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ABSTRACT 

Nanoparticle is the particle with a size in the range from several nanometers to 

hundreds of nanometers. It has been extensively used for cancer diagnosis and therapy. 

However, it is still a great challenge to fabricate nanoparticles with spatiotemporally 

controllable delivery of anticancer drugs to tumors and with high therapeutic efficacy. 

This thesis mainly focuses on the development of stimuli responsive nanoparticles for 

cancer targeted therapy. These nanoparticles either response to internal stimuli such as 

pH and redox potential or external stimuli like temperature and light could effectively 

target tumors and control the release of anticancer drugs there to improve their anticancer 

efficacy as well decrease adverse effects. 

We firstly developed a poly[(2-(pyridin-2-yldisulfanyl)ethyl acrylate)-co-

[poly(ethylene glycol)]] (PDA-PEG) polymer and found that this polymer when 

combined with copper could efficiently kill a wide spectrum of cancer cells, including 

drug resistant cancer cells, while sparing normal cells. Next, we used this polymer or its 

derivatives to fabricate a series of stimuli responsive nanogels for targeted photodynamic 

therapy (PDT). These nanogels could efficiently target tumors under the help of targeting 

ligands and control photosensitizers release in the tumor by response to pH, redox 

potential and temperature, and finally induce high anticancer efficacy.  

To further improve the therapeutic efficacy, a polydopamine coated poly(lactic-

co-glycolic acid) nanoparticle was developed for chemo-thermal therapy. This 

nanoparticle could respond to near infrared light (NIR) to release the anticancer drug 
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(doxorubicin) in the tumor and effectively eradicate head and neck tumor in a xenograft 

mouse model by combining the NIR-mediated photothermal therapy and doxorubicin 

induced chemotherapy.  
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CHAPTER 1 

STIMULI RESPONSIVE NANOPARTICLE FOR CANCER THERAPY 

1.1 CANCER AND CURRENT CANCER THERAPY 

  Cancer is a group of diseases characterized by uncontrolled growth and spread of 

abnormal cells, which has become one of the leading causes of death in both developing 

and developed countries. According to the latest report by World Health Organization, 

14.1 million new cancer cases were diagnosed and 8.2 million people died from cancer 

worldwide in 2012, and these numbers are still increasing continuously and expected to 

rise to 19.3 million for new diagnosed cancer cases each year by 2025.1 The high 

incidence and mortality of cancer strain heavily on the world health-care system and are 

projected to cost the world approximately 458 billion U.S dollars for cancer prevention, 

diagnosis, treatment and other cancer caused economic issues in 2030.2 As the world 

population ageing, unhealthy eating habits globally spreading and risk factors steadily 

increasing such as tobacco use, the situation for cancer therapy become more and more 

harsh and urgent.   

Currently, the widely used cancer treatments including surgery, radiotherapy and 

chemotherapy. In surgery, tumors are directly removed by surgeon using scalpels, while 

in radiotherapy and chemotherapy tumors are exposed to high dose of X- or gamma ray, 

or anticancer drugs respectively, both of which finally induce the death of cancer cells.  

All of these treatment modalities have been proved to be effective for cancer therapy and 
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have saved or prolonged millions of patients’ lives in the past decades. However, these 

treatments still have lots of limitations. It is extremely difficult for surgeons to cut off the 

entire tumor from the patient body especially in the late stage when the tumor is too big. 

The tumor left in the patient body after surgery can easily initiate tumor recurrence, 

metastasis and eventually cause patients’ death. Thus radiotherapy and chemotherapy are 

extensively used after surgery, since further X-ray irradiation or anticancer drug 

treatment will help destruct the rest of tumor in the patient body after surgery and inhibit 

tumor growth and metastasis. Yet radiotherapy and chemotherapy themselves have 

severe side effects. Due to the use of ionizing laser, the radiotherapy generally will cause 

serious damage to normal tissues neighboring the tumor.3 In chemotherapy, anticancer 

drugs usually evenly distribute to both tumor and normal tissues, and the nonspecific 

accumulation of anticancer drugs in normal tissues always induce severe systemic 

toxicity. For example, the anthracycline anticancer drug doxorubicin which is an 

effective chemotherapeutic agent and frequently used for various malignancies have been 

reported to induce fatal heart failure (cardiomyopathy).4 Consequently, some cancer 

patients are died from these side effects instead of dying from cancer itself.  Besides the 

side effects of radioactive beams and anticancer drugs retarding the application of 

radiotherapy and chemotherapy, cancer cells itself also makes some adjustments to 

reduce the efficacy of these treatments and threaten patients’ lives. For instance, multi-

drug resistance protein 1 (MDR1) is found overexpressed in many tumors and its 

overexpression promotes elimination of various anticancer drugs out of cancer cells such 

as taxanes, topoisomeraseinhibitors and antimetabolites, and thus dramatically decreases 

anticancer efficacy by lowering intracellular drug concentration.5 Other mechanisms, 
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including drug inactivation,6 drug targets alteration,7 DNA damage repair8 and 

dysfunction of cell apoptosis pathway,9 are also widely developed among tumors, making 

chemotherapy fail. Because of all reasons mentioned above, exploring alternative 

modalities to improve anticancer effectiveness as well as reduce adverse effects is 

extremely necessary and urgent. Thus, nanomedicine, as a novel strategy for the 

treatment of cancer has been proposed and explored. 

1.2 NANOPARTICLE FOR CANCER THERAPY 

1.2.1 Nanoparticle and its advantages and limitations for cancer therapy 

Nanoparticles are particles with a size in the nanometer range from several 

nanometer to hundreds of nanometers, including polymer conjugate, micelles, 

dendrimers, nanogels, liposomes, quantum dots, gold nanoparticles and others.10 In the 

chemotherapy scenario, anticancer drugs are loaded into nanoparticles which will serve 

as carriers to efficiently deliver the drugs to the tumor and release drugs effectively to kill 

cancer cells. There are several advantages of nanoparticle based chemotherapy over 

conventional chemotherapy for cancer treatment.11,12 Firstly, as the majority of anticancer 

drugs are hydrophobic, their systemic applications are hindered. The application of 

nanoparticles will improve these drugs’ aqueous solubility by providing a hydrophobic 

internal minienvironment for them, and prevent their precipitation and premature 

degradation by isolating them from the biological environment. Meanwhile, nanoparticles 

can prolong the circulation time of the drugs in the blood stream and thus increase their 

opportunity to reach the tumor to take effect. Furthermore, nanoparticles can also 

overcome drug resistance and improve the drug’s anticancer efficacy because compared 

to free drug the nanoparticle enters cancer cells by a different pathway which bypasses 
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the MDR1 mediated drug efflux. During the past decades, nanoparticles have got 

phenomenal progress and remarkably improved the treatment effectiveness for cancer 

therapy. Till now, several nanoparticles have been approved by FDA and use clinically, 

including Doxil® and Abraxane®.  

However, there are still many shortages existed for nanoparticle based 

chemotherapy. In one hand, the premature release of anticancer drugs in the blood stream 

can result in nonspecific distribution of anticancer drugs in normal tissues, increasing the 

risk of systemic toxicity.13  In the other hand, the slow drug release in the tumor site can 

limit drug efficacy due to its low active drug concentration.14 It is very challenging in 

balancing the drug release of nanoparticles in blood and in tumor since no or minimal 

drug release is wanted in the blood stream while rapid and high amount of drug release in 

tumor is expected.  Moreover, due to the size, surface charge and other effects, the 

nanoparticle sometimes has very low cellular uptake.15 This becomes extremely critical 

for those drugs whose anticancer effects should be only intracellularly activated. The low 

cellular uptake usually induces negligible efficacy. Therefore, nanoparticles with 

advanced functionality is essentially needed to improve their anticancer performance. 

These nanoparticles should be extremely stable in the circulation process, highly 

accumulated in tumor, and efficiently enter the cancer cells, where rapid drug release 

occurs, and reach enhanced anticancer effect. Fortunately, the unique cancer 

physiobiological characteristics provide the basis for researchers to develop such kind of 

highly functionalized nanoparticles.  
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1.2.2 Cancer physiobiological characteristics and nanoparticle design 

Enhanced permeability and retention effect and tumor accumulation of nanoparticles 

The most well-known property of the cancer is the enhanced permeability and 

retention effect (EPR effect), which has been discovered for more than 30 years. In the 

mid-1980s, Matsumura et al. found that proteins larger than 30 kDa could preferentially 

accumulate in tumor interstitium and remain there for prolonged periods of time. They 

ascribed this tumoritropic accumulation to the presence of fenestrations in the imperfect 

blood vessels and the prolonged retention to the poor lymphatic drainage in tumor.16 

Since then, the mechanism of EPR effects has been extensively investigated and more 

fundamental knowledge about EPR has been unveiled.17 When tumor grows to a certain 

size, it cannot get enough oxygen and nutrition from its surrounding normal vasculature 

for its further proliferation. At this time point, the dying cancer cells will secrete growth 

factors to trigger the budding of new blood vessels from the existing capillaries.18 This 

process is called angiogenesis and it promotes the rapid generation of irregular blood 

vessels which induces the formation of fenestrations due to the discontinuousness of 

epithelium and the lack of the basal membrane in the blood vessels.19 When nanoparticles 

reach to the tumor, they can easily extravagate to the tumor from the porous blood vessels 

due to their small size (<200 nm) comparing to the pore size in the blood vessels (~200-

2000 nm).17,20 This explains the enhanced permeability portion of EPR effect. For the 

enhanced retention, it is because of the deficiency of the lymphatic system in the tumor, 

which only allow extravasated solutes and colloids return to circulation by 

themselves.17,21 As small molecules can easily diffuse back to blood, nanoparticles, due 

to their larger hydrodynamic size, they are trapped in the tumor interstitium for a 
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prolonged time. Thanks to the EPR effect, nanoparticles can achieve a high specificity in 

delivering anticancer drugs to tumor. In fact, almost all currently used nanoparticles, their 

tumor specific accumulation is greatly relied on the EPR effect. That is why now EPR 

effect has become the central dogma for nanoparticle based anticancer drug delivery and 

has been widely used to explain and design nanoparticles for efficient tumor therapy. 

Acidic pH and pH responsive nanoparticles 

The second important physiobiological property for tumor is the acidic pH in 

tumor environment. Tumor stroma usually has a pH in the range of 6.5-6.8, which is 

lower than the pH in blood and other normal tissues (~7.4).22 The low pH in tumor is 

ascribable to the production of large amounts of lactate by cancer cells through “aerobic 

glycolysis”, which was firstly discovered by Otto Warburg’s in 1924.23 The difference of 

pH between the tumor and normal tissue can be utilized to guide the design of pH 

responsive nanoparticles, which are stable in blood stream while release anticancer drugs 

in low pH tumor stroma. The pH responsiveness will decrease the side effects as well as 

enhance the anticancer efficacy of nanoparticles since unwanted drug leaky in blood 

stream can be minimized and high dose of active drug can be reached at tumor due to a 

pH triggered drug release. To fabricate such kind of nanoparticles, two strategies are 

currently widely applied, either using physical interaction or chemical bonds. 

Nanoparticles formed through physical interaction usually base on the hydrophobic 

interaction between carrier materials and anticancer drugs. These nanoparticles generally 

contain an amphiphilic polymer which can bury anticancer drugs in its hydrophobic core 

and release them in tumor by changing itself to hydrophilic polymer at low pH.24 Beside 

of physical interaction, some acidic liable chemical bonds are also incorporated to make 



7 

pH responsive nanoparticles. These bonds including ester bond, amide, acetal and ketal 

are relative stable in physiological condition, while degradable in low pH.25 

Nanoparticles contain these bonds can break up at tumor site through the bond 

degradation and thus release a high amounts of anticancer drugs for enhanced cancer 

therapy.26 

Upregulated glutathione and redox responsive nanoparticles  

Glutathione (GSH) is a tripeptide of glutamate, cysteine and glycine existing at 

high concentration in virtually all mammalian tissues. It plays an important role in 

nutrient metabolism, antioxidant defense, and regulation of cellular processes, such as 

cell proliferation, differentiation and apoptosis. Disturbance of GSH homeostasis is 

tightly associated with progression of many diseases including cancer.  A great number of 

clinical data have revealed that GSH level is elevated up to 10 folds in many types of 

tumors, including liver tumor, breast tumor, lung tumor, neck and head tumor, 

gastrointestinal tumor and gynecological tumor.27 Compared to normal cells, cancer cells 

also exhibit 7-10 fold higher intracellular GSH concentration.28 From the genetic view, 

the high GSH in tumor is ascribable to genes that express GSH-transferases (GST) with 

reduced enzymatic activity. GST decreases GSH level by catalyzes the conjugation of 

GSH with many exogenous and endogenous electrophilic substrates. The reduction of 

GST activity in tumor lowers the consumption of GSH and thus promotes its elevation.29 

The high GSH level both in tumor and cancer cells provide another trigger to induce 

tumor specific drug release, therefore GSH or redox potential responsive nanoparticles 

have been developed.30 This kind of nanoparticle generally have disulfide bonds or other 

redox sensitive bonds which can be quickly cleaved only at the presence of high GSH. 
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Since the relative low GSH in normal tissue and blood stream (2-20 μM), premature 

release of anticancer drug can be minimized in those tissues, while rapid drug release will 

occur in tumor due to its high GSH (2-10 mM).31 The tumor specific drug release can 

lead to enhanced cancer therapy with minimal adverse effects. 

Cu elevation and anti-angiogenesis  

Copper is an important trace metal that plays critical roles in maintaining normal 

biological functions. Elevated copper concentration (up to 2–3 fold) is frequently 

observed in a wide spectrum of tumors including ovarian, breast, cervical, prostate and 

leukemia.32 Although the detailed molecular mechanism for copper increase is still not 

clear, sufficient amount of evidence suggests that copper elevation is highly associated 

with tumor angiogenesis.33 Angiogenesis is the process of development of new blood 

vessels. In normal cells, it is precisely regulated by a complex interaction and balance 

between endogenous stimulators and inhibitors. In tumor, however, the synthesis of the 

stimulators either by tumor itself or by endothelial cells is elevated to improve the rapid 

generation of new blood vessels to supply tumor with enough oxygen and nutrition for 

proliferation. The stimulators includes Vascular Endothelial Growth Factor (VEGF), 

Tumor Necrosis Factor a (TNF-a), Epidermal Growth Factor (EGF), copper and others. 

And this probably is one of the reasons that lead to the copper increase in tumor. The 

high copper concentration induces the tumor progression as well as metastasis.  

Therefore, depleting copper in tumor will be a promising alternative strategy to control 

tumor growth.34 In fact, the elevated copper in tumor has already been developed as a 

target for cancer therapy since many researchers found that copper chelators which form 
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complex with copper could effectively inhibit the growth of tumor by the removal of 

copper from tumors to impede the tumor angiogenesis (anti-angiogenesis).35  

Receptor overexpression and tumor targeting 

Although nanoparticles can passively accumulate in tumor by EPR effect, their 

anticancer efficacy may still be very low if only few nanoparticles enter cells where 

anticancer drugs take into effect.  Hence, enhanced cellular uptake is high demanded. 

Currently, the main strategy is to decorate nanoparticles with targeting ligands to improve 

their cellular uptake efficiency. The targeting ligands include proteins, antibodies, 

peptides, sugars, nucleic acids and small molecules.17 The mechanism behinds the ligand 

mediated cellular uptake is the recognition of ligands by its target substrates (receptors). 

As numerous paper reported, many cancers overexpress specific receptors on their cell 

surfaces. For example, epidermal growth factor receptor (EGFR) is found overexpressed 

in cervical, head and neck, ovarian, bladder and esophageal cancer.36 The elevated 

expression of EGFR increases the sensitivity of cancer cells to ambient level of growth 

factors that normally would not trigger proliferation. For nanoparticle, the high density of 

receptors in cancer cells will promote a strong interaction between the cell and the 

nanoparticle, increasing the opportunity of the nanoparticle entering the cells through 

receptor mediated endocytosis.  

Based on above mentioned tumor characteristics, stimuli responsive tumor 

targeted nanoparticles are created and their tumor specific targeting and drug release is 

summarized in Figure 1.1.11 The whole scenario is as follows: the ligand modified 

nanoparticle will specifically accumulate in tumor by EPR effect (passive targeting). 

When nanoparticles reach the tumor, due to the low pH or high GSH level there, they will 
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be degraded and anticancer drugs (yellow dots)  will be released and enter cells to take 

effect.  In some situations, the pH and GSH may not be strong enough to break up the 

nanoparticles in extracellular environment, then the nanoparticles will enter the cells 

through the ligand-receptor interaction (active targeting). Upon cellular uptake, because 

of the extremely low pH (4-5) in endosomes/lysosomes or high GSH in cytosol, the 

nanoparticles will be destroyed and drugs will be liberated to kill cancer cells. In contrast 

to free drugs, the tumor specific accumulation and controlled drug release of 

nanoparticles will impose minimal toxicity to normal tissues while generate significantly 

high anticancer efficacy.  

