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ABSTRACT 

 

Noninvasive glucose monitoring has been the subject of considerable research 

because of the high number of diabetes patients who must monitor their glucose levels 

daily by taking blood samples. Among methods being evaluated for possible use in this 

application, near-infrared (NIR) spectroscopy has received significant attention because 

of available glucose absorption bands that can be observed in the presence of the large 

aqueous background found in tissue spectra. The objective of the research presented here 

is to evaluate the potential for implementing a noninvasive nocturnal hypoglycemic alarm 

with NIR spectroscopy. Such an alarm would be used by a diabetic to detect potentially 

dangerous occurrences of hypoglycemia during sleep.  

The approach used is to collect spectra continuously from the patient during the 

sleep period, followed by the application of pattern recognition methods to determine if a 

spectrum represents a blood glucose level that exceeds a hypoglycemic threshold. A 

reference spectrum is collected and a conventional finger-stick glucose concentration 

measurement is made at the start of the sleep period. The ratio is then taken of each 

subsequent spectrum to the collected reference, forming a differential spectrum 

corresponding to the signed difference in concentration relative to the reference. The 

identification of these differential spectra as “alarm” or “non-alarm” is performed with a 

classification model computed with piecewise linear discriminant analysis.  

This methodology is initially tested with in vitro laboratory data that simulated the 

glucose excursions that occur during sleep. The performance of the hypoglycemic alarm 

methodology in the presence of varying levels of urea, glyceryl triacetate, and L-lactate 
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as potential spectral interferents is tested. The robustness of the methodology with respect 

to time is also evaluated.  

The thesis further discusses an experimental procedure to prepare tissue phantoms 

composed of two main proteins that exist in human skin tissue, keratin and collagen. A 

new methodology is developed to produce varying-thickness films that allowed the 

simulation of changes in the content of skin tissue proteins present within the optical path 

of the NIR measurement. The prepared films are incorporated into in vitro laboratory 

measurements in which varying levels of glucose, urea, keratin, and collagen are 

introduced in order to provide a test of the hypoglycemic alarm algorithm that simulates 

the spectral properties of human tissue.    

Finally, the hypoglycemic alarm algorithm is tested with in vivo data collected 

with rat animal models. Data are presented for single-day experiments performed with 

anesthetized rats, as well as for multiple-day experiments conducted with awake rats. The 

results obtained from both the in vitro and in vivo studies confirm that if high-quality 

spectral data are attainable, the alarm methodology can work effectively to identify 

hypoglycemic events while exhibiting a low rate of false detections.    
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CHAPTER 1 

 
INTRODUCTION 

 

Diabetes mellitus is a chronic disease whereby a person is unable to metabolize 

glucose effectively. According to the International Diabetes Federation (IDF) around 382 

million people worldwide suffered from diabetes in 2013 and this number is projected to 

increase to 592 million by the year 2030.1 In the United States (US), 25.8 million children 

and adults have diabetes.2 Type 1 diabetes, generally diagnosed in children and young 

adults, results from the body’s failure to produce insulin, the hormone that allows glucose 

to be taken from the blood into the cells and stored or used as energy. This form of 

diabetes is generally termed juvenile diabetes. Only 5 % of the people with diabetes have 

this form of the disease and with the help of insulin therapy, individuals with Type 1 

diabetes can live long lives.2 

Type 2 diabetes arises from the body’s inability to use the produced insulin 

properly. This is the most common form of diabetes.3 This type is more common among 

adults but increasingly affects children as childhood obesity increases. This form of 

diabetes is manageable by eating well, exercising, and maintaining a healthy weight. 

Diabetes medications or insulin therapy are required if the disease is not manageable with 

these practices.  

There are many medical complications associated with diabetes such as heart 

disease and stroke, high blood pressure, kidney disease and blindness, etc.4 Diabetes is 

chronic but a patient can prevent acute complications and reduce the risk of long-term 

complications by continuous medical care and by good self-management. The treatments 
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for diabetes are extremely costly, however. The total costs of diagnosed diabetes in 2012 

in the US were estimated to be $245 billion.5 

Both extremely higher and lower blood glucose levels lead to the health problems 

associated with diabetes. Hyperglycemia occurs when an excess of glucose is circulating 

in the blood and is diagnosed when the fasting blood glucose level is ≥126 mg/dL or 7.0 

mM  after two consecutive blood tests.6 Hypoglycemia involves abnormally diminished 

levels of glucose in the blood, generally defined as < 72 mg/dL or 4.0 mM. The 

symptoms of hypoglycemia usually start to appear when the blood glucose readings drops 

below 54 mg/dL or 3.0 mM.7 Nocturnal hypoglycemia or nighttime hypos are common in 

diabetics who treat their disease with insulin. The symptoms related to nocturnal 

hypoglycemia are usually only realized once the patient has wakened, and this is 

particularly worrying for parents of children with diabetes.  

The complications of hypoglycemia can range from mild to severe. These include 

mild and short term weakness, dizziness, or serious damage to brain power and ultimate 

death. Most Type 2 diabetics are encouraged to monitor their blood glucose levels at least 

once per day so that they can respond appropriately to hypo- or hyperglycemia. These 

responses may include diet adjustments, exercise, or insulin injection. More frequent 

blood glucose monitoring, at least three times per day, is required for patients with Type 

1 diabetes and many with Type 2 in order for these patients to assess the effectiveness of 

their prior insulin dose and to help determine their next insulin dose. 

Frequent monitoring of blood glucose levels is thus required for many diabetic 

patients to allow effective management of the disease. Self-monitoring means the patient 

measures their blood glucose at home or on the go with a glucose meter which consists of 
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a lancing device, lancet, test strip and a meter. In the common procedure, a small drop of 

capillary blood obtained from the fingerstick or fingerprick is put on a test strip and the 

glucose concentration is measured by inserting the test strip into a glucose meter.  

Although self-testing is considered to be a key development in glucose 

monitoring, it has some major disadvantages, too. The required blood sampling is 

associated with pain and risk of infection which discourages patients from frequent 

monitoring. Also the cost of the enzymatic test strips (cost of a test strip is ~ $1) limits 

the number of tests per day for many patients. With only a few measurements per day, an 

accurate assessment of the patient’s overall fluctuations of the blood glucose levels is not 

possible. 

Because of these drawbacks in self-monitoring methodologies, a continuous 

monitoring approach is preferred which better reflects the overall fluctuations of the 

glucose levels. Most of the existing continuous glucose monitoring (CGM) devices are 

composed of three parts: (1) an electrochemical sensor that is placed subcutaneously in 

the abdomen or upper arm which measures glucose levels in the interstitial fluid (ISF), 

(2) a receiver that shows real-time blood glucose levels, and (3) a transmitter that is 

connected to the sensor and transfers the signals from the sensor to the receiver at 

intervals of ~5 min.8  The sensor stays in place for several days to a week and then must 

be replaced.  

The transformation of the electrochemical signal from the sensor into a glucose 

concentration reading is achieved by one-point or two-point in-vivo calibration 

procedures for which a reference glucose concentration is obtained by use of a 

conventional fingerstick method. The user must therefore check blood samples with a 
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glucose meter to program the CGM device. Because currently approved CGM devices 

are not as accurate and reliable as standard blood glucose meters, users are directed to 

confirm glucose levels with a conventional meter before making any changes in their 

insulin treatment. In addition to lower accuracy and reliability, these CGM systems have 

some limitations including discomfort and skin irritations. A more detailed description of 

self-monitoring of blood glucose and CGM is given in Chapter 2. 

Truly noninvasive glucose sensing is the ultimate goal of much glucose 

monitoring research and is the goal of the work described in this dissertation. If realized, 

a noninvasive glucose measurement would eliminate the challenges, discomfort, and 

potential risk for infection associated with self-glucose monitoring and implantable 

devices. The successful development of a continuous noninvasive glucose sensor that can 

be used in human subjects has the potential to revolutionize the daily treatment and 

control of diabetes. Such a sensor would allow close monitoring of the glucose 

fluctuations in blood, thereby providing the necessary information required to maintain 

tight glycemic control by insulin intervention. Noninvasive methods are clearly 

preferable to invasive techniques, as long as they can meet the same clinical accuracy 

associated with invasive methods.  

Most research directed to the development of noninvasive glucose sensing 

technology has focused on the use of spectroscopic methods. The concept in optical 

noninvasive glucose sensing is to pass a selected band of electromagnetic radiation 

through a vascular region of the body and then extract the glucose concentration from the 

resulting spectral information. In this approach, there is no direct contact between the 

glucose molecules and the transduction element.9  
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The work described in this dissertation focuses on the use of near-infrared (NIR) 

spectroscopy to develop noninvasive glucose sensing methodology. Among the potential 

optical approaches to noninvasive glucose sensing, NIR spectroscopy has received 

significant attention because of the unique NIR absorption spectrum of glucose and the 

significant penetration of NIR light into tissue.10 A detailed description of the theory, 

applications, and instrumentation of NIR spectroscopy is provided in Chapter 2.  

Spectral features in the NIR region are relatively weak and broad, leading to 

significant overlap of bands in complex samples. In addition, samples that contain water 

(e.g., any biological sample) have a broad and temperature-sensitive background 

absorbance that leads to significant variation in spectral baselines. These factors preclude 

the use of simple quantitative determinations based on measurements at a single 

wavelength.  Multivariate calibration methods based on multiple wavelength 

measurements are thus required to extract weak analyte signals from the overlapping 

features of the spectral background.  

The growth of applications of NIR spectroscopy has coincided with the parallel 

development of powerful chemometric techniques for use in analyzing spectral data. 

Chemometrics is a methodology used in analytical and measurement science that 

employs mathematical and statistical methods for signal processing, experimental design, 

and qualitative and quantitative model building. In NIR data analysis in a noninvasive 

glucose sensing application, chemometric techniques are used for several different 

purposes: to decrease the effect of the background information contained in glucose 

spectra (spectral pre-processing methods), to group sample components according to the 

features of the spectra (classification methods), or to extract a quantifiable property (e.g., 
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glucose concentration) of the sample from the spectra collected (regression methods).11 A 

detailed description of the data analysis methods used in the dissertation research is given 

in Chapter 3. 

The specific objective of the research presented here was to evaluate the potential 

for implementing a noninvasive nocturnal hypoglycemic alarm with NIR spectroscopy. 

Such an alarm would be used by a diabetic patient to detect potentially dangerous 

occurrences of hypoglycemia during sleep. Because the patient is sleeping, a portable 

monitor is not required, and many engineering challenges related to the size and 

ruggedness of the instrumentation are eliminated. By virtue of this simplification, the 

dissertation work was envisioned as a key first step toward the development of practical 

and more generally applied noninvasive glucose monitoring methodology.  

The approach used to implement the nocturnal alarm was to collect transmission 

spectra continuously from the tissue of the patient during the sleep period, followed by 

the application of pattern recognition methods to determine if a spectrum represents a 

blood glucose level that exceeds a hypoglycemic threshold. To initialize the monitor, a 

reference spectrum is collected and a conventional fingerstick glucose concentration 

measurement is made at the start of the sleep period. The ratio is then taken of each 

subsequent spectrum to the collected reference, forming a differential spectrum 

corresponding to the signed difference in concentration relative to the reference. The 

identification of these differential spectra as “alarm” or “non-alarm” is performed with a 

classification model computed with piecewise linear discriminant analysis (PLDA).12,13 

Chapter 3 discusses the steps behind the nocturnal hypoglycemic alarm algorithm in 

detail. 
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In the dissertation work, the alarm methodology was tested both with in vitro and 

in vivo spectral data that simulated the glucose excursions that occur during sleep. 

Chapter 4 begins with the discussion of the data collection and analysis methodologies 

used in an in vitro simulation study designed to test the feasibility of the proposed 

hypoglycemic alarm algorithm. This study employed a four-component dynamic system 

consisting of glucose, urea, lactate, and glyceryl triacetate in pH 7.4 phosphate buffer. 

Three peristaltic pump systems were used to simulate the glucose excursions that occur 

while a diabetic is sleeping, while also allowing the spectral background to be varied. 

Varying concentrations of urea, lactate and glyceryl triacetate were used to simulate the 

presence of varying levels of close spectral interferents. The developed alarm algorithm 

performed well in this study, giving no missed or false alarms in the presence of the 

interfering components.  

A major source of spectral variance in the noninvasive glucose data collection in 

the NIR region is the tissue sample itself. The propagating photons will undergo 

scattering and absorption due to the heterogeneity of the chemical composition of the 

tissue. As a result, the chemical composition of the tissue matrix and the physical 

distribution of the principal chemical constituents should be taken into account in 

designing simulation studies.  

Skin tissue contains two types of proteins, keratin and collagen. Chapter 5 

discusses an approach to make a skin tissue phantom composed of keratin and collagen 

which could be used to simulate data collection in the human skin tissue matrix. In this 

work, two types of protein films were prepared in the laboratory. The thickness of each 

film was designed to match the equivalent amount of keratin or collagen observed in 
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spectra of human tissue.  Initial studies were performed with films of uniform thickness. 

The consistency and stability of these films was evaluated, and protocols were developed 

for their use with the in vitro simulation system employed in the work described in 

Chapter 4. Follow-on studies were then performed in which films of varying thickness 

were created. This allowed the incorporation of variation in film thickness into the in 

vitro simulation studies 

In the work described in Chapter 6, the noninvasive nocturnal alarm algorithm 

methodology was tested in vitro to simulate a sleep cycle and its performance was 

evaluated with the tissue phantom described above to simulate the spectral properties of 

human tissue. Two data sets were collected in this work. The data for the first dynamic 

system were collected using the films in the same orientation during all the days of data 

collection. This simulated a constant tissue matrix. Varying concentrations of urea were 

used to simulate the presence of a close spectral interferent. Two peristaltic pump 

systems were used to simulate the glucose exclusions that occur while a diabetic patient 

is sleeping.  

Chapter 6 further discusses the results obtained for a second dynamic system 

collected in the presence of a tissue phantom with varying film thickness. Different 

combinations of orientations of the produced films were used to simulate skin tissue 

variations during an in vivo data collection, especially those that would be encountered 

when the tissue measurement site is varied from day to day. Varying concentrations of 

urea were again used to simulate the presence of a close spectral interferent. 

In Chapter 7, the noninvasive nocturnal alarm algorithm methodology was tested 

in vivo with data collected from the skin tissue of a rat animal model to simulate 
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noninvasive human measurements. The data collected during single-day glucose clamp 

experiments from two anesthetized rats were tested with the developed alarm algorithm. 

The results obtained for these glucose transients are discussed in detail in the first part of 

Chapter 7. The second part of the chapter presents results for data collected from two 

awake rats over multiple days. In these studies, the first days of the data collection for 

each of the rats were used as calibration data, while the data for the remaining days were 

used to test the developed algorithm. Finally, the important results from this dissertation 

are summarized in Chapter 8, and future work to advance these projects is also proposed. 
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CHAPTER 2 

NONINVASIVE GLUCOSE MONITORING IN NEAR-INFRARED SPECTROSCOPY 

 

Introduction 

In Chapter 1, an introduction to diabetes and a brief overview of current invasive 

methodology to measure blood glucose and noninvasive glucose monitoring by NIR 

spectroscopy were introduced. In this chapter, a more detailed discussion of these 

subjects is given so that the motivation for the dissertation research can be appreciated 

with better understanding. Motivation for the noninvasive glucose sensing technology 

will be presented, with a discussion of self-monitoring of blood glucose (SMBG) and 

continuous glucose monitoring (CGM) approaches. Both direct and indirect noninvasive 

glucose measurement methodologies will be discussed in detail, followed by a 

description of the use of NIR spectroscopy in glucose sensing. The principles, 

mathematical procedures, and instrumentation of Fourier transform infrared (FT-IR) 

spectroscopy will be presented. 

 

Blood Glucose Testing 

Although diabetes is a chronic disease, it can usually be managed successfully 

with a proper treatment plan and a change in lifestyle. The main goal of treatment is to 

keep blood glucose levels in the normal or near-normal range. More frequent checking of 

blood glucose is one of the best ways to know how well the patient’s diabetes treatment 

plan is working. A physician periodically orders a blood test to determine the diabetic’s 

blood glucose levels and hemoglobin A1c (A1C). This test gives a sense of how blood 
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glucose levels are controlled since it indicates the patient’s average blood glucose level 

during the past two to three months. However, maintaining blood glucose levels at a 

normal level and successful treatment of diabetes also requires that the patient monitor 

his/her own glucose levels on a day-to-day basis. 

  

Self-Monitoring of Blood Glucose 

Self-monitoring of blood glucose allows the patient to know his/her own blood 

glucose level at any time and helps prevent the severe occurrences of very high or very 

low glucose levels. Self-monitoring also enables tighter glycemic control, which 

minimizes the long-term complications associated with diabetes. Self-monitoring employs 

glucose monitors that utilize test strips. The basic methodology includes a fingerprick, 

capillary blood collection, and use of a portable meter to obtain the glucose reading. The test 

strip is doped with enzymes termed oxidoreductases. These enzymes catalyze the 

oxidation of glucose to gluconic acid.14  

The earliest generations of the test strips were designed for a visual evaluation.15 

With this approach, electrons generated from the oxidation reaction are transferred to an 

indicator molecule which in turn forms a color.14 In the common procedure, a drop of 

blood is placed on the test strip, wiped off, and the color produced is compared with a 

color scale. However, colors are susceptible to fade and differences in visual acuteness 

across individuals make these glucose monitoring systems less accurate and precise.15,16  

The concept of electrochemical glucose monitoring was proposed in 1962 by 

Clark and Lyons.17 Most of the electrochemical glucose meters are amperometric 

enzymatic biosensors.18,19 Glucose measurement in electrochemical sensors is based on 

three different strategies. The first detection methodology is based on measuring the 
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oxygen consumption during the oxidation of glucose; the second measures the hydrogen 

peroxide produced by the enzymatic reaction;20 and the third scheme replaces oxygen 

with a nonphysiological (synthetic) electron acceptor to transfer electrons from the 

enzyme (e.g., glucose oxidase) to the electrode.19-21 A schematic diagram of the three 

main strategies used with electrochemical glucose sensors is shown in Figure 2.1.21  

These electrochemical blood glucose meters are widely applied for SMBG owing 

to their high selectivity and sensitivity for glucose. In addition, these meters are portable 

and easy to use. Various types of test strips for electrochemical glucose meters are 

commercially available today including Accu-Check Aviva, TRUEtrack, Precision Xtra, 

Freestyle Lite, Nova, Arkray, One Touch Ultra, Agamatrix, etc.  

Self-monitoring using these enzyme-based electrochemical monitors has three 

major disadvantages or limitations: (1) the method requires blood sampling which is 

painful and has a risk of infection; (2) the test strips are expensive which can limit the 

frequency of testing for hypo- and hyperglycemia; and (3) these discrete measurements 

do not provide information about fluctuations in blood glucose concentrations. Current 

research directed to the development of the next generation of glucose monitoring 

devices is focusing on overcoming these limitations. 

 

Continuous Glucose Monitoring 

Continuous glucose monitoring systems use a glucose sensor implanted 

subcutaneously to determine the level of glucose in the interstitial fluid (ISF). The sensor 

measures glucose based on an electrochemical reaction and wirelessly transmits results to 

a small recording device. The continuous glucose monitor displays the diabetic’s blood 
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glucose level every few minutes and thus allows monitoring of glucose fluctuations. The 

receiver can also be set to alarm if the patient’s glycemic level is above or below a 

threshold value, which is highly useful to detect dangerous hypoglycemic events.  

 
 
 

 

 
Figure 2.1 Three main strategies used in glucose measurements with electrochemical 
glucose sensors based on glucose oxidase (GOx). As depicted in the upper diagram, the 
sensor can be configured to measure either the consumption of oxygen or the production 
of H2O2. The third approach shown in the lower diagram uses a mediator molecule to 
transport electrons from GOx to the electrode where the electrochemical current is 
measured.22  
 
Source: Oliver, N.; Toumazou, C.; Cass, A.; Johnston, D. Diabetic Medicine 2009, 26, 
197. 
 
 
 

The sensor should be removed and replaced in a different location on the body 

approximately once per week. In addition, the patient must continue to perform 

fingerstick glucose testing several times daily to ensure that the continuous monitor is 

correctly calibrated. Proper calibration helps to ensure that the measured ISF glucose 
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concentration accurately reflects the blood glucose level. It has been observed that the 

glucose levels in ISF temporally lag behind blood glucose levels.20,23 Computer 

algorithms for correcting this short lag time have been developed.24  

A key issue with these devices is still the robustness of the calibration over a 

period of several days. A recalibration is required to account for variations in sensitivity. 

In addition, these implantable biosensors are still facing issues of biocompatibility and 

electrochemical interferences.19 Several implantable biosensors are available 

commercially, but their use is not yet widespread because of reasons such as complexity, 

inaccuracy, invasiveness, cost, pain, discomfort, and risk of infection.  

The first CGM device approved by the United States Food and Drug 

Administration (FDA) was manufactured by MiniMed in 1999.25-27 Current real-time 

CGM devices approved by the FDA and clinically used include: GlucoDay® (Menarini 

Diagnostics),28,29  Guardian®-RT(real time) (Medtronic Minimed, Northridge, CA, 2005), 

Dexcom SEVEN® (Dexcom, San Diego, CA, 2007),27,30,31 and Freestyle Navigator® 

(Abbott Diabetes Care, Alameda, CA, 2008)32.  

The Guardian®-RT, Dexcom SEVEN®, and Freestyle Navigator® use a 

subcutaneous sensor to measure ISF fluid glucose concentrations. The GlucoDay® uses 

microdialysis to acquire a sample for analysis.27 In this context, a hollow dialysis fiber is 

commonly implanted in the subcutaneous tissue to pass an isotonic fluid across the skin. 

Glucose, diffusing from the tissue into the fiber, is assayed using an electrochemical 

method. Some research groups have developed devices for the continuous tissue glucose 

monitoring based on a combination of microdialysis and an electrochemical method.33-36 
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The current research focus in this area is to advance the development of what is 

known as an artificial pancreas or artificial pancreas device system (APDS). The 

proposed artificial pancreas consists of a series of devices, e.g., a CGM implanted 

subcutaneously to measure ISF glucose, a blood glucose measurement device for use in 

periodically calibrating the ISF sensor, and an insulin pump to deliver insulin as needed 

to achieve proper glycemic control. A computer algorithm would be in operation to 

communicate with all of the devices. The feedback from the glucose monitor can thus be 

utilized to adjust insulin levels.37 No artificial pancreas systems have yet received FDA 

approval.  

 There are some approaches for minimally invasive or noninvasive sensors which 

avoid the continuous presence of a sensor inside the skin tissue.38 Both the sensor and the 

sample collection device in this method are externally located. Different strategies of 

drawing the transdermal fluids that serve as the sample for analysis include reverse 

iontophoresis,39,40sonophoresis,41,42 micropore technology,43,44 microneedle technology, 

and a skin blister technique.45,46  

The GlucoWatch47 is an example of this approach and was approved by the FDA 

in 2001 for use by patients in tracking their glucose levels with time. It is an example of a 

minimally invasive near-real time continuous glucose monitoring (RT-CGM) device that 

is designed to be worn like a wristwatch. This device uses a low-level electrical current to 

extract ISF through the skin by electroosmotic flow (reverse iontophoresis). The 

determination of the glucose concentration in the ISF is subsequently performed with an 

electrochemical measurement. The method has drawbacks related to time lag between 

values, a complex calibration procedure which requires fingerstrick glucose 
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measurements, poor accuracy especially near the hypoglycemic range, and problems 

associated with skin irritations.48 Despite initial interest in the device from diabetics, the 

GlucoWatch ultimately failed as a product and is no longer sold. 

 

Noninvasive Glucose Monitoring 

The invasive methods for glucose monitoring are chemical-based methods that 

require a direct contact between the transduction element of the sensor and the 

representative biological fluid (e.g., ISF, capillary or venous blood). However, 

noninvasive methods are most commonly spectroscopic methods that require no contact 

between the representative fluid and the sensor. Furthermore, they do not require the 

extraction of the representative fluids from the body. The common procedure is to probe 

a specific area of the body tissue with a selected portion of the electromagnetic spectrum 

and extract glucose information from the acquired response.9  

The development of an accurate noninvasive CGM device would revolutionize 

the treatment of diabetes. These devices would provide a painless and inexpensive 

continuous monitoring capability, thereby giving the patient the ability to maintain better 

glycemic control. Ultimately, improved glycemic control should reduce the medical 

complications associated with diabetes and also lower the costs of health care.49 

However, despite extensive efforts by many research groups and companies, to date, no 

one has developed a reliable method to measure glucose noninvasively. 

There are several key challenges to developing a successful noninvasive 

monitoring device. The device should match the accuracy obtained with enzyme-doped 

test strip methods, especially in the clinically important hypoglycemic concentration 
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range (2-5 mM).9,50 Test-strip based methods have a relative accuracy of 6-10 %,51 and 

any reliable noninvasive method must be matched with this accuracy to claim the ability 

to measure glucose noninvasively.  

One of the key issues in considering the performance of a noninvasive 

measurement approach is chemical selectivity. The invasive methods achieve selectivity 

by the use of chemical reagents (e.g., glucose oxidase) that specifically target the glucose 

molecule and thereby generate a signal that is known to be a direct measurement of the 

glucose concentration. Because the noninvasive methods do not extract a sample from the 

body, they cannot employ selective chemical reagents. Selectivity must come solely from 

the characteristics of the measured response. For example, if the noninvasive method is 

based on collecting a spectrum of tissue, success depends on either (1) the presence of a 

spectral signature of the glucose molecule that can be reliably extracted from the overall 

measured response or (2) the presence of a spectral signature that, while not directly 

originating from the glucose molecule, is reliably and reproducibly present and correlates 

with changes in glucose concentration. The ability to extract these spectral signatures and 

establish that reliable correlation with glucose concentration exists remains the central 

challenge in the development of a successful noninvasive glucose method.  

The above discussion motivates two fundamentally different approaches to the 

development of a successful noninvasive glucose sensing methodology: the direct 

approach and the indirect approach. The direct approach is based on measuring a unique 

property of the glucose molecule, while the indirect approach measures the changes in 

one or more physical, physiological, or chemical parameters that track glucose 

fluctuations.  



18 
 

 
 

Optical coherence tomography (OCT) is one of the indirect measurement 

approaches which uses the effect of glucose on the backscattering of light.52-55 There is a 

strong correlation between the glucose concentration and the scattering coefficient of 

tissues. An increase in the glucose concentration induces a corresponding decrease in the 

scattering coefficient. The refractive index (n) of the ISF increases with an increase in 

glucose concentration which results in a decrease in the skin tissue scattering coefficient. 

This glucose-induced fluctuation in the tissue scattering is used in OCT to measure 

glucose noninvasively.  

The OCT measurement uses an interferometer with a low coherence light source, 

a reference arm, sample arm and a photodetector to detect the signal in the NIR overtone 

region.52 This method has the advantages of a high signal-to-noise ratio in the optical 

measurement, high spatial resolution56, and relatively long penetration depths into tissue 

(scanning depth up to 1 mm). However, the OCT approach has limitations including 

questionable selectivity, sensitivity to motion during the measurement, and sensitivity to 

skin temperature.55 It has also been observed that other skin tissue components such as 

albumin protein contribute to skin tissue scattering.54  

Impedance or dielectric spectroscopy (DS) uses the correlation between changes 

in blood glucose levels and the electrical resistance of tissue to measure glucose 

noninvasively. The electrolyte balance across the membranes of the blood cells is 

sensitive to variations in glucose concentration and is estimated in DS. The 

instrumentation is inexpensive and easy to use. However, the analysis suffers from 

interference by several chemical and physical components, including temperature, skin 

moisture, and perspiration.57 
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Because they are based on the measurement of secondary effects correlated to 

changes in glucose concentration, the indirect methods described above are particularly 

susceptible to interference from a variety of sources. Their selectivity for glucose has not 

yet been proven reliable enough for use in a practical measurement device.  

By contrast with the indirect methods, the direct approaches target unique 

properties of the glucose molecule and thereby seek to gain increased selectivity while 

also possessing sufficient sensitivity to be able to measure glucose across the required 

concentration range. The vast majority of the research based on the direct measurement 

approach has centered on the use of spectroscopy to probe transitions associated with the 

glucose molecule. The methods being examined include near-infrared (NIR) 

spectroscopy,58-60 mid-IR spectroscopy,61 Raman spectroscopy,62,63 fluorescence,64,65 and 

optical polarimetry66.  

Polarimetry is based on the optical activity of glucose. Glucose being a chiral 

molecule can rotate the plane of polarized light being transmitted through it, and thus a 

measure of the degree of rotation can be correlated to the glucose concentration. The key 

to this approach is the choice of measurement site. The use of polarimetry to measure 

glucose in skin is impractical owing to several reasons. The signal produced by glucose is 

very small in the clinically important concentration ranges, typically on the order of 

millidegrees of rotation. Other optically active components present in the skin such as 

proteins can also interfere with the measurement, and the high degree of light absorption 

and scattering from skin tissue can be problematic. 

To overcome these limitations, polarimetry measurements for glucose have 

focused on the human eye.67 There is little protein in the aqueous humor of the eye and 
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scattering and absorption are also low. The main optical rotatory component in the human 

eye is glucose. A correlation between blood glucose and that in the eye has been 

demonstrated. However, the drawbacks to this methodology include poor selectivity 

resulting from the presence of other optically active compounds such as cholesterol and 

the physiological lag between the glucose in blood and that in the aqueous humor.68  

Fluorescence, being fast and extremely sensitive, is also being studied as a 

measurement platform for use in developing a glucose sensor. While the glucose 

molecule itself does not fluoresce, sensors can be constructed on the basis of the 

interaction of glucose with a receptor molecule. For example, glucose and a fluorescent-

labeled analogue can bind competitively to a receptor site specific for both.  Glucose 

displaces the labeled binder from the receptor site which in turn alters the fluorescence 

signal. The most commonly used receptor molecule is Concanavalin A (ConA) and the 

frequently used competitive binders are dextran, α-methyl mannoside and glycated 

protein. This concept has also been extended with a fluorescence resonance energy 

transfer (FRET) approach.21,64 In another implementation, FRET between a fluorophore 

and the flavin group in the enzyme GOx has been monitored.69  

None of these fluorescence-based methods can be considered truly noninvasive as 

a reagent package must be placed under the skin to allow the interactions that give rise to 

the fluorescence signal. The measurement hardware is external, however, and no bodily 

fluids are removed. In addition to issues of selectivity and sensitivity, however, this 

approach suffers from issues of biocompatibility in much the same way as the implanted 

electrochemical sensors discussed previously.  
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The most widely researched noninvasive methods are based on the use of 

vibrational spectroscopy in the form of NIR, mid-IR or Raman spectroscopies. The NIR 

and mid-IR methods utilize absorption spectroscopy, while Raman spectroscopy probes 

vibrational transitions that occur during light scattering. While interrogating many of the 

same vibrational transitions, Raman and absorption measurements are complementary as 

their signals are based on different optical phenomena. 

The transitions in the NIR range are due to combinations and overtones of the 

fundamental vibrations associated with O-H and C-H groups of the glucose molecule.70 

By contrast, measurements in the mid-IR region focus on the fundamental vibrational 

transitions of the molecule. The mid-IR region has stronger and sharper absorption 

features compared to the NIR. However, water has a strong and broad absorption in the 

mid-IR which reduces the light penetration depth in this region to tens of micrometers. 

This limits the measurement to either thin vascular regions in the body or requires the use 

of techniques such as attenuated total reflectance.71 In either case, the measurement is 

biased toward spectral features that are close to the surface of the skin and thus may not 

correlate well with blood glucose.  

Different data collection configurations can be used for collecting NIR 

noninvasive spectra including transmission, diffuse reflectance, transflectance, and 

photoacoustic detection. In the transmission geometry, the light is completely propagated 

through the tissue and the exiting photons are collected and measured relative to the 

incident photons. The diffuse reflectance methodology measures photons that are 

backscattered by the tissue matrix at angles other than the incident angle. Such photons 

have penetrated into the tissue to some extent before being reflected.  
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The challenge with this approach is to avoid photons whose penetration has been 

limited to the outer surface of the skin tissue where little ISF is present and therefore little 

information about the blood glucose concentration is available.72 A common strategy to 

overcome this problem is to displace the incident and collection optics from each other 

such that the only photons detected are those that have traversed some distance into the 

dermis. The separation distance between the incident and collection optics defines an 

effective path length for the measurement. Implemented in this way, the measurement 

geometry is termed transflectance.73,74  

In the photoacoustic geometry, an incident IR beam modulated at an acoustic 

frequency generates localized heating in the sample upon absorption. This modulated 

heat emission creates an acoustic wave and is detected by a microphone.75,76 The 

photoacoustic measurement also has concerns regarding penetration depth into the tissue 

and the relevance of the acquired information for use in correlating to blood glucose 

concentrations.  

 Regardless of the optical collection geometry used, NIR spectroscopy has been a 

very popular region for research into noninvasive glucose monitoring for several reasons. 

Absorption of NIR radiation by water is lower than in the mid-IR and creates three good 

transmission windows that have the potential for use in the glucose analysis. Because of 

the lower background absorbance, the NIR region offers longer light penetration depths 

(1-10 mm depending on the wavelength region) for the measurements, thereby providing 

some flexibility in the choice of measurement sites.9,77 In humans, NIR spectroscopy has 

been used across different measuring sites including the oral mucosa,58 tongue,59 the 

inner portion of the lower lip,78 and the index finger.79 Other advantages of the NIR 
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region include the availability of sensitive and relatively inexpensive photoconductive 

detectors for this spectral range and the harmless nature of the radiation when exposed to 

human tissue.  

However, there are some limitations to the NIR region as well. The other 

components in the tissue matrix show extensive spectral overlap with the available 

glucose absorption features. Figure 2.2 shows absorption spectra for glucose, urea, 

glyceryl triacetate (simulant for lipids), and sodium L-lactate (all in 100 mM 

concentrations) in the NIR range of 4800-4200 cm-1. This is the combination region of 

the spectrum that includes primarily combinations of fundamental stretching and bending 

vibrations associated with N-H, C-H, and O-H bonds. While each compound has a 

distinct signature, the figure clearly demonstrates the extensive spectral overlap that 

occurs from common constituents of blood and tissue. 

A related complication in the NIR region is the occurrence of spectral features 

that are relatively weak and broad.70 Measurements in samples with high water content 

are also highly sensitive to the sample temperature because of the temperature 

dependence of the hydrogen bonding network of water.80 There is no single wavelength 

that can selectively measure glucose in this region. Measurements are thus performed at 

multiple wavelengths and the data analysis requires multivariate calibration methods to 

help integrate the glucose signals and extract them from the overlapping background. 

Success in the noninvasive monitoring of glucose in the NIR region depends on selecting 

the correct experimental and multivariate model parameters such as optical path length, 

spectral resolution, calibration model dimensionality, and wavenumber range.  
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Figure 2.2  Absorbance spectra of glucose, urea, sodium L-lactate, and glyceryl triacetate 
collected in the 4800-4200 cm-1 wavenumber range. All solutions were 100 mM 
concentrations in 0.1 M, pH 7.4 phosphate buffer. A spectrum of the same buffer was 
used as the background in the absorbance calculation. Negative absorbance values are a 
consequence of the water concentration being higher in the buffer background than in the 
prepared samples. 
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Developing a well-performing quantitative model typically requires that 

significant efforts be directed to the optimization of these parameters.  

Raman spectroscopy probes the fundamental vibrational transitions in a molecule 

that are Raman active. As noted previously in the discussion of mid-IR spectroscopy, the 

fundamental vibrations are sharper and exhibit less overlap than those observed in the 

NIR.81 Because water has only a small Raman signal, it is also much less of an 

interference than in IR absorption measurements.21 However, two key disadvantages have 

limited the application of Raman spectroscopy to noninvasive glucose measurements.  

First, the acquired Raman signals are extremely weak because only a small 

fraction of the scattered photons collected in the Raman measurement carry information 

about vibrational transitions (i.e., the “Raman scattered photons). The great majority of 

photons are Rayleigh scattered at the same frequency as the incident light and thus carry 

no useful information about the sample constituents.  

To address this limitation, various ways to enhance the number of Raman 

scattered photons have been explored. Increasing the incident light intensity has the effect 

of increasing the absolute number of Raman scattered photons, but there are clear limits 

to the feasibility of this approach in human tissue measurements because of laser 

exposure limits. Similar concerns arise in resonance Raman measurements in which the 

incident laser is moved to the visible or ultraviolet region where tissue damage is more 

likely. Perhaps more feasible is surface-enhanced Raman spectroscopy (SERS) in which 

an increase in the Raman signal of several orders of magnitude is realized by placing the 

sample in close proximity to a silver or gold metal surface. For a glucose monitoring 

application, however, this would entail placing a reagent package under the skin in much 
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the same way as described previously in the discussion of fluorescence spectroscopy. 

This minimally invasive approach is being actively investigated.82,83 

The second major limitation of Raman spectroscopy is the possibility of exciting 

natural fluorescence in the sample which can swamp the weaker Raman signals. The 

presence of macromolecules such as proteins in tissue makes this a significant concern in 

the noninvasive glucose application. For this reason, incident wavelengths have to be 

shifted to the NIR to lessen the probability of inducing the electronic excitations that give 

rise to fluorescence. Because of the fourth power relationship between incident light 

frequency and scattering intensity, however, moving the incident light to longer 

wavelengths places additional challenges on the signal-to-noise ratio of the measurement.  

On the basis of the discussion presented above, it can be argued that NIR 

spectroscopy provides the most practical approach currently available for pursuing 

noninvasive glucose measurements. For this reason, the in vitro and in vivo studies 

performed in the dissertation research employed NIR spectroscopy. In the sections below, 

a more detailed description of the theory and the application of NIR spectroscopy is 

provided. 

 

Introduction to NIR Spectroscopy 

Theory and Applications 

The NIR region covers a wide range of the electromagnetic spectrum ranging 

from 0.7 -2.5 µm in wavelength units or 14,286 to 4000 cm-1 in wavenumber units 

(Figure 2.3). Water plays a key role in the IR region producing a strong background 

absorbance. In the NIR region water has three main absorption bands: (1) the first 
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overtone of the –OH stretching vibration near 6930 cm-1, (2) an -OH combination band 

near 5190 cm-1,84 and (3) a tail of the strong –OH fundamental stretching vibration can be 

seen in the region of 4000 cm-1.85 These three water absorption bands create three 

corresponding transmission windows that can potentially be used for the application of 

NIR measurements to samples with high water content. These three transmission 

windows are termed the combination (4000-5000 cm-1), first overtone (5500-6500 cm-1) 

and short wavelength (7300-14286 cm-1) NIR regions.9 A NIR absorbance spectrum of 

water with these three sub-regions labeled is shown in Figure 2.4.86 

The spectral features in the combination region relate to first-order combination 

transitions associated with bending and stretching vibrations of C-H, N-H, and O-H 

bonds. The first overtones of these stretching vibrations give rise to the absorption 

features in the first-overtone region, and the bands in the short wavelength region are 

numerous related higher order combination and overtone transitions. The NIR spectral 

bands become weaker and broader when the wavelength of the light decreases from the 

combination to the first-overtone to the short wavelength regions.70,87 These weaker and 

broader bands influence NIR measurement applications in two ways. First, when the 

bands for a particular analyte get broader, there is a higher chance they overlap with other 

spectral bands arising from the sample matrix. Second, the sensitivity for a particular 

analyte becomes an issue when the bands get weaker.88 

The lower absorptivity of water in the NIR vs. the mid-IR results in greater light 

penetration depths when aqueous samples are measured by transmission. Stated 

differently, longer optical path lengths are possible with aqueous samples in the NIR 

relative to the mid-IR. Viable optical path lengths for NIR measurements are 1 mm for 
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the combination region, 5 mm in the first overtone region, and 1 cm in the short 

wavelength region. As noted previously, these longer light penetration depths allow some 

flexibility in the choice of measurement sites for potential noninvasive glucose 

measurements in human tissue. Near-infrared spectroscopy was originally considered less 

useful than the mid-IR because of the occurrence of weaker and broader absorption 

bands. The availability of chemometric methods in combination with faster computer 

systems and the development of sophisticated instrumentation and detectors have led to 

the practical use of NIR measurements in a variety of application areas.  

Near infrared spectroscopy is used successfully in the pharmaceutical,11,89,90 

food,91 chemical,92 and petroleum93 industries, as well as in some environmental94 and 

biomedical applications.88 The advantages of using the NIR region for these applications 

include the nondestructive nature of the radiation, rapidity of measurement, the ability to 

measure samples without pretreatment, and the relatively high water transmission. 

A variety of instrumentation platforms can be used for performing NIR 

measurements. Initial spectrometer development for the NIR region was done as an 

extension of existing instrumentation used in the visible spectral range. These were 

typically scanning dispersive systems that used monochromators in conjunction with 

single-channel detectors. Filter-based instruments (both tunable and fixed wavelength) 

have also been widely used, especially for dedicated applications in which only a few 

wavelengths needed to be monitored (e.g., in the measurement of water in agricultural 

samples). With the development of multichannel detectors for the NIR, rapid-scanning 

dispersive instruments have also come into use based on standard spectrograph designs. 
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Figure 2.3 Electromagnetic spectrum showing the IR region positioned between the 
visible and radio wave regions. The IR region is further divided into three sub regions, 
NIR, Mid-IR and Far-IR.  
 
Source: http://www.windowimage.sg/about/ 
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Figure 2.4  Absorbance spectrum of water collected at 37 °C with an optical path length 
of 0.5 mm. The three transmission windows in the NIR region, combination, first-
overtone, and short wavelength, are labeled. An open-beam air reference was used as the 
background in the absorbance calculation. 
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Fourier transform (FT) spectrometers were developed initially in the 1970’s for 

the mid-IR to provide for convenient signal averaging of weak spectral signals. They 

have become the dominant instrument design for the mid-IR and beginning in the 1980’s 

were extended to the NIR region. Since that time, they have become competitive with the 

best dispersive instruments designed for use in the NIR. The research presented in this 

dissertation was performed with FT-NIR instrumentation. A detailed description of FT-

NIR spectroscopy is given in the next section. 

 

Fourier Transform Near-Infrared Spectrometry 

In traditional dispersive NIR spectroscopic measurements, each resolution 

element (RE) is measured at any instant by a scanning mechanism. If the total scan time 

is T for N number of REs, the measurement time for each RE would be T/N. This 

traditional measurement technique suffers from limited SNR, because only a fraction of 

the total scan time is used to acquire the signal at a particular RE.  

The alternative would be to observe each RE for the total scan time. Fourier 

transform instrumentation has a multiplex measurement capability that is achieved by 

passing multiple channels of information (i.e., information about the spectral intensity at 

each RE) onto a single measurement channel through the sample. This is accomplished 

by an encoding process in which a single optical detector is used to acquire a signal in 

time that carries the spectral information about each RE in a way that can be decoded 

later. A particular SNR can be achieved rapidly or an increased SNR can be obtained by 

signal averaging. The higher SNR can be advantageous when working with the weak 

signals observed in the NIR region. 
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In the FT measurement approach, a complex waveform is recorded by the 

detector as a function of time. This waveform is said to exist in the time domain, and 

carries the spectral information about the light intensity at each RE. This waveform is 

mathematically transformed (via the FT) to yield the single-beam spectrum (i.e., the 

individual light intensities across the REs). The extracted signal produced through the 

transform is said to exist in the frequency domain. In combination with today’s computer 

technologies and fast algorithms for computing the transform, the FT spectrometer is 

commonly used in a variety of types of spectroscopic measurements including 

ultraviolet/visible spectroscopy, infrared spectroscopy,88 nuclear magnetic resonance 

(NMR),95 magnetic resonance spectroscopic imaging (MRSI),96 and mass spectrometry97. 

The following sections outline the theory of FT spectrometry with a brief discussion of 

the mathematical operations employed, as well as the instrumentation used when 

applying the method to measurements in the NIR region. The advantages of FT 

spectrometry are also discussed. 

 

Theoretical Background of the Fourier Transform 

The FT decomposes or separates any harmonic signal or waveform into the set of 

underlying sine and cosine waves (defined by frequency and amplitude) that comprise it. 

These underlying waveforms sum to reproduce the original signal.98 For example, a time-

domain signal, P(t), made up of two different cosine frequencies ν1 and ν2 can be 

expressed as, 

P(t) = k1cos(2πν1t) + k2cos(2πν2t)   (2.1) 

http://en.wikipedia.org/wiki/Optical_spectroscopy
http://en.wikipedia.org/wiki/Infrared_spectroscopy
http://en.wikipedia.org/wiki/Nuclear_Magnetic_Resonance_Spectroscopy
http://en.wikipedia.org/wiki/Mass_spectrometry
http://en.wikipedia.org/wiki/Mass_spectrometry
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In the FT, the time-domain signal, P(t), is mathematically decomposed to find the 

amplitudes of its individual cosine waves (k1 and k2). A plot of the amplitudes as a 

function of the frequency gives the desired spectrum. Figure 2.5A shows two individual 

cosine signals with frequencies ν1 and ν2 with equal amplitudes. The sum of these two 

waves can be represented by a sinusoidal wave in the time domain as shown in Figure 

2.5B. The constructive and destructive interference that happens in the summation of the 

individual waves creates a regular pattern in the resulting sinusoidal waveform. The 

theoretical frequency-domain signal, once the FT is applied, is given in Figure 2.5C. True 

line spectra (i.e., single lines at the two frequencies) are not realized in the figure because 

the input to the FT has a finite sampling time (i.e., the transform is not being applied to 

an infinitely long waveform).  

 

Michelson Interferometer99-101  

As discussed previously, the concept of FT spectrometry is to use a single-

channel detector to acquire a composite (encoded) signal derived from all spectral 

frequencies. The FT is then used to extract the amplitudes of the component frequencies, 

thereby yielding the single-beam spectrum.  

At optical frequencies, this approach is hampered by the inability of current 

detectors to respond fast enough to be able to see the input frequencies. To address this 

problem, an optical component called an interferometer is employed. 

