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ABSTRACT 

 Overactive bladder (OAB) is a pathophysiological condition which is 

characterized by the urinary bladder’s failure to achieve proper storage of urine. OAB has 

a tremendous impact on the patient’s quality of life by disturbing his sleep, work, and 

sexual activity. About 17% of Americans are affected with this disease and most patients 

experience symptoms of urgency, frequent urination, and abnormally elevated detrusor 

smooth muscle (DSM) contractility. Despite, numerous attempts to treat the disorder in 

the past with antimuscarinics and now with beta3 adrenergic receptors (beta3-AR 

agonists), OAB still remains a serious public health issue because the long term efficacy 

of these drugs remains questionable. Therefore, it is critical to explore new avenues and 

design new strategies in order to help improve the quality of life of more than 33 million 

people. K
+
 channels and beta3-AR have been shown to be key regulators of smooth 

muscle excitability and contractility in various species; however, information about their 

expression and functional role in the DSM of humans was limited. In our study, we first 

investigated the molecular expression of several K
+
 channels in human DSM cells using 

RT-PCR, qPCR, western blot, and immunostaining techniques, then tested their ability to 

affect DSM contractility by using isometric DSM tension recordings and selective 

pharmacological modulators. We found that two Ca
2+

-activated K
+
 channels including 

BK and SK3 channels as well as several voltage-gated K
+
 channels including Kv2.1, 

Kv2.2, Kv7.4, and Kv7.5 channels were expressed in human DSM cells. We also found 

that pharmacological inhibition of BK or SK3 channels with iberiotoxin, a BK channel 
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blocker or apamin, a SK channel blocker, respectively, significantly increased human 

DSM spontaneous and nerve-evoked contractions in vitro. Similarly, pharmacological 

inhibition of Kv2 channels with stromatoxin-1, a Kv2 channel antagonist or Kv7 

channels with XE991, a Kv7 channel antagonist, also increased human DSM spontaneous 

phasic and nerve-evoked contractions in vitro. On the other hand, application of 

retigabine, a Kv7 channel activator induced relaxation of human DSM strips spontaneous 

phasic and nerve-evoked contractions. As for the role of beta3-AR in human DSM, we 

found that pharmacological activation of beta3-AR with BRL37344, a beta3-AR agonist 

causes relaxation of human DSM nerve-evoked contractions in vitro. We further 

demonstrated that the beta3-AR mediated relaxation observed during nerve-evoked 

contractions was facilitated by BK channel activity. Finally, we obtained direct evidence 

suggesting that the decrease in BK channels expression and function is associated with 

symptoms of neurogenic detrusor overactivity.  

In conclusion our study suggest that pharmacological modulation of K
+
 channels (BK, 

SK3, Kv2, and Kv7 channels) or beta3-AR affect DSM contractility, therefore making K
+
 

channels and beta3-AR likely drug targets for the treatment of OAB.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 ANATOMY OF THE LOWER URINARY TRACT 

The basic function of the lower urinary tract (LUT) is to secure urine storage in the 

bladder and achieve voluntary evacuation of the stored urine. The LUT is composed of 

two main parts: the urinary bladder and the urethra. 

The urinary bladder is a distensible reservoir which initiates urine voiding by contracting 

its muscular wall composed essentially of detrusor smooth muscles (DSM) (102). The 

urinary bladder has a triangular pyramidal shape and is located in the anterior part of the 

pelvis (102). It is composed of the fundus, superior surface; the base, posterior surface; 

and two triangular side walls. The lowest part of the bladder where the lateral walls meet 

the base is called the bladder neck and the lowest part of the neck is the trigone (Fig. 

1.1.1). The bladder has three distinct tissue layers which are the serosa, the DSM, and the 

urothelium. The serosa is the outer layer which is composed of adventitial connective 

tissue. The DSM is the middle layer- it comprises interlacing fibers which can either be 

randomly oriented or oriented in longitudinal, circumferential, and longitudinal patterns. 

The urothelium is the innermost layer- it is composed of transitional cell epithelium (Fig. 

1.1.1). 

The urethra is the portion of the lower urinary tract by which the urine is expelled. In 

females, the urethra is relative short (only few centimeters) while in males, the total 
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length approximates 20 cm. The urethra is composed of four sections in males which 

include prostatic, membranous, bulbar, and penile sections (Fig. 1.1.1). The membranous 

urethra is approximatively 2 cm long and is surrounded by the striated external urethral 

sphincter (EUS) which is innervated by pudental nerves. The external urethral sphincter 

is under the subject voluntary control and relaxes during urine voiding to allow urine 

flow.  

 

 

 

 

Figure 1.1.1 Anatomy of the urinary bladder. (a) Anterior view of the urinary bladder. Urine enters the urinary 

bladder via the ureters and exit via the urethra. Inset: cross-section of the bladder wall. Reprinted with permission from 

McGraw-Hill companies. http://academic.kellogg.edu/herbrandsonc/bio201_McKinley/f27-9a_urinary_bladder_c.jpg  
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1.2 THE MICTURITION PROCESS 

The micturition process is a complex mechanism which requires a synergy of action 

between myogenic and neurogenic components. It includes a filling or storage phase and 

an emptying or voiding phase. The three major structures of the LUT which are the 

bladder, the urethra, and the EUS are innervated by afferent nerves which play different 

roles in urine storage and voiding (Fig. 1.2.1). During the bladder filling phase, 

information concerning the degree of distention of the bladder as well as the amount of 

stored urine is transmitted to the brain via several mechanosensitive afferent nerves 

present in the bladder (38). These nerves have been identified as Aδ afferent nerves. It 

has been reported that when the bladder is filled at 60-90% of its capacity, the desire to 

void exists but can be delayed by the subject if necessary. However, behind 90% 

capacity, a strong desire to void is reported and accidental urine leakage becomes 

common because the subject can no longer control his external urethral sphincter (38, 

44). 

Sympathetic Storage Reflexes 

The filling phase of the micturition is an involuntary process shown to be under the 

control of sympathetic nerves input (38). During the filling phase, Aδ vesical afferents 

nerves are activated to induce the sacrolumbar intersegmental spinal reflex which in 

response causes an increase in urethral outflow resistance. This reflex also increases the 

tonic discharge of motoneurons innervating the striated muscles of the EUS (25, 152).  

Normally, this reflex pathway becomes inhibited when the intravesical pressure raises to 

the level required to producing voiding (Fig. 1.2.1). Inhibition of the sympathetic 

innervation can reduce urethral outflow resistance, reduce bladder capacity, and increase 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383010/figure/F6/
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the frequency and amplitude of bladder contractions (38). Therefore, this 

vesicosympathetic reflex represents a negative-feedback mechanism that allows the 

bladder to accommodate considerable amount of urine (38). 

Voiding Reflexes 

The voiding phase of the micturition has both voluntary and involuntary components 

which are regulated at the pontine micturition center (PMC) and the spinal cord levels, 

respectively (Fig. 1.2.1) (38). The involuntary/reflex pathway becomes activated when 

the mechanosensitive Aδ afferents present in the bladder are sensitized by the increase in 

intravesical pressure. The influx travels to the sacral spinal cord and initiate the voiding 

reflex (Fig. 1.2.1). During urine voiding, it has been shown that the urethral smooth 

muscles are relaxed and nitric oxide, an inhibitory neurotransmitter is released in the 

urethra. Additionally, PMC becomes activated which further leads to the inhibition of 

sympathetic storage reflexes. Finally, during micturition, the excitatory bladder reflex 

pathway is also activated by the flow of urine through the urethra and the sensitization of 

urethral afferents nerves (38). 

  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383010/figure/F6/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383010/figure/F5/
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Figure 1.2.1 Neural circuits controlling continence and micturition. (a) Urine storage reflexes. During the storage 

of urine, distension of the bladder produces low-level afferent firing in the pelvic nerve, which in turn stimulates (1) the 

sympathetic outflow to the bladder outlet (base and urethra) and (2) pudendal outflow to the external urethral sphincter. 

These responses occur by spinal reflex pathways and represent guarding reflexes, which promote continence. 

Sympathetic firing also inhibits detrusor muscle and modulates transmission in bladder ganglia. A region in the rostral 

pons (the pontine storage center) increases external urethral sphincter activity. (b) Voiding reflexes. During elimination 

of urine, intense bladder afferent firing activates spinobulbospinal reflex pathways passing through the pontine 

micturition center, which stimulate the parasympathetic outflow to the bladder and internal sphincter smooth muscle 

and inhibit the sympathetic and pudendal outflow to the urethral outlet. Ascending afferent input from the spinal cord 

may pass through relay neurons in the periaqueductal gray (PAG) before reaching the pontine micturition center. 

Reprinted with authorization from (De Groat et al. 2009). 
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Neural and hormonal control of the micturition process 

The contraction and relaxation of the urinary bladder are regulated by cholinergic, 

adrenergic, and non-adrenergic non-cholinergic (NANC) mechanisms. 

The cholinergic mechanism is mainly involved in the urinary bladder emptying phase. 

This pathway is mediated via activation of muscarinic receptors (7). In most species, 

including humans, the M2/M3 muscarinic receptors are the most physiologically relevant 

(7). During the bladder emptying phase, acetylcholine (ACh) an excitatory 

neurotransmitter is released from nerve terminals and activates M2/M3 muscarinic 

receptors. Acetylcholine activation of M2 muscarinic receptors causes inhibition of 

adenylyl cyclase activity while activation of M3 receptors triggers the inositol 1,4,5-

trisphosphate pathway (55, 104) (Fig. 1.2.2). In normal humans, nearly 100% of bladder 

contraction is due to muscarinic activation (11, 142). 

    

Figure 1.2.2 Transmitter signal pathway (1 – 4) involved in activation of detrusor contraction via muscarinic M3 

receptors. Ach, acetylcholine; PLC, phospholipase C; DAG, diacylglycerol; PKC, protein kinase C; MLC, myosin 

light chain; SR, sarcoplasmic reticulum; CIC, calcium-induced calcium release. There seem to be differences between 

species in the contribution of the different pathways in contractile activation. In human detrusor, Ca2+ influx (3) is of 

major importance. Reprinted from Andersson et al. 2004 with permission. 
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The adrenergic mechanism is mainly involved in the bladder filling phase. 

Norepinephrine is released from bladder nerve terminals and activates beta1-, beta2-, and 

beta3- adrenergic receptors to cause DSM relaxation (7, 79, 130). In the human DSM, 

beta3- ARs are suggested to be the most important as they represent more than 90% of all 

beta-AR (168). Activation of beta adrenergic receptors stimulates adenylyl cyclase to 

increase cAMP production. In turn, cAMP activates the protein kinase A pathway to 

further induce DSM relaxation (7, 79, 130). This beta3-AR induced relaxation of the 

DSM has recently been shown to be mediated by the large conductance-calcium activated 

K
+
 channel (Fig. 1.2.3) (79, 130).  

 

 

Figure 1.2.4. Schematic illustration of the functional coupling between the beta3-AR and the BK channel in the 

detrusor smooth muscle cell. The BK channel control the opening and the closing of the L-type Cav channels by 

depolarizing or hyperpolarizing the cell membrane, this regulating the global Ca2+ influx and spontaneous phasic 

contractions. BK channels are activated by localized Ca2+ signals (“Ca2+ sparks”) caused by Ca2+ release from the 

RyRs of the SR, adjacent to the cell membrane. Stimulation of the beta3-AR with selective agonists leads to PKA 

activation, PLN phosphorylation, and activation of the SR Ca2+ pump and RyRs, which causes an increase in Ca2+ 

spark and TBKC activity. The increased TBKC frequency results in a sustained membrane hyperpolarization, closure 

of the L-type Cav channels, reduction in the global Ca2+ concentration, and detrusor smooth muscle relaxation. When 

Ca2+ spark are blocked with ryanodine and/or thapsigargin (a SR Ca2+-pump inhibitor), the functional coupling between 

beta3-AR and BK channels is disrupted. Abbreviations: beta3-AR, beta3 adrenergic receptor; BK channel, large 

conductance voltage-activate and Ca2+-activated K+ channel; PKA, protein kinase A; PLN, phospholamban; RyR, 

ryanodine receptor; SR, sarcoplasmic reticulum; TBKC, transient BK current. Reprinted from Petkov (2012) with 

permission. 
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The NANC mechanism is mainly involved in the bladder emptying phase of the 

micturition process and is characterized by a fast contractile response upon 

neurotransmitter release (7). During the voiding phase of the micturition process, two 

major neurotransmitters ATP and acetylcholine are released from bladder nerves (59, 64, 

119, 142, 161). In in vitro systems, neurotransmitters release can be achieved by applying 

electrical field stimulation (EFS) to DSM isolated strips (Fig. 1.2.5). While ACh is 

responsible for the cholinergic response, ATP will activate a NANC pathway, namely the 

purinergic pathway. Both pathways contributing to DSM contraction (24, 59, 64, 105, 

119, 142, 160, 161). ATP activates purinergic (P2X1) receptors and therefore causes an 

increase in DSM cell excitability via an increase in Na
+
 and Ca

2+
 intracellular 

concentrations (59, 172). Evidence suggests that the contribution of the purinergic 

pathway to DSM contraction may become preponderant under pathophysiological 

condition of overactive bladder (OAB) in humans (6, 124, 171). 

In addition to the release of ATP and ACh, calcitonin gene-related peptides and other 

substances such as nitric oxide are also released from nerves and have a relaxing effect 

on DSM (7, 48).   
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Figure 1.2.5. Schematic showing activation of purinergic and muscarinic pathways following release of 

neurotransmitters ATP and ACh from parasympathetic varicosities. Purinergic signalling rapidly evokes Ca2+ 

flashes during EFS whereas muscarinic signalling evokes Ca2+ waves during stimulation and Ca2+ flashes following 

stimulation. Purinergic activation appears to inhibit the muscarinic response. Ca2+ flashes from both purinergic and 

muscarinic pathways contribute to contraction. Reprinted from Heppner et al. (2009) with permission. 
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1.3 BLADDER DYSFUNCTIONS 

The role of the LUT is to realize the storage and voiding of urine. This function is 

accomplished by a synergy of action between the autonomous and the central nervous 

systems, which control DSM relaxation and contraction during the filling and voiding 

phases, respectively (38). Any alterations in DSM contractility due to neuronal or 

muscular factors can affect the micturition process and render the LUT unable to 

accomplish its function. Bladder dysfunctions can be categorized into two groups based 

on the pathophysiological changes observed in the DSM. The first category includes 

bladder dysfunctions in which the DSM contractility is abnormally increased. Within this 

category, the most important pathophysiological condition is known as overactive 

bladder (OAB). The second category of bladder dysfunctions includes conditions in 

which the DSM contractility is decreased causing the LUT to retain urine for an 

abnormally long period of time. This condition is termed underactive bladder.   

Overactive bladder is a pathophysiological condition which affects ~17% of the 

American population (147). Although, the disease affects people of all ages, studies 

report that the majority of OAB patients are 65 years old or more. OAB has a tremendous 

impact on patients’ quality of life by affecting their sleep, work, and sexual activity. 

Patients affected with the disease, experience greater spontaneous phasic DSM 

contractions during the filling phase of the micturition process (16, 120) as well as 

nocturia, frequent urination, urgency, incontinence, and involuntary contractions of the 

DSM (147). 

Underactive bladder is a less common pathophysiological condition which is defined as a 

contraction of reduced strength and/or duration resulting in prolonged or incomplete 
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emptying of the bladder (159).  The disease has multiple origins including neuronal and 

muscular. Aging which causes decay in DSM activity is also seen as a contributing factor 

to this condition (159).  

1.4 ION CHANNELS 

Ions channels are protein structures anchored in the cell membrane to facilitate the flow 

of inorganic ions such as Na
+
, K

+
, Ca

2+
, and Cl

-
 down their electrochemical gradients 

(129). Ion channels are not only pores regulating the flux of ions through the cell 

membrane; they also play critical roles in numerous physiological processes including 

nerve and muscle excitation, action potential generation, muscle contraction, blood 

pressure regulation, cell proliferation, hormone secretion, learning and memory (129). In 

the human genome, more than 340 genes coding for ion channels have been identified 

and more than 60 ion channel targeting drugs are currently on the market to attest the 

importance of these proteins (129).  Ion channels have two major functional properties- 

selectivity and gating.  

Selectivity is the functional property which allows the channel to discriminate between 

ions by acting like a filter. With the exception of nonselective cation channels, most ion 

channels allow migration of a specific ion across the cell membrane (129).  

Gating is the functional property that allows the channel to remain either in an open or 

closed state (129). When ion channel’s gating is regulated by changes in the 

transmembrane voltage, they are termed voltage-gated ion channels (129). On the other 

hand, ion channels are named ligand-gated ion channels when the channel’s gating is 
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regulated by a small molecule (ligand) which interact directly with the channel or with a 

receptor linked to the channel (129). 

Classification and nomenclature of ion channels are based on the nature of their most 

important permeant ion. There are four major classes of ion channels- Na
+
, K

+
, Cl

-
, and 

Ca
2+

 channels (129). 
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1.5 K+
 CHANNELS 

K
+
 channels are by far the largest and the most diverse group of ion channels. They are 

expressed in almost every cell type in which they play various physiological roles (129). 

Between 70 and 80 genes are known to code for K
+
 channel proteins (129). In the DSM, 

the physiological role of K
+
 channels is to regulate muscle contraction and relaxation 

(130). This function is achieved by a precise regulation of intracellular Ca
2+

 

concentration which is controlled by Ca
2+

 entry via voltage-gated Ca
2+

 (Cav) channels 

(130). In general, K
+
 channels’ opening causes cell membrane hyperpolarization, 

interruption of Ca
2+

 entry via Cav channels, and DSM relaxation (129, 130). By contrast, 

K
+
 channels’ inhibition causes membrane depolarization, increase of Ca

2+
 entry via Cav, 

and DSM contraction (129, 130). Structurally, all K
+
 channels form a pore-loop and can 

have 2 to 8 transmembrane (TM) domains (Fig. 1.5.1). K
+
 channels are classified into 

four major families including voltage-gated (Kv), Ca
2+

-activated (KCa), inward rectifying 

ATP-sensitive (Kir), and two pore domain (K2P) K
+
 channels (129, 130). 
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Figure 1.5.1. Illustration of the transmembrane architecture and subunit stoichiometry of the K+ channel types 

expressed in detrusor smooth muscle cells. Kir channels (represented by KATP channel) have the simplest K+ channel 

structure, with two transmembrane segments (S) connected by a pore loop. Four such subunits form a functional 

tetrameric channel pore. K2P channels form a tetrameric pore structure from two subunits each containing two pore 

loops. Kv channel subunits have six transmembrane segments with a voltage sensor in the S4 transmembrane domain. 

BK channels consist of four pore-forming α-subunits and the four regulatory β1 or β4 subunits. Abbreviations: BK 

channels, large-conductance voltage-activated and Ca2+-activated K+ channels; K2P, two-pore-domain K+ channels; 

KATP, channels, inward-rectifying ATP-sensitive K+ channels; Kir channels, inward-rectifying K+ channels; Kv 

channels, voltage-gated K+ channels. Reprinted from Petkov (2012) with permission.  
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Voltage-gated K
+
 (Kv) channels form the most diverse family of K

+
 channels and are 

encoded by more than 40 genes (130). Kv channels are known to participate in the 

repolarization phase of the action potential and in maintaining the cell’s resting 

membrane potential (Fig. 1.5.2) (56, 60, 74, 77, 155). Kv channels are classified into 12 

subfamilies (Kv1 – Kv12) based on the amino-acid sequence homology. Each Kv gene 

encodes a pore-forming α-subunit protein which assembles into tetramer to form a 

functional channel (130). While Kv1, Kv2, Kv3, Kv4, Kv7, Kv10, Kv11, and Kv12 

channels can form their own homotetramers, Kv5, Kv6, Kv8, and Kv9 channels cannot 

but rather form heterotetramers by assembling with the Kv2 channel α-subunit (130). 

Despite, the significant number of Kv channel genes identified in the human genome, 

only a small fraction of Kv channels has been studied in the DSM suggesting that more 

work is needed to determine if these channels can potentially regulate DSM contraction 

and relaxation.  

Ca
2+

-activated K
+
 (KCa) channel family has five members (KCa1.1, KCa2.1 KCa2.2, 

KCa2.3, and KCa3.1) which can be classified based on the single channel conductance 

(130). The large conductance voltage-activated and Ca
2+

-activated K
+
 (KCa1.1 or BK) 

channel is also known as big-K or maxi-K because of its high single channel conductance 

(100 – 250 pS) (130). The BK channel can be activated by both Ca
2+

 and voltage and is 

highly expressed in the DSM where it plays a role in maintaining the resting membrane 

potential and securing the repolarization phase of the action potential (60, 61, 67, 75, 80, 

130). The small conductance Ca
2+

-activated K
+
 (SK) channels have a single channel 

conductance ranging from 5 to 20 pS (129, 130). There are 3 types of SK channels which 
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include SK1 (KCa2.1), SK2 (KCa2.2), and SK3 (KCa2.3) channels (129, 130). SK channels 

are voltage-insensitive and are regulated by Ca
2+

 and calmodulin (106). In the DSM, they 

are suggested to contribute to the afterhyperpolarization phase of the action potential 

(Fig. 1.5.2) (45, 56). The intermediate-conductance Ca
2+

-activated K
+ 

(KCa3.1 or IK or 

SK4) channel has a single channel conductance ranging from 20 to 80 pS (129, 130). IK 

channels are activated by Ca
2+

 and insensitive to voltage changes (129, 130). Their role in 

the DSM remains unclear since most studies suggest that pharmacological modulation of 

these channels has no effects on DSM excitability and contractility (2, 127). 

Inward-rectifying ATP-sensitive K
+
 (Kir) channels induce high amplitude of inward K

+
 

currents during the hyperpolarization phase of the action potential (129, 130). In the 

DSM, the Kir channels are represented by the Kir6 (KATP) channel which has a single 

channel conductance ranging from 11 to 12 pS (86, 87). These channels are activated by 

both low intracellular ATP and high ADP levels (129, 130). Whether KATP channels are 

physiologically relevant in the DSM remains controversial as evidence of their 

physiological role or not are conflicting (Fig. 1.5.2). Some studies argues in favor of 

KATP channels’ ability to regulate DSM contractility and excitability (45, 58, 86, 87, 133, 

141) while others suggest that activation of KATP channel with glibenclamide, a specific 

KATP channel inhibitor has not effects on DSM contractility and excitability (37, 133, 

141).  

Two-pore-domain K
+
 (K2P) channels has 15 members including (K2P1 – K2P15) which are 

mostly known for their role in stretch, oxygen, pH and temperature sensing (12, 129, 

130). They play a role in maintaining the cell’s resting membrane potential (Fig. 1.5.2). 

In the DSM, knowledge about K2P channels is still at its infancy. The few studies which 
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investigated K2P channels subtypes (TASK-1 and TASK-2) in the DSM suggest that these 

channels play an important role in stabilizing the DSM cell’s resting membrane potential 

(12).  

 

 

Figure 1.5.2. Schematic illustration of the detrusor smooth muscle action potential and the roles of various K+ 

channels in determining resting membrane potential and action potential. BK, Kv, K2P, and probably KATP 

channels determine the resting membrane potential. BK and Kv channels contribute to the initial repolarization phase 

of the action potential. SK and Kv channels contribute to the prolonged after-hyperpolarization phase of the action 

potential. Abbreviations: BK channels, large-conductance voltage-activated and Ca2+-activated K+ channels; Cav, 

voltage-gated Ca2+ channels; K2P, two-pore-domain K+ channels; KATP, channels, inward-rectifying ATP-sensitive K+ 

channels; Kv channels, voltage-gated K+ channels; SK channel, small conductance Ca2+-activated K+ channels;. 

Reprinted from Petkov (2012) with permission.  
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1.6 BETA3 ADRENERGIC RECEPTORS 

 

Beta adrenergic receptors are receptor proteins which are expressed in a wide variety of 

cell types. They include three subtypes which are beta1-, beta2-, and beta3- adrenergic 

receptors. The molecular expression and functional role of beta-AR in the DSM varies 

from species to species. While in the guinea pig, beta1-ARs seem to be the most 

predominant and physiologically relevant (100); in rats, studies report that beta2- and 

beta3-AR are the most important (7). In the human DSM, although all three beta-AR 

have been identified (82, 83, 151, 168), qPCR data reveal that beta3-AR represent more 

than 90% all of beta-AR (168). Furthermore, the use of selective beta1- and/or beta2-AR 

on human DSM seems to have controversial effects (7). By contrast, pharmacological 

activation of beta3-AR has been shown to significant cause relaxation of the DSM 

contractions in humans (14, 27, 79, 81, 88, 90, 156). These studies suggest that beta3-

ARs are key regulators of human DSM contractility. The mechanism by which β-AR 

activation causes relaxation of the DSM is thought to involve the cyclic cAMP (cAMP) 

signaling pathway (22, 115). cAMP activates protein kinase-A (PKA), which in turn 

phosphorylates various proteins involved in DSM excitation-contraction coupling and 

stimulates the BK channels to promote DSM relaxation (22, 58, 115). Beta3-AR agonists 

have been shown to increase the intracellular cAMP levels in native DSM tissues as well 

as in heterologously expressed systems (46, 69, 88, 94, 139, 150). Because of the 

preponderant role of beta3-AR in human DSM physiology, the FDA has approved 

mirabegron, a beta3-AR agonist for the treatment of overactive bladder (21, 27, 50, 51, 

157). 
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CHAPTER 2 

DISSERTATION OUTLINE 

 

In the present chapter, I will describe the dissertation outline. I will first present the 

central hypothesis of my thesis and present the rationale that motivated my research 

during my PhD training. Next, I will described in details, the experimental approaches, 

methods, and techniques that I used to test my hypothesis. I employed two principal 

approaches in my research. The first approach consisted of identified the genetic markers 

of K
+
 channels expression in the DSM. In this approach, I employed various techniques 

including RT-PCR, qPCR, western blot and immunostaining. These techniques were 

employed to identify the mRNA and the proteins expressions of specific K
+
 channels. 

The second approach consisted of determining the functional role of the K
+
 channels 

identified previously. The functional studies were performed using isometric DSM 

tension recording techniques and various pharmacological modulators. The majority of 

the data presented in this dissertation are based on these two principal approaches. In the 

context of my study, I will also present data collected by other members of the Petkov’s 

lab that have been published with me as co-author. These additional data will provide 

further evidence for the role K
+
 channels in the DSM.    
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2.1 CENTRAL HYPOTHESIS 

Overactive bladder (OAB), a pathophysiological condition resulting from the urinary 

bladder’s failure to achieve proper storage of urine which further lead to urgency, affects 

about 17% of Americans. For many years, the pharmacological treatment of OAB relied 

primarily on oral administration of antimuscarinic drugs which unfortunately have 

limited efficacy and dose-related side effects. Recently, the FDA has approved 

mirabegron, a beta3-ARs agonist, for the treatment of OAB. However, the ability of this 

drug to treat all forms of OAB remains uncertain. Intravesical injection of botulinium 

toxins has also been proposed but this approach is invasive, expensive, and 

uncomfortable for patients. Therefore, alternative treatment options are urgently needed. 

Numerous studies have demonstrated that various K
+
 channels including the large-

conductance Ca
2+

-activated K
+
 (BK) channels, the small (SK) and intermediate (IK) 

conductance Ca
2+

-activated K
+
 channels, and the voltage-dependent K

+
 (KV) channels are 

important regulators of the DSM excitability and contractility (2, 26, 29, 60, 65, 75, 77, 

80, 120, 126, 130, 134, 145). Also, it has been revealed that during the urinary bladder 

filling phase, beta3-ARs are activated to induce DSM relaxation via the protein kinase A 

pathway. Therefore, we suggest that K
+
 channels including KV channels, KCa channels as 

well as beta3-AR could represent better pharmacological targets than antimuscarinics in 

the treatment of OAB. The objective of our study was to elucidate the physiological role 

and regulatory mechanisms of K
+
 channels and β3-ARs in the DSM. We hypothesized 

that K
+
 channels and beta3-ARs play major roles in DSM excitability and 

contractility and could represent promising pharmacological targets for the 

treatment of various forms of OAB including neurogenic detrusor overactivity.   
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2.2 EXPERIMENTAL APPROACHES, METHODS, AND TECHNIQUES 

EXPERIMENTAL APPROACHES 

To test our central hypothesis, we used various experimental approaches which allowed 

us to investigate the molecular expression of K
+
 channels and beta3-ARs at the mRNA 

and protein level, and further assess the functional role of these proteins. Channels 

mRNA expression and relative quantity in DSM tissue was assessed using RT-PCR and 

qPCR techniques. We also developed a novel experimental approach of DSM single-cell 

enzymatic isolation to further determine mRNA messages in DSM cells. The single-cell 

RT-PCR and qPCR techniques allowed us to establish whether mRNA messages for 

various K
+
 channels or beta3-ARs were expressed in DSM cells and not in other cells 

such as neurons, fibroblasts, interstitial cells which are also present in the DSM tissue. K
+
 

channels protein expressions were investigated by western blot and immunostaining 

techniques. Finally, the channels functional roles were addressed by using isometric 

DSM tension recordings and K
+
 channels modulators.   
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METHODS AND TECHNIQUES 

Human DSM tissue collection  

All human studies presented in this dissertation were conducted according to the 

reviewed and approved institutional review board protocol HR#16918 of the Medical 

University of South Carolina (MUSC). Control human samples were collected from 

patients without a preoperative history of OAB symptoms. These control patients had an 

American Urological Association (AUA) symptom score<8 and did not have a clinically 

relevant neurological disease. NDO patients had overactive bladder (OAB) symptoms 

and were characterized by an American AUA symptom score >7. Human tissue samples 

were collected with patients’ consent during surgeries such as radical cystectomy for 

bladder cancer and other open bladder surgeries for malignant or non-malignant 

conditions of the lower urinary tract. Two types of DSM samples were collected from 

each patient. The first sample was stored in ice-cold Ca
2+

-free N-2-

hydroxyethylpiperazine-N'-2-ethanesulphonic acid (HEPES)-buffered dissection solution 

(§Solutions and Drugs) and was used to conduct functional studies on DSM contractility, 

western blot, and immunostaining experiments. The second sample was kept in RNA-

later (QIAGEN Sciences, Hilden, Germany) and was used for RT-PCR and qPCR 

experiments. Both samples were transported to the laboratory immediately after surgery. 

Animal studies and DSM tissue harvesting  

All animal studies including rat and guinea pig studies were performed according to the 

Animal Use Protocol #1747, reviewed and approved by the University of South Carolina 
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Institutional Animal Care and Use Committee. Sprague-Dawley rats and Hartley-Albino 

guinea pigs were euthanized by carbon dioxide inhalation followed by thoracotomy. The 

animal whole bladder was then removed by transversal incision above the bladder neck.  

DSM cells isolation and collection 

DSM cells were isolated from humans and guinea pigs DSM tissue as follows (1, 2, 22, 

29, 30, 74, 75, 77, 79, 80, 127, 131, 133, 134, 143, 145, 164, 166): The bladder tissue was 

pinned on a sylgar-coated dish then the urothelium and the mucosa were removed under a 

dissection microscope using micro scissors. The DSM was then cut into strips (5–8 mm 

long, 2–4 mm wide), and 1–2 strips were placed in dissection solution (2 ml) 

supplemented with 1 mg/ml bovine serum albumin (BSA), 1 mg/ml papain, 1 mg/ml DL-

dithiothreitol, and incubated for 25–30 min at 37 ºC. Next, the DSM strips were 

transferred into a dissection solution (2 ml) containing 1 mg/ml BSA, 1 mg/ml 

collagenase type II, and 100 µM CaCl2 and incubated for another 5-6 min at 37 ºC. DSM 

strips were then washed with fresh BSA containing dissection solution. The individual 

DSM cells were dispersed when the enzyme-treated tissue was passed through the tip of a 

Pasteur pipette. Dispersed DSM cells were put in a glass chamber and allowed to settle at 

the bottom for about 20 min. Next, DSM cells were washed out 4-5 times using a 

perfusion system which removes the cells that do not adhere to the glass-bottom of the 

chamber. DSM cells are characterized by their spindle-shape, bright and shiny 

appearance under the Axiovert 40CFL microscope (Carl Zeiss®, Germany) as well as 

their responsiveness to mechanical stimulation which indicates the presence of functional 

contractile proteins and that they are physiologically active. DSM cells were collected 
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individually by suction into a glass micropipette using an MP-285/ROE 

micromanipulator (Sutter Instruments, San Rafael, California). A poll of approximately 

100 DSM cells was collected for RNA extraction and further single-cell RT-PCR and 

qPCR experiments. The remaining DSM strips were kept in the dissection solution and 

used for functional studies and “whole tissue” RT-PCR and qPCR, western blot, and 

immunostaining. 

RT-PCR and qPCR experiments 

Using the RNeasy Mini Kit (Qiagen, Hilden, Germany), we extracted total RNA from 

whole DSM tissue, brain tissue, and a poll of enzymatically isolated DSM cells of 

humans and guinea pigs (1, 2, 74, 75). The extracted total RNA was reverse-transcribed 

into cDNA using M-MLV Reverse transcriptase (Promega, Madison, WI) and oligo d(T) 

primers. The amplification of the cDNA product was performed in the presence of GoTaq 

Green Master Mix (Promega, Madison, WI) and PCR primers for various K
+
 channels 

and beta3-ARs, respectively using a mastercycler gradient from Eppendorf (Hamburg, 

Germany). Primers were designed based on the complete cDNA sequences of the K
+ 

channels and beta3-AR investigated and synthesized by Integrated DNA Technologies 

(IDT, Coralville, IA). PCR products were loaded onto a 2% agarose ethidium bromide-

stained gel and allowed to migrate via electrophoresis.  The expected length of the 

fragment for each K
+
 channels and beta3-ARs investigated was confirmed by using a 20 

or 100 bp extended range DNA ladder from Lonza (Rockland, ME, USA). Guinea pig 

and human brain tissue were always used as positive control. For the qPCR experiments, 

we applied a two-step amplification followed by melting curve protocol using the IQ
TM

5 
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Thermo Cycler system (Bio-Rad, California, USA). 10 – 100 ng/µL of whole DSM tissue 

or DSM isolated cells’ cDNA was mixed with IQ SYBR Green Supermix (Bio-Rad, 

California, USA) and each individual K
+
 channels primers separately then loaded onto a 

96-wells plate. GAPDH was chosen as an internal control gene to analyze K
+
 channel 

isoforms mRNA relative expression and each sample was run in duplicate or triplicate. 

All RT-PCR products from the whole DSM tissue, brain tissue, and DSM isolated cells of 

humans and guinea pigs were purified using the GenElute
™

 PCR Clean-Up Kit (Sigma-

Aldrich Co., St. Louis, MO) and sequenced at the University of South Carolina 

Environmental Genomics Core Facility to confirm their identity. 

Western blot  

Approximatively 30 µg of total protein extracted from guinea pig whole DSM tissue was 

loaded into a 10 % Tris-HEPES-SDS precast polyacrylamide mini gels (Thermo 

scientific, Rockford, IL) and run at 150 V for 40 min using a PowerPac Universal power 

supply from Bio-Rad (Hercules, CA). Proteins were then transferred from the gel onto an 

immobilon-P PVDF membrane by semi-dry transfer technique using a Hoefer semi-dry 

blotter TE70XP (Fisher scientific). Next, the membrane was blocked by 5% non-fat dry 

milk in 0.5% TBST (0.5% Tween-20 in TBS) buffer for 1 h. Following the block, the 

membrane was incubated with the affinity-purified antibodies specific for each K
+
 

channel tested separately. Next, the membrane was washed with 0.5% TBST 4 times and 

re-incubated with secondary antibody (diluted to 1:1,000) in the blocking buffer for 1 h at 

room temperature. Bound antibodies were detected by the enhanced chemiluminescence 

substrate kit (Amersham, Piscataway, NJ) according to the manufacturer's instructions. 
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To confirm the specificity of the primary antibody, additional Western blot experiments 

were conducted by incubating each primary antibody with its competing peptide. 

