased p53 turnover 53. Mdm2 plays a role in a large 
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signaling network mediated by numerous effectors and binding partners, which can 

determine certain cell fates 42.   
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Figure 2. Mdm2 protein has several domains and posttranslational modification sites. 

Mdm2 is an important protein involved determining cell through its interaction with 

numerous protein-binding partners. One of the main roles of Mdm2 is acting as an E3 

ubiquitin ligase that negatively regulates p53 in cells. Interestingly, Mdm2 binds p73, 

which is a family member of p53; however, Mdm2 interaction does not lead to the 

degradation of p73. It appears as though Mdm2 binding to p73 leads to sequestration of 

p73 inhibiting normal functions of p73. Mdm2 has both a nuclear localization signal and 

nuclear export signal so that Mdm2 can localize to both the cytoplasm and nucleus. The 

N-terminal has the p53-binding domain in which Mdm2 can bind to the N-terminal of 

p53 and p73. Nutlin-3a binds to the hydrophobic pocket of Mdm2 in which p53 normally 

binds, thus inhibiting p53 binding as well as p73α, E2F1, and Hif-1 α. The inhibition of 

the interaction of Mdm2 and Hif-1α leads to decreased VEGF levels, which is important 

in angiogenesis signaling. Studies have shown that in p53 null cells, Mdm2 inhibits E2F-

mediated apoptosis through regulating distribution of DP-1 within the cell. The RING 

domain is important for Mdm2 for the E3 ubiquitin ligase activity. Within the Acidic 

domain, there is a cluster of phosphorylation sites (Serines 240, 242, 246, 253, 256, 260, 

262), which under normal conditions are phosphorylated. However, following DNA 

damage, these sites become hypophosphorylated, which leads to decreased p53 

degradation but does not affect the ability of Mdm2 to ubiquitinate p53.  
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 Mdm2 is a multi-functional protein and was first described to physically interact 

with the tumor suppressor p53 54. Mdm2 is an E3 ubiquitin ligase that acts as a negative 

regulator of p53. Under normal conditions p53 levels are relatively low in the cell. When 

the cells are stressed, p53 levels rapidly rise allowing for p53-mediated signaling. Once 

the stress is removed, Mdm2 acts to negatively regulate p53 by ubiquitination of p53 

and targeting it for degradation by the proteasome 54. Following DNA damage, ATM is 

able to phosphorylate Mdm2 at S395, which leads to the inhibition of p53 export from 

the nucleus as well as decreased degradation of p53 42,55-57. Additionally, p53 plays a 

role in this negative feedback loop by activating the transcription of Mdm2 and thus 

negatively regulates itself 58. Mdm2 can also ubiquitinate itself leading to the reduction 

of Mdm2 levels in the cell 50. Interestingly, Mdm2 binds p73, which is a family member 

of p53; however, Mdm2-p73 interaction does not lead to the degradation of p73 59-61. It 

appears as though Mdm2 binding to p73 leads to sequestration of p73 inhibiting normal 

functions of p73. The inhibition of the interaction of Mdm2 and Hif-1α via Mdm2 

protein-protein interaction inhibitors such as Nutlin-3a, ultimately leads to decreased 

VEGF levels, which is important for angiogenesis 62. Studies have shown that in p53 null 

cells, Mdm2 inhibits E2F-mediated apoptosis through regulating distribution of DP-1 

within the cell. Additionally, Mdm2 can be regulated by the adapter protein, 14-3-3σ, 

where decreased levels of 14-3-3σ leads to increases in Mdm2 protein levels 63. 

Interestingly, in the MDA-MB-231 breast cancer cell line, it has been shown that 14-3-3σ 

is highly downregulated 64, which may explain the increased basal Mdm2 protein levels 

in the TMD231 cells (Figure 17). The interaction of Mdm2 and protein binding partners 

 23 



is tightly regulated and dysregulation can lead to inhibition of several signaling pathways 

including apoptosis, metastasis, and invasion, which can have great implications within 

cancers. Targeting the Mdm2 signaling axis, as a possible therapeutic approach, would 

lead to a multi-targeted approach due to the fact that Mdm2 is involved in several 

different signaling pathways.  

Vassilev and colleagues designed a small molecule inhibitor, Nutlin-3a, which 

was initially characterized as blocking protein-protein interactions (PPIs) between 

Mdm2 and p53 40. There are three chemical moieties of Nutlin-3a that were designed to 

be similar to three key residues of p53 (Phe19, Trp23, and Leu26), which binds into the 

hydrophobic pocket of Mdm2 40. Nutlin-3 exists as a chiral enantiomer with enantiomer-

a and enantiomer-b 40. Enantiomer-a was the active compound, whereas, enantiomer-b 

was about 150 times less active 40. Therefore, throughout our studies, we elected to 

continue our studies using purified Nutlin-3a instead of a racemic mixture of Nutlin-

3a/b. Mdm2 also interacts with p73, E2F1, and hypoxia inducible factor-1α (Hif-1α) and 

modulates their downstream effector functions. The interactions of Mdm2 with p73, 

E2F1, and Hif-1α are also inhibited by Nutlin-3a binding 62,65,66. p73, E2F1, and Hif-1α 

share sequence homology with p53 in the region that binds to Mdm2 and thus, Nutlin-

3a would inhibit the binding of Mdm2 from these binding partners 62. Due to the 

numerous binding partners of Mdm2 resulting in a multi-targeted approach, we elected 

to use Nutlin-3a as a research tool to better understand how modulation of the Mdm2 

signaling axis in combination with chemotherapeutic drug, carboplatin, may lead 

increased cell death in triple-negative breast cancers in a mutant p53 background. 
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It is estimated that p53 is mutated in about 30% of all cancers with 60% of basal 

TNBCs bearing mutations in p53 67,68. Approximately 90% of mutations in p53 occur in 

the DNA binding domain with ‘hotspot’ areas; whereas, p73 is rarely mutated in cancers 

69,70 (Figure 3). Additionally, p53 also has been shown to exhibit gain-of-function 

mutations, which further antagonize other tumor suppressing capabilities of cells. 

Specifically, Xu and colleagues showed that some forms of mutant p53 (mtp53) (R282W 

and R110P) led to increased aggregation of mtp53 with p73 in perinuclear aggregates 

causing inhibition of p73 function 71. This gain of function ability of mutant p53 would be 

interesting to study in our model system to see if the p53 mutation in the MDA-MB-231 

(R280K) cells plays a similar role in co-aggregation with p73. Since it has been shown 

that Nutlin-3a inhibits the binding of Mdm2 from p73, E2F1, and Hif-1α, we elected to 

examine the p53-independent functions of Nutlin-3a in combination with clinically 

relevant chemotherapeutic, carboplatin. 

Both p53 and p73 share sequence homology in key domains including the 

transactivation (30%), DNA binding (60%), and oligomerization (38%) domains (Figure 3) 

72. The N-terminal transactivation (TA) domain of p53 and p73 contain the region that 

binds to Mdm2 41. The DNA binding domain is important in the activation of genes 

important in pro-apoptotic signaling. The oligomerization domain is important for 

protein dimerization allowing for proper protein function 73,74. Lau and colleagues 

showed that when cells treated with Nutlin-3a, the binding of Mdm2 from p73 was 

inhibited leading to p73-mediated induction of pro-apoptotic downstream targets and 

increased apoptosis in cells lacking wild-type p53 66. It has also been shown that Mdm2 
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binding to p73 leads to antagonism of p73 signaling but does not result in the 

degradation of p73 59-61. Since Mdm2 does not act as an ubiquitin ligase of p73, others 

have shown that p73 is regulated by Hect ubiquitin-protein ligase, Itch, which results in 

p73 degradation by the proteasome 75. Runt-related transcription factor (Runx) and Yes-

associated protein (Yap1) form a complex that is able to bind to the promoter of Itch 

and increase protein levels resulting in decreased levels of p73 76. Following DNA 

damage, the levels of Itch are reduced through c-abl phosphorylation of Y357 of Yap1 

leading to the inhibition of Yap1 and Runx interaction, which inhibits their activity at the 

promoter of Itch, allowing the levels of p73 to rise enabling pro-apoptotic gene 

upregulation 75,76. Additionally, following DNA damage, Yap1 has been shown to act as a 

transcription co-activator by forming a complex with p73 and Probable transcription 

factor (PML) and helps to stabilize p73 and promotes binding to pro-apoptotic gene 

promoters including Bcl2-associated protein X (Bax) 77. Yap1 plays dual roles in the cell 

by mediating the inhibition of Itch upregulation as well as stabilizing p73 and increasing 

upregulation of pro-apoptotic gene levels.  
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Figure 3. p53 and p73 have similar protein structure. Family members, p53 and p73, 

share sequence homology in many key domains including the transactivation (30%), 

DNA binding (60%), and oligomerization (38%) domains. The N-terminal transactivation 

domain contains the protein region that binds to Mdm2. The DNA binding domain is 

important in the activation of genes important in pro-apoptotic signaling. The 

oligomerization domain is important for protein dimerization, which allows for proper 

protein function. 90% of mutations in p53 occur in the DNA binding domain; whereas, 

p73 is rarely mutated in cancers.  

  

 27 



p73 is a family member of p53 and has similar functions relating to the induction 

of pro-apoptotic genes in response to cellular stress 78,79. p73 has several different N-

terminal splice variants in which isoforms lacking the transactivation domain (ΔNp73) 

act as negative regulators of the transactivation domain containing p73 C-terminal 

isoforms (TAp73) 72. The TAp73 isoforms have similar functions to p53 72. The ΔNp73 

isoforms act as negative regulators of transactivating p73 isoforms by inhibiting p73 and 

by competing for DNA binding sites 80,81. Mice lacking all p73 isoforms exhibited 

profound neurological deficiencies indicating the importance of p73 during 

development 80. Jost et al. showed that the p73α isoform has pro-apoptotic functions 78, 

and Melino et al. showed that the p73α isoform has functional transactivation function 

leading to the induction of pro-apoptotic genes. 79. Since the p73α isoform has been 

shown by numerous laboratories to be important for pro-apoptotic signaling, we 

elected to specifically focus on this isoform throughout our studies. When 

overexpressed, p73α has been shown to induce apoptosis and cell cycle arrest as well as 

having similar p53-target genes in relation to apoptosis and cell cycle arrest including 

the cyclin-dependent kinase (CDK) inhibitor, p21, Growth Arrest and DNA Damage-

inducible 45, gadd45, p53 up-regulated modulator of apoptosis (PUMA), and Bcl2-

associated protein X (Bax) through direct and indirect methods 78,79,82. Following both 

genotoxic and non-genotoxic stress signals, GADD45 is quickly activated and mediates 

pro-apoptotic, cell cycle arrest, and DNA repair pathways 83. Melino and colleagues 

showed that p73-mediated apoptosis occurred through upregulation of PUMA, which in 

turn led to the mitochondrial translocation of Bax and subsequent cytochrome C release 
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79. Bax is a pro-apoptotic Bcl-2 family member involved in the intrinsic apoptotic 

pathway, and stress signals can lead to oligomerization of Bax monomers and 

translocation to the mitochondria leading to the release of cytochrome C 84. Free 

cytochrome C binds to Apoptotic protease activating factor 1 (Apaf-1) leading to the 

formation of the apoptosome and activation of pro-caspase-9 84. This activation of pro-

caspase 9 to active caspase-9 leads to a caspase signaling cascade in which caspase-3, -

6, and -7 are activated leading to apoptotic cell death 84.  

It was also shown that p73 is phosphorylated at Y99 by c-abl following DNA 

damage, which leads to increased p73 protein stabilization as well as increased protein 

levels in some cell systems 85-87. Specifically in cells where p53 is not functioning 

normally, there have been links between the lack of p53 and levels of p73. In cells where 

p53 was mutant or reduced with siRNA, p73 levels were increased, which was regulated 

at the transcription level by binding of E2F1 at the promoter region of TAp73 88. In the 

context of DNA damage, there are several proteins that mediate the upregulation of 

p73. It has been shown that Chk1 and Chk2 kinases are important drivers of p73 

upregulation, which in turn are also important for driving E2F1-mediated signaling 

followed by E2F1-mediated upregulation of p73 89.  

The cyclin-dependent kinase inhibitor, p21 also known as p21 WAF1/Cip1, is an 

important signaling mediator in cell cycle signaling by promoting cell cycle arrest 

following stress signals. p21 inhibits the activity of the cyclin-dependent kinases CDK1 

and CDK2, which leads cell cycle arrest in S and G2 phases of the cell cycle 90. p21 also 

acts to inhibit cell proliferation by competing for the DNA polymerase-δ binding site of 
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proliferating cell nuclear antigen, PCNA, which ultimately leads to inhibition of DNA 

synthesis 90. p21 can also bind to E2F1 and inhibit the ability of E2F1 to upregulate cell 

proliferation transcription targets 90. While there are several p53-dependent mediators 

of p21 upregulation including the HRAS-Raf-MapK pathway, there are several p53-

independent drivers of p21 upregulation 90. Since our model system is utilizing cells with 

mutant p53, the p53-indepenent upregulation of p21 is of particular importance. p21 

gene levels can be upregulated through retinoid and vitamin D receptors as well as 

several transcription factors including p73, specificity factor 1 and 3 (SP1 and Sp3), and 

Signal Transducers and Activators of Transcription (STATs) 90. There are several links 

between major players p73, E2F1, and mutant p53 following DNA damage. These 

proteins may drive p21 levels and activity leading to cell cycle arrest and ultimately 

apoptosis in our model system if the levels of DNA damage and stress surpass DNA 

damage stress thresholds set by the cell.  

Ambrosini and colleagues showed that the use of Nutlin-3a inhibited Mdm2 from 

binding to E2F1 and combined with DNA damaging drug, cisplatin, there was increased 

cytotoxicity through E2F1-mediated signaling 65. The use of E2F1 siRNA led to decreased 

amounts of apoptosis in combination Nutlin-3a and cisplatin treated cells 65. E2F1 is a 

transcription factor that plays an important role in cell proliferation, cell cycle, and 

apoptosis depending differential cell signaling 91. Following DNA damage, E2F1 is 

activated and can lead to the transactivation of pro-apoptotic genes including Apaf1 and 

p73 91. It has been shown that Mdm2 inhibits the pro-apoptotic functions of E2F1 

through interplay between Mdm2, E2F1 and DP-1 in the absence of p53 92. Some studies 
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have shown that when E2F1 is knocked out, mice form spontaneous tumors suggesting 

that E2F1 may play a role as a tumor suppressor 93. LaRusch and colleagues also showed 

that Nutlin-3a inhibits Mdm2 from binding to Hif-1α and thus led to decreases in VEGF 

62. Decreased VEGF production would be important in an in vivo setting due to the 

necessity for tumors to form new blood vessels to support prolonged tumor growth 94.  

The combined protein-protein interactions with Mdm2, p53, p73, E2F1, and Hif-

1α that are inhibited by the small molecule inhibitor, Nutlin-3a, may lead to a multi-

targeted approach to treating cancer especially when coupled with clinically relevant 

DNA damaging drugs like carboplatin since many of these binding partners are involved 

in DNA damage responses. There are five major types of DNA repair mechanisms 

including nucleotide excision repair (NER), base excision repair (BER), mismatch repair 

(MMR), non-homologous end joining (NHEJ), and homologous recombination (HR). 

Briefly, NER repairs large, bulky lesions, which cause distortions in the DNA helical 

structure caused by agents like platinums or photoadducts from UV damage 95. NER is 

primarily the DNA repair pathway utilized by cells to repair platinum induced damage. 

BER repairs single strand breaks (SSBs), chemically altered bases as a result of oxidative 

stress, and abasic sites 95. MMR removes incorrect nucleotides on the opposite DNA 

strand often caused by error prone polymerases, which is also utilized in repairing 

platinum based DNA damage 95,96. NHEJ occurs when there are DSBs induced by ionizing 

radiation, oxidative free radicals, and mechanical stress 95. HR also repairs DSBs when 

there is strong sequence homology. HR occurs during late S-G2 phases of the cell cycle 

since sister chromatids can be used as a template 95. HR can also repair damage caused 
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by platinum agents when double strand breaks occur 96.  

The role of Mdm2 in DNA damage and repair in relation to tumorigenesis is an 

emerging area of study. Mdm2 may play a role in NER through Arf mediated signaling. 

Arf is necessary in the absence of p53 to stimulate xeroderma pigmentosum, 

complementation group C (XPC) levels, and XPC is involved in a multi-protein complex 

that is needed for recognition of the DNA damage 95. Arf can bind and inhibit Mdm2; 

however, the mechanism of by which Mdm2 may play a role in NER is not well defined 

95. Also, DNA polymerase eta (PolH) is a Y-type polymerase and is an important protein 

involved in NER. Jung and colleagues showed that Mdm2 acts as an E3 ubiquitin ligase 

leading to polyubiquitination of PolH, which results in degradation through the 

proteasome 97. It was also shown that Mdm2 acts to decrease PolH levels both at basal 

and UV-induced DNA damage conditions 97. Interestingly, there has been recent data to 

suggest that Mdm2 plays a role in HR DNA repair by antagonizing the Mre11, Rad50, 

and Nbs1 (MRN) complex 35. Mdm2 binds directly to Nbs1 and inhibits its function in the 

MRN complex 35. DNA damage persists due the fact that the initial sensing mechanism 

of the MRN complex is unable to continue signaling at sites of DNA damage 35. 

Carboplatin is effective at killing cancer cells by causing DNA damage imparted by 

platinum (Pt) adduct formation in DNA. Platinum agents lead to Pt adducts covalently 

bonding to N7 position of purine bases resulting in intrastrand and interstrand DNA 

crosslinks. DNA repair resulting from platinum-induced DNA damage could be inhibited 

in cells where levels of Mdm2 are increased 35.  

The role of MdmX (Mdm4) has been increasingly studied in the context of cancer 
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in recent years. The p53- and Mdm2-independent functions of MdmX have only recently 

been studied. Like Mdm2, MdmX can be upregulated in cancers, though this 

upregulation is independent of p53. Gilkes and colleagues showed that MdmX levels can 

be upregulated through mitogenic signaling mediated by K-Ras and insulin-like growth 

factor 1 (IGF-1) 98. Since it was shown that Mdm2 increases genomic instability by 

Bouska and colleagues, the authors also studied the effects of MdmX on genomic 

stability in the context of Mdm2- and p53-independence 35. Carillo and colleagues 

showed that following irradiation- (IR) induced DNA DSBs, MdmX inhibited the repair of 

DSBs independent of p53, Arf, and Mdm2 99. Carrillo and colleagues also showed that 

MdmX associated with Nbs1 independent of both p53 and Mdm2 using co-

immunoprecipitation experiments showing a direct connection between MdmX and the 

repair machinery in the MRN complex 99. Based on data from Carrillo et al.99, MdmX also 

plays a similarly important role in genomic instability as Mdm2 and may be important to 

increase our understanding of how MdmX affects cancer growth and survival. It has 

been described that in breast cancers, 27% overexpress MdmX with concurrent p53 

inactivation as well as 30% of aggressive breast cancers also have increased MdmX 

levels with mutant p53 99. It is possible there may be certain subtypes of cancers that 

have MdmX overexpression, which may affect how tumors respond to treatments.  

The overall objective of this thesis was to evaluate the therapeutic potential of a 

new combination therapy to treat TNBC. Based on front-line therapies currently being 

tested in clinical trials for TNBC, the platinum agent, carboplatin was selected for study. 

Novel drug targets need to be elucidated to improve treatment modalities especially in 
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treating aggressive cancers like TNBC. Mdm2 is an unexplored target in breast cancers. 

Histological studies have indicated that up to 56% of breast cancer biopsies contain high 

levels of Mdm2 36. In this thesis, the potentiation of carboplatin-mediated DNA damage 

in the context of blocking some aspects of Mdm2 function was investigated. 

Pharmacodynamic studies were designed to gain insight into and validate molecular 

mechanisms that based on the literature could be operative following treatment. In our 

correlative PD studies, we also sought to identify targets that could potentially serve as 

biomarkers of treatment response and efficacy for future clinical trials of TNBC.  

Nutlin-3a binds to the hydrophobic pocket of Mdm2 and inhibits the interaction 

of binding partners of Mdm2 including p53, p73, E2F1, and Hif-1α. In our model, we are 

utilizing triple-negative breast cancer cells that harbor a p53 mutation (R280K and 

R273H) in the DNA binding domain. These cancers are considered to be more aggressive 

due since there are limited targeted therapies and that mutant p53 drives cell survival 

and metastasis 100,101. Due to the interest of platinum agents in metastatic breast cancer 

trials (NCT01881230, NCT00691379, and NCT01281150) (clinicaltrials.gov), carboplatin 

was selected as the chemotherapeutic drug in which to interrogate the effect of the 

small molecule inhibitor, Nutlin-3a. Carboplatin causes DNA damage by the binding of Pt 

to DNA and leading to intra- and interstrand DNA crosslinks and indirectly DNA strand 

breaks. The hypothesis is modulation of Mdm2 signaling through inhibition of protein-

protein interactions with Nutlin-3a in combination with carboplatin-mediated DNA 

damage will lead to increased cell death. The proposed mechanism of action is that once 

Nutlin-3a is bound to Mdm2, the binding between Mdm2 and p73, E2F1, and Hif-1α is 

 34 



inhibited allowing p73 and E2F1 to activate target genes leading to an increase in pro-

apoptotic gene expression and cell death. Mdm2 levels would increase following Nutlin-

3a treatment through p73-mediated upregulation, and the amount of Mdm2 associating 

at the chromatin could increase following combination treatment. Increased Mdm2 at 

the chromatin can lead to increased Mdm2-Nbs1 interaction, which could inhibit the 

sensing of DNA damage once DNA strand breaks have occurred. This delay in sensing of 

DNA damage could lead to decreased DNA repair, which would result in an increased 

DNA damage window. As the DNA damage window increases, cell signaling mechanisms 

could lead to the determination of cell fate, and ultimately leading to cell death. The 

signaling pathways that could be modulated in our model system can be seen in detail in 

Figure 4. There is a growing consensus in the literature that the levels of Mdm2 and the 

localization of Mdm2 in the cell may dictate in part how a cell senses and responds to 

DNA damage, and whether the outcome of DNA damage will be survival or death.   
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Figure 4. Nutlin-3a and carboplatin combination treatment increases cell death by 

upregulating pro-apoptotic gene levels and inhibits DNA repair. Nutlin-3a binds to the 

p53 binding pocket of Mdm2 and inhibits the binding of p73, E2F1, and HIF1-α, which 

can enable these proteins to upregulate the transcription of pro-apoptotic genes, cell 

cycle genes, and decrease the levels of VEGF. Carboplatin causes DNA damage by 

creating intra- and interstrand crosslinks in the DNA leading to cell death. Nutlin-3a 
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potentiates carboplatin-mediated DNA damage leading to increased cell death through 

delayed DNA repair. This delayed DNA repair may be mediated by Mdm2 binding at the 

chromatin and based on studies by Dr. Christine Eischen and colleagues showing that 

Mdm2 antagonizes Nbs1, a member of the MRN complex. The MRN complex is 

important in initial DNA damage sensing and recruitment of other DNA damage 

response proteins to sites of DNA damage. Carboplatin mediated-DNA damage leads to 

activation of p73α pro-apoptotic signaling. p73-mediated signaling can lead to increased 

Mdm2 levels since p73 has been shown to bind to the Mdm2 promoter. With increased 

levels of Mdm2, there is more Mdm2 present in the cells that could bind the MRN 

complex at the chromatin. Increased binding of Mdm2 to the MRN complex leads to 

delays in DNA damage detection and thus lead to delays in DNA repair. This delay in 

repair, may allow DNA damage response elements to commit to cell death pathways 

allowing more cells to be affected by the combination treatment than by single drug 

treatments alone.  
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In future studies increased clinically relevant patient-derived xenograft (PDX) 

models and small molecule inhibitors used in clinical trials would be used to expand on 

these efficacy studies. Primary patient tumor samples could be used in mouse models to 

better understand the efficacy of the combination platinum and Mdm2 inhibitor 

treatment. Jackson Laboratories in collaboration with UC Davis Cancer Hospital are 

providing mice that harbor primary patient tumors from women with triple-negative 

breast cancer (http://jaxservices.jax.org/invivo/pdx.html). These tumors have 

undergone extensive genetic screening with gene expression profiles as well as copy 

number variation testing. These tumors would have increased clinical relevance since 

the molecular signatures are fully validated with the primary patient breast cancer 

tissue. Additionally, there are numerous Mdm2 inhibitors, which are in early phase 

clinical trials. There is a second-generation compound to Nutlin-3a, RG7112 (RO5045337 

Roche) that is in Phase I clinical trials. Additionally, there are several other Mdm2 

antagonists being studied including SD-3032b (Baiichi Sankyo Inc.), SAR4058338 (Sanofi), 

CGM-097 (Novartis), and AMG-232 (Amgen) that are currently being investigated. We 

utilized Nutlin-3a as a tool to study the mechanism at which Nutlin-3a synergizes with 

carboplatin to cause increased cell death in TNBC with mutant p53 as there is a critical 

need to find new treatments for metastatic TNBC harboring mtp53 due to the 

aggressiveness of the disease and lack of targeted therapies 100,101. The TMD231 

orthotopic NSG model used here provides a feasible pre-clinical approach to further 

determine and validate the best set of biomarkers that can be used to assess biological 

effect of the combination carboplatin and Nutlin-3a treatment. In this research, as we 
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continue to delineate the underlying mechanisms leading to cell death, incorporation of 

PDX models, and clinically utilized Mdm2 inhibitors can be used to increase the 

understanding of the benefit of using dual carboplatin and Mdm2 protein-protein 

inhibition. Additionally, it will be important to perform detailed PK/PD studies to further 

validate targets that are modulated by the dual carboplatin and Nutlin-3a treatment. 

Understanding how long and to what extent the blocking of Mdm2–p73 protein-protein 

interactions must be modulated to observe therapeutic effects will be critical for 

development of clinical trials in the future.  
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SECTION II. MATERIALS AND METHODS 

 

Chapter 1. In Vitro Studies 

 

A. Cell Culture and Reagents 

1. Cells and Cell Culture. MDA-MB-231 (ATCC® HTB-26™) and MDA-MB-468 (ATCC® 

HTB-132™) were purchased from ATCC. TMD231 cells were a kind gift of Dr. 

Harikrishna Nakshatri and were developed as described in Helbig et al. 17. TMD231 

cells were grown in MEM-α medium (Gibco®) containing 10% FBS (Atlanta 

Biologicals) and 1% HEPES (Gibco®). MDA-MB-231 and MDA-MB-468 cells were 

grown in DMEM medium (Gibco®) containing 10% FBS (Atlanta Biologicals). Cells 

were cultured at 37°C with 5% CO2.  

2. Mycoplasma Detection. Cells were tested for mycoplasma using MycoAlert™ 

Mycoplasma Detection Kit (Lonza). Cell culture medium was collected from cultured 

cell lines and if mycoplasma was present, the addition of MycoAlert™ Substrate, 

catalyzed the conversion of ADP to ATP. The levels of ATP were detected following 

the addition of the MycoAlert™ Reagent. The before (read A) and after the addition 

of the MycoAlert™ Substrate (read B) reads allowed for a ratio to be determined 

(B/A). If the ratio was above 1, the sample was contaminated with mycoplasma. Cell 

lines were tested regularly for the presence of mycoplasma and were negative. 

3. Drugs and Small Molecules. Nutlin-3a was synthesized at the IUPUI Chemical 

Synthesis and Organic Drug Lead Development Core and confirmed through HPLC-
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MS analysis. Nutlin-3a was dissolved in DMSO up to 100mM stock solutions. 

Carboplatin was purchased from Sigma and dissolved in H2O at 10mM stock 

solution. RG7112 was dissolved in DMSO with stock concentrations up to 50mM 

(ApexBio and ChemScene).  

