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ABSTRACT 

Minerva Mercado-Feliciano 

 

ESTROGENIC ACTIVITY OF THE POLYBROMINATED DIPHENYL ETHER 

FLAME RETARDANT MIXTURE DE-71 

 

Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants suspected to 

act as endocrine disruptors. We tested the commercial PBDE mixture DE-71 and its in 

vivo metabolites for estrogenic activity. MCF-7 breast cancer cells culture, ERE-

luciferase gene expression, 3H-β-estradiol displacement from recombinant ERα, and 

ovariectomized (OVX) mice served as bioassays. Although DE-71 did not bind ERα, it 

was able to increase MCF-7 cell proliferation and this was prevented by the antiestrogen 

fulvestrant. DE-71 co-treatment reduced the effect of estradiol in MCF-7 cells. In the 

OVX mouse (BALB/c) 3-day assay, DE-71 administered alone had no effect on uterine 

or vaginal tissues but when administered subcutaneously potentiated estradiol’s effect on 

uterine weight in a dose-dependent manner. DE-71 administered SQ to BALB/c mice for 

34 days slightly increased uterine epithelial height (UEH), vaginal epithelial thickness 

(VET) and mammary ductal lumen area, and attenuated the estradiol-induced increase in 

UEH; these effects were not seen in C57BL/6 mice. DE-71 increased liver weight in 

BALB/c, C57BL/6 and estrogen receptor-alpha knockout (ERαKO) mice. Liver 

cytochrome P450 1A (CYP1A) and CYP2B activities increased 2.5-fold and 7-fold 

respectively when DE-71 was administered PO, but only CYP2B increased (5-fold) after 

SQ treatment. Six OH-PBDE metabolites were found in mice after 34-day DE-71 

treatment and all were able to bind recombinant ERα. Para-hydroxylated metabolites 
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displayed a 10- to 30-fold higher affinity for ERα compared to ortho-hydroxylated 

PBDEs. Para-OH-PBDEs induced ERE-luciferase and produced an additive effect when 

coadministered with β-estradiol. DE-71 was also additive with β-estradiol. At high 

concentrations (≥ 5x10-5 M), ortho-OH-PBDEs were antiestrogenic in the ERE-luciferase 

assay. In conclusion, DE-71 behaves as a weak estrogen in both MCF-7 breast cancer 

cells and ovariectomized adult mice. Mice strain, treatment route and duration 

determined if DE-71 was estrogenic. BALB/c mice are more susceptible to DE-71 effects 

in estrogen target tissues than C57BL/6 mice. DE-71 increased liver weight, 5%-51% 

depending on mouse strain and treatment regime, independently of ERα. The 

observations that the DE-71 mixture does not displace 3H-β-estradiol from ERα while the 

hydroxylated metabolites do, suggest that the cellular and tissue effects were due to a 

metabolic activation of individual congeners. 

 

 

Robert M. Bigsby, Ph.D., Chair 
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Introduction 

 

Estrogens are hormones best known for their roles in female reproductive physiology 

(Ganong 2007). They are partly responsible for development of secondary sex 

characteristics, reproductive cycle regulation, pregnancy maintenance, and lactation 

(Ganong 2007; Albrecht et al. 2000; Albrecht and Pepe 2003; Buhimschi 2004). But 

estrogens also play a major role in many non-reproductive tissues in both sexes, including 

bone, prostate, and the central nervous system (CNS). While normal levels of 

endogenous estrogens have an important physiological role in tissues, disruption of 

estrogen homeostasis may lead to disease. For instance, estrogens may act as tumor 

promoters by inducing cancer cell growth. The successful use of antiestrogens in the 

treatment and prevention of some breast cancers demonstrates the role of estrogens in 

cancer etiology. 

 

Like other steroids, estrogens are highly lipophilic chemicals that readily cross the cell 

membrane. Once inside the cell, estrogens bind soluble estrogen receptors (ERα and 

ERβ) which mediate their effects on gene transcription. Recent work with estrogen 

conjugated to bovine serum albumin suggest the existence of receptors on the cell 

membrane that can also be activated by estrogens (Haynes et al. 2002; Bernard et al. 

2006).  

 

Over the last 30 years, the scientific community has recognized the threat of hormonally 

active pollutants in the environment (Kavlock et al. 1996; Cecil et al. 1971). Even before 
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that, Rachel Carson pointed out the possible link between increased hormone 

concentrations, due to liver damage by organochlorines and impaired endogenous 

hormone catabolism, and cancer (Carson 1962). And while the mammalian endocrine 

system is comprised of many different secreting organs and hormones, concern has been 

focused on estrogenic substances. 

 

The term “estrogenic” describes a chemical that causes the same effects as endogenous 

estrogens in animals. Historically such effects have been defined mainly as proliferation 

of estrogen-responsive tissues like the endometrium, vagina and mammary gland, and 

induction of the estrous phase of the animal reproductive cycle. Such estrogenic effects 

have been studied at length and are still used as outcomes in assays to test the 

estrogenicity of a chemical. As explained in the following sections, we now know that 

animals can have estrogenic effects in target tissues outside the female reproductive tract, 

and in either gender. While “estrogenic” is an operationally defined concept, estrogenic 

effects are mediated by specific physiological mechanisms like receptor activation and 

gene expression.  

 

 

 

General Estrogen Physiology 

 

Estrogens promote development and maintenance of female reproductive organs 

(DeMayo et al. 2002; Drummond 2006), mammary glands (Clarke 2006) and secondary 
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sex characteristics, such as adipose tissue distribution (Bjorntorp 1997). During 

pregnancy, estrogen contributes to uterine growth (Hertelendy and Zakar 2004), placental 

development (Bazer et al. 1979), parturition (Uldbjerg and Ulmsten 1990), and 

preparation of the mammary gland for lactation (Neville et al. 2002). 

 

At puberty, sex steroids induce a pubertal growth spurt. Much of the growth acceleration 

appears to be mediated by both direct estrogen action and estrogen-induced stimulation of 

other hormonal signaling (reviewed by Nilsson et al. 2005). While androgen also 

contributes to the pubertal growth spurt, its effects may require conversion to estrogen at 

the target tissues. Estrogen also acts by advancing growth plate senescence, causing 

proliferative exhaustion, thus stopping longitudinal bone growth. Disorders of estrogen 

homeostasis can therefore cause either premature end of growth (abnormally short 

stature) or excessive growth (abnormally tall stature). 

 

Recent research in rodents suggests that estrogens may play a role in prostate 

development (reviewed by Prins et al. 2006). While the role of endogenous estrogens is 

not yet known, there is much evidence of the adverse effect of exogenous estrogens; 

exposure of rodents to estrogens early in life is associated with increased proliferation, 

inflammation and dysplastic epithelial changes in the prostate later in life (Harkonen and 

Makela 2004). 

 

In the developing CNS, estrogens are crucial in determining gender dimorphism. The 

gender-specific brain is produced by the epigenetic action of gonadal hormones at critical 
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periods of brain development (reviewed by Carrer and Cambiasso 2002). While the 

female brain morphology develops in the absence of testicular secretions, irrespective of 

chromosomal sex, many of the masculinizing actions of androgen on the brain require 

conversion of testosterone to estrogen. Moreover, the diversity of estrogen effects on the 

adult brain implies a role beyond the control of reproductive function, since estrogen 

signaling is known to influence memory, motor activity, and mood (reviewed by 

McEwen and Alves 1999). Moreover, as the brain ages, it undergoes biochemical and 

structural changes regulated by estrogen (reviewed by Thakur and Sharma 2006). 

 

In mammals, there are three primary endogenous estrogens: β-estradiol, estrone and 

estriol. Each has different potencies and physiological roles (reviewed by Coelingh 

Bennink 2004). β-Estradiol, the most potent, is the predominant estrogen in 

premenopausal women, secreted mainly by the ovaries. Estrone, less potent than β-

estradiol, is the main estrogen in postmenopausal women, synthesized in adipose tissue 

from adrenal precursors. Estriol, the weakest of the three natural estrogens, is produced in 

large quantities by the placenta.  

 

 

Estrogens Role in Female Reproductive Physiology 

 

The blood concentration of estrogens varies throughout the life of the human female. 

Estrogen levels are less than 10 pM in prepubescent girls (Bay et al. 2004), and increase 

throughout puberty as pituitary hormones stimulate production in the ovaries (Apter 

1997). In the adult premenopausal woman, plasma estrogen levels fluctuate around 0.3-
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2.6 nM (Gruber et al. 2002). After menopause, estrogen levels decrease to levels below 

0.1 nM (Setiawan et al. 2006). 

 

Estrogens induce many physiological changes in the mammalian female reproductive 

tract and mammary glands. The effects of estrogens on mammalian female physiology 

have been studied extensively in the ovariectomized (OVX) adult mouse model, and such 

findings are outlined in this section as they relate to human physiology. 

 

In pubertal girls, the first organ to show obvious signs of development is the mammary 

gland. In the OVX mouse model, β-estradiol increases mammary duct size, and 

branching (Raafat et al. 2001), however estrogen effects on the mammary gland may 

require the presence of other hormones and/or growth factors (reviewed by Sternlicht 

2006 and Silberstein 2001). At the cellular level, the mammary gland ductal epithelium 

of the OVX mouse is composed of a single cuboidal cell layer, which becomes pseudo-

stratified after estrogen treatment (Figure 1, A and B). The resulting increased thickness 

of mammary ducts can be observed in mammary gland whole mounts at low power 

(Figure 1, C and D).
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Figure 1. Mammary gland changes in OVX BALB/c mouse after 34 days of β-estradiol treatment. 

Adult mice were ovariectomized and 3 weeks later a 34-day treatment schedule was started. Animals 

received treatment, vehicle or 10 µg/kg β-estradiol (sc) daily. After 34 days their inguinal mammary glands 

were dissected out and processed for whole mount observation and histological examination. Cross sections 

of inguinal mammary gland (A and B) were stained with hematoxylin and eosin and are shown at 40X 

magnification. Whole mounts of inguinal mammary gland (C and D) were stained with carmine alumn and 

are shown at a 4X magnification. A and C: Vehicle-treated. B and D: β-Estradiol-treated. N, nipple; L, 

lumen; E, epithelium; S, stroma. The large round structures in C and D are lymph nodes (indicated by 

closed arrows); they are connected by one large blood vessel (lighter shade of gray when compared with 

darker ducts; indicated by open arrows). 

A.       B. 

  

C.        D. 
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As estrogen levels increase gradually during puberty, they stimulate changes in uterine 

size and shape (Buzi et al. 1998), as well as proliferation of the blood-rich mucus 

membrane lining the uterus (endometrium), leading to the first menstruation (Strauss and 

Coutifaris 1999). Throughout a woman’s adult life, the endometrium responds to cyclic 

hormone secretion by the ovaries (Critchley et al. 2001), triggered by the recurring 

process of maturation and release of an oocyte from the ovary (ovulation). During the 

preovulatory phase, the ovaries increase estrogen secretion (Baird and Fraser 1974), 

which promotes growth of the endometrium (Brenner 1994). Another hormone secreted 

by the ovaries after ovulation, progesterone, inhibits further growth (King et al. 1978) and 

causes additional changes that make the endometrium suitable for implantation and 

nourishment of an embryo (Brosens and Gellersen 2006). 

 

At the cellular level, estrogen promotes cell proliferation and inhibits apoptosis in the 

uterus and vagina (Evans et al. 1990; Jo et al. 1993; Berman et al. 1998). Epithelial cell 

layers regress and/or decrease in height after ovariectomy, while estrogen treatment of 

OVX mice increases uterine epithelial height (UEH) and vaginal epithelial thickness 

(VET) after a few days of estrogen treatment (Suzuki et al. 1996). In the uterus, the 

columnar epithelial cells become taller with a concomitant increase in cytoplasmic 

volume. The epithelial cells proliferate in response to estrogen causing overcrowding and 

a pseudostratified appearance (Figure 2). In the vagina, the single squamous epithelial 

layer of the OVX mouse becomes a multi-cell layer after estrogen treatment (Figure 3).  
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Figure 2. Hematoxylin and eosin staining of OVX BALB/c mouse uterus cross sections. Cross sections 

of uterus from control vehicle or β-estradiol treated adult female OVX mice were stained with hematoxylin 

and eosin. A: Control, treated with vehicle for 3 days; uteri of mice treated with vehicle for 34 days had 

similar appearance (not shown). B: 3-day treatment, 10 µg/kg β-estradiol. C: 3-day treatment, 10 mg/kg β-

estradiol; notice the fluid-filled stroma (S). D: 34-day treatment ,10 µg/kg β-estradiol treated; notice 

leukocyte-infiltrated stroma. S, stroma; L, lumen; E, epithelium. All photos taken at the same 40X 

magnification. Bars indicate epithelial thickness. 

 A.         B. 

   
 
 
C.         D. 
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Figure 3. Hematoxylin and eosin staining of OVX mouse vagina cross sections. Cross sections of 

vagina from treated mice were stained with hematoxylin and eosin. A: Control, treated with vehicle for 3 

days; vagina of mice treated with vehicle for 34 days had similar appearance (not shown). B: 3-day 

treatment, 10 µg/kg β-estradiol. C: 3-day treatment, 10 mg/kg β-estradiol. D: 34-day treatment ,10 µg/kg β-

estradiol treated. Keratinized epithelial cells shed from near epithelium can be seen in lumen in B, C and D. 

S, stroma; L, lumen; E, epithelium. All photos taken at the same 40X magnification. Bars indicate epithelial 

thickness. 

 A.         B. 

   
 
 
C.         D. 

   

L

S

E 
E 

S 

L

S
E 

L

S E 
L

S E 



 10

If there is no pregnancy, estrogen and progesterone withdrawal initiates the human 

endometrium into a degenerative phase, ending in menstruation (Brosens and Gellersen 

2006). In the OVX mouse model, the uteri and vagina regress after ovariectomy (Suzuki 

et al. 1996) while estrogen treatment increases their wet weight in as few as 3 days of 

treatment (Evans et al. 1941; Gordon et al. 1986). This uterotrophic effect has been used 

as the standard bioassay for testing estrogenic action of compounds (Evans et al. 1941; 

Odum et al. 1997). 

 

Maternal serum estrogen levels increase during pregnancy to peak at term (Darne et al. 

1987). In the primate placenta, estrogen stimulates production of progesterone, which is 

required to maintain pregnancy, and enhances cortisone production, needed for 

maturation of the fetal hypothalamic-pituitary-adrenocortical axis (reviewed by Pepe and 

Albrecht 1998). Changes in the estrogen/progesterone balance at term favors cervical 

ripening and increased uterine activity thereby contributing to parturition (reviewed by 

Steer 1990).  

 

Cessation of ovarian cycles after menopause brings about a major change in female 

hormonal homeostasis. The postmenopausal woman estrogen levels drop from 0.3-2.6 

nM to about 0.1 nM (Setiawan et al. 2006). Among a variety of physiological changes 

due to the decreased estrogen levels, the most detrimental consequence is loss of bone 

mass and development of osteoporosis (NAMS 2006). 
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The proliferative and anti-apoptotic effects of estrogen in female reproductive organs also 

play a role in cancer etiology. Women exposed to estrogens without opposing effects of 

progestins show a dose and duration dependent 2- to 10-fold increase in endometrial 

cancer risk (reviewed by Hecht and Mutter 2006). Tamoxifen, a selective estrogen 

receptor modulator (SERM), has been successfully used in the treatment and prevention 

of breast cancer for many years (Jordan 1995). While most normal mammary epithelial 

cells have no estrogen receptors and depend on stromal interactions in their response to 

estrogen, carcinomas usually have estrogen receptors and estrogens induce their growth 

(Hahnel and Twaddle 1971; Welsch et al. 1981; Osborne et al. 1985). Two 4-

hydroxylated metabolites of tamoxifen, 4-hydroxy-tamoxifen (4-OH-tamoxifen) and 3-

hydroxy-N-desmethyl-tamoxifen (endoxifen) bind to ERα and act as antagonists in 

mammary tissue, causing regression of ER-positive mammary tumors (Jordan 1995; Lim 

et al. 2005). On the other hand, 4-OH-tamoxifen behaves as an agonist in the uterus, 

stimulating epithelial cells and increasing the risk of cancer (Fotiou et al. 2000). The 

mechanism by which 4-OH-tamoxifen and other SERMs behave as estrogen agonists in 

some tissues and antagonists in others is not know, but a model has been proposed in 

which the differential expression of estrogen receptors (ERα or ERβ) and specific 

coregulator proteins are responsible for the differential responses in different tissues 

(McDonnell et al. 2001). 
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Metabolism and Regulation of Endogenous Estrogens 

 

Endogenous estrogens are steroid molecules, derived from cholesterol (reviewed by 

Payne and Hales 2004). They are produced primarily by the ovaries, but also from 

conversion of adrenal androgens to estrogens in adipose and other tissues. The steroid 

synthetic pathway can produce three different estrogen species from progesterone or 

androgen precursors: β-estradiol, estrone and estriol. The cytochrome P450 (CYP450) 

enzymes play a major role in both the formation and deactivation of endogenous 

estrogens. 

 

The first step in steroid synthesis is the removal of a six-carbon unit from cholesterol’s 

side chain to form pregnenolone, catalyzed by P450-linked side chain cleaving enzyme 

(P450ssc, CYP11A1, also known as desmolase). CYP11A1 is found in the mitochondria 

of steroid-producing cells, but not in significant quantities in other cells; Follicle 

Stimulating Hormone (FSH), a peptide hormone from the anterior pituitary gland, 

stimulates cAMP production, which in turns signals for CYP11A1 expression and 

ultimately turns on the conversion of cholesterol into pregnenolone (reviewed by Payne 

and Hales 2004). Different pituitary hormones stimulate expression in different tissues: 

Adrenocorticotropic Hormone (ACTH, or corticotropin) in the adrenal gland, Luteinizing 

Hormone (LH) in the ovary and testis, and FSH in ovarian granulosa cells. In fact, 

expression of all other steroidogenic CYP450 enzymes (discussed below) and cholesterol 

uptake by the ovarian cells are stimulated by the the pituitary hormones FSH and LH. 
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Through several hydroxylating/dehydroxylating steps, pregnenolone is converted to 

androgens, either directly or with progesterone as an intermediate. Three different 

enzymes are involved in these reactions, with the same enzyme acting at different stages 

to produce the different androgens or progesterone: 3β-hydroxysteroid dehydrogenase 

(3β-HSD), 17α-hydroxylase/17,20-lyase (P450c17, CYP17A), and 17β-hydroxysteroid 

dehydrogenase (17β-HSD). While CYP11A1 catalysis is the rate-limiting step in steroid 

production, the presence of these three later enzymes in a tissue determine the production 

of sex steroids rather than corticoid steroids (reviewed by Miller 2002).  

 

3β-HSD, CYP17A and 17β-HSD expression and/or activity are stimulated by increasing 

cAMP. 3β-HSD increases with both FSH and IGF-1 in female rats and LH in male rats, 

while 17β-HSD is primarily induced by FSH acting via the cAMP (reviewed by Payne 

and Hales 2004). The 3β-HSD and CYP17A androgenic reactions are irreversible, while 

those catalyzed by 17β-HSD are reversible. 3β-HSD is located in the mitochondrion; 

CYP17A and 17β-HSD are mostly microsomal. 3β-HSD and 17β-HSD also play a role in 

later estrogenic reactions, and the presence of a particular isoenzyme in different tissue 

determines preferential formation of either androgens or estrogens (reviewed by Simard 

et al. 2005, Miller 2002, and Penning 1997). 

 

Estrogens are synthesized from androgens by loss of a methyl group at C-19 and 

formation of an aromatic A ring, converting testosterone to β-estradiol or 

androstenedione to estrone. Both these irreversible reactions are catalyzed by aromatase 

(CYP19). The prmoter of the CYP19 gene responds to several tissue-specific 
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transcription factors, including SF-1 and CRE elements in ovary, Sp1 and STAT3 in 

adipose tissue, and C/EBP-β in placenta (reviewed by Bulun et al. 2005). The primary 

site of aromatase expression in premenopausal women is the ovarian follicle, where 

expression is mediated primarily by FSH receptors and cAMP production. In men and 

postmenopausal women, the main sites of aromatase activity are extragonadal tissues 

such as adipose tissue, were CYP19 expression is regulated by cytokines, glucocorticoids 

and cAMP.  

 

The endogenous estrogens are also deactivated by CYP450-catalyzed hydroxylation 

followed by conjugation by a Phase II enzyme, leading to sulfation, methylation or 

glucuronidation. Hydroxylation occurs most commonly at the 2- or 4-positions (reviewed 

by Bigsby et al. 2005). 2-hydroxylation predominates in the liver, catalyzed mostly by 

CYP1A2 and the CYP3A family. The inducible CYP1A1 also catalyzes 2-hydroxylation 

in extrahepatic tissues. CYP1B1 catalyzes estrogen 4-hydroxylation. Expression of 

CYP1A and 1B is regulated by the aryl hydrocarbon receptor (AhR). This nuclear 

receptor is activated by numerous halogenated and non-halogenated aryl hydrocarbons, 

and the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a 

particularly strong AhR ligand. TCDD induces CYP1A and CYP1B expression in various 

tissues, including liver, breast, and placenta. Expression of CYP3A is regulated by at 

least three nuclear receptors: constitutive androstane receptor (CAR), pregnane X 

receptor (PXR) and the vitamin D receptor (VDR). Pharmaceuticals like Clotrimazole, 

Phenobarbital and Rifampin (Luo et al. 2002), and environmental pollutants like 

methoxychlor, dieldrin, and trichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)-ethane 
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(DDT) isomers (Kretschmer and Baldwin 2005) are PXR ligands and induce CYP3A; 

CAR is activated by xenobiotics like phenobarbital and chlorpromazine (reviewed by 

Kretschmer and Baldwin 2005; Timsit and Negishi 2007). Both PXR and CAR are 

regulated by glucocorticoid signaling, and glucocorticoids are known to induce CYP3A.  

 

 

Molecular Signaling by Endogenous Estrogens 

 

At least two estrogen receptors (ERs) are known and have been well characterized: alpha 

and beta. Both ERα and ERβ are nuclear steroid receptors that activate transcription of 

target genes. They are soluble proteins found primarily in the cell nucleus. The inactive 

receptors are intermittently bound by chaperone proteins, including heat shock protein 90 

(Hsp90), and this interaction facilitates ligand binding (Beliakoff and Whitesell 2004). 

The domain structure of the ERα is shown in Figure 4. Both ERα and ERβ are encoded 

by eight exons. The most conserved region between the two ERs is the DNA binding 

domain, and there is also significant sequence homology of their hormone binding 

domains; there is more sequence diversity in the N- and C-terminal domains as well as 

the hinge region between the DNA binding and hormone binding domains (reviewed by 

Saunders 1998). 
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Figure 4. ERα protein domain structure. Based on data from (Arnold et al. 1995, Ascenzi et al. 2006; 

Kumar et al. 1986; Meng et al. 2004; Schwabe et al. 1990; Wang et al. 2002). AF-1, Activation Function 1; 

AF-2, Activation Function 2. The Nuclear Receptor Protein Regions (A/B, C, D, E and F) are regions of 

partial homology among nuclear receptor proteins. The functional domains for ERα are labeled in blue. 

Kinase phosphorylation sites are indicated in green. 
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Two regions within ERα modify transcriptional activity: the ligand-independent 

activation function-1 (AF-1) located in the amino terminus, and the ligand-regulated AF-

2 found within the ligand-binding domain (Beliakoff and Whitesell 2004; Smith and 

O'Malley 2004; Lannigan 2003). In general, ER phosphorylation controls recruitment of 

coactivators that enhance ER-mediated transcription, such as Steroid Receptor 

Coactivator 1 (SRC1) and Steroid Receptor Coactivator 3 (SRC3) (Likhite et al. 2006; 

Shah and Rowan 2005). 

 

Ligand binding to ER and/or phosphorylation induces a conformational change in the 

receptor’s hormone-binding domain, thus enhancing receptor dimerization and its ability 

to bind the estrogen response elements (EREs) located in the promoter region of target 

genes (Klein-Hitpass et al. 1989). The ERE is a palindromic sequence generally of the 

form GGTCAxxxTGACC with variability permitted to some extent at all positions 

(O'Lone et al. 2004). The transcriptional activity of ERs is modified by protein-protein 

interactions with a variety of cofactors (Smith and O'Malley 2004), as well as with other 

transcription factors, and in some instances the ERα can modify transcription by other 

factors, like SP-1 and AP-1, without binding DNA themselves (Tanaka et al. 2000; 

Denardo et al. 2007).  

 

Two types of antagonistic ligands can inhibit the transcriptional activity of ERs. Type I 

antiestrogens, also known Selective Estrogen Receptor Modulators (SERMs), include 

pharmaceuticals like tamoxifen and raloxifene. ICI 182,780 (fulvestrant) is a Type II 

antiestrogen, also referred to as a “pure” antiestrogen. Although both types bind ERs with 
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high affinity, they interact differently with the ERs. Type I antiestrogens block 

transcriptional activity mediated by ERα’s AF-2 only, leaving AF-1 available to initiate 

gene transcription (Smith and O'Malley 2004), while Type II antiestrogens block 

transcriptional activity mediated by either AF-1 or AF-2 (Metzger et al. 1995). In fact, 

studies of SERM activity led to the discovery that ER conformation is influenced by the 

nature of the bound ligand (Brzozowski et al. 1997; Shiau et al. 1998). This becomes 

important when considering the differential availability of cofactors and promoters in 

different tissues. As a result, Type I antiestrogens will stimulate ERα-mediated gene 

expression in some cell types, while blocking it in others; and they always antagonize 

ERβ activity (McDonnell et al. 2002). On the other hand, the pure antiestrogen 

fulvestrant inhibits both ERα and ERβ in all tissues. Fulvestrant also leads to rapid 

proteosomal degradation of ERα, which contributes to the complete inactivity of the 

receptor (Long and Nephew 2006). 

 

The occurrence of rapid, non-genomic responses to estrogen suggests the existence of 

membrane-associated estrogen receptors signaling through kinases or other cytosolic 

molecules, but these ERs have not been fully characterized (Manavathi and Kumar 2006; 

Migliaccio et al. 2006). While some research points to ERα association with membrane 

proteins, at least one membrane ER, G Protein-Coupled Receptor 30 (GPR30), has been 

identified in breast cancer cells (Filardo et al. 2000; Thomas et al. 2005). In either case, 

estrogen effects originating at the membrane seem to be mediated by cross-talk with 

Epidermal Growth Factor Receptor (EGFR) signaling. Since several kinases are able to 

activate ERα by phosphorylation, it is possible that rapid estrogen signaling ultimately 
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induces transcription of ERE-regulated genes just as a ligand-activated nuclear receptor 

does. This area of research remains controversial since several researchers have not been 

able to show ERK1/2 activation in breast cancer cells by β-estradiol (Zheng et al. 2007; 

Gaben et al. 2004; Caristi et al. 2001). 

 

 

Estrogen Receptor Alpha Regulation  

 

In vivo, unliganded ERα protein has a half-life of 4-5 hours (Eckert et al. 1984), and its 

expression and activity are regulated by at least five different mechanisms: activation of 

gene promoters, gene methylation, protein phosphorylation, protein acetylation and 

ubiquitination. Interactions between ERα and ERβ can also modify ERα activity. Another 

mechanism by which ERα may be regulated, posttranscriptional silencing by micro 

RNAs (miRNAs) has only being recently studied. 

 

The ERα gene is located in chromosome 6 (Gosden et al. 1986) and contains nine 

different promoter regions (Kos et al. 2001). The promoters are tissue specific and 

produce mRNA variants that differ only in their 5’ untranslated region (Reid et al. 2002); 

still, all the possible transcripts can produce the same 66 kilodalton (kDa) protein, as well 

as 46 and 39 kDa variants. Hypermethylation of CpG islands within promoters can down 

regulate ERα expression, and this is an important mechanism by which breast cancer 

cells loose their sensitivity to antiestrogens therapy (Giacinti et al. 2006).  
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The AF-1 region contains several phosphorylation sites, and in the absence of steroid 

ligand, Mitogen Activated Protein Kinase (MAPK, ERK1/2) directly phosphorylates 

Serine 118 (and perhaps indirectly Serine 167), thereby partially activating the receptor 

through AF-1 (Bunone et al. 1996). Other sites in AF-1 phosphorylated by second 

messenger signaling pathways are S167 (a substrate of RSK and AKT) and S104/106 (a 

substrate of cyclinA/CDK2). Two additional phosphorylation site outside AF-1, S236 and 

S305, are activated by protein kinase A (PKA). Therefore, growth factors that activate 

kinase signaling such as Epidermal Growth Factor (EGF) and IGF-1 can induce 

phosphorylation of ERα and lead to transcriptional activation. While ERα 

phosphorylation alone can induce gene expression in cell culture systems (Bunone et al. 

1996; Ince et al. 1994), the effects of phospho-ERα in the cell can be mediated by ligand 

binding, and the prescence of ligand seems to maintain the otherwise transient 

phosphorylation (Joel et al. 1998). 

 

ERα protein is normally down regulated by acetylation, and this modification seems to 

decrease ligand sensitivity but not necessarily kinase activation (Wang et al. 2001). 

Formation of heterodimers with ERβ decreases ERα activity in some tissues (discussed 

further in next section). ERα is tagged for proteosomal degradation by ubiquitin, and this 

process is accelerated in the presence of β-estradiol (Nirmala and Thampan 1995) or 

fulvestrant but not tamoxifen (Long and Nephew 2006; Fan et al. 2003).  

 

Recent reasearch has look into miRNA regulation of ER in human breast cancer. At least 

one miRNA, miR-206, has been observed to be up-regulated in ER-negative breast 
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cancer and to decrease endogenous ERα mRNA and protein levels in human MCF-7 

breast cancer cells by interacting with the 3’-untraslated region of ERα transcript (Adams 

et al. 2007). 

 

 

Physiological Role of Estrogen Receptor Alpha 

 

As expected from its importance in regulating female reproduction, ER expression is high 

in ovary, uterus, vagina and mammary gland of mammals; while ERα is found in ovary, 

uterus and mammary gland, ERβ is abundant in the ovary but sparse in the uterus and 

was not found in the mammary gland (Couse et al. 1997; Pelletier and El-Alfy 2000). 

 

ERα mediates the majority of estrogen’s effects on female reproductive tissues. The ERα 

knockout (ERαKO) mouse has major defects in uterine responses to estrogens, and ERβ 

is not required to elicit the classic effects of estrogen in the uterus: increased size, fluid 

uptake, protein expression, epithelial cell hypertrophy and hyperplasia, stromal cell 

proliferation, and increase number of glands (Harris 2007). Conversely, ERβ may 

dampen the uterotrophic effect of ERα (Wada-Hiraike et al. 2006). 

 

In the male mouse, ERα is found in testis, prostate and epididymis, while ERβ is found in 

prostate and epididymis but not in testis. The precise role of ERs in normal prostate is not 

completely understood. ERα is mostly found in stromal cells, while ERβ predominates in 

basal epithelial cells and may exert antiproliferative and pro-antioxidant effects (Ho et al. 



 22

2006). As mentioned earlier, developmental estrogen exposure predisposes the male to 

prostate cancer in adulthood, probably by altering the expression of ERs (Prins et al. 

2006). 

 

The ERs also play physiological roles in the brain, lungs, cardiovascular system, liver and 

bone. In the brain, ERα is involved in neuroprotection and inflammatory processes (Pozzi 

et al. 2006), synaptic plasticity and memory (Mukai et al. 2006), and sexual 

differentiation (Ogawa et al. 1998; Roselli et al. 2006). In the lungs, ERα mediates 

alveolar maintenance and regeneration in adult female mice (Massaro et al. 2007). In the 

cardiovascular system, ERα plays a role in vasodilatation (Chambliss and Shaul 2002), 

and specific ERα polymorphisms have been implicated in the development of 

preeclampsia in premenopausal woman (Molvarec et al. 2007) and cardiovascular disease 

in men (Shearman et al. 2003) and postmenopausal women (Alevizaki et al. 2007). The 

majority of estrogen-mediated gene expression in bone and liver requires ERα but not 

ERβ; in fact, the presence of ERβ will diminish the effect of β-estradiol (Lindberg et al. 

2003). 

 

 

Models of Estrogen Action 

 

In vivo uterothrophic assays (Huggins et al. 1954; Clode 2006) and in vitro receptor 

binding assays (Wani et al. 1975; Martucci and Fishman 1976) have been used 

extensively to assess the estrogenicity of chemicals. More recently, cell proliferation 
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assays have also been used to assess estrogenicity (Soto et al. 1995), and in vitro 

molecular biology techniques help explain the mechanisms by which estrogens affect 

target tissues (reviewed by McDonnell et al. 2002). 

 

Immature or OVX adult rodents have served as the standard in vivo bioassay model for 

estrogenic activity (Evans et al. 1941; Odum et al. 1997). The animals used may be 

sexually immature females, that is younger than approximately 4 weeks of age for mice 

or 5 weeks for rats (Jackson Laboratory 1966; Lohmiller 2006), or ovariectomized adults. 

The absence of endogenous estrogen stimulation of target tissues allows for controlled 

dosing and clear correlation of effects observed with the administered dose. Several 

estrogenic endpoints may be measured in these assays: uterus and/or vagina wet weight; 

difference between uterus wet and dry weights (water imbibition); albumin content of 

uterine fluid (uterine vascular permeability); uterine epithelial height (hyperthrophy), 

stromal cell density and number of uterine glands; vaginal epithelial thickness 

(hyperplasia); mammary gland branching, density and epithelial thickness; and 

expression of estrogen target genes in different tissues (Bigsby 2007; Suzuki 2007; Shi 

2004; Raafat & Hofseth 2001; Papaconstantinou 2000; Orimo 1999; Milligan 1998; 

Steinmetz 1998). Because the different tissues will often respond differently to the same 

estrogenic molecule, for example 4-OH-tamoxifen behaves as an estrogen in the uterus 

but as an antiestrogen in mammary gland (Jordan 1995; Fotiou et al. 2000), it is 

important to observe in the same assay more than one estrogenic outcome in different 

target tissues.  
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The basic technology needed to determine the ability of a chemical to bind the estrogen 

receptor was available since estrogens were shown to bind uterine tissue both in vivo and 

in vitro (Jensen et al. 1968; Glascock and Hoekstra 1959). Early assays of radioactive β-

estradiol displacement from estrogen receptors were done by either dosing live animals 

with radioactive β-estradiol (Callantine et al. 1968) or using homogenized uterine tissue 

(Clark and Gorski 1969). Cloning of the human ERα (Green et al. 1986) lead to the 

availability of recombinant protein generated in recombinant baculovirus-infected insect 

cells (Elliston et al. 1990), and thus simplified receptor binding/displacement assays.  

 

Over the last 10 years, breast cancer cell proliferation assays have provided an alternative 

to in vivo assays. The fact that estrogens increase proliferation of neoplastic mammary 

epithelium in vitro is the basis of cell proliferation assays (Weichselbaum et al. 1978). A 

cell line that express ERα is required for this assay, and the MCF-7 breast cancer cell line 

has become the standard model to study estrogen-induced cell proliferation in culture 

(Soto et al. 1995). 

 

Molecular technologies allow testing for direct activation of the estrogen response 

element (ERE) (Seiler-Tuyns et al. 1986; Druege et al. 1986; Klein-Hitpass et al. 1986; 

Nagel et al. 2001), detection of phospho-proteins involved in ERα signaling (Yung et al. 

1997), including ERα itself (Chen et al. 2002; Al-Dhaheri and Rowan 2006), and testing 

for particular characteristics of the ERα molecule— such as ligand-induced conformation 

and availability of its different domains for interaction with other proteins— needed for 

activation/deactivation by a specific ligand in a given cell context (Wu and Safe 2007). 
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Of these technologies, the reporter genes controlled by an ERE are widely used to test 

estrogenicity. These reporter genes are either transiently or stably transfected into ERα 

positive cells and usually confer the test cell with estrogen-inducible chloramphenicol 

acetyltransferase (CAT) activity or firefly luciferase activity (Arnone et al. 2004). 

 

 

Estrogen Toxicology 

 

Endogenous estrogens can become toxic when the organism is exposed to concentrations 

higher than what is normally needed for homeostasis. As discussed previously, relatively 

low plasma concentrations are associated with the normal action of endogenous estrogens 

in female target tissues. Aside from dose, there are two main determinants of estrogen’s 

toxic potential: age and gender. Fetal, pre-pubertal and pubertal mammals will be more 

susceptible than adults, and males will be more susceptible than females to estrogen 

toxicity at increasing doses. Substances that antagonize estrogen action or reduce 

endogenous estrogen levels may also cause disease in adult females (Perry et al. 2006; 

Yoshida et al. 2005). In rodents, prenatal exposure to elevated estrogen levels reduces 

survival rates of fetus and newborn (Kirigaya et al. 2006), and decreases birth weight of 

males (Blaschko et al. 2006). 