 

Figure 1.1 Illustration of the in vivo fate of the nanoparticle and its mechanism for cancer 
targeted therapy. Reprinted by permission from Macmillan Publishers Ltd: [Nature 
Nanotechnology] (Ref.11), copyright (2007). 
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1.2.3 Advanced nanoparticles for cancer therapy 

As we know, tumors are heterogeneous and dynamically changing to adapt to 

their environments.  They can develop drug resistance after initial treatment of anticancer 

drugs due to physiobiological alteration. Therefore, it is sometimes very difficult to treat 

tumor with chemotherapy.  Although nanoparticles exhibit improved performance, their 

efficacy may still be destructed due to the heterogeneity and dynamics of tumors. 

Furthermore, single responsiveness of nanoparticles may not efficient enough to release 

sufficient amounts of anticancer drug to kill cancer cells. As these issues have arisen, 

developing advanced nanoparticles endowed with more functions will be extremely 

necessary. These advanced nanoparticles include multi-responsive nanoparticles, multi-

targeting nanoparticles, and nanoparticle for combined therapy. For multi-responsive 

nanoparticles, two or more stimuli responsiveness will be incorporated into one 

nanoparticle, such as pH and redox dual responsiveness, pH, redox and temperature triple 

responsiveness. This kind of nanoparticles can response to different stimuli 

simultaneously and improve the drug release profile. Xu et al. reported a pH and redox 

responsive nanogel.37 This nanogel contained ester bonds and disulfide bonds and can be 

degraded at low pH and high GSH, respectively. Because of the dual responsiveness, the 

nanogel showed a more controllable drug release profile which has low drug release at 

neutral pH while release more drugs at pH 5.0 and further release was reached at high 

GSH condition. This well controlled release made the nanogel has much higher 

anticancer efficacy. Since tumors undergo dynamically changing, their receptor 

expression is also altered spatiotemporally, which may decrease tumor targeting effect of 

nanoparticles. To overcome this issue, Karathanasis et al. conjugated two peptides 
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targeting P-selectin and αvβ3 integrin to the nanoparticle to guarantee the effectiveness of 

targeting ligands at different tumor sites and stages of breast cancer, which generally 

have varied receptor expression level.38 Results revealed that the dual targeting 

nanoparticle had much better tumor homing performance than single ligand labeled 

nanoparticle because either one or both of the two targeting ligands can take effect to 

improve the cellular uptake of nanoparticle no matter the spatiotemporal changes of 

receptors in the tumor.  

Drug resistance of tumor is a big challenge associated with chemotherapy.  

Currently, the most effective way to treat cancer with drug resistance is using 

combination therapy. In combination therapy, two or more treatments with different 

anticancer mechanisms are applied. As the tumor become resistance to one treatment, it 

still can be cured by the other one, inducing enhanced anticancer efficacy because of the 

beneficial interaction between treatments. Nanoparticles either loaded with two or more 

anticancer drugs or functionalized with different treatment modalities can realize the 

combination therapy. As reported, co-encapsulation of doxorubicin and 17-AAG or 

doxorubicin and camptothecin had showed enhanced cancer therapy ascribing to the 

synergistic effect between drugs.39 Not only drug and drug interaction exhibits synergistic 

effect, two different treatment strategies also showed synergism in killing cancer cells. 

For example, Yang et al. used gold nanorod loaded mesoporous silica (GNR@mSiO2) to 

deliver doxorubicin to treat lung cancer by combining chemotherapy (doxorubicin) with 

near infra-red (NIR) light induced photothermal therapy.40 In vivo data showed that under 

a 808 nm laser irradiation, the nanoparticle could rapidly heat the tumor to 66 oC and 

induce photothermal therapy (PTT), following the increased release of doxorubicin from 
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the nanoparticle for chemotherapy. Due to the great synergistic effect between PTT and 

chemotherapy, the nanoparticle finally reach a 66.5% tumor inhibition rate which is much 

better than free doxorubicin and combination treatment of GNR@mSiO2 and laser. Since 

the high effectiveness of combination therapy, more and more researches are focusing on 

this cancer treatment regime. Recently, nanoparticles with combination property have 

been being extensively investigated to combat cancer.   

1.3 PLAN OF RESEARCH 

The overall goal of this research is to develop stimuli responsive nanoparticles to 

realize one or several following aspects: 1) controlled release; 2) enhanced anticancer 

efficacy; 3) minimized side effects. The studies described in this dissertation investigated 

the following hypotheses: 

1. Therapeutic agents which target copper will result in cancer specific killing 

effect.  

2.  Loading chemotherapeutic agents into a polymer containing stimuli sensitive 

bonds such as disulfide bonds, ester bonds and temperature sensitive segment 

will achieve stimuli responsive nanoparticle for controlled drug release. 

3. Modification of nanoparticle with targeting ligands will increase the cellular 

uptake and obtain enhanced anticancer efficacy. 

4. Combination therapy will achieve enhanced anticancer effect.  

To evaluate the hypotheses above mentioned, a research plan including specific aims and 

major objectives to achieve these aims was devised.  
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Specific Aim 1. Synthesize poly[(2-(pyridin-2-yldisulfanyl)ethyl acrylate)-co-

[poly(ethylene glycol)]] (PDA-PEG) polymer and investigate its 

cytotoxicity toward normal and cancer cell lines.  

a. Synthesize PDA-PEG with free radical polymerization and evaluate its 

cytotoxicity in numerous cancer and normal cell lines by MTT assay 

b. Study the cellular uptake behaviour, gene expression and cell cycles of cancer 

and normal cell lines after treatment of PDA-PEG/copper to reveal the 

mechanism of cytotoxicity of the polymer/copper combination. 

Specific Aim 2. Conjugate photosensitizer pheophorbide a (PhA) to PDA-PEG for 

fabrication of redox potential responsive nanogel for cancer targeted 

photodynamic therapy (PDT). 

a. Conjugate PhA to PDA-PEG via disulfide bonds and fabricating the polymer 

into nanogel by the formation of disulfide crosslinking. Modify the nanogel 

with targeting ligand.  

b. Investigate the redox potential responsiveness of the nanogel and study its 

impact on PhA release,  

c. Investigate the influence of targeting ligands on the cellular uptake, 

intracellular distribution and in vitro PDT efficacy. 

d. Evaluate the in vivo biodistribution, PDT efficacy and systematic toxicity of 

the nanogel.  

Specific Aim 3. Synthesize poly[(2-(pyridin-2-yldisulfanyl)ethyl acrylate)-co-

[poly(ethylene glycol)]]-co-[poly (N-Isopropyl methacrylamide)] 
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(PDA-PEG-PNiMA) and fabricate it into a pH, redox potential and 

temperature responsive nanogel for cancer targeted PDT. 

a. Synthesize PDA-PEG-PNiMA by free radical polymerization and make the 

polymer into nanogel by disfulide crosslinking. Modify the nanogel with 

targeting ligands. 

b. Investigate the responsiveness of the nanogel to pH, redox potential and 

temperature and study its influence on the drug release.  

c. Investigate the impact of the targeting ligand on the cellular uptake, 

intracellular localization, and in vitro PDT. 

d. Investigate the in vivo biodistribution and PDT efficacy of the nanogel 

Specific Aim 4. Fabricate polydopamine coated PLGA nanoparticle for controlled drug 

release and light induced thermochemotherapy. 

a. Fabricate doxorubicin loaded PLGA nanoparticle and conjugate targeting 

ligand to the surface of the nanoparticle through a polydopamine layer.  

b. Study the influence of light irradiation on the temperature of the nanoparticle 

and its impact on the drug release profile.  

c. Investigate the influence of the targeting ligand on cellular uptake and evaluate 

the in vitro anticancer efficacy of the nanoparticle when combines with light.  

d. Study the in vivo anticancer efficacy and cardiotoxicity of the nanoparticle.  
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CHAPTER 2 

CANCER CELL SELECTIVE-KILLING POLYMER/COPPER COMBINATION1 

2.1 INTRODUCTION 

Although various anticancer drugs have been developed to conquer cancer, a large 

number of cancer patients ultimately still lost their battle against it.1 There are two major 

causes for the failure, drug resistance of cancer cells and side effects of anticancer drugs.2 

Because of the inherited or acquired multidrug resistance, cancer cells survive after 

receiving the original effective drug,3 which results in the recurrence of the cancer and 

eventually kills cancer patients. The selectivity of anticancer drugs used in chemotherapy 

is predominantly relying on the proliferation rate difference between normal cells and 

cancer cells.4 Most cancer cells are fast growing.5 However, besides cancer cells, normal 

cells in the digestive tract, bone marrow, hair follicles, and reproductive system are also 

vulnerable to anticancer drugs that targeting quick proliferating cells due to their fast 

renewal nature. Furthermore, some anticancer drugs even compromise the function of 

heart, nervous system, and kidneys.  

To increase the selectivity of anticancer drug for cancer cells, various approaches 

have been explored, including utilizing the specific receptors expression level difference 

between normal and cancer cells,6 as well as the tumor unique physiological properties 

such as low pH,7 high GSH,8 and changed metal ion concentrations.9 Among them, 
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copper concentration in tumors has attracted extreme high interest recently. Copper is an 

important trace metal that plays critical roles in maintaining normal biological functions. 

Elevated copper concentration (up to 2-3 fold) is frequently observed in a wide spectrum 

of tumors including ovarian, breast, cervical, prostate and leukemia.10 High copper 

concentration facilitates tumor angiogenesis. Depletion of copper by copper chelators 

such as D-penicillamine, trientine, and disulfiram has been proved effective in inhibiting 

angiogenesis and killing cancer cells both in vitro and in vivo.11 Chelators can form 

complex with copper by thiol, amine, and pyridine ring to reduce copper concentration in 

the tumor, which eventually result in the death of cancer cells.12 Thus, several clinic trials 

involve the copper chelators have been conducted.13 However, due to the non-specific 

tissue distribution and rapid clearance of chelators, none or only little beneficial was 

observed in those trials.  

 

Figure 2.1 Cytotoxicity of DTP for different cell lines at the absence (A) and presence 
(B) of 10 μM CuCl2. Data represent the means ± SD, n = 3. 
 

Our preliminary study found that the addition of copper ions to 2, 2′-

Dithiodipyridine (DTP) could significantly boost its cytotoxicity for cancer cells and 

normal cells (Figure 2.1). To endow high density of pyridine-2-thiol, the intracellular 
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metabolite of DTP, we designed a poly[(2-(pyridin-2-yldisulfanyl)ethyl acrylate)-co-

[poly(ethylene glycol)]] (PDA-PEG) polymer. PDA-PEG was synthesized through free 

radical polymerization according to our published method.8 The pyridine rings in PDA 

can complex with Cu2+, turning the polymer into a multi-chelator system. 

2.2 EXPERIMENTS 

2.2.1 Materials and reagents 

Aldrithiol-2 and Silica gel (Spherical, 100 mm) were purchased from Tokyo 

Chemical Industry Co., LTD (Harborgate Street, Portland, OR). 2-Mercaptoethenol, DL-

dithiothreitol (DTT), tris(2-carboxyethyl)phosphine (TCEP), 2, 2-Azobisisobutyronitrile 

(AIBN), (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 

Propidium Iodide (PI) and Poly(ethylene glycol)methacrylate (Mn=360 Da) were 

purchased from Sigma Aldrich Chemical Co. (St. Louis, MO). Buthionine sulfoximine 

(BSO) and Glutathione ethyl ester (GSH-MEE) were purchased from Cayman Chemical 

(Ann Arbor, Michigan). Penicillin (10,000 U/mL), streptomycin (10,000 mg/mL), 0.25% 

trypsin-EDTA, Dulbecco's Modified Eagle Medium (with L-glutamine) and fetal bovine 

serum (FBS) were obtained from American Type Culture Collection (ATCC, Manassas, 

VA). 5-(and-6)-chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate, acetyl ester 

(CM-H2DCFDA), Molecular probes and RNase were purchased from Life Technologies 

(Grand Island, NY). GSH-Glo™ Glutathione Assay kit was purchased from Promega 

Corporation (Madison, WI). Cy5-NHS was purchased from Lumiprobe Corporation 

(Hallandale Beach, FL). All the other solvents used in this research were purchased from 

Sigma Aldrich Chemical Co. (St.Louis, MO) and used without further purification unless 

otherwise noted. 
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2.2.2 Synthesis of PDA-PEG 

PDA-PEG polymer was synthesized according to our previous reports. Briefly, 

PDA (241.3 mg (1mmol), 482.6 mg (2 mmol) or 965.2 mg (4 mmol),) and PEG360 (1 

mmol, 360 g) were dissolved in 10 mL degassed anisole. 2,2-Azobisisobutyronitrile 

(AIBN, 14 mg (0.085 mmol), 21 mg (0.126 mmol) or 35 mg (0.213 mmol)) in 1 mL 

degassed anisole was then added, and the reaction mixture was stirred for 24 h at 65 oC. 

The final product was precipitated (3×) in ice cold ether and dried for 48 h in vacuum. 

The structure of PDA-PEG was confirmed by 1H-NMR, and its molecular weight and 

polydispersity were evaluated by gel permeation chromatography (GPC). 

2.2.3 PDA-PEG-Cy5 synthesis 

PDA-PEG was modified by Cy5 for cellular uptake study. Briefly, cysteamine 

(0.11 mg, 5% PDA function group) in 500 μL DMSO was added dropwise into 20 mg 

PDA-PEG in 500 μL DSMO and the reaction mixture was left at room temperature 

overnight. After overnight reaction, Cy5 NHS ester (0.39 mg in 390 μL DMSO) was 

added and the mixture was left for reacting overnight, following a thoroughly dialysis 

towards DMSO to remove free Cy5. The concentration of Cy5 in the final product was 

measured by a microplate reader (SpectraMax® M5, Molecular Devices Inc) at λex640 

and λem680.  

2.2.4 PDA quantification in PDA-PEG polymer 

Two methods were used to measure PDA concentration in the polymer. In the 

first method, PDA-PEG (50 µg/mL in DMSO) was incubated with tris(2-

carboxyethyl)phosphine (TCEP, 10 mM, 20 mM and 50 mM) for 1 hour at room 
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temperature, and then the amount of pyridine-2-thione released was quantified through 

UV-Vis spectrophotometer at λ = 375 nm and correlated to PDA amount (ε, molar 

absorption coefficient = 8080 M-1cm-1). In the second method, a calibration curve of 

pyridine-2-thione was firstly established and then applied to calculate the PDA 

concentration in the polymer. In brief, 100 µg aldrithiol-2 was dissolved in 1 mL DMSO 

and completely converted to pyridine-2-thione by adding excess TCEP (13.1 mg, 100×). 

The reaction mixture was then diluted in DMSO to obtain a serial of concentrations of 

pyridine-2-thione with UV-Vis absorbance between 0.1 and 1 at 375 nm. Based on the 

UV-Vis absorbance, the calibration curve was established. Then PDA-PEG (50 µg/mL in 

DMSO) was incubated with 10, 20 and 50 mM TCEP for 1 h and PDA concentration in 

the polymer was calculated according to the calibration curve after measuring the UV-Vis 

absorbance of the polymer solution.  

2.2.5 TEM and DLS 

The size and morphology of PDA-PEG in PBS is characterized by transmission 

electron microscopy (TEM) and dynamic light scattering (DLS). In brief, 1 mg PDA-

PEG was dissolved in 1 mL PBS with or without copper chloride (CuCl2, 10 μM). Then 

the PDA-PEG solution was measurement by DLS (Zetasizer Nano ZS, Malvern 

Instruments Ltd), or loaded onto carbon coated copper grids, dried and observed directly 

under TEM (Hitachi H8000, Hitachi High Technologies America, Inc.).  

2.2.6 Intracellular GSH measurement 

Tumor and normal cells were seeded in 96-well white plate (5,000 cells/well) 

overnight prior to the study. BSO (1 mM) or GSH-MEE (5 mM) in culture medium was 

added. For control group, only fresh culture medium was added. Cells were incubated for 
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8 h, and the intracellular GSH concentration was measured by GSH-Glo™ Glutathione 

Assay according to the manufacturer’s instruction.  

2.2.7 In vitro Cytotoxicity MTT Assay 

In vitro cytotoxicity of PDA-PEG was tested in cancer cell lines (MDA-MB-231, 

SKOV-3, NCI/ADR-Res, UMSCC 22A, HCT 116 and HL 60) and normal cell lines 

(CONA, NIH 3T3, MCF 10A, KC and BNL CL.2). Cells were seeded in 96-well plate 

(20,000 cells/well) for 24 h prior to the study. Then a serial of concentrations of PDA-

PEG in culture medium was added, supplementing with or without CuCl2 (10 μM). The 

cells were then incubated 48 h in in 95/5% air/CO2 at 37 oC. After 48h, MTT reagent 

(100 μL, 10%(w/w) in medium) was added and incubated for 4h, following the addition 

of MTT stop solution and the measurement of the optical density of the medium using a 

microplate reader (ELX808, Bio-Tech Instrument, Inc) at λ = 595 nm. 

