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ABSTRACT 

Brian S. Schmutzler 

RET-DEPENDENT AND RET-INDEPENDENT MECHANISMS OF GFL-INDUCED 

ENHANCEMENT IN THE CAPSAICIN STIMULATED-RELEASE OF iCGRP FROM 

SENSORY NEURONS 

The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are 

peptides implicated in the inflammatory response. They are released in increased 

amounts during inflammation and induce thermal hyperalgesia. Whether these 

molecules directly affect the sensitivity of primary nociceptive sensory neurons is 

unknown. This information could provide a link between increased inflammation-induced 

release of GFLs and their ability to promote inflammatory hyperalgesia. These molecules 

bind to one of four GFRα receptor subtypes, and this GFL-GFRα complex often 

translocates to the receptor tyrosine kinase, Ret. The focus of this dissertation was to 

determine whether GFLs modulate the stimulated-release of calcitonin gene-related 

peptide (CGRP). Isolated sensory neurons and freshly dissociated spinal cord tissue 

were used to examine the enhancement in stimulated-release of CGRP, a measure of 

sensitization. Exposure of isolated sensory neurons to GDNF, neurturin, and artemin, 

enhanced the capsaicin stimulated-release of immunoreactive CGRP (iCGRP). 

Sensitization by GFLs occurred in freshly dissociated spinal cord tissue. Persephin, 

another member of the GFL family, did not enhance stimulated-release of iCGRP. These 

results demonstrate that specific GFLs are mediators of neuronal sensitivity. The 

intracellular signaling pathways responsible for this sensitization were also evaluated. 

Inhibition of the mitogen activated protein kinase (MAPK)/extracellular signal-related 

kinase 1/2 (Erk 1/2) pathway selectively abolished the enhancement of CGRP release 

by GDNF. NTN-induced sensitization was abolished by inhibition of the 

phosphatidylinositol-3-kinase (PI-3K) pathway. Reduction in Ret abolished the GDNF-



ix 
 

induced sensitization, but did not fully inhibit NTN or ART-induced sensitization. 

Inhibition of other cell surface receptors (neural cell adhesion molecule (NCAM), and 

Integrin β-1) had distinct effects on the sensitization capability of each of the GFLs. Ret 

and NCAM inhibition in combination abolished ART-induced sensitization. It was 

necessary to inhibit Ret, NCAM, and Integrin β-1 to prevent the NTN-induced 

sensitization. These data demonstrate that the GFLs use distinct signaling mechanisms 

to induce the sensitization of nociceptive sensory neurons. The work presented in this 

thesis provides the first evidence for these novel and distinct Ret-independent pathways 

for GFL-induced actions and provides insight into the mechanism of sensory neuronal 

sensitization in general. 

 

Cynthia M. Hingtgen, M.D., Ph. D. 
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I. INTRODUCTION 

The following thesis will provide evidence of the ability of the glial cell line-derived 

neurotrophic factor (GDNF) family ligands (GFLs) to sensitize sensory neurons. The 

GFLs are released in increased amounts during inflammation, and direct injection of the 

GFLs into the periphery induces inflammatory hypernociception. However, the 

connection between these two phenomena has not been elucidated. Enhancement in 

stimulated-release induced by GFLs could provide evidence that may explain this 

inflammatory hypernociception. The intracellular signaling pathways by which the GFLs 

induce this sensitization are also determined. Interestingly, each of the GFLs use distinct 

compliments of pathways to accomplish their sensitization. I have also identified novel 

Ret-independent signaling pathways by which two of the GFLs, neurturin and artemin, 

induce their sensitization of sensory neurons. The characterization of the effects of the 

GFLs on sensory neuronal sensitization, and the novel pathways used by the GFLs 

identified in this thesis, may provide insight into general mechanisms of enhanced pain 

perception. This insight may lead to better and more effective treatments for chronic pain 

syndromes and other disorders modulated by the GFLs, such as optic nerve 

degeneration. 

A. The history of the actions of the glial cell line-derived neurotrophic factor 

(GDNF) family ligands (GFLs) 

The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) were 

identified originally in the rat B49 glioma cell line, though the function of the molecules 

were not known and the molecules were not named (Schubert et al., 1974). When one of 

these molecules was found to promote the survival and growth of embryonic midbrain 

dopaminergic neurons, it was further characterized and named glial cell line-derived 

neurotrophic factor, or GDNF (Lin et al., 1993). GDNF release from central nervous 

system glia, specifically astrocytes and microglia, is critical for embryonic substantia 
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nigra neurons to survive (Lin et al., 1993). Removal of this peptide results in death of 

nearly all of the neurons in the substantia nigra (Lin et al., 1993). Neurturin (NTN) was 

next identified as a relative of GDNF, purified, and cloned (Kotzbauer et al., 1996). NTN 

had potent survival effects on CNS neurons as well (Kotzbauer et al.,1996) Persephin 

(PSP) was the third GFL identified due to its homology to GDNF. Using degenerate 

PCR, Milbrandt et al., 1998 identified, purified, and cloned PSP. PSP was also found to 

support the survival of ventral midbrain dopaminergic neurons and motor neurons 

(Milbrandt et al., 1998). Finally, artemin (ART) was identified and cloned in the same 

manner and also found to have survival effects on midbrain dopaminergic neurons 

(Baloh et al, 1998). 

Trophic effects of the GFLs on spinal motor neurons and central noradrenergic 

neurons have also been observed (Arenas et al., 1995;Henderson et al., 1994;Milbrandt 

et al., 1998). GDNF is critical for motor neuron survival and growth (Zurn et al., 1994). 

Additionally, injury to embryonic and adult motor neurons induces degeneration and 

neuronal death. GDNF reduces the number of neurons that degenerate and die by 

greater than 50% after induction of an injury (Li et al., 1995). NTN is trophic for 

developing motor neurons only, not adult motor neurons (Garces et al., 2001). However, 

unlike GDNF, NTN does not affect survival of central noradrenergic neurons, but induces 

neurite outgrowth of these neurons in embryonic and adult mice (Holm et al., 2002) there 

is no compelling evidence for actions of ART on either motor neurons or noradrenergic 

neurons. Finally, PSP promotes survival and differentiation of developing motor neurons, 

but does not seem to have effects on noradrenergic neurons (Milbrandt et al., 1998). 

These observations have led to speculation that the GFLs could be used as a treatment 

for amyotrophic lateral sclerosis (ALS), as well as a number of other diseases of the 

central nervous system (Airaksinen and Saarma, 2002).  



3 
 

The GFLs have effects on the peripheral nervous system, specifically sensory 

neurons. GDNF promotes neurite outgrowth in adult sensory neurons (Blesch and 

Tuszynski, 2003). Implantation of fibroblasts genetically modified to secrete high levels 

of GDNF led to sensory neuron regeneration, neurite outgrowth, and re-myelination of 

the regenerating sensory neurons after spinal cord transection (Blesch and Tuszynski, 

2003). Application of GDNF selectively activates axonal growth in these injured sensory 

neurons and the phenotype of these injured sensory neurons may be changed to a more 

immature, “growth capable” neuron (Mills et al., 2007). NTN maintains adult sensory 

neurons (Baudet et al., 2000), in part by preventing growth cone collapse of neurites 

mediated by semaphorin 3A (Wanigasekara and Keast, 2006). Semaphorin 3A protein is 

involved in growth cone guidance during development and neuronal regeneration 

(Kolodkin et al., 1993). ART not only supports sensory neuron growth, survival, and 

axonal growth by providing a growth and guidance signal (Baloh et al., 1998;Paveliev et 

al., 2004), but also alters the sensitivity of ion channels in sensory neurons in such a 

way as to increase the sensitivity of these neurons to noxious stimuli (Elitt et al., 2006), 

such as heat. There are reports of analgesic properties of GDNF as well, particularly 

through its ability to prevent or reverse some of the increased sensitivity of sodium 

channels in response to neuronal injury (Boucher et al., 2000). However, these studies 

were conducted using a neuropathic pain model, which induces a different compliment 

of changes in sensory neurons that inflammatory pain. For this reason, and because this 

manuscript is focused on the inflammatory pain models, GDNF will be referred to as a 

molecule that is pronociceptive and not analgesic through the rest of this manuscript. 

The effects of PSP on sensory neurons are not as well studied and by no means 

extensive. However, in the few studies conducted on sensory neurons, PSP has been 

unable to affect the properties of these neurons (Paveliev et al., 2003). 
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The effects of the GFLs have also been identified in cells outside of the nervous 

system. Uteric kidney bud branching, a critical step in kidney development and 

differentiation, is dependent upon the actions of GDNF through its signaling receptor, 

Ret (Schuchardt et al., 1994). In spermatogenesis, GDNF and neurturin (NTN), another 

of the GFLs, play a crucial role. Both GDNF and NTN are necessary for proper DNA 

synthesis in spermatogonia (Viglietto et al., 2000). Proper levels of GDNF secretion are 

necessary for proper spermatagonia development. Reduced levels of GDNF result in an 

inability of the testes to generate the necessary amount of spermatogenic stem cells 

(Meng et al., 2000). A large number of undifferentiated spermatogenic stem cells and 

few differentiated spermatogonia result from lower than normal levels of GDNF or NTN 

(Meng et al., 2001a;Meng et al., 2001b). Neither ART nor PSP has any documented 

effects outside of the nervous system. 

There are a number of possible clinical applications of the GFLs. Aberrant GDNF 

responses of neurons in the ventral tegmental area (VTA), the area of the brain 

responsible for addictive behaviors, have been identified in mice with compulsive, 

addictive behaviors towards cocaine and alcohol (He et al., 2005;Messer et al., 2000). A 

reduction in GDNF levels or prevention of GDNF signaling in this brain region enhanced 

addictive behaviors, whereas injection of GDNF or use of pharmaceuticals that increase 

GDNF levels reduced or abolished these same addictive behaviors (He et al., 

2005;Messer et al., 2000). Recently, of particular interest clinically, is the fact that GDNF 

is able to aid the maintenance and growth of dopaminergic cells in the substantia nigra, 

the cell type whose death is responsible for Parkinson’s disease (Akerud et al., 

2001;Kordower et al., 2000). GDNF and NTN are in clinical trials for treatment of 

Parkinson’s disease, with limited success (Evans and Barker, 2008). There are problems 

with efficient delivery of GFLs to the substantia nigra, off-target toxicity, and degradation 

of the GFLs in the brain (reviewed by (Abdel-Salam, 2008). The ability of ART and PSP 



5 
 

to protect against or reverse substantia nigra neuronal death has not been evaluated. 

The knowledge of the primary actions of the GFLs has broadened from solely central 

nervous system neuronal development to include promotion of kidney and gonadal 

development, as well as prominent effects on mature peripheral sensory neurons. 

B. Structure of the GFLs 

The GFLs are a set of small peptides distantly related to the TGFβ super-family of 

molecules (Eigenbrot and Gerber, 1997). They exist naturally as homodimers and 

include GDNF, neurturin (NTN), artemin (ART), and persephin (PSP; Eigenbrot and 

Gerber 1997; Wang et al., 2003). While the amino acid sequence homology of the GFLs 

and TGFβ is low, less than 20%, there is a high degree of structural similarity between 

these molecules (Kotzbauer et al., 1996;Lin et al., 1993;Milbrandt et al., 1998;Saarma, 

2000). In particular, both the GFLs and the other TGFβ super-family members contain 

seven cysteine residues in approximately the same spacing, leading to a protein folding 

of the peptides into a “cysteine-knot” motif with an interlinking disulfide bond (Eigenbrot 

and Gerber, 1997). This interlinking disulfide bond results in the GFL monomers existing 

naturally as homodimers. 

Each of the GFLs is similar to the other GFLs in size and three-dimensional 

structure. Specifically, the size of the monomer of each of the GFLs is between 10 and 

16 kDa. GDNF has a molecular weight of ~16 kDa (Okragly and Haak-Frendscho, 1997); 

NTN, ~11.5 kDa (Kotzbauer et al., 1996); ART,  ~12 kDa (Baloh et al., 1998); and PSP, 

~10 kDa (Milbrandt et al., 1998). The structure of the monomer of each of the GFLs is 

also similar, due in part to the nearly identical (more than 80%) amino acid sequence 

homology of the GFLs (Wang et al., 2006). The basic structure is referred to as a finger, 

heel, finger conformation. Each of the fingers is composed of several β-sheets with short 

interruptions, and between the two finger motifs exists the heel motif, composed of an α-

helix in a perpendicular orientation to the finger motifs (Wang et al., 2006). This 
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structural conformation allows each monomer to come in contact with another monomer. 

The heel motif from one monomer complexes with the finger region of the other, and 

vice versa, and a cysteine knot is created from disulfide binds between these two 

regions (Wang et al., 2006). Overall, this structure results in homodimerization and 

efficient binding of each of the GFLs to its GDNF family receptor alpha subtype, which 

does not occur with the GFL monomers. 

C. GFLs’ actions through GDNF family receptor α (GFRα) subtypes 

Although the GFLs are in the TGFβ superfamily of molecules, their signaling is more 

closely related to the signaling of cytokines. Each of the GFLs has its own GDNF family 

receptor α (GFRα) subtype to which it preferentially binds, allowing for ligand-receptor 

specificity. All of the different GFL-GFRα complexes can subsequently initiate signaling 

through a common cell surface signaling molecule, Ret. 

The GFRα molecules are receptors with a sequence of 300-500 amino acids, a 

hydrophobic core on the carboxy end, a number of cysteine residues, and several 

glycosylation sites (Airaksinen and Saarma, 2002;Treanor et al., 1996). This structure is 

strikingly similar to other cytokine receptors, including interferon – α and β, which also 

indicates the GFLs may be more closely related to cytokines than the TGFβ molecules 

(Bazan, 1990). Additionally, because there is an Ala-Ser-Ser amino acid sequence 

immediately preceding the C-terminus, the GFRα receptors are linked to the outer 

plasma membrane through a glycosyl phosphatidylinositol (GPI)-attachment (Treanor et 

al., 1996). The GPI-anchor localizes the GFRα receptors to lipid rafts (Poteryaev et al., 

1999). This localization allows activated GFRα-1 to interact directly with Src family 

kinases (SFKs), verified using co-immunoprecipitation, and induce subsequent signaling 

through the mitogen activated-protein kinase (MAPK) signaling pathway, the 

phospholipase C-γ (PLC-γ) pathway, and the cyclic AMP (cAMP) pathway (Poteryaev et 
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al., 1999). Lack of GPI-attachment prevents GFRα-1 localization to lipid rafts and 

disrupts the signaling of GDNF through this receptor (Treanor et al., 1996). 

1. GFL-GFRα binding and translocation 

The first of the GFRα subtypes discovered was GFRα-1, the preferred receptor for 

GDNF (Treanor et al., 1996). This receptor was cloned from midbrain, dopaminergic 

neurons, but is present in nearly all neuronal types (Treanor et al., 1996). The next 

receptor discovered in this family was the GFRα-2 receptor, initially named TGF-β-

related neurotrophic factor receptor 2 (TrnR2), which has nearly 50% sequence 

homology to GFRα-1 (Baloh et al., 1997). GFRα-2, as it was later renamed, binds both 

GDNF and NTN, and similar signaling pathways are activated by both factors (Buj-Bello 

et al., 1997;Sanicola et al., 1997). NTN induces Ret phosphorylation through GFRα-2 30 

to 100 times more efficiently than GDNF through GFRα-2 (Klein et al., 1997;Sanicola et 

al., 1997). Ret is the receptor tyrosine kinase through which the GFL- GFRα complexes 

initiate their signaling. This receptor will be described in depth in Section I.D. 

GFRα-3, the preferential receptor for artemin, was first identified as an orphan 

receptor with no known ligand (Jing et al., 1997). Artemin was later purified, and GFRα-3 

was identified as the primary and preferential receptor for this molecule (Baloh et al., 

1998). The secondary and tertiary structure of GFRα-3 is less similar to GFRα-1 and 

GFRα-2 than the structure of these receptors are to each other (Airaksinen et al., 

1999;Nomoto et al., 1998;Worby et al., 1998). Despite its later discovery, there has been 

more characterization of the structure and function of this GFRα subtype than any of the 

others. The tips of both of the finger motifs of ART bind in the pocket of a triangle 

structure in GFRα-3 created by three alpha helices in a tip to tail conformation (Wang et 

al., 2006). While the sequence and proposed structure of each of the GFRα receptors is 

known, only the crystal structures of GFRα-1 and GFRα-3 have been completed 

(Airaksinen et al., 1999;Wang et al., 2006;Parkash et al., 2008). These two receptors are 
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similar, but GFRα-1 has a smaller bend angle and, therefore, a smaller area of interface 

with Ret (Parkash et al., 2008). The larger area of interface between GFRα-3 and Ret is 

hypothesized to account for the often higher potency of ART compared to the other 

GFLs (Parkash et al., 2008). GFRα-2 and GFRα-4 likely have similar crystal structures 

and characteristics of binding to their preferential GFL. However, these studies are yet to 

be completed. 

The fourth, and last, GFRα receptor identified was GFRα-4, the preferential receptor 

for persephin (Lindahl et al., 2001). Initially, this receptor was cloned in the chicken and 

thought to be present only in this avian species (Thompson et al., 1998). However, a 

gene encoding for this receptor was later identified in mice (Gunn et al., 1999). 

Identification of the presence of this receptor on adult rodent neuronal tissues followed 

(Lindahl et al., 2000). GFRα-4 was found to be present on developing neuronal cells, as 

well (Mason, 2000), which led to the possibility that GFRα-4 could play a role 

development and maintenance of neuronal tissues. It was later determined that 

persephin, through binding to GFRα-4, is unable to induce axonal outgrowth in cultured 

sensory neurons (Paveliev et al., 2004). This is presumably as a result of the lack of 

either the intracellular portion of the GPI-anchor or presence of a non-functional domain 

2 (D2) on GFRα-4 (Lindahl, et al., 2000), determined by sequencing and structural 

analysis. The GPI-link is responsible for keeping the GFRα receptors anchored in the 

membrane and interacts with intracellular portions of Ret (see Sariola and Saarma, 2003 

for a review). GFRα-4 may also exist primarily in a soluble form that is unable to induce 

the typical signaling pathways and actions of the GFRα receptors (Lindahl et al., 2001). 

This soluble form of GFRα-4 could be acting as a sink for Ret, in essence binding Ret 

molecules and making them unavailable for activation by other GFLs. The D2 portion of 

the GFRα receptors interacts directly with Ret to initiate Ret autophosphorylation 
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(Lindahl et al., 2000). Presence of a non-functional D2 or lack of a GPI-anchor results in 

a GFRα-4 receptor that is unable to induce its actions through Ret. 

2. GFL-GFRα initiation of signaling 

The GFRα receptors are localized to lipid rafts by the GPI-anchors (Poteryaev et al., 

1999) and recruit Ret into the lipid raft after binding with a GFL homodimer (Tansey et 

al., 2000). The action of the GFRα receptors is initiated when a GFL homodimer 

approaches two GFRα receptors, of the same isoform, and causes them to 

homodimerize (Trupp et al., 1998b). This GFL-GFRα complex aids in the translocation of 

the Ret receptor tyrosine kinase to lipid rafts, by an unknown mechanisms, and causes a 

dimerization of Ret initiating a number of intracellular signaling pathways (Trupp et al., 

1998a). This recruitment leads to the activation of Ret and subsequent signaling 

described below. There is extensive characterization of this process with GDNF. 

Interestingly, mutated forms of GDNF that lack the ability to efficiently promote 

translocation of GFRα to Ret are still able to initiate Ret autophosphorylation (Eketjall et 

al., 1999). A weak Ret-GFRα-1 association is present in cells exposed to these mutated 

forms of GDNF, indicating that Ret and the GFRα receptors can associate prior to GFL-

GFRα binding (Eketjall et al., 1999). Whether GFL-GFRα complex translocates to Ret or 

the GFRα-Ret complex is preassembled, it is clear that the GFRα receptors are critical 

components in GFL-induced signaling and function. 

3. GFL-GFRα specificity 

While the GFLs preferentially bind to a specific GFRα receptor; GDNF to GFRα-1, 

NTN to GFRα-2, ART to GFRα-3, and PSP to GFRα-4; there is evidence of lower affinity 

binding of the GFLs to GFRα receptors other than their preferred subtype (Airaksinen 

and Saarma, 2002). GFRα-1 and GFRα-2 have similar binding affinities for both GDNF 

and NTN (Cik et al., 2000). GFRα-1 binds GDNF with a Kd of 0.63 to 5.0 nM and NTN 

with a Kd of 1.0 to 3.0 nM. GFRα-2 binds GDNF with a Kd of 1.0 to 3.0 nM and NTN with 
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a Kd of 0.6 to 3.0 nM (Baloh et al., 1998; summarized in Table 1). Both GDNF and NTN 

are able to activate the MAPK, PI-3K, and PLC-γ pathways (Kaplan and Miller, 

2000;Yang et al., 2001) and mediate their survival and neurite outgrowth actions on 

neurons through binding to either GFRα-1 and GFRα-2 (Baloh et al., 1997;Buj-Bello et 

al., 1997;Sanicola et al., 1997). However, NTN-induced Ret autophosphorylation and 

activation of the MAPK through GFRα-2 is five to 20 times more potent than through 

GFRα-1 (Baloh et al., 1998;Klein et al., 1997). There is also evidence of actions that 

ART can initiate Ret dimerization and autophosphorylation through GFRα-1, but at 

concentrations of ~10 nM (Bespalov and Saarma, 2007). 

The GFRα-3 receptor maintains the most fidelity to its preferential ligand, ART 

(Baloh et al., 1998). ART is the only GFL that binds to GFRα-3 at near physiologic 

concentrations (Kd of GDNF for GFRα-3:  > 100 µM, Kd of NTN for GFRα-3:  > 100 µM, 

Kd of ART for GFRα-3:  3.1 nM, and Kd of PSP for GFRα-3:  not tested) and the primary 

GFL that can induce biological actions through GFRα-3, including differentiation and 

proliferation of cell lines and survival of neurons (Airaksinen et al., 1999;Baloh et al., 

1998;Sariola and Saarma, 2003). 

GFRα-4 binds PSP with a much higher affinity than any of the other GFLs (Kd of 

GDNF for GFRα-4:  > 50 µM, Kd of NTN for GFRα-4:  > 50 µM, Kd of ART for GFRα-4:  

not tested, nM, and Kd of PSP for GFRα-4:  1.0 to 6.0 nM (Lindahl et al., 2000;Milbrandt 

et al., 1998). NTN is able to enhance the survival of superior cervical sympathetic 

ganglia (SCG) neurons through GFRα-4, but only at high concentrations (100 µM) and 

when added in addition to PSP at a concentration of 5 ng/mL (Enokido et al., 1998). 

Because PSP and GFRα-4 do not modulate the function of adult, mammalian sensory 

neurons, there will be only minor discussion of this GFL in future sections. For this 

reason, from this point forward when referring to the GFLs as a group, PSP will not be 

included, unless otherwise indicated. 
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Table 1 
 

          

Receptor GDNF NTN ART PSP 
  

GFRα‐1  0.63 - 5.0 nM [1, 2, 3] 1.0 - 3.0 nM [3,6,7,8,12] > 10 nM [1, 3, 10] 1:1,000 [14] 

GFRα‐2  1.0 - 3.0 nM [2, 4, 5, 7] 0.6-3.0 nM [3, 6, 9, 10, 12] > 100 nM [1,3,10] 1:800 [15] 

GFRα‐3  > 100 µM [3,9,11,12] > 100 µM [3, 6, 9, 10, 12] 3.1 nM [3] Not Tested 

GFRα‐4  > 50 µM [13, 14, 15] > 50 µM [13, 14, 15] Not Tested 1.0 - 6.0 nM [13, 14, 15] 

1. Airaksinen and Saarma, 2002; 2. Cik et al., 2000; 3. Baloh et al., 1998; 4. Kaplan and Miller, 
2000; 5. Yang et al., 2001; 6. Baloh et al., 1997; 7. Buj-Bello et al., 1997; 15. Enokido et al., 
199811. Airaksinen et al., 1999; 12. Sariola and Saarma, 2003; 13. Lindahl et al., 2000; 14. 
Milbrandt et al., 1998; 8. Sanicola et al., 1997; 9. Klein et. Al, 1997; 10. Bespalov and Saarma, 
2007;  

Affinity of GFLs for specific GFRα subtypes 
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The GFLs bind directly to the GFRα receptors. Figure 1 illustrates this binding and 

signal initiation profile in diagrammatic form for the primary ligand/receptor interactions. 

However, the intracellular signaling pathway initiation by the GFLs and the physiological 

functions of the GFLs most often require additional steps and/or receptors. 

D. Ret receptor tyrosine kinase and the GFLs 

The Ret receptor tyrosine kinase was first identified as a transforming gene after 

human lymphoma cDNA was transfected into NIH 3T3 cells and two unlinked segments 

of this cDNA were linked via recombination (Takahashi et al., 1985). While the 

nucleotide sequence of the 5’ end of Ret is unique, the 3’ end of the gene shows 40-50% 

homology to other known tyrosine kinase receptors (Takahashi and Cooper, 1987). 

Further analysis of the amino acid sequence of Ret demonstrates its homology (25-30%) 

to the tyrosine kinases Src, Abl, Met, and Kit, particularly at the carboxy-terminus 

(Takahashi and Cooper, 1987). Not surprising is that the carboxy-terminus of the Ret 

receptor is where the tyrosine kinase activity resides, and the amino-terminus is the 

ligand binding end. Additionally, there is a highly hydrophobic portion of the molecule 

that forms the transmembrane domain (Takahashi et al., 1988). Overall, the intracellular 

signaling pathway induction and structural changes of Ret are similar to many of the 

other receptor tyrosine kinases that directly bind their ligand (for example, TrkA and 

NGF), except that it lacks a direct ligand binding site (Treanor et al., 1996). 

Low levels of Ret were identified in adult rat tissue, with the brain, testis, and thymus 

having the highest levels (Tahira et al., 1988). The lungs, heart, spleen, and small 

intestine showed a low amount of Ret reactivity (Tahira et al., 1988). However, it is now 

clear that Ret is present on many adult mammalian tissues, including CNS neurons, 

PNS neurons, renal tissue, thyroid tissue, and enteric neurons (Quartu et al., 2007;Yang 

et al., 2006a;Yang et al., 2006b;Yoong et al., 2005).
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Figure 1. Diagrammatic representation of the binding of GFLs to their preferential GFRα 
receptor subtype and consequent interaction with Ret. Each of the GFLs, as a 
homodimer, binds preferentially to a GFRα receptor subtype, which homodimerizes as 
well. This GFL-GFRα complex translocates to the receptor tyrosine kinase, Ret, which 
autophosphorylates and initiates downstream signaling events. Adapted from Sariola 
and Saarma, 2003. 
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There are two isoforms of Ret (Tsui-Pierchala et al., 2002b); a short form that has 

nine amino acids after the first conserved 1062 amino acids, and a long form that has 

fifty one (Myers et al., 1995;Tahira et al., 1990;Ishizaka et al., 1989). The Ret 9 short 

form has 12 tyrosine phosphorylation sites, and the Ret 51 long form has 14 of these 

sites (Alberti et al., 1998;Carter et al., 2001). These extra two phosphorylation sites may 

be important in more robust and efficient activation of the PLC-γ signaling pathway 

(Tsui-Pierchala et al., 2002c). The differences in these two isoforms have been 

extensively studied, especially in renal and digestive system development. However, no 

consensus exists as to the possible roles of each of the different Ret isoforms in GFL-

induced function in many mammalian cell types, including neurons. There is evidence of 

some differential functions of the two Ret isoforms in development and maintenance of 

certain cell types. Ret 9 appears to be necessary for early kidney development and 

enteric ganglia formation in the kidney, while Ret 51 is neither necessary nor sufficient 

for these processes (de et al., 2001). However, Ret 51 may be involved in later kidney 

development, including survival and tubulogenesis in the collecting duct system (Lee et 

al., 2002). Few studies have been conducted to evaluate the role of each Ret isoform in 

neuronal function. NGF-induced survival, somal growth, and NGF-dependent gene 

expression in adult, sympathetic neurons can be mediated by the long, Ret 51 isoform of 

Ret (Tsui-Pierchala et al., 2002a). Specifically, NGF induced Ret 51 phosphorylation in 

the absence of GFLs in adult sympathetic neurons. If the Ret phosphorylation was 

prevented by inhibition of NGF signaling through TrkA, the NGF-induced increased 

production of tyrosine hydroxylase (TH), microtubule-associated protein-2 (MAP-2), and 

neurofilament-medium (NF-M) was abolished. Additionally, the expression of these 

neuronal proteins  did not increase in response to NGF in sympathetic neurons lacking 

Ret. While this Ret 51, is likely involved in the functions of GFLs on adult sympathetic 
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neurons, Ret 9 cannot be excluded as an important receptor for adult mammalian 

sensory neuronal function. 

The gene coding for Ret was localized to chromosome 10q11.2 (Ishizaka et al., 

1989), which put this gene in close proximity to the gene locus for a set of thyroid 

cancers, known as the multiple endocrine neoplasia type 2, MEN 2 (Yamamoto et al., 

1991;Hofstra et al., 1994). MEN 2 syndrome is characterized by medullary thyroid 

carcinomas, pheochromocytomas, and other hyperplasias and neoplasias (Marini et al., 

2006). This observation, in addition to the presence of a mutated form of constitutively 

active Ret in several cancer cells types, including neuroblastomas (Tahira et al., 

1990;Takahashi et al., 1991), leukemias (Takahashi et al., 1991), pheochromocytomas 

(Yoshimoto et al., 1995), and thyroid carcinomas (Grieco et al., 1990;Santoro et al., 

1990), has led to interest in Ret as a cancer-causing or modifying receptor. 

Ret was an orphan receptor until it was identified as a critical receptor for the actions 

of GDNF in the substantia nigra (Trupp et al., 1996), kidney development (Durbec et al., 

1996), and peripheral nervous system development (Durbec et al., 1996). Ret and the 

ligand binding receptor for GDNF, GFRα-1, associate, and the actions of GDNF 

described above are unable to occur in the absence of either GFRα-1 or Ret (Treanor et 

al., 1996). There is no direct binding of GDNF to Ret, nor can GDNF activate the 

phosphorylation of Ret in the absence of GFRαs (Treanor et al., 1996). Additionally, 

GFRα-1 associates with Ret weakly in the absence of GDNF and strongly in the 

presence of GDNF, indicating that both GFRα-1 and Ret are necessary and critical for 

GDNF to function and that GDNF facilitates the association of GFRα-1 and Ret (Treanor 

et al., 1996). 