 

The toxic effects of natural estrogens in humans can be classified into three main types: 

disruption of the hypothalamic-pituitary-gonadal (HPG) axis, carcinogenic and 

teratogenic (malformation of organs). Estrogens rarely cause acute toxicity. For example, 
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the LD50 (lethal dose at which 50% of the experimental population dies) for ethinyl 

estradiol, a pharmaceutical estrogen commonly used in birth control formulations, ranges 

between 0.5 and 5 g/kg in rodents which die of liver or kidney failure; while in human 

there are no cases of serious effects after overdose except for vomiting in children 

(reviewed by Maier and Herman 2001). Chronic exposure to estrogens could disrupt the 

HPG axis in children (Halperin and Sizonenko 1983; Green 1958); although such 

exposures are usually detected and corrected early because of their gross effects on 

mammary tissues, i.e. gynecomastia in boys and premature thelarche in girls (Felner and 

White 2000; Henley et al. 2007; Denham et al. 2005; Larriuz-Serrano et al. 2001; Colon 

et al. 2000). Estrogens are recognized as tumor promoters in the liver, mammary gland, 

and female reproductive tract (Giannitrapani et al. 2006; Beral et al. 2007; Katalinic and 

Rawal 2007; Yeh 2007). While fetal exposure to estrogens is known to cause 

malformations of the reproductive organs in laboratory animals (reviewed by Saunders 

1968), the only serious cases of teratogenicity seen in humans involved exposure to the 

pharmaceutical diethylstilbestrol that was given to pregnant women to prevent 

spontaneous abortion (Scully et al. 1974). 

 

Estrogen toxicity occurs by at least two different mechanisms: cell cycle dysregulation 

and endocrine disruption. Another mechanism of estrogen action, rapid activation of 

cytosolic signaling molecules like endothelial nitrous oxide synthase (reviewed by 

Chambliss et al. 2002) has yet to be directly associated with toxicity, although the 

proposed rapid activation of cytosolic kinases (Manavathi and Kumar 2006; Migliaccio et 

al. 2006; Filardo et al. 2000) could, in theory, lead to cell cycle dysregulation.  
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Estrogen-target tissues proliferate in response to ERα-mediated expression of cyclin D1 

(Barone et al. 2006; Altucci et al. 1996) and other proteins needed for progression of the 

cell cycle (reviewed by Hilakivi-Clarke et al. 2004). Interestingly, ERβ inhibits ERα-

mediated expression of cyclin D1 (Liu et al. 2002). Cell cycle dysregulation is the 

mechanism by which estrogens act as cancer promoters or lead to benign proliferative 

disease in tissues like liver, mammary glands and endometrium. As discussed previously, 

adult pre-menopausal women have relatively high levels of endogenous estrogens, and 

normally this is a problem only in cancer patients or individuals genetically predisposed 

to cancer. Pre-menopausal women may be at risk of liver tumors from the use of oral 

contraceptives with high steroid formulations, although these are usually benign 

(Giannitrapani et al. 2006). In post-menopausal women, however, hormone replacement 

therapy has been associated with development of ovarian (Beral et al. 2007), breast 

(Katalinic and Rawal 2007), and endometrial (Yeh 2007) cancers. Accidental exposure of 

adult males to estrogens may lead to relatively benign proliferative conditions like 

gynecomastia (Bhat et al. 1990), but females using high dose oral contraceptives and 

males exposed to high levels of estrogens may also develop liver disease (Giannitrapani 

et al. 2006; Cooper et al. 2003). Gynecomastia is also a common symptom of accidental 

estrogen exposure in male children. While the normal human newborn may display 

transient gynecomastia from exposure to maternal estrogens in uterus (Gikas and Mokbel 

2007), cases of young children developing gynecomastia are usually due to exposure to 

adult prescriptions (Felner and White 2000) and herbal oils containing estrogens (Henley 

et al. 2007). 
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Endocrine disruption refers to changes in hormonal homeostasis, and this may occur by 

either direct action of hormones or hormone-like chemicals, or by developmental 

abnormalities that lead to increased hormonal sensitivity. But it is often difficult to 

differentiate between these two mechanisms as they relate to a specific toxic outcome, 

especially in the case of estrogens, since developmental exposure to estrogens increase 

later tissue sensitivity to estrogens (Wadia et al. 2007).  

 

Estrogens play a role in the etiology of adult disease after in utero exposure, an effect 

mediated by ERα (Couse and Korach 2004). In a classic example of this effect, young 

daughters of women that used the estrogenic drug diethylstilbestrol (DES) during 

pregnancy have a very high incidence of clear cell adenocarcinoma of the vagina, an 

otherwise rare condition typically found in older women (Scully et al. 1974). In rodents, 

prenatal estrogen exposure leads to persistent proliferation of vaginal epithelium in the 

adult, even without further estrogen stimulation (Kirigaya et al. 2006). Another in utero 

effect of DES seen in adults, both in rodents and in humans, is uterine fibroids 

(leiomyomata) (Baird and Newbold 2005). Fetal exposure to estrogens also sensitizes 

rodent mammary gland to estrogens in adulthood (Wadia et al. 2007) and induces 

mammary gland ductal hyperplasias and carcinoma in adults (Murray et al. 2007). In the 

male, developmental exposure to estrogens is associated with hyperplasia, inflammation, 

and dysplasia of the prostate (Prins et al. 2006). Exposure of newborn rodents to 

estrogens can affect bone homeostasis (Migliaccio et al. 1995), and ovarian/reproductive 

function in the adult (Jefferson et al. 2006; Burroughs 1995).  
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In female children, accidental exposure to adult estrogenic medication will lead to 

premature thelarche and other symptoms concomitant with premature puberty (Halperin 

and Sizonenko 1983; Green 1958), similar to symptoms produced by elevated levels of 

endogenous steroids associated with ovarian tissue tumors (Till and Schmidt 2005) or 

gonadal dysgenesis (Iliev et al. 2002). In several instances premature thelarche epidemics 

that have occurred worldwide, chronic exposure to xenoestrogens in food or in the wider 

environment was suspected (Colón et al. 2000; Fara et al. 1979; Larriuz-Serrano et al. 

2001; Massart et al. 2005; Nizzoli et al. 1986) and remission was seen when the 

suspected estrogen source was removed (Saenz de Rodriguez et al. 1985). An alternative 

explanation for the causes of idiopathic premature thelarche is the increase of truncal fat 

deposits in a population due to socioeconomic changes (Zukauskaite et al. 2005) since 

increased fat deposits and an associated increase in leptin levels correlate with age at 

puberty (Novotny et al. 2003; van Lenthe et al. 1996; Anderson et al. 2003). The ability 

of body fat to accumulate and release environmental estrogens (Ulrich et al. 2000; Bigsby 

et al. 1997) may provide an alternative hypothesis linking body fat and symptoms of 

premature puberty, but this has not been addressed in human studies. 

 

Other than the clinical observations described above, there is little information on the 

effects of human pubertal exposure to exogenous estrogens, but by reviewing animal 

studies it could be hypothesized that exogenous estrogens may accelerate age of 

menarche in girls and delay puberty in boys. Pubertal exposure to estrogenic chemicals 

affects behavior in juvenile and adult male rats (Della Seta et al. 2006) and in juvenile 

rhesus monkeys (Golub et al. 2004). Studies in prepubertal ewe lambs (Evans et al. 2004) 
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and juvenile rats (Rosa et al. 2003; Kim et al. 2002a; Kim et al. 2002b) showed that 

exogenous estrogens can disrupt lutenizing hormone secretion and thus disrupt cyclicity 

in females. In male rats, delayed puberty and testicular damage has been observed after 

treating juveniles with xenoestrogens (Tan et al. 2003), while in female rats estrogens 

accelerate onset of puberty (Kim et al. 2002a; Kim et al. 2002b). In contrast, prepubertal 

exposure to the estrogens seem to decrease the incidence of mammary tumors in rats 

exposed to the carcinogen 7,12-dimethylbenz[a]anthracene (Cabanes et al. 2004). 

 

 

Endocrine Disruption by Xenoestrogens 

 

The term environmental endocrine disruptor has been defined as “an exogenous agent 

that interferes with the production, release, transport, metabolism, binding, action or 

elimination of natural hormones in the body responsible for the maintenance of 

homeostasis and the regulation of developmental processes” (Kavlock et al. 1996). Many 

environmental pollutants such as the plastic monomer component bisphenol A, and the 

pesticides o,p-DDT, methoxychlor, and β-hexachlorocyclohexane (β-HCH) have been 

classified as endocrine disruptors based on limited epidemiological data and using animal 

bioassay, biochemical analysis, and cell culture models. The better known endocrine 

disruptors that have estrogenic activity or disrupt endogenous estrogen signaling are 

listed in Table 1. Some of these chemicals can also disrupt other hormonal systems in 

addition to estrogens, or may have other toxicities unrelated to estrogen signaling. 
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Since Kupfer and Bulger first demonstrated the metabolic activation of methoxychlor to 

an estrogen (Bulger et al. 1978; Kupfer and Bulger 1979), it has been discovered that 

several other environmental pollutants become estrogenic (Morohoshi et al. 2005; Kohno 

et al. 2005) or can increase in their estrogenic potency (Jansen et al. 1993; Yoshihara et 

al. 2004) after CYP450 metabolism. CYP450 isoenzymes catalyze redox reactions that 

will add a hydroxyl group to an aromatic carbon and/or deahalogenate the aromatic ring 

(Groves 2005; Cnubben et al. 1995). Both loss of halogen atoms and hydroxylation of the 

same aromatic ring (especially 4’-hydroxylation) can transform aromatic halogenated 

hydrocarbons into ER ligands, or increase their activity or ability to bind ER (Huggins 

and Jensen 1954; Vakharia and Gierthy 2000; Korach et al. 1988; Hartmann et al. 1985). 

CYP450 isoenzymes responsible for xenoestrogen activation include 1A2, 2A6, 2A8, 

2C9, 2C18, and 2C19 (Stresser and Kupfer 1998; Hazai and Kupfer 2005; McGraw and 

Waller 2006; Koga et al. 1996). 

 

As discussed previously, the CYP450 enzyme system is also responsible for deactivating 

endogenous estrogens. Environmental chemicals that induce CYP450, especially 

isoenzyme 1A1 and the 3A family (AJ Lee et al. 2003; Zhu and Lee 2005), could 

decrease the activity of endogenous estrogens. The cathechol estrogens formed by these 

enzymes may also be converted to quinones capable of forming DNA adduct or they may 

undergo redox cycling thus producing oxidative stress (Yager 2000; Liehr 2000). 
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Table 1. Examples of Endocrine Disruptors Known to Affect Estrogen Signaling 

Chemical  Mechanism Other effects References 

Bisphenol A ER ligand androgen disruptor (Blair et al. 2000; Kuiper et al. 

1997; HJ Lee et al. 2003) 

Methoxychlor CYP450 metabolites are 

ER ligand 

oxidative stress, 

androgen disruptor 

(Bulger et al. 1978; Kupfer and 

Bulger 1979; Blair et al. 2000; 

Gupta et al. 2006; Murono et al. 

2006) 

1,1,1-trichloro-2- 

(o-chlorophenyl)-2-

(p-chlorophenyl) 

-ethane (o,p’-DDT) 

ER ligand neurotoxic, 

inflamatory 

(Blair et al. 2000; Bolger et al. 

1998; Kim et al. 2004; 

Shankland 1982) 

Polychlorinated 

Biphenyls (several 

congeners; Ex. 

2’,3,4’,6’-

tetrachloro-4-

bisphenylol) 

CYP450 metabolites are 

ER ligands  

immunosupression, 

carcinogenic, 

neurotoxic 

(Vakharia and Gierthy 2000; 

Carpenter 2006; Connor et al. 

1997) 

β-hexachloro-

cyclohexane  

(β-HCH) 

Unknown hepatotoxic (Ulrich et al. 2000; Bigsby et al. 

1997; Schroter et al. 1987; Mills 

and Yang 2006; Muscat et al. 

2003) 

2,3,7,8-tetrachloro 

dibenzo-p-dioxin 

(2,3,7,8-TCDD; 

dioxin) 

induces endogenous 

estrogen catabolism, 

cross-talk between Aryl 

Hydrocarbon Receptor 

(AhR) and ERα 

dermal, vascular, 

hepato- and 

neurotoxic 

(Bigsby et al. 2005; Yoshida et 

al. 2005; Pelclova et al. 2006; 

Khan et al. 2006; Wang et al. 

2006) 

Lead  forms complex within 

hormone-binding 

domain 

Anemic; Neurotoxic (Martin et al. 2003; 

Papanikolaou et al. 2005) 
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Wildlife studies strongly suggest that environmental endocrine disruptors should be of 

concern for human health. Estrogenic environmental pollutants are responsible for 

various detrimental effects on wildlife, including: feminization of male fish (Gross-

Sorokin et al. 2006); feminization of populations (Pickford et al. 2003; Bogi et al. 2003) 

and hermaphroditism (Hayes et al. 2002) in amphibians; alteration of bone homeostasis 

(Lind et al. 2004), steroidogenesis (Crain et al. 1997) and gonadal development (Guillette 

et al. 1994) in reptiles; depressed sexual behavior (Halldin et al. 2005), eggshell thining 

(Berg et al. 2004) and masculinization of song (Quaglino et al. 2002) in birds; 

leiomyomas and decreased fertility in Baltic gray seals (Backlin et al. 2003). But the 

effects of estrogenic endocrine disruptors on humans are still controversial. While the 

detrimental effects of pharmacological agents like the estrogen diethylstilbestrol (DES) 

are well documented (Newbold et al. 2006; Veurink et al. 2005; Lauver et al. 2005), the 

relationship between environmental concentrations of xenoestrogens and human disease 

is less well defined. Xenoestrogens are suspected to play a role in geographically-

confined outbreaks of premature puberty, (Massart et al. 2005) and to cause ambiguous 

genitalia in children exposed in utero (Paris et al. 2006). It has been speculated that 

exposure in utero or early in life can increase sensitivity of children to steroids 

(Aksglaede et al. 2006). However patient xenoestrogen exposure data is often lacking, 

and human case reports are too few to be certain of a direct correlation. Several 

epidemiological studies have looked at xenoestrogen concentrations in breast cancer 

patients or correlations between the disease and pesticide use (Teitelbaum et al. 2007; 

Rubin et al. 2006; Khanjani et al. 2006; Waliszewski et al. 2005) but most have found no 

correlation between adult exposure and disease. A possible complication in such 
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epidemiological studies is the assumption that a correlation between exposure to a 

specific environmental pollutant and effect will exhibit a noticeable dose-response trend. 

But the fact that exposure is ubiquitous in humans, not only to the particular 

xenoestrogens being studied but many other environmental xenoestrogens, makes it 

impossible to find a true “zero exposure” control group (Fürst 2006; Darnerud et al. 

2006; Johnson-Restrepo et al. 2005; Erdogrul et al. 2004; Kalantzi et al. 2004; Schecter et 

al. 2003; Fangstrom et al. 2002; Franchi and Focardi 1991). Therefore it is difficult to 

discern true cause-effect relationships through epidemiological studies unless the study 

can be adjusted for the lack of a zero exposure group and exposures to all known 

xenoestrogen and their possible interactions are accounted for (Fernandez et al. 2007a 

and 2007b). Another issue that has yet to be addressed by epidemiological studies is the 

ability of environmental xenoestrogens to sensitize a developing animal to estrogen 

action in their adult life (Wadia et al. 2007), in other words epidemiological studies 

would need to find if there is a correlation between prenatal exposures to environmental 

xenoestrogens and adult onset diseases (Baird and Newbold 2005). This task has been 

taken up by the National Children's Study, which among other environmental health 

research it is undertaking a prospective study of developmental effects of hormonally 

active environmental agents (Longnecker et al. 2003). 
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PBDEs As Suspected Xenoestrogens 

 

The PBDEs are a series of 209 possible brominated diphenyl ethers that differ in the 

number and position of bromine atoms (ATSDR 2004). Mostly the tetra, penta, hexa, 

octa and deca- brominated congeners were manufactured and marketed as mixtures. 

Commercial mixtures of PBDEs have been used extensively as flame retardants over the 

past 30 years in polyurethane foam-containing consumer goods (carpet padding, sofas, 

mattresses and other) and constitute about 5-30% by weight of foam (ATSDR 2004). The 

PBDEs are very stable compounds and are not chemically bonded to the material they are 

intended to protect from burning. Therefore it is not unexpected that PBDEs are being 

found more and more in environmental media (Hites 2004; Law et al. 2006) and possible 

exposure to them has become a public health concern. Three congeners in DE-71 are the 

most common PBDEs found in environmental samples: 2,2’,4,4’-tetrabromodiphenyl 

ether (BDE-47), 2,2’,4,4’,5-pentabromodiphenyl ether (BDE-99), and 2,2’,4,4’,5,5’-

hexabromodiphenyl ether (BDE-153); it has been suggested that these three congeners 

are able to bioaccumulate (Hites 2004).  

 

Based on the increase in PBDE content of mother’s milk in Europe (Noren and 

Meironyte 2000; Lind et al. 2003), the European Union banned the use of certain PBDE 

congeners in 2004 (European Union 2003). Studies in the USA (California, Indiana, and 

Texas) and Canada have shown levels in human cord blood, peripheral blood, breast 

adipose tissue and milk to be 10-100 times higher than in Europe (Petreas et al. 2003; She 

et al. 2002; Mazdai et al. 2003; Schecter et al. 2003). California followed with a ban by 
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January 2008 (California Assembly 2003), and the U.S. Environmental Protection 

Agency (EPA) reached a voluntary agreement with the only U.S. manufacturer of penta- 

and octa-BDE, Great Lakes Chemical Corporation, under which the company ceased 

production of these chemicals at the end of 2004. A new rule effective in 2005 requires 

notification to EPA before commencing manufacture or import of most PBDEs to the US. 

The EPA would evaluate the intended use and associated activities and, if necessary, 

prohibit or limit that activity before it occurs (U.S.E.P.A 2006). More recent studies have 

found increasing PBDEs levels in environmental and human samples in Asia (Wang et al. 

2007) and Australia (Toms et al. 2007), therefore PBDEs have become a pollutant of 

concern in the global environment. 

 

The endocrine disrupting potential of polybrominated diphenyl ethers (PBDEs) has been 

studied by others, mostly regarding its effect on thyroid hormone homeostasis (Hall and 

Thomas 2007; Darnerud et al. 2007; Ellis-Hutchings et al. 2006; Balch et al. 2006; Fernie 

et al. 2005; Meerts et al. 2000). In addition to disrupting thyroid signaling, PBDEs are 

known to alter behavior and sexual development in rats. Viberg, Eriksson and 

Fredriksson found neurobehavioral alterations in rodents treated neonataly with PBDEs 

(Viberg et al. 2003, 2004; Eriksson et al. 2006). Others have shown PBDE treatment 

interferes with sexual development and behavior in rodents (Stoker et al. 2004; Kuriyama 

et al. 2005; Ceccatelli et al. 2006; Lilienthal et al. 2006). Neither the neurobehavioral nor 

developmental effects of PBDEs have been directly linked to a specific hormonal 

activity.  
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PBDEs are suspected to behave as estrogens because of the similarity of their chemical 

structure (Figure 5) and properties to other xenobiotics, mainly the polychlorinated 

biphenyls (Hooper and McDonald 2000; Pijnenburg et al. 1995; Meerts et al. 2001). 

Furthermore, it has been shown that hydroxylated metabolites of PCBs exert estrogenic 

effects (see references in Table 1), and therefore, it may be reasonable to expect that 

hydroxylated forms of PBDEs would also be estrogenic. Others have shown that 

individual PBDE congeners or certain synthetic hydroxylated congeners could exert 

estrogenic effects in cultured cells (Meerts et al. 2001; Hamers et al. 2006). In estrogen-

responsive transcription reporter assays, BDE-28 and -100 and the 4’-hydroxy forms of 

BDE-30 and -119 proved to be estrogenic (Meerts et al. 2001), but these compounds have 

not been found as metabolites in any biological samples. In addition, several PBDE 

congeners were mildly antiestrogenic in the same assay. Likewise, Hamers et. al. (2006) 

observed weak estrogenic activity by several low-brominated BDEs, weak antiestrogenic 

activity for tetra- and hepta-brominated BDEs and 6-OH-BDE-47, and neither activity for 

the DE-71 mixture (Hamers et al. 2006). In a recent in vivo study, BDE-47 had 

uterotrophic effects in immature rats (Dang et al. 2007), suggesting that in vivo activation 

of this otherwise non-estrogenic PBDE (Meerts et al. 2001) occurs in the rat.  

 

Here we focus on the possible estrogenicity of the penta-BDE mixture manufactured by 

Great Lakes Chemical Corporation (West Lafayette, Indiana, USA) known as DE-71 (see 

Material Safety Data Sheet in Appendix 1). DE-71 has been used as flame retardant 

additive in consumer products manufactured by the furniture industry, mainly in the 

manufacture of flexible polyurethane foam (FPUF), which is used in bed mattresses and 
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cushioning in upholstered products (ENVIRON 2003 cited in ATSDR 2004). Mattress 

FPUF contains approximately 2–3% flame retardant, cushion FPUF contains 3–5% flame 

retardant, and scrap materials from both industries have been used as carpet padding, 

resulting in carpet containing 3–5% flame retardant (ENVIRON 2003 cited in ATSDR 

2004).The DE-71 mixture composition is detailed in Table 2 (Qiu et al. 2007). 
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Figure 5. Chemical structure of β-estradiol, several classic xenoestrogens, and DE-71 congeners 

(blue).

 

t 
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Table 2. Composition of DE-71. The composition of the DE-71 commercial mixture was determined by 

gas chromatographic mass spectrometry (GC/MS) analysis (from Qiu et al. 2007). 

Congener Name Chemical Name Percent of Mixture by Weight 

BDE-28 2,4,4’-tribromo diphenyl ether 0.3% 

BDE-47 2,2’,4,4’-tetrabromo diphenyl ether 36% 

BDE-85 2,2’,3,4,4’-pentabromo diphenyl ether 2.6% 

BDE-99 2,2’,4,4’,5-pentabromo diphenyl ether 44% 

BDE-100 2,2’,4,4’,6-pentabromo diphenyl ether 9.1% 

BDE-153 2,2’,4,4’,5,5’-hexabromo diphenyl ether 4.3% 

BDE-154 2,2’,4,4’,5,6’-hexabromo diphenyl ether 3.3% 

Other hexa-BDEs --- 0.4% 
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Specific Aims of Thesis 

 

Animal studies have clearly shown the potential for environmental estrogens to disrupt 

normal development and physiology and to cause disease. It is imperative that 

compounds with the potential to cause such problems be tested for hormonal activity so 

that informed public policy decisions can be made concerning their manufacture and use. 

 

PBDEs have the potential to be estrogenic endocrine disruptors. These anthropogenic 

chemicals are detectable in organic and inorganic environmental media (Hites 2004; Law 

et al. 2006), and there is little information in the scientific literature that could be used to 

assess the health risks PBDEs pose to humans at the current levels found in human blood 

samples. Their molecular structure is similar to other environmental pollutants known to 

be estrogenic (Figure 5) or to be converted to estrogenic species by mammalian in vivo 

metabolism capable of activating ERα-mediated signaling (see references on Table 1). 

Therefore, we studied the estrogenic activity of the mostly penta-brominated PBDE 

formulation DE-71. More specifically, the main hypothesis of this thesis is that DE-71 

acts as an endocrine disruptor through activation of ERα. The specific aims of this thesis 

are: 

1- Determine if DE-71 exerts estrogenic or antiestrogenic effects in cell culture 

and animal models. 

2- Determine the role of metabolic activation in DE-71 estrogenic or 

antiestrogenic effects. 
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3- Explore the mechanisms by which DE-71 congeners or their metabolites can 

activate or antagonize ERα signaling. 

 

The results presented here will be useful in two areas: public health policy and basic 

estrogen signaling science. Since the few studies currently available show estrogenic 

activity of some PBDEs in a limited numbers of model systems, our findings will expand 

the urgently needed information to aid in developing science-based health risk 

assessments, public policies, and regulations to protect public health. At the same time, if 

DE-71 shows estrogenic or antiestrogenic activity, the discovery of new estrogens will 

allow for characterization of their interactions with ERs, and since these receptors are 

known to behave differently according to ligand and cellular environment, the new 

ligands could be used to further the study of estrogen receptor signaling pathways.  
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Materials and Methods 

 

Test Chemicals  

 

Dimethyl sulphoxyde (DMSO), 1,3,5[10]estratriene-3,17-β-diol (β-estradiol, E2), and β -

estradiol-3-benzoate (EB), were purchased from Sigma-Aldrich (St. Louis, Missouri, 

USA). Corn oil was purchased from ICN Biomedicals Inc. (Aurora, Ohio, USA). 

Fulvestrant (ICI 182 780, ICI) was a gift from Astra Zeneca. The PBDE congener 

mixture DE-71 was a gift from the Great Lakes Chemical Corporation (West Lafayette, 

Indiana, USA; see Appendix 1 for chemical properties; see composition in Table 1). 4´-

OH-2,2´,4-Tri-BDE (4´-OH-BDE-17); 2´-OH-2,4,4´-tri-BDE (2´-OH-BDE-28); 4-OH-

2,2´,3,4´-tetra-BDE (4-OH-BDE-42); 3-OH-2,2´,4,4´-tetra-BDE (3-OH-BDE-47); 6-OH-

2,2´,4,4´-tetra-BDE (6-OH-BDE-47); and 4 ´-OH-2,2´,4,5´-tetra-BDE (4´-OH-BDE-49) 

were gifts from Göran Marsh (Stockholm University, Stockholm, Sweden) and were 

synthesized as described elsewhere (Marsh et al. 2004). 2,4-Dibromophenol (2,4-DBP) 

and 2,4,5-tribromophenol (2,4,5-TBP) were purchased from Cambridge Isotope 

Laboratories (Cambridge, Massachussets, USA). DMSO was used as the primary solvent 

for all treatment chemicals. DMSO solutions were further diluted in tocopherol-free corn 

oil (Sigma-Aldrich) for animal treatments. 
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Cells and Culture Conditions 

 

Several cell lines were used: MCF-7, MDA-MB-231, SKBR3 and BG1Luc4E2. MCF-7 

(Soule et al. 1973), MDA-MB-231 (Cailleau et al. 1978) and SKBR3 (Fough and Trempe 

1975) are all breast cancer cell lines obtained from American Type Culture Collection 

(ATCC, Manassas, Virginia, USA; catalog numbers HTB-22, HTB-26 and HTB-30, 

respectively); they were derived from pleural effusions from different female patients 

with metastatic disease. MCF-7, MDA-MB-231 and SKBR3 were cultured for up to 30 

passages without compromising assay reproducibility. The BG1LucE2 cell line (a gift 

form Michael Denison, University of California at Davis, USA) are BG-1 ovarian cancer 

cells (Geisinger et al. 1989) stably transfected with an estrogen-responsive plasmid 

containing neomycin (G418) resistant marker, four concatenated ERE oligonucleotides 

immediately upstream of a mouse mammary tumor viral (MMTV) promoter and the 

firefly luciferase gene (Rogers and Denison 2000). BG1LucE2 cells were passaged no 

more than 9 times before using a new cryopreserved vial, since cells above the ninth 

passage lost their sensitivity to estrogen. 

 

Most cell culture media and supplements were purchased from Gibco/Invitrogen 

(Carlsbad, California), except Bovine Growth Serum (BGS; Hyclone; Logan, Utah, USA) 

and geneticin (G418, Sigma). Most charcoal-stripping reagents and endotoxin-free water 

were purchased from Sigma-Aldrich except Dulbecco’s Phosphate Buffered Saline 

(DPBS; Mediatech Inc., Herndon, Virginia, USA).  
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MCF-7, SKBR3 and MDA-MB-231 were maintained in Growth Medium (GM) with the 

following formulation: Minimum Essential Media (MEM) supplemented with L-

glutamine (2 mM), non essential amino acids (NEAA 0.1 mM), Hepes buffer (10 mM), 

0.4 pg/mL insulin and 5% v/v BGS. BG1Luc4E2 were maintained in a different medium 

formulation (BG1-GM): alpha-MEM supplemented with Hepes buffer (10 mM), 

geneticin (0.4 g/L) and 10% v/v BGS. 

 

For assays measuring estrogenic activity, a medium formulation with minimal hormonal 

activity was required to decrease basal estrogenic signaling in each of the cell lines. For 

MCF-7, SKBR3 and MDA-MB-231 cells this Basal Medium (BM) consisted of a 

formulation similar to GM except phenol red free MEM and 3% charcoal-stripped BGS 

(csBGS) were used. For kinase phosphorylation assays, cells were incubated in serum-

free BM (sfBM). Basal medium for BG1Luc4E2 (BG1-BM) consisted of phenol red-free 

Dulbecco's Modified Eagle Media: Nutrient Mixture F12 (DMEM:F12, 

Gibco/Invitrogen) supplemented with Hepes buffer (10 mM), and 10% v/v csBGS. BGS 

was stripped of estrogenic activity by a modification of the methods described previously 

(Lippman et al. 1976; Biswas and Vonderhaar 1987). Activated charcoal (0.4 g per 22 

mL BGS) was washed 3 times in endotoxin-free 0.01 N HCl, then twice in endotoxin-free 

water. The charcoal was then dextran-coated by washing in 1 g/L dextran dissolved in 

DPBS. After each wash, charcoal was pelleted by centrifuging at 3500 RCF and 

decanting supernatant. BGS was added and rocked at 4°C for 30 min. After removing the 

charcoal by centrifugation as before, the BGS was decanted into another batch of unused 

dextran-coated charcoal and rocked again at 4°C for 30 min. The charcoal was pelleted 
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by centrifugation and the BGS was filtered first through 0.4 μm filter, then through 0.2 

μm filter, aliquoted, and stored at -20°C. The stripped serum was tested for estrogenic 

activity using the cell proliferation assay described below. Serum was considered 

properly stripped of activity if it did not increase cell number more than double over 10 

days. In comparison, the positive controls β-estradiol and GM will increase cell number 

about 10 times in the same time period (Figure 6). 

 

 

Cell Proliferation Measurements 

 

A colorimetric assay to measure cell proliferation developed by Mosmann (1983) was 

used with minor modifications. MCF-7 cells were plated with GM in 24-well dishes 

(15,000 cells/well, approximately 10% confluency). The growth of MCF-7 cells in 

culture is inhibited by media formulations containing charcoal-stripped mammalian 

serum, and this inhibition is overcome by treatment with estrogen (Soto et al. 1991; Soto 

et al. 1995). The day after plating, culture medium was changed to BM. Starting two days 

after changing to BM, cells were cultured in treatment medium (BM plus treatment), 

changing the treatment medium every 2 days. To determine cell number, cells were 

incubated in MTT (3-(4,5- dimethylthiazolyl-2)2, 5-diphenyltetrazolium bromide) for 2 

hours, then lysed in acid isopropanol. Reduced (blue) MTT absorbance was read at 570 

nm. Cell growth was assessed every other day during preliminary experiments and it was 

determined that a total incubation time of 10 day yielded an acceptable difference 

between vehicle treatment and 10 pM estradiol positive control (Figure 6A). The growth 
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of MCF-7 cells is not contact-inhibited, and cells treated with β-estradiol or GM 

consistently grew in layers after reaching 100% confluency. 

 

In order to confirm the MTT absorbance correlated with cell growth and not increased 

metabolic activity, some experiments included additional plates treated in parallel for 

DNA concentration determination by fluorometric assay (Le Pecq and Paoletti 1966) 

(Figure 6B). Cells were washed twice with phosphate saline buffer and incubated for 10 

seconds in cold methanol. After removing the methanol, cells were allowed to dry at 

room temperature and then dissolved in 0.5 M NaOH by rocking in an humidified 37°C 

chamber for 30 min. Samples were then transferred to microtubes and incubated at 65°C 

for 1 hour. 100 μL of sample was diluted in TNE buffer (10 mM Tris; 0.1 M NaCl; 1 mM 

EDTA; pH 7.4) containing 0.1 mg/mL Hoescht 33258 dye (Polysciences, Warrington 

Pennsylvania, USA), and neutralized with an equimolar amount of HCl. Fluorencense 

was measured in a Hoefer TKO 100 DNA Fluorometer (only measures at 460 nm) 

against a salmon sperm DNA standard (Invitrogen, Carlsbad CA, USA).
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Figure 6. Preliminary MCF-7 cell proliferation measured by two different assays. Cells were grown in 

either Growth Media (GM), Basal Media (BM), BM with 0.1% DMSO (DMSO), or BM with 0.1% DMSO 

and β-estradiol (estradiol) at the concentrations indicated in the chart. A. Cell growth evaluated over 10 

days by MTT assay, expressed as fold change compared to cell number after 2-day treatment with basal 

media only; each data point is the average of 4 independently plated assays on different days ± SEM. B. 

DNA concentration after 10 days, measured by Hoescht dye fluorescence method; each column is the 

average of 3 independently plated assays on different days ± SEM. 
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Estrogen Response Element-Luciferase Assays 

 

Two ERE-luciferase reporter gene systems were used: one transiently transfected, the 

other an established stably-transfected cell line. Plasmids were replicated in E. coli (XL1-

Blue Supercompetentcells, Stratagene) transformed by heat shock method (42°C for 50 

seconds) and grown in Luria broth (LB; Gibco) with 0.1 mg/mL ampicillin; then purified 

using the EndoFree® Plasmid Maxi Kit (Qiagen). For the transient system, ER-negative 

MDA-MB-231 breast cancer cells were plated in BM at 80,000 cells/well of a 12-well 

plate. Two days later cells were transfected using the commercial liposome preparation 

Tfx-20 (3 µL/well; Promega, Madison, Wisconsin, USA) with expression vectors for 

ERα (7.5 ng/well; HEG0 from Dr. Pierre Chambon, Institute de Chimie Biologique, 

France), the estrogen-responsive firefly luciferase reporter construct ERE2pS2-luc (200 

ng/well; Long et al. 2001), the control Renilla luciferase reporter construct pRL-TK (100 

ng/well; Promega), and 692.5 ng/well of empty vector (pcDNA3; Promega) for a total of 

1000 ng plasmid per well. MDA-MB-231 cells do not respond to estrogen treatment in 

this assay unless transfected with an estrogen receptor (Bigsby, unpublished data). Cells 

were treated with test chemicals 1 hour after transfection, and assayed for luciferase 

activity after 18 hours. Results are expressed as the ratio of firefly luciferase to Renilla 

luciferase (Figure 7). β-Estradiol treatment reach a maximal 16-fold luciferase induction 

versus control treatment at 10 pM. Increasing concentrations of β-estradiol above 10 pM 

were not able to further increase luciferase induction beyond the maximum already 

reached at 10 pM. 

 



 
 

50

Figure 7. β-Estradiol dose-response in MDA-MB-231 cells transiently transfected with ERE-

luciferase and ERα. Cells were plated in basal media for 2 days then cotrasfected with plasmids 

expressing human ERα, the firefly luciferase with the Estrogen Response Element (ERE) in its promoter, 

and a constitutively active Renilla luciferase gene. 18 hours after transfection, cell lysates were collected 

for dual luciferase assay. Firefly luciferase expression was normalized to Renilla luciferase expression. 

Each data point is the average of 3 wells treated simultaneously ± SEM. RLU, Relative Light Units. Two 

independent preliminary experiments are shown (Experiment #1 and Experiment #2). pM, picomolar (10-12 

moles per liter) 
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For the stable reporter system, ER-positive BG1Luc4E2 ovarian cancer cells (Rogers and 

Denison 2000) were plated in BG1-BM at 70,000 cells/well of a 12-well plate and grown 

for 5 days with change of medium before treatment. Cell were treated with vehicle, 

estradiol or test compound and assayed for luciferase activity after 18 hours. While the 

rest of our media formulations followed that described in their papers (Rogers and 

Denison 2000, 2002), our formulations differ in the kind of serum used. Although the 

optimal amount of csBGS had been determined previously for most cell lines used in our 

laboratory, the BG1Luc3E2 cell line was a new addition to our stock and the optimal 

levels of csBGS had to be determined experimentally as explained below. In addition, as 

part of the assay quality control for the BG1LucE2 cells we only used assays in which the 

maximal β-estradiol effect was more than 2.5 fold over vehicle control (Appendix 2).  