Immunohistochemistry  

Experiments were performed to determine whether K
+
 channels proteins were expressed 

in DSM cells of humans and guinea pigs. DSM tissue was sliced into 2 X 2 mm and 6 µm 

thick sections using a vibratome Model G tissue slicer (Oxford Laboratories, Foster City, 

CA) and transferred in individual dishes for immunostaining. Tissue sections were 

incubated with primary antibody for each K
+
 channel tested in 1% BSA/PBS at 37

o
C for 

1 h. Tissue sections were then rinsed multiple times with 1% BSA/PBS, incubated for 

one hour in 5% normal donkey serum in 1% BSA/PBS, then re-incubated with secondary 

antibody (1:100) in the dark for another hour. Tissue sections were subsequently washed 

with 1% BSA/PBS then PBS and then incubated with α smooth muscle actin (1:50) or 

phalloidin (1:50) in PBS for 2 h in the dark. Then DSM tissue sections were rinsed three 

more times with PBS, incubated with 4′,6-diamidino-2-phenylindole (DAPI) (1:5000) in 

PBS for 15 min and then mounted with 1,4-diazabicyclo[2.2.2]octane (DABCO) (Sigma 

Aldrich, St. Louis, MO, USA). The specificity of the primary antibody was confirmed by 

incubating each K
+
 channel antibody tested with its competing peptide. Tissue sections 

were visualized under a confocal microscope LSM 510 or 700 META (Carl Zeiss, 

Germany) 63X objective. 
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Isometric DSM tension recordings 

Isometric DSM tension recordings experiments were performed as follows (1, 2, 22, 29, 

74, 75, 77, 79, 80, 143, 145, 164, 166): DSM strips were clipped between a force 

displacement transducer and a hook then submerged into a thermostatically controlled 

(37
o
C) 10 ml bath filled with Ca

2+
-containing physiological saline solution (PSS) and 

aired with 95% oxygen- 5% carbon dioxide (Fig. 2.2.1).  

 

Figure 2.2.1. Isometric DSM tension recording setup used to study drug effect on DSM contractility in vitro.   
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DSM strips were then stretched to 1 g of tension to elicit spontaneous phasic 

contractions. Strips were washed out with fresh PSS every 15 min and allowed to 

equilibrate for a period 45 min to 1 h. On DSM isolated strips that exhibited spontaneous 

phasic contraction amplitude >0.1 g, tetrodotoxin (1 µM TTX), a neuronal Na
+
 channels 

blocker was first added to the bath before a K
+
 channels or beta3-AR modulator was 

applied. In DSM strips which exhibited spontaneous phasic contraction amplitude less 

than 0.1 g, contractions were induced by electrical field stimulation (EFS) and TTX (1 

µM) was not added since TTX effectively suppresses EFS-induced contractions. Using a 

PHM-152I stimulator (Med Associates, Inc., Georgia, VT), we either applied stimulation 

of 10 Hz EFS frequency at 1 min intervals or we applied increasing EFS frequencies (0.5, 

2, 3.5, 5, 7.5, 10, 12.5, 15, 20, 30, 40, 50 Hz) at 3 min intervals. On the 10 Hz EFS-

induced contractions, increasing concentrations of K
+
 channel or beta3-AR activators and 

inhibitors were applied as described above. On the 0.5 – 50 Hz EFS-induced contractions, 

a single concentration of K
+
 channel or beta3-AR modulator was applied. The EFS pulses 

had the following parameters: pulse amplitude (20 V), pulse width (0.75 ms), stimulus 

duration (3s), polarity was reversed for alternating pulses. The DSM response to EFS was 

recorded using MyoMed software (Med Associates).   

Solutions and drugs 

The Ca
2+

-free dissection solution had the following composition (in mM): 80 

monosodium glutamate; 55 NaCl; 6 KCl; 10 glucose;
 
10 N-2-hydroxyethylpiperazine-N'-

2-ethanesulphonic acid (HEPES); 2 MgCl2; and pH 7.3 adjusted with NaOH. The Ca
2+

-

containing PSS was prepared daily and contained (mM): 119 NaCl; 4.7 KCl; 24 
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NaHCO3; 1.2 KH2PO4; 2.5 CaCl2; 1.2 MgSO4; 11 glucose; and aerated with 95% 

oxygen/5% carbon dioxide to obtain pH 7.4.  

Data analysis and statistics 

mRNA relative expressions was analyzed using the comparative threshold (Ct) method 

(ΔΔCt, delta-delta Ct) (101) after determining the Ct values for reference (GAPDH) and 

target genes for each sample. Fold changes in target mRNA expression level were 

calculated after normalization to GAPDH. We used MyoMed software (Med Associates, 

Inc., Georgia, VT) to record isometric DSM spontaneous phasic and nerve-evoked 

contractions. MiniAnalysis software (Synaptosoft, Inc., Decatur, GA) was used for data 

analysis of DSM spontaneous phasic and nerve-evoked contractions amplitude, muscle 

force (determined by integrating the area under the curve of the contractions), contraction 

frequency, contraction duration (determined at half width), and muscle tone (determined 

by contraction baseline curve).  

For the spontaneous phasic contractions and the 10 Hz EFS-induced contractions, a 5 min 

period prior to the first compound application was taken as a control (100%) and the 

responses to subsequent compound application were normalized to that control. During 

cumulative addition of compounds, the effect of each compound concentration on 

contraction amplitude, muscle force, frequency, duration, and muscle tone was evaluated 

by analyzing a 5 or 10 min period prior to the following respective concentration 

application. For the 0.5–50 Hz EFS-induced DSM contractions, the contraction amplitude 

at EFS frequency of 50 Hz prior to compound application (control conditions) was taken 

to be 100% and the data were normalized. GraphPad Prism 4.03 software (GraphPad 
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Software, Inc., La Jolla, CA) was used for statistical analysis and CorelDraw Graphic 

Suite software (Corel Co, Ottawa, Ontario, Canada) was used for data illustration. In the 

summary data, n represents the number of individual DSM isolated strips or cells, and N 

is the number of guinea pigs, rats, or human subjects. Paired Student’s t-test was used to 

analyze qPCR data, concentration-response, and frequency-response curves. All results 

are expressed as mean ± SEM; p<0.05 was considered to be statistically significant. 

 

  



 

31 

CHAPTER 3 

CA
2+

 -ACTIVATED K
+
 CHANNELS IN THE DETRUSOR SMOOTH MUSCLE 

 

Chapter 3 focuses on the physiological roles of Ca
2+

-activated K
+
 channels in the DSM. 

These K
+
 channels comprise the large-conductance Ca

2+
-and voltage-activated K

+
 (BK) 

channel, the intermediate-conductance Ca
2+

-activated K
+
 (IK) channel, and the small-

conductance Ca
2+

-activated K
+
 (SK1-3) channels. I have investigated all these ion 

channels individually and will present molecular and functional data collected in humans. 

A first section (chapter 3.1) addresses the role of BK channels in the pathology of 

neurogenic detrusor overactivity, a form of OAB. Data presented in this section have 

been submitted for publication and are currently under review. The second section 

(chapter 3.2) presents data pertaining to SK and IK channels expression and 

physiological roles in human DSM. These data have already been published (2) and have 

been slightly modified with authorization of the publisher to fit the format of this 

dissertation.     
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3.1. NEUROGENIC DETRUSOR OVERACTIVITY IS ASSOCIATED WITH 

DECREASED EXPRESSION AND FUNCTION OF THE LARGE 

CONDUCTANCE CA
2+

-ACTIVATED K
+
 CHANNELS IN DETRUSOR SMOOTH 

MUSCLE  

 

Data presented in this section have been submitted for publication and are currently under 

revision.  The original manuscript has been modified to fit the format of this dissertation. 

Human tissues were surgically obtained by Dr. Rovner’s team from the Medical 

University of South Carolina. Dr. Rovner is a collaborator with the Petkov’s lab 

 

ABSTRACT 

Neurogenic detrusor overactivity (NDO) is a form of bladder dysfunction which can 

affect patients suffering from various neurological diseases such as spinal cord injury, 

Parkinson’s disease, and multiple sclerosis. Large-conductance Ca
2+

-activated K
+
 (BK) 

channels are key regulators of the detrusor smooth muscle (DSM) excitability and 

contractility. In the present study, we investigate the potential changes in BK channels 

expression and function in patients suffering from NDO in comparison to control non-

NDO patients. We first used quantitative polymerase chain reactions (qPCR) to 

investigate BK channels mRNA relative expression in both control and NDO patients. 

Then, using isometric DSM tension recordings, we tested the DSM isolated strips 

physiological responses to pharmacological blockade of BK channels with iberiotoxin, a 

selective BK channel antagonist. DSM tissues were obtained from patients undergoing 

open bladder surgery for malignant or non-malignant conditions of the lower urinary 

tract. The qPCR experiments revealed that DSM tissues from NDO patients have lower 

BK channels mRNA expression in comparison to controls. The difference in BK channel 
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mRNA expression was statistically significant for the pore forming BKα-subunits but not 

for the accessory BKβ1 and BKβ4 subunits. Isometric DSM tension recordings 

experiments demonstrated that iberiotoxin significantly increase myogenic contractions 

in control DSM while DSM isolated strips from NDO patients were almost unresponsive 

to iberiotoxin treatment.  

Our study suggests that a decrease in DSM BK channel expression and function might be 

the major reason for increased DSM contractility in NDO patients. BK channel 

dysfunction therefore plays a key role in NDO.  
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INTRODUCTION 

Neurogenic detrusor overactivity (NDO) is a form of overactive bladder (OAB) which 

often develops in patients suffering from various neurological diseases such as spinal 

cord injury, Parkinson’s diseases, spina bifida, and multiple sclerosis (8). In comparison 

to healthy patients, NDO patients experience greater spontaneous phasic detrusor smooth 

muscle (DSM) contractions during the filling phase of the micturition process (16, 120). 

Additionally, serious alteration in the DSM electrochemical properties of NDO patients is 

reported leading to significant increase in DSM contractility and excitability (8). NDO 

patients also experience the classic clinical symptoms which are associated with OAB 

including nocturia, frequent urination, urgency, incontinence, and involuntary 

contractions of the DSM (147). For many years, the mainstay of all forms of OAB 

treatment has been antimuscarinic drugs which have limited effectiveness and dose-

related side effects (8). Recently, two new therapeutic approaches have been authorized 

by the FDA. These therapies include oral administration of mirabegron, a selective β3-

adrenoceptor agonist (50, 157) and intravesical injection of botulinium toxin (33, 95, 96). 

Whether, these new therapies will be effective to treat OAB in a long term remains 

uncertain.  

K
+
 channels are known to be key regulators of the DSM contractility and excitability in 

various species (130). Amongst these K
+
 channels, the large conductance voltage- and 

Ca
2+

 activated K
+
 (BK) channel could be the most important because of its role in the 

regulation of the DSM action potential, resting membrane potential, and contractility (22, 

60, 61, 67, 75, 80, 109, 130, 131, 134, 145, 146, 164). Structurally, BK channels are 

composed of four pore forming α-subunits and four regulatory β1, β2, β3, or β4 subunits 
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(130). The structural integrity of the BK channels are extremely important for their 

function since studies have demonstrated that loss of BKα subunits or BKβ1 subunits 

functions significantly increases DSM contractility and urination frequency causing 

detrusor overactivity (DO) in mouse (22, 109, 131, 154). It has also been shown that in a 

rat model of partial urethral obstruction, BKα subunit mRNA and protein expression 

were significantly reduced in comparison to sham-operated rats plus BK channel whole 

cell current was attenuated (9). A recent study by Petkov’s laboratory has provided the 

first direct molecular evidence for BK channels expression and function in native human 

DSM (75). The aforementioned study demonstrated mRNA and protein expression for 

the pore forming BKα-subunit as well as the accessory BKβ1 and BKβ4 subunits in 

human DSM (75). Iberiotoxin, a selective BK channel blocker, inhibited the majority of 

the whole cell outward K
+
 current, depolarized the DSM cell resting membrane potential, 

and increased the contractility of human DSM isolated strips (75). In the contrary, 

pharmacological activation of BK channels with NS1619, a BK channel agonist 

suppressed human DSM excitability and contractility (80). Other studies also 

demonstrated a direct involvement of BK channels in the etiology of OAB in patients 

with benign prostatic hyperplasia (BPH), DO, and NDO (26, 120). All of the above cited 

studies demonstrate the critical physiological role of BK channels in human DSM 

excitability and contractility, and further suggest that BK channels could be promising 

drug targets for OAB treatment (26, 32, 75, 80, 98, 107, 108, 120, 134, 145). In the 

present study, we investigated the changes in BK channels subunits expression and 

function in NDO patients using qPCR and isometric DSM tension recordings on native 
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human DSM isolated strips. The overall goal of the study was to determine whether NDO 

is linked to changes in the DSM BK channel expression and function. 
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MATERIALS AND METHODS 

Human DSM tissue collection 

Human DSM tissue was collected as described in chapter 2.2. For these studies, DSM 

specimens were isolated from 10 patients (7 controls and 3 NDO patients, 49-76 years 

old). 

Quantification of BK channel subunits mRNA message by qPCR 

Specific primers for BKα, BKβ1, BKβ4 subunits, and GAPDH were designed based on 

the cDNA complete sequences of human genes in Genbank and synthesized by Integrated 

DNA Technologies (IDT, Coralville, Iowa, USA) (Table 3.1.1). qPCR experiments were 

carried out on human DSM tissue cDNA (0.5 µg/µL) using IQ SYBR Green Supermix 

(Bio-Rad, California, USA). GAPDH was chosen as an internal control gene to analyze 

BKα, BKβ1, and BKβ4 subunits mRNA relative expression and each sample was run in 

triplicate. The parameters of the qPCR experiments were as follows: Cycle 1, 95
o
C for 3 

min; cycle 2, 95
o
C for 10 s then 61

o
C for 30 s (repeated 40 times); cycle 3, 95

o
C for 1 

min; cycle 4, 61
o
C for 1 min; cycle 5, 61

o
C for 10 s (repeated 81 times to generate a 

melting curve).  
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Table 3.1.1. qPCR primers for BKα, BKβ1, BKβ4 subunits and GAPDH. bp-base pair 

 

Isometric DSM tension recordings 

Experiments were conducted as described in chapter 2.2. 

Solutions and Drugs 

The Ca
2+

-free dissection solution and the Ca
2+

-containing PSS compositions are 

described in chapter 2.2. Iberiotoxin and TTX were purchased from Sigma-Aldrich Co. 

Data analysis and statistics 

Analysis was conducted as described in section 2.2. 

  

 Sense Anti-sense Product 

(bp) 

Accession 

Number 

BKα TGCCTAAAGCATGATTTG GCCGACATGCTAAATAAATTAG 400 NG012270 

BKβ1 TGCCACCTGATTGAGACC TGCGGAGAAGCAGTAGAAG 258 NM004137 

BKβ4 CATTTGTGGTGGGCTTTCT ACATGTTCCGCAGGTGG 168 NM170782 

GAPDH GGATTTGGTCGTATTGGG GGAAGATGGTGATGGGATT 205 NM002046 
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RESULTS 

The relative expression levels of BKα subunit mRNA is significantly decreased in 

NDO DSM 

Recently, we established that human DSM cells express BKα, BKβ1, and BKβ4 subunits 

at both mRNA and protein levels (75). Here, we revealed that in patients with NDO, the 

BKα, BKβ1, and BKβ4 subunit mRNA expression was lower compared to control 

patients (Fig. 3.1.1). There was a 15.8-fold decrease in BKα subunit mRNA relative 

expression in NDO DSM (N=3) compared to controls (N=7) (P<0.01; Fig. 3.1.1). The 

changes in BKβ1 and BKβ4 subunits in NDO DSM compared to controls were minor and 

were evaluated at 1.1-fold and 1.6-fold decrease, respectively, (P>0.05; Fig. 3.1.1). 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal control 

and did not vary between DSM samples from control and NDO patients. These data 

suggest that in patients suffering from NDO, there is a statistically significant decrease in 

BKα subunit expression but not in BKβ1, and BKβ4 subunits expression. 
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Figure 3.1.1. Patients with NDO have decreased BKα, BKβ1, and BKβ4 subunit mRNA expression in DSM. 

qPCR analyses showing a 15.8-fold, 1.1-fold, and 1.6-fold decrease in BKα (A), BKβ1 (B) and BKβ4 (C) mRNA 

expression in NDO DSM tissue (N=3) compared to controls (N=7). Data are shown as relative mRNA expression 

normalized to GAPDH.  
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Pharmacological inhibition of the BK channels with iberiotoxin had a reduced effect 

on the contractility of DSM strips isolated from patients with NDO 

To restrain neuronal activity, tetrodotoxin (TTX, 1 µM), a selective voltage-gated Na
+
 

channel blocker, was added to the bath in the beginning of all experiments. In DSM strips 

isolated from control patients, iberiotoxin (200 nM) considerably increased the phasic 

contraction amplitude, muscle force integral, and muscle tone by 81.9±38.7%, 

96.9±37.7%, and 14.4±8.3%, respectively (n=12, N=7; P<0.05; Fig. 3.1.2A, C). 

However, in DSM strips isolated from patients with NDO, iberiotoxin (200 nM) had no 

significant effects on any of the parameters of DSM contractility including phasic 

contraction amplitude, muscle force integral, and muscle tone (n=13, N=3; P>0.05; Fig. 

3.1.2B, C). Collectively, these results suggest a decrease in BK channel activity in DSM 

from patients with NDO, which contributes to the increase in the spontaneous phasic 

contractions. 
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Figure 3.1.2. Inhibition of BK channels with iberiotoxin caused a significant increase in spontaneous phasic and 

tonic contractions in control DSM but not in NDO DSM isolated strips. Original DSM tension recording 

illustrating iberiotoxin (200 nM) effects on spontaneous phasic contraction in control (A) and NDO (B) DSM isolated 

strips, respectively. C. Summary data showing a statistically significant increase in spontaneous phasic contractions 

amplitude, muscle force integral, and muscle tone of control DSM strips (n=12, N=7, P<0.05) and lack of significant 

iberiotoxin effects in NDO DSM strips (n=13, N=3, p>0.05). #P<0.05 for control vs. iberiotoxin and *P<0.05 for 

control vs. NDO.  
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DISCUSSION 

The present study establishes a clear correlation between BK channels expression and 

function and the abnormally elevated DSM contractility observed in NDO patients. We 

found that mRNA expression of the pore forming BKα subunit was significantly 

decreased in NDO DSM compared to controls. We also found that spontaneous phasic 

contractions were abnormally increased in NDO DSM compared to control DSM, and 

that pharmacological blockade of BK channels with iberiotoxin did not increased DSM 

contractility in NDO patients contrarily to controls. 

The expression and physiological relevance of BK channels in human DSM has recently 

been demonstrated (75). RT-PCR and western blot data confirmed that the pore forming 

α-subunit as well as the regulatory β1 and β4 subunits are expressed at mRNA and 

protein level, respectively, in human DSM (75). The pore-forming α subunits ensure the 

movement of K
+
 ions across the cell membrane, while the β1 subunits regulate the 

channel’s activity by modulating BK channel Ca
2+

 sensitivity(22, 109, 130, 131, 146). 

The structural integrity of the BK channel confers to the channel its ability to determine 

the resting membrane potential and to contribute to the initial repolarization of the action 

potential (130). Any changes in BK channel subunits expression could significantly 

hamper the channel’s ability to regulate DSM excitability and contractility. For instance, 

it has been demonstrated that in mouse model in which the BKα subunit was genetically 

deleted, DSM cells were depolarized and DSM contractility was abnormally increased, 

mimicking symptoms of DO (22, 109, 146, 154). Another study also showed that genetic 

deletion of the BKβ1 subunit causes an increase in DSM contractility in mice (131). One 

human study performed in patients with BPH and associated DO reported that mRNA 
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and protein expression for BKα and BKβ subunits were significantly reduced (26). 

Similarly to what is observed in BPH/DO patients, our study reported that in comparison 

to controls, NDO patients DSM also have significantly reduced BKα subunit mRNA 

expression and a moderate decrease in BKβ1 and BKβ4 subunits mRNA expression (Fig. 

3.1.1). These studies support the concept that the NDO phenotype is associated with 

decreased BK channel expression in human DSM. 

As we correlate the molecular findings with the functional data, we found that NDO 

patients DSM have abnormally elevated contractility in comparison to controls (Fig. 

3.1.2). Additionally, unlike control DSM, inhibition of the BK channel with iberiotoxin 

did not significantly affect DSM contractility in NDO DSM isolated strips suggesting that 

in NDO patients DSM, the BK channel function might be altered (Fig. 3.1.2). Our data 

are in line with a previous report which demonstrates that in NDO patients, 

pharmacological activation of BK channels with NS1619, a BK channel agonist, has no 

effect on DSM phasic contractions (120).   

Our data are further supported by recent findings which show that NS1619 significantly 

decreased DSM excitability and contractility in controls non-NDO patients (80). 

CONCLUSION 

We demonstrated that in NDO patient, the DSM contractility is abnormally elevated in 

comparison to controls and that this particular phenotype is most likely due to the 

significant reduction in BKα subunit expression. Therefore, we suggest that targeting BK 

channels by either pharmacological or genetic manipulation could be a promising 

therapeutic strategy to treat OAB, and especially NDO.  
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3.2 SK BUT NOT IK CHANNELS REGULATE HUMAN DETRUSOR SMOOTH 

MUSCLE SPONTANEOUS AND NERVE-EVOKED CONTRACTIONS 

 

Data presented in this section have already been published and the original paper has 

been modified to fit the format of this dissertation with authorization of the publisher. 

Human tissues were surgically obtained by Dr. Rovner’s team from the Medical 

University of South Carolina. Dr. Rovner is a collaborator with the Petkov’s lab. 

 

ABSTRACT 

Animal studies suggest that the small (SK) and intermediate (IK) conductance Ca
2+

-

activated K
+
 channels may contribute to detrusor smooth muscle (DSM) excitability and 

contractility. However, the ability of SK and IK channels to control DSM spontaneous 

phasic and nerve-evoked contractions in human DSM remains unclear. We first 

investigated SK and IK channels molecular expression in native human DSM and further 

assessed their functional role using isometric DSM tension recordings and SK/IK 

channels selective inhibitors. Quantitative PCR experiments revealed that SK3 channel 

mRNA expression in isolated DSM single cells was ~12 to 44-fold higher than SK1, 

SK2, and IK channels. RT-PCR studies at the single-cell level detected mRNA messages 

for SK3 channels but not SK1, SK2, and IK channels. Western blot and 

immunohistochemistry analysis further confirmed protein expression for the SK3 channel 

and lack of detectable protein expression for IK channel in whole DSM tissue. Apamin (1 

µM), a selective SK channel inhibitor, significantly increased the spontaneous phasic 

contraction amplitude, muscle force integral, phasic contraction duration, and muscle 
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tone of human DSM isolated strips. Apamin (1 µM) also increased the amplitude of 

human DSM electrical field induced (EFS)-contractions. However, TRAM-34 (1 µM), a 

selective IK channel inhibitor, had no effect on the spontaneous phasic and EFS-induced 

DSM contractions suggesting a lack of IK channel functional role in human DSM. In 

summary, our molecular and functional studies revealed that the SK, particularly the SK3 

subtype, but not IK channels are expressed and regulate the spontaneous and nerve-

evoked contractions in human DSM. 
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INTRODUCTION 

Overactive bladder (OAB), occurring in approximately 17% of the American population, 

is a pathophysiological condition that impairs quality of life (147). The current 

pharmacological treatment of OAB is primarily based on antimuscarinic drugs, which are 

not universally effective and have many unwanted side effects (5, 130). In order to 

develop novel effective pharmacological treatments for OAB, it is crucial to improve our 

understanding of the basic physiology, pathophysiology, and pharmacology of the 

bladder function. Previous studies have already demonstrated that various K
+
 channels 

including the large-conductance Ca
2+

-activated K
+
 (BK) channel (22, 26, 35, 60, 75, 79, 

80, 131, 145), the voltage-gated K
+
 (KV) channels (29, 57, 60, 74, 77), and the ATP-

sensitive K
+
 (KATP) channels (35, 132) are essential contributors to urinary bladder 

physiology. However, other important channels such as the small (SK) and intermediate 

(IK) conductance Ca
2+

-activated K
+
 channels remain largely unexplored in human 

detrusor smooth muscle (DSM) although some studies outline a potential role for these 

channels in DSM phasic contractions (31, 35, 58, 67, 68, 117, 120, 163). The SK channel 

family consists of three isoforms: SK1, SK2, and SK3 (129). IK channel, initially 

classified as SK4, is the only member of its family (129, 130). SK1-3 channels are 

selectively blocked by apamin, a peptide isolated from Apis mellifera (129, 153), whereas 

the IK channels are selectively blocked by TRAM-34 (163). In guinea pig DSM isolated 

strips, apamin significantly increased the amplitude and duration but decreased the 

frequency of the spontaneous phasic contraction (66). In pig DSM, which has similar 

characteristics to that of human DSM (34), apamin increased both amplitude and 

frequency of the DSM spontaneous contractions (23). In mice, genetic ablation of the 
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SK3 channels caused an increase in the spontaneous phasic contraction in vitro and non-

voiding contractions in vivo (68).  

Notably, it has been demonstrated that activation of SK and IK channels has the 

opposite effect in the DSM of various species. NS4591, a non-selective SK and IK 

channel opener, inhibited electrical field stimulation (EFS)-induced and carbachol-

induced phasic contractions in rat, pig, and human DSM (117). In rats, an increase in 

bladder capacity and micturition volume as well as a reduction in bladder overactivity 

was observed after application of NS309, an activator of SK/IK channels (125). 

Similarly, in rats and cats, NS4591 (30 mg/kg) inhibited bladder overactivity induced by 

capsaicin and acetic acid in vivo (73). Furthermore, SKA-31, the most potent SK/IK 

channel activator known to date (137) has been shown to decrease excitability and 

contractility in guinea pig DSM via selective SK channel activation (127). Collectively, 

these data suggest an important role played by SK and IK channels in DSM contractility 

in non-human tissues. Indeed, the majority of the current knowledge about the functional 

role of SK and IK channels comes principally from animals and is likely not directly 

translatable to humans due to species differences in DSM ion channel expression, action 

potential shape, and pattern of contractility. Furthermore, the limited number of 

functional studies performed on human DSM specimens have not addressed the role of 

SK and IK channels under normal physiological conditions of spontaneous activity but 

rather after addition of depolarizing agents such as KCl or carbachol (35, 117, 120). An 

investigation of human DSM strips exhibiting spontaneous phasic contractions would 

provide a more physiologically relevant condition for the determination of the role of SK 

and IK channels. 
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The aim of this study was two-fold: 1) to investigate the molecular expression of SK and 

IK channels in human DSM using RT-PCR, quantitative PCR (qPCR), Western blot, and 

immunohistochemistry and, 2) to evaluate the functional role of SK and IK channels in 

spontaneous and nerve-evoked contractions using isometric DSM tension recordings and 

the selective SK and IK channels inhibitors, apamin and TRAM-34, respectively. 
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MATERIALS AND METHODS 

Human DSM tissue collection  

Human tissue collection experiment is described in chapter 2.2. In total, we used DSM 

tissue samples from 36 (25 males and 11 females) patients (28-85 years old; average age 

61.9±2.2) including 29 Caucasians and 7 African-Americans without a history of OAB. 

Detection and quantification of mRNA message by RT-PCR and qPCR  

Experiments were conducted as described in chapter 2.2. Specific primers for SK1-4 

channels and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Table 3.2.1) were 

designed based on the cDNA complete sequences of human genes in Genbank. The 

parameters of the qPCR experiments were as follows: Cycle 1, 95 
o
C for 3 min; cycle 2, 

95 
o
C for 10 s then 55 

o
C for 30 s (repeated 40 times); cycle 3, 95 

o
C for 1 min; cycle 4, 

55 
o
C for 1 min; cycle 5, 55 

o
C for 10 s (repeated 81 times to generate a melting curve). 

The parameter for the RT-PCR experiments were as follows: cDNA was heated for 3 min 

at 94
o
C then amplified by 35 cycles (94 

o
C for 30 s, 60.1 

o
C for 30 s, 72 

o
C for 15 s) 

followed by 5 min of extension at 72 
o
C. Total RNA extracted from human brain was 

purchased from Clontech (Mountain view, CA, USA) and used as a positive control.  
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Table 3.2.1. RT-PCR and qPCR primers for SK and IK channels identification. bp- base pair 

  

Channel Sense Anti-sense Product 

(bp) 

Accession 

Number 

SK1 TCAAATGCCTCATCAGCCTCTCCA GCGCGTGTTGAAGGTGATCTTGTT 389 NM002248 

SK2 TGGTGGACAATGGAGCAGATGACT AACCAAGAGTACAGTTCCTGGGCA 359 NM170775 

SK3 CTGCCTGTGGGAAATTGAATGGCA AGGAGCACCATTCTTGGGACATGA 470 NM170782 

IK CTCATCGTGGCCTTTCATGCCAAA CATGTAAAGCTTGGCCACGAACCA 378 NM002250 

GAPDH GGATTTGGTCGTATTGGG GGAAGATGGTGATGGGATT 205 NM002046 
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Detection and localization of SK and IK channel proteins by Western blot and 

immunohistochemistry 

Western blot and immunohistochemistry experiments are described in chapter 2.2. We 

used the following primary antibodies: affinity-purified rabbit polyclonal antibodies anti-

KCa2.3 (SK3) (1:200) and anti-KCa3.1 (IK) (1:300) (Alomone Labs, Jerusalem, Israel). 

Goat anti-rabbit IgG conjugated with horseradish peroxidase (diluted to 1:1,500) was 

used as a secondary antibody.  Human heart protein medley was purchased from 

Clontech Laboratories (Mountain View, CA) and used as a positive control. 

Isometric DSM tension recordings  

Experiments were performed as described in chapter 2.2. 

Solutions and drugs 

The Ca
2+

-free dissection solution and the Ca
2+

-containing PSS composition are described 

in chapter 2.2. Apamin, TRAM-34, and TTX were purchased from Sigma-Aldrich Co. 

(St. Louis, MO, USA). 

Data analysis and statistics 

Analysis was performed as described in chapter 2.2. Fold changes in target mRNA 

expression level were calculated after normalization to GAPDH and the SK3 channel 

expression level was arbitrarily chosen as the calibrator. 
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RESULTS 

Detection and relative expression level of mRNA messages for SK1, SK2, SK3, and 

IK channels in human DSM  

First, qPCR experiments were performed in order to evaluate the mRNA relative 

expression for all SK1-3 and IK channels. In human whole DSM tissue, we found that 

SK1 and SK3 channel mRNA expressions were higher compared to SK2 and IK channels 

(Fig. 3.2.1A). SK3 channel mRNA expression was 3-fold and 7-fold higher than SK2 and 

IK channel mRNA expression, respectively (n=14, N=7, p<0.001; Fig. 3.2.1A). 

However, SK1 and SK3 channel mRNA expression was comparatively similar in whole 

DSM tissue (n=14, N=7, p<0.05; Fig. 3.2.1A). Next, we conducted qPCR experiments on 

human DSM freshly isolated single cells to confirm that the mRNA messages detected in 

the whole DSM tissue originated directly from DSM cells but not from other non-DSM 

cell types such as neurons, fibroblasts, vascular, and endothelial cells present within the 

DSM layers (29, 30, 74, 75). The single-cell qPCR experiments confirmed a significantly 

higher SK3 channel mRNA relative expression compared to other SK and IK channels. 

SK3 channel mRNA expression was 12-fold, 41-fold, and 44-fold higher than SK1, SK2, 

and IK channels, respectively (n=16, N=8, p<0.001; Fig. 3.2.1B). These results 

demonstrate that in human DSM cells, the SK3 channel expression is predominant among 

SK and IK channels at the mRNA level. 

  



 

54 

 

Figure 3.2.1. qPCR analyses for SK1, SK2, SK3, and IK channel mRNA expression in (A) human whole DSM tissue 

(n=14, N=7); and (B) human DSM isolated single cells (n=16, N=8). Data were normalized to GAPDH and SK3 

mRNA message was arbitrarily chosen as the calibrator. Ct values are expressed as mean ± SE. SK and IK channel 

mRNA levels which are statistically different from SK3 channel mRNA level are indicated by (***) for p<0.005.  
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Next, we investigated SK1, SK2, SK3, and IK channel mRNA message expression using 

RT-PCR experiments on both human whole DSM tissue and freshly isolated DSM single 

cells. In human whole DSM tissue, our RT-PCR experiments demonstrated detectable 

expression of all SK and IK channel subtype mRNA messages (n=6-14, N=3-7; Fig. 

3.2.2). At the DSM single-cell level, only the SK3 channel mRNA message was detected. 

There was no detection of SK1, SK2, or IK channels which is consistent with our qPCR 

data in human isolated DSM single cells (n=8-12, N=4; Fig. 3.2.2). RT-PCR experiments 

were conducted on human DSM cDNAs equivalent to 100 ng of starting mRNA. 