B. Proliferation Assays 

a. Methylene Blue Proliferation Assay. The methylene blue proliferation assay was 

derived from Oliver et al. which utilized 5% methylene blue stain to stain cells in 

microplate assay 102. The assay was high throughput with sensitive measures of cells 

present and fixed to the plate. The methylene blue stain bound to negatively 

charged moieties within cells including DNA and negatively charged portions of 

proteins. In all methylene blue assays, the outermost wells of 96-well plates were 

filled with 200µL PBS to diminish the effects of plate evaporation. To determine the 

optimal cell number to seed in 96-well plates for a 5-day proliferation assay, plating 

efficiencies were completed. All cell lines were plated in 96-well plates in increasing 

cell number starting from 500 cells/well and ranging up to 4.0x103 cells/well. Cells 

were mock treated with media and allowed to grow for 5 days as a drug treatment 

would have been given. At the end of treatment, the media was aspirated and the 

cells were fixed with methanol. Then, cells were stained with 5% methylene blue 

stain, washed in DI H2O, and air dried. Plates were destained with 100-150µL 0.5M 

HCl, and absorbances were read at 610nm. Optimal absorbance values were 

between 0.7-0.9. TMD231 cells were seeded with 500 cells/well in 96-well plates. 

MDA-MB-231 and MDA-MB-468 cells were seeded with 2x103 cells/well. Cells were 
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seeded on Day -1 and treated 24 hours later on Day 0. For drug treatments, each 

plate had a vehicle control, which consisted of DMSO for Nutlin-3a and H2O for 

carboplatin. Cells were treated with increasing concentrations of Nutlin-3a (0-

120μM), carboplatin (0-100μM), or 1:1 combination (0-100μM). For the combination 

treatments, the highest concentration used was 100μM, which was comprised of 

50μM Nutlin-3a and 50μM carboplatin. For shorter treatments, cell number was 

adjusted accordingly. Each plate contained untreated media controls and Vehicle 

controls. The Vehicle controls contained the amount of vehicle in each of the highest 

drug concentrations.  

b. Clonogenic Proliferation Assay. TMD231 cells were plated at low cell density with 

50 cells per 10cm dish on Day -1. On Day 0, TMD231 cells were treated with 0-60μM 

Nutlin-3a, 0-10μM carboplatin, or 0-6μM 1:1 combination. Colonies were allowed to 

grow for 14 days. The media was removed, cells were washed with PBS, and fixed 

with methanol. Colonies were stained with 5% methylene blue stain, washed in DI 

H2O, and air dried. Visible colonies were numerated using a digital counting pen to 

ensure accurate counts.  

c. Cell Counting Proliferation Assay. TMD231 cells were seeded with on 12-well plates 

on Day -1 with 6.5x103 cells per well. On Day 0, cells were treated with 15μM Nutlin-

3a, 15μM carboplatin, or 15μM Nutlin-3a+15μM carboplatin combination, or 

appropriate dilutions of DMSO in H2O as a Vehicle control. DMSO concentrations 

were kept below 0.1% in all experiments. Later experiments also used 7.5μM Nutlin-

3a, 7.5μM carboplatin, or 7.5μM Nutlin-3a+7.5μM carboplatin combination. Each 
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treatment was completed in triplicate to ensure accurate cell counts. Each day 

following treatment, cells were photographed to visualize changes in cell number 

and cell morphology. On the day of harvest, growth medium was removed, cells 

were washed with PBS, and trypsinized with 0.05% trypsin-EDTA (Life technologies). 

Trypsinized cells were resuspended in an appropriate volume of cell culture 

medium, mixed with trypan blue, and live cells were counted via hemocytometer. 

Total cell counts were calculated.  

d. Annexin V and 7-AAD Apoptosis Assay. Annexin V readily binds to 

phosphatidylserine, which is expressed the exterior of cells when undergoing early 

apoptotic signaling. Annexin V tagged with FITC (BD Biosciences) enabled its use 

with flow cytometry. 7-AAD (BD Biosciences) was used since it is a fluorescent DNA 

marker that intercalates into DNA in GC rich areas and is indicative of cell membrane 

leakage. When cells were positive for Annexin V alone, those cells were considered 

to be undergoing early apoptosis. When cells were positive for both Annexin V and 

7-AAD, those cells were considered to be undergoing late apoptosis or necrosis. To 

measure apoptosis, Annexin V-FITC and 7-AAD was used to determine the number 

of apoptotic cells following drug treatment. TMD231 cells were seeded on 10cm 

dishes on Day -1 in normal growth medium at an appropriate cell density for the 

treatment length to ensure proper cell numbers at the end of the study. On Day 0, 

the TMD231 cells were treated with 1:1, 3:1, or 1:3 combination and corresponding 

single drug IC50 value concentrations as derived from the 5-day methylene blue 

proliferation assays. TMD231 cells were treated with 0.8μM Nutlin-3a, 0.8μM 
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carboplatin, or 0.8μM Nutlin-3a+0.8μM carboplatin 1:1 combination, 3.75μM Nutlin-

3a, 1.25μM carboplatin, or 3.75μM Nutlin-3a+1.25μM carboplatin 3:1 combination 

or 0.7μM Nutlin-3a, 2.1μM carboplatin, or 0.7μM Nutlin-3a+2.1μM carboplatin 1:3 

combination in normal growth medium for a total of 96 hours. The Vehicle control 

was DMSO +H2O. On Day 4, cells were harvested. The medium was removed and 

saved in collection tubes. Cells were washed with PBS, and the PBS was also saved to 

ensure proper analysis of all cells present in the cultures. Accumax Cell Dissociation 

Solution (Innovative Cell Technologies) was used to free adherent cells. The 

dissociated cells were added to the appropriate collection tubes and spun down to 

pellet cells. Cells were washed with PBS and spun down again. Pellets were then 

resuspended in 1X Annexin V Binding Buffer (BD Biosciences). Each sample was 

stained using 5μL Annexin V-FITC (BD Pharmigen) and 5μL 7-AAD (BD Pharmigen). 

Single and double stained cells treated with carboplatin were used as controls to set 

the gating parameters of the flow cytometer to distinguish between negative and 

positive staining. 

e. Cell Cycle. Propidium iodide (PI) staining was used to determine cell cycle analysis. PI 

intercalates into DNA allowing the DNA content in cells to be measurable by flow 

cytometry. PI cannot pass through an intact cellular membrane and therefore cells 

must be permeable during PI staining solution incubation as described below. 

TMD231 cells were seeded on 10cm dishes on Day -1 in normal growth medium at 

an appropriate cell density for the treatment length to ensure proper cell numbers 

at the end of the study. On Day 0, the TMD231 cells were treated with 3.75μM, 
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7.5μM, or 15μM Nutlin-3a, carboplatin, and 1:1 combination in normal growth 

medium. The Vehicle control contained DMSO+H2O. For the combination 

treatments, 3.75μM combination was comprised of 3.75μM Nutlin-3a+3.75μM 

carboplatin so that the combination treatments have equal amounts of each drug as 

the single drug treated cells. On Day 3, cells were harvested. The medium was 

removed and saved in collection tubes. Cells were washed with PBS, and the PBS 

was also saved to ensure proper analysis of all cells present in the cultures. Accumax 

Cell Dissociation Solution (Innovative Cell Technologies) was used to free adherent 

cells. The dissociated cells were added to the appropriate collection tubes and spun 

down to pellet cells. Supernatant was removed, and cells were washed with PBS 

before spinning down again. Pellets were resuspended in PBS and mixed with PI 

staining solution: 0.1% (v/v) Triton X-100, 10 µg/mL PI, 100 µg/mL DNase-free 

RNaseA. Cells were incubated for 1 hour at room temperature before analysis with 

flow cytometry.  

C. Molecular Biology Assays 

1. Lentiviral Transduction. Cells were typically transduced with a multiplicity of 

infection (MOI) of 50. That is, there were 50 viral particles to each cell, and the total 

amount of viral supernatant was calculated and used in the transduction. When 

using highly concentrated (>107) lentiviral supernatants, cells were transduced for 4 

hours. Lentiviral supernatant containing media was removed and replaced with 

fresh media. Retronectin-coated plates were used to enhance transduction 

efficiency 103. Flow cytometry was used to validate the presence of fluorescent 
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proteins. Appropriate settings were used for optimal detection of the fluorescent 

protein of choice (eGFP, mCherry, E2-Crimson). Unmarked parental cells were used 

as background controls.  

a. Lentiviral Supernatant Production. Lentiviral supernatants were produced as 

described in Leurs et al. 104. Briefly, lentiviral supernatants were produced 

following co-transfection of 293T cells with vector plasmids and env expression 

plasmids, using FuGENE 6 (Roche, Basel, Switzer- land) or Polyfect (Qiagen, 

Valencia, CA) transfection reagents according to the manufacturer’s 

recommendations. Twenty-four hours after transfection, gene expression from 

the human spleen focus forming virus (SFFV) immediate-early gene 

enhancer/promoter was used for E2-Crimson levels. Forty-eight hours after 

transfection, supernatants were collected, filtered through a 0.45µm filter, and 

stored at -80°C. Lentiviral stocks were concentrated by centrifugation (10,000 x 

g; 45 min; 4°C), and the lentiviral titers were determined using HT1080 cells.  

2. Western Blot. Cells were lysed with 1% SDS lysis buffer containing 1%SDS, 1 

Complete-EDTA free mini tablet (Roche), and 1% phosphatase inhibitor 3 (Sigma). 

Growth medium was removed from cells and washed with PBS. An appropriate 

volume of 1% SDS lysis buffer was added directly to cells on the culture plates, and 

lysates were scraped with a cell scraper. Lysates were collected and placed in 

microcentrifuge tubes. The lysates were boiled at 95°C for 8-10 minutes. Lysates 

were sonicated to dissociate any DNA. Protein quantification was determined using 

the DC™ Protein Assay (Bio-Rad) as per manufacturer’s instructions. Standard curves 
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were determined using BSA standards. Samples were stored at -80°C until ready for 

use. Westerns were run using Criterion™ TGX™ Precast 4-20% Gels (Bio-Rad). 

Running buffer was comprised of 10% 10XTG buffer (Bio-Rad) and 0.1% SDS. 

Transfer buffer contained 10% 10XTG buffer (Bio-Rad) and 20% methanol. 

Nitrocellulose membranes were blocked with 5% BSA. Antibodies were diluted in 5% 

BSA and incubated with membranes overnight. Membranes were washed with 1X 

TBS containing 0.02% Tween-20 (TBST) for a total of three 12 minute washes. All 

antibodies were diluted 1:1,000 except GAPDH, which was 1:10,000. Mdm2 (90kDa 

band) antibody cocktail included SMP14 (sc-965, Santa Cruz), 2A9 (OP155T, 

Calbiochem), 4B11 (OP143, Calbiochem). E2F1 (55kDa, KH-95, Santa Cruz), p73 

(~80kDa, A300-126A, Bethyl Laboratories) PUMA (21kDa, #4976, Cell Signaling), p21 

(21kDa, DCS60, Cell Signaling), MdmX (55kDa, ab154324, abcam) and GAPDH 

(37kDa, 14C10, #2118, Cell Signaling) were also used. Secondary HRP-conjugated 

anti-mouse and anti-rabbit antibodies were diluted 1:5,000 in 1X TBST for 1-1½ 

hours. SuperSignal West Femto Chemiluminescent Substrate (Thermo Scientific) was 

used to activate secondary antibodies and membranes were exposed with 

autoradiography film.  

a. Densitometry Measurements. Western blot densitometry was evaluated using 

ImageJ software (http://imagej.nih.gov/ij/). Blots were scanned and evaluated 

by ImageJ. All proteins of interest were normalized to appropriate loading 

control lanes and untreated controls.  
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3. Invasion Assay. Cell invasion was determined using CytoSelectTM Cell Invasion Assay 

Kit (Cell BioLabs). TMD231 cells were seeded into polycarbonate inserts with 3.5x103 

cells per insert on Day -2. Cells were serum starved overnight on Day -1. On Day 0, 

cells were treated with 7.5µM Nutlin-3a, carboplatin, 1:1 combination, or Vehicle for 

24 hours. Cytochalasin D was used as a negative control, which inhibited invasion by 

interfering with microtubule formation. The bottom chamber contained 10% FBS 

containing medium, which served as a chemoattractant. The cells that were able to 

invade through the dried basement membrane matrix layer and pore layer were 

stained and quantified using a plate reader. Concurrent cell survival assays were 

conducted with 3.5x103 TMD231 cells seeded in a 24-well plate. Cells were serum 

starved and treated in the same drug conditions as the invasion assay. To confirm 

that treatments did not cause cell death, total number of cells and cell viability via 

trypan blue staining were determined.  

4. Stable Knockdown of Mdm2. TMD231-shcontrol and TMD231-shMdm2 were a kind 

gift of Dr. Lindsey Mayo. TMD231-shcontrol and TMD231-shMdm2 cells were first 

evaluated for Mdm2 protein levels using Western blot. TMD231-shcontrol or 

TMD231-shMdm2 were grown in medium containing 2.5μg/mL puromycin to keep 

selective pressure on the cells throughout the experiments. Cells were lysed with 1% 

SDS lysis buffer and examined by Western blot. For methylene blue proliferation 

assays, the TMD231-shcontrol and TMD231-shMdm2 cells were plated with 500 

cells per well in 96-well plates and treated with 0-120μM Nutlin-3a, 0-100μM 

carboplatin, or 0-100μM 1:1 combination for 5 days. Cells were grown in medium 
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with 2.5μg/mL puromycin to keep selective pressure throughout the experiment. 

Cells were fixed and stained with methylene blue and cell proliferation was 

examined. For shMdm2 cell counting assays, the experimental design was the same 

as the TMD231 cell counting experiment as described above.  

5. Transient knockdown of p73 with siRNA. ON-TARGETplus siRNAs were purchased 

from Dharmacon (GE Healthcare). p73 siRNA constructs included:  

1. GAGACGAGGACACGUACUA 

2. GCAAUAAUCUCUCGCAGUA  

3. GAACUUUGAGAUCCUGAUG 

4. CCACCAUCCUGUACAACUU.  

Since p73 has several N-terminal and C-terminal isoforms, we BLAST searched the 

p73 siRNA sequences to ensure that proper coverage of the mRNA would be 

accomplished leading to a reduction in total p73 levels. These p73 siRNA constructs 

target p73 within the DNA binding and oligomerization domain to ensure 

knockdown of the numerous isoforms of p73. On Day -1, 5x105 TMD231 cells were 

seeded into 6-well plates, which yielded an appropriate cellular confluency on the 

day of transfection. Liprofectamine® RNAiMAX (Life Technologies) was used to 

transfect 9pmol control ON-TARGETplus Non-Targeting Pool siRNA or ON-

TARGETplus SMARTpool p73 siRNA into TMD231 cells on Day 0. The siRNA 

effectiveness was evaluated on Day 1-3 post transfection by Western blot. For 

proliferation assays, TMD231 cells were transfected on Day 0 with either control 

siRNA or p73 siRNA. On Day 1 post transfection, cells were counted and 2.5x103 cells 
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were seeded into 96-well plates. The cells were treated with 0-120μM Nutlin-3a, 0-

100μM carboplatin, or 1-100μM 1:1 combination treatments later that same day to 

increase the time that the treatment would be present in cells with reduced p73. 

Plates were incubated for a total of 3 days. DMSO and H2O were used as Vehicle 

controls. Methylene blue proliferation assay procedure was used and IC50 values 

were determined. 

6. Stable Knockdown of p73. We purchased a panel of p73 shRNA constructs from 

Sigma Mission shRNA, and they were expressed in a pLKO (Sigma) lentiviral 

backbone.  

1. TRCN0000284787 

2. TRCN0000006511 

3. TRCN0000272587 

4. TRCN0000006508 

5. TRCN0000006509 

6. TRCN0000272526 

7. TRCN0000272525 

TMD231 cells were transduced with the lentiviral vectors and positive cells 

expressing either the scrambled control or shp73 constructs were selected with 

2.5µg/mL puromycin. p73 protein levels were evaluated by Western blot. 

Throughout the shp73 experiments, cells were grown in puromycin containing 

medium to ensure usage of positive cells only. Two shp73 constructs (shp73-3-500 

and shp73-4-500) produced the highest level of reduction in p73 protein levels as 

 50 



measured by Western blot. We also utilized a scrambled control (Scr-500). TMD231-

Scr-500, TMD231-shp73-3-500, and TMD231-shp73-4-500 were seeded in 96-well 

plates and treated with 0-120μM Nutlin-3a, 0-100μM carboplatin, or 1-100μM 1:1 

combination for 5 days. DMSO and H2O were used as Vehicle controls. Methylene 

blue proliferation assay procedure was used and IC50 values were determined. 

7. Stable Knockdown of shE2F1. shRNA lentiviral constructs were purchased from 

Mission shRNA (Sigma). TMD231 cells were transduced with either shGFP or shE2F1 

constructs as described above:  

1. TRCN0000010327 

2. TRCN0000010328 

3. TRCN0000039658 

4. TRCN0000039659 

5. TRCN0000039660 

 Knockdown was evaluated by Western blot. shRNA positive cells were selected 

using 2.5µg/mL puromycin in the growth culture medium. TMD231-shGFP and 

TMD231-shE2F1 cells were seeded in 96-well plates and treated with 0-120μM 

Nutlin-3a, 0-100μM carboplatin, or 1-100μM 1:1 combination for 5 days. DMSO and 

H2O were used as Vehicle controls. Methylene blue proliferation assay procedure 

was used and IC50 values were determined 

a. shE2F1 Clonal Selection. Clones were developed using serial dilution methods. 

4.0x103 TMD231-shGFP, TMD231-327, and TMD231-328 cells were added into 

one well in a 96-well plate. In the first dilution, the cells were diluted 1:2 down 
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the first column. The first column was diluted it 1:2 across the whole plate to 

completed the second dilution. Wells with single cell colonies were then 

expanded to form clonal populations. Knockdown of E2F1 was evaluated by 

Western blot. shRNA positive cells were selected using 2.5µg/mL puromycin in 

the growth culture medium. 

8. Chromatin Association Assay. Chromatin association assays were performed in 

collaboration with Dr. Christine Eischen. We sent the TMD231 cells, FBS, drug 

aliquots, and detailed instructions in relation to cell culture and treatment 

conditions. In discussions with Dr. Eischen, we concluded this was the best way to 

inhibit as many differences between laboratories as possible. TMD231 cells were left 

untreated or were treated with 15μM Nutlin-3a, 15μM Carboplatin, 15μM Nutlin-3a 

and 15μM Carboplatin, or DMSO Vehicle control for 6 hours. Cells were harvested 

and soluble and chromatin bound proteins were separated with CSK buffer (10mM 

PIPES pH6.8, 100mM NaCl, 300mM sucrose, 1mM MgCl2, 1mM EGTA, 0.1% Triton X-

100) as previously described 105. The chromatin bound proteins were extracted with 

RIPA buffer containing protease inhibitors (1mM PMSF, 10mM BGP, 38μg/mL 

Aprotinin, 5μg/mL Leupeptin, 5μg/mL Pepstatin, 1mM NaF, 0.1mM NaVO4). Whole 

cell lysates were prepared as previously reported 106. Equal amounts of protein 

lysates (130μg whole cell and 170μg of chromatin-bound) were subjected to SDS-

PAGE. Proteins were transferred to nitrocellulose membranes and examined with 

Western blot. Antibodies were used as follows with anti-Mdm2 (3G9, 1:2000, 
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Millipore), anti-H2AX (A300-082A, 1:15,000, Bethyl), and anti-β-Actin (AC-15, 

1:5,000, Sigma), as previously reported 35. 

9. Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Cells were seeded on 

10cm dishes and treated with 15μM Nutlin-3a, 15μM carboplatin, or 15μM Nutlin-

3a+15μM carboplatin combination, or DMSO+H2O as a Vehicle control. Each 

treatment was completed in triplicate. Following appropriate time point, cells were 

lysed with modified Laird buffer (100mM Tris-HCl, pH 7.5, 5mM EDTA, 0.2% SDS, 

200nM NaCl, 100μg/mL Proteinase K) at 37⁰C 107. Total DNA was precipitated using 

one part isopropanol on a shaker. DNA was spooled and rinsed in 70% EtOH. DNA 

was dissolved in H2O and DNA concentration was determined via nanodrop. 50μg 

DNA was hydrolyzed overnight in 2.5% HNO3 at 70⁰C. Samples were diluted in 1% 

HNO3 and total platinum content was analyzed via ICP-MS. Standard curves using 

Platinum (Pt) were used, and Yttrium was used as an internal control.  

D. Statistical Analyses. IC50 values were calculated according to the linearization 

method of Chou and Talalay 108 and were used to construct isobologram graphs as 

previously described 109. Data were analyzed by one- or two-way ANOVA and 

Student’s T-test, as appropriate, with repeated measures across varying time points 

using SigmaPlot 11.2 (Systat Software, Inc.). Differences among individual pairs of 

means were determined by the Holm-Sidak post-hoc test. Kaplan-Meier survival 

plots were generated to determine any effect of treatment regimen on survival 

using SigmaPlot. Data were considered significant at p<0.05. 
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Chapter 2. In vivo Experiments 

 

A. Animal Studies. All studies were carried out in accordance with, and approval of, the 

Institutional Animal Care and Use Committee of Indiana University School of 

Medicine (Study #10463), and the Guide for the Care and Use of Laboratory Animals. 

Female NOD/scid and NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were obtained from 

the In Vivo Therapeutics Core of the Indiana University Simon Cancer Center and 

acclimated at least one week prior to commencement of the study. Animals were 

maintained under pathogen-free conditions and maintained on Irradiated Global 

2018 (Uniprim® 4100 ppm) (TD.06596, Harlan Laboratories USA) food pellets with ad 

libitum access to autoclaved, acidified tap water under a 12-hour light-dark cycle at 

22-24°C. Uniprim® food contains 275 ppm trimethoprim and 1,365 ppm of the 

sulfonamide sulfadiazine which helped to inhibit infections. 

B. Animal Strain Comparisons. NOD/scid and NSG mice were implanted with 1x106 

TMD231 cells into the mammary fat pad. Tumors were allowed to grow and caliper 

measurements were collected twice weekly to evaluate tumor growth of the 

primary tumors. Mice were sacrificed throughout the study to better understand 

longitudinal metastasis formation in the lungs. Lung metastases were examined 

following H&E staining.  

C. Fluorescent Imaging Validation Studies 

1. In vitro Imaging. TMD231-CR and TMD231 cells were counted and placed into 96-

well plates. The TMD231 parental cells were used as a control for any 
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autofluorescence. The cells were plated in PBS to reduce any noise that we may 

have encountered with fluorescence from components in the growth medium. In 96-

well plates, 4x106 TMD231 or TMD231-CR cells were plated and serial diluted 1:2 

across the plate resulting in 0.03125, 0.0625, 0.125, 0.5, 1, 2, and 4x106 cells. Each 

cell number was plated in triplicate. Imaging analysis was completed and fluorescent 

intensity was calculated.  

2. In vivo Imaging. Typical optical imaging for small animals consisted of animal being 

anesthetized in polycarbonate box with isoflurane (1-2% with 100% oxygen mix). 

Mice were shaved and depilatory cream was used to remove any remaining fur 

surrounding the primary tumor site. The mice were anesthetized using isoflurane 

gas during depilatory cream use and imaging. The mice were placed on the warmed 

imaging bed inside the Optix MX3 (ART Technologies). The muzzle was placed inside 

the built in nose cone of the imaging bed where constant isoflurane gas mixture was 

administered throughout the imaging process. Imaging proceeded with average scan 

times lasting from 5-10 minutes. Once imaging was complete, the mice were 

removed from the MX3 and placed back in their cages lying on their side until fully 

conscious. The cages were placed on heating pads to minimize hypothermia. While 

under anesthesia, it was unlikely the animal will not move so constraints were not 

necessary; however, medical tape could have been used to secure the legs of the 

animal while being imaged if necessary.  

3. In vivo Cell Number Imaging. Mice were implanted in the lower half of the 

mammary fat pad at 4 different nipple regions. Each mouse was implanted with 
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0.125, 0.25, 0.5, and 1x106 TMD231 or TMD231-CR cells. There were 3 mice imaged 

for each cell line. Following analysis, fluorescent intensity for each cell number was 

calculated. TMD231 parental implanted mice were used as a control for any 

background fluorescence. 

4. Longitudinal Animal Imaging. NSG mice were implanted with either 1x106 TMD231 

or TMD231-CR cells on Day 0. The TMD231 parental cell implanted mice were used 

as imaging controls to subtract background fluorescence. Throughout the study, the 

primary tumor was measured via caliper twice weekly. On Day 7 post implant, the 

mice were imaged with the Optix MX3 (ART Technologies). Mice were imaged three 

mice per scan. The mice were imaged once weekly for a total of 5 weeks. Imaging 

analysis yielded the fluorescent intensity of tumors for comparison to measured 

tumor volume via caliper.  

5. Ex-vivo E2-Crimson Levels. Mice from the longitudinal animal imaging study were 

used to examine the maintenance of E2-Crimson fluorescent protein in excised 

TMD231-CR tumors. The excised tumors were dissociated with a scalpel and grown 

ex-vivo in cell culture. Growth medium was changed frequently and contained 0.5% 

Gentamicin antibiotics. After stable lines were generated, the TMD231 parental and 

TMD231-CR tumors were examined with flow cytometry to determine the 

percentage of E2-Crimson positive cells. 
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D. Efficacy Studies 

1. Drug Treatments. Carboplatin was dissolved in PBS. Nutlin-3a was mixed in 0.5% 

methylcellulose and 0.05% Tween80 solution. Proper drug mixture was ensured 

following sonication in a sonicating water bath and mixing via vortex.  

2. Carboplatin Dose Finding Study. NSG mice were implanted with 1x106 TMD231 or 

TMD231-CR cells on Day 0. On Day 7, the mice were imaged to collect initial tumor 

fluorescent intensity for randomization purposes. The mice received carboplatin 

(Carb) or Vehicle (Veh) (PBS) through intraperitoneal (i.p.) injections once MWF for a 

total of 6 doses. Mice received 1m/kg, 3mg/kg, or 30mg/kg carboplatin. Throughout 

the study, mice were examined for overt toxicity. We continued to monitor primary 

tumor growth with caliper measurements twice weekly as well as collecting weekly 

body weights. The study endpoint was when the primary tumor reached ≥1000mm3. 

At the time of sacrifice, the primary tumor and lungs were collected for histology 

purposes and fixed in 10% buffered formalin.  

3. Combination Study 1. As in other studies, NSG mice were implanted with 1x106 

TMD231 or TMD231-CR cells in the mammary fat pad. Mice were imaged on Day 7 

with optical imaging. Primary tumor fluorescent intensity was used to randomize the 

mice into the treatment groups: Vehicle (PBS+methylcellulose) (Veh), 25mg/kg 

carboplatin (Carb), 200mg/kg Nutlin-3a (Nut), and 25mg/kg carboplatin+200mg/kg 

Nutlin-3a (Combo). There were 7-9 mice per group. Mice were dosed three times 

weekly for a total of 6 doses. Based on pharmacokinetic (PK) data from other animal 

studies in the lab, the dosing of carboplatin and Nutlin-3a were separated by at least 
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4 hours. We chose to dose with carboplatin first in the morning so that the drug 

could act on the primary tumor and lead to DNA damage in tumor cells, which in 

turn could activate DNA damage responses and lead to increased cell stress. When 

Nutlin-3a is dosed later in the afternoon, Mdm2 could be bound by Nutlin-3a 

allowing for proteins involved in the DNA damage response including p73 and E2F1 

to be free and lead to target gene activation. Carboplatin was dosed i.p. in the 

morning while Nutlin-3a was dosed orally (p.o.) in the afternoon. The combination 

and Vehicle groups were dosed twice a day on treatment days with the appropriate 

drug or Vehicle at the appropriate time, AM or PM. Throughout the study, the mice 

were examined for any overt toxicity. Body weights were collected weekly 

throughout the course of the study and primary tumors were measured via caliper 

twice weekly throughout the study. The endpoint for the study was when the first 

primary tumors reached ≥1000mm3. Mice were sacrificed on Day 47 post implant. At 

the time of sacrifice, the primary tumors and lungs were collected and fixed in 10% 

buffered formalin. Fixed tissues were set in paraffin blocks, cut and sectioned, and 

stained with H&E to evaluate primary tumor health and lung metastases.  