2.2.8 Intracellular GSH effect to cytotoxicity 

To test the effect of intracellular GSH effect to the cytotoxicity of PDA-PEG, 

intracellular GSH concentration was inhibited or promoted by BSO and GSH-MEE, 

respectively. In brief, cells were seeded in 96-well plate (20,000 cells/well) for 24 h prior 

to the study. To investigate the PDA-PEG cytotoxicity responding to reduced 

intracellular GSH, cells was treated with BSO (1 mM) for 24 h and then varied 

concentrations of PDA-PEG with or without 10 μM CuCl2 were added and incubated for 

another 48 h. To investigate the PDA-PEG cytotoxicity responding to increased 

intracellular GSH, cells were treated at the same time with GSH-MEE (5 mM) and varied 

concentration of PDA-PEG with or without 10 μM CuCl2 for 48 h. For both experiments, 

the cell viability was finally quantified by MTT assay.  
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2.2.9 Cellular Uptake Confocal microscopy 

SKOV-3 (200,000 cells/dish) were seeded in 35mm2 Petri dishes (Mat Tek, MA, 

USA) overnight. Prior to adding polymer, certain dishes were added with 5,5'-dithiobis-

(2-nitrobenzoic acid) (DTNB, 0.6 mg in 75 μL PBS) to block the thiol groups on the cell 

surface. Then PDA-PEG-Cy5 in 5 μL DMSO was added (equivalent to 0.1 μg/mL Cy5). 

After 1 h incubation under a humidified atmosphere of 95/5% air/CO2. Cells were 

washed by PBS (3×), fixed with formaldehyde (4.5 % in PBS) and stained with Hoechst 

33342 (final concentration 1 µg/mL). Then cells were analyzed under a confocal 

microscope (LSM 700, Carl-Zeiss Inc.).  

2.2.10 Flow cytometry 

SKOV-3 and NIH 3T3 cells (300,000 cells/well) were seeded in 6-well plates 

overnight. Certain wells were then added with DTNB (0.6 mg in 75 μL PBS) to block the 

thiol groups on the cell surface, following the addition of PDA-PEG-Cy5 in 5 µL DMSO 

(equivalent to 1 μg/mL Cy5). After 1 h, cells were washed, trypsinized and resuspened in 

PBS. Cy5 positive cell population was quantified at λex640 and λem675 nm using flow 

cytometry (BD Accuri C6, BD Biosciences). 

2.2.11 Intracellular ROS measurement by flow cytometry and fluorescence microscopy 

MDA-MB-231 and HCT 116 were seeded in 24-well plate (80,000 cells/well) or 

6-well plate (300,000 cells/well) for 24 h prior to the study. PDA-PEG (83.15 µM, DTP 

equivalent) with or without 10 μM CuCl2 were added into plates and cells were incubated 

for 18 h. For flow cytometry, cells in 6-well plate were trypsinized, collected and 

incubated for 30 min with CM-H2DCFDA (100 µM in PBS) at 37 oC. For positive 
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control, cells were treated with H2O2 (1 mM) for 30 min before trypsinization. After CM-

H2DCFDA staining, cells were washed by PBS (3×) and intracellular ROS was 

immediately quantified by flow cytometry (Ex=488 nm, Em=515-540 nm). For 

fluorescence microscopy, cells in 24-well plate were washed by PBS (3×) and stained 

with CM-H2DCFDA (100 µM in PBS) for 30 min at 37 oC. For positive control, cells 

were treated with H2O2 (1 mM) for 30 min before CM-H2DCFDA staining. After CM-

H2DCFDA staining, cells were washed by PBS (3×) and immediately observed under 

fluorescence microscopy using GFP channel.  

2.2.12 Selective Cell Killing 

NIH3T3, NCI/ADR-RES, SKOV-3 and UMSCC 22A were trypsinized and 

washed by PBS (3×) and resuspended in 1 mL PBS supplemented with Cell Tracker™ 

deep red dye (2 µM), blue dye (50 µM), green CMFDA dye (25 µM) and orange 

CMTMR dye (25 µM), respectively. All cells were stained for 30 min at 37 oC and 

washed by PBS (3×) and resuspended in 2 mL DMEM culture medium. Cells were then 

counted and seeded in 24-well plate separately or together. Four wells for each individual 

cell line and cell mixture. Cell density was 10,000 cells/well for individual cell and 

40,000 cells/well for cell mixture. All cells were incubated for 24 h under a humidified 

atmosphere of 95/5% air/CO2 before polymer treatment. After 24 h, culture medium was 

removed and replaced with fresh medium containing different concentrations of PDA-

PEG (equivalent to 16.6-83.15 µM PDA) at the presence of 10 µM CuCl2. After 24 h, 

cells were directly observed under the fluorescence microscopy (Olympus IX81, 

Olympus America Inc).  
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2.2.13 Microarray Assay RNA isolation 

SKOV-3, NCI/ADR-RES, MCF-7 and MCF 10A (5,000,000 cells/well) were 

seeded in 100 mm Petri dishes (four dishes for each cell line) overnight under a 

humidified atmosphere of 95/5% air/CO2. Culture medium was then replaced with fresh 

one with or without PDA-PEG (50 µM PDA) at the presence of 10 µM CuCl2. Cells were 

incubated for another 12 h and total RNA for gene expression analysis was isolated from 

cell line samples using miRNeasy Mini Kit (QIAGEN, Cat#. 217004) according to the 

manufacturer’s instructions. Briefly, cells were scraped with 700 µL of QIAzol reagent, 

collected in eppendorf tube, lysed by vortexing and homogenized by centrifugation 

through QIAshredder columns (QIAGEN, Cat#. 79656). After addition of 140 µL of 

chloroform, the homogenate was vigorously shaken for 15 s and centrifuged at 12,000 g 

for 15 min at 4°C. The RNA-containing aqueous phase was transferred to a new tube and 

RNA was precipitated with 525 µL of 100% ethanol. Subsequently, the sample was 

transfer to a RNeasy Mini spin column and centrifuged at 12,000 g for 15 s at room 

temperature. In the next step, RNA samples were on-column DNase treated and 

posteriorly washed with RPE buffer. Then, RNA was eluted from the column with 30 µL 

of RNase free water and quantified using a spectrophotometer. RNA quantity was 

assessed using an Agilent 2100 Bioanalyzer and RNA Integrity Numbers (RIN) ranged 

from 9.2 to 10.0.   

2.2.14 mRNA labeling and hybridization 

Microarrays experiments were performed using Agilent’s platform. Total RNA 

samples were amplified and labeled using Agilent’s Low Input Quick Amp Labeling Kit 

(Cat. # 5190-2306) according to the manufacturer recommendations. Briefly, mRNA 



30 

contained in 200 ng of total RNA was converted into cDNA using a poly-dT primer that 

also contains the T7 RNA polymerase promoter sequence. Subsequently, T7 RNA 

polymerase was added to cDNA samples to amplify original mRNA molecules and to 

simultaneously incorporate cyanine 3- or cyanine 5-labeled CTP (cRNA) into the 

amplification product. In addition, Agilent RNA spike-in controls (Cat. # 5188-5279) 

were added to samples prior cDNA synthesis and were used as experimental quality 

control. In the next step, labeled RNA molecules were purified using Qiagen’s RNeasy 

Mini Kit (Cat. # 74104). After spectrophotometric assessment of dye incorporation and 

cRNA yield, samples were store at -80 °C until hybridization. Labeled cRNA samples 

were hybridized to SurePrint G3 Human Gene Expression 8x60K v2 Microarrays (Cat. # 

G4858A-039494) at 65 °C for 17 h using Agilent’s Gene Expression Hybridization Kit 

(Cat. # 5188-5242) according to the manufacturer’s recommendations. Two (2) control 

sample replicates we hybridized against two (2) polymer treated sample replicates in a 

dye swap design. After washes, arrays were scanned using an Agilent DNA Microarray 

Scanner System (Cat. # G2565CA). 

2.2.15 Data analysis  

Data was extracted from images with Feature Extractor Software version 10.7.3.1 

(Agilent). In this process, background correction using additive and multiplicative 

detrending algorithms was performed. In addition, linear and LOWESS methods were 

used for dye normalization. Subsequently, data was uploaded into GeneSpring GX 

version 13.0 for analysis. In this process, data was log2 transformed, quantile normalized 

and base line transformed using the median of all samples. Then, data was filtered by 

flags in a way that 100% of the samples in at least one of the two treatment groups have a 
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“detected” flag. Differentially expressed genes were determined using a moderated t-test 

statistics setting as cutoff values a p-value of 0.001 and a fold of 3.0. Pathway analysis 

was also performed with Genespring GX using BioCarta, KEGG, NCI and Pathway 

Commons databases. 

2.2.16 Cell Cycle Analysis 

SKOV-3 cell (300,000 cells/well) were seeded in 6-well plates overnight. The 

culture medium was then replaced by fresh one with PDA-PEG polymer (equivalent to 

83.15 µM PDA) at the presence or absence of 10 µM CuCl2. The cell was cultured for 12 

h under a humidified atmosphere of 95/5% air/CO2. Then cells in each well were 

collected after trypsinization. Cells were wash with PBS (1×) and fixed by 70 % ice cold 

methanol for 5 min. After the fixation, cells were wash by PBS (1×) and resuspended in 

250 µL RNase (100 µg/mL in PBS) for 15 min at 37 oC. Cells were wash by PBS (1×) 

again and stained by propidium iodide (PI, 100 µg/mL in PBS) for 1 h on ice. Cells were 

finally washed and measured by flow cytometry (Ex=488 nm, Em=585 nm). 

2.2.17 PDA-PEG Stability Study In vitro 

The stability of PDA-PEG was investigated at the presence of varied 

concentrations of GSH to mimic the conditions in the body. Briefly, 50 µg PDA-PEG 

was dissolved in 1 mL 10 mM phosphate buffer saline with 10 µM CuCl2 and varied 

concentrations of GSH (0, 0.01, 0.1, 1 and 10 mM).  The UV-Vis absorbance of the 

polymer at 0, 0.5, 1, 1.5 and 2 h after adding GSH was measured by a UV-Vis 

spectrophotometer and normalized by comparing to the maximum absorbance of the 

polymer. 
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2.3 RESULTS AND DISCUSSION 

The successful synthesis of the polymer was verified by 1H-NMR (Figure 2.2A) 

and gel permeation chromatography (GPC) (Figure 2.2B). The 1H NMR result revealed 

that the actual ratio between PDA and mPEG in the final PDA-PEG polymer was close to 

their feeding ratios (1:1). GPC showed that the molecular weight of PDA-PEG polymer 

was 41.8 kDa. Due to the co-existing of hydrophobic PDA and hydrophilic PEG, the 

amphiphilic PDA-PEG self-assembles into nanoparticle in aqueous solution. Zeta sizer 

revealed that PDA-PEG nanoparticles had a hydrodynamic size of 87.64 ± 2.06 nm and 

carried negative surface charge (-15.4 ± 2.05 mV). The morphology of PDA-PEG 

nanoparticle was also confirmed by TEM, which showed a spherical shape with a size 

around 80 nm (Figure 2.3A). After the addition of Cu2+ (CuCl2, 10 µM), the 

hydrodynamic size of the nanoparticles increased to 196.4 ± 0.07 nm (Figure 2.4), while 

becoming less negatively charged (-5.47 ± 0.86 mV). Due to the interaction between Cu2+ 

and pyridine ring made the PDA segment more hydrophilic so that the core became less 

condensed (Figure 2.3B), which led to the increase of the particle size.14 The formation 

of nanoparticle will endow two advantages for cancer therapy. First, due to the existence 

of PEG corona, the circulation time of the polymer in the blood stream can be greatly 

extended. Second, by taking advantage of the leaky structure of the capillaries in the 

tumor tissue, the formed PDA-PEG/Cu2+ nanoparticle can be enriched in the tumor 

through the so called enhanced permeability and retention (EPR) effect.   
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.  

Figure 2.2 Representative 1H-NMR spectrum (A) and GPC curve (B) for PDA-PEG 
polymer. The NMR spectrum was acquired in CDCl3 
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Figure 2.3 TEM images of nanoparticle fabricated from PDA-PEG alone (A), and PDA-
PEG/Cu2+ combination (B). Scale bars are 200 nm. 
 

 

Figure 2.4 The size distribution of nanoparticles formed from PDA-PEG polymer and 
PDAPEG/Cu2+ acquired by dynamic light scattering. 
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To validate whether the polymer form of DTP chelator possesses similar cell 

killing capacity as its small molecular counterpart, cell proliferation assay was employed 

in 7 cancer cell lines, 5 normal cell lines, and a NIH 3T3 cell line, an immortalized cell 

line derived from normal cells. As expected, PDA-PEG nanoparticle did not show 

obvious toxicity up to the equivalent DTP concentration of 40 µM for all tested cells 

(Figure 2.5). Similar as DTP, the addition of Cu2+ dramatically enhanced the potency of 

PDA-PEG nanoparticles for cancer cells (Figure 2.6). The IC50 of PDA-PEG/Cu2+ for 

SKOV-3, NCI/ADR-Res, MDA-MB-231, and UMSCC 22A cells were less than 6 µM 

(Table 2.1),  and with a IC95 less than 20 µM. Contrary to its small molecule counterpart 

(Figure 2.1B), the cell killing effect of PDA-PEG/Cu2+ for cancer cells and normal cells 

are significantly different. Figure 2.6 also showed that PDA-PEG/Cu2+ combination is 

non-toxicity to normal cells, including keratinocytes, fibroblasts, breast epithelial cells, 

colon cells, and hepatocytes, up to 80 µM. The IC50 values for normal cells were 10-70 

fold higher than those for cancer cells (Table 2.1). All these suggested that PDA-

PEG/Cu2+ could selectively kill cancer cells, including drug resistant cancer cells, while 

sparing normal ones. In addition, Figure 2.7 also revealed that the cytotoxicity of PDA-

PEG/Cu2+ for cancer cells increases with the increase of Cu2+ concentration, while not 

showing influence on normal cells. 
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Figure 2.5 Cytotoxicity of PDA-PEG nanoparticle for different cell lines without the 
addition of 10 μM CuCl2. Data represent the means ± SD, n = 3. 
 

 

Figure 2.6 Cytotoxicity of PDA-PEG/Cu2+ combination for normal (N) and cancer (Tu) 
cells. Normal cells include KC (human keratinocyte), NIH 3T3 (murine fibroblast), MCF 
10A (human breast epithelial cell), BNL CL.2 (murine liver cell), CONA (CCD 841 CoN, 
human colon cell), and HH (human hepatocyte). Data represent the means ± SD, n=3. 
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Table 2.1 The IC50s of PDA-PEG/Cu2+ nano-complex for normal and cancer cell lines. 
IC50s were calculated based on MTT results by IBM SPSS Statistics software. 

 

 
 

 

Figure 2.7 The concentration effect of CuCl2 on the cytotoxicity of medium (A) and 
PDA-PEG (B). PDA-PEG (8.32 μM, equivalent to DTP) was mixed with different 
concentrations of CuCl2 and incubated with UMSCC 22A and MCF 10A for 48 h. Data 
represent the means ± SD, n=3. 
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Figure 2.8 Fluorescence images of cancer cells after culturing with different 
concentrations of PDA-PEG/Cu2+ combination. NIH 3T3, NCI/ADR-Res, SKOV-3 and 
UMSCC 22A  were pre-stained with Cell Tracker™ deep red, blue, green CMFDA and 
orange CMTMR dye, respectively, and imaged 24 h after the treatment. The scale bars 
were 40 µm.  
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To further validate that the PDA-PEG/Cu2+ combination can specifically kill 

cancer cells versus normal ones, NIH 3T3, SKOV-3, NCI/ADR-Res, and UMSCC 22A 

cells were stained with different color fluorescent dyes. NIH 3T3 cell was selected as a 

representative normal cell because its comparable growth rate and suitability for co-

culture with cancer cells in DMEM medium. Figure 2.8 showed that all cells except NIH 

3T3 were rounded up after treated with 8.3 μM of PDA-PEG/Cu2+, indicating these cells 

were not in healthy status. On the contrary, NIH 3T3 cells still kept its original stretched 

cell shape at 20.79 µM. All these images visually confirmed the MTT results in Figure 

2.6 This phenomenon was also observed in the multiple cell lines co-culture model 

(bottom row of Figure 2.8), where only NIH 3T3 cells kept their original spindle 

morphology, indicating that the PDA-PEG/Cu2+ combination could selectively kill cancer 

cells while sparing normal cells in a more disease relevant co-culture model. 

To probe the mechanism for PDA-PEG/Cu2+ selectively killing cancer cells, we 

first investigated the cellular uptake of PDA-PEG and PDA-PEG/Cu2+ nanoparticle with 

flow cytometry and confocal microscopy. Figure 2.9A showed that the nanoparticles 

fabricated from Cy5 labeled PDA-PEG and PDA-PEG/Cu2+ combination entered cells 

with identical manners, suggesting that the addition of copper ions did not affect its 

entering cells. In addition, these nanoparticles showed similar efficiency in entering 

normal cells (NIH 3T3) and cancer cells (SKOV-3). Therefore, the uptake of PDA-

PEG/Cu2+ wasn’t the reason for its cancer-cell-selectivity. 5,5'-Dithio-bis-(2-nitrobenzoic 

acid) (DTNB) is a compound binds the free thiol groups on the surface of cell membrane. 