Negative control experiments performed in the absence of the reverse transcriptase (-RT) 

demonstrated an absence of genomic DNA contamination. These data suggest that the 

SK3 channel is highly expressed at the mRNA level, whereas SK1, SK2, and IK channel 

mRNA is expressed at very low, perhaps non-physiological, levels in human DSM cells.  
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Figure 3.2.2. RT-PCR detection of SK1 (A), SK2 (B), SK3 (C), and IK (D) channel mRNA messages in human whole 

DSM tissue (n=6-14, N=3-7) and isolated DSM single cells (n=8-12, N=4). No product was observed in the negative 

controls (-RT) in which reverse transcriptase was not added to the reaction.  
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Native human whole DSM tissue expresses SK3 but not IK channel protein  

To further investigate the expression of SK/IK channel protein in native human DSM 

tissue, we performed Western blot experiments using specific antibodies against the SK3 

or IK channels. The data showed that human whole DSM tissue expresses SK3 channel 

protein (Fig. 3.2.3A) but not IK channel protein (Fig. 3.2.4A). These data verified our 

RT-PCR results which showed an SK3 but not an IK channel mRNA message in human 

DSM single cells. Further immunohistochemical analysis also confirmed the expression 

of SK3 channel protein (Fig. 3.2.3B) and ruled out the expression of IK channel protein 

(Fig. 3.2.4B) in human whole DSM tissue. Western blot and immunohistochemistry 

control experiments were further conducted by pre-absorption of the primary antibody 

with its antigenic competing peptide to verify the specificity of the antibodies for their 

intended epitope.  
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Figure 3.2.3. Western blot and immunohistochemical detection of SK3 channel protein expression in native 

human whole DSM tissues. A) Protein expression for SK3 channels was detected by Western blot in native human 

whole DSM tissue. The immunoreactive band was eliminated by a competing peptide (+CP). Experiments were 

conducted in 3 separate Western blot reactions using protein isolated from 3 patients. B) Immunohistochemical 

detection of SK3 channels in mucosa-free human whole DSM tissue using SK3 channel specific antibody. Cells’ nuclei 

are shown in blue (B1); F-actin is shown in green (B2). Red staining indicates detection of the SK3 channels (B3). The 

merged images of the nuclei, F-actin, and the expected SK3 channels are illustrated in B4. Images were captured with a 

Carl Zeiss LSM 510 META confocal microscope. Experiments were conducted on tissue samples isolated from 4 

different patients.  
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Figure 3.2.4. Western blot and immunohistochemical detection of IK channel showing the lack of IK channel protein 

expression in native human whole DSM tissues. A) Protein expression for IK channels was detected by Western blot in 

human heart protein medley (positive control) but not in native human whole DSM tissue. The immunoreactive band in 

human heart protein medley was eliminated by a competing peptide (+CP). Experiments were conducted in 3 separate 

Western blot reactions using protein isolated from 4 patients. B) IK channel protein was not detected in mucosa-free 

human whole DSM tissue following immunohistochemical reaction using IK channel specific antibody. Cells’ nuclei 

are shown in blue (B1); F-actin is shown in green (B2). Lack of red staining in panel B3 indicates no expression of IK 

channel. The merged images of the nuclei and F-actin are illustrated in B4. Images were captured with a Carl Zeiss 

LSM 510 META confocal microscope. Experiments were conducted on tissue samples isolated from 4 different 

patients.  
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Role of SK and IK channels in spontaneous (myogenic) phasic and tonic DSM 

contractions Here, we sought to evaluate the roles of SK and IK channels in human 

DSM spontaneous contractions by using the SK and IK channel specific inhibitors, 

apamin and TRAM-34, respectively. Apamin (1 µM) increased the DSM spontaneous 

phasic and tonic contractions and had a biphasic effect on DSM spontaneous contraction 

(Fig. 3.2.5A). Within the first 10 min, apamin (1 µM) increased the DSM spontaneous 

phasic contraction amplitude by 162.1 ± 41.7%, muscle force integral by 171.8 ± 45.5%, 

and muscle tone by 11.7 ± 1.8% (n=28, N=13, p<0.005), without any significant effect on 

the spontaneous phasic contraction frequency and duration (Fig. 3.2.5B). We also 

evaluated the changes in the spontaneous phasic contractions, 30-40 min after apamin 

addition. During this second time period, the spontaneous phasic contraction amplitude 

was increased by 116.4 ± 39.2%, muscle force integral by 136.5 ± 50.7%, and phasic 

contraction duration by 13.8 ± 3.9% (n=28, N=13, p<0.005); no significant effect was 

observed on the phasic contraction frequency and muscle tone (Fig. 3.2.5C). On the other 

hand, TRAM-34 (1 µM) did not have any significant effect on the spontaneous phasic 

and tonic contractions in the first 10 min or 30-40 min after addition (n=4, N=4, p>0.05; 

Fig. 3.2.6). Collectively, these results suggest that SK channels but not IK channels 

regulate human DSM myogenic activity. 
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Figure 3.2.5. Apamin increases the spontaneous phasic contraction amplitude, muscle force integral, phasic 

contraction duration, and muscle tone in human DSM isolated strips. A) Original DSM tension recordings 

illustrating apamin (1 µM) effect on human DSM isolated strips. B) Summary data showing significant increase in 

human DSM spontaneous phasic contractions amplitude, muscle force integral, and muscle tone within 10 min 

following apamin (1 µM) addition. C) Summary data showing a significant increase in human DSM spontaneous 

phasic contractions amplitude, muscle force integral, and phasic contraction duration 30-40 min following apamin (1 

µM) addition. The 10-min control period prior to apamin addition was taken to be 100 % and data were normalized. 

Values are means ± SE (n=28, N=13; **p<0.01, ***p<0.005). TTX (1 µM) was present throughout the experiments.  
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Figure 3.2.6. TRAM-34 does not affect the spontaneous phasic and tonic contractions in human DSM isolated 

strips. A) Original DSM tension recordings illustrating the lack of TRAM-34 (1 µM) effect on human DSM isolated 

strips. B) Summary data showing that TRAM-34 (1 µM) has no effect on any of the spontaneous phasic and tonic 

contractions parameters. TRAM-34 effect was evaluated within 10 min following TRAM-34 addition. The 10-min 

control period prior to TRAM-34 addition was taken to be 100 % and data were normalized. Values are means ± SE 

(n=4, N=4; p>0.05). TTX (1 µM) was present throughout the experiments.  
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Role of SK and IK channels in nerve-evoked contractions  

In this experimental series, we investigated the effects of apamin (1 µM) and TRAM-34 

(1 µM or 30 µM) on nerve-evoked contractions of human DSM isolated strips (Fig. 

3.2.7-8). Nerve-evoked contractions were generated by EFS and characterized in 

response to increasing EFS frequencies (0.5–50 Hz) in the presence or absence of apamin 

or TRAM-34, respectively. Increasing EFS frequencies (0.5, 2.0, 3.5, 5, 7.5, 10, 12.5, 15, 

20, 30, 40, 50 Hz) were first applied to each human DSM strip as a control. Then, apamin 

(1 µM) or TRAM-34 (1 µM or 30 µM) was added to the bath for 30 min. Next, the same 

EFS protocol (0.5-50 Hz) was applied to evaluate how these SK and IK channel 

inhibitors modulate EFS-induced contractions. The frequency-response curves showed 

that apamin (1 µM) significantly increased the amplitude of the EFS-induced contractions 

at stimulation frequencies ranging from 3.5 to 50 Hz (n=23, N=9, p<0.01; Fig. 3.2.7B). 

At the maximal stimulation frequency of 50 Hz, apamin increased the EFS-induced 

contraction amplitude by 23.5 ± 6.1% (n=23, N=9, p<0.01). However, TRAM-34 (1 µM) 

did not have any significant effect on EFS-induced contraction at all stimulation 

frequencies (0.5-50 Hz) (n=7, N=2, p>0.05). This lack of effect was also observed at 

TRAM-34 concentration as high as 30 µM (n=21, N=7, p>0.05; Fig. 3.2.8B) suggesting 

that IK channels do not play a role in the nerve-evoked contractions. 
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Figure 3.2.7. Apamin increases the amplitude of the electrical field stimulation (EFS)-induced contractions in 

human DSM isolated strips. A) Original recordings illustrating apamin (1 µM) effect on EFS-induced (0.5-50 Hz) 

contractions. As shown, apamin (1 µM) also induced myogenic contractions, consistent with data illustrated in Fig. 4. 

B) Frequency-response curves showing a significant increase in the amplitude of the EFS-induced contractions 

following application of apamin (1 µM). The maximal EFS-contraction amplitude at a stimulation frequency of 50 Hz 

under control conditions was taken to be 100 % and the contractions were normalized. Values are means ± SE (n=23, 

N=9; **p<0.01, ***p<0.005).  
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Figure 3.2.8. TRAM-34 has no effect on the amplitude of the electrical field stimulation (EFS)-induced 

contractions in human DSM isolated strips. A) Original recordings illustrating the lack of TRAM-34 (30 µM) effect 

on EFS-induced (0.5-50 Hz) contractions. B) Frequency-response curves showing no significant change in the 

amplitude of the EFS-induced contractions following application of TRAM-34 (30 µM). The maximal EFS-contraction 

amplitude at a stimulation frequency of 50 Hz under control conditions was taken to be 100 % and the contractions 

were normalized. Values are means ± SE (n=21, N=7; p>0.05).  
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DISCUSSION 

In the present study, we used combined molecular (RT-PCR, qPCR, Western blot, and 

immunohistochemistry), functional (isometric DSM tension recordings), and 

pharmacological (SK and IK channel inhibitors) approaches to investigate the molecular 

expression of all SK and IK channels in freshly isolated human DSM cells and further 

evaluated their functional role in human DSM contractility. Single-cell RT-PCR 

experiments confirmed the expression of only the SK3 channel subtype at the mRNA 

level. qPCR experiments indicated that the SK3 channel is the most predominant subtype 

in native human DSM single cells at mRNA level. Western blot and immunostaining 

further confirmed SK3 channel protein expression. Functional studies using apamin and 

TRAM-34 suggest that the SK channels but not the IK channels have an important role in 

human DSM contractility. 

SK and IK channels mRNA expression in human DSM cells 

 In human whole DSM tissue, RT-PCR showed that all SK and IK channels were 

expressed. Furthermore, the qPCR experiments not only confirmed mRNA expression for 

all SK and IK channel subtypes in whole DSM but also indicated that SK1 and SK3 

channels are the most predominant. However, at the DSM single-cell level, only the SK3 

channels were detected by RT-PCR, in all patients tested. Moreover, qPCR data from 

isolated DSM single cells indicate a much higher expression level for the SK3 channel. 

The difference in mRNA relative expression between whole DSM tissue and isolated 

DSM single cells could be explained by the fact that the detection of mRNA messages in 

isolated DSM single cells is a more accurate approach. The unique advantage of using 
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freshly isolated DSM single cells in RT-PCR and qPCR is that this approach eliminates 

any possible contamination by other non-DSM cell types including neurons, fibroblasts, 

endothelial cells, and vascular cells present within the DSM layers (29, 30, 74, 75). It is 

possible that the detected SK1 channel mRNA in whole DSM originated from neuronal 

cells present in the DSM layers consistent with the findings from Chen et al. (31). The 

aforementioned study using qPCR experiments, revealed that the SK3 channel is the most 

predominant SK channel subtype in human whole bladder tissue and that the SK1 

channel is highly expressed in human neuronal tissues (brain) (31). This observation was 

confirmed by our RT-PCR, Western blot, and immunohistochemistry data showing 

mRNA message and protein expression for SK3 channel in native human DSM single 

cells and whole DSM tissue, respectively (Figs. 3.2.1-3). The presence of the SK3 

channel protein in human whole DSM tissue confirms that SK3 channels play a critical 

physiological role in human bladder physiology, similar to rodent models (68). Studies 

have shown that selective suppression of SK3 channel expression increased the phasic 

contractions of mouse isolated DSM strips and increased non-voiding contractions in vivo 

(68). Suppression of SK3 channel expression by genetic manipulations further elevated 

micturition pressure compared to control mice. Transgenic mice overexpressing the SK3 

channels had greatly elevated bladder capacities and urine output compared to wild-type 

mice (68). In the present study, we detected high levels of SK3 channel mRNA message 

in human DSM single cells and further confirmed the SK3 channel protein expression in 

whole DSM tissue. Therefore, it is likely that SK3 channels play an important functional 

role in human DSM contractility. 
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SK channels regulate human DSM spontaneous phasic contractions  

Using channel specific inhibitors, apamin and TRAM-34, we determined the SK and IK 

channel functional roles in human DSM spontaneous phasic contractions. Our data show 

that apamin but not TRAM-34 significantly increased the phasic contraction amplitude, 

muscle force integral, phasic contraction duration and muscle tone of the DSM 

spontaneous contraction suggesting that SK channels but not IK channels are effective 

modulators of human DSM contractility. Consistent with our human data, studies in 

guinea pig DSM have shown that apamin but not TRAM-34 increases DSM spontaneous 

contractions (127). Furthermore, apamin but not TRAM-34 blocked guinea pig DSM 

relaxation induced by SKA-31, a novel and potent SK channel opener, suggesting that IK 

channels have no functional role in guinea pig DSM physiology as compared to SK 

channels (127). A previous study has established a correlation between spontaneous 

contractile activity and electrical activity in guinea pig DSM (58). The study showed that 

the inhibition of SK channels with apamin increased spontaneous phasic contraction 

amplitude and duration, reduced phasic contraction frequency while converting the 

electrical activity from individual action potentials into bursts without changing either the 

action potential shape or afterhyperpolarization (58). Apamin also increased guinea pig 

and mouse DSM action potential frequency suggesting that SK channels are important 

regulators of DSM excitability (45, 60). These animal data are consistent with our human 

data since apamin increased spontaneous phasic contraction amplitude and duration 

without affecting the phasic contraction frequency of human DSM isolated strips. We 

propose that the initial burst in action potentials could explain the initial jump observed in 

spontaneous contraction observed immediately after apamin was added into the baths 
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(Fig. 3.2.5A). Earlier studies further showed that apamin increased human DSM phasic 

contractions induced by 10 mM KCl, suggesting the involvement of SK channels in KCl-

induced contractions (35). Studies by others also reported that apamin can partially 

reverse the relaxation caused by the selective SK channel opener, NS4591, in rat, pig and 

human DSM strips stimulated by 1 µM carbachol (117). The major advantage of our 

work compared to those conducted previously on human DSM is that herein we 

evaluated the SK and IK channels functional role on human DSM strips exhibiting 

spontaneous phasic contractions. The unique advantage of using these spontaneously 

contracting DSM strips is their direct physiological relevance compared to those in which 

contractions are artificially induced by depolarizing agents such as KCl or carbachol (35, 

117).  

SK channel role in human DSM nerve-evoked contractions  

During micturition, parasympathetic nerves release ATP and acetylcholine which activate 

purinergic P2X receptors and muscarinic receptors to cause DSM contraction. Using 

EFS, we activated the cholinergic and purinergic nerves present in the human DSM strips 

to induce contractions and then evaluated if apamin or TRAM-34 could modulate EFS-

induced contractions. Our data show that apamin but not TRAM-34 significantly 

increased the amplitude of the EFS-induced contraction at all stimulation frequencies 

between 3.5 and 50 Hz suggesting that SK channels but not IK channels modulate human 

DSM nerve-evoked contraction. Our data on human DSM are consistent with previous 

studies on mouse and guinea pig DSM isolated strips (65, 127). In mouse and guinea pig, 

blocking SK channels with apamin resulted in an increase in the amplitude of nerve-

evoked contractions (65, 127). However, in guinea pig DSM, inhibition of IK channels 
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with TRAM-34 had no effect on nerve-evoked contractions suggesting the lack of a 

functional role for IK channels (127). Our findings suggest that SK channels participate 

in a negative feedback loop which limits the DSM excitability and contractility in 

response to nerve stimulation consistent with previous mouse and guinea pig DSM 

studies (65, 66, 68, 127).  

In summary, the SK3 channels are the only SK channel subtype expressed in human 

DSM single cells at the mRNA level. SK3 channel protein expression was also confirmed 

in whole DSM tissue. DSM contractility studies using apamin and TRAM-34 showed 

that the SK channels but not the IK channels have a critical role in human DSM function. 

Taken together, we suggest that the SK channels, the SK3 subtype in particular, are 

important modulators of human DSM contractility. SK3 channels could therefore 

represent novel therapeutic targets for the pharmacological treatment of OAB. 
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CHAPTER 4 

FUNCTIONAL LINK BETWEEN BK CHANNELS AND BETA3 ADRENERGIC RECEPTORS 

DURING NERVE-EVOKED CONTRACTIONS 

 

Chapter 4 addresses the functional link between BK channels and beta3-AR during 

nerve-evoked contractions. Because human material is limited, we first designed 

strategies to test our hypothesis by using laboratory animals. We investigated the role of 

beta3-AR in guinea pigs (chapter 4.1) and rats (chapter 4.2), two commonly used 

laboratory animals. We found that contrarily to guinea pigs, beta3-AR played a more 

physiologically-relevant role in rat DSM nerve-evoked contractions and that rats are 

better animal models than guinea pig to study beta3-AR functions in the DSM. We 

further found that there is a functional link between BK channels and beta3-AR during 

nerve-evoked contractions in rat DSM (chapter 4.2). The data in rat DSM served as a 

basis to further investigate the mechanism in humans (chapter 4.3).   
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4.1 DO ΒETA3-ADRENERGIC RECEPTORS PLAY A ROLE IN GUINEA PIG 

DETRUSOR SMOOTH MUSCLE EXCITABILITY AND CONTRACTILITY? 

 

Data presented in this section have already been published and the original paper has 

been modified to fit the format of this dissertation with authorization of the publisher. 

Electrophysiological data were collected by Dr. Hristov, a post-doctoral fellow in Dr. 

Petkov’s lab. 

 

ABSTRACT 

In many species, beta3-ARs have been reported to play a primary role in 

pharmacologically-induced detrusor smooth muscle (DSM) relaxation. However, their 

role in Guinea pig DSM remains controversial. The aim of this study was to investigate if 

beta3-ARs are expressed in Guinea pig DSM and to evaluate how BRL37344 and L-

755,507, two selective beta3-AR agonists, modulate Guinea pig DSM excitability and 

contractility. We used a combined experimental approach including RT-PCR, patch-

clamp electrophysiology, and isometric DSM tension recordings. Beta3-AR mRNA 

message was detected in freshly isolated Guinea pig DSM single cells. BRL37344 but not 

L-755,507 caused a slight decrease in DSM spontaneous phasic contraction amplitude 

and frequency in a concentration-dependent manner. In the presence of atropine (1 µM), 

only the spontaneous phasic contractions frequency was inhibited by BRL37344 at higher 

concentrations. Both BRL37344 and L-755,507 significantly decreased DSM carbachol-

induced phasic and tonic contractions in a concentration-dependent manner. However, 
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only BRL37344 inhibitory effect was partially antagonized by SR59230A (10 µM), a 

beta3-AR antagonist. In the presence of atropine, BRL37344 and L-755,507 had no 

inhibitory effect on electrical field stimulation-induced contractions. Patch-clamp 

experiments showed that BRL37344 (100 µM) did not affect the DSM cell resting 

membrane potential and K
+
 conductance. Although beta3-ARs are expressed at the 

mRNA level, they play a minor to no role in Guinea pig DSM spontaneous contractility 

without affecting cell excitability. However, BRL37344 and L-755,507 have pronounced 

inhibitory effects on Guinea pig DSM carbachol-induced contractions. The study outlines 

important DSM beta3-ARs species differences. 
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INTRODUCTION 

For many years, pharmacological treatment of OAB and associated urinary incontinence 

(UI) has relied exclusively on antimuscarinic drugs (5, 114, 170). However, beta-ARs) 

could represent alternative targets for OAB because pharmacological stimulation of β-

ARs causes DSM relaxation (22, 79). Among all beta-ARs subtypes (beta1, beta2, and 

beta3), the beta3-ARs may be the most promising new pharmacological targets for OAB 

treatment because they represent 97% of all beta-ARs expressed in human DSM (168). 

Such predominant expression in DSM suggests that drugs targeting beta3-ARs will 

potentially have fewer side effects compared to antimuscarinic drugs, which can cause 

dry mouth, constipation, headaches, blurred vision, etc. (5, 14, 170). The activation of 

beta-ARs stimulates adenylyl cyclase which converts ATP into cAMP. Increased 

intracellular cAMP activates protein kinase A (PKA), which then can phosphorylate 

various proteins and relax DSM (111, 134). In mouse and Guinea pig, stimulation of 

beta-ARs by isoproterenol, a non-selective beta-AR agonist, relaxes DSM by activation 

of the large-conductance calcium-activated potassium (BK) channels (22, 134). Similarly 

in rat, stimulation of beta3-AR by the selective beta3-AR agonist, BRL37344, relaxes 

DSM by activation of the ryanodine receptors (RyRs) and BK channels (79). The 

increase in RyRs activity in rat DSM by BRL37344 and in Guinea pig DSM by 

isoproterenol leads to an increase in transient BK currents (TBKCs) frequency, which 

causes membrane hyperpolarization and thus relaxation (79, 134). Furthermore, in DSM 

of BK channel knockout mice, beta-AR-mediated relaxation is significantly compromised 

(22). However, to our knowledge, beta3-AR mRNA or protein expression has not yet 

been confirmed in Guinea pig DSM, and the functional role of beta3-ARs in Guinea pig 
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DSM remains controversial (100, 169). Clarification of this role is important because the 

Guinea pig is a widely used animal model to study DSM function. 

Our goal was to provide molecular evidence for beta3-AR mRNA message expression in 

Guinea pig DSM using RT-PCR and establish whether beta3-ARs have a functional role 

in Guinea pig DSM excitability and contractility. Our molecular studies indicate the 

presence of the beta3-AR mRNA message in Guinea pig DSM cells, and that the 

selective beta3-AR agonists, BRL37344 and L-755,507 substantially inhibit carbachol-

induced contractions. The compounds have a negligible inhibitory effect on spontaneous 

contractions, and no inhibitory effect on the nerve-evoked contractions of Guinea pig 

DSM in the presence of atropine. Finally, with the patch-clamp technique, we established 

that BRL37344 had no effect on Guinea pig resting membrane potential, voltage-step 

induced steady-state K
+
 currents, and TBKCs. 
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METHODS 

Animal studies and DSM tissue harvesting  

DSM tissue harvesting was conducted as described in chapter 2.2. We used 76 adult (63 

males, and 13 females) Hartley-Albino guinea pigs, weighing on average 366.6 ± 21.1 g.  

DSM single-cell isolation and individual collection 

DSM single cells collection for electrophysiology and RT-PCR experiments were 

collected as described in chapter 2.2.  

RNA Extraction/RT-PCR/Sequencing 

Specific primers sequences for beta3-AR were obtained from a previous publication (70) 

and synthesized by Integrated DNA Technologies (IDT, Coralville, IA). The sense and 

antisense primers were 5′-GTGGGAGGCAACCTGCTGGT-3′ and 5′-

CGCCACCACTGGCTCAT-3′, respectively. RT-PCR experiments were conducted as 

described in chapter 2.2. cDNA was heated for 15 min at 95 
o
C then amplified by 35 

cycles (95 
o
C for 30 s, 60 

o
C for 30 s, 72 

o
C for 30 s) followed by a 5-min extension at 72 

o
C. The expected length of the fragment was 387 bp. 

Isometric DSM tension recordings 

Isometric tension recordings experiments are described in section 2.2. Increasing 

BRL37344 or L-755,507 concentrations (1 nM–100 µM) were applied at 10-min 

intervals directly into the bath in the absence or presence of SR59230A (10 µM), a 



 

77 

selective β3-AR antagonist (22, 39, 71, 138). On a separate set of strips, BRL37344 (100 

µM) was added into the tissue baths containing DSM strips exhibiting spontaneous 

phasic contractions in the presence or absence of atropine (1 µM), a muscarinic receptor 

antagonist. For the EFS experimental series, we separated the cholinergic component of 

the EFS-induced contractions from the purinergic component by blocking purinergic 

receptors with α,β-methylene-ATP and suramin. DSM isolated strips were pre-incubated 

with suramin (10 µM) and α,β-methylene-ATP (10 µM) for 15 min prior to the EFS-

control protocol. The purinergic component of the EFS-induced contractions was 

assessed by addition of 1 µM atropine to block the cholinergic component. This 

experimental series was also performed in the presence or absence of SR59230A (10 

µM). 

Electrophysiological (patch-clamp) experiments 

These experiments were performed by Dr. Hristov, a post-doctoral fellow in Dr. Petkov’s 

laboratory. To preserve the physiological environment of the DSM cells, amphotericin-

perforated whole-cell mode of the patch-clamp technique was applied in all 

electrophysiological experiments (54, 72). Whole-cell currents and membrane potential 

were recorded as previously described (22, 75, 79, 91). Briefly, freshly isolated single 

DSM cells were placed onto an experimental chamber for 20 min to allow them to adhere 

to the glass bottom, and were then washed with extracellular solution. The ionic currents 

and resting membrane potential were recorded using Axopatch 200 B amplifier; 

pCLAMP version 10.2 software; Digidata 1322A and Digidata 1440A (Molecular 

Devices, Union City, CA). The signals were filtered using an eight-pole Bessel filter 
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(model 900CT/9L8L; Frequency Devices, Ottawa, IL). Patch-clamp pipettes were pulled 

from borosilicate glass (Sutter Instruments, Novato, CA) using a Narishige PP-830 

vertical puller, coated with sticky dental wax to reduce capacitance, and then polished 

with a Micro Forge MF-830 fire polisher (Narishige Group, East Meadow, NY) to give a 

final tip resistance of 4–6 MΩ. Leak currents were not subtracted. TBKCs were recorded 

at a holding potential of -40 mV or -20 mV (corrected for junction potential) for at least a 

10-min period in the absence (control), and then in the presence of BRL37344 (100 µM). 

Voltage-step protocols were used to elicit steady-state K
+
 outward current. Resting 

membrane potentials of DSM cells were recorded using the current clamp mode of the 

perforated patch-clamp technique. To determine the mean amplitude and frequency of 

TBKCs, analysis was performed off-line using Clampfit of the pCLAMP version 10.2 

and MiniAnalysis software (Synaptosoft, Inc., Decatur, GA). All patch-clamp 

experiments were conducted at room temperature (22–23 °C). 

Solutions and drugs 

The Ca
2+

-free dissection solution and the Ca
2+

-containing PSS compositions are 

described in chapter 2.2. The extracellular (bath) solution used for electrophysiological 

recordings, and the patch pipette solution were prepared daily and had the same 

composition as previously described (22, 79, 91). BSA and amphotericin-B were 

purchased from Fisher Scientific (Pittsburgh, PA). Papain was obtained from 

Worthington Biochemical Co. (Lakewood, NJ). L-755,507 was purchased from Tocris 

Bioscience (Ellisville, MO). The rest of the drugs were purchased from Sigma-Aldrich 

Co. (St. Louis, MO). BRL37344 stock solution was prepared daily in double distilled 
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H2O and was heated to 60 
o
C to fully dissolve the drug according to the manufacturer’s 

instructions. L-755,507 was also prepared daily and dissolved in dimethyl sulfoxide 

(DMSO) at a final DMSO concentration not greater than 0.1%. 

Data analysis and statistics 

Analyses for isometric DSM tension recordings were analyzed as previously described in 

chapter 2.2. Paired Student’s t-test was used to analyze electrophysiology data. 
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RESULTS 

Detection of mRNA message for β3-AR in Guinea pig DSM  

RT-PCR experiments detected a β3-AR mRNA message in whole DSM and isolated 

DSM single cells (Fig. 4.1.1). Using isolated DSM single cells is advantageous, 

eliminating possible contamination from other cell types such as neurons, fibroblasts, 

vascular myocytes, and other interstitial cells present within the DSM layers (29, 30, 91). 

These results demonstrate that Guinea pig isolated DSM cells express β3-AR mRNA 

message. Negative controls performed in the absence of reverse transcriptase (-RT) 

demonstrated an absence of genomic DNA contamination. Next, we sought to evaluate 

the β3-AR functional role in Guinea pig DSM contractility. 
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Figure 4.1.1. RT-PCR detection of β3-AR mRNA in DSM whole tissue and isolated DSM single cells. The 

expected size of the product was 387 bp. RT (+): reverse transcription, RT (-): no reverse transcription. Guinea pig ileal 

tissue was used as a positive control. Illustrated gel image is a selected representation of at least 5 independent RT-PCR 

experiments based on RNA extracted from 4 animals  
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BRL37344 but not L-755,507 has a minor inhibitory effect on the spontaneous 

phasic and tonic contractions in Guinea pig DSM isolated strips 

Under control conditions before drug (BRL37344, L-755,507, or SR59230A) application 

(taken to be 100%), Guinea pig DSM spontaneous phasic contractions average amplitude 

was 0.4 ± 0.1 g, force was 1.4 ± 0.5 g/s, frequency was 3.0 ± 0.01 contractions/min, 

duration was 8.0 ± 0.9 s/contraction, and tone was 0.2 ± 0.03 g (n=41 , N=23). In the 

absence of SR59230A, BRL37344 (1 nM-100 µM) slightly inhibited the spontaneous 

phasic contraction amplitude and frequency without statistically significant effects on 

muscle force integral, phasic contraction duration, and muscle tone (Fig. 4.1.2A). At the 

maximal concentration of 100 μM, BRL37344 significantly reduced the phasic 

contractions amplitude by 17.6 ± 9.7%, and frequency by 20.7 ± 8.5% (n=7, N=7, 

p<0.05; Fig. 4.1.2C and E). In the presence of SR59230A (10 µM), the BRL37344 (100 

µM) inhibitory effect on the spontaneous phasic contraction frequency was antagonized 

(n=8, N=4, p<0.05; Fig. 4.1.2E) but no antagonistic effect on the spontaneous phasic 

contraction amplitude was observed (n=8, N=4, p>0.05; Fig. 4.1.2C). SR59230A alone 

increased the amplitude and muscle force integral of the spontaneous phasic contractions. 

SR59230A increased the spontaneous phasic contraction amplitude by 196.0 ± 20.7% 

(n=8, N=4; p<0.005) and muscle force integral by 166.0 ± 57.6% (n=8, N=4; p<0.01) 

with no significant effect on the phasic contraction frequency, duration, or muscle tone 

(n=8, N=4; Fig. 4.1.2B). Unlike BRL37344, the other selective β3-AR agonist, L-

755,507 (1 nM-100 µM) had no significant effects on any of the five parameters of the 

spontaneous contractions (n=12, N=6, p>0.05; Fig. 4.1.2C-G).   
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Figure 4.1.2. Effects of BRL37344 and L-755,507 on the spontaneous phasic and tonic contractions of Guinea pig 

DSM isolated strips. A-B. Original recordings of DSM spontaneous phasic contractions illustrating BRL37344 

inhibitory effect (1 nM–100 µM) in the absence (A) or presence (B) of SR59230A (10 µM). C-G. Concentration-

response curves for BRL37344 (1 nM-100 µM) inhibitory effects on the spontaneous phasic contraction amplitude (C), 

muscle force integral (D), phasic contraction frequency (E), phasic contraction duration (F), and muscle tone (G), in the 

presence or absence of SR59230A (10 µM). Concentration-response curves for L-755,507 (1 nM–100 µM) showed no 

inhibitory effect on the spontaneous phasic and tonic contractions of DSM isolated strips (C-G). Spontaneous 

contractions were taken to be 100% (n=7, N=7 for BRL37344; n=12, N=6 for L-755,507; and n=8, N=4 for SR59230A 

+ BRL37344; *P<0.05 for the SR59230A effect). TTX (1 µM) was present throughout the experiments.  
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To prove that the BRL37344 inhibitory effect on spontaneous contractions in the 

concentration-response experiments was not due to a run-down of the preparation or a 

desensitization of the β3-AR, we further examined the effect of a single supramaximal 

BRL37344 concentration (100 µM) on spontaneous contractions. BRL37344 (100 µM) 

significantly decreased spontaneous phasic contraction amplitude, muscle force integral, 

phasic contraction frequency, but not phasic contraction duration or muscle tone. The 

amplitude of the spontaneous phasic contractions decreased by 31.0 ± 9.1%, muscle force 

integral by 33.2 ± 10.0%, and phasic contraction frequency by 16.6 ± 5.5% (n=14, N=5, 

p<0.05; Fig. 4.1.3A and B). BRL37344 has been reported to have some antimuscarinic 

effects in addition to its β3-AR agonist properties (79, 93). To separate these two effects, 

we used the cholinergic antagonist atropine. In the presence of 1 µM atropine, BRL37344 

(100 µM) significantly inhibited only the DSM spontaneous contraction frequency by 

21.2 ± 3.8% without any significant effect on phasic contraction amplitude, muscle force 

integral, phasic contraction duration, and muscle tone (n=9, N=5, p<0.05; Fig. 4.1.3C 

and D). These results suggest that BRL37344 but not L-755,507 has a minor inhibitory 

effect on the spontaneous contractions of guinea pig DSM isolated strips. This 

BRL37344 inhibitory effect is partially blocked by atropine (Fig. 4.1.3).  
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Figure 4.1.3. Application of a single concentration of BRL37344 (100 µM) decreased the Guinea pig DSM 

spontaneous phasic contraction amplitude, muscle force integral, and phasic contraction frequency in the 

absence of atropine. A, C. Original recording of DSM contractions illustrating BRL37344 inhibitory effect in the 

absence (A) or presence of 1 µM atropine (C). B, D. Summary data showing BRL37344 (100 µM) inhibitory effect in 

the absence (B) (n=14, N=5, ***P<0.005) or presence of 1 µM atropine (D) (n=9, N=5, ***P<0.005). Spontaneous 

contractions were taken to be 100%. TTX (1 µM) was present throughout the experiments.  
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Both BRL37344 and L-755,507 inhibit carbachol-induced contractions in Guinea 

pig DSM isolated strips 

Under control conditions (taken to be 100%), Guinea pig DSM carbachol-induced phasic 

contraction average amplitude was 1.4 ± 0.3 g, force was 6.8 ± 1.3 g/s, frequency was 3.0 

± 0.01 contractions/min, duration was 11.0 ± 0.6 s, and tone was 0.4 ± 0.06 g (n=59, 

N=21). BRL37344 (1 nM–100 µM) completely inhibited all five parameters of the 

carbachol-induced contractions (Fig. 4.1.4A and 4.1.5). L-755,507 (1 nM-100 µM) 

caused a less dramatic—but still statistically significant—decrease in all five parameters 

of the carbachol-induced contractions (Fig. 4.1.4B). However, only at concentrations 

higher than 10 µM L-755,507 did significantly inhibit DSM carbachol-induced 

contractions. At a concentration of 100 µM, L-755,507 decreased the phasic contraction 

amplitude by 26.4 ± 4.8%, muscle force integral by 53.6 ± 4.0%, phasic contraction 

frequency by 16.1 ± 6.6%, phasic contraction duration by 27.4 ± 3.8%, and muscle tone 

by 20.3 ± 7.0% (n=12, N=3, p<0.05; Fig. 4.1.5).  

In the presence of SR59230A (10 µM), BRL37344 still inhibited DSM carbachol-

induced contractions; however, its inhibitory effect was partially antagonized (Fig. 

4.1.4C and Fig. 4.1.5). BRL37344 (100 µM) inhibitory effect was partially reduced as 

follows: phasic contraction amplitude was reduced by only 47.1 ± 3.1% (Fig. 4.1.5A); 

muscle force integral was reduced by 30.4 ± 2.2% (Fig. 4.1.5B); phasic contraction 

frequency was reduced by 51.6 ± 6.7% (Fig. 4.1.5C); phasic contraction duration was 

reduced by 57.1 ± 5.7% (Fig. 4.1.5D); muscle tone was reduced by 64.2 ± 6.2% (Fig. 

4.1.5E); (n=14, N=6 for control and n=25, N=6, in presence of 10 μM SR59230A; 
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p<0.01). There was no significant change in the inhibitory effect of L-755,507 (1 nM–

100 μM) on the carbachol-induced contractions in the presence of 10 µM SR59230A 

(n=7, N=3, p>0.05; Fig. 4.1.5). 

 

 

Figure 4.1.4. Original DSM contraction recordings illustrating BRL37344 (1 nM–100 µM) and L-755,507 (1 nM-100 

µM) concentration-dependent inhibitory effects on carbachol-induced phasic and tonic contractions of DSM isolated 

strips in the absence (A, B) or presence (C, D) of SR59230A (10 µM). TTX (1 µM) was present throughout the 

experiments. 
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Figure 4.1.5. Concentration-response curves for BRL37344 (1 nM–100 µM) and L-755,507 (1 nM–100 µM) inhibitory 

effects on carbachol-induced phasic contraction amplitude (A), muscle force integral (B), phasic contraction frequency 

(C), phasic contraction duration (D), and muscle tone (E) in the presence or absence of SR59230A (10 µM). 