4. Combination Study 2. As in other studies, NSG mice were implanted with 1x106 

TMD231 or TMD231-CR cells in the mammary fat pad. Mice were imaged on Day 7 

with optical imaging. Mice were randomized into two groups of mice, repeat study 

mice (n=4 per group) and survival (n=8 per group). Within each group, the mice were 

randomized into the treatment arms: Vehicle (PBS+methylcellulose) (Veh), 20mg/kg 

carboplatin (Carb), 200mg/kg Nutlin-3a (Nut), and 20mg/kg carboplatin+200mg/kg 
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Nutlin-3a combination (Combo). Carboplatin was dosed i.p. in the morning while 

Nutlin-3a was dosed orally (p.o.) in the afternoon. The combination and Vehicle 

groups were dosed twice a day on treatment days with the appropriate drug or 

Vehicle at the appropriate time, AM or PM. The mice were dosed twice weekly 

(Tuesdays and Fridays) for a total of 8 doses. Throughout the study, the mice were 

examined for any overt toxicity. Body weights were collected weekly throughout the 

course of the study and primary tumors were measured via caliper twice weekly 

throughout the study. The endpoint for the repeat study mice was when the first 

primary tumors reached ≥1000mm3, which was 5 days following the completion of 

drug treatment. At the time of sacrifice, the primary tumors and lungs were 

collected and fixed in 10% buffered formalin. Fixed tissues were set in paraffin 

blocks, cut and sectioned, and stained with H&E to evaluate primary tumor health 

and lung metastases. Femurs were collected to determine bone marrow cellularity. 

The survival group of mice was sacrificed when primary tumor volume reached 

800mm3. When the mice reached the tumor volume endpoint, the mice were 

sacrificed and femurs were collected for total bone marrow cell counts. In the 

survival mice, they were sacrificed with about a 2-week recovery period following 

the completion of drug treatment. 

a. Bone Marrow Flow Cytometry. Mice from Combination study 2 were evaluated 

for the presence of bone metastases by examining isolated bone marrow cells 

from crushed femur bones for the presence of TMD231-CR cells using flow 

cytometry (See Histological analysis: Bone marrow cellularity).  
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5. Combination Study 3. NSG mice were implanted with 1x106 TMD231 or TMD231-CR 

cells in the mammary fat pad. We were unable to image the mice on Day 7 for 

randomization purposes due to failure of the motherboard on the MX3 Optix. Our 

previous imaging data, however, has demonstrated that we get a 100% tumor take 

in the NSG model and that tumor volumes are consistent amongst the animals. 

Therefore, we elected to randomize the mice based on body weights on Day 7 into 

the treatment groups: Vehicle (PBS+methylcellulose) (Veh), 20mg/kg carboplatin 

(Carb), 200mg/kg Nutlin-3a (Nut), and 20mg/kg carboplatin+200mg/kg Nutlin-3a 

(Combo). Carboplatin was dosed i.p. in the morning while Nutlin-3a was dosed orally 

(p.o.) in the afternoon. The combination and Vehicle groups were dosed twice per 

day on treatment days with the appropriate drug or Vehicle at the appropriate time, 

AM or PM. The mice were dosed twice weekly (Tuesdays and Fridays) for a total of 8 

doses. Mice were sacrificed when initial mice reached ≥1000mm3 tumor volume. 

Following necropsy, lungs, primary tumors, livers, spleens and femurs were 

collected. We performed H&E staining of the lungs, primary tumors, livers, spleens, 

and femurs. We repeated bone marrow cellularity and also evaluated the effects of 

the drug treatments on complete blood counts (CBCs) and progenitor assays. 

6. In vivo Pharmacodynamic Study. NSG mice were implanted with 1x106 TMD231-CR 

cells, and tumors were allowed to grow. Caliper measurements were taken twice 

weekly to monitor tumor volume. When tumors reached ~500mm3, mice were 

randomized based on tumor volume into treatment groups. Mice were dosed with 

Vehicle (PBS+methylcellulose) (Veh), 20mg/kg carboplatin (Carb), 200mg/kg Nutlin-
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3a (Nut), or 20mg/kg carboplatin+200mg/kg Nutlin-3a (Combo) for 3 consecutive 

days. Two house after the last drug dose, the mice were sacrificed and primary 

tumors were weighed and collected. Primary tumors were cut in half for human 

VEGF ELISA analysis and the other half for Western blot analysis and snap frozen in 

liquid nitrogen.  

a. Human VEGF ELISA. Tumors were lysed in an appropriate volume of 1X Lysis 

Buffer (Cell Signaling) on ice using the Omni Tissue Homogenizer (TH) (Omni 

International, Kennesaw, GA). Protein concentration was determined as 

described previously. Equal protein for each tumor sample was added to the 

VEGF ELISA plate and Human VEGF Quantikine ELISA Kit (R&D Systems) was 

completed per manufacturer’s instructions. Total VEGF levels were normalized 

to protein levels and average VEGF presence was graphed.  

b. Tumor Lysates for Western. Snap frozen tumors were lysed with 1% SDS lysis 

buffer using the Omni Tissue Homogenizer (TH) (Omni International, Kennesaw, 

GA). Samples were boiled and protein concentration was determined as 

described previously. Samples were examined by Western blot for protein levels 

as described previously.  

E. Histological Analyses 

1. Tissue Specimens. All mice tissue samples were collected following a detailed LARC 

approved lab animal protocol. 

2. Tissue Processing. Tissues were fixed in 10% neutral buffered formalin at 4°C for 24 

hours followed by tissue processing, and then embedded in paraffin. Five-micron 
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sections were cut and stained for routine H&E and Ki67 staining. 

3. Immunostaining. The slides were deparaffinized in xylene and rehydrated through 

graded alcohols ending in water. Antigen retrieval was performed by immersing the 

slides in Target Retrieval Solution (Dako) for 20 minutes at 90°C, cooling at room 

temperature for 10 minutes, washing in water and then proceeding with 

immunostaining. Slides were blocked with protein blocking solution (Dako) for 30 

minutes. All subsequent staining steps were performed using the Dako FLEX SYSTEM 

on an automated Immunostainer; incubations were done at room temperature and 

Tris buffered saline plus 0.05% Tween 20, pH 7.4 (TBS - Dako Corp.) was used for all 

washes and diluents. Thorough washing was performed after each incubation 

period.  

a. H&E Staining. Sections were stained with haemotoxylin and eosin (DAKO).  

b. Ki67 Staining. The primary antibody was anti-human Ki67 (Dako). Control 

sections were treated with an isotype control using the same concentration as 

primary antibodies to verify the staining specificity. For the Ki67 positive nuclei, 

(tumor areas) nuclei were measured in one section per xenograft tumor and 

expressed as the number of positive cells per 16X power field (160X) in the cross-

sectional area. For the immunohistochemical quantification, three randomly 

selected images (16X power fields) each (total area, 7.3 mm2) were analyzed by a 

pathologist hand count and averaged for each lung.  

c. Whole Slide Digital Imaging. The Aperio whole slide digital imaging system was 

used for whole slide imaging. The Aperio Scan Scope CS system (Leica 
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Biosystems) was used. The system imaged all slides at 20X. The scan time ranged 

from 1.5-2.25 minutes. The whole images were housed and stored in the 

Spectrum software system, and images were taken from the whole slides. 

d. Automatic Image Quantitation. Computer-assisted morphometric analysis of 

digital images was done using the Aperio software that came with the Aperio 

Imaging system (Leica Biosystems). An optimized algorithm for the positive pixel 

algorithm that was designed for H&E staining was used for imaging of the H&E 

lung tumor metastases. The positive pixel algorithm was modified to distinguish 

between the red and blue colors. The tumors were blue and it was easy to 

discern the difference between normal lung tissue and the tumors that filled the 

lung lobes using this algorithm. The total nuclear labeling index (Ki67) was 

generated using the Aperio Image Scope standard positive pixel algorithm. This 

Image Analysis software was used engraft and the software package (positive 

pixel algorithm) calculated the percent of positive pixels (brown staining) in one 

large cross section area from one lung lobe in the control and each drug treated 

group. 

F. Measures of Drug Toxicity 

1. Bone Marrow Cellularity. Mice were sacrificed at the end of the study and both 

femurs were collected. Bones were crushed with mortar and pestle and passed 

through a 70µm cells strainer. Red blood cells were lysed with RBC Lysis Buffer 

(Qiagen). Total cell counts were counted using a Beckman Coulter Counter.  
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2. Bone Marrow Smears. Femur bones were excised during necropsy. Bones were 

fixed in 10% buffered formalin and decalcified with Decal®. Bones were set in 

paraffin blocks, sectioned, stained with H&E, and evaluated by pathologist. 

3. Total Complete Blood Counts (CBCs). Tumor-bearing mice were treated with Vehicle 

control (Veh), carboplatin (Carb), Nutlin-3a (Nut) or carboplatin+Nutlin-3a 

combination (Combo). After a 2-week recovery period, an aliquot of peripheral 

blood was analyzed via hemavet for red blood cells, thrombocytes, and white blood 

cells. 

4. Progenitor Assay. After completing total bone marrow cell counts, 2x104 bone 

marrow cells were plated in triplicate in MethoCult™ GF M3434 (StemCell™ 

Technologies). Cells were allowed to grow for 2 weeks. Hematopoietic progenitor 

cells were counted for each plate and averages were taken for each of the mouse 

samples. Progenitor assays were conducted as described in Cai et al. 110.  
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SECTION III. RESULTS 

 

Chapter 1. Aim 1: Determination of cellular sensitivity to Nutlin-3a and carboplatin in 

triple-negative breast cancer cells in vitro 

 

A. Background and Rationale 

The overall objective of this thesis was to evaluate the therapeutic potential of a 

new combination therapy to treat TNBC. Based on front-line therapies currently being 

tested in clinical trials for TNBC, the platinum agent, carboplatin was selected for study. 

New molecular targets need to be elucidated to enhance treatment efficacy. Mdm2 is 

an unexplored target in breast cancers and Mdm2-mediated signaling can be altered 

using Nutlin-3a. Our first objective of this thesis was to determine the effects of 

combination carboplatin and Nutlin-3a treatment on TNBC cell proliferation, cell death, 

and cell cycle in vitro. To address this objective, drug sensitivity studies were conducted 

using Nutlin-3a and carboplatin alone and in combination. A panel of mutant p53 TNBC 

lines (MD-MB-231, MDA-MB-468, and TMD231) were utilized to determine to what 

extent modulation of Mdm2 via the protein-protein inhibitor, Nutlin-3a, can potentiate 

carboplatin-mediated cell death. Both the MDA-MB-231 and MDA-MB-468 cells are 

adenocarcinoma lines that were developed from metastatic pleural effusions. We also 

utilized the TMD231 cells, which were derived from the parental MDA-MB-231 cells 17 

and were a kind gift of Dr. Harikrishna Nakshatri (IUSM). Both the MDA-MB-231 (R280K) 

and MDA-MB-468 (R273H) cells have missense mutations within p53 in the DNA binding 
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domain resulting in the inactivation of normal p53 function and abnormally increases 

proliferation, invasion, and metastasis 19,47,101,111,112.  

Initially, cellular sensitivity to Nutlin-3a and carboplatin was determined using 

methylene blue proliferation assay so that relevant drug concentrations for future 

experiments could be utilized. Single drug sensitivities were needed for later design of 

combination treatments. Also, we were interested in determining if a broad or narrow 

range of dose ratios would result in decreased proliferation. The methylene blue 

proliferation assay is a reliable measure of cell growth over time. This assay measures 

the number of adherent cells, and there is a direct relationship between numbers of 

adherent cells to the optical absorbance. Methylene blue stain electrostatically binds to 

negatively charged particles in cells such as negatively charged phosphate groups in 

DNA and moieties of proteins 102. The methylene blue proliferation assay is not a 

metabolic assay, which is important if any drugs used alter metabolism. The methylene 

blue proliferation assay is a quick and easily replicated experiment to experiment with 

little variance between similarly treated wells.  

We also evaluated the effects of the single and dual treatment on the ability of 

the cells to form colonies in a 2D colony formation assay. The cells were seeded at low 

density and treated with single or combination treatments and allowed to grow for 2 

weeks. Following the initial drug sensitivity determination of Nutlin-3a and carboplatin 

in the MDA-MB-231, TMD231, and MDA-MB-468 cells, we also wanted to determine the 

effects of single and combination drug treatment on cell proliferation through cell 

counting assays. Longitudinal cell counting experiments allowed us to examine the 
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effects of the single and dual treatments on the cells ability to proliferate as well as 

determine if the cells are dying throughout the treatment window. To better 

understand how the single and combination carboplatin and Nutlin-3a treatment may 

affect cell viability, we also utilized flow cytometry to evaluate the impact of single and 

dual treatment on cell cycle and apoptosis. These assays allowed for a better 

understanding of whether apoptosis and/or cell cycle arrest might account for 

decreased cell growth.  

Cell cycle kinetics can play a major role in how normal and cancerous cells 

respond to therapy. When cells are treated with chemotherapeutic drugs, there is 

significant damage to DNA. The DNA damage will accumulate and as a survival 

mechanism, cells will undergo cell cycle arrest in either G0/G1, S, or G2 phase to 

determine if the damage can be repaired 113. If the damage is too great and cannot be 

sufficiently repaired, the cells can signal for pro-apoptotic and other cell-death 

mediators to be activated. Apoptosis and cell cycle analysis via flow cytometry uses 

dyes, like 7-AAD and PI with that stain DNA allowing for the amounts of DNA to be 

quantitated 114. In determining the populations of cells undergoing early and late 

apoptosis, DNA stains like 7-AAD can be used with minimal overlap with other 

conjugated antibodies like Annexin V-FITC that binds to phosphatidylserine, which is a 

sensitive marker of early apoptosis. In cell cycle analysis, cells are permeabilized and 

mixed with a DNA staining solution, and the stained DNA present will show which phase 

of the cell cycle the cells are accumulating. When cells are in the G0/G1 phase, the DNA 

content is 2N since each cell has 2 copies of DNA. The G2/M phase has double the 
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amount of DNA as the G1 phase since the cells are getting ready to divide into two 

daughter cells 115. The DNA content measure in the S phase is between 2N and 4N as the 

DNA is being synthesized for separation into the daughter cells. There are several 

signaling mediators involved in successful cell division and can be aberrant in cancers 

allowing for genetically unstable cells to continue proliferating 115. Most normal 

mammalian cells are diploid in nature in that they carry two copies of each 

chromosome. However, in cancers, cells often become aneuploidy in that they have 

chromosomal aberrations such as alterations in total copies of chromosomes as well as 

chromosomal rearrangements with amplifications, deletions and translocations 116. 

These genetic abnormalities result in changes to multiple signaling pathways and 

promote survival and proliferation of cancer cells.  

Interestingly, Le et al. showed that in the MDA-MB-231 cells, the potential for 

metastases was enhanced in the MDA-MB-231 cells when the cells underwent 

hypertetraploidy which is a type of aneuploidy 117. It has been shown that in breast 

adenocarcinoma, patients with tumors exhibiting aneuploidy tumors had a worse 

prognosis and hypertetraploid tumors were the most aggressive tumor types 118,119. As 

the parental MDA-MB-231 cells were cultured over long periods of time, some of the 

cells developed spontaneous a hypertetraploidy state with DNA peaks just smaller than 

4N and 8N 117. More interestingly, the hypertetraploid cells showed an increased 

metastatic potential to the lungs and brain but not bone when compared to the 

parental cells 117 which may help to explain the increased aggressiveness of the 

hypertetraploidy cells.  
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B. Combination treatment had increased potency in cell proliferation, apoptosis, and 

cell cycle assays  

Initially, we tested the cellular sensitivity of the parental MDA-MB-231 cells to 

Nutlin-3a and carboplatin alone using methylene blue proliferation assays. The IC50 

value for Nutlin-3a was 40.2μM±0.6, carboplatin was 28.6μM±1.2, and 1:1 combination 

was 5.3μM±0.3 (Figure 5A). It is noteworthy that the IC50 values for Nutlin-3a are quite 

high relative to what is generally used for selective targeting of the Mdm2-p53 

interactions, and it is possible that off-target effects do come into play at high 

micromolar concentrations. Lau and colleagues showed IC50 values for Nutlin-3a to be 

around 30μM in p53-/- cells which is comparable to our mutant p53 cell system 66. 

However, as shown below, once Nutlin-3a is combined with carboplatin, the IC50 values 

for Nutlin-3a are in the low micromolar range, which is what is typically used in cells 

with wild-type p53 40. The MDA-MB-231 cellular proliferation assay was examined using 

isobologram analysis. Isobologram analysis was described by Tallarida to determine 

synergy between two different drugs 109. Briefly, the IC50 value for each single drug is 

plotted on a graph, and a line is drawn connecting the two points. In our studies, we 

plotted the IC50 of carboplatin on the x-axis while the IC50 of Nutlin-3a was plotted on 

the y-axis. A line was drawn connecting these two points, which becomes known as the 

‘line of additivity’. The line of additivity helps determine the interaction between the 

two different drugs. Following combination treatment, the IC50 values for the different 

drug combinations also known as the ‘isoboles’ are plotted on the graph. If the isoboles 

fall along the line of additivity, the interaction between the two drugs is considered to 
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be additive. If the isoboles fall below the line of additivity, the two drugs are determined 

to have a synergistic relationship while if the isoboles fall above the line of additivity, 

the interaction is considered antagonistic. These data indicate the Nutlin-3a decreased 

cellular resistance to carboplatin. When the IC50 value for a 1:1 Nutlin-3a:carboplatin 

combination treatment was determined, the isobole fell below the line of additivity, 

suggesting a synergistic effect (Figure 5B).  
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Figure 5. Combination treatment increases potency and synergistic effects in MDA-

MB-231 cells. MDA-MB-231 cells were seeded in 96-well plates and treated with 

increasing concentrations of Nutlin-3a, carboplatin (Carbo), or combination (1:1 combo) 

for 5 days. Cells were fixed and stained with methylene blue. Cell proliferation was 

determined for each treatment. (A) Combination treatment had an increased potency in 

MDA-MB-231 cells compared to Nutlin-3a and carboplatin alone treated cells. (B) 

Following isobologram analysis, the 1:1 combination was examined with the isobole 

falling below the line of additivity, which indicated a synergistic effect.  
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Since the highly metastatic TMD231 cells were derived from the parental MDA-

MB-231 cells, we next investigated if the two cell lines had similar cellular sensitivity to 

Nutlin-3a, carboplatin and 1:1 combination treatment. Nutlin-3a, carboplatin, and 1:1 

combination inhibited cell proliferation in a dose-dependent manner, similar to the 

parental cells. Treatment of Nutlin-3a, carboplatin, and 1:1 combination inhibited 

cellular proliferation in a dose dependent manner with IC50 values of 19.4μM±3 for 

Nutlin-3a, 6.3μM±1.9 for carboplatin, and less than 0.7μM±0.5 for combination treated 

TMD231 cells (Figure 6A). Isobologram analysis was used to determine the type of drug 

interaction involved in the combination treatment. Several drug ratios of Nutlin-

3a:carboplatin were examined including 1:1, 3:1, 9:1, 1:3, and 1:9. The 1:1 combination 

had the most potent effect with the lowest IC50 values, which fell the furthest away from 

the line of additivity (Figure 6B). The 3:1 Nutlin-3a:carboplatin ratio had next lowest IC50 

value. Since the 1:1 ratio had the biggest effect, we elected to continue the experiments 

using the 1:1 combination in future experiments focused on mechanism of action 

(Figure 6B). Individual IC50 values were determined as shown in inset table (Figure 6B). 

There was some variability in cellular sensitivity to the drugs between different 

experiments especially with Nutlin-3a (IC50 values ranged from 20-40µM) as seen in 

Figure 6. However in all cases, Nutlin-3a concentrations required to inhibit 50% growth 

were in the low micromolar range in the presence of carboplatin-mediated DNA 

damage. 
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Figure 6. Combination treatment increases potency and synergistic effects in TMD231 

cells. TMD231 cells were seeded in 96-well plates and treated with increasing 

concentrations of Nutlin-3a, carboplatin, or combination for 5 days. Cells were fixed and 

stained with methylene blue. Cell proliferation was determined for each treatment. (A) 

A 1:1 combination treatment showed an increased potency in TMD231 cells compared 

to Nutlin-3a and carboplatin alone treated cells with IC50 values compared to each single 

drug alone. (B) Several drug ratios of Nutlin-3a:carboplatin (1:1, 3:1, 9:1, 1:3, and 1:9) 
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were examined using isobologram analysis. All isoboles from the different combination 

treatments fell below the line of additivity indicating a synergistic effect. The 1:1 

combination had the smallest combined IC50 value. The IC50 values for each of the 

combinations were represented in the inset table.   
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To further confirm the effectiveness of the dual carboplatin-Nutlin-3a 

combination and also to determine if this approach is applicable to other TNBC cells 

with mutant p53, a secondary TNBC cell line was also evaluated. The MDA-MB-468 cells 

are another triple-negative breast cancer cell line that harbors a different p53 mutation 

(R273H) within the DNA binding domain. The MDA-MB-468 cells exhibited similar 

sensitivity to Nutlin-3a, carboplatin, and 1:1 combination treatment as seen with the 

TMD231 cells. The IC50 values for the MDA-MB-468 cells were 23.8μM±7 for Nutlin-3a, 

5μM±1.8 for carboplatin alone, and 1.3μM±0.3 for the 1:1 combination (Figure 7A). A 

broad range of dose ratios resulted in a synergistic inhibition of MDA-MB-468 cell 

growth; Nutlin-3a:carboplatin ratios including 1:1, 3:1, 9:1, 1:3, and 1:9 were evaluated 

and results were similar to those obtained with the TMD231 cells (Figure 7B). 

To assess the effect of Nutlin-3a, carboplatin, and 1:1 combination treatment on 

clonogenicity, 2D clonogenic assays were completed. Nutlin-3a, carboplatin, and 

combination treatments inhibited colony formation in a dose-dependent manner 

(Figure 8). Clonogenic assays were attempted with the MDA-MB-468 cells; however, 

these cells did not form measurable colonies and therefore could not be evaluated by 

this assay. 
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Figure 7. Combination treatment increased potency and synergistic effects in MDA-

MB-468 cells. MDA-MB-468 cells were seeded in 96-well plates and treated with 

increasing concentrations of Nutlin-3a, carboplatin (carbo), or combination (1:1) for 5 

days. Cells were fixed and stained with methylene blue. Cell proliferation was 

determined for each treatment. (A) Combination treatment had an increased potency in 

MDA-MB-468 cells compared to Nutlin-3a and carboplatin alone treated cells. (B) 
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Following isobologram analysis, several drug ratios of Nutlin-3a:carboplatin (1:1, 3:1, 

9:1, 1:3, and 1:9) were examined with isoboles falling below the line of additivity, which 

indicates a synergistic effect. The 1:3 and 1:9 combinations had the smallest combined 

IC50 value. The IC50 values for each of the combinations were represented in the inset 

table.   
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Figure 8. Combination treatment inhibits clonogenic cell growth. TMD231 cells were 

seeded at low density (50 cells per 10cm dish) to assess the effects of Nutlin-3a, 

carboplatin, and combination treatment on clonogenicity. Cells were treated with drug 

and allowed to grow for 2 weeks. Colonies were stained with methylene blue and 

counted using a cell counting pen. (A) Nutlin-3a significantly inhibited colony formation 
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in a dose dependent manner (n=3, *p<0.05 compared to untreated, mean±SD). (B) 

Carboplatin inhibited colony formation in a dose-dependent manner (n=3, *p<0.05 

compared to untreated, mean±SD). (C) Combination treatment inhibited colony 

formation with decreased amounts Nutlin-3a (Nut) and carboplatin (Carb) compared to 

single drug treatments (n=3, *p<0.05 compared to untreated, mean±SD).  
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To better understand potential cytotoxic versus cytostatic effects of Nutlin-3a, 

carboplatin, or 1:1 combination treatment on cell proliferation, we performed 

longitudinal cell counting assays. TMD231 cells exposed to Vehicle continued to grow 

and reached confluence around Day 5. The Vehicle treatment did not alter cell growth 

throughout the study (Figure 9). Based on the isobologram results, we elected to 

evaluate compound effects at a dose ratio of Nutlin-3a:carboplatin that resulted in a 

synergistic inhibition of cell growth. The ratio of 1:1 was selected and drug treatments 

were performed at 7.5-15µM of each compound. These values centered on the IC50 

value of carboplatin and about half of the IC50 of Nutlin-3a for TMD231 cells. We found 

that this dose ratio allowed us sufficient cells to be able to determine differences in 

combination treated cells versus each single drug in cell counting experiments and in 

the analysis of target modulation by Western blots. Low concentrations of Nutlin-3a 

alone do not affect cell proliferation to any significant degree (Figure 10). When 

TMD231 cells are exposed to 15µM carboplatin, this concentration only inhibits about 

50% of cells allowing for further reductions in cell proliferation when combined with 

Nutlin-3a.  

When TMD231 cells were exposed to 15µM Nutlin-3a, there was no effect on 

cell proliferation throughout the 5-day time course (Figure 10). Growth kinetics of 

cultures exposed to vehicle and Nutlin-3a were similar. Carboplatin induced a significant 

inhibitory effect on the growth of TMD231 cells compared to the Vehicle- and Nutlin-3a-

treated cells (Figure 13). By Day 3, carboplatin-treated cells were stressed exhibiting a 

more rounded and swollen appearance, and this correlated with a significant reduction 
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in cell number (Figure 11 and 13). When evaluating Day 3 cultures, a noticeable change 

in cell number was observed; the 1:1 combination showed a significant reduction in 

total cell number compared to all groups (Figure 13). The 1:1 combination cells were 

very stressed by Day 3 with morphological changes showing large flattened cells with 

elongated spindle formation (Figure 12). There was a significant reduction in total cell 

number between Day 3 and 4 for both the carboplatin alone and 1:1 combination 

treated cells with further decreases in total cell number by Day 5 in the combination 

treated cells compared to other groups (Figure 11 and 12). The cell counting experiment 

was also repeated using lower drug concentrations, (1:1, carboplatin, and Nutlin-3a at 

7.5μM of each drug). At the7.5μM concentrations of carboplatin and Nutlin-3a, cell 

proliferation was inhibited in a similar manner as the 15μM drug treatments. As would 

be expected, total cell counts were ~50% higher in the 7.5µM treated compared to the 

15µM treated cells (Figure 14).  
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Figure 9. Vehicle treated TMD231 cell proliferation is not inhibited over time. TMD231 

cells were seeded in 12-well plates with 6,500 cells on Day -1. Cells were treated with 

Vehicle on Day 0, and cell number was evaluated daily for a total of 5 days. (A) Pictorial 

representation of Vehicle (Veh) treated TMD231 cells over time. (B) Graphical 

representation of Vehicle treated TMD231 cells over time showed an increase in cell 

proliferation.   
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Figure 10. Nutlin-3a treated TMD231 cell proliferation is not inhibited over time. 

TMD231 cells were seeded in 12-well plates with 6,500 cells on Day -1. Cells were 

treated with Nutlin-3a, and cell number was evaluated daily for a total of 5 days. (A) 

Pictorial representation of 15µM Nutlin-3a (Nut) treated TMD231 cells over time. (B) 

Graphical representation of 15µM Nutlin-3a treated TMD231 cells over time showed an 

increase in cell proliferation.   
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Figure 11. Carboplatin inhibits TMD231 cell proliferation after Day 3. TMD231 cells 

were seeded in 12-well plates with 6,500 cells on Day -1. Cells were treated with 

carboplatin, and cell number was evaluated daily for a total of 5 days. (A) Pictorial 

representation of 15µM carboplatin (Carb)-treated TMD231 cells over time. (B) 

Graphical representation of 15µM carboplatin-treated TMD231 cells over time showed 

an increase in cell proliferation until Day 3 after which cell number significantly 

decreased (One-Way ANOVA, *p<0.05, n=3, mean±SD).   
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Figure 12. Combination treatment inhibits TMD231 cell proliferation after Day 3. 