The addition of DTNB significantly inhibited the cellular uptake of PDA-PEG (Figure 

2.9B), suggesting that PDA-PEG entering cells via exofacial thiol mediated endocytosis. 



40 

We think this is because PDA-PEG polymer contains high density of thiol-reactive PDA 

segment, which can react with exofacial thiols through thiol-disulfide exchange reaction 

to facilitate cellular uptake. Similar blocking effect was also observed in NIH 3T3 cells 

treated with DTNB (Figure 2.10). 

 

Figure 2.9 Flow cytometry spectra of SKOV-3 and NIH 3T3 cells (A) and confocal 
images of cellular uptake of nanoparticles in SKOV-3 cells (B). Cellular uptake assays 
were carried out 1 h after the addition of nanoparticles. Scale bars were 20 µm. 
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Figure 2.10 The flow cytometry spectra of SKOV-3 (Left) and NIH 3T3 (Right) cells 
treated with Cy5 labeled PDA-PEG nanoparticles. Cellular uptake assays were carried 
out 1 h after the addition of nanoparticles. 
 

Our previous study found that polymer-drug conjugates linked through disulfide 

bond could quickly release its payload by cleaving the disulfide bond with the help of 

intracellular elevated glutathione (GSH).6 As pyridine-Cu complex analogues had been 

reported highly toxic and extensively studied as anticancer drugs, the release of pyridine-

Cu complex probably induced cell death.14 The high cytotoxicity of DTP/copper 

combination also suggested that pyridine-2-thiol/copper combination could be the active 

segment for its cytotoxicity. To study the release kinetics of the PDA-PEG/Cu2+ 

nanoparticles, samples were dispersed in phosphate buffers supplemented with different 

levels of GSH as well as serum containing media to mimic the plasma and intracellular 

environment. Figure 2.11A showed that PDA-PEG/Cu2+ is extremely stable at a low 

reducing environment ([GSH] < 0.1 mM), such as the plasma, where has a GSH level less 

than 5 μM.15 However, almost all pyridine-2-thiol segments could be instantly released 

from PDA-PEG at the GSH level of 10 mM, indicating its super responsiveness to the 
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intracellular reducing condition. Furthermore, the polymer/copper combination was very 

stable in 50% serum containing medium, only 12.92% pyridine-2-thiol was released after 

7 days of incubation (Figure 2.11B), suggesting its great stability during blood 

circulation. 

 

Figure 2.11 The release kinetic of pyridine-2-thiol liberating from PDA-PEG at different 
GSH levels (A) and in serum containing media (B), the GSH level in different cell lines 
and response to the addition of GSH-MME and BSO (C), GSH-MME effect on the 
cytotoxicity of PDA-PEG/Cu2+ for MCF10A cells (D), and BSO effect on the 
cytotoxicity of PDA-PEG/Cu2+ combination for NCI/ADR-Res cells (E). Data represent 
the means ± SD, n=3. 
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Since there was no significant difference between normal cells and cancer cells in 

uptaking PDA-PEG/Cu2+ nanoparticle, we postulate that the observed cancer-cell-

selective-killing effect was due to the intrinsic difference between normal and cancer 

cells. It has been reported that GSH levels in tumor tissues, such as ovarian, head and 

neck, breast, and lung cancer are higher than that in normal  tissues.16 To probe whether 

the high GSH level is also prevail in cancer cells in vitro, GSH-Glo™ Glutathione Assay 

was employed. Interestingly, Figure 2.11C revealed that, the GSH level range in normal 

cells is relatively broad, ranging from 0.48 to 5.65 μM, while most tested cancer cell lines 

displayed relatively high GSH level (> 2 μM), suggesting that intracellular GSH level 

could be a valid target for cancer targeted therapy. To prove that, glutathione-

monomethylester (GSH-MME, 5 mM) and buthionine sulfoxamine (BSO, 1 mM) were 

employed to boost or deplete the intracellular GSH level in normal cells (NIH 3T3, BNL 

CL.2, KC, and MCF 10A) or cancer cells (NCI/ADR-Res, HCT 116, UMSCC 22A, 

SKOV-3, and MDA-MB-231), respectively.17 After the addition of GSH-MME all 

normal cells exhibited higher intracellular GSH level (Figure 2.11C). As expected, these 

cells became more vulnerable to the polymer/copper combination treatment (Figure 

2.11D and 2.12).  On the contrary, BSO treated NCI/ADR-Res, UMSCC 22A, and 

SKOV-3 cells displayed declined GSH level. Interestingly, only NCI/ADR-Res cells 

became more tolerant to the polymer/copper combination treatment (Figure 2.11E), 

while the other two cancer cell lines kept their sensitivity to the treatment (Figure 2.13). 

Based on these results shown in Figure 2.11, we conclude that intracellular GSH level is 

not the sole cause for the cancer-cell-selective-killing effect of PDA-PEG/Cu2+ 

nanoparticles. 
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Figure 2.12 The effect of GSH-MME on the cytotoxicity of PDA-PEG/Cu2+ for KC (A), 
NIH 3T3 (B), and BNL.CL.2 (C) cells. Data represent the means ± SD, n=3. 
 

 

Figure 2.13 The effect of BSO on the cytotoxicity of PDA-PEG/Cu2+ for UMSCC 22A 
(A) and SKOV-3 cells. Data represent the means ± SD, n=3. 
 

Among those tested cells, there were several exceptions. First, MCF 10A and KC 

exhibited higher GSH level than other normal cells and cancer cell, while not sensitive to 

PDA-PEG/Cu2+ treatment. Second, NCI/ADR-Res cells showed lower GSH level than 
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other cancer cells, but still vulnerable to the treatment. Third, SKOV-3 and UMSCC 22A 

cells displayed lower GSH level after BSO treatment, however, the decreased GSH level 

only slightly abolished their response to PDA-PEG/Cu2+ (Figure 2.13). To solve these 

puzzles, we further investigated the gene response to PDA-PEG/Cu2+ treatment in MCF 

10A, NCI/ADR-Res, and SKOV-3 cells through RNA microarray analysis. Cells were 

treated with PDA-PEG/Cu2+ for 12 h before the RNA extraction. Microarray analysis 

data revealed that, for untreated cells, the RNA levels of oncogenes (CIRBP and STMN1) 

were upregulated, while tumor suppressor genes (CDKN1C and GADD45B) were 

downregulated in both ovarian cancer cell lines (Figure 2.14A). Surprisingly, PDA-

PEG/Cu2+ treatment reversed the above gene expression pattern by downregulating the 

RNA level of CIRBP and STMN1 (>3 folds), while upregulating CDKN1C and 

GADD45B (>5 folds) (Figure 2.14B). Interestingly, no obvious expression level change 

of these genes was  detected in the normal breast cell line. Other studies showed that 

oncogenes (CIRBP18 and STMN119) are upregulated while tumor suppressor genes 

(CDKN1C20 and GADD45B21) are downregulated in various types of cancers. Since the 

upregulated oncogenes and downregulated tumor suppressor genes stimulate cancer cell 

proliferation and promote tumor growth, reversing those malregulated genes through 

PDA-PEG/Cu2+ treatment would result in cancer cells apoptosis. For MCF 10A cells, 

although the high level of GSH could release large amount of pyridine-2-thiol 

intracellularly, cells still survived due to that those oncogenes and tumor suppressor 

genes are not sensitive to the treatment. For NCI/ADR-Res cells, whose GSH level is 

relatively low but still high enough to release needed pyridine-2-thiol to regulate their 

oncogenes and tumor suppressor genes due to its high sensitivity. Similarly, BSO 
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decreased the GSH level in SKOV-3 and UMSCC 22A cells, while the resulted GSH 

level is still high enough to release pyridine-2-thiol to regulate their oncogenes and tumor 

suppressor genes. Therefore, the cancer-cell-selective-killing property of PDA-PEG/Cu2+ 

is the combination effects of high intracellular GSH level and the malregulation of 

oncogenes and tumor suppressor genes in cancer cells.  

 

Figure 2.14 RNA expression in response to PDA-PEG/Cu2+ treatment. Cells were treated 
with 41.58 µM of PDA-PEG/Cu2+ for 12 h. (A) Heatmap RNA level with and without 
drug treatment. Red: upregulation; green: downregulation; black: no change. (B) Genes 
alteration fold after treatment. 
 

CDKN1C is an inhibitor for G1 cyclin/Cdk complexes and causes cell arrest in 

G1 phase.20 To investigate the effect of CDKN1C up-regulation after PDA-PEG/Cu2+ 

treatment, cell cycle analysis was employed. Figure 2.15 showed that PDA-PEG/Cu2+ 
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inhibited cell division and arrested cancer cells in G1 phase, which could induce cell 

apoptosis. As expected, PDA-PEG polymer or Cu2+ ion alone did not show any effect on 

the cell cycle distribution of SKOV-3 cells. 

 

Figure 2.15 Cell cycle analysis of SKOV-3 cells after treated with 41.58 µM of PDA-
PEG/Cu2+ for 12 h. Flow cytometry spectra (A) and quantitative analysis (B) of cell cycle. 
Data represent the means ± SD, n=3, *P<0.01. 
 

2.4 CONCLUSIONS 

In summary, we developed a cancer-cell-selective-killing nanoparticle from PDA-

PEG/Cu2+ combination aiming for safe and effective cancer therapy. The polymer/Cu2+ 

based nanoparticle entered cells through the interaction with exofacial thiols, and 
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subsequently released pyridine-2-thiol/Cu complex to kill cells. Due to the difference in 

the intracellular GSH level as well as the expression level of oncogenes (CIRBP and 

STMN1) and tumor suppressor genes (CDKN1C and GADD45B) between normal and 

cancer cells, the PDA-PEG/Cu2+ exhibited high selectivity in killing a broad spectrum of 

cancer cells, including drug resistant one, while sparing normal cells. Therefore, PDA-

PEG/Cu2+ nanoparticle will provide a new paradigm for the cure of ovarian and other 

cancers. The ongoing research will investigate the cell killing mechanism of PDA-

PEG/Cu2+ in molecular level and test whether the cancer-cell-selective-killing effect of 

PDA-PEG/Cu2+ can be translated into a safe and effective cancer treatment tool in vivo.  
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CHAPTER 3 

SELF-QUENCHING BIOACTIVATABLE NANOGEL FOR TARGETED 

PHOTODYNAMIC THERAPY 

3.1 INTRODUCTIOIN 

Photodynamic therapy (PDT) has attracted extensive study in the past several 

decades, as an alternative or adjunctive therapy to conventional cancer treatment 

modalities.1 It involves three components: photosensitizer (PS), PS-activating light and 

oxygen.2 During PDT, PS is firstly localized to tumor, following the illumination of 

tumor with light of a specific wavelength to activate the PS. Then the activated PS 

transfers its energy to molecular oxygen to generate cytotoxic reactive oxygen species 

(ROS) to destruct tumor vasculature and kill cancer cells.3 As all three components are 

necessary for PDT to take effect, the nonspecific accumulation of PS alone will not cause 

systemic toxicity while at the absence of PS the nonspecific irradiation of PS activating 

light on internal healthy organs is not harmful, making PDT greatly advantageous over 

traditional chemotherapy and radiotherapy.4  

In the past decades, PDT has been proved to be effective in treating certain 

superficial cancers, such as Barrett’s esophagus,5 skin cancer6 and head and neck 

cancers,7 to which PS activating light is easily accessible. However, PDT still has yet to 

be clinically accepted as a first-line oncological intervention due to several limitations, 

including the low aqueous solubility and limited tumor accumulation of PS. The 
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application of nanoparticles, including polymer conjugates,8 micelles,9 dendrimers10 and 

nanogels,11 significantly drive the development of PDT in overcoming some of those 

challenges. Loading PS to nano-carriers usually improves the water solubility and serum 

stability of PS, making it suitable for systemic application. Furthermore, the nanoparticle 

can specifically accumulated in tumor tissue through passive and/or active targeting 

effect and thus increase the local concentration of PS in tumor, which finally produces a 

high PDT efficacy with reduced adverse effects.12   

Another challenge associated with PDT is the photosensitivity reaction, which can 

cause serious skin and eye irradiation due to the activation of photosensitizers after 

exposure of these areas to sunlight.13 Patients received PDT have to stay away from light 

for several months. As free PSs exhibit photosensitivity reaction, their phototoxicity can 

be greatly reduced by encapsulating them into nanoparticles due to the aggregation 

induced photoquenching similar to the fluorescence resonance energy transfer (FRET) 

effect, which results in the generation of less singlet oxygen (1O2), one of the cell toxic 

reactive oxygen species.14 However, these nanoparticles can also inhibit the production of 

1O2 at tumor because of the incomplete release of PSs and thus significantly reduce the 

PDT efficacy.15 To overcome these issues, some stimuli responsive nanoparticles have 

been developed. These nanoparticles can release PSs efficiently at tumor site by response 

to pH,16 glutathione (GSH),17 and enzymes18 and therefore restore the PDT efficacy of 

PSs. Among them, GSH responsive nanoparticles have received great attention. GSH is a 

tripeptide which has a high intracellular concentration (2-10 mM).19 It can be used as a 

biological trigger to induce drug release in nanoparticle through the cleavage of disulfide 

bonds. Huh et al. reported a polymer conjugate which used disulfide bonds to link glycol 
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chitosan and Pheophorbide a (PhA), a second generation of PSs.20 The conjugate could 

form micelles by self-assembly and exhibited a reduction of phototoxicity at low GSH 

condition due to the aggregation of PhA, while its PDT effect was restored upon cellular 

uptake because of the release of PhA at high intracellular GSH condition. Na et al. also 

reported a nanoparticle based on disulfide linked pullulan-PhA conjugate and revealed 

the GSH induced PDT effect.21 However, the serum stability of these nanoparticles are 

extremely concerned since they are either micelles or physically crosslinked colloids 

which may break up and release out free PhA during blood circulation and would induce 

photosensitivity reaction and damage normal tissues. Alternative nanoparticles with high 

serum stability combined with GSH responsiveness are significantly demanded.  

In our group, we previously have developed a series of GSH responsive nanogels 

based on poly[(2-(pyridin-2-yldisulfanyl) ethyl acrylate)-co-[poly(ethylene glycol)]] 

(PDA-PEG).22 The PDA-PEG polymer contains numerous 2-mercaptopyridine groups 

which can be easily replaced with other molecules to form a polymer-drug conjugate 

linked by disulfide bond. The polymer-drug conjugate can be easily made into disulfide 

crosslinked nanogel by simply adding a reducing agent. These nanogel have been proved 

to be stable in blood stream condition while rapidly release drug after exposure to 

intracellular GSH, making the polymer an ideal carrier materials to fabricate activatable 

nanogels for PDT.  

Herein, we developed a self-quenching bioactivatable nanogel for targeted 

photodynamic therapy (Scheme 3.1). PhA was firstly conjugated to PDA-PEG polymer 

through disulfide bond, and then the PhA conjugated polymer was fabricated into 

nanogel by disulfide crosslinking. The formation of the nanogel would induce the 
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fluorescence quenching of PhA due to its self-aggregation, which resulted in a dramatic 

inhibition of the generation of singlet oxygen. The nanogel was further decorated with 

targeting ligand to improve its cellular uptake and tumor homing ability in a head and 

neck tumor model. After systemic administration, in the blood stream where the GSH 

concentration is low (2-20 μM),19 the nanogel would stay in its quenching status, thus the 

phototoxicity to normal tissues would be greatly reduced. When the nanogel accumulated 

in tumor tissues and efficiently entered cancer cells by EPR effect and ligand-receptor 

interaction, the nanogel would be rapidly and fully activated because of the elevated GSH 

concentration, and finally produced high singlet oxygen for tumor destruction upon laser 

irradiation. 

 

Scheme 3.1 Schematic illustration of the self-quenching bioactivatable nanogel for 
targeted photodynamic therapy.  
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3.2 EXPERIMENTS 

3.2.1 Materials and Reagents 

Aldrithiol-2 and Silica gel (Spherical, 100 mm) were purchased from Tokyo 

Chemical Industry Co., LTD (Harborgate Street, Portland, OR). 2-Mercaptoethenol, DL-

dithiothreitol (DTT), tris(2-carboxyethyl)phosphine (TCEP), 2, 2-Azobisisobutyronitrile 

(AIBN), Poly(ethylene glycol)methacrylate (Mn=360 Da, PEG360), 9,10-

dimethylanthracene (DMA) and Thiazolyl Blue Tetrazolium Bromide (MTT) were 

purchased from Sigma Aldrich Chemical Co. (St. Louis, MO). Pheophorbide A (PhA) 

was purchased from Frontier Scientific, Inc (Logan, UT). Penicillin (10,000 U/mL), 

streptomycin (10,000 mg/mL), 0.25% trypsin-EDTA, Dulbecco's Modified Eagle 

Medium (with L-glutamine) and fetal bovine serum (FBS) were obtained from American 

Type Culture Collection (ATCC, Manassas, VA).  Anti-EGFR Affibody® Molecule was 

purchased from Abcam plc. (Cambridge, MA). All the other solvents used in this 

research were purchased from Sigma Aldrich Chemical Co. (St. Louis, MO) and used 

without further purification unless otherwise noted.  