Each of the other GFLs, NTN, ART, and PSP, have a similar system for Ret 

activation, initiated by binding of the GFL with its specific GFRα, translocation of the 

GFL-GFRα complex to Ret, activation of Ret via autophosphorylation (Coulpier et al., 
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2002), and initiation of downstream signaling (Baloh et al., 1998;Buj-Bello et al., 

1997;Masure et al., 2000). The GFRα resides in a lipid raft, and when the GFL binds, the 

GFL-GFRα complex recruits Ret to the lipid raft (Paratcha et al., 2001;Tansey et al., 

2000). Disruption of this recruitment, or of the lipid raft structure, results in decreased 

GFL-induced neuronal differentiation and survival (Tansey et al., 2000), reduced neurite 

outgrowth (Paratcha et al., 2001), abolition of Ret downstream signaling (Paratcha et al., 

2001), and axonal expansion and growth cone lengthening (Paratcha et al., 2001). 

The intracellular signaling pathways by which Ret initiates its functions are diverse 

and numerous. Downstream signaling initiated by Ret is accomplished by one of two 

primary mechanisms. Within lipid rafts, Ret signals through the Src homology 2 domain 

containing (SHC) protein, which then activates the common signaling molecule Grb2 

(Paratcha et al., 2001). Outside of lipid rafts, Ret activation results in initiation of the FGF 

receptor substrate 2 (FSR2) signaling pathway (Paratcha et al., 2001). Signaling 

initiation by either route activates many of the classic intracellular signaling pathways of 

receptor tyrosine kinases, including MAPK-Erk 1/2 (Trupp et al., 1999b;Worby et al., 

1996), PI-3K-Akt (Maeda et al., 2004;Segouffin-Cariou and Billaud, 2000;Trupp et al., 

1996), Jun NH2-terminal protein kinase (Chiariello et al., 1998), p38 MAPK (Watanabe 

et al., 2002), and PLC-γ (Borrello et al., 1996). 

E. Ret-independent GFL-induced signaling 

There is emerging evidence of GFL-induced, Ret-independent signaling pathways. 

GDNF activates Src family kinases (SFKs), phosphorylates CREB, and upregulates fos 

in raphe nucleus and motor neuron cell lines lacking Ret (Trupp et al., 1999c). 

Additionally, GDNF is able to activate Src-family kinases and PLC-γ in a Ret deficient 

neuroblastoma cell line (Poteryaev et al., 1999). Embryonic dorsal root ganglia (DRG) 

neurons from mice genetically modified to express no Ret have provided evidence that 

GDNF can signal in a Ret-independent manner (Poteryaev et al., 1999). The Ret-
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independent pathways include the MAPK-Erk 1/2 and pCREB pathways (Poteryaev et 

al., 1999). This Ret-independent, GDNF-induced signaling is specifically through GFRα-

1 (Pezeshki et al., 2001). NTN is unable to accomplish these actions through either 

GFRα-1 or GFRα-2 (Pezeshki et al., 2001). These studies indicate that Ret-independent 

signaling is present in neurons and that while the signaling pathways activated by Ret-

dependent and Ret-independent mechanisms are the same, the pathways may be 

activated in different manners or in different cellular compartments. 

GDNF-induced, Ret-independent signaling can be accomplished through GFRα-1 

directly initiating signaling cascades or via an interaction of GFRα-1 with other cell 

surface receptors. The activation of SFKs by GFRα-1 has been demonstrated in 

neuroblastoma cell lines (Poteryaev et al., 1999). Neural Cell Adhesion Molecules 

(NCAMs) were the first candidate cell surface receptors identified as possible GFRα-1 

binding partners and signaling activators. NCAM signals through the Fyn/FAK pathway, 

a SFK pathway, in the RN33B raphe nucleus cell line (Paratcha et al., 2003). GFRα-1 

binds directly to NCAM (Cao et al., 2008a), and the GFRα-1-NCAM signaling 

mechanism has functional consequences on axonal outgrowth of hippocampal and 

cortical neurons (Paratcha et al., 2003), as well as neurite outgrowth of dopaminergic, 

midbrain neurons (Cao et al., 2008a). There is also evidence that GFRα-1 can bind with 

Integrin β-1 in substantia nigra dopaminergic neurons and initiate the Shc and FAK 

signaling pathways in an Integrin β1-dependent manner (Cao et al., 2008b). However, 

there is no functional evidence of GDNF-induced, Integrin β1-dependent actions, nor 

have any studies evaluated the role of Integrin β-1 on sensory neuronal sensitization. 

There is precedence, however, for other extracellular matrix adhesion proteins, such as 

fibronectin, induce sensory neuronal sensitization (Jeske et al., 2009). Finally, nucleotide 

and amino acid sequence homology analysis has identified growth arrest specific (GAS-

1) receptor, a tumor suppressor protein, as another possible co-receptor for the GFRα-1-
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GDNF complex (Schueler-Furman et al., 2006). Whether GAS1 is a functional co-

receptor for the GFRα-1-GDNF complex has yet to be determined. 

F. The GFLs in inflammation 

One way inflammation is incited is when an object creates a wound in a tissue, such 

as the skin. The results of this wound include the classic inflammatory signs and 

symptoms:  rubor (redness), calor (heat), tumor (swelling), dolor (pain), and functio laesa 

(loss of function). These signs and symptoms are due to vasodilatation and 

extravasation of inflammatory cells from the blood vessels into the area of the injury 

(Darwin, 1875). The inflammatory cells responsible for the initiation of inflammation 

include mast cells (BENDITT et al., 1955), neutrophils (PAGE and GOOD, 1958), and 

other peripheral blood leukocytes (Hartman and SCHRECK, 1958). When these cells 

are activated by substances released after the injury is incited, they release a number of 

molecules known as inflammatory mediators (Spector, 1958). Among the classic 

inflammatory mediators are histamine, bradykinin, and prostaglandins (ROCHAESILVA, 

1964). Recently, growth factors, specifically nerve growth factor (NGF), have been 

identified as potent inflammatory mediators (Bienenstock et al., 1987). 

There is also evidence of a role for GFLs in the inflammatory process. Application of 

several substances that induce inflammation, including IL-1β, TNFα, and 

lipopolysaccharide (LPS), to glial cells from the enteric nervous system increases the 

level of GDNF four to five fold, from 50 pg/mL to as high as 300 pg/mL (von Boyen et al., 

2006). Glial cells supporting neurons of the enteric system in the myenteric plexus are 

known to be responsive to inflammatory mediators. Additionally, inflammatory mediators 

cause several types of inflammatory cells to release the GFLs. Macrophages in culture, 

when activated by LPS, release increased amounts of GDNF compared to those not 

treated with this inflammatory substance (Hashimoto et al., 2005). Most compelling, the 

levels of artemin are increased when inflammatory inducers are injected in vivo. The 
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levels of artemin mRNA were increased up to 1000 times after injection of Complete 

Freund’s Adjuvant (CFA), and artemin levels increase in the dental pulp after 

inflammation induction (Baloh et al., 1998;Malin et al., 2006). Inflammation associated 

with breast cancer increases the level of GDNF (Esseghir et al., 2007). Since the levels 

of the GFLs are dramatically increased during inflammation, they may be responsible, in 

part, for changes in the properties of the sensory neurons associated with inflammatory 

processes. 

G. Sensitization by GFLs 

The exposure of neurons to different types and durations of stimuli results in 

changes in their properties. One neuronal property often changed under these 

circumstances is the sensitivity of the neurons. This change in neuronal sensitivity was 

first demonstrated in the whole animal by Sherrington (1906) using the scratch reflex 

paradigm in dogs. In this paradigm, electrical or mechanical stimulation is applied to the 

shoulder of the dog, and the natural reflex arc is for the dog to scratch its shoulder with 

the hind limb. The intensity, amplitude, and rhythm of the hip muscle flexion are then 

measured. Repeated, high-frequency electrical or mechanical stimulation to the skin of 

the shoulder resulted in a progressive reduction in the flexion amplitude of the hip 

muscle (Sherrington, 1906). Additionally, the muscle contractions are unpredictable and 

weak, compared to the initial stimulation (Sherrington, 1906). Sherrington was also able 

to elucidate the location of this decrease in the reflex, since full and strong contractions 

occurred when electrical stimuli were applied to the muscle. He concluded that the 

neuron itself, with its endings likely present in the shoulder skin, was responsible for the 

decreased response, later called habituation or desensitization. Not surprisingly, the 

opposite of this habituation also occurred with low-level, sub or near threshold 

stimulation (Sherrington, 1906). Specifically, this type of stimulation to the shoulder skin 

of the dog resulted in a lowering of the threshold for hip flexion and scratching. 
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Sherrington initially called this phenomenon “bahnung,” and it was later termed 

sensitization. 

Since Sherrington’s initial identification of sensitization, other definitions of 

sensitization have been added. These include an increase in the activity of the neuron to 

a given stimulus, measured in several different ways, or a decrease in the threshold for 

activation to given environmental (i.e. mechanical) or chemical (i.e. changes in pH) 

alterations. Some of the assays used to measure changes in neuronal sensitivity have 

included complex biological assays, such as long-term potentiation (Hawkins et al., 

1993) and complex behavioral assays, such as thermal latency (Hargreaves et al., 1988) 

in rodents, and other simple behavioral assays in less complex organisms (Bliss and 

Lomo, 1973). Electrophysiological changes, or changes in the electrical properties of the 

neuron, have been useful in determining the chemical, mechanical, and other stimuli 

capable of or necessary for producing neuronal sensitization. 

The primary mode of communication between neurons is through chemical 

neurotransmitter release. When a neuron is activated or stimulated, chemical 

neurotransmitters are released from pre-synaptic neurons and cause responses in 

nearby post-synaptic neurons and non-neuronal cells (Katz et al., 1962b). Depending 

upon the specific neurotransmitter and the neurotransmitter receptor, the release of 

neurotransmitters and the subsequent response to these substances can be either 

activation or inhibition. This activation or inhibition can be of another (post-synaptic) 

neuron, non-neuronal cells, or the releasing neuron itself (autocrine actions). The 

frequency and duration of the neuronal stimulation is dependent upon the amount of 

quantal neurotransmitter release. Since neurotransmitter release is the primary mode of 

neuronal communication, an enhancement in the release of neurotransmitters in 

response to a given stimulus can be used as an effective and important measure of 

neuronal sensitization.  
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The focus of our laboratory is to determine how certain functions, specifically the 

sensitivity, of primary afferent, small-diameter, peptidergic sensory neurons are altered 

by molecules released during inflammation. We are also interested in the cellular 

mechanisms of this sensory neuronal sensitization. The specific subset of primary 

afferent neurons of which are particularly interested are the small-diameter, and typically 

nociceptive sensory neurons. These neurons respond to noxious stimuli and are 

activated by inflammation and injury (Bartho et al., 1990;Coderre and Melzack, 

1987;Kocher et al., 1987;Weihe et al., 1988). The studies in this thesis will be conducted 

using agents that are present in increased amounts during inflammation, the GFLs, and 

stimuli that activate these small-diameter, nociceptive sensory neurons. 

1. Behavioral sensitization 

The fact that the levels of the GFLs are increased during inflammation has led to the 

study of the ability of the GFLs to cause inflammatory hyperalgesia. Specifically, 

injection of each of the GFLs, GDNF, NTN, and ART, into the paw of rodents 

dramatically reduces the thermal withdraw latency evaluated with a Hargreaves test 

(Malin et al., 2006). This thermal hyperalgesia occurs within 30 minutes to one hour and 

is long-lasting. Mechanical hyperalgesia is another result of GDNF injection into the paw 

of rodents. Using the Ugo Basile analgesymeter, in which a mechanical force applied to 

the paw is linearly increased at 16 g/s, it was found that GDNF lowered the threshold for 

paw withdraw (Bogen et al., 2008). This hyperalgesia is accomplished when 10 ng/mL 

GDNF is injected and it is prevented by inhibition of PLC-γ, Src family kinases, PI-3K, 

MAPK-Erk, and CDK5. The limitations of this study are two-fold. First, injection of these 

inhibitors into the paw of a rodent affects all of the neuronal and non-neuronal cells in 

the area, which means these modified behavioral responses may not be as a result of 

modulation of nociceptive sensory neurons. Secondly, the inhibitors used in these 

experiments are non-specific and inhibit many other signaling pathways at the 
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concentrations used, making interpretation of this data difficult. Despite these obvious 

limitations in an in vivo system, these studies suggest that the MAPK-Erk, PI-3K, CDK, 

Src family kinase, and PLC-γ pathways are involved in GDNF induced changes in 

sensory neurons. Additionally, mice genetically modified to over express artemin in the 

skin displayed hyperalgesia to both noxious heat and cold, when compared to wild-type 

litter mates (Elitt et al., 2006). Complete Freund’s Adjuvant (CFA) induces inflammation 

and results in inflammatory hyperalgesia upon injection. When a blocking antibody to 

GDNF is injected into the paw of rats in addition to CFA, the CFA-induced mechanical 

hyperalgesia is attenuated (Fang et al., 2003). These studies give insight into the 

possible physiological and biochemical mechanisms of GFL-induced sensitization. 

2. Sensitization of sensory neurons by GFLs 

There is direct evidence of effects of GFLs on sensory neurons, both alterations in 

channel properties and changes in the overall threshold of activation of these neurons. 

Injection of GDNF into the dorsum of the paw resulted in enhanced small-diameter, 

nociceptive neuronal responses to mechanical stimuli measured with an in vivo 

electrophysiological preparation (Bogen et al., 2008). Interestingly, application of each of 

the GFLs, GDNF, NTN, and ART, enhanced the calcium influx through TRPV1 in 

sensory neurons in culture in response to capsaicin, a specific exogenous ligand for this 

channel (Malin et al., 2006). These observations demonstrate that the GFLs are able to 

directly modulate properties of small-diameter sensory neurons in such as way as to 

make them more excitable. It is yet to be established whether this change in excitability 

results in an increased release of neurotransmitters involved in neurogenic inflammation 

and pain signal propagation from these neurons. 
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a. Electrophysiological and ion channel sensitization by GFLs 

There are a number of studies that demonstrate that the GFLs are able to modulate 

the electrophysiological properties of nociceptive sensory neurons. C-fibers from animals 

over expressing GDNF in the skin have dramatically reduced thermal and mechanical 

thresholds (Albers et al., 2006). When GDNF is injected in to the receptive field of C-

fibers in the skin, those C-fibers have reduced thermal thresholds and unaffected 

mechanical thresholds, determined by using the single-fiber electrophysiological 

technique (Bogen et al., 2008). Each of these previous studies was conducted using in 

vivo or ex vivo preparations. GDNF and neurturin also directly affect the 

electrophysiological properties of TRPV1 in isolated sensory neurons in culture by 

increasing the capsaicin-induced calcium influx through the channel (Malin et al., 2006). 

Artemin shows similar characteristics in its ability to alter the electrophysiological 

properties of nociceptive sensory neurons. Mice over expressing artemin in the skin 

have enhanced firing rates of C-fiber in response to noxious heat (Elitt et al., 2006). 

However, and in contrast to GDNF, C-fibers from artemin over-expressing mice did not 

respond more robustly to mechanical stimuli than wild type mice (Elitt et al., 2006). 

Interestingly, artemin enhanced calcium influx in intact C-fibers in response to capsaicin, 

a stimuli specific for TRPV1, but not other stimuli, including ATP (Elitt et al., 2006). 

Similar to GDNF and neurturin, artemin enhances calcium influx through TRPV1 

channels in isolated sensory neurons in culture, but the potency of artemin is higher 

(producing a response at 1 ng/mL) than that of GDNF or neurturin (producing a 

response at 10 ng/mL; Malin et al., 2006). The GFLs, therefore, sensitize specific 

electrophysiological properties of nociceptive sensory neurons. 
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b. GFLs may enhance release of neuropeptides 

There are four basic criteria that must be met in order that a molecule can be 

classified as a neurotransmitter (reviewed by (Paton, 1958)). These criteria include:  the 

molecule is present and produced or activated in the pre-synaptic neuron, activation of 

the pre-synaptic neuron causes the release of this molecule from that neuron, exposure 

of the post-synaptic neuron to the molecule has the same effect as stimulating the pre-

synaptic neuron, and substances that inhibit release of the molecule from the pre-

synaptic neuron must also prevent the biological effect of activation of the post-synaptic 

neurons. While this set of criteria were established using studies with acetylcholine, it is 

now clear that any molecule that meets all of these criteria, regardless of its chemical 

makeup or structure, can be classified as a neurotransmitter. 

Among the neurotransmitters known to be present in and responsible for the actions 

of sensory neurons are glutamate, substance P (SP), and calcitonin gene-related 

peptide (CGRP), as well a numerous others (Hokfelt et al., 1975;Schoenen et al., 

1989;Wiesenfeld-Hallin et al., 1984). However, the peptide transmitters, including 

CGRP, are important transmitters used by the small-diameter sensory neurons (Garry et 

al., 1989;Kangrga and Randic, 1991;Wiesenfeld-Hallin et al., 1984). Neuropeptide 

release is critically important for sensory neuronal signal propagation and function, as 

described previously. It could follow, then, that increases in the release neuropeptides 

like CGRP, would alter the signal propagation centrally and peripherally. Additionally, 

quantifying the changes in the release of this neuropeptide is a reliable measurement of 

changes in sensory neuronal function, in particular the subset of small diameter sensory 

neurons containing CGRP. The peptide also fulfills the four criteria detailed previously 

for neurotransmitters in these neurons. For these reasons, I have chosen to focus the 

experiments in this thesis on the neuropeptides, specifically CGRP. 
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CGRP is present and colocalized in small-diameter sensory neurons and spinal cord 

neurons (Skofitsch and Jacobowitz, 1985;Wiesenfeld-Hallin et al., 1984). It is involved in 

different components of the neurogenic inflammation response. CGRP mediates 

vasodilatation (Escott et al., 1995;Messlinger et al., 1995;Brain et al., 1985). Not only is 

this neuropeptide present in small-diameter sensory neurons, but its release profile is 

nearly identical to that of Substance P (SP; another neuropeptide) in response to 

noxious stimuli (Franco-Cereceda et al., 1987;Hingtgen and Vasko, 1994a;Hingtgen et 

al., 2006;Schicho et al., 2005). Because of the better stability of CGRP and the reliability 

of the release levels of CGRP in release assays, I will focus on CGRP for release 

assays in this thesis. 

CGRP production results from alternative splicing of the calcitonin gene in neurons, 

creating a 37-amino acid small peptide (Amara et al., 1982;Nelkin et al., 1984;Rosenfeld 

et al., 1983). Two isoforms of CGRP exist, CGRPα and CGRPβ (Holman et al., 1986). 

While these two isoforms may have differential functions in several tissues, there is no 

evidence that this is true in sensory neurons (Beglinger et al., 1988;Beglinger et al., 

1991). In terms of its role as a neurotransmitter, CGRP fits all four criteria. CGRP is 

present in sensory neurons, specifically small diameter sensory neurons (Fang, 

1987;Gibson et al., 1984). Stimulation of sensory neurons via mechanical, electrical, or 

chemical means results in increased release of CGRP from small-diameter sensory 

neurons. (Franco-Cereceda et al., 1987;Wahlestedt et al., 1986). Injection of CGRP into 

the thecal space mimics the nociceptive behavioral effects of small-diameter sensory 

neuronal stimulation (Gamse and Saria, 1986), and injection of CGRP in the periphery 

induces neurogenic inflammation in a similar fashion as stimulation of small-diameter 

sensory neurons (Brokaw and White, 1992). Finally, inhibition of the actions of CGRP in 

the central and peripheral terminals prevents the nociceptive behaviors and neurogenic 
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inflammation induced by small-diameter sensory neuronal activation, which will be 

described in more detail below. 

One of the most dramatic effects of CGRP is its ability to induce and enhance 

neurogenic inflammation by dilating blood vessels (Brain et al., 1985;Girgis et al., 1985). 

In fact, the combination of the direct vasodilatory effects of CGRP on blood vessels and 

the indirect vasodilatory effects of CGRP through increasing histamine release from 

mast cells, modulation of the effects of SP on blood vessels, and the autocrine function 

of CGRP causing the release of additional vasodilators from sensory neurons makes 

CGRP one of the most potent and important vasodilators (Cruwys et al., 1992;Piotrowski 

and Foreman, 1986). Injection of the Fab fragment of a goat anti-human CGRP antibody 

prevents the neurogenic inflammation induced by both CGRP and capsaicin, as 

measured by a prevention of the increased blood flow induced by these molecules 

(Buckley et al., 1992). 

CGRP also produces hyperalgesia, increased behavioral responses to a given 

noxious stimulus, another form of sensitization. CGRP injection into the thecal space 

enhances rodent responses to noxious mechanical stimulation, which may be through 

direct interaction of CGRP with second order neurons or may be through enhancement 

of SP production or reduction of SP degradation (Oku et al., 1987). Strikingly, injection of 

a CGRP blocking antibody into the thecal space completely abolished mechanical 

allodynia (Ambalavanar et al., 2006). Additionally, CGRP antisera reduces arthritic 

hyperalgesia and recombinant herpes virus encoding antisense CGRP attenuates 

capsaicin-mediated thermal hyperalgesia (Kuraishi et al., 1988;Tzabazis et al., 2007). 

These studies provide evidence for the importance of CGRP in both neurogenic 

inflammation and inflammatory hyperalgesia. 
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The receptors for CGRP have been characterized recently. The CGRP receptors are 

heterodimers composed of a Family B, seven trans-membrane (TM) G-protein coupled 

receptor (GPCR), known as calcitonin receptor like receptor (CLR) and an accessory 

single TM receptor, RAMP (Receptor Activity Modifying Proteins; McLatchie et al., 

1998). There are two distinct CGRP receptors that are differentiated by their affinity for 

CGRP. CGRP-R1 is the high affinity receptor, and CGRP-R2 is the low affinity receptor 

(Juaneda et al., 2000). Additionally, endothelial cells on blood vessels express the 

CGRP receptors and respond to CGRP by relaxing, which leads to vasodilatation (Hirata 

et al., 1988). While the expression profiles of these receptors are different, there is a lack 

of evidence for any functional differences of the receptors in sensory neurons. 

The functional characteristics of CGRP, its role in neurogenic inflammation and 

inflammatory hyperalgesia, and the availability of a highly sensitive radioimmunoassay 

(RIA) for this neuropeptide, allowing direct quantification of the release of CGRP from 

sensory neurons in culture and spinal cord slices, have contributed to my decision to use 

changes in CGRP release as the measurement for sensitization in this thesis. 

The rationale behind examination of the small diameter sensory neurons, and the 

release of CGRP specifically, is two-fold. First, while it is clear that the GFLs are 

released in increasing amounts during inflammation (Baloh et al., 1998;Malin et al., 

2006;von Boyen et al., 2006), and that these molecules induce hyperalgesia in vivo 

(Bogen et al., 2008;Malin et al., 2006), it is yet to be determined whether these two 

phenomena can be connected through GFL-induced sensitization of sensory neurons. 

Evaluating the ability of the GFLs to enhance the release of the neuropeptide CGRP 

would further enhance the likelihood that the GFLs released during inflammation are 

causing hyperalgesia via modulation of nociceptive sensory neurons. Secondly, because 

CGRP induces neurogenic inflammation in the periphery (Buckley et al., 1992), GFL-

induced enhancement in CGRP release could cause increased release of the GFLs and 
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other inflammatory mediators that could further sensitize the sensory neurons within this 

inflammatory milieu. One could hypothesize that this autocrine, feed-forward system 

could also contribute to the inflammatory hyperalgesia induced by the GFLs. 

1. Sensitization of neurotransmitter release 

While many neuropeptide expressing neurons are responsive to GFLs (Bennett et 

al., 2006;Price et al., 2005), and the GFLs increase the content of CGRP and TRPV1 in 

sensory neurons (Price et al., 2005;Priestley et al., 2002;Ramer et al., 2003), it is 

unclear whether the GFLs directly modulate the release of CGRP from nociceptors in the 

DRG. Several concentrations of GDNF were able to enhance the potassium and 

capsaicin-stimulated release of CGRP in a trigeminal ganglia preparation, but at least a 

portion of this effect was due to the long-term exposure to GDNF increasing the content 

of CGRP in the ganglia (Price et al., 2005). Similarly, a 3 day exposure artemin exposure 

was able to induce the recovery of substance P release from injured sensory neurons 

(Bennett et al., 2006). However, there has been no exploration into whether short-term 

exposure of sensory neurons to the GFLs enhances the stimulated release of 

neuropeptides and this information would be important in defining a role for GFLs in the 

initiation of inflammatory hyperalgesia. 

a. Agents that stimulate sensory neurons 

In order to evaluate the ability of the GFLs to enhance the release of CGRP from 

sensory neurons, appropriate stimuli that evoke the release of this peptide must be 

chosen. General depolarization of sensory neurons, and resulting transmitter release, 

can be accomplished with the use of electrical stimuli or a high concentration of 

extracellular potassium (Hodgkin, 1950;Katz et al., 1962a). Among common 

physiological stimuli that activate sensory neurons, specifically small diameter sensory 

neurons, are noxious heat, a number of chemicals, and extreme mechanical pressure 

(Cooper and Diamond, 1977;Davis et al., 1993;Woolf et al., 1985). A number of 
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neurotransmitters, including acetylcholine, and other endogenous molecules, including 

bradykinin, can also induce the activation of small diameter sensory neurons (Fjallbrant 

and Iggo, 1961;Fock and Mense, 1976). Finally, capsaicin, the neurotoxin found in high 

levels in chili peppers of the Capsicum genus, is a selective, exogenous activator of a 

subset of small diameter sensory neurons (Bowie et al., 1994;Holzer, 1991;Toh et al., 

1955). While capsaicin is not an endogenous, physiologic  stimulus, it is a selective 

activator of small-diameter sensory neurons which it a powerful tool to dissect the 

reaction of nociceptive sensory neurons in a heterogeneous population of dorsal root 

ganglia (DRG) neurons. Sensory neuronal stimuli will be described below, with particular 

emphasis on high extracellular potassium and capsaicin, as these are the primary stimuli 

used in experiments in this manuscript. 

1. Capsaicin 

Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is a small, pungent molecule found in 

peppers of the genus Capsicum and has been study extensively for its actions on 

sensory neurons (TOH et al., 1955). The effects of capsaicin include a “spicy” taste 

when present in food and several actions on primary afferent sensory neurons. The 

specific effects of capsaicin on small diameter sensory neurons is concentration 

dependent, with a low concentration causing activation and a large concentration 

causing inhibition and even neuronal death (Chard et al., 1995;Hiura and Ishizuka, 

1989). 

Low concentrations of capsaicin selectively excite polymodal sensory neurons, those 

sensitive to many stimuli including thermal, chemical, and mechanical (Kenins, 

1982;Szolcsanyi et al., 1988;Welk et al., 1983) . This polymodal, capsaicin-sensitive set 

of sensory neurons is primarily composed of small-diameter sensory neurons, both slow-

conducting, unmyelinated C-fibers (Heyman and Rang, 1985) and lightly myelinated Aδ-

fibers (Such and Jancso, 1986). Larger diameter fibers, not generally accepted as 
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mediating neurogenic inflammation and pain except in the case of allodynia (Yamamoto 

et al., 2008), are not sensitive to capsaicin. In addition to stimulating the subset of 

sensory neurons responsible in large part for neurogenic inflammation and pain 

propagation, the majority of capsaicin sensitive sensory neurons contain neuropeptides, 

including CGRP (Hingtgen and Vasko, 1994a;Hingtgen et al., 2006;Holzer, 

1988;Skofitsch and Jacobowitz, 1985). 

Capsaicin stimulates small-diameter sensory neurons through binding to and 

activation of a ligand-gated, non-selective cationic channel. The receptor for capsaicin 

was originally identified using radiolabeled capsaicin-related molecules (Szallasi and 

Blumberg, 1990). This receptor was later cloned and given the name transient receptor 

potential vanilloid 1 (TRPV1), due to its ability to transiently allow the passage of cations, 

such as sodium and calcium (Caterina et al., 1997;Oh et al., 1996). This influx of cations 

causes depolarization and neurotransmitter release (Bevan and Szolcsanyi, 1990;Wood 

et al., 1988). TRPV1 is found predominantly on a subset of small-diameter, nociceptive 

sensory neurons (Caterina et al., 1997;Helliwell et al., 1998). This receptor also 

responds to endogenous and commonly encountered noxious stimuli, including acidic 

shifts in pH and noxious heat above 43° C, making activation of this receptor by 

capsaicin a surrogate for natural nociceptive stimuli encountered by sensory neurons. 

Moreover, TRPV1 colocalizes nearly completely with CGRP in the dorsal root ganglia 

(Aoki et al., 2005;Price and Flores, 2007;Yu et al., 2008), which is further evidence of its 

role in neurogenic inflammation and pain propagation. Interestingly, the inhibition of 

neuronal activity induced by high concentrations of or prolonged exposure to capsaicin 

are a result of desensitization of TRPV1, likely through calcium-induced mechanisms 

(Mondadi et al., 2004). The mechanisms of TRPV1 modulation and the resulting 

changes in sensitivity will be discussed below. 



31 
 

Capsaicin is able to elicit responses from a subset of small-diameter sensory 

neurons, those which are responsible for neurogenic inflammation and pain propagation, 

specifically through the TRPV1 cationic channel. This attribute makes capsaicin a useful 

and powerful tool for the study of the sensitivity of these neurons. While repeated 

stimulation of sensory neurons by capsaicin leads to desensitization (termed 

tachyphylaxis) REF, this substance has a well established ability to elicit the release of 

CGRP at low concentrations in many different tissues and model systems. These 

attributes make capsaicin a primary tool for use in my peptide release experiments. 

2. Potassium 

Potassium ion concentrations are maintained at a low level in the extracellular 

compartment and a high concentration inside the neurons. This concentration gradient is 

responsible for the homeostasis of the membrane potential. When the concentration is 

increased outside of the neuron, this homeostasis is no longer present, fewer potassium 

ions are able to exit the neuron through potassium channels, and a positive charge is 

created at the neuronal membrane. This change in potential is called depolarization, and 

depolarization results in many voltage gated ion channels changing their properties so 

as to further depolarize the membrane. In this way, potassium can be used as a general 

depolarizing stimulus in CGRP release experiments. The use of a high extracellular 

concentration of potassium to activate sensory neurons and induce release of CGRP is 

extensive (Hingtgen and Vasko, 1994a;Hingtgen et al., 1995;Hingtgen et al., 

2006;Mason et al., 1984;Saria et al., 1986). High extracellular potassium, at 

concentrations approximately 10 times physiological extracellular concentrations, will be 

used as a general depolarizing stimulus in my release experiments. 
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b. Agents that sensitize sensory neurons 

1. NGF 

Recently, the growth factor family of molecules has been identified as being released 

during inflammation and sensitizing sensory neurons (for a comprehensive review see 

(Mendell et al., 1999)). Nerve growth factor (NGF) was the first of these growth factors 

for which increased levels during inflammation (Weskamp and Otten, 1987) and 

sensitization of sensory neurons was demonstrated. NGF sensitizes nociceptive 

behavioral responses elicited by small-diameter sensory neurons, electrophysiological 

characteristics of these neurons, and the release of neuropeptides from these neurons. 