Carbachol-induced contractions were taken to be 100% (n=14, N=6 for BRL37344; n=25, N=6 for BRL37344 + 

SR59230A; **p<0.01, ***p<0.005 for the SR59230A effect) and (n=12, N=3 for L-755,507; n=7, N=3 for L-755,507 

+ SR59230A; p>0.05 for the SR59230A effect). TTX (1 µM) was present throughout the experiments  
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We further examined the effect of a single supramaximal concentration of L-755,507 

(100 µM) on carbachol-induced contractions. L-755,507 (100 µM) significantly 

decreased the amplitude, muscle force integral, duration, and tone but not the frequency 

of carbachol-induced contractions (Fig. 4.1.6A). The amplitude of carbachol-induced 

phasic contractions decreased by 18.1 ± 6.2%, muscle force integral by 34.4 ± 5.2%, 

phasic contraction duration by 18.0 ± 5.1%, and muscle tone by 12.2 ± 5.0% (n=12, N=3, 

p<0.05; Fig. 4.1.6B). These data suggest that BRL37344 and L-755,507 can substantially 

reduce carbachol-induced contractions. Next, we evaluated whether pharmacological 

activation of β3-ARs can modulate nerve-evoked contractions of Guinea pig DSM 

isolated strips. 
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Figure 4.1.6. L-755,507 (100 µM) significantly reduced carbachol-induced phasic and tonic contractions of DSM 

isolated strips. A. Original DSM contraction recordings illustrating L-755,507 (100 µM) inhibitory effect in the 

absence of SR59230A (10 µM). B. Summary data showing that L-755,507 (100 µM) significantly reduced the 

amplitude, muscle force integral, phasic contraction duration, and muscle tone (n=12, N=3, *p<0.05, **p<0.01, 

***p<0.005). TTX (1 µM) was present throughout the experiments.  
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BRL37344 decreases the amplitude of the EFS-induced contractions in Guinea pig 

DSM isolated strips 

Under control conditions at 50 Hz (taken to be 100%), Guinea pig DSM EFS-induced 

contractions average amplitude was 4.0 ± 0.3 g (n=36, N=12). In the absence of atropine, 

BRL37344 (100 µM) significantly reduced the amplitude of the EFS-induced 

contractions at all stimulation frequencies between 7.5 and 50 Hz (Fig. 4.1.7A). At 50 

Hz, BRL37344 (100 µM) significantly reduced the amplitude of the EFS-induced 

contraction by 22.5 ± 6.2% (n=10, N=4, p<0.005; Fig. 4.1.7B). In the presence of 

SR59230A (10 µM), BRL37344 (100 µM) still decreased the amplitude of the EFS-

induced contractions (Fig. 4.1.7C). At 50 Hz, in the presence of SR59230A (10 µM), 

BRL37344 inhibited EFS-induced contractions by 29.3 ± 5.4% (n=11, N=5, p<0.005; 

Fig. 4.1.7D). SR59230A (10 µM) alone had no effect on the EFS-induced contractions as 

illustrated in Fig. 4.1.7E and F (n=9, N=6, p>0.05). These results suggest that 

BRL37344 inhibitory effect on EFS-induced contractions is not mediated by β3-ARs but 

it is most likely due to BRL37344 antimuscarinic effects.  
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Figure 4.1.7. BRL37344 (100 µM) significantly decreases the amplitude of the EFS-induced contractions of 

Guinea pig DSM isolated strips in the absence or presence of SR59230A (10 µM). Original recordings illustrating 

EFS-induced (0.5–50 Hz) contractions of DSM isolated strips in response to 100 µM BRL37344 (A), 10 µM 

SR59230A and 100 µM BRL37344 combined (C), 10 µM SR59230A (E). Frequency-response curves for the EFS-

induced (0.5-50 Hz) contractions in response to 100 µM BRL37344 (B), 10 µM SR59230A and 100 µM BRL37344 

combined (D), 10 µM SR59230A (F) (n=10, N=4 for B; n=11, N=5 for D; n=9, N=6, p>0.05 for F; *p<0.05, **P<0.01, 

***P<0.005). EFS-induced contraction amplitude at 50 Hz under control conditions was taken to be 100%.  
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In the presence of suramin (10 µM) and α,β-methylene-ATP (10 µM) which were used to 

block the purinergic component of EFS-induced contraction, BRL37344 (100 µM) still 

decreased the amplitude of the EFS-induced contractions as shown in Figure 4.1.8A. In 

the presence of suramin and α,β-methylene-ATP, Guinea pig DSM EFS-induced 

contraction average amplitude at 50 Hz was 2.4 ± 0.4 g and was taken to be 100% (n=20, 

N=10). At the maximal stimulation frequency of 50 Hz, BRL37344 (100 µM) 

significantly reduced the amplitude of the EFS-induced contractions by 36.9 ± 8.5% 

(n=10, N=5, p<0.005; Fig. 4.1.8B). SR59230A (10 µM) again did not block the 

BRL37344 inhibitory effect on contraction amplitude at EFS stimulation frequencies 

between 10 and 50 Hz (Fig. 4.1.8C). At the maximal stimulation frequency of 50 Hz, in 

the presence of SR59230A (10 µM), BRL37344 (100 µM) decreased the EFS-induced 

contraction amplitude by 52.7 ± 5.0% (n=10, N=5, p<0.005; Fig. 4.1.8D).  
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Figure 4.1.8. In the presence of suramin (10 µM) and α,β-methylene-ATP (10 µM), BRL37344 (100 µM) 

decreased the amplitude of the EFS-induced (0.5-50 Hz) contractions in DSM isolated strips. A, C. Original EFS-

induced contraction recordings showing BRL37344 (100 µM) inhibitory effect in the absence (A) or presence (C) of 

SR59230A (10 µM). B, D. Frequency-response curves showing BRL37344 inhibitory effect on EFS-induced 

contraction amplitude in the absence (n=10, N=5, **P<0.01, ***P<0.005) (B) or presence (D) of 10 µM SR59230A 

(n=10, N=5, **P<0.01, ***P<0.005). EFS-induced contraction amplitude at 50 Hz under control conditions was taken 

to be 100%.  
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In the presence of atropine (1 µM), which was used to block the cholinergic component 

of the EFS-induced contraction, BRL37344 (100 µM) had no effect on the EFS-induced 

contractions in the absence (n=13, N=6, p>0.05) or presence of 10 μM SR59230A (n=12, 

N=5, p>0.05; Fig. 4.1.9). In the presence of atropine, Guinea pig DSM EFS-induced 

contraction average amplitude at 50 Hz was 2.3 ± 0.2 g and was taken to be 100% (n=25, 

N=11). These data also show that BRL37344’s inhibitory effect on EFS-induced 

contractions is not mediated by β3-AR but is rather due to BRL37344 antimuscarinic 

properties. Next, we sought to evaluate L-755,507 effect on EFS-induced contractions. 
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Figure 4.1.9. In the presence of atropine (1 µM), BRL37344 (100 µM) does not affect the amplitude of the EFS-

induced (0.5-50 Hz) contractions of DSM isolated strips. A, C. Original recordings illustrating the lack of 

BRL37344 (100 µM) effect on EFS-induced contractions in the absence (A) or presence (C) of SR59230A (10 µM). B, 

D. Frequency-response curves showing the lack of BRL37344 effect on the EFS-induced contraction amplitude in the 

absence (B) (n=13, N=6, p>0.05) or presence (D) of 10 µM SR59230A (n=12, N=5, p>0.05).  
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L-755,507 has no effect on the EFS-induced contractions of Guinea pig DSM 

isolated strips 

In this experimental series we investigated the effect of L-755,507 on EFS-induced 

contractions. We observed that L-755,507 (100 µM) did not significantly inhibit EFS-

induced contractions at all stimulation frequencies (0.5-50 Hz) in the absence (n=9, N=4, 

p>0.05) or presence of 1 μM atropine (n=6, N=4, p>0.05; Fig. 4.1.10). 

 

 

Figure 4.1.10. L-755,507 (100 µM) does not affect the amplitude of the EFS-induced (0.5–50 Hz) contractions of 

DSM isolated strips. A, C. Original recordings illustrating a lack of L-755,507 (100 µM) effect on EFS-induced 

contractions in the absence (A) or presence (C) of atropine (1 µM). B, D. Frequency-response curves showing the lack 

of inhibitory effect on EFS-induced contractions by L-755,507 in the absence (B) (n=9, N=4, p>0.05) or presence (D) 

of 1 µM atropine, (n=6, N=4, p>0.05).  
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Pharmacological activation of beta3-ARs with BRL37344 does not modulate cell 

excitability in Guinea pig DSM freshly isolated cells 

BRL37344 was preferred over L-755,507 due to its more pronounced effects on Guinea 

pig DSM contractility. We previously reported that in rat DSM, BRL37344 (100 µM) 

induces relaxation by activation of TBKCs and membrane hyperpolarization (79). 

The average capacitance of Guinea pig DSM cells was 34.7 0.8 pF (n=123 cells, N=30). 

In the first patch-clamp experimental series, we investigated BRL37344 (100 µM) effect 

on Guinea pig DSM TBKCs amplitude and frequency. Our results showed no statistically 

significant change in the mean amplitude and frequency of TBKCs after application of 

100 µM BRL37344 (n=6-9, N=5-7, p>0.05; Table 4.1.1). Next, we examined whether 

the application of BRL37344 (100 µM) activates the voltage step induced steady-state K
+
 

current in single DSM cells. From a holding potential -70 mV, we applied a voltage-step 

protocol from 0 mV to +80 mV in 20 mV increments and 200 ms duration. BRL37344 

(100 µM) did not activate the depolarization-induced steady-state outward K
+
 currents 

(n=4, N=2, p>0.05; Table 4.1.1). In current clamp mode, we tested the effect of 

BRL37344 (100 µM) on the resting membrane potential of freshly isolated Guinea pig 

DSM cells, and BRL37344 did not affect the resting membrane potential (n=8, N=4, 

p>0.05; Table 4.1.1). These data suggest that activation of β3-ARs with BRL37344 in 

Guinea pig DSM does not modulate basal cell excitability. 
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Table 4.1.1. Summarized data illustrating a lack of effect of BRL37344 (100 M) on cell membrane excitability 

in Guinea pig DSM freshly isolated cells. Perforated whole-cell patch-clamp experiments revealed no effect of 100 

M BRL37344 on TBKCs amplitude and frequency recorded at -40 and -20 mV. Whole-cell outward K+ current 

amplitude was also unchanged after application of 100 M BRL37344. Current-clamp experiments revealed that 100 

M BRL37344 did not significantly change the level of the resting membrane potential in Guinea pig DSM freshly 

isolated cells. These data were collected by Dr. Hristov.  

 Control BRL37344 (100 M) Statistics 

 

 

Transient BK 

currents 

(TBKCs) 

 

Amplitude 

-40 mV 
24.0 4.6 pA 

 

26.3 6.5 pA n=9; N=7 

p>0.05 

Amplitude 

-20 mV 
19.8 2.4 pA 

 

18.16 1.1 pA 

 

n=6; N=5 

p>0.05 

Frequency -40 

mV 

50.2 22.8 

TBKCs/min 

65.76 30.4 TBKCs/min 

 

n=9; N=7 

p>0.05 

Frequency 

-20 mV 
45.3 18.2 

TBKCs/min 

74.23 31.2 TBKCs/min n=6; N=5 

p>0.05 

 

 

Voltage step 

induced whole-

cell current 

 

0 mV 

2.3±1.0 pA/pF 1.1±0.3 pA/pF 

n=4; N=2 

p>0.05 

20 mV 

3.5±1.1 pA/pF 1.8±0.2 pA/pF 

n=4; N=2 

p>0.05 

40 mV 

5.9±1.7  pA/pF 3.6±0.6 pA/pF 

n=4; N=2 

p>0.05 

60 mV 

11.4±3.3 pA/pF 10.8±1.9 pA/pF 

n=4; N=2 

p>0.05 

80 mV 

22.8±7.5 pA/pF 22.7±5.1 pA/pF 

n=4; N=2 

p>0.05 

Resting membrane potential 

recorded in current clamp mode 

 

-22.8 3.5 mV 

 

-21.6 4.0 mV 

n=8; N=4 

p>0.05 
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DISCUSSION 

In this study, we applied a multi-disciplinary approach including molecular, cellular, and 

tissue studies to evaluate the expression and potential functional role of β3-ARs in 

Guinea pig DSM. Because beta3-ARs are considered viable therapeutic targets for OAB, 

it is crucial to understand beta3-ARs expression and function in the bladder of Guinea 

pig, a commonly used animal research model. Our data suggest that beta3-ARs are 

expressed at the mRNA level but are minor contributors (if at all) in Guinea pig DSM 

function. Unlike earlier studies (169), the novelty of our study is that we systematically 

spanned for all five parameters of the phasic contractions including amplitude, muscle 

force integral, frequency, duration, and muscle tone in Guinea pig DSM isolated strips. 

The physiological significance of our study derives from the fact that beta3-AR have 

been shown to be important facilitators of bladder relaxation by controlling spontaneous 

phasic and nerve-evoked contractions as well as TBKC that contribute to DSM 

excitability (22, 79, 134). Previous studies have established a functional link between the 

beta3-AR and the BK channel, which plays a key role in DSM function (22, 75, 79, 91). 

These findings have lead researchers to suggest that beta3-ARs could be suitable targets 

for the pharmacological treatment of OAB. As a consequence, there are now a number of 

beta3-AR agonists, which are currently under investigation for the treatment of OAB. In 

anesthetized mice, CL316,243, a selective beta3-AR agonist, given intravenously at doses 

of 0.03 and 0.1 mg/kg, significantly increases bladder capacity and threshold pressure 

without a significant change in bladder compliance (39). CL316,243 also induces a 

significant decrease in the amplitude of both micturition and non-voiding contractions 
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(39). In anesthetized rats, intravenous injection of selective beta3-AR agonists such as 

BRL37344, TAK-677, and FK175 (0.1-500 µg/kg) have been proven to significantly 

decrease voiding frequency, bladder pressure, and the amplitude of bladder contractions 

(94). 

Whether beta3-ARs are expressed in Guinea pig DSM has been debated: no reports 

identify their presence at the single-DSM-cell level. Pharmacological studies on Guinea 

pig DSM using various beta3-AR agonists and antagonists yielded controversial results 

(49, 100, 169). Clarification of beta3-AR functional role has a strong physiological 

significance because the Guinea pig is an established animal model to study DSM 

function added to the fact that species differences could also be a determining factor. 

Some authors suggest that the beta1-AR is the most predominant beta-AR in Guinea pig 

DSM, and thus is mainly responsible for Guinea pig DSM relaxation (100, 111, 169). 

Other studies show that the selective beta3-AR agonist BRL37344 (300 µM) reduced the 

amplitude of phasic rises in intravesical pressure of Guinea pig isolated whole bladder, 

suggesting a role of beta3-ARs in Guinea pig DSM relaxation (49). Our molecular data 

support the latter publication that the beta3-AR mRNA message is expressed in isolated 

single cells of Guinea pig DSM (Fig. 4.1.1). The advantage of using isolated single cells 

for RT-PCR is that this approach eliminates any possible contamination by other cell 

types present within the DSM (29, 30, 75, 79). Due to the lack of specific antibodies for 

Guinea pig beta3-ARs (111), we performed no Western blot or immunohistochemistry 

studies at this time to further prove beta3-AR protein expression. To our knowledge, this 

is the first report in which molecular evidence for the presence of beta3-ARs in Guinea 

pig DSM has been provided. 



 

102 

The functional role of beta-ARs activation in DSM is to induce relaxation (22, 79, 91, 

134, 169), which is suggested to be mediated via activation of the beta-AR/PKA pathway 

(79, 111, 134). Our results indicate that at higher concentrations BRL37344 induced a 

slight concentration-dependent reduction of the amplitude and frequency of the 

spontaneous phasic contractions of Guinea pig DSM isolated strips (Fig. 4.1.2). 

Furthermore, a single supramaximal concentration of BRL37344 (100 μM) also 

decreased the amplitude, muscle force integral, and frequency of the spontaneous phasic 

contractions of Guinea pig DSM isolated strips (Fig. 4.1.3). The use of this supramaximal 

concentration of 100 μM is justified by the fact that BRL37344 concentrations less than 

or equal to 30 μM seems insufficient to induce inhibition of spontaneous DSM 

contractions (22, 49, 169). However, at these high concentrations BRL37344 may also 

non-selectively activate beta1-ARs and/or beta2-ARs (150).  

Studies on rat DSM have shown that BRL37744 also exhibit some antimuscarinic 

properties (22, 93, 110). In our study, we addressed this issue by using the muscarinic 

receptor antagonist atropine. In the presence of atropine, BRL37344 (100 µM) lost its 

inhibitory effect on the DSM phasic contraction amplitude and muscle force integral 

(Fig. 4.1.3), further supporting its antimuscarinic properties. Our data (consistent with 

early findings) (169), indicate that in the Guinea pig, beta3-ARs have a limited effects on 

DSM relaxation because their pharmacological activation with BRL37344 significantly 

modulates only one (frequency) spontaneous phasic contraction parameter and only at 

high concentrations (10-100 µM). At these high concentrations BRL37344 may also non-

selectively activate beta1-ARs and/or beta2-ARs (150).  
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In DSM, the beta adrenergic relaxation is primarily mediated by activation of the BK 

channel (22, 79, 134). Our electrophysiological data supported the idea that beta3-ARs, 

although expressed in Guinea pig DSM, do not regulate the DSM excitability. Perforated 

patch-clamp experiments revealed no effect of BRL37344 on whole-cell steady-state K
+
 

current, TBKCs amplitude and frequency, and the resting membrane potential (Table 

4.1.1). These findings clearly suggest species differences. Our previous studies on rat 

DSM showed that the activation of beta3-AR by BRL37344 increased TBKCs frequency, 

and hyperpolarized the cell membrane (79). In rat DSM, a functional link between beta3-

ARs and BK channel is mediated by the RyRs of the sarcoplasmic reticulum (79). Our 

study shows that in Guinea pig DSM, unlike rat and human DSM, beta3-ARs are not the 

primary regulator of DSM function. 

Since the relationship between length and force can be converted to volume and pressure 

using the law of Laplace (7), the evaluation of muscle force integral provides information 

on the increase in bladder volume and intravesical pressure during bladder filling and 

voiding phases. It is known that the BK channels shape Guinea pig DSM spontaneous 

action potentials that determine the spontaneous phasic contractions including contraction 

amplitude, duration, frequency, muscle force integral, and tone (22, 58, 66, 76, 79, 132). 

Pharmacological inhibition of DSM BK channels increases the action potential duration 

and frequency, causes membrane potential depolarization (62, 76), and increases the 

amplitude of phasic contractions (22, 66, 76, 132). The increase in the amplitude of a 

phasic contraction is provoked by the increase in intracellular Ca
2+

 during the action 

potential depolarization phase and activation of L-type voltage-gated Ca
2+

 channels, 

whereas the duration of a phasic contraction depended on the duration of the single action 
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potential or a whole burst of action potentials (58, 62). Thus, there is a clear association 

between the action potential parameters, BK channel activity, and the related phasic 

contraction parameters. However, our data on Guinea pig DSM show that BRL37344 

does not affect BK channel activity (Table 4.1.1). 

We also evaluated the effects of beta3-AR agonists during cholinergic stimulation using 

carbachol, a stable pharmacological analogue of acetylcholine, as previously done by 

others (49, 91). Under such conditions, BRL37344 and L-755,507 significantly decreased 

all phasic and tonic contraction parameters in a concentration-dependent manner (Figs. 

4.1.4-5). BRL37344 inhibitory effect could be explained by its pronounced 

antimuscarinic properties since this inhibitory effect on spontaneous contractions was 

partially blocked by atropine (Fig. 4.1.3). Consistent with our results, previous studies by 

Klausner et al. (2009) showed that isoproterenol, a non-selective beta3-AR agonist, 

decreased the contractions induced by low concentrations of carbachol in rabbit DSM 

strips suggesting the involvement of beta-ARs (91). Using arecaidine, a muscarinic 

receptor agonist, to induce contractions in Guinea pig isolated whole bladder, Gillespie 

(2004) also showed that BRL37344 (300 µM) could significantly reduce the amplitude of 

phasic rises in intravesical pressure of Guinea pig isolated whole bladder (49). 

Furthermore, SR59230A did not antagonize L-755,507 inhibitory effect on the carbachol-

induced contractions (Figs. 4.1.4-5) suggesting that L-755,507-induced relaxation of the 

carbachol-induced contractions is not mediated through beta3-AR. Indeed, at higher 

concentrations (10-100 µM), L-755,507 may also act on beta1-/ beta2-AR directly. L-

755, 507 EC50 values for beta3-, beta1-, and beta2-AR are 0.43 nM, 530 nM, and >10 

µM, respectively (43, 128). Therefore, the inhibitory effect of L-755,507 observed at 
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such high concentrations (10–100 µM) on carbachol-induced contractions could be due to 

its direct effects on beta1-and/or beta2-ARs (128), which tend to corroborate previous 

finding by others (100, 169). One explanation for BRL37344 inhibitory effects on 

carbachol-induced contractions is that during cholinergic stimulation with carbachol, 

muscarinic M2 receptors, which are linked to the cAMP/PKA inhibitory pathway, are 

activated. M2 receptors and beta3-ARs have opposing effects at the cAMP/PKA level 

which may account for the inhibitory effects of BRL37344 and L-755,507 on carbachol-

induced contractions. We find that the relaxation of Guinea pig DSM isolated strips by 

BR37344 and L-755,507 is predominant during cholinergic stimulation with carbachol 

and minor during spontaneous contractions, consistent with previous studies (169).  

Nerve stimulation also plays an important role in the micturition process during which 

acetylcholine and ATP are released from parasympathetic nerve terminals and act on 

DSM muscarinic (M2/M3) and purinergic (P2X) receptors to generate DSM contractions 

(59, 65). The observed decrease of the EFS-induced contraction amplitude by BRL37344 

can be misleading (Fig. 4.1.7). This BRL37344 inhibitory effect was suppressed by 

atropine, suggesting that BRL37344 acted directly on muscarinic receptors rather than 

β3-ARs during nerve stimulation (Fig. 4.1.9). In addition to DSM cells, muscarinic 

receptors are also present in bladder nerves (89). It has been reported that presynaptic 

muscarinic receptors on parasympathetic nerve terminals in DSM strips are involved in 

an autofacilitatory mechanism that enhances acetylcholine release during continuous EFS 

(15). BRL37344 may therefore block muscarinic receptors in both DSM cells and bladder 

nerves. Furthermore, the beta3-AR agonist, L-755,507, at concentration as high as 100 

µM has no effect on the EFS-induced contractions in the absence or presence of atropine 
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suggesting that beta3-ARs do not play any role in the nerve-evoked contraction of Guinea 

pig DSM (Fig. 4.1.10). This latter observation confirms the concept that the decrease in 

EFS-induced contraction caused by BRL37344 was a direct antimuscarinic effect. An 

alternative explanation is that the beta3-ARs in Guinea pig DSM have a distinct 

pharmacological profile compared to beta3-ARs in other species or that beta3-ARs might 

not be functionally expressed in Guinea pig DSM.  

In summary, four key points can be drawn from our study: 1) beta3-ARs are expressed at 

the mRNA level but play a negligible functional role, if any, in Guinea pig DSM 

relaxation; 2) BRL37344 inhibitory effect on Guinea pig DSM spontaneous and nerve-

evoked contractions is primarily mediated through its antimuscarinic properties; 3) 

BRL37344 and L-755,507 have significant inhibitory effects on Guinea pig carbachol-

induced contractions; 4) BRL37344 does not modulate Guinea pig basal cell membrane 

excitability. Collectively, our data suggest that unlike rat and human DSM (79, 140, 151, 

168), in Guinea pig DSM beta3-ARs have a minor to no functional role in DSM 

excitability and spontaneous contractility.  

We recommend particular prudence when interpreting data generated with BRL37344 

because of its pronounced antimuscarinic effects. We also suggest that, although the 

Guinea pig DSM is widely used for experimental studies, future investigations on beta3-

ARs should not use this animal model. Our study does not rule out β3-ARs functional 

role in Guinea pig urothelium and other non-DSM bladder cells (49, 168). 



 

107 

4.2 FUNCTIONAL BK CHANNELS FACILITATE THE BETA3 ADRENERGIC 

RECEPTOR AGONIST-MEDIATED RELAXATION OF NERVE-EVOKED 

CONTRACTIONS IN RAT DETRUSOR SMOOTH MUSCLE ISOLATED 

STRIPS 

 

Data presented in this section have been submitted for publication and are currently under 

revision. The original manuscript has been modified to fit the format of this dissertation. 

 

ABSTRACT 

The large-conductance voltage- and Ca
2+

-activated K
+
 (BK) channel is a major regulator 

of detrusor smooth muscle (DSM) contractility. Recent findings suggest that activation of 

beta3 adrenergic receptors causes relaxation of the DSM. However, it is unknown 

whether the beta3 adrenergic receptor-mediated relaxation of DSM is BK channel-

dependent during nerve-evoked contractions. To test this hypothesis, we induced nerve-

evoked contractions in rat DSM isolated strips by using a tissue bath system equipped 

with platinum electrodes for electrical field stimulation (EFS). BRL37344, a beta3 

adrenergic receptor agonist, significantly decreased the amplitude and muscle force of the 

20 Hz EFS-induced DSM contractions in a concentration-dependent manner. The 

BRL37344 inhibitory effect was significantly antagonized by SR59230A, a selective 

beta3 adrenergic receptor antagonist. We further isolated the cholinergic from the 

purinergic component of the 0.5–50 Hz EFS-induced DSM contractions by using 

selective inhibitors, atropine as well as suramin and α,β-methylene-ATP, respectively. 

We found that BRL37344 inhibited both the purinergic and cholinergic components of 
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the nerve-evoked contractions in rat DSM isolated strips. The pharmacological blockade 

of the BK channels with iberiotoxin, a selective BK channel inhibitor, increased the 

amplitude and muscle force of the 20 Hz EFS-induced contractions in rat DSM isolated 

strips. In the presence of iberiotoxin, there was a significant reduction of the BRL37344-

induced maximal inhibition of the 20 Hz EFS-induced contractions in rat DSM isolated 

strips. These latter findings suggest that BK channels play a critical role in the beta3 

adrenergic receptor-mediated relaxation of rat DSM nerve-evoked contractions. 
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INTRODUCTION 

The ability of beta3 adrenergic receptor agonists such as BRL37344, mirabegron 

(YM178), solabegron (GW427353), FK-175, TAK677, TRK-380, CL316243, and 

CGP12177A to inhibit detrusor smooth muscle (DSM) myogenic contractions has been 

well documented (14, 46, 69, 79, 88, 94, 99, 139, 150, 151, 156). These beta3 adrenergic 

receptor agonists have been shown to increase the intracellular cAMP levels in native 

DSM tissues as well as in heterologously expressed systems (46, 69, 88, 94, 139, 150). 

Specifically, in rat DSM isolated strips, FK175 was shown to increase the intracellular 

cAMP level by ~30% (46). The recent approval of mirabegron as the first beta3 

adrenergic receptor agonist for the treatment of overactive bladder (OAB) further outlines 

the importance of beta3 adrenergic receptors as pharmacological targets for OAB. Since 

OAB has myogenic and neurogenic origins with diverse mechanisms and etiology, it is 

still unknown whether this new therapeutic approach will be effective to treat all forms of 

OAB. There has been significant effort aiming to investigate the mechanism by which 

beta3 adrenergic receptor agonists induce relaxation of DSM, especially during 

neurogenic contractions. However, the exact mechanism remains uncertain. Experiments 

conducted on DSM myogenic contractions suggest that the mechanism underlining the 

beta3 adrenergic receptor-mediated relaxation of the DSM involves the cAMP signaling 

pathway and the large-conductance Ca
2+

-activated K
+
 (BK) channels (79, 111, 130, 134, 

164, 166). Our group revealed a functional link between BK channels and beta3 

adrenergic receptors during myogenic contractions, a mechanism which utilizes the 

ryanodine receptors of the sarcoplasmic reticulum to induce DSM relaxation (79). The 

pharmacological blockade of BK channels with iberiotoxin, a selective BK channel 
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inhibitor, caused a rightward shift of the concentration-response curve of the BRL37344 

relaxant effects on myogenic contractions of rat DSM isolated strips. The BRL37344-

induced hyperpolarization of freshly isolated DSM cells was eliminated by iberiotoxin or 

ryanodine suggesting that activation of beta3 adrenergic receptors increases the BK 

channel activity and ultimately leads to DSM relaxation (79). It has been demonstrated 

that in mouse DSM isolated strips, selective inhibition of the BK channels and protein 

kinase-A with iberiotoxin and H-89, respectively, reduced the relaxant effect of 

isoproterenol, a non-selective beta adrenergic receptor agonist (22). The fundamental role 

of the BK channels in the beta-adrenergic/protein kinase-A-mediated relaxation of DSM 

is demonstrated by the observations that genetic ablation of BK channel in a transgenic 

mouse model leads to development of a compensatory adaptive upregulation of the beta-

adrenergic/cAMP/protein kinase-A signal transduction pathway (22). However, these 

novel mechanisms have yet to be investigated in nerve-evoked DSM contractions. The 

present study utilizes tissue baths equipped with electrodes for electrical field stimulation 

(EFS), DSM strips isolated from rat urinary bladder, and various pharmacological 

modulators to assess beta3 adrenergic receptor and BK channel functional role in the 

nerve-evoked contractions. 
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METHODS 

Isometric DSM tension recordings 

Isometric DSM tension recording experiments were performed as described in chapter 

2.2. In total, 41 male Sprague-Dawley rats (10-16 weeks old) weighing 361.7 ± 5.2 g on 

average were used.  

Solutions and Drugs  

The Ca
2+

-free dissection solution and the Ca
2+

-containing PSS compositions are given in 

chapter 2.2. Iberiotoxin, atropine, suramin, and α,β-methylene-ATP were purchased from 

Sigma-Aldrich (St. Louis, MO). BRL37344 and SR59230A were purchased from Tocris 

Bioscience (Bristol, UK). BRL37344 was prepared daily in double-distillated water and 

heated at 60
o
C to be completely dissolved as suggested by the manufacturer. 

Data analysis and statistics  

The data analysis was performed as described in chapter 2.2. 
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RESULTS  

BRL37344 inhibitory effect on EFS-induced DSM contractions is antagonized by 

SR59230A, a selective beta3 adrenergic receptor antagonist  

We investigated how beta3 adrenergic receptor stimulation with BRL37344 affects 

nerve-evoked contractions of rat DSM isolated strips. We found that BRL37344 

decreased the amplitude and muscle force of the 20 Hz EFS-induced contractions of rat 

DSM isolated strips in a concentration-dependent manner. BRL37344 (10 nM – 1 µM) 

had no significant inhibitory effect, however, BRL37344 at concentrations of 10 µM and 

100 µM statistically significantly decreased the amplitude of the 20 Hz EFS-induced 

DSM contractions by 22.3±9.3% and 48.4±7.0%, respectively and the muscle force by 

26.0±8.6% and 52.6±6.2%, (n=8, N=6, p<0.05; Fig. 4.2.1A, C, and D). Pre-incubation of 

rat DSM strips with SR59230A (10 μM), a selective beta3 adrenergic antagonist, 

significantly reduced the BRL37344 inhibitory effect on the 20 Hz EFS-induced 

contractions (Fig. 4.2.1B-D). SR59230A attenuated the relaxant effect of BRL37344 at 

10 µM and 100 µM on the contraction amplitude from 22.3±9.3% to 5.5±0.7%, and from 

48.4±7.0% to 31.0±3.5%, respectively; and also on the contraction force from 26.0±8.6% 

to 10.0±2.6%, and from 52.6.0±6.2% to 33.5±6.0%, respectively (n=11, N=6, p<0.05; 

Fig. 4.2.1C, D). Time control experiments performed in the absence of BRL37344 and 

SR59230A showed no statistically significant difference in the 20 Hz EFS-induced 

contraction amplitude and force (n=6, N=6, p>0.05; data not illustrated). These findings 

suggest that the inhibitory effects on EFS-induced contractions induced by the beta3 

adrenergic receptor agonist, BRL37344, can be antagonized by SR59230A. 
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Figure 4.2.1. Activation of beta3 adrenergic receptors with BRL37344 decreases the amplitude and muscle force 

of the 20 Hz EFS-induced contractions in rat DSM isolated strips. A) Original DSM tension recordings illustrating 

BRL37344 (10 nM – 100 µM) inhibitory effects on 20 Hz EFS-induced contractions. This particular original recording 

shows a bit greater degree of inhibition than the average observed. B) Original DSM tension recordings illustrating the 

attenuation of BRL37344 (10 nM – 100 µM) inhibitory effects on rat DSM 20 Hz EFS-induced contractions in the 

presence of SR59230A (10 µM). C-D) Cumulative concentration-response curves illustrating SR59230A antagonistic 

effects against BRL37344 inhibitory effects on EFS-induced contraction amplitude and force, respectively (n=11, N=6; 

*p<0.05)  
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We also investigated how BRL37344 modulates the two main components of the nerve-

evoked contractions, namely the cholinergic and the purinergic components, under a wide 

range of stimulation frequencies (0.5 – 50 Hz). First, we evaluated the changes in the 

amplitude of the rat DSM EFS-induced contractions following application of BRL37344 

(100 µM). We found that BRL37344 significantly inhibited EFS-induced contractions at 

frequencies ranging from 3.5 to 50 Hz (Fig. 4.2.2A, C). At the maximal stimulation 

frequency of 50 Hz, BRL37344 caused a 30.3±6.0% decrease in the amplitude of the 

EFS-induced DSM contractions (n=12, N=6, p<0.005; Fig. 4.2.2C). This BRL37344 

inhibitory effect was significantly antagonized by SR59230A (10 µM) at low stimulation 

frequencies (3.5 – 12.5 Hz) but not at high frequencies (15 – 50 Hz) (n=8, N=3, p<0.005; 

Fig. 4.2.2B, D). SR59230A (10 µM) per se did not have any effect on the nerve-evoked 

DSM contractions (n=8, N=3, p>0.05). These data suggest that stimulation of beta3 

adrenergic receptors with BRL37344 decreases rat DSM nerve-evoked contractions. 
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Figure 4.2.2. Stimulation of beta3 adrenergic receptors with BRL37344 reduces rat DSM EFS-induced 

contractions generated by a wide range of stimulation frequencies (0.5 – 50 Hz). Original DSM tension recordings 

illustrating BRL37344 (100 µM) inhibitory effects on rat DSM EFS-induced contractions in the absence (A) or 

presence (B) of SR59230A (10 µM). C) Frequency-response curves for the 0.5 – 50 Hz EFS-induced DSM contractions 

in response to 100 µM BRL37344 (n=12, N=6). D) EFS frequency-response curves for BRL37344 (100 µM) inhibitory 

effects on 0.5 – 50 Hz EFS-induced DSM contractions in the presence of SR59230A (10 µM) (n=8, N=3; ***p<0.005).  
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BRL37344 inhibitory effect on nerve-evoked contractions of rat DSM isolated 

strips: Role of cholinergic and purinergic components 

We further separated the cholinergic component from the purinergic component of the 

nerve-evoked contractions by using inhibitors of these two components. In the presence 

of atropine (1 µM), which was used to block the cholinergic component of the nerve-

evoked contraction, BRL37344 (100 µM) significantly decreased the amplitude of the 

EFS-induced DSM contractions at EFS stimulation frequencies ranging from 3.5 Hz to 

50 Hz (Fig. 4.2.3A). In the presence of atropine, at the maximal stimulation frequency of 

50 Hz, BRL37344 (100 µM) caused a 25.4±6.6% decrease in the amplitude of the EFS-

induced contractions (n=15, N=8, p<0.005; Fig. 4.2.3C). This BRL37344 inhibitory 

effect was antagonized by SR59230A (10 µM) at all EFS stimulation frequencies (3.5 – 

50 Hz) (n=13, N=5; p>0.05; Fig. 4.2.3B, D). These data suggest that stimulation of beta3 

adrenergic receptors with BRL37344 relaxes the EFS-induced DSM contractions of rat 

DSM isolated strips via inhibition of the purinergic component of the EFS-induced DSM 

contractions. 
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Figure 4.2.3. In the presence of atropine, BRL37344 significantly inhibited the amplitude of the 0.5 – 50 Hz EFS-

induced contractions of rat DSM isolated strips. Original DSM tension recordings illustrating BRL37344 (100 µM) 

inhibitory effects on rat DSM EFS-induced purinergic contractions in the absence (A) or presence (B) of SR59230A 

(10 µM). C) EFS frequency-response curves showing the BRL37344 inhibitory effects on the nerve-evoked 

contractions in the presence of 1 µM atropine (n=15, N=8; ***p<0.005). D) EFS frequency-response curves showing 

that SR59230A blocks BRL37344 inhibitory effects on the EFS-induced contractions (n=13, N=5, p>0.05).  