 

BG1Luc3E2 cells were plated in BM containing different amounts of csBGS during 2 

experiments. In the first experiment, cells were plated with BM containing either 0.5%, 

1%, or 3% csBGS. In the second experiment, cells were plated with BM containing either 

1%, 3%, 5% or 10% csBGS. After 5 days, media was changed to either the same BM it 

had before, or with the addition of one of three treatments: 0.1% DMSO (vehicle), 0.1 

nM β-estradiol or 1 nM β-estradiol. Cells were assayed for luciferase activity after 18 

hours. The results for all treatments were normalized to the BM only treatment with the 

same csBGS content. The intensity of the luciferase signal after β-estradiol treatment 

correlated with the amount of csBGS in media. BM with 10% csBGS allowed for an 18-

fold increase in luciferase signal after β-estradiol treatment, which was considered a 
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satisfactory magnitude for the assays (Figure 8). All BG1Luc3E2 experiments thereafter 

were done using 10% csBGS.  
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Figure 8. Determination of optimal amount of csBGS in basal media for BG1Luc4E2 cell line for 

ERE-luciferase assay. Cells were incubated in media containing different concentrations of csBGS (by 

volume) during 2 different experiments. Individual wells were incubated in Basal Media alone (BM) or 

with 0.1% DMSO or 0.1% DMSO and the β-estradiol concentrations indicated in the chart. 18 hours after 

treatment, cell lysates were collected for luciferase and protein assays. Firefly luciferase expression was 

normalized to total protein per well. Each data point is the average of 3 wells treated simultaneously ± 

SEM. A and C show raw data corrected for the amount of protein in each well. B and D show data 

normalized to the BM treatment for each csBGS concentration. RLU, Relative Light Units. 
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Figure 8 (cont).  
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In vitro Generation of Microsomal Metabolites 

 

DE-71 or E2 were incubated with liver microsomes in order to obtain microsomal 

metabolites, using a procedure adapted from Bulger et al. (1978). Glucose-6-phosphate, 

glucose-6-phosphate dehydrogenase (G6PD) and β-nicotinamide adenine dinucleotide 

phosphate (oxidized form, NADP+) were purchased from Sigma-Aldrich. DE-71 (1 mM) 

or E2 (1 μM) were incubated with female rat liver microsomes (BD Biosciences Gentest, 

Woburn, Massachusetts, USA) and NADPH regenerating system (50 mm Tris buffer pH 

7.5, 5 mM MgCl2, 12 mM glucose-6-phosphate, 0.4 mM NADP+, 2 units G6PD) in 

loose-capped tubes at 37°C with shaking. The incubation was allowed to continue for 24 

hours in order to obtain the maximal amount of metabolite possible. The incubation 

mixture was then centrifuged at 105,000 x g and 4°C for 1hr to remove pelleted 

microsomes. The pellet was discarded. 

 

The organic fraction was extracted from the supernatant by solid-state extraction with 

ethanol elution using Sep-Pak Plus C18 cartridges (Waters Corp., Milford, 

Massachusetts, USA), then evaporated to dryness in vacuo and extracts were 

reconstituted with DMSO at the original volume to yield 10 mM PBDE or 10 μM β-

estradiol in DMSO (assuming 100% recovery). This extraction procedure was adapted 

from Yoshihara et al. (2004). Finally, the reconstituted extracts were tested for estrogenic 

activity in the ERE-luciferase assay described above. Microsomal (cytochrome P450) 

metabolism of β-estradiol is expected to reduce the “estrogenic” character of the steroid 

through hydroxylation (reviewed by Bigsby et al. 2005). Only experiments in which the 
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β-estradiol incubation lost estrogenic activity (positive control) were consider successful; 

data from experiments in which the β-estradiol incubation did not lost estrogenic activity 

was not used (see Appendix 4). 

 

 

Recombinant Estrogen Receptor Alpha Binding Assay 

 

Vehicle or test chemicals were incubated with 1 nM 3H-estradiol (Amersham 

Biosciences; Buckinghamshire, England) and 0.6 nM recombinant ERα 

(Panvera/Invitrogen; Madison, Wisconsin, USA) in a total volume of 250 μL TE buffer 

(10 mM Tris, 1 mM EDTA, pH 7.5) at 4°C overnight. Hydroxylapatite (60% in TE 

buffer) was added, mixed well and incubated for 15 min at room temperature. The 

resulting slurry was washed 3 times by centrifugation at 3000 x g and buffer exchange at 

4°C. Bound ligand was extracted from the receptor-hydroxylapatite complex by 

incubation with absolute ethanol at 30°C for 10 min. 3H decay (counts per minute) was 

measured by liquid scintillation in a Beckman LS 5000 TD counter. 

 

 

Kinase Phosphorylation Assay 

 

MDA-MB-231, MCF-7 or SKBR-3 cells were plated in BM at a density of 106 cells per 

100 mm diameter cell culture plate and incubated overnight (37ºC, 5% CO2). The next 

day cells were washed with DPBS and media was changed to sfBM and incubated 
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overnight. The next day cells were either left untreated, or treated with 1mL sfBM, 

positive control, DMSO, estradiol or DE-71 (concentrations as indicated in figures). 

Epidermal Growth Factor (EGF) or Transforming Growth Factor alpha (TGFα) were 

used as positive controls. Cells were incubated for either 5 or 10 minutes at 37°C and 

then culture plates were placed on ice. Cells were then scraped gently from plates, 

washed in DPBS, and lysed with Cell Lysis Buffer (Cell Signaling catalog #9803; 

Danvers, Massachusetts, USA). DNA and other unwanted cell debris were pelleted by 

centrifugation (10 minutes at 10,000 x g and 4ºC) and removed, while the proteins in the 

supernatant were separated by sodium dodecyl sulfate - polyacrylamide gel 

electrophoresis (SDS-PAGE) and transferred to a nitrocellulose membrane for 

immunoblotting. The PathScan® Multiplex Western Cocktail I (Cell Signaling catalog 

#5301), was used at a 1:200 dilutions, a mixture of primary antibodies which detects 

phospho-p90RSK, phospho-Akt, phospho-Erk1/2, and phospho-S6 ribosomal protein; an 

antibody against eIF4E is included as a loading control. Blots were also probed separately 

with antibodies for Erk1/2 (Cell Signaling catalog #9102) at a 1:1000 dilution or for 

phospho-Erk1/2 (Th202/Tyr204; Cell Signaling catalog #9101) at a 1:1000 dilution. 

Anti-rabbit IgG horseradish peroxidase (HRP)-linked antibody (Cell Signaling catalog 

#7074) was used as secondary antibody at a 1:1000 dilution. A biotinylated protein ladder 

was used, with its corresponding antibiotin HRP-linked antibody (Cell Signaling catalog 

#7727) at a 1:1000 dilution. Chemiluminescence analysis of the antibody signal was 

performed using SuperSignal West Femto (Pierce, Woburn Massachusetts, USA) 

according to the manufacturer’s instructions. 
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Animal Treatments 

 

All procedures performed on animals were approved by the Institutional Animal Care and 

Use Committee of the Indiana University School of Medicine. Adult BALB/c and 

C57BL/6 mice were purchased from Harland (Indianapolis, USA) while ERα-negative 

(ERα-knockout, ERαKO) mice were derived from an in-house colony of inbred mice 

with C57BL/6 background, maintained by the laboratory of Robert M. Bigsby at the 

Indiana University School of Medicine Animal Facility. Inbreed wild type mice (BALB/c 

and C57BL/6) were used to reduce the variability of the results. BALB/c mice are docile, 

easy to handle and have no known special attributes that may interfere or modify ERα 

signaling. The C57BL/6 mouse is the background strain of ERαKO mice and is 

commonly used in assays to assess estrogenic activity of chemicals. Animals were 

ovariectomized (as described by Olson and Bruce 1986) at 6-8 weeks old and 3 weeks 

later, they were treated for either 3 days or 34 days with vehicle or test compound. 

Animals with incomplete ovariectomies were detected at two specific steps in the 

procedure: at tissue harvesting, and when measuring uterine epithelial cell height (UEH). 

At tissue harvesting, animals with visibly intact or partial ovaries were excluded from the 

experiment. When measuring UEH, animals with uterus weight in the control range but 

UEH closer to EB-treated animals were assumed to have incomplete ovariectomies. Four 

animals were found to have incomplete ovariectomies (from all experiments). Data from 

animals with incomplete ovariectomies was not included in the final analysis. 
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Groups of 5-6 animals were treated daily by either subcutaneous injection (SQ) or oral 

gavage (PO) with either vehicle control, or DE-71 (50 mg/kg for 34 days or with 75, 150 

or 300 mg/kg for 3 days). For the 34 days regime, a positive control group of 5 animals 

was treated SQ two times per week with 10 μg/kg EB in tocopherol-free corn oil (10 µL); 

EB in oil is a long acting formulation of the hormone (de Souza and Coutinho, 1975). 

The 34-day experiment was repeated, for a total of 7-11 animals per group. For the 3 day 

regime, positive control groups of 4-5 animals were treated once with either 10 μg/kg EB 

or 10 mg/kg EB (SQ, 10 µL). An additional group for each DE-71 treatment was also co-

treated with 10 μg/kg EB. 3-day SQ treatment groups were repeated in a separate 

experiment (except 10 mg/kg EB), for a total of 7-10 animals per SQ treatment group, 

and 5 animals per PO treatment group. Doses were selected based on the maximal total 

dose given to mice by Staskal et al. (2005), 100 mg/kg, which resulted in no acute 

toxicity. The 6,200 mg/kg oral lethal dose for 50% mortality (LD50) for rats listed in the 

DE-71 Material Safety Data Sheet (Appendix 1) was also taken into consideration. For 

the 3-day assay, we used one dose lower than Staskal et. al., 75 mg/kg, and two higher 

doses, 150 and 300 mg/kg, once daily for 3 days, without any signs of acute toxicity 

(decrease body weight, anorexia, lethargy, or death). For the 34-day assay, mice were 

administered 50 mg/kg daily for 5 days per week, without any signs of toxicity. 

Chemicals were first dissolved in DMSO and then diluted in corn oil for PO treatment 

and administered at 0.1 mL for PO, 10-20 μL for SQ. The day after the last treatment, 

animals were sacrificed by decapitation. Blood was collected by exsanguination and kept 

at 4°C not more than 20 hours before it was centrifuged at 10,000 x g for 10 min at 4°C. 

The supernatant (serum) was collected and stored at -20°C until analysis for individual 
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BDE congeners and their hydroxylated metabolites (Qiu et al. 2007). The liver was 

perfused in situ with phosphate buffered saline by placing a cannula inside the hepatic 

portal vein while the superior vena cava was clamped (between heart and neck) and the 

inferior vena cava was cut (between liver and kidneys). The uterus and liver were 

weighed and expressed on a per gram of body weight basis. One uterine horn and the 

vagina were fixed in Bouin's Solution overnight. The liver was flash-frozen in liquid 

nitrogen and then stored at -70°C. The right side, #4 inguinal mammary gland was 

dissected whole, spread on BSA-treated slides, and fixed in Carnoy’s fixative overnight. 

The fixed uterus and vagina were embedded in paraffin and 5 μm cross sections were 

stained with hematoxylin and eosin for analysis by light microscopy. Whole mounts of 

the mammary glands were prepared as described below. After digital micrographs were 

visually analyzed, the mammary tissue was removed from the whole mount and 

embedded in paraffin. Cross sections of the mammary tissue were stained with 

hematoxylin and eosin. Uterine epithelial cells height (UEH), vaginal epithelial thickness 

(VET), and mammary branches per duct length (BPL), ductal epithelial height (DEH) and 

ductal lumen area (DLA) measurements were used as estrogen-sensitive endpoints 

(measured using IPLab version3.5 imaging software, Scanalytics Inc., Fairfax, Virginia, 

USA).  
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Whole Mount Mammary Glands 

 

Mammary glands were processed according to procedures described by Rasmussen et al. 

(2000) with minor modifications. The right inguinal mammary gland from each animal 

was dissected from the body in its entire fat pad and this was placed on a glass slide. 

After applying to slides, mammary glands were hydrated in consecutive baths of 70%, 

50% and 25% ethanol (15 minutes each), and distilled water (5 minutes) before staining 

in carmine alumn (Sigma-Aldrich) overnight. Slides were briefly rinsed with distilled 

water before destaining in acid ethanol (38% 1 N HCl) for 2-4 hours or until background 

was minimal. Slides were then dehydrated in consecutive baths of 70%, 80%, 95%, 100% 

and 100% ethanol (15 minutes each). The tissue was then cleared in HistoClear (National 

Diagnostics; Atlanta, Gerogia, USA) twice (1 hour each) and mounted with a coverslip 

using Permount (Fisher; Fair Lawn, New Jersey, USA). 

 

 

Cytochrome P450 Activity Assays  

 

For each animal, about 0.2 g of frozen liver was homogenized in 1 mL high-sucrose 

buffer (0.15 M KCL, 0.5 M Tris, 1 mM EDTA, 0.25 M sucrose, 0.2 mM PMSF, 20 μM 

BHT, pH = 7.4) and centrifuged at 9000 x g and 4°C for 20 minutes. In order to obtain 

the microsomal fraction, the resulting supernatant was centrifuged at 105,000 x g and 4°C 

for 60 minutes; the pellet was washed in potassium diphosphate buffer (0.1 M K4P2O7, 1 

mM EDTA, 0.2 mM PMSF, 20 μM BHT, pH = 7.4) by resuspending it using disposable 
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homogenizing microtubes and pestles (Kontes Glass Company; Vineland, New Jersey, 

USA). Protein content of the microsomal preparation was determined using the Pierce 

BCA Protein Assay Kit. Each animal was assayed in duplicate.  

 

7-Ethoxyresorufin O-dealkylation (EROD, CYP1A) activity and 7-pentoxyresorufin O-

dealkylation (PROD, CYP2B) activity were measured immediately by mixing 5 μL of 

sample with 5 μL 250 μM NADPH and 3.4 μL of 0.6 mM 7-ethoxyresorufin or 7-

pentoxyresorufin in 1.2 mL 0.1 Tris buffer at 37°C. After allowing the mixture to 

equilibrate for 1 min, fluorescence was measured at 530 nm excitation and 585 nm 

emission in a fluorometer at 1 sec intervals over the course of 1 min. Similar 

measurements were made with 6 different resorufin concentrations to determine a 

standard curve. The slope for each activity assay (Δfluorescence/second) was converted 

to moles of resorufin per gram per second (moles/gram*second) using the standard curve 

and the protein content of each sample.  

 

 

Statistics 

 

All statistics were done using GraphPad Prism version 3.0a for Macintosh (GraphPad 

Software; San Diego, California, USA). For each statistical analysis, it was determined if 

groups had unequal variances by Bartlett’s test. Group averages with equal variances 

were compared to each other by either one-way ANOVA with Tukey post-test or 

unpaired T-test. Group averages with unequal variances were compared to each other by 
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T-test with Welch’s correction. Groups treated with DE-71 alone were analyzed against 

vehicle controls. Groups co-treated with DE-71 and EB were analyzed against controls 

treated with EB alone.  

 

Dose-response curves were also analyzed by either linear regression or sigmoidal (dose-

response with variable slope) regression analysis: 

Linear:  y = xm + b 

Sigmoidal: y = B +         T – B         .   
                                1 + 10( logEC50-x)H 
were: y = dependent variable, x = independent variable 

m = linear slope, b = y-axis intercept value 

B = minimum value, T = maximum value 

EC50 (or IC50) = x value at {y = (T-B)/2} 

H = Hill slope, describes the steepness of the curve:  

H = 1, standard sigmoid dose-response curve,  

H < 1, shallower than standard curve,   

H < 1, steeper than standard curve. 

 

The regression model that best fit the data was chosen as the one that yielded the highest 

regression coefficient value; results are shown in chart if the regression coefficient was ≥ 

0.9. All values are expressed as mean ± standard error of the mean (SEM). Except as 

noted in figure legends, all cell culture assays were measured 4 times per assay (i.e. four 

independently plated wells during the same assay, n = 4) and ERα binding assays were 

measured 3 times per assay (i.e. 3 independently mixed incubations during the same 
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assay, n = 3). Results from at least 3 different in culture or in vitro assays (i.e. assay done 

at different dates) were averaged for each data point, and presented as mean ± (SEM). 

For animal assays, the number of animals used per treatment group (n) is indicated in 

figure legends.  
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Results 

 

Specific Aim 1: Determine if DE-71 exerts estrogenic or antiestrogenic effects using 

cell culture and animal models. 

 

1.1      DE-71 acts as a weak estrogen in breast cancer cell culture model 

 

MCF-7 breast cancer cells proliferate in culture when treated with estrogens, and this 

feature has been used as the basis of a simple assay to test the estrogenicity of a chemical 

(Soto et al. 1991; Soto et al. 1995). We used this assay to compare the capacity of DE-71 

to increase MCF-7 proliferation to that of β-estradiol, the most potent endogenous 

estrogen in mammals (Coelingh Bennink 2004), and two known xenoestrogens studied in 

our laboratory: o,p’-DDT and β-HCH. DE-71 was able to significantly increase cell 

number as determined by MTT assay (Figure 9A), however it was 8 orders of magnitude 

less potent than estradiol, and 3 orders of magnitude less potent than than the 

xenoestrogens β-HCH and o,p’-DDT. DE-71 was also 30% less effective than either β-

estradiol, β-HCH and o,p’-DDT. DNA assays confirmed this finding, indicating that the 

increase in reduced MTT was due to an increase in cell number and not an effect on the 

number of mitochondria (Figure 9B). The DNA assay was more sensitive than the MTT 

assay because it measures DNA already synthesized by cells in S phase before they 

divide into two different cells with a complete set of organelles. However, because the 

fluorometer measurements had a higher variability than measurements made in the 

spectrophotometry readings for the MTT assay, the standard error for final DNA assay 
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data are much larger than the standard errors for the final MTT assay data (see Methods 

for more information about the two instruments). In the MTT assay, DE-71 produced a 

biphasic dose-response curve suggesting that it may have been toxic to MCF-7 cells at 

concentrations above 25 μM (Figure 9A).  

 

To assess if an ERα antagonist could prevent the proliferative effect of DE-71 on MCF-7 

cells, some treatment groups were cotreated with 10 µM DE-71 and 10 nM ICI. A control 

group was cotreated with 10 pM β-estradiol and 10 µM ICI. The Type II ERα antagonist 

ICI blocks the effects of estrogens in all tissues, and also down-regulates the receptor by 

increasing its ubiquination (Long and Nephew 2006; Metzger et al. 1995). The effects of 

both β-estradiol and DE-71 were negated by ICI co-treatment (Figure 9C).  

 

A ligand that cannot induce the full activity of a receptor (i.e. a “weak” ligand) can 

prevent other ligands from binding and fully activating the same receptor. In such a case, 

the “weak” ligand occupies the same binding pocket in the receptor that the “stronger” 

ligand would occupy, thus preventing the latter from binding. This “weak” ligand 

behavior is known as partial agonism, while the “strong” ligand is known as a full 

agonist. Because DE-71 induced a lesser cell proliferation effect on MCF-7 cells than β-

estradiol, it was possible that DE-71 behaved like a partial ERα agonist and could 

therefore prevent the full effect of β-estradiol. To determine if DE-71 was a partial ERα 

agonist, MCF-7 cells were co-treated with DE-71 and β-estradiol, and cell proliferation 

was assessed as before. Co-treatment of cells with both β-estradiol and DE-71 resulted in 

a lesser increase in cell proliferation compared with β-estradiol alone, suggesting an 
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antagonistic effect of DE-71 on β-estradiol-induced cell proliferation (Figure 9D). The 

apparent antagonism was dose-dependent; the highest dose tested corresponds to that 

which produced maximal proliferative effect when cells were treated with DE-71 alone, 

without any signs of toxicity. While there were no visual signs of toxicity in the co-

treated cell cultures and the concentrations of DE-71 and β-estradiol used in co-

treatments produced only cell proliferation when cells were treated with each chemical 

individually, we did not test for a specific toxic or cytostatic effect on cells when treated 

with both chemicals at the same time. Therefore toxicity or cytostasis cannot be excluded 

as the cause of the apparent antagonistic effect of DE-71 on β-estradiol-induced cell 

proliferation.  

 

In summary, DE-71 behaved as a weak estrogen in the MCF-7 cell culture assay, and 

may be a partial ER agonist.
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Figure 9. Effects of DE-71 on MCF-7 cell proliferation in culture. Cells were cultured for 10 days in 

basal media with either 0.1% DMSO (vehicle control), β-estradiol, 1,1,1-trichloro-2-(o-chlorophenyl)-2-(p-

chlorophenyl)-ethane (o,p’-DDT), β-hexachlorocyclohexane (β-HCH) or DE-71 at the concentrations 

indicated in the chart. A: Dose-response measured by MTT assay. B: Dose-Response measured by DNA 

assay. Data points and columns are averages of at least 2 independent assays with 4 replicated each ± SEM. 

*. p < 0.05; **, p < 0.01; ***, p < 0.001; versus vehicle control (DMSO).  
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Figure 9 (cont.). Effects of DE-71 on MCF-7 Cell proliferation in culture. Cells were cultured for 10 

days in basal media with either 0.1% DMSO (vehicle control), β-estradiol, fulvestran (ICI), or DE-71, or 

with DE-71 in combination with β-estradiol or ICI at the concentrations indicated in the chart. C: 

Antagonism of DE-71 effect by the pure antiestrogen ICI measured by MTT assay; *, p < 0.05; **, p < 

0.01; ***, p < 0.001; vs. vehicle control (DMSO). ##, p < 0.01; ###, p < 0.01; vs. same treatment without 

ICI. D: Antagonism of 10 pM β-estradiol effect by DE-71 measured by MTT assay; *, p < 0.05; **, p < 

0.01; ***, p < 0.001; vs. 10 pM β-estradiol treatment alone. Trend line determined by linear regression 

model. Data points and columns are averages of at least 2 independent assays ± SEM.  
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1.2     DE-71 acts as a weak estrogen in OVX mice model after 3 days of 

treatment 

 

The rodent uterothrophic assay is the oldest and most frequently used model to assess the 

estrogenicity of a chemical (Clode 2006; Huggins et al. 1954). Animals are 

ovariectomized to minimize endogeous estrogen production before challenge with a 

chemical suspected to have estrogenic activity. After treatment, animals are sacrificed 

and their estrogen responsive tissues (uterus, vagina, mammary gland) are examined for 

signs of stimulation. Most notably, an estrogen will increase the size of the uterus and 

vagina, increase the height or thickness of epithelial cell layers surrounding the lumen of 

the uterus, vagina, and mammary ducts, and increase water uptake and accumulation in 

some estrogen target tissues (Bigsby 2007; Suzuki 2007; Shi 2004; Raafat and Hofseth 

2001; Papaconstantinou 2000; Orimo 1999; Milligan 1998; Steinmetz 1998). Therefore, 

we used ovariectomized (OVX) mice to assess the estrogenicity of DE-71. Two dosing 

regimes were used: 3 days and 34 days.  

 

A 3-day treatment regimen was used in ovariectomized adult BALB/c mice to assess the 

estrogenic effects of short-term exposure to DE-71 at 3 doses: 75, 150 and 300 mg/kg; 

groups of animals were also treated with 10 µg/kg EB plus DE-71 at each of the three 

doses (as described in Methods). There was no significant decreases in body weight after 

treatment (Table 3), nor any other clinical signs that would indicated an acute toxic effect 

of the DE-71 doses used (loss of appetite, lethargy, bleeding, convulsions). Uterine wet 

weight, UEH, and VET were used as estrogenic endpoints. Oral DE-71 administration 
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had no effect on any of the estrogenic parameters measured (Figures 10-12). SQ DE-71 

administration alone had no statistically significant effect (Figures 10A, 11A and 12A). 

However, the 6-fold increase in uterine wet weight induced by 10 μg/kg EB was 

enhanced an additional 36%-50% by SQ DE-71 in a dose-dependent manner and this 

enhanced response was equivalent to the estrogen effect produced by 10 mg/kg EB 

(Figure 10B). 

 

DE-71 treatment alone had no effect on UEH or VET. However, regression analysis 

indicated that DE-71 increased UEH 4%-8% (R2 = 0.999) and VET 4%-17% (R2 = 

0.995) in SQ EB-treated mice (Figures 11B and 12B). It should be noted that these 

enhanced responses in the uterine and vaginal epithelia were above the maximal effects 

produced by 10 mg/kg EB. 

 

The results of 3-day in vivo treatment show that DE-71 had no estrogenic effects when 

BALB/c mice are treated short-term with DE-71 alone, but that DE-71 can potentiate the 

effects of EB in estrogen target tissues. 
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Table 3. Average body weight (mg/kg) of BALB/c mice treated for 3-days by SQ or PO routes with 

vehicle, DE-71, EB, or co-treated with DE-71 and EB. Animals were weighed after the corresponding 

treatment, immediately before necropsy. Values are presented as mean ± SEM. *, p < 0.05 versus vehicle 

control. n, number of animals per group. 

 

Route Treatment Dose Average ± SEM n 

SQ DMSO 10 uL 20.3 ±0.44 10 

 DE-71 75 mg/kg 22.3 ±0.37 * 10 

  150 mg/kg 21.0 ±0.38 10 

  300 mg/kg 19.8 ±0.41 10 

 EB 10 ug/kg 21.6 ±0.43 10 

  10 mg/kg 22.8 ±0.43  4 

 DE-71 + 10 ug/kg EB 75 mg/kg 22.3 ± 0.53 * 10 

  150 mg/kg 22.2 ±0.48 10 

  300 mg/kg 22.5 ±0.57 * 10 

PO Corn Oil 100 uL 20.7 ±0.64 5 

 DE-71 75 mg/kg 22.8 ±0.41  5 

  150 mg/kg 19.7 ±0.39 5 

  300 mg/kg 19.6 ±0.65 5 

 DE-71 + 10 ug/kg EB 75 mg/kg 21.1 ±0.85  5 

  150 mg/kg 23.1 ±0.78 5 

  300 mg/kg 21.2 ±0.86  5 
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Figure 10. Relative uterus weight of OVX BALB/c mice after 3 days of treatment. A: Dose-Response 

for mice treated with DE-71 alone; yellow box indicates average ± SEM for SQ vehicle control treated 

mice. B: Dose-Response for mice treated with DE-71 and EB in combination; line represents curve 

modeling of SQ-treated mouse data with R2 ≥ 0.9; yellow box indicates average ± SEM for mice treated 

with 10 µg/kg EB only; pink box indicates average ± SEM of mice treated with 10 mg/kg µg/kg EB only. 

Each data point is the average of 4 - 10 mice ± SEM. ** p < 0.01 and * p < 0.05 vs. 10 mg/kg µg/kg EB on. 

PO, oral treatment; SQ, subcutaneous treatment; EB, β-estradiol benzoate. 
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Figure 11. Uterine epithelial height of OVX BALB/c mice after 3 days of treatment. A: Dose-response 

for mice treated with DE-71 alone; yellow box indicates average ± SEM for SQ vehicle control treated 

mice. B: Dose-response for mice treated with DE-71 and EB in combination; yellow box indicates average 

± SEM for mice treated with10 µg/kg EB only; line represents curve modeling of SQ-treated mouse data 

with R2 ≥ 0.9; pink box indicates average ± SEM of mice treated with 10 mg/kg EB only. Each data point is 

the average of 5 - 10 mice ± SEM. PO, oral treatment; SQ, subcutaneous treatment; EB, β-estradiol 

benzoate. 
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Figure 12. Vaginal epithelial height of OVX BALB/c mice after 3 days of treatment. A: Dose-response 

for mice treated with DE-71 alone; yellow box indicates average ± SEM for SQ vehicle control treated 

mice. B: Dose-Response for mice treated with DE-71 and EB in combination; yellow box indicates average 

± SEM for mice treated with 10 µg/kg EB only; line represents curve modeling of SQ-treated mouse data 

with R2 ≥ 0.9; pink box indicates average ± SEM of mice treated with 10 mg/kg only. Each data point is the 

average of 5 - 10 mice ± SEM. PO, oral treatment; SQ, subcutaneous treatment; EB, β-estradiol benzoate. 
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1.3     DE-71 acts as a weak estrogen in OVX mice model after 34 days of 

treatment 

 

To assess the chronic estrogenic effect of DE-71 exposure in vivo, ovariectomized 

BALB/c, C57BL/6 wild type and ERαKO mice were treated for 34 days (as described in 

Methods). DE-71 was administered daily at 50 mg/kg by either oral gavage (PO) or by 

subcutaneous injection (SQ). Uterine and vaginal parameters were examined as in the 3-

day assay. In addition, mammary duct branching, mammary ductal epithelial height 

(DEH), and mammary ductal lumen area (DLA) were assessed as a measure of 

mammotrophic effects. Data from two experiments with BALB/c mice are shown 

separately because the baseline values for uterine weights differed between experiments. 

Mammary parameters were examined only in the second experiment.  

 

There was no significant decreases in body weight after treatment (Table 4), nor any 

other clinical signs that would indicated an acute toxic effect of the DE-71 doses used 

(loss of appetite, lethargy, bleeding, convulsions). As with the 3-day assay, oral DE-71 

administration had no effect on any of the estrogenic parameters measured in BALB/c 

mice (Figures 13, 15 and 16); C57BL/6 mice were not treated orally. 

 

There was a large increase (8- to 12-fold; p < 0.001) in uterine weight of wild type mice 

after estradiol treatment (Figures 13B and 14B); the BALB/c uterine weight response to 

10 ug/kg EB at 34 days was similar to the increase produced by 10 mg/kg EB for 3 days, 
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therefore both the 10 mg/kg 3-day treatment and the 10 µg/kg 34-day EB treatments may 

have produced the maximal uterotrophic effect.  

 

SQ treatment for 34 days with DE-71 alone produced no significant change in uterine 

weight (Figures 13A and 14A). EB-induced uterine weight was unaffected by co-

treatment with DE-71 (Figures 13B and 14B).  

 

In BALB/c mice, DE-71 administered subcutaneously for 34 days caused a 20% increase 

in UEH (Figure 15A) and about a 35% increase in VET (Figure 16A). On the other hand, 

there was a 19% decrease in the estrogen-induced UEH increase in BALB/c mice co-

treated with DE-71 subcutaneously that was statistically significant in the first 

experiment but not in the repeat experiment (Figure 15B). The slight decrease in UEH of 

co-treated C57BL/6 mice was not statistically significant (Figure 17B). Co-treatment did 

not alter the EB-induced increase in VET (Figures 16B and 18B).  

 

Since we observed weak estrogenic effects of DE-71 in BALB/c mice treated SQ for 34 

days, C57BL/6 wild type and ERαKO mice were also treated with 50 mg/kg DE-71 SQ 

for 34 days in order to determine if the in vivo effects of DE-71 were mediated by ERα. 

As expected, estradiol treatment had no effect on ERαKO uterine weights, UEH or VET. 

However, the experiment was not informative because DE-71 did not have an effect on 

any of the uterine or vaginal parameters in either wild type C56BL/6 mice or ERαKO 

animals (Figures 14, 17 and 18). 
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Table 4. Average body weight (mg/kg) of BALB/c and C57BL/6 mice treated for 34 days by SQ or 

PO routes with vehicle, DE-71, EB, or co-treated with DE-71 and EB. Animals were weighed after the 

corresponding treatment, immediately before necropsy. Values are presented as mean ± SEM. *, p < 0.05; 

**, p < 0.01; versus vehicle control. n, number of animals per group. 

Experiment Treatment Dose Average ± SEM n 

BALB/c #1 Corn Oil PO 100 µL 18.7 ± 0.53 5 

 DE-71 PO 50 mg/kg 20.0 ± 0.39 6 

 DE-71 SQ 50 mg/kg 21.8 ± 0.36 ** 5 

 EB 10µg/kg 21.2 ± 0.36 ** 5 

 DE-71 PO + 10 µg/kg EB 50 mg/kg 20.8 ± 0.36 * 6 

 DE-71 SQ + 10 µg/kg EB 50 mg/kg 24.2 ± 0.44 ** 5 

BALB/c #2 Corn Oil PO 100 uL 20.4 ± 0.51 5 

 DE-71 PO 50 mg/kg 20.0 ± 1.00 2 

 DE-71 SQ 50 mg/kg 21.0 ± 0.71 5 

 EB 10µg/kg 22.2 ± 0.58 5 

 DE-71 PO + 10 µg/kg EB 50 mg/kg 21.8 ± 0.80 5 

 DE-71 SQ + 10 µg/kg EB 50 mg/kg 22.4 ± 0.93 5 

C57BL/6 WT DMSO SQ 10 µL 23.9 ± 0.73 9 

 EB 10µg/kg 21.7 ± 1.17 6 

 DE-71 SQ 50 mg/kg 23.4 ± 0.94 7 

 DE-71 PO + 10 µg/kg EB 50 mg/kg 24.4 ± 0.95 7 

C57BL/6 ERαKO DMSO SQ 10 µL 22.7 ± 0.74 7 

 EB 10µg/kg 21.7 ± 0.67 6 

 DE-71 SQ 50 mg/kg 20.1 ± 0.60 9 
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Figure 13. Relative uterus weight (mg per gram body weight) of OVX BALB/c mice after 34 days of 

treatment. A: Groups treated with 50 mg/kg DE-71 alone. B: Groups treated with 10µg/kg EB alone or in 

combination with 50 mg/kg DE-71. Mice were treated during two independent experiments: #1 and #2; 

Each column is the average of 5 - 6 mice ± SEM except as noted in chart. PO, oral treatment; SQ, 

subcutaneous treatment; EB, β-estradiol benzoate. 
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Figure 14. Relative uterus weight of OVX C57BL/6 wild type (WT) and ERαKO mice after 34 days 

of treatment. A: Groups treated with 50 mg/kg DE-71 alone. B: Groups treated with 10µg/kg EB alone or 

in combination with 50 mg/kg DE-71. Each column is the average of 6-9 mice ± SEM. SQ, subcutaneous 

treatment; EB, β-estradiol benzoate. 
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Figure 15. Uterine epithelial height of OVX BALB/c mice after 34 days of treatment. A: Groups 

treated with 50 mg/kg DE-71 alone; tissue from PO treated mice during the second experiment was not 

available for measurement. B: Groups treated with 10µg/kg EB alone or in combination with 50 mg/kg DE-

71. Mice were treated during two independent experiments: #1 and #2. Each column is the average of 5-6 

mice ± SEM except as noted in chart. *, p < 0.05 vs. vehicle. #, p < 0.05 vs. 10µg/kg EB. PO, oral 

treatment; SQ, subcutaneous treatment; EB, β-estradiol benzoate. 
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Figure 16. Vaginal epithelial height of OVX BALB/c mice after 34 days of treatment. A: Groups 

treated with 50 mg/kg DE-71 alone. B: Groups treated with 10µg/kg EB alone or in combination with 50 

mg/kg DE-71. Mice were treated during two independent experiments: #1 and #2. Each column is the 

average of 5-6 mice ± SEM except as noted in chart. *, p < 0.05 vs. vehicle. PO, oral treatment; SQ, 

subcutaneous treatment; EB, β-estradiol benzoate. 
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Figure 17. Uterine epithelial height of OVX C57BL/6 (WT and ERαKO) mice after 34 days of 

treatment. A: Groups treated with 50 mg/kg DE-71 alone. B: Groups treated with 10µg/kg EB alone or in 

combination with 50 mg/kg DE-71. Each column is the average of 6-9 mice ± SEM. SQ, subcutaneous 

treatment; EB, β-estradiol benzoate. 
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Figure 18. Vaginal epithelial height of OVX C57BL/6 (WT and ERαKO) mice after 34 days of 

treatment. A: Groups treated with 50 mg/kg DE-71 alone. B: Groups treated with 10µg/kg EB alone or in 

combination with 50 mg/kg DE-71. Each column is the average of 6-9 mice ± SEM. SQ, subcutaneous 

treatment; EB, β-estradiol benzoate. 
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As discussed previously, estrogen treatment will increase the size of epithelial cell layers 

and increase water uptake and accumulation in estrogen target tissues (Bigsby 2007; 

Suzuki 2007; Shi 2004; Raafat & Hofseth 2001; Papaconstantinou 2000; Orimo 1999; 

Milligan 1998; Steinmetz 1998). In the mammary gland, estrogens also increase 

branching of the mammary ducts. Therefore mammary glands of BALB/c mice treated 

for 34 days (see Methods) were analyzed as whole mounts to determine branching per 

duct length (BPL), and then re-processed and cut transversely to measure ductal epithelial 

height (DEH) and ductal lumen area (DLA).  

 

EB treatment increased all mammary parameters over vehicle controls (Figure 19). While 

DE-71 SQ treatment alone had no effect on BPL or DEH, there was a small (2-fold) but 

statistically significant increase in lumen area over vehicle controls (Figure 19C). DE-71 

did not alter the effects of EB on any of the mammary gland parameters; a decrease in 

DLA in mice co-treated with DE-71 PO was not statistically significant. 

 

The results of 34-day in vivo treatment show that DE-71 may act as a weak estrogen 

when BALB/c mice are treated long-term with DE-71. By itself, DE-71 increased UEH, 

VET, and DLA but when administered in combination with EB it decreased the EB-

induced increase in UEH. C57BL/6 mice seem to be less sensitive than BALB/c mice to 

the effects of DE-71. These effects suggest the behavior of a partial agonist and are very 

different from the potentiating of EB’s effects seen in the 3-day in vivo assay. From the 

in vivo experiments it is still unclear if the PBDE congeners are responsible for the 

observed estrogenic activity or if they were metabolically activated. The next sections 
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will address the formation of hydroxylated metabolites in vivo and in vitro, and compare 

the estrogenic activity of metabolites to that of the original DE-71 mixture. 
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Figure 19. Mammary gland parameters for OVX BALB/c mice after 34 days of treatment (second 

experiment only). Mice were treated with either 10 µg/kg EB or 50 mg/kg DE-71 alone or in combination. 

A: Branches per length. B: Ductal Epithelial Height. C. Ductal Lumen Area. *, p < 0.05 vs. vehicle; **, p < 

0.01 vs. vehicle; ***, p < 0.001 vs. vehicle. Each column is the average of 5 mice ± SEM except as noted. 

PO, oral treatment; SQ, subcutaneous treatment; EB, β-estradiol benzoate. 
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Specific Aim 2: Determine the role of metabolic activation in DE-71 estrogenic or 

antiestrogenic effects. 