The initial sensitizing effects of NGF on small diameter sensory neurons were 

evaluated using behavioral methods. Long-term administration of NGF from birth to 

adulthood (5 weeks old) led to increased sensitivity of these animals to two classic 

nociceptive stimuli, noxious heat and noxious mechanical pressure (Lewin et al., 1993). 

Later, injection of NGF directly into the paw also caused enhanced behavioral responses 

to noxious heat and mechanical stimuli, using the hot plate test and Von Frey hairs 

(Della et al., 1994). This phenomenon has been further characterized and appears to be 

as a result of the interaction of NGF with TRPV1. Specifically, NGF increases the 

insertion of TRPV1 into the membrane of small diameter sensory neurons (Zhang et al., 

2005) and phosphorylates this channel by interacting with either or both of its receptors, 

TRKA and p75, which in turn activates a number of intracellular signaling pathway (Doya 

et al., 2005;Zhang and Nicol, 2004;Zhu and Oxford, 2007;Zhuang et al., 2004). The 

NGF-induced modulation of TRPV1 by these pathways is directly responsible for the 

hyperalgesia observed. 

NGF also modulates the electrophysiological characteristics of small diameter 

sensory neurons, resulting in enhanced sensitivity of these neurons. NGF applied to the 

receptive skin fields of an attached skin-saphenous nerve preparation increased the 
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thermal sensitivity of small diameter C and Aδ fibers (Rueff and Mendell, 1996). In fact, a 

number of these neurons that were initially non-responsive to the noxious heat became 

responsive after NGF administration. NGF is also able to reverse the capsaicin-induced 

desensitization of sensory neurons and to increase the responsiveness of small 

diameter sensory neurons to a second application of capsaicin (Shu and Mendell, 1999). 

This effect of NGF is likely due to TRPV1 insertion in the cell membrane in a protein 

kinase C (PKC)-dependent fashion (Bonnington and McNaughton, 2003) and 

phosphorylation and subsequent increased activation of TRPV1 in a PKA-dependent 

fashion (Shu and Mendell, 2001). 

Finally, enhancement in the release of neuropeptides, another means by which to 

measure sensory neuronal sensitization, is accomplished by NGF. Exposure of sensory 

neurons to NGF for 10-20 minutes enhances the stimulated release of both SP and 

CGRP in response to several stimuli, including potassium (Malcangio et al., 

1997b;Malcangio et al., 1997a), capsaicin (Hingtgen et al., 2006), anandemide and 

arachidonyl-2-chloroethylamide (Price et al., 2005). This effect of NGF is present in the 

spinal cord (Malcangio et al., 1997b;Malcangio et al., 1997a), trigeminal ganglia (Price et 

al., 2005), and DRG (Hingtgen et al., 2006). For this reason, NGF will be used as a 

positive control of sensitization. 

2. GFLs 

The purpose of this introduction has been three fold. First, evidence was provided 

that many forms of sensory neuronal sensitization, including behavioral, 

electrophysiological, and neuropeptide release, are accomplished by inflammatory 

mediators. Second, it was clearly demonstrated that known behavioral and 

electrophysiological sensitizers of sensory neurons, especially NGF and PGE2, also 

sensitize these neurons to stimulated release. Finally, the literature demonstrates that 
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the GFLs may have similarities to these other inflammatory mediators that sensitize 

sensory neurons. 

Thus far, this introduction has established that a number of substances released 

during inflammation, including the GFLs, change the sensitivity of sensory neurons. 

Evidence has been presented above that each of the GFLs is released in increased 

amounts during inflammation, cause hyperalgesia, increase the excitability and other 

physiological properties of sensory neurons, and increase the levels of neuropeptides 

and ion channels important in sensory neuronal sensitization. Each of these 

characteristics of GFLs add to the likelihood they are important modulators of sensory 

neuronal sensitivity and nociception. However, the question still remains:  do these GFLs 

mediate this inflammatory hyperalgesia by altering electrophysiological properties of the 

neurons eventually leading to neuropeptide release, neurogenic inflammation, and 

nociception. 

Finally, a function of this introduction was to justify the use of isolated DRG neurons 

in culture as a model system for the studies outlined below. Many of the studies 

examining GFL-induced sensitization have used mice (Albers et al., 2006;Bennett et al., 

2006;Elitt et al., 2006;Malin et al., 2006), and in order to evaluate the release of CGRP 

and other phenotypes of sensory neurons, it is advantageous to use isolated sensory 

neurons (Malin et al., 2006). This particular preparation will allow me to determine the 

effects of GFLs on the sensory neurons themselves, without the complications that often 

exist as a result of the presence of other neuronal cell types (i.e. interneurons) and 

molecules in behavioral assays, which limits the complicating factors in this preparation. 

Since small diameter, nociceptive sensory neurons are the type of cell that releases the 

majority of CGRP (Traub et al., 1990), the measure of changes in the release of CGRP 

is a valid functional endpoint for the evaluation of GFL-induced sensitization of 

nociceptors. Most importantly, this model systems allows me to manipulate the 
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intracellular signaling pathways within the sensory neurons, pharmacologically and 

genetically, to determine the pathways responsible for GFL-induced sensitization. 

H. Potential intracellular signaling pathways of GFL-induced sensitization 

There are a number of candidate pathways by which GFLs may be able to sensitize 

sensory neurons. The GFLs activate several signaling pathways, in both a Ret-

dependent and independent manner, including the MAPK, PI-3K, PLC-γ, Src, and Fyn 

pathways (see (Sariola and Saarma, 2003) for a review). Interestingly, these same 

pathways are implicated in behavioral and electrophysiological sensitization of sensory 

neurons by other known sensitizers of nociceptive sensory neurons. 

1. Ras 

Activation of Ret by the GFLs results in recruitment and interactions of intracellular 

proteins that lead to activation of guanine nucleotide exchange factors (GEFs;(Fukuda et 

al., 2002). GEFs convert Ras-GDP to Ras-GTP, its active form (Shih et al., 1980b). Ras-

GTP recruits the kinase Raf to the membrane, which results in a cascade of 

phosphorylation of several proteins. There is a genetically modified mouse available, a 

mouse with half the amount of functional neurofibromin protein (Nf1 +/-), which is a 

potent guanine triphosphatase (GTPase) for Ras (Xu et al., 1990). This protein 

accelerates the de-activation of Ras by hydrolyzing Ras-GTP, the active form of Ras, to 

Ras-GDP, the inactive form (Shih et al., 1980a). One eventual downstream effector of 

Ras activation is Erk, one of the mitogen activating protein kinase (MAPK) proteins (Bron 

et al., 2003). Ras-GTP signaling is also one mechanism by which the PI-3K pathway is 

initiated. Nf1 +/- mice have increased Ras activity (Kim et al., 1995), and therefore 

increased MAPK/Erk 1/2 and PI-3K pathway activation. 
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2. MAPK pathway 

Although the classic MAPK-Erk pathway was originally identified as a growth 

promoting pathway, it is generally accepted that this pathway is often critical in sensory 

neuronal sensitization (see reviews in (Cheng and Ji, 2008;Obata and Noguchi, 2004). 

The well characterized sensory neuronal sensitizer, NGF, activates Erk and exerts some 

of its sensitizing effects through the MAPK-Erk pathway (Averill et al., 2001). Erk 

activation is necessary for NGF-induced thermal hyperalgesia and NGF-induced 

potentiation of capsaicin currents (Zhuang et al., 2004). Blocking activation of Erk with 

pharmacological inhibitors attenuates, at least in part, these NGF mediated sensitizing 

effects (Zhuang et al., 2004). Similarly, after inflammation created by CFA, PGE2-

induced sensitization is Erk dependent (Dina et al., 2003). While the exact mechanisms 

of Erk-activated sensory neuronal sensitization are unclear, there are two intriguing 

possibilities. First, activated Erk may aid in increased insertion of TRPV1 into the cell 

membrane (Zhang et al., 2005). TRPV1 insertion would lead to enhanced nociceptive 

responses to noxious heat and pH. MAPK/Erk 1/2 pathway inhibitors prevent the NGF-

induced enhancement in capsaicin currents (Zhu and Oxford, 2007). Since Erk is a 

kinase, activated Erk may mediate this enhancement by directly phosphorylating TRPV1 

and increasing the ion fluxes through this channel (Zhu and Oxford, 2007). The PKC 

pathway also plays a role in NGF-induced sensitization (Dina et al., 2003;Shu and 

Mendell, 2001) leading to controversy about whether Erk is the primary intracellular 

signaling pathway by which NGF sensitizes sensory neurons or whether Erk activation is 

secondary to induction of other intracellular signaling pathways, such as the PKC 

pathway. 

While GFLs activate the MAPK-Erk pathway in sensory neurons (see (Sariola and 

Saarma, 2003) for a review), whether GDNF-induced sensitization is Erk dependent is 

unknown. Erk is necessary for GDNF-dependent increases in TRPV1 surface 
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expression in nociceptive sensory neurons (Bron et al., 2003). GDNF-mediated voltage 

gated calcium channel insertion in the cell membrane, leading to increased neuronal 

excitability, is Erk dependent as well (Woodall et al., 2008). Most strikingly, inhibition of 

Erk activation with the pharmacological inhibitor U0126 abrogated GDNF-induced 

mechanical hyperalgesia (Bogen et al., 2008). However, none of these studies have 

evaluated the role of GDNF-induced actions directly on sensory neuronal sensitization 

and neurotransmitter release through the MAPK-Erk pathway. The evidence for the role 

of the involvement of the MAPK-Erk pathway in sensitization by growth factors makes 

this pathway a candidate for GFL-induced enhancement of the release of CGRP. 

3. PI-3K pathway 

The PI-3K pathway, which mediates many of its sensitizing effects through several 

intracellular signaling pathways, including the PIP2 and DAG-activated pathways 

(reviewed by (Manning and Cantley, 2007)), is activated by inflammatory mediators, 

including NGF (Zhu and Oxford, 2007). Activation of PI-3K is important for initiation of 

some nociceptive behavioral responses. The exploratory test is one such nociceptive 

behavioral test. Rodents experiencing nociception, when placed in a new environment, 

do not explore their new surroundings as completely as mice not experiencing 

nociception. Recovery of normal exploratory behavior can be completed by inhibition of 

the PI-3K pathway by the PI-3K inhibitor, Wortmannin, a potent but non-selective 

inhibitor of PI-3K pathway activation (Sun et al., 2007). Additionally, NGF sensitizes 

capsaicin currents, and this sensitization is abolished by the PI-3K pathway inhibitor, 

LY294002 (Zhu and Oxford, 2007). This sensitization of capsaicin currents by NGF is 

mediated by phosphorylation of the channel by the downstream effectors of the PI-3K 

pathway, since mutation of sites known to be phosphorylated by these effectors to 

residues that cannot be phosphorylated prevents this sensitization (Zhu and Oxford, 

2007). 



38 
 

Proper spermatogonia development and neuronal survival and outgrowth, mediated 

by GFLs is PI-3K dependent (Lee et al., 2007). However, there is little information on the 

role of this pathway in GFL-induced sensory neuronal sensitization in the literature. In 

fact, only one study evaluating this phenomenon is available. GDNF-induced mechanical 

hyperalgesia is also PI-3K pathway dependent (Bogen et al., 2008), which does not 

provide direct evidence of the mechanism of GDNF-induced sensory neuronal 

sensitization, since there are complications of these behavioral assays (as described 

previously). The PI-3K pathway inhibitors, Wortmannin and LY294002, prevented the 

decrease in the mechanical threshold of paw withdrawal upon plantar injection of GDNF 

(Bogen et al., 2008). This pathway is yet another candidate pathway for examination for 

the mechanism of GFL-induced enhancement in the release of CGRP. 

4. PLC-γ 

Inflammatory mediators initiate the PLC pathways through G-protein coupled 

receptors and receptor tyrosine kinase receptors to induce sensory neuronal 

sensitization. Activation of the PLC-γ pathway is critical for NGF and bradykinin-induced 

thermal hyperalgesia. Both pharmacological inhibition of the PLC-γ pathway and 

treatment with a blocking antibody preventing activation of PLCs attenuates this 

hyperalgesia (Chuang et al., 2001b). One mechanism for PLC-γ in thermal hyperalgesia 

and modulation of sensory neuronal sensitivity is by releasing TRPV1 from PIP2 

inhibition, although this mechanism is controversial and may be indirect (Lukacs et al., 

2007). In fact, it appears that phosphatidylinositols may have a dual regulation of 

TRPV1, resulting in both activation and inhibition of channel activation (Lukacs et al., 

2007). However, the mechanisms is complex and not well defined. The use of 

carrageenan (CARR), an inflammatory mixture injected into the paw, to induce 

mechanical hyperalgesia was also used to evaluate the role of the PLC pathway in 

inflammatory hyperalgesia. A pharmacological inhibitor of the PLC-γ pathway, U73122, 
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and an antisense PLC oligonucleotide prevented the CARR-induced hyperalgesia 

(Joseph et al., 2007). Additionally, a PLC activator, lysophosphatidylcholine (LPC), was 

able to mimic the CARR and PGE2 mediated hyperalgesia. Modulation of transient 

receptor potential A1 (TRPA1), another ion channel present in nociceptive sensory 

neurons and responsible for some of the signals leading to sensitization and 

hyperalgesia, by bradykinin is PLC-dependent as well (Wang et al., 2008a). The PLC 

modulation of TRPA1 seen in heterologous expression systems is recapitulated in 

behavioral assays, with bradykinin mediated chemically-induced hyperalgesia being 

prevented with PLC inhibitors. 

The role of the PLC pathway in bradykinin (BK) and PGE2 mediated sensory 

neuronal sensitization and hyperalgesia is well accepted. It is unclear whether NGF-

induced sensitization occurs through this or different signaling mechanisms than BK and 

PGE2. Application of a PLC inhibitor, polylysine, and PIP2 applied to excised inside-put 

patches from heterologous expression systems enhanced TRPV1 responses (Stein et 

al., 2006). Enhancement of capsaicin induced currents through TRPV1 were also 

unaltered by co-transfection of an activity deficient PLC-γ in a heterologous expression 

system (Zhu and Oxford, 2007). In another study, neomycin, a potent but non-selective 

inhibitor of the PLC-γ pathway, did not change the enhanced calcium ion influx induced 

by NGF in neonatal neurons (Bonnington and McNaughton, 2003). This same study also 

showed that U73122 actually enhanced the NGF-induced calcium influx. A controversy 

still remains as to the role of the PLC-γ pathway in NGF-induced sensory neuronal 

sensitization. 

The PLC-γ pathway, through diacylglycerols (DAGs), initiates protein kinase C (PKC) 

activation, which is important in some forms of sensitization (Sikand and Premkumar, 

2007). PKC is another mediator of sensory neuronal sensitization. Activated PKC levels 

increase during many types of inflammation, including ultraviolet radiation (Matsui and 
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DeLeo, 1990). An exogenous stimulator of PKC, phorbol esters, causes sensitization of 

nociceptors to thermal stimulation, which is prevented by an inhibitor of PKC, 

staurosporine (Leng et al., 1996). PKC is involved in neuronal sensitization to a number 

of other stimuli, including capsaicin, PGE2, and bradykinin (Cesare et al., 1999;Gold et 

al., 1998;Sluka et al., 1997). This sensitization is accomplished in several ways. PKC 

enhanced the overall inward ionic current (Cesare et al., 1999), tetrodotoxin-resistant 

inward sodium currents (Gold et al., 1998), and TRPV1-dependent inward sodium and 

calcium currents in response to heat (Sluka et al., 1997). The role of PKC activation in 

NGF-induced sensory neuronal sensitization is less clear. In one study, BIM (inhibitor of 

PKC α, β1, β2, γ, δ, and ε) and staurosporine (a potent but non-selective inhibitor of PKC 

α, β1, β2, γ, and λ), two inhibitors of PKC, reduced the NGF-induced sensitization 

(Bonnington and McNaughton, 2003), while in two other studies the same inhibitors and 

others inhibitors of PKC did not change the NGF-mediated enhancement in TRPV1 

currents (Chuang et al., 2001a;Shu and Mendell, 2001). Neuropeptide release is also 

augmented by PKC. Both capsaicin and potassium-stimulated release of SP and CGRP 

are enhanced by the PKC activator, PDBu (Barber and Vasko, 1996). Although 

controversy exists, PKC is probably an important mediator of some forms of sensory 

neuronal sensitivity in response to some specific sensitizers. 

The GFLs also activate the PLC-γ pathway in sensory neurons and neuron-like cell 

lines (Lee et al., 2006;Mikaels-Edman et al., 2003). In both of these cases, GDNF and 

neurturin, through the PLC-γ pathway, were able to induce neurite outgrowth. Strikingly, 

the PLC-γ pathway inhibitor, U73122, abrogated GDNF-induced mechanical 

hyperalgesia in vivo (Bogen et al., 2008). Whether GFL-induced hyperalgesia or 

sensitization is induced through PKC activation is still unclear. Therefore, the PLC-γ 

pathway, and possibly subsequent PKC activation, may be one pathway by which GFLs 

enhance the stimulated release of CGRP. 



41 
 

5. Src family kinases 

Src family kinases, which in neurons include Src, Fyn, Lck, Hck, and Yes (Jeong et 

al., 2008b;Omri et al., 1996;Pyper and Bolen, 1989;Ramseger et al., 2009;Wang and Yu, 

2005), are non-receptor tyrosine kinase molecules for which emerging evidence 

suggests a role in sensory neuronal sensitization. Ionotropic and metabotropic glutamate 

receptors can be modulated by Src family kinases, resulting in central sensitization in the 

dorsal horn of the spinal cord (Kawasaki et al., 2004). Inhibition of calcium influx through 

NMDA channels by pharmacological Src inhibition prevents spinal dorsal horn 

sensitization and the subsequent inflammatory mechanical hyperalgesia (Guo et al., 

2004). Src also plays a role in the sensitization of primary afferent neurons in the DRG. 

Inhibition of Src family kinases by the inhibitor PP2 prevents the enhanced NMDA 

responses of primary afferent neurons from rats with experimental colitis (Li et al., 2006). 

The osmomechanical stimuli transducer on sensory neurons, TRPV4, is also modulated 

by Src family kinases (Wegierski et al., 2008). Pharmacological inhibition of the Src 

family kinase (SFK) pathway by PP1 attenuates nociceptive behaviors induced by 

injection of a hypertonic solution in the paw, a model of inflammatory pain (Alessandri-

Haber et al., 2005). Specifically, the increases in paw flicks in rats and paw licking and 

shaking in mice after injection of a hypertonic solution is prevented by concurrent 

application of PP1 (Alessandri-Haber et al., 2005;essandri-Haber et al., 2008). 

Additionally, SFKs are necessary for initiation of mechanical hyperalgesia after a 

neuropathic injury. SFK constitutive activation by the YEEI peptide mimics the 

mechanical hyperalgesia as a result of neuropathic pain, and this hyperalgesia in both 

cases is mediated by the TRPV4 receptor (Alessandi-Haber 2008). SFKs also bind to 

TRPV1 at a specific residue, Y200, and mediated the NGF-induced insertion into the cell 

membrane and enhanced sensitivity of this channel in neurons (Zhang et al., 2005). 

These effects were prevented with a general SFK inhibitor, PP2, and by infection with 
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dominant negative Src. Some of the other Src family kinases, such as Lck and Fyn, also 

modulate the ion channels in sensory neurons (Wang and Yu, 2005). Application of a 

solution containing a 4 mM potassium activated the Na+K+ pump, and the SFK inhibitor 

PP1, as well as specific blocking antibodies to Lck and Fyn, prevented this channel’s 

activation (Wang and Yu, 2005).  

The Src family kinase signaling pathways are activated by GFLs. Specifically, Src 

family kinases are necessary for GDNF dependent neuronal outgrowth and survival in 

both neuronal cells and neuron-like cell lines (Encinas et al., 2001;Paveliev et al., 

2004;Poteryaev et al., 1999;Trupp et al., 1998a;Trupp et al., 1999a). Injection of the SFK 

inhibitors PP2 and SU6656 into the paw of a rodent abrogated the mechanical 

hyperalgesia induced by GDNF (Bogen et al., 2008). Many of the GDNF-induced, Src-

dependent actions appear to be Ret-independent in nature, since blocking the Ret 

receptor and using Ret-deficient cell lines does not alter the effects of the GDNF (Bogen 

et al., 2008;Paratcha et al., 2003;Paveliev et al., 2004;Poteryaev et al., 1999;Trupp et 

al., 1999a). There are three possible mechanisms for this GDNF-induced, Ret-

independent function. These include:  GDNF-induced SFK activation through GFRα-1, 

GDNF-induced SFK activation indirectly through the Integrin β-1 receptor, or GDNF-

induced SFK activation indirectly through the NCAM receptor (Cao et al., 2008a;Cao et 

al., 2008b;Paratcha et al., 2003;Poteryaev et al., 1999). These NCAM-induced effects 

are mediated through one specific SFK pathway, the Fyn pathway (Cao et al., 

2008a;Cao et al., 2008b). Application of artemin to isolated DRG promotes neurite 

outgrowth, which is prevented by pharmacological inhibition of SFK pathways with 

SU6656 (Jeong et al., 2008). Actin polymerization, another measure of the ability of 

DRG to efficiently grow neurites, was dependent upon Src and Hck (Jeong et al., 

2008b). It is, therefore, necessary and intriguing to evaluate the possible role of Src 
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family kinases in both Ret-dependent and Ret-independent GFL-induced enhancement 

in the release of CGRP. 

I. Potential mechanisms of GFL-induced enhancement in release of CGRP 

There are several potential mechanisms for enhancement in the release of CGRP 

induced by GFLs, which will be described in the following sections in detail. First, GFLs 

may increase the content of CGRP, thereby providing a larger releasable pool upon 

stimulation. Second, The GFLs may change the phosphorylation state of a number of 

proteins, including intracellular proteins, ion channels, TRPV1, or proteins important in 

vesicle fusion and neurotransmitter release. The GFLs may also enhance the insertion 

of important proteins into the cell membrane, such as TRPV1. Finally, even acute (10 

minute) exposure of sensory neurons to the GFLs could increase the expression of ion 

channels important in sensitization, including sodium channels and TRPV1. 

There is precedent for growth factor application increasing the content of 

neuropeptides like CGRP. Long-term exposure to NGF can change the content of CGRP 

in sensory neurons when administered in vivo or to neurons in culture (Bowles et al., 

2004;Donnerer et al., 1996;Schuligoi and Amann, 1998). Additionally, long-term 

exposure to GDNF (5 day exposure) increases the content of CGRP in trigeminal 

primary afferent neurons (Price et al., 2005). It is possible, then, that the GFLs are 

increasing the amount of CGRP present in DRG sensory neurons, and this could 

account for any GFL-induced enhancement in the stimulated release of CGRP. 

However, this mechanism is unlikely, since the sensory neurons in the preparation used 

to evaluate stimulated release are only exposed to the GFLs for 20 minutes. I will verify 

that the short term exposure to GFLs do not change the total amount of CGRP in the 

sensory neuron cultures. 

Inflammatory mediators that enhance the release of CGRP often alter the 

phosphorylation state of intracellular proteins, ion channels, or synaptic vesicle proteins. 
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For example, NGF is able, through its intracellular signaling pathways, to phosphorylate 

two important synaptic vesicle proteins, synaptotagmin-4 and synapsin I (Mori et al., 

2008;Raiteri et al., 2003). Phosphorylation of these proteins leads to enhanced release 

of glutamate and neuropeptide Y. Pathways activated by NGF also phosphorylate and 

enhance the activity of a number of sodium and other ion channels in a number of cell 

types (Good et al., 2008;Leung et al., 1994). One important ion channel whose activity is 

enhanced by phosphorylation through NGF-activated signaling pathways is TRPV1. The 

PI-3K and MAPK pathways, activated by NGF, are critical in TRPV1 phosphorylation 

and activation (Zhu and Oxford, 2007). Since GFLs activate many of the same pathways 

responsible for NGF-induced phosphorylation (see previous sections) and activation of 

synaptic proteins and ion channels, the GFLs may similarly enhance the release of 

CGRP by these mechanisms. 

One unique and interesting effect of NGF on sensory neurons is the ability of this 

growth factor to induce increased membrane expression of TRPV1 very rapidly (Zhang 

et al., 2005). This effect of NGF is mediated by the PI-3k and Src family kinase 

pathways. Since GFLs activate both of these pathways, rapid membrane insertion of 

TRPV1 is yet another possible mechanism for GFL-induced enhancement in the 

stimulated release of CGRP. 

J. Hypothesis and specific aims 

Evidence presented above demonstrates that the GFLs, GDNF, NTN, and ART, are 

released in increased amounts during inflammation and are important in inflammatory 

processes, including inflammatory hyperalgesia. The behavioral consequences of the 

GFLs may be a result of sensory neuronal sensitization. GFLs can increase many 

diverse and interconnected intracellular signaling pathways, including MAPK, PI-3K, 

PLC-γ, PKC, and Src family kinases. These pathways, either through direct modulation 

of ion channels and synaptic proteins or through increased insertion of cell membrane 
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proteins, can increase the release of neurotransmitters, including the neuropeptides, in 

many neuronal cell types in the CNS and PNS. This GFL-induced sensitization, in my 

experiments, can be expressed as enhancement in CGRP release from sensory 

neurons. Because GFLs may accomplish their sensitization through compliments of 

signaling pathways and mechanisms different than other known sensory neuronal 

sensitizers, or may exert their effects on a distinct population of nociceptive sensory 

neurons, these growth factors are particularly intriguing. The hypothesis of this thesis is 

that select GFLs enhance the release of CGRP from isolated sensory neurons, and that 

this release is mediated by distinct intracellular pathways for each of the GFLs. There is 

emerging evidence that the GFLs can mediate their actions indirectly through 

mechanisms not requiring the classic Ret initiated pathways. Therefore, GFLs could 

mediate some of their sensitization effects through Ret-independent mechanisms. To 

examine these hypotheses, the following specific aims will be addressed: 

1. Determine which of the GFLs augment stimulus-evoked release of the neuropeptide 

transmitter CGRP and the extent to which this augmentation occurs. 

2. Determine the intracellular signaling pathways responsible for the enhancement in 

release of CGRP by each of the GFLs and whether these pathways are similar or 

distinct. 

3. Determine the contribution of Ret-dependent signaling to the augmentation of 

stimulus-evoked release of CGRP by GFLs from sensory neurons.         

4. Determine the contribution of Ret-independent signaling to the augmentation of 

stimulus-evoked release of CGRP by GFLs from sensory neurons. 
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II. Methods 

A. Materials 

Cell culture supplies were purchased from Sigma (St. Louis, MO, USA). Capsaicin 

was purchased from Sigma Chemical Company (St. Louis, MO, USA) and was first 

dissolved in 1-methyl,2-pyrrolidinone (Aldrich Chemical Co., Milwaukee, WI, USA) to a 

concentration of 10 mM. It was then serially diluted to a concentration of 50-500 nM in 

the appropriate release buffer as noted below. Horse serum, F-12 medium, L-glutamine, 

and penicillin/streptomycin were purchased from Invitrogen (Carlsbad, CA, USA). 

Collagenase, poly-D-lysine, laminin, 5-fluoro-2-deoxyuridine, uridine and standard 

laboratory chemicals were from Sigma (St. Louis, MO, USA). Antibody to calcitonin 

gene-related peptide (CGRP) was generously provided by Michael J. Iadarola (NIH). 

Nerve growth factor, NGF, was purchased from Harlan Bioproducts for Science, Inc. 

(Indianapolis, IN, USA) in the 7S, gel filtered form and lyophilized for long-term storage. 

Calcitonin gene-related peptide (CGRP), a peptide containing only residues 27-37, was 

obtained from Bachem (Torrance, CA, USA) and generously iodinated by Dr. Michael 

Vasko. The CGRP peptide had a residue 27 replaced with a tyrosine for iodination. 

CGRP standard peptide, residues 27-37, was purchased from Tocris Bioscience 

(Ellisville, MO, USA). Recombinant human glial cell line-derived neurotrophic factor 

(GDNF), neurturin, artemin, and persephin were purchased from Peprotech (Rocky Hills, 

NJ, USA). Pharmacological inhibitors were purchased from Calbiochem (Darmstadt, 

Germany), unless otherwise indicated. The siRNA constructs were either purchased 

from Santa Cruz Biotechnology (Santa Cruz, CA, USA) or developed by Eric L. 

Thompson in Dr. Michael L. Vasko’s laboratory and created by Dharmacon, Inc 

(Lafayette, CO, USA) as indicated. All other chemicals were purchased from Sigma 

Chemical Company (St. Louis, MO, USA), unless otherwise indicated. 
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B. Animals 

The mice used for all experiments, C57BL/6 mice, were purchased from Harlan 

Laboratories (Indianapolis, IN) and/or bred and housed in the Indiana University 

Laboratory Animal Research Center (LARC). Mice were housed in group cages in a 

light-controlled room at a constant temperature of 22° C. All mice were adults, between 

three and six months in age. Food and water were available at the convenience of the 

animals. Mice heterozygous for the Nf1 mutation on a C57BL/6J background, developed 

by Dr. Tyler Jacks (Jacks et al., 1994), were bred and housed in the Indiana University 

Laboratory Animal Research Center (LARC), as well. All procedures described and 

conducted were done so under approval from of the Animal Care and Use Committee of 

Indiana University School of Medicine. 

C. Isolation and culture of adult mouse sensory neurons 

Dorsal root ganglia (DRG) from adult mice were used to establish sensory neuronal 

cultures. The DRG were removed from adult mice in a manner similar to that previously 

published (Hingtgen, et al., 2006). Specifically, adult mice were euthanized with CO2, 

and the spinal column removed. The spinal column was cut to expose the spinal cord, 

which was removed. Then, DRG were extracted using microdissection and placed in 

Puck’s solution.  DRG were digested in 0.1% collagenase in two separate 30 minute 

incubations at 37° C. Additionally, cells were digested in F12 media containing DNAse 

(1-3 µg/3 mL) for one minute at room temperature. The preparation was dissociated by 

mechanical agitation. Cells were plated in wells of 24-well Falcon culture dishes coated 

with poly-D-lysine (0.1 mg/mL) and laminin (0.25 mg/mL) at a density of 30,000-50,000 

cells/well. Cultures were maintained at 37° C in a 5% CO2 atmosphere in F12 media 

supplemented with 2 mM glutamine, 50 µg/mL penicillin and streptomycin, 10% heat-

inactivated horse serum and mitotic inhibitors (50 µM 5-fluoro-2-deoxyuridine and 150 

µM uridine). NGF, at a concentration of 30 ng/mL, was added to this media. Growth 
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medium was changed every 2-3 days, and the added NGF removed 48 hrs prior to all 

experiments unless otherwise indicated. 