3.2.2 PDA-PEG-PhA polymer synthesis 

PhA was covalently conjugated to PDA-PEG polymer. Briefly, PDA-PEG (20 mg 

in 250 µL DMSO) was firstly reacted with cysteamine hydrochloride (1.857 mg in 250 

µL DMSO, 60% PDA function group) over night at room temperature. TEA (20 µL) and 

PhA (16.13 mg in 200 µL DMSO) activated by EDC (10.44 mg in 200 µL DMSO) and 

NHS (6.27 mg in 200 µL DMSO) were then added. The reaction mixture was stirred over 

night at room temperature, followed by a thorough dialysis in DMSO (MW CO=6,000 
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Da) to remove unconjugated PhA. The resulted PDA-PEG-PhA DMSO solution was 

directly used for nanogel fabrication.  

3.2.3 PDA-PEG-AEME polymer synthesis 

The synthesis of PDA-PEG-AEME polymer was similar as the synthesis of PDA-

PEG polymer. Briefly, PDA (125 mg, 0.52 mmol) and PEG360 (187.5 mg, 0.52 mmol) 

were firstly dissolved in 5 mL degassed anisole, following the addition of 2-aminoethyl 

methacrylate hydrochloride (AEME, 8.28 mg, 0.05 mmol) in 1 mL CH3OH. AIBN (7 

mg, 0.0425 mmol) in 1 mL degassed anisole was then added, and the reaction mixture 

was stirred for 24 hours at 65 oC. The final product was precipitated (3×) in ice cold ether 

and dried for 48 h in vacuum.  

3.2.4 PDA quantification in polymer 

For the quantification of PDA in the polymer, PDA-PEG, PDA-PEG-PhA or 

PDA-PEG-AEME (50 µg/mL in DMSO) was incubated with tris(2-

carboxyethyl)phosphine (TCEP, 10 mM and 20 mM) for 1 hour at room temperature, and 

then the amount of 2-pyridinethione released was quantified through UV-Vis 

spectrophotometer (DU® 650 Spectrophotometer, Beckman Coulter, Inc.) at λ = 375 nm 

(ε, molar absorption coefficient = 8080 M-1cm-1) 

3.2.5 PDA-PEG-PhA nanogel fabrication (PhA-NG) 

PDA-PEG-PhA (2.0 mg in 500 µL DMSO) and PDA-PEG-AEME (1 mg in 50 

µL DMSO) was firstly mixed well. TCEP (110.4 µg in 20 µL DMSO) was then added 

and the final mixture solution was immediately added dropwise into 5 mL ddH2O and 

stirred overnight night in a glass vial with open cap to form the nanogel. The nanogel was 
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further purified by dialysis in DMSO to remove free PhA and then PBS (pH 7.4, 10 mM) 

to change the solvent. The nanoparticle size, zeta potential and morphology were 

measured by DLS (Zetasizer Nano ZS, Malvern Instruments Ltd) and TEM (Hitachi 

H8000, Hitachi High Technologies America, Inc.), respectively.  

3.2.6 EGFR conjugation to the nanogel (PhA-ENG) 

Mal-PEG-COOH (Mw=3,500 Da, 500 µg in 100 µL DMSO) was firstly activated 

by EDC (100 µg in 100 µL DMSO) and NHS (60 µg in 100 µL DMSO) and added into 

the PhA-NG (0.6 mg polymer in 2 mL PBS). The mixture was stirred at 4 oC overnight 

and then dialyzed in PBS to remove unreacted Mal-PEG3500-COOH (MW CO=6,000 

Da). The conjugation of anti-EFGR affibody to the nanogel was realized by the reaction 

between maleimide and thiol group. Briefly, Anti-EGFR Affibody® Molecule (20, 100 

and 500 µg, respectively) was firstly pretreated with 20 mM DTT to expose the reactive 

cysteine residue and then added to the nanogel (~0.3 mg in 1 mL PBS) and reacted 

overnight at 4 oC to obtain the PhA-ENG. The nanogel was purified by passing through 

Sephadex® G-25 column (Sigma-Aldrich Co. LLC) to remove unconjugated affibody 

and filtrated through 0.22 µm filter.  

3.2.7 UV-Vis spectra investigation 

PhA and PhA-NG were dissolved in DMSO and TCEP was added to achieve a 

final concentration of 10 mM. The UV-Vis spectra of PhA and PhA-NG were recorded 

by UV-Vis spectroscopy (DU® 650 Spectrophotometer, Beckman Coulter, Inc).  
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3.2.8 PhA quantification in the nanogel 

PhA concentration in the nanogel was quantified by UV-Vis spectrophotometer. 

In brief, the nanogel was diluted in DMSO with 50 mM and 100 mM TCEP for 2 h to 

release PhA. The absorbance at 670 nm was then recorded and PhA concentration was 

calculated according to a pre-generated calibration curve.   

3.2.9 PhA nanogel fluorescence kinetic profile study 

The kinetic profile of the nanogel was investigated by measuring the PhA 

fluorescence at different GSH concentration. Briefly, PhA-NG was diluted in PBS 

supplemented with 1% Tween 80 and 10 mM EDTA to yield a final PhA concentration 

of 800 nM. To mimic the tumor and normal tissue reducing conditions, GSH (100 μM 

and 10 mM) was added into the nanogel and incubated at 37 Ԩ. At pre-determined time 

points, 1 mL sample was retrieved and frozen in liquid nitrogen immediately. At the end 

of the experiment, all samples were thawed at 37 Ԩ quickly and their fluorescence were 

measured by a plate reader (Ex=405 nm, Em=680 nm, Molecular Devices SpectraMax 

M2, Molecular Devices, LLC).  

3.2.10 Determination of singlet oxygen generation 

Singlet oxygen generation was determined by monitoring the decrease of 

fluorescence intensity of 9,10-dimethylanthracene (DMA) as a singlet oxygen sensor. 

Briefly, PhA, PhA-NG, PhA-NG supplemented with 10 mM GSH were diluted in PBS 

with 1% Tween 80 and 10 mM EDTA to get a final PhA concentration of 800 nM. All 

samples were incubated at 37 oC for 1 h, 3 h and 5 h, respectively. DMA was then added 

(final concentration was 25 µM), following the irradiation under a 670 nm laser (15 
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mW/cm2, Intense HPD 7404 diode laser, Intense Ltd.). At every minute interval, 200 µL 

sample was retrieved and the fluorescence intensity of DMA was measured by a 

microplate reader (Ex=370 nm, Em=535 nm, Beckman Coulter DTX 880 Multimode 

Detector, Beckman Coulter, Inc). The singlet oxygen quantum (SOQ) yield was 

calculated as follows: 

		∅∆ ൌ
௄ೄ
௄ೃ
ൈ ஺ೃ

஺ೄ
ൈ .݂݁ݎ ∅∆                                             (2-1) 

where A is absorbance at 670 nm and K is the slope of the absorbance curve; S and R 

represent the sample and the reference, respectively. The SOQ (∅∆) of each sample was 

calculated from the reference ∅∆value (PhA 0.52:	݂݁ݎ. ∅∆). 

3.2.11 GSH-mediated photoactivity of PhA-NG 

The fluorescence emission spectra of the PhA-NG was studied by fluorescence 

spectroscopy. In briefly, PhA-NG equivalent to 800 nM PhA was suspended in PBS or 

PBS supplemented with 1% Tween 80 and were added with GSH at concentration of 10 

μM, 100 μM, 1 mM, 10 mM, 25 mM and 50 mM. Then nanogel solution was incubated 

at 37 oC for 1 h and its fluorescence emission spectra was recorded by Varian Cary 

Eclipse Fluorescence Spectrophotometer (Agilent technologies, Inc.) with an excitation 

wavelength at 405 nm.  

The activatable photoactivity of PhA-NG depending on the gradient of GSH 

concentrations were investigated. In brief, PhA-NG with the equivalent PhA 

concentration to 800 nM in PBS supplemented with 1% Tween 80 was exposed to 

different concentrations of GSH (0.01-50 mM) and incubated at 37 oC for 1 h, 2 h, and 4 

h. The nanogel was then loaded into a black 96-well plate and the fluorescence imaging 
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was taken by IVIS spectrum fluorescence and bioluminescence imaging system (Ex=430 

nm, Em=680 nm, PerkinElmer Inc.).  

3.2.12 Confocal microscopy 

UMSCC 22A (200,000 cells/dish) were seeded in 35mm2 Petri dishes (Mat Tek, 

MA, USA) overnight. PhA, PhA-NG and PhA-ENG were then diluted in culture medium 

and added into the dishes with the final equivalent PhA concentration at 800 nM in each 

dish. After 3 h of incubation under a humidified atmosphere of 95/5% air/CO2, cells were 

washed by PBS (3×), fixed with formaldehyde (4.5 % in PBS), and then cells were 

analyzed under a confocal microscope (LSM 700, Carl-Zeiss Inc.).  

3.2.13 Flow cytometry 

 UMSCC 22A cells (300,000 cells/well) were seeded in a 6-well plate overnight. 

PhA, PhA-NG and PhA-ENG were then diluted in culture medium and added into the 

plate with the final PhA concentration of 800 nM in each well. After 3 h incubation under 

a humidified atmosphere of 95/5% air/CO2, cells were washed by PBS, trypsinized and 

resuspened in PBS. PhA positive cell population was quantified at λex488 and λem670 nm 

using flow cytometry (BD Accuri C6, BD Biosciences). 

3.2.13 Subcellular co-localization 

UMSCC 22A cells (150,000 cells/dish) were seeded in 35mm2 Petri dishes (Mat 

Tek, MA, USA) overnight and incubated with PhA-ENG at indicated times. Before 

imaging, fresh FBS-free medium supplemented with Insulin-Transferrin-Selenium-X 

(ITX) reagent was added. Cells were loaded with MitoTracker Green (MTG, 500 nM) 

and LysoTracker Green (LTG, 500 nM) respectively to assess the co-localization of PhA-
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ENG with mitochondria and lysosomes. Cells were placed in an environmental chamber 

at 37 °C and analyzed by laser scanning confocal microscope (LSM 510, Carl-Zeiss Inc). 

A 63× N.A. 1.4 oil immersion planapochromat objective was used for all experiments. 

LTG, TMRM and PhA fluorescence was imaged using 488 nm excitation/500–530-nm 

emission, 543 nm excitation/565-615 nm emission and 580 nm excitation/650-710 nm 

emission, respectively. All images were processed by ImageJ software to calculate the 

co-localization coefficients. 

3.2.14 In vitro phototoxicity 

In vitro phototoxicity of PhA nanogels were tested in UMSCC 22A cell line. Cells 

were seeded in two 96-well plates (20,000 cells/well) for 24 h prior to the study. After 

that, culture medium was removed and replaced with fresh medium including a serial of 

concentrations of PhA, PhA-NG and PhA-ENG. After 24 h incubation, cells in one plate 

were exposed to 670 nm laser for irradiation (800 mJ/cm2), and followed by continued 

for another 24 h of incubation in 95/5% air/CO2 at 37 oC. For another plate, cells were 

kept incubation in dark for total 48 h. Finally, for both plates, MTT reagent (100 μL, 

10%(w/w) in medium) was added and incubated for 4h, followed the addition of MTT 

stop solution and the measurement of the optical density of the medium using a 

microplate reader (ELX808, Bio-Tech Instrument, Inc) at λ = 595 nm.  

3.2.15 Serum Stability 

The stability of the nanogel was evaluated in 10% serum condition. Briefly, PhA-

NG was diluted in PBS supplemented with 10% FBS and 0.05% sodium azide. The final 

concentration of PhA was 800 nM. The nanogel was incubated at 37 oC for up to 7 days. 

The size of the nanogel was monitored by DLS every day.  
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3.2.16 Animal experiment 

All animal procedures were conducted in accordance with NIH regulations and 

approved by the Institutional Animal Care and Use Committee of the University of South 

Carolina. 

Tumor model 

UMSCC 22A cells suspended in DMEM medium at the density of 1.5×106/100 

μL were inoculated subcutaneously in flanks of female Balb/c nude mice (8-10 week old, 

~20 g, The Jackson Laboratory). The tumor volume were measured by a digital caliper 

and calculated according to the following formula: Tumor volume = (tumor length) × 

(tumor width)2/2.  

Biodistribution of nanogel 

When the tumor reached to 50~150 mm3, PhA, PhA-NG and PhA-ENG were 

administered by retro-orbital injection (100 μL, PhA concentration equal to 1 mg/kg). For 

control group, same volume of PBS was injected. After injection, mice were imaged by 

IVIS imaging system (IVIS Lumina III In Vivo Imaging System, Perkin, Ex=620 nm, 

Em=670 nm) at predetermined time points. All the image analyses were performed using 

a Living Image Software (IVIS Imaging Systems).   

In vivo antitumor efficacy 

When the tumor reached to 50~150 mm3, PhA, PhA-NG and PhA-ENG were 

administered by retro-orbital injection (100 μL, PhA concentration equal to 1 mg/kg). At 

24 h post-injection, tumors were irradiated with a 670 nm laser at a light density of 38.0 

mW/cm2 for 5 min. Then the tumor volume (V) and bodyweight (m) of the mice were 
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measured every three days up to 21 days. The relative tumor volume expressed as V/V0 

(V0 was the tumor volume when the treatment was initiated) was used to represent the 

tumor size change during the whole treatment process. After 21 days, the mice were 

sacrificed and the blood, tumor, liver, heart, lung, kidneys and spleen were collected for 

further analysis. All organs were firstly fixed in 10% neutral buffered formalin for 48 h 

and then washed with PBS and finally kept in 70% ethanol at 4 oC.   

Histological Examinations 

The formalin fixed organs were embedded in OCT gel, sectioned into ~5 μm, 

stained with hematoxylin and eosin (H&E) and analyzed under light microscopy (Leica 

DM1000 LED, Leica Microsystems Inc.). The histology was performed in a blinded 

fashion by professional personnel in the University of South Carolina.  

3.3 RESULTS AND DISCUSSION 

3.3.1 Polymer synthesis and nanogel fabrication 

In order to prepare the PhA encapsulated nanogel, two polymers were synthesized 

and post-modified. Poly[(2-(pyridin-2-yldisulfanyl) ethyl acrylate)-co-[poly(ethylene 

glycol)]] (PDA-PEG) was firstly polymerized according to our previous reports11,22,23 and 

subsequently modified by replacing 60% of the PDA segment of the polymer with 

cysteamine through a thiol-disulfide exchange reaction to incorporate the amine 

functional group to yield PDA-PEG-NH2. The second polymer, poly[(2-(pyridin-2-

yldisulfanyl) ethyl acrylate)-co-[poly(ethylene glycol)]-co-[poly(2-aminoethyl 

methacrylate)]] (PDA-PEG-AEME) was synthesized the same as PDA-PEG but 

including 10% 2-aminoethyl methacrylate monomer in the initial monomer solution 
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(Scheme 3.2B). Both polymers’ structures were verified by 1H-NMR (Figure 3.1). PhA 

was connected to PDA-PEG-NH2 through an amide bond through the coupling reaction 

between amine and carboxyl groups. 1H-NMR result proved the successful conjugation of 

PhA to the polymer since the polymer conjugate (PDA-PEG-PhA) included peaks at 9.65 

ppm, 9.19 ppm, 8.71 ppm and 6.21 ppm which were the characteristic peaks belonging to 

PhA, and peaks at 8.50 ppm, 7.79 ppm and 7.29 ppm which were the characteristic peaks 

of pyridine ring from the PDA segment of PDA-PEG (Figure 3.1A).  

 

Scheme 3.2 Illustration of the synthesis of polymers and the fabrication of PhA nanogels 
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Figure 3.1 1H-NMR spectra: (A) PhA, PDA-PEG and PDA-PEG-PhA (from bottom to 
top); (B) PDA-PEG-AEME 
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PhA nanogel (PhA-NG) was formed through disulfide cross-linking which was 

generated by the addition of a predetermined amount of tris(2-carboxyethyl)phosphine 

(TCEP) into the PDA-PEG-PhA and PDA-PEG-AEME polymer mixture (Scheme 3.2C). 