 

118 

In order to investigate the cholinergic component of the EFS-induced contractions, we 

blocked the purinergic component of the EFS-induced contractions with suramin (10 μM) 

and α,β-methylene-ATP (10 μM) (63, 64, 145, 154, 161). These two inhibitors have 

different mechanism of action. While suramin inhibits the purinergic receptor directly, α, 

β-methylene-ATP first activates the receptors (it also acts as a receptor agonist) but then 

quickly desensitizes the receptor. Thus, the combined use of both drugs secures higher 

degree of purinergic receptor inhibition. It has been shown that the combination of these 

two purinergic inhibitors decreases the number of spontaneous global Ca
2+

 flashes and 

also nearly abolished the local Ca
2+

 transients evoked by EFS suggesting that these two 

compounds combined completely block the purinergic component of the nerve-evoked 

contractions in DSM (63). In the presence of suramin (10 µM) and α,β-methylene-ATP 

(10 µM), BRL37344 significantly decreased the amplitude of the EFS-induced 

contractions in rat DSM isolated strips at a wide range of EFS stimulation frequencies 

(3.5 – 50 Hz) suggesting that BRL37344 inhibited the cholinergic component of the EFS-

induced contractions (Fig. 4.2.4A, C). BRL37344 (100 µM) inhibited EFS-induced 

contraction amplitude by 42.3±4.5% at the maximal stimulation frequency of 50 Hz 

(n=12, N=5, p<0.005; Fig. 4.2.4C). This BRL37344 inhibitory effect on the cholinergic 

component was slightly reduced at low stimulation frequency (3.5 – 20 Hz) by 

SR59230A (10 µM) (n=9, N=5; p<0.005; Fig. 4.2.4B, D). 
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Figure 4.2.4. BRL37344 effects on the amplitude of the 0.5 – 50 Hz EFS-induced contractions of rat DSM 

isolated strips in the presence of suramin and α,β-methylene-ATP. Original DSM tension recordings of EFS-

induced DSM cholinergic contractions illustrating BRL37344 (100 µM) inhibitory effects in the absence (A) or 

presence (B) of SR59230A (10 µM). EFS frequency-response curves showing BRL37344 inhibitory effect on EFS-

induced contraction amplitude in the absence (n=12, N=5) (C) or presence (D) of 10 µM SR59230A (n=9, N=5; 

***p<0.005). Application of α,β-methylene-ATP, a purinergic receptor agonist caused a transient contraction (A and 

B) of the DSM followed by desensitization of the receptor.  
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BRL37344 inhibitory effect on EFS-induced contractions is antagonized by 

iberiotoxin, a selective BK channel blocker 

In this experimental series, we investigated whether the BK channel plays a role during 

the beta3 adrenergic receptor-mediated relaxation of nerve-evoked contractions in rat 

DSM. We pretreated rat DSM isolated strips with iberiotoxin (200 nM) prior to 

BRL37344 (10 nM – 100 µM) application (Fig. 4.2.5A). We found that blocking BK 

channels with iberiotoxin significantly antagonized BRL37344 inhibitory effects on the 

amplitude and muscle force of the 20 Hz EFS-induced contractions (Fig. 4.2.5B-C). The 

BRL37344 inhibitory effects on 20 Hz EFS-induced DSM contractions were significantly 

reduced as illustrated by reduction in the maximal BRL37344 inhibitory effect on the 

EFS-induced contraction amplitude and force (n=7, N=5, p<0.05; Fig. 4.2.5B-C). These 

findings suggest that BK channels and beta3 adrenergic receptors work in synergy to 

oppose EFS-induced contractions in rat DSM isolated strips. 
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Figure 4.2.5. Blockade of BK channels with iberiotoxin reduces the BRL37344 inhibitory effects on 20 Hz EFS-

induced contractions of rat DSM isolated strips. A) Original DSM tension recordings illustrating the reduction of 

BRL37344 (10 nM – 100 µM) inhibitory effects on rat DSM 20 Hz EFS-induced contractions by BK channels 

blockade with 200 nM iberiotoxin. Cumulative concentration-response curves showing that pretreatment of rat DSM 

isolated strips with 200 nM iberiotoxin opposes BRL37344 inhibitory effects on DSM EFS-induced contraction 

amplitude (B) and force (C) (n=7, N=5; *p<0.05)  
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DISCUSSION 

The present study provides evidence that the beta3 adrenergic receptor agonist 

BRL37344-mediated relaxation of rat DSM nerve-evoked contraction is regulated by the 

BK channels. This BRL37344-induced DSM relaxation involved inhibition of both 

cholinergic and purinergic components of the nerve-evoked contractions. 

Stimulation of beta3 adrenergic receptors with BRL37344 reduces nerve-evoked 

contractions in rat DSM isolated strips: role of purinergic and cholinergic 

components. During the voiding phase of the micturition process, the parasympathetic 

nerves become activated and acetylcholine and ATP, the two main excitatory 

neurotransmitters in the bladder are released (7). ATP activates purinergic P2X receptors 

while acetylcholine activates M2/M3 muscarinic cholinergic receptors to induce DSM 

contractions and facilitate voiding (7). In our study, bladder nerves were stimulated with 

a wide range of EFS frequencies in order to activate these two neurogenic pathways. It 

has been demonstrated that the activation of both purinergic and cholinergic pathways is 

EFS frequency-dependent (64). At low stimulation frequencies (≤ 20 Hz), the purinergic 

pathway is predominant, contrary to the cholinergic component which predominates at 

high frequencies (≥ 20 Hz) (18, 64, 161). 

In a previous report, we showed in guinea pig DSM isolated strips BRL37344's inhibitory 

effect on EFS-induced contractions was not mediated by beta3 adrenergic receptors 

suggesting important species differences (1). We further showed that L-755,507, a 

selective beta3 adrenergic receptor agonist failed to inhibit the nerve-evoked contractions 

in guinea pig DSM isolated strips suggesting that in this particular species beta3 

adrenergic receptors play a minor to no role at all during nerve-evoked contractions in 
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guinea pig DSM (1). Here, we found that contrarily to guinea pig DSM, stimulation of 

beta3 adrenergic receptors with BRL37344 caused a significant decrease of the nerve-

evoked contraction amplitude and force in rat DSM isolated strips in the presence or 

absence of atropine (Figs. 4.2.2-3). BRL37344 (10 and 100 μM) caused a ~26% and 

~52% decrease in rat DSM nerve-evoked contractions force, respectively. The 

BRL37344 inhibitory effect reported here is similar to that in previous reports on human 

DSM (151). The aforementioned study showed that BRL37344 (pEC50=6.25) caused a 

22% and a 47% inhibition of human DSM carbachol-induced tone when used at 

concentrations of 10 μM and 100 μM, respectively (151). Similar to Takeda et al. study, 

the BRL37344 inhibitory effects that we report here at 10 and 100 μM could also be 

mediated via activation of beta2 adrenergic receptors as recently suggested by Baker et 

al. (10). We further studied the purinergic and the cholinergic components separately by 

using inhibitors of these two components. In the presence of atropine, which was used to 

block the cholinergic component of the nerve-evoked contractions, we found that 

BRL37344 decreased the amplitude of the nerve-evoked contractions at all stimulation 

frequencies tested suggesting that BRL37344 inhibits the purinergic component of the 

nerve-evoked contractions (Fig. 4.2.3A, C). This BRL37344 inhibitory effect was 

completely blocked at all EFS stimulation frequencies by SR59230A, which suggests that 

BRL37344 inhibits the purinergic component of the nerve-evoked contractions. Our data 

also showed that in the presence of α,β-methylene-ATP and suramin which were used to 

block the purinergic component of the nerve-evoked contractions, BRL37344 decreased 

the amplitude of the EFS-induced contractions at all stimulation frequencies tested 

suggesting that BRL37344 inhibits the cholinergic component of the nerve-evoked 
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contractions. However, the BRL37344 inhibitory effect on the cholinergic component 

was not completely antagonized by SR59230A suggesting that BRL37344 might exhibit 

some non-selective effects by also activating the beta2 adrenergic receptors (10). Taken 

together, these data suggest that BRL37344 inhibitory effects on rat DSM nerve-evoked 

contractions were mediated via inhibition of both purinergic and cholinergic pathways. 

Functional BK channels regulate beta3 adrenergic receptor-mediated relaxation of 

rat DSM neurogenic contractions  

Previous studies, both in human and rodents, have shown that the BK channel plays an 

important regulatory role in DSM physiology (22, 67, 75, 80, 130, 131, 134, 145, 164, 

166). Activation of BK channels hyperpolarizes the cell membrane and prevents Ca
2+

 

entry through L-type voltage-gated Ca
2+

 channels, which ultimately causes DSM 

relaxation (75, 79, 130, 134, 145). This BK channel-mediated relaxation of the DSM has 

made BK channel-targeting compounds potential drug candidates for the treatment of 

bladder dysfunction (26, 80, 98, 130, 145). Along with BK channels, beta3 adrenergic 

receptors have also been demonstrated to be promising targets for the pharmacological 

treatment of OAB (13, 22, 50, 99, 157). Our group has recently provided evidence that 

there is a functional link between beta3 adrenergic receptors and BK channels (79). We 

have previously demonstrated that the pharmacological blockage of BK channels with 

iberiotoxin opposes beta3 adrenergic receptor-mediated relaxation of rat DSM myogenic 

contractions (79). In the present study, the beta3 adrenergic receptor agonist, BRL37344, 

attenuates the contraction amplitude and muscle force of the 20 Hz EFS-induced 

contractions in a concentration-dependent manner (Fig. 4.2.5). We further observed that 

pharmacological blockade of BK channels with iberiotoxin antagonized the beta3 
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adrenergic receptor-mediated relaxation of rat DSM nerve-evoked contraction amplitude 

and force (Fig. 4.2.5). Using immunohistochemical analysis, Dr. Mark Nelson’s group 

has demonstrated that BK channels are expressed in DSM but not in the bladder nerves 

that innervate DSM (161). These findings clearly suggest that all of the iberiotoxin 

effects reported in our study were not mediated via activation of efferent nerve terminals 

to increase neurotransmitter release but rather solely through direct inhibition of BK 

channels which are highly expressed in DSM (75, 131). Collectively, our data suggest 

that BK channel activity is critical for the beta3 adrenergic receptor-induced attenuation 

of the nerve-evoked contractions. 

CONCLUSION 

The present study reveals that the beta3 adrenergic receptor agonist, BRL37344, inhibited 

both the purinergic and cholinergic components of the nerve-evoked contractions in rat 

DSM. We also found that functional BK channels play a critical role in the BRL37344-

induced inhibition of the nerve-evoked contractions in rat DSM.  
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4.3 BRL37344, A ΒETA3-ADRENERGIC RECEPTOR AGONIST, DECREASES 

NERVE-EVOKED CONTRACTIONS IN HUMAN DETRUSOR SMOOTH 

MUSCLE ISOLATED STRIPS: ROLE OF BK CHANNELS   

 

Data presented in this section have been submitted for publication and is currently under 

revision. The original manuscript has been modified to fit the format of this dissertation. 

Human tissues were surgically obtained by Dr. Rovner’s team from the Medical 

University of South Carolina. Dr. Rovner is a collaborator with the Petkov’s lab 

 

ABSTRACT 

 

The goal of the study was to investigate the mechanism by which BRL37344, a beta3-AR 

agonist, facilitate the inhibition of nerve-evoked contractions in human DSM isolated 

strips and to identify a role for the large-conductance Ca
2+

-activated K
+ 

(BK) channels in 

this process. 

Human DSM specimens were obtained from open bladder surgeries on patients without 

preoperative history of OAB symptoms. Isometric DSM tension recordings were 

conducted using force-displacement transducers and thermostatically controlled tissue 

baths. Nerve-evoked contractions were generated by electrical field stimulation (EFS). 

BRL37344, a beta3-AR agonist, significantly decreased the amplitude and muscle force 

of the DSM contractions induced by 20 Hz EFS, in a concentration-dependent manner. 

This BRL37344-mediated inhibition of the amplitude and muscle force of the nerve-

evoked DSM contraction was significantly reduced by iberiotoxin, a selective inhibitor of 

the BK channel, revealing a role for BK channels in the beta3-AR-induced inhibition of 

human DSM nerve-evoked contractions. We further used atropine, α,β-methylene-ATP, 
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and suramin to separate the cholinergic and purinergic components of human DSM 

nerve-evoked contractions. We found that the beta3-AR agonist, BRL37344, inhibited 

both components of the EFS-induced (0.5–50 Hz) DSM contractions. 

In conclusion, this study supports the concept that beta3-AR agonists inhibit nerve-

evoked contractions in human DSM. We have further revealed that BK channels play a 

critical role in BRL37344-mediated relaxation of nerve-evoked contractions in human 

DSM. The study suggests that in addition to beta3-ARs, BK channels could also be 

promising pharmacological targets in the treatment of urinary bladder dysfunction. 
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INTRODUCTION 

Overactive bladder (OAB) is a symptom based condition characterized by frequent 

urination, urinary urgency, with or without urinary incontinence. The current therapeutic 

approaches for OAB treatment which rely primarily on behavioral therapies in 

combination with antimuscarinic drugs and a number of surgical techniques, have 

variable outcomes and numerous potential adverse effects. These drawbacks in treating 

OAB have led researchers to investigate alternative therapeutic approaches with novel 

mechanisms of action, better efficacy, and fewer unfavorable effects. 

Beta3-ARs, and the beta3-AR in particular, have emerged as targets for the treatment of 

OAB as pharmacological activation of these receptors results in detrusor smooth muscle 

(DSM) relaxation (22, 79). Beta3-AR agonists including BRL37344 ([4-[2-[[2-(3-

Chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy]acetic acid sodium hydrate), 

mirabegron (YM178), solabergon (GW427353), TRK-380, and ritobegron (KUC-7483) 

have been demonstrated to induce relaxation of human and rodent DSM spontaneous, 

nerve-evoked, and pharmacologically-induced phasic contractions (14, 27, 79, 81, 88, 90, 

156). In human DSM isolated strips, BRL37344 has been shown to inhibit carbachol-

induced tone in a concentration-dependent manner (pEC50=6.25)(151). In fact, 

BRL37344 caused a 22% and 47% inhibition of human DSM carbachol-induced tone 

when used at a concentration of 10 µM and 100 µM, respectively (151). Furthermore, in 

phase 3 clinical studies on patients with OAB, mirabegron has demonstrated both 

efficacy and safety (27, 90). Based on these aforementioned studies which demonstrate 

the prominent role of beta3-ARs in human DSM relaxation both in vitro and in vivo, 

mirabegron has been approved as the first beta3-AR agonist for OAB in the US (27, 90).  
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The mechanism by which beta-AR activation causes relaxation of the DSM is thought to 

involve the cyclic cAMP (cAMP) signaling pathway (22, 115). cAMP activates protein 

kinase-A (PKA), which in turn phosphorylates various proteins involved in DSM 

excitation-contraction coupling and stimulates the BK channels to promote DSM 

relaxation (22, 58, 115). In animal species, the BK channel is one of the most important 

physiologically relevant K
+
 channels that controls DSM function (22, 58, 66, 79, 130, 

134). Recent studies have further revealed a critical role for the BK channel in regulating 

human detrusor excitability and contractility (75, 80). Increases in intracellular cAMP 

levels via phosphodiesterase inhibition also stimulate BK channel activity and leads to 

DSM relaxation (164, 166). Collectively, studies have established that there is a clear 

functional link between the beta-AR/cAMP/PKA signal transduction pathway and BK 

channels during DSM relaxation (22, 79, 134). 

However, the potential functional link between beta3-ARs and BK channels during 

nerve-evoked contractions is not well defined. To investigate this mechanism, we used 

thermostatically-controlled tissue baths equipped with platinum electrodes for electrical 

field stimulation (EFS) to generate nerve-evoked contractions in human DSM isolated 

strips. The relationship between the effects of BRL37344, a beta3-AR agonist, and 

iberiotoxin, a selective BK channel inhibitor, were examined in order to elucidate the 

underlying mechanisms involved in the beta3-AR agonist-induced relaxation of human 

DSM. 
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METHODS 

Human DSM tissue collection  

Human studies were conducted as described in chapter 2.2. 

Isometric DSM tension recordings  

Isometric DSM tension recordings were conducted as described in chapter 2.2.  

Solutions and Drugs  

The Ca
2+

-free dissection solution and the Ca
2+

-containing PSS compositions are 

described in chapter 2.2. All drugs were purchased from Sigma-Aldrich Co. (St. Louis, 

MO), unless specified otherwise. BRL37344 was prepared daily in double-distillated 

water and heated at 60
o
C to be completely dissolved at the concentration of 10 mM as a 

stock solution as recommended by the manufacturer. 

Data analysis and statistics 

Data analysis was performed as described in chapter 2.2.  
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RESULTS 

BRL37344 inhibits EFS-induced contractions of human DSM strips in a 

concentration-dependent manner 

We investigated the effect of BRL37344 on the amplitude and muscle force of EFS-

induced DSM contractions generated by 20 Hz/min EFS in human DSM isolated strips. 

BRL37344 (10 nM–100 µM) was very effective at inhibiting the amplitude and force of 

the 20 Hz EFS-induced contractions of human DSM isolated strips. BRL37344 (10 nM, 

100 nM, 1 µM, 10 µM, and 100 µM) reduced the amplitude of the EFS-induced 

contractions by 11.6±3.9%, 22.9±8.2%, 33.3±10.3%, 45.5±10.4%, and 71.9±6.1%, 

respectively (n=4, N=3; Fig. 4.3.1A, C). BRL37344 (10 nM, 100 nM, 1 µM, 10 µM, and 

100 µM) also decreased the force of the EFS-induced contractions by 7.0±5.2%, 

33.2±4.9%, 46.2±9.1%, 57.7±7.9%, and 78.4±4.4%, respectively (n=4, N=3; Fig. 4.3.1A, 

D). These data suggest that BRL37344 effectively decreases nerve-evoked contractions 

in human DSM isolated strips. 

BRL37344 inhibitory effect on EFS-induced contractions is reduced by iberiotoxin, 

a selective BK channel blocker 

In this experimental series, we investigated the relationship between β3-ARs and BK 

channels in nerve-evoked DSM contractions. We found that in the presence of iberiotoxin 

(200 nM), BRL37344 (10 nM–100 µM) inhibitory effects on the 20 Hz EFS-induced 

contractions amplitude and force of human DSM isolated strips were significantly 

reduced (Fig. 4.3.1B, C, and D). The maximal antagonistic activity of iberiotoxin was 

observed at 1 µM BRL37344 where the BRL37344 inhibitory effects on the EFS-induced 

contraction amplitude and force were reduced from 32.4±10.3% to only 2.4±0.3% and 
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from 46.2±9.1% to 7.4±4.2%, respectively (Fig. 4.3.1C and D). These findings suggest 

that BK channels and β3-ARs work in synergy to oppose nerve-evoked contractions in 

human DSM. 

  

Figure 4.3.1. Iberiotoxin, a BK channel blocker, significantly reduced the BRL37344 inhibitory effects on 20 Hz 

EFS-induced contractions in human DSM isolated strips. A) An original DSM tension recording illustrating 

BRL37344 (10 nM-100 µM) inhibitory effects on 20 Hz EFS-induced contractions in a human DSM isolated strip. B) 

An original DSM tension recording illustrating that iberiotoxin (200 nM) increased the 20 Hz EFS-induced 

contractions in human DSM and that the BRL37344 (10 nM-100 µM) inhibitory effects on the EFS-induced 

contraction amplitude and force were significantly attenuated in the presence of iberiotoxin (200 nM). C-D) 

Cumulative concentration-response curves illustrating iberiotoxin (200 nM) antagonistic action on BRL37344 

inhibitory effects on EFS-induced contraction amplitude (C) and force (D), respectively (n=4, N=3; *P<0.05, 

**P<0.01, ***P<0.005). 
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BRL37344 decreases the amplitude of the EFS-induced DSM contractions in a wide 

range of stimulation frequencies 

Here, we investigated how the β3-AR agonist, BRL37344, modulates DSM nerve-evoked 

contractions in response to a wide range of EFS frequencies in human DSM isolated 

strips. We first applied increasing EFS frequencies (0.5–50 Hz) as a control protocol, 

followed by the addition of a single concentration of BRL37344 (10 µM). Then, a second 

EFS protocol was applied to evaluate BRL37344 effects on the nerve-evoked 

contractions. In human DSM isolated strips, BRL37344 (10 µM) significantly decreased 

the amplitude of the EFS-induced contractions (Fig. 4.3.2A). At the maximum EFS 

frequency of 50 Hz, BRL37344 (10 µM) decreased human DSM EFS-induced 

contraction amplitude by 38.1±6.6% (n=8, N=4; Fig. 4.3.2B). We also applied a higher 

concentration of BRL37344 (100 µM) which caused almost a complete inhibition of the 

EFS-induced DSM contractions. At the maximum EFS frequency of 50 Hz, BRL37344 

(100 µM) decreased human DSM EFS-induced contraction amplitude by 85.4±2.1% 

(n=11, N=3; data not illustrated). These data suggest that BRL37344 reduces human 

DSM nerve-evoked contractions induced by EFS at a wide range of stimulation 

frequencies. 
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Figure 4.3.2. BRL37344 decreases the amplitude of the EFS-induced contractions in human DSM isolated strips 

in a wide range of stimulation frequencies. A) An original DSM tension recording illustrating the inhibitory effects 

of 10 µM BRL37344 on 0.5–50 Hz EFS-induced contractions of human DSM. B) Frequency-response curves showing 

0.5–50 Hz EFS-induced contractions in response to 10 µM BRL37344 (n=8, N=4; **P<0.01, ***P<0.005). 
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BRL37344 attenuates both purinergic and cholinergic components of EFS-induced 

contractions in human DSM isolated strips 

In this experimental series, we applied an experimental approach that allowed us to 

separate the cholinergic component from the purinergic component during EFS-induced 

DSM contractions. The cholinergic component of the EFS-induced DSM contractions 

was assessed by blocking purinergic receptors with α,β-methylene-ATP, a desensitizing 

agonist; and suramin, a purinergic receptor antagonist. Human DSM isolated strips were 

pre-incubated with suramin (10 µM) and α,β-methylene-ATP (10 µM) for 15 min prior to 

applying a 0.5–50 Hz EFS control protocol. Next, BRL37344 was added in the bath for 

30 min followed by a second EFS protocol. The purinergic component of the EFS-

induced contractions, on the other hand, was assessed by pre-treating the DSM strips with 

1 µM atropine for 15 min prior to applying a 0.5–50 Hz EFS control protocol in the 

presence or absence of BRL37344. In human DSM isolated strips, BRL37344 (10 µM) 

caused a significant decrease in the amplitude of the EFS-induced contraction in the 

presence of atropine at frequencies ranging from 3.5 to 50 Hz (Fig. 4.3.3A, B). At the 

maximal stimulation frequency of 50 Hz, BRL37344 (10 µM) caused a 35.6±9.6% 

decrease in the amplitude of DSM EFS-induced purinergic contractions in human DSM 

(n=4, N=3; Fig. 4.3.3B). BRL37344 (100 µM) had a more pronounced effect compared 

to BRL37344 (10 µM), and reduced the EFS-induced purinergic contraction amplitude of 

human DSM strips by 68.6±12.1% at 50 Hz-frequency (n=4, N=3; data not illustrated). 
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Figure 4.3.3. BRL37344 significantly inhibited the purinergic component of the 0.5–50 Hz EFS-induced 

contractions in human DSM isolated strips. A) An original DSM tension recording illustrating BRL37344 (10 µM) 

inhibitory effects on EFS-induced contractions of human DSM isolated strips in the presence of atropine (1 µM). B) 

EFS frequency-response curves showing 10 µM BRL37344 inhibitory effects on nerve-evoked contractions of human 

DSM isolated strips (n=4, N=3; *P<0.05, **P<0.01). 
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In the presence of suramin (10 µM) and α,β-methylene-ATP (10 µM), BRL37344 also 

significantly decreased the amplitude of the EFS-induced cholinergic contractions in 

human DSM isolated strips at a wide range of EFS frequencies (3.5–50 Hz) (Fig. 4.3.4A 

and B). At the maximal frequency of 50 Hz, BRL37344 (10 µM and 100 µM) decreased 

the EFS-induced cholinergic contraction amplitude of human DSM strips by 26.5±9.7% 

(n=8, N=5, P<0.05; Fig. 4.3.4B) and 91.0±5.3% (n=4, N=3; data not illustrated), 

respectively. These data suggest that BRL37344 inhibits both the cholinergic and the 

purinergic components of the EFS-induced contractions in human DSM. 
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Figure 4.3.4. BRL37344 reduced the cholinergic component of the 0.5–50 Hz EFS-induced contractions of the 

human DSM. A) An original DSM tension recording illustrating BRL37344 (10 µM) inhibitory effects on human 

DSM EFS-induced contractions in the presence of suramin (10 µM) and α,β-methylene-ATP (10 µM). B) Frequency-

response curves illustrating BRL37344 (10 µM) inhibitory effects on EFS-induced contraction amplitude of human 

DSM isolated strips in the presence of suramin and α,β-methylene-ATP (n=8, N=5; *P<0.05, **P<0.01, ***P<0.005). 
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DISCUSSION 

The present study demonstrates that beta3-AR agonist, BRL37344, effectively inhibits 

both the purinergic and cholinergic components of human DSM nerve-evoked 

contractions. This BRL37344 inhibitory effect was significantly reduced by iberiotoxin, a 

BK channel selective inhibitor suggesting that functional BK channels play a critical role 

in the beta3-AR mediated relaxation of human DSM nerve-evoked contractions. 

In mouse, rat, guinea pig, and human DSM, it has been shown that physiological DSM 

nerve-evoked contractions are due to the combined action of two main excitatory 

neurotransmitters, acetylcholine and ATP, released from the parasympathetic nerves(59, 

64, 119, 142, 161). ATP activates P2X receptors while acetylcholine stimulates M2/M3 

muscarinic receptors to induce DSM contractions(24, 59, 64, 105, 119, 142, 160, 161). 

Acetylcholine activation of M2 muscarinic receptors causes inhibition of adenylyl 

cyclase activity while activation of M3 receptors triggers the inositol 1,4,5-trisphosphate 

pathway (55, 104). This dual muscarinic receptor action ultimately leads to DSM 

contraction. We found that low concentrations of BRL37344 (10 nM–1 µM) decreased 

the amplitude of nerve-evoked contractions in human DSM consistent with previous 

studies demonstrating that BRL37344 could inhibit human DSM carbachol-induced tone 

(151). Our study suggests that beta3-ARs play an important role in opposing human DSM 

nerve-evoked contractions. Our data are also consistent with previous findings showing 

that KUC-7322 and GW427353, two other selective beta3-AR agonists, also decreased 

carbachol-induced and nerve-evoked contractions in human DSM (14, 81, 156). Unlike 

the current study, these latter studies did not address the potential involvement of BK 

channels in this process. Previously, we showed that BRL37344 effectively inhibits 
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spontaneous phasic contractions of rat DSM isolated strips (79). This BRL37344 

inhibitory effect was further demonstrated to be antagonized by SR59230A, a selective 

beta3-AR antagonist, and H89, a PKA inhibitor, suggesting that the beta3-AR-mediated 

relaxation of the DSM tone utilized the cAMP/PKA pathway(79). 

Recently, our laboratory and others have demonstrated the critical role played by BK 

channels in regulating DSM spontaneous phasic contractions (22, 66, 75, 79, 80, 130, 

164, 166). BK channels, which are activated by Ca
2+

 sparks released from the 

sarcoplasmic reticulum through the ryanodine receptors, regulate DSM function by 

opposing the phasic contractions induced by Ca
2+

 entry through L-type voltage-gated 

Ca
2+

 channels (79, 130, 134). Our group was the first to provide evidence for a functional 

link between β3-ARs and BK channels (79). In guinea pig, isoproterenol, a non-selective 

beta-AR agonist, activates cAMP/PKA pathway, increases Ca
2+

 spark activity which 

activates BK channels and induces relaxation of the DSM (134). Iberiotoxin shifts the 

concentration-response curves for the BRL37344 inhibitory effects on the spontaneous 

phasic contraction amplitude, muscle force integral, and muscle tone, to the right 

suggesting that the pharmacological blockage of BK channels opposes beta3-AR-

mediated relaxation of rat DSM myogenic contractions (79). However, until now this 

mechanism has never been investigated in DSM nerve-evoked contractions. Here, we 

reveal for the first time the role of BK channels in the beta3-AR-induced relaxation of 

human DSM nerve-evoked contractions. BRL37344 decreased human DSM nerve-

evoked contractions in a concentration-dependent manner (Fig. 4.3.1). At concentrations 

ranging between 10 nM and 10 µM, the BRL37344 inhibitory effect was significantly 

antagonized by iberiotoxin suggesting that functional BK channels play an important role 
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in the beta3-AR mediated relaxation of human DSM nerve-evoked contractions (Fig. 

4.3.1B, C and D). It has been suggested that at concentrations equal or higher than 10 

μM, BRL37344 may also activate beta2-ARs(10). Regardless of the potential BRL37344 

effect on beta2-ARs, one would anticipate that the majority of the BRL37344 effect was 

mediated via activation of the beta3-ARs since beta3-ARs represent ~97% of all beta-AR 

mRNA expressed in the human bladder(167). 

Using selective inhibitors, we further separated the purinergic and cholinergic pathways 

which both contribute to DSM nerve-evoked contractions. Previous studies have 

established that at low stimulation frequencies (≤ 20 Hz), the purinergic pathway plays a 

greater role whilst at high stimulation frequencies (≥ 20 Hz), the cholinergic component 

predominates (64, 161). In the presence of atropine, which was used to block the 

cholinergic component of the nerve-evoked contractions, we found that beta3-AR 

activation decreased the amplitude of the nerve-evoked contractions in human DSM in a 

wide range of stimulation frequencies (Fig. 4.3.3). In the presence of suramin and α,β 

methylene-ATP which were used to block the purinergic component, BRL37344 also 

significantly decreased the amplitude of the nerve-evoked contractions in human DSM 

(Fig. 4.3.4). Taken together, these data suggest that BRL37344 inhibits both cholinergic 

and purinergic contractions of human DSM. 

 

CONCLUSION 

 

The present study reveals that beta3-AR agonist, BRL37344, is very effective at low 

concentrations in reducing human DSM nerve-evoked contractions. We reveal for the 

first time that the beta3-AR-agonist-mediated relaxation of human DSM nerve-evoked 
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contractions is BK channel-dependent, emphasizing the critical role of BK channels in 

human DSM physiology. Future studies using DSM tissue from patients with OAB and 

detrusor overactivity are anticipated to demonstrate a similar functional relationship 

between beta3-ARs and the BK channel, which would provide further impetus for 

studying potential pharmacologic targets in this area for the treatment of OAB. 
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CHAPTER 5 

VOLTAGE-GATED K
+
 (KV) CHANNELS IN THE DETRUSOR SMOOTH MUSCLE  

 

Chapter 5 discusses the expression pattern and functional roles of several Kv channels in 

the DSM. We focused on two Kv channel families including Kv2 and Kv7 channels. The 

study of Kv2 channels were performed in human DSM (chapter 5.1) as a follow up study 

of the role of these channels in guinea pig. The data presented here have already been 

published with me as a co-author and the original article has been modified to fit the 

format of this dissertation after obtaining authorization from the publisher. In chapter 5.2, 

we investigated Kv7 channels in guinea pig, a commonly used laboratory animal, to 

assess how pharmacological modulation of these channels affects DSM contractility 

(chapter 5.2). Based on the guinea pig data, we confidently initiated the investigation of 

Kv7 channels roles in human DSM (chapter 5.3). The preliminary data presented in 

chapter 5.3 need further investigation to clearly demonstrate the regulatory role of Kv7 

channels in human DSM.       
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5.1 EXPRESSION AND FUNCTION OF KV2-CONTAINING CHANNELS IN 

HUMAN DETRUSOR SMOOTH MUSCLE 

 

Data presented in this section have already been published with me as a co-author and the 

original paper has been modified to fit the format of this dissertation after obtaining 

authorization from the publisher. Molecular biology data were collected by Dr. Muyan 

Chen, a former post-doctoral fellow in Dr. Petkov’s lab. Electrophysiological data were 

collected by Dr. Kiril Hristov, a post-doctoral fellow in Dr. Petkov’s lab. All isometric 

DSM tension recordings experiments were performed by me. Ca
2+

-imaging data were 

obtained by Qiuping Chen, a former researcher associate in Dr. Petkov’s lab. Human 

tissue harvesting was achieved by Dr. Eric Rovner’s urology team at the Medical 

University of South Carolina. Dr. Eric Rovner is a collaborator with the Petkov’s lab.  

 

ABSTRACT 

The functional role of the voltage-gated K
+
 (KV) channels in human detrusor smooth 

muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, 

and functional evidence for the expression of KV2.1, KV2.2, and the electrically silent 

KV9.3 subunits in human DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of KV2.1, 

KV2.2, and KV4.2 homotetrameric channels and of KV2.1/9.3 heterotetrameric channels, 

was used to examine the role of these channels in human DSM function. Human DSM 

tissues were obtained during open bladder surgeries from patients without a history of 

overactive bladder. Freshly isolated human DSM cells were studied using RT-PCR, 

immunocytochemistry, live-cell Ca
2+

 imaging, and the perforated whole cell patch-clamp 

technique. Isometric DSM tension recordings of human DSM isolated strips were 

mailto:petkov@cop.sc.edu%0CABSTRACT
mailto:petkov@cop.sc.edu%0CABSTRACT
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conducted using tissue baths. RT-PCR experiments showed mRNA expression of KV2.1, 

KV2.2, and KV9.3 (but not KV4.2) channel subunits in human isolated DSM cells. KV2.1 

and KV2.2 protein expression was confirmed by Western blot analysis and 

immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that 

ScTx1 (100 nM) inhibited the amplitude of the voltage step-induced KV current in freshly 

isolated human DSM cells. ScTx1 (100 nM) significantly increased the intracellular Ca
2+

 

level in DSM cells. In human DSM isolated strips, ScTx1 (100 nM) increased the 

spontaneous phasic contraction amplitude and muscle force, and enhanced the amplitude 

of the electrical field stimulation-induced contractions within the range of 3.5–30 Hz 

stimulation frequencies. These findings reveal that ScTx1-sensitive KV2-containing 

channels are key regulators of human DSM excitability and contractility and may 

represent new targets for pharmacological or genetic intervention for bladder dysfunction.  
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INTRODUCTION 

Increased detrusor smooth muscle (DSM) contractions are often associated with 

overactive bladder (OAB), a pathophysiological condition that affects millions of 

individuals by disturbing their sleep, work, quality of life, and social interactions (7, 8). 

The exact mechanism that underlies human DSM contractility still remains unclear. 

Potassium (K
+
) channels play a critical role in controlling DSM electrical activity, and 

therefore contractility (7, 22, 75, 77, 126, 130, 131, 134, 145, 155). Inhibition of certain 

types of K
+
 channels leads to membrane depolarization, activation of the L-type voltage-

gated Ca
2+

 (CaV) channels, and DSM contraction. Activation of K
+
 channels leads to 

hyperpolarization of the cell membrane, inhibition of CaV-channels, a decrease in 

intracellular Ca
2+

 concentration, and DSM relaxation (130).  

Among K
+
 channels that control cell excitability and contractility, the KV channel 

superfamily is the most diverse, but the least investigated in human DSM (130). In the 

human genome the KV channel superfamily is represented by more than 40 genes 

encoding the pore-forming α-subunits (52, 53, 130). KV channels are classified into 12 

subfamilies based on their amino acid sequence homology. Each functional KV channel is 

composed of four α-subunits. The members of KV1–4, KV7, and KV10–12 channel 

subfamilies can form functional homotetrameric channels, whereas the members of KV5, 

KV6, KV8, and KV9 channel subfamilies do not form their own homotetramers, but rather 

form heterotetrameric channels with KV2 channel subunits (130). KV channels that 

contain KV2 (KV2.1 or KV2.2) subunits are referred to as “KV2-containing channels.” 