In FT-IR spectrometry, the interferometer is used to modulate the input light 

frequencies such that a single-channel detector can detect the composite waveform 

composed of each light frequency.  
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Figure 2.5 Time-domain plots for two single-frequency cosine waves, ν1, ν2, plotted as 
individual signals (A) and as an additive signal (B). Panel C displays the corresponding 
frequency-domain signal obtained from the application of the FT.  
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The detector and electronics are thus fast enough to respond to these modulated 

frequencies. The theory behind interferometry can most readily be understood by 

studying the common two-beam interferometer designed by Michelson in 1891. 

The following section provides an introduction to the Michelson interferometer. A 

similar instrumental design was used for the research discussed in this dissertation. The 

simplest form of the Michelson interferometer is shown in Figure 2.6. The beamsplitter, 

which is ideally 50% transmissive and 50% reflective, divides the input beam of radiation 

from the source into two paths. One is reflected towards a stationary mirror and the other 

is transmitted towards a moving mirror. When the two beams return to the beamsplitter, 

they interfere either constructively or destructively as a consequence of the difference in 

the lengths of the paths traveled by the photons. They are again partially reflected and 

partially transmitted. One part of this returning beam is directed through the sample and 

ultimately detected by the detector, while the other returns to the source and is unused.  

The beamsplitter is a very important component in the interferometer because of 

its essential function to create two beam paths from a single incident light source. The 

material used in constructing the beamsplitter is chosen depending on the wavelength 

range required. Commonly used materials in the NIR region can be fused silica (quartz) 

(Visible/NIR), CaF2, BaF2, and ZnSe (NIR/Mid-IR).101  

The function of the interferometer can be understood by studying the beam paths 

in Figure 2.6. For simplicity in this discussion, a monochromatic and collimated light 

beam is considered. Part of the light beam strikes at the point O in the beamsplitter and is 

reflected towards the stationary mirror at a distance, OS. The other half of the incident 

beam is transmitted towards the movable mirror at a distance, OM. Once returned to the 



36 
 

 
 

beamsplitter, the total difference, δ, in optical path lengths followed by the two waves in 

Figure 2.6 is 2(OM-OS), where the factor of 2 accounts for the total path traveled (i.e., 

out to each mirror and back).  

This optical path length difference, δ, is termed retardation. Depending on the 

relative position of the movable mirror, the reflected beams can have different 

retardations and the waves can interfere either constructively or destructively. When δ = 

nλ, where n = 0, 1, 2, 3, … (where n is an integer) the two light waves are in phase and 

thus interfere constructively. In this case, the intensity of the light experienced by the 

detector is equal to that of the intensity of the light source. A zero intensity is experienced 

by the detector when δ is a half-integral multiple of the wavelength (δ = nλ/2, where n = 

1, 3, 5, …). In between these two cases, the beams undergo partial interference.  

For a monochromatic light source, when the movable mirror is moved at a 

constant velocity, the intensity of the light experienced by the detector is a sinusoidal 

waveform which has a sequence of maxima and minima depending on the degree of 

interference (i.e, constructive, destructive, or partial). The plot of light intensity vs. 

retardation, δ, is called an interferogram. 

For a monochromatic light source, the intensity of this sinusoidal wave (cosine 

wave) experienced by the detector is given as 99,100: 

I(δ)=B(ν�)·cos�2πδ
λ
�=B(ν�)cos(2πν�δ)   (2.2) 

where I(δ) is the intensity of light reaching the detector as a function of δ and B(ν�) is a 

constant corresponding to the intensity of the light source, efficiency of the beam splitter, 

and response of the detector. The term B depends on the wavenumber of the light. 
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Figure 2.6 Schematic diagram of a Michelson interferometer. The input light from the IR 
source is directed towards the beamsplitter where half the beam is directed towards a 
fixed mirror and half is transmitted to a movable mirror. The reflected beams from the 
two mirrors return to the beamsplitter where they undergo interference either 
constructively or destructively on the basis of the differences in path lengths traveled. 
One-half of the resulting beam travels to the source and the other is directed towards the 
sample and detector where its intensity is recorded. The detector signal recorded as a 
function of the total path length difference of the two beams is termed an interferogram. 
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For polychromatic light sources (the typical case), the interferogram can be 

represented by the integral  

I(δ) =∫ B(ν�)cos(2πν�δ)d(ν�)+∞
-∞     (2.3) 

The detector experiences the maximum light intensity when the movable and 

stationary mirrors are at an equal distance from the beamsplitter (i.e., where δ= 0).  This 

is called the point of zero path difference (ZPD) or the interferogram centerburst. As the 

moving mirror moves away from the centerburst position, the resulting interferogram 

exhibits an exponentially decaying envelope due to the destructive interference of the 

many frequency components. The wider the width of the input spectral band, the 

narrower is the width of the envelope of the interferogram. For broadband spectral 

sources, the decay is very fast and the envelope of the interferogram is very narrow. By 

contrast, for a perfect monochromatic source, an infinitely wide interferogram results 

(i.e., it will be a pure cosine wave as there is no destructive interference resulting from 

the co-addition of the waveforms of other frequencies). 

To convert the interferogram into the frequency-domain spectrum, the FT is 

performed by evaluation of the following integral expression: 

B(ν�)=∫ I(δ)cos(2πν�δ)d(δ)+∞
-∞     (2.4) 

The FT can be represented in terms of corresponding expressions in the time and 

frequency domains. For this reason, Eqs. 2.3 and 2.4 are called Fourier transform pairs. 

Because I(δ) in Eq. 2.3 is an even function, Eq. 2.4 can be rewritten as:  

B(ν�) = 2∫ I(δ)cos(2πν�δ)d(δ)+∞
0    (2.5) 
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Resolution and Sampling 

According to Eq. 2.5, if the movable mirror moves from 0 to +∞ cm in 

infinitesimally small steps, a complete spectrum from 0 to +∞ (in cm-1) could be 

measured with an infinitely high resolution. Moving the mirror to infinity is impractical 

and thus it can be moved only a finite distance. The interferogram is measured over a 

limited retardation which causes the single-beam spectrum to have a finite resolution.  

The resolution, defined as the ability to distinguish two closely located peaks 

(Δν�), is related to the maximum retardation, Δmax, by the equation, Δν� = 1/ Δmax. The high 

retardation increases the number of points in the interferogram which ultimately yields a 

higher number of points in the spectrum. Because the maximum spectral frequency is 

constant, having more points increases the resolution of the spectrum. 

Figure 2.7-A, B, C, D illustrates how the resolution of a spectrum measured 

interferometrically depends on the number of points or the interferogram length.  Figure 

2.7A shows an interferogram composed of two cosine waves having frequencies at ν1 = 6 

Hz and ν2 = 10 Hz which correspond to ν �1 and ν�2 in wavenumber units. Figure 2.7B 

corresponds to the FT of the interferogram shown in Figure 2.7A using only 32 points. 

The resolution is not high enough to distinguish the two peaks at ν�1 and ν�2. When the 

length of the interferogram is increased by increasing the number of points to 64, the two 

peaks just start to resolve as shown in Figure 2.7C. Figure 2.7D shows that if 128 points 

are used for the transform, sufficient resolution is obtained to resolve the two peaks at ν�1 

and ν�2. 

A complete spectrum from 0 to ∞ cm-1 can be obtained by sampling the 

interferogram with an infinitely small spacing in retardation (i.e., with an infinitely high 
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sampling rate). In practice, however, the interferogram is sampled discretely at a fixed 

and finite sampling rate. The maximum frequency that can be recognized for a given 

sampling rate is mathematically explained by the Nyquist sampling theorem. According 

to the Nyquist theorem, a continuous signal should be digitized with a sampling 

frequency greater than or equal to twice the maximum frequency of the signal. If the 

sampling rate is given as 2ν in frequency, any frequency region having a bandwidth of ν 

can be sampled explicitly with this sampling rate. On the other hand, a feature whose true 

frequency is higher than ν will induce a lower apparent frequency that will appear below 

ν. This occurrence is known as folding or aliasing. This phenomenon is explained by 

Figures 2.8-A, B, C and D. 

Figure 2.8A shows a sine wave that has a theoretical frequency of 3 Hz. This 

signal is sampled with a sampling frequency of 20 Hz which is more than twice the signal 

frequency. This satisfies the Nyquist criterion and the FT of this signal is the feature 

shown in Figure 2.8B, a peak correctly centered at 3 Hz. The peak deviates from its pure 

line spectrum that is desired due to the limitations described previously in the discussion 

of the effect of finite resolution. A sine wave that has a theoretical frequency of 16 Hz 

which is sampled with the same sampling rate of 20 Hz is shown in Figure 2.8C. Because 

the sampling rate for this signal does not meet the Nyquist criterion, the FT produces a 

spectrum with the peak located at a lower frequency (4 Hz) than the true frequency.  

These figures highlight the importance of using the correct sampling rate during the 

analysis to prevent the acquisition of an inaccurate spectrum. If the entire spectrum is to 

be computed correctly from 0 to ν�max in wavenumber with a resolution of Δν�, the required 

number of points, Ns, to be sampled in the interferogram is given by 
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Ns= 2ν�max
Δν�

          (2.6) 

In the in vitro simulation studies described in Chapters 4, 5, and 6, the sampling 

rate is controlled by a reference He-Ne laser with a frequency of 15,798 cm-1 (wavelength 

of 632.8 nm). The laser was directed through the interferometer and the modulated 

frequency was detected by a visible light detector. The signal output from the visible 

detector was connected to a sampling circuit which controlled the acquisition of data 

from the infrared detector. Interferograms were sampled at every zero-crossing of the 

laser interferogram (i.e., twice per cycle of the sinusoidal signal), which ensures proper 

sampling according to the requirements of the Nyquist theorem. 

 

Phase Correction 

According to Eqs. 2.3 and 2.5, the theoretical representation of the interferogram 

is symmetric around the point of zero path difference (centerburst). However in reality, a 

correction needs to be made to the phase angle, 2πν�δ, to describe the actual measured 

interferogram. The deviations from symmetry may arise because of optical, electronic, or 

sampling effects.100 The addition of new terms into the phase angle has the effect of 

adding sine components to the cosine interferogram. The process correcting the 

asymmetric nature of the cosine interferogram, or removing their effects from a spectrum, 

is known as phase correction. 

The phase correction is commonly applied to both the interferogram and single-

beam spectrum.  The Mertz method which is performed in the spectral domain was used 

for this research.102-104 A complex Fourier transform is performed on a symmetric section 

of the interferogram that spans the centerburst. 
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Figure 2.7  Two individual cosine waves having frequencies ν1= 6 Hz and ν2=10 Hz are 
shown in plot A, plotted as individual signals (dotted lines) and one additive signal (solid 
line). The FT of the additive signal using 32, 64 and 128 points are shown in plots B, C 
and D, respectively. These plots clearly demonstrate the effect of the length of the 
sampled interferogram on the ability to resolve two closely spaced peaks. 
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Figure 2.8 Plot A corresponds to a 3 Hz sine wave sampled at a 20 Hz sampling 
frequency. The FT of this sine wave is shown in plot B. A peak centered at its true 
frequency can be seen in the plot. This sampling frequency satisfies the Nyguist sampling 
requirement. Plot C shows a 16 Hz sine wave sampled at the same sampling frequency of 
20 Hz. The FT of the signal is shown in plot D, revealing a peak that is aliased to 4 Hz 
(i.e., located below the true frequency).  
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The component computed with the cosine transform is called the real part, Re(ν�) , 

while the sine component computes the imaginary part, Im(ν�). The complex FT can be 

written as: 

B(ν�) = Re(ν�)cos θ(ν�) + Im(ν�)sin θ(ν�)  (2.7) 

In Eq. 2.7, θ(ν�) is the component of the phase shift, which varies with the 

wavenumber. This phase error function is defined as: 

θ(ν�)= tan-1 �Im(ν�)
Re(ν�)�     (2.8) 

Once the phase error function has been estimated by use of the symmetric 

interferogram, Eq. 2.7 can be used to correct the computed spectrum. 

 

Apodization 

As discussed previously, the interferogram is collected by restricting the 

maximum retardation of the interferogram to Δ cm. Experimentally, this corresponds to 

restricting the translation of the moving mirror of the interferometer to a finite range of 

retardation. From a mathematical perspective, the equivalent result is obtained by 

multiplying the theoretically infinitely long interferogram by a truncation function, D(δ), 

which is unity between -Δ and +Δ, and zero at all other points: 

D(δ) = �1 if-Δ≤δ≤+∆
0 if δ> ∆

     (2.9) 

This function is termed the boxcar truncation function. With this truncation 

function Eq. 2.4 can be rewritten to represent the interferogram that is actually sampled: 

B(ν�) =∫ I(δ)D(δ)cos(2πν�δ)d(δ)+∞
-∞    (2.10) 
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The multiplication of two functions is the convolution of the FT of each 

function.105 The product of I(δ) measured with an infinitely long retardation and the 

boxcar function D(δ) results in a spectrum that is the convolution of the FT of each. The 

FT of I(δ) yields the true spectrum (e.g., an infinitely narrow line for a monochromatic 

light source), whereas the FT for D(δ) is the sinc function (i.e., sin x x⁄ ), expressed as: 

f(ν�)=2Δsinc2π(ν�)Δ     (2.11) 

In addition to a broadening of the central peak, a ramification of finite sampling is that 

the presence of the sinc function adds artifacts such as oscillating side-lobes to the final 

FT spectrum.  

The spectral resolution associated with the measurement is determined by the 

width of the boxcar function. This corresponds to the maximum retardation of the 

interferogram as discussed previously. For the boxcar function, the full width at half-

maximum height of the observed band is 0.605/Δ. The FT of the boxcar function also 

causes a “leakage” of the spectral intensity, i.e. the spectral intensity is not strictly 

localized but also contributes to the side lobes.106 

To reduce the side lobes caused by the boxcar function, other sampling functions, 

A(δ), such as the triangular or Happ-Genzel function are often used.107 These sampling 

functions are also termed windowing or apodization functions.  

Unlike the boxcar function which has an infinitely sharp transition to zero in the 

edges, these alternate sampling functions gradually approach zero on the edges, resulting 

in fewer side lobes when transformed to the final spectrum. This procedure of reducing 

the side lobes by taking the product of the interferogram with an artificial sampling 

function is termed apodization.108  
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The Happ-Genzel apodization function can be represented as: 

A(δ)= �a+bcos δπ
2∆

,if-Δ≤δ≤+∆
0, others

    (2.12) 

In Eq. 2.12, the parameters a and b are optimized to minimize the first (largest) 

side lobe. The choice of a particular apodization function depends on the particular 

application. As mentioned above, compared to the boxcar function, other apodization 

functions minimize the side lobes but there is also a tradeoff in spectral resolution. This 

effect derives from the width of the center peak of the FT of the apodization function. If a 

higher resolution is very important, the boxcar function should be chosen. If the 

resolution is less important than concern about the presence of the side lobes, other 

apodization functions can be utilized. In practice, the boxcar function is typically only 

used for gas samples where the spectral bands are narrow. For the in vitro simulated 

experiments in Chapters 4, 5 and 6, the Happ-Genzel apodization function was used. In 

Chapter 7, triangular apodization was used. 

 

Advantages and Disadvantages of FT-IR Spectrometry 

There are several advantages that an FT-IR spectrometer has compared to the 

traditional single-channel dispersive instrument.99,100,103,109 The FT-IR spectrometer offers 

the multiplex advantage (Fellgett advantage). In contrast to dispersive measurements in 

which the spectrum is examined by scanning one RE at a time, in an FT-IR measurement 

all the frequencies in a spectrum are acquired simultaneously. The Fellgett advantage 

offers the ability to collect the complete spectrum very rapidly and many scans can be 

averaged in the time taken for a single scan of a dispersive spectrometer that is based on a 

single-element detector. While modern multichannel dispersive instruments based on 
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array detectors have overcome the limitation in scan speed discussed above in the 

ultraviolet and visible spectral regions, the FT design is still preferable in the IR region 

due to the expense and lack of reliability of IR multichannel detectors.  

Another advantage the FT-IR measurement offers is the throughput advantage or 

Jacquinot advantage. A FT-IR instrument does not use a slit to limit the amount of light 

reaching the sample and detector as a dispersive instrument does. In addition, the fewer 

mirror surfaces in the FT-IR spectrometer minimize reflection losses. Overall, a higher 

amount of light energy reaches the sample and hence the detector in an FT-IR 

spectrometer compared to a dispersive spectrometer. This in combination with the 

multiplex advantage means that the signal-to-noise ratio achieved with an FT-IR 

spectrometer is often higher than that obtained with a dispersive instrument. This high 

throughput advantage is somewhat limited since too much light reaching the detector may 

saturate the detector and thereby exceed its linear dynamic range. Consequently, for less 

absorbing samples, the light output from the interferometer may need to be attenuated. 

However, the high throughput of light reaching the detector is extremely valuable for 

highly absorbing or scattering samples such as those encountered in aqueous or in vivo 

measurements. 

Another advantage of FT spectrometry is the Connes advantage, which allows 

greater wavenumber accuracy to be achieved than in a conventional dispersive design 

based on a monochromator. In modern interferometers, this is accomplished by using a 

very stable helium-neon laser to control the sampling of the interferogram.  

There are several limitations of FT-IR spectrometry as well. The interferometer 

has moving parts and requires precise optical alignment in order to function. The 
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ruggedness of the spectrometer may thus be insufficient for some application 

environments. The need for the interferometer also makes it difficult to miniaturize the 

spectrometer. Finally, in systems that are source-noise limited, the Fellgett disadvantage 

applies. This arises because all the regions of the spectrum are collected simultaneously 

(i.e., all light frequencies are integrated at each interferogram point). Therefore, if noise 

occurs in one spectral region, it will contaminate each interferogram point with the end 

result being the noise will be spread throughout the spectrum.  Overall, however, the 

advantages of the FT instrumental design outweigh the disadvantages. For this reason, FT 

spectrometers have become the instrument of choice in the mid-IR region and their use 

has also become very widespread for NIR measurements.  
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CHAPTER 3 

DATA ANALYSIS TECHNIQUES 

 

Introduction 

In the previous chapter, the theory and instrumentation associated with FT-NIR 

spectroscopy were discussed.  Near-infrared spectra are difficult to interpret due to the 

weak and broad nature of the peaks and the extensive spectral overlap that occurs when 

multi-component samples are measured.  The extraction of useful spectral information 

thus typically requires the aid of computer-based data analysis tools from the field of 

chemometrics. 

The ultimate goal of the research described in this dissertation was to develop an 

alarm algorithm for the detection of nocturnal hypoglycemia from NIR spectra collected 

continuously from a diabetic patient during the sleep period. In this context, the data 

analysis problem can be considered qualitative in nature. For each spectrum collected, the 

task is to classify the spectrum into one of two data categories: (1) corresponding to a 

glucose concentration below a threshold concentration, thus triggering an alarm or (2) 

corresponding to a glucose concentration above the threshold, thus requiring no alarm. 

For simplicity, these data categories will be termed “alarm” and “non-alarm”.  

While the decision-making task described above is qualitative in nature, different 

steps of the algorithm require quantitative steps which link the spectrum to quantifiable 

properties of the sample. For these purposes, multivariate calibration tools are required. 

This chapter provides an overview of the qualitative and quantitative methods employed 

in the research, as well as the diagnostic tools used for assessing data quality and method 
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performance.  A detailed description of the steps behind the alarm algorithm will also be 

provided. 

 

Noise Analysis 

In the nocturnal hypoglycemic alarm applications discussed here, spectra were 

collected continuously and the mean root-mean-square (RMS) noise level was computed 

routinely as a diagnostic check on data quality and overall instrumental performance. The 

calculation was performed in three steps. First, ratios were taken between consecutive 

single-beam spectra, then the absorbance values were computed, and the RMS noise was 

computed over the 4500-4300 cm-1 spectral range. This range was selected because it 

encompasses the glucose C-H combination band at 4400 cm-1. The ratio of two 

consecutive replicate single-beam spectra is termed a 100% line because in the absence 

of measurement variance all values should be at 100% transmittance. In the 

corresponding absorbance spectrum, all values should be at 0.0 absorbance units (AU). 

The shape of the 100% line can be used to identify possible sources of variance 

that occur during the data collection. Offset of the line from zero indicates possible 

instrumental drift while the temperature fluctuations in the sample solutions can result in 

baseline curvature. Random fluctuations in the line about 0.0 AU are caused by the 

intrinsic noise of the instrumental measurement.86 

The magnitude of each noise source can be estimated by changing the origin of 

the RMS noise calculation shown in Eq. 3.1 

RMS= �
∑ �Ai-bo-b1ν�i-b2ν�i

2-b3ν�i
3�

2p
i=1

p-q
   (3.1) 
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In Equation 3.1, RMS denotes the estimated noise level calculated over the 100 % 

line containing p resolution elements corresponding to wavenumber values, ν�i ,and 

absorbance values, Ai. The coefficients bo to b3 in the equation determine the magnitude 

of the noise source and q gives the number of nonzero values among bo to b3. If bo to b3 = 

0, Eq. 3.1 uses only the absorbance values, Ai, for the calculation and its magnitude 

includes all three sources of variance described above. If bo is set to the mean of the p 

absorbance values and all other coefficients are zero, the absolute shift from zero 

absorbance will be corrected and the magnitude of RMS will include the effects of 

baseline variation and random fluctuations. Assuming a third-order polynomial 

regression can fit the baseline curvature, Ai and ν�i over p resolution elements can be fitted 

to this model with bo to b3 in Eq. 3.1 denoting the regression coefficients. The third-order 

polynomial fit will then correct for the baseline variation and the RMS noise value will 

be due to the intrinsic measurement noise only. 

  

Multivariate Calibration Methods 

To determine the amount of an analyte present in a sample, a calibration model is 

required to generate the mathematical relationship that links the recorded signal (e.g., 

NIR spectra) with the parameter of interest (e.g., concentration). Two types of calibration 

models can be identified on the basis of the dimensionality of the data used for the 

analysis. The univariate model is the simplest and most traditional form, which involves 

relating one variable to predict the value of another. For example, the spectroscopic 

signal collected at a single wavelength is related to the analyte concentration through a 

simple one- or two-parameter model. By contrast, a multivariate model uses the 
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information derived from two or more measurements. For example, spectra collected at 

multiple wavenumbers or wavelengths are related to the analyte concentration through a 

multi-parameter model.  

Given the extensive spectral band overlap and the weak absorption features 

observed in NIR spectra, multivariate techniques are generally required to extract target 

analyte information from the background signal produced by the other components of the 

sample matrix. In this research, all the data collected consisted of multiple measurements 

across a wavenumber range. The multivariate regression methods used in the dissertation 

research are described below.  

 

Classical Least-Squares 

Classical least-squares (CLS) analysis110-113 is a multivariate linear calibration 

model computed by applying multiple linear regression (MLR). A linear mixture model 

that is used in the MLR can be represented as 

y = b1x1 + b2x2 + b3x3 + …. + bhxh  + e   (3.2) 

where the measured response (y) is based on a linear sum of contributions from h species 

and xi is the “unit” response of species i. The regression coefficients (bi) are weighting 

factors that encode the contribution of each species i to the measured response. 

 In NIR absorption spectroscopy, a model is built that fits the measured 

absorbance to a linear sum of contributions from a series of known spectral components. 

Here, the absorbance values measured across a spectral range define the dependent 

variables while the series of underlying spectral components collected over the same 

spectral bandwidth are treated as the independent variables. The regression coefficients 
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that form the models give the relative amount of each spectral component represented in 

the measured absorbance. If the pure-component spectrum of a particular analyte is taken 

as one of the independent variables, the regression coefficient for that term calculated 

from the model gives the relative amount of that component represented in the measured 

spectrum. 

For multi-component absorbance analysis at a given wavelength, Eq. 3.2 can be 

written as: 

 Ai=∑ ki,j 
l
j=1 bi+ei     (3.3) 

where Ai is the total absorbance at wavelength i and ki,j is the absorbance in the pure-

component spectrum for component j collected at wavelength i. This term is called the 

sensitivity term which relates the measured absorbance to the analytical parameter of 

interest (e.g., concentration, thickness, temperature). The term bi in Eq. 3.3 is the 

calculated regression coefficient. This is the quantitative parameter that is desired from 

the analysis. The lack of perfect fit between the left and right sides of the equation is 

expressed in the residual absorbance, ei. In Chapter 5, CLS is used to calculate the 

relative thickness of the protein films prepared. The relative thickness values were 

evaluated by calculating the regression coefficients from the fit. 

If the absorbance data are collected over p resolution elements for a group of n 

samples, p×n total absorbance values will be accumulated and the term 𝐴𝑖 in Eq. 3.3 

becomes a matrix, A. The columns of A comprise the spectra of the n samples. If the p 

elements are contiguous and evenly spaced across p resolution elements and there are a 

total of l components contributing to the spectrum, the term ki,j  in Eq. 3.3 now becomes a 

p×l matrix, K, which is defined sometimes as the sensitivity matrix. For l number of 
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components and n number of samples, the term in the equation will be changed into an 

l×n matrix, B, which is the regression coefficient matrix.86  

For this type of multi-wavelength and multi-component analysis, Eq. 3.3 can be 

written in matrix notation as: 

A = KB + EA      (3.4) 

Analogous to ei in Eq. 3.3, the p×n matrix EA is placed in the equation to account 

for the information in the spectral data matrix A that is not explained by KB. The matrix 

EA is termed the spectral residuals from the fit. This information includes noise or other 

spectral artifacts that do not fit the assumptions of the linear mixture model specified in 

Eq. 3.2. The desired analytical information resides in B and can be obtained by use of 

standard MLR calculations. The least-squares solution to B in Eq. 3.4 in matrix form can 

be given as: 

B� = KT (KTK)-1A     (3.5) 

where KT indicates the transpose of the matrix K and the hat symbol in the regression 

coefficient matrix, B, denotes that it is estimated on the basis of the experimental data in 

K and A.  

In the CLS methodology described above, no terms were used in the model for 

correcting for background changes, baseline variation, etc. If these artifacts are present, 

they will cause errors in the predicted parameters. To correct this, Haaland and coworkers 

have developed a series of strategies to add flexibility to the CLS model termed 

augmented CLS (ACLS).114-117 The solution for this is to augment K with additional 

columns that model the “shapes” of the artifacts. For the thickness calculations in Chapter 

7, the ACLS method is used. 
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Multivariate Inverse Calibration Methods 

The success of the CLS method depends on accurately defining the sensitivity 

matrix, K, in Eq. 3.4. The CLS procedure will likely perform poorly if all the species that 

contribute to the response cannot be characterized.  This is often the case with complex 

samples of the type encountered in biological or environmental applications. In this case, 

the K matrix in Eq. 3.4 is not adequately defined and the computed regression 

coefficients in B will be inaccurately estimated. 

To model samples in which the sample matrix is complex, variable and difficult to 

characterize completely, an inverse regression method can be employed in which the 

concentrations become the dependent variable (“y”) and the measured spectral intensities 

become the independent variables (“xi”). Spectral intensities are taken at multiple 

resolution elements for concentrations of a set of calibration samples and then the 

concentration is modeled as a function of the measured instrumental responses by MLR. 

This is termed an inverse calibration method.113,118-120 

In an inverse regression model for an analyte of interest in a sample, the 

concentration of that analyte can be modeled as a function of the spectral intensities at p 

resolution elements as 

     ci = b0 + b1x1,i + b2x2,i + ….. + bpxp,i + ei  (3.6) 

where ci is the concentration of the analyte of interest in sample i, x1,i , x2,i ,…, xp,i  denote 

the spectral intensities from p resolution elements, and b0,b1,…, bp are the regression 

coefficients estimated from MLR. The p resolution elements used in the model are 

selected from the pool of available independent variables based on a wavelength selection 
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procedure. Here, ei denotes the error or residual associated with the fit. For a set of n 

samples containing h components, Eq. 3.6 changes to matrix form as    

C = XB      (3.7) 

where C is an n×h matrix for n samples containing h components, X is an n×p matrix 

which contains spectral intensities collected for n samples at p wavelengths, and B is an 

n×h matrix which contains regression coefficients resulting from the MLR calculation. 

To generate the model, a set of calibration samples is obtained and spectra are 

measured at multiple wavelengths for each sample. These data allow C and X in Eq. 3.7 

to be defined. The regression coefficient matrix, B, can then be estimated by a 

generalized inverse as: 

B = X (XTX)-1C     (3.8) 

Estimated concentrations for unknown samples can be obtained by using the 

regression coefficient matrix calculated with Eq. 3.8 and the spectral intensities matrix 

for the unknown samples. The estimated concentration matrix can be obtained by   

 C�  = XB      (3.9) 

The calculation of the regression coefficient matrix by Eq. 3.8 involves the 

inversion of XTX. If collinear relationships exist among the columns and rows in the X 

matrix, poor conditioning to inversion of XTX occurs. These collinear relationships are 

very common in the intensities associated with the same spectral band. Depending on its 

severity, this ill-conditioning in the spectral data matrix can lead to imprecision in 

computing the inverse of XTX. This leads to imprecision in the computed regression 

coefficients.  
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The number of resolution elements, p, that can be used in the model is limited by 

the number of independent samples, n, or the degree of freedom available within the 

calibration data set. If the number of wavelengths is too large compared to the number of 

samples available, chance correlations between X and C occur and can lead to an 

erroneous estimation for B. On the other hand, if the numbers of resolution elements are 

too low, the instrumental response may not be selective enough for the analyte.  

According to the ASTM Standard E 1655 on infrared multivariate calibration 

methods, a minimum n/p ratio of 6.0 is highly recommended.121 For example, if the 

spectral data acquisition is from 4900 to 4100 cm-1 with a point spacing of 8 cm-1, there 

are 101 resolution elements in each of the spectra collected. To satisfy the ASTM 

standard, 6 × 101 = 606 independent samples are thus recommended to build the 

calibration model. A drawback of this calibration method is that such a high number of 

calibration samples is not feasible in most applications. 

The use of MLR to build calibration models for the data collected in NIR 

spectroscopy faces some critical issues. As noted previously, the spectral bands are broad 

and there is a high degree of overlap of the spectra of the sample components. The 

individual resolution elements not only show poor selectivity for the analyte of interest, 

they will be correlated with adjacent data points. This leads to a spectral data matrix that 

is ill-conditioned to inversion.  

One potential approach to overcome this problem would be to identify key 

wavelength points and build the model only with those subsets of spectral points. 

However, the extensive spectral overlap in NIR spectra can make it difficult to select 

subsets of spectral points that will build a precise calibration model. Due to these 
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limitations, latent variable techniques such as principal component analysis (PCA) and 

partial least-squares (PLS) are often used. The next section will be used to discuss those 

latent variable methods used in the dissertation research. 

 

Latent Variable Methods 

The basic idea of the latent variable methods is to calculate a new set of 

independent variables based on linear combinations of the original variables. The new 

variables are called latent variables because they reflect an underlying structure in the 

data matrix. In the context of spectroscopy, these latent variables are empirically derived 

spectral shapes that explain the variance in the original spectra. The relative contribution 

of each of these shapes to the original spectrum can be given by a set of scores. The goal 

of latent variable methods is to extract the key information contained in the original data 

but to do so with a lower dimensionality. Whereas p points were originally collected to 

represent the spectral information, it is hoped that many fewer than p latent variables can 

be found that carry the same information. If this reduction in dimensionality is realized, 

fewer terms will be required in the calibration model, thereby reducing the number of 

calibration samples that are required to satisfy the ASTM standard.  

The most efficient form for the latent variables is that they be orthogonal, as 

orthogonal variables have no redundant information. If this is achieved, the new variables 

will have no collinearity and therefore there will be no issues regarding the ability to 

invert XTX.122-124 This leads to a more precise determination of the regression coefficients 

obtained by use of Eq. 3.8. 
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The relationship between the measured responses and the calculated latent 

variables can be given as 

T= RS       (3.10) 

where R is an n×p matrix for the measured responses and S is a p×h matrix in which the 

columns contain the h empirically derived spectral shapes that are also termed loadings or 

latent variables. The product of R and S yields T, an n×h matrix of scores. If S is an 

orthogonal matrix, each column can be considered an orthogonal basis vector in an h-

dimensional coordinate system, and row i of T represents the projections (coordinates) of 

spectrum i onto this new basis.  

The calibration model given in Eq. 3.6 can now be built with the new h-

dimensional score vector as: 

     ci = b0 + b1t1 + b2t2 + ….. + bhth + ei   (3.11) 

The success of this approach depends on constructing the latent variables to be 

more efficient than the original variables in representing information in R. A variety of 

methods are available to calculate the loadings and scores in Eq. 3.10. The next section 

discusses the two approaches used in the dissertation research, PCA and PLS. 

 

Principal Component Analysis110,124-126 

The strategy of PCA is to factor the response matrix, R, into the product of a 

score matrix, T, and an orthogonal loading matrix, V, as shown below: 

R= TVT      (3.12) 

In Eq. 3.12, R is the (n×p) response matrix and T is the score matrix (n×p).  The 

response matrix may or may not be mean-centered (i.e., the mean response subtracted 
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from each row) depending on the user’s choice. The columns of V (p×p) are the loading 

vectors. Once V has been computed, the individual loading vectors can be examined to 

evaluate the relevance of the information they carry. In PCA, the goal is to extract the 

relevant information from R while leaving the less relevant information behind. For a 

calibration modeling application, this translates to the use of only the relevant scores to 

build the calibration model. This approach can be represented in matrix form as: 

R = TVT + E      (3.13) 

In Eq. 3.13, the score matrix, T, is now n×h and V is now p×h, where h < p. The 

residual matrix, E, is an n×p matrix that contains the information in R not extracted by 

the h loading vectors in V.125  

The loading matrix V can be calculated from R, and R and V together can be used 

to calculate the scores (T = RV). The singular value decomposition (SVD) is the 

computational algorithm most often used to compute the loadings.127,128 The application 

of the SVD to R results in an orthogonal matrix of loadings in which the columns are the 

eigenvectors of RTR. The eigenvalue associated with each loading is proportional to the 

magnitude of the loading vector before normalization. The useful eigenvectors that 

extract highly relevant information in R are typically those with the largest eigenvalues. 

These eigenvectors explain the most variance in R. The eigenvectors of RTR with the 

largest eigenvalues are the loadings used in building the calibration model. These loading 

vectors are called principal components (PCs). 

The computed loading vectors and the response matrix R can be used to calculate 

the score matrix. For each loading vector vi, the corresponding score vector is 

 ti = Rvi      (3.14) 
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The score vectors computed in this way are orthogonal since V is an orthogonal 

matrix. Thus, if collinearity exits in R, the orthogonality of the ti offers the ability to 

explain the key information in R using fewer variables.  

For a calibration modeling application, the goal is to use the scores as independent 

variables in an MLR model such as that described by Eq. 3.11. The h×1 vector of 

regression coefficients, b, can be obtained using both the score matrix and c, the n×1 

vector of concentrations of the prepared calibration samples for a particular analyte. The 

calculation is the standard least-squares solution: 

b = (TTT)-1TT c     (3.15) 

When applied in this way, the combination of PCA and MLR is termed principal 

component regression (PCR).  

A calibration model built with PCR can be used for future predictions. The 

spectra for the prediction samples are collected. If mean-centering was used originally, 

the mean of the calibration responses is used to center the prediction spectra. The scores 

for these spectra are then calculated using the V matrix obtained from the calibration 

data. The computed scores are used together with the regression coefficients obtained 

from Eq. 3.15 to estimate the concentrations for the prediction samples. The calculation is 

analogous to Eq. 3.9 except the matrix B is replaced by the vector b (i.e., regression 

coefficients for a single analyte are used). 

Two other points regarding the use of PCA are noteworthy. First, two- or three-

dimensional scatter plots can be created from the computed scores. These score plots are 

a very useful way to picture relationships among the observations in multi-dimensional 
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data. These plots can be used to observe outliers and to uncover clustering or grouping 

among the data. Score plots of this type are used in the dissertation.  

Unusual observations can be identified in the context of the PCA model by either 

examining the residual spectra remaining after the subtraction of the contributions of the 

principal components or assessing the degree to which the computed principal component 

scores are unusual relative to the scores of the other observations.   

The matrix of spectral residuals, E, in Eq. 3.13 contains the information in the 

input spectra data matrix, R, that is not captured by the h computed principal 

components. Each row of E, ei, contains the residual spectrum for observation i.  We can 

define Qi as the sum of squares of the elements in ei. This value is the squared magnitude 

of residual spectrum i and is a measure of the degree to which observation i fits the 

principal component model. Large values of Qi signal unusual observations.    

The sum of normalized squared scores, known as Hotelling’s T2 statistic129, is a 

measure of the variation in each sample within the PCA model. The T2 is defined as 

 Ti
2= ti Λ-1𝐭𝑖 T

      (3.16) 

where ti  refers to the ith row (1×h) of the principal component score matrix, T, and Λ is 

an h×h diagonal matrix containing the eigenvalues of RTR. The eigenvalue in element (j, 

j) of Λ, λj, is the squared magnitude of principal component j (i.e., the squared magnitude 

of the loading vector). The function of the eigenvalue in Eq. 3.16 is to weight the 

contribution of each principal component according to its magnitude. Samples with large 

T2 define unusual observations within the model. 

Finally, in PCA, the loading vectors that encode the largest sources of variation in 

R are typically used to calculate the scores. If the analyte is a minor component in the 
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sample matrix with respect to the overall variance in the spectra, the calculation of the 

PCA scores may not necessarily have extracted the analyte information most efficiently.   

For example, in the case of in vivo spectra collected from tissue, glucose is a 

minor component with respect to the overall spectral variance. In this case, the glucose 

information may reside in one of the loading vectors associated with a small eigenvalue, 

while other latent variables with large eigenvalues may not be useful in building a 

calibration model for glucose. Thus, part of the necessary protocol in building a model 

with PCR is to assess which PCs are most useful in model building. This characteristic of 

PCA in which no guidance is provided regarding the specific information to be extracted 

from the input data motivates the use of PLS, a related latent variable method. The PLS 

technique is discussed in the next section.  

 

Partial-Least Squares 

Partial least-squares is a latent variable method widely used in analytical 

chemistry applications such as the quantitative analysis of ultraviolet,130 NIR,90 

chromatographic131 and electrochemical132 data. In PLS, construction of the latent 

variables employs both the concentration information and the experimental (spectral) 

information as opposed to PCA which uses only the spectral information. The PLS 

method computes the components using both spectral and concentration data 

simultaneously, maximizing the covariance between the two while in PCA only the 

variance of the spectral data is considered. 123 The PLS calculation assumes errors 

associated with both the experimental information and the concentration information are 

of equal importance while PCA assumes that the concentration data are error free.110 This 
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assumption is very important because the preparation of the calibration samples is subject 

to error (e.g., dilution and weighing) just as much as the spectral data collection. This is 

especially true in cases in which the calibration samples are not prepared but rather are 

collected and then analyzed with a reference method. Data collected in vivo from tissue 

would fit this category. 

The decomposition of the spectral and concentration information can be 

implemented by 

X = TPT + E      (3.17) 

c = Tq + e      (3.18) 

In Eq. 3.17, X is the n×p matrix representing the instrumental responses and c in Eq. 3.18 

is the n×1 vector of concentrations. The X matrix is typically mean-centered as described 

previously in the discussion of PCA. The matrices, T (n×h), P (p×h) and E (n×p) in Eq. 

3.17 are analogous to those introduced previously in the discussion of PCA. The columns 

in matrix P contain h empirically derived spectral shapes that are termed spectral 

loadings or latent variables, the same as in PCA. 

The vector q (h×1) in Eq. 3.18 contains concentration loadings. These define the 

relationship between the scores and concentrations and are analogous to the regression 

coefficients in Eq. 3.6. The key characteristic of PLS is that the same score matrix, T, is 

common to both Eqs. 3.17 and 3.18, and the calculation of T employs both X and c. The 

empirically derived h latent variables are thus used to extract the key information in the 

spectra that relates to the concentrations in c. The terms, E and e, in Eqs. 3.17 and 3.18 

represent the spectral and concentration information, respectively, that is not extracted. 

These terms are called spectral residuals and concentration residuals, respectively. The 
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scores, analogous to those in PCA, are orthogonal. In the variant of PLS discussed, here, 

the loadings are not guaranteed to be orthogonal and are not normalized. 

Among the different PLS algorithms available for calculating the scores and 

loadings, this thesis used PLS1, which uses another matrix called the “weight” matrix 

that has close analogies with the spectral loading matrix, P.123,133 The decomposition of X 

and c computes a set of loading weights, w, for each spectral loading. The mean-centered 

spectral and concentration data are used for the calculation of the first set of loading 

weights as  

 w1= XTc
�XTc�

      (3.19) 

where �XTc�represents the norm of the vector.  

The projection of X onto w1 computes the first score vector, t1, as shown in Eq. 

3.20, and the first spectral loading p1 is computed as in Eq. 3.21. Similarly the first 

concentration loading is given by Eq. 3.22.  

 t1= Xw1      (3.20) 

 p1= XTt1
�t1

  T t1�
      (3.21) 

 q1=
t1
  T c

�t1
  Tt1�

      (3.22) 

The information in X and c that is not extracted by t1 can be computed by  

E1=X-t1p1
  T      (3.23) 

e1=c-t1q1
       (3.24) 

The next loading weight can then be computed by replacing X and c in Eq. 3.19 with E1 

and e1, respectively.  
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The algorithm can iterate in this manner to calculate h factors. Taken together, the 

h loading weights define the p×h weight matrix, W. Once the PLS scores are calculated, 

the calibration model is now built using the scores as independent variables. The 

procedure is identical to that discussed previously for PCA.  

The same procedure used in PCA is employed with PLS1 for the prediction of 

unknown concentrations. Responses for m unknown samples are collected to produce 

Rpred (m×p), and the prediction response matrix is centered using the mean of the 

calibration data. The first PLS score vector, t1,pred, for the prediction data can be 

calculated using the first loading weight vector from the calibration. The contribution 

from the computed first prediction PLS score is removed to calculate the residuals. This 

calculation uses the first calibration spectral loading. These steps can be summarized by 

Eqs. 3.25 and 3.26 as: 

t1,pred= Rpred w1     (3.25) 

R1,pred= Rpred - t1,pred p1
  T    (3.26) 

This process can iterate until h prediction PLS scores are computed. The unknown 

concentration can then be calculated by use of the regression coefficients computed in the 

calibration step. This can be done in exactly the same way as described previously for 

models based on the use of PCA. 

An alternate implementation of the prediction step is to use W, P, and q to 

compute a regression coefficient vector, b:  

 b = W(PTW)-1q     (3.27) 

The inner product of this regression coefficient vector and the centered (using the 

mean calibration response) response vector for the unknown sample produces the 
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estimated concentration of the unknown. If c, the vector of concentrations of the 

calibration samples was centered prior to the calculation of W, P, and q, the estimated 

concentration must be translated to the original scale by adding the mean calibration 

concentration.  

Because the PLS method uses both spectral and concentration information to 

build the calibration model, there is a danger of overfitting the model to the calibration 

data. If the proper number of latent variables and the appropriate wavelength range are 

not used in the model, false calibrations based on spurious correlations between 

concentrations and spectral features within the data set can occur. Even random noise or 

spectral artifacts may be modeled and assumed to represent valid spectral features. 

Conventional statistical testing for the significance of model terms may fail because the 

extracted latent variables, by the nature of the PLS algorithm, do in fact correlate with the 

dependent variable of concentrations.  

While many factors may appear to be significant when building the regression 

model with the calibration data, not all of those factors will likely be useful when the 

model is applied to future data. This issue is complicated by the common use of 

optimization procedures that vary both the spectral range (i.e., the variables input to PLS) 

and number of latent variables computed by PLS. Investigating many combinations of 

input variables and computed latent variables increases the likelihood that apparently 

well-performing models will be found that happen to incorporate fortuitous correlations.  

Thus, model testing and critical evaluation are essential elements of the use of 

PLS. For example, the selected wavenumber range must be consistent with knowledge of 

the spectral responses of the analyte of interest and the known components of the sample 
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matrix. If a spectral region used in building a model is high in noise, there is a good 

chance that PLS has found chance correlations among the noise features. Examination of 

the components in the W and P matrices is important to assess the degree to which they 

appear to incorporate noise rather than valid spectral features. Finally, testing models 

with data not included in the calibration calculations is important with any modeling 

methodology, but especially important with PLS.  

 

Performance Diagnostics 

For any of the modeling methods discussed previously, the quality of the 

calibration model is assessed by computing the error in concentration associated with it. 

The calibration error is termed the root-mean-squared error of calibration (RMSEC) or 

standard error of calibration (SEC). The SEC for the analyte of interest is  

SEC = �∑ �ci-c�i�
2n

i=1
n-h-1

     (3.28) 

where ci is the reference concentration for sample i , and c�i is the concentration estimated 

by the calibration model. The root mean-squared error is computed for the n samples of 

the calibration set to produce the SEC. The n-h-1 term in the denominator in Eq. 3.28 

reflects the degrees of freedom for n number of samples, h number of independent 

variables used for the regression and assuming an intercept (constant term) is fitted to the 

model. The “1” is deleted from Eq. 3.28 if the model is fitted without an intercept.  

When the model is used to predict the concentration of m known samples that 

were not used in the calibration, the concentration error is computed as the standard error 
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of prediction (SEP) or root-mean-squared error of prediction (RMSEP). The SEP can be 

obtained by  

SEP =�∑ �ci-c�i�
2m

i=1
m

     (3.29) 

The denominator in Eq. 3.29 has no loss of degrees of freedom since the m 

samples were not used in the estimation of the model. 

  

Model Validation 

The ultimate goal of modeling is to use the computed calibration model to predict 

the concentrations of spectra collected in the future. Model validation is an important step 

in model development to help guarantee a precise and accurate prediction. The computed 

calibration models can be validated with either internal or external approaches.  

 

Internal Validation 

In internal validation, only the calibration data are used to test the model. The 

calculation of SEC is one of the approaches to internal validation which provides a rough 

estimation of model performance. However, especially with the PCR and PLS 

approaches, the SEC is almost always improved by increasing the model dimensionality. 

Therefore, internal validation alone can be misleading. One other common approach to 

internal validation is cross-validation (CV). 

In CV, a subset of the calibration data is withheld to evaluate the prediction 

performance of the model. A leave-one-out CV involves leaving one sample out for the 

computation of the standard error while the rest of the samples are used to build the 

calibration model.134 This step is cycled through the calibration data such that each 
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spectrum is withheld from building the model and predicted once. The standard errors 

calculated from each step using Eq. 3.29 are pooled together to compute a standard error 

of cross-validation (SECV). This statistic is also termed the root-mean-squared error of 

CV (RMSECV). 