 

2.1     Phenolic DE-71 metabolites were found in plasma of mice after 34 

days of treatment 

 

Environmental pollutants like methoxychlor, bisphenol A and polychlorinated biphenyls 

become estrogenic (Morohoshi et al. 2005; Kohno et al. 2005) or can increase in their 

estrogenic potency (Jansen et al. 1993; Yoshihara et al. 2004) after CYP450 metabolism. 

Phenolic aromatic halogens are usually more estrogenic than non-hydroxylated aromatic 

halogens (Arcaro 1997; Vakharia and Gierthy 2000). Therefore to determine if phenolic 

PBDE metabolites had formed in mice, serum from the above described 34-day treated 

BALB/c mice was analyzed by gas chromatographic mass spectrometry to detect the 

PBDE congeners in DE-71 and possible phenolic metabolites (Qiu et al. 2007). The 

average total DE-71 concentration ranged from 1150 ng/g serum in SQ treated mice to 

2150 ng/g in PO treated mice. These amounts are equivalent to µM levels in serum given 

an approximate molecular weight of 543 g/mol for DE-71. Eight phenolic metabolites, 

six hydroxylated PBDEs (OH-PBDEs) and two bromophenols, were identified and 

quantified (Table 5). All the OH-PBDEs found were mono-hydroxylated, two at ortho- 

positions (2’-OH-BDE-28 and 6-OH-BDE-47), one at the meta- position (3-OH-BDE-

47), and three at the para- position (4’OH-BDE-17, 4-OH-BDE-42, 4’-OH-BDE-49). 

The position of the added hydroxyl group is of notice because aromatic xenobiotics often 

become estrogenic after being hydroxylated at the para- position (Arcaro 1997; Blair et 
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al. 2000; Cnubben et al. 1995; Huggins and Jensen 1954; Koda et al. 2005; Stresser and 

Kupfer 1998; Vakharia and Gierthy 2000). The total PBDE serum concentration 

(including OH-PBDEs) was 67% higher in PO-treated than SQ-treated mice, but the 

amount of para-PBDEs relative to total PBDE in serum was slightly higher in SQ-treated 

than PO-treated mice (11% and 9%, respectively). These findings raise the possibility 

that the estrogenic effects seen in vivo and in culture are due to the metabolites and not 

necessarily the original DE-71 congeners. 
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Table 5. Average concentrations (µM) of individual phenolic DE-71 metabolites and total non-

phenolic DE-71 congeners found in blood plasma of 34-day treated BALB/c Mice (modified from Qiu 

et al. 2007). Mice were treated with 50 mg/kg/day DE-71 for 34 days. Concentrations were determined by 

gas chromatographic mass spectrometry (GC/MS) analysis. 

Compound 
Vehicle Controls and 

Blank Samples 
PO SQ 

2,4-DBP 0.01 ± 0.02 0.29 ± 0.09 0.25 ± 0.10 

2,4,5-TBP 0.001 ± 0.002 0.24 ± 0.09 0.26 ± 0.12 

4’-OH-BDE-17 Not detected 0.04 ± 0.02 0.03 ± 0.02 

2’- OH -BDE-28 0.0002 ± 0.0005 0.03 ± 0.01 0.01 ± 0.01 

4- OH -BDE-42 0.002 ± 0.01 0.36 ± 0.24 0.24 ± 0.18 

3- OH -BDE-47 Not detected 0.11 ± 0.05 0.07 ± 0.03 

6- OH -BDE-47 Not detected 0.04 ± 0.02 0.02 ± 0.01 

4’- OH -BDE-49 0.001 ± 0.002 0.08 ± 0.04 0.07 ± 0.04 

DE-71 (all non-OH 

congeners) 
< 0.02 3.9 ± 0.8 2.1 ± 0.2 
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2.2     In vitro microsomal metabolism increases estrogenic character of DE-

71 

 

Cytochrome P450 (CYP450) isoenzymes can increase the estrogenicity of environmental 

pollutants by adding a hydroxyl group to an aromatic ring (Stresser and Kupfer 1998). 

Such a hydroxylated molecule may interact with ERα in a manner similar to endogenous 

estrogens like estradiol, which has a phenolic ring known to form hydrogen bonds with 

specific protein residues in the ERα (Brzozowski et al. 1997). Compared to other tissues, 

the mammalian liver contains a very high concentration of CYP450 isoenzymes 

(reviewed by Seliskar and Rozman 2007). The majority of CYP450 hydroxylating 

activity in the mammalian liver resides in the endoplasmic reticulum of hepatocytes. 

Extraction of the endoplasmic reticulum from cells yields small vesicle known as 

microsomes (Palade and Siekevitz 1956), which are often use as in vitro models to study 

CYP450 metabolism (Koga et al. 1996; Kohno et al. 2005; Kupfer and Bulger 1979; 

Vakharia and Gierthy 2000). In order to determine if microsomal metabolism could 

increase its estrogenic activity, DE-71 was incubated with female rat microsomes and a 

complete NADPH generating system for 24 hours (see Methods). The incubation product 

was then tested in the ERE-luciferase assays. Since β-estradiol is deactivated by CYP450 

enzymes (Lee et al. 2003), similar incubations of β-estradiol and female rat liver 

microsomes (with or without complete NADPH generating system) were run in parallel 

to the DE-71 incubations as positive controls. The use of microsomes rather than a more 

complete cellular preparation prevents the conjugation of hydroxylated metabolites by 

cytosolic enzymes (Bock et al. 1987). Conjugation of larger functional groups at the 
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hydroxyl would prevent the metabolite from interacting with ERα, therefore decreasing 

its estrogenic activity. 

 

After extraction by solid state procedure (see Methods), incubations were reconstituted to 

their original volume in DMSO. If 100% recovery had been achieved, the estrogenic 

activity of the reconstituted estradiol control incubations (lacking NADPH) should be the 

same as that of a “fresh” DMSO solution made from the original chemical at an equal 

molarity. Figure 20 shows that, in the case of β-estradiol, recovery was approximately 

67% to 75%.  

 

As expected, microsomal incubation decreased the activity of β-estradiol by 50% (from  

16.4 fold over vehicle to 8.6 fold over vehicle in MDA-MB-231 cells, and from 10.2 fold 

over vehicle to 4.0 fold over vehicle in BG1Luc4E2 cells). The extracts from DE-71 

microsomal incubates produced an ERE-luciferase response that was 4-fold that of the 

“fresh” DE-71 solution (Figure 20). The microsomes were ineffective when the NADPH 

generating system was omitted from the incubation.  
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Figure 20. ERE-luciferase induction by microsomal metabolites of DE-71. DE-71 or E2 were incubated 

for 24 hours with liver microsomes and an NADPH generating system (see Methods). Similar incubations 

but with an incomplete the NADPH generating system (lacking NADP+) were run in parallel and served as 

negative control. After solid phase extraction, metabolites were reconstituted in BM to a nominal 

concentration of 10 nM β-estradiol or 10 µM DE-71. A: Incubates were tested in transiently transfected 

MDA-MB-231 cells; cells were transfected with an ERE-luciferase reporter gene, and constitutively active 

plasmids expressing ERα and a Renilla luciferase control gene; 2 independent microsomal incubations 

were each tested in separate transient transfection assays, the results are presented as the means ± SEM of 

these 2 assays. B: Tested in stably transfected BG1Luc4E2 cells; 1 microsomal incubation tested in the 

reporter assay (mean ± SEM, n = 4). Error bars indicate ± SEM. **, p < 0.01 vs. vehicle control; #, p < 

0.05, ##, p < 0.01 vs. same treatment without complete NADPH generating system. 
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2.3     DE-71 and its phenolic metabolites activate the estrogen response 

element 

 

β-Estradiol induces ERE-luciferase at concentrations above 0.1 pM in both the transiently 

transfected MDA-MB-231 cells (Figures 7 and 20A) and the stably transfected 

BG1Luc3E2 (Figure 20B) reporter cell culture systems. In the BG1Luc3E2 cells, β-

estradiol had an EC50 in the pM range (Table 6). In the previous section, we showed that 

pre-incubation of DE-71 with rat liver microsomes increase its estrogenic activity in the 

ERE-luciferase reporter gene assay, and we speculated that this effect was due to 

hydroxylation of PBDE congeners. In this section, DE-71 and the hydroxylated 

metabolites found in mice were tested in BG1Luc3E2 cells to determine if they were able 

to activate ERE-mediated gene transcription. The potencies and effectiveness of tested 

chemicals were compared to that of β-estradiol using several parameters: the effective 

concentration for 50% of maximal effect (EC50), calculated from the chemical’s own 

maximal observed luciferase activation; estrogen equivalent potency (EEP), the 

concentration of chemical required to produce an effect equivalent to estradiol’s EC50; 

relative estrogen potency, ratio of the EC50 for β-estradiol to the chemical’s EEP; and 

relative effect, the chemical’s maximum luciferase induction divided by the maximal β-

estradiol luciferase induction. The first 3 parameters – EC50, EEP, and relative estrogen 

potency – describe the chemicals potency and how it compares to the potency of β-

estradiol. The last parameter, relative effect, compares the effectiveness of the chemical 

to that of β-estradiol. Results for DE-71 and metabolites are listed in Table 6; the data 

used for calculations are graphed in Figure 21.  



 

 
 

95

DE-71 was able to induce ERE-luciferase at concentrations above 5 μM, reaching 100% 

estrogenic effectiveness at 10-4 M (Figure 21B). The EC50 for DE-71 was 3.7 x 10-5 M. 

Because the maximal effect of DE-71 was very close to the maximal effect of β-estradiol, 

its EC50 (3.7 x 10-5 M) and its estrogen equivalency potency (EEP; 3.9 x 10-5 M) were 

similar.  

 

Two metabolites, 4'-OH-BDE-17 and 4-OH-BDE-42 were more potent than DE-71, with 

EC50 in the µM range (Table 6). 4'-OH-BDE-17 had a relative estrogenic potency that 

was approximately 10-fold that of DE-71 and it was also more effective increasing the 

luciferase signal than both DE-71 and β-estradiol, reaching an estimated maximal effect 

30% higher than β-estradiol (Figure 21C). Conversely, 4-HO-BDE-42 was 36% less 

effective than DE-71, reaching an estimated maximal effect about 70% of β-estradiol’s 

(Figure 21D). 4’-OH-BDE49 had an EC50 similar to DE-71 but a much lower efficacy; 

its maximal effect did not even reach 50% of β-estradiol’s (Figure 21E). 

 

Two hydroxylated BDE-47 congeners, 3-OH-BDE-47 and 2’-OH-BDE-28, had very little 

effect in the ERE-luciferase assay (Figure 21, G and H). Two bromophenol DE-71 

metabolites found in mice, 2,4-DBP and 2,3,5-TBP, did not induce significant ERE 

signaling (Figure 21, I and J). 

 

In summary, of the eight hydroxylated metabolites found in serum of mice treated with 

DE-71, only the three para-PBDEs were able to induce ERE-luciferase with a potency 
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equal or greater than DE-71. However, all the PBDEs able to induce ERE-luciferase were 

less potent than β-estradiol by at least six orders of magnitude. 
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Table 6. Estimated Effective Concentrations for 50-percent ERE-luciferase induction (EC50), 

Estrogen Equivalent Potency, Relative Estrogen Potency and Relative Effect of β-estradiol, DE-71 

and OH-BDEs found in mice. BG1Luc4E2 cells were incubated in basal media for 5 days, and then 

treated with a range of concentrations for each test chemical (see Figure 21). ERE-luciferase induction 

was measured 18 hours after treatment. 

 

 

Estimated 

EC501 

(moles/L) 

 

Estrogen 

Equivalent 

Potency 2 

(moles/L) 

Relative 

Estrogen 

Potency 3 

(ratio) 

Luciferase 

Induction at EC50  

(fold-increase) 

 

Relative 

Effect4 

(ratio) 

 

β-estradiol 1.2 x 10-12 --- 1.00 3.3 1.00 

DE-71 3.7 x 10-5 3.9 x 10-5 3.1 x 10-8 3.4 1.03 

2,4-DBP No effect --- --- --- --- 

2,4,5-TBP No effect --- --- --- --- 

4'-OH-BDE-17 4.7 x 10-6 3.5 x 10-6 3.4 x 10-7 4.3 1.30 

2'-OH-BDE-28 NA NR --- --- --- 

4-OH-BDE-42 5.3 x 10-6 8.2 x 10-5 1.5 x 10-8 2.3 0.70 

3-OH-BDE-47 NA NR --- NA --- 

6-OH-BDE-47 No effect --- --- --- --- 

4'-OH-BDE-49 1.3 x 10-5 NR --- 1.2 0.36 

 

1 Determined using the chemical’s own maximum effect set at 100%. 2 EEP, concentration inducing the 

same luciferase activity as β-estradiol’s EC50. 3 Ratio of β-estradiol EC50 to EEP. 4 test chemical-to-β-

estradiol ratio of maximum luciferase induction. NA, not available because effect was insufficient to 

calculate an EC50; NR, β-estradiol EC50 not reached. 
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Figure 21. ERE -luciferase induction by β-estradiol, DE-71 and OH-BDEs found in mice. BG1Luc4E2 

cells were incubated in basal media for 5 days, and then treated with a range of concentrations for each test 

chemical. ERE-luciferase induction was measured 18 hours after treatment. Each point is the average of at 

least 2 independent assays ± SEM, each normalized to vehicle control (0.1% DMSO = 1). Modeled data for 

β-estradiol (dashed pink line) and DE-71 (dotted brown line) shown in all OH-BDE charts for comparison. 

Modeled data for each OH-BDE is shown as a solid blue line. All concentrations are moles/liter. 

0

1

2

3

4

5

6

7

8

1E-14 1E-12 1E-10 1E-08 1E-06 1E-04

re
la

tiv
e 

lu
ci

fe
ra

se
 in

du
ct

io
n

concentration (log scale)

A. β-Estradiol

   

0

1

2

3

4

5

6

7

8

1E-14 1E-12 1E-10 1E-08 1E-06 1E-04

re
la

tiv
e 

lu
ci

fe
ra

se
 in

du
ct

io
n

concentration (log scale)

B. DE-71

 

0

1

2

3

4

5

6

7

8

1E-14 1E-12 1E-10 1E-08 1E-06 1E-04

re
la

tiv
e 

lu
ci

fe
ra

se
 in

du
ct

io
n

concentration (log scale)

C. 4'-OH-BDE-17

   

0

1

2

3

4

5

6

7

8

1E-14 1E-12 1E-10 1E-08 1E-06 1E-04

re
la

tiv
e 

lu
ci

fe
ra

se
 in

du
ct

io
n

concentration (log scale)

D. 4-OH-BDE-42

 

0

1

2

3

4

5

6

7

8

1E-14 1E-12 1E-10 1E-08 1E-06 1E-04

re
la

tiv
e 

lu
ci

fe
ra

se
 in

du
ct

io
n

concentration (log scale)

E. 4'-OH-BDE-49

   

0

1

2

3

4

5

6

7

8

1E-14 1E-12 1E-10 1E-08 1E-06 1E-04

re
la

tiv
e 

lu
ci

fe
ra

se
 in

du
ct

io
n

concentration (log scale)

F. 2'-OH-BDE-28

 

Continues on next page. 



 

 
 

99

 
Figure 21 (cont.). ERE -luciferase induction by β-estradiol, DE-71 and OH-BDEs found in mice.  
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Specific Aim 3: Explore the mechanisms by which DE-71 congeners or their 

metabolites can activate or antagonize ERα signaling. 

 

3.1     DE-71 phenolic metabolites found in mice displace beta-estradiol 

from Estrogen Receptor Alpha 

 

Since DE-71 and several OH-PBDEs metabolites found in serum of DE-71 treated mice 

are able to induce ERE-luciferase, we wanted to determine if these chemicals are ERα 

ligands. We also wanted to determine if metabolites that did not induce ERE-luciferase 

were ERα ligands, because they could be receptor antagonists or otherwise interact with 

ERα. To assess the ability of DE-71 and the hydroxylated metabolites to bind ERα as 

ligands, we examined their abilities to displace radioactive H3-β-estradiol from 

recombinant ERα in vitro as described in Methods (Recombinant ERα Binding Assay). 

The potencies of tested chemicals were compared to that of β-estradiol using two 

parameters: the inhibitory concentration for 50% displacement of 3H-β-estradiol from 

receptor (IC50), calculated based on data shown in Figure 22. 2; and the Relative Affinity 

of the chemical, calculated as the ratio of 3H-β-estradiol IC50 to test chemical IC50 

(expressed as percent of β-estradiol). Results are summarized in Table 7 and Figure 22.  

 

Neither the DE-71 mixture nor the bromophenols, 2,4-DBP and 2,4,5-TBP, were able to 

displace H3-β-estradiol from ERα (Figure 22; B, I and J). The hydroxylated PBDEs bind 

ERα but with a much lower affinity than β-estradiol. Of the OH-PBDEs tested, the para-
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hydroxylated congeners (at either #4 position) have a higher affinity for the estrogen 

receptor than 2-, 3-, or 6-OH-PBDEs (Table 7).  

 

4'-OH-BDE-17, 4'-OH-BDE-49 and 4-OH-BDE-42 were the most potent, with IC50 in 

the µM range (Table 5; Figure 22; C, D and E). 6-OH-BDE-47, 3-OH-BDE-47 and 2'OH-

BDE-28 had IC50 one order of magnitude higher than the para-OH-BDEs (Table 7; 

Figure 22; F, G and H). In general, the potency of each OH-BDE displacing 3H-β-

estradiol from ERα corresponds with their ability to activate ERE-luciferase, and the 

congeners with the highest IC50 values induce very little (3-OH-BDE-47) or no 

significant ERE-luciferase activity (2'OH-BDE-28 and 6-OH-BDE-47). 

 

In summary, while neither DE-71 nor its bromophenol metabolites (2,4-DBP and 2,4,5-

TBP) were able to displace H3-β-estradiol from recombinant ERα, all the OH-PBDE 

metabolites found in serum of mice treated with DE-71did displace H3-β-estradiol from 

recombinant ERα. 

 



 

 
 

102

 

Table 7. Effective concentration for displacement of 50-percent (IC50)1 of 1 nM 3H-β-

estradiol from recombinant ERα in vitro and relative affinity of β-estradiol, DE-71 and OH-

BDEs found in mice (by ERα binding assay).  

 

 IC501 Relative Affinity2 

β-estradiol 7.7 x 10-10 100 

DE-71  No effect --- 

2,4-DBP  No effect --- 

2,4,5-TBP  No effect --- 

4'-OH-BDE-17 2.3 x 10-6 0.03 

2'-OH-BDE-28 6.2 x 10-5 0.001 

4-OH-BDE-42 3.4 x 10-6 0.02 

3-OH-BDE-47 2.9 x 10-5 0.003 

6-OH-BDE-47 2.8 x 10-5 0.003 

4'-OH-BDE-49 2.7 x 10-6 0.03 

 
1 The concentration of test compound to yield 50% displacement of 3H-β-estradiol from receptor, 

calculated based on data shown in Figure 22. 2 Relative affinity was calculated as 3H-β-estradiol IC50 ÷ test 

chemical IC50 × 100.
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Figure 22. Displacement of 1 nM 3H-β-estradiol from recombinant ERα in vitro by β-estradiol, DE-

71 and OH-BDEs found in mice. Increasing concentrations of test compound were incubated overnight 

with 1 nM 3H-β-estradiol and 0.6 nM recombinant ERα. Excess 3H-β-estradiol was then washed by 

hydroxylapatite method and remaining radioactivity (bound to receptor) was measured by liquid 

scintillation. Each data point is the average of at least 2 independent assays with 3 replicates per assay ± 

SEM, except 3-OH-BDE47 and 6-OH-BDE47 (only one representative assay shown; multiple assays could 

not be averaged because of large scale differences). Modeled data for β-estradiol (pink line) and DE-71 

(brown line) shown in all OH-BDE charts for comparison. Modeled data for each OH-BDE is shown as a 

blue line. All concentrations are moles/liter. 
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Figure 22 (cont). Displacement of 1 nM 3H-β-estradiol from recombinant ERα in vitro by β-estradiol, 

DE-71 and OH-BDEs found in mice.  
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3.2     DE-71 phenolic metabolites modify activation of estrogen response 

element signaling by beta-estradiol. 

 

DE-71 and its OH-PBDE metabolites found in mouse serum were able to activate ERE-

luciferase signaling and/or displace 3H-β-estradiol from ERα. The fact that meta- and 

ortho-OH-PBDEs bind ERα without inducing ERE activity suggests that these chemicals 

may act as ERα antagonists. Since the DE-71 formulation induced ERE signaling without 

binding ERα, it is possible that DE-71 can modify ERα activity without binding the 

receptor. In order to determine if DE-71 or the OH-PBDEs were able to modify β-

estradiol-induced ERE-luciferase activity, a cell line stably transfected with an ERE-

luciferase reporter gene, BG1Luc3E2, was co-treated with 10 pM β-estradiol and either 

DE-71 or one of the OH-PBDE metabolites found in mouse serum. The two bromophenol 

metabolites found in mice, 2,4-DBP and 2,4,5-TBP were not tested because they had no 

significant effect in either the ERE-induction or the 3H-β-estradiol displacement assays. 

 

Cotreatment with β-estradiol and DE-71 was able to increase ERE-luciferase induction 

beyond the maximal effect of β-estradiol alone. The same was true about 4’-OH-BDE-17, 

4’-OH-BDE-49 and 2’-OH-BDE-28 (Figure 23; C, E and F). Another PBDE tested, 4-

OH-BDE-42 induced ERE-luciferase above the β-estradiol maximum, but it was not 

statistically significant (Figure 23D). At high concentrations, two of the hydroxylated 

PBDEs tested, 2’-OH-BDE-28 and 6-OH-BDE-47, were able to antagonize the effect of 

β-estradiol. 
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6-OH-BDE47 was the more potent antagonist, showing an effect at 5 µM, while 

antagonism by 2’-OH-BDE-28 was observed only at 50 µM (Figure 23, F and H). Both 

PBDEs also seem to potentiate the effect of 10 pM β-estradiol at lower concentrations in 

a manner similar to other PBDEs tested, although this effect was statistically significant 

only for 2’-OH-BDE-28. However, because of the limited availability of some of the 

hydroxylated congeners only DE-71 and 2’-OH-BDE-28 were tested at a concentration of 

50 µM, therefore it is possible that other hydroxylated PBDEs have the same biphasic 

behavior in the ERE-luciferase assay. Cell protein content per well indicated that there 

was no toxic effect produced by the high concentrations of 6-OH-BDE47 or 2’-OH-BDE-

28 that produced the antiestrogenic effects. While protein per well varied 15% between 

treatment groups, there was no dose-response decrease in protein level that would 

indicate toxicity. Interestingly, both OH-PBDEs found to be estrogen antagonist were 

able to displace 3H-β-estradiol from ERα (Figures 22, F and H and 23, F and H) but did 

not induce significant ERE-luciferase (Figure 21, F and H). 

 

In summary, co-incubation of estrogen-responsive cells with β-estradiol and either DE-71 

or one of its estrogenic in vivo metabolites results in a larger estrogenic effect than β-

estradiol treatment alone. In the same cells, the non-estrogenic meta- metabolite 3-OH-

BDE-47 can potentiate the effect of β-estradiol, while non-estrogenic ortho- metabolites 

are antiestrogenic at high concentrations. 
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Figure 23. ERE -luciferase induction after β-estradiol treatment or coteatment with β-estradiol and 

DE-71 or OH-BDEs found in mice. BG1Luc4E2 cells were incubated in basal media for 5 days, and then 

treated with a range of concentrations for each test chemical. ERE-luciferase induction was measured 18 

hours after treatment. Data for co-treatment with 10 pM β-estradiol and the specified chemical shown as 

blue squares. Each point is the average of at least 2 independent assays ± SEM, each normalized to vehicle 

control (0.1% DMSO = 1). Modeled data for β-estradiol only dose-response (pink dashed line) shown in all 

charts for comparison. *, p > 0.5; **, p > 0.01; ***, p > 0.001 vs. maximal effect of β-estradiol alone. All 

concentrations are moles/liter. 
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Figure 23 (cont.). ERE -luciferase induction after β-estradiol treatment or coteatment with β-

estradiol and DE-71 or OH-BDEs found in mice.  
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3.3     DE-71 does not produce rapid activation of Extracellular-Signal 

Regulated Kinases. 

 

The results of in vivo and in culture assays described above suggest DE-71 may have a 

proliferative effect on cells in vivo and in culture. Furthermore, the activities of DE-71 

and some of its hydroxylated metabolites are additive with β-estradiol. One in vivo 

metabolite, 3-OH-BDE-47, cannot induce ERE-mediated gene expression by itself but is 

able to potentiate the effect of β-estradiol, suggesting a mechanism of ERE activation 

distinct from direct ligand activation of ERα. Therefore, we investigated the Epidermal 

Growth Factor (EGF) / Extracellular-Signal Regulated Kinases (ERK1/2) pathway as an 

alternative mode for the estrogenic activity of DE-71. 

 

ERK1/2 play a central role in cell proliferation control, and can be activated by a rapid 

cytosolic signaling cascade that starts when EGF or transforming growth factor alpha 

(TGFα) activate the plasma membrane-bound Epidermal Growth Factor Receptor 

(EGFR) (reviewed by Meloche and Pouysségur, 2007). EGF has estrogen-like effects in 

the reproductive tract and may be an important mediator of estrogen action in vivo 

(Migliaccio et al. 2006; Nelson et al. 1991). Furthermore, several reports suggest that 

estrogens produce rapid cellular responses through non-classical estrogen receptors 

(reviewed by Filardo and Thomas 2005, and by Hammes and Levin 2007). These rapid 

responses involve activation of ERK1/2 though phosphorylation within 5-15 minutes of 

treatment. In one proposed pathway, estrogens interact directly with a G-protein coupled 

receptor, GPR30, setting off a series of events that leads to proteolytic activation of EGF 



 

 
 

110

and subsequent induction of a kinase cascade mediated by EGF receptor. Therefore it is 

possible that PBDEs have estrogenic effects on target tissue by activating the 

EGFR/ERK1/2 signaling cascade independently from ERα ligand-induced activation. 

 

To determine if DE-71 could activate ERK1/2, breast cancer cells were incubated for 5 

minutes with DE-71 and lysates were analyzed by immunobloting. A rapid activation (5 

minutes after treatment) was chosen as the endpoint because, while EGFR ligands can 

rapidly activate the EGFR/ERK1/2 signaling cascade, estrogen can increase transcription 

of the EGFR gene 6 hours after treatment (Das et al. 1994) and of the EGF gene 1 hour 

after treatment (Wang et al. 1994). This could lead to an indirect increase in ERK1/2 

activity after β-estradiol treatment (Kim-Schulze et al. 1998). Therefore the short 

treatment time ensured that any increase in ERK1/2 activation was not due to an indirect 

activation of EGFRs. DE-71 treatment of breast cancer cells was not able to induce 

phosphorylation of ERK-1 or ERK-2 in either of the breast cancer cell lines tested, MCF-

7 and SKBR3 (Figure 24). However, since we did not test if the OH-PBDE metabolites 

found in mice could rapidly activate ERK1/2, DE-71 inability to activate ERK1/2 does 

not preclude activation of the same protein by DE-71 metabolites.  

 

In our hands, treatment of breast cancer cells with β-estradiol did not produce an increase 

in ERK1/2 phosphorylation (see Appendix 4). As discussed in the Appendix, several 

reports have indicated that the rapid ERK1/2 response to β-estradiol is inconsistent. 

Regardless of an inability to demonstrate any rapid effect of estradiol, our results suggest 

that DE-71 does not activate ERK1/2 and therefore this is unlikely to be the mechanism 

though which it enhances estrogen action. 
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Figure 24. ERK1/2 phosphorylation status after 5 minutes treatment of breast cancer cells with 

growth factor or DE-71. MCF-7 or SKBR3 breast cancer cells were treated with 10 µM DE-71. 

Epidermal Growth Factor (EGF) or Transforming Growth Factor (TGF) treatments (10 ug/ml) were 

included in each experiment as a positive control. After 5 minutes, media containing treatments was 

removed and cells were washed in cold (4ºC) phosphate buffered saline, then lysed and proteins were 

separated from other cell debris and determined by immunoblot as described in Methods. Phospho-ERK1/2 

was detected with antibody against phospho-Th202/Tyr204 (Cell Signaling catalog #9101), and eIF4E was 

detected as loading control (Cell Signaling catalog #9742). Representative immunoblots: A: MCF-7; B: 

SKBR3. Total phospho-ERK densitometry (corrected for loading control): C: MCF-7, one representative 

experiment; D. SKBR3; average of 2 independent assays ± SEM. **, p > 0.01 vs. DMSO control. 
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3.4     DE-71 increases liver weight and Cytochrome P450 activity in mice 

liver. 

 

PBDEs are known to induce CYP2B and CYP3A activities in rat liver, and the 

commercial DE-71 mixture may contain small amounts of dioxin and furans which are 

known inducers of CYP1A (Sanders et al. 2005; Zhou et al. 2002). Since these three 

CYP450 isoenzymes can deactivate β-estradiol (Lee et al. 2003; Zhu and Lee 2005), it is 

possible that the antiestrogenic effect seen in UEH of 34-day treated mice is due to 

increased EB metabolism rather than ligand binding to ERα. In order to asses the 

possibility that increase metabolic activity in the liver was decreasing the activity of 

administered EB, liver weights and activities of CYP1A (7-ethoxyresorufin O-

dealkylation, EROD) and CYP2B (7-pentoxyresorufin O-dealkylation, PROD) enzyme 

activities were determined (CYP3A activity was not determined).  

 

There was a 20%-51% increase in liver weight in BALB/c mice treated with DE-71 for 

34-days compared with vehicle control, while livers of 3-day treated mice increased in 

weight up to 39% in a dose-dependent manner (Figure 25). Estradiol treatment did not 

increase liver weight in BALB/c mice. However, estradiol potentiated the effect of DE-71 

administered orally but had no effect on SQ DE-71 treatments (Figure 25B). As with 

BALB/c mice, the livers of DE-71 treated C57BL/6 wild type mice were 27-29% bigger 

than vehicle treated controls. Estradiol administered alone or in combination with DE71 

had no effect on liver weights of C57BL/6 WT mice. The size of ERαKO mouse livers 

increased 30% after DE-71 treatment. 
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There was a large increase in PROD activity over controls in DE-71 treated BALB/c 

mice, about 7-fold in the PO treated group and 5-fold in the SQ treated group (Figure 

26A). Still, PROD activity in DE-71-treated animals was much lower than EROD activity 

in either DE-71 or vehicle-treated animals, i.e. the maximal PROD was about one third 

the minimal EROD activity. Liver microsomal EROD activity also increased (2.5-fold) 

but only for PO treated mice (Figure 26B). Estradiol treatment had no effect on either 

EROD or PROD activity (data not shown). 

 

In summary, DE-71 increased the mouse liver activity of two CYP450 isoenzymes that 

play an important role in β-estradiol catabolism: CYP1A and CYP2B. Another CYP450 

known to play in β-estradiol metabolism, CYP3A, was not tested. Enzyme induction 

relative to vehicle-treated mice was larger in PO-treated than SQ-treated animals. 
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Figure 25. Effects of DE-71 on liver weight. A: BALB/c mice were treated orally for either 3 days with 

75, 150 or 300 mg/kg DE-71, or with β-estradiol (10 µg/kg or 10 mg.kg), or with DE-71 and β-estradiol in 

combination. The same subcutaneous treatment had no effect (data not shown). All weights are expressed 

as percentage of total body weight. * = p < 0.05, ** = p < 0.01, vs. vehicle. # = p < 0.05 vs. DE-71 same 

dose without estradiol. n = 5-10 mice per SQ group, n = 4-5 mice per PO group, except as noted. PO, oral 

treatment; SQ, subcutaneous treatment. 

 

 

 

Continues on next page. 
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Figure 25 (cont). Effects of DE-71 on liver weight. B: BALB/c mice were treated for 34 days with 50 

mg/kg DE-7, or 10 µg/kg β-estradiol, or with DE-71 and EB in combination during two experiments 

(BALB/c #1 and BALB/c #2). C: C57BL/6 mice were treated for 34 days with 50 mg/kg DE-7, or 10 µg/kg 

β-estradiol, or with DE-71 and EB. All weights are expressed as percentage of total body weight. * = p < 

0.05, ** = p < 0.01, vs. vehicle. # = p < 0.05 vs. DE-71 same dose without estradiol. n = 5-10 mice per SQ 

group, n = 4-5 mice per PO group, except as noted. EB, β-estradiol benzoate; PO, oral treatment; SQ, 

subcutaneous treatment; WT, wild-type mice; KO, ERα knockout mice. 
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Figure 26. Effects of DE-71 on liver microsomal cytochrome P450 activity. BALB/c mice were treated 

for 34 days with 50 mg/kg DE-71 alone or with DE-7110 and µg/kg estradiol. A: 7-pentoxyresorufin O-

dealkylation  (PROD, CYP2B)  activity. B: 7-ethoxyresorufin O-dealkylation (EROD, CYP1A) activity. n 

= 8 mice per group. * = p < 0.05, ** = p < 0.01, vs. vehicle. 
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Discussion  

 

PBDEs are suspected to behave as estrogens because of the similarity of their chemical 

structure to other estrogenic xenobiotics, mainly the polychlorinated biphenyls (reviewed 

by Ulbrich and Stahlmann 2004; Winneke et al. 2002; Crews et al. 1995). Furthermore, it 

has been shown that hydroxylated metabolites of PCBs exert estrogenic effects (Blair et 

al. 2000; Kuiper et al. 1997) and therefore it may be reasonable to expect that 

hydroxylated forms of PBDEs would also be estrogenic. Both the PCBs and PBDEs are 

very hydrophobic rectangular molecules less than 450 Å in size. Based on the 

characteristics of the ERα binding domain found by crystallographic analysis 

(Brzozowski et al. 1997; Shiau et al. 1998) hydrophobic chemicals less than 450 Å in size 

can interact with the ligand binding pocket of ERα. The presence of para- hydroxyl 

groups at the ends of rectangular molecules seems to enhance the interaction between 

ligand and protein. Crystalographic analysis of the ERα ligand binding domain shows 

that para-hydroxyl groups in β-estradiol, DES, OH-tamoxifen and raloxifene form 

hydrogen bonds with Glu 353 and Arg 394, at the same time that hydroxyl groups at the 

opposite end of the molecule could form hydrogen bonds with His 524 (Brzozowski et al. 

1997; Shiau et al. 1998). Our findings indicate that the PBDE mixture DE-71 is 

estrogenic in culture and in vitro, although much less potent than β-estradiol. Since DE-

71 fails to displace 3H-β-estradiol from ERα, the activity and mechanisms of these 

estrogenic effects of DE-71 seem to be mediated by formation of hydroxylated 

metabolites, and were explored through three specific aims, each of which is discussed 

below. 
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Specific Aim 1: Determine if DE-71 exerts estrogenic or antiestrogenic effects using 

cell culture and animal models. 

 

The DE-71 mixture is a weak estrogen 

 

a. Estrogenic Effects 

 

Meerts et. al. (2001) tested 17 PBDE congeners for estrogenic activity in an ERE-

luciferase assay (ER-CALUX; Legler et al. 1999). Two of the congeners in DE-71, BDE-

28 and -100, were mildly estrogenic, compared to β-estradiol. BDE-100 was the most 

potent of the PBDEs tested by Meerts et al. (2001), although it was not the most 

effective. Using the same ER-CALUX bioassay, Hamers et. al. (2006) showed weak 

estrogenic activity for several DE-71 congeners, BDE-28,-47, and -100, but not for the 

DE-71 mixture. Results from Meerts et al. and Hamers et al. agree in the relative potency 

of these chemicals, and both groups agree the EC50 for BDE-100 to be in the micromolar 

range.  

 

Although Hamers et al. were unable to see an estrogenic effect of DE-71 in the ER-

CALUX assay, here we showed estrogenic effects of DE-71 in three different models: the 

MCF-7 cell proliferation assay, the in vivo adult mouse model, and the ERE-luciferase 

assay. We observed DE-71-induced ERE-luciferase in the BG1Luc3E2 cells (Table 6 and 

Figure 21B) with potency similar to BDE-28 and -100 in the ER-CALUX assay as shown 
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by Meerts et al. and Hamers et al. The difference between our ERE-luciferase results for 

the DE-71 mixture and those from Hammers et al. may be accounted by the fact that we 

tested higher concentrations (1 nM to 500 µM) than Hammers et al. (up to 10 µM). 

 

The MCF-7 cell proliferation assay used here to test DE-71 (Figure 9) is probably more 

sensitive than the ER-CALUX and BG1Luc3E2 gene expression systems due to the 

longer time of incubation with the chemical (10 days vs. 24 hours) thereby allowing 

accumulation of the estrogenic effect. Alternatively, MCF-7 cells are known to express 

cytochrome P450 enzymes CYP 1A1, CYP 1A2 and CYP 1B1 (Peters et al. 2004; Barber 

et al. 2006) and it may be that during the 10-day incubation they metabolically convert 

BDE congeners to more active hydroxylated forms (see Specific Aim 2, below). The fact 

that the antiestrogen fulvestrant prevented DE-71 from increasing cell number (Figure 

9C) suggests the involvement of an estrogen receptor. There was no indication of toxicity 

from fulvestrant treatment since cell numbers were not significantly different from 

DMSO control treatment. Barber et al. (2006) also saw increased cell number after 

treating MCF-7 with individual BDE congeners, including BDE-47, -99 and -153. 