TMD231 cells were seeded in 12-well plates with 6,500 cells on Day -1. Cells were 

treated with 1:1 combination, and cell number was evaluated daily for a total of 5 days. 

(A) Pictorial representation of 15µM Nutlin-3a + 15µM carboplatin combination 

(Combo) treated TMD231 cells over time. (B) Graphical representation of 15µM Nutlin-

3a + 15µM carboplatin combination treated TMD231 cells over time showed a 

significant inhibition of cell proliferation after 3 days drug treatment (One-Way ANOVA, 

*p<0.05, n=3, mean±SD)..  
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Figure 13. Carboplatin and combination treatment significantly inhibits cell 

proliferation by Day 3 post treatment. TMD231 cells were seeded in 12-well plates with 

6,500 cells on Day -1. Cells were treated with Vehicle (Veh), Nutlin-3a (Nut), carboplatin 

(Carb), and 1:1 combination (Combo). There was also an untreated control (Untx), and 

cell number was evaluated daily for a total of 5 days. (A) Pictorial representation of 

TMD231 cells on Day 3 post treatment showed stressed and dying cells in carboplatin 

(Carb) and combination (Combo) treatments. (B) The cell counts for the carboplatin and 

combination treated TMD231 cells showed significant reductions in total cell number at 

Day 3. There was a statistically significant reduction in the combination treated cells 

compared to the carboplatin alone cells (Student’s t-test, *p<0.05, n=3, mean±SD).   
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Figure 14. Dose-dependent decreases in number of TNBC cells exposed to combination 

carboplatin and Nutlin-3a. TMD231 cells were seeded in 12-well plates at 6,500 cells 

per well, and treated with 7.5μM or 15μM Vehicle, Nutlin-3a, carboplatin, or 1:1 

combination. Total cell counts were evaluated Day 3-5 post treatment to examine the 

effects of drug treatment on cell proliferation. (A) Nutlin-3a in both treatments had 
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similar effects with slight decreases in both the 7.5μM and 15μM treated cells on Day 5. 

(B-C) Both the 7.5μM and 15μM carboplatin and 1:1 combination drug treatments 

inhibited cell proliferation and resulted in a decline in total cell number. The effects 

were about half in the 7.5μM treated cells compared to the 15μM treated cells which 

would be expected.  
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  We next examined how the combination carboplatin and Nutlin-3a leads to 

decreased cell growth. Utilizing flow cytometry, we compared single and combination 

treatments and determined the frequency of early and late apoptotic cells. We began by 

using Annexin V-FITC and 7-AAD to determine if Nutlin-3a, carboplatin, and three 

different Nutlin-3a:carboplatin combination ratios (1:1, 3:1, and 1:3) promote apoptosis 

and/or necrosis. The drug concentrations used for these single and combinations were 

derived from TMD231 methylene blue proliferation data. TMD231 cells were treated for 

4 days, which was determined based on cell counting assays as the cells reach a critical 

point between Day 3 and Day 4 (Figure 11 and 12). Following Annexin V-FITC and 7-AAD 

staining, flow cytometry indicated that at Day 4 post treatment, low levels of Nutlin-3a 

and carboplatin lead to moderate increases in both early and late apoptosis (Figure 

15A), while the 1:1, 3:1 and 1:3 Nutlin-3a:carboplatin combinations lead to further 

increases in total apoptosis/necrosis when compared to each single drug alone 

(Student’s T-test, p<0.05, n=3, ±SEM) (Figure 15B). Flow cytometry experiments show 

that TMD231 cells are undergoing apoptosis following low level combination treatment 

for all ratios (1:1, 3:1, and 1:3) (Figure 15B) while single drug treatments did not 

significantly increase the number of apoptotic cells compared to Vehicle treated cells. 
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Figure 15. Combination treatment enhances apoptosis in TMD231 cells. TMD231 cells 

were treated with three different Nutlin-3a:carboplatin dose ratios (1:1, 3:1, and 1:3) 

and corresponding single drug treatment concentrations, which were the IC50 values 

determined from isobologram analysis in Figure 6B. (A) Flow cytometry analysis showed 

that Nutlin-3a, carboplatin, and combination caused increases in early and late 

apoptotic TMD231 cells following Annexin V and 7-AAD staining. (B) Combination 

 90 



treatment caused significantly increased total apoptotic TMD231 cells compared to 

carboplatin and Nutlin-3a alone treated cells following flow cytometry Annexin V and 7-

AAD staining (Student’s T-test, *p<0.05, n=3, ±SEM).   
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  To gain insight into treatment effects on cell cycle in the context of a mutant 

p53 background, we treated the TMD231 cells with increasing concentrations of Nutlin-

3a, carboplatin, or 1:1 combination. Numerous cancer cell lines have aneuploid 

subpopulations, and in our model, the TMD231 cells have about 50% diploid and 50% 

aneuploid cellular subpopulations. In both the diploid and aneuploid populations, 

Nutlin-3a as a single agent did not induce cell cycle arrest in G1 or G2/M (Figure 16). In 

carboplatin and combination treated TMD231 cells, there was a dose-dependent 

increase in diploid and aneuploid cells in the S-phase compared to vehicle control which 

is consistent with previously published reports 120 (Figure 16). During this accumulation 

in the S-phase, cell could be undergoing an intra-S-phase checkpoint in which replication 

is reduced following DNA damage allowing cells more time to determine cell fate 121. 

Cell cycle arrest may play a small role in the big picture; however, based on the cell 

counting experiments, the total cell number in the carboplatin and combination treated 

cells continued to decline after 3 days of treatment indicating that the cells were dying 

(Figures 11-12). 
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Figure 16. Carboplatin and combination treatment leads to S and G2/M accumulation 

while Nutlin3-a does not affect cell cycle. TMD231 cells were seeded on 10cm dishes 

and treated with 3.75, 7.5, and 15µM Nutlin-3a, carboplatin or 1:1 combination for 3 

days. Cells were harvested and stained with a PI staining solution to examine DNA 

content in cell cycle analysis via flow cytometry. (A-B) Nutlin-3a had no effect on cell 

cycle in both diploid and aneuploid cells. In both diploid and aneuploid cells, carboplatin 
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treatment led to cell accumulation in S-phase. The percentage of cells accumulating in 

the G2/M phase increased in a carboplatin-dose-dependent manner in both cell types. 

The combination treatment lead most cells to accumulate in S-phase in both diploid and 

aneuploid cells.  
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C. Discussion and Future Directions 

In summary, Nutlin-3a and carboplatin inhibited cell proliferation in methylene 

blue proliferation assays in the MDA-MB-231, TMD231, and MDA-MB-468 cell lines. The 

combination treatment led to an enhanced inhibition of cell proliferation as measured 

by methylene blue proliferation assays. Using isobologram analysis as described by 

Tallarida 109, the combination Nutlin-3a:carboplatin treatment led to a synergistic effect 

in all combinations tested. Nutlin-3a, carboplatin, and 1:1 combination treatment 

inhibited colony formation in a dose-dependent manner in the highly aggressive 

TMD231 cells while the MDA-MB-468 cells did not readily form colonies in vitro. In the 

colony formation assay, the number of colonies was significantly inhibited with 

increased amounts of each drug when compared to number of colonies in the single 

drug treated plates. For example, there was about a 50% decrease in number of 

colonies following 2.5µM carboplatin treatment while combined 1.5µM Nutlin-

3a+1.5µM carboplatin also inhibited about 50% of colonies. To better understand how 

the single and combination treatment inhibited cell proliferation, cell counting assays 

were used to examine the total number of cells present over a 5-day period. The 

TMD231 cells were treated with 7.5µM or 15µM Nutlin-3a, carboplatin or 1:1 

combination, and carboplatin and combination treated cells were greatly inhibited with 

significant reductions in total cell number after Day 3. The inhibition of total cell number 

was concentration-dependent with increased inhibition in cells treated with 15µM drug 

compared to 7.5µM drug treatments. There were significant differences in total cell 

number between the combination and carboplatin alone treated with the most effect 
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seen in the combination treated cells adding further support to the enhanced effect of 

dual Nutlin-3a and carboplatin treatment. In contrast to single agent, there was a 

potentiation in total apoptosis (early and late) following low concentrations of Nutlin-

3a:carboplatin combination (1:1, 3:1, and 1:3) treatments in TMD231 cells. Low 

concentrations of Nutlin-3a and carboplatin alone did not increase apoptosis and/or 

necrosis compared to Vehicle treated cells. Additionally, carboplatin alone and 

combination treatment lead to increased cell cycle arrest in the S and G2/M phases 

compared to Vehicle or Nutlin-3a. Nutlin-3a alone did not lead to increased cell cycle 

arrest.  

In our model, we utilized TNBC cell lines that do not have Brca1/2 mutations. 

However, the dual treatment of Nutlin-3a and carboplatin may have further efficacy in 

TNBC cell lines that also have mutations in the Brca1/2 gene. Recent studies have shown 

improved complete response rates of patients with germline mutations in Brca1/2 when 

standard of care paclitaxel or paclitaxel plus doxorubicin was combined with carboplatin 

122. Additionally, if drug treatment was combined with the PARP inhibitor, iniparib, there 

was an improved complete response rate in those patients who had Brca1/2 mutations 

compared to Brca1/2 wild-type patients 122. Synthetic lethality is an emerging area of 

research since TNBCs with mutant Brca1/2 in combination with a DNA damaging drug 

like carboplatin and PARP inhibitors can lead to increased cell death due to inhibition of 

key DNA repair pathways. Combination Nutlin-3a and carboplatin treatment coupled 

with a PARP inhibitor may lead to further efficacy in TNBCs that have concomitant 

Brca1/2 mutations.  
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In these cellular models of TNBC, there was increased sensitivity to Nutlin-3a in 

combination with carboplatin. Dr. Martin Smith showed that Mdm2 overexpression 

increased sensitivity to platinum agents by inhibition of wild-type 53 and thus inhibition 

of the NER pathway and removal of platinum adducts 123. Mdm2-mediated inhibition of 

wild-type p53 resembled similar cellular responses to platinum agents in mutant p53 

cancer cells in which platinum treatments led to a strong S-phase cell cycle arrest123, 

which was similar to our results. While cell cycle arrest was evident in treated cells, the 

arrest in G2/M or S phase was not sufficient to allow for repair and cell survival of 

combination treatment since we saw significant reductions in total cell numbers 

between Days 3 and 4 post treatment in cell counting assays. It has been shown that 

Mdm2 affects p21WAF1/Cip1 by acting to decrease the half-life of p21WAF1/Cip1 and by 

increasing proteasomal turnover of the p21WAF1/Cip1 protein independent of 

ubiquitylation 124. Jin and colleagues also showed that in p53 null cells, Mdm2 inhibits 

p21WAF1/Cip1-mediated cell cycle arrest, which could play a role in the analysis of cell cycle 

following drug treatment 124. Additionally, based on flow cytometry experiments, there 

was increased cell death (apoptosis and/or necrosis) in the combination treated 

TMD231 cells compared to single drug treated cells. This was particularly evident when 

cells were exposed to low concentrations of Nutlin-3a and carboplatin (0.8µM Nutlin-

3a:carboplatin used in apoptosis flow assay versus 15µM Nutlin-3a:carboplatin used in 

cell counting assays) with >50% cells undergoing apoptosis. Future studies would 

include further analysis of apoptotic markers including activated Caspases-3, -7 and -9 to 

better understand the role of apoptosis at the molecular level in our model system. 
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Additionally, the role of senescence should be examined following combination 

carboplatin and Nutlin-3a treatment to see if senescence also plays a role in the effects 

observed following combination treatment 125,126. Senescence staining could be 

completed using β-galactosidase staining. The effects of the combination carboplatin 

and Nutlin-3a treatment on isolated cancer stem cells should also be evaluated to see if 

these cell are also sensitive to the combination treatment since these cells could give 

rise to recurrent tumors. The role of combination treatment could also be examined on 

normal tissue toxicity. MCF10A, which are a non-transformed mammary epithelial cell 

line, could be used in proliferation assays to examine the effects of dual treatment on 

normal human cells as well.  

Cell cycle analysis showed that carboplatin and combination treatment lead to 

increased populations in S-phase and some increases in G2/M. There has also been 

evidence for cancer cells to undergo mitotic catastrophe in which during the cell cycle, 

the cells undergo aberrant chromosome segregation 127, and this area of study is an 

emerging area of interest in our laboratory. Aberrant chromosome segregation leads to 

the generation of aneuploid cells as the cells 127. In the TMD231 cells, Vehicle treated 

cells contained about 50% aneuploid cells, whereas following some carboplatin and 

combination treatments, there were small increases in the aneuploid populations 

(>60%). As the TMD231 cells accumulate in S-phase, cell could be undergoing an intra-S-

phase checkpoint in which replication is reduced following DNA damage, which could 

allow cells more time to determine cell fate 121. During accumulation in the S-phase, 

there may be some cells undergoing mitotic catastrophe as a means of survival, which 
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could possibly explain the slight increases in aneuploid cells in the DNA damage treated 

groups. There has been much discussion in the literature to describe the phenotype of 

mitotic catastrophe. Some reports describe that the mitotic catastrophe phenotype is 

similar to apoptosis since there are instances where the cells have condensed chromatin 

aggregates 127. The formation of micronuclei have also been implicated in the mitotic 

catastrophe phenotype 127. Treated cells could be stained with acridine orange, which is 

fluorescent dye that is specific for nucleic acids allowing for specific staining rather than 

non-specific Giemsa-stains, which can lead to overestimation of nuclear abnormalities 

128,129.  

Based on our results, the combination of Nultin-3a and DNA damaging drug 

carboplatin could be used in other cancer models. In our laboratory, we are also 

investigating the combination of Nutlin-3a with standard of care, temozolomide, in 

primary gliobalstoma (GBM) models with both mutant and wild-type p53. We have 

observed Nutlin-3a mediated sensitization to temozolomide in vitro and in vivo in GBM. 

Other standard of care chemotherapeutic drugs could be combined with Mdm2 

inhibition in other cancer models especially in those cancers where Mdm2 is 

overexpressed.  
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Chapter 2. Aim 2: Determination of signaling mechanisms operative in response to 

combination carboplatin and Nutlin-3a treatment in vitro  

 

A. Background and Rationale 

Several studies have demonstrated that Nutlin-3a can affect cells in a p53-

independent manner. Nutlin-3a effectively inhibited the binding of p73α, E2F1, and HIF-

1a to the hydrophobic pocket of Mdm2 in cancer cells 62,65,66. In this next series of 

experiments, our objective was to gain insight into the p53-independent effects of 

Nutlin-3a in combination with carboplatin in the TMD231 mtp53 TNBC cells. We have 

shown that the combination treatment has enhanced effects in inhibiting cell 

proliferation in methylene blue, clonogenic, and cell counting assays as well as increased 

apoptosis and cell cycle arrest. To better understand the signaling mechanisms active in 

our model system following dual carboplatin and Nutlin-3a treatment in vitro, we used a 

series of experiments to understand changes in protein levels, effects of target protein 

knockdown, as well as intracellular localization of Mdm2 following single and dual 

treatment.  

In a p53 mutant background, we reasoned that Mdm2, p73α, and E2F1 could be 

key players in promotion of cell death in the context of carboplatin-mediated DNA 

damage. To gain information on the potential role of these proteins and if they are 

involved in carboplatin/Nutlin-3a-mediated cell death, we tested a series of cell lines 

with stable or transient knockdown of Mdm2, p73 and E2F1. Additionally, carboplatin is 

a DNA damaging drug which leads to the incorporation of Pt adducts leading to bulky 
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lesions in the DNA 14. These Pt adducts can lead to intra and interstrand DNA crosslinks 

and can also lead to DSBs if left unrepaired and ultimately cell death 14.  

As background, Mdm2 has been shown to lead to genomic instability by binding 

to Nbs1, a member of the DNA damage sensing MRN complex 35. Mdm2 binds to Nbs1 

and inhibits its function at recruitment of DNA repair machinery to sites of double 

strand breaks 35. This delay in DNA damage sensing, leads to a delay in DNA repair and 

thus leads to increased genomic instability. With Mdm2 able to antagonize Nbs1 and 

inhibit DNA repair, the increased DNA damage window may allow the threshold of the 

cells to undergo stress to be reached leading ultimately cell death. We wanted to test 

the effects of Mdm2 protein reduction using cells stably expressing shRNA to Mdm2. If 

Mdm2 was a major player in the system, reductions in Mdm2 levels should lessen the 

effects of Mdm2-mediated inactivation of the MRN complex. This would allow the MRN 

complex to sense the DNA double strand breaks and if DNA repair (NHEJ and HR) is 

adequate in the cell, the DNA breaks would be repaired and the cell would survive. We 

found that while a 70% reduction in Mdm2 could be achieved with stable shRNA 

knockdown, this did not change cellular sensitivity to combination treatment. The 

remaining Mdm2 may have been sufficient to block the function of the MRN complex 

and thereby inhibiting repair of DNA double-strand breaks. It appears that there is a 

very small threshold at which Mdm2 can still antagonize DNA repair (personal 

correspondence with Dr. Christine Eischen). As mentioned previously, 27% of breast 

cancers overexpress MdmX with concurrent p53 inactivation as well as 30% of 

aggressive breast cancers also have increased MdmX levels with mutant p53 99. These 
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findings are particularly important since MdmX has also been implicated in genomic 

stability as it plays a role in DNA repair by binding to Nbs1 and inhibiting DNA repair 

independent of p53 and Mdm2 which would be an interesting avenue to follow up in 

this system 99. 

 Additionally, since it has been shown that p73 can upregulate Mdm2 levels by 

binding to the Mdm2 promoter as well as E2F1-mediated upregulation of p73 following 

DNA damage, we wanted to explore the dependency of p73 or E2F1 in our signaling 

mechanism 130,131. E2F1 is a transcription factor that is also important in cell 

proliferation as well pro-apoptotic signaling depending on the cellular context. E2F1 is 

tightly regulated by the retinoblastoma (RB) protein. Following DNA damage, RB is 

phosphorylated by the Chk1/2 kinases leading to decreased association of E2F1 and RB, 

which allows E2F1 to increase its transcriptional activity 131. Following DNA damage, 

E2F1 is involved in pro-apoptotic signaling through upregulation of pro-apoptotic genes 

including p73 and caspase-7 as well as the downregulation of cell cycle progression 

genes including cyclin A2 131. p73 is a family member of p53 and has similar effects 

following DNA damage by increasing PUMA, p21, and Mdm2 78,79,82,130,132,133. We utilized 

lentiviral constructs to stably express shRNA for either p73 or E2F1. Our rationale was 

that if Mdm2, p73, or E2F1 were major signaling mediators in our model system then 

the reduction in protein levels would lead to decreased drug sensitivity. In cells with p73 

and E2F1 transient or stable knockdowns, exposure to carboplatin and Nutlin-3a would 

not lead to enhanced cells death since there would little to no p73 or E2F1 available to 

upregulate pro-apoptotic gene levels. This lack of gene upregulation would lead to 
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increased resistance to treatment due to the lack of apoptosis. While incomplete 

knockdown of the target RNA can preclude one from obtaining interpretable data, the 

levels of shRNAs from stably integrated lentiviral vectors can have a downside and yield 

variable results. Lentiviral vectors randomly integrate into the genome and this can 

result in nonspecific effects on levels of other genes.134. For example, we found that 

some but not all cell lines generated with control vectors that express a GFP shRNA 

(shGFP) could lead to significant changes in drug sensitivity. One shGFP clone used in the 

shE2F1 experiments caused the cells have the highest drug resistance compared the 

shE2F1. The control shRNA vectors made the results difficult to interpret. Because of 

these issues with the stable shRNA transductions, we elected to evaluate p73 

dependency using transient transfections of siRNA specific for p73. In the TMD231 cells, 

the non-targeting control siRNA did not affect cellular sensitivity to drug treatment 

when compared to parental cells in our experiments.  

Nutlin-3a was selected for this project since it was the only Mdm2 inhibitor 

available at the time this project was initiated. It has served as a reliable research tool to 

probe how inhibition of Mdm2 mediated signaling in combination with carboplatin 

mediated-DNA damage affects the growth and survival of TNBC cells with mutant p53. 

Since the advent of Nutlin-3a, there have been several second generation molecules to 

Nutlin-3a (RG7112, Roche/Genentech) as well as numerous Mdm2 inhibitors from 

competing companies: SD-3032b (Baiichi Sankyo Inc.), SAR4058338 (Sanofi), CGM-097 

(Novartis), and AMG-232 (Amgen). Because there are more clinically relevant small 
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molecules being used, we also tested more recently the Nutlin-3a derivative RG7112 in 

combination with carboplatin in our model system.  
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B. Combination treatment affects Mdm2 cellular localization and cellular sensitivity is 

altered following transient transfection of p73 siRNA 

After examining the effects of Nutlin-3a, carboplatin, and combination treatment 

at the cellular level, we wanted to examine the effects of the drug treatments at the 

molecular level. We first used Western blot experiments to evaluate changes in protein 

levels in the treated TNBC cells. Following Nutlin-3a treatment, there were increases in 

Mdm2 protein levels, which has been consistent through my studies (Figure 17) as well 

as the literature 65,66. There were also concentration-dependent increases in p21 

following Nutlin-3a treatment. The 1:1 combination treatment resulted in modest 

increases in Mdm2 protein levels and this correlated with slight decreases in MdmX. 

Mdm2 levels in the combination treated cells were not as high as protein levels in the 

Nutlin-3a alone treated cells though the combination still showed an increase in Mdm2 

levels compared to untreated cells. Interestingly, in the combination treatment, there 

were reductions in MdmX levels whereas the other treatments showed high baseline 

levels that did not change in the single Nutlin-3a or carboplatin treated cells. In wtp53 

cells, it has been shown that following ionizing radiation, MdmX is degraded by Mdm2, 

which allows the levels of p53 to increase leading to DNA repair and/or apoptosis 135,136. 

MdmX is degraded following posttranslational modifications in which ATM is activated 

following DNA damage, which allows for phosphorylation at S403 137. This 

phosphorylation site allows for Mdm2 to target MdmX for degradation by the 

proteasome 137. In our model system, we hypothesize that p73 would induce Mdm2 
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levels and following DNA damage, may then lead to decreased MdmX levels in the 

combination treated TMD231 cells. 
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Figure 17. Nutlin-3a upregulates Mdm2 protein levels with dose-dependent increases 

in p21 while combination treatment downregulates MdmX. TMD231 cells were seeded 

in 10cm dishes and treated with increasing concentrations of Nutlin-3a, carboplatin, or 

1:1 combination for 24 hours. Cells were treated with vehicle controls (V). Cells were 

lysed with 1% SDS lysis buffer. Following Nutlin-3a and combination treatment, levels of 

Mdm2 were increased with the highest levels of Mdm2 in the Nutlin-3a alone treated 

cells when compared to the untreated control cells. There were dose-dependent 

increases in p21 following Nutlin-3a treatment. Interestingly, Mdm2 levels were slightly 

increased in the combination treated cells while there was a downregulation of MdmX 

in the combination treated cells.   
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 There are several studies indicating the increased capacity of mutant p53 cancer 

cells to have increased invasion 112. There are also studies showing that Mdm2 

overexpression drives invasion through upregulation of MMP9 37. Following Nutlin-3a 

and combination treatments, we observed increases in Mdm2 levels following Western 

blot analysis (Figure 17). We therefore, wanted to test the effects of single Nutlin-3a and 

carboplatin as well as combination treatment on TMD231 cell invasion. The invasion 

assay was designed to measure the amount of cells that are able to pass through a dried 

basement membrane matrix solution and subsequently pass through an 8µm pore-filled 

layer towards a chemoattractant (FBS) containing medium. The cells must be able to 

secrete enough enzymes to be able to pass through the basement membrane matrix. 

This assay not only tests the ability of the cells to migrate into the bottom layer but also 

the ability for the cells to invade through the basement membrane matrix. Following 24-

hour 7.5µM treatment of Nutlin-3a, carboplatin, or combination, there was no 

difference in TMD231 cell invasion between treatment groups compared to Vehicle 

treated cells (Figure 18A). Cytochalasin D was used as a negative control and inhibited 

about 50% of cell invasion compared to Vehicle controls (Figure 18A). Cytochalasin D is a 

mycotoxin that inhibits actin filaments important in cell invasion and migration by 

inhibiting the addition of actin monomers to the end of actin filaments 138. A concurrent 

cell survival experiment was conducted to ensure that the drug treatment did not affect 

total cell survival, which may have made the invasion data difficult to interpret. There 

was no difference in cell survival based on cell counting experiments between single 

drug and combination treatments when compared to Vehicle treated cells at the 24-
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hour time point (Figure 18B). Cytochalasin D itself led to some inhibition of cell viability 

due to its mechanism of action by inhibition of actin filaments, which would be critical 

for normal cell division. This modest inhibition of TMD231 cell viability following 

Cytochalasin D treatment was similar to results as described by Fronczak and colleagues 

using MDA-MB-231 cells (Platypus Technologies, 2011 AACR Abstract #4897).  
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Figure 18. Single and combination treatment does not affect cell invasion. TMD231 

cells were seeded in cell culture invasion inserts and corresponding 24-well plate with 

3,500 cells per well. Cells were serum starved overnight and treated with 7.5µM Nutlin-

3a, carboplatin, 1:1 combination, or Vehicle for 24 hours. (A) Single drug and 

combination treatment did not affect cell invasion. Cytochalasin D inhibited about 50% 

of cellular invasion. (B) Concurrent cell survival assays showed that the drug treatments 

did not affect total cell number. Cytochalasin D treatment lead to decreased cell 

survival, however this result is expected as inhibition of actin monomers is critical for 

normal cell division.   
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There is a growing body of evidence that Mdm2 has numerous p53-independent 

functions and plays a role in genome stability by binding to Nbs1, which is part of the 

MRN complex, at sites of DNA damage 35. The MRN complex acts as an initial sensing 

mechanism at sites of double strands breaks in the DNA. When the MRN complex 

recognizes these sites, a series of phosphorylation events occur with ATM leading to 

downstream DNA repair signaling. Since we observed increased levels of Mdm2 

following Nutlin-3a and 1:1 combination treatment, we investigated if Mdm2 could be 

differentially localizing in the chromatin fraction where it would presumably inhibit DNA 

repair as described above. In collaboration with Dr. Christine Eischen’s laboratory, 

chromatin association assays were conducted. Following 24-hour treatments, the 

chromatin fraction was isolated and evaluated for Mdm2 protein via Western blot. 

Following a 6-hour drug treatment, Mdm2 levels associated with the chromatin fraction 

in the combination treated cells were higher compared to the single drug treated cells 

or vehicle control (Figure 19A). Whole cell lysates indicated that there were about equal 

amounts of Mdm2 in the Nutlin-3a and combination treated cells (Figure 19B). 

Therefore, in the combination treated cells, more Mdm2 associated with the chromatin 

fraction compared to the single drug-treated cells. It is possible that the increased level 

of Mdm2 at the chromatin could be inhibiting DNA repair by Mdm2 binding to Nbs1 

within the MRN complex. This delay in DNA repair could allow an increased amount of 

DNA damage to accrue causing cells to be pushed towards increased cell death when 

exposed to carboplatin and Nutlin-3a in combination.  
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Figure 19. Mdm2 protein levels were increased in the chromatin bound fraction in 

combination treated cells. TMD231 cells were treated with Vehicle (DMSO), Nutlin-3a, 

carboplatin (Carbo), or 1:1 combination (Nutlin+Carbo) for 6 hours. Cells were lysed and 

the soluble protein fraction was collected. (A) The chromatin bound fraction was then 

collected and evaluated for Mdm2 levels. H2AX was used as a loading control for the 

chromatin fraction. Graphical representation of densitometry following ImageJ protein 

quantification showed increased levels of Mdm2 in the combination treated chromatin 

fraction compared to the single drug treated Mdm2 levels. (B) Western blot of whole 
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cells lysates showed similar amounts of Mdm2 protein in both the Nutlin-3a and 

combination treated TMD231 cells. β-actin was used as a loading control for whole cell 

lysates. ImageJ densitometry analysis showed a subtle increase in Mdm2 levels in 

combination treated cells compared to Nutlin-3a alone. This was repeated 2 times with 

similar results. 
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Since there were increased amounts of Mdm2 at the chromatin, we used a 

shRNA knockdown approach to evaluate if Mdm2 dependency of drug effect could be 

assessed. We utilized lentiviral transduced TMD231 cells expressing shcontrol or 

shMdm2 that were a kind gift of Dr. Lindsey Mayo. Western blot analysis showed that 

TMD231-shMdm2 had about 70% reduction in Mdm2 compared to the TMD231-

shcontrol cells as evaluated by densitometry using ImageJ software (Figure 20A). All 

densitometry measurements were normalized to GAPDH loading control for each lane. 