KV2-containing channels could form their own homotetramers or heterotetramers with 

electrically silent KV (KV5, KV6, KV8, and KV9) subunits.  
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At least several KV channels are expressed in DSM of mammals (29, 36, 47, 77, 122, 

155). Expression of KV2.1, KV5.1, KV6.1, KV6.2, and KV6.3 channel subunits has been 

shown in mouse DSM (155). The expression of KV2.1 and KV2.2 channels has been 

shown in rat DSM (29), and the expression of KV2.1 and electrically silent KV channel 

subunits has been detected in guinea pig DSM (77). However, it is questionable whether 

these findings in animal models could be directly translated to humans, since species 

differences in human and rodent DSM function are well documented (1, 7, 17, 29, 57, 77, 

130).  

Knowledge about KV channels in human DSM is limited and only the molecular 

expression of some KV1 channels has been proven (36). There is a lack of information 

about expression, function, and regulation of each individual KV channel in human DSM. 

Microelectrode studies have shown that the nonselective KV channel inhibitor 4-

aminopyridine (4-AP) affects the after-hyperpolarization phase of the action potential and 

increases the frequency of the action potentials in human DSM (57). However, because of 

the nonselectivity of 4-AP, these experiments do not provide any information about the 

physiological role of individual members of the KV channel family in human DSM. The 

lack of KV channel subtype selective inhibitors with high affinity and selectivity has 

hampered the study of these channels not only in human DSM but also in other tissues. 

Recently, highly specific KV channel inhibitors have emerged enabling researchers to 

examine individual KV channel subtypes and determine their functional roles in DSM 

(130).  

Stromatoxin-1 (ScTx1), a peptide isolated from African tarantulas, has been shown to 

selectively inhibit KV2.1, KV2.2, and KV4.2 homotetramers, as well as KV2.1/6.3 and 
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KV2.1/9.3 heterotetrameric channels (40, 41, 113). Recently, we showed that ScTx1 is a 

useful pharmacological tool to study the function of KV channels in DSM of animal 

species (29, 77). We demonstrated that KV2-containing channels sensitive to ScTx1 

regulate rat and guinea pig DSM excitability and contractility (29, 77). However, the 

expression and function of the KV2 channels have never been studied in human DSM. Dr. 

Alison Brading, a world-renowned expert in ion channel DSM research, has emphasized 

that “It would seem particularly important for those studying the ion channels in a 

particular species to extend their studies to correlate channel properties with function, and 

there are still far too few basic studies on human material” (17). A recent review article 

further outlines the urgent need of studies on native human DSM (130).  

The aim of this study was to examine the expression of ScTx1-sensitive KV2-containing 

channels in human DSM, and to reveal their functional role in human DSM excitability 

and contractility. To achieve this aim, we applied a multidisciplinary approach using 

molecular biology techniques, live-cell Ca
2+

 imaging, patch-clamp electrophysiology, and 

isometric DSM tension recordings of human DSM isolated strips. Because human is the 

target species of interest for therapeutic intervention, the present study on native human 

DSM is critical to validate animal models reflecting human bladder function in the 

development of novel therapeutic strategies for the treatment of bladder pathologies. 
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MATERIALS AND METHODS 

Human DSM tissue collection 

All human studies were performed as previously described in chapter 2.2. In this study 

we used tissues from 27 patients (21 Caucasians and 6 African-Americans), of which 

there were 16 males and 11 females aged 24 to 85 (average age 59.6 ± 3.2 yr). The 

clinical diagnoses of the patients were as follows: 22 patients had urothelial carcinoma, 1 

had urethral adenocarcinoma, 1 had enterovesical fistula, and 3 patients had 

reconstructive lower urinary tract surgeries.  

Fresh human DSM single cell isolation for RT-PCR, immunocytochemistry, live-cell 

Ca
2+

 imaging, and patch-clamp experiments  

Fresh human DSM single cells were isolated as previously described in chapter 2.2.  

RNA extraction/RT-PCR/sequencing 

RT-PCR experiments were conducted as described in chapter 2.2 and performed by Dr. 

Muyan Chen, a former post-doctoral fellow in Dr. Petkov’s lab. All primers specific for 

KV2.1, KV2.2, KV4.2, and KV9.3 were designed on the basis of the cDNA complete 

sequences of human in GenBank. Specific primer pair sequences are listed in Table 5.1.1. 
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Channel 

 

Sense 

 

Anti-sense 

 

Product (bp) 

KV2.1 ATGCGAAGTATGTCAAGCA CATGGTACATCCCTAGAACG 334 

KV2.2 ATGACCACTGTTGGCTATG GTTTGGGTGAGAATGAGG 537 

KV4.2 ATAGATACGGTAAGAGCCA TGTGATATTAGTCCCAGTCA 417 

KV9.3 GCACTCGGTAGGACTTCG AGGATCGCTCACCACAAT 481 

 

Table 5.1.1. RT-PCR primers for the subunits of the KV channels sensitive to ScTx1 and the silent KV9.3 channel 

subunit. bp-base pair. RT-PCR primers were designed by Dr. Muyan Chen. 
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Western blot analysis 

These experiments were performed by Dr. Muyan Chen. Western blotting analysis was 

conducted as described in chapter 2.2. Blots were incubated with the affinity-purified 

rabbit polyclonal primary antibodies: anti-KV2.1 (DRK1 1:400), anti-KV2.2 (CDRK 

1:2,000), anti-KV4.2 (Kcnd2 1:200) (Alomone Labs, Jerusalem, Israel) and anti-KV9.3 

[KV9.3(K-12) 1:200] (Santa Cruz Biotechnology, Santa Cruz, CA) or anti-KV9.3 (KCNS3 

1:200) (Abcam) overnight at 4°C. Goat anti-rabbit IgG conjugated with horseradish 

peroxidase was used as secondary antibody.    

Immunocytochemistry on human DSM isolated cells 

These experiments were performed by Dr. Muyan Chen. Human DSM cells were 

enzymatically isolated from fresh human DSM tissue, and dropped on a glass coverslip to 

settle at room temperature, then processed for the following steps. Cells were fixed with 

prewarmed 4% paraformaldehyde for exactly 10 min. Cells were then washed twice in 

PBS, blocked, and permeabilized in PBS containing 10% normal donkey serum and 0.1% 

Triton X-100 for 30 min. Once again, cells were washed in PBS and incubated with 

rabbit polyclonal primary antibodies: anti-KV2.1, anti-KV2.2, and anti-KV4.2 (DRK1, 

CDRK and Kcnd2, 1:100, Alomone Labs) at 37°C for 1 h. After that, cells were washed 

two times with PBS and labeled with secondary antibodies Cy3-conjugated anti-rabbit 

IgG, at 1:200, PBS-3% normal donkey serum-0.01% Triton X-100 (Jackson 

ImmunoResearch, West Grove, PA) for 1 h in the dark. After labeling, cells were washed 

with PBS and incubated with phalloidin for 2 h in the dark. Cells were then washed two 

more times and incubated with 4′,6-diamidino-2-phenylindole for 15 min and washed 

again, then mounted onto slides with DABCO. Control treatments were carried out as 
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follows: 1) omission of the primary antibody for confirming the specificity of the 

secondary antibody, and 2) absorption of the primary antibody by a competing peptide for 

confirming the specificity of the primary antibody. Confocal images were acquired with 

an LSM 510 META confocal microscope (Carl Zeiss).  

Electrophysiological (patch-clamp) recording 

Patch-clamp experiments were performed and by Dr. Kiril Hristov, a post-doctoral fellow 

in Dr. Petkov’s lab. The amphotericin-B perforated patch-clamp technique was applied in 

all electrophysiological experiments to preserve the native physiological environment of 

the human DSM cells. Several drops ( 0.5 ml) of the DS containing the isolated single 

cells were placed in an experimental chamber. Cells were allowed to adhere to the glass 

bottom of the chamber for 20 min and after that were washed with extracellular 

solution. Most cells were elongated and had a bright, shiny appearance when examined 

with a phase-contrast microscope. Cells were used for patch-clamp recordings within 24 

h after isolation. Axopatch 200B amplifier, Digidata 1440 A, and pCLAMP 10.2 software 

(Molecular Devices) were used for electrophysiological recordings of the ionic currents. 

The signal was filtered with eight-pole Bessel filter 900CT/9L8L (Frequency Devises, 

Ottawa, IL). The glass pipettes used for patch-clamp experiments were made from 

Borosilicate glass (Sutter Instruments, Novato, CA) and pulled using a Narishige PP-830 

vertical puller (Narishige Group, Tokyo, Japan) to give a final tip resistance of 4–6 MΩ. 

The pipettes were polished with a Micro Forge MF-830 fire polisher (Narishige Group). 

All patch-clamp experiments were performed in voltage-clamp mode, in the presence of 

the large-conductance Ca
2+

-activated K
+
 (BK) channel selective inhibitor iberiotoxin (200 
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nM). The leak current was not subtracted during or after the experiments. The average 

value of the current amplitude during the last 50 ms of the 250-ms depolarization step 

was taken to evaluate the steady-state KV current. For the control current, at least five 

pulses within 10 min were recorded and averaged. Only cells with stable control currents 

for at least 10 min were used to examine the effect of ScTx1. All patch-clamp 

experiments were carried out at room temperature.  

Ca
2+

 imaging experiments  

These experiments were performed by Qiuping Cheng, a research associate in Dr. 

Petkov’s lab. For intracellular Ca
2+

 imaging experiments, 250 μl poly-l-lysine was added 

to each 35 mm diameter glass-bottom dish, incubated at 37°C for 1 h, then dishes were 

aspirated and washed with 2 ml sterile water three times. DSM cell suspension was added 

into the dishes and kept for 30 min to allow cell adherence to the bottom of the dishes. 

Fura-2 AM solution was diluted with bath solution to a final concentration of 2 μM. 

Supernatant was then removed from the dishes, 250 μl fura-2 AM working solution was 

added into the dishes, and samples were stored in a dark room for 30 min. Fura-2 AM 

bath solution was then removed and cells were washed with bath solution three times. 

Ca
2+

 imaging recordings were acquired with an OLYMPUS IX81 motorized inverted 

research microscope, with 40 × oil objective, equipped with the MetaFluor 7.7.2.0 

software. All Ca
2+

 imaging experiments were carried out at room temperature.  

Isometric human DSM tension recordings 

Isometric tension recordings were performed as described in chapter 2.2.  
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Solutions and drugs 

The Ca
2+

-free DS and the Ca
2+

-containing PSS compositions are described in chapter 2.2. 

The extracellular (bath) solution used in the electrophysiological and Ca
2+

-imaging 

experiments contained (in mM) 134 NaCl, 6 KCl, 1 MgCl2, 2 CaCl2, 10 glucose, and 10 

HEPES, pH adjusted to 7.4 with NaOH. The pipette solution contained (in mM) 110 

potassium aspartate, 30 KCl, 10 NaCl, 1 MgCl2, 10 HEPES, and 0.05 EGTA, pH adjusted 

to 7.2 with NaOH and supplemented with freshly dissolved (every 1–2 h) 200 μg/ml 

amphotericin-B. TTX was purchased from Sigma-Aldrich (St. Louis, MO). ScTx1 was 

purchased from Alomone Labs. TTX was dissolved in citrate buffer and ScTx1 was 

dissolved in distilled water.  

Data analysis and statistics 

Data analysis was performed as described in chapter 2.2. 
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RESULTS 

RT-PCR. 

The expression of mRNA messages for KV2.1, KV2.2, KV4.2 and KV9.3 channel subunits 

was detected in human DSM whole tissue (Fig. 5.1.1). Other cell types such as neurons, 

fibroblasts, and vascular myocytes are also present within the DSM layer. Thus, it is 

plausible that KV2.1, KV2.2, KV4.2, and KV9.3 channel detection may come from cell 

types other than DSM cells. To eliminate the possible interference from non-DSM cell 

types, we applied single-cell RT-PCR experiments on freshly isolated human DSM cells. 

This experimental approach allows us to use selectively only the isolated DSM cells 

while avoiding any contamination from non-DSM cells (1, 28, 30, 75, 77, 126). DSM 

cells were characterized by their elongated, spindle shape, with a bright and shiny 

contour. Single-cell RT-PCR experiments confirmed the mRNA expression of KV2.1, 

KV2.2, and KV9.3 channel subunits in human DSM single cells (Fig. 5.1.1). mRNA 

expression of the KV4.2 channel subunit was not confirmed in single DSM cells, 

suggesting that this channel subunit is not expressed in human DSM cells. A lack of 

genomic DNA contamination was also confirmed by performing negative control 

experiments in the absence of the reverse transcriptase (−RT). All RT-PCR purified 

products from the intact human DSM tissue and isolated human DSM cells were 

sequenced to confirm their identity. PCR products were purified using the GenElute PCR 

Clean-Up Kit (Sigma-Aldrich) and sequenced at the University of South Carolina 

Environmental Genomics Core Facility to confirm their identity. Results were verified in 

at least 30 different preparations obtained from 10 patients.  

  



 

156 

 

Figure 5.1.1. RT-PCR detection of mRNA messages for voltage-gated K+ channel subunits KV2.1, KV2.2, KV4.2, and 

KV9.3 in human detrusor smooth muscle (DSM) whole tissue (A) and freshly isolated single cells (B and C). KV2.1, 

334 bp; KV2.2, 537 bp; KV4.2, 417 bp; and KV9.3, 481 bp. No products were observed in the negative controls (−RT) 

in which reverse transcriptase was left out of the reaction. Data collected by Dr. Muyan Chen.  



 

157 

Western blot analysis 

To confirm the expression of these KV2-containing channels at the protein level in human 

DSM tissue, we applied Western blot analysis. The presence of the KV2.1 and KV2.2 

proteins in human DSM tissue was confirmed by using channel subunit-specific 

antibodies (Fig. 5.1.2). Consistent with our single cell RT-PCR data, no KV4.2 protein 

was detected in whole human DSM tissue. The specific antibodies for KV9.3 channel did 

not show any signal in whole human DSM (data not illustrated). Preabsorption of the 

primary antibody with its antigenic competing peptide indicated the specificity of the 

antibodies for their intended epitope (Fig. 5.1.2). The results were verified in three 

separate Western blot reactions using proteins isolated from three patients.  

 

Figure 5.1.2. Western blot detection of KV2.1 and KV2.2 channel protein expression in human DSM whole tissue. A: 

KV2.1 channel. B: KV2.2 channel. The immunoreactive band was eliminated by a competing peptide (+CP). Data 

collected by Dr. Muyan Chen. 
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Immunocytochemistry 

Immunocytochemical labeling was further applied to confirm the specific expression of 

KV2.1, and KV2.2 proteins at the level of single DSM cells and to demonstrate that the 

KV2 proteins were localized to the cell membrane (Fig. 5.1.3). The results were carefully 

controlled for specificity using the omission of the primary antibody or absorption of the 

primary antibody by a competing peptide (Fig. 5.1.3). The data were verified in 12 single 

DSM cells freshly isolated from three patients. 

 

  



 

159 

 

Figure 5.1.3. Immunocytochemical detection of KV2.1 (A) and KV2.2 (B) channel in freshly isolated single human 

DSM cells using KV2.1 and KV2.2 channel-specific antibody. Red staining (bottom left panels) indicates detection of 

KV2.1 channel (Aa) and KV2.2 channel (Ba); after absorption of the primary antibody with a competing peptide (Ab 

and Bb); and after the primary antibody was omitted and cells were incubated with the secondary antibody only 

(2°Control) (Ac). Cell nuclei are shown in blue (top left panels); F-actin is shown in green (top right panels). The 

merged images (bottom right) illustrate the overlap of all 3 images. Images were obtained via confocal microscope at 

×63 and clearly demonstrate that the KV2 channel proteins were localized to the cell membrane. Data collected by Dr. 

Muyan Chen.  
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ScTx1-sensitivity of the whole cell KV current in human DSM cells  

Our recent study revealed that KV2.1 and electrically silent KV channels sensitive to 

ScTx1 are likely important regulators of guinea pig DSM excitability (77). Here, we went 

one step further to evaluate the contribution of the KV2 channels sensitive to ScTx1 in 

human DSM excitability. Whole cell voltage-clamp experiments were performed in the 

presence of 200 nM iberiotoxin to eliminate the contribution of the BK current to the 

total whole cell current. The average capacitance of the human DSM cells was 26.5 ± 6.1 

pF (n = 4, N = 4). The cells were held at −70 mV, and then a 250-ms-long series of 

potentials between −70 mV and +30 mV were applied in 10-mV increments, and then the 

cells were repolarized back to −40 mV for another 250 ms. With increasing 

depolarization of the membrane potential, the human DSM cells responded with gradual 

increases of the whole cell current amplitude. Tail currents were recorded upon 

repolarization back to −40 mV (Fig. 5.1.4). Under these experimental conditions, ScTx1 

(100 nM) was applied to study the contribution of the ScTx1-sensitive current to the total 

KV current in human DSM. The results showed that ScTx1 (100 nM) caused significant 

inhibition of the whole cell current amplitude at positive voltages from +10 mV to +30 

mV (n = 4, N = 4; P < 0.05; Fig. 5.1.4). The remaining whole cell current, after 

application of the ScTx1, was probably determined by other types of KV channels. 

Current-voltage relationships of the control current and ScTx1-insensitive current are 

illustrated in Fig. 5.1.4B. Figure 5.1.4C represents the current-voltage relationship of the 

ScTx1-sensitive current (n = 4, N = 4). 
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Figure 5.1.4. Stromatoxin-1 (ScTx1) sensitivity of voltage-dependent whole cell KV current in freshly isolated 

human DSM cells. A: representative recordings of whole cell outward KV currents elicited by a depolarizing voltage 

step protocol (−70 mV to +30 mV in 10-mV increments) depicting the effect of ScTx1. ScTx1 (100 nM) significantly 

decreased the voltage step-induced outward current in human DSM cells. ScTx1-sensitive current was obtained after 

subtraction of the remaining ScTx1-insensitive current from the control current. B: current-voltage relationship in the 

presence or absence of 100 nM ScTx1. ScTx1 (100 nM) significantly decreased the whole cell outward KV current in 

human DSM cells (n = 4, N = 4; *P < 0.05). C: current-voltage relationship of the subtracted ScTx1-sensitive current in 

human DSM cells (n = 4, N = 4). Values are means ± SE. All experiments were performed in the presence of the large-

conductance Ca2+ activated K+ (BK) channel selective inhibitor iberiotoxin (200 nM). Data collected by Dr. Kiril 

Hristov.  
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Inhibition of ScTx1-sensitive KV2-containing channels increases intracellular Ca
2+

 

levels  

To determine the role of ScTx1-sensitive KV2-containing channels on the intracellular 

Ca
2+

 levels, live-cell real-time Ca
2+

 imaging was carried out with fura-2. As shown in 

Fig. 5.1.5, the intracellular Ca
2+

 level was significantly increased following application of 

100 nM ScTx1 (Fig. 5.1.5A). Under control conditions, the fluorescence ratio (340/380 

nM) was 0.84 ± 0.01 (n = 31, N = 7), and in the presence of 100 nM ScTx1, the 

fluorescence ratio increased to 0.92 ± 0.01 (n = 31, N = 7; Fig. 5.1.5B). Intracellular Ca
2+

 

level reached a plateau within 20 min following 100 nM ScTx1 application (Fig. 5.1.5A). 

Thus, inhibition of ScTx1-sensitive KV2-containing channels increases intracellular Ca
2+

 

levels in freshly isolated human DSM cells. 
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Figure 5.1.5. ScTx1 increases the intracellular free Ca2+ level in freshly isolated human DSM cells. A: original trace 

illustrating the increase in the intracellular free Ca2+ level following the application of 100 nM ScTx1. B: summary data 

showing a significant increase in the intracellular free Ca2+ level after application of 100 nM ScTx1. This increase in 

Ca2+ levels reached a plateau within the first 20 min following ScTx1 application. Values are means ± SE (n = 31, N = 

7; *P < 0.05; **P < 0.01). Data collected by Mr. Qiuping Cheng. 
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Role of ScTx1-sensitive KV2-containing channels in myogenic human DSM 

contractions  

ScTx1 was employed to investigate the potential functional role of KV2.1, KV2.2, and 

KV2.1/9.3 channels in human DSM spontaneous phasic contractions. Blocking these KV 

channels with ScTx1 (100 nM) significantly increased the DSM spontaneous phasic 

contraction amplitude and force (Fig. 5.1.6). Within the first 10-min period after ScTx1 

(100 nM) addition, the DSM spontaneous phasic contraction amplitude increased by 9.4 

± 4.3% and muscle force integral increased by 19.8 ± 10.9% (n = 16, N = 11; P < 0.05; 

Fig. 5.1.6). ScTx1 did not have any significant effects on the spontaneous phasic 

contraction frequency, phasic contraction duration, and muscle tone (n = 16; N = 11; P > 

0.05; Fig. 5.1.6).  
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Figure 5.1.6. ScTx1 increases the amplitude and force of the spontaneous phasic contractions in human DSM 

isolated strips. A: original DSM tension recordings illustrating the effect of ScTx1 (100 nM) on the spontaneous 

phasic contractions of human DSM isolated strips. B: summary data showing significant increases in human DSM 

spontaneous phasic contraction amplitude and force upon ScTx1 (100 nM) application. A 10-min period before ScTx1 

application was taken as a control. The spontaneous contractions under control conditions were taken to be 100% and 

data were normalized. The effect of ScTx1 was evaluated during the first 10 min following ScTx1 application. Values 

are means ± SE (n = 16; N = 11; *P < 0.05). TTX (1 μM) was present throughout the experiments. 
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Role of ScTx1-sensitive KV2 containing channels in nerve-evoked human DSM 

contractions  

In this experimental series, ScTx1 (100 nM) was employed to investigate the functional 

implication of KV2.1, KV2.2, and KV2.1/9.3 channels inhibition on EFS-induced 

contractions of human DSM strips (Fig. 5.1.7). ScTx1 (100 nM) significantly increased 

the amplitude of the EFS-induced contractions at all stimulation frequencies ranging from 

3.5 to 30 Hz (n = 24; N = 11; P < 0.05; Fig. 5.1.7). At 20 Hz EFS, ScTx1 (100 nM) 

increased the amplitude of the EFS-induced contraction by 18.6 ± 4.7% (n = 24, N = 11; 

P < 0.05; Fig. 5.1.7).  

Collectively, these results suggest that KV2.1, KV2.2, and KV2.1/9.3 channels work to 

oppose human DSM myogenic and nerve-evoked contractions. 
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Figure 5.1.7. ScTx1 increases the amplitude of the electrical field stimulation (EFS)-induced contractions in 

human DSM isolated strips. A: original traces of EFS-induced contractions (3.5–50 Hz) in the absence or presence of 

100 nM ScTx1 illustrating an increase of the amplitude of the contractions following 100 nM ScTx1 application. As 

illustrated, ScTx1 also induces spontaneous phasic contractions, consistent with the results illustrated in Fig. 6. B: 

frequency-response curves showing a significant increase in the amplitude of the EFS-induced contractions following 

application of ScTx1 (100 nM). The EFS-induced contraction amplitude at a stimulation frequency of 50 Hz under 

control conditions was taken to be 100%. Values are means ± SE (n = 24, N = 11; *P < 0.05, **P < 0.01, ***P < 

0.005). 
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DISCUSSION 

This study showed for the first time the expression and function of KV2-containing 

channels sensitive to ScTx1 in native human DSM. Specifically, we used a 

multidisciplinary experimental approach to demonstrate the expression of KV2.1 and 

KV2.2 channel subunits and the electrically silent KV9.3 channel subunit as well as their 

functional role in human DSM excitability and contractility.  

Our RT-PCR experiments revealed mRNA expression of KV2.1, KV2.2, KV4.2, and KV9.3 

channel subunits in whole human DSM tissue (Fig. 5.1.1). To avoid interference of 

mRNA signals from other cell types such as neurons, fibroblasts, and interstitial cells, we 

conducted single-cell RT-PCR experiments on freshly isolated human DSM cells. Unlike 

RT-PCR experiments on whole human DSM tissue, single-cell RT-PCR experiments 

revealed only the mRNA expression of KV2.1, KV2.2 and the electrically silent KV9.3 

channel subunits (Fig. 5.1.1). These results indicated clearly that human DSM cells 

express the KV2.1, KV2.2 and the silent KV9.3 channel subunits, but not KV4.2 channel 

subunit. Furthermore, our Western blot experiments confirmed the expression of KV2.1 

and KV2.2 channel subunits at the protein level (Fig. 5.1.2). Immunocytochemical 

experiments also demonstrated the protein expression of KV2.1 and KV2.2 channel in 

single human DSM cells and its cell membrane localization (Fig. 5.1.3). Although 

expressed at mRNA level, detection of the electrically silent KV9.3 subunit protein was 

not possible at this time because no selective KV9.3 antibody is commercially available to 

further confirm KV9.3 protein expression. Thus, we conclude that human DSM expresses 

KV2.1 and KV2.2 channel subunits, and at least mRNA of the electrically silent KV9.3 

channel subunit.  
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The next step was to investigate the role of KV2-containing channels in human DSM 

excitability. Earlier studies conducted by conventional patch-clamp technique indicated 

the presence of Ca
2+

 independent K
+
 current in human DSM cells, which was inhibited by 

the nonselective KV channel blocker 3,4-diaminopyridine (36). Here, for the first time, 

we provide electrophysiological data on KV2-containing channels in freshly isolated 

human DSM cells, using the amphotericin-perforated patch-clamp technique in 

physiological conditions with an intact intracellular environment. The main focus of our 

patch-clamp experiments was to evaluate the contribution of KV2-containing channels 

sensitive to ScTx1 in human DSM excitability. These experiments were performed 

following inhibition of the BK channels with 200 nM iberiotoxin. Under such 

experimental conditions the inhibitory effect of ScTx1 was significant at positive 

voltages from +10 mV to +30 mV (Fig. 5.1.4B), corresponding to the peak of the action 

potential in human DSM (57, 112). The results showed that ScTx1 significantly 

decreased the amplitude of the whole cell KV current in human DSM cells (Fig. 5.1.4). At 

more negative voltages, which correspond to the resting membrane potential in human 

DSM, ScTx1 did not significantly inhibit the whole cell KV current. This observation 

supports the concept that in human DSM cells KV2-containing channels most likely 

contribute to the repolarization phase of the action potential, rather than the resting 

membrane potential. The assumption that KV2 channels contribute to the repolarization 

phase of the action potential is consistent with recent reports, which showed no effect of 

ScTx1 on the resting membrane potential in guinea pig and mouse DSM (60, 77). 

Collectively, the findings suggest that KV2-containing channels sensitive to ScTx1 

contribute to human DSM excitability and are most likely involved in control of the 
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repolarization phase of the action potential in human DSM.  

In human DSM, CaV-channels are responsible for the initiation of the action potential (57, 

112). Here, we demonstrated that inhibition of the KV2-channels with ScTx1 significantly 

increases the intracellular Ca
2+

 levels in freshly isolated human DSM cells (Fig. 5.1.5). 

This increase of the intracellular Ca
2+

 is caused by inhibition of the ScTx1-sensitive KV2 

channels and most likely subsequent activation of CaV channels in human DSM cells. 

Our findings are supported by earlier studies showing that nonselective blockade of the 

KV channel with 4-AP causes an inhibition of the slow after-hyperpolarization, and 

increases the action potential frequency by activation of the CaV channels in human DSM 

(57). These results indicate a functional role of KV2-containing channels in providing a 

link between human DSM excitability, intracellular Ca
2+

 levels, and therefore 

contractility in human DSM.  

An increase in intracellular Ca
2+

 concentration is a key process required for activation of 

DSM spontaneous contractions. Several studies have demonstrated the importance of 

Ca
2+

 influx via CaV channels in the DSM contraction induced by muscarinic and 

purinergic stimulation (7, 158, 162). DSM spontaneous phasic contractions are myogenic 

in origin, and TTX (1 μM) does not affect these spontaneous phasic contractions (7, 60, 

145). Our data were consistent with these previous reports. For the purpose of the current 

study, we used TTX only as a precaution to block the transmission of the nerve impulses 

within the autonomic nerves. Our studies on human DSM contractility reveal that ScTx1 

significantly increased the spontaneous phasic contraction amplitude and force in human 

DSM isolated strips, consistent with our previous findings in rat and guinea pig DSM (29, 

77). However, ScTx1 did not cause any significant effect on spontaneous phasic 
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contraction frequency, phasic contraction duration, and muscle tone. In experimental 

animals a burst of action potentials triggers a single phasic contraction (58). If a similar 

mechanism operates in human DSM, one should expect that blocking of the KV2-

containing channel with ScTx1 would increase the frequency of the action potentials, and 

therefore the amplitude of the phasic contraction without any effect on the phasic 

contraction frequency.  

Davies et al. (36) showed an increase in the amplitude of the spontaneous phasic 

contractions of human DSM strips, without any effect on the phasic contraction 

frequency or muscle tone following KV1 channel inhibition with correolide or agiotoxin-

2. Collectively, our data indicate that by decreasing membrane excitability, KV2-

containing channels also oppose human DSM spontaneous phasic contractions under 

physiological conditions. Interestingly, ScTx1 had more profound effects on the 

spontaneous phasic contractions in guinea pig as compared with human DSM (77). This 

could be explained by the differential expression of the KV2-containing channels. Human 

DSM expresses both KV2.1 and KV2.2 channels whereas guinea pig DSM expresses only 

KV2.1 but not KV2.2 channels (77).  

We studied the nerve-evoked contractions by stimulating the DSM nerves with EFS (Fig. 

5.1.7). In both animal and human DSM, TTX (1 μM) completely eliminates the EFS-

induced contractions (8, 29, 56, 60). The TTX-sensitivity confirms the neuronal origin 

underlying the EFS-induced contractions. Our results also show that ScTx1 significantly 

increases the amplitude of EFS-induced contractions over a range of stimulation 

frequency from 3.5 to 30 Hz, indicating the functional role of these channels in human 

DSM nerve-evoked contractions. This is consistent with our earlier animal studies (29, 
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77), and revealed that KV2-containing channels also work to oppose human DSM 

contractility in response to excitatory neurotransmitters.  

Phosphorylation of the KV2-containing channels is now recognized as a major means of 

regulating their functional activity (84, 92). Our previous studies indicate a major role for 

protein kinase A in DSM function (22, 79, 134). It is likely that phosphorylation of the 

KV2-containing channels by protein kinase A also plays a role in regulating human DSM 

function, but this topic requires further investigation.  

The pathophysiology of OAB associated with detrusor overactivity is poorly understood, 

and the current treatment is limited to antimuscarinics that have many adverse effects (8). 

Therefore, a better understanding of the basic physiology of DSM is critical for 

developing novel therapeutic approaches against OAB. Compelling lines of evidence by 

our group and others have led us to now consider the KV2-containing channels as 

promising pharmacological targets for some types of bladder dysfunctions. In rat and 

guinea pig DSM, our laboratory has shown that pharmacological blockade of KV2-

containing channels with ScTx1 increased DSM contractility (29, 77). Other studies have 

also shown that rat detrusor hyperreflexia was associated with a significant decrease in 

KV2.1 channel mRNA levels (47). Therefore, mutations in KV2-containing channels 

would be expected to cause bladder dysfunction.  

The clinical significance of modulating the KV2-containing channels is twofold. 

Targeting the KV2-containing channels with channel opening agents will reduce detrusor 

overactivity and alleviate OAB. Alternatively, targeting KV2-containing channels with 

selective inhibitors may have the potential for increasing DSM contractility, and thus 

have clinical application for the treatment of some types of urinary retention due to 
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detrusor underactivity. Moreover, increasing KV2 channels expression by genetic 

manipulation can potentially reduce detrusor overactivity. To facilitate these novel 

therapeutic approaches, we first need to better understand KV2-containing channel 

expression, function, and regulation in human DSM. The present study has validated the 

family of KV2-containing channels as important physiological regulators of human DSM 

function. Importantly, such channels are potential pharmacological targets for the 

treatment of some highly prevalent urological disorders such as OAB and/or some types 

of urinary retention. Current pharmacological therapy for OAB consists of primarily 

antimuscarinic therapy which has limited efficacy and is associated with considerable 

side effects. Cholinergic agonists, the primary therapy for detrusor underactivity, have 

almost no efficacy. The development of KV2-channel modulators would have potential 

favorable effects on both of these conditions. However, development of such agents 

would require some degree of selectivity for the lower urinary tract as KV2-containing 

channel expression has been reported in some other smooth muscle tissues (3, 97, 135) as 

well as some other human tissues such as pulmonary artery (42, 135), neurons (84), and 

pancreatic delta cells (19). Thus, application of such agents for lower urinary tract 

conditions may result in collateral effects elsewhere. Clinical trials of KV2-containing 

channel modulators would need to be performed to validate such assumption and assess 

the efficacy and therapeutic safety window.  

 

CONCLUSION 

In conclusion, ScTx1-sensitive KV2-containing channels are expressed in human DSM. 

They control human DSM excitability, intracellular Ca
2+

 levels, and myogenic and nerve-
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evoked contractions. The KV2-containing channels may represent new targets for 

pharmacological or genetic manipulation of human DSM. This study is a fundamental 

basis for future investigation on human DSM tissues from patients with bladder 

pathologies which may help reveal the role of KV2-containing channels in the etiology of 

these bladder pathologies.   
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5.2 FUNCTIONAL IMPLICATIONS OF KV7 CHANNELS EXPRESSION IN 

GUINEA PIG DETRUSOR SMOOTH MUSCLE CONTRACTILITY 

 

ABSTRACT  

There has been increasing interest in Kv7 channels targeting drugs for the treatment of 

bladder dysfunctions since retigabine, a Kv7.2-7.5 channel activator normally prescribed 

in the treatment of epilepsy was shown to also cause urinary retention. In the present 

study, we examined the expression and functional roles of Kv7 channels in the detrusor 

smooth muscle (DSM) of guinea pigs. Kv7 channels molecular expressions were 

investigated using RT-PCR, qPCR, Western blot, and immunohistochemistry while their 

functional roles were investigated using isometric DSM tension recordings and Kv7 

channels modulators. In DSM isolated cells, we found that Kv7.1, Kv7.2, Kv7.3, and 

Kv7.5 channels mRNA expression was relatively higher compared to the Kv7.4 channel 

which was detected at non-physiological level.  Immunohistochemical analysis revealed 

protein expression for Kv7.1, Kv7.2, Kv7.3, and Kv7.5 channels but not the Kv7.4 

channel in DSM cells. L-364373, a selective Kv7.1 channel activator and retigabine, 

induced relaxation of spontaneous phasic contraction amplitude, muscle force, duration, 

frequency, and muscle tone as well as the 10 Hz electrical field stimulation (EFS)-

induced contraction amplitude and muscle force of DSM isolated strips in a 

concentration-dependent manner. Linopiridine and XE991, two Kv7 channel inhibitors, 

increased the spontaneous phasic as well as the 10 Hz EFS-induced contractions 

amplitude and muscle force of DSM isolated strips in a concentration-dependent manner. 