 

Other researchers have shown that both BDE-99 and DE-71 interfere with rodent sexual 

development after prenatal exposure (Kuriyama et al. 2005; Ceccatelli et al. 2006; 

Lilienthal et al. 2006) although the specific hormonal activity involved was not 

demonstrated. As noted by Ceccatelli et al. (2006), PBDE remains in the offspring for 

months after birth, making it impossible to determine if increased expression of estrogen 

target genes is due to non-specific developmental defects, to hormonally sensitive 
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developmental effects, or to adult hormone-like effect (or a combination of these effects). 

While such research is suitable to assess the sensitivity of the prenatal and perinatal 

animal to low doses of chemicals, the pubertal development protocol used by Stoker et al. 

(2004) and the adult gonadectomized rodent model used here are more suitable to assess 

estrogenic activity by looking at well-known responses to estrogen after chemical 

challenge. Classic estrogenic responses like increased uterine weight, UEH and VET in 

the adult OVX mouse are a strong indication of the involvement of estrogen signaling 

pathways and are standard end points used to assess estrogenicity of a chemical (Suzuki 

et al. 1996; Hayashi et al. 1988; Kimura et al. 1976).  

 

Our results show that in the OVX mouse DE-71 administered subcutaneously produced 

estrogenic effects in SQ-treated mice (Figures 10, 11, 12, 13, 15, 16, and 19). However, 

the magnitude of the effects was small (4-50% increase over control) compared to the 

effect of EB (3-11 fold), therefore they may be biologically insignificant. DE-71 

administered orally had no effect on any of the measured parameters. Dang et al. (2007) 

showed small uterotrophic effects of BDE-47 in the rat after SQ treatment, among them a 

40% increase in uterus weight 24 hours after one dose of 200 mg/kg. Since, in our 

experiments, DE-71 had estrogenic effects in vitro and in SQ treated mice, the lack of 

effect in PO treated mice receiving the same dose as SQ treated mice suggest rapid 

clearance via liver metabolism and/or urinary excretion. In other words, the 50 mg/kg SQ 

dose was enough to allow concentrations large enough at the target tissues to have an 

effect, but the 50 mg/kg PO was not enough for the target tissues to reach an effective 

concentration.  
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Staskal et al. (2005 and 2006) showed that PBDEs are rapidly metabolized and excreted 

in the mouse. In our mice, the rapid clearance of administered DE-71 may account for the 

lack of effects in PO-treated mice, suggesting first-pass liver metabolism plays an 

important role in PBDE clearance. However, analysis of serum samples from 34-day 

treated mice (Qiu et al. 2007) found similar amounts of parent compounds and 

metabolites in the blood of either SQ or PO treated animals, with the exception of BDE-

153 which was 5-times higher in the PO group. The concentration of total congeners was 

approximately 2000 ng/mL or similar to what would be achieved with 5 µM treatment in 

vitro. In addition, the serum concentrations of hydroxylated metabolites were similar in 

SQ- and PO-treated mice. Therefore, if either the parent PBDEs or their hydroxylated 

metabolites were responsible for the estrogenic responses seen in SQ-treated mice at the 

concentrations found in serum, we would expect the same responses in PO-treated mice. 

Thus the concentrations of parent compound and metabolites found in blood do not 

explain the difference in biological responses between SQ and PO treated mice.  

 

However, by avoiding the high activity of conjugating (Phase II) enzymes in the liver and 

gut (Cassidy and Houston 1984, Li et al. 2004), it is possible that SQ administered 

PBDEs reached higher levels in peripheral tissue compared to PO administered PBDEs. 

It is also possible that PBDEs are activated by CYP450 in peripheral tissues such as 

adipose or at the target tissues (Shimada et al. 2003, Yoshinari et al. 2006). Others have 

also seen higher efficacy of SQ dosing over PO dosing of estrogens, as is the case of the 

xenoestrogen bisphenol A (Berger et al. 2007) and steroidal estrogen (Savvas et al. 1992). 
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Further work of tissue levels of PBDEs and their metabolites will be required to define 

the pharmacokinetics that regulate the effects of the route of exposure. 

 

We found differences in the estrogenic responses to DE-71 between tissues, dosing 

regimens and mouse strains. The differences may involve the ability of DE-71 to cause 

either of the main estrogen effects on target tissues: edema, hypertrophy or hyperplasia. 

The overall increase in uterus size is a combination of these three effects. Rodents show 

maximal extravasation of intravenous markers in the uterus at estrus, and SQ estrogen 

can induce significant water uptake in rat uterus just two hours after injection (reviewed 

by Spaziani 1975). By the sixth hour after estrogen treatment, there are measurable 

increases in not only water uptake but also accumulation of amino acids, glycogen and 

ribonucleic acid precursors; these events and an initial increase in RNA and protein 

biosynthesis contribute to increased uterine wet weight (reviewed by Segal and Scher 

1967). Proliferation (hyperplasia) and transformation of epithelial cells to large columnar 

secretory cells (hypertrophy) are part of a late response to β-estradiol that occurs 18-30 

hours after estrogen peak levels (Hewitt et al. 2003).  

 

The different dosing regimens of DE-71 determined which estrogenic effect was seen in 

the uteri. While the continuous dosing for 34-days had no significant effect on uterine 

weight (Figure 13), DE-71 given during the 3-day experiment potentiated the effect of 

EB on uterine weight in a dose-responsive manner (Figure 10). On the other hand, DE-71 

by itself was able to induce hypertrophy in the uterine epithelium (UEH) and hyperplasia 

in the vaginal epithelium (VET) after 34-days (Figures 15 and 16) but not in the 3-day 
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treatment scheme (Figures 11 and 12). This suggests that the 3-day dosing regimen may 

have been more effective in causing edema while 34-day dosing may have been more 

effective in causing cellular hypertrophy and hyperplasia. Another water uptake-related 

effect was seen in the mammary glands of 34-day treated mice: there was an increase in 

ductal lumen area, an indicator of fluid retention (Figure 19). The toxicokinetics of parent 

compounds and metabolites are likely to play a role in these different tissue responses. 

Still, it is impossible to determine the causes or the role of edema versus hyperthrophy in 

such differences from the data presented here. Keeping in mind that DE-71 is a mixture 

of several different PBDEs, and that at least 8 metabolites were identified in blood, we 

could speculate that different distributions and availability of individual PBDEs or 

metabolites at target tissues may be the reason for the tissue and dosing differences.  

 

We found a difference in response between mouse strains: the uterine and vaginal 

epithelium seems to be more sensitive to the effects of DE-71 in BALB/c (Figures 15 and 

16) than C57BL/6 mice (Figures 17 and 18). Using uterine weight and estrous activity as 

endpoints, Morozova (1991) found that the CBA mouse was more sensitive to estrogen 

than the C57BL/6 strain. On the other hand there is literature regarding the higher 

sensitivity to estrogen of C57BL/6 compared to other strains. Silberberg and Silberberg 

(1951) found that the vagina and uterus glands of ovariectomized C57BL/6 mice were 

more susceptible to estrogen stimulation than Dba or A strains. Spearow et al. (1999 and 

2001) showed that male C57BL/6 mice were more susceptible to inhibition of testes 

weight, vesicular gland weight and spermatogenesis than CD-1 mice. Very little 

information could be found regarding the BALB/c strain compared to others. Calderon et 
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al. (2003) did find that BALB/c, C57BL/6 and other inbreed mouse strains were more 

susceptible to the estrogen-sensitization to vaginal candidiasis than CD-1 mice. Strain 

effects on the response of the rat uterus and vagina to BPA and tamoxifen has also been 

reported (Bailey and Nephew 2002; Long et al. 2000). Others have traced strain 

differences in estrogenic response to specific gene regions by quantitative trait locus 

analysis (Shull et al. 2007; Tachibana et al. 2006) but the differences are likely to be 

tissue and response specific. 

 

While our findings may illustrate a real difference in estrogen sensitivity between the 

BALB/c and C57BL/6 strains, an alternative explanation is a change in assay conditions 

between the BALB/c and the C57BL/6 experiments. The experiments described herein 

were performed over the course of 2 years therefore animals may have been exposed to 

different sets of environmental variables. The literature on the effects of the weak 

estrogen bisphenol A illustrates this difficulty. Although several laboratories have 

reported that bisphenol A displays uterothrophic activity (Steinmetz et al. 1998; Long et 

al. 2000; Markey et al. 2001; Papaconstantinou et al. 2000; Kitamura et al. 2005), when 

Tinwell et al. (2000) and Ashby et al. (2004) compared results of several assays within 

one laboratory they found that small effects were only detected whn control uterine 

weight were at a minimum. Tinwell et al. (2002) also concluded that it may be difficult 

for an investigator to confirm small increases in uterine weight by repeating the same 

assay. Low environmental exposures to hormone receptor ligands may decrease the 

sensitivity of in vivo assays by increasing baseline values measured in vehicle-treated 

control animals. Xenoestrogen and phytoestrogen perturbation of hormone homeostasis 
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may be a common occurrence when testing weak endocrine disruptors and may be due to 

differences in animal housing/bedding (Howdeshell et al. 2003, Markaverich et al. 2005), 

feed (Thigpen et al. 2002, Kato et al. 2004, Ciana et al. 2005), or other environmental 

variables. In our own experiments, we found that there was a period of 5 months during 

which control uterine weights were nearly double the average of all controls from other 

experiments performed over the course of 2 years (see Appendix 6). In fact, the 

experiment designated as Experiment #2 in Figures 13, 15, 16 and 25 was among those 

with the higher control values. Therefore we cannot acertain if the difference in BALB/c 

and C57BL/6 mice to DE-71 are due to differences in strain responses or to unknown 

environmental variables. 

 

 

b. Antiestrogenic effects 

 

There is little information in the scientific literature about antiestrogenic effects of DE-71 

or its hydroxylated metabolites. The DE-71 congener BDE-153 is mildly antiestrogenic 

in the ER-CALUX assay according to Meerts et. al. (2001), but Hamers et. al. (2006) did 

not observe antiestrogenic activity from BDE-153, nor from the DE-71 mixture. We did 

not see an antiestrogenic effect of DE-71 in the BG11Luc3E2 system either, but rather a 

synergistic increase of the maximal effect of β-estradiol. However, we observed 

antiestrogenic effects of DE-71 in the MCF-7 cell proliferation assay, and a possible 

antiestrogenic effect in the vivo adult mouse model, behaviors expected from a weak 

estrogen receptor agonist. Early research on estrogen action demonstrated that the 
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uterotrophic effect of potent estrogens like estradiol and estrone can be antagonized by 

co-treatment with weaker estrogens such as estriol, 16-epiestriol, and some 

phytoestrogens (Hisaw et al. 1954, Velardo and Sturgis 1955, Lerner et al. 1963, Collins 

et al. 1997). Here we saw a similar activity of DE-71 in both MCF-7 cells and mice, 

comparable to that of the weaker phytoestrogens: a small estrogenic effect when 

administered alone, and a small antiestrogenic effect when co-administered with a strong 

estrogen like β-estradiol. Environmental pollutants like methoxychlor (Eroschenko et al. 

2000), bisphenol A (Schmidt et al. 2006) and tetramethrin (Kim et al. 2005) are also 

know to have the same weak estrogen/antiestrogen effects. 

 

In the BALB/c mouse, we observed both estrogenic and antiestrogenic effects on uterus, 

while in the vagina we only observed estrogenic effects. UEH and VET were increased in 

BALB/c mice treated for 34 days with SQ DE-71 alone (Figures 15A and 16A). Co-

treatment of the same strain with EB and DE-71 showed a decrease of the EB effect in 

UEH but not VET (Figures 15B and 16B). However, in the 3 day dose response studies, 

DE-71 potentiated the effect of RB on UEH, suggesting that pharmacokinetics play a role 

in the type of response seen. It is possible that the in vivo estrogen activity of DE-71 has 

a different effect on hypertrophy (UEH) than hyperplasia (VET), i.e. it is a stronger 

hyperplasic than hypertrophic agent. On the other hand, the differences may be due to 

tissue-specific sensitivity to a weak estrogen. Furthermore, regarding the uterine 

epithelial hypertrophy, the increase by DE-71 alone and the decrease (compared to EB 

treatment) when co-administered with EB suggests two possible mechanisms: (1) that 

DE-71 (or its metabolites)  behave as a weak estrogen agonist, i.e. acting as an antagonist 
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in the presence of the strong estrogen EB; (2) the antagonist effects may have been due to 

accumulation of a metabolite, such as 6-OH-BDE-47, that behaves as an antagonist at 

high concentrations (Figure 23). These results are in agreement with in vitro results 

discussed previously. 

 

 

Specific Aim 2: Determine the role of metabolic activation in DE-71 estrogenic or 

antiestrogenic effects 

 

DE-71 was metabolized into active species in vivo and in vitro 

 

As discussed in the Introduction, some environmental pollutants can become estrogenic 

or increase their estrogenic potency after CYP450 metabolism. In the case of halogenated 

aromatic compounds like the PBDEs, CYP450 can both remove halogen atoms from the 

molecule and/or add a hydroxyl group. Both modifications could increase the molecule’s 

affinity for estrogen receptors. 

 

We observed metabolic activation of DE-71 into active species both in vivo and in vitro. 

In the in vitro experiments, we pre-incubated DE-71 with rat liver microsomes, imitating 

the classical experiments by which Kupfer and Bulger demonstrated the metabolic 

activation of the pro-estrogen methoxychlor (Bulger et al. 1978; Kupfer and Bulger 

1979). Pre-incubation of DE-71 with microsomes under enzyme activating conditions 

increased its estrogenic activity.  
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Mammalian liver microsomes are rich in Cytochrome P450, a group of isoenzymes 

responsible for metabolism of many endogenous and exogenous chemicals. As discussed 

previously, estrogens in general are targets for both activation and deactivation by 

CYP450 (see Introduction for detailed explanation and CYP isoforms). While some 

specific CYP450 isoenzymes are responsible for either the anabolism or catabolism of 

endogenous estrogens, others can interconvert one endogenous estrogen into another. The 

biological activities of environmental chemicals have been found to be either increased or 

decreased by specific CYP450 enzymes(Goldstein and Faletto 1993), and some of these 

chemicals are known to have estrogenic activity or be converted into estrogens by 

CYP450 metabolism (Bulger et al. 1978; Kupfer and Bulger 1979; Morohoshi et al. 

2005; Kohno et al. 2005). Aromatic ring hydroxylation is the most common mechanism 

by which CYP450 enzymes increase the estrogenic activity of a chemical, and several 

isoenzymes show preference for hydroxylating a common class of anthropogenic 

environmental pollutants, the halogenated polyaromatic hydrocarbons (halogenated 

PAHs), sometimes converting them into estrogens. These CYP450 isoenzymes include 

1A1/2, 2A6, 2C9, 2C18, and 2C19 (Stresser and Kupfer 1998; Niwa et al. 2001; 

Yoshihara et al. 2004; McGraw and Waller 2006; White et al. 2000). Suitable substrates 

are usually PAH with two to four aromatic rings, sometimes fused, rectangular in shape 

and very hydrophobic (Lewis 1997, 2000).  

 

Based on our results and those of Qiu et al. (2007), some of the PBDE congeners in DE-

71 are also likely candidates for CYP450 activation as estrogens. We show here that all 
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the OH-PBDEs found in mice after DE-71 treatment interact with ERα in vitro, as 

evidenced by the results of 3H-β-estradiol displacement assays (Table 7 and Figure 22). 

Individual OH-PBDEs had different abilities in the ERE-luciferase assay (Table 6 and 

Figure 21), which was used to assess their estrogenic potency (amount needed to induce a 

response), and efficacy (size of maximal response).  

 

Qiu et al. (2007) found six hydroxylated-PBDEs metabolites in serum collected from the 

mice that had been treated for 34-days with DE-71 orally and subcutaneously (Tables 5 

and 6; Figure 21). Those with para- hydroxylation (4’-OH-BDE-17, 4-OH-BDE-42 and 

4’-OH-BDE-49) had ERE-luciferase activities higher than or similar to DE-71, and two 

out of three were able to synergize with β-estradiol. Ortho-and meta- hydroxylated 

congeners (2’-OH-BDE-28, 3-OH-BDE-47 and 6-OH-BDE-47) had little or no 

estrogenic activity but some (2’-OH-BDE-28 and 6-OH-BDE-47) behaved as 

antiestrogens, whereas DE-71 was not antiestrogenic in the ERE-luciferase assay. Others 

have found these same hydroxylated PBDE metabolites in animals exposed to PBDEs in 

the laboratory (Malmberg et al. 2005; Marsh et al. 2006; Kierkegaard et al. 2001) and in 

wildlife (Kelly 2006; Verreault et al. 2005; Valters et al. 2005), especially marine 

animals. But this is the first time these chemicals have been shown to have a specific 

hormonal activity. 

 

Based on findings by Qiu et al. (2007) in mice and others in rats (Malmberg et al. 2005; 

Marsh et al. 2006), the DE-71 congener BDE-47 seems to be activated to estrogenic OH-

PBDEs in laboratory rodents; BDE-47 itself has been found to have little estrogenic 
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activity (Hamers et al. 2006, Meerts et al. 2000). Others have also found OH-PBDEs in 

wild marine animals that could be BDE-47 metabolites (Kelly 2006; Verreault et al. 

2005). However, the source of OH-BDEs in the marine environment can be both natural 

and anthropogenic, since some marine organisms produce natural brominated compounds 

(Vetter 2006). 

 

PBDEs were originally suspected to be estrogenic because of their similarity to three 

other classes of estrogenic pollutants: the polychlorinated biphenyls (PCBs), 

polychlorobisphenyl ethanes (o,p’-DDT, methoxychlor, and others) and diphenyl 

propanes (bisphenol A and its metabolites). Most of these chemicals are already para-

hydroxylated or require hydroxylation at the para- position to bind and activate ER 

(Stresser and Kupfer 1998; Arulmozhiraja et al. 2005), but some like o,p’-DDT have 

estrogenic activity without having a hydroxyl group. Our results show that para- 

hydroxylation increases the estrogenic activity of BDE-47, and that para-hydoxylated 

metabolites are more potent and effective estrogens than PBDEs with ortho- or meta-

hydroxylation. In fact, the only meta-OH-PBDE we tested had activity not by itself but 

only by potentiating the effect of β-estradiol, and the two ortho-OH-PBDEs tested were 

antiestrogenic. 

 

Below we review each of the metabolites found in mice blood serum, including an 

overview of our results and those of other researchers. 
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a. 4´-OH-BDE-17 

 

In the ERE-luciferase assay, 4´-HO-BDE-17 was more potent and more effective than 

DE-71 (Table 6 and Figure 21C). When cells were co-treated with β-estradiol, 4´-HO-

BDE-17 acted synergistically to increase ERE-luciferase beyond the maximal β-estradiol 

effect (Figure 23C). This dose-dependent increase was statistically significant at 

concentration of 1 uM (35% increase) and above. 

 

Qiu et al. (2007) deduced that 4´-HO-BDE-17 was formed in mice from oxidative 

debromination of BDE-47, a minor metabolic pathway that yielded a small amount of 

product compared with concentrations of other metabolites (11-17 ng/g of serum, or 3-

4% of the metabolites found). There is little information available about this metabolite; 

it was found in rat feces after BDE-47 administration (Marsh et al. 2006) and in East 

Hudson Bay beluga whale blubber (females, 0.012 ng/g lipid) but not in their milk or 

blood (Kelly 2006).  

 

b. 2’-OH-BDE-28 

 

2’-OH-BDE-28 induced very little ERE-luciferase (Table 6 and Figure 21F) and had a 

low potency in the 3H-β-estradiol/ERα displacement assay (Table 7 and Figure 22F). 

Interestingly, it seems to potentiate the effect of 10 pM β-estradiol until a threshold is 

reached, then at higher concentrations it acts as an antagonist (Figure 23F). Potentiation 
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of the β-estradiol effect was observed at 10 uM (about 30% increase), then antagonism at 

50 uM (about 40% decrease).  

 

As with 4´-HO-BDE-17, this metabolite seems to originate from oxidative 

dehalogenation of BDE-47 (Qiu et al. 2007) and was found in mice at 5-11 ng/g serum 

(about 2% total OH-PBDEs found in mice). Marsh et al. (2006) also found 2’-OH-BDE-

28 in laboratory rats exposed to BDE-47. 

 

c. 4-OH-BDE-42 

 

When considered against its own maximal effect, 4-HO-BDE-42 was more potent but 

less effective than DE-71, and less potent and effective than 4´-HO-BDE-17, but its 

relative estrogen potency was lower than DE-71 (Tables 6 and 7; Figures 21D and 22D). 

It was the most abundant metabolite found in DE-71 treated mice (120-180 ng/g of 

serum, or 32-38% of the metabolites found), presumably formed by hydroxylation of 

BDE-47, a major metabolic pathway for PBDEs in animals (Qiu et al. 2007). Others have 

detected this chemical in laboratory rats after exposure to BDE-47 (Marsh et al. 2006) or 

to a mixture of PBDEs similar to DE-71 (Malmberg et al. 2005). 4-HO-BDE-42 has also 

been found in the wild, in polar bear plasma (up to 0.22 ng/g; Verreault et al. 2005), East 

Hudson Bay beluga whales (Kelly 2006), and Detroit River fish (up to 1.2 pg/g; Valters 

et al. 2005).  
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d. 4´-OH-BDE-49 

 

The potency of 4´-HO-BDE-49 was similar to that of DE-71, but it was much less 

effective (Tables 6 and 7; Figures 21E and 22E). It was able to synergize with10 pM β-

estradiol, increasing ERE-luciferase induction by 20-40% (Figure 23E). As was the case 

for 4-HO-BDE-42, hydroxylation of BDE-47 is the most likely pathway of 4´-HO-BDE-

49 formation; Qiu et al. (2007) found 34-42 ng/g of serum (about 9% of total metabolites) 

in DE-71 treated mice. Others have detected this chemical in laboratory rats after 

exposure to BDE-47 (Marsh et al. 2006) or to a mixture of PBDEs similar to DE-71 

(Malmberg et al. 2005). 4´-HO-BDE-49 has also been found in rainfall and surface 

waters from southern Ontario, Canada (concentration not reported; Ueno et al. 2005), 

Detroit River fish (up to 170.5 pg/g; Valters et al. 2005), artic glaucous gull plasma and 

polar bear plasma (up to 0.54 and 0.32 ng/g, respectivetly; Verreault et al. 2005).  

 

e. 3-OH-BDE-47 

 

Although 3-OH-BDE-47 displaced 3H-β-estradiol from recombinant ERα (Table 7 and 

Figure 22G), it had very little effect inducing ERE-luciferase (Figure 21G). It did 

enhance the effect of 10 pM β-estradiol but with less potency that 4´-HO-BDE-17 or 4´-

HO-BDE-49, since the increase over β-estradiol became significant only at a 

concentration of 10 µM (Figure 23G).  
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3-OH-BDE-47 was also most likely formed by hydroxylation of BDE-47 (Marsh et al. 

2006; Qiu et al. 2007), therefore this OH-PBDE  may be less potent and effective than the 

parent compound. In the wild, 3-OH-BDE-47 has been found in male and female beluga 

whale blubber (0.012 and 0.017 ng/g lipid, respectively) as well as in beluga calf blubber 

(0.027 ng/g lipid; (Kelly 2006), and in glaucous gull plasma (up to 0.5 ng/g; Verreault et 

al. 2005). 

 

f. 6-OH-BDE-47 

 

6-OH-BDE-47 is another product of BDE-47 hydroxylation (Marsh et al. 2006; Qiu et al. 

2007). This chemical has been found in laboratory rats after BDE-47 exposure (Marsh et 

al. 2006), female beluga whale blood (9.91 ng/g lipid; Kelly 2006), Detroit River fish 

(3.1 – 20.5 pg/g; Valters et al. 2005), and in glaucous gulls plasma (0.26 ng/g; Verreault 

et al. 2005). 

 

6-OH-BDE-47 did not induce ERE-luciferase (Figure 21H) but was a more potent 

antiestrogen than 2’OH-BDE-28 , decreasing the ERE-luciferase induced by 10 pM β-

estradiol by 50% at a concentration of 5 µM (Figure 23H). At a concentration of 1 µM, 6-

OH-BDE-47 seemed to potentiate the effect of estradiol β-estradiol but the effect was not 

statistically significant. Hammers et al. (2006) also found 6-OH-BDE-47 to be 

antiestrogenic, and while others found it to be cytotoxic (Harju et al. 2007), we observed 

no toxic effects at concentrations as high as 50 μM.  
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Specific Aim 3: Explore the mechanisms by which DE-71 congeners or their 

metabolites can activate or antagonize ERα signaling. 

 

OH-PBDEs but not DE-71 bind Estrogen Receptor Alpha 

 

The inability of DE-71 to bind ERα (Figure 22B) was surprising since it was fully 

estrogenic in the cell culture models and slightly estrogenic in the ovariectomized mouse. 

Finding DE-71 metabolites that did bind ERα provided a possible explanation for the 

discrepancy between DE-71 effects and its inability to directly interact with ERα. Both 

the 34-day in vivo mouse experiments and the 10-day in culture MCF-7 cell proliferation 

experiments provide ample time for both the formation of more active metabolites and 

the accumulation of the estrogenic effect. In those experiments, concentrations of 5-10 

µM produced estrogenic effects. In other experiments, DE-71 was able to weakly induce 

ERE-luciferase starting at 10 µM, suggesting that estrogenic metabolites may have 

formed even over a much shorter incubation period (18 hrs). The fact that pre-incubation 

with rat liver microsomes increased the ERE-luciferase induction by DE-71 suggested 

that metabolic activation of individual DE-71 congeners played a role in the estrogenic 

effect. Therefore, the results of three different kinds of studies, 34-day in vivo, MCF-7 

cell culture, and ERE-luciferase induction with microsomal preincubation, support the 

hypothesis that DE-71 congeners need to be metabolically activated in order to have a 

significant estrogenic effect.  
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DE-71 and para- and meta-hydroxylated metabolites induce ERE-luciferase 

beyond β-estradiol maximal effect 

 

In general, stimulation of estrogen responsive tissues and cell lines by endogenous 

estrogens will reach a maximal effect, after which increasing concentrations of estrogens 

will not increase the response. As with other receptor-dependent biological responses, an 

increase in tissue response to increasing concentrations can be observed as long as there 

are estrogen receptors available to bind the added estrogen. Once maximal receptor 

occupancy has been reached, additional amounts of ligand cannot produce additional 

effect. But here we show effects beyond the β-estradiol maximum when coadministered 

with DE-71 or some of its metabolites, and in the ERE-luciferase assay when cells were 

treated with 4’-OH-BDE-17 alone. In the 3-day mouse experiments, SQ DE-71 

cotreatment potentiated the effect of β-estradiol on UEH and VET in a dose-dependent 

manner (Figures 11B and 12B). DE-71 and several of its metabolites were able to 

synergize the effect of β-estradiol on ERE-luciferase induction (Figure 23). Therefore, at 

least the effects on two different assays, epithelial parameters in the 3-day in vivo assay 

and ERE-luciferase assay, suggest an additional mechanism of action, other than ERα 

occupancy. DE-71 also potentiated the effect of β-estradiol on uterine weight of 3-day 

treated mice (Figure 10B), but this effect reached a plateau at the β-estradiol maximum, 

and therefore could be explained by additional ERα occupation. 

 

The induction of estrogenic activity by xenoestrogens beyond the maximal effect of β-

estradiol has been observed previously in our laboratory and by others. We have observed 
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o,p’-DDT induce ERE-luciferase beyond  β-estradiol maximal effect (Bigsby, 

unpublished data). Meerts et al. (2001) observed a similar response from 4-

phenoxyphenol and 4’-OH-BDE-30 (4’-OH-2,4,6-tribromodiphenyl ether). Our 

laboratory has also observed induction of classical ERα-mediated estrogenic effects by β-

hexachlorohexane (β-HCH), a chemical that does not bind ERα (Steinmetz et al. 1996). 

As for the synergistic or potentiating effect seen here from DE-71 and its para- and meta- 

hydroxylated metabolites, we are the first to report such an effect from PBDE congeners. 

Connor et al. (1997) observed similar effects for estrogenic para-OH-PCBs. Taken 

together, these findings point to an additional mechanism of ERE activation by the test 

chemicals other than acting as an ERα ligand. 

 

 

Ortho-hydroxylated metabolites are antiestrogens in the ERE-luciferase 

assay 

 

In addition to the estrogenic DE-71 metabolites described above, we found two 

antiestrogenic DE-71 metabolites in the ERE-luciferase assay: 2’-OH-BDE-28 and 6-

OH-BDE-47. Both chemicals are ortho-hydroxylated and neither had a significant effect 

on ERE-luciferase induction by themselves. Hamers et. al. (2006) also showed weak 

antiestrogenic activity for 6-OH-BDE-47 in the ERE-CALUX assay, but we are the first 

to report the antiestrogenic activity of 2’-OH-BDE-28. A similar pattern of antagonism 

and mixed agonism/antagonism was observed by Connor et al. (1997) in para-
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hydroxylated PCBs. They showed antiestrogenic activity for several congeners in an 

ERE-luciferase assay, and agonist/antagonist behavior for others.  

 

ERα antagonists work by inducing a conformational change in the receptor that does not 

allow binding of coregulatory proteins to the ER. This conformational change involves 

the position of a helical structure in the ER ligand binding domain, known as Helix 12, 

which allows the formation of a competent AF-2 region capable of interacting with 

coactivators when the receptor is bound to β-estradiol but not to when it is bound to 

antagonists (Brzozowski et al. 1997). Since nuclear ERs operate as transcription factors, a 

variety of coregulatory proteins modify their transcriptional activity (reviewed by Glass 

and Rosenfeld 2000), and failure to recruit coregulators will significantly reduced ligand 

dependent transcriptional activation (Danielian et al. 1992).  

 

The synergistic and potentiating effects described in previous sections may seem to 

contradict the antiestrogenic effect of DE-71 cotreatment on MCF-7 cells. While 

antiestrogenic metabolites may form in culture, the proliferative effect on MCF-7 cells 

after DE-71 treatment by itself suggests that if any antiestrogenic metabolites are formed, 

their effect was not strong enough to interfere with the effects of estrogenic DE-71 

congeners and/or metabolites. A more likely cause for the antiestrogenic effect seen in 

culture is that DE-71 or its metabolites are weak estrogens that prevent a strong estrogen 

like β-estradiol from interacting with ERα. Since we showed the activity of DE-71 to be 

very weak in vivo and in culture, this is a possible explanation. Another possible 

explanation for the induction of MCF-7 cell proliferation by DE-71 is that it acts on 
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another signaling pathway, such as those that induce ERK1/2 activation, but we have 

shown this does not occur (Figure 24). 

  

 

DE-71 increases liver weight and Cytochrome P450 activity in mouse liver 

 

Another alternative cause for the antiestrogenic effects of DE-71 seen in the MCF-7 cell 

proliferation assay and in one of the 34-day mouse experiments is induction of CYP450 

enzymes capable of deactivating β-estradiol. Since DE-71 treatment increased liver 

weight (Figure 25) while at the same time diminishing the action of administered EB on 

uterine epithelia (Figure 15), it is possible DE-71 can alter liver metabolic pathways that 

regulate systemic estrogen activity. A major pathway responsible for estradiol 

deactivation is catalyzed by cytochrome P450 (CYP450) enzymes (Lee et al. 2003). In 

order to evaluate DE-71’s capacity to induce estradiol catabolism in the liver, the activity 

of a major estradiol deactivating CYP450, isoenzyme 1A1, was assessed by measuring 

liver EROD activity. Another CYP450 family known to be induced by PBDEs, 2B 

(Sanders et al. 2005; Stoker et al. 2004; Zhou et al. 2002), was also assessed by 

measuring PROD activity. A third important enzyme in estrogen catabolism also induced 

by PBDEs, CYP3A (Sanders et al. 2005; Pacyniak et al. 2007), was not tested. DE-71 

administered orally increased PROD activity in BALB/c mice (about 10-fold; Figure 

26A), an effect in accordance with Sanders et al. (2005) findings of increased CYP2B 

gene expression in rats after treatment with DE-71 or some of its BDE congeners. We 

also found a statistically significant increase in EROD activity in the PO-treated mice 
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(Figure 26B). Sanders et al. (2005) also found that DE-71, but not its three main 

component congeners (BDE-47, 99 and 153), strongly upregulated CYP1A1 and 

suggested that such an increase might be due to dioxin and/or furan contamination of the 

DE-71 mixture. 

 

If the antiestrogenic effect of DE-71 was due to an increase in CYP450 enzyme activity, 

the larger effect should have occurred in the PO-treated animals, i.e., in the animals with 

the largest increases in EROD and PROD activities. But this was not the case; instead the 

larger and statistically significant decrease in EB effect occurred in animals treated SQ 

(Figure 15). Therefore, at least in our experiment, the antiestrogenic effect of DE-71 (or 

its metabolites) seems more likely due to interference of receptor activation and not to a 

metabolic deactivation of administered EB activity.  

 

 

Conclusions and Further Studies 

 

The main hypothesis of this thesis is that the PBDE mixture DE-71 acts as an endocrine 

disruptor through activation of ERα. The experiments presented here show that DE-71 

behaves as a weak estrogen in four models of estrogenic activity: MCF-7 breast cancer 

cell proliferation, ERE-luciferase reporter gene induction, ERα binding assay and 

estrogen target tissue responses in the ovariectomized adult mouse. We showed that DE-

71 causes classic ERα-mediated effects in the uterus, vagina and breast and that 

hydroxylated metabolites of DE-71 are able to bind ERα and induce ERE-mediated 
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transcription. Since the congeners in DE-71 did not themselves displace estradiol from its 

receptor, it is likely that estrogenic effects of the PBDE mixture were also mediated by 

hydroxylated metabolites capable of binding ERα. Likewise, the antiestrogenic activity 

observed in the MCF-7 cell proliferation assay is most likely due to interaction of 

hydroxylated DE-71 metabolites with estrogen receptors and not to metabolic depletion 

of co-administered estrogens. These findings show that DE-71 could act as an endocrine 

disruptor; however its congeners and metabolites are weak activators of ERα when 

compared with a strong endogenous estrogen like β-estradiol. 

 

In mice, treatment route and duration determined if DE-71 was estrogenic or not, and also 

if the main effect was edema, hypertrophy or hyperplasia. BALB/c mice are more 

susceptible to DE-71 effects in estrogen target tissues and in liver than C57BL/6 mice. 

DE-71 also increased liver weight in both mouse strains tested, and this effect was not 

dependent on ERα.  

 

Several OH-PBDE metabolites were found in mouse serum after DE-71 treatment. While 

all para-OH-PBDEs were more estrogenic than DE-71, all of the metabolites found were 

much less potent than β-estradiol. The only meta-OH-PBDE found in mouse blood was 

not estrogenic by itself but was able to potentiate the ERE-luciferase induction of β-

estradiol. Several of the estrogenic para-OH-PBDEs also behaved synergistically when 

cells were cotreated with β-estradiol. The two ortho-OH-PBDEs found in mouse blood 

were antiestrogenic at high concentrations.  
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The levels of DE-71 needed to have estrogenic effects in our studies (µM range) are 

much higher than the highest concentrations found so far in human blood serum (0.1 – 5 

nM; Mazdai et al. 2003). But there is no current information on the levels of OH-PBDEs 

in human serum, or the role that human enzymes (especially CYP450) may play in the 

formation of DE-71 metabolites. Mouse tissues do not have the same CYP450 activities 

as human tissues (Bogaards et al. 2000); therefore the metabolites we found in mouse 

serum may not be representative of metabolites formed in humans. To find out if human 

CYP450 enzymes can convert DE-71 congeners to more estrogenic forms, DE-71 could 

be incubated with recombinant human CYP450 protein, especially CYP3A which 

accounts for the largest amount of CYP450 activity in the human liver (Guengerich 

2005). To determine if humans produce hydroxylated PBDEs  in vivo, human blood 

samples can be chemically analyzed for metabolites.  

 

Moreover, since we found estrogenic effects only in SQ treated animals and proposed 

that the majority of PO-administered DE-71 metabolites may be cleared from the body 

before reaching peripheral tissues, it would be informative to determine which 

metabolites are formed at estrogen target tissues. This could be accomplished by in vitro 

incubations of DE-71 with microsomal and/or cytosolic fractions from specific estrogen 

target tissues, and/or chemical analysis of estrogen target tissues from treated mice for the 

presence of OH-PBDEs. 

 

The observation that some of the hydroxylated PBDEs generated supramaximal 

estrogenic effects suggests that these compounds also work through mechanisms other 
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than direct activation of ERα. Further research is needed to determine if these 

mechanisms involve activation of ERβ and its interaction with EREs, and/or nongenomic 

estrogen signaling, such as activation of ERK1/2 by DE-71 metabolites. Although DE-71 

did not rapidly activate ERK1/2 in a manner similar to EGF, we did not test the 

hydroxylated compounds. Another area of further research would be to explore if either 

DE-71 congeners or OH-PBDEs can interact with a secondary binding site on ERα and 

thus achieve an effect of larger magnitude than when occupying only the traditional 

ligand binding domain. Further in vitro and in vivo studies detecting an endogenous 

estrogen-inducible gene would confirm that OH-PBDEs are able to induce ERE-mediated 

gene expression. 