If the calibration data set contains a large number of samples, a leave-fraction-out 

cross validation can be performed to save time (e.g., 10 groups of 10 % of the total 

samples). The fraction may be contiguous groups in time, randomly selected groups, or 

subsets defined through a structured selection pattern (e.g., every 10th spectrum). Cross-

validation is a technique used throughout this research.  

To optimize the terms used in the calibration model, CV is performed with 

different model sizes and different combinations of the independent variables. For models 

built with PCR or PLS, the typical procedure is to begin with the first latent variable and 

sequentially add terms up to a maximum of h latent variables. Typically, the SECV 

values level off and then increase after the optimal number of components has been 

calculated. The reason for this is that the later components model noise, and so samples 

withheld in each of the calibration steps used in CV are predicted worse when more 

components are used in the model.110 This is termed overfitting. Overfitting has the effect 

of adding predictors that perform no useful function and therefore increases the 

possibility for undetected errors that can lead to mistakes in future predictions. 

An F-test can be performed on the SECV values to evaluate whether a lower 

SECV value is statistically different from one based on a smaller model size (i.e., 

whether adding additional terms to the model has decreased the SECV in a significant 

way). In the work described here, F-tests were performed at the 95% probability level to 
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compare values of SECV to the minimum SECV found (SECVmin) . The equation for the 

F-test can be given as: 

F = (SECV)2

(SECVmin)2      (3.30) 

The significance of this F-value can be tested with the critical value at (n, n) 

degrees of freedom, where n is the number of calibration observations (i.e., the number of 

CV predictions). In chemometrics, smaller models with equivalent performance are 

generally thought to be superior. It is thought that as this model relies on fewer fitted or 

computed parameters, it should be both more reliable and easier to interpret. 

 

External Validation 

With internal validation, using a subset of the calibration data set for assessing 

model performance may result in an overly optimistic evaluation. This result arises 

primarily because the calibration data are typically collected over a short time span. Thus, 

issues of instrumental drift or other time-based sources of data variance have not been 

incorporated into the assessment of model performance. By contrast, if the prediction 

data set is collected outside the timeframe of the calibration data, if time-correlated 

issues, such as instrumental drift or sources of chemical or physical variances are present, 

the calibration model may perform poorly since these variances have not been 

incorporated into the model building step. Hence, an external validation is an important 

way to assess the impact of these sources of time-based variance and thereby obtain a 

more realistic estimate of model performance. In external validation, the model 

performance is tested by use of one or more sets of data outside of the calibration data set 

and computing the SEP as given in Eq 3.29 
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Model Optimization 

 Optimization of the calibration model is a very important component of the 

model building procedure in order to identify the best spectral region to use in 

constructing the model and, for models based on PCR or PLS, the correct number of 

latent variables.135-137 The optimal spectral region / latent variable combination is 

typically obtained using an internal validation method.  

Grid search analysis is one of the common optimization methods in which a grid 

of spectral region / latent variable combinations is used, and the optimal combination is 

selected by performing CV. The combination that produces the lowest SECV is then used 

in subsequent work.86 The research presented here used a grid search analysis and leave-

fraction-out CV to find the optimal combination of spectral region and latent variables for 

use in constructing the calibration model. Here, the optimization procedure followed in 

Chapter 4 for the in vitro simulation data is taken as an example to discuss the stepwise 

procedures employed in grid search analysis.   

In Chapter 4, a grid search is used based on sliding a window of fixed spectral 

width in 50 cm-1 increments across the 4900-4100 cm-1 range. At each step, a PLS model 

is constructed using 3-16 latent variables. By repeating this procedure with windows of 

different widths, the combination of window size, location, and the number of PLS 

factors can be examined. At each step, a leave-fraction-out CV procedure is applied, 

withholding 10 % of the data at each iteration for the prediction. The value of SECV is 

then computed for each combination of variables tested, and the F-test is used at the 95% 

level to assess the number of latent variables whose corresponding SECV is not 

statistically different from the minimum SECV found for that spectral segment. This 
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procedure produces a grid of SECV results that, when sorted, yield the most promising 

spectral regions and corresponding optimal numbers of latent variables.  

 

Classification Methods 

Qualitative approaches in NIR-spectroscopy use pattern recognition methods to 

classify samples according to their NIR spectra.90 These classification methods are highly 

important in chemistry,138 biology139 and food sciences.140,141 Two main types of 

classification methods can be identified: (1) supervised methods and (2) unsupervised 

methods. In unsupervised methods, samples are classified without a prior knowledge of 

their categories, whereas in supervised methods, a prior knowledge of the category of 

each sample is used to construct a classification model.141  

The technique of PCA can be used as an example of an unsupervised 

classification method. A series of data objects (patterns) can be subjected to PCA, and the 

resulting scores can be plotted to identify which patterns are located in the same region of 

the data space. This approach can be used to uncover similarities and differences among a 

group of patterns. For example, in an NIR application, if spectra collected on a given day 

cluster together in a particular part of the score plot, the investigator learns that there is 

some commonality among these data patterns that distinguishes them.  

There are many supervised pattern recognition methods available for use in 

building classification models. These include parametric and nonparametric linear 

discriminant analysis (LDA), artificial neural networks, and modeling techniques based 

on PCA such as SIMCA.90 In supervised methods, a classification model is built first 
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with a set of samples with known categories (classes) of membership. This process is 

termed training and the samples used comprise a “training set”.  

Two general strategies can be used to implement supervised pattern recognition 

methods. In the first approach, each data class is modeled to create a mathematical 

representation of the corresponding category. The SIMCA method referenced above 

employs this approach. For example, if the goal of the analysis were to identify alcohols 

on the basis of their spectral signatures, spectra of a set of known alcohols would be used 

to define an alcohol model. An unknown spectrum could then be classified on the basis of 

the degree to which it fits the alcohol model. By use of either parametric or non-

parametric measures of the quality of fit, a decision can be made regarding whether or not 

the test object is a member of the alcohol data class. 

 The second general strategy for implementing a supervised classifier is to build a 

model that defines the regions between the data classes rather than the classes 

themselves. Methods of this type are termed discriminant methods because they serve to 

discriminate between the data classes that are defined by the training set. The 

classification model can be viewed as defining separating surfaces between the data 

classes.12 The computed separating surfaces can be used to assign the membership of an 

unknown sample on the basis of its orientation relative to the separating boundary. In the 

analogy used previously, two data classes might be alcohols and non-alcohols. The 

classification model would define a boundary in the data space that separates the alcohol 

and non-alcohol classes. If an unknown spectrum is oriented on the alcohol side of the 

boundary, it would be assigned to that data class.  



75 
 

 
 

The LDA methods define linear separating surfaces and these methods are 

efficient for data classes whose boundaries can be represented effectively with a linear 

function. Often, however, the data used are more complex and it is hard to define linear 

separating surfaces that accurately represent the boundaries between the classes. In this 

case, artificial neutral networks or other nonlinear modeling techniques can be used to 

define nonlinear separating surfaces between the data classes. While very powerful, these 

nonlinear methods also suffer from slow optimization speed for large data sets, 

complexity in defining the architecture of the model (i.e., require optimization of 

parameters that define the model form), and susceptibility to becoming trapped in local 

optima during the optimization.12 

In the dissertation research, piecewise linear discriminant analysis (PLDA) is used 

as an alternative to the nonlinear classification methods. To discriminate two data classes, 

this approach uses multiple linear functions to define a piecewise linear approximation to 

a nonlinear discriminant function.142,143 On the basis of our experience, the PLDA 

technique optimizes faster, has a simpler architecture, uses fewer numerical coefficients, 

and is less susceptible to the effects of local optima than the true nonlinear classifiers. 

Next, a detailed description of PLDA will be provided. 

 

Piecewise Linear Discriminant Analysis 

The PLDA method is an extension of nonparametric LDA and is used to compute 

multiple linear separating surfaces (discriminants). Taken together, these discriminants 

collectively approximate a nonlinear separating boundary to distinguish two data classes. 

In PLDA, the individual separating boundaries are computed in a stepwise manner. The 
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calculation of the first linear discriminant is similar to the procedure used in conventional 

nonparametric LDA. Each linear separating boundary separates different portions of the 

data set and collectively forms the separating surface.12,13,143  

The methodology behind PLDA can be understood by use of LDA as a basis. For 

the purpose of this discussion, let x be an h-dimensional vector (pattern) corresponding to 

an observation that belongs to one of the two classes, w1 or w2. For the research discussed 

here, PLS scores were used as the patterns for the classification. Thus, x contains h PLS 

scores. 

For the nocturnal hypoglycemic algorithm studies discussed here, w1 and w2 

correspond to patterns for glucose concentrations above an alarm threshold value (non-

alarms) and patterns that correspond to concentrations below the threshold value 

(alarms). Patterns identified as belonging to the alarm class would signal the patient is 

becoming hypoglycemic and should be wakened.  

To separate these two classes, a linear discriminant function is constructed as 

 y = wTx+ wo      (3.31) 

The (h-1)-dimensional separating surface between the two data classes is defined 

by its h×1 normal vector, often termed the “weight vector”. The weight vector is denoted 

by w in Eq. 3.31. Also present in the equation is wo, which is a scalar bias or offset term 

that removes the requirement that the separating boundary pass through the origin of the 

data space. 

The separating boundary, also called a discriminant or discriminant function, is a 

hyperplane in multidimensional space. The inner product between the weight vector and 

the pattern vector is termed the discriminant score (y in Eq. 3.31) and is used to assign 
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class membership to a pattern. For the particular application discussed in this thesis, if the 

discriminant score is higher than zero (i.e. y > 0), the pattern is assigned to the alarm 

class; otherwise it is assigned to non-alarm class. 

The discussion presented above is based on the calculation of a single linear 

discriminant function. The PLDA method extends this approach by calculating additional 

linear discriminants that define the piecewise linear sections of an approximately 

nonlinear separating boundary.  

The principles of PLDA can be illustrated with a two-dimensional representation 

as shown in Figure 3.1. In this example, each pattern would be represented by a two-

dimensional vector (e.g., contain two PLS scores) and can thus be plotted in a simple x-y 

coordinate system. Here, the alarm patterns are represented by triangles while the non-

alarm patterns are represented by ovals. The first discriminant marked as “1” is computed 

to separate as many alarm and non-alarm patterns as possible, with the constraint that the 

alarm side of the discriminant boundary must be “pure” (i.e., contain only alarm 

patterns). This leaves a mixed set of alarm and non-alarm patterns on the other side of the 

boundary. A discriminant that obeys this requirement is termed “single-sided”.  

Patterns separated on the pure side of the first discriminant are removed from the 

computation of the second discriminant, labeled “2” in Figure 3.1. The second 

discriminant is computed to separate as many alarm patterns as possible, again leaving a 

pure side and a mixed side. This process can continue, with each step producing a single-

sided discriminant and a remaining mixed class of alarm and non-alarm patterns. 

Typically, the stopping point for the discriminant calculation is determined by the 
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number of additional alarm patterns separated by the new discriminant. The calculation 

stops if the number of patterns separated by the new discriminant is judged insignificant.  

For the results presented for a fairly simple sample matrix in Chapter 4, the first 

discriminant was found to separate a large portion of the data. For more complex samples 

investigated in Chapters 6 and 7, two or three discriminants were found to be significant. 

Presumably, the more complex samples produced a data space in which the class 

boundaries were correspondingly more complex.  

In the implementation of PLDA used in this research, a Bayes classification 

algorithm was used to calculate an initial approximation to the discriminant.113,144 This is 

a direct calculation that employs the class means and the covariance matrix formed from 

the patterns (encoding an approximation to the class shapes). If this initial approximation 

was not single-sided, a simple translation algorithm was used to move the boundary such 

that a pure alarm side was achieved.  

The discriminant positioning was further refined by use of a modified simplex 

method.12,13,145,146 In the simplex optimization, a response function is calculated that 

numerically encodes the degree to which the discriminant is optimally positioned in the 

data space (i.e., separates as many alarm patterns as possible from those remaining in the 

mixed-class subset). The calculation of the response function is performed in an iterative 

manner, employing a set of rules to move the discriminant location in search of a better 

placement (i.e., one that produces a higher value of the response function).  

The implementation of the simplex algorithm has several parameters that relate to 

the step sizes used in altering the discriminant position and the number of iterations 

employed. Depending on the choice of parameters, the discriminant can become trapped 
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in a local optimum. For this reason, three separate piecewise linear discriminants were 

computed with different sets of training parameters. This yielded three replicate 

discriminants that were used together to form a committee of classifiers. The formulation 

of rules for operating these classifiers will be discussed in a subsequent section.  

The discriminants computed with the training set are used to determine the class 

membership of an unknown pattern. A discriminant score for an unknown pattern is 

computed for all linear discriminants using Eq. 3.31. If any one of the multiple 

discriminants classifies the unknown pattern as an alarm, the pattern is placed in the 

alarm class. This can be understood if one considers that each discriminant function is 

responsible for modeling a different section of the separating boundary. If none of the 

discriminants classifies a pattern as alarm (i.e., it is on the non-alarm side of every section 

of the boundary), it is classified to be in the non-alarm class.  If more than one 

discriminant is involved in determining the membership (i.e., the pattern is on the alarm 

side of multiple sections of the boundary), the highest discriminant score is used to 

represent the classification.  
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Figure 3.1 Pictorial representation of PLDA using two linear discriminants marked “1” 
and “2”. These discriminants collectively form an approximation to a nonlinear 
separating surface between the two data classes (alarm and non-alarm). The alarm and 
non-alarm patterns are represented as triangles and ovals, respectively. 
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Nocturnal Hypoglycemic Alarm Algorithm 
  

The objective of the research discussed in this dissertation is to evaluate the 

potential for implementing a noninvasive nocturnal hypoglycemic alarm with NIR 

spectroscopy. The key elements of this algorithm are: (1) collection of a calibration 

database of NIR spectra and associated reference glucose concentrations that can be used 

subsequently in the construction of classification models that allow spectra to be assigned 

membership in the hypoglycemic (alarm) and non-hypoglycemic (non-alarm) data  

classes, (2) collection of a reference glucose concentration by use of a conventional 

fingerstick measurement at the start of the sleep period, (3) collection of a reference NIR 

spectrum at the same time the reference glucose concentration is measured, (4) use of this 

reference spectrum as the spectral background in the calculation of absorbance values for 

spectra collected subsequently, (5) definition of a critical glucose concentration that 

specifies the change in glucose concentration relative to the reference concentration that 

will cause the patient’s glucose level to reach the alarm threshold concentration for 

hypoglycemia, (6) use of the calibration database to construct a classification model that 

allows spectra to be grouped into the alarm and non-alarm classes on the basis of the 

critical glucose concentration, and (7) collection of spectra continuously during the sleep 

period and classification of these spectra in real time as belonging to the alarm or non-

alarm data classes. If a spectrum is placed into the alarm class, the patient is judged to be 

in the hypoglycemic state and an alarm is sounded. 

 As indicated above, the spectra submitted to the classification algorithm are in 

absorbance units relative to the reference spectrum collected at the start of the sleep 

period. The motivation for the use of this reference spectrum as the absorbance 
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background is to remove common spectral features that originate from the sample matrix. 

A complication that arises, however, is that glucose is present in both spectra and thus the 

absorbance spectrum that results from taking the ratio no longer has a glucose signal 

intensity that corresponds to its original concentration. We term this generated spectrum a 

differential absorbance spectrum and specify its new effective concentration as the 

differential concentration. 

The effective analyte concentration in the differential spectrum is equal to the 

concentration differences of the two original spectra that are used in the absorbance 

calculation. This concept can be explained using the derivation shown below. Given two 

single-beam intensities, I1 and I2, collected for samples 1 and 2, respectively, the 

absorbance for the two samples can be calculated using a background single-beam 

intensity, I0 , according to the Beer-Lambert law  

- log10 �
I1
I0
�=abc1     (3.32) 

- log10 �
I2
I0
�=abc2     (3.33) 

In Eqs. 3.32 and 3.33, the terms c1 and c2 correspond to the concentrations of the 

analyte in samples 1 and 2, respectively, and a and b denote the absorptivity and path 

length. The wavelength dependence of I1, I2, I0 and a is omitted for simplicity.  For the 

sake of this derivation, these equations further assume that the samples contain only a 

single absorbing species.  

The difference between the two equations is given by  

 - log10 �
I1
I0
�+ log10 �

I2
I0
�=abc1-abc2   (3.34) 
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Equation 3.34 can be rearranged to   

-log10(I1)+log10(I0)+log10(I2)-log10(I0)= ab�c1-c2� (3.35) 

Canceling the terms containing I0 and rearranging the equation yields: 

 - log10 �
I1
I2
�= ab�c1-c2�    (3.36) 

As shown in Eq. 3.36, taking the negative logarithm of the ratio of two single-

beam spectra computes a differential spectrum in absorbance units and the concentration 

is equal to the differences in concentrations of the corresponding spectra (i.e., numerator 

concentration – denominator concentration).  

This calculation can be further extended for multicomponent systems that follow 

a linear mixture model. In this case, the negative logarithm of the ratio of two single-

beam spectra will compute a differential spectrum corresponding to a sum of differences 

in concentrations of each absorbing species in the two samples. 

The differential spectral calculation is based on several assumptions. The 

derivation assumes that the optical path length b does not change across the data 

collection. This suggests that special care should be taken to minimize path length 

variation in noninvasive glucose measurements. The derivation further assumes that the 

background information is the same for all the spectra collected. If this is not the case, 

instead of a single I0 term, there would be I0,1 and I0,2. A differential background term 

would then be introduced into the computed absorbance spectrum. 

Spectra can be used interchangeably in the numerator and denominator in the 

calculation of the differential spectrum. As a consequence, the differential concentrations 

can be either positive or negative. In the work described here, differential spectra were 

computed such that only negative concentration differences resulted. This was done for 
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simplicity when implementing the nocturnal hypoglycemic alarm algorithm in which it is 

assumed that the reference concentration taken at the beginning of the sleep period is 

always above the hypoglycemic concentration threshold. Thus, differential spectra 

computed relative to this reference will have effective negative concentrations on both 

sides of the alarm threshold.  

For example, consider the case in which the alarm threshold concentration is 3.0 

mM and the reference concentration obtained at the start of the sleep period is 5.0 mM. If 

the reference spectrum corresponding to the reference concentration is used in the 

denominator of the absorbance calculation, differential spectra just below and just above 

the alarm threshold will have differential concentrations near 3.0 – 5.0 = -2.0 mM.  

Two example differential spectra corresponding to differential glucose 

concentrations of 20.0 mM and –20.0 mM are shown in Figure 3.2. Both positive and 

negative spectral features can be observed depending on the differences in the 

concentrations of the two spectra whose ratio is computed. 

The steps used in building the calibration database are shown in Figure 3.4. For in 

vivo studies, this would involve an experiment in which the blood glucose level is caused 

to change over a specified range, conventional invasive reference glucose measurements 

are made at fixed time intervals, and NIR spectra are collected continuously. In the 

ultimate implementation with a human subject, this calibration step would be performed 

in a physician office by use of a protocol analogous to an oral glucose tolerance test 

(OGTT). During an OGTT, glucose fluctuations can be induced by administering glucose 

or insulin as required to achieve the desired excursions in concentration.  
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Figure 3.2 Differential spectra of glucose in 0.1 M, pH 7.4 phosphate buffer for both 
positive and negative concentrations of 20.0 mM, computed by taking the negative 
logarithm of the ratio of two single-beam spectra. The spectral features can be either 
positive or negative depending on the concentrations corresponding to the spectra used in 
the numerator and denominator of the absorbance calculation. Glucose combination 
bands near 4300 (C-H), 4400 (C-H), and 4650 (O-H) cm-1 are visible in the spectra.  
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To account sufficiently for background variations and incorporate these variations 

into the calibration database, an OGTT might have to be repeated several times. 

Single-beam spectra are collected at a specified level of signal averaging and 

stored in blocks, which are contiguous groups of spectra corresponding to a selected time 

window. The block size specifies a time window in which the background variation is 

assumed to be negligible. Differential spectra computed within a block are assumed to  

have matching backgrounds and thus constant background features will have been 

reduced to zero absorbance. 

Because of the need for reference glucose measurements made by a conventional 

invasive method, the number of spectra in which the actual glucose concentration is 

known will be limited. In the ultimate implementation of the methodology with a human 

subject, the need for a protocol analogous to an OGTT will also limit the number of 

available spectra as the patient will only be willing to be subjected to the procedure for a 

limited time. Thus, the calibration database acquired will have fewer spectra, fewer 

glucose levels, and fewer reference glucose measurements than would be desirable from 

the standpoint of data analysis. 

The use of differential spectra has an additional advantage for the case in which 

the calibration database is limited. By computing differential spectra from all 

combinations of the single-beam spectra collected within a time block, the calibration 

database is expanded to fill in additional levels of glucose concentration, as well as some 

additional variation in the non-constant background components that are not removed by 

the differential absorbance calculation.  
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The PLS algorithm is then applied to the differential spectra in the calibration 

database in combination with the differential concentrations to reduce the dimensionally 

of the original spectra to an h-dimensional PLS score matrix (T matrix in Eq. 3.17). The 

reduction in dimensionality reduces the time required for the steps required in building 

the classification model used to identify alarm and non-alarm spectra. The computed 

spectral loadings (P matrix in Eq. 3.17) and loading weights (W matrix in Eq. 3.27) are 

saved for the calculation of PLS scores for unknown spectra collected in the future when 

the classification model is put into operation.   

Once the calibration database is assembled, the next step is to calibrate the alarm 

algorithm.  The steps of this procedure are summarized in the flow chart shown in Figure 

3.5. The alarm threshold concentration, Calarm, is user specific, but for this research the 

hypoglycemic threshold was defined to be 3.0 mM. If a spectrum represents a blood 

glucose level that is equal to or lower than this hypoglycemic threshold, an alarm would 

trigger to wake the sleeping patient. Once the alarm threshold concentration is defined, 

the next step is to partition the calibration database (i.e., as represented by the PLS 

scores) into alarm and non-alarm groups.  

The differential concentrations can be used to identify the alarm and non-alarm 

patterns. As discussed previously, the calculation of the differential spectra is performed 

to yield negative differential concentrations. To identify the alarm and non-alarm spectra 

within the differential concentrations that comprise the calibration database, a negative 

threshold concentration needs to be defined. As defined in Eq. 3.36, the difference 

between the alarm threshold concentration and the reference concentration (Cref) 

measured at the start of the sleep period is defined as the critical concentration, Ccrit: 
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Ccrit = Calarm – Cref     (3.37) 

Assuming that Cref is not in the hypoglycemic range, Ccrit will always be negative 

in sign. This critical concentration identifies the alarm point in the context of the future 

differential spectra computed with respect to the reference spectrum. As an example, if 

Cref  is 4.0 mM, Ccrit = 3.0 mM – 4.0 mM = -1.0 mM. Any differential spectra having a 

differential concentration below -1.0 mM will trigger an alarm. 

The calibration database is partitioned into alarm and non-alarm classes on the 

basis of Ccrit. If any differential concentration is lower than this critical concentration, the 

corresponding PLS score vector (pattern) is placed into the alarm class; otherwise it is 

placed into the non-alarm class. The alarm decision is thus a classification problem in 

which patterns are classified into either the alarm or non-alarm classes.  

Once the calibration database is partitioned, the next step is to compute the 

separating surfaces between the alarm and non-alarm classes by use of PLDA. As 

described previously, three replicate classifiers are computed by changing the parameters 

associated with optimizing the positioning of the individual discriminants. The obtained 

weight vectors (w in Eq. 3.31) are saved for the determination of the class memberships 

of unknown patterns.  

The steps in the operation of the alarm algorithm are summarized in Figure 3.6. 

Spectra are collected continuously over time while the patient is sleeping. The ratio of 

each spectrum to the collected reference is taken, forming a differential spectrum 

corresponding to the signed difference in concentration relative to the reference. After 

projecting each differential spectrum collected at time, t, to the previously computed PLS 

factors, an h-dimensional spectral pattern (i.e., the PLS score vector), tdif,t is obtained. 
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Using the previously computed discriminants, the pattern tdif,t is classified into either the 

alarm or non-alarm classes. 

As discussed in the description of PLDA, the discriminant score calculated using 

Eq.  3.31 determines the class membership of the pattern, tdif,t. If the discriminant score is 

higher than zero, the corresponding pattern belongs to the alarm side of the separating 

boundary while a zero or negative discriminant score corresponds to a pattern on the non-

alarm side. This research computed three replicate classifiers. To be classified as an 

alarm, two of the three replicate classifiers had to place the pattern in the alarm class. 

 In the following chapters, the nocturnal hypoglycemic alarm algorithm is 

evaluated by the use of spectra collected during both in vitro and in vivo studies that 

simulate a continuous monitoring application. 
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Figure 3.3 Steps used in building the calibration database. The calibration database 
consists of a PLS score matrix (n×h) computed from using n differential spectra and 
corresponding differential concentrations to produce h PLS latent variables.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Collect spectra and 
measure concentrations 

Compute differential spectra  
 

 Compute PLS scores 
 

 Calibration database 
 



91 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4 Steps in the calibration procedure for the nocturnal alarm. In the diagram, Cref 
is the reference glucose concentration obtained at the start of the sleep period. The alarm 
threshold concentration, Calarm, is 3.0 mM for these experiments. The difference between 
the Calarm and Cref is termed the critical concentration, Ccrit. 
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Figure 3.5 Flow chart of the operation of the alarm. A spectrum is collected at time t and 
the ratio is taken to the reference spectrum to compute a differential spectrum. Projection 
of the differential spectrum onto the calibration PLS factors yields a pattern (i.e., tdif,t) 
which is classified using the previously computed discriminants. If the pattern is 
classified into the non-alarm class, the process repeats. If the pattern is placed into the 
alarm class, an alarm is sounded to wake the patient. 
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CHAPTER 4 

IN VITRO SIMULATION STUDIES FOR THE DEVELOPMENT OF A NOCTURNAL 

HYPOGLYCEMIC ALARM ALGORITHM BASED ON NEAR-IFRARED 

SPECTROSCOPY 

 

Introduction 

 As described in Chapter 2, NIR spectroscopy is a promising approach for 

noninvasive glucose sensing. While the ability to measure glucose noninvasively must be 

demonstrated ultimately in in vivo experiments, feasibility studies based on in vitro 

simulations can provide valuable information during the development of experimental 

protocols and data analysis methodology. 

In this chapter, an initial evaluation of the nocturnal hypoglycemic alarm 

algorithm described in Chapter 3 was performed. A dynamic system based on varying 

concentrations of glucose, urea, lactate, and triacetin in phosphate buffer was 

implemented by use of a set of peristaltic pumps. While this chemical system was not 

designed to mimic a specific biological matrix, the species studied are either blood 

constituents or they mimic blood constituents as in the case of triacetin (glyceryl 

triacetate), a soluble short-chain fatty acid ester. This matrix provides a test regarding 

whether the spectral features of glucose are sufficiently selective relative to other 

chemical components of the biological matrix to allow effective quantitation in the 

combination region of the NIR. 

The NIR absorption bands for glucose, urea, triacetin, and lactate in the 

combination region were reported by Arnold et.al and all had absorptivities on the order 
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of 10-4AU/mm-mM.70 Spectra of these species were presented previously in Figure 2.2. 

The low absorptivity values observed in the combination region limit the detection to 

only major substances within the biological matrix. As a general rule, any substance must 

have at least a concentration of 1 mM to be quantified by NIR spectroscopy.88  

This inability to measure components present below mM concentrations improves 

the measurement selectivity for glucose by minimizing the spectral contributions of other 

endogenous molecules within the biological matrix whose concentrations are below the 

mM range. Only major chemical components that show similar absorptivities and 

overlapping spectral features to the analyte of interest must be considered for the purpose 

of assessing selectivity. Thus, while the matrix studied in this work had a limited number 

of components, the species investigated can all be present in the mM range and thus 

represent realistic interferences to the measurement of glucose. 

 

Experimental Methods 

Near-infrared spectra used for this study were collected during 14 one-day data 

collection sessions by using two dynamic systems (DS 1 and DS 2), each consisting of 

four chemical components in phosphate buffer. The individual data groups will be termed 

runs 1 to 14. If run 1 is defined as time zero, runs 2-14 were conducted approximately 1, 

2, 2, 3, 4, 21, 26, 28, 30, 56, 57, 58 and 175 weeks later. Thus, in its entirety, the data 

collection spanned approximately 3.7 years. To mimic the procedures described in 

Chapter 3 for the calibration and implementation of the nocturnal hypoglycemic alarm, 

the data were concatenated across the individual sessions to enable the construction of a 
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calibration database and to provide subsequent data sets that allowed the operation of the 

alarm to be simulated.  

 

Reagents 

Phosphate buffer was prepared by dissolving appropriate amounts of dry 

monobasic sodium phosphate (NaH2PO4·H2O) (ACS reagent, Fisher Scientific, Fair 

Lawn, NJ) and a preservative, sodium benzoate (C6H5COO2Na) (ACS reagent, Fisher 

Scientific) in 18.2 MΩ water purified by a Labconco water purification system 

(Labconco, Inc., Kansas City, MO). The buffer was titrated to pH 7.4 with 50 % w/w 

sodium hydroxide (Fisher Scientific, Fair Lawn, NJ). The final phosphate buffer 

concentration was 0.1 M and the benzoate concentration was 5.0 g/L.  

Data for DS 1 were collected during five different days. Stock solutions of α-D-

glucose (ACS reagent, Fisher Scientific), triacetin (ACS reagent, Sigma-Aldrich, St. 

Louis, MO) and urea (ACS reagent, Fisher Scientific) were prepared in the phosphate 

buffer. The stock solution concentrations used with each run will be given in a 

subsequent section.  Each of the stock solutions in DS 1 contained 10 mM sodium L-

lactate (ACS reagent, Sigma-Aldrich).  

Dynamic system 2 was composed of α-D-glucose, glyceryl triacetate, and L-

lactate prepared in phosphate buffer. Stock solution concentrations will be given below. 

Each of the stock solutions in DS 2 contained 10 mM urea. As noted above, the data 

collected from these two dynamic systems were mixed together to create an overall data 

set for use in testing the nocturnal hypoglycemic alarm.  

 



96 
 

 
 

Apparatus and Procedures 

To simulate the glucose excursions that occur in the body, three stock solutions 

were mixed in different ratios using three peristaltic pumps (Rabbit-Plus and Dynamax 

Models, Rainin Instrument Co., Woburn, MA). A maximum flow rate of 28.2 mL/min 

can be obtained with these pumps, when connected with polyvinyl chloride (PVC) tubing 

(inner diameter (ID) of 3.16 mm) and with a maximum pump speed of 48 revolutions per 

minute (rpm).  

A pump calibration was performed at the beginning of each day of data collection 

to correct for any differences in pump performance or deficiencies in tubing. Each of the 

pumps was connected with a buffer solution and ran at 4 rpm for 4 minutes and the 

volume of the buffer solution pumped was collected into a 10 mL measuring cylinder. 

The manufacturer’s theoretical flow rate (i.e., based on the pump speed and tubing 

specifications) was used to compute the theoretical volume for the pump speed 

corresponding to each of the concentration levels. This theoretical volume and the actual 

volume collected at 4 rpm were used to adjust the pump speeds to compensate for any 

deficiencies. The total pump speed (i.e., the sum of the speeds of the three pumps) was 

maintained at a value of 10 rpm.  

The three peristaltic pumps used for the study were computer controlled by use of 

Rainin Pump Control software (Version VI, Waterville Analytical, Waterville, MA) 

running under LabVIEW Version 7.1 (National Instruments Corporation, Austin, TX). 

Each stock solution was transferred to a 1 L polyethylene bottle and placed in a water 

bath regulated at ~55 °C to keep the flowing liquid temperature at 36.6-37.2 °C. The 

solutions were connected to the pumps by PVC tubing with 3.16 mm ID. Two Y-
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connectors (Cole-Parmer Instrument Co., Vernon Hills, IL) were used to connect the 

tubing from the pumps into a single output line.  The solution exiting the Y-connectors 

flowed through Tygon tubing containing an in-line mixer (0.48 cm in diameter and 11.6 

cm in length, Cole-Parmer Instrument Co.), and then through insulated vinyl tubing to the 

spectrometer.  

By changing the pump speeds, and therefore the flow rates of each of the 

solutions, the concentrations of the solutions exiting the mixer were varied. The 

concentrations of each component of the solution exiting the mixture can be calculated as 

shown in Eq. 4.1. 

C2 =
(C1R1 )

(R1+R2 +R3)
      (4.1) 

In the equation, C1 is the concentration of the glucose stock solution, R1 is the 

pump speed for the glucose pump, and R2 and R3 are the pump speeds for the other two 

stock solutions. The stock solution concentration, total pump speed and glucose pump 

speed thus determine a desired glucose concentration. The concentrations of the other 

components can be computed in an analogous manner. 

The data collected with DS 1 (runs 1 to 5) and runs 1 to 6 from DS two were used 

to form the calibration database. Runs 7 to 9 from DS 2 were used as prediction sets to 

simulate the operation of the hypoglycemic alarm. The concentration values for each 

component per sample were assigned to minimize correlation between each constituent. 

Tables 4.1 A and B list the correlation coefficients between each pair of components in 

the calibration data in DS 1 and 2, respectively, while Tables 4.1 C, D and E list the 

corresponding correlation coefficients for the data comprising the three prediction sets. 
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These levels of correlation were judged to be acceptable from the standpoint of 

preventing fortuitous results based on chance correlations.  

Figures 4.1 and 4.2 summarize the desired concentrations for glucose, urea, 

triacetin, and lactate for both DS 1 and the calibration data from DS 2. Figure 4.3 

summarizes the desired concentration profiles for the three prediction sets. For runs 1-14, 

the glucose stock concentrations were approximately 10, 25, 35, 30, 10, 20, 50, 20, 40, 

25, 10, 10, 10 and 10 mM respectively. For runs 1-5, the stock concentrations for urea 

were 20, 15, 20, 15 and 15 mM, while for triacetin it was 45.8 mM for all. For runs 6-14, 

the stock solution concentrations for lactate were 10, 20, 10, 10, 10, 10, 25, 10 and 20 

mM, respectively. The corresponding stock solution concentrations for triacetin in these 

runs were 45.8, 45.8, 22.9, 36.6, 45.8, 45.8, 22.9, 45.8 and 45.8 mM.  

 
 

Table 4.1- Correlation coefficients 

(A) Correlation coefficients for DS 1 
(runs 1-5) 
 

 Urea Triacetin 

Glucose -0.34 -0.29 

Urea   0.12 

 
 

(B) Correlation coefficients for 
 DS 2(runs 6-11) 
 

 Urea Lactate 

Glucose 0.26  0.22 

Lactate   0.03 
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Table 4.1 Continued. 

(C) Correlation coefficients for 
 prediction set 1 
 

 Urea Lactate 

Glucose -0.46 -0.42 

Lactate  -0.62 

 
 

(D) Correlation coefficients for  
prediction set 2 
 

 Urea Lactate 

Glucose -0.40 -0.44 

Lactate  -0.65 

 
 

(E) Correlation coefficients for  
prediction set 3 
 

 Urea Lactate 

Glucose -0.57 -0.43 

Lactate  -0.50 
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Figure 4.1 Expected concentration profile for DS 1. Each solution contained a constant 
amount of 10 mM lactate. Blue, red, and green traces correspond to glucose, urea, and 
triacetin, respectively.  
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Figure 4.2 Expected concentration profile for the calibration data in DS 2 (runs 6-11). 
Each solution contained a constant amount of 10 mM urea.  Blue, red, and green traces 
correspond to glucose, lactate, and triacetin, respectively. 
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Figure 4.3 Expected concentration profile for the three prediction sets. Each solution 
contained a constant amount of 10 mM urea. Blue, red, and green traces correspond to 
glucose, lactate, and triacetin, respectively. 
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The solution exiting the mixer was flowed through a 20 mm-diameter circular 

aperture transmission cell (Model 118-3, Wilmad Glass, Buena, NJ). The sample cell 

employed sapphire windows (Meller Optics, Providence, RI) and was configured with a 

path length of 1.26 mm. The transmission cell was placed in the sample compartment of a 

Nicolet 6700 FT spectrometer (Nicolet Analytical Instruments, Madison, WI). The 

spectrometer employed a tungsten-halogen source, CaF2 beam splitter, and a liquid-

nitrogen-cooled InSb detector. A K-band optical interference filter (Barr Associates, 

Westford, MA) was placed before the sample to isolate the region of 5000-4000 cm-1.  To 

ensure detector linearity, an aperture setting of 100 was used and the source was further 

attenuated by placing a nominal 63 % neutral density filter (Rolyn Optics, Covina, CA) 

before the sample.  

The temperature of the samples exiting the sample cell was monitored with a 

copper-constantan thermocouple probe (Omega Engineering Inc., Stamford, CT) inserted 

into a port in the vinyl tubing. An Omega Model 670 digital meter recorded the 

temperatures with a precision of ± 0.1 °C. For the entire study, the temperature range of 

the flowing liquid was maintained in a range of 36.6-37.2 °C.  

After the sample exited the sample cell and passed through additional insulated 

vinyl tubing (89.2 mm in length), fractions were continuously collected at a rate of 1 

min/tube using a Gilson FC 203B fraction collector (Gilson, Inc., Middleton, WI). The 

glucose concentrations of each of the fractions were verified each day with a YSI Model 

2300 STAT PLUS glucose-lactate analyzer (YSI Inc., Yellow Springs, OH) which had an 

estimated instrumental error of ± 0.2 mM according to the YSI product specifications. 

The experimental setup used is shown in Figure 4.4. 
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The software used for the data collection and subsequent Fourier processing was 

Omnic (Version 7.1, Nicolet Analytical Instruments) operating on a Dell OptiPlex 

GX280 computer (Dell Computer Corp., Austin, TX) running under Windows 7 

(Microsoft, Inc., Redmond, WA). Spectra for the liquid flowing through the sample cell 

were collected continuously as 64 co-added (~ 1 min) asymmetric scans consisting of 

4097 points. The Fourier processing steps included one level of zero filling, Happ-Genzel 

apodization, and Mertz phase correction. The computed spectra had a point spacing of 

1.93 cm-1.This corresponded to 519 resolution elements over the range of  

4000-5000 cm-1. 

The software recorded the time at the end of the collection of each spectrum. 

There was a time delay between the spectra collected in the sample cell and the fractions 

collected by the fraction collector for the corresponding solution. The starting time for the 

spectral collection, starting time for the fraction collector and the time for the solution to 

flow through the tubing from the sample cell to the fraction collector were used to assign 

a glucose concentration value for each of the collected spectra. Spectra collected while 

the pump speed was changing have partially equilibrated glucose concentrations and 

were omitted from the data analysis.  

Concentrations corresponding to changes in pump speed were identified on the 

basis of a 95% confidence interval calculation for a particular concentration level. 

Specifically, the 95 % confidence interval was calculated for the concentrations measured 

for a particular pump speed and the concentrations above or below the confidence limits 

were judged to correspond to samples with insufficient equilibration. For these samples, 

there was no guarantee that the glucose concentration determined with the YSI analyzer 
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accurately reflected the concentration of the solution flowing through the sample cell 

when the spectrum was acquired.  

 

 

 

 

 
 
 
Figure 4.4 Schematic of the experimental setup. Three peristaltic pumps (P1, P2, P3) and 
an in-line mixer were used to produce varying concentrations of glucose samples from 
the stock solutions. Samples flowed into the sample cell contained in the spectrometer 
and then were collected by the fraction collector. 
 
 
 

 

 

  Mixer 
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The complete glucose concentration profile and the corresponding refined profile 

are given in Figures 4.5 A and 4.5 B, respectively. These profiles correspond to the 

concatenation of runs 1-14. The horizontal line at 3.0 mM in both figure panels indicates 

the concentration used in this work to define hypoglycemia. Superimposed on Figure 4.5 

B are designations that denote the “training set” of data used for the calibration of the 

alarm algorithm, the “monitoring set” of data used to optimize the calibration, and the 

three “prediction sets” used to simulate the operation of the alarm with unknown data. 

The partitioning of the data into these subsets will be discussed in a subsequent section.  

After collection and Fourier processing, spectra were transferred from the 

computer controlling the spectrometer to a Dell Precision 670 workstation (Dell 

Computer Corp.) running under Red Hat Linux (Version 5.3, Red Hat, Inc., Raleigh, 

NC). All subsequent calculations were performed on this computer using the Matlab 

development environment (Version 7.4.0 (R2007a), The MathWorks, Inc., Natick, MA). 

Software for the calculation of piecewise linear discriminants used in-house software 

written in Fortran and compiled with the Intel Fortran Compiler for Linux (Version 10.0, 

Intel Corp., Santa Clara, CA). 

 

Results and Discussion 

Spectral Noise Levels 

Data for DS 1 were acquired over five days and consisted of 355 total single-

beam spectra. The refined glucose concentration profile consisted of 325 spectra. Data for 
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Figure 4.5 Glucose concentration profiles for the study. Panels A and B correspond, 
respectively, to the complete profile and the refined profile obtained after the removal of 
samples judged to be insufficiently equilibrated during the spectral acquisition. The labels 
in panel B denote the subdivision of the data into groups for calibration, calibration 
testing (monitoring), and external prediction. Horizontal lines in both panels denote the 
hypoglycemic alarm concentration of 3.0 mM used in this work. 
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DS 2 were collected over nine days and consisted of 1195 single-beam spectra. After 

omitting spectra corresponding to changes in pump speed, 1088 single-beam spectra 

remained.  

All the refined spectra for DS 1 and the first six days of DS 2 were used to define 

the calibration database (calibration set) while the data for the last three days of DS 2 

were used as prediction sets for testing the calibrated alarm algorithm. For each 

concentration level, short-term noise was evaluated by computing 100 % lines from each 

pair of consecutive spectra. These 100 % lines were converted to AU, and the 

wavenumber region of 4300-4500 cm-1 was fitted to a third-order polynomial model. The 

RMS noise was then computed about the polynomial fit to obtain the intrinsic 

measurement noise. The RMS noise calculated for the spectra collected over runs 1-14 at 

64 co-added scans ranged from 0.71-5.4 µAU. Figure 4.6 plots the average RMS noise 

for each run, with error bars drawn as the average plus one standard deviation. 

 

Assembly of Calibration Database 

As described in Chapter 3, the implementation of the hypoglycemic alarm was 

based on the construction of differential spectra from single-beam spectra judged to have 

similar backgrounds. For this in vitro study, all spectra collected during a single run were 

treated as having a constant background and placed into a single data block. Thus, 11 

data blocks were defined for the calibration set (runs 1-11). 

Differential spectra were calculated by taking the ratios of all combinations of 

single-beam spectra within each block. Each ratio was oriented to produce a negative 

differential concentration. Those combinations that produced a differential concentration 
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of 0.0 mM were not used. This procedure yielded a total of 51,269 differential spectra in 

the calibration database. Figure 4.7 plots a histogram of the corresponding differential 

concentrations.  

 

Optimization of Calibration Parameters 

The PLS algorithm was used to reduce the multidimensional spectral information 

in the calibration database into a series of PLS scores. Two parameters that must be 

optimized for the implementation of PLS are the spectral region submitted to the 

algorithm and the number of latent variables to be computed.  

For the optimization of these two parameters, the calibration set was partitioned 

into a training set and a monitoring set. The monitoring set is defined as a subset of the 

calibration set that is used as a pseudo external prediction set for the purpose of 

parameter optimization. For example, in the optimization of the spectral range and 

number of latent variables, various levels of these parameters are set, the alarm algorithm 

is built with the data in the calibration set, and the data in the monitoring set are used to 

test the calibration. Through this process, the best performing calibration is used to define 

the optimal levels of the parameters under investigation. This procedure allows parameter 

optimization to occur while retaining the independence of the external prediction data 

that are ultimately used to evaluate the performance of the methodology.  As indicated 

previously, the partitioning of the data into training (runs 1-10), monitoring (run 11), and 

prediction (runs 12-14) sets is shown by the vertical lines in Figure 4.5 B. 
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Figure 4.6 The average RMS noise (in µAU) for each run 1-14, with error bars drawn as 
the average plus one standard deviation. 
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Figure 4.7 Histogram of the differential concentrations in the calibration database.  
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The training subset consisted of 936 single-beam spectra collected over ten 

different days. The calculation of differential spectra for the training set led to 45,844 

spectra. The optimization of the spectral range and the number of PLS factors was 

performed in two steps: (1) a grid search analysis and (2) a PLDA-based optimization.  

The grid search was based on sliding a window of fixed spectral width in 50 cm-1 

increments across the 4900-4100 cm-1 range in the differential spectra. The starting 

spectral width of 100 cm-1 was incremented in 50 cm-1 increments up to 700 cm-1. At 

each step, PLS models for differential glucose concentration were constructed using 3-16 

latent variables. This produced a total of 1386 parameter combinations. As described in 

Chapter 3, the performance of each model was assessed by use of cross-validation. 

Individual cycles in the calculation involved withholding 10% of the calibration subset in 

contiguous blocks. Because the differential spectra were computed from all combinations 

of the single-beam spectra within each time block, the order of the data in the set of 

computed spectra did not have a time basis.  

The computed SECV values were sorted, and an F-test was performed at the 95% 

level to identify the optimal number of latent variables for each spectral range. As 

described in Chapter 3, the optimal model size for a given spectral range was set as the 

number of latent variables that produced a value of SECV that was not statistically 

different from the minimum SECV found for that range.  

Table 4.2 summarizes the four optimal wavenumber ranges and the corresponding 

numbers of latent variables. Because of the large number of differential spectra (i.e., large 

number of degrees of freedom), small differences in SECV were judged significant in the 
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F-test and thus the optimal model sizes tended to correspond to the models with the 

minimum values of SECV. 

Figure 4.8 plots the values of SECV with respect to the number of latent variables 

for the spectral range that produced the overall lowest SECV (4650-4250 cm-1). While 

the minimum SECV occurs at 16 latent variables, the trace is only decreasing very slowly 

past 11. No benefit to extending the optimization past 16 latent variables is apparent. In 

addition, despite the results of the F-test, further evaluation of model sizes less than 16 is 

suggested.  