The addition of PDA-PEG-AEME endowed PhA-NG containing amine functional group 

on its surface, making post-modification of the nanogel much easier. Zetasizer analysis 

revealed that the nanogel had a hydrodynamic size of 129.3 ± 1.13 nm and carried a near 

neutral surface charge (0.219 ± 0.830 mV) (Figure 3.2A and 3.2B). Transmission 

electron microscopy (TEM) indicated a spherical morphology of the nanogel with a size 

around 50 nm (Figure 3.2C). We further tested the responsiveness of the nanogel to 

redox potential since we previously had reported that disulfide crosslinked nanogel was 

sensitive to redox potential.11,22 To mimic the cellular high GSH reducing environment, 

the nanogel was dispersed in 10 mM DTT solution, which resulted in a dramatic size 

increase due to the breakage of disulfide bond and the aggregation of the nanogel (Figure 

3.2C), proving the responsiveness of the nanogel to redox potential. Next, PhA-NG was 

further decorated with targeting ligand to improve its cellular uptake. As reported that 

protruding ligands from nanoparticle’s surface could achieve much better targeting effect 

due to the relative high opportunity for the ligands to interact with receptors,24 a 

bifunctional PEG with both carboxyl and maleimide functional groups on its ends (Mal-

PEG-COOH, Mw=3400 Da) was employed. The carboxyl group of Mal-PEG-COOH 

was firstly reacted with amine group of the nanogel, introducing maleimide to the 

nanogel’s surface. Then thoil containing targeting ligand was anchored to the nanogel by 

thiol-maleimide Michael addition reaction. Anti-EGFR Affibody® molecule was a 

specific affinity ligand selected against the extra cellular domain of the Epidermal 
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Growth Factor Receptor (EGFR) which was highly overexpressed on many cancers 

including the head and neck cancer.25 Thus, Anti-EGFR Affibody® molecule was 

selected as the targeting ligand for our study. The affibody was initially activated to 

expose the thiol functional group and then conjugated to the nanogel (Scheme 3.2C). The 

EGFR targeting nanogel (PhA-ENG) showed an increased hydrodynamic size (178.8 ± 

4.81 nm) compared to PhA-NG with a slightly negatively charged surface (-7.95 ± 4.04 

mV) (Figure 3.2A and 3.2B).  

 

Figure 3.2 Size and surface charge of PhA nanogels. (A) Size distribution of PhA-NG 
(left) and PhA-ENG measured by Zetasizer based on dynamic light scattering (DLS). (B) 
Summary of size, PDI and zeta potential of PhA nanogels. Results are obtained from 
Zetasizer. (C) Representative TEM images of PhA-NG before (left) and after adding 10 
mM GSH. Scale bars are 100 nm.  
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3.3.2 Absorption, fluorescence and photoactivity of the nanogel 

As a chlorophyllide derivative, PhA has characteristic UV-Vis spectra, which has 

been used to verify the existing status of PhA in the nanoparticles.26 Therefore, we firstly 

studied the UV-Vis spectra of PhA-NG. As shown in Figure 3.3A, in DMSO, the 

nanogel and free PhA has very similar UV-Vis spectra which includes the intense Soret 

band in the near-UV and the relatively weak Q-band in the visible region, and the Q-band 

spectra of the nanogel was not affected by the addition of the reducing agent TCEP, 

denoting that the disulfide bond would not change the spectrometric characteristics of 

PhA itself. The same phenomenon was also observed by Wool Lim Kim et al..26 In PBS, 

the Q-band of the nanogel exhibited an obvious bathochromic shift to 672 nm due to the 

self-aggregation of PhA in the nanogel. However, the absorbance intensity of the nanogel 

was remarkably stronger than that of free PhA at 672 nm, indicating that the nanogel 

enhanced PhA’s aqueous solubility, making PhA more suitable for systematic 

application.  

The aggregation of PhA in nanogel would induce fluorescence quenching which 

has been reported widely.15 The photoquenching could affect the photodynamic activity 

of a photosensitizer, and thus reduce PDT associated side effects. Thus we further 

investigated the fluorescence properties of PhA-NG. Fluorescence spectroscopy result 

revealed that PhA-NG really had very low fluorescence intensity in PBS buffer due to the 

aggregation induced quenching (Figure 3.3B, gray line). We further tested the effect of a 

biological molecular GSH on the nanogel’s fluorescence since GSH would break down 

the nanogel, terminate the aggregation of PhA and recover PhA’s fluorescence by freeing 

PhA to the solution. Since free PhA itself forms dimer in aqueous condition leading to 
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low fluorescence,27 1% Tween 80 was supplemented in the nanogel solution to inhibit the 

dimeric form of PhA after adding GSH. As shown in Figure 3.3B, the addition of 1% 

Tween 80 increased the fluorescence of the nanogel, probably because of the disturbance 

of Tween 80 reduced hydrophobic interaction and π-π stacking among PhA molecules 

inside the nanogel. However, due to the restriction of PhA within the nanogel, its 

fluorescence was still dramatically quenched. The recovery of PhA fluorescence by GSH 

in the nanogel was concentration depended, as shown in Figure 3.3B. At low GSH 

concentration such as 10 μM, 100 μM and 1 mM, no or very slight fluorescence increase 

was observed, probably because of few GSH diffusing into the nanogel to attack disulfide 

bonds. When the GSH concentration increased to 10 mM, a sharp fluorescence increase 

was observed and it was continuously growing as GSH elevated to 25 mM and reached 

its maximum as no fluorescence increased as GSH raised to 50 mM. Fluorescence 

imaging further confirmed the spectroscopy result that GSH could activate PhA in the 

nanogel. As shown in Figure 3.3C, at low GSH concentrations (<10 mM), very dim 

images were exhibited, revealing that PhA was in its quenching status. As GSH increased 

to 10, 25 and 50 mM, bright fluorescence images were achieved, indicating the release of 

PhA from the nanogel turning into its activated form. The GSH-mediated activation of 

PhA will be extremely important for the nanogel to be used for PDT since the nanogel 

will remain in its inactivated status and thus reduce non-specific light irradiation to 

normal tissues (e.g. blood, skin and eye) due to the low GSH concentration there, while 

upon accumulation in tumor tissue through EPR effect, the nanogel will turn to its 

activated form under the influence of high GSH level and be ready for PDT.   
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Figure 3.3 Absorption, fluorescence and photoactivity. (A) UV-Vis spectra of free PhA 
and PhA-NG in DMSO and PBS, respectively. The PhA equivalent concentration was 
800 nM. TCEP was applied as a reducing agent to cleave disulfide bonds to release PhA 
from the nanogel; (B) Fluorescence emission spectra of PhA-NG in different condition. 
The nanogel was firstly dispersed in PBS or PBS containing 1% Tween. 0-50 mM GSH 
was then added and treat for 1 h. The spectra were achieved at an excitation wavelength 
at 405 nm by fluorescence spectrophotometer. (C) Fluorescence images of PhA-NG after 
treated with 0-50 mM GSH for 1 h in PBS 7.4 supplemented with 1% Tween 80. The 
images were taken in IVIS Lumina III In Vivo Imaging System (excitation at 405 nm and 
emission at 680 nm). PhA concertation was equal to 800 nM. (D) GSH effect on the 
fluorescence intensity change of PhA-NG. The nanogel was dispersed in PBS with 1% 
Tween 80 with PhA concentration of 800 nM, and GSH equal to 10 mM was added to 
mimic the tumor environment. FCS (10%) was also added to mimic the blood stream 
condition. The fluorescence intensity was measured by a plate reader (Ex=405 nm, 
Em=680 nm). Inset was the representative images visually exhibited the fluorescence 
change of PhA-NG as the incubation time increasing at the presence of 10 mM GSH. (E) 
Change of fluorescence of DMA due to the generation of singlet oxygen by PhA-NG. 
The nanogel was in 1% Tween PBS buffer without GSH or plus 10% FCS and 10 mM 
GSH and incubated for varied times (1 to 5 h). Then 25 μM DMA was added and the 
nanogel was exposed to 670 nm laser irradiation (15 mW/cm2) up to 11 min. The 
fluorescence of DMA at each minute was measured by a plate reader (Ex=370 nm, 
Em=530 nm).  
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Ideally, the nanogel should be stable enough during circulation period after 

systemic administration while rapidly being activated by GSH as it locates to tumor. In 

general, the GSH level in tumor tissue or cancer cells is in the range of millimolar (2-20 

mM).19 Therefore, we further kinetically studied the process of fluorescence activation of 

PhA-NG in 1% Tween PBS at the presence of 10 mM GSH to mimic the tumor 

environment. To mimic the blood stream condition, the nanogel was directly dispersed in 

10% serum. As shown in Figure 3.3D, the nanogel’s fluorescence increased rapidly after 

the addition of 10 mM GSH, and almost 90% of PhA fluorescence had been recovered at 

4 h, after which the fluorescence slowly proceeded to a plateau to get a 4.3 fold 

fluorescence increase compared to the nanogel in 1% Tween 80 without GSH. In 

contrast, the nanogel’s fluorescence had no obvious increase even after 48 h at the 

presence of serum, indicating that the nanogel could maintain its self-quenching status 

during the blood circulation process. Inset in Figure 3.3D showed the fluorescence 

images of the nanogel at different time points after the treatment of GSH. The nanogel 

exhibited a increasing of image brightness as time went on, which further confirmed that 

the nanogel was rapidly and continuously activated by high GSH in tumor.  

The activation of PhA-NG by GSH is expected to be applicable for PDT since the 

monomerized PhA could generate singlet oxygen (1O2) under laser irradiation. The 

singlet oxygen is one type of reactive oxygen species (ROS) and it governs the PDT 

efficacy of PhA. By comparing the capacity of 1O2 generation of PhA-NG with that of 

free PhA, the PDT potential of the nanogel could be initially assessed before processing 

to in vitro and in vivo evaluation. The generation of 1O2 could be determined by 

calculating the singlet oxygen quantum yield (SOQ, ∅∆) by using DMA as the 1O2 trap. 
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DMA was a florescence dye and its fluorescence would be lost by reacting with 1O2 to 

form a nonfluorescent endoperoxide. By measuring the loss of fluorescence of DMA, the 

1O2 generation kinetics could be determined and is was used to calculate ∅∆ according to 

the equation (2-1). As shown in Figure 3.3E, slight fluorescence recovery of PhA-NG in 

1% Tween 80 could not effectively generate 1O2 since only a minor fluorescence loss of 

DMA occurred. A similar result was also observed when adding 10% serum to the 

nanogel because of the low activation of the nanogel. In contrast, after incubation of the 

nanogel with GSH (10 mM) for 1 h, an increase loss of fluorescence of DMA was 

observed and the loss was continuously enhanced as the elongation of incubation time 

which produced more activated PhA. After 5 h of incubation which accounted of more 

than 90% PhA activation, the nanogel reached a very similar 1O2 generation kinetics as 

free PhA, with a SOQ equal to 0.49 which was about 94% SOQ of the free PhA (0.52), 

indicating that the nanogel could rapidly induce high PDT effect at tumor site where GSH 

level was elevated.  

3.3.3 Intracellular uptake and localization  

Due to the short lifetime of 1O2,28
 it needs to be intracellularly generated to take 

PDT into effect in treating cancer cells. This required PhA-NG should have a high 

cellular uptake. In order to improve it, the nanogel was decorated with a targeting ligand. 

Here, we chose head and neck squamous cell carcinoma (HNSCC) to explore the PDT 

efficacy of the nanogel because most HNSCC cases are localized, making PDT laser 

easily reaches the tumor. Additionally, PDT is advantageous over surgery in treating 

HNSCC since it causes minimal damage to cosmetic appearance and tissue function. 
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Due to the high overexpression of EGFR in HNSCC,29 Anti-EGFR Affibody® 

molecule was selected as the targeting ligand to modify PhA-NG because of its relative 

small size compared to Anti-EGFR antibody and easy preparation for nanogel 

modification. The affibody could be facilely activated by dithiothreitol to expose cysteine 

residue and reacted with PhA-NG by thiol-maleimide Michael addition reaction. The 

reacting ratio between the affibody and PhA-NG were varied in order to obtain PhA-

ENG with different surface ligand densities. The cellular uptake efficiency of the PhA-

ENG was firstly evaluated using flow cytometry in UMSCC 22A cell, a head and neck 

cancer cell line which has been extensively reported overexpression of EGFR.30 As 

shown in Figure 3.4A, free PhA had highest uptake because it could easily pass through 

cell membrane via simple diffusion.31 For nanogels, their cellular uptake efficiency was 

dramatically different. Compared to the relative low uptake of PhA-NG, all three 

targeting nanogels exhibited enhanced uptake efficiency due to the facilitation of ligand-

receptor interaction. However, the affibody modification density on the nanogel 

significantly determined their uptake behaviors. Only PhA-ENG modified with 

intermediate density of affibody (5×) showed the highest uptake efficiency. Higher (25×) 

or lower (1×) targeting density both would not exhibit the highest capability for nanogels 

to enter the cells because of too strong or too weak interaction between ligand and 

receptors.32 Confocal laser scanning microscopy (CLSM) was further used to study the 

uptake behavior of the nanogels. In consistence with flow cytometry result, CLSM 

reconfirmed that Anti-EGFR Affibody® molecule could effectively improve the cellular 

uptake of PhA-ENG (Figure 3.4B). In the following experiments, PhA-ENG represented 
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the Anti-EGFR Affibody modified nanogel with the intermediate ligand density, 

otherwise noted.  

 

Figure 3.4 Cellular uptake and intracellular localization of nanogels. (A) Flow cytometry 
of PhA, PhA-NG and PhA-ENG with different ligand density. UMSCC 22A cell was 
incubated with different treatment for 3 h at 800 nM PhA. (B) Confocal images of PhA, 
PhA-NG and PhA-ENG (5×), UMSCC 22A cell was also incubated with different 
treatment for 3 h at 800 nM PhA. All scale bars are equal to 50 μm. (C) Co-localization 
of PhA-ENG (5×) with mitochondria. Mitochondria was stained with MitoTracker Green 
(MTG). Blue: nanogel, Green: MTG. Scale bar=20 μm. (D) Co-localization of PhA-ENG 
(5×) with endosomes/lysosomes. Endosomes/lysosomes were stained with Lysotracker 
Green (LTG). Red: nanogel, Green: LTG, Blue: nuclei. Scale bars are 20 μm. 
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As the PDT efficacy of chlorophyllide derivatives was reported relevant to the 

extent of co-localization with mitochondria.33,34  we subsequently investigated that 

whether the nanogel could also deliver PhA to mitochondria. Surprisingly, the nanogel 

could not localize to mitochondria, as shown in Figure 3.4C since no overlay between 

green (mitochondria) and blue color (nanogel) was observed. Also no PhA nuclear 

localization was observed since no blue color showed up in the nuclei areas (black voids 

surrounded by green color in Figure 3.4C). Further experiment found that the nanogel 

was located in endosomes/lysosomes as the nanogel’s fluorescence (red) coincided with 

endosomes/lysosomes labeled with LysoTracker (green), revealed by CLSM in Figure 

3.4D. These findings were in line with several early reports which also found that 

pheophorbide a derivatives preferred to stay in intracellular membranes and 

lysosomes.34,35 

3.3.4 In vitro phototoxicity 

To evaluate whether the enhanced cellular uptake and endosomes/lysosomes co-

localization would induce efficient PDT effect of nanogels in cell killing, MTT assay was 

carried out to assess the cell viability after PDT in UMSCC 22A cells. Prior to irradiation 

with 670 nm laser (800 mJ/cm2), UMSCC 22A was incubated with free PhA, PhA-NG 

and PhA-ENG for 24 h. Cells treated with the same dose of free drug and nanogels but 

without laser irradiation were set as control. As shown in Figure 3.5A, without laser 

irradiation, nanogels had no obvious toxicity to cells since negligible cytotoxicity was 

observed at all doses for the control cells, suggesting that the nanogels itself was safe. 

When the cells received laser irradiation (800 mJ/cm2), a dose dependent cytotoxicity 

was occurred (Figure 3.5B). PhA-ENG exhibited enhanced cytotoxicity at almost all 
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tested doses compared to non-targeted nanogel which had very limited cell killing effect 

even at the highest PhA concentration due to its difficulty in entering the cells. PhA-ENG 

also showed a similar cell killing effect (>95%) to free PhA at 800 nM PhA equivalent 

concentration, proving that enhanced cellular uptake could be translated to higher PDT 

efficacy. To be noted, the laser power we used here (800 mJ/cm2) was less than others 

reported,34 which further evidenced the high PDT effect of PhA-ENG nanogel.   

 

Figure 3.5 In vitro cytotoxicity of PhA, Pha-NG and PhA-ENG in UMSCC 22A at the 
absence (A) and presence (B) of a 670 nm laser (800 mJ/cm2). 
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3.3.5 Biodistribution and in vivo PDT 

As in vitro data showed that PhA-ENG had high cellular uptake and PDT 

efficacy, its PDT efficacy and tumor homing ability were further evaluated in vivo. We 

firstly tested the serum stability of the nanogel in 10% FCS by DLS for up to 7 days. 

Figure 3.6A showed that the nanogel was very stable and only had a slight size increase. 