 

The key findings of this thesis, that DE-71 is mildly estrogenic in mammals and can be 

converted to more active metabolites in vivo, support the current public health policy in 

the USA and Europe that human exposure to DE-71 must be decreased or eliminated. 

Further studies are needed to determine permissible levels in the environment given the 

most likely routes of exposure for humans and the sensitivity of specific subpopulations 

to estrogenic effects (developing fetus, very young children, and patients with estrogen-

sensitive cancers). Risk-based permissible exposure levels are needed in order to 

accurately monitor environmental media (food, surface dust, air, water and soil), guide 

contaminated site cleanups, and issue advisories and warnings regarding the consumption 

of wild caught fish and game. 
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Appendix 1. DE-71 Technical Information and Materials Safety Data 

Sheet 
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Appendix 2. Problems optimizing reporter assay based on BG1LucE2 

cells. 

 

As described in Methods, ER-positive BG1Luc4E2 ovarian cancer cells are stably 

transfected with an ERE-luciferase reporter gene (Rogers and Denison 2000). In our 

laboratory these cells displayed high variability of results when grown in the same low 

estrogen conditions successfully used for other cell lines (weekly 1:10 passage, plating in 

3%csBGS media and waiting 2 days before treatment). The variability was due to 

increased luciferase signal from control-treated (DMSO) cells (Figure A1A), therefore 

the difference between control and maximal estrogen effect changed from one 

experiment to another, and in some experiments was minimal. The result was a high 

variability of estrogen efficacy (Figure A1B). Several measures were taken to improve 

the reliability of the assay (see Methods for detailed media formulation): (1) increased 

pre-incubation in basal medium (BM); (2) addition of the antibiotic geneticin (G418) to 

growth medium (GM) to continue selective pressure on the cells; (3) optimization of the 

amount of csBGS in the estrogen-depleted BM; and (4) passaging cells in very dilute 

suspension (suggested by M. Denison laboratory). Increased incubation time in BM 

should decrease the background estrogenic activity in cultured cells; and increasing 

amounts of serum has been reported to decrease basal estrogenic signaling in culture 

(Soto and Sonnenschein, 1985). In order to minimize the population of cells with 

constitutively active luciferase gene, cells were passed in a very dilute suspension by 

drawing a trypsinized cell suspention into a pipette, expelling the cells and then washing 

the same pipette again in the fresh GM of the new flask. In the end we concluded that 
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several conditions were required to minimize assay variability: very dilute passage (by 

“pipette wash”) into GM containing 0.4 mg/mL G418, and 4 days pre-incubation in BM 

containing 10% csBGS. Cells were not used beyond passage #11, and passages before #7 

yielded better results. Using this techniques the basal control luciferase levels were 

maintained at a minimum (see Figure A1A, last nine data points) and the difference 

between maximum induced luciferase and control luciferase was maintained at 

acceptable levels (maximal β-estradiol effect above 2.5-fold; Figure A1B, last nine data 

points).



 

 
 

155

Figure A1: Influence of cell passage, growing and plating conditions on reproducibility of ERE-

luciferase assay using BG1LucE2 cells. A. Variability of response to vehicle (control) treatment; before 

finding the optimal assay conditions, activity after control treatments fluctuated widely. B. Variability of 

maximum estrogen effect in each assay as fold increase over vehicle treatment; each point represents an 

independent experiment. *, New vial of cells from original frozen stock was used starting at this assay. **, 

Cells were frozen before holiday break and same cells were thawed and used starting at this assay. Shaded 

box indicates experiments not used in this thesis (maximum β-estradiol effect < 2.5 fold). 

 

Continues on next page. 
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Figure A1 (cont): Influence of cell passage, growing and plating conditions on reproducibility of ERE-luciferase assay using BG1LucE2 cells. 
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Appendix 3: Selection of successful microsomal incubations. 

 

DE-71 was incubated with female rat liver microsomes and an NADPH generating 

system (as described in Methods) to determine if such treatment would increase the 

estrogenicity of DE-71. The incubation product was then tested for estrogenicity by ERE-

luciferase assay. Although several incubations were performed (Figure A3), only a few 

showed the expected CYP450 activity on the positive controls β-estradiol and 

methoxychlor. CYP450 are known to decrease the estrogenic activity of β-estradiol (Lee 

et al. 2003) and increase that of methoxychlor (Bulger et al. 1978; Kupfer 1979). In the 

thesis Results section we only used experiments in which the controls worked, i.e., there 

was a decreased activity for β-estradiol and increased activity for methoxychlor in the 

ERE-luciferase assay.  



 

 
 

158

Figure A2. Luciferase assays after incubating β-estradiol (estradiol), methoxychlor or DE-71 with 

female rat liver microsomes for 24 hours. Each chart represents an independent assay (3-4 wells per 

treatment). Control treatments consisted of “fresh” chemical solution (i.e. not incubated with microsomes) 

added to media. –NADPH treatments consisted of chemical incubated with microsomes but without 

NADPH generating system (see Methods). +NADPH treatments consisted of chemicals incubated with 

microsomes and NADPH generating system. Final treatments were: 0.1% DMSO, 10 nM β-estradiol, 10 

µM methoxychlor or DE-71 (PBDE). Only the experiments with positive controls marked with a yellow 

rectangle were included in this thesis. Three other experiments known to have procedural errors were not 

included in this thesis either (data not shown). 
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Appendix 4. Inability of β-estradiol treatment to activate ERK1/2 in 

culture. 

 

Others have seen rapid activation (5-10 minutes after treatment) of ERK1/2 after 

exposing cultured cells to β-estradiol (Manavathi and Kumar 2006; Migliaccio et al. 

2006; Filardo et al. 2000; Thomas et al. 2005). On the other hand, Lobenhofer and Marks 

2000, Bonapace et al. 1996 and Gaben et al. 2004 showed that this effect of estrogen was 

inconsistent and the authors questioned the validity of the hypothesis that ERK1/2 

mediate the rapid effects of the hormone. Nonetheless, a clear interaction between growth 

factor pathways that exert their activity through ERK1/2 and enhanced estrogen receptor 

action has been shown (Ignar-Trowbridge et al. 1995; Smith 1998). Since some 

xenoestrogens do not bind the estrogen receptor or exert estrogenic effects beyond the 

maximal effect of β-estradiol (Meerts et al. 2001; Steinmetz et al. 1996; Bigsby, 

unpublished data), we explored ERK1/2 activation as a possible indicator of DE-71 

estrogenic activity not mediated directly by nuclear ERs. We were unable to detect rapid 

activation of ERK1/2 after β-estradiol treatment of several cell lines, including the breast 

cancer cell lines MCF-7 and SKBR3. Representative results are included in Figure A1.  
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Figure A3. ERK1/2 activity in breast cancer cells 5 minutes after treatment with β-estradiol, except 

as indicated. Each blot represents and independent assay. Phospho-ERK1/2 was detected with antibody 

against phospho-Th202/Tyr204 (Cell Signaling #9101), and eIF4E was detected as loading control (Cell 

Signalilng # #9742). EGF treatment (10 ug/ml) was included in each experiment as a positive control. 

A. SKBR3, 9/23/2004 assay (DMSO and β-estradiol were plated and treated in duplicate) 

 
B. MCF-7, 10/29/04 assay  

 
C. MCF-7, 11/12/2004 assay 

 
D. SKBR3, 11/12/2004 assay 

 
E. MCF-7, 11/22/2004 assay 
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Appendix 5. Effect of CYP450 inhibitors on DE-71 induced MCF-7 cell 

proliferation. 
 

Metabolism by cytochrome P450 (CYP450) isoenzymes can increase the estrogenic 

activity of environmental pollutants (Bulger et al. 1978; Kupfer 1979; Morohoshi et al. 

2005; Kohno et al. 2005; Jansen et al. 1993; Yoshihara et al. 2004) and here we show that 

the estrogenicity of DE-71 is also increased by in vivo metabolism. We also showed that 

DE-71 increases MCF-7 cell proliferation in culture. Therefore, we attempted to 

determine if MCF-7 cell proliferation could be hampered by CYP450 antagonists. MCF-7 

cells were co-treated with 10 µM DE-71 and various concentrations of either alpha-

naphtoflavone (αNF) or N, N-di-ethylaminoethyl-2,2-diphenylvalerate hydrochloride 

(SKF 525a; SKF). However, we concluded these experiments were not informative due 

to the secondary activities of both SKF and αNF. 

 

SKF seem to decrease the induction of cell growth by DE-71 (Figure A5A). However, 

SKF is also a weak estrogen (Kupfer and Bulger 1982). In our assays, although an 11% 

decrease in β-estradiol effect after co-incubation with 1 µM SKF was not statistically 

significant, in one assay 10 µM SKF co-incubation diminished the effect of β-estradiol by 

59%. Therefore we cannot rule out that the decrease in DE-71 effect is due to competition 

for estrogen receptors rather than CYP450 inhibition. 

 

αNF was able to decrease the DE-71 induced MCF-7 cell proliferation only in some 

assays, therefore the effect was lost in the overall statistical analysis of the grouped assay 

data (Figure A5B). While αNF is a well known inhibitor of the CYP1A1 isoenzyme, it 
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can increase CYP3A4 activity by selectively binding and activating an otherwise inactive 

subpopulation of the enzyme (Koley et al. 1997). Since CYP450 metabolism can 

decrease the estrogenicity of β-estradiol (Lee et al. 2003), the interaction between αNF 

and CYP3A4 could explain the sharp decrease in cell proliferation we observed when 

cells were co-treated with 10 pM β-estradiol and 10 µM αNF. 
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Figure A4. Effects of CYP450 inhibitors on MCF-7 cell proliferation assay. A: SKF. B: αNF. Cells 

were treated as described in Methods and Figure 9, except they were cotreated with either 10 pM β-

estradiol or 5-10 µM DE-71 and a CYP450 inhibitor at the concentrations indicated in the chart. Each 

column is the average of at least 2 independent assays, except as noted on chart. Different from control (0 

M SKF = 0.1% DMSO): *, p < 0.05; ***, p < 0.001. Different from 10 µM DE-71: ###, p < 0.001. Different 

from 10 pM β-estradiol: +++, p < 0.001. 

 

Continues on next page. 



 

 

Figure A4 (cont). Effects of CYP450 inhibitors on MCF-7 cell proliferation assay. 
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Appendix 6. Variability in Relative Uterine Weight of Control 

Ovariectomized Wild Type Mice. 
 

The table below lists average relative uterine weights (RUW; uterus weight in mg divided 

by body weight in grams) for control treatment groups of mouse experiments in our 

laboratory between March 2005 and January 2007. All in vivo experiments described in 

this thesis were done within that period of time. In most instances, average RUWs were 

less than 0.39 mg/g for control-treated animals except for two experiments on BALB/c 

mice performed between August and December 2005. The first of these experiments 

(RUW = 0.62 mg/g) had a 34-day treatment regime and its results are labeled 

“Experiment #2” throughout this document, and shown in Figures 1, 13, 15, 16, 19 and 

25. Because of the difference in control RUW from the first 34-day treatment regime 

experiment (labeled “Experiment #1”; RUW = 0.29 mg/kg), data from each 34-day 

experiment were analyzed separately. The second experiment with a high RUW had a 3-

day treatment regime in BALB/c mice, and was discarded because of dosing errors in EB 

treated groups. Other 3-day experiments in BALB/c mice had similar average RUWs 

values and their results were combined into one data set for statistical analysis. All 

C57BL/6 experiments had similar average RUWs and were combined into one data set 

for statistical analysis. 
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Table A1. Dates and Relative Uterine Weights of Control Ovariectomized Wild Type Mice from DE-

71 Assays. Mice were treated with either 100 µL corn oil by oral gavage, or 10 µL DMSO by subcutaneous 

injection. Within experiments, there was no statistically significant difference between groups treated orally 

or subcutaneously (data not shown), therefore combined data is shown as mean ± SEM. 

Year Dates Strain mg/g Comments 

2005 March 6 - May 11 BALB/c 0.29 ± 0.05 BALB/c Experiment #1 

  May 26 - June 29 C57BL/6  0.38 ± 0.02   

  August 3 - September 8 BALB/c 0.62 ± 0.07 BALB/c Experiment #2 

  December 5 - 13 BALB/c 0.57 ± 0.03 Not used due to EB dose error 

2006 April 17 - 21 BALB/c 0.32 ± 0.03   

  May 17 - June 21 C57BL/6 0.35 ± 0.06   

  September 27 -  November 1 C57BL/6 0.39 (n = 1)   

  December 4 - 8 BALB/c 0.37 ± 0.03   

2007 January 19 - 22 BALB/c 0.35 ± 0.06   
 



 

 
 

167

References 
 

Adams BD, Furneaux H, White BA. 2007. The micro-ribonucleic acid (miRNA) miR-
206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha 
messenger RNA and protein expression in breast cancer cell lines. Molecular 
endocrinology 21(5): 1132-1147. 

Aksglaede L, Juul A, Leffers H, Skakkebaek NE, Andersson AM. 2006. The sensitivity 
of the child to sex steroids: possible impact of exogenous estrogens. Human reproduction 
update 12(4): 341-349. 

Al-Dhaheri MH, Rowan BG. 2006. Application of phosphorylation site-specific 
antibodies to measure nuclear receptor signaling: characterization of novel 
phosphoantibodies for estrogen receptor alpha. Nuclear receptor signaling 4: e007. 

Albrecht ED, Aberdeen GW, Pepe GJ. 2000. The role of estrogen in the maintenance of 
primate pregnancy. American journal of obstetrics and gynecology 182(2): 432-438. 

Albrecht ED, Pepe GJ. 2003. Steroid hormone regulation of angiogenesis in the primate 
endometrium. Front Biosci 8: d416-429. 

Alevizaki M, Saltiki K, Cimponeriu A, Kanakakis I, Xita N, Alevizaki CC, et al. 2007. 
Severity of cardiovascular disease in postmenopausal women: associations with common 
estrogen receptor {alpha} polymorphic variants. European journal of endocrinology / 
European Federation of Endocrine Societies 156(4): 489-496. 

Altucci L, Addeo R, Cicatiello L, Dauvois S, Parker MG, Truss M, et al. 1996. 17beta-
Estradiol induces cyclin D1 gene transcription, p36D1-p34cdk4 complex activation and 
p105Rb phosphorylation during mitogenic stimulation of G(1)-arrested human breast 
cancer cells. Oncogene 12(11): 2315-2324. 

Anderson SE, Dallal GE, Must A. 2003. Relative weight and race influence average age 
at menarche: results from two nationally representative surveys of US girls studied 25 
years apart. Pediatrics 111(4 Pt 1): 844-850. 

Apter D. 1997. Development of the hypothalamic-pituitary-ovarian axis. Annals of the 
New York Academy of Sciences 816: 9-21. 

Arcaro KF, Gierthy, J.F., Yang, Y., Robertson, L.W., Oakley, G.G. and Vakharia, D.D. 
1997. Position of hydroxyl group influences PCB estrogenicity and antiestrogenicity. In: 
Dioxin '97: 17th International Symposium on Chlorinated Dioxins and Related 
Compounds. Indianapolis, Indiana: Dioxin '97 Secretariat, 386-390. 

Arnold SF, Obourn JD, Jaffe H, Notides AC. 1995. Phosphorylation of the human 
estrogen receptor on tyrosine 537 in vivo and by src family tyrosine kinases in vitro. Mol 
Endocrinol. 9(1): 24-33. 

Arnone MI, Dmochowski IJ, Gache C. 2004. Using reporter genes to study cis-regulatory 
elements. Methods in cell biology 74: 621-652. 



 

 
 

168

Ascenzi P, Bocedi A, Marino M. 2006. Structure-function relationship of estrogen 
receptor alpha and beta: impact on human health. Molecular aspects of medicine 27(4): 
299-402. 

Arulmozhiraja S, Shiraishi F, Okumura T, Iida M, Takigami H, Edmonds JS, et al. 2005. 
Structural requirements for the interaction of 91 hydroxylated polychlorinated biphenyls 
with estrogen and thyroid hormone receptors. Toxicol Sci 84(1): 49-62. 

ATSDR. 2004. Toxicological Profile for Polybrominated Biphenyls and Polybrominated 
Diphenyl Ethers (PBBs and PBDEs).  U.S. Health Department, Centers for Disease 
Control, Agency for Toxic Substances and Disease Registry. 
http://www.atsdr.cdc.gov/toxprofiles/tp68.html (last accessed 1/9/8) 

Backlin BM, Eriksson L, Olovsson M. 2003. Histology of uterine leiomyoma and 
occurrence in relation to reproductive activity in the Baltic gray seal (Halichoerus 
grypus). Veterinary pathology 40(2): 175-180. 

Bailey JA, Nephew KP. 2002. Strain differences in tamoxifen sensitivity of Sprague-
Dawley and Fischer 344 rats. Anticancer Drugs. 13(9): 939-47. 

Baird DD, Newbold R. 2005. Prenatal diethylstilbestrol (DES) exposure is associated 
with uterine leiomyoma development. Reproductive toxicology (Elmsford, NY 20(1): 81-
84. 

Baird DT, Fraser IS. 1974. Blood production and ovarian secretion rates of estradiol-17 
beta and estrone in women throughout the menstrual cycle. The Journal of clinical 
endocrinology and metabolism 38(6): 1009-1017. 

Balch GC, Velez-Espino LA, Sweet C, Alaee M, Metcalfe CD. 2006. Inhibition of 
metamorphosis in tadpoles of Xenopus laevis exposed to polybrominated diphenyl ethers 
(PBDEs). Chemosphere 64(2): 328-338. 

Barber JL, Walsh MJ, Hewitt R, Jones KC, Martin FL. 2006. Low-dose treatment with 
polybrominated diphenyl ethers (PBDEs) induce altered characteristics in MCF-7 cells. 
Mutagenesis 21(5): 351-360. 

Barone M, Ladisa R, Di Leo A, Spano D, Francioso D, Aglio V, et al. 2006. Estrogen-
induced proliferation in cultured hepatocytes involves cyclin D1, p21(Cip1) and 
p27(Kip1). Digestive diseases and sciences 51(3): 580-586. 

Bay K, Andersson AM, Skakkebaek NE. 2004. Estradiol levels in prepubertal boys and 
girls--analytical challenges. International journal of andrology 27(5): 266-273. 

Bazer FW, Roberts RM, Thatcher WW. 1979. Actions of hormones on the uterus and 
effect on conceptus development. Journal of animal science 49 Suppl 2: 35-45. 

Beliakoff J, Whitesell L. 2004. Hsp90: an emerging target for breast cancer therapy. 
Anti-cancer drugs 15(7): 651-662. 

Beral V, Bull D, Green J, Reeves G. 2007. Ovarian cancer and hormone replacement 
therapy in the Million Women Study. Lancet 369(9574): 1703-1710. 



 

 
 

169

Berg C, Blomqvist A, Holm L, Brandt I, Brunstrom B, Ridderstrale Y. 2004. Embryonic 
exposure to oestrogen causes eggshell thinning and altered shell gland carbonic 
anhydrase expression in the domestic hen. Reproduction (Cambridge, England) 128(4): 
455-461. 

Berger RG, Hancock T, deCatanzaro D. 2007. Influence of oral and subcutaneous 
bisphenol-A on intrauterine implantation of fertilized ova in inseminated female mice. 
Reproductive toxicology (Elmsford, NY 23(2): 138-144. 

Berman JR, McCarthy MM, Kyprianou N. 1998. Effect of estrogen withdrawal on nitric 
oxide synthase expression and apoptosis in the rat vagina. Urology 51(4): 650-656. 

Bernard L, Legay C, Adriaenssens E, Mougel A, Ricort J. 2006. Estradiol regulates the 
insulin-like growth factor-I (IGF-I) signalling pathway: a crucial role of 
phosphatidylinositol 3-kinase (PI 3-kinase) in estrogens requirement for growth of MCF-
7 human breast carcinoma cells. Biochem Biophys Res Commun 350(4): 916-921. 

Bhat N, Rosato EF, Gupta PK. 1990. Gynecomastia in a mortician. A case report. Acta 
cytologica 34(1): 31-34. 

Bigsby RM, Caperell-Grant A, Madhukar BV. 1997. Xenobiotics released from fat 
during fasting produce estrogenic effects in ovariectomized mice. Cancer research 57(5): 
865-869. 

Bigsby RR, Mercado-Feliciano M, Mubiru J. 2005. Molecular Mechanisms of Endocrine 
Disruption In Estrogen Dependent Processes. In: Endocrine Disruptors: Effects on Male 
and Female Reproductive Systems, 2nd edn. Naz RK (ed). Boca Raton: CRC Press, 217-
247. 

Biswas R, Vonderhaar BK. 1987. Role of serum in the prolactin responsiveness of MCF-
7 human breast cancer cells in long-term tissue culture. Cancer research 47(13): 3509-
3514. 

Bjorntorp P. 1997. Hormonal control of regional fat distribution. Human reproduction 
(Oxford, England) 12 Suppl 1: 21-25. 

Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL, et al. 2000. The 
estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural 
diversity of ligands. Toxicol Sci 54(1): 138-153. 

Blaschko SD, Willingham EJ, Baskin LS. 2006. Embryonic exposure to low-dose 17beta-
estradiol decreases fetal mass sex specifically in male mice and does not cause 
hypospadias. J Investig Med 54(8): 490-495. 

Bock KW, Lilienblum W, Fischer G, Schirmer G, Bock-Henning BS. 1987. The role of 
conjugation reactions in detoxication. Archives of toxicology 60(1-3): 22-29. 

Bogaards JJ, Bertrand M, Jackson P, Oudshoorn MJ, Weaver RJ, van Bladeren PJ, 
Walther B. 2000. Determining the best animal model for human cytochrome P450 
activities: a comparison of mouse, rat, rabbit, dog, micropig, monkey and man. 
Xenobiotica. 30(12): 1131-52.  



 

 
 

170

Bogi C, Schwaiger J, Ferling H, Mallow U, Steineck C, Sinowatz F, et al. 2003. 
Endocrine effects of environmental pollution on Xenopus laevis and Rana temporaria. 
Environmental research 93(2): 195-201. 

Bolger R, Wiese TE, Ervin K, Nestich S, Checovich W. 1998. Rapid screening of 
environmental chemicals for estrogen receptor binding capacity. Environmental health 
perspectives 106(9): 551-557. 

Brenner RM, Slayden OD. 1994. Cyclic changes in the primate oviduct and 
endometrium. In: The Physiology of Reproduction. Knobil E and Neill JD (eds.). New 
York: Raven Press, 541-569. 

Brosens JJ, Gellersen B. 2006. Death or survival--progesterone-dependent cell fate 
decisions in the human endometrial stroma. Journal of molecular endocrinology 36(3): 
389-398. 

Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, et al. 1997. 
Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389(6652): 
753-758. 

Buhimschi CS. 2004. Endocrinology of lactation. Obstetrics and gynecology clinics of 
North America 31(4): 963-979, xii. 

Bulger WH, Kupfer D. 1982. beta-Diethylaminoethyl-2, 2-diphenylpentanoate (SKF 525-
A)-mediated translocation of uterine estrogen receptor from the cytosolic to the nuclear 
compartment in isolated rat uteri. Mol Pharmacol. 21(3): 533-7.   

Bulger WH, Muccitelli RM, Kupfer D. 1978. Studies on the in vivo and in vitro 
estrogenic activities of methoxychlor and its metabolites. Role of hepatic mono-
oxygenase in methoxychlor activation. Biochem Pharmacol 27(20): 2417-2423. 

Bulun SE, Lin Z, Imir G, Amin S, Demura M, Yilmaz B, et al. 2005. Regulation of 
aromatase expression in estrogen-responsive breast and uterine disease: from bench to 
treatment. Pharmacological reviews 57(3): 359-383. 

Bunone G, Briand PA, Miksicek RJ, Picard D. 1996. Activation of the unliganded 
estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. 
The EMBO journal 15(9): 2174-2183. 

Burroughs CD. 1995. Long-term reproductive tract alterations in female mice treated 
neonatally with coumestrol. Proceedings of the Society for Experimental Biology and 
Medicine Society for Experimental Biology and Medicine (New York, NY 208(1): 78-
81. 

Buzi F, Pilotta A, Dordoni D, Lombardi A, Zaglio S, Adlard P. 1998. Pelvic 
ultrasonography in normal girls and in girls with pubertal precocity. Acta Paediatr 
87(11): 1138-1145. 

Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, et al. 1997. 
Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389(6652): 
753-758. 



 

 
 

171

Cabanes A, Wang M, Olivo S, DeAssis S, Gustafsson JA, Khan G, et al. 2004. 
Prepubertal estradiol and genistein exposures up-regulate BRCA1 mRNA and reduce 
mammary tumorigenesis. Carcinogenesis 25(5): 741-748. 

Cailleau R, Olive M, Cruciger QV. 1978. Long-term human breast carcinoma cell lines 
of metastatic origin: preliminary characterization. In vitro 14(11): 911-915. 

California Assembly. 2003. California Assembly Bill 302. In: Cal Health & Saf Code § 
108920 et seq. State of California. http://info.sen.ca.gov/pub/03-04/bill/asm/ab_0301-
0350/ab_302_bill_20030724_enrolled.html (last accessed 1/9/8) 

Callantine MR, Clemens CE, Shih Y. 1968. Displacement of 17-beta-estradiol from 
uterine receptor sites by an estrogen antagonist. Proceedings of the Society for 
Experimental Biology and Medicine Society for Experimental Biology and Medicine 
(New York, NY 128(2): 382-386. 

Caristi S, Galera JL, Matarese F, Imai M, Caporali S, Cancemi M, et al. 2001. Estrogens 
do not modify MAP kinase-dependent nuclear signaling during stimulation of early G(1) 
progression in human breast cancer cells. Cancer research 61(17): 6360-6366. 

Carpenter DO. 2006. Polychlorinated biphenyls (PCBs): routes of exposure and effects 
on human health. Reviews on environmental health 21(1): 1-23. 

Carrer HF, Cambiasso MJ. 2002. Sexual differentiation of the brain: genes, estrogen, and 
neurotrophic factors. Cellular and molecular neurobiology 22(5-6): 479-500. 

Carson RL. 1962. Silent Spring. 1st edn. Cambridge: The Riverside Press. 

Cassidy MK, Houston JB. 1984. In vivo capacity of hepatic and extrahepatic enzymes to 
conjugate phenol. Drug Metab Dispos. 12(5): 619-24.   

Ceccatelli R, Faass O, Schlumpf M, Lichtensteiger W. 2006. Gene expression and 
estrogen sensitivity in rat uterus after developmental exposure to the polybrominated 
diphenylether PBDE 99 and PCB. Toxicology 220(2-3): 104-116. 

Cecil HC, Bitman J, Harris SJ. 1971. Estrogenicity of o,p'-DDT in rats. Journal of 
agricultural and food chemistry 19(1): 61-65. 

Chambliss KL, Shaul PW. 2002. Estrogen modulation of endothelial nitric oxide 
synthase. Endocrine reviews 23(5): 665-686. 

Chen D, Washbrook E, Sarwar N, Bates GJ, Pace PE, Thirunuvakkarasu V, et al. 2002. 
Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal 
transduction pathways revealed by phosphorylation-specific antisera. Oncogene 21(32): 
4921-4931. 

Clark JH, Gorski J. 1969. Estrogen receptors: an evaluation of cytoplasmic-nuclear 
interactions in a cell-free system and a method for assay. Biochimica et biophysica acta 
192(3): 508-515. 

Clarke RB. 2006. Ovarian steroids and the human breast: regulation of stem cells and cell 
proliferation. Maturitas 54(4): 327-334. 



 

 
 

172

Clode S. 2006. Assessment of in vivo assays for endocrine disruption. Best Pract Res 
Clin Endocrinol Metab 20(1): 35-43. 

Cnubben NH, Vervoort J, Boersma MG, Rietjens IM. 1995. The effect of varying 
halogen substituent patterns on the cytochrome P450 catalysed dehalogenation of 4-
halogenated anilines to 4-aminophenol metabolites. Biochemical pharmacology 49(9): 
1235-1248. 

Coelingh Bennink HJ. 2004. Are all estrogens the same? Maturitas 47(4): 269-275. 

Colón I, Caro D, Bourdony CJ, Rosario O. 2000. Identification of phthalate esters in the 
serum of young Puerto Rican girls with premature breast development. Environmental 
health perspectives 108(9): 895-900. 

Connor K, Ramamoorthy K, Moore M, Mustain M, Chen I, Safe S, et al. 1997. 
Hydroxylated polychlorinated biphenyls (PCBs) as estrogens and antiestrogens: 
structure-activity relationships. Toxicology and applied pharmacology 145(1): 111-123. 

Cooper L, Palmer M, Oien K. 2003. Cirrhosis with steatohepatitis following longterm 
stilboestrol treatment. Journal of clinical pathology 56(8): 639. 

Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS. 1997. Tissue distribution 
and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta 
(ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse.  

Endocrinology 138(11): 4613-4621. 

Couse JF, Korach KS. 2004. Estrogen receptor-alpha mediates the detrimental effects of 
neonatal diethylstilbestrol (DES) exposure in the murine reproductive tract. Toxicology 
205(1-2): 55-63. 

Crain DA, Guillette LJ, Jr., Rooney AA, Pickford DB. 1997. Alterations in 
steroidogenesis in alligators (Alligator mississippiensis) exposed naturally and 
experimentally to environmental contaminants. Environmental health perspectives 
105(5): 528-533. 

Crews D, Bergeron JM, McLachlan JA. 1995. The role of estrogen in turtle sex 
determination and the effect of PCBs. Environmental health perspectives 103 Suppl 7: 
73-77. 

Critchley HO, Kelly RW, Brenner RM, Baird DT. 2001. The endocrinology of 
menstruation--a role for the immune system. Clinical endocrinology 55(6): 701-710. 

Dang VH, Choi KC, Jeung EB. 2007. Tetrabromodiphenyl Ether (BDE 47) Evokes 
Estrogenicity and Calbindin-D9k Expression through an Estrogen Receptor-Mediated 
Pathway in the Uterus of Immature Rats. Toxicol Sci 97(2): 504-511. 

Danielian PS, White R, Lees JA, Parker MG. 1992. Identification of a conserved region 
required for hormone dependent transcriptional activation by steroid hormone receptors. 
The EMBO journal 11(3): 1025-1033. 

 



 

 
 

173

Darne J, McGarrigle HH, Lachelin GC. 1987. Saliva oestriol, oestradiol, oestrone and 
progesterone levels in pregnancy: spontaneous labour at term is preceded by a rise in the 
saliva oestriol:progesterone ratio. British journal of obstetrics and gynaecology 94(3): 
227-235. 

Darnerud PO, Aune M, Larsson L, Hallgren S. 2007. Plasma PBDE and thyroxine levels 
in rats exposed to Bromkal or BDE-47. Chemosphere 67(9): S386-392. 

Darnerud PO, Atuma S, Aune M, Bjerselius R, Glynn A, Grawe KP, Becker W. 2006. 
Dietary intake estimations of organohalogen contaminants (dioxins, PCB, PBDE and 
chlorinated pesticides, e.g. DDT) based on Swedish market basket data. Food Chem 
Toxicol. 44(9): 1597-606. Epub 2006 Apr 6.  

Das SK, Tsukamura H, Paria BC, Andrews GK, Dey SK. 1994. Differential expression of 
epidermal growth factor receptor (EGF-R) gene and regulation of EGF-R bioactivity by 
progesterone and estrogen in the adult mouse uterus. Endocrinology 134(2): 971-981. 

Della Seta D, Minder I, Belloni V, Aloisi AM, Dessi-Fulgheri F, Farabollini F. 2006. 
Pubertal exposure to estrogenic chemicals affects behavior in juvenile and adult male 
rats. Hormones and behavior 50(2): 301-307. 

DeMayo FJ, Zhao B, Takamoto N, Tsai SY. 2002. Mechanisms of action of estrogen and 
progesterone. Annals of the New York Academy of Sciences 955: 48-59; discussion 86-
48, 396-406. 

Denardo DG, Cuba VL, Kim H, Wu K, Lee AV, Brown PH. 2007. Estrogen receptor 
DNA binding is not required for estrogen-induced breast cell growth. Molecular and 
cellular endocrinology. 

Denham M, Schell LM, Deane G, Gallo MV, Ravenscroft J, DeCaprio AP. 2005. 
Relationship of lead, mercury, mirex, dichlorodiphenyldichloroethylene, 
hexachlorobenzene, and polychlorinated biphenyls to timing of menarche among 
Akwesasne Mohawk girls. Pediatrics 115(2): e127-134. 

de Souza JC, Coutinho EM. (1972) Control of fertility by monthly injections of a mixture 
of norgestrel and a long-acting estrogen. A preliminary report. Contraception 5(5): 395-
399. 

Druege PM, Klein-Hitpass L, Green S, Stack G, Chambon P, Ryffel GU. 1986. 
Introduction of estrogen-responsiveness into mammalian cell lines. Nucleic acids 
research 14(23): 9329-9337. 

Drummond AE. 2006. The role of steroids in follicular growth. Reprod Biol Endocrinol 
4: 16. 

Eckert RL, Mullick A, Rorke EA, Katzenellenbogen BS. 1984. Estrogen receptor 
synthesis and turnover in MCF-7 breast cancer cells measured by a density shift 
technique. Endocrinology 114(2): 629-637. 

 

 



 

 
 

174

Ellis-Hutchings RG, Cherr GN, Hanna LA, Keen CL. 2006. Polybrominated diphenyl 
ether (PBDE)-induced alterations in vitamin A and thyroid hormone concentrations in the 
rat during lactation and early postnatal development. Toxicology and applied 
pharmacology 215(2): 135-145. 

Elliston JF, Fawell SE, Klein-Hitpass L, Tsai SY, Tsai MJ, Parker MG, et al. 1990. 
Mechanism of estrogen receptor-dependent transcription in a cell-free system. Molecular 
and cellular biology 10(12): 6607-6612. 

ENVIRON. 2003. Voluntary children’s chemical evaluation program pilot. Tier I 
assessment of the potential health risks to children associated with exposure to the 
commercial pentabromodiphenyl ether product. CAS No. 32534-81-9. Prepared by 
ENVIRON International Corporation for Great Lakes Chemical Corporation. April 21, 
2003. Emeryville, CA: ENVIRON Int. Corp. 

Erdogrul O, Covaci A, Kurtul N, Schepens P. 2004. Levels of organohalogenated 
persistent pollutants in human milk from Kahramanmaras region, Turkey. Environ Int. 
30(5): 659-66.   

Eriksson P, Fischer C, Fredriksson A. 2006. Polybrominated diphenyl ethers, a group of 
brominated flame retardants, can interact with polychlorinated biphenyls in enhancing 
developmental neurobehavioral defects. Toxicol Sci 94(2): 302-309. 

Evans GS, Gibson DF, Roberts SA, Hind TM, Potten CS. 1990. Proliferative changes in 
the genital tissue of female mice during the oestrous cycle. Cell and tissue kinetics 23(6): 
619-635. 

Evans JS, Varney RF, Koch FC. 1941. The Mouse Uterine Weight Method for the Assay 
of Estrogens. Endocrinology 28: 747-752. 

Evans NP, North T, Dye S, Sweeney T. 2004. Differential effects of the endocrine-
disrupting compounds bisphenol-A and octylphenol on gonadotropin secretion, in 
prepubertal ewe lambs. Domestic animal endocrinology 26(1): 61-73. 

European Union. 2003. Council Directive 2003/11/EC of 6 Feb. 2003. In: 2003 OJ (L42) 
45. European Union, 2.  
http://eur-
lex.europa.eu/LexUriServ/site/en/oj/2003/l_042/l_04220030215en00450046.pdf (last 
accessed 1/90/8) 

Fan M, Bigsby RM, Nephew KP. 2003. The NEDD8 pathway is required for proteasome-
mediated degradation of human estrogen receptor (ER)-alpha and essential for the 
antiproliferative activity of ICI 182,780 in ERalpha-positive breast cancer cells. 
Molecular endocrinology 17(3): 356-365. 

Fangstrom B, Athanasiadou M, Grandjean P, Weihe P, Bergman A. 2002. Hydroxylated 
PCB metabolites and PCBs in serum from pregnant Faroese women. Environ Health 
Perspect. 110(9): 895-9.   

Fara GM, Del Corvo G, Bernuzzi S, Bigatello A, Di Pietro C, Scaglioni S, Chiumello G. 
1979. Epidemic of breast enlargement in an Italian school. Lancet. 2(8137): 295-7. 



 

 
 

175

Felner EI, White PC. 2000. Prepubertal gynecomastia: indirect exposure to estrogen 
cream. Pediatrics 105(4): E55. 

Fernandez MF, Molina-Molina JM, Lopez-Espinosa MJ, Freire C, Campoy C, Ibarluzea 
J, Torne P, Pedraza V, Olea N. 2007a. Biomonitoring of environmental estrogens in 
human tissues. Int J Hyg Environ Health. 210(3-4): 429-32.  