The grid search analysis was used to identify promising spectral ranges and 

corresponding numbers of latent variables for potential use in building classification 

models with PLDA. The performance of the monitoring set with PLDA was tested with 

the top four spectral ranges found through the grid search. For each range tested, the 

number of latent variables was varied from 6 to 11. This selection was made on the basis 

of plots such as Figure 4.8 that suggest little improvement in modeling performance is 

obtained past 11 latent variables. 

As described in Chapter 3, the implementation of the hypoglycemic alarm is 

based on the development of a classification model that assigns spectra to alarm and non-

alarm categories. Training the classification model requires the calculation of a critical 

concentration, Ccrit, defined previously in Eq. 3.37.  

In the real application in which nocturnal hypoglycemia is monitored, a reference 

spectrum would be collected and corresponding reference concentration measured at the 

start of the sleep period. To simulate this scenario, the first spectrum in the monitoring set 

was taken as the reference spectrum, and the corresponding glucose concentration (5.3 
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mM) was used as Cref in Eq. 3.37. Thus, using an alarm concentration of 3.0 mM and 

according to Eq. 3.37, Ccrit = 3.0 – 5.3 = -2.3 mM. The remaining 105 single-beam 

spectra in the monitoring set were used to compute differential spectra by taking the ratio 

to the reference spectrum. 

The PLS loading weights and spectral loadings previously computed from the 

calibration data were then used to compute the scores that defined the pattern vectors 

corresponding to each differential spectrum. For a given spectral range under 

consideration, the loading weights and spectral loadings computed from that range were 

employed in the calculation of the PLS scores.  

The critical concentration was used to partition the 45,844 PLS score vectors in 

the calibration subset into alarm and non-alarm classes. There were 21,364 alarm patterns 

and 24,480 non-alarm patterns in the training set. As described in Chapter 3, for each 

combination of spectral range and number of latent variables, three replicate piecewise 

linear discriminants were computed on the basis of using the training set in conjunction 

with three sets of training parameters. Each replicate classifier was based on a single 

discriminant function (w in Eq. 3.31). For these data, no benefit was realized from 

constructing the classification boundary with multiple linear segments. 

As discussed previously in Chapter 3, the PLDA method operates on the basis of 

computing one or more linear discriminant functions, each of which separates some 

portion of the training data into a “pure” group of alarm patterns on one side of the 

discriminant boundary and a mixed group of alarm and non-alarm patterns on the other 

side. Thus, one measure of the discriminating ability of the patterns is the total number of 

alarm patterns separated by the set of discriminant functions. For each combination  
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  Table 4.2 Results of grid search optimization of spectral range and latent  
variables 
  

Spectral range (cm-1) Latent variables SECV (mM) 

4650-4250 16 0.322 

4650-4300 15 0.324 

4700-4250 16 0.324 

4700-4300 15 0.325 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 4.8 Cross-validation results (SECV) vs. the number of latent variables for the 
optimal wavenumber range of 4650-4250 cm-1. Calibration models were based on PLS 
analysis of differential spectra and concentrations in the calibration subset. 
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spectral range and number of latent variables, Table 4.3 summarizes the percentage 

(average ± standard deviation) of alarm patterns separated across the three replicate 

classifiers.  

Each replicate classifier was applied to predict the class assignment for the 48 

alarm and 58 non-alarm patterns in the monitoring set. Table 4.3 further summarizes the 

percentage (average ± standard deviation) of missed and false alarms for each of the 

parameter combinations studied. 

None of the combinations of spectral range and latent variables produced missed 

or false alarms with the monitoring set. Thus, the pattern classification results for the 

monitoring set do not provide clear guidance regarding an optimal choice for these 

parameters. This is not surprising given the similarities in modeling performance 

presented previously in Table 4.2.  

To define a criterion for selecting a classifier for use in subsequent testing with 

the three prediction sets, the smallest model (i.e., the model based on the lowest 

dimensional patterns) that achieved an acceptable degree of separation of the training set 

was selected. The justification for choosing the smallest model is based on the commonly 

held view that a simpler model with equivalent performance often exhibits greater 

robustness because it depends on fewer estimated parameters. 

A level of 95% separation of the training data was chosen as the criterion for 

acceptable performance. While somewhat arbitrary, the common use of the 95% level in 

statistical testing provides some degree of justification for this choice. Through the use of 

this criterion, the classifier based on a spectral range of 4650-4300 cm-1 and eight latent 

variables was chosen as optimal for use in subsequent testing. 
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The results for this parameter combination are shown in red in Table 4.3. This 

spectral range is logical as it encompasses the glucose C-H combination band at 4400 cm-

1. The glucose concentration profile for the monitoring set is given in Figure 4.9. A plot 

of discriminant scores produced by the optimal classifier when applied to the monitoring 

data is displayed in Figure 4.10. 

The main assumptions in the pattern classification based on PLDA are that the 

alarm patterns are clustered differently in the data space compared to those of the non-

alarm class and that a separating boundary can be constructed to discriminate these data 

clusters. To gain greater insight into the degree of clustering in the data space, the first 

three PLS scores calculated from the 4650 - 4300 cm-1 range in the monitoring spectra 

were plotted together. Figure 4.11 clearly demonstrates the validity of the above 

mentioned assumptions. A clear separation in the alarm and non-alarm PLS patterns are 

observed for the monitoring set. 

A check of the validity of using differential spectra in the alarm algorithm 

implementation is to study the relationship between the discriminant scores and the 

differential concentrations. A plot of discriminant scores with respect to differential 

concentrations is shown in Figure 4.12. The discriminant scores were produced by the 

classifier based on the 4650 - 4300 cm-1 range and eight latent variables. A clear 

dependence of the discriminant scores on the differential concentrations is observed for 

the monitoring set.  

Finally, an examination of the PLS spectral loadings and loading weights 

computed from the calibration data was conducted to verify the presence of non-noise 

features. The sixth, seventh and eighth loading weights and the corresponding spectral 
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loadings computed from the differential spectra in the calibration database are shown in 

Figures 4.13 and 4.14, respectively. These plots show spectral features rather than 

random noise. This provides further assurance that the use of eight PLS factors is 

reasonable. 

 

 
 

Table 4.3 Average percentages of missed and false alarms for the monitoring  
set 
 

Spectral 
range(cm-1) 

 
Number of Latent Variables 

 
                      6                         7                       8                      9                   10                11    

4650-4250 

 
A.M (%)a ± S.D 

 
A.F (%)b ± S.D 

 
D.S (%)c ± S.D 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
82.5 ± 0.0 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
85.9 ± 6.2 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
95.1 ± 1.4 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
97.7 ± 1.4 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
98.1 ± 0.7 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
99.7 ± 0.0 

4700-4250 

 
A.M (%)a ± S.D 

 
A.F (%)b ± S.D 

 
D.S (%)c ± S.D 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
75.5 ± 0.9 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
89.0 ± 0.1 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
88.2 ± 3.4 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
98.4 ± 0.3 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
97.9 ± 1.3 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
98.4 ± 0.9 

4650-4300 

 
A.M (%)a ± S.D 

 
A.F (%)b ± S.D 

 
D.S (%)c ± S.D 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
85.4 ± 0.6 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
94.8 ± 0.6 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
96.0 ± 0.0 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
99.0 ± 0.1 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
99.7 ± 0.1 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
99.8 ± 0.0 

4700-4300 

 
A.M (%)a ± S.D 

 
A.F (%)b ± S.D 

 
D.S (%)c ± S.D 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
83.2 ± 0.3 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
88.5 ± 0.1 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
93.8 ± 0.0 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
93.0 ± 1.7 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
98.7 ± 0.6 

 
0.0 ± 0.0 

 
0.0 ± 0.0 

 
99.6 ± 0.2 

aAverage percentage of missed alarms (AM) ± standard deviation. 

bAverage percentage of false alarms (AF) ± standard deviation. 

cAverage percentage of separated alarm patterns with a single discriminant  
(DS) ± standard deviation. 
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Figure 4.9 Glucose concentration profile for the monitoring set. The alarm threshold 
value of 3.0 mM is indicated by the horizontal line. There were 48 and 58 spectra in the 
alarm and non-alarm data classes, respectively. 
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Figure 4.10 Plot of discriminant scores for the monitoring set produced by the classifier 
based on a spectral range of 4650 - 4300 cm-1 and eight PLS latent variables. Symbols 
shown in red, green, and blue correspond to discriminant scores produced by the three 
replicate classifiers. 
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Figure 4.11 First, second, and third PLS scores for the monitoring set based on the 
spectral range of 4650 – 4300 cm-1. Clear clustering between the alarm and non-alarm 
data classes is observed. 
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Figure 4.12  Relationship between discriminant scores and differential concentrations for 
the monitoring set. The classifier based on a spectral range of 4650 – 4300 cm-1 and eight 
PLS latent variables was employed. Red, green, and blue symbols denote the 
discriminant scores for the three replicate classifiers. 
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Figure 4.13 Loading weights computed from the differential spectra in the calibration 
database. The loading weights corresponding to the sixth, seventh, eighth PLS latent 
variables are shown. The features appear to derive from spectral bandshapes rather than 
random noise. 
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Figure 4.14 Spectral loadings computed from the differential spectra in the calibration 
database. The spectral loadings corresponding to the sixth, seventh, eighth PLS latent 
variables are shown. The features appear to derive from spectral bandshapes rather than 
random noise.  
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Classification Performance with Prediction Sets 

Classifiers were next developed to test the implementation of the alarm algorithm 

with the three prediction sets. The parameter settings of 4650-4300 cm-1 and eight latent 

variables selected from the work with the monitoring data were again employed. The full 

set of calibration data based on runs 1-11 was used to define the calibration database for 

the development of the classifiers. 

Data blocks were again defined on the basis of each run, and differential spectra 

were computed from all combinations of single-beam spectra within each block. Spectra 

corresponding to differential concentrations of 0.0 mM were again discarded. A total of 

51,269 differential spectra and corresponding differential concentrations were computed 

through this procedure. Eight PLS factors were calculated over the 4650-4300 cm-1 range, 

and the differential spectra in the calibration set were reduced to eight-dimensional score 

vectors. 

The reference concentration for prediction set 1 was 4.6 mM and the critical 

concentration was -1.6 mM. Differential spectra were generated relative to the reference 

spectrum and the PLS factors previously computed with the calibration data were used to 

compute the corresponding score vectors. The calibration patterns were partitioned based 

on the critical concentration into a training set containing 28,469 alarm patterns and 

22,800 non-alarm patterns. Three replicate classifiers were computed with the training 

set. As with the monitoring set, each classifier contained a single discriminant function. 

Across the three replicate classifiers, an average of 85.00 ± 0.01 % of the alarm patterns 

in the calibration set were separated. Discriminant scores were then computed for the 

differential spectra in prediction set 1. 
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Figure 4.15 shows the glucose concentration profile for prediction set 1 in which 

there were 47 alarm and 55 non-alarm patterns. A pattern was judged to be in the alarm 

class if two of the three replicate classifiers produced positive discriminant scores. 

Patterns failing to meet this criterion were assigned to the non-alarm class. There were no 

missed or false alarms for the three replicate classifiers employed. The resulting 

discriminant score plot for prediction set 1 is shown in Figure 4.16.  

In Figure 4.17, the fourth, fifth and sixth PLS scores are plotted together to 

illustrate the data space formed by the alarm and non-alarm patterns. These scores were 

selected because they provided the best visual distinction between the data classes. Clear 

discrimination is noted between the alarm and non-alarm patterns. Figure 4.18 plots 

discriminant scores with respect to differential glucose concentrations for prediction set 

1. A clear dependence of the discriminant scores on the differential concentrations is 

observed. Increased variation near a differential concentration of 0.0 mM illustrates the 

effect on the discriminant scores when there is no glucose signal.  

For a successful data classification, the space explained by the prediction PLS 

scores should be within that of the corresponding calibration scores. The first three PLS 

scores for the calibration set and prediction set 1 are plotted together in Figure 4.19. It 

can be observed that the calibration and prediction patterns occupy the same space.  

 
 

 
 
 
 
 
 
 
 



127 
 

 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 4.15 Glucose concentration profile for prediction set 1. The alarm threshold value 
was 3.0 mM, and there were 47 and 55 alarm and non-alarm patterns, respectively. 
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Figure 4.16  Discriminant score plot for prediction set 1. The red, green, and blue 
symbols denote the discriminant scores produced by the three replicate classifiers. All 
patterns were correctly classified. 
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Figure 4.17  Plot of the fourth, fifth, sixth PLS scores for the patterns in prediction set 1. 
Blue and red symbols denote alarm and non-alarm patterns, respectively.  
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Figure 4.18. Plot of discriminant scores with respect to corresponding differential glucose 
concentrations for prediction set 1. Red, green, and blue symbols denote the discriminant 
scores produced by the three replicate classifiers. Discriminant scores greater than zero 
correspond to patterns placed in the alarm class.  
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Figure 4.19  First three PLS scores plotted together for the calibration data set (DS 1 red, 
DS 2 green) and prediction set 1 (blue). The calibration and prediction data occupy the 
same space, indicating that the calibration data are effective in characterizing the 
prediction set.  
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and 16,207 non-alarm patterns. Approximately 80.00 ± 0.03 % of the alarm patterns of 

the calibration set were separated with a single discriminant function. Figure 4.20 shows 

the glucose concentration profile for prediction set 2 in which there were 31 non-alarm 

patterns and 105 alarm patterns.  The resulting discriminant score plot is shown in Figure 

4.21. The second replicate discriminant was not able to classify accurately the patterns 

close to the alarm threshold of 3.0 mM. However, applying the decision rule of two out 

of three classifiers signaling an alarm, there were no missed or false alarms for this 

prediction set. This result underscores the importance of replicating the training of the 

discriminants to avoid anomalous classifications.  

The first, second and third PLS scores for prediction set 2 are plotted together in 

Figure 4.22 to illustrate the differences in the regions of the data space occupied by the 

alarm and non-alarm patterns. Clear separation in observed between the data classes. A 

discriminant score versus differential concentration plot for prediction set 2 is shown in 

Figure 4.23. As observed with prediction set 1, a clear dependence of the discriminant 

scores on the differential glucose concentrations is noted. The first three PLS scores for 

the calibration set and prediction set 2 are plotted together in Figure 4.24. It can be noted 

that the two data groups occupy the same space, indicating good agreement between the 

calibration and prediction data. 

Prediction set 3 was collected more than two years after the collection of the 

calibration data. The critical concentration for prediction set 3 was -1.1 mM, and the 

calibration database was partitioned into 31,575 alarm patterns and 19,694 non-alarm 

patterns. Approximately 77.00 ± 0.01 % of the alarm patterns of the calibration set were 

separated with a single discriminant function. 
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Figure 4.20 Glucose concentration profile for prediction set 2. The alarm threshold value 
was 3.0 mM, and there were 31 and 105 non-alarm and alarm patterns, respectively.  
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Figure 4.21 Discriminant score plot for prediction set 2. Red, green, and blue symbols 
denote the discriminant scores produced by the three replicate classifiers. The second 
replicate classifier (green) fails to recognize the alarm patterns near the 3.0 mM 
threshold. 
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Figure 4.22  First, second, and third PLS scores for prediction set 2. Clear separation is 
noted between the alarm (blue) and non-alarm (red) patterns. 
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Figure 4.23 Discriminant scores plotted with respect to differential glucose 
concentrations for prediction set 2. Discriminant scores greater than zero correspond to 
patterns placed in the alarm class. The red, green, and blue symbols denote the 
discriminant scores produced by the three replicate classifiers. An offset of the 
discriminant scores from the second replicate classifier (green) can be observed. Near the 
critical concentration of -0.9 mM, this offset causes the classifier to fail to place the 
patterns correctly in the alarm class.  
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Figure 4.24 First three PLS scores plotted together for the calibration data set and 
prediction set 2. Red, green, and blue symbols denote the calibration data from DS 1, 
calibration data from DS 2, and data from prediction set 2, respectively. The two data sets 
are completely overlapped, indicating the calibration data provides an effective 
representation of the prediction data.  
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Figure 4.25 shows the glucose concentration profile for prediction set 3 in which 

there were 62 non-alarms and 71 alarm patterns. The first and the third classifiers 

predicted no missed or false alarms. The second classifier predicted one missed alarm and 

no false alarms Applying the alarm decision rule for the three replicate classifiers gave no 

missed or false alarms. This result is particularly impressive when the length of time 

between the collection of the calibration and prediction data is considered. The plot of 

discriminant scores is provided in Figure 4.26. 

As shown in Figure 4.27, the second, third, and fourth PLS scores for prediction 

set 3 reveal clear separation between the alarm and non-alarm patterns. Figure 4.28 plots 

the discriminant scores with respect to the corresponding differential glucose 

concentrations. As observed with prediction sets 1 and 2, a clear relationship between the 

discriminant scores and differential concentrations is observed. 

The first three PLS scores for the calibration set and prediction set 3 are plotted in 

Figure 4.29. As observed previously with the first two prediction sets, the calibration and 

prediction patterns cluster together in the same data space.  
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Figure 4.25 Glucose concentration profile for prediction set 3. The alarm threshold was 
3.0 mM, and there were 71 and 62 alarm and non-alarm patterns, respectively. 
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Figure 4.26  Discriminant score plot for prediction set 3. The red, green, and blue 
symbols denote the discriminant scores for the three replicate classifiers. There was a 
missed alarm in the second replicate classifier. The other classifiers had no missed or 
false alarms.  
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Figure 4.27  The second, third, and fourth PLS scores from prediction set 3 are plotted. 
Clear separation is noted between alarm (blue) and non-alarm (red) patterns.  
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Figure 4.28 Discriminant scores are plotted with respect to differential glucose 
concentrations for prediction set 3. Red, green, and blue symbols denote the discriminant 
scores produced by the three replicate classifiers. A clear relationship between 
discriminant scores and differential concentrations is noted.  
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Figure 4.29  First three PLS scores plotted for the calibration data set and prediction set 3. 
Red, green, and blue symbols denote calibration patterns from DS1, calibration patterns 
from DS2, and prediction set 3, respectively. Clear overlap of the patterns is noted. This 
verifies that the calibration and prediction data are consistent.  
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Conclusions 

In this chapter, the nocturnal hypoglycemic alarm algorithm presented in Chapter 

3 was tested with an in vitro simulation study that served to mimic glucose excursions 

similar to those that occur in the human body. A synthetic sample matrix was constructed 

from urea, lactate, and triacetin in phosphate buffer to provide a challenge to the ability to 

extract glucose information selectively from NIR spectra in the combination region. 

This study provided a first test of one of the key components of the alarm 

algorithm, the use of differential spectra computed relative to a glucose-containing 

reference spectrum. Within the calibration data, the calculation of all combinations of 

spectral ratios within time blocks served to expand the concentration data space. Further, 

the calculation of differential spectra served to simplify the resulting absorbance spectra 

by removing constant features of the spectral background.  

The successful use of the PLDA method to implement the alarm decision 

provided verification that a pattern classification approach can be employed to identify 

concentration levels within NIR spectra. The iterative nature of the training of the 

classifiers raises the possibility that the optimization may become trapped in local 

maxima. This was illustrated in the anomalous results obtained with one of the replicate 

classifiers trained for use with prediction set 2. The need for replicating the training and 

the benefits to using multiple classifiers in making the alarm decision was made clear 

through this example.  

The developed alarm algorithm was tested with three external prediction sets. The 

results obtained were very promising. No missed or false alarms were observed for any of 

the prediction sets. The robustness of the methodology was also tested by collecting 
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prediction set 3 two years and six months later than the last day of the calibration data. 

The result for that prediction set (i.e., no missed or false alarms) clearly demonstrated the 

excellent robustness of the methodology to changes in instrumental characteristics with 

time. The use of differential spectra computed relative to a same-day reference was 

considered to be a key component of the observed robustness of the methodology.  
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CHAPTER 5 

STUDIES TO PREPARE SKIN TISSUE PHANTOMS TO SIMULATE 

IN VIVO NEAR-INFRARED SPECTRAL BACKGROUNDS 

 

Introduction 

In Chapter 4, the proposed nocturnal hypoglycemic alarm algorithm was tested in 

vitro with relatively simple sample matrixes. The work focused on the use of significant 

spectral interferences to glucose such as lactate, urea, and lipids (modeled by triacetin), 

but the measurements were made in a simple phosphate buffer solution. No attempt was 

made to incorporate the solid components of tissue into the simulation. However, the 

non-aqueous components in skin tissue can be the source of significant spectral variation 

in actual noninvasive glucose measurements made through tissue. For example, proteins 

and fat present in the tissue can have a major effect on the NIR spectrum.   

 The main absorber in skin tissue in the combination region of the NIR is water. 

The second most abundant absorber is protein. Two major types of protein present in skin 

tissue are collagen and keratin. Collagen is a type of elastic protein that is prominent in 

the dermal layer of the skin and keratin is a rigid protein that is rich in the outer layer of 

the skin, the epidermis. As shown in Figures 5.1 and 5.2, the absorption features 

associated with these two protein types can be seen in both the 4400-4200 cm-1 region 

and near 4600 cm-1. Absorption features due to the combination of C-H bond stretching 

and bending in the long alkyl chains of fat-type molecules can also be observed between 

4400 and 4200 cm-1.  
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Figure 5.1 Absorbance spectrum of keratin film relative to an open-beam air background. 
Protein absorption features can be seen at 4400-4200 cm-1 and in the region of 4600 cm-1. 
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Figure 5.2 Absorbance spectrum of gelatin (hyrdrolyzed collagen) film relative to an 
open-beam air background. Protein absorption features can be seen at 4400-4200 cm-1 
and in the region of 4600 cm-1. 
 
 

 

While the selection of a vascular region of the skin tissue where the fat 

component is relatively low can minimize the C-H signals arising from fat, any 

noninvasive measurement of tissue will be subject to interference from skin proteins such 

as keratin and collagen. Moreover, interference in the region near 4400 cm-1 can have a 

4200 4300 4400 4500 4600 4700 4800

0.2

0.25

0.3

0.35

0.4

A
bs

or
ba

nc
e 

(A
U

) 

Wavenumber (cm
-1

)  



149 
 

 
 

direct effect on a glucose measurement because of spectral overlap with the glucose C-H 

combination band located there.  

The objective of the research discussed in this chapter was to prepare tissue 

phantoms composed of two main proteins that exist in human skin tissue, keratin and 

collagen. Once prepared, these skin tissue phantoms will be incorporated into dynamic 

studies such as those described in Chapter 4 to simulate the skin tissue background in 

noninvasive NIR measurements. In this chapter, the preparation of these phantoms is 

explored and parameters such as reproducibility, stability, and thickness are examined. 

The ability to simulate the spectra of human tissue is also investigated. In Chapter 6, in 

vitro simulation studies employing the phantoms are described. 

 

Experimental Methods 

Preparation of Protein Films 

This research was based on the construction of films of keratin and collagen that 

could be inserted into the optical path of a NIR transmission measurement. The basic 

approach was to coat each protein onto an optically transparent window by dissolving the 

protein with an appropriate solvent, placing the resulting solution into a sample well 

containing the window, and then allowing the solvent to evaporate. By repeating this 

procedure, protein films of desired thicknesses could be constructed. 

The sample well compartments used for the preparation of the films were 

assembled as described below. A sapphire window (25 × 0.5 mm, Meller Optics, 

Providence, RI) was inserted into the bottom of a metal lens holder equipped with a 

threaded retaining ring (Model SM1L05, Thorlabs, Inc., Newton, NJ). Four to five Teflon 
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spacers (25 × 1.1 mm, McCarthy Scientific, Fallbrook, CA) were inserted tightly on the 

top of the sapphire window to make a sample well as shown in Figure 5.3. These spacers 

were tightened with the retaining ring to prevent leakage of solution. As shown in Figure 

5.3, the outside of the lens holder was labeled at 14 equally spaced positions (1, 2, 3, 4, 5, 

6, 7, 8, 9, A, B, C, D, E).    

Protein solutions were prepared by dissolving the required amounts of the protein 

powder in 88 % (v/v) formic acid (ACS reagent, Fisher Scientific, Fair Lawn, NJ). For 

the preparation of the gelatin (hydrolyzed collagen) solution used to model collagen in 

the dermis, 0.75 g type-A gelatin powder form porcine skin (Product No.G8-150, Sigma-

Aldrich, Inc., St. Louis, MO) was dissolved in 30.00 mL formic acid while stirring for 

approximately 45 min. For the preparation of the keratin solution, 2.00 g keratin powder 

(Product No.K3030, Spectrum Chemical Mfg. Corp., Gardena, CA) was dissolved in 

10.00 mL formic acid while stirring for approximately 45 min.  

Two types of protein films were prepared for the experiments described here: (1) 

films with approximately uniform thickness and (2) films with a wedge-shaped cross-

section that had varying thickness around the circumference of the window. The need for 

films with variable thickness was motivated by a desire to incorporate variations in skin 

thickness and composition into subsequent in vitro simulation experiments such as those 

described in Chapter 4. Even for a single individual, changes in the exact site of the 

noninvasive measurement, changes in skin hydration, or the effects of applying pressure 

to the tissue can all cause a change in the effective composition of the tissue sample 

within the optical path of the spectrometer.  

For the films with uniform thickness, approximately 25 drops of protein solution 
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were applied to the sample well and the sample holder was placed in a horizontal 

orientation into a glass desiccator equipped with drierite (W.A. Hammond Drierite Co, 

Ltd., Xenia, OH). For the preparation of the films with variable thickness, the sample 

holder was placed at an approximately 30° angle in the desiccator and the solutions were 

applied in different amounts to the sides of the holder.  

Once the solutions were added, the sample holders were placed in the desiccator 

and allowed to dry. After 4-5 days in the desiccator, the same amounts of the protein 

solutions were applied to make the films thicker until the desired thickness was acquired.  

 

Collection of Spectra of Protein Films 

Spectra of the protein films were collected in transmission mode with a Nicolet 

6700 FT spectrometer (Thermo Fisher Scientific, Inc., Waltham, MA) equipped with a 

CaF2 beamsplitter and liquid-nitrogen-cooled InSb detector. A 50-W tungsten-halogen 

light bulb (Gilway Technical Lamp, Peabody, MA) equipped with an integrated, gold-

coated reflector was used as the light source and directed into the spectrometer through 

the emission port. The source was powered at 4.96 V with an E3633A 200-W DC power 

supply (Agilent Technology, Van Nuys, CA). A metal neutral density screen (Screen C, 

Thermo Fisher Scientific, Inc.) in combination with a 63% transmittance metal thin-film 

type neutral density filter (Rolyn Optics, Inc., Covina, CA) were placed in front of the 

sample to prevent detector saturation. A K-band optical interference filter (Barr 

Associates, Westford, MA) was placed in the optical path to limit the spectral range to 

5000 to 4000 cm-1.  
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The lens tube containing the protein-coated sapphire window was placed in the 

optical path of the spectrometer by use of a V-shaped slide mount holder as shown in 

Figure 5.3. A retaining screw was used to secure the lens tube to the sample holder. 

Adhesive heating pads (Omega Engineering, Inc., Stamford, CT) were applied to the 

sample holder and a variable-voltage AC transformer (Powerstat 116, Superior Electric 

Co., Bristol, CT) was employed to maintain the temperature of the protein film to the 

region of 37 °C. The temperature of the holder was monitored with a Type-T 

thermocouple and thermocouple meter (Omega Engineering, Inc.) and manual control of 

the transformer was used to maintain the temperature.  

The experimental setup used for the data collection is shown in Figure 5.4. 

Spectra were collected at a resolution of 8 cm-1 with 128 co-added scans. Interferograms 

were sampled at every zero-crossing of the HeNe reference laser, producing a maximum 

spectral frequency of 15,798.25 cm-1. Each spectrum required 2 minutes for collection. 

Background air spectra were collected before the collection of the film spectra and were 

used for the calculation of spectra in absorbance units (AU). Collected inteferograms 

were Fourier processed to single-beam spectra with Happ-Genzel apodization, Mertz 

phase correction, and one level of zero of filling. 

 

Human Subject Data 

Noninvasive NIR spectra of human skin tissue were provided by our collaborators 

in the Arnold research group at the University of Iowa. These human subject data were 

used to help evaluate the degree to which the spectra of the protein films were effective in 

modeling skin tissue. 
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Human skin tissue spectra were collected with a Nicolet 6700 FT spectrometer 

(Thermo Fisher Scientific Inc. Waltham, MA) configured in the same manner as 

described previously. A similar external light source was used.  

 

 

 

 
 
 

Figure 5.3 Sample holder assembly used for the preparation and measurement of the 
protein films. Films were coated onto sapphire windows held within a metal lens tube. 
The lens tube was placed on a V-shaped holder attached to a standard slide-mount 
sampling accessory for use in placing the sample into the spectrometer. A retaining screw 
was used to secure the rotational position of the lens tube in the sample holder. Fourteen 
labeled positions allowed reproducible placement of the films on the holder. 
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Figure 5.4  Experimental setup used for the collection of the spectra of the protein films. 
Light from the external source was directed through the interferometer before passing 
through two neutral density filters, a bandpass filter, and the sample. Transmitted light 
was directed onto the detector. 
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To bring the light from the spectrometer to the skin tissue and to collect the 

transmitted light, a custom sapphire-rod interface was used. A four-stage 

thermoelectrically cooled extended-wavelength InGaAs detector with a diameter of 2 mm 

and a 2.6 μm long wavelength cutoff (Judson Technologies, Montgomeryville, PA) was 

used to detect the transmitted light.  

Figures 5.5 A and B show a photograph of the instrumentation and a detailed 

view of the human interface, respectively. A K-band interference filter placed in the 

optical path limited the spectral range to 5000 to 4000 cm-1. Spectra were collected at a 

resolution of 8 cm-1 with 16 co-added scans. Interferogram points were sampled at each 

zero-crossing of the HeNe reference laser to yield a maximum spectral frequency of 

15,798.25 cm-1. Each spectrum required 8.5 seconds for collection. The interferograms 

were Fourier processed to single-beam spectra with triangular apodization, Mertz phase 

correction, and one level of zero-filling. The resulting spectral point spacing was  

1.93 cm-1. 

The skin tissue spectra used were collected from volunteers who were adult males 

and females from 18 to 65 years old including people with and without diabetes. 

Different ethnic groups were also represented. All protocols used were approved by the 

Institutional Review Board at the University of Iowa.  

Volunteers fasted overnight with food restriction for 10 hours. Before spectra 

were collected, the person’s weight and blood pressure were recorded along with 

information such as age, sex, and ethnicity. The interface was applied to a fold of skin on 

the back of the hand and the spectral data were acquired while the participant sat beside 

the spectrometer. Spectra were collected repeatedly and continuously without movement 
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for a period of 90 minutes. Air reference spectra were also collected before and after each 

set of skin spectra.  

In total, 48 subjects participated in this study. For the work described here, 

subjects 4-9 only were used in the evaluation of the ability to model spectra of human 

tissue with the spectra of the protein films. Selection of these subjects was done on the 

basis of low values of computed spectral noise levels. The noise calculation was 

performed as described in Chapter 3.  

 

Computations 

All computations were performed with code written in the Matlab development 

environment (Version 7.4, The MathWorks, Natick, MA) implemented on a Dell 

Precision 670 workstation (Dell Computer Corp., Austin, TX) operating under Red Hat 

Linux (Version 5.3, Red Hat, Inc., Raleigh, NC).  

 

Results and Discussion 

Characterization of Human Subject Spectra 
 

For the subsequent data analysis, every five consecutive single-beam spectra of 

each of the human subjects were averaged to increase the signal-to-noise ratio. For 

subjects 4-9, this calculation yielded 127 averaged spectra for each subject, and an 

overall total of 762 spectra for analysis. The short-term noise for these signal averaged 

spectra was evaluated across the wavenumber region of 4300-4500 cm-1 for consecutive 

pairs of spectra. The RMS noise values calculated from a third-order polynomial fit as 

discussed in Chapter 3 were within the range of 30-41 µAU.   
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Figure 5.5 Experimental setup used for the collection of noninvasive NIR spectra of 
human tissue.142 A. Overview of the instrumentation. B. Sapphire rod interface.  
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The mean signal-averaged single-beam spectra for these human subjects are 

shown in Figure 5.6 A. The average air spectrum collected on the corresponding day was 

used as the reference in the calculation of skin spectra in AU. Figure 5.6 B shows the 

computed mean absorbance spectra of human subjects 4-9. It can be observed that the 

spectral shapes for these human subjects are similar.  

As expected, water is the most significant contributor to the overall spectrum, 

producing a parabolic-shaped response in the absorbance spectrum. This shape originates 

from the tails of the two large water absorption bands centered near 5200 and 3300 cm-1. 

The absorbance peak at 4600 cm-1 is due to N-H combination bands arising from proteins 

in the skin tissue, mainly collagen and keratin. The features between 4250 and 4350 cm-1 

are produced by C-H combination bands in the proteins, as well as from the small amount 

of fat present. The measurement site at the top of the hand has little fat. The significant 

baseline variations in the absorbance spectra are due to different magnitudes of scattering 

among the subjects and variation in the skin thickness placed between the sapphire rods 

of the interface. The variations in the skin tissue components among these human 

subjects lead to slight variations in the relative peak heights.  

 

Modeling Spectra of Human Subjects 

Noninvasive NIR spectra of human skin can be fitted by MLR (Chapter 3) to a 

linear function that incorporates the additive features of absorption due to water, fat, 

keratin, and collagen (gelatin).  

This function takes the following form: 

Askin = βw Awater + βf Afat+ βg Agelatin + βk Akeratin+ e                 (5.1) 
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where the terms Askin, Awater, Afat, Agelatin, and Akeratin represent the absorbance 

contributions corresponding to skin, water, fat, gelatin, and keratin. The corresponding βi 

terms represent regression coefficients for the fit and e denotes the residual (error) from 

the fit. The absorbance terms in Eq. 5.1 are all wavelength dependent. 

Additional baseline correction terms (e.g., constant offset or linear slope) can also 

be added to Eq. 5.1 to account for variation such as scattering effects that cannot be 

explained by the spectra of the chemical constituents. 

The magnitudes of the regression coefficients can be computed by applying MLR 

to a set of pure-component spectra that represent the different skin constituents. The 

regression coefficients approximate the amount of each component in the skin tissue 

matrix relative to that of the corresponding sample that was used to generate the pure-

component spectrum. For example, if a spectrum of the keratin film produces a value of 

0.5, the film is two times thicker than the corresponding amount of keratin present in the 

tissue. This assumes that the spectral response of the pure-component spectrum matches 

that in the tissue.  

The objective of the research described here was to prepare protein films that 

gave regression coefficients close to unity. If produced, these films could be placed into  

the optical path of the spectrometer and thereby simulate the presence of the 

corresponding material as it exists in human skin tissue. 

The relative thicknesses of the prepared films were calculated with the modeling 

approach described by Eq. 5.1. Separate fits were performed with the constant-thickness 

and variable-thickness gelatin and keratin films. 
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Figure 5.6  Mean signal-averaged spectra for subjects 4-9. A. Single-beam spectra. B. 
Absorbance spectra. 
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The regression used a series of four pure-component spectra including water, fat, 

gelatin film, and keratin film to fit the skin absorbance spectra. The water spectrum, 

Awater, in Eq. 5.1 was collected from a sealed 1-mm thick transmission cell.  The fat 

spectrum, Afat, was collected from a 1-mm thick sample of bovine fat. These two pure-

component spectra were obtained from our collaborators in the Arnold research group. 

Figure 5.7 plots these absorbance spectra. The addition of constant offset and linear 

baseline correction terms to Eq. 5.1 was also investigated but these terms were not found 

to be helpful in improving the fits. 

Table 5.1 presents the results obtained from the use of Eq. 5.1 to fit the 762 

combined spectra from human subjects 4-9. Results are presented for fits using both the 

constant-thickness and variable thickness films. Also included in the table are the values 

of R2 and the standard error of estimate (SEE) that describe the quality of each fit. The R2 

expresses the fraction of the variance in the measured human subject spectrum that is 

explained by the regression model, while the SEE is the square root of the mean squared 

error between the actual and fitted absorbance values (i.e., the mean squared residual).  

The regression coefficients for the gelatin and keratin films that were prepared at an 

approximately constant thickness were 0.6 and 1.4, respectively. The spectra of these 

films were displayed previously in Figures 5.1 and 5.2. The regression fit had a value of 

R2 of 0.97 and the standard error of estimate (SEE) for the fit was 0.04 AU.  

Figure 5.8 plots example spectra from human subjects 4, 5, and 6 along with the 

corresponding spectra predicted by the regression equation based on the constant-

thickness films. The predicted spectra match the overall shapes of the experimentally 
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measured spectra, although there appear to be mismatches with the actual spectra in the 

protein absorption region near 4600 cm-1.  

 

Table 5.1  Results of fitting human subject spectra to pure components  

Film Type 

Films Used 

 

Regression Coefficient ± Standard Error  

R2 

 

SEEa 
 

Gelatin 

 

Keratin 

 

Gelatin 

 

Water 

 

Fat 

 

Keratin 

Constant Constant Constant 

 

0.6 ± 0.2 

 

1.05 ± 0.01 

 

-0.038 ± 0.005 

 

1.4 ± 0.2 

 

0.969 

 

0.04 

 

Variable 

 

Position 1 

 

Position 5 

 

2.0 ± 0.3 

 

0.944± 0.006 

 

0.006 ± 0.003 

 

1.3 ± 0.4 

 
 
0.987 

 

0.03 

 

Variable 

 

Position 1 

 

Position A 

 

1.7 ± 0.3 

 

0.951 ± 0.006 

 

0.007 ± 0.003 

 

2.7 ± 0.6 

 
 
0.987 

 

0.03 

 

Variable 

 

Position C 

 

Position 5 

 

2.1 ± 0.4 

 

0.969 ± 0.006 

 

-0.005 ± 0.003 

 

1.9 ± 0.3 

 
 

0.987 

 

0.03 

 

Variable 

 

Position C 

 

Position A 

 

1.9 ± 0.4 

 

0.974 ± 0.006 

 

-0.002 ± 0.003 

 

3.6  ± 0.5 

 
 

0.987 

 

0.03 

aStandard error of estimate in AU describing the quality of the fitted regression equation. 

 

 
 

 

 

 

 

 



163 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.7  Pure-component spectra of water and fat used in fitting the regression model 
based on Eq. 5.1. 
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For the variable-thickness films, two positions on each of the keratin (5 and A) 

and gelatin (1 and C) films were used as examples of minimum and maximum thickness, 

and the regression equations were computed with all four combinations of the film 

positions. The spectra collected from the variable-thickness films are shown in Figures 

5.9 and 5.10.  

When the spectra collected with position 1 of the gelatin film and position 5 of the 

keratin film were used for the regression fit, the corresponding regression coefficients for 

gelatin and keratin were 2.0 and 1.3, respectively. The value of R2 for the corresponding 

fit was 0.99. Example spectra from subjects 4, 5, and 6 are plotted in Figure 5.11 along 

with the predicted spectra resulting from the fit. As observed previously in Figure 5.8, 

while the overall fit is good, there are mismatches in the protein absorption region near 

4600 cm-1.  

When the spectra collected from position 1 of the gelatin film and position A of 

the keratin film were used, the regression coefficients were 1.7 and 2.7 for gelatin and 

keratin, respectively. Thus, two separate estimates of position 1 of the gelatin film 

produced regression coefficients of 2.0 and 1.7, or an average value of 1.8 ± 0.3. The 

error associated with this reported mean is the pooled value computed from the standard 

errors of the coefficients in the two regression equations. These values were deemed 

consistent enough to say with confidence that position 1 of the variable-thickness film 

was approximately twice the effective thickness of collagen-like protein in an average in 

vivo spectrum collected with the interface shown in Figure 5.5.  

Through a similar use of the data in Table 5.1, the average regression coefficient 

for position C in the gelatin film was 2.0 ± 0.4. The corresponding values for the keratin 
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film at positions 5 and A were 1.6 ± 0.4 and 3.2 ± 0.6, respectively. The errors reported 

here are again the pooled values obtained from the standard errors in the regression 

coefficients.  

 

Evaluation of Sample Placement 

The reproducibility of the placement of the sample holder in the sample 

compartment is very important during the data collection. If spectra are to be compared 

across multiple days, it must be possible to place the protein films in the optical path in 

such a way that the contribution of the film to the overall measured spectrum is 

reproducible.  

To study the effect of the film placement in the sample compartment, the 

constant-thickness films were used. The sample holder was placed in the sample 

compartment and spectra were collected. The sample holder was then removed from the 

sample compartment and replaced again in the same position. Additional spectra were 

then collected. This procedure was repeated for four trials conducted over a total time of 

24 minutes.  

The absorbance spectra produced in this study are shown in Figures 5.12 A and B 

for gelatin and keratin, respectively. The absorbance spectra showed deviations of 

approximately 0.59 % for gelatin and 1.10% for keratin. These values were computed as 

the average % relative standard deviation computed across the four trials over the 4200 to 

4800 cm-1 range. 
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Figure 5.8 Human subject absorbance spectra (solid lines) from subjects 4, 5, and 6 
plotted together with the predicted spectra (dashed lines) computed from the linear 
regression fit based on Eq. 5.1. Spectra of the constant thickness films were used in 
fitting the regression equation.  
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Figure 5.9  Absorbance spectra of the variable-thickness gelatin film at positions 1 and C 
are displayed. Protein absorption features can be seen at 4400-4200 cm-1 and in the 
region of 4600 cm-1. These spectra represent the minimum and maximum thickness 
regions of the films.  
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Figure 5.10  Absorbance spectra of the variable-thickness keratin film at positions 5 and 
A are displayed. Protein absorption features can be seen at 4400-4200 cm-1 and in the 
region of 4600 cm-1. These spectra represent the minimum and maximum thickness 
regions of the films.  
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Figure 5.11  Absorbance spectra from human subjects 4, 5, and 6 plotted together with 
the corresponding predicted spectra obtained from the regression fit based on Eq. 5.1. 
Human subject spectra were fit to pure-component water and fat spectra together with 
spectra collected from the variable-thickness keratin and gelatin films. Positions 1 and 5, 
respectively, of the gelatin and keratin films were used.  
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Figure 5.12 Study of the reproducibility of placement of the gelatin (A) and keratin (B) 
films in the sample compartment of the spectrometer. Absorbance values were computed 
relative to a single open-beam air background collected at the start of the experiment.   
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Evaluation of Stability of Prepared Films 

The short-term stability of the prepared films was also assessed using the  

constant-thickness films. Absorbance spectra for the gelatin film at the same position 

were collected over four different days that spanned 14 days. Figure 5.13 shows the 

collected spectra. The average % relative standard deviation computed across the 4200 to 

4800 cm-1 range was 1.96 %. 

The same study was also performed with the keratin film. Spectra were acquired 

during four different days that spanned 13 days.  Figure 5.14 shows the resulting 

absorbance spectra. The average % relative standard deviation computed across the 4200 

to 4800 cm-1 range was 0.56 %.  

 

Evaluation of Exposure of Films to Source Energy 

Simulation studies of the type described in Chapter 4 consist of individual blocks 

of spectra collected over 2-3 hours. It was a concern that continuous exposure of the 

protein films to the heating effects produced by the incident source energy could cause 

degradation in the protein structures and hence spectral variation. This was studied by 

collecting spectra of the prepared films continuously for two hours. 

Spectra of the constant-thickness gelatin film were collected for two hours 

without removing the sample holder from the spectrometer. Each mean spectrum 

collected at 20-minute increments was converted to absorbance units relative to an open-

beam air background collected at the start of the experiment The six resulting spectra are 

shown in Figure 5.15. The average % relative standard deviation computed across the 

4200 to 4800 cm-1 range was 0.57 %. 
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A similar experiment was performed over 1.5 hours for the constant-thickness 

keratin film. Each mean spectrum collected at 20-minute increments (10 minute interval 

for the spectra collected from 81-90 minutes) was converted to absorbance units relative 

to an air background recorded at the beginning of the experiment. The five resulting 

spectra are shown in Figure 5.16. The average % relative standard deviation computed 

across the 4200 to 4800 cm-1 range was 0.26%.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.13  Study of the short-term of consistency of the prepared gelatin film. Spectra 
were collected over four different days that spanned 14 days. 
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Figure 5.14  Study of the short-term of consistency of the prepared keratin film. Spectra 
were collected over four different days that spanned 13 days. 
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Figure 5.15 Study of the effect of the duration of the data collection on the prepared 
gelatin film.  Spectra were collected continuously for two hours. 
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Figure 5.16  Study of the effect of the duration of the data collection on the prepared 
keratin film.  Spectra were collected continuously for 1.5 hours.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4200 4300 4400 4500 4600 4700 4800

0.35

0.4

0.45

0.5

0.55

 

 

1-20 minutes
21-40 minutes
41-60 minutes
61-80 minutes
81-90 minutes

Wavenumber (cm
-1

) 

A
bs

or
ba

nc
e 

(A
U

) 



176 
 

 
 

Conclusions 

This chapter discussed an approach to prepare a tissue phantom composed of two 

protein components present in human skin tissue, keratin and collagen. The relative 

thicknesses of the prepared films were evaluated using a linear regression fit to in vivo 

NIR spectra collected from human subjects. Values of R2 for the fitted regression 

equations ranged from 0.97 to 0.99. 

On the basis of the regression results, the prepared gelatin and keratin films 

provided an attenuation in the range of that observed in tissue samples measured in vivo 

with the interface shown in Figure 5.5. While the spectral match between the films and 

protein features in the human subject data was not exact, the films were judged to be 

useful in adding tissue-like components to the NIR spectral background employed in in 

vitro simulations of the type described in Chapter 4.  

In addition, the variable-thickness films produced through this work provide some 

ability to change the effective protein content of a simulated tissue sample in an 

experimentally simple way. This allows the simulation of changes in protein composition 

that might occur in in vivo measurements conducted across individuals or at different 

measurement sites on the same individual. 

Three studies were performed to gain insight into the reproducibility of use of the 

films. The spectral variation induced by removing and replacing the holder containing the 

films into the sample compartment of the spectrometer was evaluated. Across four trials, 

this study yielded an average % relative standard deviation in absorbance of 0.59 % and 

1.10 % for gelatin and keratin films, respectively, across the 4200 to 4800 cm-1 range.  