Next, we evaluated the effects of Nutlin-3a, carboplatin, or combination treatment on 

cell proliferation in the TMD231-shcontrol and TMD231-shMdm2 cells using methylene 

blue staining. When TMD231-shcontrol and TMD231-shMdm2 cells were compared, 

there were no differences in cell proliferation following Nutlin-3a, carboplatin, and 

combination treatment. No differences in IC50 values between the two cell lines (Figure 

20B) were observed. Based on the methylene blue cell growth assay, knockdown of 

Mdm2 levels by 70% was not sufficient to demonstrate Mdm2-dependency of drug 

effect. In discussions with Dr. Christine Eischen (Vanderbilt University), only small 

amounts of Mdm2 can still block DNA repair. Additionally, partial or complete knock-

down of Mdm2 experiments are difficult to interpret due to potential redundancies of 

Mdm2 and MdmX in blocking the DNA damage response 35,99. As shown in Figure 17, 

while the combination treatment led to a downregulation of MdmX protein levels, 

MdmX was still detected.  
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Figure 20. Mdm2 protein levels are reduced in TMD231-shMdm2 cells, but this does 

not confer cellular resistance to drug treatment. TMD231 cells were transduced with a 

lentiviral vector either expressing shMdm2 or shcontrol. (A) Western blot analysis 

showed decreased levels of Mdm2 in shMdm2 cells compared to the shcontrol cells. 

ImageJ analysis was used to determine that there was a 72% reduction in Mdm2 protein 

levels in the shMdm2 cells compared to the shcontrol cells. Protein levels were 

normalized to GAPDH loading control. (B) TMD231-shMdm2 and TMD231-shcontrol 

cells were treated with increasing concentrations of Nutlin-3a, carboplatin, or 1:1 

combination for 5 days. Cells were fixed and stained with methylene blue, and cellular 

proliferation was evaluated. shMdm2 and shcontrol cells showed no difference in cell 
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proliferation following increasing Nutlin-3a, carboplatin or combination drug 

treatments. (C) Isobologram analysis for 1:1 combination treatment showed similar 

cellular sensitivity in both TMD231-shcontrol and TMD231-shMdm2 cells.  
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To confirm the effects on growth inhibition we observed using the methylene 

blue proliferation assay, we also used cell counting methods to examine changes in cell 

proliferation in the TMD231-shcontrol and TMD231-shMdm2 cells. TMD231-shcontrol 

and TMD231-shMdm2 cells were treated with DMSO, 15μM Nutlin-3a, 15μM 

carboplatin, and 15μM combination. Total cell counts were determined at Day 3-5 post 

treatment. Pictures of the TMD231-shcontrol and TMD231-shMdm2 cells on Day 3 of 

treatment showed morphological changes in the carboplatin and combination treated 

cells (Figure 21A). Interestingly, according to total cell counts, the shMdm2 cells were 

slightly more sensitive to Nutlin-3a treatment compared to TMD231-shcontrol cells on 

Day 3 and 4 (Figure 21B-C). However, there were no differences in total cell numbers in 

the TMD231-shcontrol and TMD231-shMdm2 cells for all treatments by Day 4 and 5 

(Figure 21C), which is consistent with data from the methylene blue proliferation assay. 
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Figure 21. Decreased Mdm2 levels do not affect cell growth in the presence of Nutlin-

3a, carboplatin, or combination treatment. TMD231 cells were seeded at 6.5 x 103 per 

well in 12-well plates on Day 0 and treated with 15μM Vehicle (Veh), Nutlin-3a (Nut), 

carboplatin (Carb), or 1:1 combination (Combo). (A) Pictorial representation of TMD231-
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shControl and TMD231-shMdm2 cells on Day 3 post treatment. Magnification was 20X. 

(B) Graphical representation of cell counts on Day 3 from 15µM Nutlin-3a, 15µM 

carboplatin, or 15µM Nutlin-3a + 15µM carboplatin treated TMD231-shControl and 

TMD231-shMdm2 cells. In TMD231-shControl cells, there was no difference in cell 

number between 15µM carboplatin and 15µM Nutlin-3a + 15µM carboplatin 

combination treated cells. In the TMD231-shMdm2 cells, there was a significant 

reduction in total cells in the combination treated cells compared to the carboplatin 

alone treated cells (Student’s t-test, n=3, p<0.05). (C) By Day 4 and 5, the TMD231-

shControl cell counts closely resembled TMD231-shMdm2 and parental TMD231 cells 

with differences in cell numbers between the carboplatin and combination treated cells.   
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In this thesis, our objective was to investigate the p53-independent therapeutic 

potential of Nutlin-3a in combination with carboplatin. To this end, we elected to 

evaluate the role of the p53 family member, p73. Both p73 and p53 function similarly in 

the presence of DNA damage, and can activate the transcription of key target proteins 

involved in apoptosis 78,79,82,132. We first determined to what extent the inhibition of cell 

growth was dependent p73 levels. Two approaches, transient and stable knockdown 

strategies, were utilized to knockdown p73 in TMD231 cells.  

We opted to test the effect of a transient p73 siRNA knockdown approach. We 

utilized the SMARTpool: ON-TARGETplus siRNA for p73 and the ON-TARGETplus non-

targeting pool as a control from Dharmacon (GE Healthcare). The SMARTpool: ON-

TARGETplus siRNA is comprised of 4 different siRNA constructs pooled together for the 

gene of choice. There was significant p73 knockdown in the cells collected on Day 1 and 

2-post transfection with reductions of p73 by 79% as measured by densitometry (Figure 

22A). By Day 3 post transfection, the levels of p73 started to increase with knockdown 

of p73 less than 50% (data not shown). Wang et al. have demonstrated that Mdm2 can 

be a downstream transcription target of p73 and our data are consistent with their 

observations (Figure 22BA) 130. Western analysis confirmed that decreased p73 levels 

correlated with decreased Mdm2 levels. (Figure 22B). The reductions in Mdm2 were 

about 71% and 65% at Day 1 and Day 2 post transfection, respectively. In the transient 

siRNA approach Mdm2 was knocked down to a larger degree (65-75% reduction) than in 

cells with the stable shp73 approach (30-37% reduction) (Figure 23B and Figure 24C). All 

densitometry measurements were normalized to GAPDH loading control for each lane. 

 120 



We also probed sip73 cell lysates for MdmX, which has also been shown in the literature 

to bind to Mdm2 as well as have similar effects at the chromatin (Figure 22B) but did not 

observe any changes in MdmX levels 99.  
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Figure 22. Transient transfection inhibited p73 levels for 2 days post transfection and 

this correlated with decreased Mdm2 levels. p73 knockdown increases resistance to 

carboplatin mediated-DNA damage. TMD231 cells were transfected with SMARTpool: 

ON-TARGETplus TP73 siRNA or ON-TARGETplus Non-targeting Pool. (A) Western blot 

analysis of p73 levels TMD231-sicontrol and TMD231-sip73 cells showed decreases in 

p73 in the TMD231-sip73 cells compared to TMD231-sicontrol cells. Graphical 

representation of p73 protein levels showed 79% reduction in p73 protein levels the 

TMD231-sip73 compared to TMD231-sicontrol cells on both 1 and 2 Days post 

transfection. Blot densitometry was evaluated using ImageJ. Protein levels were 

normalized to GAPDH loading control. (B) Interestingly, the levels of Mdm2 were 
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decreased in the TMD231-sip73 cells compared to the TMD231-sicontrol cells. Reduced 

p73 levels did not affect the levels of MDMX. Graphical representation of Mdm2 

densitometry as determined using ImageJ showed 71% and 67% decreases in Mdm2 

levels in the TMD231-sip73 on Days 1 and 2-post transfection, respectively. Protein 

levels were normalized to GAPDH loading control.  
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Next, we evaluated treatment sensitivity of p73 siRNA transfected cells 

compared to a non-targeting siRNA control cells using methylene blue proliferation 

assays. There were no differences in the IC50 values for the Nutlin-3a treated TMD231-

sicontrol and TMD231-sip73 treated cells (Figure 23). However, in both the carboplatin 

alone and combination treated cells, there was a significant increase in IC50 values for 

the TMD231-sip73 cells compared to the TMD231-sicontrol cells (Figure 23). These 

results support our hypothesis that reduced p73 levels would decrease sensitivity to 

drug treatment. p73 signaling is important following DNA damage, which is caused by 

carboplatin. When p73 levels are reduced, there is less protein available to signal for 

pro-apoptotic proteins to be produced. Additionally, with less p73 present, there is also 

less Mdm2 present. It is not clear at this time why we did not see decreased sensitivity 

in the shp73 model but this could be related to differences in Mdm2 reduction seen in 

the stable versus transient knockdown approaches.  
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Figure 23. Sensitivity to carboplatin mediated-DNA damage is dependent on p73 levels 

in mtp53 TMD231 cells. TMD231 cells were transfected with SMARTpool: ON-

TARGETplus TP73 siRNA or ON-TARGETplus Non-targeting Pool siRNA. On Day 1 post 

transfection, cells were seeded and treated with increasing concentrations of Nutlin-3a, 

carboplatin, and 1:1 combination for 3 days. Cell proliferation was evaluated using 

methylene blue staining. IC50 values were determined using Calcusyn. Cellular sensitivity 

to Nutlin-3a treatment was not inhibited by p73 knockdown. p73 inhibition led to 

decreased sensitivity to carboplatin treatment compared to non-targeting control cells. 

There was a significant increase in IC50 value for the carboplatin treated sip73 cells 

(80.1±13.4µM) compared to the control cells (37.7±3.3µM) (Student’s t-test, *p<0.05, 

Carb siCon vs sip73, n=5, ±SD). Similar effects were seen with the 1:1 combination 

treated cells with the p73 knockdown cells being less sensitive to drug treatment. There 

was a significant increase in IC50 value for the 1:1 combination treated sip73 cells 

(20.8±6.3µM) compared to the control cells (11.7±2µM siCon) (Student’s t-test, 

**p<0.05, Combo siCon vs sip73, n=5, ±SD).  
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For stable p73 knockdown, TMD231 cells were first transduced with 7 different 

lentiviral constructs to generate stable lines, and positively transduced cells were 

selected with puromycin. p73 levels were evaluated by Western blot. Two of the clones 

shp73-3-500 and shp73-4-500 exhibited the most knockdown and were selected for 

further study. We examined the levels of p73 and both of the shp73 constructs resulted 

in >90% knockdown of p73 (Figure 24A-B). Since we observed decreased levels of Mdm2 

in the sip73 cells, we also examined the effects of shRNA to p73 on Mdm2 protein 

levels. In non-treated TMD231 cells with the shp73 constructs, there was about 30-40% 

reduction in Mdm2 levels as determined by densitometry using ImageJ software (Figure 

24C). All densitometry measurements were normalized to GAPDH loading control for 

each lane. It has been shown in the literature that p73 can bind to the promoter of 

Mdm2 in increase its levels. Therefore, with less p73 present in the cells, there is a 

reduction in Mdm2 being produced by p73 activation 130.  
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Figure 24. p73 protein levels are reduced in TMD231 cells stably transduced with 

shp73 lentiviral vectors and p73 decreases correspond to decreases in basal Mdm2 

protein levels. TMD231 cells were transduced with lentiviral vectors expressing 

Scrambled control (Scr-500) and two constructs for shp73 (3-500 and 4-500). 

Transduced cells were selected using 2.5μg/mL puromycin for 2 days. All experiments 

were conducted under selective pressure. (A) Western blot analysis of p73 and Mdm2 in 

two different TMD231-shp73 cell lines. (B) p73 levels were greatly reduced in two shp73 

(3-500 and 4-500) lines compared to the scrambled (Scr-500) control using ImageJ 

analysis. Protein levels were normalized to GAPDH loading control. (C) Interestingly, the 

two TMD231-shp73 cells lines also showed decreased levels of Mdm2. The Mdm2 

protein levels were quantified using ImageJ. Protein levels were normalized to GAPDH 

loading control.   
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Next, we evaluated the effects of reduced p73 protein levels on cellular 

sensitivity to Nutlin-3a, carboplatin, or combination treatment using methylene blue 

proliferation assays. We expected that if p73 protein levels were reduced, the cells 

would less sensitive to drug treatment since there would be less p73 available to be 

involved with pro-apoptotic signaling. Also, with less p73 present, there would be less 

Mdm2 present. With less Mdm2 present, there would be less Mdm2 available to go to 

the nucleus and inactivate Nbs1 in the MRN complex. However, through discussions 

with Dr. Christine Eischen, very small amounts of Mdm2 can still locate to the chromatin 

and antagonize DNA repair through interactions with Nbs1. Knockdown of Mdm2 may 

lead to confounding data especially with the Mdm2/MdmX interplay and both of their 

roles on genomic instability. In the shp73 experiments, there was no difference on cell 

proliferation without any changes in IC50 values between the scrambled control and 

shp73 cells for Nutlin-3a, carboplatin, and combination treatments (Figure 25).  
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Figure 25. Possible off-target effects of stable lentiviral vector integration in TMD231 

cells (shp73 versus shGFP control) impact ability to determine cellular sensitivity to 

single or dual drug treatment. TMD231-Scr and two TMD231-shp73 (3-500 and 4-500) 

cell lines were seeded in 96-well plates and treated with increasing concentration of 

Nutlin-3a, carboplatin, and 1:1 combination for 5 days. Cells were under selective 

pressure throughout the experiment with the presence of 2.5μg/mL puromycin. Cells 

were fixed and stained with methylene blue. Cell proliferation was examined, and both 
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TMD231-shp73 lines showed that cell proliferation was not different from TMD231-Scr 

cells following Nutlin-3a (A), carboplatin (B), or 1:1 combination (C) drug treatment.   
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 In the literature, it has been shown that Mdm2 can also bind E2F1. The binding 

of E2F1 to Mdm2 can be inhibited with Nutlin-3a 65. We wanted to evaluate the effects 

of E2F1 in our cellular mode by utilizing shRNA for E2F1. Several constructs were 

transduced into TMD231 cells, and following initial Western blot screening, constructs 

327 and 328 showed the best knockdown of E2F1 (data not shown). However, the 

knockdown was about 50% and 30% for constructs 327 and 328 respectively, we opted 

to select TMD231 clones of the shGFP and shE2F1 327 and 328 to see if we could get 

clonal populations with a high efficiency of E2F1 knockdown. A series of clones were 

screened for E2F1 protein levels by Western blot (Figure 26A). One clone in particular, 

328-6, had >90% knockdown of E2F1 (Figure 26B). Proliferation assays were completed 

with the shE2F1 clone 328-6 and two shGFP clones, GFP-3 and GFP-6, to evaluate the 

effects of E2F1 knockdown on cell sensitivity to Nutlin-3a, carboplatin, and combination 

treatment using methylene blue proliferation assays. Following analysis, the effects of 

drug treatments were difficult to interpret due to the shGFP control clones being 

similarly resistant to treatment or more resistant than shE2F1 clones (Figure 27). Since 

we have had trouble with the shcontrol vectors in the p73 model, it would be of great 

interest to repeat these experiments using siRNA to E2F1 and examine the effects of 

Nutlin-3a, carboplatin, and 1:1 combination treatment.  
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Figure 26. TMD231-shE2F1 clone 328-6 had a significant reduction in E2F1 protein 

levels. TMD231 cells were transduced with lentiviral vectors expressing shGFP or 

shE2F1. (A) Clones were derived from the shGFP and shE2F1-327, and -328 constructs. 

Western blot analysis for several different clones showed one clone with significant 

reductions in levels of E2F1 (328-6). Protein levels were normalized to GAPDH loading 

control. (B) E2F1 levels were greatly reduced in one clone, shE2F1-328-6 compared to 

shGFP-3 using densitometry analysis with ImageJ software. 
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Figure 27. Lentiviral transduction of shRNA to E2F1 results in confounding data due to 

cellular drug resistance in shGFP control cells. TMD231 parental, TMD231-shGFP-3, 

TMD231-shGFP-6, and TMD231-shE2F1 (328-6) cells were evaluated for cellular 

sensitivity to Nutlin-3a, carboplatin, and 1:1 combination treatment using methylene 

blue proliferation assays. Cells were seeded in 96-well plates and treated with increasing 

concentrations of Nutlin-3a, carboplatin, and 1:1 combination for 5 days. (A-B) TMD231-

shE2F1-328-6 cell proliferation was not different from TMD231-GFP-3 cells following 

Nutlin-3a and carboplatin. (C) shGFP cells were not different from shE2F1 cells following 

combination treatment.   
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As mentioned previously, Nutlin-3a was the first generation Mdm2 PPI to be 

studied in detail by Vassilev and colleagues 40 and has been used by many laboratories 

as a pre-clinical tool to study the effects of inhibiting protein-protein interactions with 

Mdm2 and its binding partners. As of 2014, there are now numerous second and third 

generation inhibitors some of which are currently being tested in clinical trials 

(www.clinicaltrials.gov). One these second generation molecules is a Nutlin-3a 

derivative compound, RG7112, which has increased potency (about 2X more potent 

than Nutlin-3a) and also has improved bioavailability and PK parameters in vivo. RG7112 

has been used in Phase I clinical trials treating solid tumors and hematological 

neoplasms. In the past year, the RG7112 has become available to the research 

community. Therefore we elected to compare effects of RG7112 in combination with 

carboplatin. In TMD231 cells, RG7112 was approximately 2X more potent than Nutlin-3a 

as indicated by IC50 values (Figure 28A). However, the 1:1 combination of RG7112 and 

carboplatin was not as robust as Nutlin-3a+carboplatin and tended to produce an 

additive effect instead of a synergistic effect (Figure 28B). Additionally, RG7112- and 

Nutlin-3a-mediated effects on Mdm2 levels were compared via Western blot. RG7112 

and Nutlin-3a treatment both induced Mdm2 levels, with RG7112 and Nutlin-3a 

inducing Mdm2 levels following 5µM and 10µM drug treatment (Figure 28C). At 20µM 

of RG7112 there was decreased levels of Mdm2, however, the cells were highly stressed 

and beginning to break down which may have affected the protein levels observed 

(Figure 28C).  
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Figure 28. Nutlin-3a analogue, RG7112 alone, is more potent in TMD231 cells. TMD231 

cells were treated with Nutlin-3a and second generation, RG7112, alone and in 

combination with carboplatin. TMD231 cells were seeded in 96-well plates and treated 
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with increasing concentrations of Nutlin-3a, RG7112, carboplatin, and combination 

treatments for 5 days. Cell proliferation was evaluated using methylene blue staining. 

(A) RG7112 alone is about twice as potent as Nutlin-3a alone with IC50 values half that of 

Nutlin-3a. However, RG7112 in combination with carboplatin is not as potent as Nutlin-

3a in combination with carboplatin. (B) Isobologram analysis for 1:1 Nutlin-

3a+carboplatin and 1:1 RG7112+carboplatin was evaluated. Nutlin-3a in combination 

with carboplatin had lower IC50 values compared to the combination of RG7112 and 

carboplatin. (C) RG7112 and Nutlin-3a treatment both induced Mdm2 levels, with 

RG7112 and Nutlin-3a inducing Mdm2 levels following 5µM and 10µM drug treatment.  
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C. Discussion and Future Directions 

Nutlin-3a treatment increased Mdm2 levels with a corresponding dose-

dependent increase in p21. Lau and colleagues showed that in p53 null cells, Nutlin-3a 

treatment led to increases in Mdm2; however, the mechanism by which Mdm2 

increased was not determined 66. Wang et al. demonstrated that p73α can bind to the 

promoter of Mdm2 and increase Mdm2 levels using luciferase constructs 130, which may 

explain why levels of Mdm2 increase following Nutlin-3a treatment and why when p73 

is knocked down, there are decreases in basal levels of Mdm2. Through collaborations 

with Dr. Lindsey Mayo, we have luciferase constructs bearing the Mdm2 promoter in 

which we can test if p73 plays a role in promoting Mdm2 levels. We can also utilize the 

siRNA to p73 with co-transfection with the Mdm2 promoter luciferase constructs to 

visualize the dependency of p73 in this system. Additionally, we have p21 and PUMA-

promoter-luciferase constructs to examine the effects on down targets in our model 

system. These experiments are ongoing in the laboratory. We did not observe notable 

changes in p73 or E2F1 protein levels following Western blot following increasing Nutlin-

3a, carboplatin, or 1:1 combination treatment at 24 hours. While we did not observe 

increases in protein levels, increased protein stabilization, post-translational 

modifications, and/or subcellular relocalization of the protein may lead to downstream 

molecular changes in the cell. The protein-protein interactions between Mdm2 and 

E2F1 and Mdm2 and p73 should be examined following Nutlin-3a to ensure that in our 

system, Nutlin-3a inhibits the binding of Mdm2 from both E2F1 and p73. Preliminary 

results show decreased Mdm2 and p73 association following Nutlin-3a treatment in co-
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immunoprecipitation experiments. Additionally, Dr. Mayo has generously provided 

dominant negative p73 and control constructs (p73DD and p73DD (L371P)) which can 

oligomerize with wild-type p73 and inhibits downstream p73-mediated effects by 

blocking the p73 DNA-binding 132,139. The use of the dominant negative p73 construct 

could be used to confirm our siRNA p73 experiments showing that p73-mediated 

signaling is important following carboplatin-induced DNA damage. Also, there may be 

small changes in protein levels that cannot be detected by Western blot that may lead 

to important protein signaling events. Our next step is to utilize quantitative RT-PCR to 

examine the effects of single and dual treatment on mRNA levels changes in Mdm2, 

p73, E2F1, and PUMA. These data may be a more sensitive measure of the activity of 

mRNA upregulation in our system. The role of ΔNp73 should also be evaluated since it 

acts to negatively regulate Tap73 isoforms 140. The ΔNp73 isoform also can act to 

negatively regulate wild-type p53, which would be important in that molecular context 

if ΔNp73 is signaling aberrantly 140. Additionally, ΔNp73 can inhibit TAp73 and p53 by 

competing for binding sites at the chromatin and thus inhibiting target gene expression 

141. More studies would need to be completed to more fully understand the role of 

ΔNp73 in our model system. 

While we did not see increases in PUMA protein levels (Figure 17), expanded 

time course studies and cell synchronization studies may help to discern if PUMA is a 

major player in our model system. Through collaborations with Dr. Lindsey Mayo, we 

also have luciferase constructs for the p21 and PUMA promoters, which may help to 

understand the effects of dual Nutlin-3a and carboplatin treatment on gene levels. 
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Expanded time courses may show increased protein levels, however, as mentioned 

above, some of these drug effects may mediate increased protein activity and/or re-

localization of proteins rather than increases in protein levels. These studies are ongoing 

in the laboratory. In the TMD231 model, some experiments have shown increases in 

p73 protein levels following carboplatin or combination treatment while other 

experiments exhibited very high levels of basal p73α. It has also been shown in the 

literature, that the epidermal growth factor receptor (EGFR) and a constitutively active 

variant (EGFRvIII) can play a role in inhibition of apoptosis by inhibiting PUMA. In some 

instances, EGFR is able to evade lysosomal-mediated degradation and can traffic to 

other organelles within in the cell including the mitochondria 142. When EGFR is located 

at the mitochondria, it was shown to bind to PUMA inhibiting pro-apoptotic signaling 

143. Constitutively and while under stress conditions, EGFR and EGFRvIII can bind to 

PUMA, sequester PUMA in the cytoplasm, and inhibit its translocation into the nucleus 

143. In our model system, >95% of the TMD231 cells express the EGFR on the cell surface 

(data not shown) and whether PUMA interacts with EGFR in TMD231 cells has not been 

studied. More work would need to be completed to better understand the interplay 

between EGFR and PUMA interactions within our model system. 

It has also been shown in the literature that Yap1 plays dual roles in the cell by 

blocking upregulation of Itch (ligase that can ubiquitinate p73α) as well as stabilizing 

p73α and increasing upregulation of pro-apoptotic gene levels 75-77. Enhancement of 

Yap1 interaction with p73 in the context of DNA damage may lead to an enhanced 

cellular response when combined with Nulin-3a and carboplatin in our model system. It 
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has been shown that the inhibition of Akt-mediated phosphorylation of Yap1 led to 

increased nuclear localization of Yap1 to bind to p73 and induce apoptosis 144. Studies 

by Mayo and Donner showed that Mdm2 is phosphorylated at Serine 166 and 186 by 

Akt, resulting in the relocation of Mdm2 to the nucleus 43. If Akt signaling is aberrant in 

our model, there could be increased Akt activity leading to more Mdm2 in the nucleus. 

Mass spectrometry could be used to examine the phosphorylation status of Serines 166 

and 186 in our model. There are also commercially available antibodies for both 

phospho- serine 166 and 186 to examine these phosphorylation sites by Western blot. 

These changes in Mdm2 localization could influence the fine balance between life and 

death. Several Akt inhibitors are currently being used in clinical trials specifically treating 

breast cancers including MK2206 145, GSK2141795 (GSK), and AZD5363 (AstraZeneca) 

(clinicaltrials.gov). Inhibition of Akt signaling may increase the multi-targeted effect of 

combination Nutlin-3a and carboplatin in TNBC cells with mutant p53. Ongoing studies 

in the laboratory have indicated that combination second-generation Mdm2 antagonists 

and AKT inhibitors are synergistic in inhibiting growth of primary patient-derived GBM 

cells in vitro (unpublished observations, Ding, Saadatzadeh, and Pollok). 

Following combination treatment, chromatin association assays revealed 

increased Mdm2 in the chromatin fraction compared to single drug alone. Increased 

association of Mdm2 with the chromatin fraction may account for why cells are more 

sensitive to combination treatment. As described earlier, Eischen and colleagues 

previously demonstrated that localization of Mdm2 in the chromatin fraction correlated 

with Mdm2 specifically binding to Nbs1 leading to inactivation of the MRN complex and 
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inhibition of DNA repair due to a block in the cell’s ability to signal that DNA damage has 

occurred 35. This delay in repair may be essential in deciding cell fate and pushing the 

treated cells towards cell death. To provide further information on the outcome of 

increased localization of Mdm2 in the chromatin following combination treatment, 

future studies could focus on determining to what extent Mdm2 specifically binds to 

Nbs1 in the MRN complex following treatment. Co-immunoprecipitation experiments 

could be conducted from lysates isolated from the chromatin fraction to examine the 

binding of Mdm2 and Nbs1. This is especially important as Mdm2 can also bind to the 

promoter of genes to upregulate transcription as well binding to other transcriptional 

factors at the chromatin 92,146,147. Additionally, it would be informative to follow up on 

determining the effects of combination treatment on MdmX levels at the chromatin 

since it has been shown that MdmX can act similarly as Mdm2 and inhibit Nbs1 in the 

MRN complex following DNA damage 5.  The knockdown of Mdm2 by shRNA were not 

interpretable due to the fact that Mdm2 levels could not be completely knocked down. 

As described in detail earlier, Mdm2 is a multi-functional protein that plays a role in 

numerous aspects of growth and survival; therefore, complete knockdown of Mdm2 is 

unlikely.  

Increasing our understanding of the DNA damage/repair kinetics following 

carboplatin and Nutlin-3a combination treatment will also be important in future 

studies. We explored technologies that would help us gain a better understanding of the 

DNA damage/repair kinetics in model systems used within our laboratory. In the 

TMD231 cells, inductively-coupled plasma mass spectrometry (ICP-MS) was used to 
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quantitatively ascertain the amount of platinum adducts bound to DNA from extracted 

DNA samples from single and combination treated cells overtime. However, while there 

were trends showing increased levels of Pt adducts bound to DNA in combination 

treated cells, the assay was highly variable and we elected to re-prioritize our approach. 