D. Counting of sensory neurons prior to plating 

In order to ensure similar amounts of cells are being plated for each experiment, the 

amount of cells/mL were determined. Prior to plating the DRG, 30 µl of DRG suspended 

in F12 Media was mixed with 30 µl of Trypan Blue solution (Sigma). Then, 25 µl of this 

mixture was placed on a counting chamber, and the number of neurons in each of five 

square portions of the chamber was counted. Based on volume calculations, the total 

number of cells in the entire DRG preparation was determined. In all cases, the density 

of cells/well when plated was 30,000-50,000. Counting of cells was conducted 

approximately every 3-6 months, unless the content of CGRP (method for determining 

content is below in Section II.F) was outside of the consistent range. The details of how 

this consistent range was determined are described below. In this case, cells from the 

next three harvests were counted. 

E. Release of calcitonin gene-related peptide (CGRP) from sensory neurons grown 

in culture 

Measurement of stimulus-evoked release and content of immunoreactive CGRP 

(iCGRP) from isolated sensory neurons was accomplished as previously published 

(Hingtgen et al., 2006). The measured amount of peptide is referred to as iCGRP 

because it is identified by a polyclonal antibody directed at CGRP. After 5-7 days in 

culture, culture media was removed from the sensory neurons in culture and the basal or 

resting release of iCGRP measured from cells incubated for 10 minutes in Hepes buffer 

consisting of (in mM): 25 Hepes, 135 NaCl, 3.5 KCl, 2.5 CaCl2, 1 MgCl2, 3.3 dextrose, 

and 0.1% (w/v) bovine serum albumin, pH 7.4, and maintained at 37° C. The cells were 

incubated in Hepes buffer containing stimulus (capsaicin or high potassium) for 10 

minutes, and then incubated again with Hepes buffer alone to reestablish resting release 
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levels. The concentrations of capsaicin (50 nM) and potassium (30 nM and 50 nM) were 

chosen because they lie on the low end of the highly sloped portion of the concentration 

response curve for iCGRP release. The use of these concentrations allow for evaluation 

of enhancement in release of CGRP after exposure to sensitizing molecules. The 

amount of iCGRP released in each incubation was measured by radioimmunoassay 

(RIA). GFLs were added in the basal incubation period (10 minutes) and in the 

stimulated incubation period (10 additional minutes). The neurons were exposed to 

GFLs for a total time of 20 minutes. A minimum of three different preparations were used 

for each condition, including growth factor application and stimulus. 

Inhibition of intracellular signaling pathways and surface receptors was accomplished 

using both small interfering RNA (siRNA) manipulations and pharmacological inhibitors. 

All siRNA molecules were directed toward particular regions of mouse RNA for each 

specific protein and most were purchased from Santa Cruz Biotechnology (Santa Cruz, 

CA). Those siRNA molecules directed toward Src and used as a scramble (designed as 

a scramble for APE1) were developed by Eric L. Thompson in Dr. Michael Vasko’s 

laboratory and ordered from Dharmacon, Inc. (Chicago, IL). Table 2 provides all 

pertinent details about the siRNA molecules used. When using siRNA to inhibit specific 

protein production, these molecules were added two days after DRGs were plated. 

Metafectine Pro (Biontex Laboratories, Martinsried, Planegg, Germany), the transfection 

agent, was diluted to a titer of 1:250 in each well in Optimem reduced serum media 

(Invitrogen, Carlsbad, CA). The siRNA molecules were also diluted in Optimem. The 

Metafectine and siRNA dilutions were allowed to sit at room temperature for two minutes 

then mixed at a 1:1 ratio and allowed to incubate at room temperature for 20 minutes. 

The mixture was added to each well so that the final concentration of the siRNA was 100 

nM. The following day, F12 media containing NGF and normocin was added to the wells 

to a final volume 1.0 mL. Twenty four hours later, all the media was removed from the
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Table 2 

Details of siRNA molecules   

Specific sequence Sequence 

  Source Concentration  vs. pooled (if known) 

      

Fyn siRNA Calbiochem, Inc. 100 nM Pooled N/A 

Integrin β-1 siRNA Calbiochem, Inc. 100 nM Pooled N/A 

NCAM siRNA Calbiochem, Inc. 100 nM Pooled N/A 

Ret siRNA Calbiochem, Inc. 100 nM Pooled N/A 

GCCTACTGCCTCT 

c-Src siRNA Eric L.Thompson/Dharmacon, Inc, 100 nM Specific sequence CTGTATGGCCCA 

AGTCATGAAGAAA 

CCAUGAGGUCAGCA 

Scramble siRNA Eric L.Thompson/Dharmacon, Inc, 100 nM Specific sequence UGGUCUGAAGGUA 

CUCCAGUCGUACCAG 
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wells and 500 µl of normal growth media (F12 media supplemented with F12 media 

supplemented with glutamine, penicillin and streptomycin, horse serum and mitotic 

inhibitors as indicated above) was added. F12 media without supplemented NGF was 

added to the cells 48 hours prior to conducting experiments. Pharmacological inhibitors 

were added acutely. They were only present in the first basal and stimulated condition at 

concentrations indicated below. 

F. Content of CGRP in sensory neurons grown in culture 

After the release protocol, the remaining peptide content in each well was 

determined by exposing the cells to 2 N acetic acid for 10 minutes. Aliquots of this 

incubation were diluted in Hepes and iCGRP was determined by RIA. The remaining 

peptide content was added to the content from each of the incubation to give the total 

content of CGRP. The release of iCGRP is expressed as percent of the total content per 

10 minute incubation, unless otherwise indicated. 

G. Release of CGRP from spinal cord slices 

Stimulus-evoked release and content of iCGRP from spinal cord slices was 

accomplished as previously published (Chen et al., 1996;Southall et al., 1998). Briefly, 

adult mice were euthanized with CO2 and the entire spinal cord was removed from each 

animal. It was weighed and chopped into 300 µm cross-sections using a McIllwain 

Tissue Chopper. The chopped spinal cord from each animal was placed into its own 

individual chamber and perfused at a rate of 0.1 mL/minute for 20 minutes with Hepes 

buffer supplemented with 200 mM ascorbic acid, 100 µM Phe-Ala, and 20 µM bacitracin 

(all used as peptidase inhibitors to prevent the breakdown of CGRP during the process; 

Chen et al., 1996). The perfusion buffer was aerated with 95% O2/5% CO2 and 

maintained at a pH of 7.4. Serial 10 minute collections (1.0 mL of perfusate) were 

obtained from each spinal cord. Initially, the tissue was perfused with Hepes buffer alone 

or Hepes buffer containing 10 ng/mL growth factor for 30 minutes. The perfusate was 
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changed to Hepes buffer containing 500 nM capsaicin ± 10 ng/mL growth factor for 30 

minutes to measure stimulated release. The tissue was perfused for 60 minutes with 

Hepes buffer after the stimulus exposure to allow a return to resting levels of peptide 

release. Aliquots from each 10 minute collection period were assayed for iCGRP using 

RIA. After the protocol was completed, the remaining iCGRP content of the tissue was 

determined by homogenizing the spinal cord tissue in 0.1 N HCl and serially diluting the 

supernatant with Hepes buffer and 1.0 M MES. The content was added to the amount of 

iCGRP released during the entire perfusion to obtain the total peptide content. The 

release of iCGRP is expressed as percent of the total content per 10 minute perfusion. 

H. Radioimmunoassay for quantification of release of iCGRP 

Samples containing CGRP were removed from the plates and diluted in Hepes buffer 

to a final volume of 300 µl. Radioactive CGRP, diluted to a range of 900,000 to 

1,100,000 counts per minute (CPM), and CGRP antibody, at a concentration of 

1:1,000,000, were added to the samples, centrifuged for 5 minutes, and allowed to 

incubate overnight at 4° C. A charcoal suspension was added to the samples and the 

combination centrifuged for 20 minutes. The samples were decanted and the 

supernatant placed on a Packard γ-Counter to be counted for 5 minutes each. The 

supernatant was counted because it contains the CGRP bound to antibody. The pellet 

contains the charcoal, which absorbs the radioactive peptide not bound to the CGRP 

antibody. The samples were plotted on a standard curve, created with CGRP peptide 

standards at the same time as the samples, and the fmol of iCGRP determined. The 

minimum amount of iCGRP detected by the RIA is 5 fmol with a 95% confidence interval 

(Chen et al., 1996).   

I. Isolation of protein samples from sensory neurons in culture 

Sensory neurons from DRG from adult mice plated on 12 well Falcon plates were 

maintained in culture for 5-7 days. Cells were then washed with Hepes buffer and 
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treatments added as indicated below. After treatment, the cells were washed once with 

PBS, then 500 µl of PBS added to each well. The wells were then scraped and the cells 

transferred in solution to ependorf tubes. The tubes were centrifuged at 16,000 rpm for 

20 minutes. The supernatant was removed and the remaining pellet was either placed 

on dry ice and transferred immediately to a freezer at -80° C or protein content quantified 

immediately. 

For protein quantification, DRG pellets were resuspended in 50 µl of general lysis 

buffer (1mM Na pyrophosphate, 50 mM Hepes, 1% Triton X-100, 50 mM NaCl, 50 mM 

NaF, 5 mM EDTA, and 1 mM Na orthovanadate) supplemented with proteinase inhibitor 

mixture (aprotinin, leupeptin, pepstatin, PMSF; Calbiochem, Sand Diego, CA, USA). The 

resuspended protein was incubated for 15 minutes on ice with frequent vortexing. The 

suspension was sonicated 3 times for 10 seconds each at 45 watts. The suspension was 

then centrifuged at 4,000g for 2 minutes. The supernatant was removed and stored at -

20° C. The protein was quantified using a BCA Protein Assay Kit (Thermo Scientific, 

Rockford, IL, USA) and read on a Wallac plate reader at 595 nm for 1.0 s. 

J. Western blots of protein from sensory neurons grown in culture 

A total of 40 µg of the protein samples were mixed with loading buffer (Ambion, 

Austin, TX, USA) containing β-mercaptaethanol to a final volume of 60 µl and denatured 

at 70º C for 10 minutes. The samples were then incubated at room temperature for 15 

minutes and loaded into wells of precast 10% SDS-PAGE gels (Biorad, Philadelphia, 

PA, USA) containing 10 lanes. The samples were run on the gels, which were connected 

to a Biorad power source, for 2 hours at 115 mV at room temperature. While the gel was 

running, filter papers (Biorad, Philadelphia, PA, USA), fiber pads (Biorad, Philadelphia, 

PA, USA), and PVDF transfer membranes (Millipore, Darwinweg, the Netherlands) were 

soaked in 1X transfer buffer (25 mM Tris at pH 7.5; 192 mM Glycine; 5-20 % methanol). 

Prior to soaking in transfer buffer, the PVDF membranes were soaked in 100% methanol 
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for 1 min and washed extensively with ddH20. SDS-PAGE gels were placed on transfer 

membranes within a transfer cartridge and transferred in a Biorad system at 100 mV for 

1 hour at room temperature with an ice pack in the apparatus. 

After transfer, the membranes were removed from the apparatus and placed in 10% 

powered skim milk (EMD, Gibbstown, NJ, USA) in 1X TBS (20 mM Tris PH 7.5; 150 mM 

NaCl as a blocking solution for 1 hour at room temperature. Then, the blocking solution 

was discarded and the membranes placed in 5% milk in TBST (TBS containing 0.1% 

Tween-20) containing primary antibodies at concentrations of 1:200 to 1:1,000 (Table 3). 

The membranes were incubated in this solution overnight at 4° C. Several short 

washings and three 10 minute washings were accomplished with TBST after the 

overnight incubation. Secondary antibody, at concentrations from 1:4,000 to 1:25,000, in 

5% milk in TBST was applied to the membrane for 1 hour at room temperature. A similar 

set of washings was done after the secondary antibody exposure, then the membranes 

were blotted dry and placed in the combination of solutions for enhanced 

chemiluminescence (ECL; Thermo Scientific, Rockford, IL, USA) for 3 minutes. The 

membranes were placed in clear plastic sheets and inserted into X-ray cartridges (Soyee 

Products, New York City, NY, USA). Once in complete darkness, X-ray films (Midwest 

Scientific, St. Louis, MO, USA) were placed inside the cartridge and exposed for 5 

seconds, 30 seconds, 1 minute, 5 minutes, and 15 minutes. Films were first placed in 

Kodak/GBX developer (Thermo Fisher Scientific, Pittsburgh, PA, USA) for 30 seconds 

per side, then washed in cold water for 1 minute per side. The films were fixed in 

Kodak/GBX fixing solution (Thermo Fisher Scientific, Pittsburgh, PA, USA) for 30 

seconds per side, washed again, and allowed to dry for 2 hours.
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Table 3 
 

        

  Secondary antibody 

Antibody target Source Monoclonal vs. polyclonal Company Titer Secondary antibody titer 

      

α-tubulin mouse momoclonal Sigma 1:1,000 Goat anti-mouse 1:10,000 

Akt rabbit polyclonal Cell Signaling Technologies 1:800 Goat anti-rabbit 1:10,000 

c-Src mouse momoclonal Santa Cruz Biotechnology 1:500 Goat anti-mouse 1:10,000 

Erk rabbit polyclonal Cell Signaling Technologies 1:900 Goat anti-rabbit 1:10,000 

Fyn mouse momoclonal Santa Cruz Biotechnology 1:300 Goat anti-mouse 1:25,000 

Integrin β-1 mouse momoclonal Santa Cruz Biotechnology 1:300 Goat anti-mouse 1:25,000 

NCAM (p140) rabbit polyclonal Santa Cruz Biotechnology 1:500 Goat anti-rabbit 1:25,000 

p-Akt mouse momoclonal Cell Signaling Technologies 1:500 Goat anti-mouse 1:10,000 

p-c-Src mouse momoclonal Santa Cruz Biotechnology 1:300 Goat anti-mouse 1:25,000 

p-Erk mouse momoclonal Cell Signaling Technologies 1:500 Goat anti-mouse 1:10,000 

p-Fyn goat polyclonal Santa Cruz Biotechnology 1:200 Donkey anti-goat 1:25,000 

p-Ret rabbit polyclonal Santa Cruz Biotechnology 1:300 Goat anti-rabbit 1:25,000 

p-SFK rabbit polyclonal Cell Signaling Technologies 1:500 Goat anti-rabbit 1:10,000 

Ret rabbit polyclonal Santa Cruz Biotechnology 1:500 Goat anti-rabbit 1:25,000 

SFK rabbit polyclonal Cell Signaling Technologies 1:500 Goat anti-rabbit 1:10,000 

Secondary antibody dilutions of 1:25,000 were used with the Super Signal Femto ECL kit  

Primary antibody titers 
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K. Densitometric evaluation of immunoreactive bands 

The dried films were scanned as JPEG files and densitometric measurements made 

with Un-Scan It (Orem, UT, USA). Immunoreactive bands of interest were normalized to 

α-tubulin bands. 

L. Statistical analysis 

All differences in iCGRP release, total content, and immunoreactive band densities 

were compared with analyses of variance (ANOVAs) and Dunnett’s post hoc analysis or 

Student t-tests, as indicated. A p value of <0.05 was used to indicate statistical 

significance between treatment and non-treatment groups.
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III. RESULTS 

A. GFLs at the highest concentrations used do not disrupt the radioimmunoassay 

The experiments necessary to evaluate the role of the GFLs in the enhancement of 

the release of CGRP require the use of the RIA method. Since the GFLs are peptides, 

there is a possibility that the CGRP antibody could non-specifically bind to the GFLs and 

disrupt the RIA (Sheffield et al., 1977a). For this reason, each of the GFLs was added 

separately to Hepes buffer and the standard curve portion of an RIA performed with this 

buffer. The GFLs were added at the highest concentration used for experiments, 500 

ng/mL. Figure 2 shows that none of the GFLs at 500 ng/mL altered the standard curves. 

Consequently, the GFLs do not interfere with the RIA. 

B. Criteria used to determine a valid experiment evaluating the release of iCGRP 

In order to ensure results from release experiments were reliable and to ensure that 

all data from experiments were consistent, several criteria for a valid CGRP release 

experiment were established. First, the basal or resting outflow of iCGRP during the 

initial 10 min incubation period had to be above the detection limit of the RIA. The basal 

release or resting outflow of iCGRP during the 10 min incubation period following the 

stimulation period also had to be above the detection limit of the RIA (5 fmol; Chen et al., 

1996). It was necessary for the basal values of iCGRP to be above the detection limit of 

the RIA so that the stimulated value of iCGRP could be compared to the basal value. 

Additionally, having basal values of iCGRP above the detection limit of the RIA indicates 

that the neurons are producing enough CGRP to allow reliable detection of CGRP 

levels. Second, it was necessary for fmol of iCGRP released in response to the stimulus 

to be at least twice that of the basal level. For example, if the basal release were 10 

fmol, the stimulated release would have to be greater than 20 fmol for the release to be
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Figure 2. GFLs in the Hepes buffer do not interfere with the RIA. Standard curves in 
which the Hepes buffer solution contained no GFL (black), 500 ng/mL GDNF (red), 500 
ng/mL NTN (green), 500 ng/mL ART (cyan), or 500 ng/mL PSP (yellow), are shown. 
This is the highest concentration used in experiments evaluating the release of iCGRP. 
Standard curves were run simultaneously with the same radiolabeled CGRP peptide 
(125I-CGRP), antibody to CGRP, and CGRP standard peptide. N=1.
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deemed valid. A doubling in stimulated-release over resting release of iCGRP indicates 

that the DRG neurons are responsive to the stimulus, and that the stimulus is in fact 

present in the stimulated condition. It is also well established in DRG in culture that 

concentrations of capsaicin from 30 nM to 50 nM and 30-50 mM KCl stimulate the 

release of iCGRP at least two-fold (Hingtgen and Vasko, 1994b;Hingtgen and Vasko, 

1994a;Hingtgen et al., 1995;Hingtgen et al., 2006).  

Because of the natural variability in cell density per well when plating the DRG 

neurons, most data from experiments involving GFL modulation of the release of iCGRP 

were reported as the amount of iCGRP released in 10 minutes as a percent of total 

iCGRP content in the well. For this reason, it was critical to establish a range of iCGRP 

content values that were deemed acceptable. A low content of iCGRP would indicate 

that the DRG neurons are not producing amounts of iCGRP that can be reliably 

measured. It could also indicate that there is a low density of cells, below the 30,000-

50,000 per well necessary. High content of iCGRP could indicate that there a too many 

neurons per well, which could change the properties of these neurons. Examining 

content values over 161 samples, a mean (1312.98 fmol) and standard deviation 

(494.32 fmol) was determined. Incorporating values within two standard deviations of the 

mean would provide a range in which 95% of the values fall and would eliminate outliers 

in the 2.5% on the high or low end of the values. Therefore, total contents of iCGRP 

between 324.34 fmol and 2301.62 fmol were determined to represent valid experiments 

from sensory neuronal cultures. After this criterion was established, all data sets from 

each well were judged upon these three criteria. If any one was not met, the entire data 

set from the well was not used. At least three wells of a no treatment condition, a 

condition in which no growth factors or inhibitors were added, were present in each 

experiment. 
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C. Effects of GFLs on isolated sensory neurons 

1. Characterization of GFL-induced enhancement in capsaicin stimulated-release 

of iCGRP 

The levels of the GFLs are increased during inflammation (Aloe et al., 1992) and 

treatment of isolated sensory neurons with GFLs increases intracellular calcium levels in 

response to capsaicin (Malin et al., 2006). While the local levels of the GFLs near the 

sensory neurons in intact animals have not been established, levels in whole brain (Kirik 

et al., 2000) and in plasma (Onodera et al., 1999) are in the high pg/mL to low ng/mL 

range. Additionally, the concentrations of the GFLs used in previous experiments on 

freshly dissociated sensory neuronal preparations and sensory neurons in culture are 

between 1 ng/mL and 100 ng/mL (Malin et al., 2006;Price et al., 2005). These 

concentrations correspond to 0.0667 nM to 6.67 nM for GDNF, 0.0847 nM to 8.47 nM for 

NTN, 0.0833 nM to 8.83 nM for ART, and 0.0971 nM to 9.71 nM for PSP. 

To evaluate the ability of GDNF to modulate the stimulated release of iCGRP, GDNF 

was applied in the basal and capsaicin stimulated (50 nM capsaicin) conditions. First, 

the absolute value of fmol of iCGRP amounts of stimulated release was measured. As 

seen in Figure 3, GDNF at 1 ng/mL and 10 ng/mL significantly increased capsaicin 

stimulated-release by 50-100%, using an ANOVA with Dunnett’s post hoc testing (No 

GFL:  148.63 ± 12.42 fmol, 100 ng/mL NGF:  217.44 ± 31.20 fmol, 1.0 ng/mL GDNF:  

227.82 ± 23.01 fmol, 10 ng/mL GDNF:  208.75 ± 38.99 fmol). Additionally, this enhanced 

release is similar to that seen with NGF, a growth factor with a well-established role in 

neuropeptide release modulation (Hingtgen et al., 2006). An enhancement in the 

stimulated-release of iCGRP, without a change in basal release, is what is defined as 

sensitization in this thesis. In fact, any statistically significant enhancement in stimulated 

release of iCGRP, no matter the amount, is defined as sensitization.
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Figure 3. GDNF enhances the capsaicin stimulated-release of iCGRP in fmol from 
isolated sensory neurons. Peptide release elicited by a 10 minute exposure to Hepes 
buffer alone (open bar) or Hepes buffer containing 50 nM capsaicin (Cap; dark bars) is 
expressed as mean percent total peptide content of cells in each well ± SEM (n = 12-15 
wells per condition). NGF, at a concentration of 100 ng/mL, and GDNF, at 
concentrations of 1 ng/mL and 10 ng/mL) were included in the 10 minutes prior to and 
throughout capsaicin exposure. Total growth factor exposure time was 20 minutes. 
Asterisks (*) indicate statistically significant differences in iCGRP release between 
treatment groups and the no growth factor condition using an ANOVA with Dunnett’s 
post-hoc test (p<0.05). In all cases, release stimulated by capsaicin was significantly 
higher than basal release.  
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Individual preparations of isolated sensory neurons in culture were exposed to 

different concentrations of GDNF for 10 minutes prior to and during a 10 minute 

capsaicin-stimulated period. In the absence of GDNF, basal release of iCGRP was 7.15 

± 1.25 fmol/well and capsaicin-stimulated release was 78.84 ± 6.21 fmol/well (mean ± 

SEM). When expressed as the percent of the total content of iCGRP in the well, these 

values correspond to 0.45 ± 0.11% per 10 minutes in the basal condition and 4.19 ± 

0.93% in the capsaicin-stimulated condition (Figure 4). This release of iCGRP is 

consistent with a previous report, which indicates that capsaicin stimulated-release of 

iCGRP is approximately 5% of total content per 10 minutes (Hingtgen et al., 2006). From 

this point forward, all release data will be expressed as iCGRP as a percent of total 

content of iCGRP. This normalization is necessary because of the variability in the 

amount of cells plated between each well and between preparations. When 1 or 10 

ng/mL GDNF was added, capsaicin-stimulated release of iCGRP was significantly 

enhanced (No GFL:  4.19 ± 0.93%, 0.1 ng/mL GDNF:  6.74 ± 1.87%, 1.0 ng/mL GDNF:  

8.45 ± 1.05%, 10 ng/mL GDNF:  8.35 ± 1.16%, 100 ng/mL GDNF:  6.34 ± 1.15%; Figure 

4). There was no change in the basal release of iCGRP with exposure to GDNF. Other 

studies have identified a similar profile of the concentration-related actions of GDNF. 

Specifically, application of 10 ng/mL GDNF to trigeminal ganglia for 5 days in culture 

increases the capsaicin stimulated-release of CGRP from, and the total content of 

CGRP in, TRPV1-postive neurons (Price et al., 2005). However, 100 ng/mL GDNF did 

not increase the release of CGRP (Price et al., 2005). There are several possibilities for 

why treatment with 100 ng/mL GDNF did not enhance the release of iCGRP. First, 

compensatory pathways may be activated by higher concentrations of GDNF that are 

not activated by 10 ng/mL GDNF. These compensatory pathways may prevent the 

GDNF from sensitizing the sensory neurons. In a neuroectodermal cell line, 100 ng/mL 

GDNF increased p-Akt levels and blunted the ability of the MAPK pathway to activate
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Figure 4. GDNF enhances capsaicin-stimulated release of iCGRP from isolated sensory 
neurons. Peptide release elicited by a 10 minute exposure to Hepes buffer alone (open 
bars) or Hepes buffer containing 50 nM capsaicin (Cap; dark bars) is expressed as 
mean percent total peptide content of cells in each well ± SEM (n = 9 wells per 
condition). GDNF (at concentrations from 0.1 ng/mL to 100 ng/mL) was included in the 
10 minutes prior to and throughout capsaicin exposure. Total growth factor exposure 
time was 20 minutes. Asterisks (*) indicate statistically significant differences in iCGRP 
release between treatment groups and the no GFL condition using an ANOVA with 
Dunnett’s post-hoc test (p<0.05). In all cases, release stimulated by capsaicin was 
significantly higher than basal release.  
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transcription factors, which may also explain why 100 ng/mL GDNF was unable to 

sensitize the DRG neurons (Mograbi et al., 2001). 

GDNF was used as a representative GFL to characterize, in general, the 

enhancement in stimulated-release of iCGRP by the GFLs, including the optimum 

concentration to use to examine the effects of sensitization. Then, to determine if the 

actions of GFLs on the TRPV1 receptor result in increased functional output, such as 

enhanced transmitter release, the ability of the other GFLs to modulate the stimulated-

release of iCGRP from isolated sensory neurons was measured. Studies of the effects of 

the GFLs on sensory neuronal sensitization were conducted with concentrations of the 

GFLs between 0.1 ng/mL and 500 ng/mL to remain close to the physiological range and 

to correspond to concentrations used in similar experiments. 

After establishing that GDNF is an effective sensitizer of sensory neurons from the 

DRG, the ability of the other GFLs, NTN, ART, and PSP, to enhance the stimulated 

release of iCGRP was evaluated. As seen in Figure 5, 10 ng/mL NTN and ART also 

significantly enhanced the capsaicin-stimulated release of iCGRP (No GLF:  4.30 ± 

0.58%, NTN:  10.60 ± 1.70%, ART:  10.00 ± 1.57%). These data indicate that GDNF, 

NTN, and ART are all able to sensitize sensory neurons and enhance the release of 

iCGRP to a similar degree. 

Unlike the other GFLs, PSP did not alter the capsaicin-stimulated release of iCGRP 

(PSP: 3.40 ± 0.52%; Figure 5). This may result from a lack of functional GFRα4 in adult 

DRG neurons, and the fact that PSP binds specifically to GFRα4 (Enokido et al., 1998; 

Paveliev et al., 2004). Even at concentrations as high as 500 ng/mL, PSP was unable to 

enhance the capsaicin-stimulated release of iCGRP (Table 4). It is unlikely that the PSP 

was inactivated or altered since the same batches of PSP rescued neurons from 

damage by 6 hydroxydopamine (personal communication with the lab of Dr. Richard 

Nass). Therefore, since concentrations of PSP above physiological levels were unable
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Figure 5. GFLs enhance capsaicin-stimulated release of iCGRP from isolated sensory 
neurons. Peptide release elicited by a 10 minute exposure to Hepes buffer alone (open 
bars) or Hepes buffer containing 50 nM capsaicin (Cap; dark bars) is expressed as 
mean percent total peptide content of cells in each well ± SEM (n = 9-22 wells per 
condition). GDNF, neurturin (NTN), artemin (ART), or persephin (PSP), at 10 ng/mL, 
was included in the 10 minutes prior to and throughout capsaicin exposure. Total growth 
factor exposure time was 20 minutes. Asterisks (*) indicate statistically significant 
differences in iCGRP release between treatment groups and the no GFL condition using 
an ANOVA with Dunnett’s post-hoc test (p<0.05). In all cases, release stimulated by 
capsaicin was significantly higher than basal release.  
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Table 4 

Persephin Does Not Enhance the Capsaicin-Stimulated Release of iCGRP 
    

    Basal     50 nM Capsaicin
      

No GFL 0.67 ± 0.13 5.28 ± 0.46 

10 ng/mL PSP 0.68 ± 0.18 5.94 ± 0.88 

100 ng/mL PSP 0.68 ± 0.16 4.97 ± 0.41 

500 ng/mL PSP 1.23 ± 0.16 5.59 ± 0.64 
                
All values are mean ± SEM % content iCGRP released, n = 9 wells per condition   
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to enhance capsaicin-stimulated release of iCGRP, PSP is not a molecule that 

sensitizes adult mammalian sensory neurons. 

To ensure that GDNF, NTN, and ART did not directly alter the resting release of 

iCGRP, sensory neurons were exposed to the GFLs for two consecutive 10 minute 

incubations in the absence of any stimulus. No enhancement in the release of iCGRP 

was observed with these treatments (Table 5). 

When sensory neurons are exposed to the GFLs for several days, the levels of 

CGRP are increased (Ramer et al., 2003; Price et al., 2005). To ensure that the GFL-

induced enhancement in capsaicin-stimulated release of iCGRP was not the result of an 

increase in the total content of iCGRP, we measured iCGRP content at the end of each 

experiment. There was no change in the total content of iCGRP after the 20 minute 

exposure to the GFLs (No GFL:  1487 ± 154 fmol/well, GDNF:  1322 ± 108 fmol/well, 

NTN:  1500 ± 128 fmol/well, ART:  1320 ± 102 fmol/well, and PSP:  1518 ± 177 

fmol/well, n = 9-22 wells per condition). 