The short-term spectral reproducibility of the prepared films was also evaluated and the 
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absorbance spectra collected on four different days over approximately two weeks 

demonstrated good consistency as measured by % relative standard deviations in the 

range of 1.96 % and 0.56 % for gelatin and keratin films, respectively. Finally, the effects 

of continuous exposure to the heating effects of the light source were studied over two 

hours and yielded % relative standard deviations in absorbance in the range of 0.57 % 

and 0.26 % for gelatin and keratin films, respectively.  

Work next turned to the use of the prepared films in helping to implement an 

improved in vitro simulation experiment for evaluating the capabilities of the proposed 

nocturnal hypoglycemic alarm algorithm. This research will be described in Chapter 6.  
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CHAPTER 6 
 

IN VITRO SIMULATION STUDIES USING PROTEIN TISSUE PHANTOMS FOR 

THE DEVELOPMENT OF A NOCTURNAL HYPOGLYCEMIC ALARM 

ALGORITHM BASED ON NEAR-INFRARED SPECTROSCOPY 

 

Introduction 

The nocturnal hypoglycemic alarm algorithm discussed in Chapter 3 was tested 

with in vitro simulation studies described in Chapter 4. In these studies, the effects of 

some of the main components present in the blood that can potentially interfere with a 

noninvasive blood glucose analysis in the NIR region were examined. However, the 

study did not include a realistic representation of the spectral background that would be 

encountered in a true in vivo measurement of tissue.  

As discussed in the previous chapter, the heterogeneity of the chemical 

composition of the tissue matrix is responsible for a significant spectral background 

arising from both scattering and absorption of propagating photons. The components 

present in the skin tissue and the relative amounts and their distribution have an impact 

on the NIR spectrum collected. As a result, any successful in vitro simulation study to test 

the nocturnal hypoglycemic alarm algorithm should incorporate these elements of skin 

tissue.  

Chapter 5 discussed in detail a successful approach to prepare a skin tissue 

phantom composed of two main skin tissue proteins, keratin and gelatin. In this chapter, 

the prepared tissue phantoms are utilized in in vitro simulation studies to test the 

hypoglycemic alarm algorithm. The study was made more complex by adding variable 
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levels of urea to the sample matrix, one of the main spectral interferences in the NIR 

analysis of glucose.  

Two types of skin tissue phantoms were used for the multiple-day data collections 

described in this chapter. For the first study, the same orientation of the prepared skin 

tissue phantom was used in each day of the data collection. This simulated a scenario in 

which the skin tissue matrix does not change during the entire time span of the 

noninvasive data collection (i.e., during both the calibration and prediction phases of the 

data collection). While admittedly unrealistic as it applies to a true in vivo measurement, 

this scenario allowed a baseline performance level for the alarm algorithm to be 

established.  

The second study attempted to simulate a more realistic scenario in which the skin 

composition changes during the time span of the data collection. This work was 

motivated by one of the observed problems associated with noninvasive glucose sensing: 

the heterogeneous nature of the skin tissue from location to location and the deformation 

of the tissue during the actual spectral acquisition when an interface such as that 

displayed in Figure 5.5 is used. These changes in the skin composition present in the 

optical path of the measurement can lead to variation in the effective path length and can 

also provide a challenge to any calibration procedure that assumes the spectral 

background has been adequately captured during the collection of the calibration data. To 

address this scenario, the variable-thickness protein films described in Chapter 5 were 

employed in the in vitro simulation studies to allow the incorporation of variation in 

tissue composition into the testing of the alarm algorithm.  
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Experimental Methods 

The results presented in this chapter derive from two dynamic studies conducted 

in the presence of the skin tissue phantoms prepared in the laboratory as discussed in 

Chapter 5. The first study was a multiple-day data collection and in each day of the data 

collection, the constant-thickness tissue phantom was placed in the optical path in the 

same orientation. The second study was also a multiple-day data collection; however, the 

orientations of the variable-thickness films were changed during the data collection to 

simulate the presence of different tissue compositions. 

 

Apparatus and Reagents 

The chemical system used for both studies included three components, α-D-

glucose, urea and 0.1 M, pH 7.4 phosphate buffer. The reagents used and preparation of 

the stock solutions of the aqueous components were as described previously in Chapter 4. 

To simulate glucose excursions in the body, the three stock solutions were mixed in 

different ratios using three peristaltic pumps (Rabbit-Plus and Dynamax Models, Rainin 

Instrument Co., Woburn, MA). The pump setup was the same as shown previously in 

Figure 4.4. A pump calibration was performed at the beginning of each day of data 

collection to correct for any differences in the theoretical pump speeds or deficiencies in 

the tubing. The total pump speed was maintained at a value of 10 rpm. The basic settings 

for the peristaltic pumps were the same as discussed in Chapter 4 and will not be 

discussed in detail here. Each stock solution was stationed in a water bath and regulated 

at ~55 °C to keep the flowing liquid temperature at 36.6-37.3°C. 
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As described in Chapter 4, the solution exiting the in-line mixer was flowed 

through a 20 mm-diameter circular aperture transmission cell (Model 118-3, Wilmad 

Glass, Buena, NJ) placed in a Nicolet 6700 FT spectrometer (Nicolet Analytical 

Instruments, Madison, WI). The spectrometer utilized a CaF2 beamsplitter and liquid 

nitrogen-cooled InSb detector. There was a slight modification to the spectrometer setup 

described previously in Chapter 4 as shown in Figure 6.1. A 50-W tungsten-halogen light 

bulb (Gilway Technical Lamp, Peabody, MA) with an integrated, gold-coated reflector 

was used as the light source and an E3633A 200-watt DC power supply (Agilent 

Technology, Van Nuys, CA) was used to maintain the light bulb at the desired voltage for 

the data collection. No screens or neutral density filters were used in the optical path. A 

K-band optical interference filter (Barr Associates, Westford, MA) was placed in the 

optical path to limit the spectral range to 5000-4000 cm-1.  

The protein films were placed in the optical path using the lens tube and V-shaped 

holder as shown in Figure 6.1 and described previously in Chapter 5 (Figure 5.3). The V-

shaped holder was attached with an adhesive heating pad (Omega Engineering, Inc., 

Stamford, CT) to maintain the temperature of the protein film near 37 °C and a T-type 

thermocouple pasted to the holder and associated digital thermocouple meter (Omega 

Engineering, Inc.) were used to measure the temperature.  

The sample cell employed sapphire windows (Meller Optics, Providence, RI) and 

was configured with a path length of 1.26 mm using Teflon spacers. The temperature of 

the samples exiting the sample cell was monitored with a T-type thermocouple probe 

(Omega Engineering, Inc.) inserted into a port in the vinyl tubing. An Omega Model 670 
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digital meter recorded the temperatures with a precision of ± 0.1 ° C. For the entire study, 

the temperature range of the flowing liquid was maintained in the range of 36.6-37.3 °C. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1  Schematic of experimental setup. Three peristaltic pumps and an in-line mixer 
were used to produce varying concentrations of glucose samples from the stock solutions. 
Samples flowed into the sample cell contained in the spectrometer, then were collected 
by the fraction collector. The sample holders containing the skin tissue phantoms were 
placed in front of the sample cell for the dynamic system. An external light source was 
used.  
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After the sample exited the sample cell and passed through additional insulated 

vinyl tubing (89.2 mm in length), fractions were continuously collected at a rate of 1 

min/tube using a Gibson FC 203B fraction collector (Gilson, Inc., Middleton, WI). The 

glucose concentrations of each of the fractions were verified each day with a YSI Model 

2300 STAT PLUS glucose analyzer (YSI Inc., Yellow Springs, OH) which had an 

instrumental error of ± 0.2 mM according to the YSI product specifications.  

 

Procedures 

Spectra for the liquid flowing through the sample cell were collected continuously 

as 64 co-added (~ 1 min) asymmetric scans consisting of 4097 points. The Fourier 

processing steps included one level of zero-filling, Happ-Genzel apodization, and Mertz 

phase correction, producing spectra with a point spacing of 1.93 cm-1. This corresponds 

to 519 resolution elements over the range of 4000-5000 cm-1. 

The software used for the data collection and subsequent Fourier processing was 

Omnic (Version 7.1, Nicolet Analytical Instruments) operating on a Dell OptiPlex 

GX280 computer (Dell Computer Corp., Austin, TX) running under Windows 7 

(Microsoft, Inc., Redmond, WA). The software recorded the time at the end of each 

spectrum. As discussed in Chapter 4, the delay time between the spectra collected in the 

sample cell and the fractions collected in the fraction collector were corrected before the 

data analysis.  

Spectra corresponding to times in which the pumps were changing speeds were 

omitted from further analysis on the basis of uncertainty in the concentrations assigned to 

the spectra. The same methodology described in Chapter 4 based on the calculation of 
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95% confidence intervals about the reference concentrations was employed to identify 

these spectra. 

 

Computations 

After collection and Fourier processing, spectra were transferred from the 

computer controlling the spectrometer to a Dell Precision 670 workstation (Dell 

Computer Corp.) running under Red Hat Linux (Version 5.3, Red Hat, Inc., Raleigh, 

NC). All subsequent calculations were performed on this computer using the Matlab 

development environment (Version 7.4.0 (R2007a), The MathWorks, Inc., Natick, MA). 

Software for the calculation of piecewise linear discriminants used in-house software 

written in Fortran and compiled with the Intel Fortran Compiler for Linux (Version 10.0, 

Intel Corp., Santa Clara, CA).  

 

Data Collection for Dynamic System 1 

As discussed above, data for dynamic system (DS) 1 were collected over multiple 

days in the presence of a tissue phantom kept in the same orientation to the optical path 

for all the days. The tissue phantom was composed of a keratin film and a gelatin 

(hydrolyzed collagen) film prepared earlier. This phantom employed the constant-

thickness films described in Chapter 5.  In thickness estimates based on fitting the film 

spectra to in vivo spectra of tissue collected from six human subjects, the gelatin and 

keratin films produced regression coefficients of 0.6 and 1.4, respectively. These 

regression coefficients mean that the gelatin film should be 1/0.6 = 1.7 times thinner to 

match the average collagen thickness present in the skin tissue and the keratin film should 
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be 1.4 times thicker to match the average thickness of keratin present in the skin tissue. 

Thus, the tissue phantom employed in DS 1 was effectively higher in collagen and lower 

in keratin than actual human tissue. 

The data collected during the first five days of data collection (runs 1-5) were 

used to build the calibration database and the last three days of data collection were used 

as prediction days to test the implementation of the alarm algorithm. The concentration 

values for each component per sample were assigned to minimize correlations between 

glucose and urea concentrations. For this study, the correlation coefficient between 

glucose and urea concentrations in the calibration data was -0.27. The correlation 

coefficients between glucose and urea concentrations in the three prediction sets were -

0.46, -0.48 and -0.67, respectively. 

Figure 6.2 summarizes the target concentrations for glucose and urea in the 

calibration data. Figure 6.3 is a similar plot that describes the target concentration profiles 

for the three prediction sets. For each day, the stock glucose solution concentrations were 

10, 20, 10, 20, 10, 10, 10 and 10 mM, respectively. The stock concentrations for urea 

were 10, 20, 10, 40, 20, 5, 10, and 10 mM, respectively. The complete glucose 

concentration profile and the corresponding refined profile obtained after removal of 

spectra corresponding to changes in pump speed are given in Figures 6.4 A and B, 

respectively. 
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Figure 6.2 Target concentration profiles for the calibration data. Blue and red traces 
correspond to glucose and urea concentrations, respectively. 
 
 
 

 
 
 

Figure 6.3 Target concentration profiles for the prediction data. Blue and red traces 
correspond to glucose and urea concentrations, respectively. 
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Figure 6.4  Concentration profiles for DS 1. A. Complete glucose concentration profile. 
B. Refined glucose concentration profile after removal of spectra collected at times when 
the pump speeds were changing. The labels in panel B denote the subdivision of the data 
into groups for calibration, calibration testing (monitoring), and external prediction. 
Horizontal lines in both panels denote the hypoglycemic alarm concentration of 3.0 mM 
used in this work.  
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Data Collection for Dynamic System 2 

As discussed above, data for DS 2 were collected over multiple days in the 

presence of a variable-thickness tissue phantom and during each day of data collection 

the thickness settings were changed randomly by changing the orientations of the gelatin 

and keratin films. These changes in film thicknesses served to simulate the possible 

variations in the composition of skin that might occur if a human subject interface of the 

type shown in Figure 5.4 were used and different locations on the hand were measured.   

Compared to DS 1, this study more closely simulated an actual noninvasive data 

collection through human tissue.  As reported in Chapter 5, a linear regression fit with 

human subject spectra for the absorbance spectra collected from positions 1 and C of the 

variable-thickness gelatin film yielded average regression coefficients of 1.8 ± 0.3 and 

2.0 ± 0.4, respectively. The corresponding absorbance spectra for these two positions 

were shown previously in Figure 5.9. The differences in absorbance as a result of the 

differences in film thickness are apparent. As discussed previously with respect to the 

constant-thickness films, values of the regression coefficients near 2.0 indicate the film 

was approximately half as thick as the corresponding effective thickness of collagen in 

tissue.  

As reported in Chapter 5, a linear regression fit with human subject spectra for 

positions 5 and A of the keratin film yielded average regression coefficients of 1.6 ± 0.4 

and 3.2 ± 0.6., respectively. The differences in the absorbance for these two positions 

were shown previously in Figure 5.10. These values indicate the keratin film was also 

generally thinner than the corresponding effective thickness of keratin in tissue.  
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Three different positions of the gelatin film, 1, 4, and C, and three different 

positions of the keratin film, 5, A and E, were used for this study. A 3×3 factorial design 

for these positions gave 9 total tissue phantom orientations. Using the labels on the film 

holder (Figure 5.3), the film positions were manually changed during the data collection 

to simulate variations in skin tissue thickness.  Because spectra recorded during changes 

in pump speed were subsequently removed from the data analysis, the film positions were 

also changed during the times in which the pump speeds were changed.  

Data for the study were collected over four different days that spanned a total of 

18 days. Data collection occurred on days 1, 3, 12, and 18. Spectra from day 1 and the 

first part of day 3 were used to define the calibration database, while the data from the 

second part of day 3 and all of days 12 and 18 served as prediction sets.  

The concentration values for each component per sample were assigned to 

minimize correlation between glucose and urea concentrations present. The correlation 

coefficients between glucose and urea concentrations in the calibration set and the three 

prediction sets were 0.19, 0.02, -0.33 and -0.40, respectively. 

Figure 6.5 shows the desired concentrations for glucose and urea plotted with 

respect to the label of the film used for the particular concentration level. Figure 6.6 

displays the corresponding plot for the three prediction sets. For each day, the 

concentrations of the stock glucose and urea solutions were both 20 mM. The complete 

glucose concentration profile and the refined glucose profile after removing uncertain 

concentrations corresponding to changes in pump speed are given in Figure 6.7 A and B, 

respectively. 
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Figure 6.5 Target concentration profiles for the calibration data. Blue and red traces 
correspond to glucose and urea concentrations, respectively. The x-axis specifies the 
position settings for the gelatin (G) and keratin (K) films.  
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Figure 6.6 Target concentration profiles for the prediction data. Blue and red traces 
correspond to glucose and urea concentrations, respectively. The x-axis specifies the 
position settings for the gelatin (G) and keratin (K) films.  
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Figure 6.7  Glucose concentration profiles for DS 2. A. Complete glucose concentration 
profile. B. Refined glucose concentration profile after removal of spectra collected at 
times when the pump speeds were changing. The labels in panel B denote the subdivision 
of the data into groups for calibration, calibration testing (monitoring), and external 
prediction. Horizontal lines in both panels denote the hypoglycemic alarm concentration 
of 3.0 mM used in this work.  
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Results and Discussion 

The data analysis protocols used with DS 1 and DS 2 mirror those described 

previously in Chapter 4. The analysis of DS 1 and DS 2 will be described separately 

below. Data analysis steps are presented below in a more streamlined manner than in 

Chapter 4 when the procedures were identical.  

 

Analysis of Dynamic System 1 

Data for DS 1 in the presence of the constant-thickness tissue phantom were 

collected over eight different days and consisted of 712 total single-beam spectra. The 

refined glucose concentration profile consisted of 635 spectra. All the refined spectra for 

the first five days were used as the calibration set while the data for the last three days 

were used as prediction sets. 

 

Noise Analysis 

For each concentration level, short-term noise was evaluated by computing 100 % 

lines from each pair of consecutive spectra. These 100 % lines were converted to AU, 

and the wavenumber region of 4300-4500 cm-1 was fitted to a third-order polynomial 

model. The RMS noise was then computed about the polynomial fit to obtain the intrinsic 

measurement noise. The RMS noise calculated for the spectra collected over eight 

different days at 64 scans ranged from 9.1-22.6 µAU. The noise calculation was 

described previously in Chapter 3. These noise values are higher than the corresponding 

noise estimates reported in Chapter 4 because of the increased attenuation of the incident 

source energy caused by the presence of the protein films.  
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Optimization of Calibration Parameters  

The spectra collected on each day were put into separate blocks giving a total of 

five blocks for the complete calibration data set. Differential spectra were calculated by 

taking the ratios of all the combinations of single-beam spectra within a block. The PLS 

scores for these differential spectra were computed and were used as the patterns for the 

classification model. 

For the optimization of wavenumber range and model dimensionality, the 

calibration set was again partitioned into a training set and a monitoring set. The 

complete glucose concentration profile which was partitioned into training, monitoring, 

and prediction sets is shown in Figure 6.4 B. The training data included four days of data 

collection over a total time span of 10 days (i.e., days 1-10). The monitoring data were 

collected on day 11. Prediction sets 1, 2, and 3 were collected on days 21, 34, and 46.  

The mean single-beam spectra collected on the eight days of data collection are 

shown in Figure 6.8. As can be seen from the figure, the constant skin tissue phantom 

background during the data collection is further confirmed based on the similarities in the 

signal intensities for the eight days of data collection. In addition, it is clear that the light 

transmission is greatly attenuated at both the high- and low-frequency extremes with the 

greatest transmission in the center portion of the spectrum. Water is primarily responsible 

for attenuating the high-frequency and low-frequency radiation. The combination-region 

spectra possess an absorption feature around 4600 cm-1 and a sharp drop in transmitted 

light around 4400 cm-1. 

The training set consisted of 286 single-beam spectra and produced a total of 

9774 differential spectra. Spectra with differential concentrations of 0.0 mM were not 
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used. The grid search used to determine the optimal spectral range and number of PLS 

latent variables was based on sliding a window of fixed spectral width in 50 cm-1 

increments across the 4900-4100 cm-1 range. At each step, PLS models were constructed 

using 3-16 latent variables. The spectral widths studied were from 100 to 700 cm-1 in 50 

cm-1increments.  

As described in Chapter 4, a grid search was used to identify the optimal spectral 

ranges and corresponding number of latent variables for use in building PLS models for 

differential glucose concentrations. As before, the grid search was based on a cross-

validation calculation with spectra withheld in blocks of 10 %. An F-test at the 95% level 

was used to remove latent variables that did not significantly reduce the SECV. Table 6.1 

summarizes the four optimal wavenumber ranges and the relevant latent variables 

obtained with the grid search. Figure 6.9 plots the SECV with respect to the number of 

latent variables for the 4650-4250 cm-1 range that was identified as optimal by the grid 

search. The top wavenumber ranges include the key glucose absorption features near 

4400 and 4300 cm-1. Even though several of the spectral ranges found 16 latent variables 

as optimal, it was decided not to extend the search range further. As shown in Figure 6.9, 

the SECV values are changing only very slowly by the time the model size reaches 16.  
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Figure 6.8 Single-beam spectra collected for DS 1 over eight different days in the 
presence of the constant-thickness skin tissue phantom. 
 
 
 

Table 6.1 Results from grid search analysis of DS 1 
 

Wavenumber (cm-1) Latent variables SECV (mM) 

4650-4250 16 0.603 

4650-4200 15 0.616 

4650-4150 16 0.641 

4750-4300 15 0.726 
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Figure 6.9 Values of SECV with respect to the number of latent variables for the optimal 
wavenumber range of 4650-4250 cm-1.  
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Test of Monitoring Data  

The grid search analysis was used to identify the best possible wavenumber 

ranges and latent variables for use in the construction of classification models with 

PLDA. The performance of the monitoring set was tested with PLDA for the top four 

wavenumber ranges resulting from the grid search analysis and with latent variables 9-14.  

This range of latent variables was selected on the basis of preliminary experiments 

performed before the full study was attempted.  

The glucose concentration for the first spectrum in the monitoring set was 4.9 

mM. The difference between the alarm threshold concentration, for this study 3.0 mM, 

and the above mentioned reference concentration gave the critical concentration, a value 

of -0.9 mM. Partitioning the differential calibration spectra on the basis of this critical 

concentration led to 4781 and 4993 alarm and non-alarm patterns, respectively.  

Table 6.2 summarizes the percentage (average ± standard deviation) of missed 

and false alarms when three replicate classification models were built with PLDA. 

Because of the increased complexity of the spectral background, it was found that 

piecewise linear classifiers based on three discriminant functions were required. This is in 

contrast to the work described in Chapter 4 with the simpler sample matrix in which only 

a single discriminant function was required. 

The three discriminant functions from each of the replicate classifiers were 

applied to classify 26 alarm and 38 non-alarm concentrations in the monitoring set. More 

than one of the wavenumber and latent variable combinations showed the minimum 

percentage of missed and false alarms. The data separation with nine latent variables was 

low and the second and third discriminants also did not meet the single-sided requirement 
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discussed in Chapter 3. Because of these reasons, the wavenumber range of 4750-4300 

cm-1 and 10 latent variables were used as the optimal combination for the data prediction. 

This combination showed no missed or false alarms for the monitoring data set.  

The selection of 10 latent variables was based on the criterion defined previously 

of choosing the minimum model dimensionality that achieved equivalent performance to 

the best results. In this case, an argument could be made for a higher number of latent 

variables on the basis of an increased number of patterns separated in the training set 

(e.g., see the results in Table 6.2 for the 4750-4300 cm-1 range with 14 latent variables). 

However, if the performance of the classification model in prediction is considered, 

adding four additional latent variables (i.e., going from 10 to 14) does not improve 

performance. 

The glucose concentration profile for the monitoring set is given in Figure 6.10. 

The discriminant scores plot for the monitoring set for the optimal wavenumber and 

latent variable combination is given in Figure 6.11. 

The wavenumber range of 4750-4300 cm-1 and 10 latent variables was chosen as 

the optimal combination for use with the three prediction sets. The training set and the 

monitoring set were combined to form an overall calibration database. A total of 11,655 

differential spectra were computed from these data. As before, differential concentrations 

of 0.0 mM were not included. The region of 4750 to 4300 cm-1 in the differential spectra 

was decomposed into 10 PLS spectral loadings and loading weights. The corresponding 

PLS scores defined the pool of patterns used to implement the alarm algorithm with the 

three predictions sets.  
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Table 6.2 Average percentage of missed and false alarms for the monitoring  
set 
 

Spectral range  

(cm-1) 

Latent variables 

                             9                  10                 11             12                13                14    

4650-4250 

A.F (%)a ± S.D 

A.M (%)b ± S.D 

D.S (%)c ± S.D 

0.0 ± 0.0 

68.4 ± 31.6 

49.1 ± 2.0 

0.0 ± 0.0 

64.9 ± 24.5 

51.6 ± 0.5 

0.0 ± 0.0 

24.6 ± 28.9 

56.3 ± 1.4 

0.0 ± 0.0 

2.6 ± 4.6 

62.9 ± .4 

0.0 ± 0.0 

7.0 ± 6.6 

64.5 ± 0.7 

0.0 ± 0.0 

64.0 ± 34.8 

71.4 ± 0.7 

4650-4200 

A.F (%)a ± S.D 

A.M (%)b ± S.D 

D.S (%)c ± S.D 

0.0 ± 0.0 

52.6 ± 9.5 

40.0 ± 5.0 

0.0 ± 0.0 

43.9 ± 17.9 

60.0 ± 5.6 

0.0 ± 0.0 

20.2 ± 14.5 

55.3 ± 3.1 

0.0 ± 0.0 

21.1 ± 4.6 

62.0 ± 5.6 

0.0 ± 0.0 

1.8 ± 1.5 

  77.8 ± 1.3 

0.0 ± 0.0 

14.9 ± 14.5 

79.3 ± 1.9 

4650-4150 

A.F (%)a ± S.D 

A.M (%)b ± S.D 

D.S (%)c ± S.D 

0.0 ± 0.0 

80.7 ± 8.5 

41.8 ± 1.2 

0.0 ± 0.0 

58.8 ± 21.3 

46.0 ± 5.7 

0.0 ± 0.0 

35.9 ± 16.8 

55.6 ± 1.1 

0.0 ± 0.0 

16.7 ± 15.4 

54.7 ± 4.6 

0.0 ± 0.0 

27.2 ± 38.0 

57.7 ± 7.4 

0.0 ± 0.0 

57.0 ± 5.5 

58.9 ± 8.1 

4750-4300 

A.F (%)a ± S.D 

A.M (%)b ± S.D 

D.S (%)c ± S.D 

0.0 ± 0.0 

0.0 ± 0.0 

57.9 ± 1.2 

0.0 ± 0.0 

0.0 ± 0.0 

63.5 ± 1.3 

0.0 ± 0.0 

0.0 ± 0.0 

64.2 ± 1 

0.0 ± 0.0 

0.0 ± 0.0 

70.8 ± 1.3 

0.0 ± 0.0 

5.3 ± 5.3 

74.6 ± 2.5 

0.0 ± 0.0 

2.6 ± 2.6 

82.7 ± 3.4 

aAverage percentage of false alarms (AF) ± standard deviation. 

bAverage percentage of missed alarms (AM) ± standard deviation. 

cAverage percentage of separated alarm patterns with three discriminant functions 
(DS) ± standard deviation. 
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Figure 6.10  Glucose concentration profile for the monitoring set. The alarm threshold 
value was 3.0 mM. There were 26 and 38 non-alarm and alarm patterns in the monitoring 
set.  
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Figure 6.11 Discriminant score plot for the monitoring set. Discriminant scores are 
plotted for the three replicate classifiers. No missed or false alarms were observed. 
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Analysis of Prediction Sets 

 The data for the first prediction set (PS) were collected 10 days after the last 

calibration data collection day. The reference concentration for PS 1 was 4.8 mM and the 

critical concentration was -1.8 mM. The calibration PLS patterns were partitioned based 

on the critical concentration into 5795 alarm patterns and 5860 non-alarm patterns. 

Three replicate classifiers were computed with the calibration PLS patterns and 

the first three discriminants from each of the three replicates were applied for the alarm 

classification. As discussed in Chapter 4, the decision rule used was that a pattern was 

placed in the alarm class if two of the three replicate classifiers produced a positive 

discriminant score (i.e., classified it as an alarm pattern). 

Figure 6.12 shows the glucose concentration profile for PS 1 in which there were 

59 alarm patterns and 50 non-alarm patterns. These alarm and non-alarm patterns were 

classified 100% correctly using the calibration discriminants giving no missed or false 

alarms. The corresponding discriminant score plot is shown in Figure 6.13. The 

developed alarm algorithm was able to classify the alarm and non-alarm patterns in PS 1 

very effectively, even in the presence of the skin tissue phantom and the interfering 

component, urea. 

The 4th, 5th and 6th PLS scores for the prediction set were plotted together as 

shown in Figure 6.14 and clearly demonstrate the data separation between alarm and non-

alarm patterns. The first four PLS scores of the prediction set were plotted together with 

the corresponding maximum and minimum calibration PLS scores as shown in Figure 

6.15 A, B, C, and D. It is very clear that the prediction PLS scores are within the space 

defined by the calibration PLS scores, even though the prediction data were collected 10 
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days after the last calibration day. These plots further confirm the excellent data 

prediction. 

Data for PS 2 were collected 23 days after the last calibration day. The critical 

concentration for PS 2 was -1.0 mM. The data partitioning based on this critical 

concentration produced 7706 alarm patterns and 3949 non-alarm patterns. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 6.12  Glucose concentration profile for PS 1. The alarm threshold value was 3.0 
mM. There were 59 alarm and 50 non-alarm patterns in this data set.  
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Figure 6.13  Discriminant score plot for PS 1. Results from the three replicate classifiers 
are shown. No missed or false alarms were observed. 
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Figure 6.14 The 4th, 5th and 6th PLS scores plotted together for PS 1. Clear separation 
between the alarm and non-alarm patterns is observed.  
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Figure 6.15  Plot of PLS scores with respect to spectral sequence number for PS 1. The 
maximum and minimum PLS scores computed with the calibration differential spectra 
are plotted as the dashed lines. Panels A, B, C, and D correspond to the scores along 
latent variables 1, 2, 3, and 4, respectively. 
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Figure 6.16 shows the glucose concentration profile for PS 2 in which there were 

49 non-alarm patterns and 62 alarm patterns.  The resulting discriminant score plot is 

shown in Figure 6.17. There were no missed or false alarms using the first replicate 

classifier for the data prediction. There were no missed alarms and 1 false alarm using the 

second replicate classifier. The third replicate classifier predicted no missed alarms and 

12 false alarms. However, applying the alarm decision rule described previously, there 

were no missed alarms and one false alarm for the three replicate classifiers employed.   

The third, fourth and fifth PLS scores for PS 2 were plotted together to see the 

differences in the regions in the data space occupied by the alarm and non-alarm patterns. 

The three PLS scores plotted together in Figure 6.18 clearly demonstrate the different 

regions for the alarm and non-alarm patterns. The first four PLS scores of PS 2 were 

plotted together with the corresponding maximum and minimum calibration PLS scores 

as shown in Figure 6.19. It is clear that the prediction PLS scores are within the space 

defined by the calibration PLS scores, even after a time lag of 23 days. These plots 

further confirm the excellent prediction results. 

The data for PS 3 was collected 35 days after the last calibration day. The critical 

concentration was -0.8 mM, which partitioned the calibration database into 8139 alarm 

patterns and 3516 non-alarm patterns. Figure 6.20 shows the glucose concentration 

profile for PS 3 in which there were 22 non-alarms and 43 alarms.  

There were no missed and one false alarm using the first replicate classifier for 

the data prediction. There were no missed alarms and three false alarms using the second 

replicate classifier. The third replicate classifier predicted no missed alarms and three 

false alarms. However, applying the alarm decision rule described previously, there were 
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no missed alarms and three false alarms for the three replicate classifiers employed. The 

discriminant score plot is shown in Figure 6.21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 6.16  Glucose concentration profile for PS 2. The alarm threshold value was 3.0 
mM. There were 62 alarm and 49 non-alarm patterns in this data set.  
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Figure 6.17  Discriminant score plot for PS 2. Results from the three replicate classifiers 
are shown. No missed alarms and one false alarm were observed when the classification 
rule was applied based on two out of three classifiers placing the pattern in the alarm 
class.  
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Figure 6.18 The 3rd, 4th and 5th PLS scores plotted together for PS 2. Clear separation 
between the alarm and non-alarm patterns is observed.  
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Figure 6.19  Plot of PLS scores with respect to spectral sequence number for PS 2. The 
maximum and minimum PLS scores computed with the calibration differential spectra 
are plotted as the dashed lines. Panels A, B, C, and D correspond to the scores along 
latent variables 1, 2, 3, and 4, respectively. 
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The second, third and fourth PLS scores for PS 3 were plotted together to see the 

differences in the regions of the data space occupied by the alarm and non-alarm patterns. 

The three PLS scores plotted together in Figure 6.22 clearly show the different regions 

for the alarm and non-alarm patterns. The first four PLS scores of PS 3 were plotted 

together with the corresponding maximum and minimum calibration PLS scores as 

shown in Figure 6.23. It is clear that the prediction PLS scores are within the space  

defined by the calibration PLS scores even after a lag of 35 days. These plots further 

confirm the excellent prediction results. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 6.20  Glucose concentration profile for PS 3. The alarm threshold value was 3.0 
mM. There were 43 alarm and 22 non-alarm patterns in this data set. 
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Figure 6.21  Discriminant score plot for PS 3. Results from the three replicate classifiers 
are shown. No missed alarms and three false alarms were observed when the 
classification rule was applied based on two out of three classifiers placing the pattern in 
the alarm class.  
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Figure 6.22  The 2nd, 3rd and 4th PLS scores plotted together for PS 3. Clear separation is 
noted between the data classes. 
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Figure 6.23  Plot of PLS scores with respect to spectral sequence number for PS 3. The 
maximum and minimum PLS scores computed with the calibration differential spectra 
are plotted as the dashed lines. Panels A, B, C, and D correspond to the scores along 
latent variables 1, 2, 3, and 4, respectively.  
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Analysis of Dynamic System 2 

Data for the second dynamic study were collected in four sessions that spanned 18 

days. The single-beam spectra collected over these four days are shown in Figure 6.24. 

As can be seen from the figure, the tissue phantom thickness variations during the data 

collection induce differences in the signal intensities. Compared to Figure 6.8, the 

absorbance feature around 4600 cm-1 and a sharp drop in transmitted light around 4400 

cm-1 are not as intense since the films used for this study were comparatively thinner.  

Figure 6.25 is a principal component score plot generated from the single-beam spectra. 

Clusters of points in the principal component space correspond to the different 

combinations of gelatin and keratin film positions. Depending on the film orientation 

used for the spectral collection, the PC scores show different clustering, too. 

 

Noise Analysis 

 A total of 574 single-beam spectra were collected over the four days. After 

removing spectra corresponding to changes in pump speed, 460 spectra remained. All the 

refined spectra for the first day and the first part of the second day were used as the 

calibration set while the data for the last part of the second day and all the data in the 

third and fourth days were used as the prediction sets. For each concentration level, the 

short term noise was evaluated as described previously. The RMS noise calculated for 

consecutive pairs of spectra ranged from 6.3- 22.3 µAU. 
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Figure 6.24 Single-beam spectra collected for DS 2. The skin tissue phantom had 
different orientations during the data collection.  
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Figure 6.25  Principal component score plot computed from the single-beam spectra in 
DS2. Spectra were mean-centered before the calculation and the 4200 to 4900 cm-1 range 
was used. The first two principal components account for 99.8 % of the data variance. 
Clusters in the figure correspond to the different combinations of the gelatin and keratin 
films. 
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Optimization of Calibration Parameters  

The spectra collected in each day were put into different blocks giving a total of 

two blocks for the calibration set. As before, differential spectra were calculated by 

taking the ratios of all the combinations of single-beam spectra within each block. The 

PLS scores for these differential spectra were computed and were used as the patterns for 

the classification model. 

For the optimization of wavenumber and model dimensionality, the calibration set 

was again partitioned into a training set and a monitoring set. The complete glucose 

concentration profile which was partitioned into training, monitoring, and three 

prediction sets is shown in Figure 6.7 B. The training set consisted of 174 single-beam 

spectra collected over two sessions. The calculation of differential spectra produced 7548 

spectra after removing spectra with differential concentrations of 0.0 mM. 

The same procedures described previously were used with the calibration data to 

identify optimal combinations of the spectral range and number of PLS latent variables. 

Cross-validation results based on computed SECV values were again used as the basis for 

choosing the best model parameters. Table 6.3 summarizes the five optimal wavenumber 

ranges and the corresponding numbers of latent variables. The top wavenumber ranges 

encompass the important glucose C-H combination band at 4400 cm-1.   

The grid search analysis was used to identify the best wavenumber ranges and 

latent variables for use in the construction of classification models with PLDA. Figure 

6.26 plots the SECV with respect to the number of latent variables for the 4650-4250 cm-

1 range that was found to be optimal in the grid search. Comparison of this plot with 

Figure 6.9 reveals the greater difficulty of modeling the glucose concentration in DS 2 
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relative to DS 1. Possible extension of the grid search past 16 latent variables is also 

suggested by this plot.  

 

Test of Monitoring Data  

The performance of the monitoring set with PLDA was then tested with the five 

wavenumber ranges listed in Table 6.3. The work with PLDA examined each spectral 

range over 12-16 latent variables. This selection of the range of latent variables was made 

on the basis of preliminary trials with the data from DS 2. 

The glucose concentration for the first spectrum in the monitoring set was 3.4 

mM. This produced a critical concentration of -0.4 mM and led to 5966 and 1582 

differential spectra, respectively, in the alarm and non-alarm data classes. 

 

Table 6.3 Results from grid search analysis of DS 2 
 

Wavenumber (cm-1) Latent variables SECV (mM) 

4650-4300 16 0.882 

4700-4300 16 0.902 

4700-4250 16 0.953 

4750-4250 16 0.995 

4800-4250 16 1.036 
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Figure 6.26  Plot of SECV with respect to the number of latent variables for the optimal 
wavenumber range of 4650-4300 cm-1 . 
 
 
 

For each combination of spectral range and 12-16 latent variables, three replicate 

classifiers were computed based on three discriminant functions. Table 6.4 summarizes 

the percentage (average ± standard deviation) of missed and false alarms obtained when 

the computed classifiers were applied to the 34 alarm and 15 non-alarm patterns in the 

monitoring set 

The wavenumber range of 4700-4300 cm-1 and 13 PLS factors were used as the 

optimal combination of parameters on the basis of the minimum number missed and false 
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glucose concentration profile for the monitoring set is given in Figure 6.27. The plot of 

discriminant scores for the optimal wavenumber and latent variable combination is given 

in Figure 6.28. 

 

 

Table 6.4  Average percentage of missed and false alarms for the monitoring  
set  

    aAverage percentage of missed alarms (AM) ± standard deviation. 

    bAverage percentage of false alarms (AF) ± standard deviation. 

      cAverage percentage of separated alarm patterns with a single discriminant  
    (DS) ± standard deviation 
 

Spectral 

range 

 (cm-1) 

 Latent variables 

        12                13                  14                15                      16               

4650-4300 

A.F (%)b ± S.D 

A.M (%)a ± S.D 

D.S (%)c ± S.D 

0.0 ±0.0 

66.7 ± 57.3 

64.2 ± 3.2 

0.0 ± 0.0 

100.0 ± 0.0 

67.3 ± 2.7 

0.0 ± 0.0 

100.0 ± 0.0 

56.5 ± 8.0 

0.0 ± 0.0 

88.2 ± 5.9 

68.6 ± 2.0 

0.0 ± 0.0 

87.3 ± 19.6 

73.0 ± 4.7 

4700-4300 

A.F (%)b ± S.D 

A.M (%)a ± S.D 

D.S (%)c ± S.D 

0.0 ± 0.0 

21.5 ± 23.8 

67.3 ± 3.3 

0.0 ± 0.0 

0.0 ± 0.0 

69.1 ± 2.3 

0.0 ± 0.0 

73.5 ± 18.4 

59.9 ± 5.0 

0.0 ± 0.0 

95.1 ± 8.5 

   67.8 ± 3.8 

0.0 ± 0.0 

56.9 ± 4.5 

   63.9 ± 1.0 

4700-4250 

A.F (%)b ± S.D 

A.M (%)a ± S.D 

D.S (%)c ± S.D 

   0.0 ± 0.0 

32.4 ± 22.2 

58.9 ± 5.7 

0.0 ± 0.0 

19.6 ± 14.5 

64.6 ± 8.1 

0.0 ± 0.0 

18.6 ± 16.2 

56.9 ± 13.9 

0.0 ± 0.0 

1.9 ± 1.7 

65.8 ± 8.7 

0.0 ± 0.0 

35.3 ± 15.6 

67.0 ± 4.2 

 

4750-4250 

A.F (%)b ± S.D 

A.M (%)a ± S.D 

D.S (%)c ± S.D 

0.0 ± 0.0 

93.1 ± 11.8 

62.9 ± 2.5 

0.0 ± 0.0 

94.1 ± 10.1 

62.2 ± 6.2 

0.0 ± 0.0 

97.1 ± 5.1 

72.7 ± 6.3 

0.0 ± 0.0 

66.7 ± 19.6 

67.2 ± 7.5 

0.0 ± 0.0 

67.7 ± 37.0 

72.6 ± 4.0 

 

4800-4250 

A.F (%)b ± S.D 

A.M (%)a ± S.D 

D.S (%)c ± S.D 

0.0 ± 0.0 

20.6 ± 25.6 

65.1 ± 0.9 

0.0 ± 0.0 

9.8 ± 10.3 

69.8 ± 1.2 

0.0 ± 0.0 

20.6 ± 18.4 

66.0 ± 2.3 

0.0 ± 0.0 

2.9 ± 2.9 

70.9 ± 3.4 

0.0 ± 0.0 

3.9 ± 3.4 

67.2 ± 2.4 
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Figure 6.27  Glucose concentration profile for the monitoring set. The alarm threshold 
value was 3.0 mM. There were 15 non-alarms and 34 alarm patterns.  
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Figure 6.28 Discriminant score plot for the monitoring set. Results from the three 
replicate classifiers are shown. There were no missed or false alarms. 
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 The wavenumber range of 4700-4300 cm-1 and 13 latent variables were used as 

the optimal combination for application to the three prediction sets. The training set and 

the monitoring set were combined to form the full calibration set. Blocks were again 

defined on the basis of the day of data collection. A total of 12,173 differential spectra 

were obtained after removal of spectra with differential concentrations of 0.0 mM. The 
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optimal wavenumber range of the differential spectra was decomposed into 13 spectral 

loadings and corresponding loading weights. Patterns were defined on the basis of the 13 

PLS scores. The data for the first prediction set of DS 2 (PS 4) were collected on the 

second day of data collection (day 3 out of the total of 18 days).Two different tissue 

phantom orientations were used in the collection of these prediction spectra. These 

orientations were also used in the collection of some of the calibration spectra.  This 

simulates a scenario in which there is variation in the tissue composition but this variation 

has been captured in the calibration data. 

The reference concentration for PS 4 was 3.8 mM and the critical concentration 

was -0.8 mM. The calibration PLS patterns were partitioned based on the critical 

concentration into 6558 alarm patterns and 5615 non-alarm patterns. Three replicate 

classifiers were computed with the calibration PLS patterns and the first three 

discriminants from each of the three replicates were applied to the classification of the 

patterns in PS 4. 

Figure 6.29 shows the glucose concentration profile for PS 4 in which there were 

31 alarm patterns and 34 non-alarm patterns. These alarm and non-alarm patterns were 

classified 100% correctly using the calibration discriminants giving no missed or false 

alarms. The corresponding discriminant score plot is shown in Figure 6.30. The 

developed alarm algorithm was able to classify the alarm and non-alarm patterns in PS 4 

very effectively, even in the presence of the skin tissue phantom that employed different 

thicknesses during the data collection and in the presence of the urea interferent. 

The 1st, 2nd and 3rd PLS scores for the prediction set were plotted together as 

shown in Figure 6.31 and clearly demonstrate the data separation between the alarms and 
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non-alarms. For a successful data classification, the space explained by the prediction 

PLS scores should be within that of the corresponding calibration scores. The first three 

PLS scores for the calibration set and PS4 are plotted together in Figure 6.32. It can be 

observed that the calibration and prediction patterns occupy the same space 

The first four PLS scores of PS 4 were plotted together with the corresponding 

maximum and minimum calibration PLS scores as shown in Figure 6.33. It is clear that 

the prediction PLS scores are within the space defined by the calibration scores. These 

plots confirm the excellent prediction results. 

Data for the second prediction set (PS 5) were collected 9 days after the collection 

of the last calibration data. Five different orientations of the gelatin and keratin films 

were used during the data collection. All of these orientations were used in the collection 

of the calibration data.  

The critical concentration for PS 5 was -0.6 mM. The data partitioning based on 

this critical concentration produced 8017 alarm patterns and 4156 non-alarm patterns. 

Figure 6.34 shows the glucose concentration profile for PS 5 in which there were 38 non-

alarm and 32 alarm patterns. The resulting discriminant score plot is shown in Figure 

6.35. There were 10 missed alarms and no false alarms using the first replicate classifier. 

The second replicate classifier produced one missed alarm and twelve false alarms, while 

the third classifier had seven missed alarms and no false alarms. Applying the committee 

decision rule described previously, there were seven overall missed alarms and one false 

alarm. This corresponds to 78 % correct detection of the alarm events and a false 

detection percentage of 2.6 %.  
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The third, fourth and fifth PLS scores for PS 5 were plotted together to see the 

differences in the regions in the data space occupied by the alarm and non-alarm patterns. 

The three PLS scores plotted together in Figure 6.36 show different regions for the alarm 

and non-alarm patterns.  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 6.29  Glucose concentration profile for PS 4. The alarm threshold was 3.0 mM. 
There were 31 non-alarm and 34 alarm patterns, respectively. 
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Figure 6.30  Discriminant score plot for PS 4. Results from the three replicate classifiers 
are shown. There were no missed or false alarms.  
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Figure 6.31  The 1st, 2nd and 3rd PLS scores plotted together for PS 4. Clear separation is 
noted between the alarm and non-alarm patterns.  
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Figure 6.32 First three PLS scores plotted for the calibration data set and PS4. Clear 
overlap of the patterns is noted. This verifies that the calibration and prediction data are 
consistent.  
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Figure 6.33  Plot of PLS scores with respect to spectral sequence number for PS 4. The 
maximum and minimum PLS scores computed with the calibration differential spectra 
are plotted as the dashed lines. Panels A, B, C, and D correspond to the scores along 
latent variables 1, 2, 3, and 4, respectively.  
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The first three PLS scores for the calibration set and PS5 are plotted together in 

Figure 6.37. It can be noted that the two data groups occupy the same space, indicating 

good agreement between the calibration and prediction data. 

The first four PLS scores of the prediction set were plotted together with the 

corresponding maximum and minimum calibration PLS scores as shown in Figure 6.38. 

The PLS scores for the prediction data fall within the data space defined by the 

calibration.   

The data in Figures 6.36, 6.37 and 6.38 suggest the classification results should be 

better than the actual results observed. The plot of discriminant scores in Figure 6.35 

reveals that five of the seven missed detections occur in a contiguous range of spectra. 

These missed alarms correspond to spectra collected just after the film orientation was 

changed. There might have been a disturbance to the experimental setup because of this 

manual change. This was further confirmed by applying PCA to the set of single-beam 

spectra collected in this film orientation. The PC scores in Figure 6.39 clearly 

demonstrate the differences in the first set of spectra just after the film orientation was 

changed (sequence numbers 55-59 in the figure). This leads to a different pattern 

orientation for this group of spectra. Because the calibration data are used in the 

positioning of the discriminant boundaries, mismatches between the pattern orientations 

in the calibration and prediction data spaces can lead to imprecisely placed boundaries. 