The role of combination carboplatin and Nutlin-3a treatment on the NER pathway 

should also be examined to see if Nutlin-3a leads to any inhibition in the NER pathway. 

Additionally, as DNA damage continues to accumulate in cells, the role of HR will also 

become important as DNA double strand breaks form and the role of Mdm2-mediated 

inhibition of Nbs1 should be examined in this context.  

Stable levels of shRNA that target p73 and E2F1 via lentiviral vectors led to 

decreased levels of target proteins. However this did not confer altered cellular 

sensitivity to any of the drug treatments. These data are difficult to interpret due to the 

off target effects of the control vectors used. Based on our data, transient transfection 

of p73 lead to decreased cellular sensitivity to carboplatin and combination treatments 

with significant increases in IC50 values in the p73 knockdown cells compared to control 

knockdown cells. Experiments are ongoing in the lab utilizing siRNA to E2F1 to 

determine if the effects of reduced E2F1 in our system following combined Nutlin-3a 

and carboplatin treatment. Our hypothesis is that when E2F1 levels are reduced, the 

cells should be less sensitive to DNA damaging treatment since there will be less E2F1 

present to upregulate pro-apoptotic genes.  

While the clinical grade Mdm2 antagonist RG7112 and carboplatin are 

synergistic in inhibiting growth of TMD231 cells, it is interesting to note that the growth-
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inhibition effect was less potent than the Nutlin-3a:carboplatin combination. The IC50 

for the RG7112:carboplatin combination was 7.1±0.4µM compared to 1.2±0.3µM for 

the Nutlin-3a:carboplatin combination. More studies would need to be completed with 

RG7112 or other Mdm2 inhibitors to better understand the differences in these 

compounds and the subsequent effects in cancer. This difference in potency when 

RG7112 is combined with carboplatin compared to Nutlin-3a/carboplatin combination 

treatments, may have to do with increased selectivity of the RG7112 for the Mdm2 

binding pocket in the context of p53 and not with other Mdm2 binding partners. While 

it is well documented that p73α interacts with N-terminal hydrophobic pocket, it is 

possible that binding in the pocket is slightly different. It is not known as this time to 

what degree RG7112 can block binding of p73α to the hydrophobic pocket of Mdm2 and 

this is currently being investigated in the laboratory. We have also seen similar 

differences in RG7112 and Nutlin-3a combinations with DNA damaging drug, 

temozolomide in wtp53 GBM and neuroblastoma cells suggesting that either selectivity 

for the Mdm2 binding site or other off-target effects could be the underlying reason for 

the difference in potency of effect between RG7112 and Nutlin-3a. 

RG7112 is currently being used in several Phase I clinical trials treating 

hematologic neoplasms (NCT00623870) and advanced solid tumors (NCT00559533) 

(clinicaltrials.gov). Results from clinical trials showed that the major dose-limiting factor 

toxicity was thrombocytopenia. Iancu-Rubin et al. reported that RG7112 leads to 

thrombocytopenia through two distinct mechanisms: the RG7112-mediated p53 

activation affected megakaryocytopoiesis and impaired platelet production 148. The 
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effects were reversible following cessation of treatment indicating that optimization of 

dosing schedules will be key for future trials. Higgins and colleagues showed dosing with 

another second generation Nutlin-3a compound, RG7388, that a 50mg/kg weekly dose 

was equivalent in efficacy to 10mg/kg daily dosing in an osteosarcoma model showing 

that intermittent dosing schedules may be better in the clinic since RG7112 did not have 

high patient tolerability 149. Drug dosing optimization will be important in the design of 

both animal and clinical studies utilizing these new therapeutic agents.  
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Chapter 3. Aim 3: Development and validation of in vivo animal model of human 

triple-negative breast cancer 

 

A. Background and Rationale 

The use of in vitro cell culture continues to be the initial screen for assessing the 

potential of new therapeutic approaches. In vitro cell culture allows the investigator to 

evaluate cellular sensitivity to drugs and delve into in signaling mechanisms altered by 

anti-cancer agents. However, to fully evaluate the promise of a new therapy, in vivo 

models that can assess drug efficacy and toxicity need to be included. In this thesis 

project, we focused on TNBC that forms metastatic lesions in the lung and first elected 

to determine if we could improve upon the current in vivo models that utilized Nude 

mice. While there are murine models of breast cancer, these models only study mouse 

cellular sensitivity to the drugs and are not as clinically relevant human models. To study 

human breast cancer in mouse models, we must utilize mouse models in which the 

immune system is not intact so that the human cells are not the targets of the murine 

immune system. As described previously, there have been numerous types of 

immunocompromised mouse models used to study human cancers through the years. 

However, based on available mouse models, we chose to examine the tumor growth 

and metastasis kinetics of the TMD231 human breast cancer cells in two different 

mouse strains, NOD/scid and NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Both of these 

mouse strains have severely compromised immune systems.  
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 Nod/scid mice were developed following the development of nude mice to 

provide an enhanced immune compromised mouse strain better equipped to study 

human hematopoietic cells and human cancers. While Nod/scid mice produce defective 

natural killer (NK) cells, there is still some residual NK activity, and the mice have a high 

incidence of thymic lymphoma. NSG mice were developed in an effort to create mice 

suitable to study human blood diseases. NSG mice allow for the engraftment of human 

peripheral blood and bone marrow. In NSG mice, there is increased engraftment of 

malignant and nonmalignant human hematopoietic cells. NSG mice do not produce NK 

cells due to the lack of normal interleukin 2 (IL-2) receptor expression, which prevents 

normal NK-cell development. NSG mice also have a very low incidence of thymic 

lymphoma with increased life expectancy 23. NK cells are involved in recognizing cells 

that are in stressed states in which stress ligands are expressed on the exterior of the 

cell 150. Additionally, NK cells recognize ‘non-self’ ligands expressed on the cell surface 

and especially detecting circulating tumor cells. It was shown mouse NK cells can be 

involved in the rejection of tumors in vivo, and this was dependent on the tumor cells 

expressing NK ligands 151. The absence of NK cells in the NSG mice would allow for 

better tumor engraftment especially with the use of human cancer cells. The 

comparison of mouse strain allowed for the optimal mouse strain to be used to ensure 

consistent tumor take as well as validate the metastasis from the primary tumor to the 

lung.  

The need for a sensitive measure of tumor burden in a non-invasive manner is 

needed when using animal models to study human cancers. Measurements of primary 

 146 



tumor volume by caliper have been an accepted way to determine tumor volume; 

however, the tumor must be palpable to ensure accurate measurements. When 

studying aggressive cancer models, the need to begin drug therapy at an early time 

point in tumor development is highly critical especially since in many tumors, there is a 

size threshold in which efficacy and length of treatment of window is impacted. To this 

end, our objective was to design an animal model in which the tumor cells could be 

visualized and accurately measured in non-palpable tumors growing under the 

mammary fat pad. There are numerous imaging modalities that would allow for the 

sensitive detection of tumors in vivo. Bioluminescent imaging is very sensitive but there 

are some disadvantages. The substrate for bioluminescent imaging must be injected 

into mice in which delivery can be impacted depending on tumor location. Additionally, 

the mice must be in general good health and well-hydrated otherwise blood flow can be 

altered and this could easily alter delivery of the luciferin substrate to the site of the 

tumor cells. Scans are typically 20-45 minutes for BLI. While bioluminescent imaging is 

very sensitive, the disadvantages outlined here would need to be evaluated in the 

design of animal studies and the questions posed.  

Using fluorescent imaging, the tumor cells express a fluorescent protein. Using 

an optical imager, the fluorescent protein can be excited using a laser and the emission 

can be captured using a camera. Fluorescent imaging allows for a snapshot of the 

fluorescent intensity to be collected in less than 10 minutes. The biggest advantage of 

fluorescent imaging is that it excludes problems associated with delivery of a substrate 

due to compromised blood flow to the tumor. There does need to be careful planning 
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when choosing a fluorescent protein to use for in vivo imaging. The excitation and 

emission spectra should be optimized for the specific laser/filter set in the optical 

imager. Also, some fluorescent proteins overlap with other proteins that auto-fluoresce. 

For example, the excitation/emission spectra for the green fluorescent protein (GFP) is 

also within the range of auto-fluorescence of hemoglobin as well as chlorophyll which is 

often added to murine food sources 152. The use of near-infrared (NIR) proteins 

eliminates much of the signal loss due to surrounding tissues as well as auto-fluorescent 

proteins 152. In our system, we opted to use the far-red fluorescent protein, E2-Crimson, 

which was optimal for the laser/filter set of the optical imager, Optix MX3 (ART 

Technologies). Following implant, the TMD231 cells expressing the E2-Crimson 

fluorescent protein (TMD231-CR) could be visualized as early as two hours following 

implant. We used the TMD231-CR cells to visualize and measure fluorescent intensity as 

a measure of tumor volume which could be used to randomize the mice into treatment 

groups at a very early time point (Day 7). 

 Throughout the fluorescent protein in vivo imaging validation process, a series 

of studies were used to determine the relationship between fluorescent intensities 

measured by in vitro and in vivo imaging and cell number. We tested the imaging 

sensitivity of the Optix MX3 (ART Technologies) with our TMD231-CR cells both in vitro 

and in vivo to better understand the fluorescent intensity measurements as they related 

to cell number. We also validated if fluorescent intensity correlated to tumor volume in 

vivo to determine if fluorescent imaging would be a feasible way to measure tumor 

volume in non-palpable tumors. Initial tumor burden could be accurately assessed by 

 148 



this methodology and mice randomized into treatment groups based on the photon 

emission. However, we also discovered that evaluation of treatment effects by 

fluorescent imaging was not possible due to tissue attenuation of signal, lack of depth 

sensitivity, and possible presence of residual E2-Crimson protein in the tumor mass.  
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B. In vivo animal model optimization and validation of fluorescent imaging 

The types of immunodeficient mouse strains have vastly improved over the past 

decade and offer an opportunity to explore and optimize the use of the metastatic 

breast cancer cell line TMD231. Our laboratory as well as others has found that 

NOD/scid and NSG mice provide a tumor microenvironment that increases tumor take 

frequency and consistently provides mice with similar baseline tumor sizes. The MDA-

MB-231 cells were originally passed through Nude mice, and tumors were resected and 

grown in culture forming the TMD231 cell line 17. We compared two different 

immunodeficient mouse strains, NOD/scid and NSG to evaluate the kinetics of tumor 

growth and metastasis to the lung. Over time, the primary tumors in the NSG mice grew 

larger and at a faster rate compared to the tumors implanted in the NOD/scid mice 

(Figure 29A). During the study, groups of mice were also sacrificed starting at 28 days 

post-implantation of TMD231 cells. In NSG mice, metastases in the lungs were evident 

as early as 28 days post implant and the number of metastatic foci increased over time 

at Days 35 and 49 days post implant. However, in the NOD/scid mice, metastases in the 

lungs were not detected until 72 days post implant (Figure 29A inset graph). H&E 

staining of excised lungs confirmed metastases in the lungs of NSG mice implanted with 

TMD231 cells in the mammary fat pad (Figure 29B; compare normal mouse lung (i) to 

multiple metastatic foci (ii) in the lungs). Many of the lung foci were large and coalescing 

into one another (iii). Tumor emboli were observed in some mice blocking blood flow 

within in the lungs (iv). Circulating tumor cells were also observed within the blood 

vessels of the lungs (v). The mitotic index was high with about 4+ mitotic figures per 
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high power field (vi). Based on the increased tumor growth kinetics and improved 

metastasis to the lungs in the NSG mice, we chose to continue our future animal studies 

using NSG mice.   
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Figure 29. TMD231 tumor and metastasis is increased in NSG mice compared to 

NOD/Scid mice. NOD/scid and NSG mice were implanted with 1x106 TMD231 cells into 

the mammary fat pad and allowed to grow. Tumor growth in the mammary fat pad was 

monitored via caliper over time. Mice were sacrificed throughout the study to evaluate 

the formation of lung metastases. (A) Tumors had increased growth kinetics in the NSG 
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mice compared to NOD/scid mice. Additionally, there were increased lung metastases 

with foci detected as early as 28 days post implant. Metastases were not detected in 

NOD/scid mice until 72 days post implant. (B) Histology using H&E staining confirmed 

metastases in the lungs of NSG mice implanted with TMD231 cells in the mammary fat 

pad. Normal mouse lung (i) compared to multiple metastatic foci (ii) in the lungs. 

Metastatic foci were numerable (>50 small to moderate foci to too numerous to count). 

Many of the foci were large and coalescing into one another (iii). Tumor emboli were 

observed in some mice blocking blood flow within in the lungs (iv). Circulating tumor 

cells were also observed within the blood vessels of the lungs (v). Mitotic index was high 

with about 4+ mitotic figures per high power field (vi). 
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In the development of the in vivo animal model to study human breast cancers, 

we discovered it was necessary to develop a more sensitive and accurate measure of 

early tumor burden especially since the TMD231 are very aggressive growing cells in 

vivo. We were looking for a non-invasive, easily measureable, and highly sensitive 

manner in which to determine early tumor burden. Once the mammary fat pad tumors 

become palpable, we determined that the treatment window is very short and can 

prevent the use of full treatment schemas. Before this model optimization was 

conducted, it routinely took nearly two weeks of tumor growth before most tumors 

would be measurable using a caliper. The endpoint of the studies was reached when the 

primary tumors reached ~1000mm3 tumor volume which took about 6-8 weeks when 

1x106 TMD231 cells were implanted into the mammary fat pad. Since the study time 

frame was typically about 8 weeks, there was not much time remaining for drug 

treatments. At the initiation of treatment, our objective was to start with a reasonable 

tumor volume so that the tumor to body size ratio of the mice was comparable to the 

tumor to body size ratio we might find in clinical situations (topic presented by Dr. Susan 

Clare, "Delivery of nanovectors in vivo by hitching a ride with the Immune System” at 

Drug Delivery and Cancer: Challenges and New Directions for Cancer Therapy, Purdue 

University, 2011). In collaboration with Dr. Helmut Hanenberg, we designed a lentiviral 

vector construct that expressed the E2-Crimson fluorescent protein (Figure 30A). The 

E2-Crimson fluorescent protein had excitation and emission spectra that best matched 

the laser/filter set of the in vivo fluorescent imaging machine, the Optix MX3 (Figure 

30C) (ART Technologies). The TMD231 cells were transduced with the E2-Crimson 
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lentiviral sup and became known as TMD231-CR. The TMD231-CR cells were evaluated 

using flow cytometry and TMD231 parental cells were used as a control. The TMD231-

CR cells were >80% positive for the E2-Crimson fluorescent protein and this allowed us 

to maintain the original population of TMD231 cells and not select for a subpopulation 

which could have different cellular and molecular responses to treatment (Figure 30B).  
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Figure 30. TMD231 cells stably express the E2-Crimson fluorescent protein. (A) E2-

Crimson fluorescent protein was expressed in the puc2CL7CR2wo lentiviral vector under 

a SFFV promoter. (B) TMD231 cells were transduced with the E2-Crimson lentivirus. 

Transduction efficiency was determined using flow cytometry with about 80% positive 

cells (TMD231-CR). (C) The excitation and emission spectra was 611/646nm.  
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Since the TMD231-CR was transduced with a lentiviral vector, which can 

integrate at random into the genome, we wanted to test the cellular sensitivity of the 

TMD231-CR cells to our drug treatments using methylene blue proliferation assays. The 

TMD231-CR cells had similar sensitivity as the parental TMD231 cells (Figure 31). In the 

TMD231-CR cells, the IC50 value was 22.7µM±1.1 for Nutlin-3a, 7µM±0.3 for carboplatin, 

and 1.1µM±0.1 for the combination treatments (Figure 31B) compared to 19±3µM for 

Nutlin-3a, 6.3±1.9µM for carboplatin, and 0.7±0.5µM for combination treatments in 

TMD231 cells (Figure 31A).  
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Figure 31. Combination treatment has similar enhanced potency in TMD231-CR cells 

when compared to TMD231 cells. TMD231-CR cells were treated with increasing 

concentrations of Nutlin-3a, carboplatin, or 1:1 concomitant combination treatment and 

allowed to grow for 5 days. Cell proliferation was determined using methylene blue 

staining. (A) Combination treatment had an increased potency in TMD231 cells 

compared to Nutlin-3a and carboplatin alone treated cells. (B) Combination treatment 

had an increased potency in TMD231-CR cells compared to Nutlin-3a and carboplatin 

alone treated cells.   
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To validate our imaging approach, pilot studies were next conducted to optimize 

cell dose for early imaging assessment. As first, we established the relationship between 

cell number and fluorescent intensity both in vitro and in vivo was determined. We 

hypothesized that there would be a cell number-dependent increase in fluorescent 

intensity as the cell number increased. For the in vitro imaging experiment, parental 

TMD231 served as the background control for the TMD231-CR cells. PBS alone was also 

imaged as an additional control. Images were collected to visualize relative fluorescent 

signals between the groups (Figure 32A). Images were analyzed and fluorescent 

intensity was calculated using the OptiView software (ART Technologies). Any 

fluorescence collected from the appropriate TMD231 parental cells was subtracted from 

the TMD231-CR cells resulting in fluorescent intensity represented by ‘normalized 

counts’ (NC) units. As expected, there was a cell number-dependent increase in 

fluorescent intensity with an R2=0.976 (Figure 32B).  
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Figure 32. In vitro imaging of TMD231-CR cells shows a cell number-dependent 

increase in fluorescent intensity. (A) TMD231 and TMD231-CR cells were plated with 

0.03125, 0.0625, 0.125, 0.5, 1, 2, and 4x106 cells per well in triplicate and imaged in 

vitro. Parental TMD231 cells were used as a control for any auto-fluorescence. PBS was 

used as a control for background. (B) Graphical representation of the TMD231-CR 

fluorescent intensity showed that the fluorescent intensity increased in a cell number-

dependent manner. The fluorescent intensity of the parental TMD231 cells was used as 

background and subtracted from the fluorescent intensity of TMD231-CR cells.   
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To further support our in vitro imaging data, we then tested if there were cell 

number-dependent increases in fluorescent intensity in vivo. For in vivo imaging, four 

different TMD231 and TMD231-CR cell numbers (0.125, 0.25, 0.5, and 1.0 x106) 

implanted into mice, and two hours following implant the mice were imaged (Figure 

33A). There was a cell number-dependent increase in fluorescent intensity with 

R2=0.996 (Figure 33B). The TMD231 parental cell implanted mice had minimal 

background fluorescence as shown in Figure 33B. All of the TMD231-CR cell numbers 

implanted were detected during fluorescent imaging indicating the sensitivity of the in 

vivo Optix MX3 imaging system (ART Technologies).  
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Figure 33. Fluorescent intensity increases in a cell number-dependent manner in vivo. 

(A) NSG mice were implanted with increasing cell numbers (0.125, 0.25, 0.5, and 1.0 

x106) of TMD231 or TMD231-CR in the mammary fat pad. At 2 hours post implant, the 

tumor bearing mice were imaged. (B) Graphical representation of fluorescent intensities 

for 0.125, 0.25, 0.5, and 1.0 x106 cells in vivo.  
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Following the in vitro and in vivo cell number imaging experiments, we next 

determine if in vivo imaging would be a viable way to measure tumor volume. We 

designed a longitudinal TMD231-CR imaging study to examine tumor growth coupled 

with in vivo imaging. Starting on Day 7 post implant and every week thereafter for a 

total of 5 weeks, mice were imaged and primary tumor fluorescent intensity was 

determined. Longitudinal images were collected and a representative picture shows the 

same three mice throughout the course of the study (Figure 34A). Mouse No. 1 is not 

pictured in the Day 35 image as its tumor reached the >1000mm3 endpoint before the 

last imaging date and was sacrificed. The tumor growth of the TMD231 parental and 

TMD231-CR tumors as measured by caliper were plotted over time, and there were 

similar growth rates for the two cell lines in vivo (Figure 34B). Additionally, fluorescent 

intensity was plotted as a function of tumor volume as measured via caliper showing 

fluorescent intensity and measured tumor volume correlated cell with R2=0.991 (Figure 

34C).  
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Figure 34. TMD231-CR fluorescent intensity correlates with tumor volume over time. 

(A) NSG mice were implanted in the mammary fat pad with 1x106 TMD231-CR cells and 

imaged weekly after implant for a total of 5 weeks. These are representative images of 

the same mice over the course of the study. (B) Tumors from TMD231 and TMD231-CR 

bearing mice were measured via caliper twice weekly and tumor volume was recorded 

throughout the study. TMD231 and TMD231-CR tumors grew at similar rates and 

increased over time. (C) Longitudinal images were analyzed and compared to measured 

tumor volume. Increased fluorescent intensity correlated with increased tumor volume 

over time with an R2=0.991.   
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Since the TMD231-CR cell line is comprised of a transduced (80%) and non-

transduced (20%) cells (Figure 30B), we wanted to ensure that the cell line maintained 

the levels of the fluorescent protein following implant in the mice. At the termination of 

the longitudinal imaging study, two mice bearing tumors from TMD231 parental and 

TMD231-CR cells were excised from sacrificed mice and examined using flow cytometry 

for E2-Crimson levels. Following flow cytometry, the two TMD231-CR tumors from 

mouse numbers 207317-1 and 207317-2 maintained E2-Crimson fluorescence with 

>75% positive for the fluorescent protein compared to >80% from initial flow cytometry 

analysis of the TMD231-CR cell line (Figure 30 and 35). The percentage of transduced 

cells did not significantly change following passage in vivo and the mean fluorescence 

intensity of the population was stably maintained over the course of a long-term animal 

study, which would be useful for longitudinal imaging studies.  
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Figure 35. TMD231-CR tumors stably express E2-Crimson over time in vivo. NSG mice 

were implanted with 1x106 TMD231 or TMD231-CR cells into the mammary fat pad and 

allowed to grow. At the completion of the study, tumors were excised from TMD231 

and TMD231-CR bearing mice, dissociated, and grown in culture. These cells were then 

analyzed using flow cytometry to evaluate E2-Crimson levels. Tumors from TMD231-CR 

mice (203317-1 and 207317-2) maintained the E2-Crimson fluorescent protein with only 

small losses compared to 80% positivity (Figure 30B).   
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Based on our pilot in vitro and in vivo imaging data, we concluded that 

fluorescent imaging was a sensitive measure of early tumor burden. We developed a 

standardized protocol for all subsequent dose finding studies and combination drug 

studies. We incorporated in vivo imaging as a measure of early tumor burden. Primary 

tumor was easily visualized with positive fluorescent intensity (Figure 36A). After 

analysis, each mouse received a fluorescent intensity value that was used to randomize 

the mice into different treatment groups. Each treatment group received an equal 

average amount of E2-Crimson fluorescent intensity as measured by fluorescent 

intensity of each mouse (Figure 36B). Using fluorescent imaging allowed mice to be 

randomized into treatment groups at a very early time with small tumor burden. If 

caliper measurements had been used for the randomization, this would not have been 

possible until at least days 18-21 post implant of TMD231 cells. At this time point, the 

tumors have entered a phase of exponential growth and due to the highly aggressive 

nature of this cell line, expand very quickly leaving the treatment window relatively 

small. Thus, our standard protocol for all subsequent animal studies was to image mice 

on Day 7 post implantation of TMD231-CR cells followed by randomization into 

treatment groups. An acclimation period following imaging and randomization was 

included and drug treatments began shortly thereafter, on Day 10.  
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Figure 36. Fluorescent imaging allows for sensitive detection of early tumor burden. 

NSG mice were implanted with 1x106 TMD231 or TMD231-CR cells into the mammary 

fat pad on Day 0. (A) The primary tumor region of TMD231 and TMD231-CR bearing NSG 

mice were imaged on Day 7 post implant. (B) Non-palpable tumors were imaged using 

fluorescent imaging. Fluorescent intensity was determined for each mouse after imaging 

and used to randomize the mice into treatment groups (Veh, Carb, Nut, and Combo). 

Each treatment group received equal amounts of tumor as determined by fluorescent 

imaging.   
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C. Discussion and Future Directions 

Fluorescent imaging provided a sensitive measure of early tumor burden in vivo, 

which would allow drug treatment to begin at an early time point in tumor development 

allowing for a larger treatment window to be used. The TMD231 cells were transduced 

with the E2-Crimson fluorescent protein with a lentiviral vector allowing for stable levels 

of the protein over time. Flow cytometry confirmed that there was >80% TMD231 cells 

positive for E2-Crimson. A series of in vitro and in vivo experiments validated the use of 

TMD231-CR cells for the use in future animal studies as a measurement of non-palpable 

early tumor burden which is immeasurable with a caliper. The TMD231-CR cells were 

plated in increasing cell number on 96-well plates and imaged in vitro in the optical 

imaging machine, Optix MX3. There was a cell-dependent increase in fluorescent 

intensity in the TMD231-CR cells. To test the sensitivity of in vivo imaging, NSG mice 

were implanted with 0.125, 0.25, 0.5, and 1.0x106 TMD231-CR cells in the mammary fat 

pad and imaged two hours post implant. Fluorescent intensities were collected from all 

cell numbers and indicated cell number-dependent increases in fluorescent intensity 

when plotted graphically. Additionally, we wanted to correlate fluorescent intensity 

with tumor volume over time. We designed a longitudinal study to collect weekly 

imaging data and plotted the fluorescent intensities as compared to tumor volumes as 

measured by caliper. There were increases in fluorescent intensity as a function of 

increasing tumor volume. Taken together, these data suggest that fluorescent imaging is 

a sensitive measure of early tumor burden since fluorescent intensity is cell number 

dependent in vitro and in vivo and over time, tumor size-dependent in vivo. Fluorescent 
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imaging allowed for a non-invasive and relatively quick measure of non-palpable tumor 

burden allowing for a sufficient therapeutic window of time. Since the laser within the 

imaging apparatus excited the fluorescent protein expressed within the tumor, there 

was no need for an injected substrate as compared to bioluminescent imaging. Blood 

flow can greatly influence the movement of a substrate to the target tissues for 

bioluminescent imaging. Also, fluorescent imaging was relatively quick with scan times 

<5 minutes as compared to bioluminescent imaging (>20 minute scans). The length of 

time while under anesthesia and away from the animal room can add increased stress 

to the mice. We wanted to reduce the amount of stress that was exposed to the 

treatment mice for future studies since tumor burden not only increases the overall 

stress on the animal but coupled with the increased animal handling associated with the 

treatment dosing as well as effects from the drug treatments themselves. All of these 

factors contribute to the overall health of the mice and we wanted to decrease as much 

stress as possible. It is clear from numerous studies in the laboratory that a “stress 

threshold” exists and once this threshold is surpassed, the impact of therapy can no 

longer be assessed accurately. 

The use of fluorescent imaging could also be used to detect metastases. 

However, in our system, the use of fluorescent imaging of E2-Crimson with the Optix 

MX3 did not prove to be sensitive enough to measure lung metastases at the depth 

required in the whole animal. One study suggested that fluorescent imaging of GFP was 

sensitive enough to measure as small as 50 cells in vivo; however, the design of that 

experiment utilized a microscope connected directly to the camera 153. In other studies 
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windows were created in the skin to allow for imaging directly into the body cavity 152. 

This method would be quite invasive and would not be conducive for long-term studies. 