Fernandez MF, Santa-Marina L, Ibarluzea JM, Exposito J, Aurrekoetxea JJ, Torne P, 
Laguna J, Rueda AI, Pedraza V, Olea N. 2007b. Analysis of population characteristics 
related to the total effective xenoestrogen burden: a biomarker of xenoestrogen exposure 
in breast cancer.Eur J Cancer. 43(8): 1290-9 

Fernie KJ, Shutt JL, Mayne G, Hoffman D, Letcher RJ, Drouillard KG, et al. 2005. 
Exposure to polybrominated diphenyl ethers (PBDEs): changes in thyroid, vitamin A, 
glutathione homeostasis, and oxidative stress in American kestrels (Falco sparverius). 
Toxicol Sci 88(2): 375-383. 

Filardo EJ, Quinn JA, Bland KI, Frackelton AR, Jr. 2000. Estrogen-induced activation of 
Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs 
via trans-activation of the epidermal growth factor receptor through release of HB-EGF. 
Molecular endocrinology 14(10): 1649-1660. 

Filardo EJ, Thomas P. 2005. GPR30: a seven-transmembrane-spanning estrogen receptor 
that triggers EGF release. Trends Endocrinol Metab. 16(8): 362-7. 

Fotiou S, Hatjieleftheriou G, Kyrousis G, Kokka F, Apostolikas N. 2000. Long-term 
tamoxifen treatment: a possible aetiological factor in the development of uterine 
carcinosarcoma: two case-reports and review of the literature. Anticancer research 
20(3B): 2015-2020. 

Fough J, Trempe G. 1975. New Human Tumor Cell Lines. In: Human Tumor Cells in 
Vitro. Fough J (ed.) New York: Plenum Press, 115-159. 

Franchi E, Focardi S. 1991. Polychlorinated biphenyl congeners, hexachlorobenzene and 
DDTs in human milk in central Italy. Sci Total Environ. 102: 223-8.   

Fürst P. 2006. Dioxins, polychlorinated biphenyls and other organohalogen compounds 
in human milk. Levels, correlations, trends and exposure through breastfeeding. Mol Nutr 
Food Res. 50(10): 922-33.   

Gaben AM, Saucier C, Bedin M, Redeuilh G, Mester J. 2004. Mitogenic activity of 
estrogens in human breast cancer cells does not rely on direct induction of mitogen-
activated protein kinase/extracellularly regulated kinase or phosphatidylinositol 3-kinase. 
Molecular endocrinology 18(11): 2700-2713. 

Ganong WF. 2007. Physiology of Reproduction in Women. In: Current Diagnosis and 
Treatment of Obstetrics and Gynecology. DeCheney AH (ed.) New York: McGraw-Hill, 
126-148. 

Geisinger KR, Kute TE, Pettenati MJ, Welander CE, Dennard Y, Collins LA, et al. 1989. 
Characterization of a human ovarian carcinoma cell line with estrogen and progesterone 
receptors. Cancer 63(2): 280-288. 



 

 
 

176

Giacinti L, Claudio PP, Lopez M, Giordano A. 2006. Epigenetic information and 
estrogen receptor alpha expression in breast cancer. The oncologist 11(1): 1-8. 

Giannitrapani L, Soresi M, La Spada E, Cervello M, D'Alessandro N, Montalto G. 2006. 
Sex hormones and risk of liver tumor. Annals of the New York Academy of Sciences 
1089: 228-236. 

Gikas P, Mokbel K. 2007. Management of gynaecomastia: an update. Int J Clin Pract. 

Glascock RF, Hoekstra WG. 1959. Selective accumulation of tritium-labelled hexoestrol 
by the reproductive organs of immature female goats and sheep. The Biochemical journal 
72: 673-682. 

Glass CK, Rosenfeld MG. 2000. The coregulator exchange in transcriptional functions of 
nuclear receptors. Genes & development 14(2): 121-141. 

Goldstein JA, Faletto MB. 1993. Advances in mechanisms of activation and deactivation 
of environmental chemicals. Environmental health perspectives 100: 169-176. 

Golub MS, Germann SL, Hogrefe CE. 2004. Endocrine disruption and cognitive function 
in adolescent female rhesus monkeys. Neurotoxicology and teratology 26(6): 799-809. 

Gordon MN, Osterburg HH, May PC, Finch CE. 1986. Effective Oral Administration of 
17beta-Estradiol to Female C57BL/6J Mice Through the Drinking Water. Biology of 
Reproduction 35: 1088-1095. 

Gosden JR, Middleton PG, Rout D. 1986. Localization of the human oestrogen receptor 
gene to chromosome 6q24----q27 by in situ hybridization. Cytogenetics and cell genetics 
43(3-4): 218-220. 

Green M. 1958. Gynecomastia and pseudo-precocious puberty following 
diethylstilbestrol exposure. AMA 95(6): 637-639. 

Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P, et al. 1986. Human 
oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 
320(6058): 134-139. 

Gross-Sorokin MY, Roast SD, Brighty GC. 2006. Assessment of feminization of male 
fish in English rivers by the Environment Agency of England and Wales. Environmental 
health perspectives 114 Suppl 1: 147-151. 

Groves JT. 2005. Models and Mechanisms of Cytochrome P450 Action. In: Cytochrome 
P450: Structure, Mechanism, and Biochemistry, 3rd edn. Ortiz de Montellano P (ed.) New 
York, Springer: 1-44. 

Gruber CJ, Tschugguel W, Schneeberger C, Huber JC. 2002. Production and actions of 
estrogens. The New England journal of medicine 346(5): 340-352. 

Guengerich FP. 2005. Human Cytochrome P450 Enzymes. In: Cytochrome P450: 
Structure, Mechanism, and Biochemistry, 3rd edn. Ortiz de Montellano P (ed.) New York, 
Springer:  377-530. 

 



 

 
 

177

Guillette LJ, Jr., Gross TS, Masson GR, Matter JM, Percival HF, Woodward AR. 1994. 
Developmental abnormalities of the gonad and abnormal sex hormone concentrations in 
juvenile alligators from contaminated and control lakes in Florida. Environmental health 
perspectives 102(8): 680-688. 

Gupta RK, Schuh RA, Fiskum G, Flaws JA. 2006. Methoxychlor causes mitochondrial 
dysfunction and oxidative damage in the mouse ovary. Toxicology and applied 
pharmacology 216(3): 436-445. 

Hahnel R, Twaddle E. 1971. Estrogen receptors in human breast cancer. 1. Methodology 
and characterization of receptors. Steroids 18(6): 653-680. 

Hall AJ, Thomas GO. 2007. Polychlorinated biphenyls, DDT, polybrominated diphenyl 
ethers, and organic pesticides in United Kingdom harbor seals (Phoca vitulina)--mixed 
exposures and thyroid homeostasis. Environmental toxicology and chemistry / SETAC 
26(5): 851-861. 

Halldin K, Axelsson J, Brunstrom B. 2005. Effects of endocrine modulators on sexual 
differentiation and reproductive function in male Japanese quail. Brain research bulletin 
65(3): 211-218. 

Halperin DS, Sizonenko PC. 1983. Prepubertal gynecomastia following topical inunction 
of estrogen containing ointment. Helvetica paediatrica acta 38(4): 361-366. 

Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Kester MH, Andersson PL, et al. 2006. 
In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. 
Toxicol Sci 92(1): 157-173. 

Hammes SR, Levin ER. 2007. Extranuclear Steroid Receptors: Nature and 
Actions.Endocr Rev. Electronic publication ahead of print. 

Harju M, Hamers T, Kamstra JH, Sonneveld E, Boon JP, Tysklind M, et al. 2007. 
Quantitative structure-activity relationship modeling on in vitro endocrine effects and 
metabolic stability involving 26 selected brominated flame retardants. Environmental 
toxicology and chemistry / SETAC 26(4): 816-826. 

Harris HA. 2007. Estrogen receptor-beta: recent lessons from in vivo studies. Molecular 
endocrinology 21(1): 1-13. 

Hartmann RW, Schwarz W, Heindl A, Schonenberger H. 1985. Ring-substituted 1,1,2,2-
tetraalkylated 1,2-bis(hydroxyphenyl)ethanes. 4. Synthesis, estrogen receptor binding 
affinity, and evaluation of antiestrogenic and mammary tumor inhibiting activity of 
symmetrically disubstituted 1,1,2,2-tetramethyl-1,2-bis(hydroxyphenyl)ethanes. Journal 
of medicinal chemistry 28(9): 1295-1301. 

Hayashi K, Hayashi M, Boutin E, Cunha GR, Bernfield M, Trelstad RL. 1988. Hormonal 
modification of epithelial differentiation and expression of cell surface heparan sulfate 
proteoglycan in the mouse vaginal epithelium. An immunohistochemical and electron 
microscopic study. Laboratory investigation; a journal of technical methods and 
pathology 58(1): 68-76. 



 

 
 

178

Hayes TB, Collins A, Lee M, Mendoza M, Noriega N, Stuart AA, et al. 2002. 
Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low 
ecologically relevant doses. Proceedings of the National Academy of Sciences of the 
United States of America 99(8): 5476-5480. 

Haynes M, Sinha D, Russell K, Collinge M, Fulton D, Morales-Ruiz M, et al. 2002. 
Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via 
the PI3-kinase-Akt pathway in human endothelial cells. Circ Res 87(8): 677-682. 

Hazai E, Kupfer D. 2005. Interactions between CYP2C9 and CYP2C19 in reconstituted 
binary systems influence their catalytic activity: possible rationale for the inability of 
CYP2C19 to catalyze methoxychlor demethylation in human liver microsomes. Drug 
metabolism and disposition: the biological fate of chemicals 33(1): 157-164. 

Hecht JL, Mutter GL. 2006. Molecular and pathologic aspects of endometrial 
carcinogenesis. J Clin Oncol 24(29): 4783-4791. 

Henley DV, Lipson N, Korach KS, Bloch CA. 2007. Prepubertal gynecomastia linked to 
lavender and tea tree oils. The New England journal of medicine 356(5): 479-485. 

Hertelendy F, Zakar T. 2004. Regulation of myometrial smooth muscle functions. 
Current pharmaceutical design 10(20): 2499-2517. 

Hewitt SC, Deroo BJ, Hansen K, Collins J, Grissom S, Afshari CA, et al. 2003. Estrogen 
receptor-dependent genomic responses in the uterus mirror the biphasic physiological 
response to estrogen. Molecular endocrinology 17(10): 2070-2083. 

Harkonen P, Makela S. 2004. Role of estrogens in development of prostate cancer. J 
Steroid Biochem Mol Biol 92(4): 297-305. 

Hilakivi-Clarke L, Wang C, Kalil M, Riggins R, Pestell RG. 2004. Nutritional 
modulation of the cell cycle and breast cancer. Endocrine-related cancer 11(4): 603-622. 

Hites RA. 2004. Polybrominated diphenyl ethers in the environment and in people: a 
meta-analysis of concentrations. Environmental science & technology 38(4): 945-956. 

Ho SM, Leung YK, Chung I. 2006. Estrogens and antiestrogens as etiological factors and 
therapeutics for prostate cancer. Annals of the New York Academy of Sciences 1089: 
177-193. 

Hooper K, McDonald TA. 2000. The PBDEs: an emerging environmental challenge and 
another reason for breast-milk monitoring programs. Environmental health perspectives 
108(5): 387-392. 

Huggins C, Jensen EV. 1954. Significance of the hydroxyl groups of steroids in 
promoting growth. The Journal of experimental medicine 100(3): 241-246. 

Huggins C, Jensen EV, Cleveland AS. 1954. Chemical structure of steroids in relation to 
promotion of growth of the vagina and uterus of the hypophysectomized rat. The Journal 
of experimental medicine 100(3): 225-240. 



 

 
 

179

Ignar-Trowbridge DM, Pimentel M, Teng CT, Korach KS, McLachlan JA. 1995. Cross 
talk between peptide growth factor and estrogen receptor signaling systems. 
Environmental health perspectives 103 Suppl 7: 35-38. 

 

Iliev DI, Ranke MB, Wollmann HA. 2002. Mixed gonadal dysgenesis and precocious 
puberty. Hormone research 58(1): 30-33. 

Ince BA, Montano MM, Katzenellenbogen BS. 1994. Activation of transcriptionally 
inactive human estrogen receptors by cyclic adenosine 3',5'-monophosphate and ligands 
including antiestrogens. Molecular endocrinology 8(10): 1397-1406. 

Jackson Laboratory. 1966. Biology of the Mouse. Green EL (ed.) New York: McGraw-
Hill. 

Jansen H, Cooke P, Porcelli J, Liu T, Hansen L. 1993. Estrogenic and antiestrogenic 
actions of PCBs in the female rat: in vitro and in vivo studies. Reprod Toxicol 7(3): 237-
248. 

Jefferson WN, Padilla-Banks E, Newbold RR. 2006. Studies of the effects of neonatal 
exposure to genistein on the developing female reproductive system. Journal of AOAC 
International 89(4): 1189-1196. 

Jensen EV, Suzuki T, Kawashima T, Stumpf WE, Jungblut PW, DeSombre ER. 1968. A 
two-step mechanism for the interaction of estradiol with rat uterus. Proceedings of the 
National Academy of Sciences of the United States of America 59(2): 632-638. 

Jo T, Terada N, Saji F, Tanizawa O. 1993. Inhibitory effects of estrogen, progesterone, 
androgen and glucocorticoid on death of neonatal mouse uterine epithelial cells induced 
to proliferate by estrogen. The Journal of steroid biochemistry and molecular biology 
46(1): 25-32. 

Joel PB, Traish AM, Lannigan DA. 1998. Estradiol-induced phosphorylation of serine 
118 in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase. 
The Journal of biological chemistry 273(21): 13317-13323. 

Johnson-Restrepo B, Kannan K, Rapaport DP, Rodan BD. 2005. Polybrominated 
diphenyl ethers and polychlorinated biphenyls in human adipose tissue from New York. 
Environ Sci Technol. 15;39(14): 5177-82.   

Jordan VC. 1995. Alternate antiestrogens and approaches to the prevention of breast 
cancer. Journal of cellular biochemistry 22: 51-57. 

Kalantzi OI, Martin FL, Thomas GO, Alcock RE, Tang HR, Drury SC, Carmichael PL, 
Nicholson JK, Jones KC. 2004. Different levels of polybrominated diphenyl ethers 
(PBDEs) and chlorinated compounds in breast milk from two U.K. Regions. Environ 
Health Perspect. Jul;112(10): 1085-91. 

Katalinic A, Rawal R. 2007. Decline in breast cancer incidence after decrease in 
utilisation of hormone replacement therapy. Breast Cancer Res Treat. 



 

 
 

180

Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, et al. 1996. 
Research needs for the risk assessment of health and environmental effects of endocrine 
disruptors: a report of the U.S. EPA-sponsored workshop. Environmental health 
perspectives 104 Suppl 4: 715-740. 

Kelly BC. 2006. Bioaccumulation Potential of Organic Contaminants in an Artic Marine 
Food Web: Simon Fraser University. 

Khan S, Barhoumi R, Burghardt R, Liu S, Kim K, Safe S. 2006. Molecular mechanism of 
inhibitory aryl hydrocarbon receptor-estrogen receptor/Sp1 cross talk in breast cancer 
cells. Molecular endocrinology 20(9): 2199-2214. 

Khanjani N, English DR, Sim MR. 2006. An ecological study of organochlorine 
pesticides and breast cancer in rural Victoria, Australia. Archives of environmental 
contamination and toxicology 50(3): 452-461. 

Kierkegaard A, Burreau S, Marsh G, Wehler EK, Asplund L. 2001. Metabolism and 
distribution of 2,2',4,4' tetrabromo 14C diphenyl ether in pike (Esox lucius) after dietary 
exposure. Organohalogen Compd 52: 58-61. 

Kim HS, Shin JH, Moon HJ, Kang IH, Kim TS, Kim IY, et al. 2002a. Comparative 
estrogenic effects of p-nonylphenol by 3-day uterotrophic assay and female pubertal 
onset assay. Reproductive toxicology (Elmsford, NY 16(3): 259-268. 

Kim HS, Shin JH, Moon HJ, Kim TS, Kang IH, Seok JH, et al. 2002b. Evaluation of the 
20-day pubertal female assay in Sprague-Dawley rats treated with DES, tamoxifen, 
testosterone, and flutamide. Toxicol Sci 67(1): 52-62. 

Kim JY, Choi CY, Lee KJ, Shin DW, Jung KS, Chung YC, et al. 2004. Induction of 
inducible nitric oxide synthase and proinflammatory cytokines expression by o,p'-DDT in 
macrophages. Toxicology letters 147(3): 261-269. 

Kim-Schulze S, Lowe WL Jr, Schnaper HW. 1998. Estrogen stimulates delayed mitogen-
activated protein kinase activity in human endothelial cells via an autocrine loop that 
involves basic fibroblast growth factor. Circulation. 98(5): 413-21. 

Kimura J, Obata T, Okada H. 1976. Kinetic analysis of hormone-induced mitoses in 
epithelial cells of mouse uterus and vagina. Endocrinologia japonica 23(5): 391-399. 

King RJ, Whitehead MI, Campbell S, Minardi J. 1978. Biochemical studies on 
endometrium from postmenopausal women receiving hormone replacement therapy. 
Postgraduate medical journal 54 Suppl 2: 65-68. 

Kirigaya A, Hayashi S, Iguchi T, Sato T. 2006. Developmental effects of ethinylestradiol 
on reproductive organs of female mice. In vivo (Athens, Greece) 20(6B): 867-873. 

Klein-Hitpass L, Schorpp M, Wagner U, Ryffel GU. 1986. An estrogen-responsive 
element derived from the 5' flanking region of the Xenopus vitellogenin A2 gene 
functions in transfected human cells. Cell 46(7): 1053-1061. 

Klein-Hitpass L, Tsai SY, Greene GL, Clark JH, Tsai MJ, O'Malley BW. 1989. Specific 
binding of estrogen receptor to the estrogen response element. Molecular and cellular 
biology 9(1): 43-49. 



 

 
 

181

Koda T, Umezu T, Kamata R, Morohoshi K, Ohta T, Morita M. 2005. Uterotrophic 
effects of benzophenone derivatives and a p-hydroxybenzoate used in ultraviolet screens. 
Environmental research 98(1): 40-45. 

Koga N, Kikuichi N, Kanamaru T, Ariyoshi N, Oguri K, Yoshimura H. 1996. Hamster 
liver cytochrome P450 (CYP2A8) as a 4-hydroxylase for 2,5,2',5'-tetrachlorobiphenyl. 
Biochemical and biophysical research communications 225(2): 685-688. 

Kohno Y, Kitamura S, Sanoh S, Sugihara K, Fujimoto N, Ohta S. 2005. Metabolism of 
the alpha,beta-unsaturated ketones, chalcone and trans-4-phenyl-3-buten-2-one, by rat 
liver microsomes and estrogenic activity of the metabolites. Drug Metab Dispos 33(8): 
1115-1123. 

Koley AP, Buters JT, Robinson RC, Markowitz A, Friedman FK. 1997. Differential 
mechanisms of cytochrome P450 inhibition and activation by alpha-naphthoflavone. J 
Biol Chem. 272(6): 3149-52.  

Korach KS, Sarver P, Chae K, McLachlan JA, McKinney JD. 1988. Estrogen receptor-
binding activity of polychlorinated hydroxybiphenyls: conformationally restricted 
structural probes. Molecular pharmacology 33(1): 120-126. 

Kos M, Reid G, Denger S, Gannon F. 2001. Minireview: genomic organization of the 
human ERalpha gene promoter region. Molecular endocrinology 15(12): 2057-2063. 

Kretschmer XC, Baldwin WS. 2005. CAR and PXR: xenosensors of endocrine 
disrupters? Chemico-biological interactions 155(3): 111-128. 

Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, et al. 1997. 
Comparison of the ligand binding specificity and transcript tissue distribution of estrogen 
receptors alpha and beta. Endocrinology 138(3): 863-870. 

Kumar V, Green S, Staub A, Chambon P. 1986. Localisation of the oestradiol-binding 
and putative DNA-binding domains of the human oestrogen receptor. The EMBO journal 
5(9): 2231-2236. 

Kupfer D, Bulger W. 1979. A novel in vitro method for demonstrating proestrogens. 
Metabolism of methoxychlor and o,p'DDT by liver microsomes in the presence of uteri 
and effects on intracellular distribution of estrogen receptors. Life Sci 25(11): 975-983. 

Kuriyama SN, Talsness CE, Grote K, Chahoud I. 2005. Developmental exposure to low 
dose PBDE 99: effects on male fertility and neurobehavior in rat offspring. 
Environmental health perspectives 113(2): 149-154. 

Lannigan DA. 2003. Estrogen receptor phosphorylation. Steroids 68(1): 1-9. 

Larriuz-Serrano MC, Perez-Cardona CM, Ramos-Valencia G, Bourdony CJ. 2001. 
Natural history and incidence of premature thelarche in Puerto Rican girls aged 6 months 
to 8 years diagnosed between 1990 and 1995. Puerto Rico health sciences journal 20(1): 
13-18. 

Lauver D, Nelles KK, Hanson K. 2005. The health effects of diethylstilbestrol revisited. J 
Obstet Gynecol Neonatal Nurs 34(4): 494-499. 



 

 
 

182

Law RJ, Allchin CR, de Boer J, Covaci A, Herzke D, Lepom P, et al. 2006. Levels and 
trends of brominated flame retardants in the European environment. Chemosphere 64(2): 
187-208. 

Lee AJ, Cai MX, Thomas PE, Conney AH, Zhu BT. 2003. Characterization of the 
oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed 
human cytochrome p450 isoforms. Endocrinology 144(8): 3382-3398. 

Lee HJ, Chattopadhyay S, Gong EY, Ahn RS, Lee K. 2003. Antiandrogenic effects of 
bisphenol A and nonylphenol on the function of androgen receptor. Toxicol Sci 75(1): 
40-46. 

Legler J, van den Brink CE, Brouwer A, Murk AJ, van der Saag PT, Vethaak AD, et al. 
1999. Development of a stably transfected estrogen receptor-mediated luciferase reporter 
gene assay in the human T47D breast cancer cell line. Toxicol Sci 48(1): 55-66. 

Le Pecq JB, Paoletti C. 1966. A new fluorometric method for RNA and DNA 
determination. Analytical biochemistry 17(1): 100-107. 

Lewis DF. 1997. Quantitative structure-activity relationships in substrates, inducers, and 
inhibitors of cytochrome P4501 (CYP1). Drug metabolism reviews 29(3): 589-650. 
 
Lewis DF. 2000. Structural characteristics of human P450s involved in drug metabolism: 
QSARs and lipophilicity profiles. Toxicology 144(1-3): 197-203. 
 
Li XD, Xia SQ, Lv Y, He P, Han J, Wu MC. 2004. Conjugation metabolism of 
acetaminophen and bilirubin in extrahepatic tissues of rats. Life Sci. 74(10): 1307-15.   
 
Likhite VS, Stossi F, Kim K, Katzenellenbogen BS, Katzenellenbogen JA. 2006. Kinase-
specific phosphorylation of the estrogen receptor changes receptor interactions with 
ligand, deoxyribonucleic acid, and coregulators associated with alterations in estrogen 
and tamoxifen activity. Molecular endocrinology 20(12): 3120-3132. 
 
Lilienthal H, Hack A, Roth-Harer A, Grande SW, Talsness CE. 2006. Effects of 
developmental exposure to 2,2 ,4,4 ,5-pentabromodiphenyl ether (PBDE-99) on sex 
steroids, sexual development, and sexually dimorphic behavior in rats. Environmental 
health perspectives 114(2): 194-201. 

Lim Y, Desta Z, Flockhart D, Skaar T. 2005. Endoxifen (4-hydroxy-N-desmethyl-
tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-
hydroxy-tamoxifen. Cancer Chemotheraphy and Pharmacology 55(5): 471-478. 

Lind PM, Milnes MR, Lundberg R, Bermudez D, Orberg JA, Guillette LJ, Jr. 2004. 
Abnormal bone composition in female juvenile American alligators from a pesticide-
polluted lake (Lake Apopka, Florida). Environmental health perspectives 112(3): 359-
362. 

Lind Y, Darnerud PO, Atuma S, Aune M, Becker W, Bjerselius R, et al. 2003. 
Polybrominated diphenyl ethers in breast milk from Uppsala County, Sweden. 
Environmental research 93(2): 186-194. 



 

 
 

183

Lindberg MK, Moverare S, Skrtic S, Gao H, Dahlman-Wright K, Gustafsson JA, et al. 
2003. Estrogen receptor (ER)-beta reduces ERalpha-regulated gene transcription, 
supporting a "ying yang" relationship between ERalpha and ERbeta in mice. Molecular 
endocrinology 17(2): 203-208. 

Lippman M, Bolan G, Monaco M, Pinkus L, Engel L. 1976. Model systems for the study 
of estrogen action in tissue culture. Journal of steroid biochemistry 7(11-12): 1045-1051. 

Liu MM, Albanese C, Anderson CM, Hilty K, Webb P, Uht RM, et al. 2002. Opposing 
action of estrogen receptors alpha and beta on cyclin D1 gene expression. The Journal of 
biological chemistry 277(27): 24353-24360. 

Lohmiller JJ, Sonya P. 2006. Reproduction and Breeding. In: The Laboratory Rat. 
Suckow MA, Weisbroth SH and, Franklin CL (eds.) San Diego: Elsevier Academic 
Press, 147-164. 

Long X, Gize EA, Nephew K, Bigsby RM. 2001. Evidence for estrogenic contamination 
of the MAPK inhibitor PD98059. Endocrinology 142(12): 5390-5393. 

Long X, Steinmetz R, Ben-Jonathan N, Caperell-Grant A, Young PC, Nephew KP, et al. 
2000. Strain differences in vaginal responses to the xenoestrogen bisphenol A. 
Environmental health perspectives 108(3): 243-247. 

Long X, Nephew KP. 2006. Fulvestrant (ICI 182,780)-dependent interacting proteins 
mediate immobilization and degradation of estrogen receptor-alpha. The Journal of 
biological chemistry 281(14): 9607-9615. 

Longnecker MP, Bellinger DC, Crews D, Eskenazi B, Silbergeld EK, Woodruff TJ, 
Susser ES. 2003. An approach to assessment of endocrine disruption in the National 
Children's Study.Environ Health Perspect. 111(13): 1691-7. 

Luo G, Cunningham M, Kim S, Burn T, Lin J, Sinz M, et al. 2002. CYP3A4 induction by 
drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 
expression in human hepatocytes. Drug metabolism and disposition: the biological fate of 
chemicals 30(7): 795-804. 

Maier WE, Herman JR. 2001. Pharmacology and toxicology of ethinyl estradiol and 
norethindrone acetate in experimental animals. Regul Toxicol Pharmacol 34(1): 53-61. 

Malmberg T, Athanasiadou M, Marsh G, Brandt I, Bergman A. 2005. Identification of 
hydroxylated polybrominated diphenyl ether metabolites in blood plasma from 
polybrominated diphenyl ether exposed rats. Environmental science & technology 
39(14): 5342-5348. 

Manavathi B, Kumar R. 2006. Steering estrogen signals from the plasma membrane to 
the nucleus: two sides of the coin. Journal of cellular physiology 207(3): 594-604. 

Martin MB, Reiter R, Pham T, Avellanet YR, Camara J, Lahm M, et al. 2003. Estrogen-
like activity of metals in MCF-7 breast cancer cells. Endocrinology 144(6): 2425-2436. 

Marsh G, Athanasiadou M, Athanassiadis I, Sandholm A. 2006. Identification of 
hydroxylated metabolites in 2,2',4,4'-tetrabromodiphenyl ether exposed rats. 
Chemosphere 63(4): 690-697. 



 

 
 

184

Marsh G, Athanasiadou M, Bergman A, Asplund L. 2004. Identification of hydroxylated 
and methoxylated polybrominated diphenyl ethers in Baltic Sea salmon (Salmo salar) 
blood. Environmental science & technology 38(1): 10-18. 

Martucci C, Fishman J. 1976. Uterine estrogen receptor binding of catecholestrogens and 
of estetrol (1,3,5(10)-estratriene-3,15alpha,16alpha,17beta-tetrol). Steroids 27(3): 325-
333. 

Massaro D, Clerch LB, Massaro GD. 2007. Estrogen receptor alpha regulates pulmonary 
alveolar loss and regeneration in female mice: Morphometric and gene expression 
studies. Am J Physiol Lung Cell Mol Physiol. 

Massart F, Seppia P, Pardi D, Lucchesi S, Meossi C, Gagliardi L, et al. 2005. High 
incidence of central precocious puberty in a bounded geographic area of northwest 
Tuscany: an estrogen disrupter epidemic? Gynecol Endocrinol 20(2): 92-98. 

Mazdai A, Dodder NG, Abernathy MP, Hites RA, Bigsby RM. 2003. Polybrominated 
diphenyl ethers in maternal and fetal blood samples. Environmental health perspectives 
111(9): 1249-1252. 

McDonnell DP, Chang CY, Norris JD. 2001. Capitalizing on the complexities of estrogen 
receptor pharmacology in the quest for the perfect SERM. Annals of the New York 
Academy of Sciences 949: 16-35. 

McDonnell DP, Connor CE, Wijayaratne A, Chang CY, Norris JD. 2002. Definition of 
the molecular and cellular mechanisms underlying the tissue-selective agonist/antagonist 
activities of selective estrogen receptor modulators. Recent progress in hormone research 
57: 295-316. 

McEwen BS, Alves SE. 1999. Estrogen actions in the central nervous system. Endocrine 
reviews 20(3): 279-307. 

McGraw JE, Sr., Waller DP. 2006. Specific human CYP 450 isoform metabolism of a 
pentachlorobiphenyl (PCB-IUPAC# 101). Biochemical and biophysical research 
communications 344(1): 129-133. 

Meerts IA, van Zanden JJ, Luijks EA, van Leeuwen-Bol I, Marsh G, Jakobsson E, et al. 
2000. Potent competitive interactions of some brominated flame retardants and related 
compounds with human transthyretin in vitro. Toxicol Sci 56(1): 95-104. 

Meerts IA, Letcher RJ, Hoving S, Marsh G, Bergman A, Lemmen JG, et al. 2001. In vitro 
estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and 
polybrominated bisphenol A compounds. Environmental health perspectives 109(4): 399-
407. 

Meng G, Zhao Y, Nag A, Zeng M, Dimri G, Gao Q, et al. 2004. Human ADA3 binds to 
estrogen receptor (ER) and functions as a coactivator for ER-mediated transactivation. 
The Journal of biological chemistry 279(52): 54230-54240. 

Metzger D, Berry M, Ali S, Chambon P. 1995. Effect of antagonists on DNA binding 
properties of the human estrogen receptor in vitro and in vivo. Molecular endocrinology 
9(5): 579-591. 



 

 
 

185

Migliaccio A, Castoria G, Di Domenico M, Ciociola A, Lombardi M, De Falco A, et al. 
2006. Crosstalk between EGFR and extranuclear steroid receptors. Annals of the New 
York Academy of Sciences 1089: 194-200. 

Migliaccio S, Newbold RR, McLachlan JA, Korach KS. 1995. Alterations in estrogen 
levels during development affects the skeleton: use of an animal model. Environmental 
health perspectives 103 Suppl 7: 95-97. 

Miller WL. 2002. Androgen biosynthesis from cholesterol to DHEA. Molecular and 
cellular endocrinology 198(1-2): 7-14. 

Mills PK, Yang R. 2006. Regression analysis of pesticide use and breast cancer incidence 
in California Latinas. Journal of environmental health 68(6): 15-22; quiz 43-14. 

Molvarec A, Ver A, Fekete A, Rosta K, Derzbach L, Derzsy Z, et al. 2007. Association 
between Estrogen Receptor alpha (ESR1) Gene Polymorphisms and Severe 
Preeclampsia. Hypertens Res 30(3): 205-211. 

Morohoshi K, Yamamoto H, Kamata R, Shiraishi F, Koda T, Morita M. 2005. Estrogenic 
activity of 37 components of commercial sunscreen lotions evaluated by in vitro assays. 
Toxicol In Vitro 19(4): 457-469. 

Morozova OV. 1991. Effects of estrogen on the uterus of mice of different strains. Biull 
Eksp Biol Med. 112(12): 631-3. 

Mukai H, Tsurugizawa T, Ogiue-Ikeda M, Murakami G, Hojo Y, Ishii H, et al. 2006. 
Local neurosteroid production in the hippocampus: influence on synaptic plasticity of 
memory. Neuroendocrinology 84(4): 255-263. 

Murono EP, Derk RC, Akgul Y. 2006. In vivo exposure of young adult male rats to 
methoxychlor reduces serum testosterone levels and ex vivo Leydig cell testosterone 
formation and cholesterol side-chain cleavage activity. Reproductive toxicology 
(Elmsford, NY 21(2): 148-153. 

Murray TJ, Maffini MV, Ucci AA, Sonnenschein C, Soto AM. 2007. Induction of 
mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A 
exposure. Reproductive toxicology (Elmsford, NY 23(3): 383-390. 

Muscat JE, Britton JA, Djordjevic MV, Citron ML, Kemeny M, Busch-Devereaux E, et 
al. 2003. Adipose concentrations of organochlorine compounds and breast cancer 
recurrence in Long Island, New York. Cancer Epidemiol Biomarkers Prev 12(12): 1474-
1478. 

Nagel SC, Hagelbarger JL, McDonnell DP. 2001. Development of an ER action indicator 
mouse for the study of estrogens, selective ER modulators (SERMs), and Xenobiotics. 
Endocrinology 142(11): 4721-4728. 

NAMS. 2006. Management of osteoporosis in postmenopausal women: 2006 position 
statement of The North American Menopause Society. Menopause (New York, NY 
13(3): 340-367; quiz 368-349. 

 



 

 
 

186

Nelson KG, Takahashi T, Bossert NL, Walmer DK, McLachlan JA. 1991. Epidermal 
growth factor replaces estrogen in the stimulation of female genital-tract growth and 
differentiation. Proceedings of the National Academy of Sciences of the United States of 
America 88(1): 21-25. 

Neville MC, McFadden TB, Forsyth I. 2002. Hormonal regulation of mammary 
differentiation and milk secretion. Journal of mammary gland biology and neoplasia 7(1): 
49-66. 

Newbold RR, Padilla-Banks E, Jefferson WN. 2006. Adverse effects of the model 
environmental estrogen diethylstilbestrol are transmitted to subsequent generations. 
Endocrinology 147(6 Suppl): S11-17. 

Nilsson O, Marino R, De Luca F, Phillip M, Baron J. 2005. Endocrine regulation of the 
growth plate. Hormone research 64(4): 157-165. 

Nirmala PB, Thampan RV. 1995. Ubiquitination of the rat uterine estrogen receptor: 
dependence on estradiol. Biochemical and biophysical research communications 213(1): 
24-31. 

Niwa T, Fujimoto M, Kishimoto K, Yabusaki Y, Ishibashi F, Katagiri M. 2001. 
Metabolism and interaction of bisphenol A in human hepatic cytochrome P450 and 
steroidogenic CYP17. Biological & pharmaceutical bulletin 24(9): 1064-1067. 

Nizzoli G, Del Corno G, Fara GM, Chiumello G. 1986.Gynaecomastia and premature 
thelarche in a schoolchildren population of northern Italy. Acta Endocrinol Suppl 
(Copenh). 279: 227-31. 

Noren K, Meironyte D. 2000. Certain organochlorine and organobromine contaminants 
in Swedish human milk in perspective of past 20-30 years. Chemosphere 40(9-11): 1111-
1123. 

Novotny R, Daida YG, Grove JS, Acharya S, Vogt TM. 2003. Formula feeding in 
infancy is associated with adolescent body fat and earlier menarche. Cellular and 
molecular biology (Noisy-le-Grand, France) 49(8): 1289-1293. 

O'Lone R, Frith MC, Karlsson EK, Hansen U. 2004. Genomic targets of nuclear estrogen 
receptors. Molecular endocrinology 18(8): 1859-1875. 

Odum J, Lefevre PA, Tittensor S, Paton D, Routledge EJ, Beresford NA, et al. 1997. The 
rodent uterotrophic assay: critical protocol features, studies with nonyl phenols, and 
comparison with a yeast estrogenicity assay. Regul Toxicol Pharmacol 25(2): 176-188. 

Ogawa S, Eng V, Taylor J, Lubahn DB, Korach KS, Pfaff DW. 1998. Roles of estrogen 
receptor-alpha gene expression in reproduction-related behaviors in female mice. 
Endocrinology 139(12): 5070-5081. 

Olson ME, Bruce J. 1986. Ovariectomy, Ovariohysterectomy and Orchidectomy in 
Rodents and Rabbits. Can Vet J 27(12): 523-527. 

Osborne CK, Hobbs K, Clark GM. 1985. Effect of estrogens and antiestrogens on growth 
of human breast cancer cells in athymic nude mice. Cancer research 45(2): 584-590. 



 

 
 

187

Pacyniak EK, Cheng X, Cunningham ML, Crofton K, Klaassen CD, Guo GL. 2007. The 
flame retardants, polybrominated diphenyl ethers, are pregnane X receptor activators. 
Toxicol Sci 97(1): 94-102. 

Palade GE, Siekevitz P. 1956. Liver microsomes; an integrated morphological and 
biochemical study. The Journal of biophysical and biochemical cytology 2(2): 171-200. 

Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM. 2005. Lead 
toxicity update. A brief review. Med Sci Monit 11(10): RA329-336. 