2. GFLs do not enhance the potassium-stimulated release of iCGRP 

Previous studies have focused primarily on GFL-induced changes in response to 

capsaicin in isolated DRG neurons. To determine whether responses to stimuli other 

than capsaicin could be enhanced by GFLs, a general depolarizing stimulus, high 

extracellular potassium, was used. Exposure to HEPES buffer containing 50 mM high 

extracellular potassium (KCl) for 10 minutes caused a release of iCGRP of 6.99 ± 

1.06%. Acute treatment with GDNF, NTN, or ART (10 ng/mL) 10 minutes prior to and 

throughout the stimulus period did not alter KCl-stimulated iCGRP release (Figure 6; No 

GFL:  6.99 ± 1.06%, GDNF:  6.95 ± 0.92%, NTN:  6.63 ± 0.61%, and ART:  6.74 ± 

1.11%). In addition, treatment with 100 ng/mL GDNF was unable to enhance KCl-

stimulated release of iCGRP. PGE2 is a well established sensory neuronal sensitizing
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Table 5 

  

  

No GFL 10 ng/mL GFL, 10 minutes 10 ng/mL GFL, 20 minutes 

GFL mean % content iCGRP ± SEM  mean % content iCGRP ± SEM  mean % content iCGRP ± SEM  

n = 9 wells n = 9 wells n = 9 wells 

    

No GFL 0.55 ± 0.35 0.43 ± 0.11 0.76 ± 0.20 

10 ng/mL GDNF 0.96 ± 0.12 0.67 ± 0.14 0.50 ± 0.19 

10 ng/mL NTN 0.41 ± 0.06 0.44 ± 0.04 0.70 ± 0.15 

10 ng/mL ART 0.91 ± 0.30 0.68 ± 0.20 0.54 ± 0.16 

      

  

GFLs alone do not increase the release of iCGRP 
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Figure 6. GFLs do not enhance the 50 mM potassium-stimulated release of iCGRP from 
isolated sensory neurons. Peptide release elicited by a 10 minute exposure to Hepes 
buffer alone (open bars) or Hepes buffer containing 50 mM potassium (KCl; dark bars) is 
expressed as mean percent total peptide content of cells in each well ± SEM (n = 9-12 
wells per condition). GDNF, neurturin (NTN), or artemin (ART) at 10 ng/mL, was 
included in the 10 minutes prior to and throughout potassium exposure. PGE2 was 
present in the basal and stimulated conditions at a concentration of 500 nM. Total 
growth factor and PGE2 exposure time was 20 minutes. There were no significant 
differences in iCGRP release between treatment groups and the no GFL condition. A 
significant enhancement in iCGRP release was observed with PGE2 using ANOVA with 
Dunnett’s post-hoc test (p<0.05). In all cases, release stimulated by potassium was 
significantly higher than basal release.  
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agent (Martin et al., 1987; (Mense, 1981). It is known to sensitize sensory neurons to 

many stimuli, including high extracellular potassium (Southall and Vasko, 2000). 

Accordingly, PGE2 enhanced the potassium-stimulated release of iCGRP by nearly 2 

fold (Figure 6; 14.3 ± 0.79%). Additionally, the GFLs were not able to induce 

sensitization when 30 mM KCl was used as the stimulus (Figure 7). This lower 

concentration was used because there was a possibility that the amount of iCGRP 

released in response to 50 mM KCl may be the maximum amount of iCGRP that could 

be released by the cells, preventing the possibility of any sensitization occurring. These 

data suggest that GDNF, NTN, and ART, unlike PGE2, sensitize sensory neurons 

through an interaction with TRPV1 and not by mechanisms independent of the stimulus. 

3. Presence of growth factors in the culture media 

NGF treatment of sensory neuronal cultures increases the expression of TRPV1 

(Xue et al., 2007) and increases the amount of TRPV1 insertion into the plasma 

membrane (Stein et al., 2006). Additionally, sensory neuronal exposure to NGF in 

culture increases the expression of CGRP and other neuropeptides (MacLean et al., 

1989;Sango et al., 1994). Therefore, there is a possibility that some of the media 

components, specifically the NGF, are affecting the responses of the sensory neurons to 

either or both the capsaicin and the GFLs. To address this concern, iCGRP release was 

measured from neurons grown in the presence or absence of NGF to determine whether 

this change in the media components would alter the capsaicin-stimulated release and 

the GFL-induced enhancement in this release. The fmol of capsaicin-stimulated iCGRP 

released when NGF was omitted from the culture media was ~25% less than when NGF 

was present (No added NGF:  97.39 ± 10.42 fmol/well, Growth in 30 ng/ml NGF:  127.83 

± 11.24 fmol/well). While the amount of capsaicin-evoked release was enhanced by 10 

ng/mL GDNF in both conditions, the absolute level of iCGRP released was again ~25%
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Figure 7. GFLs do not enhance the 30 mM potassium-stimulated release of iCGRP from 
isolated sensory neurons. Peptide release elicited by a 10 minute exposure to Hepes 
buffer alone (open bars) or Hepes buffer containing 30 mM potassium (KCl; dark bars) is 
expressed as mean percent total peptide content of cells in each well ± SEM (n = 9-12 
wells per condition). GDNF, neurturin (NTN), or artemin (ART) at 10 ng/mL, was 
included in the 10 minutes prior to and throughout potassium exposure. Total growth 
factor exposure time was 20 minutes. There were no significant differences in iCGRP 
release between treatment groups and the no GFL condition. In all cases, release 
stimulated by potassium was significantly higher than basal release.
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less in the cells that were not exposed to NGF (No added NGF:  162.54 ± 8.45, Growth 

in 30 ng/ml NGF:  219.27 ± 21.86 fmol/well). However, when NGF was present in the 

culture media, the total content of iCGRP was also ~25% higher than when NGF was 

omitted. The presence or absence of NGF in the culture media did not change the 

magnitude of capsaicin-stimulated release of iCGRP or the GDNF-induced 

enhancement of peptide release as percent of total content (Figure 8). The reduction in 

absolute levels of iCGRP released from sensory neurons maintained in culture in the 

absence of added NGF, but an absence of change in the percent of the total content of 

iCGRP released, is consistent with previous observations (Park et al., 2006). 

When GDNF was added to the media instead of NGF, the profile of stimulated 

release was altered. Specifically, the stimulated release was significantly higher (6.810 ± 

0.559%, n=15 wells) than when no growth factor (4.970 ± 0.344%, n=11 wells) or NGF 

(4.650 ± 0.677, n=11 wells) was present in the growth media (Figure 9). When GDNF 

was then added in the buffer during the basal and capsaicin-stimulated conditions, there 

was still an enhancement in the stimulated release of iCGRP (11.500 ± 1.25%, n=15). 

Taken together, these data indicate that the presence of NGF in the culture media does 

not alter the stimulated release of iCGRP normalized to total content of iCGRP. Instead, 

it is likely that the NGF is increasing the overall content of CGRP in the neurons, making 

more peptide available for release. However, unlike NGF, when GDNF is present in the 

culture media, stimulated-release of iCGRP is altered, suggesting that GDNF is altering 

components of the release process and not just increasing the amount of peptide 

available. 

D. Effects of GFLs on freshly dissociated spinal cord slices 

Sensitization of the central terminals of primary sensory neurons, which synapse 

onto second order neurons in the spinal cord, is also important during inflammation and
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Figure 8. NGF in culture media does not change the stimulated release of iCGRP and 
the GDNF-induced enhancement in release. Peptide release elicited by a 10 minute 
exposure to Hepes buffer alone (open bars) or Hepes buffer containing 50 nM capsaicin 
(Cap; dark bars) is expressed as mean percent total peptide content of cells in each well 
± SEM (n = 9 wells per condition). 10 ng/mL GDNF was included in the 10 minutes prior 
to and throughout capsaicin exposure. Total growth factor exposure time was 20 
minutes. NGF was added in the culture media at a concentration of 30 ng/mL or omitted 
from the culture media. Asterisks (*) indicate statistically significant differences in iCGRP 
release between GDNF treatment group and the no GFL condition using an t-test 
(p<0.05). In all cases, release stimulated by capsaicin was significantly higher than basal 
release.
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Figure 9. GDNF in culture media changes the stimulated release of iCGRP and the 
GDNF-induced enhancement in release. Peptide release elicited by a 10 minute 
exposure to Hepes buffer alone (open bars) or Hepes buffer containing 50 nM capsaicin 
(Cap; dark bars) is expressed as mean percent total peptide content of cells in each well 
± SEM (n = 9 wells per condition). 10 ng/mL GDNF was included in the 10 minutes prior 
to and throughout capsaicin exposure. Total growth factor exposure time was 20 
minutes. GDNF was added in the culture media at a concentration of 10 ng/mL or 
omitted from the culture media. Asterisks (*) indicate statistically significant differences in 
iCGRP release between GDNF treatment group and the no GFL condition using a t-test 
(p<0.05). Ampersands (@) indicate statistically significant differences in iCGRP release 
between different media conditions using a t-test (p<0.05). In all cases, release 
stimulated by capsaicin was significantly higher than basal release.

Media without added GDNF 
Media supplemented with 10 

ng/mL GDNF 
Media without added GDNF 

Media supplemented with 10 
ng/mL GDNF 
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propagation of the pain signal. The GFRα receptors are present on the central terminal 

of primary afferent neurons (Josephson et al., 2001), and GFLs are released by 

astrocytes in the spinal cord (Nomura et al., 2002;Nosrat et al., 1996). In order to 

examine the actions of GFLs in sensitization of the central terminals of sensory neurons, 

iCGRP release from spinal cord slices was measured. 

Figure 10A compares capsaicin-stimulated release of iCGRP in the absence or 

presence of 10 ng/mL GDNF. The fmol of iCGRP in each 10 minute collection fraction 

were normalized to the total iCGRP content in the spinal cord, as described in the 

Materials and Methods Section II.G. In the three basal fractions, iCGRP release was 

similar for both treatment and control conditions. The capsaicin-stimulated release of 

iCGRP was significantly enhanced by exposure to GDNF for 30 minutes prior to and 

throughout the stimulus period (No GFL:  0.94 ± 0.12%, 1.46 ± 0.18%, and 1.28 ± 

0.15%; 10 ng/mL GDNF:  1.14 ± 0.091%, 2.29 ± 0.084%, and 1.96 ± 0.25%). The 

profiles of increased release of iCGRP were similar when the spinal cord slices were 

exposed to NTN and ART. Evoked release was determined by subtracting the three 

basal fractions of iCGRP release from the three capsaicin-stimulated fractions. As 

demonstrated in Figure 10B, GDNF, NTN, and ART all were able to significantly 

enhance the capsaicin-evoked release of iCGRP from the spinal cord slices by two to 

three fold (No GFL:  2.50 ± 0.42%, GDNF 4.05 ± 0.43%, NTN:  6.18 ± 0.28%, ART:  5.88 

± 1.94%). The total content of iCGRP per mg of protein in the spinal cord slices was not 

changed by exposure to GFLs (No GFL:  298.41 ± 44.28 fmol/mg, GDNF:  275.46 ± 

25.13 fmol/mg, NTN:  220.71 ± 84.84 fmol/mg, ART:  227.58 ± 98.63 fmol/mg). These 

data indicate that the GFLs are able to sensitize the central terminals of the sensory 

neurons to capsaicin stimulation. 
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Figure 10. GFLs enhance capsaicin-stimulated release of iCGRP from spinal cord 
slices. A) Peptide release from spinal cord slices stimulated by three 10 minute 
exposures to Hepes buffer alone (open bars) or Hepes buffer containing 500 nM 
capsaicin (dark bars) is expressed as mean percent total peptide content of iCGRP in 
the spinal cord slice ± SEM (n = 3-10 animals per condition). GDNF, neurturin (NTN), or 
artemin (ART), at 10 ng/mL, was included in the six 10 minute incubations indicated by 
lines with growth factor name below, for a total exposure time of 60 min. B) Evoked 
release, or release due to capsaicin stimulation alone, is compared between growth 
factor treatment and no GFL groups. The evoked release was obtained by subtracting 
peptide release during the three basal fractions from that during the three capsaicin-
stimulated fractions in each treatment group. Asterisks (*) indicate statistically significant 
differences in iCGRP release between treatment groups and the no growth factor 
condition using an ANOVA with Dunnett’s post-hoc test (p<0.05). In all cases, release 
stimulated by capsaicin was significantly higher than basal release.
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E. Distinct signaling pathways are responsible for GFL-induced enhancement in 

the release of iCGRP 

 Having established that selected GFLs sensitize sensory neurons, as measured by 

an enhancement in the stimulated release of iCGRP, the intracellular signaling pathways 

each of the GFLs use to accomplish this sensitization were evaluated. The intracellular 

signaling pathways activated by the GFLs and implicated in sensory neuronal 

sensitization by other known sensitizers are detailed in the Introduction, Section I.H. The 

role of each of these pathways in the sensitization by each of the individual GFLs was 

undertaken.  

1. Ret-Dependent pathways 

Most of the evidence for the actions of the GFLs on adult, mammalian neurons 

indicates that Ret-dependent pathways are involved in GFL-mediated actions (Durbec et 

al., 1996). Ret autophosphorylation, induced by GFLs binding to their preferential GFRα 

receptor subtype and translocating to this receptor, initiates many “classically” Ret-

dependent signaling pathways. These include the MAPK/Erk 1/2 pathway, the PI-3K/Akt 

pathway, and the PKCε pathway (Bogen et al., 2008;Encinas et al., 2001;Mikaels-

Edman et al., 2003;Woodall et al., 2008). First, it was determined if the GFLs activated 

these pathways. Then, the role of these pathways in enhancement of release of iCGRP 

was elucidated with the use of different inhibition techniques. Western blots for phospho-

specific antibodies were used to verify the alterations in signaling cascades with GFL 

treatment or the use of inhibitors of the signaling cascades. The Western blots were 

conducted with separate sets of DRG cultures than ones used for the release of iCGRP. 

This was necessary, since the total content of iCGRP was determined after lysing the 

DRG with acetic acid and this treatment likely affects the signaling pathways within the 
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cells. In all cases, however, the cultures used for release experiments and those used 

for Western blots were treated in the same manner.   

a. The role of the Ras signaling cascade in GFL-induced sensitization 

Because Nf1+/- mice have increased activity of the Ras signaling cascade (Martin et 

al., 1990;Xu et al., 1990) these mice were used to evaluate the role of the Ras signaling 

cascade in GDNF and ART-induced sensitization of sensory neurons. 

The stimulated-release of iCGRP in dissociated DRG from Nf1+/- mice is ~1.25 

times higher than in wild-type mice (wild-type:  3.92 ± 0.32% of total content of iCGRP, 

Nf1+/-: 4.98 ± 0.36% of total content of iCGRP; Figure 11A). When 10 ng/mL GDNF was 

added in the basal and capsaicin-stimulated condition, sensitization occurred, with the 

amount of iCGRP released greater in Nf1+/- mice than in wild-type mice (wild-type:  6.08 

± 0.48% of total content of iCGRP, Nf1+/-: 7.41 ± 0.59% of total content of iCGRP; 

Figure 11A). However, when comparing the fold change of stimulated-release in DRG 

neurons from wild-type and Nf1+/- mice in the absence and presence of GDNF, there is 

no difference in the fold change between the genotypes (wild-type:  1.41 ± 0.13, Nf1+/-: 

1.48 ± 0.08; Figure 11B). A similar profile was seen in the spinal cord slice release 

experiments, where evoked release of iCGRP from spinal cord slices from Nf1+/- mice 

was ~2 times higher than in wild-type mice (wild-type:  1.38 ± 0.65%, Nf1+/-:  2.69 ± 

0.43%; Figure 12). The evoked release of iCGRP in both the wild-type and Nf1+/- mice 

doubled in the presence of 10 ng/mL GDNF (wild-type:  3.20 ± 0.28%, Nf1+/-: 5.91 ± 

0.27%; Figure 12), and the fold change in each genotype was not different (wild-type:  

2.32 ± 0.11, Nf1+/-:  2.20 ± 0.09), suggesting that GDNF-induced sensitization is not 

dependent on Ras activity.  

The responses of sensory neurons from wild-type and Nf1+/- DRG to ART were 

compared, as well. When 10 ng/mL ART was added in the basal and capsaicin 

stimulated condition, sensitization occurred, with the absolute amount of iCGRP
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Figure 11. Comparison of responses of wild-type and Nf1 +/- DRG sensory neurons to 
GDNF and ART. Nf1 +/- sensory neurons have increased stimulated-release of iCGRP 
in the absence of GFL exposure. A) GDNF and ART enhance the stimulated-release of 
iCGRP in both wild-type and Nf1 +/- sensory neurons. B) The fold change in 
enhancement in stimulated-release of iCGRP induced by GDNF and ART in each 
genotype is shown. The fold change in stimulated-release is induced by GDNF and ART 
in Nf1 +/- neurons is not different than in wild-type neurons. The # represents statistically 
significant differences in stimulated-release between genotypes using a t-test (p<0.05). 
Asterisks (*) represent statistically significant differences between treatment conditions 
in the wild-type sensory neurons using an ANOVA with Dunnett’s post hoc test (p<0.05). 
The crosses (┼) represents statistically significant differences between treatment 
conditions in the Nf1 +/- sensory neurons using an ANOVA with Dunnett’s post hoc test 
(p<0.05). In all cases, stimulated-release was significantly higher than basal or resting 
release. N = 3-12 wells/condition. 
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Figure 12. GDNF enhances capsaicin-stimulated release of iCGRP from wild-type and 
Nf1 +/- spinal cord slices. Evoked release, or release due to capsaicin stimulation alone, 
is compared between GDNF treatment and no GFL groups in both genotypes. The 
evoked release was obtained by subtracting peptide release during the three basal 
fractions from that during the three capsaicin-stimulated fractions in each treatment 
group. Asterisks (*) indicate statistically significant differences in iCGRP release 
between treatment groups and the no growth factor condition using an t-test (p<0.05). 
The # symbol indicates statistically significant differences in iCGRP release between 
genotypes in each condition using a t-test (p<0.05). In all cases, release stimulated by 
capsaicin was significantly higher than basal release. N = 3-9 animals per condition.
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released greater in Nf1+/- mice than in wild-type mice (wild-type:  6.21 ± 0.50% of total 

content of iCGRP, Nf1+/-: 6.83 ± 0.46% of total content of iCGRP; Figure 11A). 

However, similar to the responses of DRG from Nf1+/- mice to GDNF, when comparing 

the fold change of stimulated-release in DRG neurons from wild-type and Nf1+/- mice in 

the absence and presence of ART, there is no difference in the fold change between the 

genotypes (wild-type:  1.63 ± 0.42, Nf1+/-: 1.54 ± 0.24; Figure 11B). Although the use of 

Nf1+/- mice is not a direct way to determine if Ras activity is important in the actions of 

GFLs, this data would suggest that Ras is not critical for ART-induced sensitization of 

sensory neurons. For this reason, no further experiments involving Nf1+/- mice were 

conducted. 

b. Intracellular signaling pathways responsible for GDNF-induced sensitization 

GDNF activates both the MAPK/Erk 1/2 and PI-3K pathways (Bron et al., 2003). Both 

of these pathways can be activated by Ras, among other signaling cascades 

(Klinghoffer et al., 1996;Thomas et al., 1992). For this reason, studies to evaluate the 

role of each of these pathways in GDNF-induced sensitization were conducted. 

Additionally, there are commercially available, specific inhibitors of the MAPK/Erk 1/2 

and PI-3K pathways, as well as inactive control compounds for these inhibitors.  

For the MAPK/Erk 1/2 pathway, PD98059 is a compound that irreversibly and 

specifically inhibits phosphorylation of Erk 1/2 by MEK 1/2 (Davies et al., 

2000;Hotokezaka et al., 2002;Pang et al., 1995), although the exact mechanism is 

unknown. U0126 is another compound that has potent inhibitory effects on the 

MAPK/Erk 1/2 pathway, reportedly by preventing phosphorylation, and therefore 

activation, of MEK 1/2 (Davies et al., 2000;Favata et al., 1998). However, this inhibitor 

may also prevent phosphorylation of proteins by PRAK and PKBα (Davies et al., 2000). 

There is an inactive analogue compound for U0126, which is U0124. It is of similar 
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structure and size, but without the ability to inhibit phosphorylation of any tested 

intracellular signaling proteins (Duncia et al., 1998). 

A potent and specific inhibitor of the PI-3K/Akt pathway exists as well. The 

compound LY294002 has an IC50 for PI-3K activity of between 1.40 and 10 µM and does 

not inhibit a similar protein, PI-4K (Davies et al., 2000;Vlahos et al., 1994). LY294002 

has an inactive analogue, LY353011, which has an NH-group in place of the oxygen 

group on the morphine-ring portion of the molecule (Ding et al., 1995;Vlahos et al., 

1994). This molecule has no effect on PI-3K dependent cell activities, including 

superoxide release in neutrophils and inhibition of voltage gated potassium currents in 

pancreatic beta cells (El-kholy et al., 2003;Vlahos et al., 1994). 

Using the inhibitors described above in the basal and capsaicin-stimulated condition, 

the role of each of these pathways, MAPK and PI-3K, in GDNF-induced sensitization 

was examined. The phosphorylation of the MAPK pathway by GDNF, as a surrogate for 

activation, and prevention of this phosphorylation by the inhibitors in isolated DRG 

neurons was determined using protein from cell lysates and Western blotting techniques, 

probing for immunoreactive phospho-Erk (p-Erk) and total Erk with specific antibodies 

(see Table 3 for details of antibody sources and titers; Cell Signaling, Danvers, MA, 

USA). Exposure of DRG to 10 ng/mL GDNF for 10 minutes increases p-Erk levels 

compared to DRG exposed to Hepes buffer alone (Figure 13A). Total Erk and alpha 

tubulin (used as a protein loading control) levels were not affected. Phosho-Erk density 

was compared to total Erk density, then normalized to alpha tubulin density. Once a p-

Erk level was established for the no treatment condition each treatment condition was 

normalized to this value. The control condition was given a value of one. The GDNF-

induced increase in p-Erk was prevented by 10 µM PD98059 and 1.0 µM U0126, but not 

by 10 µM U0124 (Figure 13A and B). For these experiments, inhibitors were added to 

the DRG in culture for a total of 20 minutes. However, GDNF did not increase the
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Figure 13. Signaling pathways activated by GDNF. A) This representative Western blot 
demonstrated changes in levels of p-Erk 1/2, Erk 1/2, p-Akt, Akt, and α-tubulin in DRG in 
response to a 10 minute incubation with 10 ng/mL GDNF and the subsequent prevention 
of these changes by inhibitors of the MAPK pathway (10 µM PD98059 and 1 µM U0126) 
and the PI-3K pathway (10 µM LY294002). Inactive control compounds for these 
pathways were added as well (1 µM U0124 for MAPK and 10 µM LY303511 for PI-3K). 
B) Densitometric analysis of three separate Western blots like that in A probing for 
MAPK pathway components. The level of p-Erk was divided by total Erk levels then 
normalized to α-tubulin levels in each condition. Asterisks (*) indicate statistically 
significant differences between treatment conditions and the no GDNF and no inhibitor 
condition using an ANOVA with Dunnett’s post hoc testing (p<0.05). C) Densitometric 
analysis of three separate Western blots like that in A probing for PI-3K pathway 
components. The level of p-Akt was divided by total Akt levels then normalized to α-
tubulin levels in each condition. 
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Figure 14. GDNF-induced enhancement in the stimulated-release of iCGRP is mediated 
by the MAPK/Erk 1/2 pathway. Peptide release elicited by a 10 minute exposure to 
Hepes buffer alone (open bar) or Hepes buffer containing 50 nM capsaicin (Cap; dark 
bars) is expressed as mean percent total peptide content of cells in each well ± SEM (n 
= 12-18 wells per condition). GDNF and inhibitors (10 µM PD98059, 1 µM U0126, 10 µM 
LY294002, 1 µM U0124, and 10 µM LY303511).were included in the 10 minutes prior to 
and throughout capsaicin exposure. Total growth factor and inhibitor exposure time was 
20 minutes. Asterisks (*) indicate statistically significant differences in iCGRP release 
between treatment groups and the no GDNF condition using an ANOVA with Dunnett’s 
post-hoc test (p<0.05). Ampersands (@) indicate statistically significant differences 
between the 10 ng/mL treatment condition and the condition containing the inhibitor 
listed below the graph using t-tests (p<0.05). In all cases, release stimulated by 
capsaicin was significantly higher than basal release. N = 12-18 wells/condition. 
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amount of immunoreactive phospho-Akt (p-Akt; Figure 13 A and C). These data indicate 

that not only does GDNF increase p-Erk levels in DRG, but also that the MEK inhibitors 

PD98059 and U0126 inhibit this increase at the concentrations used. These inhibitors 

were then added to the DRG in culture during the basal and capsaicin-stimulated 

incubations to determine the significance of the MAPK/Erk 1/2 and PI-3K/Akt pathways 

in sensitization of sensory neurons by GDNF. As seen in figure 14, the enhancement in 

stimulated release of iCGRP induced by 10 ng/mL GDNF was prevented by the MEK 

inhibitors PD98059 (10 µM) and U0126 (1.0 µM), but not by the inactive control U0124 

(1.0 µM). The PI-3K inhibitor, LY294002 (10 µM), and the inactive control for this 

compound, LY303511 (10 µM), did not affect the GDNF-induced sensitization (Figure 

14). These pharmacological manipulations did not alter the total content of iCGRP 

(Figure 15). Taken together, these data indicate that GDNF-induced sensitization of 

sensory neurons occurs through activation of the MAPK/Erk 1/2 pathway and not 

through the PI-3K/Akt pathway. 

c. Intracellular signaling pathways responsible for NTN-induced sensitization 

Immunoblots were performed with NTN as the GFL inducing signaling MAPK and PI-

3K pathway activation. NTN activates a myriad of signaling pathways, including the 

MAPK/Erk 1/2 and PI-3K/Akt pathways (Althini et al., 2004;Soler et al., 1999). When 

dissociated DRG were exposed to 10 ng/mL NTN for 10 minutes, both p-Erk 1/2 and p-

Akt levels were increased (Figure 16A). PD98059 (10 µM) and U0126 (1.0 µM) 

prevented the NTN-induced increase in p-Erk, while the inactive analogue U0124 (1.0 

µM) did not affect NTN increases in p-Erk (Figure 16 A and B). Unlike GDNF, exposure 

of DRG to NTN increased p-Akt levels, and this increase was prevented by LY294002 

(10 µM) and not LY303511 (10 µM; Figure 16 A and C). Interestingly, NTN-induced 

enhancement in the release of iCGRP was abolished only by LY294402, the PI-3K/Akt 

pathway inhibitor (Figure 17). Neither of the MAPK/Erk 1/2 inhibitors, nor the inactive
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Figure 15. GDNF and pharmacological inhibitors do not change total content of iCGRP 
in DRG. Twenty minute exposure of DRG to 10 ng/mL GDNF and pharmacological 
inhibitors listed below the graph (10 µM PD98059, 1 µM U0126, 10 µM LY294002, 1 µM 
U0124, and 10 µM LY303511) did not change the total content of iCGRP, compared with 
an ANOVA. N = 12-18 wells/condition. 
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Figure 16. Signaling pathways activated by NTN. A) This representative Western blot 
demonstrated changes in levels of p-Erk 1/2, Erk 1/2, p-Akt, Akt, and α-tubulin in DRG in 
response to a 10 minute incubation with 10 ng/mL NTN and the subsequent prevention 
of these changes by inhibitors of the MAPK pathway (10 µM PD98059 and 1 µM U0126) 
and the PI-3K pathway (10 µM LY294002). Inactive control compounds for these 
pathways were added as well (1 µM U0124 for MAPK and 10 µM LY303511 for PI-3K). 
B) Densitometric analysis of three separate Western blots like that in A probing for 
MAPK pathway components. The level of p-Erk was divided by total Erk levels then 
normalized to α-tubulin levels in each condition. Asterisks (*) indicate statistically 
significant differences between treatment conditions and the no NTN and no inhibitor 
condition using an ANOVA with Dunnett’s post hoc testing (p<0.05). C) Densitometric 
analysis of three separate Western blots like that in A probing for PI-3K pathway 
components. The level of p-Akt was divided by total Akt levels then normalized to α-
tubulin levels in each condition. Asterisks (*) indicate statistically significant differences 
between treatment conditions and the no NTN and no inhibitor condition using an 
ANOVA with Dunnett’s post hoc testing (p<0.05).   
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Figure 17. NTN-induced enhancement in the stimulated-release of iCGRP is mediated 
by the PI-3K pathway. Peptide release elicited by a 10 minute exposure to Hepes buffer 
alone (open bar) or Hepes buffer containing 50 nM capsaicin (Cap; dark bars) is 
expressed as mean percent total peptide content of cells in each well ± SEM (n = 12-18 
wells per condition). NTN and inhibitors (10 µM PD98059, 1 µM U0126, 10 µM 
LY294002, 1 µM U0124, and 10 µM LY303511) were included in the 10 minutes prior to 
and throughout capsaicin exposure. Total growth factor and inhibitor exposure time was 
20 minutes. Asterisks (*) indicate statistically significant differences in iCGRP release 
between treatment groups and the no NTN condition using an ANOVA with Dunnett’s 
post-hoc test (p<0.05). Ampersand (@) indicates statistically significant differences 
between the 10 ng/mL treatment condition and the condition containing the inhibitor 
listed below the graph using t-tests (p<0.05). In all cases, release stimulated by 
capsaicin was significantly higher than basal release. N = 12-18 wells per condition.
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control compounds, significantly prevented sensitization (Figure 17). The MAPK 

inhibitors did reduce the amount of enhancement in iCGRP release induced by NTN by 

25%, and a potential explanation for this phenomenon will be discussed more fully in the 

discussion section of this document (Section IV.F). However, since I have defined 

sensitization as a statistically significant increase from control in stimulated-release of 

iCGRP, inhibition of the MAPK pathway by these inhibitors does not prevent NTN-

induced sensitization. These pharmacological manipulations did not alter the total 

content of iCGRP (Figure 18). Therefore, it appears that NTN accomplishes a significant 

portion of its sensitization of DRG neurons through the PI-3K pathway. 

d. Intracellular signaling pathways responsible for ART-induced sensitization 

The signaling pathways activated by ART were also examined using Western blots 

to measure changes in p-Erk and p-Akt. These pathways are activated by ART and 

responsible for altering many functions in sensory neurons (Hauck et al., 2006;Jeong et 

al., 2008a;Soler et al., 1999). A 10 minute exposure to 10 ng/mL ART, similar to NTN, 

increased both p-Erk and p-Akt levels when compared to the no growth factor condition 

(Figure 19 A, B and C). The inhibitors of the MAPK pathway (10 µM PD98059 and 1.0 

µM U0126) prevented the ART-induced increases in p-Erk, while the inactive control 

compound, U0124 (1.0 µM), did not affect the ART-induced increase in p-Erk (Figure 19 

A, B). LY294002 (10 µM), the inhibitor of the PI-3K-induced phosphorylation of Akt, 

prevented the ART-induced increases in p-Akt, while the inactive control compound, 

LY303511 (10 µM), did not affect the ART-induced increase in p-Akt (Figure 19 A, C). 