The use of NIR proteins allows for increased sensitivity of fluorescence measurement 

since there are fewer signals lost to surrounding tissues 152. Additionally, the use of NIR 

fluorescent proteins would lead to imaging with increased depth capacities allowing for 

deeper tissues to be examined 152. The use of NIR fluorescent proteins could allow for 

metastases to be detected within the lungs and other secondary tissues. More sensitive 

imaging modalities could be explored and validated in the future to measure primary 

tumor growth and metastases in vivo.  
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Chapter 4. Aim 4: Determination of efficacy of combination carboplatin and Nutlin-3a 

treatment in vivo 

 

A. Background and Rationale 

Carboplatin is currently being investigated in numerous clinical trials specifically 

treated metastatic TNBC: NCT01881230, NCT00691379, and NCT01281150 

(clinicaltrials.gov). Nutlin-3a is a pre-clinical tool being used to study the effects of 

modulating Mdm2 signaling. As described previously, Nutlin-3a is a small molecule 

inhibitor that was designed to bind into the hydrophobic pocket of Mdm2 and inhibit 

the binding of p53 40. In later studies, it was also discovered that Nutlin-3a also inhibiting 

the binding of p73, E2F1 and Hif-1α from Mdm2 62,65,66. These four binding partners of 

Mdm2 all have a conserved domain in which binds into the hydrophobic pocket of 

Mdm2 62. Due to the multi-functional role Mdm2 plays in several signaling pathways, we 

wanted to examine the combined effects of Nutlin-3a and standard of care 

chemotherapeutic, carboplatin, in vivo. Our in vitro results indicate a strong synergistic 

interaction when Nutlin-3a and carboplatin are used in a 1:1 ratio in cell proliferation 

with enhanced cell death and apoptosis (see Chapter 1). Mdm2 also plays an important 

role in DNA damage by antagonizing Nbs1 which is involved in DNA repair and thus 

increased Mdm2 leads to increased genomic instability by delaying DNA repair 35. We 

also observed increased levels of Mdm2 in the chromatin fraction isolated from cells 

treated with combination carboplatin and Nutlin-3a (see Chapter 2). Taken these data 

together, we wanted to design in vivo efficacy studies utilizing NSG mice implanted with 
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TMD231-CR cells in the mammary fat pad. The mice were randomized based on 

validated in vivo imaging studies as previously described (see Chapter 3).  

Before moving into combination efficacy studies, we next determined the dose 

of carboplatin that would inhibit ~50% of primary tumor growth in the carboplatin dose 

finding study. This dose of carboplatin would later be combined with Nutlin-3a, and 

therefore we did not want to completely abolish the primary tumor growth with 

carboplatin alone. Our primary goals in the combination efficacy studies were to 

determine the effects of combination treatment compared to each single drug on 

primary tumor growth and metastasis to the lung. Additionally, we needed to determine 

the drug dosing schema in which we had efficacy while balancing the stress on the 

animals as well as normal tissue toxicity. Dosing was further optimized between 

combination study 1 and combination study 2 in which changes to the dose of 

carboplatin was reduced as well as the time between drug dosing was lengthened to 

reduce stress on the animals. The effects of drug treatment on probability of survival 

were examined in combination study 2. We also examined the toxicity of the 

combination drug treatment with expanded toxicity examinations with each subsequent 

combination study by utilizing a number of toxicity measures including health of bone 

marrow, effects on blood cells, effects on other tissues, as well as body weights 

throughout the studies. Since the bone marrow is one of the most sensitive measures of 

normal tissue toxicity, we elected to evaluate possible effects of therapy in detail 110. 

The mice received Uniprim® (TD.06596, Harlan Laboratories) which is a specialty rodent 

diet that have 275 ppm trimethoprim and 1,365 ppm of the sulfonamide sulfadiazine to 
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help reduce the risk of infection. When the mice are taken to imaging, they are removed 

from their sterile environment and could be exposed to circulating pathogens. The NSG 

mice are particularly susceptible due to their compromised immune system. The mice 

received additional supportive care at the beginning of drug dosing by receiving water 

soaked Uniprim® chow which helped to maintain or restore losses in body weights after 

the start of drug treatment. The combination studies evolved from study to study taking 

the data and applying necessary changes to improve each subsequent animal study to 

increase knowledge and understanding.  

We also completed a small pharmacodynamic study to see if we could validate 

protein target modulation in vivo. Mice were implanted with the TMD231-CR cells and 

once the tumors reached about 500mm3, the mice were treated with an aggressive 

dosing regimen and then sacrificed shortly thereafter to study the effects of drug 

treatment on protein levels within the tumor. We also took a portion of the primary 

tumors and examined the levels of human VEGF to see the effects of Nutlin-3a 

treatment on the primary tumor.   
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B. In vivo combination drug efficacy studies  

Our overall experimental goal was to investigate the therapeutic potential of 

modulating the Mdm2 signaling network via Nutlin-3a in combination with carboplatin 

and to determine the molecular targets active in our system. Therefore, we next 

conducted complete carboplatin dose-finding studies to determine the appropriate dose 

of carboplatin that would inhibit ~50% tumor growth. The results from the carboplatin 

dose finding study would help design future efficacy combination studies conducted in 

combination with Nutlin-3a. The Nutlin-3a dose used for in vivo studies was selected 

based on other in vivo dose-finding studies already completed in the laboratory in 

human brain cancer models and was set at 200 mg/kg (Figure 37). The maximal Nutlin-

3a plasma concentration (Cmax) was measured to be 35µM, which was higher than the 

IC50 value of 19.4µM±3.3 determined for Nutlin-3a in vitro in the TMD231 cells (Figure 

6). The tmax or time to reach maximal plasma concentrations was 1 hour while the half-

life (t½) was calculated to be 5.5 hours. The apparent oral clearance (Cl/F) was calculated 

to measure the rate of clearance of the drug when given orally. Extensive 

pharmacokinetic studies were completed by Zhang and colleagues, which examined the 

distribution of Nutlin-3a in mice 154. In those studies, they showed that Nutlin-3a had 

high bioavailability and was well distributed from plasma to the tissues including the 

lungs indicating that Nutlin-3a should be present in the lungs in our model 154. Figure 38 

shows the carboplatin dose finding study schema.  
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Figure 37. Pharmacokinetics of Nutlin-3a in NSG mice. (A) Mice received 100 mg/kg 

Nutlin-3a p.o. and plasma samples collected and processed from 1-24 hours for 

quantification (n= 3 mice per time point). Quantification of the compounds was 

determined using liquid-liquid extraction followed by HPLC-MS/MS (API 4000). Data are 

represented as the mean ± SD. For quantification of Nutlin-3a, the line illustrates the 

line of best fit (using the last four points). (B) Summary of Nutlin-3a PK parameters. The 

maximal Nutlin-3a plasma concentration (Cmax) was measured to be 35µM. The tmax or 

time to reach maximal plasma concentrations was 1 hour while the half-life (t½) was 

calculated to be 5.5 hours. The apparent oral clearance (Cl/F) was calculated to measure 

the rate of clearance of the drug when given orally. 
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The carboplatin dose-finding study showed that carboplatin inhibited primary 

tumor growth in a dose-dependent manner compared to vehicle-treated mice. (Figure 

39A). At 3mg/kg and 30mg/kg carboplatin, the growth of primary tumors was 

significantly inhibited compared to Vehicle treated mice (Two-Way ANOVA, p<0.001, 

n=8-9). Additionally, mice were sacrificed when the primary tumor reached ≥1000mm3, 

and carboplatin treatment increased the probability of survival at this endpoint (Figure 

39B). Based on the carboplatin dose-finding studies, we elected to treat mice with 

25mg/kg carboplatin in combination efficacy studies.  
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Figure 39. Carboplatin inhibits tumor growth and increases survival in a dose-

dependent manner. NSG mice were implanted with 1x106 TMD231 as a background 

control for imaging or TMD231-CR cells into the mammary fat pad and allowed to grow. 

On Day 7, mice were imaged and randomized into treatment groups (Vehicle, 1mg/kg, 

3mg/kg, and 30mg/kg carboplatin). Mice started drug treatment on Day 12 post implant 
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and were dosed i.p. MWF for 2 weeks for a total of 6 doses. Primary tumor growth was 

evaluated twice weekly via caliper measurements. (A) Tumor growth was inhibited in a 

carboplatin dose-dependent manner. The 3mg/kg and 30mg/kg carboplatin treatments 

significantly inhibited tumor growth when compared to Vehicle treated mice (Two-Way 

ANOVA, *p<0.001 as compared to Vehicle treated, n=8-9, mean±SEM). (B) Carboplatin 

increased probability of survival at endpoint in a dose-dependent manner. Mice were 

sacrificed when primary tumors reached 1000mm3.   
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As we began to design the first combination animal study, our objectives were to 

evaluate the effects of the combination Nutlin-3a and carboplatin treatment on primary 

tumor growth and metastasis to the lung as well as evaluate in vivo imaging following 

drug treatment. Figure 40 illustrates the overall study design. The combination 

treatment significantly inhibited primary tumor growth compared to Vehicle- and single 

Nutlin-3a- and carboplatin-treated mice over the course of the entire study (Two-Way 

ANOVA, p<0.001, n=7-9, ±SEM) (Figure 41A). There was no difference between Vehicle- 

and Nutlin-3a-treated mice. Carboplatin alone inhibited tumor growth, however, the 

combination of carboplatin and Nutlin-3a further decreased primary tumor growth 

(Figure 41A). During this initial phase of developing a rational dosing regimen, mice 

were monitored daily for signs of therapy-induced stress and toxicity. The dosing 

schema in study one began with dosing three times weekly, but was subsequently 

altered to twice weekly dosing due to increased stress on the mice (decreased appetite, 

lack of grooming, and 10% body weight loss). These adjustments were made during the 

first combination study and continued in subsequent studies. When the first primary 

tumors reached ≥1000mm3, all of the mice were sacrificed, which was about a week 

after the completion of drug treatment in combination study 1. As a secondary measure 

of tumor size, following necropsy, the primary tumors were excised from mice and 

weighed. The average weight tumors from the combination treated mice were 

significantly smaller than tumors from Vehicle and single Nutlin-3a and carboplatin 

treated mice (One-Way ANOVA, p<0.001, n=7-9, ±SEM) (Figure 41B). A pictorial view of 

excised tumors from treated mice visually showed primary tumors from combination 
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treated mice were smaller in size compared to tumors from Vehicle and single Nutlin-3a 

and carboplatin treated mice (Figure 41C).  
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Figure 41. Combination treatment significantly inhibits primary tumor growth in vivo. 

NSG mice were implanted with 1x106 TMD231 as a background control for imaging or 

TMD231-CR cells into the mammary fat pad on Day 0. Mice were imaged on Day 7 post 

implant and randomized into treatment groups using fluorescent intensity. Mice were 

dosed with Veh (PBS and 0.5% methylcellulose+0.05% Tween80), 25mg/kg carboplatin 

i.p., 200mg/kg p.o., or 25mg/kg carboplatin i.p. + 200mg/kg p.o. three times weekly for 

total of 6 doses. Primary tumor volume was evaluated using caliper measurements 

throughout the study. (A) Carboplatin alone, Nutlin-3a alone, and combination all 

significantly inhibited primary tumor growth compared to Vehicle treated mice with the 

combination treatment significantly inhibiting tumor growth when compared to both 

single drug treatments (Two-Way ANOVA, *p<0.001 as compared to Vehicle, # p<0.001 

as compared to Nut and Carb alone, n=7-9, ±SEM). (B) At study completion, mice were 

sacrificed and primary tumors were excised and weighed. Primary tumor weight was 
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significantly reduced in combination treated mice compared to Vehicle and single drug 

treated groups (One-Way ANOVA, *p<0.001, n=7-9, ±SEM). (C) Representative pictures 

of tumors from each treatment group.   
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Throughout the study, we evaluated the mice for overt toxicity to drug 

treatments. During the study, the mice did not lose more than 10% body weight overall 

(Figure 42A). The first drop in body weight occurred during the first week of drug 

treatment. The mice were supplemented with water soaked Uniprim® food which 

helped the mice recover lost body weight. All subsequent animal studies used water 

soaked Uniprim® food as supportive care. As an additional measure of drug toxicity, 

bone marrow cellularity was determined. There was a decrease in total bone marrow 

cell numbers from mice treated with the combination treatment compared to the 

Vehicle and single drug treated mice (Figure 42B) (One-Way ANOVA, p<0.001, n=7-9, 

±SD). While there were decreases in total bone marrow cell counts in the combination 

treated mice, this loss did not result in blast crisis (Figure 42B). Since the mice were 

sacrificed only 7 days following the completion of drug treatment, this presumably did 

not allow for an adequate recovery period of the bone marrow cells in response to 

carboplatin. Subsequent animal studies incorporated a revised study design that 

allowed us to evaluate potential toxicity to the bone marrow following an increased 

recovery period; in this study design, total bone marrow cell counts returned to normal 

levels (Figure 49).  
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Figure 42. Drug treatment is well tolerated with minimal toxicity. (A) Body weight did 

not significantly change throughout study. Body weights of mice were evaluated 

throughout the study as a measure of overall mouse health. After the first week of drug 

treatment, mice were given water soaked Uniprim® food as supportive care after which 

body weights improved. (B) Total bone marrow cell counts were determined from 

excised femurs of treated mice. Bone marrow cell counts were significantly reduced in 

the combination treated mice compared to Vehicle treated mice (One-Way ANOVA, 

*p<0.001, n=7-9, ±SD).   
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Since the combination treatment inhibited primary tumor growth, we also 

examined the effects of combination treatment on metastatic lesions in the lung. 

Representative pictures of H&E slides of lungs were taken and combination mice had 

smaller sized and less numbered lung metastases (Figure 43A). The human tumor cells in 

the lungs appear purple in color due to the Haematoxylin dye, which stains basophilic 

structures in the cells like DNA, RNA, and endoplasmic reticulum (The Histology Guide, 

University of Leeds). Eosin stains acidophilic parts of the cells, which includes the 

cytoplasm. Due to the large and aneuploid structures of the tumor cells, they appear 

more purple in color compared to the much smaller diploid mouse cells in the lungs, 

which appear more pink in color. The Vehicle-treated mice had very large metastases 

that coalesced into one another forming large areas of tumor cells in the lungs. The 

carboplatin and Nutlin-3a alone treated mice had lower numbers and smaller 

metastases compared to the Vehicle-treated mice. A blinded pathologist scored the H&E 

slides of lung tissues with a scoring system based on Grade 1-5 (Figure 43D). The 

traditional scoring by pathologist showed that the combination treated mice had 

significantly smaller Grade metastatic lesions compared to Vehicle- and single drug-

treated mice (One-Way ANOVA, p<0.05, n=5, ±SD). As a secondary measure of 

metastases, H&E stained slides were also scanned using the Aperio ScanScope system 

(Leica Biosystems) and analyzed using ImageScope software (Leica Biosystems). Positive 

staining can be collected digitally allowing for a non-biased measure of pathological 

staining. Following ImageScope analysis for positivity, it was confirmed that lungs from 

combination treated mice had less lung metastases compared to Vehicle- and single-
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drug treated mice (One-Way ANOVA, p<0.05, n=5, ±SD) (Figure 43C). While the 

combination-treated mice had less lung metastases, the study design does not answer 

the question if the combination treatment inhibits the metastatic process or simply 

inhibits primary tumor growth, which would result in less metastatic cells entering the 

blood stream, and therefore less cells able to metastasize to the lungs. To answer this 

question, mice would need to be implanted with TMD231 cells and tumors allowed to 

grow until ~3 weeks post implant where metastases in the lungs have been visualized. 

At that point, the mice could be randomized based on tumor volume and treatment 

would begin. This way, the mice already have metastases present in the lungs. Following 

treatment, smaller lung metastases would indicate that the drug treatment inhibited 

tumor growth in the lungs. The disadvantage to this metastasis model would be the 

large size of the primary tumors. Metastasis begins around 21 days post implant, which 

does not leave a large treatment window due to the size of the primary tumor. The 

primary tumor would likely need to be resected so that they lung metastases could form 

and become large enough to visualize any differences in number and size following drug 

treatment. This study design would be similar to what is observed in the clinic in which 

women with breast cancer may have surgery to remove the tumor and then treated 

systemically for any metastatic sites.  
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Figure 43. Combination treatment inhibits tumor growth in secondary sites. Following 

sacrifice, lungs were excised and fixed in 10% buffered formalin. Lungs were paraffin 

blocked, sections were cut, and stained for H&E. (A) Pictorial representation of primary 

tumor H&E staining of the lungs. Combination-treated mice had the smallest tumor 

Stage bearing the smallest number and size of lung metastases compared to the 

Vehicle- and single drug-treated mice (4X magnification). (B) Mice were scored by stage 

by a blinded pathologist. Stage parameters were determined in the table (D). The 

combination mice had significantly smaller lung metastases as determined by Grade 

compared to all other groups (One-Way ANOVA, *p<0.05, n=5, ±SD). Additionally, slides 
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were scanned using Aperio ImageScope system and analyzed for digital positivity of 

staining. (C) Combination-treated mice had a significant reduction in positivity 

compared to other treatment groups which confirmed traditional histology 

quantification (One-Way ANOVA, *p<0.05, n=5, ±SD).   
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To better understand the effects of drug treatment on cell proliferation within 

tumors at the time of mouse sacrifice, excised tumors were stained for Ki67. 

Representative pictures of tumors from Vehicle, Nulin-3a alone, carboplatin alone, and 

combination-treated mice showed that combination treated mice had less Ki67 staining 

(Brown) compared to the other groups (Figure 44A). ImageScope analysis confirmed 

that there was significantly less Ki67 staining in combination treated mice compared to 

Vehicle treated mice (One-Way ANOVA, p<0.05, n=4, ±SD) (Figure 44B). There was a 

downward trend in Ki67 staining in tumors from Nutlin-3a and carboplatin alone treated 

mice.  
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Figure 44. Cellular proliferation is decreased in combination treated mice. Slides were 

also cut for Ki67 staining. (A) Pictorial representation of primary tumor Ki67 staining 

(brown stain) showed less staining in combination treated mice compared to Vehicle 

treated mouse tumors (40X magnification). (B) Graphical representation showed a 

significant reduction in Ki67 staining in combination treated mice compared to Vehicle 

treated mice (One-Way ANOVA, *p<0.05, n=4, ±SD). There was a downward trend in 

Ki67 staining in the Nutlin-3a and carboplatin alone treated mice.   
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In our second objective, we evaluated the primary tumor response to drug 

treatment using optical imaging. Mice were imaged on Day 7 as baseline fluorescent 

intensity analysis for randomization. The fluorescent intensity was highly variable after 

the drug treatment and did not yield statistical significance (Figure 45). There were 

downward trends in the combination treatment compared to Vehicle treated mice; 

however, there was no difference between combination and carboplatin alone treated 

mice. The measured tumor volume via caliper and tumor weights showed that the 

combination treated mice had significantly smaller tumors compared to the Vehicle- and 

single drug-treated mice and this was confirmed by tumor weight measurements taken 

at the end of the study. Our data indicate that fluorescence imaging in this model 

system does not provide an accurate measure of tumor volume following drug 

treatment and was also not sensitive enough to pick up fluorescence from metastatic 

lung foci. As the tumors grew larger, some developed necrotic cores and dead cells. And 

it is highly probable that due to tissue attenuation effects and remaining E2-Crimson 

protein in dying and/or necrotic cells was the reason for lack of correlation between 

imaging results and other measures of tumor growth. In discussions with the Indiana 

Institute for Biomedical Imaging Sciences, we also believe that the machine could not 

accurately detect fluorescence at the depth required to obtain accurate measure of 

response to treatment. If the depth of signal was variable between mice, this could have 

added to the overall variability of fluorescent intensity values. Additionally, imaging is an 

added stressor to mice already highly stressed following tumor implant and drug 
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treatment. In future studies, we elected to only use the in vivo imaging as a measure of 

early tumor burden in the mice.  
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Figure 45. Fluorescent intensity is highly variable after drug treatment and does not 

correlate with other measurements of tumor growth. NSG mice were implanted with 

1x106 TMD231 and TMD231-CR cells into the mammary fat pad on Day 0. Mice were 

imaged on Day 7 and randomized into treatment groups. Mice were dosed with Vehicle 

(PBS and 0.5% methylcellulose+0.05% Tween80), 25mg/kg carboplatin i.p., 200mg/kg 

Nutlin-3a p.o., or 25mg/kg carboplatin+ 200mg/kg Nutlin-3a combination. Mice were 

allowed a week recovery period following the completion of drug treatment, and then 

the mice were imaged. Following imaging analysis on Day 38, there was a downward 

trend in fluorescent intensity for the combination mice compared to Vehicle and single 

drug treated mice. However, the fluorescent intensity was highly variable and did not 

denote significant differences (n=7-9, ±SEM).  
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 Based on positive data from the first combination animal study, we next 

designed an in vivo experiment that would repeat and also expand upon the 

combination animal study design to answer additional experimental questions (Figure 

46, see schema of study design). Combination study 2 was designed in a similar fashion 

to the first combination study. There were groups of mice that were designed to 

validate the first study with mice sacrificed when the first tumors reached ≥1000mm3. 

There were also groups of mice that were used to study the effects of the drug 

treatment on the probability to survive to the endpoint of 800mm3 tumor volume. We 

also wanted to further evaluate bone-marrow toxicity following drug treatment. Slight 

changes were made to the dosing schema with the carboplatin dose being reduced from 

25mg/kg to 20mg/kg due to decreased body weights in the carboplatin and combination 

treated mice in Combination Study 1. Mice were dosed twice weekly to reduce stress for 

a total of 8 doses. Mice were given supportive care with the addition of water soaked 

Uniprim® food, which helped to increase food uptake in the mice. Histology with H&E 

staining of the lungs was also repeated to confirm the first combination study.   
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Similar to the first combination study, the combination treated mice had 

significantly smaller primary tumors compared to Vehicle- and both single drug-treated 

(Two-Way ANOVA, p<0.05, n=12, ±SEM) (Figure 47A). The group of mice used to confirm 

the first combination study was sacrificed on Day 41, which was 5 days after the 

completion of drug treatment. During necropsy, the primary tumors, lungs, and femurs 

were excised for further analysis. Primary tumor weight was significantly reduced in 

combination treated mice compared to Vehicle and single carboplatin and Nutlin-3a 

treated mice (Figure 47B) (Student’s T-test, *p<0.05, n=3-4, ±SEM). Histology was used 

to examine primary tumors and lungs for H&E staining. Bone-marrow cellularity was 

also evaluated from excised femur bones (Figure 49). Since the sample size was small in 

the repeat study mice group coupled with innate variability in animal studies, the 

histology data from H&E stained lungs did not show significant differences between the 

treatment groups (data not shown).  
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Figure 47. Combination treatment significantly inhibits primary tumor growth in vivo. 

NSG mice were implanted with 1x106 TMD231 or TMD231-CR cells into the mammary 

fat pad on Day 0. Mice were imaged on Day 7 post implant and randomized into 

treatment groups. Mice were dosed with Veh (PBS and 0.5% methylcellulose+0.05% 

Twenn80), 20mg/kg carboplatin i.p., 200mg/kg p.o., or 20mg/kg carboplatin i.p. + 

200mg/kg p.o. two times weekly for total of 8 doses. Primary tumor volume was 
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evaluated using caliper measurements throughout the study. (A) The combination 

treated mice had significantly smaller tumors compared to Vehicle and both single drug 

treated groups (Two-Way ANOVA, p<0.05, n=12, ±SEM). (B) At study completion, mice 

were sacrificed and primary tumors were excised and weighed. Primary tumor weight 

was significantly reduced in combination treated mice compared to Vehicle and single 

drug treated groups (Student’s T-test, *p<0.05, n=3-4).   
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To better understand the effect of combination drug treatment on probability of 

survival, a second group of mice from different treatment groups were examined for 

survival. The endpoint for survival mice was set as the time point when the primary 

tumor reached 800mm3. The combination treated mice a significant probability of 

survival at the time point at which the tumors reached 800mm3 compared to Vehicle 

and single drug treated mice (Figure 48A). Kaplan-Meier analysis using SigmaPlot 

showed that the survival time for Vehicle was 39.3±0.6 days, Nutlin-3a was 39±1 days, 

carboplatin was 47.5±1.8 days, and combination was 54.3±1.5 days (Figure 48B).   
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Figure 48. Combination treatment increases probability of survival. Groups of mice 

were studied for probability of survival with the survival endpoint determined when the 

primary tumor reached 800mm3. (A) Following Kaplan-Meier analysis (SigmaPlot), the 

combination treated mice had a significantly increased probability of survival compared 

to Vehicle and single drug treated mice (n=7-8, p<0.05). (B) Survival for Vehicle was 

39.3±0.6 days, Nutlin-3a was 39±1 days, carboplatin was 47.5±1.8 days, and 

combination was 54.3±1.5 days.   
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When the mice reached the tumor volume endpoint, the mice were sacrificed 

and femurs were collected for total bone marrow cell counts. Measurements of bone- 

marrow cellularity are a sensitive measure of tissue toxicity, which is important since 

one of the side effects of carboplatin is myelosuppression155. In the group of mice 

examined for survival, the mice were not sacrificed until a later time point, which 

resulted in about a 2-weeks recovery period following the end of drug treatment. The 

total bone marrow cell counts were compared between the groups used to confirm 

combination study 1 which were harvested 5 days following the completion of drug 

treatment and the group in study 2 used to examine survival which were harvested after 

a two week recovery period following the completion of drug treatment. There was a 

significant reduction in total bone marrow cell counts in the combination treated mice 

compared to Vehicle treated mice in the group that only received a 5 day recovery 

period (Two-Way ANOVA, # p<0.05, n=4, ±SD) (Figure 49). However, the significant 

reduction in total bone marrow cell counts returned to normal levels in groups of mice 

used to examine survival after a two-week recovery period (Two-Way ANOVA, *p<0.05, 

n=3, ±SD) (Figure 49). Thus, bone-marrow toxicity in the combination treated mice is 

reversible and not a long lasting effect; bone-marrow cell counts returned to normal 

levels within 2 weeks following the completion of drug treatment. 
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Figure 49. Total bone marrow cell counts recover to normal levels following recovery 

period after treatment. A group of mice were sacrificed 5 days after the end of 

treatment and bone marrow cell counts were determined as described in the Materials 

and Methods. The combination treated mice had a significantly reduced number of 

bone marrow cells compared to Vehicle treated mice (Two-Way ANOVA, # p<0.05, n=4, 

±SD). However, after a two-week recovery period, the levels of total bone marrow cell 

counts came back to normal levels in the combination treated mice (Two-Way ANOVA, 

*p<0.05, n=3, ±SD).  
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Breast cancers can metastasize to many tissue compartments including brain and 

bone. Since we already had processed femurs of mice for bone-marrow cellularity 

measurements, we next determined if there were any metastatic tumor cells present in 

the bone marrow compartment. Since the tumor cells are marked with the E2-Crimson 

fluorescent protein, detection of tumor cells could be readily determined by flow 

cytometry experiments. TMD231 parental cells were first used to set the gates for 

fluorescent protein negative cells (Figure 50A). TMD231-CR cells were used as a positive 

marker for the presence of the E2-Crimson fluorescent protein (Figure 50B). 

Additionally, we isolated bone marrow from a normal NSG mouse (WT BM) that was 

untreated and non-implanted (Figure 50C). We also used normal NSG bone marrow 

spiked with two different ratios of the TMD231-CR cells (1:1 WT:231-CR and 9:1 

WT:231-CR) as a positive marker for E2-Crimson cells present in mouse bone marrow. In 

the samples containing the mixtures of the bone marrow and TMD231-CR cells, flow 

cytometry showed E2-Crimson cell number-dependent increases in positive cells in the 

wild-type bone marrow (Figure 50D-E). Bone marrow cells from Vehicle- and Nutlin-3a-

treated groups were evaluated for the presence of TMD231-CR cells. Following flow 

cytometry analysis, there were no TMD231-CR cells present in isolated bone marrow 

(Figure 50F-G). A tabular summary of the data can be found in Figure 50H. At the time of 

these analyses, there were 3 Vehicle and 3 Nutlin-3a treated mice that were sacrificed 

on the same day so we elected to examine the bone marrow of these mice for the 

presence of E2-Crimson expressing tumor cells. The carboplatin and combination 

treated mice were much more variable in the time to reach the endpoint. We expected 
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the most tumor cells to be present in the Vehicle and Nutlin-3a treatment groups since 

their tumors were the largest and had significantly more lung metastases than the other 

two treatment groups. Since we did not detect any tumor cells in the bone marrow 

isolated from Vehicle or Nutlin-3a treated mice, we did not evaluate this in the other 

treatment groups.   