Paris F, Jeandel C, Servant N, Sultan C. 2006. Increased serum estrogenic bioactivity in 
three male newborns with ambiguous genitalia: a potential consequence of prenatal 
exposure to environmental endocrine disruptors. Environmental research 100(1): 39-43. 

Payne AH, Hales DB. 2004. Overview of steroidogenic enzymes in the pathway from 
cholesterol to active steroid hormones. Endocrine reviews 25(6): 947-970. 

Pelclova D, Urban P, Preiss J, Lukas E, Fenclova Z, Navratil T, et al. 2006. Adverse 
health effects in humans exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). 
Reviews on environmental health 21(2): 119-138. 

Pelletier G, El-Alfy M. 2000. Immunocytochemical localization of estrogen receptors 
alpha and beta in the human reproductive organs. The Journal of clinical endocrinology 
and metabolism 85(12): 4835-4840. 

Penning TM. 1997. Molecular endocrinology of hydroxysteroid dehydrogenases. 
Endocrine reviews 18(3): 281-305. 

Pepe GJ, Albrecht ED. 1998. Central integrative role of oestrogen in the regulation of 
placental steroidogenic maturation and the development of the fetal pituitary-
adrenocortical axis in the baboon. Human reproduction update 4(4): 406-419. 

Perry MJ, Ouyang F, Korrick SA, Venners SA, Chen C, Xu X, et al. 2006. A prospective 
study of serum DDT and progesterone and estrogen levels across the menstrual cycle in 
nulliparous women of reproductive age. American journal of epidemiology 164(11): 
1056-1064. 

Peters AK, van Londen K, Bergman A, Bohonowych J, Denison MS, van den Berg M, et 
al. 2004. Effects of polybrominated diphenyl ethers on basal and TCDD-induced 
ethoxyresorufin activity and cytochrome P450-1A1 expression in MCF-7, HepG2, and 
H4IIE cells. Toxicol Sci 82(2): 488-496. 

Petreas M, She J, Brown FR, Winkler J, Windham G, Rogers E, et al. 2003. High body 
burdens of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in California women. 
Environmental health perspectives 111(9): 1175-1179. 

Pickford DB, Hetheridge MJ, Caunter JE, Hall AT, Hutchinson TH. 2003. Assessing 
chronic toxicity of bisphenol A to larvae of the African clawed frog (Xenopus laevis) in a 
flow-through exposure system. Chemosphere 53(3): 223-235. 

Pijnenburg AM, Everts JW, de Boer J, Boon JP. 1995. Polybrominated biphenyl and 
diphenylether flame retardants: analysis, toxicity, and environmental occurrence. 
Reviews of environmental contamination and toxicology 141: 1-26. 



 

 
 

188

Pozzi S, Benedusi V, Maggi A, Vegeto E. 2006. Estrogen action in neuroprotection and 
brain inflammation. Annals of the New York Academy of Sciences 1089: 302-323. 

Prins GS, Huang L, Birch L, Pu Y. 2006. The role of estrogens in normal and abnormal 
development of the prostate gland. Annals of the New York Academy of Sciences 1089: 
1-13. 

Qiu X, Mercado-Feliciano M, Bigsby RM, Hites RA. 2007. Measurement of 
Polybrominated Diphenyl Ethers and Metabolites in Mouse Plasma after Exposure to a 
Commercial Pentabromo Diphenyl Ether Mixture Environmental health perspectives 
115(7): 1052 -1058. 

Quaglino AE, Craig-Veit CB, Viant MR, Erichsen AL, Fry DM, Millam JR. 2002. Oral 
estrogen masculinizes female zebra finch song system. Hormones and behavior 41(2): 
236-241. 

Raafat AM, Li S, Bennett JM, Hofseth LJ, Haslam SZ. 2001. Estrogen and estrogen plus 
progestin act directly on the mammary gland to increase proliferation in a 
postmenopausal mouse model. Journal of cellular physiology 187(1): 81-89. 

Reid G, Denger S, Kos M, Gannon F. 2002. Human estrogen receptor-alpha: regulation 
by synthesis, modification and degradation. Cell Mol Life Sci 59(5): 821-831. 

Rogers JM, Denison MS. 2000. Recombinant cell bioassays for endocrine disruptors: 
development of a stably transfected human ovarian cell line for the detection of 
estrogenic and anti-estrogenic chemicals. In vitro & molecular toxicology 13(1): 67-82. 

Rogers JM, Denison MS. 2002. Analysis of the antiestrogenic activity of 2,3,7,8-
tetrachlorodibenzo-p-dioxin in human ovarian carcinoma BG-1 cells. Molecular 
pharmacology 61(6): 1393-1403. 

Rosa ESA, Guimaraes MA, Padmanabhan V, Lara HE. 2003. Prepubertal administration 
of estradiol valerate disrupts cyclicity and leads to cystic ovarian morphology during 
adult life in the rat: role of sympathetic innervation. Endocrinology 144(10): 4289-4297. 

Roselli CE, Resko JA, Stormshak F. 2006. Expression of steroid hormone receptors in 
the fetal sheep brain during the critical period for sexual differentiation. Brain research 
1110(1): 76-80. 

Rubin CH, Lanier A, Kieszak S, Brock JW, Koller KR, Strosnider H, et al. 2006. Breast 
cancer among Alaska Native women potentially exposed to environmental 
organochlorine chemicals. International journal of circumpolar health 65(1): 18-27. 

Saenz de Rodriguez CA, Bongiovanni AM, Conde de Borrego L. 1985. An epidemic of 
precocious development in Puerto Rican children. The Journal of pediatrics 107(3): 393-
396. 

Sanders JM, Burka LT, Smith CS, Black W, James R, Cunningham ML. 2005. 
Differential expression of CYP1A, 2B, and 3A genes in the F344 rat following exposure 
to a polybrominated diphenyl ether mixture or individual components. Toxicol Sci 88(1): 
127-133 



 

 
 

189

Saunders FJ. 1968. Effects of sex steroids and related compounds on pregnancy and on 
development of the young. Physiological reviews 48(3): 601-643. 

Saunders PT. 1998. Oestrogen receptor beta (ER beta). Reviews of reproduction 3(3): 
164-171. 

Savvas M, Studd JW, Norman S, Leather AT, Garnett TJ, Fogelman I. 1992. Increase in 
bone mass after one year of percutaneous oestradiol and testosterone implants in post-
menopausal women who have previously received long-term oral oestrogens. British 
journal of obstetrics and gynaecology 99(9): 757-760. 

Schecter A, Pavuk M, Papke O, Ryan JJ, Birnbaum L, Rosen R. 2003. Polybrominated 
diphenyl ethers (PBDEs) in U.S. mothers' milk. Environmental health perspectives 
111(14): 1723-1729. 

Schroter C, Parzefall W, Schroter H, Schulte-Hermann R. 1987. Dose-response studies 
on the effects of alpha-, beta-, and gamma-hexachlorocyclohexane on putative 
preneoplastic foci, monooxygenases, and growth in rat liver. Cancer research 47(1): 80-
88. 

Schwabe JW, Neuhaus D, Rhodes D. 1990. Solution structure of the DNA-binding 
domain of the oestrogen receptor. Nature 348(6300): 458-461. 

Scully RE, Robboy SJ, Herbst AL. 1974. Vaginal and cervical abnormalities, including 
clear-cell adenocarcinoma, related to prenatal exposure to stilbestrol. Annals of clinical 
and laboratory science 4(4): 222-233. 

Segal SJ, Scher W. 1967. Estrogens, Nucleic Acids and Protein Synthesis in Uterine 
Metabolism. In: Cellular Biollgy of the Uterus. Wynn RM (ed.) New York: Meredith 
Publishing Co., 114-150. 

Seiler-Tuyns A, Walker P, Martinez E, Merillat AM, Givel F, Wahli W. 1986. 
Identification of estrogen-responsive DNA sequences by transient expression 
experiments in a human breast cancer cell line. Nucleic acids research 14(22): 8755-
8770. 

Seliskar M, Rozman D. 2007. Mammalian cytochromes P450--importance of tissue 
specificity. Biochimica et biophysica acta 1770(3): 458-466. 

Setiawan VW, Haiman CA, Stanczyk FZ, Le Marchand L, Henderson BE. 2006. 
Racial/ethnic differences in postmenopausal endogenous hormones: the multiethnic 
cohort study. Cancer Epidemiol Biomarkers Prev 15(10): 1849-1855. 

Shah YM, Rowan BG. 2005. The Src kinase pathway promotes tamoxifen agonist action 
in Ishikawa endometrial cells through phosphorylation-dependent stabilization of 
estrogen receptor (alpha) promoter interaction and elevated steroid receptor coactivator 1 
activity. Molecular endocrinology 19(3): 732-748. 

Shankland DL. 1982. Neurotoxic action of chlorinated hydrocarbon insecticides. 
Neurobehavioral toxicology and teratology 4(6): 805-811. 



 

 
 

190

She J, Petreas M, Winkler J, Visita P, McKinney M, Kopec D. 2002. PBDEs in the San 
Francisco Bay Area: measurements in harbor seal blubber and human breast adipose 
tissue. Chemosphere 46(5): 697-707. 

Shearman AM, Cupples LA, Demissie S, Peter I, Schmid CH, Karas RH, et al. 2003. 
Association Between Estrogen Receptor {alpha} Gene Variation and Cardiovascular 
Disease. JAMA 290(17): 2263-2270. 

Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, et al. 1998. The 
structural basis of estrogen receptor/coactivator recognition and the antagonism of this 
interaction by tamoxifen. Cell 95(7): 927-937. 

Shimada T, Sugie A, Shindo M, Nakajima T, Azuma E, Hashimoto M, Inoue K. 2003. 
Tissue-specific induction of cytochromes P450 1A1 and 1B1 by polycyclic aromatic 
hydrocarbons and polychlorinated biphenyls in engineered C57BL/6J mice of 
arylhydrocarbon receptor gene. Toxicol Appl Pharmacol. 187(1): 1-10.   

Shull JD, Lachel CM, Murrin CR, Pennington KL, Schaffer BS, Strecker TE, Gould KA. 
2007. Genetic control of estrogen action in the rat: mapping of QTLs that impact pituitary 
lactotroph hyperplasia in a BN x ACI intercross. Mamm Genome. 18(9): 657-69.  

Silberberg M, Silberberg R. 1951. Susceptibility to estrogen of breast, vagina, and 
endometrium of various strains of mice. Proc Soc Exp Biol Med. 76(1): 161-4. 

Silberstein GB. 2001. Postnatal mammary gland morphogenesis. Microscopy research 
and technique 52(2): 155-162. 

Simard J, Ricketts ML, Gingras S, Soucy P, Feltus FA, Melner MH. 2005. Molecular 
biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. 
Endocrine reviews 26(4): 525-582. 

Smith CL, O'Malley BW. 2004. Coregulator function: a key to understanding tissue 
specificity of selective receptor modulators. Endocrine reviews 25(1): 45-71. 

Soto AM, Justicia H, Wray JW, Sonnenschein C. 1991. p-Nonyl-phenol: an estrogenic 
xenobiotic released from "modified" polystyrene. Environmental health perspectives 92: 
167-173. 

Soto AM, Sonnenschein C. (1985) The role of estrogens on the proliferation of human 
breast tumor cells (MCF-7). J Steroid Biochem. 23(1): 87-94.   

Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO. 1995. The 
E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental 
pollutants. Environmental health perspectives 103 Suppl 7: 113-122. 

Soule HD, Vazguez J, Long A, Albert S, Brennan M. 1973. A human cell line from a 
pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51(5): 1409-1416. 

Spearow JL, Doemeny P, Sera R, Leffler R, Barkley M. 1999. Genetic variation in 
susceptibility to endocrine disruption by estrogen in mice. Science. 285(5431): 1259-61. 



 

 
 

191

Spearow JL, O'Henley P, Doemeny P, Sera R, Leffler R, Sofos T, Barkley M. 2001. 
Genetic variation in physiological sensitivity to estrogen in mice. APMIS. 109(5): 356-
64. 

Staskal DF, Diliberto JJ, DeVito MJ, Birnbaum LS. 2005. Toxicokinetics of BDE 47 in 
female mice: effect of dose, route of exposure, and time. Toxicol Sci 83(2): 215-223. 

Staskal DF, Hakk H, Bauer D, Diliberto JJ, Birnbaum LS. 2006. Toxicokinetics of 
polybrominated diphenyl ether congeners 47, 99, 100, and 153 in mice. Toxicol Sci 
94(1): 28-37. 

Steer PJ. 1990. The endocrinology of parturition in the human. Bailliere's clinical 
endocrinology and metabolism 4(2): 333-349. 

Steinmetz R, Mitchner NA, Grant A, Allen DL, Bigsby RM, Ben-Jonathan N. 1998. The 
xenoestrogen bisphenol A induces growth, differentiation, and c-fos gene expression in 
the female reproductive tract. Endocrinology 139(6): 2741-2747. 

Steinmetz R, Young PC, Caperell-Grant A, Gize EA, Madhukar BV, Ben-Jonathan N, et 
al. 1996. Novel estrogenic action of the pesticide residue beta-hexachlorocyclohexane in 
human breast cancer cells. Cancer research 56(23): 5403-5409. 

Sternlicht MD. 2006. Key stages in mammary gland development: the cues that regulate 
ductal branching morphogenesis. Breast Cancer Res 8(1): 201. 

Stoker TE, Laws SC, Crofton KM, Hedge JM, Ferrell JM, Cooper RL. 2004. Assessment 
of DE-71, a commercial polybrominated diphenyl ether (PBDE) mixture, in the EDSP 
male and female pubertal protocols. Toxicol Sci 78(1): 144-155. 

Strauss III J and Coutifaris C. 1999. The Endometrium and Myometrium. In: Regulation 
and Dysfunction: Reproductive Endocrinology, 4th edn. Yen SSC, Jaffe RB and Barbieri 
R (eds). Philadelphia WB, Saunders Co.: pp. 218-256.  

Stresser DM, Kupfer D. 1998. Human cytochrome P450-catalyzed conversion of the 
proestrogenic pesticide methoxychlor into an estrogen. Role of CYP2C19 and CYP1A2 
in O-demethylation. Drug metabolism and disposition: the biological fate of chemicals 
26(9): 868-874. 

Suzuki A, Enari M, Abe Y, Ohta Y, Iguchi T. 1996. Effect of ovariectomy on histological 
change and protein expression in female mouse reproductive tracts. In vivo (Athens, 
Greece) 10(1): 103-110. 

Tachibana M, Lu L, Hiai H, Tamura A, Matsushima Y, Shisa H. 2006. Quantitative trait 
loci determining weight reduction of testes and pituitary by diethylstilbesterol in LEXF 
and FXLE recombinant inbred strain rats. Exp Anim. 55(2): 91-5. 

Tan BL, Kassim NM, Mohd MA. 2003. Assessment of pubertal development in juvenile 
male rats after sub-acute exposure to bisphenol A and nonylphenol. Toxicology letters 
143(3): 261-270. 

 



 

 
 

192

Tanaka N, Yonekura H, Yamagishi S, Fujimori H, Yamamoto Y, Yamamoto H. 2000. 
The receptor for advanced glycation end products is induced by the glycation products 
themselves and tumor necrosis factor-alpha through nuclear factor-kappa B, and by 
17beta-estradiol through Sp-1 in human vascular endothelial cells. The Journal of 
biological chemistry 275(33): 25781-25790. 

Teitelbaum SL, Gammon MD, Britton JA, Neugut AI, Levin B, Stellman SD. 2007. 
Reported residential pesticide use and breast cancer risk on Long Island, New York. 
American journal of epidemiology 165(6): 643-651. 

Thakur MK, Sharma PK. 2006. Aging of brain: role of estrogen. Neurochemical research 
31(11): 1389-1398. 

Thomas P, Pang Y, Filardo EJ, Dong J. 2005. Identity of an estrogen membrane receptor 
coupled to a G protein in human breast cancer cells. Endocrinology 146(2): 624-632. 

Till H, Schmidt H. 2005. Juvenile granulosa cell tumour (JGCT) of the ovary in a 6-year-
old girl: laparoscopic resection achieves long-term oncological success. Eur J Pediatr 
Surg 15(4): 292-294. 

Timsit YE, Negishi M. 2007. CAR and PXR: the xenobiotic-sensing receptors. Steroids 
72(3): 231-246. 

Tinwell H, Haseman J, Lefevre PA, Wallis N, Ashby J. 2002. Normal sexual 
development of two strains of rat exposed in utero to low doses of bisphenol A. Toxicol 
Sci. 68(2): 339-48. 

Tinwell H, Joiner R, Pate I, Soames A, Foster J, Ashby J. 2000. Uterotrophic activity of 
bisphenol A in the immature mouse. Regul Toxicol Pharmacol. 32(1): 118-26. 

Toms LM, Harden FA, Symons RK, Burniston D, Furst P, Muller JF. 2007. 
Polybrominated diphenyl ethers (PBDEs) in human milk from Australia. Chemosphere 
68(5): 797-803. 

Ueno D, Darling C, Pacepavicius G, Alaee M, Campbell L, Letcher R, et al. 2005. 
Detection of Hydroxylated Polybrominated Diphenyl Ethers (Oh-PBDEs) in Abiotic 
Samples from Southern Ontario, Canada. Organohalogen Compd 67: 851-853. 

Ulbrich B, Stahlmann R. 2004. Developmental toxicity of polychlorinated biphenyls 
(PCBs): a systematic review of experimental data. Archives of toxicology 78(5): 252-
268. 

U.S.E.P.A. 2006. Certain Polybrominated Diphenylethers; Significant New use Rule. 
Federal Register 40 CFR Part 721. http://www.fws.gov/policy/library/04-26709.pdf (last 
accessed 1/9/8) 

Uldbjerg N, Ulmsten U. 1990. The physiology of cervical ripening and cervical dilatation 
and the effect of abortifacient drugs. Bailliere's clinical obstetrics and gynaecology 4(2): 
263-282. 

Ulrich EM, Caperell-Grant A, Jung SH, Hites RA, Bigsby RM. 2000. Environmentally 
relevant xenoestrogen tissue concentrations correlated to biological responses in mice. 
Environmental health perspectives 108(10): 973-977. 



 

 
 

193

Vakharia DD, Gierthy JF. 2000. Use of a combined human liver microsome-estrogen 
receptor binding assay to assess potential estrogen modulating activity of PCB 
metabolites. Toxicology letters 114(1-3): 55-65. 

Valters K, Li H, Alaee M, D'Sa I, Marsh G, Bergman A, et al. 2005. Polybrominated 
diphenyl ethers and hydroxylated and methoxylated brominated and chlorinated 
analogues in the plasma of fish from the Detroit River. Environmental science & 
technology 39(15): 5612-5619. 

van Lenthe FJ, Kemper HC, van Mechelen W, Post GB, Twisk JW, Welten DC, et al. 
1996. Biological maturation and the distribution of subcutaneous fat from adolescence 
into adulthood: the Amsterdam Growth and Health Study. Int J Obes Relat Metab Disord 
20(2): 121-129. 

Verreault J, Gabrielsen GW, Chu S, Muir DC, Andersen M, Hamaed A, et al. 2005. 
Flame retardants and methoxylated and hydroxylated polybrominated diphenyl ethers in 
two Norwegian Arctic top predators: glaucous gulls and polar bears. Environmental 
science & technology 39(16): 6021-6028. 

Vetter W. 2006. Marine halogenated natural products of environmental relevance. 
Reviews of environmental contamination and toxicology 188: 1-57. 

Veurink M, Koster M, Berg LT. 2005. The history of DES, lessons to be learned. Pharm 
World Sci 27(3): 139-143. 

Viberg H, Fredriksson A, Eriksson P. 2003. Neonatal exposure to polybrominated 
diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and 
memory, and decreases hippocampal cholinergic receptors in adult mice. Toxicology and 
applied pharmacology 192(2): 95-106. 

Viberg H, Fredriksson A, Eriksson P. 2004. Investigations of strain and/or gender 
differences in developmental neurotoxic effects of polybrominated diphenyl ethers in 
mice. Toxicol Sci 81(2): 344-353. 

Wada-Hiraike O, Hiraike H, Okinaga H, Imamov O, Barros RP, Morani A, et al. 2006. 
Role of estrogen receptor beta in uterine stroma and epithelium: Insights from estrogen 
receptor beta-/- mice. Proceedings of the National Academy of Sciences of the United 
States of America 103(48): 18350-18355. 

Wadia PR, Vandenberg LN, Schaeberle CM, Rubin BS, Sonnenschein C, Soto AM. 
2007. Perinatal bisphenol A exposure increases estrogen sensitivity of the mammary 
gland in diverse mouse strains. Environmental health perspectives 115(4): 592-598. 

Waliszewski SM, Bermudez MT, Infanzon RM, Silva CS, Carvajal O, Trujillo P, et al. 
2005. Persistent organochlorine pesticide levels in breast adipose tissue in women with 
malignant and benign breast tumors. Bulletin of environmental contamination and 
toxicology 75(4): 752-759. 

Wang C, Fu M, Angeletti RH, Siconolfi-Baez L, Reutens AT, Albanese C, et al. 2001. 
Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates 
transactivation and hormone sensitivity. The Journal of biological chemistry 276(21): 
18375-18383. 



 

 
 

194

Wang RA, Mazumdar A, Vadlamudi RK, Kumar R. 2002. P21-activated kinase-1 
phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia in 
mammary epithelium. EMBO J. 21(20): 5437-47. 

Wang SL, Chang YC, Chao HR, Li CM, Li LA, Lin LY, et al. 2006. Body burdens of 
polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls and their relations to 
estrogen metabolism in pregnant women. Environmental health perspectives 114(5): 740-
745. 

Wang XN, Das SK, Damm D, Klagsbrun M, Abraham JA, Dey SK. 1994. Differential 
regulation of heparin-binding epidermal growth factor-like growth factor in the adult 
ovariectomized mouse uterus by progesterone and estrogen. Endocrinology 135(3): 1264-
71.  

Wang Y, Jiang G, Lam PK, Li A. 2007. Polybrominated diphenyl ether in the East Asian 
environment: A critical review. Environment international. 

Wani MC, Rector DH, Christensen HD, Kimmel GL, Cook CE. 1975. Flavonoids. 8. 
Synthesis and antifertility and estrogen receptor binding activities of coumarins and 
delta3-isoflavenes. Journal of medicinal chemistry 18(10): 982-985. 

Weichselbaum RR, Hellman S, Piro AJ, Nove JJ, Little JB. 1978. Proliferation kinetics of 
a human breast cancer line in vitro following treatment with 17beta-estradiol and 1-beta-
D-arabinofuranosylcytosine. Cancer research 38(8): 2339-2342. 

Welsch CW, Swim EL, McManus MJ, White AC, McGrath CM. 1981. Estrogen induced 
growth of human breast cancer cells (MCF-7) in athymic nude mice is enhanced by 
secretions from a transplantable pituitary tumor. Cancer letters 14(3): 309-316. 

White RD, Shea D, Schlezinger JJ, Hahn ME, Stegeman JJ. 2000. In vitro metabolism of 
polychlorinated biphenyl congeners by beluga whale (Delphinapterus leucas) and pilot 
whale (Globicephala melas) and relationship to cytochrome P450 expression. Comp 
Biochem Physiol C Toxicol Pharmacol 126(3): 267-284. 
 
Winneke G, Walkowiak J, Lilienthal H. 2002. PCB-induced neurodevelopmental toxicity 
in human infants and its potential mediation by endocrine dysfunction. Toxicology 181-
182: 161-165. 

Wu F, Safe S. 2007. Differential activation of wild-type estrogen receptor alpha and C-
terminal deletion mutants by estrogens, antiestrogens and xenoestrogens in breast cancer 
cells. The Journal of steroid biochemistry and molecular biology 103(1): 1-9. 

Yager JD. 2000. Endogenous estrogens as carcinogens through metabolic activation. 
Journal of the National Cancer Institute(27): 67-73. 

Yeh IT. 2007. Postmenopausal hormone replacement therapy: endometrial and breast 
effects. Advances in anatomic pathology 14(1): 17-24. 

Yoshida J, Kumagai S, Tabuchi T, Kosaka H, Akasaka S, Oda H. 2005. Effects of dioxin 
on metabolism of estrogens in waste incinerator workers. Archives of environmental & 
occupational health 60(4): 215-222. 



 

 
 

195

Yoshihara S, Mizutare T, Makishima M, Suzuki N, Fujimoto N, Igarashi K, et al. 2004. 
Potent estrogenic metabolites of bisphenol A and bisphenol B formed by rat liver S9 
fraction: their structures and estrogenic potency. Toxicol Sci 78(1): 50-59. 

 

Yoshinari K, Okino N, Sato T, Sugatani J, Miwa M. 2006. Induction of detoxifying 
enzymes in rodent white adipose tissue by aryl hydrocarbon receptor agonists and 
antioxidants. Drug Metab Dispos. 34(7): 1081-9.   

Yung Y, Dolginov Y, Yao Z, Rubinfeld H, Michael D, Hanoch T, et al. 1997. Detection 
of ERK activation by a novel monoclonal antibody. FEBS letters 408(3): 292-296. 

Zheng A, Kallio A, Harkonen P. 2007. Tamoxifen-Induced Rapid Death of MCF-7 
Breast Cancer Cells Is Mediated via Extracellularly Signal-Regulated Kinase Signaling 
and Can Be Abrogated by Estrogen. Endocrinology 148(6): 2764-2777. 

Zhou T, Taylor MM, DeVito MJ, Crofton KM. 2002. Developmental exposure to 
brominated diphenyl ethers results in thyroid hormone disruption. Toxicol Sci 66(1): 105-
116. 

Zhu BT, Lee AJ. 2005. NADPH-dependent metabolism of 17beta-estradiol and estrone to 
polar and nonpolar metabolites by human tissues and cytochrome P450 isoforms. 
Steroids 70(4): 225-244. 

Zukauskaite S, Lasiene D, Lasas L, Urbonaite B, Hindmarsh P. 2005. Onset of breast and 
pubic hair development in 1231 preadolescent Lithuanian schoolgirls. Archives of 
disease in childhood 90(9): 932-936.



 

 
 

CURRICULUM VITAE                    
 
Minerva Mercado Feliciano 
 
 
EDUCATION: 
 
Ph.D. in Toxicology, February 2008, Indiana University. Advisor: Dr. Robert M. Bigsby. 
Dissertation: “Estrogenic Activity of the Polybrominated Diphenyl Ether Flame 
Retardant Mixture DE-71”  
 
M.S. in Environmental Sciences, Hazardous Waste Management Mayor, February 
1997, Indiana University, Bloomington IN 47405 
 
B.S. in Environmental Sciences, Cum Laude, June 1992, University of Puerto Rico, Rio 
Piedras, PR 00931 
 
 
RESEARCH EXPERIENCE: 
 
Indiana University School of Medicine 
Van Nuys Medical Science Building, 635 Barnhill Dr., Indianapolis Indiana 46202 
 

• Dr. Robert M. Bigsby, Dept. Obstetrics and Gynecology. November 2007 to 
present. Research Project: Estrogenic activity of DE-71 Through Estrogen Receptor Beta. 
Responsibilites: Determine if DE-71 or its in vivo hydroxylated metabolites activate ERβ in vitro. 
Mentor undergraduate students. 

 
• Dr. Robert M. Bigsby, Dept. Obstetrics and Gynecology. June 2003 to 

November 2007. Thesis Project: Estrogenic Activity of the Polybrominated Diphenyl 
Ethers. Skills learned: Cytochrome P450 metabolic activity assays; breast cancer cell culture; 
luciferase transient and stable transfection assays; receptor binding competition assays; rodent 
ovariectomy, dosing and tissue harvest; uterine histology and light microscopy analysis; protein 
immunoblotting. 

 
• Dr. James E. Klaunig, Dept. Pharmacology and Toxicology, November 2002 to 

May 2003. Research Project: Role of the Kupffer Cell in 2-butoxyethanol Induced 
Endothelial Cell Proliferation in Male Mice. Skills learned: rodent dosing, minor surgery, tail 
vein injection and tissue harvesting; hematocrit; liver histochemistry; RNA isolation and reverse 
transcriptase PCR.  

 
• Dr. James E. Klaunig, Dept. Pharmacology and Toxicology, June to October 

2002. Research Rotation. Skills learned: liver cell proliferation counts; comet assay; endothelial 
cell culture. 

 
• Dr. William J. Sullivan Jr., Dept. Pharmacology and Toxicology March to May 

2002. Research Rotation. Skills learned: SDS-PAGE and agarose electrophoresis, general cell 
culture techniques, enzyme kinetic assays, cell transformation, protein and DNA purification 
techniques. 



 

 
 

• Dr. Joseph A. DiMicco, Dept. Pharmacology and Toxicology, December 2001 to 
February 2002. Research Rotation. Skills learned: handling of live rodents, minor stereotaxic 
brain surgery and microinjection, arterial cannulation and blood pressure monitoring. 

 
 
PROFESSIONAL EXPERIENCE 
 
Indiana Department of Environmental Management 
100 North Senate Street, Indianapolis IN 46206 
 

• Environmental Manager – Risk Assessment, February 2001 to July 2001  
Maintained default table of allowed contaminant concentrations in soil and groundwater for risk-
based cleanup guidance document. Assisted development of web-based software to calculate non-
default allowed contaminant concentrations according to risk-based guidance. Maintained public 
information web site. 

 
 
• Solid Waste Data Analyst/Planner, May 1994 to May 1996 and January 1998 to 

February 2001 
Administered reporting programs and databases. Performed customized data analysis, data 
modeling and geographical maps regarding solid waste data by request from state and local 
officials and the general public. Used data analysis to evaluate and recommended revisions to 
State law, regulations, procedures, forms, and guidance. Published annual report and made public 
presentations. 

 
• Environmental Planner - Temporary Assignment, May 1996 to January 1998 

Lead inter-office environmental indicators development team. Coordinated department-wide 
performance measures for Indiana State of the Environment report. Assisted in development of 
Agreement document between IDEM and the U.S. EPA, including: assistance to senior managers 
developing strategic plan and indicators; negotiations with U.S. EPA regarding indicators and data 
management; and public and staff involvement. Trained staff on environmental indicators and 
performance measures. Represented Indiana in regional and national measurement/indicators 
workgroups. 

 
Servicios Científicos y Técnicos, Environmental Consultants 
607 El Centro, Avenida Muñoz Rivera, Hato Rey PR 00918. 
 

• Field Trip Guide, Summer 1992 
Guide to High and Middle School students from low-income communities, visiting various forest 
reserves, water treatment facilities, and other sites of environmental significance 

 
U.S. Environmental Protection Agency, Caribbean Division  
Centro Europa Bldg., Suite 417, 1492 Ponce de Leon Ave., San Juan, Puerto Rico 00907-4127 
 

• Howard Hudges Research Fellow, Summer 1991 
Research Project: Acid deposition research at Puerto Nuevo Industrial Area 

 
 
 
 
 



 

 
 

Fernando Feliciano-Reyes, Consulting Mechanical Engineer 
20 Minerva St. Levitville, Levittown, PR 00951 
 

• Engineer's Assistant (part time), March 1988 to September 1990 
Office administration. Calculation of global thermic transfer values for the envelope of new 
buildings as part of the Certification for the Energy Code of Puerto Rico 

 
 
VOLUNTARY WORK 
 
Lead Risk Assessor, Indiana Home Lead Assessment Program, 1999-2000 
Performed over 20 lead risk assessments, mostly for Spanish speaking-families Northern and Central 
Indiana  
 
 
ADDITIONAL TRAINING: 
 

• Indiana Risk Integrated System of Closure Training, January 2001 
• OSHA 40 Hour Safety Training, July 8, 2000 (last refresher) 
• USEPA Introduction to Groundwater Investigations, October 1999 
• Lead Inspector/Risk Assessor Training, February 1999. Certified as assessor/inspector in 

Indiana 1999-2001. 
• GPS Mapping for GIS with GeoExplorer II, October 1998 
• Introduction to ArcView, February 1997 
• Resource Conservation and Recovery Act (RCRA) Overview, May 1998 
• Overview of Risk Assessment, August 1996 
• Landfill Specialist Course, August 1994 

 
 
PROFESSIONAL SOCIETY MEMBERSHIP 
 
Society of Toxicology – Student Member since 2004 
 
Endocrine Society – Student Member since 2005 
 
 
PUBLICATIONS 
 
Papers and Abstracts: 
 
Minerva Mercado-Feliciano and Robert M. Bigsby (2007) The Polybrominated 
Diphenyl Ether Mixture DE-71 is Mildly Estrogenic. Environmental Health Perspectives, 
submitted. 
 
Xinghua Qiu, Minerva Mercado-Feliciano, Robert M. Bigsby, and Ronald A. Hites 
(2007) Measurement of Polybrominated Diphenyl Ethers and Metabolites in Mouse 
Plasma after Exposure to a Commercial Pentabromo Diphenyl Ether Mixture. 
Environmental Health Perspectives,115(7):1052-8. 
 



 

 
 

Minerva Mercado Feliciano and Robert M. Bigsby (2006) In Vivo Estrogenic and 
Antiestrogenic Effects of the PBDE Mixture DE-71. Poster presented at the 45th Annual 
Meeting of the Society of Toxicology (March 2006, San Diego CA), 5th Gordon Research Conference on 
Environmental Endocrine Disruptors (June 2006, Il Ciocco, Italy), and 88th Annual meeting of the 
Endocrine Society (June 2006, Boston MA). 
 
Minerva Mercado Feliciano and Robert M. Bigsby (2005) Estrogenic Activity of the 
Polybrominated Biphenyl Ethers. Poster presented at the 44th Annual Meeting of the Society of 
Toxicology (March 2005, New Orleans LA) and 87th Annual Meeting of the Endocrine Society (June 2005, 
San Diego CA). 
 
Minerva Mercado Feliciano and Robert M. Bigsby (2004) Estrogenic Activity of 
Xenobiotics. Poster presented at the Midwest Regional Molecular Endocrinology Conference (May 
2004, Indianapolis IN). 
 
Book Chapters: 
 
Robert M. Bigsby, Minerva Mercado-Feliciano and Josephine Mubiru (2005) Molecular 
Mechanisms of Estrogen Disruption in Estrogen Dependent Processes; in “Endocrine 
Disruptors:  Effects on Male & Female Reproductive Systems”, Pages 217-247. 2nd Edition. Taylor & 
Francis Books, Inc. (ISBN: 0-8493-2281-2) 
 
Minerva Mercado-Feliciano. Chemicals in Water: Combined Effect on Public Health 
(May 2003). Water Science and Issues; published by Macmillan Reference USA (ISBN: 0-02-865611-
3).  
 
Richard B. Worth and Minerva Mercado-Feliciano (January 2002). Solid Waste 
Measuring. Macmillan Science Library – Mathematics; edited by Max Brandenberger, published by 
Macmillan Reference USA (ISBN: 0-02-865561-3) 
 
Government Publications:  
 
1998 and 1997 Indiana Solid Waste Facility Annual Report, IDEM, April 1999 and April 
1998.  
 
1998 and 1997 Environmental Performance Partnership Agreement between IDEM 
and the U.S. EPA Region 5, October 1997 and September 1996 (co-authored with IDEM EnPPA Workgroup) 
 
Indicators of the Environment Fact Sheet, IDEM, September 1996  
 
Indiana Municipal Waste Landfills, IDEM January 1995 (co-authored with Richard B. Worth) 
 
 
Summary of Indiana Solid Waste Facility Data 1991-1994, IDEM, August 1995 (co-
authored with Elizabeth San Miguel and Cindy Clendenon)  
 
 
 
 
 



 

 
 

FELLOWSHIPS AND AWARDS 
 
Academic: 
 
Endocrine Society Forum on Endocrine Disruptors Student Award.  June 2005. 
Poster: Estrogenic Activity of the Polybrominated Biphenyl Ethers. 87th Annual Meeting of the Endocrine 
Society 
 
Society of Toxicology Student Travel Award. March 2005. 44th Annual Meeting of the 
Society of Toxicology 
 
Ruth L. Kirschstein National Research Service Award - Predoctoral Fellowship for 
Minority Students. National Institute of Environmental Health Sciences. July 2004 to 
May 2007. 
 
Public Service: 
 
IDEM Key Staff Member Award, July 18, 2001. For playing a key role in IDEM’s 
1999-2001 Agency-Wide Priority – Reducing Toxic Exposures. Lori Kaplan, Commissioner. 
 
IDEM Exceptional Service Award, September 20, 2000. For exceptional work above and 
beyond their assigned duties. These volunteers participated in a program to improve public health through 
technical inspections for the presence of lead in more than 1000 homes and day care centers around the 
state. Lori F. Kaplan, Commissioner.  
 
IDEM Exceptional Service Award, September 20, 2000. For acting as interpreters and 
translators during a recent enforcement action, to communicate with a non-English speaking public. These 
staff bridge the language gap that resulted in re-certification or initial training of an ever-increasing number 
of Hispanics in the environmental field of asbestos abatement. Lori F. Kaplan, Commissioner 
 
IDEM Special Commissioner’s Award, November 22, 1996. For contribution to exceptional 
team effort which lead to the fiscal year 1997 Environmental Performance Partnership Agreement between 
the U.S. Environmental Protection Agency Region 5 and the Indiana Department of Environmental 
Management. Michael O’Connor, Commissioner. 
 
 

 
 