Despite the ART-induced activation of the MAPK and PI-3K pathways, the 

enhancement in the release of iCGRP was not affected by inhibition of the MAPK/Erk 

1/2 or PI-3K/Akt pathways. Specifically, inhibition of the MAPK/Erk 1/2 pathway by 

PD98059 and U0126 did not prevent the ART-induced enhancement in the capsaicin
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Figure 18. NTN and pharmacological inhibitors do not change total content of iCGRP in 
DRG. Twenty minute exposure of DRG to 10 ng/mL NTN and pharmacological inhibitors 
listed below (10 µM PD98059, 1 µM U0126, 10 µM LY294002, 1 µM U0124, and 10 µM 
LY303511) the graph did not change the total content of iCGRP, compared with an 
ANOVA. N = 12-18 wells per condition. 

 



91 
 

 

 

 

Figure 19. Signaling pathways activated by ART. A) This representative Western blot 
demonstrated changes in levels of p-Erk 1/2, Erk 1/2, p-Akt, Akt, and α-tubulin in DRG in 
response to a 10 minute incubation with 10 ng/mL ART and the subsequent prevention 
of these changes by inhibitors of the MAPK pathway (10 µM PD98059 and 1 µM U0126) 
and the PI-3K pathway (10 µM LY294002). Inactive control compounds for these 
pathways were added as well (1 µM U0124 for MAPK and 10 µM LY303511 for PI-3K). 
B) Densitometric analysis of three separate Western blots like that in A probing for 
MAPK pathway components. The level of p-Erk was divided by total Erk levels then 
normalized to α-tubulin levels in each condition. Asterisks (*) indicate statistically 
significant differences between treatment conditions and the no ART and no inhibitor 
condition using an ANOVA with Dunnett’s post hoc testing (p<0.05). C) Densitometric 
analysis of three separate Western blots like that in A probing for PI-3K pathway 
components. The level of p-Akt was divided by total Akt levels then normalized to α-
tubulin levels in each condition. Asterisks (*) indicate statistically significant differences 
between treatment conditions and the no ART and no inhibitor condition using an 
ANOVA with Dunnett’s post hoc testing (p<0.05). 
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stimulated-release of iCGRP (Figure 20). Similarly, inhibition of the PI-3K pathway by 

LY294002 did not prevent the ART-induced enhancement in the capsaicin stimulated-

release of iCGRP (Figure 20). It was still possible that ART-induced sensitization 

occurred by activating both pathways, and so inhibition of either pathway alone was not 

sufficient to prevent sensitization. To ensure that the MAPK and PI-3K pathways were 

each sufficient but not both necessary for ART-induced enhancement in iCGRP release, 

both the MAPK inhibitor PD98059 (10 µM) and the PI-3K inhibitor LY294002 (10 µM) 

were used. When these inhibitors were used in combination, there was still no effect on 

ART-induced sensitization (Figure 20). These pharmacological manipulations did not 

alter the total content of iCGRP (Figure 21). Overall, the results of these experiments 

indicate that the mechanism of ART-induced sensitization of capsaicin stimulated iCGRP 

release is independent of both the MAPK and PI-3K pathways. 

e. Involvement of the Src family kinase pathway in GFL-induced sensitization 

There is evidence that the Src family kinases (SFKs) play an important role in 

sensory neuronal sensitization (Slack et al., 2008;Zhang et al., 2005). Additionally, each 

of the GFLs activates one or more of the SFKs (Encinas et al., 2001;Jeong et al., 

2008a). The commercially available and most widely used antibody for measuring levels 

of SFKs by Western blot is a pan SFK antibody, which cannot distinguish between each 

of the SFKs. The most commonly used inhibitor for each of the SFKs is PP2, which is a 

pan SFK inhibitor. The details of this inhibitor will be described below. The studies of the 

role of c-Src and SFK pathways in GFL-induced sensitization began with a broad 

evaluation of the ability of SFK pathways, in general, to mediate GFL-induced 

sensitization. 

PP2 is potent inhibitor of the SFK pathway. It has an IC50 for c-Src, Lck, and Fyn 

activity of between 4 nM and 7 nM and does not inhibit proteins from other
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Figure 20. ART-induced enhancement in the stimulated-release of iCGRP is mediated 
by neither the MAPK nor the PI-3K pathway. Peptide release elicited by a 10 minute 
exposure to Hepes buffer alone (open bar) or Hepes buffer containing 50 nM capsaicin 
(Cap; dark bars) is expressed as mean percent total peptide content of cells in each well 
± SEM (n = 12-18 wells per condition). ART and inhibitors were included in the 10 
minutes prior to and throughout capsaicin exposure. Total growth factor and inhibitor 
exposure time was 20 minutes. Asterisks (*) indicate statistically significant differences in 
iCGRP release between treatment groups and the no ART condition using an ANOVA 
with Dunnett’s post-hoc test (p<0.05). In all cases, release stimulated by capsaicin was 
significantly higher than basal release. 
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Figure 21. ART and pharmacological inhibitors do not change total content of iCGRP in 
DRG. Twenty minute exposure of DRG to 10 ng/mL ART and pharmacological inhibitors 
listed below the graph (10 µM PD98059, 1 µM U0126, 10 µM LY294002, 1 µM U0124, 
and 10 µM LY303511) did not change the total content of iCGRP, compared with an 
ANOVA. N = 12-18 wells per condition.  
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phosphorylation-dependent, related signaling pathways, JAK-2 and EGF-R (Hanke et 

al., 1996). PP2 has an inactive analogue, PP3, which has several modifications of the 

PP2 molecule, most importantly the removal of a benzene ring-linked chloride ion 

(Tisdale and Artalejo, 2006). This molecule has no effect on SFK-dependent cell 

activities, including GDNF-induced, SFK-dependent neurite outgrowth in neuronal cell 

lines (Encinas et al., 2001) and rescue of hippocampal neurons from hypoxia-ischemia 

injury (Jiang et al., 2008). 

To evaluate the role of SFKs in GFL-induced sensory neuronal sensitization, DRG in 

culture were first exposed to each of the GFLs and the amount of the active form of 

SFKs, phospho-SFKs (p-SFK), were measured. Each of the GFLs increases p-SFK 

levels, and the SFK inhibitor, PP2 (10 µM) prevented this increase (Figure 22 A and B). 

The inactive analogue of PP2, PP3, did not prevent, but did reduce the GFL-induced 

increase in SFKs (Figure 22 A and B). 

These pharmacological agents, PP2 and PP3, were then added to the DRG in the 

basal and capsaicin stimulated conditions of the CGRP release assay to determine the 

role of this GFL-activated pathway in the GFL-mediated enhancement in the stimulated 

release of iCGRP. PP2 abolished the sensitization of stimulated release by GDNF, NTN, 

and ART, while the inactive control, PP3, did not affect any of the GFL-induced 

sensitization (Figure 23). The SFK inhibitor, PP2, did not alter the total content of iCGRP 

(Figure 24). These experiments indicate that activation of SFKs is critical for GFL-

induced sensitization. The SFKs are also reported to be initiated prior to the MAPK/Erk 

1/2 and PI-3K pathways and to activate these pathways (Encinas et al., 2001;Jeong et 

al., 2008a). When the Neuro2A neuroblastoma cell line was stimulated with GDNF or 

NTN, PP2 inhibited activation of the MAPK/Erk 1/2 and PI-3K pathways and prevented 

survival of granule and sympathetic neurons, actions dependent upon these two cellular 

signaling pathways (Encinas et al., 2001). 
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Figure 22. The GFLs activate SFKs and PP2 prevents that activation. A) This 
representative Western blot demonstrated changes in levels of p-SFKs, SFK, and α-
tubulin in DRG in response to a 10 minute incubation with 10 ng/mL GDNF, NTN, and 
ART and the subsequent prevention of these changes by an inhibitor of the SFK 
pathway (10 µM PP2). The inactive control compound for this pathway was added as 
well (10 µM PP3). B) Densitometric analysis of three separate Western blots like that in 
A probing for SFKs. The level of p-SFK was divided by total SFK levels then normalized 
to α-tubulin levels in each condition. Asterisks (*) indicate statistically significant 
differences between treatment conditions and the no GFL and no inhibitor condition 
using an ANOVA with Dunnett’s post hoc testing (p<0.05). N = 12-18 wells per condition.

((p-Src/Src)/ 

α-tubulin) 
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Figure 23. GFL-induced enhancement in the stimulated-release of iCGRP is mediated 
by SFK pathway. Peptide release elicited by a 10 minute exposure to Hepes buffer alone 
(open bar) or Hepes buffer containing 50 nM capsaicin (Cap; dark bars) is expressed as 
mean percent total peptide content of cells in each well ± SEM (n = 12-18 wells per 
condition). GFLs and inhibitors (10 µM PP2 and 10 µM PP3) were included in the 10 
minutes prior to and throughout capsaicin exposure. Total growth factor and inhibitor 
exposure time was 20 minutes. Asterisks (*) indicate statistically significant differences in 
iCGRP release between treatment groups and the no GFL condition using an ANOVA 
with Dunnett’s post-hoc test (p<0.05). Ampersands (@) indicate statistically significant 
differences between the GFL treatment and the PP2 treated condition using a t-test 
(p<0.05). In all cases, release stimulated by capsaicin was significantly higher than basal 
release. 
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Figure 24. GFLs and the pharmacological inhibitors PP2 and PP3 do not change total 
content of iCGRP in DRG. Twenty minute exposure of DRG to 10 ng/mL GFLs and PP2 
or PP3 (10 µM PP2 and 10 µM PP3) did not change the total content of iCGRP, 
compared with an ANOVA. N = 12-18 wells per condition. 
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However, PP2, like many pharmacological inhibitors, prevents phosphorylation of 

many proteins. These include Src (Nagao et al., 1998), the other SFKs Fyn and Yes 

(Encinas et al., 2001), and Ret (Encinas et al., 2001). Since the GFLs mediate many of 

their effects through Ret, some of the attenuation of GFL-induced sensitization seen with 

PP2 application could be a result of Ret inhibition. For this reason, siRNA targeted to c-

Src (refer to Table 1 for details) was used as a tool to more specifically evaluate the role 

of the c-Src pathway in GFL-induced sensitization. The c-Src siRNA (100 nM) was 

added to the DRG in culture two days after plating and remained in the culture media for 

48 hours. Figure 25 shows that the c-Src siRNA reduces c-Src expression by ~80% and 

does not change Fyn levels. Scramble siRNA (an siRNA designed as a scramble for 

APE1; Table 1), did not affect c-Src or Fyn levels (Figure 25). When the amount of 

capsaicin–stimulated release of iCGRP from DRG neurons exposed to c-Src siRNA was 

evaluated, the GDNF, NTN, and ART-induced sensitization observed previously was still 

present (Figure 26). However, the amount of enhancement of stimulated-release of 

iCGRP by the GFLs was reduced when the neurons were exposed to c-Src siRNA 

compared to when this siRNA was absent from the culture media, both in the control and 

scramble siRNA conditions (Figure 26). Approximately 30% of the original level of c-Src 

protein remained after siRNA treatment and the remaining c-Src could be responsible for 

the sensitization remaining after treatment with c-Src siRNA. Treatment with siRNA did 

not alter the total content of iCGRP (Figure 27). Interestingly, c-Src siRNA did not affect 

Ret levels or increases in p-Ret induced by GDNF (Figure 28), while PP2 did prevent 

Ret activation by ART (Figure 29). This is an important point, since it has been unclear 

until now which portion of the Ret-SFK pathway PP2 is inhibiting. There is evidence that 

GDNF-induced initiation of SFKs can phosphorylate Ret in a trans fashion, meaning that 

the SFKs are directly phosphorylating Ret instead of direct Ret activation by the GFL-

GFRα complex inducing autophosphorylation (Kato et al., 2002). The other possibility is
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Figure 25. Src siRNA decreases c-Src levels. A) This representative Western blot 
demonstrates reduction in levels of c-Src and no change in Fyn levels in DRG in 
response to Src siRNA treatment. B) Densitometric analysis of three separate Western 
blots like that in A probing for c-Src. The level of c-Src was divided by α-tubulin levels 
and normalized to the no treatment condition. C) Densitometric analysis of three 
separate Western blots like that in A probing for Fyn. The level of Fyn was divided by α-
tubulin levels and normalized to the no treatment condition. Asterisk (*) indicates 
statistically significant differences between treatment conditions and the no treatment 
condition using an ANOVA with Dunnett’s post hoc testing (p<0.05). N = 3. 
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Figure 26. GFL-induced enhancement in the stimulated-release of iCGRP is mediated 
by the Src kinase pathway. Peptide release elicited by a 10 minute exposure to Hepes 
buffer alone (open bar) or Hepes buffer containing 50 nM capsaicin (Cap; dark bars) is 
expressed as mean percent total peptide content of cells in each well ± SEM (n = 12-18 
wells per condition). GFLs were included in the 10 minutes prior to and throughout 
capsaicin exposure. Total growth factor and exposure time was 20 minutes. An siRNA 
designed as a scramble for APE1 was used as an siRNA transfection control. Asterisks 
(*) indicate statistically significant differences in iCGRP release between treatment 
groups and the no GFL condition using an ANOVA with Dunnett’s post-hoc test (p<0.05). 
Ampersands (@) indicate statistically significant differences between the GFL treatment 
and the siRNA treated condition using a t-test (p<0.05). In all cases, release stimulated 
by capsaicin was significantly higher than basal release. 
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Figure 27. GFLs and Src siRNA do not change total content of iCGRP in DRG. Twenty 
minute exposure of DRG to 10 ng/mL GFLs, scramble siRNA, (100 nM) and/or Src 
siRNA (100 nM) did not change the total content of iCGRP, compared with an ANOVA. 
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Figure 28. Src siRNA does not prevent Ret phosphorylation by GDNF. A) This 
representative Western blot demonstrates that the increase in p-Ret induced by 10 
ng/mL GDNF is not prevented by either scramble siRNA or Src siRNA. B) Densitometric 
analysis of three separate Western blots like that in A probing for p-Ret. The level of p-
Ret was divided by the level of Ret and then by α-tubulin levels and normalized to the no 
treatment condition.   

No Tx Scram siRNA Src siRNA 
10 ng/mL GDNF 

10 ng/mL GDNF 

α-tubulin 

Ret 

p-Ret 

B. 

A. 
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Figure 29. PP2 prevents Ret phosphorylation by ART. A) This representative Western 
blot demonstrates that twenty minute exposure of DRG to 10 ng/mL ART increased p-
Ret levels, and this increase was prevented by both Ret siRNA and the SFK inhibitor 
PP2. B) Densitometric analysis of three separate Western blots like that in A probing for 
p-Ret. The level of p-Ret was divided by the level of Ret and then by α-tubulin levels and 
normalized to the no treatment condition. Asterisks (*) indicate statistically significant 
differences between treatment conditions and the no treatment condition using an 
ANOVA with Dunnett’s post hoc testing (p<0.05). N = 3.  

10 ng/mL ART 

10 ng/mL ART 

α-tubulin 

Ret 

p-Ret 

B. 

A. 



105 
 

that autophosphorylation of Ret resulting from the activity of the GFL-GFRα complex is 

inhibited directly by PP2 (Encinas et al., 2001). Figures 28 and 29 indicate that PP2 may 

be directly preventing Ret phosphorylation. 

These experiments demonstrate three key characteristics of c-Src and SFK function 

in GFL-mediated sensitization of sensory neurons. First, Src likely is an important 

component of the enhancement of stimulated release by GFLs. GFL-induced 

sensitization was not abolished by inhibition of the Src pathway. However, since the 

enhancement in stimulated-release of iCGRP was significantly reduced by Src pathway 

inhibition, this pathway is likely involved in this enhancement mechanism. Secondly, 

because the increase in p-Erk levels after stimulation with GDNF and the increase in p-

Akt levels after stimulation with NTN are prevented by Src siRNA, Src is likely upstream 

of these effectors in the respective pathways. Finally, these data demonstrate 

conclusively that PP2 is specific neither to Src nor the SFKs, but actually directly inhibits 

Ret autophosphorylation induced by the GFLs. 

I have now demonstrated that each of the GFLs, GDNF, NTN, and ART, use distinct, 

classically Ret-dependent pathways to accomplish enhancement in the stimulated 

release of iCGRP, thereby sensitizing the sensory neurons of the DRG. GDNF 

sensitizes DRG neurons through the MAPK/Erk 1/2 pathway. NTN-induced sensitization 

is PI-3K pathway dependent. The ART-induced sensitization is not accomplished 

through the MAPK or the PI-3K pathways. However, the PKCε pathway is a possible 

signaling pathway responsible for sensory neuronal sensitization by ART (personal 

communication, Dr. Weiguo Zhu). This working set of pathways model is illustrated 

schematically in Figure 30. 

2. Ret-Independent pathways 

There are several recent studies that indicate there may be a Ret-independent 

component to GFLs’ actions on many cell types, including neurons 
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Figure 30. Schematic of working model of the distinct pathways of sensitization by the 
GFLs. Each of the GFLs uses primarily specific and distinct classically Ret-dependent 
pathways to accomplish sensitization.  
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(Cao et al., 2008a;Cao et al., 2008b;Paratcha et al., 2003;Sjostrand et al., 2007). The 

fact that PP2 inhibits both Ret and SFKs (Figure 29), and that c-Src siRNA did not 

completely prevent GFL-induced sensitization (Figure 26), led to the consideration that 

there may be Ret-independent and/or a non-Src SFK set of pathways by which the GFLs 

accomplish their sensitization. Other SFKs, in particular Fyn, are not activated by Ret, 

but are activated by one of the proposed Ret-independent, GFL-activated pathways 

through the NCAM receptor (Cao et al., 2008a;Paratcha et al., 2003). Therefore, 

whether there are in fact Ret-independent pathways for GFL-induced sensory neuronal 

sensitization was determined. Then, the specific cell surface co-receptors and signaling 

pathway initiators were explored. 

a. NTN and ART, not GDNF, exhibit Ret-independent mechanisms of enhancement 

in stimulated-release of iCGRP 

To determine the contribution of GFL-induced Ret-dependent signaling pathways to 

the enhancement in stimulated-release of iCGRP, Ret levels were reduced with the use 

of a specific pool of siRNA molecules directed at Ret, since no specific pharmacological 

inhibitors of the phosphorylation of this molecule exist. This pool of siRNAs (100 nM) 

reduced the amount of Ret protein in the DRG by ~85% compared to the no treatment 

condition, while the scramble siRNA used as a control for siRNA transfection did not 

alter Ret levels (Figure 31). In addition, a purified protein of a portion of Ret, residues 31-

330, was used as a positive control. As shown in Figure 31, the immunoband present in 

the lane loaded with the purified Ret control protein is at the same location as the bands 

for the DRG treatment conditions probed with Ret antibody. This indicates that the Ret 

antibody is likely labeling the endogenous Ret protein in the samples. To ensure that this 

siRNA did not affect other possible pathways of GFL-induced sensitization, SFK levels 

were measured in the presence and absence of Ret siRNA. Figure 32 demonstrates that
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Figure 31. Ret siRNA reduces levels of Ret in DRG. A) This representative Western blot 
demonstrates that exposure of DRG to Ret siRNA decreases Ret levels, while scramble 
siRNA does not change Ret levels. Additionally, the purified Ret control protein is 
present on the immunoblot with a band the same size as Ret from DRG. B) 
Densitometric analysis of three separate Western blots like that in A probing for Ret. The 
level of Ret was divided by α-tubulin levels and normalized to the no treatment condition. 
Asterisk (*) indicates statistically significant differences between treatment conditions 
and the no treatment condition using an ANOVA with Dunnett’s post hoc testing 
(p<0.05). 
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Figure 32. Ret siRNA does not change levels of c-Src or Fyn in DRG. This Western blot 
demonstrates that exposure of DRG to scramble siRNA (100 nM) and Ret siRNA (100 
nM) does not change c-Src or total Fyn levels. 

c-Src 

Fyn 

α-tubulin 
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Figure 33. GDNF-induced enhancement in the stimulated-release of iCGRP is mediated 
by Ret-dependent pathways. Peptide release elicited by a 10 minute exposure to Hepes 
buffer alone (open bar) or Hepes buffer containing 50 nM capsaicin (Cap; dark bars) is 
expressed as mean percent total peptide content of cells in each well ± SEM (n = 12-18 
wells per condition). GFLs were included in the 10 minutes prior to and throughout 
capsaicin exposure. Total growth factor exposure time was 20 minutes. An siRNA 
designed as a scramble for APE1 was used as an siRNA transfection control. Asterisks 
(*) indicate statistically significant differences in iCGRP release between treatment 
groups and the no GFL condition using an ANOVA with Dunnett’s post-hoc test (p<0.05). 
Ampersands (@) indicate statistically significant differences between the GFL treatment 
and the siRNA treated condition using a t-test (p<0.05). In all cases, release stimulated 
by capsaicin was significantly higher than basal release.  
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Ret siRNA has no effect on SFK levels, c-Src levels, and Fyn levels, with a single 

experiment.  

Once the effectiveness of the Ret siRNA was established, it was then added to DRG 

in the culture media in the same way as previously described for c-Src siRNA. The basal 

and stimulated-release of iCGRP was then measured in the presence and absence of 

GFLs. The goal was to determine whether Ret was necessary for each of the GFLs’ 

ability to induce an enhancement in the stimulated-release of iCGRP. Interestingly, while 

GDNF was not able to sensitize sensory neurons when Ret siRNA was added, NTN and 

ART were still capable of enhancing release (Figure 33). The enhancement in 

stimulated-release of iCGRP by NTN and ART, while still present, was significantly 

reduced (Figure 33). The total content of iCGRP was not affected by these 

manipulations (Figure 34). Therefore, NTN and ART are still capable of sensitizing 

sensory neurons when Ret signaling is reduced. Taken together, these data 

demonstrate that Ret is responsible for some of the enhancement in the stimulated-

release of iCGRP induced by NTN and ART. While the remaining sensitization could be 

a result of incomplete reduction in Ret levels, it seems likely that some of the enhanced 

release of iCGRP must be due to Ret-independent mechanisms. 

b. ART-induced enhancement in stimulated-release of iCGRP is mediated by Ret-

dependent and NCAM-dependent mechanisms 

The role of one of the other possible binding partners of the GFL-GFRα complexes, 

NCAM, in the NTN and ART-induced sensitization of DRG neurons was next explored. 

NCAM is a large membrane protein composed of an intracellular (NCAM140) and 

extracellular (NCAM180) component tightly linked to one another. No pharmacological 

inhibitors of this cell surface receptor exist, so NCAM levels were decreased using a 

pool of siRNA directed towards NCAM p140 (Table 1). NCAM p140 is the intracellular 

portion of this protein responsible for initiation of intracellular signaling pathways,
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Figure 34. GFLs, scramble siRNA, and Ret siRNA do not change total content of iCGRP 
in DRG. Twenty minute exposure of DRG to 10 ng/mL GFLs, scramble siRNA (100 nM), 
and Ret siRNA (100 nM) did not change the total content of iCGRP, compared with an 
ANOVA. N = 12-18 wells per condition.  

100 nM Scramble siRNA 

100 nM Ret siRNA 
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specifically the Fyn kinase pathway (Beggs et al., 1997). NCAM p180 is the portion of 

the molecule exposed to the extracellular matrix and likely not involved in GFL-GFRα 

complex signaling initiation (Beggs et al., 1997). Importantly, Fyn is not activated by Ret 

autophosphorylation (Cao et al., 2008a), making this signaling pathway a good 

downstream effector to use as an indicator of NCAM activation. This is necessary 

because there is no direct way to measure NCAM activity. 

First, the effect of NCAM siRNA on the level of NCAM was determined. NCAM 

siRNA applied to the DRG reduced NCAM p140 levels by ~75% compared to non-

treated control cells and scramble siRNA treated cells, while not affecting NCAM 

p180levels (Figure 35). The amount of NCAM present in non-treated DRG and scramble 

siRNA treated DRG were not different. 

With the molecular effects of NCAM siRNA established, the role of NCAM activation 

in the NTN and ART-induced enhancement in the stimulated-release of iCGRP was 

examined. When NCAM siRNA was added to the DRG, the NTN and ART-induced 

sensitization remained, although the absolute level of enhancement in stimulated-

release of iCGRP was reduced (Figure 36). NCAM siRNA did not affect the GDNF-

induced sensitization. The total content of iCGRP was not affected by these 

manipulations (Figure 37). This data indicates that NCAM plays a role in NTN and ART-

induced sensitization, but that it is not the only mechanism by which these GFLs induce 

sensitization. 

To more fully address the possibility of more than one pathway being responsible for 

GFL-induced sensitization, NCAM and Ret siRNA were added in combination to the 

DRG in culture. In this case, NCAM siRNA (50 nM) and Ret siRNA (50 nM) were added 

to the DRG in culture on 2 days and 5 days after plating. This treatment regimen was 

followed to ensure the total amount of siRNA present in the culture media was consistent 

(100 nM). The basal and stimulated-release of iCGRP was then measured in the
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Figure 35. NCAM siRNA reduces levels of NCAM in DRG. A) This representative 
Western blot demonstrates that exposure of DRG to NCAM siRNA decreases NCAM 
levels, while scramble siRNA does not change NCAM levels. B) Densitometric analysis 
of three separate Western blots like that in A probing for NCAM p140. The level of 
NCAM was divided by α-tubulin levels and normalized to the no treatment condition. 
Asterisk (*) indicates statistically significant differences between treatment conditions 
and the no treatment condition using an ANOVA with Dunnett’s post hoc testing 
(p<0.05). N = 3. 
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NCAM (140)

α-tubulin 
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Figure 36. NTN and ART-induced enhancement in the stimulated-release of iCGRP is 
mediated, in part, by NCAM-dependent pathways. Peptide release elicited by a 10 
minute exposure to Hepes buffer alone (open bar) or Hepes buffer containing 50 nM 
capsaicin (Cap; dark bars) is expressed as mean percent total peptide content of cells in 
each well ± SEM (n = 12-18 wells per condition). GFLs were included in the 10 minutes 
prior to and throughout capsaicin exposure. Total growth factor exposure time was 20 
minutes. An siRNA designed as a scramble for APE1 was used as an siRNA 
transfection control. Asterisks (*) indicate statistically significant differences in iCGRP 
release between treatment groups and the no GFL condition using an ANOVA with 
Dunnett’s post-hoc test (p<0.05). Ampersands (@) indicate statistically significant 
differences between the GFL treatment and the siRNA treated condition using a t-test 
(p<0.05). In all cases, release stimulated by capsaicin was significantly higher than basal 
release. 
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Figure 37. GFLs, scramble siRNA, and NCAM siRNA do not change total content of 
iCGRP in DRG. Exposure of DRG to 10 ng/mL GFLs, scramble siRNA (100 nM), and 
Ret siRNA (100 nM) did not change the total content of iCGRP, compared with an 
ANOVA. N = 12-18 wells per condition. 

100 nM NCAM siRNA 

100 nM Scramble siRNA 
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Figure 38. ART-induced enhancement in the stimulated-release of iCGRP is mediated 
by Ret-dependent and NCAM-dependent pathways. Peptide release elicited by a 10 
minute exposure to Hepes buffer alone (open bar) or Hepes buffer containing 50 nM 
capsaicin (Cap; dark bars) is expressed as mean percent total peptide content of cells in 
each well ± SEM (n = 12-18 wells per condition). GFLs were included in the 10 minutes 
prior to and throughout capsaicin exposure. Total growth factor exposure time was 20 
minutes. An siRNA designed as a scramble for APE1 was used as an siRNA 
transfection control. Asterisks (*) indicate statistically significant differences in iCGRP 
release between treatment groups and the no GFL condition using an ANOVA with 
Dunnett’s post-hoc test (p<0.05). Ampersands (@) indicate statistically significant 
differences between the GFL treatment and the siRNA treated condition using a t-test 
(p<0.05). In all cases, release stimulated by capsaicin was significantly higher than basal 
release. 
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Figure 39. GFLs, scramble siRNA, and NCAM + Ret siRNA do not change total content 
of iCGRP in DRG. Exposure of DRG to 10 ng/mL GFLs, scramble siRNA, (100 nM) and 
NCAM + Ret siRNA (100 nM) did not change the total content of iCGRP, compared with 
an ANOVA. N = 12-18 wells per condition.  

100 nM NCAM + Ret siRNA 

100 nM Scramble siRNA 
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presence of GFLs. GDNF-induced sensitization was abolished with this siRNA treatment 

regimen, presumably because the enhancement in stimulated-release of iCGRP 

accomplished by GDNF is Ret-dependent (Figures 38 and 33). The ART-induced 

sensitization, while not eliminated by Ret siRNA treatment alone, was completely 

abolished by NCAM and Ret siRNA treatment in combination (Figure 38). The total 

content of iCGRP was not affected by these manipulations (Figure 39). NTN-induced 

sensitization was not prevented by NCAM and Ret siRNA treatment in combination. 

However, the absolute level of enhancement in stimulated-release of iCGRP in response 

to NTN was significantly lower than in the absence of the treatment of the two siRNA in 

combination (Figure 38).  

To further evaluate the role of the NCAM-initiated signaling cascade, manipulations 

of Fyn kinase were conducted. Since there are no commercially available specific 

pharmacological inhibitors of Fyn, Fyn siRNA (100 nM) was used to reduce the level of 

Fyn in the DRG. Fyn siRNA treatment reduced Fyn levels by ~80% compared to non-

treated DRG and DRG treated with scramble siRNA (Figure 40). There was no 

difference in Fyn levels between non-treated and scramble siRNA treated DRG (Figure 

40), and Fyn siRNA did not affect the level of the other SFK, c-Src (Figure 41). 