On EFS-induced contractions generated by a wide range of stimulation frequency (0.5 – 

50 Hz), we found that L-364373 (10 µM) and retigabine (10 µM) application decreased 
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the contraction amplitude while XE991 (10 µM) application increased the contraction 

amplitude. In summary, we revealed that among Kv7 channels, Kv7.1, Kv7.2, Kv7.3, and 

Kv7.5 channels but not the Kv7.4 channel are expressed in guinea pig DSM cells and that 

these channels regulate DSM spontaneous and nerve-evoked contractions. 
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INTRODUCTION 

The physiological roles of voltage-activated K
+
 (Kv) channels, one of the most diverse 

K
+
 channel family, in the detrusor smooth muscle (DSM) of mammals is emerging. More 

than 40 genes coding for Kv channels have been identified in the human genome (52, 

53), however, information about the expression and the functional roles of Kv channels in 

the DSM concerns only a fraction of these ion channels. In mouse and rat DSM, 

molecular, electrophysiological, and functional studies have demonstrated the expression 

and physiological roles of Kv2.1, Kv5.1, Kv6.1, Kv6.2, Kv6.3, Kv7.1, Kv7.4, and Kv7.5 

channels (29, 36, 47, 122, 136, 148, 149, 155). In guinea pig DSM isolated cells, studies 

suggest that Kv2.1, Kv6.2, Kv6.3, Kv8.2, Kv9.1, Kv9.2, and Kv9.3 channels are 

expressed at the mRNA level and that only Kv2-containing channels are physiologically 

active (74). Like in guinea pig DSM, the expression and physiological role of Kv 

channels in humans DSM is only limited to Kv2-containing channels (74). In humans, 

molecular evidence has confirmed the mRNA and protein expression of Kv2.1 and 

Kv.2.2 channels only (74). Regardless of the type of Kv channel investigated in the DSM, 

the general consensus suggest that activation of Kv channels hyperpolarizes the cell 

membrane and diminishes DSM excitability and contractility while their inhibition causes 

membrane depolarization and increase in DSM contractility via an elevation of 

intracellular Ca
2+

 concentration (4, 29, 36, 47, 74, 118, 122, 136, 148, 149). In recent 

years, retigabine, a third generation antiepileptic drug has become the focus of new 

investigation for bladder dysfunction. Retigabine is a Kv7.2-7.5 channel activator which 

is routinely prescribed to epileptic patients in order to restore physiological levels of 

neuronal excitability which is abnormally elevated in those patients (51, 85, 123). In 
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addition to retigabine effects on the central nervous system, clinical studies have reported 

that retigabine affects peripheral organs such as the urinary bladder by causing relaxation 

of the DSM which in certain patients lead to urinary retention (21, 51, 85, 123). This 

latter retigabine effect on the DSM has lead researchers to believe that Kv7 channels 

targeting compounds such as retigabine could potentially be useful in the treatment of 

overactive bladder (OAB), a pathophysiological condition which affects about 17% of the 

American population (85, 147). The Kv7 channel is a subfamily of the Kv channel 

family, and has five members or subtypes which are Kv7.1, Kv7.2, Kv7.3, Kv7.4, and 

Kv7.5 channels. Structurally, Kv7 channels are composed of six transmembrane domains 

and a pore loop forming one α-subunit that can assemble to form homo- or heterotetramer 

channels (51-53). Unlike the Kv7.1 channel, Kv7.2, Kv7.3, Kv7.4, and Kv7.5 channels 

possess a hydrophobic pocket outside the channel’s gate which allows allosteric binding 

of their modulators (51). In the present study, we investigated the molecular (mRNA 

messages and proteins) expression of all Kv7 channels subtypes (Kv7.1, Kv7.2, Kv7.3, 

Kv7.4, and Kv7.5 channels) in the DSM of guinea pigs. We further used Kv7 channel 

activators and blockers to determine whether the pharmacological modulation of Kv7 

channels affects DSM spontaneous and nerve-evoked contractions. The overall objective 

of this study was to investigate Kv7 channels expression and function in guinea pig DSM 

and therefore assess whether Kv7 channels could be promising drug target for the 

treatment of bladder dysfunctions. 
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MATERIAL AND METHODS 

Animal studies and DSM tissue harvesting  

Animal experiments were conducted as described in chapter 2.2. For this study, we used 

40 adult males Hartley-Albino guinea pigs, weighing on average 422.3±6.7 g.  

DSM cells isolation and collection 

Guinea pig DSM cells were isolated and collected as described in chapter 2.2. 

RT-PCR and qPCR experiments 

RT-PCR and qPCR experiments were conducted as previously described in chapter 2.2. 

We used previously published guinea pig primers sequences for Kv7.1 – 7.5 channels 

(116). The primers sequences and the size of the amplicon were as follows: Kv7.1- F: 5′-

ATTGTCCTGGTGGTGTTCTTTG-3′ and R: 5′-CCCCTGATGGCTGATGTGG-3′ (206 

bp); Kv7.2- F: 5′-TCTACGCCACCAACCTGTC-3′ and R: 5′-

TACATGGGCACCGTGACC-3′ (79 bp); Kv7.3- F: 5'-CTTGAAAACCGTCATCTGC-

3' and R: 5'-CAAGTTCACAGGGTCGTG-3' (124 bp); Kv7.4- F: 5'-

CGATGTCATGCCTGCTGTG-3' and R: 5'-GGTGTCCTGCTGAATACTGC-3' (137 

bp); Kv7.5- F: 5'-CGTCCGCACTCAGAAGTC-3' and R: 5'-

TCCAATGTACCAGGCTGTG-3' (137 bp); GAPDH- F: 5′-

TACGACAAGTCCCTCAAGATTG-3′ and R: 5′-TCTGGGTGGCAGTGATGG-3′ (139 

bp) (116). The parameters of the RT-PCR experiments were as follows: 5 min at 95 
o
C 

then amplified by 35 cycles (95 
o
C for 30 s, 58 

o
C for 30 s, 72 

o
C for 30 s) followed by a 
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5-min extension at 72 
o
C. The parameter of the qPCR experiments were as follows: Cycle 

1, 95 
o
C for 3 min; cycle 2, 95 

o
C for 10 s then 58 

o
C for 30 s (repeated 40 times); cycle 

3, 95 
o
C for 1 min; cycle 4, 58 

o
C for 1 min; cycle 5, 58 

o
C for 10 s with 0.5 

o
C increment 

(repeated 81 times to generate a melting curve). 

Western blot and immunohistochemistry  

Our western blot and immunohistochemistry experiments were conducted as described in 

chapter 2.2. We used the following primary antibodies: affinity-purified goat polyclonal 

antibodies anti-KCNQ1 (Kv7.1) (1:100), anti-KCNQ2 (Kv7.2) (1:100), anti-KCNQ3 

(Kv7.3) (1:100), anti-KCNQ4 (Kv7.4) (1:100), or anti-KCNQ5 (Kv7.5) (1:100) (Santa 

Cruz Biotechnology, Inc., Santa Cruz, CA). For the western blot experiment, donkey 

anti-goat IgG conjugated with horseradish peroxidase (diluted to 1:1,000) was used as a 

secondary antibody while Cy3-conjugated anti-goat IgG (1:100) (Jackson 

ImmunoResearch, West Grove, PA) was the secondary antibody used in the 

immunostaining experiments. Tissue sections were visualized under a confocal 

microscope LSM 700 META (Carl Zeiss, Germany) 63X objective. 

Isometric DSM tension recordings 

Isometric DSM tension recordings experiments are described in chapter 2.2. We activated 

Kv7 channels by applying increasing concentrations of L-364373 (100 nM – 100 μM), a 

selective Kv7.1 channel agonist or retigabine (100 nM – 100 μM), a Kv7.2 – 7.5 channel 

agonist at 10-min intervals. We also evaluated DSM spontaneous phasic contractions 

responses to Kv7 channels blockade with XE991 (100 nM – 30 μM), a Kv7.1 – 7.5 
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channel blocker; or linopiridine (100 nM – 30 μM), another Kv7.1 – 7.5 channel 

antagonist. In DSM strips which exhibited spontaneous phasic contraction amplitude less 

than 0.1 g, contractions were induced by electrical field stimulation (EFS) and TTX (1 

µM) was not added since TTX effectively suppresses EFS-induced contractions. On the 

10 Hz EFS-induced contractions, increasing concentrations (100 nM – 100 μM) of Kv7 

channel activators and inhibitors were applied as described above. On the 0.5 – 50 Hz 

EFS-induced contractions, a single concentration of Kv7 channel modulator was applied.   

Solutions and drugs 

The Ca
2+

-free dissection solution and the Ca
2+

-containing PSS composition are provided 

in chapter 2.2. L-364373, retigabine, XE991, and linopiridine were purchased from 

Tocris Bioscience (Bristol, UK). Stock solutions of L-364373, retigabine, and XE991 

were prepared daily in dimethyl sulfoxide (DMSO). The final DMSO concentration in 

the bath was not greater than 0.1%. Linopiridine was also prepared daily and dissolved in 

double-distillated water. 

Data analysis and statistics 

Data analysis and statistics were performed as described in chapter 2.2. 
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RESULTS 

Detection and relative expression level of mRNA messages for Kv7.1, Kv7.2, Kv7.3, 

Kv7.4, and Kv7.5 channels in guinea pig DSM  

We conducted RT-PCR and qPCR experiments on guinea pig DSM tissue and a poll of 

isolated DSM cells to investigate Kv7 channels mRNA expressions.  We used guinea pig 

brain as a positive control since previous studies have established that all Kv7 channel 

isoforms are expressed in guinea pig brain at the mRNA level (116). The RT-PCR 

experiments revealed mRNA expression for all Kv7 channel isoforms in guinea pig 

whole DSM tissue (N=4; Fig. 5.2.1A). Next, we conducted RT-PCR experiments on 

guinea pig DSM freshly isolated single cells to confirm that the mRNA messages 

detected in the whole DSM tissue originated from DSM cells but not from other non-

DSM cell types such as neurons, fibroblasts, vascular, and endothelial cells present 

within the DSM layers (1, 78, 127, 143, 165). Unlike whole DSM tissue, our RT-PCR 

analysis on guinea pig DSM isolated single cells showed mRNA expression for all Kv7 

channel isoforms except the Kv7.4 channel (N=4; Fig. 5.2.1A). RT-PCR experiments 

were conducted on DSM cDNAs equivalent to 100 ng of starting mRNA. Negative 

control experiments performed in the absence of the reverse transcriptase (-RT) 

demonstrated an absence of genomic DNA contamination. Following the RT-PCR 

experiments, we conducted qPCR analysis to determine the relative mRNA expression 

level for each Kv7 channel isoform in guinea pig DSM whole tissue and isolated single 

cells. In whole DSM tissue, we found that Kv7 channel isoforms relative mRNA level 

was as follows: Kv7.1 ≈ Kv7.2 > Kv7.3 ≈ Kv7.5 > Kv7.4 (N=4; p<0.05; Fig. 5.2.1B). 

When qPCR analysis was performed on a poll of isolated DSM cells, the relative mRNA 
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level for Kv7 channel isoforms was as follows: Kv7.1 ≈ Kv7.2 > Kv7.5 > Kv7.3 ≈ Kv7.4 

(N=4; p<0.05; Fig. 5.2.1B). These latter single-cell qPCR experiments confirmed the 

previous RT-PCR data and further suggest that the Kv7.1, Kv7.2, Kv7.3, and Kv7.5 are 

highly expressed at the mRNA level, whereas the Kv7.4 channel may not be 

physiologically expressed in guinea pig DSM cells. 

 

 

Figure 5.2.1. Kv7 channels mRNA expression in guinea pig DSM. A) Gel electrophoresis images illustrate RT-

PCR detection of all Kv7 channel subtypes including Kv7.1, Kv7.2, Kv7.3, Kv7.4, and Kv7.5 mRNA messages in 

whole DSM tissue (N=4). At the DSM single cell level, unlike other Kv7 channel isoforms (Kv7.1, Kv7.2, Kv7.3, and 

Kv7.5), the Kv7.4 channel mRNA message was not detected. Guinea pig brain was used as a positive control. No 

product was observed in the negative controls (-RT) in which reverse transcriptase was not added to the reaction. B) 

qPCR analysis show relatively low Kv7.4 channel mRNA expression in both DSM whole tissue (N=4) and DSM single 

cells (N=4). Data were normalized to GAPDH using the ΔCt method. Ct values are expressed as mean ± SE. 
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Guinea pig DSM cells express Kv7.1, Kv7.2, Kv7.3, and Kv7.5 but not Kv7.4 

channel proteins 

To assess whether the Kv7 channels previously found at the mRNA level using RT-PCR 

experiments were also expressed at the protein level, we performed both Western blot 

and immunostaining analysis on guinea pig whole DSM tissue. Western blot and 

immunostaining analysis were performed using specific antibodies against each Kv7 

channel isoform. Our Western blot data revealed that all Kv7 channel isoforms including 

Kv7.1, Kv7.2, Kv7.3, Kv7.4, and Kv7.5 channels proteins are expressed in guinea pig 

whole DSM tissue (N=3; Fig. 5.2.2) consistently with the RT-PCR data in guinea pig 

whole DSM tissue (Fig. 5.2.1A).  

  

Figure 5.2.2. Detection of Kv7.1, Kv7.2, Kv7.3, Kv7.4, and Kv7.5 channels protein expression in guinea pig 

whole DSM tissues by the Western blot technique. The expected molecular weight (MW) for all Kv7 channels 

isoforms including Kv7.1 (75 kDa), Kv7.2 (90 kDa), Kv7.3 (77 kDa), Kv7.4 (77 kDa), and Kv7.5 (99 kDa) channels 

was confirmed by the use of a protein ladder. Experiments were conducted in 3 separate Western blot reactions using 

protein isolated from 3 guinea pig whole DSM 
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Immunohistochemical experiments were performed to determine whether these Kv7 

channel proteins were localized in DSM cells. We used α smooth muscle actin antibody 

(ab21027, Abcam) to specifically stain DSM cells as previously published (143). We 

found protein expression for Kv7.1, Kv7.2, Kv7.3, and Kv7.5 channels in guinea DSM 

(Fig. 5.2.3). However, we did not detect protein expression for Kv7.4 channel in guinea 

pig DSM cells (Fig. 5.2.4) consistent with our single-cells RT-PCR data (N= 3; Fig. 

5.2.1A).  The specificity of every Kv7 channel isoform antibody was tested by incubating 

the primary antibody with its competing peptide (Fig. 5.2.5).  
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Figure 5.2.3. Confocal images illustrate Kv7.1 (A), Kv7.2 (B), Kv7.3 (C), and Kv7.5 (D) channels protein 

expression in mucosa-free guinea pig whole DSM tissue.  Kv7 channels proteins were detected by 

immunohistochemical reaction using channel’s specific antibodies. In all panels, α smooth muscle actin is shown in 

green; cells’ nuclei are shown in blue; the specific Kv7 channel subtype protein expression is represented by the red 

staining. The merged images of α smooth muscle actin, nuclei, and the Kv7 channel’s protein expression are illustrated 

in quadrant labeled “Merge”. Images were captured with a Carl Zeiss LSM 700 META confocal microscope (63x 

objective). Experiments were conducted on tissue samples isolated from 3 different guinea pigs.  
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Figure 5.2.4. Confocal images illustrate the lack of Kv7.4 channel protein detection in guinea pig DSM tissue. α 

smooth muscle actin is shown in green; Cells’ nuclei are shown in blue; the absence of red staining confirm that Kv7.4 

was not detected. The merged images of α smooth muscle actin and nuclei are illustrated in quadrant labeled “Merge”. 

Images were captured with a Carl Zeiss LSM 700 META confocal microscope (63x objective). Experiments were 

conducted on tissue samples isolated from 3 different guinea pigs. 
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Figure 5.2.5. Confocal images illustrate the lack of protein detection in the presence of competing peptides 

confirming the specificity of the primary antibody for Kv7.1 (A), Kv7.2 (B), Kv7.3 (C), and Kv7.5 (D) channels 

protein, respectively. In all panels, α smooth muscle actin is shown in green; Cells’ nuclei are shown in blue; the 

absence of red staining confirm the successful block of the primary antibody by its competing peptide. The merged 

images of α smooth muscle actin and nuclei are illustrated in quadrant labeled “Merge”. Images were captured with a 

Carl Zeiss LSM 700 META confocal microscope (63x objective). Experiments were conducted on tissue samples 

isolated from 3 different guinea pigs.  
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Pharmacological activation of Kv7 channels causes relaxation of spontaneous phasic 

and tonic contractions of guinea pig DSM isolated strips 

We investigated the spontaneous phasic and tonic contractions responses to Kv7 channels 

activation with L-364373, a selective Kv7.1 channel agonist, and retigabine, a Kv7.2-7.5 

channel agonist in guinea pig DSM isolated strips. We found that L-364373 (100 nM – 

100 μM) effectively decreased the spontaneous phasic and tonic contractions of guinea 

pig DSM isolated strips (Fig. 5.2.6). Our data showed that L-364373 (100 nM – 100 μM) 

attenuated the spontaneous phasic contractions amplitude, muscle force, frequency, 

duration, and muscle tone of guinea pig DSM isolated strips in a concentration-dependent 

manner (n=7, N=4; Fig. 5.2.6B and Table 5.2.1).  
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Figure 5.2.6. L-364373, a selective Kv7.1 channel activator causes relaxation of spontaneous phasic contraction 

amplitude, muscle force, frequency, duration, and muscle tone in guinea pig DSM isolated strips. A) This original 

DSM tension recording illustrates L-364373 (100 nM – 100 µM) relaxant effect on spontaneous phasic contractions of 

DSM isolated strips in a concentration-dependent manner. B) Cumulative concentration-response curves showing 

significant reduction in DSM spontaneous phasic contraction amplitude, muscle force, frequency, duration, and muscle 

tone following L-364373 application. The 5-min control period prior to L-364373 addition was taken to be 100 % and 
data were normalized (n=7, N=4). TTX (1 µM) was present throughout the experiments. 
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Compound  Amplitude Muscle Force Frequency Duration Muscle tone 

L-364373 4.8 (2.0 - 11.7) 

µM  

16.0 ± 6.8% 

4.1 (1.2 - 13.9) 

µM   

13.2 ± 6.0% 

N/A    

46.4 ± 12.2% 

N/A    

46.8 ± 12.7% 

N/A   

54.4 ± 7.7% 

Retigabine 2.3 (1.4 – 3.5) µM 

0.7 ± 0.7% 

2.1 (1.3 – 3.4) 

µM   

0.2 ± 0.2% 

14.0 (4.3 – 46.1) 

µM   

11.2 ± 11.2% 

8.7 (5.6 – 13.4) 

µM    

0.4 ± 0.4% 

3.5 (0.1–17.3) 

µM 

76.4 ± 14.9% 

XE991 4.5 (0.4 – 54.6) 

µM   

212.9 ± 42.2% 

2.3 (0.1 – 49.3) 

µM   

233.3 ± 66.2% 

No effect No effect No effect 

Linopiridine 11.5 (1.0 – 127.0) 

µM   

415.1 ± 75.9% 

10.7 (0.9 –

132.5) µM   

415.1 ± 

110.4% 

No effect No effect No effect 

 

Table 5.2.1.  IC50 values and maximum effects of Kv7 channels modulators on spontaneous phasic and tonic 

contractions of guinea pig isolated strips. IC50 values (in µM) are reported as means (95% confidence interval); 

Maximum inhibition values for L-364373 and retigabine were determined at concentrations equal to 100 μM.  

Maximum increase values for XE991 and linopiridine were determined at concentrations equal to 30 μM. 

Values are reported as percentages of means ± SEM in comparison to control condition (taken to be 100%). 

N/A = not applicable. 
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In comparison to L-364373, retigabine had a more pronounced effect on DSM 

spontaneous phasic and tonic contractions. Retigabine (100 nM – 100 μM) inhibited the 

spontaneous phasic contraction amplitude, muscle force, frequency, duration, and muscle 

tone of guinea pig DSM isolated strips in a concentration-dependent manner (Fig. 5.2.7). 

At the maximal concentration of 100 μM, retigabine almost completely abolished the 

phasic contractions amplitude, muscle force, frequency, and duration while the effect on 

muscle tone was less pronounced (n=7, N=6, Fig. 5.2.7B and Table 5.2.1).  Table 5.2.1 

shows the different IC50 values for L-364373 and retigabine effects on guinea pig DSM 

isolated strips spontaneous phasic contractions amplitude, muscle force, frequency, 

duration, and muscle tone. These results suggest that Kv7 channels activation leads to 

inhibition of the spontaneous phasic and tonic contractions in guinea pig DSM isolated 

strips.  
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Figure 5.2.7. Retigabine, a Kv7.2 – 7.5 channel activator causes relaxation of spontaneous phasic contraction 

amplitude, muscle force, frequency, duration, and muscle tone in guinea pig DSM isolated strips. A) This original 

DSM tension recording illustrates retigabine (100 nM – 100 µM) inhibitory effect on spontaneous phasic contractions 

of DSM isolated strips in a concentration-dependent manner. B) Cumulative concentration-response curves showing 

significant reduction in DSM spontaneous phasic contraction amplitude, muscle force, frequency, duration, and muscle 

tone following retigabine application. The 5-min control period prior to retigabine addition was taken to be 100 % and 

data were normalized (n=7, N=6). TTX (1 µM) was present throughout the experiments.  



 

194 

Pharmacological blockade of Kv7 channels enhances spontaneous phasic and tonic 

contractions of guinea pig DSM isolated strips 

We investigated the effects of pharmacological inhibition of Kv7 channels on 

spontaneous phasic and tonic contractions of DSM isolated strips. We used XE991 and 

linopiridine, two Kv7.1-7.5 channel antagonists. We found that XE991 (100 nM – 30 

μM) enhanced the spontaneous phasic contraction amplitude and muscle force of DSM 

isolated strips in a concentration-dependent manner without statistically significant 

effects on contraction frequency, duration, and muscle tone (Fig. 5.2.8A-B). At the 

maximal concentration of 30 μM, XE991 effects on the spontaneous phasic contractions 

amplitude and force compared to control were 212.9±42.2 % and 233.3±66.2%, 

respectively (n=8, N=5, Fig. 5.2.8B and Table 5.2.1).  We found that pharmacological 

blockade of Kv7 channels with linopiridine (100 nM – 100 μM) also increased phasic 

contraction amplitude and muscle force in a concentration-dependent manner (Fig. 

5.2.8C-D). At the maximal concentration of 30 μM, linopiridine effects on the 

spontaneous phasic contraction amplitude and muscle force compared to control were 

415.1±75.9% and 415.0±110.4%, respectively (n=7, N=5, Fig. 5.2.8D and Table 5.2.1).  

Table 5.2.1 shows the different IC50 values for XE991 and linopiridine effects on 

spontaneous phasic contractions amplitude and muscle force of DSM isolated strips. 

These data suggest that Kv7 channels blockade enhances the spontaneous phasic 

contractions in guinea pig DSM isolated strips.  
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Figure 5.2.8. XE991 and linopiridine, two Kv7.1 – 7.5 channel blockers increase spontaneous phasic contraction 

amplitude and muscle force in guinea pig DSM isolated strips. Original DSM tension recordings illustrate that 

XE991 (100 nM – 30 µM) (A) and linopiridine (100 nM – 30 µM) (C) application enhance spontaneous phasic 

contractions in guinea DSM isolated strips in a concentration-dependent manner. Cumulative concentration-response 

curves show significant increase in DSM spontaneous phasic contractions amplitude and muscle force following 

XE991 (B; n=8, N=5) and linopiridine (D; n=7, N=5) application. The 5-min control period prior to XE991 or 

linopiridine addition was taken to be 100 % and data were normalized. TTX (1 µM) was present throughout the 

experiments.  
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Pharmacological activation of Kv7 channels inhibits EFS-induced contractions of 

guinea pig DSM strips in a concentration-dependent manner 

We investigated the effects of L-364373 and retigabine on the amplitude, muscle force, 

duration, and muscle tone of EFS-induced DSM contractions generated by 10 Hz/min 

EFS in DSM isolated strips. We found that L-364373 attenuated 10 Hz EFS-induced 

contractions of DSM isolated strips in a concentration-dependent manner (Fig. 5.2.9A-

B). L-364373 (100 nM-100 µM) decreased the amplitude and muscle force of the 10 Hz 

EFS-induced contractions without any significant effect on contraction duration and 

muscle tone (n=6, N=4; Fig. 5.2.9B and Table 5.2.2). Similarly to L-364373 effect, 

retigabine (100 nM–100 µM) also decreased the 10 Hz EFS-induced contraction 

amplitude and muscle force in a concentration-dependent manner (Fig. 5.2.9C-D). At 

higher concentrations, retigabine was more effective than L-364373 at reducing the 

amplitude and muscle force of the 10 Hz EFS-induced contractions of DSM isolated 

strips since retigabine (100 µM) completely inhibited the amplitude and muscle force of 

the 10 Hz EFS-induced contractions (n=9, N=8; Fig. 5.2.9D and Table 5.2.2). These data 

suggest that pharmacological activation of Kv7 channels attenuates nerve-evoked 

contractions in guinea pig DSM isolated strips. 
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Figure 5.2.9. Kv7 channels activation with L-364373 or retigabine reduces the 10 Hz EFS-induced contractions 

in guinea pig DSM isolated strips. Original DSM tension recordings illustrate L-364373 (100 nM – 100 µM) (A) and 

retigabine (100 nM – 100 µM) (C) inhibitory effects on DSM 10 Hz EFS-induced contractions, respectively. 

Cumulative concentration-response curves show that L-364373 (B; n=6, N=4) and retigabine (D; n=9, N=8) attenuate 

guinea pig DSM 10 Hz EFS-induced contraction amplitude and muscle force in a concentration dependent-manner. 
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Table 5.2.2.  IC50 values and maximum effects of Kv7 channels modulators on 10 Hz EFS induced contractions 

of guinea pig isolated strips. IC50 values (in µM) are reported as means (95% confidence interval); Maximum 

inhibition values for L-364373 and retigabine were determined at concentrations equal to 100 μM.  Maximum increase 

values for XE991 and linopiridine were determined at concentrations equal to 30 μM. Values are reported as 

percentages of means ± SEM in comparison to control condition (taken to be 100%). N/A = not applicable.  

Compound  Amplitude Muscle force Duration Muscle tone 

L-364373 23.1 (8.7 – 61.2) 

µM  

28.0 ± 6.0% 

24.9 (7.3 – 

84.3) µM   

37.2 ± 10.7% 

No effect No effect 

Retigabine  9.7 (6.9 – 13.9)  

µM 

1.0 ± 0.7% 

10.1 (6.7 – 

15.1) µM   

0.3 ± 0.2% 

No effect No effect 

XE991 0.6 (0.1 – 5.6) 

µM   

155.3 ± 16.4% 

1.4 (0.2 – 9.8) 

µM   

180.5 ± 24.2% 

No effect No effect 

Linopiridine N/A   

144.0 ± 20.1% 

N/A   

130.1 ± 13.1% 

No effect No effect 
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Pharmacological blockade of Kv7 channels increases EFS-induced contractions of 

guinea pig DSM strips in a concentration-dependent manner: We used XE991 and 

linopiridine, two Kv7 channel blockers to assess the change in 10 Hz EFS-induced 

contractions in guinea pig DSM isolated strips upon Kv7 channels blockade. The data 

showed that XE991 (100 nM–30 µM) effectively enhanced the amplitude and muscle 

force of the 10 Hz EFS-induced contractions of guinea pig DSM isolated strips in a 

concentration-dependent manner (Fig. 5.2.10A-B). At the maximal concentration of 30 

μM, XE991 effects on the 10 Hz EFS-induced contractions amplitude and muscle force 

compared to control were 155.3±16.4% and 180.5±24.2%, respectively (n=9, N=7, Fig. 

5.2.10B and Table 5.2.2).  We also found that similarly to XE991, linopiridine (100 nM–

30 µM) also increased guinea pig DSM isolated strips 10 Hz EFS-induced contraction 

amplitude and muscle force in a concentration-dependent manner (n=6, N=5; Fig. 

5.2.10C-D and Table 5.2.2). At the maximal concentration of 30 μM, linopiridine effects 

on the 10 Hz EFS-induced contraction amplitude, force, and muscle tone compared to 

control were 144.0±20.1%, 130.1±13.1%, and 159.3±28.6%, respectively (n=6, N=5, 

Fig. 5.2.10D and Table 5.2.2). These data suggest that pharmacological blockade of Kv7 

channels enhances nerve-evoked contractions in guinea pig DSM isolated strips. 
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Figure 5.2.10. Kv7.1 – 7.5 channels blockade with XE991 or linopiridine increases the 10 Hz EFS-induced 

contractions in guinea pig DSM isolated strips. The original DSM tension recordings illustrate that XE991 (100 nM 

– 30 µM) (A) and linopiridine (100 nM – 30 µM) (C) enhance guinea pig DSM 10 Hz EFS-induced contractions. 

Cumulative concentration-response curves show that XE991 (B; n=9, N=7) and linopiridine (D; n=6, N=5) increases 

DSM 10 Hz EFS-induced contraction amplitude and muscle force in a concentration dependent-manner.  
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Activation of Kv7 channels with retigabine and L-364373 decreases the amplitude of 

the EFS-induced DSM contractions in a wide range of stimulation frequencies 

We addressed how activation of Kv7 channels modulates DSM nerve-evoked 

contractions in response to a wide range of EFS frequencies in guinea pig DSM isolated 

strips. We first applied increasing EFS frequencies (0.5–50 Hz) as a control protocol, 

followed by the addition of a single concentration of L-364373 (10 µM) or retigabine (10 

μM) (Fig. 5.2.11 A-B). Then, a second EFS protocol was applied to evaluate the 

compound effects on the EFS-induced contractions. We found that in guinea pig DSM 

isolated strips, L-364373 (10 µM) inhibited the 0.5 – 50 Hz EFS-induced contractions. L-

364373 (10 µM) significantly attenuated the amplitude of the EFS-induced contractions 

at stimulation frequencies ranging between 7.5 and 50 Hz (n=7, N=4, p<0.05; Fig. 

5.2.11A). At the maximum EFS frequency of 50 Hz, L-364373 (10 µM) reduced the 

contraction amplitude to 67.3±4.8% in comparison to control (n=7, N=4; p<0.05; Fig. 

5.2.11A). Retigabine (10 µM) significantly decreased the amplitude of the EFS-induced 

contractions at stimulation frequencies ranging between 12.5 and 50 Hz (n=6, N=4, 

p<0.05; Fig. 5.2.11B). At the maximum EFS frequency of 50 Hz, retigabine (10 µM) 

reduced the contraction amplitude to 76.4±10.8% in comparison to control (taken to be 

100%) (n=6, N=4; p<0.05; Fig. 5.2.11B). These data suggest that activation of Kv7 

channels reduces guinea pig DSM nerve-evoked contractions induced by EFS at a wide 

range of stimulation frequencies. 

Kv7 channels inhibition with XE991 increases the amplitude of the 0.5 – 50 Hz EFS-

induced DSM contractions: XE991, a Kv7.1-7.5 channel blocker was used to 

investigate nerve-evoked contractions responses to Kv7 channel blockade. We employed 
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the same experimental approach as described above for the Kv7 channel activators (Fig. 

5.2.11A-B). The data showed that in DSM isolated strips, XE991 (10 µM) significantly 

increased the amplitude of the EFS-induced contractions at stimulation frequencies 

ranging between 5.0 and 20 Hz (n=8, N=5, p<0.05; Fig. 5.2.11C). The maximum 

increase in the amplitude of the EFS-induced contraction was observed at 12.5 Hz 

frequency where XE991 (10 µM) increased the contraction amplitude by ~20% (n=8, 

N=5; p<0.05; Fig. 5.2.11C). These data suggest that inhibition of Kv7 channels enhances 

guinea pig DSM nerve-evoked contractions induced by EFS at a wide range of 

stimulation frequencies. 

 

 

Figure 5.2.11. Effects of Kv7 channel modulators on the 0.5 – 50 Hz EFS-induced contractions in guinea pig 

DSM isolated strips. Original DSM tension recordings and frequency-response curves illustrate L-364373 (A; n=7, 

N=4) and retigabine (B; n=6, N=4) inhibitory effect on the 0.5 – 50 Hz EFS-induced contractions amplitude. C) 

Original DSM tension recordings and frequency-response curves reveal that XE991 enhances the 0.5 – 50 Hz EFS-

induced contraction amplitude (n=8, N=5). The maximal EFS-induced contraction amplitude at a stimulation frequency 

of 50 Hz under control conditions was taken to be 100 % and the contractions were normalized (*p<0.05, **P<0.01, 

***P<0.005).  
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DISCUSSION 

The present study reveals that Kv7.1, Kv7.2, Kv7.3, and Kv7.5 channels are expressed at 

both mRNA and protein levels in guinea pig DSM cells. Additionally, we demonstrate 

that these channels are functional as evidenced by the decrease in DSM contractility upon 

channels activation with L-364373 and retigabine; and the increase in DSM contractility 

when Kv7 channels were blocked by XE991 or linopiridine. The lack of Kv7.4 channel 

expression in guinea pig DSM cells at both mRNA and protein level further suggest that 

the observed changes in DSM contractility subsequent to various Kv7 channels 

modulators application were mediated via the other Kv7 channel isoforms (Kv7.1, Kv7.2, 

Kv7.3, and Kv7.5) but not the Kv7.4 channel. 

Our RT-PCR experiments performed on a poll of enzymatically-isolated guinea pig DSM 

cells demonstrate the mRNA expression of Kv7.1, Kv7.2, Kv7.3, and Kv7.5 channels but 

not the Kv7.4 channel. Further qPCR experiments validated the RT-PCR findings since 

the relative mRNA message expression of the Kv7.4 channel was extremely low 

compared to the others Kv7 channel subtypes. These two experimental series combined 

suggest that in the guinea pig DSM cells, only Kv7.1, Kv7.2, Kv7.3, and Kv7.5 channels 

are expressed at the mRNA level. The Kv7 channels mRNA expression pattern that we 

revealed in the present study is slightly different from previous studies in rat DSM where 

only Kv7.4, Kv7.5, and arguably Kv7.1 channels are suggested to be expressed at the 

mRNA level (121, 149). The protein expression of Kv7.1, Kv7.2, Kv7.3, and Kv7.5 

channels in guinea pig DSM cells was further demonstrated via immunostaining. Using a 

specific antibody against each Kv7 channel isoform, α smooth muscle marker, and a 

confocal microscope, we demonstrated Kv7.1, Kv7.2, Kv7.3, and Kv7.5 channels protein 
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expression in guinea pig DSM cells. Consistently with the single-cell RT-PCR and qPCR 

data, we find no protein expression for the Kv7.4 channel in guinea pig DSM cell using 

immunostaining approach suggesting that only the Kv7.1, Kv7.2, Kv7.3, and Kv7.5 

channels are expressed in guinea pig DSM cells at the protein level. In absolute contrast 

to the Kv7 channel protein expression pattern in guinea pig DSM cell, Svalo et al. have 

found that in rat DSM, only the Kv7.4 channel protein was expressed, outlining important 

species differences (149). Our findings represent the first molecular evidence for Kv7 

channels expression in guinea pig DSM.  

Next, we investigated the physiological roles of these Kv7 channels in the DSM of 

guinea pigs. In most mammals including guinea pigs, the micturition process comprises a 

filling and a voiding phase. During the filling phase, the DSM appears relaxed allowing 

the bladder to store large amount of urine while during the voiding phase, the DSM 

contracts forcefully to expel the stored urine (7, 15, 130). K
+
 channels have been 

demonstrated to be involved in both phases of the micturition process. Studies suggest 

that during the filling phase, K
+
 channels remain opened causing cell membrane 

hyperpolarization and therefore limiting Ca
2+

 influx via L-type Cav channels (7, 15, 130). 

The low intracellular Ca
2+

 level is responsible for keeping the DSM in a relaxed state. 

However, during the voiding phase, K
+
 channels are closed causing cell membrane 

depolarization; L-type Cav channels become activated and opened to allow influx of Ca
2+

. 

The increase of intracellular Ca
2+

 concentration will further lead to DSM contraction (7, 

15, 130). Our study reports that pharmacological activation of Kv7 channels with L-

364373 and retigabine relaxes guinea pig DSM spontaneous phasic and tonic 

contractions. We also report that Kv7 channels blockade with XE991 or linopiridine 
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increases DSM spontaneous phasic contractions. Therefore, our findings suggest that Kv7 

channels are major regulators of guinea pig DSM contractility and that Kv7 channels are 

involved in both phases of the micturition process. Our findings are in line with previous 

reports which demonstrated that intravesical administration of retigabine increased 

micturition volume and voiding intervals in freely moving conscious rats (148). In 

conscious rats with capsaicin-induced irritated bladders, retigabine was shown to strongly 

reduce bladder rings contractility, reduce bladder pressure, and delay voiding, plus the 

retigabine effect on bladder rings was blocked by XE991 (149).  