This may be causing the lower classification performance with PS 5. 
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Figure 6.34  Glucose concentration profile for PS 5. The alarm threshold was 3.0 mM, 
and there were 64 non-alarm and 38 alarm patterns.  
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Figure 6.35  Discriminant score plot for PS 5. Discriminant scores are displayed for each 
of the three replicate classifiers. When the committee classification rule was applied, 
there were seven missed detections and one false alarm. The missed alarms that resulted 
from the application of the committee rule are circled in the figure. 
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Figure 6.36  The 3rd, 4th and 5th PLS scores plotted together for PS 5. The alarm and non-
alarm patterns are clearly separated.  
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Figure 6.37  First three PLS scores plotted for the calibration data set and PS5. Clear 
overlap of the patterns is noted. This verifies that the calibration and prediction data are 
consistent.  
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Figure 6.38  Plot of PLS scores with respect to spectral sequence number for PS 5. The 
maximum and minimum PLS scores computed with the calibration differential spectra 
are plotted as the dashed lines. Panels A, B, C, and D correspond to the scores along 
latent variables 1, 2, 3, and 4, respectively. 
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Figure 6.39 Principal component score plot computed from the last set of spectra 
collected in PS 5 (spectra 55-70).Spectra were mean-centered before the calculation and 
the 4200 to 4900 cm-1 range was used. The first three principal components account for 
99.6 % of the data variance. The spectra collected immediately after the manual change 
of film orientation have a different variance from the rest (spectra 55-59). 
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The data for the third prediction set (PS 6) were collected on day 18, 15 days  

after the last calibration data. The tissue phantom orientations used with this prediction 

set were completely different from those used on the calibration days. This simulates a 

possible scenario in in vivo experiments in which a measurement site on the tissue is used 

whose spectral background has not been precisely captured during the collection of the 

calibration data.  

The critical concentration for PS 6 was -0.6 mM which yielded 8017 alarm 

patterns and 4156 non-alarm patterns when the calibration database was partitioned. 

Figure 6.40 shows the glucose concentration profile for PS 6 in which there were 38 non-

alarm and 64 alarm patterns. The resulting discriminant score plot for PS 6 is shown in 

Figure 6.41. There were no missed alarms and no false alarms using the first replicate 

classifier for the data prediction. There were no missed alarms and eight false alarms 

using the second replicate classifier. The third replicate classifier predicted no missed 

alarms and sixteen false alarms. When the committee classification rule was applied, 

there were no missed alarms and eight false alarms. This corresponded to successful 

detection of 100% of the alarm events with 21 % false alarms. 

The first, second and third PLS scores for PS 6 are plotted together in Figure 6.42. 

As observed previously, there are different regions allocated to the alarm and non-alarm 

patterns. The calibration PLS scores are plotted together with the PS6 PLS scores in 

Figure 6.43. In this case, it can be seen that some PS 6 patterns have PLS scores that are 

outside the space defined by the calibration scores. This again illustrates that 

unpredictable results may be obtained when the calibration data do not adequately 
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encompass the prediction data. In Figure 6.44, the first four PLS scores are plotted 

together with the corresponding maximum and minimum calibration scores. 

 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 6.40  Glucose concentration profile for PS 6. The alarm threshold was 3.0 mM, 
and there were 64 and 38 alarm and non-alarm patterns, respectively. 
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Figure 6.41  Discriminant score plot for PS 6. Discriminant scores for each of the three 
replicate classifiers are shown.  
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Figure 6.42 The 1st, 2nd and 3rd PLS scores plotted together for PS 6.  
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Figure 6.43  Second, third and fourth PLS scores plotted for the calibration data set and 
PS6. The PS 6 scores are not completely overlapped with the calibration scores as noted 
before. 
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Figure 6.44  Plot of PLS scores with respect to spectral sequence number for PS 6. The 
maximum and minimum PLS scores computed with the calibration differential spectra 
are plotted as the dashed lines. Panels A, B, C, and D correspond to the scores along 
latent variables 1, 2, 3, and 4, respectively. 
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Conclusions 

In this chapter, the nocturnal hypoglycemic alarm algorithm presented in Chapter 

3 was tested with two in vitro simulation studies that served to mimic glucose excursions 

in the human body. These studies incorporated a tissue phantom composed of two main 

protein components present in human skin tissue, collagen (gelatin) and keratin.  In 

addition to that, variable levels of urea were used as an overlapping spectral component.  

The first dynamic study was comparatively simple in that the tissue phantom 

orientation was kept constant throughout the multiple days of data collection. The 

nocturnal hypoglycemic alarm algorithm performed well with all three prediction sets. 

There were no missed alarms and a total of four false alarms out of 121 non-alarm spectra 

across the three prediction sets. The false alarm rate was 3.3 %.  

The second dynamic study was more complex as the tissue phantom orientation 

was changed throughout the data collection to nine different combinations of the gelatin 

and keratin films. This produced more complex data and simulated the case in which an 

in vivo measurement might be made across multiple locations on the body. The data were 

collected over multiple days and the hypoglycemic alarm algorithm performed well with 

the first of the three prediction sets, giving no missed or false alarms. However, the 

second and third prediction sets resulted in a total of seven missed alarms and eight false 

alarms. The overall recognition of the alarm events in the three prediction sets was 92.7 

% while the false alarm rate was 7.9%.  

Especially for the third prediction set, there was evidence that differential spectra 

in the prediction set were not well characterized by the calibration data. This underscores 

the importance of one of the key assumptions made when multivariate models are built: 
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the calibration data used to define the model coefficients must be accurate in representing 

the prediction data to which the model will be applied in the future. If this assumption is 

not correct, unpredictable results will be obtained in prediction.  

The results presented in Chapters 4 and 6 clearly demonstrate that the proposed 

hypoglycemic alarm algorithm can function well in increasingly complex matrixes as 

long as the calibration data are representative of the data used for future predictions. 

These results also illustrate the importance of using replicate classification models and 

pooling their results to reach a decision regarding the data class of an unknown pattern. 

The utility of differential spectra to expand the data space of the available calibration 

spectra was also demonstrated. While the calculation of the differential spectra can also 

help to remove common background features, this simplification of the data does not 

occur when the background changes after the collection of the reference spectrum used to 

initialize the alarm algorithm. This was the case in the prediction data from DS 2 in 

which the orientations of the protein films were changed after the reference spectrum was 

defined. These concepts will be explored further in Chapter 7 in which a rat animal model 

is used to implement a true noninvasive measurement through tissue.   
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CHAPTER 7 
 
IN VIVO SIMULATION STUDIES FOR THE DEVELOPMENT OF A NOCTURNAL 

HYPOGLYCEMIC ALARM ALGORITHM BASED ON NEAR-INFRARED 

SPECTROSCOPY 

 

Introduction 

Chapters 4, 5, and 6 discussed in detail in vitro simulation approaches for use in 

testing the proposed noninvasive nocturnal hypoglycemic alarm algorithm. The work 

described in this chapter extends the testing of the alarm methodology to the use of an 

animal model to implement true in vivo noninvasive blood glucose measurements.  

Animal models provide a useful bridge between in vitro studies and ultimate 

testing with human subjects. An appropriate animal model allows the simulation of 

noninvasive human measurements and can provide key information to aid the 

development of a successful noninvasive glucose sensing technology. Animal models 

give the freedom to control several important parameters of the study, such as the range 

of in vivo glucose concentrations and the time, rate and the direction of glucose 

concentration changes.88  

 

Optical Path Length Variation 

One of the additional complexities that becomes important in moving from the in 

vitro studies described previously to the in vivo measurements discussed in this chapter is 

the issue of variation in optical path length. In the in vitro work, glucose was always 
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present in a sample cell with a fixed path length. For the in vivo work, however, a fixed 

aqueous path length for the glucose molecules cannot be guaranteed.  

Glucose in living tissue can be found in intra- and extracellular fluids as well as in 

capillary blood. The living tissue also contains a significant amount of non-aqueous 

material. The tissue structure can thus be considered to contain an aqueous layer in which 

glucose is present and a solid or non-aqueous layer in which there is essentially no 

glucose that is accessible to the NIR measurement. Both layers are present within the 

optical path, but the effective path length of the aqueous layer determines the glucose 

sensitivity.  

The Beer-Lambert law dictates that the product of concentration, path length, and 

molar absorptivity determines the measured absorbance at any given wavelength. 

Changes in the aqueous path length thus have a direct impact on a predicted glucose 

concentration or alarm decision derived from an in vivo measurement. In an in vivo 

absorbance measurement made relative to an open-beam air background, a path length 

estimate has to be made to correct for any variation in path length arising from changes in 

the measurement site or in the amount of tissue sampled.  

One of the advantages of the differential spectrum calculation employed in this 

research is that path lengths are normalized to the reference spectrum and associated 

reference concentration obtained at the beginning of the sleep period. As long as path 

length variation is minimal after the reference spectrum is taken, the effect of path length 

changes on the alarm decision produced by the classification model is minimal.  
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Measurement Site 

Another complexity associated with the in vivo application is the choice of tissue 

measurement site. Several issues impact this choice. The sensitivity of a transmission 

measurement is directly proportional to the length of the aqueous path in which the 

glucose molecules reside. Assuming constant noise, if there are more glucose molecules 

to absorb the incident light, the spectral features related to glucose will be easier to 

distinguish from those of background variance and noise. Multi-scattered photons will 

also effectively increase the optical path length.9 Thus, selection of a measurement site 

that maximizes the aqueous path length is important.  

The highly absorbing nature of water, as well as the absorbing and scattering 

properties of the tissue matrix, place limits on the thickness of tissue that can be sampled 

with currently available light sources. Spectral noise is typically dominated by the 

intrinsic noise of the detector, and thus maximizing the light throughput provides the 

easiest route to improving the signal-to-noise ratio (SNR) of the measurement. Thus, 

achieving both good sensitivity and a high SNR dictates a measurement site in which the 

aqueous component is as large as possible and the presence of other absorbing or 

scattering species is minimized.77 As an example, fatty tissue possesses strong absorption 

bands near the glucose absorption bands at 4400 cm-1 and 4300 cm-1 in the combination 

region of the NIR spectrum. Thus, the presence of fat decreases the SNR at important 

wavelengths used to quantify the glucose absorbance. For this reason, any successful data 

collection procedure should be focused on minimizing the presence of fatty tissue.77  

The thin skin on the upper shoulder area of Sprague Dawley rats was used in the 

work discussed in this chapter to simulate noninvasive human measurements. The rat 
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skin absorption spectrum given in Figure 7.1 clearly shows the small absorption features 

around 4300 cm-1 related to fatty tissue. An absorbance spectrum for human skin on the 

back of the hand is also displayed in Figure 7.1 and shows a similar shape to the spectrum 

collected from the rat skin tissue. The similarities in the shapes of the spectra indicate that 

the main chemical components are present in reasonably similar amounts. Arnold et al. 

reported that the differences in the absorbance values between human and rat tissue 

spectra are related to differences in light scattering by the skin tissue. It was further 

reported that the scattering in the rat skin tissue is typically higher than that of human 

tissue. This can be seen by the higher absorbance values across the spectral range in 

Figure 7.1.10 

 

Overview of Rat Measurements 

The results discussed in this chapter are based on two types of in vivo studies: (1) 

single-day experiments with anaesthetized rats and (2) multiple-day experiments with 

awake rats. The basic protocol for the nocturnal hypoglycemic data collection was 

designed to characterize the changes in skin spectra associated with hypoglycemia. This 

was accomplished by controlling blood glucose levels with a glucose clamp technique 

and collecting noninvasive spectra trough a fiber-optic interface. Rats fasted overnight to 

minimize glucose fluctuations before the data collection began and glucose transients 

were induced. Selected hypo- and hyperglycemic levels were maintained by delivering 

glucose or insulin as required. The lowest targeted hypoglycemic levels were around 2.5 

mM (45 mg/dL). Spectra were collected continuously and were then used for 

implementing the nocturnal alarm algorithm as described in Chapter 3. 
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Animal models with multiple days of data collection were desired to build more 

robust sets of calibration data and also allow true external prediction outside the time 

span of the calibration. This creates a scenario much closer to a desired implementation 

protocol with a human subject. In between measurement days there may be variances 

associated with the skin tissue thickness, interface positioning etc. Multiple-day 

experiments allow the incorporation of these sources of variance into the study. The data 

discussed in this chapter allow a realistic assessment of the potential for implementing 

the proposed nocturnal hypoglycemic alarm with human subjects. 

 

 

 

 

 

 

 

  

 

 

 

 
 
 
Figure 7.1.  Noninvasive absorbance spectra relative to air collected from human (green) 
and rat (red) skin. The similarity in spectral shapes confirms the tissue composition is 
similar. The increased absorbance of the rat tissue across the spectral range suggests a 
higher degree of light scattering. 
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Experimental Methods 

The in vivo measurements described below represent work performed jointly with 

our collaborators in the Arnold research group at the University of Iowa. The specific 

experiments described here represent a subset of an overall data collection effort related 

to noninvasive glucose measurements in the rat model. The data selected for use in 

testing the hypoglycemic alarm methodology were chosen on the basis of having glucose 

excursions above and below the targeted alarm threshold of 3.0 mM. 

 

Reagents 

Pentobarbital sodium injection solution (Ovation Pharmaceuticals, Deerfield, IL) 

was used to anesthetize rats. Dextrose (50 %, IVX Animal Health Inc., St. Joseph, MO) 

was used as the glucose injection solution. The solvent for insulin and heparinized saline 

was 0.9 % sodium chloride injection solution (saline) (Baxter Healthcare, Deerfield, IL). 

A 0.5 unit insulin injection solution was prepared by diluting 100 units/mL regular 

human insulin injection solution, Novoline® (Novo Nordisk Inc. Princeton, NJ). The 

insulin injection solution was prepared by mixing 0.075 mL Novolin® in 14.925 mL 

saline. The heparinized saline was prepared by mixing 1 mL of 1000 USP units heparin 

sodium in 49 mL of saline (American Pharmaceutical Partners, Inc., Schaumburg, IL). A 

2 % Lidocaine HCL solution (Abbott Laboratories, Chicago, IL) was used topically 

during surgery for infiltration and nerve block. All reagents were obtained from the 

University of Iowa Hospitals and Clinics (UIHC) pharmacy. All procedures were 

approved by the University of Iowa Animal Care and Use Committee (ACURF # 

0507182). 
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Surgical Procedures 

Adult male Sprague-Dawley rats (retired breeders, weighing ~ 400 g) were used 

as the animal model in this work. A skin fold on the back neck of the rats was used as the 

spectral collection site based on previous work published by the Arnold research group.10 

As discussed previously, the similarities between the skin fold of the back of the human 

hand and the rat neck can be clearly seen in the spectra displayed in Figure 7.1. Rats were 

allowed to fast overnight before the experiment to allow a stable initial blood glucose 

concentration to be achieved.  

The rat was anesthetized before the surgery by injecting a dosage of 50 mg/kg of 

pentobarbital sodium injection solution. For the single-day non-survival rat data 

collection, the anesthesia during the experiment was maintained by regulating a dosage of 

25 mg/kg-hour pentobarbital. Hair on the upper back and femoral area was removed. 

During the surgery, two catheters were cannulated into a femoral vein and artery. The 

venous catheter was used for the infusion of glucose, insulin, saline and anesthetic. The 

arterial catheter was used for sampling reference blood samples.  

After the surgery, the animal was transferred to the spectroscopy station, and the 

body temperature was maintained at 38.3 °C by a closed-loop temperature controller R/S 

68900 (Barnant Co., Port Huron, MI). Supplemental oxygen was provided at a rate of 1.5 

L/hour. For the single-day non-survival experiments, a mouseOX® pulse oximeter probe 

(STARR Life Sciences, Oakmount PA) was attached to the leg of the rat to monitor its 

pulse rate, pulse distention and oxygen saturation.  

For the first rat used in the multiple day-data collection, a survival surgery was 

performed. Most of the surgical procedure was the same as described above. Two 
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catheters (Strategic Applications, Inc., Libertyville, IL) were inserted into the femoral 

artery and vein, respectively. The rest of the tubing was placed underneath the skin and 

the other end of the catheter was taken out from the skin on the back of the rat. This end 

of the catheter was then connected with one vascular access port (Strategic Applications, 

Inc.). The two ports were then sutured subcutaneously and wounds on the back and leg 

areas were also sutured. Once installed, the ports could be used for frequent arterial blood 

sampling and venous infusion. The mouseOX® pulse oximeter probe was attached to the 

tail of the rat to monitor its pulse rate, pulse distention, and oxygen saturation.  

The second rat used in the multiple-day data collection was supplied with ports 

already inserted by Charles River Laboratories International Inc. (Chicago, IL). Other 

procedures used with this rat were as described above.  

 

Instrumentation and Procedures 

A Nicolet 670 FT spectrometer (Nicolet Analytical Instruments, Madison, WI) 

was used to collect the skin tissue spectra from the rats. Figure 7.2 displays a schematic 

of the instrumental setup. A 50-W tungsten-halogen light bulb (Gilway Technical Lamp, 

Peabody, MA) with an integrated, gold-coated reflector was used as the external light 

source. An E3633A 200-watt DC power supply (Agilent Technology, Van Nuys, CA) 

was used to keep the voltage of the light bulb at 12.00 V. The light from the spectrometer 

was brought to the skin tissue using a custom sapphire-rod interface. Another sapphire-

rod interface was used to guide the transmitted light to an external detector. These 

interfaces contained two pieces of 3-mm-diameter sapphire rods, one for guiding the 

source interferogram to the skin tissue and the other for transporting the transmitted light 
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to the detector. Collected light was detected by a two-stage thermoelectrically cooled 

extended-wavelength InGaAs detector with a diameter of 1 mm and a 2.6-μm cutoff 

(Judson Technologies, Montgomeryville, PA). A low-noise transimpedance amplifier 

(Femto Messtechink GmbH, Berlin, Germany) was used to amplify the current signal. A 

K-band interference filter was used in the optical path to restrict the spectral range to 

5000 to 4000 cm-1. Figures 7.3 B and D display images of the experimental setup and the 

sampling interface, respectively.  

Spectra were collected at a resolution of 8 cm-1 with 128 co-added scans for the 

data for the first rat discussed in this chapter and 32 scans for the data for all the other 

rats discussed. Each spectrum based on 128 scans required slightly more than 60 seconds 

for collection while for 32 scans it was close to 15 seconds. The interferograms were 

Fourier processed to single-beam spectra with triangular apodization, standard Mertz 

phase correction, and one level of zero filling. The resulting spectral point spacing was 

1.928 cm-1. 

The rat positioned in the sampling interface for the single day non-survival studies 

is shown in Figures 7.3 C and D. Two metal blocks having central holes were glued onto 

the skin tissue to help fix the tissue sample in position and consequently minimize the impact 

of unconscious movement on spectral quality. Initially, spectra were collected without 

glucose or insulin perfusion and only saline was perfused to prevent dehydration. Since the 

animal had fasted overnight, the initial blood glucose reference values had minor 

fluctuations. The infusion rate was adjusted according to the body mass of the rat and the 

blood glucose value. Glucose and insulin were infused alternatively to achieve hyper- and 

hypoglycemia, respectively. At the end, blood glucose levels were allowed to return to 

baseline levels without any infusion of glucose or insulin.  
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Figure 7.4 shows a rat used for the multiple-day experiments after the surgery was 

performed and the rat had been placed in position to begin the data collection. The rat 

remained awake during the data collection for these experiments. Data collection procedures 

for each day were as described above for the single-day experiments.  

During the spectral collection, single or multiple glucose transients were obtained by 

infusing glucose/insulin solutions alternatively through the venous catheter with two 

Dynamax peristaltic pumps (Rainin Instrument Co., Woburn, MA). A third pump was also 

used to infuse saline to compensate for body dehydration. Meanwhile, blood samples were 

taken from the arterial catheter every 5-10 minutes for reference blood glucose 

measurements. Blood glucose measurements were taken as the average readings of two 

Freestyle® glucose monitors (Abbott Laboratories, Chicago, IL).147 

 

Computations 

After collection and Fourier processing, spectra were transferred from the 

computer controlling the spectrometer to a Dell Precision 670 workstation (Dell 

Computer Corp.) running under Red Hat Linux (Version 5.3, Red Hat, Inc., Raleigh, 

NC). The majority of subsequent calculations were performed on this computer using the 

Matlab development environment (Version 7.4.0 (R2007a), The MathWorks, Inc., 

Natick, MA). Some calculations performed in Matlab made use of functions from the 

PLS Toolbox (Version 5.2, Eigenvector Research, Wenatchee, WA). Software for the 

calculation of piecewise linear discriminants used in-house software written in Fortran 

and compiled with the Intel Fortran Compiler for Linux (Version 10.0, Intel Corp., Santa 

Clara, CA).  
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Figure 7.2.  Schematic representation of the experimental setup. 
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Figure 7.3.  Experimental setup used for the single day non-survival rat data collection.142 
A. Overview of the instrumentation and hyper- and hypoglycemic pump system. B. 
Customized FT spectrometer with external light source, detector and sapphire rod 
interface. C. An anesthetized rat being clamped during a typical study. D. Close-up view 
of external light source, sapphire rod interface, and detector. 
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Figure 7.4.  Typical rat used for the multiple-day data collection being positioned in the 
sample station. Two vascular access ports can be seen in the back of the rat. A 
mouseOX® pulse oximeter probe is attached to the tail of the rat. 
 
 
 

Results and Discussion 

This chapter discusses the data acquired from four rats that will be referenced by 

their serial numbers (rats 106, 114, 134 and 169). For all rats, absorbance spectra were 

calculated by taking the negative logarithm of the ratio of each rat skin single-beam 

spectrum to a mean air spectrum computed from the air spectra collected at the start and 

the end of the data collection session. As an illustration of the overall spectral shape and 

quality, Figure 7.5 displays a series of absorbance spectra collected from rat 106. Spectra 

were collected continuously at 128 scans while the reference blood measurements were 
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taken every 5-10 minutes. The absorbance spectra shown in Figure 7.5 clearly indicate 

water as the main spectral contributor, with the edges of the spectrum increasing in 

absorbance in the direction of the intense water bands located at 3300 and 5200 cm-1. The 

peaks at 4250 cm-1 and at 4350 cm-1 arise from fat absorbance in the skin tissue and the 

peak at 4600 cm-1 corresponds to proteins, mainly keratin and collagen, in the skin tissue. 

 

Single-Day Rat Studies 

Analysis of Rat 106  

Rat 106 was a male rat weighing around 438 g. The surgery was performed and 

the glucose transients for the hypoglycemic studies were performed on the same day. The 

short-term noise for rat 106 was evaluated by computing 100 % lines for pairs of 

consecutive single-beam spectra. These 100 % lines were converted to AU, and the 

region of 4300-4500 cm-1 was fitted to a third-order polynomial model as described in 

Chapter 3. The RMS noise was then computed about the polynomial fit to obtain the 

intrinsic measurement noise. The average RMS noise calculated for consecutive pairs of 

spectra collected at 128 scans was approximately 22 µAU. The RMS noise values 

computed for each consecutive pair of spectra are shown in Figure 7.6. 

The quality of the data was initially evaluated by use of PCA. The skin tissue 

absorbance spectra were mean-centered, and the PCA calculation was applied over the 

4900-4200 cm-1 range. The first two principal component scores were plotted together as 

shown in Figure 7.7. It can be clearly seen that the spectra collected at the beginning of 

the data collection, during which the skin tissue is adjusting to the interface, show 

different clustering from the rest of the data. 
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As described in Chapter 3, unusual observations can be identified relative to the 

principal component model by the calculation of Q and T2. Figure 7.8 is a plot of Q vs. T2 

for the first two principal components for rat 106. This plot illustrates the larger T2 values 

for the first 16 spectra of the data collection. Initial attempts to build PLS models using 

spectra from the beginning of the data set led to models that did not perform well in 

external predictions. Hence, the first 16 spectra collected at the beginning of the 

experiment were removed from further analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 7.5. Plot of 462 absorbance spectra for rat skin tissue relative to air. Fat 
absorbance features can be seen at 4250 cm-1 and 4350 cm-1, while the peak at 4600 cm-1 
arises from skin tissue proteins. These spectra were collected from rat 106.  
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Figure 7.6.  Values of RMS noise in µAU computed for consecutive pairs of spectra of 
rat 106. The 4500-4300 cm-1 region was used. Noise values were computed by fitting the 
100% line in the given wavenumber region to a third-order polynomial and computing 
the residuals about the fit. The average noise value was approximately 22 µAU.  
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Figure 7.7. Score plot for rat 106 based on the first two principal components. Data labels 
indicate the spectral sequence number. Mean-centered absorbance data computed relative 
to an air background served as inputs to the PCA calculation. The wavenumber range of 
4900-4200 cm-1 was used. The first two principal components accounted for a total of 
99.6 % of the data variance. The ellipse shown here corresponds to the 95 % confidence 
interval for the scores. 
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Figure 7.8.  Plot of values of Q with respect to Hotelling’s T2 for the absorbance data 
from rat 106. The first two principal components were used for the analysis. Data labels 
indicate the spectral sequence number. 
 
 
 

The glucose concentration profile for rat 106 is shown in Figure 7.9. A reference 

glucose concentration needed to be assigned to each of the spectra collected. The spectral 

collection time was linearly interpolated with the reference glucose concentrations and 

corresponding measurement times to assign a glucose concentration to each of the 

noninvasive spectra. 

Accurate concentration assignment, however, requires the consideration of the 

time delay of glucose in the arterial blood and the interstitial fluid.148 Reports of many 

research groups indicate that the glucose in arterial blood requires some time before the 
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corresponding concentration of glucose is observed either in the subcutaneous 

tissue,35,88,149 or in the dermis layer of the skin.150  

Assuming a delay or lag time of 0-20 min in 1-minute increments, a glucose 

concentration was assigned to each of the noninvasive spectra collected. A cross-

validation PLS calculation was performed with the absorbance spectra, leaving out 10 % 

of the data each cycle as the internal prediction set. The wavelength range was 4900-4200 

cm-1 and 1-16 PLS factors were used. The glucose concentration profile that gave the best 

SECV value was assumed to correspond to the optimal delay time assignment. For each 

delay time, the SECV values were plotted with respect to the number of latent variables 

in the PLS model to determine the minimum SECV value. This plot is shown in Figure 

7.10. The delay time corresponding to the minimum SECV was taken as the optimal time 

that is required for the arterial blood to be equilibrated in the skin tissue matrix. For rat 

106, the optimal lag time was found to be 11 minutes and the glucose concentrations 

were assigned to each spectrum on the basis of this time. 

The glucose concentration profile was then partitioned into a training set, a 

monitoring set and a prediction set as shown in Figure 7.11. The training set, monitoring 

set and the prediction set contained 164, 83 and 199 single-beam-spectra, respectively. 

All the single-beam spectra were collected continuously in the same day. Assuming that 

the background information is the same throughout and that path length variation is 

minimal, all the calibration single-beam spectra were put into a single block for 

calculating differential spectra.  

Ratios of all the combinations of single-beam spectra in the training set were 

computed and the resulting differential spectra and corresponding differential 
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concentrations were used to optimize the wavenumber and number of PLS factors that 

could be applied to the alarm classification of the monitoring set. Here, the monitoring set 

was a subset of the calibration set to test the parameters for PLS that would subsequently 

be used in the implementation of the alarm algorithm with the prediction set. The 

calculation of differential spectra for the training set produced 13,466 total differential 

spectra. A grid search analysis using the same protocol described previously in Chapters 

4 and 6 was performed to identify the best wavenumber and latent variable combinations. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 7.9.  Glucose concentration profile for rat 106. An interpolation was required to 
assign a glucose concentration to each of the spectra collected. the horizontal line denotes 
the alarm threshold of 3.0 mM. Reference times are given in fractions of a day.  
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Figure 7.10.  Plot of SECV vs. the number of PLS latent variables for rat 106. The best 
lag time was 11 minutes based on the minimum SECV value of 0.63 mM. 
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Figure 7.11.  Lag-corrected glucose concentration profile for rat 106 employing the 
selected delay time of 11 minutes. The concentration profile was partitioned into a 
training set, a monitoring set and a prediction set. The horizontal line identifies the alarm 
threshold of 3.0 mM. 
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up to a maximum width of 700 cm-1. At each step, the cross-validation procedure was 
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optimal wavenumber ranges and the relevant LVs (F-test corrected) that resulted from the 
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Figure 7.12 displays a plot of SECV vs. the number of latent variables for the top 

wavenumber range (4875-4175 cm-1) that resulted from the grid search analysis. As 

observed in previous chapters, the SECV is changing very little by the time the model 

size reaches 16 factors and thus the consideration of larger numbers of latent variables 

was deemed unnecessary.  

The top four wavenumber ranges listed in Table 7.1 and latent variables 9-14 

were then used to build classification models with PLDA. The PLS calculation was 

applied to all the wavenumber and PLS factor combinations to produce the corresponding 

sets of scores. The critical concentration of the monitoring set was then used to partition 

the differential spectra in the training set into alarm and non-alarm classes for use with 

PLDA. 

 
 

Table 7.1. Top four wavenumber-latent variable combinations based on  
minimum SECV values from the grid search analysis of training differential 
spectra 

 
Wavenumber (cm-1) Latent variables SECV (mM) 

4875-4175 16 0.388 

4850-4175 16 0.402 

4900-4200 16 0.408 

4900-4300 16 0.412 
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Figure 7.12. Plot of SECV vs. the number of PLS latent variables for the 4875-4175 cm-1 
range. This is the top wavenumber range that resulted from the grid search analysis. The 
minimum SECV was 0.39 mM. 
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combination was 4900-4200 cm-1 and 10 latent variables based on the minimum 

percentage of missed and false alarms.  

 

Table 7.2. Average percentage of missed and false alarms for the monitoring set 

Spectral 

range, cm-1 

Latent variables 

                      9             10            11               12            13             14 

 

4875-4175 

AM (%)a ± SD 

AF (%)b ± SD 

DS (%)c ± SD 

53.5± 7.0 

0.0 ± 0.0 

69.0 ± 2.7 

59.6 ± 12.6 

0.0 ± 0.0 

71.8 ± 3.8 

68.7 ± 9.7 

0.0 ± 0.0 

74.1 ± 0.7 

62.6 ±12.6 

0.0 ± 0.0 

76.3 ± 1.0 

45.4 ± 10.9 

0.0 ± 0.0 

77 1± 0.9 

47.5 ± 9.74 

0.0 ± 0.0 

79.4 ± 4.8 

 

4850-4175 

AM (%)a ± SD 

AF (%)b ± SD 

DS (%)c ± SD 

54.5 ± 0.0 

0.0 ± 0.0 

71.4 ± 1.0 

48.5 ± 0.0 

0.0 ± 0.0 

69.6 ± 0.9 

66.7 ± 6.07 

0.0 ± 0.0 

72.7 ± 1.1 

84.8 ± 16.9 

0.0 ± 0.0 

76.7 ± 0.5 

47.5± 7.00 

0.0 ± 0.0 

75.5 ± 0.9 

54.5 ±18.2 

0.0 ± 0.0 

76.3 ± 0.6 

 

4900-4200 

AM (%)a ± SD 

AF (%)b ± SD 

DS (%)c ± SD 

51.5 ± 3.03 

0.0 ± 0.0 

68.7 ± 2.2 

19.2 ± 3.50 

0.0 ± 0.0 

72.9 ± 2.8 

32.3 ± 9.26 

0.0 ± 0.0 

75.6 ± 1.4 

47.5 ± 9.26 

0.0 ± 0.0 

78.2 ± 0.7 

89.9 ± 1.75 

0.0 ± 0.0 

78.1 ± 1.5 

52.5 ± 24.3 

0.0 ± 0.0 

75.9 ± 5.0 

 

4900-4300 

AM (%)a ± SD 

AF (%)b ± SD 

DS (%)c ± SD 

30.3 ± 0.0 

1.33 ± 1.15 

80.0 ± 0.6 

25.2 ± 3.50 

1.33 ± 1.15 

69.9 ± 0.9 

19.2± 14.0 

4.00 ± 2.83 

74.3 ± 2.3 

36.4 ± 9.1 

0.67± 0.94 

75.7 ± 1.9 

42.4 ± 3.03 

0.0 ± 0.0 

80.0 ± 0.7 

57.6 ± 10.5 

0.0 ± 0.0 

80.2 ± 1.4 

aAM (%) ± SD: Average percentage of missed alarms ± standard deviation. 

bAF (%) ± SD: Average percentage of false alarms ± standard deviation. 

 cDS (%) ± SD: Average percentage of separated alarm patterns with  
three discriminants (DS) ± standard deviation. 
 
 
 

For application to the prediction set, the training set and monitoring set were then 

combined to form an overall calibration set which consisted of 247 single-beam spectra.  

The reference concentration for the prediction set, alarm threshold value and the critical 

concentration were 7.72, 3.00 and -4.72 mM, respectively. A total of 30,381 differential 

spectra were generated from the calibration data and the PLS scores computed with the 
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optimal wavenumber-latent variable combination were partitioned into 8346 alarm and 

22,035 non-alarm patterns. Three replicate classifiers were computed with the calibration 

PLS patterns. 

The prediction set contained 27 alarm and 172 non-alarm patterns. Figure 7.13 

shows the prediction glucose concentration profile for rat 106. Three discriminants from 

each of the replicate classifiers were applied to classify the alarm and non-alarm patterns 

in the prediction set.  The prediction result for the three replicate discriminants yielded 4, 

2 and 0 missed alarms and 3, 8 and 14 false alarms. The committee decision rule used 

previously in Chapters 4 and 6 was applied to these results (i.e., two out of three 

discriminant scores must be positive for an alarm detection). When the committee rule 

was applied, there were 2 missed alarms out of 27 alarm patterns and 8 false alarms out 

of 172 non-alarms patterns. This corresponded to the successful detection of 92.6 % of 

the alarm events with a false alarm rate of 4.7%.  

 The discriminant score plot for the prediction set is shown in Figure 7.14.  The 

concentration trend in the prediction profile is clearly explained by the discriminant score 

plot. This dependence of discriminant scores on the glucose concentration further 

confirms the data classification by PLDA. 

A comparison between the discriminant score plot in Figure 7.14 and the 

prediction concentration profile in Figure 7.13 confirms that the false and missed patterns 

correspond to concentrations close to the alarm threshold. Small differences in 

concentrations at the alarm threshold are challenging to detect because the classification 

of these patterns is extremely sensitive to the positioning of the separating surface 
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between the data classes. This factor explains why benefit is gained from training 

replicate classifiers and using them collectively to make the classification.  

Another factor that must be considered is imprecision in the assignment of the 

reference concentrations. As described previously, concentrations were assigned to each 

spectrum on the basis of interpolating the reference concentration measurements. 

Imprecision in these assignments can also lead to what appear to be missed or false 

alarms at the alarm threshold. Imprecision in the determination of the concentration lag 

can have a similar effect.  

The scores along the first two PLS latent variables are plotted together for the 

prediction set in Figure 7.15. Good separation between alarm and non-alarm patterns is 

noted. A further test of the selection of the spectral range and number of latent variables 

was obtained by performing a cross-validation calculation on all the absorbance spectra 

for rat 106 over the range of 4900-4200 cm-1. Leaving out 10 % of the data for prediction 

at each cycle in cross-validation produced a SECV value of 0.84 mM for the 10-factor 

model.  The time-based profiles of cross-validated predicted glucose concentrations and 

assigned reference concentrations shown in Figure 7.16 A and the correlation plot in 

Figure 7.16 B show good correlation and further validate the selected model parameters.  

The absorbance measurements are highly sensitive to the optical path length 

which is significantly affected by different skin thicknesses, pressure from the interface, 

and even slight movement in the sensing location. In addition, changes in skin hydration 

and dehydration during the measurement can vary the optical path length which can lead 

to erroneous predictions. To better understand the skin tissue variance during the data 

collection, a simple linear regression using Eq. 5.1 was performed using four known pure 
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components, water, collagen, keratin, and fat, to estimate the thickness of the skin 

components and aqueous optical path length. In addition to these four chemical 

components, a constant term was included to compensate for scattering effects.  

When each pure-component spectrum is normalized to a thickness of 1 mm, the 

regression coefficients represent the physical thickness of each of these pure components 

in the tissue matrix. The regression coefficients for each of the spectra collected for rat 

106 are plotted in Figure 7.17. It can be clearly observed that the regression coefficients 

of each component have different magnitudes of variations during the data collection 

period. These fluctuations could be due to different reasons, including the interface 

pressure applied to the skin tissue, slight variations in the tissue components, 

environmental variations, such as temperature and humidity, unconscious body 

movements, etc. For example, a gradual decline in the thickness of the water layer is 

observed over the time course of the experiment. This suggests the pressure applied by 

the interface is slowly pushing water out of the optical path.  

The PLS method must be applied with precautions against overmodeling. One 

diagnostic to employ in this regard is to examine the computed PLS loading weights and 

spectral loadings to verify that the captured information is relatively devoid of noise-like 

structure. Given that NIR spectral features have known widths, any extremely high-

frequency signatures are likely based on noise features. The incorporation of such 

features into the loading weights or spectral loadings is a sign of overfitting (i.e., noise 

features that correlate by chance with the dependent variable of concentrations have been 

extracted into the PLS factors).  
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The eighth, ninth and tenth loading weights and spectral loadings computed from 

the calibration differential spectra are shown in Figures 7.18 and 7.19, respectively. Only 

very minor contamination of these factors by noise-like structures is apparent. This result 

helps to confirm the use of 10 PLS factors in the classification model. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 7.13. Prediction glucose concentration profile for rat 106. There are 27 alarm 
patterns and 172 non-alarm patterns. The alarm threshold of 3.0 mM is shown by the 
horizontal line.  
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Figure 7.14. Discriminant score plot for the prediction set with three replicate classifiers. 
Missed and false alarms for each classifier are indicated.  
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Figure 7.15.  Plot of first two PLS scores for the prediction set for rat 106. The 
wavenumber range was 4900-4200 cm-1. Good separation between alarm and non-alarm 
patterns is noted.  
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Figure 7.16.  A. Cross-validated predicted and assigned reference glucose concentrations 
are plotted with respect to time (spectral sequence number) for rat 106. Ten PLS factors 
and a wavenumber range of 4900-4200 cm-1 were used for the cross-validation. B. 
Correlation plot of cross-validated predicted vs. reference concentrations.  
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Figure 7.17. Regression coefficients computed for each of the spectra collected for rat 
106. Panels A-E correspond to regression coefficients for collagen, water, keratin, fat, 
and an intercept term. The regression coefficients represent the thickness of each 
component in the skin tissue matrix in units of mm.  
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Figure 7.18. Loading weights computed from the calibration differential spectra. The 
eighth, ninth and tenth loading weights show spectral features, not noise. The 4900-4200 
cm-1 range was used. 
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Figure 7.19. Spectral loadings computed from the calibration differential spectra. The 
eighth, ninth and tenth spectral loadings show spectral features, not noise. The 4900-4200 
cm-1 range was used. 
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consecutive spectra are averaged. For the subsequent data analysis, four consecutive 

single-beam spectra were averaged to increase the SNR.  

The short-term noise for rat 114 was evaluated for the averaged single-beam 

spectra by taking the ratio of pairs of consecutive scans and converting the resulting 

transmittance data to absorbance. As described previously, the wavenumber region of 

4300-4500 cm-1 was used, and the RMS noise was calculated about a third-order 

polynomial fit. The mean noise value was approximately 65 µAU. A plot of the 

computed RMS noise values is provided in Figure 7.20. These noise values are 

approximately three times higher than those reported above for rat 114. Reasons for this 

increase in noise will be explored at the end of this section.  

As performed previously in the analysis of rat 106, the quality of the data was 

initially studied by performing PCA on the absorbance spectra computed relative to an 

average air reference collected at the beginning and end of the of the experiment. The 

skin tissue absorbance spectra were mean-centered before PCA was performed, and the 

spectral range was restricted to 4900-4200 cm-1. The first three principal component 

scores are plotted together in Figure 7.21. It can be seen that spectra 1-7 are separated 

from the rest. This can be more clearly observed in the Q vs. T2 plot for the first three 

principal components presented in Figure 7.22. On the basis of these results, the first 

seven signal-averaged spectra were removed from the subsequent analysis.  

The glucose concentration profile for rat 114 is shown in Figure 7.23.  A 

reference concentration was assigned to each of the spectra by interpolation of the 

reference measurements as discussed previously. Assuming a delay time of 0-20 min, a 

glucose concentration was assigned to each of the noninvasive single-beam spectra 
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collected at 32 scans. A cross-validation was performed with the absorbance spectra as 

described previously. Figure 7.24 plots the computed SECV values with respect to the 

number of PLS latent variables. The delay time corresponding to the minimal SECV 

value was taken as the optimal time required for the arterial blood to be equilibrated in 

the skin tissue matrix. For rat 114, the optimal lag time was found to be 7 minutes and the 

glucose concentrations were assigned to each single-beam spectrum on the basis of this 

time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.20.  Values of RMS noise in µAU computed for each spectrum of rat 114 over 
the 4500-4300 cm-1 region. Noise values were computed by fitting the 100% line in the 
given wavenumber range to a third-order polynomial and calculating the noise about the 
fitted value. 
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Figure 7.21. Principal component score plot for rat 114 based on the first three latent 
variables.  The absorbance rat skin tissue spectra in the wavenumber range of 4900-4200 
cm-1 were used for the analysis. Points are labeled according to their time sequence.  
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Figure 7.22. Plot of Q vs. Hotelling’s T2 for the absorbance spectra from rat 114. The first 
three principal components were used for the analysis. Spectra 1-7 are judged to be 
extreme outliers.  
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Figure 7.23.  Glucose concentration profile for rat 114. An interpolation is required to 
assign a glucose concentration to each of the spectra collected. The horizontal line 
denotes the alarm threshold of 3.0 mM. Reference times are given in fractions of a day. 
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Figure 7.24. Plot of SECV vs. latent variables for rat 114. The best lag time was 7 
minutes based on the minimum SECV value of 1.05 mM. 
 
 
 

The glucose concentration profile was then partitioned into a training set, a 

monitoring set and a prediction set as shown in Figure 7.25. The training set, monitoring 
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to identify the best possible wavenumber and latent variable combinations for further 

study. The grid search was based on sliding a window of fixed spectral width in 50 cm-1 

increments across the 4900-4100 cm-1 range. Widths employed were 100 to 700 cm-1 in 

50 cm-1 increments. The top four wavenumber ranges and associated numbers of latent 

variables identified by the grid search are shown in Table 7.3. Figure 7.26 plots values of 

SECV vs. the number of latent variables for the top wavenumber range of 4900-4200  

cm-1.  

The spectral ranges listed in Table 7.3 and latent variables 13-16 were then used 

to build classification models with PLDA for implementation of the alarm algorithm with 

the monitoring set. Partial least-squares scores were calculated with all the wavenumber-

PLS factor combinations and were partitioned into alarm and non-alarm patterns based on 

the critical concentration. The reference, critical and alarm threshold concentrations for 

the monitoring set were 5.48, – 1.08 and 4.40 mM, respectively. The alarm threshold was 

set higher in this case than the value of 3.0 mM used previously because of the small 

number of spectra below 3.0 mM in the monitoring set.  

There were 9,601 alarm and 6,152 non-alarm patterns in the training set. Table 

7.4 summarizes the percentage (average ± standard deviation) of missed and false alarms 

when three replicate classifiers were applied to the 26 alarm and 23 non-alarm patterns in 

the monitoring set. Each classifier was based on two discriminant functions. A third 

discriminant was not used here because it did not separate a significant number of 

patterns in the training set. The optimum wavenumber-latent variable combination was 

4850-4250 cm-1 and 14 latent variables based on the minimum percentage of missed and 

false alarms.  
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Figure 7.25. Lag-corrected glucose concentration profile for rat 114. The concentration 
profile was partitioned into training, monitoring, and prediction sets. 
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Table 7.3.   Top four wavenumber-latent variable combinations based on 
minimum SECV values from the grid search analysis of training differential 
spectra 

 
Wavenumber (cm-1) Latent variables SECV (mM) 

4900-4200 16 0.511 

4900-4300 16 0.512 

4850-4300 16 0.523 

4850-4250 16 0.538 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 7.26. Plot of SECV vs. latent variables for the top wavenumber range (4900-4200 
cm-1) that resulted from the grid search. The minimum SECV was 0.51 mM. 
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Table 7.4. Average percentage of missed and false alarms for the  
monitoring set 
 

Spectral 

range ,cm-1 

Latent variables 

                             13               14                15               16 

 

4900-4200 

AM (%)a ± SD 

AF (%)b ± SD 

DS (%)c ± SD 

100 ± 0.0 

0.0 ± 0.0 

80.0 ± 1.9 

23.1 ± 20.4 

11.6 ± 16.5 

79.9 ± 1.4 

24.4 ± 42.2 

5.8 ± 10.0 

80.9 ± 2.1 

41.0 ± 37.0 

11.6 ± 20.1 

80.2 ± 0.4 

 

4900-4300 

AM (%)a ± SD 

AF (%)b ± SD 

DS (%)c ± SD 

65.4 ± 32.9 

2.9 ± 2.5 

78.7 ± 0.8 

71.8± 17.3 

2.9 ± 2.5 

83.2 ± 4.3 

48.7 ± 8.90 

4.3 ± 0.0 

78.2 ± 3.6 

57.0 ±37.0 

4.3 ± 7.5 

81.5 ± 2.5 

 

4850-4300 

AM (%)a ± SD 

AF (%)b ± SD 

DS (%)c ± SD 

100 ± 0.0 

0.0 ± 0.0 

83.1 ± 0.3 

100 ± 0.0 

0.0 ± 0.0 

75.9 ± 0.8 

100 ± 0.0 

0.0 ± 0.0 

81.8 ± 0.3 

47.4 ± 42.2 

0.0 ± 0.0 

82.1 ± 1.1 

 
4850-4250 

AM (%)a ± SD 
 

AF (%)b ± SD 
 

DS (%)c ± SD 

61.5± 30.0 
 

0.0 ± 0.0 
 

78.8 ± 2.2 

29.5± 21.9 
 

0.0 ± 0.0 
 

82.7 ± 0.9 

100 ± 0.0 
 

0.0 ± 0.0 
 

80.8 ± 0.8 

100 ± 0.0 
 

0.0 ± 0.0 
 

83.3 ± 0.8 

            aAM (%) ± SD: Average percentage of missed alarms ± standard deviation. 

bAF (%) ± SD: Average percentage of false alarms ± standard deviation. 

cDS (%) ± SD: Average percentage of separated alarm patterns with two 
discriminants (DS) ± standard deviation. 