The in vivo PDT effect of PhA nanogels was then studied in HNSCC xenograft mice 

model which was established by inoculating UMSCC 22A cells in both flanks of athymic 

nude mice. When the tumor grew to 50-150 mm3, free PhA, PhA-NG and PhA-ENG 

were administered to the mice by retro-orbital injection (PhA dose equal to 1 mg/kg). The 

biodistribution of nanogels and free PhA were visualized using a non-invasive 

fluorescence imaging system. As shown in Figure 3.6B, compared to free PhA, both 

nanogels exhibited high fluorescence intensity in tumor sites at 24 h after injection, 

indicating that the nanogels could accumulate in the tumor by EPR effect and they were 

activated to restore high fluorescence in tumor-specific high GSH environment. PhA-

ENG had even higher fluorescence than its non-targeting counterpart, proving that the 

targeting ligand really facilitated the tumor accumulation of the nanogel in vivo. To be 

noted here , free PhA also showed slight localization to tumor, probably because that a 

partial of the free drug aggregated or bound to serum proteins to form particles in 

circulation system, which also entered tumor by EPR effect. However, the free PhA 

excreted from the body very fast since very weak fluorescence was detected in the mouse 

after 24 h treating with free PhA. On the contrary, the nanogel showed high fluorescence 

intensity throughout the whole mouse body, indicating the high circulation time for the 

nanogels.  
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Figure 3.6 In vivo distribution of PhA nanogels. (A) Serum stability of PhA-NG. PhA-
NG was diluted in 10% serum condition and incubated at 37 oC for up to 7 days. (B) 
Biodistribution of PhA, PhA-NG and PhA-ENG 24 h post-injection. UMSCC 22A 
xenograft mice were administrated with PhA, PhA-NG and PhA-ENG by retro-orbital 
injection. The mice was imaged 24 h after injection with an IVIS Lumina III In Vivo 
Imaging System (Ex=620 nm, Em=670 nm). Circles reveal the location of tumor. White 
circle indicated the tumor receiving PDT, the laser power was 11.4 J/cm2. 
 

At 24 h post injection, the tumor was exposed to a 670 nm laser (11.4 J/cm2). As 

shown in Figure 3.7A, laser irradiation effectively reduced the tumor volumes, and PhA-

ENG had the highest PDT therapeutic efficacy. This was probably because of the 
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substantial accumulation of PhA-ENG in tumor under the assistance of the targeting 

ligand, rapid activation of its photoactivity by the high GSH level in tumor stroma and 

cytosol, and efficient generation of singlet oxygen to kill cancer cells and reduce tumor 

volume.  

 

Figure 3.7 Antitumor activity of free PhA and PhA nanogels. UMSCC 22A xenograft 
mice were administered free PhA, PhA-NG and PhA-ENG by retro-orbital injection (1 
mg/kg PhA equivalents). 24 h post injection, mice were irradiated with a 670 nm laser 
(200 mJ/cm2). (A) Tumor growth curves; Inset showed the tumor sizes of different 
treatments 21 days after PDT. (B) The effect of different treatments on mouse 
bodyweight (bars represent ± SD); (C) Representative H&E staining images for liver, 
kidney, lung and spleen.   
 

The in vivo toxicity of the nanogels was also investigated. Within the duration of 

21 days after PDT treatment, no apparent bodyweight change was observed for all four 

groups (Figure 3.7B). Organs including liver, lung, kidney and spleen were also 
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harvested 21 days after the treatment for histologic analysis. No obvious sign of toxic 

side effect were also found in these organs. All these results suggested that the PhA 

nanogel was safe and effective for head and neck cancer therapy.  

3.4 CONCLUSIONS 

A self-quenching bioactivatable nanogel was developed and synthesized for 

targeted photodynamic therapy. The nanogel was fabricated by crosslinking PhA 

conjugated polymer through disulfide bonds. The aggregation of PhA in the nanogel 

resulted in a fluorescence quenching and the reduced singlet oxygen generation. Due to 

its responsiveness to redox potential, both the fluorescence intensity and singlet oxygen 

generation capacity can be restored in the tumor stroma and cytosol. The GSH mediated 

activation of photoactivity made the nanogel very safe for in vivo application since the 

nanogel would remain in its inactivated status and inhibit its phototoxicity to normal 

tissues due to the low GSH level there. While in high GSH level environment like tumor, 

the photoactivity of the nanogel would be activated and efficiently produce singlet 

oxygen for PDT. The nanogel was further decorated with Anti-EGFR Affibody to 

improve its tumor targeting efficiency and PDT effect in HNSCC due to the 

overexpression of EGFR in the tumor. The in vitro and in vivo data revealed that the 

affibody could effectively enhanced the cellular uptake and tumor homing ability of the 

nanogel, respectively, which subsequently resulted in high PDT efficacy. All these data 

demonstrated the high potential of the PhA nanogel as a safe and effective drug carrier 

for cancer therapy.  
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CHAPTER 4 

TRIPLE-RESPONSIVE EXPANSILE NANOGEL FOR TUMOR AND MITOCHONDRIA 

TARGETED PHOTOSENSITIZER DELIVERY2  

4.1 INTRODUCTION 

Photodynamic therapy (PDT) is a treatment procedure that uses a light to activate 

a photosensitizer (PS) to produce singlet oxygen for killing cancer cells or curing acne. 1 

Since the onset of PS toxicity can only be triggered by the irradiation of light, PDT 

generally is considered as a safe alternative for chemotherapy in the treatment of cancer, 

and does not induce side effects. A lot of evidences indicate that PDT- induced apoptosis 

is due to the damage of mitochondria and suggest that mitochondria are the target for 

PDT. 2 Therefore, the efficacy of PS would be greatly enhanced if it can be delivered 

specifically to the mitochondria of cancer cells. In fact, research revealed that Pc 4, a 

silicon phthalocyanine PS, can spontaneously partition to mitochondria due to its high 

hydrophobicity, which makes it an ideal PS for maximizing PDT efficacy. 3 However, the 

clinical application of Pc 4 based PDT has not been widely accepted due to its poor water 

solubility and erratic tissue retention, especially in the skin which results in unwanted 

tissue damage upon the exposure to sunshine.  
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Over past decades, many types of nanoparticle carriers have been developed for 

targeted delivery of Pc 4 to tumor by taking advantage of the leaky vascular structure in 

tumor tissue through so called enhanced permeability and retention (EPR) effect. Such 

systems include polymeric micelles, mesoporous silica nanoparticles, and gold 

nanoparticles, which can load hydrophobic Pc 4 through hydrophobic interaction. 4 

Although with the help of various ligand-receptor interactions most nanoparticles 

achieved enhanced cellular uptake of Pc 4, there was occasional disconnection between 

the uptake of PS and their PDT efficacy. Higher uptake of PS did not result in better cell 

killing, possibly due to the fact that those encapsulated Pc 4 could not effectively escape 

from lysosome and then transfer to mitochondria. 3,5  

Therefore, we hypothesize that a nano-carrier which can escape from lysosome, 

quickly expand its size to release Pc 4 into cytosol would be able to deliver Pc 4 to 

mitochondria. Expansile nanoparticles (eNP), which can enlarge their size in response to 

pH, have been explored as drug carriers to control the drug release at targeted sites and 

achieved enhanced therapeutic effect. 6 Nanogels fabricated from pyridyl disulfide 

containing polymers have been applied in various drug delivery systems due to their easy 

functionalization. 7 Recently, our group reported a multicompartment nanogel made of 

poly[(2-(pyridin-2-yldisulfanyl)-co-[poly(ethylene glycol)]] (PDA-PEG) polymer, which 

showed self-expanding property in reducing environment and size increasing from 115 

nm to 262 nm in 5 h. 8 In addition, the release of its payload was dependent on its 

environmental pH and redox potential. The abundance of pyridine segments endowed the 

proton sponge effect of the polymer and helped its escaping from lysosome.  
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To extend the sensitiveness of the nanogel to temperature, a thermal responsive 

polymer, poly (N-Isopropyl methacrylamide) (PNiPMA), was incorporated into the PDA-

PEG by free radical polymerization to yield a pH, redox potential, and thermal triple-

responsive polymer PDA-PEG-PNiPMA as described in Figure 4.1. A triple-responsive 

nanogel (TRN) was fabricated with the help of predesigned amounts of tris(2-

carboxyethyl)phosphine (TCEP). 

 

Figure 4.1 Schematic illustration of the synthesis of MBA-PDA-PEG-PNiPMA polymer 
and the fabrication of MBA-Pc 4-TRN nanogels. 
 

4.2 EXPERIMENTS 

4.2.1 Materials and reagents 

Aldrithiol-2 and Silica gel (Spherical, 100 µm) were purchased from Tokyo 

Chemical Industry Co., LTD (Harborgate Street, Portland, OR). 2-mercaptoethenol, DL-

dithiothreitol (DTT), tris(2-carboxyethyl)phosphine (TCEP), 2, 2-Azobisisobutyronitrile 

(AIBN) and Poly(ethylene glycol)methacrylate (Mn = 360 Da) were purchased from 

Sigma-Aldrich Chemical Co. (St. Louis, MO). Penicillin (10,000 U/mL), streptomycin 

(10,000 μg/mL), 0.25% trypsin-EDTA, Dulbecco's Modified Eagle Medium (with L-
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glutamine) and fetal bovine serum (FBS) were obtained from American Type Culture 

Collection (ATCC, Manassas, VA). 2,4,6-Trinitrobenzene sulfonic acid (TNBSA) was 

purchased from Thermo Scientific. Silicon phthalocyanine (Pc 4) was acquired from NCI 

(NSC 676418). All the other solvents used in this research were purchased from Sigma-

Aldrich Chemical Co. (St. Louis, MO) and used without further purification unless 

otherwise noted. 

4.2.2 Synthesis of PDA-PEG-PNiPMA polymer 

PDA-PEG-PNiPMA polymer was synthesized by free radical polymerization as 

shown in Figure 4.1. PDA monomer was prepared following our previously reported 

method 8. Typically, PDA (241.3 mg, 1 mmol), Poly(ethylene glycol)methacrylate (Mn = 

360 Da)  (360 mg, 1 mmol) and N-isopropylmethacrylamide (NiPMA, 63.6 mg, 0.5 

mmol) were dissolved in 10 mL degassed anisole. 2, 2-azobisisobutyronitrile (AIBN, 14 

mg, 0.085 mmol) in 1 mL degassed anisole was then added, and the reaction mixture was 

stirred for 24 hours at 65 °C. The final product was precipitated (3×) in ice cold ether and 

dried for 48 hours in vacuum. The structure of PDA-PEG-PNiPMA was confirmed by 

1H-NMR (Figure 4.2A). Gel permeation chromatography (viscotek GPCmax VE 2001 

GPC solvent/sample module, Viscotek VE 3580 RI detector and 270 Dual Detector) 

using THF as mobile phase was empolyed to charactrize the polymer and found PDA-

PEG-PNiPMA has an absolute molecular weight of 27,557 Da (Mw) and polydispersity 

(PDI: 1.35) (Figure 4.2B). For the quantification of side chain functionality, PDA-PEG-

PNiPMA (1.0 mg/mL) was dissolved in DMSO and incubated with dithiothreitol (DTT, 

10 mM) for 1 hour at room temperature, and then the amount of 2-pyridinethione 
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released was quantified through UV-Vis spectrophotometer at λ = 375 nm (ε, molar 

absorption coefficient = 8080 M-1cm-1). 

4.2.3 Synthesis of MBA-PDA-PEG-PNiPMA 

PDA-PEG-PNiPMA was further modified with sigma-2 receptor targeting motif 

(4-Methoxybenzoic acid (MBA)). Briefly, cysteamine (0.404 mg, 20% PDA function 

groups) in 500 μL DMSO was added dropwise into 20 mg PDA-PEG-PNiPMA in 500 

µL DMSO and the reaction mixture was kept at room temperature overnight. After 

overnight reaction, the product was dialyzed towards DMSO using Spectra/Por® dialysis 

tube (MWCO: 1000 Da). The concentration of amine group in the polymer after dialysis 

was quantified by TNBSA assay. MBA (1.66 mg in 100 μL DMSO, 50% PDA function 

group) was firstly activated by EDC (4.2 mg in 50 μL DMSO) and NHS (2.5 mg in 50 μL 

DMSO), and then added into 20 mg cysteamine modified PDA-PEG-PNiPMA polymer. 

The reaction was kept overnight at room temperature. The amine concentration in PDA-

PEG-PNiPMA polymer after MBA conjugation was also quantified by TNBSA assay to 

determine the MBA conjugation efficiency. TNBSA assay result revealed that 16% MBA 

(to PDA ratio) has been successfully conjugated to the polymer. 

4.2.4 TRN nanogel fabrication 

Briefly, PDA-PEG-PNiPMA and MBA-PDA-PEG-PNiPMA were mixed to 

obtain different MBA ligand density for TRN. The polymer mixture (5 mg) was 

dissolved in 300 μL DMSO. Pc 4 (250 μg) was dissolved in 100 μL DMSO and then 

added into the polymer mixture. For the fabrication of TRN with 30% cross-linking 

density, tris (2-carboxyethyl) phosphine hydrochloride (TCEP, 0.384 mg in 20 μL 

DMSO) was added to the above mixture. The reaction mixture was equilibrated for 15 
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min and then dropped into 4 mL ddH2O under stirring and kept stirring for aerial 

oxidation overnight. After the oxidation, the nanogel was then dialyzed towards PBS of 

pH 7.4 (10 mM) for 10 h to remove unreacted TCEP, MBA and organic solvent. Finally, 

the nanogel was filtered (0.45 µm syringe filter) and stored in 4 °C. The morphology, size 

distribution and the surface charge (ζ-potential), of the nanogel were determined by a 

Hitachi H8000 transmission electron microscopy (TEM) and dynamic light scattering 

(DLS) as previously reported. 9  

4.2.5 Pc 4 nanogel drug concentration determination and release kinetic assay 

Pc 4 shows maximum absorbance at peak 670 nm. Therefore, Pc 4 concentration 

in nanogels was measured at 670 nm by UV-Vis spectroscopy. Pc 4 nanogel 2 µL was 

diluted with 980 µL DMSO (diluted 50×) and measured by UV-Vis. Drug concentration 

was then calculated by calibration curve. Pc 4-TRN was suspended in PBS of pH 7.4 (10 

mM) at the final concentration of 10 μg/mL. To mimic the drug release process of Pc 4-

TRN during blood circulation and inside lysosome, Pc 4-TRN was dialyzed towards 40 

mL PBS (pH 7.4, 10 mM, 1% Tween 80) and acetate buffer (pH 5.0, 1% Tween 80) at 37 

°C, respectively. At pre-determined time intervals, 1 mL dialysis buffer was removed and 

replaced with 1 mL fresh buffer. The samples were stored at -20 °C till measurement. 

After collecting all samples, 100 μL each sample was loaded into 96 well plate (Costar, 

black, clear bottom) and Pc 4 concentration was quantified by fluorescence (Ex 610 nm, 

Em 680 nm, SpectraMax M2 Multi-Mode Microplate Reader). A calibration curve was 

constructed by adding known concentrations of Pc 4 to PBS pH 7.4 (10 mM, 1% Tween 

80) acetate buffer (pH 5.0, 1% Tween 80). To simulate the process of Pc 4-TRN escaping 

from lysosome and transfer to cytosol, the pH of releasing buffer was adjusted to 5.0 at 
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first 2 h. After that, the pH of the releasing buffer was adjusted to 7.2 and kept at this pH 

for remaining experiment, GSH (final concentration was 10mM) was added into the 

buffer at the same time. As a control group, no GSH was added into buffer; however, the 

pH of the buffer was also adjusted to 7.2 and kept at this pH for the remaining 

experiment. At pre-determined time intervals, samples were retreated and Pc4 

concentration was measured by fluorescence as previously described.   

4.2.6 Cellular uptake of TRN observed by confocal microscopy 

UMSCC22A cells (200,000 cells/dish) were cultured on 35 mm2 Petri dishes 

(MatTek, MA, USA) for overnight. The media were replaced with fresh media containing 

16% MBA-Pc 4-TRN, Pc 4-TRN, and free Pc 4 (equivalent to 200 nM Pc 4). After 4 or 

20 h of incubation under a humidified atmosphere of 95/5% air/CO2, cells were washed 

by PBS(3×), fixed with formaldehyde (4.5% in PBS) and stained with Hoechst 33342 

(final concentration 1µg/mL). Then cells were analyzed under a confocal microscope 

(LSM 510, Carl-Zeiss Inc.). 

4.2.7 Quantification of intracellular Pc 4 amount 

UMSCC22A cells (100,000 cells/well) were cultured on 24-well plate for 

overnight. Culture media were replaced with fresh media containing free Pc4 drug, MBA 

(16, 8, 4, 1, and 0%) Pc 4-TRN nanogels (equivalent to 200 nM Pc 4). After incubation 

under a humidified atmosphere of 95/5% air/CO2 for 4 and 20 h, respectively, cells were 

washed by PBS(3×) and lysed in 0.5% SDS. Cell lysates were collected and Pc 4 

concentration was quantified by fluorescence (Ex 610 nm, Em 680 nm). Total protein 

concentrations of cell lysates were measured by BCA kit following manufacturer’s 
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instruction (Thermo Fisher Scientific). The ratio between Pc 4 and protein was used to 

evaluate the ability of UMSCC22A cells take up Pc 4 and Pc 4-TRN of different MBA 

density.  