Kv7 channels regulatory roles on neurogenic contractions were also addressed in our 

study. It is well-established that DSM contractions also have neurogenic origins. In 

mouse, rat, guinea pig, and human, DSM contractions can be initiated by the combined 

action of acetylcholine and ATP, two major excitatory neurotransmitters released from 

the parasympathetic nerves (59, 64, 161). ATP activates P2X receptors while 

acetylcholine stimulates M2/M3 muscarinic receptors to induce DSM contractions (24, 

59, 64, 105, 119, 161). We found that Kv7 activation with L-364373 and retigabine 

decreased the amplitude and muscle force of the guinea pig DSM EFS-induced 

contractions in a concentration-dependent manner. Neurogenic contractions were 

generated by EFS frequency of 10 Hz/min. We also found that pharmacological blockade 

of Kv7 channels with XE991 or linopiridine enhanced DSM 10 Hz EFS-induced 

contractions amplitude and muscle force in a concentration-dependent manner. Therefore 

our data suggest that Kv7 channels play an important regulatory role in guinea pig DSM 

neurogenic contractions. The retigabine effect on EFS-induced contractions reported in 

our study is somehow similar to previous studies in rats DSM (136). The aforementioned 
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study reported that retigabine (1 – 30 μM) inhibited EFS-induced contraction amplitude 

generated by 20 Hz in a concentration-dependent manner (136). The authors also 

reported that the retigabine relaxant effects on the EFS-induced contractions were 

antagonized by 10 μM XE991 suggesting that Kv7 channels, more precisely Kv7.4 and 

Kv7.5 channels, regulate rat DSM neurogenic contractions since only Kv7.4 and Kv7.5 

but not Kv7.1, Kv7.2, and Kv7.3 channels were present at the mRNA level in rat bladder  

(121, 136).  

We also found that Kv7 channel regulate both the cholinergic and the purinergic 

components of the guinea pig DSM EFS-induced contractions. Studies have 

demonstrated that at EFS frequencies ≤ 20 Hz, the purinergic (ATP) pathway plays a 

greater role whilst at EFS frequencies ≥ 20 Hz, the cholinergic (acetylcholine) component 

predominates (64, 161). Our data showed that L-364373 (10 μM) and retigabine (10 μM) 

inhibited the 0.5 – 50 Hz EFS-induced contraction amplitude while XE991 (10 μM) 

application enhanced the 0.5 – 50 Hz EFS-induced contraction amplitude. The ability of 

these Kv7 channels modulators to affect guinea pig DSM EFS-induced contractions (0.5 

– 50 Hz) commands that Kv7 channels control the purinergic and the cholinergic 

components of the neurogenic contractions in guinea pig DSM. 

CONCLUSION 

In summary, our study reveals that Kv7 channels are major regulators of guinea pig DSM 

physiology as evidenced by their ability to control spontaneous phasic and EFS-induced 

contractions. The changes in guinea pig DSM contractility observed after application of 

various Kv7 channels modulators were mediated via Kv7.1, Kv7.2, Kv7.3, and Kv7.5 
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channels but not Kv7.4 channel since our molecular data showed mRNA and protein 

expression for Kv7.1, Kv7.2, Kv7.3, and Kv7.5 channels but not Kv7.4 channel in guinea 

pig DSM cells. Kv7 channels could therefore represent promising drug targets for the 

treatment of bladder dysfunctions. 
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5.3. MOLECULAR AND FUNCTIONAL CHARACTERIZATION OF KV7 

CHANNELS IN HUMAN DETRUSOR SMOOTH MUSCLE 

 

OBJECTIVES 

In the previous section (chapter 5.2), we examined the expression and functional roles of 

Kv7 channels in the detrusor smooth muscle (DSM) of guinea pigs using RT-PCR, 

qPCR, Western blot, immunohistochemistry and isometric DSM tension recordings 

approaches. We found that among Kv7 channels, Kv7.1, Kv7.2, Kv7.3, and Kv7.5 

channels but not the Kv7.4 channel were expressed at both mRNA and protein level in 

guinea pig DSM cells. We also found that their pharmacological activation with L-

364373 and retigabine or their inhibition with XE991 and linopiridine affected DSM 

spontaneous and nerve-evoked contractions suggesting that these channels play a key role 

in guinea pig DSM contractility. We therefore proposed that Kv7 channels could 

represent promising drug targets for the treatment of bladder dysfunctions.  In the present 

section, we went a step further by testing our hypothesis in humans. Given that human is 

the ultimate subject of study and that animal findings cannot always been translated into 

humans because of species differences, here, we investigated the expression and the 

functional roles of all Kv7 channels in human DSM tissue. In the following paragraphs, 

preliminary data on the expression and roles of Kv7 channels will be succinctly 

presented. 
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MATERIALS AND METHODS 

Human DSM tissue collection  

DSM tissue collection is described in chapter 2.2. In total, we used DSM tissue samples 

from 11 (8 males and 3 females) patients (55-79 years old; average age 65.8±2.2) without 

a history of OAB. 

Detection and quantification of Kv7 channels mRNA message by RT-PCR and 

qPCR  

RT-PCR and qPCR experiments were conducted as previously described in chapter 2.2. 

The primers sequences and the size of the amplicon were as follows: Kv7.1- F: 5′- 

CTTGATGCGCACCATGAGGTTG-3′ and R: 5′- ACACCCATCACCCACATCTCAC-

3′ (180 bp); Kv7.2- F: 5′- CGAAGTACTCCACGCCAAACAC-3′ and R: 5′- 

TTCCTCTACAACGTGCTGGAGC-3′ (190 bp); Kv7.3- F: 5'- 

GAGACGTAGCATCACGCGAGAC-3' and R: 5'- TCCGTGTCTGTGTCCGTCTCAC-

3' (195 bp); Kv7.4- F: 5'- TGCTGGCTTCGCCTTACTGG-3' and R: 5'- 

TACCAGGTGGCTGTCAGGTAGG-3' (201 bp); Kv7.5- F: 5'- 

ACGCGCTTAGCCCTACTATGC-3' and R: 5'- CAGATGCTTGATGGCTGGGAG-3' 

(173 bp); GAPDH- F: 5′- GGATTTGGTCGTATTGGG-3′ and R: 5′- 

GGAAGATGGTGATGGGATT-3′ (205 bp) . The parameters of the qPCR experiments 

were as follows: Cycle 1, 95 
o
C for 3 min; cycle 2, 95 

o
C for 10 s then 58 

o
C for 30 s 

(repeated 40 times); cycle 3, 95 
o
C for 1 min; cycle 4, 58 

o
C for 1 min; cycle 5, 58 

o
C for 

10 s with 0.5 
o
C increment (cycle 5 was repeated 81 times to generate a melting curve). 
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Isometric DSM tension recordings  

These series of experiments were performed as previously described in chapter 2.2. 

Solutions and drugs 

The Ca
2+

-free dissection solution and the Ca
2+

-containing PSS had the same compositions 

as previously described in chapter 2.2. Retigabine and XE991 were purchased from 

Tocris Bioscience (Bristol, UK) and stock solutions were prepared daily in dimethyl 

sulfoxide (DMSO). The final DMSO concentration in the bath was not greater than 0.1%. 

Data analysis and statistics 

Data analysis and statistical analysis were performed as previously described in chapter 

2.2. 
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RESULTS 

Kv7.4 and Kv7.5 channels but not Kv7.1, Kv7.2, and Kv7.3 channels are expressed 

in human DSM cells at the mRNA level 

The RT-PCR experiments revealed that amongst Kv7 channels, only Kv7.1, Kv7.4, and 

Kv7.5 channels was found in human whole DSM tissue while at the DSM single cells 

level, Kv7.4 and Kv7.5 channels but not Kv7.1 channel was identified at the mRNA level 

(N=4; Fig. 5.3.1A). The unique advantage of conducting RT-PCR experiments on freshly 

isolated single cells is that this approach eliminates possible contamination from other 

non-DSM cells such as neurons, fibroblasts, vascular, and endothelial cells present within 

the DSM layers (2, 74, 75, 127, 143, 165). RT-PCR experiments were conducted on 

DSM cDNAs equivalent to at least 50 ng of starting mRNA. Negative control 

experiments performed in the absence of the reverse transcriptase (-RT) demonstrated an 

absence of genomic DNA contamination. In whole DSM tissue, our qPCR data showed 

that Kv7 channels relative mRNA level was as follows: Kv7.1 > Kv7.5 ≈ Kv7.4 (N=4; 

Fig. 5.3.1B) while at the single cell level, Kv7.5 > Kv7.4 >> Kv7.1 (N=4; Fig. 5.3.1B). 

Taken together these RT-PCR and qPCR data suggest that in human DSM cells, only 

Kv7.4 and Kv7.5 are expressed at the mRNA level, and that the Kv7.5 channel could be 

the most highly expressed.  
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Figure 5.3.1. Kv7 channels mRNA expression in human DSM. A) Gel electrophoresis images illustrate RT-PCR 

detection of Kv7.1, Kv7.4, and Kv7.5 mRNA messages in whole DSM tissue (N=4). At the DSM single cell level, only 

Kv7.4 and Kv7.5 channels mRNA messages were detected. Human brain was used as a positive control. No product 

was observed in the negative controls (-RT) in which reverse transcriptase was not added to the reaction. B) qPCR 

analysis show relative expression of Kv7.1, Kv7.4, and Kv7.5 channel mRNA expression in both DSM whole tissue 

(N=4) and DSM single cells (N=4). Data were normalized to GAPDH using the ΔCt method. Ct values are expressed 

as mean ± SE.  
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Role of Kv7 channels in spontaneous phasic and tonic DSM contractions in humans 

We used retigabine, a Kv7.2-7.5 channel activator and XE991, a Kv7.1-7.5 channel 

activator to investigate the roles of Kv7 channels in human DSM spontaneous 

contractions. Previous studies in guinea pig DSM demonstrated that retigabine was very 

effective at reducing the spontaneous phasic contraction at lower micromolar 

concentrations. In the present study, we found that retigabine (10 µM) significantly 

decreased the human DSM spontaneous phasic and tonic contractions (Fig. 5.3.2A). 

Retigabine (10 μM) effects on the spontaneous phasic contraction amplitude, muscle 

force, frequency, duration, and muscle tone compared to control were 19.6±9.9%, 

17.5±8.7%, 37.8±22.4%, 48.1±24.7%, and 43.1±21.3%, respectively (n=6, N=4, p<0.05; 

Fig. 5.3.2A).  

On the other hand, pharmacological blockade of Kv7 channels with XE991 enhanced 

DSM spontaneous contractions amplitude, muscle force, and muscle tone without any 

significant effects on contraction duration and frequency (Fig. 5.3.2B). XE991 (10 µM) 

effects DSM on spontaneous phasic contraction amplitude, force, and tone compared to 

control were 197.6±44.9%, 237.0±72.8%, and 159.3±21.0%, respectively (n=5, N=3, 

p<0.05; Fig. 5.3.2B).  Collectively, these results suggest that Kv7 channels regulate 

human DSM myogenic activity. 
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Figure 5.3.2. Pharmacological modulation of Kv7 channels with retigabine (10 μM) or XE991 (10 μM) affects 

human DSM spontaneous phasic and tonic contractions. A) Original DSM tension recordings and summary data 

showing retigabine (10 µM) relaxant effects on human DSM isolated strips. Retigabine significantly decreased all 5 

parameters of the DSM spontaneous phasic and tonic contractions including amplitude, muscle force, frequency, 

duration, and muscle tone (n=6, N=4). B) Original DSM tension recordings and summary data showing that XE991 (10 

µM) enhances human DSM spontaneous phasic and tonic contractions. XE991 effects were more pronounced on DSM 

contraction amplitude and muscle tone and at a lesser extent on muscle force (n=5, N=3). The 10-min control period 

prior to apamin addition was taken to be 100 % and data were normalized. TTX (1 µM) was present throughout the 

experiments. *p<0.05, ***p<0.005 
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Role of Kv channels in nerve-evoked contractions in humans  

We further investigated the effects of retigabine (10 µM) and XE991 (10 µM) on nerve-

evoked contractions of human DSM isolated strips (Fig. 5.3.3-4). We first applied a wide 

range of EFS frequencies (0.5 – 50 Hz) as a control followed by retigabine (10 µM) or 

XE991 (10 µM) application for approximatively 30 min. Next, the same EFS protocol 

(0.5 – 50 Hz) was applied to evaluate how these Kv channel modulators affect EFS-

induced contractions. The frequency-response curves showed that retigabine (10 µM) 

significantly attenuated the amplitude of the EFS-induced contractions at stimulation 

frequencies ranging from 10 to 50 Hz (n=7, N=4, p<0.05; Fig. 5.3.3). At the maximal 

stimulation frequency of 50 Hz, retigabine effect on DSM EFS-induced contraction 

amplitude compared to control was 57.4±7.6% (n=7, N=4, p<0.05; Fig. 5.3.3B). 

Pharmacological inhibition of Kv7 channels with XE991 (10 µM) increased the 

amplitude of the EFS-induced contractions at stimulation frequencies ranging from (3.5 – 

15 Hz) (n=6, N=5, p<0.05; Fig. 5.3.4). XE991 effect on DSM EFS-induced contraction 

amplitude compared to control was greater at stimulation frequency of 12.5 Hz where 

XE991 (10 μM, induced ~20% increase (n=6, N=5, p<0.05; Fig. 5.3.4B). These latter 

EFS data suggest that Kv7 channels play a role in the nerve-evoked contractions. 
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Figure 5.3.3. Retigabine decreases the amplitude of the EFS-induced contractions in human DSM isolated strips 

in a wide range of stimulation frequencies. A) An original DSM tension recording illustrating the inhibitory effects 

of 10 µM retigabine on 3.5–50 Hz EFS-induced contractions of human DSM. B) Frequency-response curves showing 

that retigabine (10 μM) significantly decreased EFS-induced contractions at frequencies 10–50 Hz (n=7, N=4; *P<0.05, 

***P<0.005).  
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Figure 5.3.4. XE991 enhances the amplitude of the EFS-induced contractions in human DSM isolated strips in a 

wide range of stimulation frequencies. A) An original DSM tension recording showing that XE991 (10 µM) effects 

on 3.5–50 Hz EFS-induced contractions of human DSM. B) Frequency-response curves showing XE991 significantly 

increases EFS-induced contractions at stimulation frequencies ranging from 3.5–15 Hz (n=6, N=5; *P<0.05).  
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REMARKS 

The above preliminary data are encouraging and suggest that several Kv7 channels 

namely Kv7.4 and Kv7.5 channels are expressed in human DSM and play important 

physiological roles in DSM spontaneous and nerve-evoked contractions. However, 

additional evidence for these Kv7 channel proteins expression in human DSM should be 

provided to clearly establish their functionality. The implications of these findings with 

respect to the treatment of functional disorders of lower urinary tract such as overactive 

bladder are that the Kv7 channels could be promising pharmacological targets to control 

urinary bladder function. 
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CHAPTER 6 

GENERAL DISCUSSION AND CONCLUSIONS 

 

The pathophysiology of OAB is a serious condition characterized by urgency, frequent 

urination, and abnormal increase in DSM contractility. Despite, numerous attempts to 

treat the disorder with antimuscarinics and now with beta3-AR agonists, OAB still 

remains a serious public health issue because of the tremendous impact that it has on 

patients’ quality of life. In an effort to alleviate the discomfort of millions of patients, we 

initiated these studies which aimed to propose an alternative therapeutic approach for the 

treatment of OAB. K
+
 channels have been shown to be key regulators of smooth muscle 

excitability and contractility in various species, however, information about their 

expression and functional role in the DSM was limited. Plus, there was a tremendous gap 

in knowledge about the role of these ion channels in the DSM of humans. Our hypothesis 

suggests that K
+
 channels and beta3-AR are major regulators of DSM contractility and 

excitability and could represent promising pharmacological targets for the treatment of 

OAB. Throughout my PhD training, I collected data to test our hypothesis and prove our 

concept. Four major conclusions can be drawn from our studies. 1) Several Ca
2+

-

activated K
+
 channels including BK and SK3 channels are key regulators of human DSM 

spontaneous and nerve-evoked contractions. 2) We found a strong correlation between 

the decrease in BKα subunit expression and the lack of BK channel activity in the 

pathophysiology of NDO. 3) We demonstrated that there is a functional link between 
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beta3-AR and BK channels during nerve-evoked contractions in rat and human DSM and 

that beta3-AR play a minor role in guinea pig DSM. 4) Finally, several Kv channels 

including Kv2 and Kv7 channels regulate DSM excitability and contractility. These data 

suggest that pharmacological modulation of K
+
 channels (BK, SK3, Kv2, and Kv7 

channels) or beta3-AR affect DSM contractility and excitability, therefore making K
+
 

channels and beta3-AR likely drug targets for the treatment of OAB. 

 

Ca
2+

-activated K
+
 channels expression and regulation of human DSM spontaneous 

phasic and nerve-evoked contractions.  

In order to assess whether Ca
2+

-activated K
+
 channels play a role in human DSM 

spontaneous and nerves evoked contractions, we first had to demonstrate their molecular 

expression in the DSM. For this purpose, we employed, RT-PCR, qPCR, western blot 

and immunostaining techniques to show mRNA and protein expression of these ion 

channels. A previous work published by our laboratory has already demonstrated the 

mRNA and protein expression of the pore-forming BKα-subunit as well as the regulatory 

β1 and β4 subunits in human DSM (75). However, evidence for SK and IK channels in 

human DSM was still lacking. Here, we successfully identified SK and IK channels 

molecular expression in human DSM. More specifically, we demonstrated via qPCR 

analysis that among SK and IK channels, the SK3 channel was the most highly expressed 

at the mRNA level in human DSM cells (Fig. 3.2.1). The qPCR data were further 

confirmed by protein expression of SK3 channel and lack of IK channel protein 

expression in human DSM (Fig. 3.2.3-4). The protein expression of these K
+
 ion 

channels in the DSM of humans suggests at first glance that the channels might be 
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physiologically active. We then used several modulators to test these Ca
2+

-activated K
+
 

channels individually. In human DSM, isolated strips, we found that pharmacological 

inhibition of BK channels with iberiotoxin, a BK channel blocker, increased DSM 

spontaneous phasic contraction amplitude, muscle force, and tone (Fig. 3.1.2). Similarly, 

pharmacological blockade of SK channels with apamin, a SK channel blocker increased 

human DSM spontaneous phasic contraction amplitude, muscle force, duration, and 

muscle tone (Fig. 3.2.5). We also found that TRAM-34, a selective IK channel inhibitor 

had no effect on human DSM contractility (Fig. 3.2.6). The key role of BK channels in 

human DSM has further been demonstrated by a recent study which suggests that 

pharmacological activation of BK channels with NS1619, a BK channel activator 

decreases human DSM excitability and contractility (80). Similar findings on SK 

channels also revealed that pharmacological activation of SK channels with SKA-31, a 

SK channel activator hyperpolarizes the cell membrane and decreases DSM contractility 

in humans (144).  Taken together, the aforementioned data suggest that Ca
2+

-activated K
+
 

channels including BK and SK3 channels are major regulators of human DSM 

contractility and excitability. The ability of BK and SK3 channels to increase human 

DSM contractility upon inhibition and decrease DSM contractility upon activation 

represents a unique opportunity to consider these ion channels in the treatment of bladder 

dysfunctions including overactive and underactive bladder. 

After determining the role of both BK and SK3 channels in human DSM under normal 

physiological conditions, we expanded our studies by investigating BK channels roles 

under pathophysiological conditions of NDO. The molecular analysis of BK channel 

mRNA expressions by qPCR revealed a discrepancy in BKα subunit mRNA expression 
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between NDO and control patients. We found that in NDO patients the BKα mRNA 

relative expression level was significantly lower (~15.8 – fold) compared to control 

patients (Fig. 3.1.1). Given the fact that the pore-forming α subunits ensure the 

movement of K
+
 ions across the cell membrane and therefore DSM excitability, it is 

expected that any changes in BKα channel subunits expression could significantly 

hamper the channel’s ability to regulate DSM excitability and contractility  (22, 109, 130, 

131, 146). Consistent with this assumption, we found that NDO DSM had abnormally 

elevated contractility in comparison to controls (Fig. 3.1.2). Additionally, unlike in 

control DSM, inhibition of the BK channel with iberiotoxin failed to affect DSM 

contractility in NDO DSM suggesting that in NDO patients DSM, the BK channel 

function might be altered (Fig. 3.1.2). Therefore, we suggest that the abnormal increase 

in DSM contractility observed in NDO patients is due to the significant reduction in BKα 

subunit expression. As a consequence, we propose that targeting BK channels by either 

pharmacological or genetic manipulation could be a promising therapeutic strategy to 

treat OAB, and especially NDO. 

The beta3-AR induced relaxation of the DSM nerve-evoked contraction is mediated 

via activation of BK channels. 

Beta3-ARs are known to be important facilitators of bladder relaxation because of their 

ability to control DSM spontaneous phasic and nerve-evoked contractions as well as 

TBKC that contribute to DSM excitability (22, 79, 134). Recently, the FDA has approved 

the use of mirabegron, a selective beta3-AR agonist for the treatment of OAB (27, 90, 

157). The mechanism by which beta3-AR induces relaxation of the DSM myogenic 

contraction is suggested to be mediated via activation of BK channels (79, 130). 
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However, the functional link between beta3-ARs and BK channels during nerve-evoked 

contractions has never been investigated. In our study, we address this mechanism by 

first testing our approach in rodents followed by humans.   

The first animal model that we chose was the guinea pig. Guinea pigs are commonly used 

laboratory animals which based on our own experience have DSM tissue that usually 

generate stable spontaneous phasic contractions. Additionally, guinea pig DSM cells are 

relatively easy to isolate for single-cell RT-PCR/qPCR or patch-clamp electrophysiology. 

The molecular expression of beta3-ARs in guinea pig DSM cell has never gain 

consensus. To clarify whether beta3-ARs are expressed in guinea DSM cells, we first 

developed a technique called “single-cell” RT-PCR. This approach allow us to conduct 

RT-PCR experiments on a poll of isolated DSM cells only while eliminating 

contamination from other cell types such as neurons, fibroblasts, interstitial cells, which 

are present within the DSM tissue (1, 2, 30, 74, 75, 77). Our results showed that beta3-

ARs are expressed in guinea pig DSM cells at the mRNA level (Fig. 4.1.1); however, we 

could not confirm their protein expression because no specific beta3-AR antibody was 

commercially available.  The pharmacological activation of beta3-ARs with BRL37344, 

a beta3-AR agonist had limited effects on guinea DSM spontaneous contractions (Fig. 

4.1.3). The BRL37344 effect on spontaneous contractions was partially suppressed in the 

presence of atropine, a muscarinic receptor antagonist, suggesting that the BRL37344 

effect could have been mediated via inhibition of muscarinic receptors directly. Such 

effects have previously been reported by other groups (22, 93, 111).  Furthermore, it has 

been suggested that at high concentrations BRL37344 may also non-selectively activate 

beta1-ARs and/or beta2-ARs (150). Additional electrophysiological experiments 
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performed by Dr. Hristov supported the idea that beta3-ARs, although expressed in 

guinea pig DSM, do not regulate the DSM excitability. Perforated patch-clamp 

experiments revealed no effect of BRL37344 on whole-cell steady-state K
+
 current, 

TBKCs amplitude and frequency, and the resting membrane potential (Table 4.1.1). We 

further assessed BRL37344 effects on guinea pig DSM nerve-evoked contractions. 

Although, we observed a significant decrease in contraction amplitude by BRL37344 

(Fig. 4.1.7), this BRL37344 effect was once again suppressed by atropine, suggesting 

that BRL37344 acted directly on muscarinic receptors rather than beta3-ARs during 

nerve stimulation (Fig. 4.1.9). Moreover, we employed another beta3-AR agonist, L-

755,507,  and found that this latter compound had no effect on the nerve-evoked 

contractions in the absence or presence of atropine suggesting that beta3-ARs do not play 

any role in the nerve-evoked contraction of guinea pig DSM (Fig. 4.1.10). Based on the 

aforementioned observations, we concluded that although expressed in guinea pig DSM 

cells at the mRNA level, beta3-ARs play a minor to no functional role or that in guinea 

pig DSM beta3-ARs have distinct pharmacological profiles compared to beta3-ARs in 

other species. As a consequence, we concluded that the potential functional link between 

beta3-AR and BK channels could not be investigated in guinea pig DSM. 

Next, we addressed the functional link between beta3-AR and BK channels in rat DSM. 

Rat was chosen because previous studies have shown that beta3-ARs are expressed in rat 

DSM tissue (46). Additionally, it has been proven that in rat DSM, activation of beta3-

AR with BRL37344 increased TBKCs frequency, and hyperpolarized the cell membrane 

(79). Our data showed that unlike in guinea pig DSM, stimulation of beta3-AR receptors 

with BRL37344 caused a significant decrease of the nerve-evoked contraction in rat 
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DSM isolated strips in the presence or absence of atropine (Figs. 4.2.1-3). We also found 

that the BRL37344 effect was mediated via inhibition of both the cholinergic and 

purinergic components of the nerve-evoked contraction. In the presence of atropine, 

which was used to block the cholinergic component of the nerve-evoked contractions, we 

found that BRL37344 decreased the amplitude of the nerve-evoked contractions at all 

stimulation frequencies tested suggesting that BRL37344 inhibits the purinergic 

component of the nerve-evoked contractions (Fig. 4.2.3). In the presence of α,β-

methylene-ATP and suramin which were used to block the purinergic component of the 

nerve-evoked contractions, BRL37344 decreased the amplitude of the EFS-induced 

contractions at all stimulation frequencies tested suggesting that BRL37344 inhibits the 

cholinergic component of the nerve-evoked contractions (Fig. 4.2.4). After confirming 

that beta3-ARs regulate rat DSM nerve-evoked contractions, we next addressed the 

functional link between beta3-AR and BK channels during nerve-evoked contractions. 

During myogenic contractions, it was previously shown that pharmacological blockage of 

BK channels with iberiotoxin opposes beta3-AR-mediated relaxation in rats DSM (79). 

We found that similar to what was observed during myogenic contractions, the 

BRL37344 inhibitory effects on rat DSM nerve-evoked contractions was significantly 

decreased when BK channel was antagonized by iberiotoxin (Fig. 4.2.5). The iberiotoxin 

effects reported here originates from  direct inhibition of BK channels in DSM since 

immunohistochemical analysis have previously shown that BK channels are expressed in 

DSM but not in the bladder nerves that innervate the DSM (161). Collectively, our data 

suggest that BK channel activity is critical for the beta3 adrenergic receptor-induced 

attenuation of the nerve-evoked contractions in rat DSM. 
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After developing our strategy in laboratory animals, we could then confidently proceed to 

the investigation of the functional link between beta3-AR and BK channels in human 

DSM. Previous studies have demonstrated that beta3-AR are expressed in human DSM 

(46) and that beta3-ARs could represent as much as 97% of all beta-AR expressed in 

human DSM (168). We found that low concentrations of BRL37344 (10 nM–1 µM) 

decreased the amplitude of nerve-evoked contractions in human DSM suggesting that 

beta3-ARs play an important role in opposing human DSM nerve-evoked contractions. 

Our data are also consistent with previous findings showing that KUC-7322 and 

GW427353, two other selective beta3-AR agonists, also decreased carbachol-induced 

and nerve-evoked contractions in human DSM (14, 81, 156). Like in rat DSM, we found 

that in the presence of atropine, BRL37344 decreased the amplitude of the nerve-evoked 

contractions in human DSM in a wide range of stimulation frequencies (Fig. 4.3.3). Also, 

in the presence of suramin and α,β methylene-ATP, BRL37344 also significantly 

decreased the amplitude of the nerve-evoked contractions in human DSM (Fig. 4.3.4). 

These latter findings suggest that BRL37344 inhibits both cholinergic and purinergic 

contractions of human DSM. Similarly to our findings in rat DSM nerve-evoked 

contractions, iberiotoxin shifted the concentration-response curves for the BRL37344 

inhibitory effects on human DSM nerve-evoked contractions suggesting that functional 

BK channels play an important role in the beta3-AR mediated relaxation of human DSM 

nerve-evoked contractions (Fig. 4.3.1).  

Taken together, we were finally able to demonstrate that the beta3-AR-agonist-mediated 

relaxation of DSM nerve-evoked contractions is BK channel-dependent, emphasizing the 

critical role of BK channels in DSM physiology. While the functional link between 



 

227 

beta3-AR and BK channels is prominent in rats and humans, this was not the case in 

guinea pig DSM since the role of beta3-AR during nerve-evoked contractions could not 

be demonstrated. These findings suggest critical species difference between rats, humans, 

and guinea pigs.   

 

Kv2 and Kv7 channels expression and regulation of DSM contractility. 

Kv channels represent the largest and the most diverse group of K
+
 channels identified in 

the human genome with more than 40 members. Kv channels have the potential to 

become promising drug targets for the treatment of various pathologies because of their 

ability to regulate excitability and contractility in smooth muscles as well as in neurons. 

Unfortunately, information about their physiological role in numerous organs more 

specifically in the DSM is scarce. What makes the investigation of individual Kv 

channels difficult in any organ is the lack of selective pharmacological tools that will 

allow investigators to study each channel separately. During my PhD training, I 

investigated the expression and physiological roles of several Kv channels including Kv2 

and Kv7 channels in the DSM. These studies were made possible because selective Kv2 

and Kv7 channels have been recently discovered and made commercially available.  

Before addressing the functional roles of both Kv2 and Kv7 channels in the DSM, 

molecular expression of these channels had to be demonstrated. The investigation of Kv2 

channels molecular expression in human DSM cells was performed by Dr. Chen. She 

revealed the expression of Kv2.1 and Kv2.2 channels in human DSM cells at both mRNA 

and protein levels (Fig. 5.1.1-3). In human DSM cells, I provided the first molecular 

evidence for Kv7.4 and Kv7.5 channels at the mRNA level (Fig. 5.3.1). The expression 
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pattern of Kv2 channels in human were similar to that of rat where Kv2.1 and Kv2.2 were 

also found in DSM cells (29). Comparable observation was made about Kv7 channels 

expression between human and rats. Like our findings in human DSM, studies by others 

revealed Kv7.4, Kv7.5, and arguably Kv7.1 channels mRNA expression in rat DSM (121, 

149). Unlike rats and humans, guinea pig DSM cells expressed Kv7.1, Kv7.2, Kv7.3, and 

Kv7.5 channels at both mRNA and protein levels (Fig. 5.2.1-3). These results indicate 

that the expression pattern of Kv2 and Kv7 channels in the DSM may vary depending on 

the species.   

To assess the Kv2 channels functional roles in human DSM, we used stromatoxin-1 

(ScTx1), a selective Kv2.1 and Kv2.2 channel blocker. Pharmacological blockade of Kv2 

channels in human DSM isolated strips significantly increased the spontaneous phasic 

contraction amplitude and force in human DSM isolated strips (Fig. 5.1.6), consistent 

with our previous findings in rat and guinea pig DSM (29, 77). Our results also show that 

ScTx1 significantly increases the amplitude of nerve-evoked contractions in human DSM 

isolated strips (Fig. 5.1.7) indicating the functional role of these channels in human DSM 

nerve-evoked contractions. These data are consistent with our earlier animal studies (29, 

77), and revealed that KV2-containing channels also work to oppose human DSM 

contractility under physiological conditions. 

In human DSM isolated strips, we also found that pharmacological activation of Kv7 

channels with retigabine, a Kv7.2-7.5 channels activator, induced relaxation of the 

spontaneous phasic and nerve-evoked contractions (Fig. 5.3.2-4). Similar retigabine 

effects were also observed in guinea pig DSM spontaneous phasic and nerve-evoked 

contractions (Fig. 5.2.6 and 5.2.11). Additionally, L-364373, a selective Kv7.1 channel 
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activator was shown to attenuate the guinea pig DSM isolated strips spontaneous phasic 

and nerve-evoked contractions (Fig. 5.1.7 and 5.2.11). On the other hand, 

pharmacological blockade of Kv7 channels increases DSM contractility. In human DSM 

isolated strips, XE991, a non-selective Kv7 channel blocker was shown to enhance 

spontaneous phasic and nerve-evoked contractions. And in guinea pig DSM isolated 

strips, application of XE991 or linopiridine, another Kv7 channel blocker was reported to 

increase spontaneous phasic and nerve-evoked contractions. The retigabine effects 

reported in our studies are in line with previous reports which demonstrated that 

intravesical administration of retigabine increased micturition volume and voiding 

intervals in freely moving conscious rats (148). Also in conscious rats with capsaicin-

induced irritated bladders, retigabine was shown to strongly reduce bladder rings 

contractility, reduce bladder pressure, and delay voiding, plus the retigabine effect on 

bladder rings was blocked by XE991 (149). The retigabine effect on nerve-evoked 

contractions reported in our study is somehow similar to previous studies in rats DSM 

(136). The aforementioned study reported that retigabine (1 – 30 μM) inhibited EFS-

induced contraction amplitude generated by 20 Hz in a concentration-dependent manner 

(136). The authors also reported that the retigabine relaxant effects on the EFS-induced 

contractions were antagonized by 10 μM XE991 suggesting that Kv7 channels, more 

precisely Kv7.4 and Kv7.5 channels, regulate rat DSM neurogenic contractions since 

only Kv7.4 and Kv7.5 but not Kv7.1, Kv7.2, and Kv7.3 channels were present at the 

mRNA level in rat bladder  (121, 136).  
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IMPLICATIONS AND FUTURE DIRECTIONS 

The pathophysiology of OAB is generally poorly understood and the current 

pharmacological treatments which include antimuscarinics and beta3-AR agonists have 

yet to be proven infallible.  Throughout my PhD training, I explored several K
+
 channels 

and have found that BK, SK3, Kv2, and Kv7 channels are major regulators of human 

DSM contractility. I also found that pharmacological activation of beta3-AR induced 

relaxation of DSM nerve-evoked contractions in humans. These data suggest that the 

aforementioned K
+
 channels and beta3-AR could represent pharmacological targets for 

some types of bladder dysfunctions.  

There could be two direct clinical benefits for modulating the aforementioned K
+
 

channels in the DSM. Targeting BK, SK3, Kv2, or Kv7 channels with channel opening 

agents will decrease DSM contractility and contribute to alleviate detrusor overactivity 

observed in OAB patients. Alternatively, targeting BK, SK3, Kv2, and Kv7 channels with 

selective inhibitors will increase DSM contractility, and thus have clinical application for 

the treatment of detrusor underactivity. The major contribution of our studies was that we 

provided for the first time, evidence for a direct correlation between NDO and BK 

channel expression and function. Therefore, it is possible that by increasing BK channels 

expression in the DSM through genetic manipulation, detrusor overactivity can be 

reduced in NDO patients.  

It is critical that future studies be initiated to develop agents which could selectively 

target one or more of these K
+
 channels in the lower urinary tract exclusively in order to 

reduce potential collateral effects as BK, SK3, Kv2, and Kv7 channels expression has 

been reported in other human tissues (19, 20, 31, 42, 84, 103, 135). Further studies should 
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investigate molecular differences between the aforementioned K
+
 channels in the DSM 

and other organs in order to design organ specific compounds with limited side effects, 

therefore providing a unique advantage over antimuscarinic drugs.  Compound such as 

retigabine which is currently used for epilepsy treatment could find use in the treatment 

of OAB if its molecular structure is modified to make it impermeable to the blood-brain 

barrier and therefore reduce potential side effects in the brains. Clinical trials for selective 

BK, SK3, Kv2, or Kv7 channels agents would need to be performed to validate such 

assumption and assess the efficacy and therapeutic safety window.      
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