 
 
 
 
  

The training set and monitoring set were then combined to build a calibration set 

which consisted of 227 averaged single-beam spectra. A total of 25,651 differential 

spectra were produced and used to compute the PLS scores that formed the patterns.  

The alarm algorithm was then implemented with the prediction set. The PLS 

scores computed with the optimal wavenumber-latent variable combination were 

partitioned into 8008 alarm and 17,643 non-alarm patterns. The reference concentration, 

alarm threshold value and the critical concentration for the prediction set were 7.21, 3.00 
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and -4.21 mM, respectively. Three replicate classifiers were computed with the 

calibration PLS patterns. 

The prediction set contained 34 alarm concentrations and 165 non-alarm 

concentrations. Figure 7.27 shows the prediction glucose concentration profile for rat 

114. The two discriminant functions from each of the replicate classifiers were applied to 

classify the alarm and non-alarm patterns in the prediction set.  The prediction results for 

the three replicate discriminants were 4, 6 and 6 missed alarms and 29, 16 and 14 false 

alarms. Based on the alarm decision rule described previously, there were 6 missed 

alarms out of 34 alarm patterns and 16 false alarms out of 165 non-alarms patterns. This 

corresponded to the successful detection of 82.4 % of the alarm events and a false alarm 

rate of 9.7 %. This performance is worse than that observed previously with rat 106. 

 The discriminant score plot for the prediction set is shown in Figure 7.28.  The 

dependence of the discriminant scores on the concentrations can also be observed for rat 

114. As observed previously with rat 106, the majority of the missed and false alarms 

occur in the region near the alarm threshold. 

 The first three PLS scores for the prediction set are plotted in Figure 7.29. Good 

separation between the alarm and non-alarm patterns is noted, although the classification 

results suggest the discriminants computed from the calibration data are not positioned 

optimally with respect to the prediction data.  

A cross-validation was performed with the averaged skin tissue absorbance 

spectra for the wavenumber-latent variable combination used for the PLDA prediction.  
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Figure 7.27. Prediction glucose concentration profile for rat 114. There are 34 alarm 
patterns and 165 non-alarm patterns. The alarm threshold of 3.0 mM is shown by the 
horizontal line.  
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Figure 7.28. Discriminant score plot for the prediction set with three replicate classifiers. 
Missed and false alarms for each classifier are indicated.  
 
 
 

Leaving out 10 % of the data for prediction in each cross-validation cycle resulted 

in an SECV value of 1.06 mM for 14 PLS factors and the 4850-4250 cm-1 wavenumber 

range. The concentration profiles derived from the assigned reference concentrations and 

cross-validated predicted concentrations are shown in Figure 7.30 A and B. These results 

show good correlation, but the prediction errors are higher than those obtained previously 

for rat 106.  
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The 12th, 13th, and 14th loading weights and spectral loadings computed from the 

differential spectra in the calibration set are shown in Figures 7.31 and 7.32, respectively. 

There are no significant noise features observed in the spectral loadings, but the loading 

weights clearly become increasingly contaminated with noise-like features as the factor 

number increases. The three-times higher noise level for rat 114 increases the likelihood 

of noise contamination in the PLS factors. Noise contamination in the loading weights is 

more likely than in the spectral loadings because the loading weights arise from the 

correlation between the reference glucose concentrations and the residual spectra (i.e., the 

spectral information remaining after the components modeled by the previous PLS 

factors have been subtracted). Chance correlations between noise features and 

concentrations will thus be evident in the loading weights.  

Regression coefficients computed from a fit of the absorbance spectra to pure-

component component spectra (Eq. 5.1) are plotted in Figure 7.33. The plotted traces 

show the variation in component thicknesses observed over the time course of the 

experiment. As previously observed with rat 106, a gradual decline in the thickness of the 

water layer suggests the pressure applied by the interface is causing water to move out of 

the optical path.  

A comparison to the corresponding plot for rat 106 displayed in Figure 7.17 

reveals that an overall thicker section of tissue has been sampled for rat 114. This can be 

seen easily by inspection of the thickness of the water layer (increase from an average of 

~ 0.75 mm to an average of ~ 0.95 mm). Given that the incident source intensity was 

approximately the same for the two rats, the increased thickness of the tissue causes a 

decrease in the radiant power detected. This is most likely the reason for the increased 
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RMS noise observed for rat 114. The increased noise level is also most likely the cause of 

the decreased performance of the alarm algorithm for this rat. 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 7.29.  First three PLS scores for the patterns in the prediction set for rat 114. The 
wavenumber range was 4850-4250 cm-1. Clear separation between the data classes is 
noted, although the class overlap is greater than that observed previously in Figure 7.15. 
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Figure 7.30. A. Time profile of assigned reference and cross-validated predicted 
concentrations for rat 114. Fourteen PLS factors and a wavenumber range of 4850-4250 
cm-1 were used for the cross-validation calculations. B. Correlation plot of cross-
validated predicted vs. reference concentrations. 
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Figure 7.31. Loading weights plot for the calibration differential spectra. The 12th, 13th, 
and 14th loading weights show some broad spectral shapes but they are clearly becoming 
contaminated with noise.  
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Figure 7.32. Spectral loadings plot for the calibration differential spectra. Little evidence 
of noise is observed in the 12th, 13th, and 14th spectral loadings.  
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Figure 7.33. Regression coefficients computed for each of the spectra collected for rat 
114. Panels A-E correspond to regression coefficients for collagen, water, keratin, fat, 
and an intercept term. The regression coefficients represent the thickness of each 
component in the skin tissue matrix. 
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Multiple-Day Rat Studies 

Analysis of Rat 134  

The glucose transient studies for rat 134 were performed over multiple days. The 

rat was a male rat weighing around 336 g when the survival surgery was performed on 

day 1. Glucose transient data were collected on five different days and the first day of the 

data collection was used as the calibration. The rat was awake during the data collection. 

Data for multiple-day rat experiments were collected as 32 co-added scans. As described 

previously, four consecutive single-beam spectra were averaged to increase the SNR. The 

RMS noise calculated with a third-order polynomial fit for the calibration data was ~ 40 

µAU in the region of 4300-4500 cm-1 and the corresponding plot is shown in Figure 7.34. 

Some evidence of increasing noise is seen over the time course of the experiment.  

Principal component analysis performed with the averaged absorbance spectra of 

the calibration day clearly showed a different spectral variance for the first 24 spectra 

collected. Those spectra were removed from building the calibration database. The first 

two principal component scores plotted together for the signal-averaged absorbance 

spectra in the wavenumber range of 4900-4200 cm-1 are shown in Figure 7.35. The Q vs. 

T2 plot for rat 134 is shown in Figure 7.36. 

 A cross-validation was performed with the rat skin tissue absorbance spectra to 

find the best lag time. This procedure produced an optimal value of 29 minutes. 

Extending the calculation past 30 minutes produced increasing SECV values.  A plot of 

SECV vs. the number of latent variables is shown in Figure 7.37. A lag time of 29 

minutes seems too long on the basis of previous results and its uncertainty must be 

considered in evaluating further results obtained with this rat. A similar computation for 
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the prediction days resulted in lag time estimates of 0, 0, 34 and 0 minutes, respectively, 

for prediction days 1 to 4.  

The glucose concentration profile for the calibration day is shown in Figure 7.38. 

The concentration profile was partitioned into training and monitoring sets as shown in 

the figure. The training and monitoring sets contained 159 and 73 signal-averaged single-

beam spectra, respectively. The calculation of differential spectra for the training set 

produced 12,403 total spectra. Unlike rats 106 and 114, the monitoring set used rat with 

134 was non-contiguous with respect to time. This was required in order for it to have 

both alarm and non-alarm spectra.  

A grid search analysis was performed and the top four wavenumber ranges, 

identified on the basis of the F-test corrected minimum SECV values are shown in Table 

7.5. Figure 7.39 shows a plot of SECV vs. the number of latent variables for the top 

wavenumber range that resulted from the grid search. The top wavenumber ranges and 

latent variables 12-16 were then used to build classification models for the monitoring 

set. The reference concentration, alarm threshold concentration and the critical 

concentration for the monitoring set were 8.95 mM, 5.60 mM and -3.35 mM, 

respectively. A high alarm threshold was used because of the small amount of data below 

3.0 mM. When applied to the monitoring set, there were 485 alarm and 11,918 non-alarm 

patterns in the training set. The monitoring set contained 32 and 41 alarm and non-alarm 

spectra, respectively.   
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Figure 7.34. Values of RMS noise (in µAU) computed for each pair of consecutive 
signal-averaged spectra collected on the calibration day for rat 134. The region of 4500-
4300 cm-1 was used. Noise values were computed by fitting the 100% line in the given 
wavenumber region to a third-order polynomial and then computing the noise about the 
fit. The average noise was ~ 40 µAU. An increase in noise can be observed over the time 
course of the experiment.  
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Figure 7.35. Principal component score plot for rat 134 for the calibration day. Data 
labels indicate the spectral sequence number. A different data clustering was observed for 
the first 24 averaged spectra and these spectra were removed from building the 
calibration database. The ellipse corresponds to the 95 % confidence interval for the 
scores. 
  

 

 

 

 

 

-1 -0.5 0 0.5 1 1.5 2 2.5
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

 1
 2 3 4 5 6

 7

 8
 9 10 11

 12

 13 14 15 16 17
 18

 19

 20

 21
 22

 23

 24

 25

 26 27 28
 29 30 31
 32

 33

 34

 35 36
 37

 38

 39
 40 41 42 43 44

 45 46
 47

 48
 49 50

 51
 52

 53
 54 55

 56 57 58 59
 60 61

 62

 63
 64 65 66

 67

 68

 69 70 71 72 73
 74
 75 76

 77

 78
 79
 80 81

 82
 83 84

 85 86 87 88
 89
 90

 91
 92

 93
 94

 95

 96 97
 98
 99

 100 101

 102 103 104
 105 106
 107 108 109 110 111 112
 113

 114
 115

 116
 117
 118 119

 120 121

 122
 123 124 125

 126 127
 128
 129

 130
 131 132 133
 134
 135
 136

 137
 138
 139

 140
 141
 142

 143
 144

 145
 146 147
 148 149 150 151
 152
 153
 154
 155 156 157
 158
 159
 160
 161

 162
 163

 164 165 166 167 168
 169 170
 171

 172

 173
 174
 175 176
 177
 178 179 180
 181
 182

 183
 184 185

 186
 187

 188

 189
 190

 191
 192

 193 194

 195 196

 197
 198 199
 200 201 202 203

 204
 205

 206

 207 208

 209
 210

 211 212

 213

 214 215 216

 217
 218
 219

 220
 221

 222

 223
 224
 225 226 227 228 229 230 231 232

 233 234
 235

 236 237
 238 239
 240

 241
 242

 243

 244

 245

 246
 247

 248 249 250 251
 252
 253
 254

 255
 256
 257

PC 1 scores 1 (96.95 %)  

PC
 2

 sc
or

es
 (2

.8
4 

%
) 



306 
 

 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.36.  Plot of Q vs. Hotelling’s T2 for the rat absorbance spectra collected on the 
calibration day. The first two principal components were used for the analysis. Data 
labels indicate the spectral sequence number. 
 
 

Table 7.6 summarizes the percentage (average ± standard deviation) of missed 

and false alarms when PLDA was employed with three replicate classifiers. Each 

classifier was based on two discriminant functions. The lowest number of PLS factors 

and the corresponding wavenumber range that gave the minimal missed and false alarm 

percentages was taken as the optimal combination for use with the prediction data. For rat 

134, these optimal parameter values were a spectral range of 4850-4250 cm-1 and 15 PLS 

factors. 
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Comparison of Table 7.6 with Tables 7.2 and 7.4 reveals a much lower percentage 

of training patterns separated by the piecewise linear discriminant. The number of alarm 

patterns was very low and among those most of the patterns had differential 

concentrations very close to the critical concentration. The critical concentration was       

-3.4 mM and 330 patterns out of 485 total patterns had concentrations in the range of -3.4 

to -4.0 mM. This likely led to the poor data separation observed with this rat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.37. Plot of SECV vs. the number of latent variables for the calibration day of rat 
134. The best lag time was 29 minutes based on the minimum SECV value of 1.00 mM. 
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Figure 7.38. Glucose concentration profile for the calibration day. The concentration 
profile was partitioned into a training set which contained 159 spectra and a monitoring 
set which had 73 spectra. The horizontal line denotes the alarm threshold used with the 
monitoring set.  
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Table 7.5. Top four wavenumber-latent variable combinations based on  
minimum SECV values from the grid search analysis of training differential 
spectra 

 
Wavenumber (cm-1) Latent variables SECV (mM) 

4850-4200 16 0.472 

4900-4200 16 0.475 

4800-4200 16 0.477 

4850-4250 16 0.479 

 
 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 7.39. Plot of SECV vs. the number of latent variables for the top wavenumber 
range that resulted from the grid search analysis (4850-4200 cm-1). The minimum SECV 
was 0.47 mM. 
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Table 7.6. Average percentage of missed and false alarms for the  
monitoring set 

 
Spectral 

range,cm-1 

       Latent variables 

        12               13            14                 15              16 

 

4850-4200 

AM (%)a ± SD 

AF (%)b ± SD 

DS (%)b ± SD 

3.12 ± 0.0 

0.0 ± 0.0 

37.4 ± 3.7 

3.12 ± 0.0 

0.0 ± 0.0 

42.7 ± 1.9 

3.12 ± 0.0 

0.0 ± 0.0 

40.6 ± 0.2 

1.04 ± 1.80 

0.0 ± 0.0 

45.9 ± 2.8 

0.0 ± 0.0 

0.0 ± 0.0 

52.4 ± 3.7 

 

4900-4200 

AM (%)a ± SD 

AF (%)b ± SD 

DS (%)b ± SD 

3.12 ± 0.0 

0.0 ± 0.0 

43.9 ± 5.6 

3.12 ± 3.12 

0.0 ± 0.0 

44.4 ± 2.6 

1.04 ± 1.80 

0.0 ± 0.0 

40.2 ± 0.7 

4.17 ± 3.61 

0.0 ± 0.0 

44.2 ± 4.1 

2.08 ±1.80 

0.0 ± 0.0 

43.0 ± 1.0 

  

4800-4200 

AM (%)a ± SD 

AF (%)b ± SD 

DS (%)b ± SD 

22.9 ±10.0 

0.0 ± 0.0 

42.1 ± 1.9 

4.17 ± 1.80 

0.0 ± 0.0 

43.1 ± 4.1 

4.17 ± 1.80 

0.0 ± 0.0 

43.7 ± 3.6 

 1.04 ± 1.80 

0.0 ± 0.0 

43.6 ± 0.9 

1.04 ± 1.80 

0.0 ± 0.0 

46.6 ± 0.2 

 

4850-4250 

AM (%)a ± SD 

AF (%)b ± SD 

DS (%)b ± SD 

27.1± 1.8 

0.0 ± 0.0 

36.9 ± 0.9 

6.25± 10.8 

0.0 ± 0.0 

44.7 ± 4.6 

1.04 ± 1.80 

0.0 ± 0.0 

46.0 ± 4.2 

0.0 ± 0.0 

0.0 ± 0.0 

41.9 ± 1.6 

0.0 ± 0.0 

0.0 ± 0.0 

44.0 ± 0.5 

  aAM (%) ± SD: Average percentage of missed alarms ± standard deviation. 

   bAF (%) ± SD: Average percentage of false alarms ± standard deviation. 

cDS (%) ± SD: Average percentage of separated alarm patterns with two discriminants 
(DS) ± standard deviation. 
 

 
Each of the single-beam spectra collected on the first prediction day was assigned 

to a glucose concentration using the calibration lag time of 29 minutes. The alarm 

algorithm discussed in previous chapters used the first spectrum of the prediction set as 

the reference. However, as observed previously, there is a period of time at the beginning 

of the data collection in which the rat is adjusting to the spectrometer interface. As shown 

in Figures 7.40 and 7.41 for the third prediction day, these initial spectra consistently 
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exhibit different clustering in score plots derived from PCA and in Q vs T2 plots. Use of 

the initial spectrum as a reference leads to poor classification performance.  

To address this problem, a protocol is needed for determining the correct 

adjustment period before the reference spectrum is taken. Plots such as those in Figures 

7.40 and 7.41 are retrospective (i.e., require the entire data set) and thus are not viable for 

use in real-time decision making. Examining the data for all the rats, it was judged that an 

acceptable protocol for implementing the alarm on the prediction day would be to assign 

15 minutes as a static adjustment period before the assignment of the reference spectrum.  

The glucose concentration profile for the first prediction day is shown in Figure 

7.42. Data for the first prediction set were collected three days after the calibration day. 

The average RMS noise value was 37 µAU for the first prediction day. A plot of RMS 

noise values is shown in Figure 7.43. Noise calculations were performed as described 

previously. The computed values are comparable in magnitude to the calibration day. 

However, rather than slowly increasing with time, the values appear to stabilize after 

approximately 50 minutes. 

The first spectrum after removing the initial 15 signal-averaged spectra (~15 

minutes) had a concentration of 6.08 mM and was used as the reference spectrum. The 

alarm threshold was 3.00 mM and the critical concentration was -3.08 mM.  All the data 

collected on the calibration day were put into a single block to compute the differential 

spectra. This yielded 26,796 total spectra and differential concentrations that were used to 

compute the PLS scores. The PLS scores computed with the optimal wavenumber-latent 

variable combination determined previously were partitioned into 9914 alarm and 16,882 

non-alarm patterns.  
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Figure 7.40. Principal component score plot for rat 134 for the third prediction day. Data 
labels indicate the spectral sequence number. A different clustering was observed for the 
spectra at the beginning of the data collection. 
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Figure 7.41. Plot of Q vs. Hotelling’s T2 for the averaged rat absorbance spectra collected 
on the third prediction day. The first two principal components were used for the 
analysis. Data labels indicate the spectral sequence number.  
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Figure 7.42. Glucose concentration profile for the first prediction day for rat 134.  The 
concentration profile contained 248 total spectra, 48 alarm spectra and 200 non-alarm 
spectra. The alarm threshold of 3.0 mM is shown by the horizontal line.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16
G

lu
co

se
 c

on
ce

nt
ra

tio
n 

(m
M

) 

Alarm threshold 

Spectral sequence number 

Alarms 

Non-alarms 



315 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.43.  Plot of RMS noise values (in µAU) computed for each consecutive pair of 
signal-averaged spectra collected on the first prediction day for rat 134. The 4500-4300 
cm-1 region was used for the noise calculation. Noise values were computed by fitting the 
100% line in the given wavenumber region to a third-order polynomial and computing 
the noise about the fit. Noise levels are comparable to the calibration day. Some 
stabilization of the noise is apparent after the first hour of data collection.  
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Three replicate classifiers were computed with the calibration PLS patterns. Each 

classifier was based on two discriminant functions. Across the three replicate 

discriminants, an average of 34 % of the alarm patterns in the calibration set were 

separated. As with the monitoring data, this value is much lower than ideal and indicates 

difficulty in separating the alarm and non-alarm patterns. When the alarm decision rule 

was applied, there were 11 missed alarms out of 48 alarm patterns and there were 8 false 

alarms out of 200 non-alarm patterns. This corresponds to a successful detection of 77.1 

% of alarm events with a false alarm rate of 4.6 %.  

The discriminant scores plot for the three replicate classifiers is shown in Figure 

7.44 A and the combined committee result is shown in Figure 7.44 B. For the committee 

result, the discriminant score plotted for patterns placed in the alarm class is the average 

score for the two or three replicate classifiers that produced positive discriminant scores. 

For those patterns classified as non-alarms, the average of the negative discriminant 

scores is plotted. Also overlaid on Figure 7.44 B with the solid red line is the glucose 

reference concentration assigned to each spectrum (lag time of 29 minutes). In addition, 

the red dashed lines display glucose concentration profiles for lag times of 0 and 15 

minutes. The alternate lag times allow an assessment of the accuracy of the value of 29 

minutes that was determined from the data collected on the calibration day.  

Inspection of Figure 7.44 B reveals that the classifier performs well until near the 

end of the day. The concentration profile defines a very challenging region at the end in 

which the assigned reference value goes in and out of alarm as judged by the 3.0 mM 

threshold. This is also a region where imprecision in the lag can be affecting the 

assignment of which patterns should be designated as alarms and non-alarms.  
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The regression coefficients for each of the spectra collected for the first prediction 

day of rat 134 are shown in Figure 7.45. This figure shows the thickness variations of 

each pure component during the data collection. As described previously, these variations 

indicate changes in the background matrix during the data collection.  

The first four PLS scores for the first prediction day are plotted with respect to the 

spectral sequence number in Figure 7.46. For a successful data prediction, the prediction 

PLS scores should be within the ranges defined by the calibration PLS scores. For the 

prediction data, PLS score 2 is within the range defined by the calibration data. In the 

other plots, however, it can be observed that some of the prediction PLS scores occupy a 

region outside the range of the calibration scores.  

As noted previously, most of the missed alarm patterns were observed for spectral 

sequence numbers 225-245 acquired near the end of the day. The PLS scores for these 

patterns were outside the calibration PLS scores as can be seen in Figures 7.46 A, C, and 

D. In Figure 7.47, the differential absorbance value at 4400 cm-1 for the prediction day is 

plotted vs. the spectral sequence number to check for any spectral variance that occurred 

during the data collection at the peak wavenumber of the most important glucose 

absorbance band. It can be clearly seen that the absorbance value shows a sequential drift 

with time. A new background component may have arisen during the data collection. 

This suggests that the reference spectrum taken at the beginning of the day may no longer 

be valid by the end of the data collection.  
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Figure 7.44. A. Discriminant score plot for the first prediction day of rat 134 with three 
replicate classifiers. B. The discriminant scores corresponding to the committee result are 
shown (left y-axis) with the lag-corrected reference glucose concentrations superimposed 
(right y-axis). The horizontal lines correspond to the alarm/non-alarm thresholds for the 
discriminant scores (0.0) and reference concentrations (3.0 mM). The glucose transients 
related to three lag times, 0, 15 and 29, minutes are shown in the figure. 
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Figure 7.45. Regression coefficients computed for each of the spectra collected for the 
first prediction day of rat 134. Panels A-E correspond to regression coefficients for 
collagen, water, keratin, fat, and an intercept term. The regression coefficients represent 
the thickness of each component in the skin tissue matrix. 
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Figure 7.46. Plot of PLS scores vs. spectral sequence number for the differential spectra 
collected on the first prediction day. The 4850-4250 cm-1 wavenumber range was used. 
The maximum and minimum PLS scores computed with the calibration differential 
spectra are plotted as dashed lines. Panels A, B, C, and D correspond to the scores for 
latent variables 1-4, respectively. 
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Figure 7.47. Absorbance at 4400 cm-1 plotted vs. the spectral sequence number for the 
differential spectra for the first prediction day.   
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Each of the single-beam spectra collected on the second prediction day was 

assigned to a glucose concentration using the calibration lag time of 29 minutes. The data 

for the second prediction set were collected eight days after the calibration day. As 

discussed previously, the data collected in the first 15 minutes of the prediction day (15 

signal-averaged single-beam spectra) were removed from the data prediction assuming it 

takes that long to stabilize the rat within the interface. The glucose concentration profile 

for the second prediction day is shown in Figure 7.48. All of these spectra are above the 

alarm threshold of 3.0 mM (i.e., all are non-alarms). The signal-averaged single-beam 

spectra were used for the RMS noise value calculations and with 128 scans and a third-

order polynomial fit the average RMS noise value was 30 µAU. A plot of RMS noise 

values is shown in Figure 7.49. 

The first spectrum after removing the first 15 signal-averaged spectra had a 

concentration of 6.64 mM and was used as the reference spectrum. The alarm threshold 

was 3.00 mM and the critical concentration was -3.64 mM.  The PLS scores computed 

with the optimal wavenumber-latent variable combination were partitioned into 7467 

alarm and 19,329 non-alarm patterns. Three replicate classifiers were computed with the 

calibration PLS patterns and the first two discriminants from each of the replicates were 

used for the prediction. Across the three replicate discriminants, an average of 38 % of 

the alarm patterns in the calibration set were separated. This again represents a very low 

degree of separation of the alarm and non-alarm patterns.  

When the alarm decision rule was applied, there were 13 false alarms out of the 

226 non-alarm patterns. This corresponded to an occurrence of 5.8 %. The discriminant 

scores plot for the replicate classifiers is shown in Figure 7.50 A, and the committee 
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result is plotted as before in Figure 7.50 B. While staying below the alarm threshold, the 

committee result begins to approach the decision boundary as the experiment proceeds. 

This is an indication that the background is changing and that the discriminant boundary 

is no longer positioned correctly.   

The regression coefficients for each of the spectra collected for the second 

prediction day of rat 134 are shown in Figure 7.51. This figure shows the thickness 

variations of each of the individual components during the data collection. Compared to 

the first prediction day, the water thickness is approximately 20 % lower. This may be 

responsible for the lower RMS noise values observed for the second prediction day, as 

less water translates to more transmitted light. In principle, the calculation of the 

differential spectra should remove the effects of variation in pathlength from day to day.  

The first four prediction PLS scores plotted for the second prediction day are 

shown in Figure 7.52. The prediction PLS score 4 is within the space defined by the 

calibration PLS score 4. In the other PLS scores plots, it can be observed that some 

prediction scores occupy a space outside that defined by the calibration scores. Most of 

the false alarm patterns were observed for the spectral sequence numbers of 134-150. The 

PLS scores for these patterns were outside the calibration scores as can be seen in Figures 

7.52 A, B, and C. The differential absorbance value at 4400 cm-1 was plotted as shown in 

Figure 7.53. The same sequential drift observed earlier can also be seen for the second 

prediction day. This suggests the presence of a new background component that is not 

being accounted for in the calculation of the differential spectra. This is consistent with 

the profile of the discriminant scores discussed previously.  
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Figure 7.48.  Glucose concentration profile for the second prediction day.  The 
concentration profile contained 226 total spectra and all had concentrations above the 
3.00 mM alarm threshold shown by the horizontal line.  
 
 
 
 
 
 
 
 
 
 
 
 
 

0 50 100 150 200 250
2

4

6

8

10

12

14
G

lu
co

se
 c

on
ce

nt
ra

tio
n 

(m
M

) 

Alarm threshold 

Spectral sequence number 

Non-alarms 



326 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 7.49.  For the second prediction day for rat 134, values of RMS noise (in µAU) 
computed for each consecutive pair of signal-averaged spectra. The 4500-4300 cm-1 
region was used for the noise calculation. Noise values were computed by fitting the 
100% line in the given wavenumber region to a third-order polynomial and computing 
the noise about the fit. Except for a few extreme cases, the noise values are consistent 
across the time course of the experiment.  
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Figure 7.50. A. Discriminant score plot for the second prediction day of rat 134 with 
three replicate classifiers. B. The discriminant scores corresponding to the committee 
result are shown (left y-axis) with the lag-corrected reference glucose concentrations 
superimposed (right y-axis). The horizontal lines correspond to the alarm/non-alarm 
thresholds for the discriminant scores (0.0) and reference concentrations (3.0 mM). The 
glucose concentration profile corresponding to a lag time of 29 minutes is shown in the 
figure. 
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Figure 7.51 Regression coefficients computed for each of the spectra collected for the 
second prediction day of rat 134. Panels A-E correspond to regression coefficients for 
collagen, water, keratin, fat, and an intercept term. The regression coefficients represent 
the thickness of each component in the skin tissue matrix.  
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Figure 7.52. Plot of PLS scores vs. spectral sequence number for the prediction 
differential spectra collected on the second day. The 4850-4250 cm-1 wavenumber range 
was used. The maximum and minimum PLS scores computed with the calibration 
differential spectra are plotted as dashed lines. Panels A, B, C, and D correspond to the 
scores for latent variables 1-4, respectively. 
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Figure 7.53. Absorbance at 4400 cm-1 plotted vs. the spectral sequence number for the 
differential spectra collected on the second prediction day.   
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The calibration lag time of 29 minutes was used to assign a glucose concentration 

to each of the spectra collected on the third prediction day.  The data for the third 

prediction set was collected 17 days after the calibration day. As before, spectra collected 

during the first 15 minutes were removed from the data prediction. The glucose 

concentration profile for the third prediction day is shown in Figure 7.54. As with the 

second day, there were no alarm spectra. The signal-averaged single-beam spectra were 

used for RMS noise calculations and with 128 scans and a third-order polynomial fit, the 

average RMS noise value was 38 µAU. A plot of RMS noise values is provided in Figure 

7.55. 

The first spectrum after removing the first 15 signal-averaged spectra had a 

concentration of 6.81 mM and was used as the reference spectrum. The alarm threshold 

was 3.00 mM and the critical concentration was -3.81 mM.  The PLS scores computed 

with the optimal wavenumber-latent variable combination were partitioned into 6842 

alarm and 19,954 non-alarm patterns. Three replicate classifiers were computed with the 

calibration PLS patterns and the first two discriminant functions from each of the 

replicates were used for the prediction. On average, the three replicate classifiers 

separated 34 % of the alarm patterns in the calibration set. As observed previously, this is 

a low degree of separation.  

When the alarm decision rule was applied, there were no false alarms out of 263 

non-alarm patterns. The discriminant scores plot is shown in Figure 7.56 A and the 

committee result is displayed in Figure 7.56 B. The value of the committee classifier is 

clearly observed, as only two of the three replicate classifiers are performing correctly. 
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The regression coefficients obtained from fitting the pure components to the 

spectra for day 3 are plotted in Figure 7.57. Variation in the water thickness is again 

noted relative to the previous days of data collection (Figures 7.45 and 7.51).  

Figure 7.58 compares the PLS scores for latent variables 1-4 computed from the 

prediction data to the corresponding calibration scores. Scores 1-3 match reasonably well 

to the calibration data, although the scores for the fourth factor show clear deviation. 

Figure 7.59 displays the absorbance at 4400 cm-1 over the course of the experiment. As 

seen previously, there is indication of drift in the response with time. The overall 

conclusion for day 3 is that while there are some clear issues of drift in the response and 

some degree of mismatch to the calibration data, the committee classifier is able to 

overcome these limitations well enough to assign the spectra correctly to the non-alarm 

class.  
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Figure 7.54.  Glucose concentration profile for the third prediction day of rat 134.  The 
concentration profile contained 263 total spectra and all had concentration above 3.00 
mM, the alarm threshold (horizontal line). 
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Figure 7.55.  Values of RMS noise (in µAU) computed for each signal-averaged 
spectrum collected on the third prediction day for rat 134. The 4500-4300 cm-1 region 
was used for the calculation. Noise values were computed by fitting the 100% line in the 
given wavenumber region to a third-order polynomial and computing the noise about the 
fit. While the average is consistent with the previous days, a greater degree of fluctuation 
is observed. This could indicate more rat movement during the experiment.  
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Figure 7.56. A. Discriminant score plot for the third prediction day of rat 134 with three 
replicate classifiers. B. The discriminant scores corresponding to the committee result are 
shown (left y-axis) with the lag-corrected reference glucose concentrations superimposed 
(right y-axis). The horizontal lines correspond to the alarm/non-alarm thresholds for the 
discriminant scores (0.0) and reference concentrations (3.0 mM). The displayed glucose 
concentrations correspond to a lag time of 29 minutes. 
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Figure 7.57. Regression coefficients computed for each of the spectra collected for the 
third prediction day of rat 134. Panels A-E correspond to regression coefficients for 
collagen, water, keratin, fat, and an intercept term. The regression coefficients represent 
the thickness of each component in the skin tissue matrix. 
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Figure 7.58. Plots of PLS scores vs. spectral sequence number for the prediction 
differential spectra collected on the third prediction day for rat 134. The 4850-4250 cm-1 
wavenumber range was used for the PLS calculation. The maximum and minimum PLS 
scores computed with the calibration differential spectra are plotted as dashed lines. 
Panels A, B, C, and D correspond to latent variables 1, 2, 3, and 4, respectively.  
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Figure 7.59. Absorbance at 4400 cm-1 plotted vs. the spectral sequence number for the 
differential spectra collected on the third prediction day for rat 134. As with the previous 
days, drift in the absorbance is noted over the time course of the experiment.  
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Each of the spectra collected on the fourth prediction day for rat 134 was assigned 

to a glucose concentration using the calibration lag time of 29 minutes.  The same 

assumption used in predicting the first three prediction days discussed previously was 

used here for the prediction of the fourth day and the spectra collected during the first 15 

minutes were removed from the data prediction. The glucose concentration profile for the 

fourth prediction day is shown in Figure 7.60. The signal-averaged single-beam spectra 

were used for the RMS noise calculations and with 128 scans and a third-order 

polynomial fit, the average RMS noise value was 69 µAU. This is the highest noise level 

obtained for any of the days for rat 134. A plot of the noise values is provided in Figure 

7.61. 

The first spectrum after removing the first 15 signal-averaged spectra had a 

concentration of 8.08 mM and was used as the reference spectrum. The alarm threshold 

was 3.00 mM and the critical concentration was -5.08 mM. The PLS scores computed 

with the optimal wavenumber-latent variable combination were partitioned into 2984 

alarm and 23,812 non-alarm patterns. Three replicate classifiers were computed with the 

calibration PLS patterns and the first two discriminants from each of the replicates were 

used for the prediction. On average, the three replicate classifiers separated 38 % of the 

alarm patterns in the calibration set. This is again a low degree of separation.  

Classification performance declined sharply on the fourth prediction day. Data for 

the fourth prediction day were collected 21 days after the calibration day. Using the 

previously optimized 15 latent variables, the committee classifier produced no missed 
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alarms out of the 53 alarm patterns present. However, there were 233 false alarms out of 

256 non-alarm patterns.  

Another PLS factor was added to check the possibility of improving the 

prediction of the glucose transients. The optimum wavenumber range of 4850-4250 cm-1 

and 16 latent variables were thus used to predict the glucose transients on the fourth 

prediction day. When the alarm decision rule was applied, there were 23 missed alarms 

out of 53 alarm patterns and 21 false alarms out of 256 non-alarm patterns. This 

corresponded to the detection of 56.6 % of the alarm events and 8.2 % false detections. 

The discriminant scores plot is shown in Figure 7.62A. The committee result for the data 

prediction is shown in Figure 7.62B.  

In addition to the concentration profile based on a lag time of 29 minutes, Figure 

7.62B plots concentration profiles based on lag times of 0 and 15 minutes. Comparison of 

the three concentration profiles reveals that for this day, the lag time of 29 minutes is 

suspect. For example, when a lag time of 15 minutes was used for the data prediction it 

was observed to improve the data prediction. The number of missed alarms decreased to 

12 out of 52 and the false alarms totaled 11 out of 257 non-alarm patterns. This 

corresponded to the detection of 77.0 % of the alarm events and 4.3 % false alarms. 

Imprecision in the determination of the lag time is clearly a key problem with the current 

methodology.  

It was hypothesized that the poorer prediction results for the fourth prediction day 

might arise from the improper selection of the reference spectrum. The optical path 

length and the spectral background matrix might change during the data collection and 

use of the initial spectrum as a reference for predicting all the spectra may not be 
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sufficiently accurate. To check this, the reference spectrum was updated every 60 

minutes. For this work, the lag time remained at 29 minutes as determined originally. The 

PLS scores used were based on a range of 4850 to 4250 cm-1 and 16 scores were used to 

generate the patterns submitted to PLDA. Each discriminant computed with PLDA was 

based on two discriminant functions.  

The glucose concentration profile for the first hour is shown in Figure 7.63 and 

the corresponding discriminant score plot is given in Figure 7.64A along with the 

committee result in Figure 7.64 B. There were no false alarms out of 60 non-alarm 

patterns. The reference spectrum was then updated from the 61st spectrum. The reference 

concentration was 7.64 mM. This reference was used for the next two hours as the end of 

the second hour corresponded to a region of the concentration profile that could not be 

used as a reference. For example, the 121st spectrum had a reference concentration of 

14.2 mM that was too high for use with the calibration database (i.e., the critical 

concentration was such that there were no alarm patterns in the calibration set). The 

concentration profile and the corresponding discriminant score plots are shown in Figures 

7.65 and 7.66 A, respectively. The committee result is shown in Figure 7.66 B. There 

were no false alarms out of 120 non-alarm patterns. 

The reference spectrum was then updated from the 181st spectrum. The reference 

concentration was 8.96 mM. The glucose concentration profile collected during the next 

hour had 20 alarm and 40 non-alarm patterns. The glucose transient is shown in Figure 

7.67. The PLDA prediction yielded 6 missed alarms out of 20 alarm patterns and 23 false 

alarms out of 40 non-alarm patterns as shown in Figure 7.68A. Three discriminants were 

used for this particular case since the third discriminant also separated a significant 
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number of patterns when compared to first two discriminant functions. The committee 

result is shown in Figure 7.68 B. 

The 241st spectrum had an alarm concentration and thus could not be used as a 

reference. The 287th spectrum was then used as the reference which had a concentration 

of 3.63 mM. There were 34 alarm patterns and 15 non-alarm patterns within this time 

period. Applying PLDA resulted in 1 missed alarm (97.1 % successful detection) and 5 

false alarms (occurrence of 33.3 %). The corresponding glucose concentration profile and 

the discriminant score plots are shown in Figures 7.69 and 7.70 A, respectively. The 

corresponding committee result is shown in Figure 7.70 B. 

The overall committee result for the entire run after applying the reference 

updating strategy is shown in Figure 7.71. Using the original lag time of 29 minutes, the 

combined result exhibited 7 missed alarms out of 53 alarm patterns and 27 false alarms 

out of 256 non-alarm patterns. This corresponded to the detection of 86.8 % of the alarm 

events with a false alarm occurrence of 10.5 %. 

Inspection of Figure 7.71 again suggests the originally determined lag time of 29 

minutes may be too long for the fourth prediction day. This is especially true in the 

location of the initial transition into the alarm state just past spectrum 200. The situation 

is less clear at the end of the run, however. Here the concentration profile hovers near the 

alarm threshold and precise assignment of alarm and non-alarm designations is 

impossible. If the lag time were reduced to 15 minutes, the number of missed alarms 

would be 7 out of 52 alarm patterns (detection of 86.5 % of alarm events). There would 

be 30 false alarms out of 257 non-alarm patterns (occurrence of 12.6 %).   
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Overall, the reference updating strategy improved the data prediction 

significantly, especially the number of missed alarm patterns. This confirms that the 

current methodology remains dependent on the assumption that the reference spectrum 

characterizes the background adequately. Going forward, an automated ability to 

determine when the reference needs to be updated is clearly needed.  

 The regression coefficients obtained from the fit of the pure components to each 

of the spectra collected for the fourth prediction day of rat 134 are shown in Figure 7.72. 

This figure shows the thickness variations of each individual component during the data 

collection. Nothing remarkable is observed for the fourth prediction day. There is some 

oscillation in the regression coefficients but no dramatic changes during the course of the 

run. 

The first four prediction PLS scores for the fourth prediction day are plotted with 

respect to the spectral sequence numbers in Figure 7.73. Scores 3 and 4 fall within the 

range defined by the corresponding calibration scores. For the plots of PLS scores 1 and 

2, it can be observed that some prediction PLS scores occupy a space outside the range 

defined by the calibration scores, especially the missed alarm patterns at spectral 

sequence numbers 200-22.  

The differential absorbance value at 4400 cm-1 for the fourth prediction day was 

plotted vs. the spectral sequence number to check for spectral variance at the most 

important glucose absorption band at 4400 cm-1. As noted previously for the other 

prediction days, it can be clearly seen from Figure 7.74 that the absorbance value shows a 

sequential drift with time.  
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Figure 7.60.  Glucose concentration profile for the fourth prediction day of rat 134.  The 
concentration profile contained 289 total spectra, 53 alarms and 256 non-alarms for a 
3.00 mM alarm threshold (horizontal line). 
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Figure 7.61.  Plot of RMS noise values (in µAU) computed for each signal-averaged 
spectrum collected on the fourth prediction day for rat 134. The 4500-4300 cm-1 region 
was used for the noise calculation. Noise values were computed by fitting the 100% line 
in the given wavenumber region to a third-order polynomial and computing the noise 
about the fit. 
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Figure 7.62. A. Discriminant score plot for the fourth prediction day of rat 134 with three 
replicate classifiers. The first spectrum was used as the reference. B. The discriminant 
scores corresponding to the committee result are shown (left y-axis) with the lag-
corrected reference glucose concentrations superimposed (right y-axis). The horizontal 
lines correspond to the alarm/non-alarm thresholds for the discriminant scores (0.0) and 
reference concentrations (3.0 mM). Glucose concentration profiles corresponding to lag 
times 0, 15 and 29 minutes are shown in the figure. From these results, a lag time closer 
to 15 minutes appears to improve the classification results.  
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Figure 7.63.  Glucose concentration profile for the first hour of the data collection of the 
fourth prediction day of rat 134. The concentration profile contained 60 total spectra and 
all were non-alarm patterns. 
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Figure 7.64. A. Discriminant score plot for the first hour of data collection on the fourth 
prediction day of rat 134 with three replicate classifiers. The first spectrum was used as 
the reference. B. The discriminant scores corresponding to the committee result are 
shown (left y-axis) with the lag-corrected reference glucose concentrations superimposed 
(right y-axis). The horizontal lines correspond to the alarm/non-alarm thresholds for the 
discriminant scores (0.0) and reference concentrations (3.0 mM). The glucose 
concentration profile is based on a lag time of 29 minutes. 
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Figure 7.65.  Glucose concentration profile for the data collected during 61-180 minutes 
of the fourth prediction day of rat 134.  The concentration profile contained 120 total 
spectra and all were non-alarm patterns. The horizontal line marks the alarm threshold of 
3.0 mM. 
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Figure 7.66. A. Discriminant score plot for 61-180 minutes of the fourth prediction day of 
rat 134 with three replicate classifiers. The spectrum at 61 minutes was used as the 
reference. B. The discriminant scores corresponding to the committee result are shown 
(left y-axis) with the lag-corrected reference glucose concentrations superimposed (right 
y-axis). The horizontal lines correspond to the alarm/non-alarm thresholds for the 
discriminant scores (0.0) and reference concentrations (3.0 mM). The glucose 
concentration profile corresponds to a lag time of 29 minutes.  
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Figure 7.67.  Glucose concentration profile for the data collected during 181-240 minutes 
of the fourth prediction day of rat 134.  The concentration profile contained 60 total 
spectra, 20 alarm and 40 non-alarm patterns. The horizontal line specifies the alarm 
threshold of 3.0 mM.  
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Figure 7.68. A. Discriminant score plot for 181-240 minutes on the fourth prediction day 
of rat 134 with three replicate classifiers. The spectrum collected at 181 minutes was used 
as the reference. B. The discriminant scores corresponding to the committee result are 
shown (left y-axis) with the lag-corrected reference glucose concentrations superimposed 
(right y-axis). The horizontal lines correspond to the alarm/non-alarm thresholds for the 
discriminant scores (0.0) and reference concentrations (3.0 mM). Glucose concentration 
profiles are shown for lag times 0, 15 and 29 minutes. A lag time of 15 minutes or less 
appears to improve the classification results.  
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Figure 7.69.  Glucose concentration profile for the data collected during 241-289 minutes 
of the fourth prediction day for rat 134.  The concentration profile contained 49 total 
spectra, 34 alarm and 15 non-alarm patterns. The horizontal line identifies the alarm 
threshold of 3.0 mM. 
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Figure 7.70. A. Discriminant score plot for 241-289 minutes on the fourth prediction day 
of rat 134 with three replicate classifiers. The spectrum collected at 287 minutes was used 
as the reference. B. The discriminant scores corresponding to the committee result are 
shown (left y-axis) with the lag-corrected reference glucose concentrations superimposed 
(right y-axis). The horizontal lines correspond to the alarm/non-alarm thresholds for the 
discriminant scores (0.0) and reference concentrations (3.0 mM). Glucose concentration 
profiles for lag times of 0, 15 and 29 minutes are shown in the figure.   
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Figure 7.71. The combined discriminant scores corresponding to the committee results 
that incorporated reference updating are shown (left y-axis) with the lag-corrected 
reference glucose concentrations superimposed (right y-axis). The horizontal lines 
correspond to the alarm/non-alarm thresholds for the discriminant scores (0.0) and 
reference concentrations (3.0 mM). Glucose concentration profiles corresponding to lag 
times of 0, 15 and 29 minutes are shown in the figure. 
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Figure 7.72.  Regression coefficients computed for each of the spectra collected for the 
fourth prediction day of rat 134. Panels A-E correspond to regression coefficients for 
collagen, water, keratin, fat, and an intercept term. The regression coefficients represent 
the thickness of each component in the skin tissue matrix. 
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Figure 7.73. Plots of PLS scores vs. spectral sequence number for the prediction 
differential spectra collected on the fourth day for rat 134. The 4850-4250 cm-1 
wavenumber range was used for the PLS calculation. The maximum and minimum PLS 
scores computed with the calibration differential spectra are plotted as dashed lines. 
Panels A, B, C, and D correspond to latent variables 1, 2, 3, and 4, respectively.  
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Figure 7.74. Absorbance at 4400 cm-1 plotted vs. the spectral sequence number for the 
differential spectra collected on the fourth prediction day for rat 134.  
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The mean absorbance spectra collected on each day of data collection for rat 134 

are plotted as in Figure 7.75 A. The corresponding mean differential spectra are shown in 

Figure 7.75 B. It is clear that there are significant variations in the absorbance from day 

to day. These might be due to the specific skin tissue locations used or some other 

variation related to the day. These variations may the reason for the comparatively higher 

errors in data prediction for rat 134.  

A PCA score plot produced by combining the spectra collected on all five days is 

shown in Figure 7.76. The spectra were mean-centered using the overall mean of the 

spectra and the wavenumber range of 4900 to 4200 cm-1 was submitted to the PCA 

calculation. The different clustering in the principal component scores corresponding to 

each day of data collection can clearly be observed.  