 207 



 

Figure 50. Tumor cells are not present in isolated bone marrow. Bone marrow cells 

were prepared by crushing excised femur bones with mortar and pestle. Crushed bones 

were passed through a 70μm cell strainer, and red blood cells were lysed with RBC lysis 

buffer. Isolated cells were washed with PBS and the presence of TMD231-CR tumor cells 

were assessed using flow cytometry. (A-C) TMD231 parental, TMD231-CR, and bone 
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marrow cells from a wild-type mouse were used as controls for flow cytometry. (D-E) 

wild-type bone marrow was spiked with two different ratios of TMD231-CR cells (1:1 

WT:231-CR and 9:1 WT:231-CR) as controls. Bone marrow from three mice from Vehicle 

and Nutlin-3a treated groups were evaluated for the presence of TMD231-CR cells. (F-G) 

Representative plots of Vehicle- and Nutlin-3a-treated mice show that there were no 

TMD231-CR cells present in isolated bone marrow. (H) Table shows numerical values of 

cells positive for the Crimson fluorescent protein.   
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 In combination study 3, we made further adjustments to the study design. Our 

objectives were to confirm combination study 1 with histology and added further 

assessments of carboplatin and Nutlin-3a combination treatment on toxicity by further 

examining bone marrow health and secondary tissues. During the time of combination 

study 2 and combination study 3, the motherboard of the Optix MX3 was damaged. 

Therefore, we were unable to image the mice on Day 7 for randomization purposes. We 

elected to randomize the mice based on body weights on Day 7 so that drug treatment 

could begin on Day 10 as in other studies. Following necropsy, lungs, primary tumors, 

livers, spleens and femurs were collected. We performed H&E staining of the lungs, 

primary tumors, livers, spleens, and femurs. We repeated bone marrow cellularity and 

also evaluated the effects of the drug treatments on complete blood counts (CBCs) and 

progenitor assays. An outline of combination study 3 can be found in Figure 51.  
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As in combination studies 1 and 2, the combination treatment significantly 

inhibited primary tumor growth when compared to Vehicle and single drug treated mice 

(Figure 52A) (Two-Way ANOVA, p<0.05, n=8, ±SEM). At study completion, mice were 

sacrificed, and the primary tumors were excised and weighed. The average primary 

tumor weight was significantly reduced in the combination treated mice compared to 

Vehicle and single drug-treated groups (Figure 52B) (Student’s T-test, p<0.05, n=7-8, 

mean±SEM). These results add further support to the combination treatment efficacy 

on primary tumor volume.  
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Figure 52. Combination treatment significantly inhibits primary tumor growth in vivo. 

NSG mice were implanted with 1x106 TMD231 or TMD231-CR cells into the mammary 

fat pad on Day 0. Mice were imaged on Day 7 post implant and randomized into 

treatment groups. Mice were dosed with Veh (PBS and 0.5% methylcellulose+0.05% 

Tween80), 20mg/kg carboplatin i.p., 200mg/kg p.o., or 20mg/kg carboplatin i.p. + 
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200mg/kg p.o. three times weekly for total of 8 doses. Primary tumor volume was 

evaluated using caliper measurements throughout the study. (A) The combination 

treated mice had significantly smaller tumors compared to Vehicle and both single drug 

treated groups (Two-Way ANOVA, *p<0.05 as compared other treatment groups, n=12, 

±SEM). (B) At study completion, mice were sacrificed and primary tumors were excised 

and weighed. Primary tumor weight was significantly reduced in combination treated 

mice compared to Vehicle and single drug treated groups (Student’s T-test, *p<0.05, 

n=7-8, mean±SEM).  
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To better understand the effects of combination carboplatin and Nulin-3a on 

bone marrow health, bone marrow cellularity was evaluated. At the time of sacrifice, 

the mice had about a two-week recovery period following the completion of drug 

treatment. There were no differences in bone marrow cellularity between all of the 

treatment groups, which confirmed results from combination study 2 that bone marrow 

returns to normal following a recovery period (n=8±SD) (Figure 53A). However, there 

was a measurable difference in frequency of hematopoietic progenitor cells in the 

carboplatin alone and combination treated mice compared to Vehicle treated mice 

(One-Way ANOVA, p<0.05, n=3, mean±SD) (Figure 53B).  
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Figure 53. In vivo administration of carboplatin and Nutlin-3a does not affect overall 

bone marrow cellularity but causes a decrease in the frequency of hematopoietic 

progenitor cells. Tumor-bearing mice were treated with vehicle control (Veh), 

carboplatin (Carb), Nutlin-3a (Nut) or combination carboplatin and Nutlin-3a (Combo). 

After a 2-week recovery period, mice were sacrificed and femurs harvested. (A) Bone 

marrow cells were isolated and cellularity determined per femur (n=8, mean ± SD). (B) 

The number of hematopoietic progenitor cells was determined using a colony forming 

unit (CFU) assay. Bone marrow cells were plated in triplicate at 2x104 per dish in 

MethoCult GF M3434 and allowed to grow for 2 weeks. Carboplatin and combination 

treated mice formed less progenitor colonies compared to Vehicle treated mice (One-

Way ANOVA, *p<0.05, n=3, ±SD).   
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Additionally, just before sacrifice, an aliquot of peripheral blood was collected 

from each mouse to examine complete blood counts (CBCs). Peripheral blood was 

analyzed via hemavet for red blood cells, thrombocytes, and white blood cells. There 

were significant reductions in red blood cells, thrombocytes, and white blood cells in the 

combination treated mice compared to Vehicle treated mice (One-Way ANOVA, p<0.05, 

n=7-8, mean±SD) (Figure 54). While there were significant decreases in peripheral blood 

cells, these levels of toxicity were acceptable since decreased counts did not appear to 

affect overall health of the mice nor body weights. We also looked at bone marrow 

histology with bone marrow smears. There were no overt signs of toxicity in bone 

marrow smears from all treatment groups and also there was no detection of tumor 

cells, which confirmed our flow cytometry results from combination study 2 (Figure 55). 

In addition myeloid hyperplasia was noted by the pathologist to be present in all 

treatment groups with no notable differences between treatment groups (Figure 55). 
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Figure 54. In vivo administration of carboplatin and Nutlin-3a leads to decreases in red 

blood cells, thrombocytes, and white blood cells. Tumor-bearing mice were treated 

with vehicle control (Veh), carboplatin (Carb), Nutlin-3a (Nut) or combination 

carboplatin and Nutlin-3a (Combo). After a 2-week recovery period, an aliquot of 

peripheral blood was analyzed via hemavet for red blood cells, thrombocytes, and white 

blood cells. The combination treatment led to decreased red blood cells, thrombocytes, 

and white blood cells (One-Way ANOVA, *p<0.05, n=7-8, mean±SD).   
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Figure 55. Myeloid hyperplasia is evident in bone smears from all treatment groups 

but no changes are observed in overall bone marrow composition following 

treatment. Femur bones were excised during necropsy. Bones were fixed in 10% 

buffered formalin and decalcified with Decal®. Bones were set in paraffin blocks, 

sectioned, and stained with H&E. There were no overt signs of toxicity in bone marrow 

smears from all treatment groups. There was myeloid hyperplasia present in all 

treatment groups.  

  

 219 



To examine other tissue toxicity to combination drug treatment, we evaluated 

the liver and spleen of treated mice. Spleens from all treatment groups exhibited 

increased myeloid stem cells in the spleens while only some of the livers from the same 

mice exhibited extramedullary hematopoiesis (EMH) in livers (Table 2). Three mice 

exhibited focal lesions in the livers, which did not correlate to the treatment groups 

indicating that the metastasis to the liver was a random event. Two mice from the 

carboplatin-treated group had one focal lesion in the liver while one Nutlin-3a treated 

mouse exhibited 2 focal lesions in the liver (Table 2). Despite exhibiting extramedullary 

hematopoiesis, the spleens and livers from all treatment groups appeared normal with 

no regions of necrosis or inflammation.  
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Table 2. All spleens and some livers exhibit extramedullary hematopoiesis (EMH) with 

few focal lesions. Spleens and livers were collected from sacrificed mice. Tissues were 

embedded, sectioned, and examined using H&E staining. All spleens collected from each 

of the treatment groups exhibited increased myeloid stem cells in the spleens while only 

some of the livers collected from the same mice exhibited extramedullary 

hematopoiesis (EMH) in livers. Three mice exhibited focal lesions in the livers, which did 

not correlate to the treatment groups.  
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A pharmacodynamic study was conducted to begin to understand what the 

combination treatment may modulate at the molecular level in vivo. Based on in vitro 

results, we showed that the combination treatment led to synergistic effects in 

methylene blue proliferation assays. We also observed increases in Mdm2 protein levels 

in Nutlin-3a- and combination-treated TMD231 cells when examined with Western blot. 

It has been shown in the literature that Nutlin-3a inhibits the binding of Mdm2 to Hif-1α 

which led to decreased VEGF 62. With decreased levels of VEGF, the tumor cells would 

have limited angiogenesis capabilities. Based on these data, we determined the in vivo 

pharmacodynamic effects of the combination treatment on tumors by examining the 

effect of drug treatment on human VEGF levels and target protein modulation in 

primary tumors following a short treatment schema. Complete study design is outlined 

in Figure 56.  
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NSG mice were implanted with TMD231-CR cells and allowed to grow. Once the 

tumors reached ~500mm3 as measured by caliper, the mice were randomized into 

treatment groups so that each group received equivalent tumor sizes. The mice were 

dosed for 3 consecutive days and sacrificed 2 hours following the completion of drug 

treatment. The tumors were excised, cut in half, and snap frozen for use in VEGF ELISA 

and Western blot analysis. Tumors were lysed and equal protein was loaded into the 

Human VEGF Quantikine ELISA Kit (R&D Systems) plate as per manufacturer’s 

instructions. There was no difference in human VEGF levels present in any tumors 

between any of the treatment groups (n=5, mean±SD) (Figure 57). The Human VEGF 

Quantikine ELISA Kit utilizes antibodies raised against the most common form of VEGF, 

VEGF165. If there were any differences in any of the other VEGF isoforms, we would not 

have been able to detect these differences with this particular ELISA format.  
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Figure 57. Human VEGF165 levels are not altered by drug treatment in vivo. NSG mice 

were implanted with 1x106 TMD231-CR cells, and when primary tumors reached 

approximately 500mm3, randomized based on tumor volume. Mice were dosed with 

20mg/kg i.p. carboplatin alone in the morning, 200mg/kg Nutlin-3a p.o. alone in the 

afternoon, or combination for 3 consecutive days. Mice were sacrificed 2 hours 

following the administration of the last dose of Nutlin-3a, and primary tumors were 

excised and collected. Tumors were homogenized using the Tissue Tearor™ 

Homogenizer, and evaluated for the presence of Human VEGF using an ELISA assay. 

There was no difference in Human VEGF165 present in tumors between any of the 

treatment groups (n=5, ±SD).  
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The other half of the primary tumors collected at the completion of the 

pharmacodynamic experiment was used to evaluate the effects of carboplatin and 

Nutlin-3a drug treatment in vivo. There were increases in Mdm2 protein levels in mice 

treated with Nutlin-3a alone while the increases in Mdm2 following combination 

treatment were not as robust (Figure 58). This result was similar to what we observed 

with in vitro experiments (Figure 17). There was a significant increase in MdmX, E2F1, 

and p21 levels in the combination treated mice compared to Vehicle (Mouse 1, 2, and 4) 

treated mice (Student’s T-test, p<0.05, n=3-4, mean±SEM) (Figure 58). Overall, there 

were no noticeable changes in PUMA levels when comparing the different treatment 

groups. This could be due to the time point at which the tumors were harvested. We 

may need to make alterations to the dosing schema to gain a better understanding in 

PUMA levels. In the future, time-course experiments could be done to better elucidate 

the signaling mechanisms that are operative in vivo following short-term drug 

treatment. Immunohistochemistry staining for Mdm2 localization (nuclear versus 

cytoplasmic) will be used in the future to better understand the mechanism in vivo.   
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Figure 58. Combination treatment significantly increases MdmX, E2F1, and p21 protein 

levels in vivo. NSG mice were implanted with 1x106 TMD231-CR cells, and when primary 

tumors reached approximately 500mm3, randomized into treatment groups based on 
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tumor volume. Mice were dosed with Vehicle (PBS and 0.5% methylcellulose+0.05% 

Tween80) (Veh), 20mg/kg i.p. carboplatin alone (Carb) in the morning, 200mg/kg Nutlin-

3a p.o. alone (Nut) in the afternoon, or combination (Combo) for 3 consecutive days. 

Mice were sacrificed 2 hours following the last administration of Nutlin-3a and primary 

tumors were excised and collected. Tumors were homogenized using the Tissue 

Tearor™ Homogenizer and evaluated for changes in target protein levels by Western 

blot. There was a noticeable increase in Mdm2 protein levels the combination-treated 

mice however it was not as high as that observed in the Nutlin-3a-treated mice, which 

was similar to that of the in vitro data (Figure 17). There was a significant increase in 

E2F1 and MdmX levels in the combination treated mice compared to Vehicle (Mouse 1, 

2, and 4) and carboplatin-treated mice (Student’s T-test, p<0.05, n=3-4, ±SEM). There 

was a significant increase p21 levels in the combination treated mice compared to 

Vehicle (Mouse 1, 2, and 4) treated mice (Student’s t-test, p<0.05, n=4, ±SEM).  
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C. Discussion and Future Directions 

To summarize combination study 1, combination drug dosing schema was tested 

for feasibility, efficacy, and overall tolerability in mice. The combination treatment 

significantly inhibited primary tumor growth that was confirmed following post-

necropsy tumor weights when compared to tumor growth and weights of Vehicle- and 

single drug-treated mice. The number of metastases in the lungs in the combination-

treated mice was significantly reduced compared to Vehicle- and single drug-treated 

mice. The decreased lung metastases was confirmed with traditional pathologist scoring 

by hand as well as using measuring positivity of staining utilizing the Aperio ImageScope 

(Leica Biosystems) software analysis. The use of the automated image quantification 

increased speed of tissue analysis, decreased the cost of analysis and reduced any bias 

in analyzing tissue samples 156. The use of in vivo imaging was best used as a sensitive 

way to measure non-palpable tumors when the goal was to randomize mice at an early 

tumor burden.  

Overall in combination study 2, we further optimized the drug dosing schema by 

reducing the dose of carboplatin to 20mg/kg from 25mg/kg and lengthened the time 

between doses to decrease stress and drug induced toxicity on the animals. This dosing 

optimization is very important in vivo when trying to reduce toxicity in the animals. 

Studies examining the optimization of the dosing schema using a second generation 

Nutlin-3a derivative, RG7388, concluded that a 50mg/kg weekly dose was equivalent in 

efficacy to 10mg/kg daily dosing in an osteosarcoma model while reducing toxicity 149. 

Further drug dosing optimization could be completed in future studies to improve upon 
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efficacy while decreasing tissue toxicity. We determined that the combination 

treatment increased the probability of survival when compared to Vehicle and single 

carboplatin and Nutlin-3a treatment. The combination treatment significantly decreased 

total bone marrow cells immediately following drug treatment. However, after a 

recovery period of about 2 weeks, the levels of total bone marrow cells in combination 

treated mice come back up to normal levels. Additionally, while breast cancer cells can 

metastasize to bone, we did not detect any TMD231-CR present in isolated bone 

marrow cells from any of the treatment groups.  

Combination study 3 continued to validate the previous two studies as well as 

further expand on examining toxicity at the bone marrow as well as other tissues. As in 

the previous combination studies, the combination treatment significantly decreased 

primary tumor volume when compared to Vehicle and single carboplatin and Nutlin-3a 

treated mice. The mice were sacrificed after a 2-week recovery period after the 

completion of drug treatment. Bone marrow cellularity analysis indicated that there was 

no difference in the combination treated-mice compared to the Vehicle- and single-drug 

treated mice which further confirms that there is not a long lasting effect of drug 

treatment on total bone-marrow cell counts. Additionally, we used clonogenic 

progenitor assays to examine the effects of drug treatment on the progenitor cells from 

isolated bone marrow of treated mice. There was a significant reduction in number of 

progenitor cells in the combination-treated mice compared to the Vehicle- and single 

drug treated-mice. We also examined the effects of drug treatment on peripheral blood 

counts by completing CBC analysis. We saw a significant reduction in red blood cells in 
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combination treated mice compared to Vehicle and single drug treated mice. Also, there 

were significant reduction in white blood cells and platelets in the carboplatin and 

combination treated mice compared to the Vehicle and Nutlin-3a alone treated mice. 

While there were reductions in peripheral blood cell counts and progenitor assays, 

overall there did not seem to be any overt toxicity as a result of these changes. We also 

used histology to examine the effects of drug treatment on bone marrow using bone 

marrow smears, as well as spleens and livers of treated mice. Based on bone marrow 

smears, there was no overt toxicity present with all groups presenting with myeloid 

hyperplasia. The presence of tumor cells in the bone marrow was not detected during 

analysis. The livers and spleens of the mice did not appear to be different between 

treatment groups after analysis with H&E staining. There was extramedullary 

hyperplasia (EMH) present in all spleens from the all of the treatment groups. There was 

EMH present in some of the livers as well as a few mice that presented with focal lesions 

in the livers. The presence of the focal lesions did not correlate to the drug treatment 

groups and seems to be at random. There were no signs of overt tissue toxicity in the 

livers and spleens of mice with no areas of necrosis or abnormal cellular phenotypes.  

Combination therapies are common in treating cancer as the multi-targeted 

approach has been beneficial in improving treatments and patient outcomes. Finding 

new therapeutic targets is of great interest. Our studies show an improved outcome 

following the combination of Nutlin-3a and carboplatin. Additional therapeutic targets 

could be examined in our model system. One study showed in TNBC cells harboring 

mutant p53, that inhibition of Chk1 in combination with DNA damage led to a bypass of 
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Chk1-mediated checkpoint signaling and increased apoptosis in a patient xenograft 

model 157. In our system, Chk1 inhibitors could be added to potentially increased 

efficacy and lead to further tumor inhibition. Additionally, the TMD231 cells are very 

invasive as shown by in vitro cell invasion assays and the presence of in vivo lung 

metastases. Price and colleagues showed that in the parental MDA-MB-231 cells, 

activity of EGFR led to increased migration through Phosphatidylinositol 3′-Kinase (PI3K) 

and Phospholipase C- (PLC) dependent signaling 158. In these studies, it was shown that 

epidermal growth factor (EGF), which is the substrate for EFGR, led to increased cell 

migration while not affecting cell proliferation in the MDA-MB-231 cells 158. The 

migratory nature of the cells towards EGF was inhibited by the treatment of the cells 

with EGFR tyrosine kinase inhibitors, AG1478 and PD153035, the PI3K inhibitor, 

wortmannin, MEK inhibitor, PD098059, as well as the PLC inhibitor, U73122 158. 

Following flow cytometry experiments of TMD231 cells, we observed that a high 

percentage of cells (>95%) express EGFR (data not shown), which could help drive 

distant migration in vivo. Additionally, Ferraro and colleagues showed in vitro and in vivo 

model of TNBC that inhibition of EGFR using certain combinations of EGFR antibodies 

led to downregulation of the EGFR, inhibited EGFR recycling, and migration in vitro as 

well as inhibition of tumorigenic growth in vivo 159. While EGFR antagonists have not 

been highly successful in clinical trials, the authors propose that the use of combinations 

of EGFR antibodies in which there is no epitope overlap may lead increased efficacy 

compared to those antibody combinations where the epitope of EGFR overlaps between 

 232 



the two antibodies 159. These treatment strategies could be integrated into our model 

system to further inhibit the tumorigenicity of TNBCs. 

The pharmacodynamic study was designed to better understand the 

combination treatment effects on protein levels in vivo. The pharmacodynamic study 

showed no difference in human VEGF165 levels following VEGF ELISA analysis. Further 

analysis would need to be completed to examine the other isoforms of VEGF since the 

VEGF ELISA utilized only looked at the presence of the most prevalent VEGF isoform, 

VEGF165. Western analysis from PD tumor lysates showed significant increases in E2F1, 

MdmX, and p21 compared to Vehicle treated mice in vivo following combination 

treatment. These in vivo results were different from in vitro results as the combination 

treatment led to decreases in MdmX following combination treatment in vitro. It has 

been in our experience that modulation of targets may differ between in vitro and in 

vivo settings since there are difference in tumor microenvironment with the lack of 

stromal cells in many in vitro settings as well as differences in oxygen content available 

to the tumor cells, which is especially true in vivo. Stromal cells may offer support to 

growing tumor cells by excreting growth factors 160. Often in tumors in vivo, the cells 

must adapt to surviving in hypoxic conditions due to decreased and/or abnormal blood 

flow to the tumor. In vitro, the cells typically are grown in 5% oxygen, which is much 

higher than found in tumor settings 161,162. These differences in microenvironment may 

lead to different signaling pathways to be altered in tumor cells especially following drug 

treatment. Further studies will need to be conducted to identify and validate 

biomarkers of efficacy following drug treatment in vivo. We observed increasing trends 
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of Mdm2 in the Nutlin-3a and combination treated mice compared to Vehicle, which is 

similar to in vitro results, and we did not observe increases in PUMA levels across the 

treatment groups. We may need to alter the dosing schema for the pharmacodynamic 

study, possibly increasing the length of treatment to visualize the modulation of other 

molecular markers. We essentially took a snapshot in time when the tumors were 

harvested. We may have missed or not reached maximal protein levels of Mdm2 and 

PUMA in our system. Additionally, PUMA may not be playing a large role in our system 

due to other factors that inhibit PUMA signaling including antagonization by the EGFR 

receptor 143. Experiments would need to be completed to examine if EGFR is playing a 

role in our system. Further experiments would need to be conducted to better 

understand how the drug treatments affect signaling molecules that could be potential 

biomarkers of treatment effect in vivo.  

Overall the combination drug treatment was well tolerated in mice with minimal 

toxicity and high efficacy at inhibiting the primary tumor growth and metastasis in the 

lung. Preliminary pharmacodynamic studies show some evidence of target modulation 

following drug treatment. Further studies will need to be conducted to increase our 

understanding of the signaling mechanism in vivo. Similar studies could be completed 

with MdmX especially since it has been shown that MdmX has similar functions at 

inhibiting DNA repair by binding to Nbs1 99. It would be especially interesting since we 

saw increased Mdm2 levels in vitro following the combination treatment but did not 

observe significant increases in Mdm2 in vivo compared to Vehicle control mice. The 

opposite was true with MdmX levels in the tumors from combination treated-mice. In 
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vivo, MdmX levels were increased in the combination treated mice while there were no 

increases in MdmX levels in the in vitro experiments. Further experiments are being 

conducted to examine all seven-mouse tumors from the Vehicle and combination 

treated mice to see if there is a more robust effect when all samples are examined. We 

also plan on completing immunohistochemistry of tumor samples to look at Mdm2 

levels and cellular localization. The tumor samples from the PD study mice were 

completely lysed and there could be sub-compartments of the tumors that differentially 

express molecular targets. Possibly, there are significant changes in Mdm2 and MdmX 

levels in subsections of the tumors and following complete lysis, the signal was diluted 

to the point where differences were hard to visualize. Immunohistochemistry could 

provide increased understanding of protein level changes within the tumor. 

Additionally, it would be interesting to note the location of Mdm2 and MdmX within the 

cell to see if we indeed observe increased Mdm2 and MdmX in the nucleus. We could 

also conduct chromatin association assays from tumors to examine the levels of Mdm2 

and MdmX found at the chromatin in vivo. We also have the lung tissues from the PD 

study mice, which we could use to examine the effects of drug treatment on molecular 

target levels in metastatic site in vivo. The mice were not treated until Day 40 post 

implant allowing for metastases to be present in the lungs. The lungs could be lysed and 

target modulation could be examined by Western blot. Additionally, the lungs could be 

examined by immunohistochemistry staining to examine molecular target levels within 

the metastases from whole tissue slices. The use of combined Mdm2 inhibition through 

Nutlin-3a and DNA damaging-carboplatin shows a potential therapeutic benefit in TNBC 
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with reductions in primary tumor volume, reduced lung metastases, increased survival, 

and no notable long lasting toxicity. Further studies will need to be conducted to better 

understand the signaling mechanism, but potential molecular targets that could be 

tracked as markers of treatment response included MdmX, p21, and E2F1 in vivo in this 

in vivo model of TNBC.  
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Chapter 5. Modulation Of The Mdm2 Signaling Axis Sensitizes Triple-Negative Breast 

Cancer Cells To Carboplatin Summary 

 

In closing, this thesis showed the combined use of the PPI, Nutlin-3a, to inhibit 

Mdm2 and DNA damaging drug, carboplatin, led to decreased cell proliferation and 

increased apoptosis in vitro as well as decreased tumor growth and metastasis and 

increased survival in vivo. Nutlin-3a led to the potentiation of carboplatin-mediated DNA 

damage in vitro and in vivo allowing for several signaling pathways to be activated 

including p73-mediated apoptosis and delayed DNA damage response due to Mdm2 

antagonization of Nbs1 in vitro (Figure 59). The overall objective of this thesis was to 

evaluate the therapeutic potential of a new combination therapy to treat TNBC 

independent of wild-type p53. Based on front-line therapies currently being tested in 

clinical trials for TNBC, the platinum agent, carboplatin was selected for study. Novel 

drug targets need to be elucidated to improve treatment modalities especially in 

treating aggressive cancers like TNBC. Mdm2 is an unexplored target in breast cancers, 

and histological studies have indicated that more than half of breast cancer biopsies 

contain high levels of Mdm2. In this thesis, the potentiation of carboplatin-mediated 

DNA damage in the context of blocking some aspects of Mdm2 function was 

investigated. Pharmacodynamic studies were designed to gain insight into and validate 

molecular mechanisms that based on the literature could be operative following 

treatment. In our correlative PD studies, we also sought to identify targets that could 

potentially serve as biomarkers of treatment response and efficacy for future clinical 
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trials of TNBC. A humanized breast-to-lung model was optimized in NSG mice and can 

be used in the future to further screen and validate novel combination therapies. 

Further studies will need to be conducted to expand and build upon our knowledge to 

further validate key molecular targets and operative signaling pathways present in our 

model system. Additionally we plan on using primary patient xenograft models with the 

PDX breast cancer models from Jackson Laboratories. There are several PDX models that 

feature TNBC with mutant p53. These primary patient tumors have been characterized 

with gene levels, copy number variation, and histology data. These primary patient 

samples will allow for us to examine the effects of dual Nutlin-3a and carboplatin 

treatment in more clinically relevant models. The data presented in this thesis indicate 

that Mdm2 represents a valid therapeutic target in TNBC and is worthy of further 

exploration at the cellular and molecular levels. In closing, the in vitro and in vivo results 

provide solid confirmation that modulation of Mdm2 in the context of platinum-based 

cytotoxic therapy is a valid approach for improving treatment of TNBC.  
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Figure 59. Mdm2 as a therapeutic target and potential molecular markers for TNBC 

using Nutlin-3a and carboplatin in combination. Nutlin-3a was designed as a small 

molecular inhibitor that bound into the hydrophobic pocket of Mdm2 inhibiting the 

binding of p53. It was later shown that Nutlin-3a also inhibited the binding of E2F1, p73 

and Hif-1α to Mdm2. In recent years, the use of platinum drugs has gained popularity in 

the treatment of breast cancers. Carboplatin causes DNA damage by causing intra and 

interstrand crosslinks in the DNA ultimately leading to cell death. In our model system of 

TNBC with mutant p53, we sought to understand the molecular targets being 
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modulated in vitro and in vivo. In vitro, we observed increased p21 and Mdm2 protein 

levels following drug treatment. There were concentration-dependent increases in p21 

following single Nutlin-3a treatment. Nutlin-3a alone and combination treatment led to 

increased Mdm2 levels following Western blot. We also observed increased Mdm2 

associated with the chromatin following combination treatment than each single drug 

alone. We hypothesized that increased levels of Mdm2 at the chromatin led to 

increased binding of Mdm2 to Nbs1, which in turn led to decreased DNA repair and was 

supported by Bouska and colleagues 35. Additionally, following siRNA-mediated 

knockdown of p73, we observed p73-dependent cellular sensitivity to carboplatin drug 

treatment. Following a PD study in vivo, we observed changes in MdmX, p21, and E2F1 

protein levels in combination treated mice compared to Vehicle and single drug treated 

mice. We did not observe significant changes in VEGF165 levels between treatment 

groups.  
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