The ability of Fyn siRNA to alter the GFL-induced sensitization was then evaluated 

using the CGRP release assay. When the DRG cultures were treated with Fyn siRNA, 

the release profile mimicked the NCAM siRNA treatment profile. GDNF-induced 

sensitization was not affected, while NTN and ART-induced sensitization were still 

present, but the absolute amount of NTN and ART responsive enhancement of 

stimulated-release of iCGRP was reduced (Figure 42). When the DRGs were treated 

with both Ret siRNA and Fyn siRNA, the ART-induced sensitization was abolished, while 

the NTN-induced sensitization was still present (but the absolute amount of NTN 

responsive enhancement of stimulated-release of iCGRP was reduced; Figure 44). The 
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Figure 40. Fyn siRNA reduces levels of Fyn in DRG. A) This representative Western 
blot demonstrates that exposure of DRG to Fyn siRNA decreases Fyn levels, while 
scramble siRNA does not change Fyn levels. B) Densitometric analysis of three 
separate Western blots like that in A probing for Fyn. The level of Fyn was divided by α-
tubulin levels and normalized to the no treatment condition. Asterisk (*) indicates 
statistically significant differences between treatment conditions and the no treatment 
condition using an ANOVA with Dunnett’s post hoc testing (p<0.05). N = 3. 
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Figure 41. Fyn siRNA does not affect c-Src in DRG. A) This representative Western blot 
demonstrates that exposure of DRG to Fyn siRNA (100 nM) and scramble siRNA (100 
nM) do not change c-Src levels. B) Densitometric analysis of three separate Western 
blots like that in A probing for c-Src. The level of c-Src was divided by α-tubulin levels 
and normalized to the no treatment condition. N =3. 
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Figure 42. ART-induced enhancement in the stimulated-release of iCGRP is mediated, 
in part, by Fyn-dependent pathways. Peptide release elicited by a 10 minute exposure to 
Hepes buffer alone (open bar) or Hepes buffer containing 50 nM capsaicin (Cap; dark 
bars) is expressed as mean percent total peptide content of cells in each well ± SEM (n 
= 12-18 wells per condition). GFLs were included in the 10 minutes prior to and 
throughout capsaicin exposure. Total growth factor exposure time was 20 minutes. An 
siRNA designed as a scramble for APE1 was used as an siRNA transfection control. 
Asterisks (*) indicate statistically significant differences in iCGRP release between 
treatment groups and the no GFL condition using an ANOVA with Dunnett’s post-hoc 
test (p<0.05). Ampersands (@) indicate statistically significant differences between the 
GFL treatment and the siRNA treated condition using a t-test (p<0.05). In all cases, 
release stimulated by capsaicin was significantly higher than basal release. 
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Figure 43. GFLs, scramble siRNA, and Fyn siRNA do not change total content of 
iCGRP in DRG. Exposure of DRG to 10 ng/mL GFLs, scramble siRNA (100 nM), and 
Fyn siRNA (100 nM) did not change the total content of iCGRP, compared with an 
ANOVA. N = 12-18 wells per condition. 
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Figure 44. ART-induced enhancement in the stimulated-release of iCGRP is mediated 
by Ret-dependent and Fyn-dependent pathways. Peptide release elicited by a 10 minute 
exposure to Hepes buffer alone (open bar) or Hepes buffer containing 50 nM capsaicin 
(Cap; dark bars) is expressed as mean percent total peptide content of cells in each well 
± SEM (n = 12-18 wells per condition). GFLs were included in the 10 minutes prior to 
and throughout capsaicin exposure. Total growth factor exposure time was 20 minutes. 
An siRNA designed as a scramble for APE1 was used as an siRNA transfection control. 
Asterisks (*) indicate statistically significant differences in iCGRP release between 
treatment groups and the no GFL condition using an ANOVA with Dunnett’s post-hoc 
test (p<0.05). Ampersands (@) indicate statistically significant differences between the 
GFL treatment and the siRNA treated condition using a t-test (p<0.05). In all cases, 
release stimulated by capsaicin was significantly higher than basal release. 
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Figure 45. GFLs, scramble siRNA, and Ret + Fyn siRNA do not change total content of 
iCGRP in DRG. Exposure of DRG to 10 ng/mL GFLs, scramble siRNA (100 nM), and 
Ret + Fyn siRNA (100 nM) did not change the total content of iCGRP, compared with an 
ANOVA. 
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Figure 46. Schematic of working model of the pathway of sensitization by ART. ART 
uses Ret-dependent and NCAM-dependent signaling pathways to accomplish its 
sensitization through Src and Fyn respectively. 
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total content of iCGRP was not affected by these manipulations (Figures 43 and 45). 

Together, this data indicate that ART-induced sensitization is accomplished in a Ret-

dependent manner as well as a Ret-independent manner through activation of the 

NCAM receptor and subsequent initiation of the Fyn kinase pathway (represented in 

schematic form in Figure 46). 

c. NTN-induced enhancement in stimulated-release of iCGRP is mediated by Ret-

dependent, NCAM-dependent, and Integrin β-1-dependent mechanisms 

Finally, the role of the other receptor reported to be a binding partner of the GFL-

GFRα complex, Integrin β-1, was determined (Cao et al., 2008b). There is no 

pharmacological inhibitor of Integrin β-1, so again a pool of siRNA molecules (100 nM; 

Table 1) directed at this receptor was used in order to inhibit its function. Integrin β-1 is a 

cell adhesion molecule (De Strooper et al., 1989), similar to NCAM. It is part of a larger 

complex of Integrins (De Strooper et al., 1989). While there is no current evidence in the 

literature of a functional connection between Integrin β-1 and GFLs, the fact that these 

two sets of molecules bind is intriguing in terms of this receptor’s ability to promote GFL 

function. Therefore, the role of Integrin β-1 in GFL-induced sensory neuronal 

sensitization was evaluated. This receptor may play a role in NTN-induced sensitization, 

since inhibition of both Ret and NCAM abolished the GDNF and ART-induced 

sensitization, but not the NTN-induced sensitization (Figure 38).  

The efficiency of inhibition of Integrin β-1 by the pool of siRNA was verified with a 

Western blot probing for the Integrin β-1 intracellular fragment, which has a molecular 

weight of 130 kDa and is the direct signaling portion of the molecule (Mocsai et al., 

2002). Figure 47 A is a representative Western blot of Integrin β-1 levels after treatment 

of DRG with standard media, scramble siRNA, or Integrin β-1 siRNA, which shows that 

Integrin β-1 siRNA reduces the level of this receptor by ~90%. The average of three 

independent blots indicates a knock down of Integrin β-1 by ~72% (Figure 47 B).
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Figure 47. Integrin β-1 siRNA reduces levels of Integrin β-1 in DRG. A) This 
representative Western blot demonstrates that exposure of DRG to Integrin β-1 siRNA 
decreases Integrin β-1 levels, while scramble siRNA does not change Integrin β-1 levels. 
B) Densitometric analysis of three separate Western blots like that in A probing for 
Integrin β-1. The level of Integrin β-1 was divided by α-tubulin levels and normalized to 
the no treatment condition. Asterisk (*) indicates statistically significant differences 
between treatment conditions and the no treatment condition using an ANOVA with 
Dunnett’s post hoc testing (p<0.05). N = 3. 
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Figure 48. NTN-induced enhancement in the stimulated-release of iCGRP is mediated, 
in part, by Integrin β-1-dependent pathway. Peptide release elicited by a 10 minute 
exposure to Hepes buffer alone (open bar) or Hepes buffer containing 50 nM capsaicin 
(Cap; dark bars) is expressed as mean percent total peptide content of cells in each well 
± SEM (n = 12-18 wells per condition). GFLs were included in the 10 minutes prior to 
and throughout capsaicin exposure. Total growth factor exposure time was 20 minutes. 
An siRNA designed as a scramble for APE1 was used as an siRNA transfection control. 
Asterisks (*) indicate statistically significant differences in iCGRP release between 
treatment groups and the no GFL condition using an ANOVA with Dunnett’s post-hoc 
test (p<0.05). Ampersands (@) indicate statistically significant differences between the 
GFL treatment and the siRNA treated condition using a t-test (p<0.05). In all cases, 
release stimulated by capsaicin was significantly higher than basal release. 
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Having established the ability of this pool of siRNA molecules to knock down Integrin 

β1, this inhibition technique was used to evaluate the role of this receptor in NTN-

induced sensitization. When Integrin β-1 siRNA was added to DRG cultures, the NTN-

induced sensitization remained, although the absolute level of enhancement in 

stimulated-release of iCGRP was reduced (Figure 48). Integrin β-1 siRNA did not affect 

the ART-induced sensitization. The total content of iCGRP was not affected by these 

manipulations (Figure 49). This data indicates that Integrin β-1 plays a role in NTN-

induced sensitization, but that it is not the only mechanism by which NTN induces 

sensitization.  

An alternative possibility is that the ~30% of Integrin β-1 remaining after siRNA 

treatment is sufficient to sustain NTN-induced sensory neuronal sensitization. To 

determine whether NTN is able to sensitize sensory neurons through Integrin β-1 only or 

if NTN can initiate sensitization through a combination of all of the receptors tested thus 

far, the basal and stimulated-release of iCGRP was measured from DRG after exposure 

to siRNA directed at Ret, NCAM, and Integrin β-1. In this case, DRG were transfected 

with all three siRNA (33 nM each) on day 2, 4, and 6 after plating. This treatment 

regimen was followed to ensure the total amount of siRNA present in the culture media 

was consistent (100 nM). When all three pools of siRNA were added to the DRG in 

culture, the basal-release of iCGRP was not affected while the NTN-induced 

sensitization of stimulated-release was abolished (Figure 50). The total content of 

iCGRP was not affected by these manipulations (Figure 51). With this set of data, it is 

now clear that NTN induces sensitization through several pathways. There is a Ret-

dependent component, which contributes to about half of the NTN-induced 

enhancement in the capsaicin stimulated-release of iCRGP. NCAM-dependent and 

Integrin β-1-dependent activation account for approximately one fourth of the NTN-

induced enhancement in the capsaicin stimulated-release of iCGRP. However, it is
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Figure 49. GFLs, scramble siRNA, and Integrin β-1 siRNA do not change total content 
of iCGRP in DRG. Exposure of DRG to 10 ng/mL GFLs, scramble siRNA (100 nM), and 
Integrin β-1 siRNA (100 nM) did not change the total content of iCGRP, compared with 
an ANOVA. N = 12-18 wells per condition. 
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Figure 50. NTN-induced enhancement in the stimulated-release of iCGRP is mediated 
by Ret-dependent, NCAM-dependent, and Integrin β-1-dependent pathways. Peptide 
release elicited by a 10 minute exposure to Hepes buffer alone (open bar) or Hepes 
buffer containing 50 nM capsaicin (Cap; dark bars) is expressed as mean percent total 
peptide content of cells in each well ± SEM (n = 12-18 wells per condition). GFLs were 
included in the 10 minutes prior to and throughout capsaicin exposure. Total growth 
factor exposure time was 20 minutes. An siRNA designed as a scramble for APE1 was 
used as an siRNA transfection control. Asterisks (*) indicate statistically significant 
differences in iCGRP release between treatment groups and the no GFL condition using 
an ANOVA with Dunnett’s post-hoc test (p<0.05). Ampersands (@) indicate statistically 
significant differences between the GFL treatment and the siRNA treated condition using 
a t-test (p<0.05). In all cases, release stimulated by capsaicin was significantly higher 
than basal release. 
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Figure 51. NTN, scramble siRNA, and Ret, NCAM, and Integrin β-1 siRNAs do not 
change total content of iCGRP in DRG. Exposure of DRG to 10 ng/mL GFLs, scramble 
siRNA (100 nM), and Ret, NCAM, and Integrin β-1 siRNA (100 nM) did not change the 
total content of iCGRP, compared with an ANOVA. N = 12-18 wells per condition.
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necessary to inhibit all three of these pathways to eliminate NTN-induced sensitization, 

which is a novel observation for the mechanism of the GFL-induced actions on sensory 

neurons. Whether Integrin β-1 affects the expression of the GFRαs is unknown, but this 

could affect the interpretation of the data above. 

3. The distinct Ret-dependent and Ret-independent pathways of GDNF, NTN, and 

ART-induced sensitization 

The experiments detailed above demonstrate that each of the GFLs have distinct, 

though overlapping, compliments of signaling initiation pathways for the induction of 

sensory neuronal sensitization. GDNF accomplishes its sensitization in a Ret-dependent 

manner through the MAPK/Erk 1/2 pathway. NTN accomplishes its sensitization through 

the PI-3K pathway in both a Ret-dependent manner and a Ret-independent manner via 

the NCAM and Integrin β-1 receptors. ART induces sensitization in a Ret-dependent and 

Ret-independent manner, via the NCAM receptor.  Actions of ART may be mediated 

through PKCε activation (Dr. Weiguo Zhu, personal communication). The pathways of 

sensitization by each of the GFLs are represented schematically in Figure 52.
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Figure 52. Schematic of working model of the pathways of sensitization by GDNF, NTN, 
and ART. 
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IV. Discussion 

The work presented here demonstrates that the GFLs, GDNF, NTN, and ART, 

enhanced the release of the neuropeptide CGRP from adult sensory neurons grown in 

culture and freshly dissociated spinal cord tissue. These GFLs did not alter the total 

content of CGRP in the neurons, nor did PSP, the other molecule in this family, have any 

effect upon the release of CGRP from sensory neurons. Additionally, each of the GFLs 

uses different and distinct sets of intracellular signaling pathways to accomplish 

sensitization. GDNF, through the Ret receptor, activated the MAPK/Erk 1/2 pathway, 

and pharmacological inhibition of this pathway with PD98059 and U0126 prevented the 

GDNF-induced sensitization. NTN activated both the MAPK/Erk 1/2 and PI-3K 

pathways. However, NTN-induced sensitization was abolished only by the PI-3K 

inhibitor, LY294002, not by the MAPK inhibitors listed above. ART-induced sensitization 

was neither MAPK nor PI-3K dependent, despite the fact that ART activated both of 

these pathways. Intriguingly, inhibition of the receptor tyrosine kinase, Ret, eliminated 

GDNF-induced sensitization, but not NTN or ART-induced sensitization. ART-induced 

sensitization was abolished by Ret and NCAM inhibition, while NTN-induced 

sensitization was only prevented when Ret, NCAM, and Integrin β-1 were all inhibited. 

These data show the involvement of Ret-dependent and Ret-independent pathways in 

the sensitization of sensory neurons by the GFLs and the role of distinct compliments of 

intracellular signaling pathways for each of the GFLs (schematically represented in 

Figure 52). 

A. Characterization of radioimmunoassay (RIA) and effects of GFLs on the RIA 

The majority of the studies in this manuscript consisted of results from 

radioiummunoassays to measure changes in release of iCGRP. For this reason, it was 

necessary to extensively characterize the RIA in terms of criteria required for a 

successful release, as well as to ensure that the GFLs did not disrupt the RIA. This 
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characterization was necessary to eliminate the possibility that results seen in studies 

conducted were due to some artifact of the RIA. 

The criterion set for a valid and successful release included:  1) values of iCGRP in 

the basal conditions had to be above the level of detection of the RIA and greater than 5 

fmol, 2) stimulated values had to be at least twice the initial basal values, and 3) total 

content values of iCGRP had to be within 2 standard deviations of the mean (1312.98 ± 

494.32 fmol; Section III.B.). All data that did not meet these criteria, while very few, was 

discarded. These criteria were established to ensure that the data was reliable and 

reproducible. The rationale for each criterion is listed below. 

First, in order to compare stimulated values to basal or resting values of iCGRP 

released, the basal values have to be present. There are three primary reasons these 

values could be absent. The cells may not be healthy, and therefore, not producing or 

releasing the normal amount of iCGRP. There are many components of the culture 

media that could account for this problem. However, the most likely explanation is that 

the NGF added to the culture media has lost its potency, since NGF is necessary for 

increased transcriptional production of CGRP (Sango et al., 1994;Watson et al., 1995;Xu 

and Hall, 2007). The NGF can become less potent due to the labile nature of the protein 

(Eng et al., 1997), or it may be that the batch of NGF was inherently compromised. In 

either case, less potent NGF can lead basal values to be absent, resulting in data being 

discarded. 

Next, doubling of iCGRP release was necessary for the stimulated-release to be 

considered adequate. The concentrations of capsaicin and potassium used in the 

experiments in this thesis have been well characterized as stimuli that at least double 

the release of iCGRP (Hingtgen and Vasko, 1994b;Hingtgen and Vasko, 

1994a;Hingtgen et al., 1995;Hingtgen et al., 2006). In experiments where this doubling 

did not occur, the data set was discarded. Again, one primary reason this doubling may 
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not occur is lower potency NGF, since NGF is responsible for the increased transcription 

and insertion in the cell membrane of the TRPV1 channel (Stein et al., 2006;Xue et al., 

2007). Another possibility is that the stimulus itself, either capsaicin or potassium, has 

been compromised. Finally, low concentration or an absence of calcium in the Hepes 

buffer could be responsible for a lack of iCGRP release. Whatever the underlying reason 

for as lack of doubling of iCGRP in response to the stimulus, the data was discarded. 

There were three wells exposed to control conditions in each experiment, and if these 

three wells did not meet the criteria for a valid release, the entire experiment was 

considered invalid. 

Finally, while the density of the sensory neurons per well were controlled prior to 

plating (see Section II.D.), the variability in healthy, viable cells in each well can be 

substantial. For this reason, most of the CGRP release studies conducted were reported 

as iCGRP released as a percent of total content of iCGRP. A 95% confidence interval 

was established with the use of 161 individual samples, and all content values that did 

not fall within this range (324.34 fmol to 2301.62 fmol) were discarded. This criterion 

allowed more reliable comparison between experiments conducted by different scientists 

across long periods of time, if necessary. These criteria will continue to be used in the 

Hingtgen laboratory. 

Additionally, the GFLs, even at the highest concentrations used in release 

experiments, did not alter the RIA. A protein-antibody interaction between endogenous 

CGRP and the anti-CGRP antibody is necessary for the RIA to function properly. Other 

proteins present in the buffer can disrupt this interaction, thereby interfering with the 

ability to detect the level of iCGRP using the RIA (Sheffield et al., 1977b). I was able to 

determine that none of the GFLs were disrupting the standard curve of the RIA, which 

indicates the results of the experiments are valid and not an artifact of GFL disruption of 
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CGRP-antibody interactions. This observation was critical in the interpretation of the 

results in this thesis. 

The RIA has one distinct advantage compared to other methods of measuring the 

release of iCGRP (i.e. ELISA). The RIA is more sensitive than the ELISA, which allows 

for easier and more quantifiable changes as well as comparisons of small changes in 

release of iCGRP (Koskela and Leinonen, 1981). Therefore, this fact in combination with 

the expertise using this technique in the Hingtgen laboratory, is the impetus for the use 

of an RIA for all studies evaluating the release of iCGRP. 

B. GFL-induced enhancement in the capsaicin-stimulated release of iCGRP 

Initial experiments showed that addition of the GFLs at the highest concentrations 

used for sensitization experiments did not themselves stimulate the release of iCGRP 

(Table 4). This observation is important in the interpretation of the subsequent data 

indicating that GFLs induce sensitization. Other known sensitizers of sensory neurons, 

PGE2 and PGI2, can themselves stimulate sensory neurons at high concentrations 

(Hingtgen and Vasko, 1994a;Hingtgen et al., 1995). Having established that GFLs are 

not stimulators of sensory neurons, the sensitizing role of these molecules could be 

evaluated. At the time of this thesis, there was little evidence in the literature of GFL-

induced sensory neuronal sensitization, and the work in this thesis is the first to evaluate 

the actions of GFLs on neurotransmitter release in sensory neurons. 

As seen in Figure 3, GDNF increased the stimulated-release of iCGRP to 

comparable levels as NGF, a well-established sensitizer of sensory neurons. This data 

provides evidence that GFLs are another set of growth factors, similar to NGF, that have 

potent sensitizing effects on sensory neurons. Once this phenomenon had been 

established, a concentration-response curve of GDNF sensory neuronal sensitization 

was conducted (Figure 4). Although this was not a complete concentration-response, it 

did allow selection of a concentration of GDNF that maximally sensitized stimulated 
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release of iCGRP, and this concentration was used in proceeding experiments with 

GDNF and the other GFLs. Interestingly, application of 1.0 ng/mL and 10 ng/mL GDNF 

resulted in maximal sensitization, while 100 ng/mL GDNF did not sensitize the sensory 

neurons. Other studies have indicated a similar profile of the actions of the GFLs in 

similar systems (Price et al., 2005). Specifically, 10 ng/mL GDNF increased the content 

of CGRP and the capsaicin stimulated-release of CGRP from TRPV1 positive neurons in 

the trigeminal ganglia (TG), while 100 ng/mL GDNF did not induce these effects. In this 

study, 1.0 ng/mL GDNF increased CGRP content and capsaicin-stimulated release, but 

to a lesser extent than 10 ng/mL GDNF. There are three possible explanations for this 

loss of sensitization at 100 ng/mL GDNF. First, high levels of GDNF (100 ng/mL) may 

activate compensatory intracellular signaling pathways in the sensory neurons, which 

may work to decrease the amount of p-Erk or other molecules in the MAPK/Erk 1/2 

pathway and prevent sensitization. Secondly, 100 ng/mL GDNF may be a high enough 

concentration of GDNF to bind to GFRα-2, the receptor for NTN, and activate additional 

compensatory pathways, such as the PI-3K pathway (see Section I.C.3 for a description 

of the non-specific binding of GFLs to GFRα receptors). In neurons responsive to GDNF, 

which may be different than neurons responsive to NTN, PI-3K activation may inhibit 

sensitization. Finally, GDNF may be shifting the capsaicin concentration-response curve 

leftward. Capsaicin exhibits a concentration-response curve in the shape of an inverted 

U, where very high concentrations of capsaicin actually have no effect or even decrease 

the response (Dray et al., 1989;Wood et al., 1988). GDNF at higher concentrations may 

shift this curve, resulting in lower concentrations of capsaicin (50 nM) inducing 

responses typically seen at much higher concentrations (500 nM). While not tested, this 

could be easily examined in the future by using incremental concentrations of capsaicin 

and GFLs and constructing multiple concentration-response curves and performing a 

probit analysis. 
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After determination of the ability of GDNF to sensitize sensory neurons and the 

concentrations at which this sensitization occurs, the other GFLs were examined at 

similar concentrations. NTN and ART enhanced the capsaicin stimulated-release of 

iCGRP to comparable levels as GDNF when added at a concentration of 10 ng/mL. 

These data demonstrate that GFLs are sensitizers of sensory neurons. However, the 

possibility remained that the total exposure time (20 minutes) of the sensory neurons to 

GFLs may have changed the content of iCGRP in the sensory neurons. I eliminated this 

possibility by comparing the content of iCGRP in the no treatment and GFL present 

conditions, and no difference existed between these conditions. 

While capsaicin induces activation of small-diameter sensory neurons through 

TRPV1 (Chard et al., 1995;Hiura and Ishizuka, 1989), there are several other stimuli that 

induce activation of these neurons. High concentrations of potassium were used as a 

general depolarizing stimulus. Interestingly, the GFLs were not able to sensitize the 

potassium-evoked release of iCGRP in DRG neurons (Figures 6 and 7). A similar profile 

of NGF-induced sensitization of capsaicin-evoked release, but not general depolarization 

(in this case by electrical stimulation) stimulated-release, has been observed in rodent 

sensory neurons (Malcangio et al., 1997b) Taken together, these data strongly suggest 

that the GFLs modulate sensory neuronal sensitivity, at least in part, through modulation 

of TRPV1.  

Many of the pathways activated by GFLs alter the phosphorylation profile of TRPV1 

in such a way as to increase the sensitivity of this channel (Zhang et al., 2008). Some 

examples of these pathways are the MAPK-Erk 1/2 pathway, the PI-3K pathway, the 

SFK pathway, and the PKC pathway. Other investigators have found that the acute 

exposure of the DRG to GFLs enhance the calcium influx through TRPV1 in response to 

capsaicin (Malin et al., 2006). The modulation may be through specific changes in 

phosphorylation states of the channel (Dr. Weiguo Zhu, personal communication). 
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Essentially, GFLs activate the effector pathways mentioned above and phosphorylate 

specific residues on TRPV1. This phosphorylation changes the channel properties 

and/or kinetics so that it is more responsive to capsaicin and its endogenous activators, 

heat (above 42° C) and acidic shifts in pH. Therefore, TRPV1 allows influx of more 

sodium and calcium ions, which depolarizes the cell, activates other intracellular 

pathways important in sensory neuronal sensitization, and induces calcium-dependent 

neurotransmitter vesicle docking and release. 

Not only do the GFLs modulate the responses of sensory neurons maintained in 

culture, but they also sensitize sensory neurons from freshly dissociated spinal cord 

tissue (Figure 10). The sensitization profile is similar in spinal cord tissue and DRG 

maintained in culture. The combination of these studies indicates that the responses 

seen in DRG in culture are not an artifact of this culture technique, since spinal cord 

slices are freshly dissociated and not exposed to the culture conditions. This similarity 

validates the DRG in culture as a model for sensory neuronal sensitization and allowed 

me to use the DRG culture system to undertake an in depth study of the mechanisms of 

GFL-induced sensitization. The fact that the GFLs were able to induce sensitization in 

the spinal cord tissue was also a novel observation. This GFL-induced sensitization is in 

contrast to NGF, which does not sensitize capsaicin stimulated-release in spinal cord 

tissue (Malcangio et al., 1997). This difference in sensitization profile could be a result of 

the presence of GFRα receptors on the central terminal of the primary sensory neurons 

and a lower level of expression or lack of TrkA on these terminals. Additionally, GFLs 

are released in the CNS by microglia and astrocytes in adult mammals (Sandhu et al., 

2009), while NGF is released primarily by glial cells of the PNS (He et al., 2009). 

PSP, the other molecule in the GDNF family, did not alter the responses of sensory 

neurons in culture to capsaicin (Figure 5 and Table 3). Since there is an abundance of 

evidence that the specific receptor for PSP, GFRα4, lacks the appropriate components 
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to initiate Ret autophosphorylation in adult mammalian sensory neurons (Lindahl et al., 

2001) and induce signaling pathways, it is not surprising that PSP was unable to induce 

sensitization. This set of experiments supports the current theory of PSP as not critically 

important in the activity of fully developed sensory neurons (Lindahl et al., 2000). Even 

at a concentration of 500 ng/mL, well above the KD of GFRα-4 for PSP, PSP has no 

sensitizing effects. A good positive control would have been to use a different pure 

activator of GFRα-4. However, no such molecule exists. Therefore, there is no available 

positive control for GFRα-4 activation. The data presented in this document, therefore, 

support the assertion that PSP does not have effects on sensory neurons through any of 

the GFRα subtypes.  

The studies outlined in this thesis provide a mechanism for GFL-induced 

hyperalgesia (Bogen et al., 2008;Malin et al., 2006) associated with the increase in GFLs 

during inflammation (Hashimoto et al., 2005;Malin et al., 2006;von Boyen et al., 2006). 

These studies could also explain one mechanism by which hyperalgesia is induced by 

direct injection of the GFLs (Bogen et al., 2008;Malin et al., 2006). Specifically, GFLs 

released in increased amounts during inflammation may modulate TRPV1 and other 

aspects of sensory neuronal function. This modulation could allow these neurons to 

transmit information more easily (by releasing more of the nociceptive neuropeptide, 

CGRP, in response to a given stimulus). Increased release of CGRP would initiate 

neurogenic inflammation (Brain et al., 1985;Girgis et al., 1985)., which would intensify 

the responses of the primary sensory neurons. CGRP is also involved in the propagation 

of the nociceptive pathway (Ambalavanar et al., 2006), so increased release of CGRP 

could result in increased responses to a given noxious stimulus. Therefore, the 

behavioral responses that these sensory neurons mediate would be enhanced by 

increased stimulus-evoked release of CGRP. 
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C. NGF and GDNF in the culture media have different effects on sensory neurons 

NGF and GDNF both have effects on DRG when the sensory neurons are exposed 

to these molecules in the culture media for several days. Some of the known effects are 

increases in CGRP content (MacLean et al., 1989;Price et al., 2005;Sango et al., 1994), 

increase in TRPV1 expression and insertion in the membrane (Stein et al., 2006;Xue et 

al., 2007), as well as modified morphology and increased trafficking of other channels 

and proteins important in sensory neuronal sensitivity (Anand et al., 2006;Kerr et al., 

2001). While 30 ng/mL NGF in the culture media increased the absolute level of iCGRP 

released and the total content of iCGRP, the enhancement in the stimulated release of 

iCGRP as percent of total content in response to 10 ng/mL GDNF was not changed. 

Long-term exposure to NGF may change certain characteristics of the sensory neurons, 

but these do not alter the responses of these neurons to acute treatment with GDNF.  

In contrast to growth in NGF, maintaining the DRG in 10 ng/mL GDNF increased 

stimulated release compared to cultures maintained in the absence of GDNF. For the 

cultures grown in GDNF, acute exposure to GDNF induced an even greater 

enhancement in the stimulus-evoked release of iCGRP than those grown in NGF alone 

or in the absence of growth factors. These responses are not likely due to changes in 

morphology, CGRP content, or insertion of TRPV1 into the membrane. A more likely 

explanation for the increased enhancement in stimulated release in response to GDNF 

is that GDNF present in the culture media increases the presence of either GFRα-1 

and/or Ret. Addition of 10 ng/mL GDNF in the culture media increases Ret expression 

by 12 times in a neuroblastoma cell line (Peterson and Bogenmann, 2004). These 

increases could result in greater responsiveness of the sensory neurons to GDNF and 

could explain how recurrent, acute inflammatory pain can be converted to chronic pain 

syndromes.  
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D. Ret-dependent signaling pathways of GFL-induced sensory neuronal 

sensitization 

The GFLs classically signal through Ret, and the role of three prominent pathways 

activated by Ret are known to induce sensory neuronal sensitization. These pathways 

are the MAPK/Erk 1/2 pathway, the PI-3K pathway, and the Src kinase pathway. Each of 

the GFLs activated distinct complexes of these pathways and used different pathways to 

accomplish their sensitization. 

1. GDNF-induced sensitization is Ret-dependent and through the MAPK/Erk 1/2 

pathway 

The intracellular signaling mechanism of GDNF-induced sensitization appears the 

most clear of all the GFLs. In many cell types, GDNF has been shown to activate all 

three of the pathways mentioned above (Bron et al., 2003;Poteryaev et al., 1999). 

Initially, I expected that this multi-pathway activation would occur in the sensory neurons 

in culture as well. Surprisingly, GDNF activated the MAPK/Erk 1/2 pathway and the Src 

pathway but not the PI-3K pathway (Figures 13 and 22). In accordance with the 

molecular data, MAPK/Erk 1/2 pathway inhibitors and SFK inhibitors prevented the 

GDNF-induced sensitization, and Src siRNA reduced the GDNF-induced enhancement 

in the stimulated-release of iCGRP, while inhibition of the PI-3K pathway did not (Figures 

14, 23, and 26). Other studies have observed increased PI-3K activation with exposure 

to GDNF (Bron et al., 2003). However, this study used DRG from large (greater than 250 

g) Sprague-Dawley rats, whereas the studies in this document were conducted on 

mouse DRG. Bron et al., 2003 exposed the rat DRG to high concentrations of GDNF (50 

ng/mL and higher) and measured intracellular p-Akt increases. The high concentration of 

GDNF used could have initiated non-specific effects of GDNF through the GFRα-2 

receptor (Baloh et al., 1997;Buj-Bello et al., 1997;Sanicola et al., 1997). In addition, it is 

possible that the signaling responses in rat and mouse tissue are different.. Because Erk 
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1/2 is generally considered an effector of the MAPK pathway (Turner and Cantrell, 

1997;Xing et al., 1998), and Src is often upstream of the MAPK/ERK 1/2 pathway 

(Irigoyen and Nagamine, 1999), it is likely that Src is being activated by GDNF through 

Ret and initiating the MAPK/Erk 1/2 pathway (diagrammed in Figure 30). Complicating 

this pathway is the fact that Src can be activated by PI-3K. There is also evidence that 

GDNF can activate SFKs in a Ret-independent manner (Poteryaev et al., 1999). 