A corresponding score plot computed from the differential spectra is shown in 

Figure 7.77. While the days are still distinct, it can be seen that the scores corresponding 

to the differential spectra are clustered together better than in Figure 7.76. The spectra 

corresponding to the third day of data collection are the most different from the rest in 

this representation. These results confirm the utility of differential spectra in helping to 

remove spectral variation.  
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Figure 7.75. A. Mean absorbance spectra for each day of data collection for rat 134. B. 
Corresponding mean differential spectra.  
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Figure 7.76. Principal component score plot for the five days of data collection for rat 
134. Days are numbered relative to the calibration day (day 1). The spectra were mean-
centered using the overall mean of the spectra and the region of 4900 to 4200 cm-1 was 
used. Clear clustering is observed related to the day of data collection.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-3 -2 -1 0 1 2 3
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 

 
Day 1
Day 4
Day 9
Day 18
Day 22

PC score 1(95.12%) 

PC
 sc

or
e 

(3
.6

9 
%

) 



370 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
Figure 7.77. Principal components score plot for the five days of data collection for rat 
134. The differential spectra computed for each day were used in computing the principal 
component scores. Days are numbered relative to the calibration day (day 1).  
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calibration data was ~ 97 µAU at the wavenumber region of 4500-4300 cm-1and the 

corresponding noise value plot is shown in Figure 7.78. These noise values are the 

highest observed for any of the four rats studied.  

As before, PCA was used to assess the data consistency. The first two principal 

component scores computed from the absorbance spectra collected on the calibration day 

are plotted together in Figure 7.79. The 4900 to 4200 cm-1 range was used, and the data 

matrix was mean-centered before submission to PCA. The first four spectra are separated 

from the rest, indicating the rat is still adjusting to the interface. These spectra were 

removed from building the calibration database. The remainder of the data was divided 

into two distinct clusters on the basis of time. Figure 7.80 plots Q vs T2 for the calibration 

spectra. Spectra 1-4 are clear outliers, confirming the decision to remove them.   

A cross-validation was performed with the rat skin tissue absorbance spectra to 

find the best lag time. Figure 7.81 plots SECV vs. the number of latent variables for each 

of the lag times considered. These results indicate that no lag time is needed for rat 169. 

This is clearly a suspicious result and must be taken into account when considering the 

further results obtained with rat 169. The same computation for the first and second 

prediction days produced lag times of 13 and 2 minutes, respectively. It was decided to 

proceed with the protocol as established for the three previous rats and evaluate the issue 

of lag time in the context of the prediction results.  

The glucose concentration profile for the calibration day is shown in Figure 7.82. 

As before, the concentration profile was partitioned into training and monitoring sets as 

shown in the figure. The training and monitoring sets contained 179 and 67 signal-

averaged single-beam spectra, respectively. A non-contiguous monitoring set was used to 
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balance the number of alarm and non-alarm patterns and to have a more standard 

reference concentration. A total of 15,931 differential spectra were obtained for the 

training set.  

A grid search analysis was then performed and the top four wavenumber ranges 

were identified as shown in Table 7.7. The same procedures as described previously were 

used. Figure 7.83 shows a plot of SECV vs. the number of latent variables for the top 

wavenumber range that resulted from the grid search analysis. These top four 

wavenumber ranges and latent variables 12-16 were then used to build classification 

models with PLDA and applied to the monitoring data.  

The reference concentration, alarm threshold concentration and the critical 

concentration for the monitoring set were 5.05 mM, 3.00 mM and -2.05 mM, 

respectively. There were 2723 alarm and 13,208 non-alarm patterns in the training set. 

Table 7.8 summarizes the percentage (average ± standard deviation) of missed and false 

alarms when PLDA was employed. Three replicate discriminants were used, and each 

classifier was based on three discriminant functions.   

The wavenumber range and corresponding smallest number of PLS factors that 

gave the minimal missed and false alarm percentages was taken as the optimal 

combination for subsequent application to the prediction days. For rat 169, these 

parameters were 4850-4250 cm-1 and 13 PLS factors.  

Inspection of the number of alarm patterns separated in the calculation of the 

discriminants revealed great difficulty in separating the alarm and non-alarm patterns. It 

was observed that most of the alarm patterns were very close to the critical concentration 
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of -2.05 mM. There were 1861 patterns out of 2723 within the -2.05 to -2.5 mM range. 

This is most likely the reason behind the poor data separation observed with this rat.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.78.  Plot of RMS noise values (in µAU) computed for each consecutive pair of 
signal-averaged spectra collected on the calibration day of rat 169. The 4500-4300 cm-1 
region was used for the calculation. Noise values were computed by fitting the 100% line 
in the given wavenumber region to a third-order polynomial and computing the noise 
about the fit. These noise levels are the highest observed for the four rats studied.  
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Figure 7.79.  Principal component score plot for rat 169 for the calibration day. Labels 
correspond to the spectral sequence number. A different data clustering was observed for 
the first four averaged spectra. In addition, the remainder of the data occupy two distinct 
clusters that are grouped by time of data collection. The ellipse shows the 95 % 
confidence interval about the scores. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-1.5 -1 -0.5 0 0.5
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

 1  2
 3  4

 5
 6

 7 8 9
 10 11 12

 13
 14 15 16 17

 18

 19
 20 21

 22 23 24 25 26 27

 28

 29

 30 31 32
 33

 34
 35 36

 37
 38

 39
 40

 41
 42 43 44

 45
 46
 47

 48 49 50
 51 52 53

 54 55
 56

 57
 58

 59 60 61 62 63

 64
 65

 66 67
 68 69
 70 71 72 73

 74
 75

 76
 77

 78
 79 80 81

 82
 83

 84
 85

 86
 87

 88
 89
 90
 91 92 93 94

 95 96
 97 98 99 100
 101

 102 103 104

 105
 106
 107 108

 109 110
 111 112 113 114
 115

 116 117

 118
 119 120
 121 122 123 124

 125

 126

 127 128
 129

 130 131
 132

 133 134 135 136 137
 138

 139 140
 141 142
 143 144
 145 146 147

 148
 149 150
 151 152 153

 154 155 156 157 158 159
 160 161 162
 163 164
 165 166

 167

 168
 169 170 171 172 173

 174
 175
 176 177 178 179

 180 181 182

 183
 184 185
 186

 187 188 189 190 191
 192

 193 194
 195 196
 197

 198 199 200
 201

 202 203
 204
 205

 206 207 208 209 210 211 212
 213

 214
 215

 216
 217 218 219 220 221

 222
 223

 224
 225

 226 227 228 229
 230
 231

 232
 233
 234

 235
 236

 237

 238

 239
 240

 241
 242
 243 244 245 246 247 248 249

PC
 sc

or
e 

2 
(2

.0
8 

%
) 

PC score 1 (97.49 %) 



375 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.80.  Plot of Q vs. Hotelling’s T2 for the absorbance spectra collected on the 
calibration day for rat 169. The first two principal components were used for the analysis. 
Data labels indicate the spectral sequence number. Spectra 1-4 are clear outliers and were 
removed from further analysis.  
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Figure 7.81. Plot of SECV vs. latent variables for the calibration data for rat 169. These 
results suggest that no lag time is needed.  
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Figure 7.82. Glucose concentration profile for the calibration day for rat 169.  The 
concentration profile was partitioned into a training set which contained 180 spectra and 
a monitoring set which had 66 spectra. A non-contiguous monitoring set was used to 
balance the number of alarm and non-alarm patterns and to have a more standard 
reference concentration. The horizontal line specifies the alarm threshold of 3.0 mM.  
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Table 7.7.   Top four wavenumber-latent variable combinations based on 
minimum SECV value from the grid search analysis of training differential 
spectra 

 
Wavenumber (cm-1) Latent variables SECV (mM) 

4900-4250 16 0.511 

4900-4200 16 0.518 

4900-4300 16 0.528 

4850-4250 16 0.541 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.83. Plot of SECV vs. latent variable plot for the top wavenumber range resulting 
from the grid search. The minimum SECV was 1.03 mM at 16 PLS factors.  
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Table 7.8.  Average percentage of missed and false alarms for the monitoring  
Set 
 

Spectral 

range, cm-1 

       PLS factors 

        12               13            14                 15               16 

 

4900-4250 

AM (%)a ± SD 

AF (%)b ± SD 

DS (%)b ± SD 

53.3 ± 40.0 

9.4 ± 8.3 

12.0 ± 1.6 

75.2 ± 42.9 

5.2 ± 9.0 

14.8 ± 2.4 

59.0 ± 27.5 

7.3 ± 6.5 

19.3 ± 1.6 

40.0 ± 23.4 

16.6 ± 7.9 

19.6 ± 3.2 

35.2 ± 23.0 

12.5 ± 6.2 

21.3 ± 1.6 

 

4850-4250 

AM (%)a ± SD 

AF (%)b ± SD 

DS (%)b ± SD 

7.6 ± 5.9 

34.4 ± 3.1 

9.4 ± 0.6 

3.81 ± 4.4 

33.3 ± 3.6 

13.0 ± 1.9 

47.6 ± 26.6 

10.4 ± 6.5 

11.1 ± 4.0 

28.6 ± 2.9 

14.6 ± 1.8 

15.4 ± 1.3 

20.0±10.3 

22.9 ± 9.0 

14.8 ± 2.1. 

  

4900-4200 

AM (%)a ± SD 

AF (%)b ± SD 

DS (%)b ± SD 

94.3 ± 9.90 

5.2 ± 9. 

12.3 ± 2.7 

94.3 ± 9.9 

5.2 ± 9.0 

14.7 ± 0.9 

99.0 ± 1.6 

1.04 ± 1.8 

18.8 ± 0.9 

 100.0 ± 0.0 

0.0 ± 0.0 

19.1 ± 3.4 

100.0 ± 0.0 

0.0 ± 0.0 

22.6 ± 1.9 

 

4900-4300 

AM (%)a ± SD 

AF (%)b ± SD 

DS (%)b ± SD 

70.4± 11.5 

8.3 ± 4.8 

10.8 ± 2.6 

37.1± 35.8 

15.6 ± 11.3 

11.2 ± 2.4 

53.3 ± 19.4 

10.4 ± 4.8 

10.4 ± 0.8 

   79.0 ± 8.7 

8.3 ± 9.31 

12.5 ± 0.8 

100.0 ± 0.0 

0.0 ± 0.0 

16.5 ± 1.9 

  aAM (%) ± SD: Average percentage of missed alarms ± standard deviation.  

 bAF (%) ± SD: Average percentage of false alarms ± standard deviation.  

 cDS (% )± SD Average percentage of separated alarm patterns with three    
 discriminants (DS) ± standard deviation. 

  

 
 

The first prediction day was one day removed from the calibration. Each of the 

single-beam spectra collected was assigned a glucose concentration on the basis of the 

interpolated reference measurements and no lag was applied. Using the same protocol as 

discussed for rat 134, the data collected during the first 15 minutes (15 signal-averaged 

single-beam spectra) were removed from the analysis. The average RMS noise value for 

the first prediction day was 141 µAU. The plot of RMS noise values is shown in Figure 

7.84. These noise values are higher than those obtained for the calibration day.  
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 The glucose concentration profile for the first prediction day is shown in Figure 

7.85. The first spectrum after removing the first 15 signal-averaged spectra had a 

concentration of 4.12 mM and was used as the reference spectrum. The alarm threshold 

was 3.00 mM and the critical concentration was -1.12 mM.  All the data collected during 

the calibration day were put into a single block to compute the differential spectra. This 

yielded 30,129 total spectra. The PLS scores computed with the optimal wavenumber-

latent variable combination were partitioned into 15,128 alarm and 14,961 non-alarm 

patterns. Three replicate classifiers were computed with the calibration PLS patterns and 

the first three discriminant functions from each of the replicates were used for the 

prediction. Across the three replicate classifiers, an average of 22 % of the alarm patterns 

in the calibration set were separated. This low degree of separation again reflects the 

large number of training patterns near the critical concentration (i.e., near the decision 

boundary of the discriminant). 

When the alarm decision rule was applied, there were five missed alarms out of 

87 alarm patterns and 62 false alarms out of 117 non-alarm patterns. The same analysis 

with a lag time of 10 minutes produced the same classification results. The discriminant 

scores plots for the individual classifiers and the committee result are shown in Figures 

7.86 A and B, respectively. The classifier works well at the beginning of the data 

collection, correctly going into alarm near spectrum 60. The glucose transient out of the 

alarm condition near spectrum 100 is missed, however, as the classifier remains in the 

alarm state from that point forward.  

The regression coefficients resulting from the fit to the spectra of the pure 

components for each of the spectra collected on the first prediction day of rat 169 are 
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shown in Figure 7.87. The traces with respect to time are reasonably stable. Examination 

of panel B reveals a water thickness approaching 1.5 mm. This is most likely the reason 

for the increased noise level for this prediction day.  

The first four prediction PLS scores are shown in Figure 7.88. Most of the scores 

except for score 4 are within the space defined by the calibration scores. Still, each of the 

traces shows significant fluctuations with time. This might be the reason for the large 

number of false alarms observed from the classifier.  
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Figure 7.84.  Plot of RMS noise values (in µAU) for consecutive pairs of signal-averaged 
spectra collected on the first prediction day of rat 169. The 4500-4300 cm-1 region was 
used for the noise calculation. Noise values were computed by fitting the 100% line in the 
given wavenumber region to a third-order polynomial and calculating the noise about the 
fit. These noise values are higher than those observed for the calibration data.  
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Figure 7.85.  Glucose concentration profile for the first prediction day of rat 169.  The 
concentration profile contained 204 total spectra, 117 non-alarm concentrations and 87 
alarm concentrations. The horizontal line denotes the alarm threshold of 3.0 mM.  
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Figure 7.86. A. Discriminant score plot for the first prediction day of rat 169 with three 
replicate classifiers. The first spectrum was used as the reference. B. The discriminant 
scores corresponding to the committee result are shown (left y-axis) with the lag-
corrected reference glucose concentrations superimposed (right y-axis). The horizontal 
lines correspond to the alarm/non-alarm thresholds for the discriminant scores (0.0) and 
reference concentrations (3.0 mM). Glucose concentration profiles are shown for lag 
times of 0, 10 and 20 minutes. 
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Figure 7.87. Regression coefficients computed for each of the spectra collected for the 
first prediction day of rat 169. Panels A-E correspond to regression coefficients for 
collagen, water, keratin, fat, and an intercept term. The regression coefficients represent 
the thickness of each component in the skin tissue matrix. The water coefficient in panel 
B is thicker than ideal for obtaining spectra with low noise levels.  
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Figure 7.88. Plots of PLS scores vs. spectral sequence number for the prediction 
differential spectra collected on the first prediction day for rat 169. The 4850-4250 cm-1 
wavenumber range was used for the PLS calculation. The maximum and minimum PLS 
scores computed with the calibration differential spectra are plotted as dashed lines. 
Panels A, B, C, and D correspond to latent variables 1, 2, 3, and 4, respectively. 
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Similar to the procedure used with rat 134, a reference updating strategy was 

explored to check if this step would improve the classification performance. All other 

parameters used were as described above. A strategy of updating every hour was applied 

when it was possible to do so. The first spectrum of the data set was used as a reference 

for the first two hours of data collection. It was not possible to update the reference 

spectrum after one hour since the glucose concentration was in the alarm state at that 

time. There were no missed alarms out of 47 alarm patterns and 16 false alarms out of 73 

non-alarm patterns.  

The reference spectrum was then updated from the 121st spectrum, two hours after 

the starting point of the data collection. The reference concentration for the 

corresponding spectrum was 5.40 mM. The concentration profile and the corresponding 

discriminant score plot are shown in Figures 7.89 and 7.90, respectively. There were 31 

missed alarms out of 40 alarm patterns and 15 false alarms out of 40 non-alarm patterns. 

After updating, the classification performance tracks the concentration profile until 

approximately spectrum 170. The missed and false alarms come primarily from the last 

segment of the experiment. 

The overall committee result obtained with updating is provided in Figure 7.91. 

For a lag time of zero, combining the two sets of results obtained with updating produced 

31 missed alarms and 31 false alarms in total. The reference updating strategy improved 

the data prediction significantly for the non- alarm patterns (i.e., the number of false 

alarms decreased by half from 62 to 31), but the number of missed alarms increased from 

5 to 31. Applying a lag time of 10 minutes to the results obtained with reference 

updating, there were 25 missed alarms and 34 false alarms. The overall conclusion from 
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this prediction day is that the noise levels are too high for the alarm algorithm to work 

well. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.89.  Glucose concentration profile for 121-204 minutes of the first prediction 
day for rat 169.  The concentration profile contained 84 total spectra, 44 non-alarm 
concentrations and 40 alarm concentrations. The alarm threshold of 3.0 mM is denoted 
by the horizontal line.  
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Figure 7.90. A. Discriminant score plot for 121-204 minutes of the first prediction day of 
rat 169 with three replicate classifiers. The spectrum at 121 minutes was used as the 
reference. B. The discriminant scores corresponding to the committee result are shown 
(left y-axis) with the lag-corrected reference glucose concentrations superimposed (right 
y-axis). The horizontal lines correspond to the alarm/non-alarm thresholds for the 
discriminant scores (0.0) and reference concentrations (3.0 mM). Glucose concentration 
profiles corresponding to lag times of 0, 10 and 20 minutes are shown in the figure. 
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Figure 7.91. Committee result for the first prediction day of rat 169 after updating the 
reference at spectrum 121. The classification performance tracks the concentration profile 
until approximately spectrum 170. Glucose concentration profiles corresponding to lag 
times of 0, 10 and 20 minutes are shown in the figure.  
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Data for the second prediction set were collected two days after the calibration 

day. Each of the single-beam spectra was assigned to an interpolated glucose 

concentration and no lag correction was applied. Using the same procedures as described 

previously, the average RMS noise value for the second prediction day was 102 µAU. A 

plot of the computed noise values is provided in Figure 7.92. While lower than the first 

prediction day, this value still represents a high noise level.  

The first spectrum after removing the first 15 signal-averaged spectra had a 

concentration of 5.50 mM and was used as the reference spectrum. The alarm threshold 

was 3.00 mM and the critical concentration was -2.50 mM. The PLS scores computed 

with the optimal wavenumber-latent variable combination were partitioned using the 

critical concentration into 4480 alarm and 25,649 non-alarm patterns. Three replicate 

classifiers were computed with the calibration PLS patterns and the first three 

discriminants from each of the replicates were used for the prediction. Across the three 

replicate classifiers, an average of 5 % of the alarm patterns in the training set were 

separated. This value is extremely low and indicates extreme difficulty in establishing a 

separating boundary between the alarm and non-alarm data classes.  

When the alarm decision rule was applied, there were four missed alarms out of 

80 alarm patterns and 30 false alarms out of 100 non-alarm patterns. This corresponds to 

a successful detection of 95 % of the alarm events, but with a problematic 30 % 

occurrence of false alarms. The corresponding glucose concentration profile and the 

discriminant scores plot are shown in Figures 7.93 and 7.94, respectively. Figure 7.94 

shows the results for the individual replicate classifiers and the committee result. The 

majority of the false alarms occur in the first 40 minutes of data collection. The 
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classification response then tracks the concentration profile well for the remainder of the 

data collection. No reference updating was attempted for the second prediction day as the 

results did not exhibit a decline in performance over time. Use of a lag time of 10 minutes 

did not help to improve the data prediction, giving four missed alarms and 36 false 

alarms. 

The regression coefficients corresponding to the fit of the pure-component spectra 

to each of the spectra collected on the second prediction day are shown in Figure 7.95. 

The regression coefficients are quite stable over the course of the experiment. The water 

thickness is again quite large (> 1.5 mm) and is likely responsible for the higher than 

desired RMS noise levels. 

The first four prediction PLS scores for the second prediction day at the 

wavenumber range of 4850-4250 cm-1 are plotted against the spectral sequence numbers 

in Figure 7.96. The first two prediction PLS scores are within the space defined by the 

calibration PLS scores. The PLS scores do not show much fluctuation with time. This 

may be a contributing reason for the overall better data prediction on the second 

prediction day.   
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Figure 7.92.  Plot of RMS noise values (in µAU) computed for each signal-averaged 
spectrum collected on the second prediction day for rat 169. The 4500-4300 cm-1 region 
was used. Noise values were computed by fitting the 100% line in the given wavenumber 
region to a third-order polynomial and computing the noise about the fit. 
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Figure 7.93. Glucose concentration profile for the second prediction day of rat 169. There 
were 80 alarm and 100 non-alarm spectra collected on the basis of an alarm threshold of 
3.0 mM (horizontal line). 
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Figure 7.94. A. Discriminant score plot for the second prediction day of rat 169 with 
three replicate classifiers. The first spectrum was used as the reference. B. The 
discriminant scores corresponding to the committee result are shown (left y-axis) with the 
lag-corrected reference glucose concentrations superimposed (right y-axis). The 
horizontal lines correspond to the alarm/non-alarm thresholds for the discriminant scores 
(0.0) and reference concentrations (3.0 mM). Glucose concentration profiles are shown 
for lag times of 0, 10 and 20 minutes.  
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Figure 7.95.  Regression coefficients computed for each of the spectra collected for the 
second prediction day of rat 169. Panels A-E correspond to regression coefficients for 
collagen, water, keratin, fat, and an intercept term. The regression coefficients represent 
the thickness of each component in the skin tissue matrix. The water coefficient in panel 
B is thicker than ideal for obtaining spectra with low noise levels.  
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Figure 7.96. Plots of PLS scores vs. spectral sequence number for the prediction 
differential spectra collected on the second prediction day for rat 169. The 4850-4250 cm-

1 wavenumber range was used for the PLS calculation. The maximum and minimum PLS 
scores computed with the calibration differential spectra are plotted as dashed lines. 
Panels A, B, C, and D correspond to latent variables 1, 2, 3, and 4, respectively. 
 
 
 

The mean absorbance spectra collected on each day of data collection are shown 

in Figure 7.97 A and the corresponding mean differential spectra are plotted in Figure 

7.97 B. It is clear that there are significant variations in the absorbance across the three 

days of data collection.  

0 50 100 150 200

-1

-0.5

0

0.5

1.1

0 50 100 150 200

-0.13

0

0.14

0 50 100 150 200
-0.2

-0.11

0

0.11

0 50 100 150 200
-0.04

-0.01
0

0.01

0.04

PL
S 

sc
or

e 
1 

PL
S 

sc
or

e 
2 

PL
S 

sc
or

e 
3 

PL
S 

sc
or

e 
4 

(A) (B) 

(D) (C) 
Spectral sequence number Spectral sequence number 

Spectral sequence number Spectral sequence number 



401 
 

 
 

Figure 7.98 is a score plot derived from performing PCA on the combined data 

from rat 169. The spectra were mean-centered using the overall mean of the spectra and 

the region of 4900 to 4200 cm-1 was submitted to PCA. Clusters can clearly be observed 

corresponding to the day of data collection. Figure 7.99 is a corresponding score plot 

based on differential spectra. As observed previously with rat 134, calculation of the 

differential spectra helps to remove day-to-day variation, although data groupings 

corresponding to the day of data collection can still be seen. 
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Figure 7.97. A. Mean absorbance spectra for each day of data collection for rat 169. B. 
Corresponding mean differential spectra. 

 
 
 

 

 

 

 

 

 

 

4300 4400 4500 4600 4700 4800
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

 

Day 1
Day 2
Day 3

A
bs

or
ba

nc
e 

(A
U

) 

Wavenumber (cm
-1

) 

(B) 



403 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.98. Principal component score plot for the three days of data collection for rat 
169 using absorbance spectra relative to an air background. The spectra were mean-
centered using the overall mean of the spectra. The wavenumber region of 4900 to 4200 
cm-1 was employed.  
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Figure 7.99. Principal component score plot for the three days of data collection for rat 
169. The differential spectra for each day were used in computing the principal 
component scores. Spectra were mean-centered and the region of 4900 to 4200 cm-1 was 
employed. Less day-to-day variation is observed than in Figure 7.98, although data 
groupings are still observed corresponding to the day of data collection.  
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animal, data were collected that simulated the glucose excursions that might occur in a 

human with diabetes during sleep. From these studies, the potential of the alarm 

algorithm was further established.  

The alarm algorithm was first tested with data collected in non-survival single-

day experiments in which the rat was anesthetized during the data collection. Spectra 

were collected continuously over several hours. The results presented here focused on 

measurements with two different rats (106 and 114). In each case, the data collected on a 

single day were used to calibrate the alarm algorithm and then to test the implementation 

of the alarm. While still collected on the same day, the prediction data in each case 

corresponded to a time period outside of the time span of the calibration.  

For both rats 106 and 114, the nocturnal alarm algorithm performed well when 

applied to the prediction data. On average, 87.5 % of alarm events were correctly 

detected, and the occurrence of false alarms was at 7.2%. There was clear evidence of 

spectral drift during the time course of the experiment, but the alarm algorithm was able 

to overcome this variation without significant negative effects.  

Results were also presented for two rats (134 and 169) that were used for 

experiments conducted over multiple days. The multiple-day data collection is much 

more complex than the single-day experiment. The rat is awake during the data collection 

which can lead to significant additional spectral variation arising from movement 

artifacts. Also, there are potential variations in skin composition with time. While there 

was an attempt to make the measurement each day at the same location on the rat skin, 

changes in the pressure of the interface from day to day can induce effective changes in 

the skin thickness present within the optical path. Also, there was an apparent change in 
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skin transmission over time due to a cumulative effect of the same tissue section being 

repeatedly placed within the interface. These effects are reflected in the regression 

coefficients obtained by fitting the collected spectra to pure-component spectra of the 

principal tissue components.  

 For rat 134, data were collected in five one-day sessions that spanned a total of 

21 days. The calibration database was assembled from the data collected on the first day, 

while the remaining four days were used in testing the implementation of the alarm 

algorithm. For the first three prediction days, 77.1 % of alarm events were detected 

successfully, and the average occurrence of false alarms was 3.1 %. Performance 

declined on the fourth day, however. By increasing the pattern dimensionality by one 

PLS factor and updating the reference spectrum twice during the experiment, 86.8 % of 

alarm events were detected with a false alarm rate of 10.5 %. Overall, the classification 

performance with rat 134 was deemed promising, particularly given the many sources of 

variance encountered in the multiple-day experiment. 

The results obtained with rat 134 also illustrated the effects of imprecision in the 

estimate of the lag time between arterial and tissue glucose concentrations. The lag time 

estimated for the calibration day was 29 minutes, a value higher than normal on the basis 

of previous results. For the four prediction days, the results were inconsistent with respect 

to whether the estimated lag time was correct. The classification results obtained for the 

first prediction day suggested a slight change in lag time might be appropriate, but the 

value of 29 minutes was not clearly wrong. Prediction days 2 and 3 had no alarm events, 

and thus no change in lag time would have affected the classifications. For the fourth 

prediction day, however, the results indicated a lag time of approximately 15 minutes was 
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probably more appropriate than 29 minutes. Overall, these results illustrate the 

importance of the lag time estimate and the inadequacies of the current methodology in 

identifying the appropriate lag time for a given day.   

Rat 169 was employed over three consecutive days of data collection, with the 

first day being used for calibration and the remaining two days serving as prediction data 

for testing the implementation of the alarm. Noise levels for rat 169 were higher than 

those computed for the other rats. This increase in noise arose from a greater thickness of 

water in the optical path (~ 1.5 mm vs. < 1.0 mm for the other rats). Across the two 

prediction days, an average of 79.7 % of alarm events were detected, but the occurrence 

of false alarms averaged 28.2 %. These results reflect performing one reference update at 

the two-hour mark on the first prediction day. From the calibration data, no lag time was 

found to be significant, and none of the prediction results indicated a different lag time 

would have improved the classification performance. 

Several overall conclusions can be drawn from the work presented in this chapter. 

First, classification performance is negatively impacted by increased spectral noise levels. 

Given the greater degree of spectral variance inherently encountered in the multiple-day 

experiments, it was especially problematic to have noise levels at 100 µAU or above for 

rat 169. The issue is a challenging one from an experimental standpoint, however. 

Increasing the pressure on the interface will result in greater compression of the tissue 

and a corresponding higher light throughput and lower noise, but such increased pressure 

will also cause greater variation in the tissue background with time. The ultimate solution 

would be to have greater incident source power, but that would require a higher 

brightness light source than is currently available. A higher brightness source might also 
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permit an interface based on a reflectance geometry. This might help to alleviate 

deformation of the tissue over the time course of the measurements.  

Two other problematic issues that were made apparent by the work performed 

with the four rats are (1) the difficulty of establishing a workable and accurate way of 

handling the lag between arterial and tissue glucose concentrations and (2) the need for 

more dynamic components in the alarm algorithm.  

The issue of lag was addressed in this work by taking a block of calibration data 

and fitting it to a quantitative model for concentration as the lag was adjusted. It was 

hypothesized that the best concentration fit would signal the most appropriate lag. Across 

the four rats employed, lag values of 11, 7, 29 and 0 minutes were obtained. These values 

are not consistent enough to be satisfying or convincing. Furthermore, they assume a 

constant lag both within a day and between days. The results from the fourth prediction 

day of rat 134 emphasize this concern, as they suggest the need for a different lag time 

than determined on the calibration day. A more extensive study of this issue is beyond the 

scope of this dissertation, but is clearly needed. 

Finally, the hypoglycemic alarm algorithm worked well as long as the 

assumptions upon which it was based appeared to hold. Correct choice of the reference 

spectrum to use in the calculation of differential spectra was critical. Issues encountered 

in the in vivo work were a need to detect when the rat had equilibrated with the interface, 

as well as a need to determine when or if the reference required updating. Essentially ad 

hoc solutions to these problems were implemented here (e.g., waiting 15 minutes before 

taking the reference), but a more elegant dynamic approach to both problems is clearly 

needed.   
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 

Summary of Thesis Contributions 

The ability to measure glucose selectively in in vivo spectra collected in the 

combination region of the NIR has been demonstrated previously.10,151 This dissertation 

utilized this ability to measure glucose selectively and extended it to an investigation of a 

possible classification method to identify occurrences of hypoglycemia. A nocturnal 

hypoglycemic alarm algorithm was developed and tested both with in vitro simulation 

studies and in vivo studies using rat animal models. 

The requirement for conventional invasive reference glucose measurements 

limited the size of the calibration database available for use in developing the 

hypoglycemic alarm algorithm. In this thesis, this was addressed by using a differential 

spectral computation in which spectra in absorbance units were computed by taking the 

ratios of all combinations of the collected single-beam spectra within a defined time 

block. By orienting the ratios such that negative differential concentrations were 

obtained, a simple correspondence was established between the concentrations in the 

calibration database and the differential concentrations obtained when spectra collected 

continuously are referenced to a spectrum collected at the start of the sleep period. By 

obtaining a conventional invasive glucose measurement to match the reference spectrum, 

differential concentrations signaling hypoglycemia will necessarily correspond to a 

specific negative value. This allowed the calibration database to be split into two groups: 

differential concentrations above or below a user-specified hypoglycemic threshold. On 
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the basis of these groupings, classification models could be constructed to produce a 

yes/no response regarding the occurrence of hypoglycemia. 

The use of differential spectra increased the size of the calibration database 

significantly. In addition, the calculation of differential spectra served to remove spectral 

information corresponding to a constant background between every two spectra whose 

ratio was taken. As an example, if the thickness of the skin tissue matrix were constant, 

the spectral variance associated with it would be constant and would therefore be 

canceled when the ratio was taken. 

The glucose-related information in the sample matrix was extracted using the 

multivariate inverse regression method, PLS, which utilized the covariance between the 

spectral and concentration information to compute a set of latent variables and 

corresponding scores. In PLS, the dimensionality of each spectrum can be reduced from 

hundreds of points to an equivalent representation based on fewer than 20 factors. This 

data reduction/feature extraction step was very important for the nocturnal hypoglycemic 

alarm algorithm application discussed in this thesis. The pattern recognition method, 

PLDA, requires iterative optimization steps to find the optimal classification model. The 

optimization is both much faster and more reproducible when using PLS scores as 

patterns in the classification model than when using the entire spectrum. 

Another important step in the design of the alarm algorithm was the calculation of 

replicate classification models. In implementing the alarm, three replicate classifiers were 

computed and the alarm decision was based on the performance of the classifiers as a 

group. An alarm decision rule was introduced in which any prediction pattern was termed 

an “alarm” if two of the three replicate classifiers predicted it as an “alarm”. This 
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minimized the number of missed or false alarms since the decision was not based on the 

precise optimization of a single classifier. 

The exact number of discriminant functions used to build each piecewise linear 

discriminant was directly dependent on the structure of the data space formed by the 

patterns in the training set. For the research discussed in this thesis, the number of 

discriminants used for the classification was determined by the number of training 

patterns separated. Only the discriminants that separated a significant number of patterns 

were used for the classification. For the relatively simple sample matrix discussed in 

Chapter 4, a single discriminant function separated more than 95 % of the data and only 

the first discriminant was used for the classification. However, 2-3 discriminants were 

observed to be significant for the complex sample matrixes discussed in Chapters 6 and 

7.  

The choice of the optimal number of discriminants was observed to be important 

in helping to ensure the accuracy of subsequent data predictions. In the application of 

PLDA in this thesis, if any discriminant classified the unknown pattern as an alarm, the 

piecewise linear discriminant classified that pattern as an alarm.  Therefore, if more 

discriminants than required are used for the classification, the probability is increased to 

classify unknown patterns as alarms and thus the rate of false alarms may increase. 

Correspondingly, if fewer than the optimal number of discriminants are used, a greater 

likelihood of missed alarms exists. 

One of the challenges in defining an automated protocol for the implementation of 

the alarm algorithm was the need to optimize several important parameters. The number 

of PLS factors and the wavenumber range used for the classification was optimized in 
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two steps. In PLS, the use of too many latent variables incorporates noise or unneeded 

spectral features into the model. By contrast, the use of less than the optimal number of 

factors may prevent important spectral information from being incorporated into the 

model. The use of the correct wavenumber range has a similar effect: the inclusion of 

unneeded spectral features or the exclusion of important features.  

The PLS factor-wavenumber combination was first optimized using a grid search 

analysis, in which an F-test corrected SECV value was used as the response function to 

find the optimum. The results presented previously in Chapters 4, 6, and 7 demonstrated 

that the grid search analysis optimized the wavenumber range correctly to cover the 

known glucose absorption features. However, the highest number of PLS factors tested 

tended to always be judged as optimal, and the use of the F-test to eliminate insignificant 

terms was not effective because of the high number of degrees of freedom (i.e., very 

small changes in F-values were judged significant).  

For this reason, the grid search was used only to identify a set of 4-5 best-

performing wavenumber ranges and a further optimization based on PLDA was used to 

select the final combination of wavenumber range and number of latent variables. The 

results discussed in the previous chapters clearly demonstrated that the optimal result 

obtained from the PLDA optimization was typically not the top wavenumber-latent 

variable combination produced by the grid search analysis. Therefore, the PLDA-based 

optimization was very important to find the best wavenumber-PLS factor combination for 

use in building the final classification model. 

It was also observed that the PLDA classification results were highly sensitive to 

the wavenumber-latent variable combinations for the complex sample matrixes. Even 



413 
 

 
 

though they were judged to be well-performing by the grid search, some combinations 

performed poorly when applied to the monitoring data. This underscored the need to test 

the selected parameters with external prediction data (i.e., the monitoring set) rather than 

simply relying on cross-validation within the calibration set. This was especially 

important with the in vivo data presented in Chapter 7.  

A series of experimental investigations was performed to validate the proposed 

nocturnal hypoglycemic alarm algorithm. Chapter 4 discussed a five-component dynamic 

system composed of glucose, urea, lactate, glyceryl triacetate and pH 7.4 phosphate 

buffer. The results presented in the chapter clearly demonstrated excellent data 

prediction, giving no missed or false alarms. The robustness of the model was further 

demonstrated by use of data collected over an extended time period. The PLS scores plot 

for the alarm and non-alarm patterns further demonstrated a clear separation between the 

data classes, confirming the utility of implementing the alarm decision with a 

classification method such as PLDA. 

Chapter 5 discussed an approach to make a skin tissue phantom composed of 

keratin and collagen which could be used to simulate data collection in the human skin 

tissue matrix. The thickness of each film was evaluated using a linear regression fit to 

experimentally measured human skin tissue spectra, and the films were designed to 

match the equivalent amount of keratin or collagen observed in these spectra of human 

tissue.  Initial studies were performed with films of uniform thickness and follow-on 

studies were then performed in which films of varying thickness were created. This 

allowed the incorporation of variation in film thickness into the in vitro simulation 

studies.  
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The R2 value was used to determine how well the predicted spectra from the 

regression fit matched the actual spectra of skin tissue. Values of R2 in the range of 0.97 

to 0.99 demonstrated both the films of uniform and varying thickness compared well to 

the actual spectra. However, plots of actual vs. predicted spectra showed a clear 

mismatch in the protein feature area in the NIR spectrum. This might be due to 

differences in the protein structure of the keratin and gelatin powders used with those 

present in skin tissue. Another possibility is structural variation caused by the need to use 

formic acid as the solvent in casting the films. 

In this thesis, an experimental methodology was proposed to produce variable-

thickness films which provided some ability to change the effective skin tissue 

component content of a simulated tissue sample. This allowed the simulation of changes 

in the skin tissue components that might occur in in vivo measurements conducted at 

different measurement sites on the same individual or at different times.  

In the work discussed in Chapter 6, the noninvasive nocturnal alarm algorithm 

methodology was tested and its performance was evaluated with the two tissue phantoms 

described above to simulate the spectral properties of human tissue. The alarm algorithm 

performed well for the data collected in a dynamic system in the presence of the films in 

the same orientation during all the days of data collection. However, more missed and 

false alarms were observed when the film thickness was allowed to change while the 

spectra were collected. These results illustrate the need for the calibration database to 

incorporate the range of variation to be encountered when the classification model is 

applied to external prediction data.  
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In the work discussed in Chapter 7, the noninvasive nocturnal alarm algorithm 

methodology was tested and its performance was evaluated with a much more complex 

sample matrix. The alarm algorithm was tested with the data collected from rat animal 

models in both single-day and multiple-day data collections. The single-day experiments 

were performed with anesthetized rats under a non-survival protocol. The multiple-day 

data collections were performed with awake rats. The results obtained clearly 

demonstrated that the alarm algorithm performed well with the data collected from the 

single-day data collection where the physical and chemical spectral variances were 

minimal. However, the performance of the algorithm for the multiple-day studies varied. 

Some days performed relatively well while some had poor predictions. The thicknesses 

for the skin tissue components appeared to be different for each day of data collection 

and even within a single day they appeared to change. Similar to the results obtained with 

the variable-thickness protein films described in Chapter 6, this variation may be the key 

factor in negatively affecting prediction accuracy.  

Related to the variation in apparent skin thickness was variation in observed 

spectral RMS noise levels. From rat to rat and day to day, average RMS noise values 

varied from approximately 20 to well over 100 µAU. The largest contributor to the 

observed spectral noise was the intrinsic noise of the detector, made more significant as 

the number of signal photons decreased. A thicker section of tissue within the optical 

interface, such as that found for rat 169, translated into fewer transmitted photons and a 

correspondingly higher noise level. The task of differentiating glucose concentrations 

above and below the alarm threshold was clearly made more difficult in the presence of 

increased spectral noise.  
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The overall conclusion from this work is that the proposed hypoglycemic alarm 

algorithm can perform extremely effectively as long as high-quality, reproducible spectra 

are obtained that can be accurately represented by the calibration database. While the use 

of differential spectra as the inputs to the alarm algorithm has several practical 

advantages in terms of expanding the calibration database and removing common 

background components, these spectra are not sufficiently resistant to changes in the 

background matrix to allow the alarm algorithm to overcome the levels of variation 

observed from day to day in the in vivo data. Thus, further improvements in the 

experimental protocol are needed in the in vivo measurements to improve the quality and 

reproducibility of the spectral data.  

 

Future Work 

The performance of the alarm algorithm in the presence of some key interfering 

components in the NIR region was studied in the thesis. However, the sample matrix 

could be made more representative by incorporating additional components into the 

optical path of the measurement. For example, a fat phantom could be added in addition 

to the protein phantom described in Chapter 5. Fat present in the skin tissue matrix 

absorbs as well as scatters NIR light, thereby interfering with the glucose analysis. As 

noted previously, the fat absorption regions between 4400 and 4200 cm-1 interfere with 

the two main glucose absorption bands at 4300 and 4400 cm-1. A fat tissue phantom 

could be prepared by melting bovine or porcine fat and applying it to the sample holder in 

much the same procedure as discussed previously for preparing the protein phantoms. 
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The aqueous matrix used with the dynamic system could also be altered to reflect the 

composition of human interstitial fluid more accurately.  

Performing PCA with mean-centered rat skin tissue absorbance spectra 

demonstrated that the first principal component explained approximately 95% of the total 

spectral variance. The first loading for rat 106 is shown in Figure 8.1. This figure clearly 

exhibits broad spectral features and some baseline variation across the spectrum. This 

baseline variation and the broad features are indications of variation in the optical path 

length and the degree of light scattering encountered with the skin tissue matrix. Data 

preprocessing methods could be used to correct for these potential physical phenomena 

and interferences that result in unwanted signal variability. 

In this thesis, the differential spectral computation was performed as a 

preprocessing method on the basis of assuming that spectral ratios would remove 

common background components. However, it was observed that the skin tissue matrix 

changes during the data collection. The light scattering from the skin tissue is manifest as 

a multiplicative interference across the NIR spectral region and could potentially be 

corrected by use of a spectral preprocessing method. For example, multiplicative scatter 

correction (MSC) 152 could be used to help correct this variation. For the application 

discussed in this thesis, the single-beam spectra could be corrected using MSC before the 

calculation of the differential spectra. 

Variation in the thickness of the skin tissue can be observed as baseline variation 

in the collected spectra. Derivatives are often used to reduce this effect, and for the 

application discussed here, the spectra could be preprocessed using a derivative 

computation. This calculation also enhances small spectral features. Either before or after 
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the differential spectral computations, spectra could be preprocessed using a derivative 

calculation. Other digital filtering methods could also be explored.  

One of the problems noticed in the multiple-day data collection with the rat 

animal models was the variation in skin thickness from day to day. The spectra collected 

on each day could be normalized by the sum of the regression coefficients that represent 

the physical thickness of each of the modeled components of the skin tissue. This could 

produce a normalized spectrum for each day and would help to account for the thickness 

variations from day to day. 

The alarm decision rule could also be studied further. It was observed that in 

replicate classifiers, some predicted well while others predicted poorly. The number of 

classifiers could be increased and the alarm decision could be taken based on the 

performance of more classifiers rather than the use of two out of three as performed in 

this thesis. In addition, the time constant of the change in glucose concentration could be 

incorporated into the classification rule. For example, given the observed rate of change 

of the glucose concentration, a requirement could be implemented that several 

consecutive alarms must be encountered before an actual alarm is signaled. More 

sophisticated use of the previous discriminant scores in implementing the alarm decision 

for the current score could also be studied.  

Another issue related to the classification models was the poor separation of alarm 

and non-alarm patterns obtained for the training data corresponding to several of the rats 

studied during the in vivo measurements. This indicates difficulty in establishing the 

classification boundary between the alarm and non-alarm data classes. In some cases, this 

is an artifact of the distribution of differential concentrations relative to the critical 
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concentration. For example, if the majority of the training data is concentrated at the 

alarm threshold, the separation will necessarily be challenging and the percentage of 

alarm patterns separated may be low. However, such a case puts an emphasis on the 

training methodology being able to identify an optimal placement of the discriminant 

boundary. The need for replicate classifiers was made apparent in the current work, as 

any single classification boundary may not be optimally placed.  

The challenging nature of the separation of the training patterns suggests that 

other pattern classification methodologies should be investigated for comparison to 

PLDA. For example, support vector machines (SVMs) and artificial neural networks 

(ANNs) implement true nonlinear classification models and might provide better 

performance. These methods also have a fundamental design difference than PLDA in 

the way in which false alarms in the training data are handled. As described in Chapter 3, 

the requirement for single-sided discriminants biases PLDA against false alarms in the 

training set (i.e., they are not allowed). Both SVMs and ANNs allow false alarms during 

training in seeking an overall best placement of the class separation boundary. An 

assessment of how this design characteristic would affect the performance of the alarm 

algorithm would be an interesting and potentially valuable study.  

The results obtained from the in vivo measurements also illustrate the need for an 

additional layer of automation and decision-making to be applied to the hypoglycemic 

alarm algorithm. For example, the ability to self-diagnose when the classification model 

is out of specification would be very valuable. In such a case, the patient could be 

wakened and a new reference collected. Updating the reference provided some benefit in 

the work with rat 169. Implementing such an approach requires a reliable performance 
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diagnostic, however. One potential diagnostic would be to fit each differential spectrum 

to the pure-component spectra of tissue components. In principle, the fitted coefficients 

should be zero if the current reference is valid (i.e., the calculation of the differential 

spectrum should have effectively subtracted the tissue components). The occurrence of 

regression coefficients significantly different from zero would signal the need for 

updating the reference. A similar approach could be used to identify spectral outliers that 

might arise from a sudden movement by the patient while sleeping. Automation and self-

diagnosis could also be applied to issues such as the number of discriminant functions to 

employ and the number of replicate classifiers needed.  

 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

 
 
 
Figure 8.1. First principal component loading plot for the differential spectra collected 
with rat 106. The first loading explains more than 95 % of the total spectral variance. The 
features are broad and some baseline variation can be observed. 
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Overall, this thesis successfully developed an alarm algorithm that can be applied 

for the identification of dangerous hypoglycemic occurrences while patients are sleeping. 

The in vitro simulation work demonstrated the excellent performance of this algorithm. 

However, the in vivo studies demonstrated that some problems need to be addressed 

before the methodology can be applied to human subjects. As further efforts are 

expended to improve the experimental aspects of the in vivo measurements, it may well 

be possible to apply the alarm methodology to other applications in which continuous 

monitoring by NIR spectroscopy is attractive. For example, the same procedures 

discussed here for the nocturnal hypoglycemic alarm methodology could be used in an 

industrial quality control setting to identify situations in which a process goes out of 

specification.  
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