However, these studies were conducted on DRG from embryonic Ret-deficient mouse 

DRG and two neuronal cell lines, that lack Ret expression (NIH3T3 and SHEP 

neuroblastoma), stably transfected with GFRα-1. These cells could have different 

compliments of signaling pathways and cell surface receptors than the wild type adult 

mouse DRG that were used in the studies in this thesis. The developmental, species, 

and genetic differences between these preparations could account for the seemingly 

discrepant signaling mechanisms for GDNF. 

There was also a possibility that GDNF was activating this pathway sequence in a 

Ret-independent manner (Pezeshki et al., 2001;Poteryaev et al., 1999). These studies 

were all conducted on either embryonic cell cultures or cell lines (described above). 

However, when Ret was inhibited using a specific siRNA, the GDNF-induced 

sensitization was abolished (Figure 33). The use of other siRNA inhibitors of other 

receptors, NCAM, or Ret-independent signaling pathways, Fyn, did not affect the GDNF-

induced sensitization (Figures 36 and 42). The differences between previous reports of 

GDNF-induced, Ret-independent actions and the data presented here could simply be 

the result of the different cell types used. It is possible and likely that embryonic neurons 

and cell lines differ drastically in their responses to GFLs. The primary reason for this 

difference is that embryonic neurons and cell lines are experiencing not only the 

modulatory effects of the GFL, but also the growth promoting effects. This additional set 

of growth effects could completely change the way the cells respond to the GFLs in 
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terms of their modulatory effects. The data presented in this thesis indicate that GDNF 

accomplishes its sensitization in a completely Ret-dependent manner through the 

MAPK/Erk 1/2 pathway. 

2. Ret-dependent, NTN-induced sensitization is through the PI-3K pathway 

There is evidence for NTN activation of MAPK, PI-3K, and Src and SFK pathways 

(Althini et al., 2004;Hauck et al., 2006;Soler et al., 1999). NTN, unlike GDNF, robustly 

activated all three of these pathways, as measured by the production of phosphorylated 

downstream effector proteins (Figure 16). Therefore, it would seem likely that NTN could 

accomplish its sensitization through all three of these pathways. However, NTN-induced 

sensory neuronal sensitization was prevented by inhibition of the PI-3K and Src and SFK 

pathways, not the MAPK pathway (Figures 17, 23, and 26). NTN is, therefore, likely 

activating Src and the PI-3K pathways sequentially to accomplish enhancement in the 

stimulated-release of iCGRP (diagrammed in Figure 30). 

NTN exhibited an interesting and intriguing difference with GDNF in its initiation of 

sensitization. Using Ret siRNA to knock down this receptor led to a partial reduction in 

the NTN-induced enhancement in the capsaicin stimulated-release of iCGRP (Figure 

33), and sensitization was still present. This Ret-independent, NTN-induced sensitization 

will be discussed further below. The PI-3K pathway is the critical pathway for NTN-

induced sensitization, whether through Ret-dependent or Ret-independent initiation. 

One other interesting phenomenon observed in the case of NTN-induced 

sensitization is the dissociation of pathway activation and sensitization. Specifically, NTN 

activates MAPK/Erk 1/2, as measured by the production of p-Erk, but inhibition of this 

pathway does not affect NTN-induced sensitization. This dissociation may be a result of 

different pathways having differential activation of downstream proteins. For example, 

the PI-3K activated by NTN may be phosphorylating TRPV1, while the MAPK/Erk1/2 

may be phosphorylating other proteins and/or altering gene expression. 
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3. ART-induced sensitization is through neither the MAPK/Erk 1/2 nor the PI-3K 

pathway 

ART also activates the MAPK, PI-3K, and Src and SFK pathways (Althini et al., 

2004;Hauck et al., 2006;Soler et al., 1999). ART caused each of these pathways to be 

activated in the sensory neurons in culture, as measured by phosphorylation of 

downstream effector proteins (Figure 19). It would be expected that inhibition of any of 

these pathways, or several of them in combination, would prevent ART-induced 

sensitization. However, only Src inhibition was able to reduce the amount of ART-

induced enhancement in the stimulated-release of iCGRP (Figure 26). No inhibitors of 

the MAPK/Erk 1/2 or the PI-3K pathways prevented the ART-induced sensitization 

(Figure 20). There is the possibility that both of these pathways are sufficient, but neither 

is necessary, for ART to induce its sensitizing effects. Essentially, ART could use either 

of these pathways to accomplish its sensitization, but neither one of them individually 

when inhibited will prevent the ART-induced sensitization. There is no evidence in the 

literature for the need for dual pathway activation to induce the effects of ART. There is 

evidence, however, of the need for both MAPK and PI-3K activation for neuronal 

protection by GDNF (Villegas et al., 2006). The MAPK/Erk 1/2 pathway and PI-3K 

pathways also modulate each other (Zhuang et al., 2004). Addition of GDNF to B92 glial 

cells prevented the damage and death of these cells by high concentrations of ethanol. 

GDNF activated both the MAPK and PI-3K pathways in this preparation and the 

inhibition of either pathway, individually, did not reverse the effects of GDNF. When both 

pathways were inhibited at the same time, the GDNF could no longer prevent the cell 

damage and death. With this study in mind, inhibitors of both the MAPK and PI-3K 

pathways were used to evaluate ART-induced sensitization. The use of one inhibitor of 

the MAPK/Erk 1/2 and one inhibitor of the PI-3K pathway in combination did not affect 

the enhancement in stimulated-release of iCGRP induced by ART (Figure 20). These 
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data demonstrate that Src is a likely pathway important in ART-induced sensitization, but 

that neither the MAPK nor the PI-3K are necessary for this sensitization. While this 

seems to contradict previous studies identifying either or both of these pathways as 

important in alteration of sensory neuronal function by ART (Hauck et al., 2006;Jeong et 

al., 2008a;Soler et al., 1999), all of these studies were conducted on neuronal cell lines, 

embryonic neurons, or motor neurons, not adult sensory neurons. Since the responses 

in embryonic tissue, immortalized cells or motor neurons may be very different from 

those in adult sensory neurons, the conclusions from experiments in this document may 

differ from that in the literature. There is new evidence for the importance of the PKC 

pathway for NGF and ART induced sensitization (Shu and Mendell, 2001;Sikand and 

Premkumar, 2007). Furthermore, unpublished observations suggest a critical role for 

both the SFK and PKC pathways in ART-induced modulation of the TRPV1 channel, 

whereas the sensitization of TRPV1 by ART was not affected by the MAPK/Erk 1/2  

inhibitors, PD98059 and U0126, and the PI-3K pathway inhibitor, LY294002 

(unpublished observation, Dr. Weiguo Zhu).   

Ret-independent, ART-induced sensitization was also observed. Ret siRNA did not 

abolish ART-induced sensitization, although it did reduce the enhancement in the 

release of iCGRP (Figure 33). This Ret-independent, ART-induced sensitization will be 

discussed in greater detail in later sections (Section IV. D.3). 

4. Direct Ret inhibition by PP2 

One controversy confronted in this thesis is whether PP2 is an inhibitor of Ret. PP2 

was originally used as a specific inhibitor of the kinase activity of the SFKs, c-Src and 

Lck (Hanke et al., 1996). Since that time, it has been erroneously used as a specific c-

Src inhibitor, as well as a SFK inhibitor. However, PP2 was eventually identified as a 

potent Ret inhibitor (Encinas et al., 2001). This effect was either due to inhibition of Ret 

phosphorylation by some intracellular signaling pathway induced directly by GFRα-2 (as 
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described above) or due to direct inhibition of Ret autophosphorylation. The novel mode 

of Ret activation thru action of the GFRα receptor was identified and termed trans 

activation. This trans activation can occur when GFLs through their cognate GFRα 

receptor initiate SFK signaling to phosphorylate Ret (Kato et al., 2002). Other cytokines 

can activate Ret through intracellular signaling pathways in the same trans fashion (Kato 

et al., 2002). It has, therefore, been unclear whether PP2 was preventing Ret 

phosphorylation through inhibition of the Src trans activation or direct inhibition of Ret 

autophosphorylation. Figures 28 and 29 in combination provide evidence that PP2 is 

inhibiting Ret autophosphorylation. Since c-Src siRNA did not affect GDNF-induced Ret 

phosphorylation, c-Src trans activation of Ret is not the likely mechanism of Ret 

phosphorylation by the GFLs. Additionally, c-Src siRNA did not eliminate GDNF-induced 

sensitization. Since there is no evidence in the literature of Ret-induced activation of any 

SFKs besides c-Src and GDNF accomplished its sensitization in a Ret-dependent 

manner, GDNF-induced sensitization of sensory neurons is unlikely to be a result of 

phosphorylating Ret in a trans fashion. PP2, on the other hand, completely prevented 

the ART-induced Ret phosphorylation. This prevention of Ret phosphorylation was as 

effective as the prevention of ART-induced Ret phosphorylation by Ret siRNA. ART was 

chosen as the representative GFL for these experiments because sensitization by the 

other GFLs does not follow this SFK-mediated pattern. 

Overall, the data presented in this thesis demonstrate three important characteristics 

of the sensitization of sensory neurons by GFLs. First, PP2 can no longer be used as an 

SFK-specific inhibitor, especially when evaluating the actions of the GFLs, since it is 

clearly also an inhibitor of Ret autophosphorylation. Second, each of the GFLs uses 

different compliments of intracellular signaling pathways to accomplish sensory neuronal 

sensitization. GDNF uses the MAPK/Erk 1/2 pathway, NTN uses the PI-3K pathway, and 

ART does not use either the PI-3K or MAPK Erk 1/2 pathways to elicit sensitization of 
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sensory neurons. Finally, there is both Ret-dependent and Ret-independent GFL-

induced sensitization on sensory neurons. 

E. Ret-independent signaling pathways of GFL-induced sensory neuronal 

sensitization 

Ret is the classic signaling partner of the GFL-GFRα complex, but there is an 

increasing amount of evidence from the literature that some of the GFLs can signal 

independently of Ret in primary neurons and cell lines lacking Ret, ureteric buds from 

Ret deficient mice, and in Madine Darby canine kidney (MDCK) cells, which lack Ret (for 

a review see Sariola and Saarma, 2003). Although GDNF-induced, Ret-independent  

sensitization was not observed in this thesis, one of the other possible Ret-independent 

signaling mechanism for the actions GDNF on ureteric budding is directly through the 

GFL-GFRα complex (Enomoto et al., 2004;Popsueva et al., 2003). GDNF protection of 

substantia nigra neurons from damage by 6-hydroxy dopamine (6-OH DA) is mediated 

by the NCAM receptor (Cao et al., 2008a;Chao et al., 2003;Paratcha et al., 2003). 

Although there is no evidence for GFL-induced effects in any cell system through the 

Integrin β-1 receptor, the GDNF-GFRα complex does bind to Integrin β-1 in substantia 

nigra neurons (Cao et al., 2008b). The GAS1 (growth arrest-specific receptor 1) 

receptor, a tumor suppressor gene receptor, binds to the GFL-GFRα-1 complex and 

induces Ret phosphorylation (Cabrera et al., 2006;Lopez-Ramirez et al., 2008).  

1. GDNF lacks Ret-independent signaling mechanisms of sensory neuronal 

sensitization 

Previous studies in the literature have identified only GDNF-induced, not NTN or 

ART-induced, actions through Ret-independent pathways. GDNF exhibited no Ret-

independent effect in the induction of sensory neuronal sensitization in any studies in 

this document. This difference can likely be accounted for by the use of different cell 

types. The studies that found GDNF-induced, Ret-independent effects were done 
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primarily in cancer and neuronal cell lines (Enomoto et al., 2004;Paratcha et al., 2003). 

GDNF promoted ureteric kidney budding in mouse embryos independently of Ret or any 

other cell surface receptor, and embryonic substantia nigra neurons were protected from 

6-OH DA damage in a Ret-independent, NCAM-dependent manner (Cao et al., 

2008a;Cao et al., 2008b). Some of the demonstrated effects of GDNF in these cells 

were likely due to the growth promoting effects of GDNF, which were not likely to play a 

role in my studies of the acute effects of GDNF on sensory neuronal sensitization. For 

example, the most striking evidence for GDNF-induced, NCAM-dependent effects is the 

protection of substantia nigra CNS neurons from 6-OH dopamine damage. These 

neurons were exposed for to GDNF for several days and later treated with 6-OH DA. 

The protection of these neurons by GDNF was NCAM-dependent, since addition of an 

NCAM blocking antibody eliminated these protective effects (Cao et al., 2008a). It is 

clear from the data presented in this thesis that GDNF does not exert its sensitization 

actions through Ret-independent mechanisms in peripheral sensory neurons. 

2. NTN accomplishes sensitization through at least two Ret-independent 

mechanisms 

There is no evidence in the literature for NTN-induced, Ret-independent effects in 

any cell type. Although NTN binds to the NCAM receptor (Paratcha et al., 2003), there 

are no studies showing a functional effect of NTN through an NCAM-dependent 

mechanism. Additionally, no studies to evaluate the NTN-induced effects through an 

Integrin β-1-dependent mechanism have been published. The current work showing a 

NTN-induced, Ret-independent sensitization is the first to demonstrate that NTN can 

have effects through Ret-independent mechanisms. 

NTN-induced enhancement in the stimulated-release of iCGRP was reduced by Ret 

siRNA exposure, but the sensitization was not eliminated (Figure 33). A similar effect 

with NCAM siRNA was seen (Figure 36). One complicating factor in inhibition of NCAM 
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is that NCAM activates many intracellular signaling pathways. Despite this possible 

complication, when Ret and NCAM siRNA were used in combination, NTN-induced 

sensitization was still present, but the amount of enhancement in the stimulated-release 

of iCGRP was dramatically reduced (Figure 39). The effects of NCAM were reproduced 

by Fyn siRNA exposure (Figures 42 and 44), which further supports the partial role of 

NCAM in NTN-induced sensitization. NCAM directly activates Fyn, while there is no 

evidence that Ret does. In addition, exposure of DRG to Integrin β-1 siRNA reduced 

NTN-induced enhancement in the stimulated-release of iCGRP, but did not eliminate 

sensitization (Figure 48). However, when the DRG were exposed to Ret, NCAM, and 

Integrin β-1 siRNA in combination, the NTN-induced sensitization was completely 

abolished (Figure 50). Addition of all three siRNAs could affect the integrity of the 

neuronal cell membranes and/or the ability of the supporting glia to secrete factors 

necessary for neuronal function. Since addition of all three of these siRNAs did not alter 

content of iCGRP, nor did it change the resting release of iCGRP, it is unlikely that the 

combination of siRNA treatments altered the baseline functions of the sensory neurons.   

There are two possible explanations for reduction of sensitization by reducing 

expression of Ret and NCAM in combination or Ret or NCAM individually. The first 

possibility is that the 15-30% of Ret and NCAM protein remaining after siRNA treatment 

could be enough to allow for NTN-induced sensitization. There were two ways to 

address this issue; add higher concentrations of siRNA molecules or add the siRNA 

molecules in combination. Adding these siRNA molecules in combination allows 

evaluation of the possibility that NTN is capable of using any or all of these receptors 

depending on availability. Clearly, NTN is able to use these alternate receptor-pathway 

combinations when the others are eliminated. NTN probably can use these pathways to 

promote its effects, which is the second possibility for why each of the siRNA molecules 
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individually did not prevent NTN-induced sensitization. This seems to be the more likely 

scenario. 

The data would suggest that NTN is capable of using three distinct receptors to 

initiate its effects through a common intracellular signaling cascade, PI-3K, to induce this 

sensitization. NTN-induced, Ret-dependent effects are likely through the c-Src kinase 

pathway. Ret autophosphorylation activates c-Src, while there is no evidence that Ret 

autophosphorylation can activate Fyn or Syk. NCAM activation induces the Fyn kinase 

pathway. Integrin β-1 activation results in Syk kinase cascade initiation. The role of Src 

and Fyn in NTN-induced sensitization was evaluated in this thesis, while Syk kinase 

function in NTN-induced sensitization was not. However, these studies could be 

conducted at a later point. The downstream effector of NTN-induced sensitization, 

whether the actions are initiated through Ret-Src, NCAM-Fyn, or Integrin β-1-Syk, is PI-

3K.  PI-3K activation likely modulates the TRPV1 phosphorylation state and thereby 

alters the sensitivity of the channel to noxious stimuli. This NTN-induced, Ret-

independent pathway of sensitization is a completely novel pathway and is the first 

demonstration of GFL-induced, Ret-independent pathways of sensory neuronal 

sensitization. 

3. ART accomplishes sensitization through Ret-dependent and Ret-independent, 

NCAM-dependent mechanisms 

Several studies indicate that ART-induced sensitization occurs, in part, through Ret-

independent mechanisms (Bennett et al., 2006;Zihlmann et al., 2005). Therefore, there 

is precedent in the literature for ART-induced, Ret-independent actions in sensory 

neurons. The normal electrophysiological functions of injured C-fibers are recovered by 

exposure to ART. Interestingly, this recovery occurs on C-fibers that express GFRα-3 

but not Ret, demonstrating these effects of ART are Ret-independent (Bennett et al., 

2006). Originally, ART was shown to increase the tyrosine hydroxylase (TH) 
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immunoreactivity, the neurite outgrowth, and the neurite branching of neurons from the 

rat ventral mesencephalon (Zihlmann et al., 2005). However, it was then found that 

some DRG sensory neurons damaged by axotomy were ART responsive and GFRα-3 

positive, but lacked the Ret receptor (Bennett et al., 2006). The GFRα-3 positive, Ret 

negative neurons had increased transcription of ART-dependent genes, increased 

release of substance P (SP), and enhanced physiological properties (Bennett et al., 

2006). Together, these studies suggested a role for Ret-independent actions of ART in 

sensory neurons. 

ART-induced sensitization was not prevented by either Ret siRNA or NCAM siRNA 

alone, but the enhancement in the release of iCGRP was significantly reduced by each 

of these manipulations (Figures 33 and 36). Fyn siRNA had the same effect as NCAM 

siRNA (Figure 42). When Ret and NCAM or Ret and Fyn siRNA were used in 

combination, the ART-induced sensitization was abolished (Figures 38 and 44). 

Exposure of the DRG to Integrin β-1 siRNA did not affect ART-induced enhancement in 

the release of iCGRP (Figure 48). The effects of all of these manipulations show that 

ART uses both the Ret-dependent pathway through Src and the NCAM-dependent 

pathway, likely through Fyn, to accomplish its sensitization. A direct evaluation of the 

connection between NCAM activation and Fyn kinase initiation was not conducted, but 

these studies could be done in the future. ART-induced sensitization is not mediated by 

the MAPK/Erk 1/2 or the PI-3K effector pathways. 

F. Physiological and pathophysiological significance of the distinct and novel 

signaling pathways of GFL-induced sensitization 

The data presented in this thesis demonstrate that each of the GFLs use distinct 

pathways to sensitize sensory neurons. One question that remains, however, is what 

physiological and pathophysiological significance there could be for seemingly similar 

molecules having different pathways of sensitization. This is interesting for the GFLs, 
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because all of these molecules were originally thought to mediate their actions through 

the Ret receptor and similar sets of intracellular signaling pathways. Additionally, why 

NTN and ART can signal in a Ret-independent manner and GDNF cannot is yet to be 

determined. There are three possible explanations for these differences in signaling 

between GFLs. First, each GFL is modulating the responses of sensory neurons that are 

innervating different tissues, and therefore may have different compliments of receptors 

and signaling pathways. Second, each of the specific GFRα receptors is localized on 

different portions of the cell membrane where different compliments of receptors and 

pathways are present. Finally, each of the GFLs may cause different structural changes 

in their specific GFRα receptor subtype that allow different interactions with Ret, NCAM, 

and Integrin β-1. 

1. Each of the GFLs may modulate different populations of sensory neurons in the 

DRG 

The DRG is a heterogeneous population of sensory neurons; in particular there are 

sensory neurons that innervate the skin, the viscera, and the musculoskeletal system. 

There is an abundance of evidence for each of the GFLs having specific and/or 

preferential populations of sensory neurons of which they modulate responses. GDNF 

has long been touted as a potential treatment for amyotrophic lateral sclerosis (ALS). 

GDNF not only has potent effects on motor neuron survival and maintenance (Ribotta et 

al., 1997;Yamamoto et al., 1996) but also participates in the recovery of damaged 

proprioceptive sensory neurons innervating muscle tissue (Buj-Bello et al., 1995). There 

is no evidence in the literature that NTN, ART or PSP have this effect on proprioceptive 

sensory neurons. Additionally, when afferents from muscle, skin, and viscera were 

labeled, GDNF was only able to modulate the responses of TRPV1 to capsaicin in motor 

afferents, which contain small amounts of CGRP (Malin et al., 2009). These results were 

recapitulated in an ex vivo preparation where the muscle is removed with the attached 
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motor afferents and responses of the afferents were evaluated. GDNF modulated the 

electrophysiological responses of these neurons making them more sensitive to noxious 

stimuli (personal communication, Dr. Sacha Malin, University of Pittsburgh). These data 

could indicate that GDNF is modulating this population of DRG primary sensory neurons, 

possibly due to increased expression of the GFRα-1 receptor on this population. 

Similar to GDNF, NTN appears to have a specific subset of sensory neurons that it 

preferentially modulates. When sensory neurons from the colon were retrogradely 

labeled and treated with each of the GFLs, NTN produced the most robust modulation of 

capsaicin-induced calcium influx through TRPV1 (Malin et al., 2009). NTN caused a 

greater peak influx of calcium through TRPV1 and a larger area under the curve of 

calcium influx than GDNF or ART. This data suggests that NTN preferentially modulates 

the responses of sensory neurons innervating the colon and other viscera. Again, these 

effects of NTN are presumably through increased expression of GFRα-2 on this 

neuronal subtype compared to the other sensory neuronal populations, although this has 

not been evaluated. 

ART may preferentially modulate the responses to noxious stimuli of afferents 

innervating the skin. ART is the most effective GFL at altering the function of sensory 

neurons innervating the skin, robustly modulating TRPV1 responses to capsaicin in 

greater than 80% of a population of these neurons (Malin et al., 2009). GDNF and NTN 

had effects on far fewer (approximately 40%) of these neurons. Additionally, ART over 

expression (ART-OE) selectively in skin keratinocytes led to increased excitability of the 

C-fibers (a subset of nociceptive sensory neurons) innervating the skin and behavioral 

hypersensitivity to noxious heat (Elitt et al., 2006). The level of ART and its receptor, 

GFRα-3, are increased in the skin after inflammation is induced by CFA (Malin et al., 

2006), and ART-OE mice have increased calcium influx through TRPV1 in response to 

capsaicin compared to wild-type mice (Wang et al., 2008b). ART was able to elicit 



158 
 

enhanced responses of TRPV1 in afferents from skin and viscera as well. However, 

fewer of these neurons responded to ART, and the responses of these afferents to ART 

were less robust than in skin afferents. Together, these data indicate that ART is an 

important modulator of sensory neuronal sensitivity of primary afferents innervating the 

skin.  

In the DRG cultures used for experiments described in this thesis, there is a 

heterogeneous population of neuronal subtypes; skin afferents, motor afferents, and 

visceral afferents. The sensitization of the sensory neurons in this preparation is equal 

for each of the GFLs, which could be due to modulation of each of the different 

populations of sensory neurons by the different GFLs. It is also possible that each of the 

subtypes of primary afferents has distinct sets and abundances of receptors (Ret, 

NCAM, and Integrin β-1) and signaling pathways available for the action of sensitization 

(MAPK/Erk 1/2, PI-3K, SFKs, Fyn, and PKC). For instance, muscle afferents may 

express only Ret and GFRα-1 receptors and preferentially use the c-Src kinase signaling 

cascade through the MAPK/Erk 1/2 pathway for sensitization, while visceral afferents 

may express GFRα-2, Ret, NCAM, and Integrin β-1 receptors and preferentially use the 

c-Src, Fyn, and Syk kinase signaling cascades through the PI-3K pathway for 

sensitization. ART, on the other hand, may express only Ret, NCAM, and GFRα-3 

receptors and preferentially use the Fyn kinase and c-Src kinase signaling cascade 

through the PKC pathway for sensitization. This could be tested by 

immunohistochemical staining of the DRG for each of these receptors and determination 

of their colocalization, although, this colocalization does not necessary correlate with 

function in these neurons. 

These differences in GFL responsiveness of different subtypes of primary afferents 

could be important in physiologic and pathophysiologic function. The joint and muscular 

pain of diseases like rheumatoid arthritis may be mediated by the actions of GDNF on 
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musculoskeletal afferents (Fang et al., 2003;Liu et al., 2006).  Colonic and other visceral 

pain may be mediated by NTN, since GFRα-2 is highly expressed in SP containing 

neurons from the myenteric ganglia, and GFRα-2 deficient mice displayed dysfunction in 

visceral pain (Rossi et al., 2003). Pain from the skin may be mediated by ART, as 

discussed above. Direct injection into the paw with any of the GFLs induces 

inflammatory hyperalgesia (Malin et al., 2006), which could argue against the idea of a 

specific GFL mediating pain only from a particular tissue. However, there is a complex 

interplay of glial cells, hematopoietic cells, and connective tissue which may complicate 

the ability to determine the effects of individual GFLs on sensory neurons in vivo. 

Overall, it is clear that each of the GFLs may play important roles in pain of different 

physiologic origin. 

2. Differential localization of signaling components of GFL-induced sensitization 

A growing number of studies have probed the concept of receptor and signaling 

component localization in GFL-induced function, specifically the role of lipid rafts in this 

signaling. When the GFL-GFRα complex binds its GFL, this complex recruits Ret into 

lipid rafts and initiates signaling (Tansey et al., 2000). This activation and signaling is 

interrupted by lipid raft disrupters and leads to a dampening of the effects of GFLs on 

survival and neurite outgrowth (Pierchala et al., 2006). Additionally, there are different 

pathways activated by Ret when it is inside lipid rafts versus outside lipid rafts (Pierchala 

et al., 2006). Inside lipid rafts, Ret signals through the Src homology 2 domain containing 

(SHC) and Grb2 (Paratcha et al., 2001). Outside of lipid rafts, Ret signals through FGF 

receptor substrate 2 (FSR2; Paratcha et al., 2001). Each of these pathways initiators 

activate different intracellular signaling pathways (Paratcha et al., 2001). Finally, NCAM 

and Integrin β-1 can signal both within lipid rafts (Schaeren-Wiemers et al., 

2004;Vassilieva et al., 2008) and outside of lipid rafts. It is reasonable, then, to 

hypothesize that each of the GFLs could be activating different receptors and signaling 
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pathways due to localization of these receptors and pathways with individual GFRα 

receptors. 

3. Different GFRα subtypes may alter the structure of Ret and the resulting 

activation of Ret-dependent pathways 

The final possibility for different signaling pathway activation and resulting 

sensitization by each of the GFLs is that each specific GFL-GFRα complex may be 

altering the structure of Ret in such a way as to activate different compliments of 

signaling pathways. Specifically, it has been shown that when the ART-GFRα-3 complex 

translocates to Ret, it activates the MAPK pathway more slowly and less robustly than 

when the GDNF-GFRα-1 complex translocates to this receptor (Parkash et al., 2008). 

This may be because different tyrosine residues are available depending on the Ret 

configuration. Different Ret configurations are induced by the specific GFL-GFRα 

complex because of the different angles of the GFL-GFRα complexes (Parkash et al., 

2008). Different Ret confirmations lead to activation of different signaling cascades and 

signaling effectors by changing the relationship of the two Ret molecules in the 

homodimer in such a way as to alter which tyrosine molecules are available for 

autophosphorylation (Parkash et al., 2008). Different patterns of autophosphorylation 

could lead to different intracellular signaling molecules binding to Ret and being 

activated and could explain, in part, the differential compliments of pathways used by 

each of the GFLs to elicit sensory neuronal sensitization. 

Whether the differential compliments of signaling pathways used by the GFLs to 

accomplish their sensitization is due to different GFL sensitize populations, differential 

localization of receptors and signaling pathways, or different structural alterations in Ret 

by the receptor complex, it is clear that there is some difference in signaling cascade 

induction. While not the focus of this thesis, this aspect of GFL-induced sensitization 

warrants further investigation. 
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V. SUMMARY AND CONCLUSIONS 

The results of this thesis can be summarized by the following statements: 

1.  The GFLs, GDNF, NTN, and ART, enhance the capsaicin stimulated-release of 

iCGRP from isolated sensory neurons and freshly dissociated spinal cord tissue. 

 

2.  The GFLs do not modulate the potassium stimulated-release of iCGRP. 

 

3.  Chronic exposure of DRG to GDNF in the culture media increases the capsaicin 

stimulated-release of iCGRP and the sensitization produced by acute exposure 

to GDNF. 

 

4. GDNF induces sensitization of isolated sensory neurons in a Ret-dependent 

manner through the MAPK/Erk 1/2 pathway. 

 

5.  NTN-induced sensitization of isolated sensory neurons involves Ret, NCAM, and 

Integrin β-1. NTN-induced sensitization is mediated by the PI-3K pathway. 

 

6.  ART induces sensitization of isolated sensory neurons via Ret and NCAM 

activation of an unidentified pathway, possibly the PKC pathway. 

 

Each of the GFLs used different compliments of Ret-dependent and/or Ret-

independent pathways to accomplish sensory neuronal sensitization. The demonstration 

of Ret-independent signaling in sensory neurons is novel. Additionally, NTN-induced 

sensitization through Integrin β-1 is a novel signaling mechanisms for NTN in any cell 

type. It remains to be determined the mechanism of activation of these different 

pathways by each of the GFLs and the exact physiological reason behind these 
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differences. The data presented in this thesis indicates novel and distinct pathways of 

GFL-induced sensory neuronal sensitization and adds a layer of complexity to the 

present knowledge of the actions and signaling pathways of the GFLs. Finally, the 

effector of this GFL-induced enhancement in the stimulated-release of iCGRP, and the 

mechanisms by which the signaling pathways modulate this or these effectors, remains 

to be elucidated. However, the data presented in this thesis provide insight into the 

signaling pathways of GFLs and the mechanisms of the induction of sensory neuronal 

sensitization in general.  
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