4.2.8 Immunohistochemistry analysis 

Human tissues were collected under IRB protocol approved by the Institutional 

Review Board of the Medical University of South Carolina. FFPE sections of human 

head and neck tumor tissue microarray were de-paraffinized in xylene, rehydrated in 

alcohol, and processed as follows: The sections were incubated with target retrieval 

solution (Dako S2368) in a steamer (Oster CKSTSTMD5-W) for 45 min, 3% hydrogen 

peroxide solution for 10 min and protein block (Dako X0909) for 20 min at room 

temperature. After overnight incubation with sigma-2 antibody (Sigma HPA002877) in a 

humid chamber at 4 °C, biotinylated anti-rabbit secondary antibody (Vector, PK-6101) 

and ABC reagent (Vector, PK-6101) was added for 30 min. Immunocomplexes of 

horseradish peroxidase were visualized by DAB (Dako, K3468) reaction, and sections 

were counterstained with hematoxylin before mounting. 

4.2.9 Western Blot Analysis 

UMSCC22A cell extracts were prepared in ice-cold RIPA lysis buffer (150 mM 

NaCl, 1 mM EGTA, 1% sodium deoxycholate, 1% Triton X-100, 0.1% SDS, 1% NP40, 

50 mM Tris-Cl, pH 7.4) supplemented with a cocktail of protease inhibitors (Roche 

Diagnostics) and centrifuged. Proteins (75 µg) in sample buffer (Invitrogen) 

supplemented with 10% SDS and 10% β-mercaptoethanol were resolved on NuPAGE® 

Tris-bis 4%-12% polyacrylamide gels (Invitrogen). Proteins were transferred to PVDF 

membranes (EMD Millipore) and probed with anti-sigma-2 (PGRMC1) (1:1000) (Cell 
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Signaling). Membranes were developed by the Enhanced Chemiluminescence Detection 

System (Thermo Fisher Scientific), and band intensities were quantified using a 

Caresteam 4000 PRO image station (Woodbridge, CT). 

4.2.10 Sub-cellular co-localization of TRN 

UMSCC22A cells (150,000 cells/dish) were cultured onto glass-bottomed 

MatTek dishes and incubated with MBA-Pc 4-TRNs at indicated times.  Before imaging, 

medium was changed to fresh medium supplemented with Insulin-Transferrin-Selenium-

X (ITX) reagent [insulin (10 µg/ml), transferrin (5.5 µg/ml), selenium (6.7 ng/ml), 

ethanolamine (0.2 mg/ml)] (Gibco) but omitting FBS. To assess co-localization of 

nanoparticles with mitochondria, cells were loaded with 500 nM tetramethylrhodamine 

methylester (TMRM).  Medium was then changed with fresh medium containing 50 nM 

TMRM.  To assess co-localization of MBA-Pc 4-TRNs with lysosomes, cells were 

loaded with 500 nM LysoTracker Green (LTG).  Dishes were placed in an environmental 

chamber at 37 ºC on the stage of a Zeiss LSM 510 laser scanning confocal microscope 

(Zeiss, Thornwood, NY).  A 63 X N.A. 1.4 oil immersion planapochromat objective was 

used for all experiments. LTG, TMRM and Pc 4 fluorescence was imaged using 488 nm 

excitation/500–530-nm emission, 543 nm excitation/565-615 nm emission and 633 nm 

excitation/650-710 nm emission, respectively. ImageJ software was used to post-process 

the images and calculate the co-localization coefficients. 

4.2.11 Photodynamic therapy 

Cell cultures were incubated with 200 nM of MBA-Pc 4-TRN and Pc 4-TRN for 

20 h before exposure to 200 mJ/cm2 red light (670 nm) from an Intense-HPD 7404 diode 
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laser (North Brunswick, NJ).  After exposure to red light, cells were incubated for various 

periods of time prior to analysis. 

4.2.12 Assessment of Cell Death after PDT 

Cell death was assessed by propidium iodide (PI) fluorometry using a multi-well 

fluorescence plate reader, as previously described 10. Human head and neck cancer cells 

(UMSCC22A) were plated on 96-well plates (15,000 cells/well) in Dulbecco’s Modified 

Eagle’s Medium (DMEM) (Gibco) supplemented with 10% fetal bovine serum (FBS) 

and penicillin/streptomycin (complete culture medium) in a humidified 37 ºC incubator at 

5% CO2/95% air.  Subsequently, cells were incubated with MBA-Pc 4-TRN and Pc 4-

TRN (200 nM) for 20 h.  Before exposure to light, cells were changed to fresh medium 

supplemented with PI (30 µM) and Insulin-Transferrin-Selenium-X (ITX) reagent 

[insulin (10 µg/ml), transferrin (5.5 µg/ml), selenium (6.7 ng/ml), ethanolamine (0.2 

mg/ml)] (Gibco) but omitting FBS.  PI fluorescence was measured at frequent intervals 

using 530 nm excitation (25 nm band pass) and 620 nm emission (40 nm band pass) 

filters.  Between measurements, microtiter plates were placed in a 37 ºC incubator.  At 

the end of the experiment, digitonin (200 µM) was added to each well to permeabilize all 

cells and label all nuclei with PI.  Cell viability determined by PI fluorometry is 

essentially the same as cell viability determined by trypan blue exclusion. 10  

4.2.13 Biodistribution of MBA-Pc 4-TRN 

All animal experiments followed the protocols approved by the MUSC 

Institutional Animal Care and Use Committee (IACUC). Head and neck tumor xenografts 

were created with UMSCC22A cells (3 x 106 cells/mouse) in male athymic Nu/J mice (6 

weeks old, inbred homozygous) (Jackson Labs). Once tumor volumes reached 50-150 
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mm3 measured with a caliper, mice were administered with MBA-Pc 4-TRN and free Pc 

4 (1 mg/kg Pc 4) in PBS through the tail vein. Fluorescence images were taken with a 

Maestro 2 in vivo imaging system 72 h after dosing. Subsequently, mice were sacrificed 

at 96 h post-injection. Liver, spleen, heart, kidneys, lungs, and the tumor were collected 

and imaged. 

Cell death was assessed by propidium iodide (PI) fluorometry using a multi-well 

fluorescence plate reader, as previously described 10. Human head and neck cancer cells 

(UMSCC22A) were plated on 96-well plates (15,000 cells/well) in Dulbecco’s Modified 

Eagle’s Medium (DMEM) (Gibco) supplemented with 10% fetal bovine serum (FBS) 

and penicillin/streptomycin (complete culture medium) in a humidified 37 ºC incubator at 

5% CO2/95% air.  Subsequently, cells were incubated with MBA-Pc 4-TRN and Pc 4-

TRN (200 nM) for 20 h.  Before exposure to light, cells were changed to fresh medium 

supplemented with PI (30 µM) and Insulin-Transferrin-Selenium-X (ITX) reagent 

[insulin (10 µg/ml), transferrin (5.5 µg/ml), selenium (6.7 ng/ml), ethanolamine (0.2 

mg/ml)] (Gibco) but omitting FBS.  PI fluorescence was measured at frequent intervals 

using 530 nm excitation (25 nm band pass) and 620 nm emission (40 nm band pass) 

filters.  Between measurements, microtiter plates were placed in a 37 ºC incubator.  At 

the end of the experiment, digitonin (200 µM) was added to each well to permeabilize all 

cells and label all nuclei with PI.  Cell viability determined by PI fluorometry is 

essentially the same as cell viability determined by trypan blue exclusion. 10  

4.3 RESULTS AND DISCUSSION 

PNiPMA is a polymer which undergoes phase transition when the environmental 

temperature passing through its Low Critical Solution Temperature (LCST, around 43 
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°C), soluble in water at temperature lower than LCST while becoming hydrophobic at 

temperature higher than its LCST. 11 Nano/micro-particles containing PNiPMA shrink 

when the environment temperature is higher than its LCST. 12 To investigate the effect of 

crosslinking density (CD) of TRN on its transition temperature, the transmittance of TRN 

was recorded during the course of temperature increase. Transmittance measurement 

revealed that the addition of PNiPMA did endow the temperature sensitivity to the 

nanogel: TRN nanogel suspension decreased its transmittance and appeared cloudy at 

high temperature (Figure 4.2C). The transition temperature of TRN shifted from 30.5 °C 

to 47 °C as its CD increased from 20 to 40%, while no transition was recorded for TRN 

with 80% CD or higher. Therefore, TRNs with different transition temperatures can be 

attained by simply tuning CD during nanoparticle fabrication process.  

 

Figure 4.2 (A) 1H NMR and (B) GPC spectra of PDA-PEG-PNiPMA polymer. (C) The 
relationship between TRN crosslinking density and its transition temperature. The 
transition temperatures were determined by measuring the change of transmittance for 
TRN PBS suspension at the nanogel concentration of 0.16 mg/ml during the increase of 
temperature 
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Figure 4.3 The z-average size of TRN in response to the change of temperature (A, B), 
the addition of 10 mM DTT (C), and the change of pH from 7.4 to 5.0 (D) acquired by 
DLS. All the size measurements were carried out at 37 °C unless otherwise specified.  
TEM images of control TRN at room temperature (E), heated at 42 °C (F), treated with 
10 mM DTT for 2 h at 37 °C (G), and incubated in pH 5.0 buffer (H). Images were taken 
with a Hitachi H8000 TEM. Scale bars are 200 nm in (E) and (F), and 500 nm in (G) and 
(H). The size distribution of TRN in response to the addition of 10 mM DTT over time 
(I). 
 

Using the fabrication protocol described above, Pc 4 loaded TRN with a transition 

temperature slightly higher than body temperature can be easily produced from PDA-

PEG-PNiPMA with 30% CD. Compared with its counterpart fabricated from PDA-PEG 

polymer, the loading efficiency of Pc 4 increased from 13 to 40% for TRN, which may be 

due to the newly formed PNiPMA layer served as a buffer zone between the hydrophobic 

PDA and the hydrophilic PEG. To investigate how the TRN responses to the changes in 

temperature, redox potential, and pH after the loading of Pc 4, the sizes and morphologies 
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of  the TRN were measured with dynamic light scattering (DLS) and observed with 

transmittance electron microscopy (TEM), respectively 9. The size of the TRN was 108.1 

± 11.1 nm with a PDI of 0.163 (Figure 4.3A). Zeta sizer found that TRN carried slightly 

negative surface charge (-5.62 ± 1.40 mV). TEM revealed that TRNs were spherical 

(Figure 4.3E). TRN itself was stable in PBS and culture medium containing 10% FBS 

(Figure 4.4), and no obvious size change was observed after 3 days of incubation. In 

contrast to its PDA-PEG di-copolymer nanogel counterpart, which kept constant size in 

the whole tested temperature range, TRN with 30% CD dramatically increased its size at 

temperature higher than 39 °C (Figure 4.3A). It is worth noting that the size enlargement 

in response to the temperature increase is totally different from other PNiPMA containing 

particles, which shrink upon environment temperature higher than their LCSTs 12. Figure 

4.3A also showed that the addition of Pc 4 slightly decreased the transition temperature 

of TRN from 44 °C to 39 °C. The enlarged size of TRN shown in Figure 4.3F also 

evidenced the thermal expanding property of TRN.  

To examine the redox potential effect on the transition temperature of TRN, 10 

mM DTT was added during the heating process. To eliminate the possible effect caused 

by the intra-particle crosslinking of TRN after DTT treatment shown in Figure 4.3B, 

EDTA was added. Figure 4.3B revealed that the addition of 10 mM DTT/EDTA further 

decreased the transition temperature of TRN from 39 °C to 36 °C. It is known that 

cytosol has an elevated glutathione level (10 mM, much higher than that in the blood), 

which would result in the rapid intracellularly self-expanding of TRN at body 

temperature. 13   
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Figure 4.4 Stability of TRN at 37 °C over 3 days monitored by dynamic light scattering. 
(A) Size shifting of DMEM culture medium supplemented with 10% FBS; (B) Size 
shifting of TRN in DMEM culture medium supplemented with 10% FBS. There was no 
size difference between the culture medium with and without TRN addition, suggesting 
that TRNs are stable in the culture medium. 
 

To further evaluate the sensitivity of TRN in response to reducing environment at 

body temperature, the size of TRNs suspended in media with or without 10 mM 

DTT/EDTA was monitored at 37 °C. As we expected, the size of TRN remained constant 

in PBS buffer (Figure 4.3C). To our surprise, under reducing environment, TRN swelled 

from 108 nm to 627 nm in 30 min and further expanded to larger than 1200 nm in less 

than 2 h (Figure 4.3C, G, and I), achieving more than 1000-fold size enlargement (in 

volume), which is more than 10-fold faster than its di-copolymer counterpart 8. Besides 

its self-expansion in response to the increase of temperature and redox potential, DLS and 

TEM also revealed that the size of TRN was also sensitive to the change of pH. TRN 
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instantly expanded its size from 108 nm to 203 nm upon the decrease of pH from 7.4 to 

5.0, and then further increased to 360 nm in 16 h (Figure 4.3D and 4.3H).  

 

Figure 4.5 The Pc 4 release kinetics of TRN at different conditions. (A) Pc 4-TRNs were 
dialyzed against pH 5.0 and 7.4 buffer at 37 °C; (B) Pc 4-TRNs were first dialyzed 
against pH 5.0 buffer for 2 h and then against pH 7.2 buffer for 70 h with or without the 
addition of 10 mM GSH. Data represent mean ± SD, n=3. 
 

To verify that the stimuli triggered size enlargement of TRN will result in faster 

release of Pc 4, drug release assay was carried out in pH 7.4 and 5.0 buffers to mimic the 

extracellular and lysosomal environments, respectively. Figure 4.5A showed that TRN 

released only 13.6% of Pc 4 in pH 7.4 buffer over 3 days of incubation, indicating that 

TRN is a stable carrier during the circulation. As we expected the release of Pc 4 became 

much faster in the pH 5.0 environment (30.7% Pc 4 released in 24 h). To investigate the 

effect of redox potential sensitiveness of TRN on its payload release, TRN was first 

incubated in pH 5.0 medium for 2 h and then transferred to pH 7.2 medium supplemented 

with 10 mM GSH to mimic the process of TRN escaping from lysosome to cytosol. 

Figure 4.5B revealed that the addition of GSH significantly accelerated the drug 

releasing process. 
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Head and neck squamous cell carcinoma (HNSCC) was selected to explore the 

PDT efficacy of TRN because most HNSCC cases are localized. 14 In addition, the 

treatment for HNSCC should not compromise the function and cosmetic appearance of 

corresponding tissues. All these make PDT, which causing minimal scar and loss of 

function of treated sites, a better alternative for surgery to treat HNSCC. Sigma-2 

receptor is overexpressed in many cancers, including skin cancer, lung cancer, and breast 

cancer, and has been extensively explored as a target for tumor specific drug delivery. 

15,16 However, thus far, no research investigated the expression of sigma-2 receptor in 

head and neck cancer. The expression of sigma-2 receptor in HNSCC was evaluated with 

immunohistochemistry in a human tissue array. High density of brown staining in the 

tumor tissue (Figure 4.6A) and little staining in the normal tissue (Figure 4.6B) 

indicated that sigma-2 receptor does overexpress in human head and neck tumor tissue, 

which makes it a valid target for tumor specific drug delivery. The quantitative analysis 

of the DAB-stained tissues revealed that human HNSCC expressed > 3-fold of sigma-2 

receptor than normal tissues (Figure 4.6C). After that, we further confirmed that sigma-2 

receptor is expressed in UMSCC22A head and neck cancer cells by Western 

immunoblotting (Figure 4.6D). Thus, UMSCC22A cell line was selected to validate our 

hypothesis in vitro.  

To endow head and neck tumor targeting effect for TRN, a sigma-2 receptor 

targeting ligand, 4-methoxybenzoic acid (MBA), 16  was grafted onto PDA-PEG-

PNiPMA with the help of 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide (EDC) and 

N-hydroxysuccinimide (NHS) (Figure 4.2A).  MBA-Pc 4-TRNs with different MBA 

densities were fabricated by adjusting the molar ratio of MBA-PDA-PEG-PNiPMA to 
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PDA-PEG-PNiPMA. To investigate the targeting effect of MBA on the cellular uptake of 

Pc 4 loaded TRN, confocal microscopy was employed. Red fluorescence signal (Pc 4) 

was observed among all treatments (Figure 4.6E). Compared with free Pc 4, non-

targeted TRN showed similar capacity in carrying Pc 4 into UMSCC22A cells during 20 

h of incubation. As we expected, the functionalization of TRN with MBA significantly 

enhanced its cellular uptake. To further quantify the intracellular Pc 4 amount after 20 h 

of incubation, the cells were harvested and lysed to measure the intracellular Pc 4 

amount. MBA-TRN with 16% ligand density achieved about 1.8-fold of Pc 4 uptake 

compared with that of non-targeted TRN (Figure 4.6F). The higher the MBA density, the 

better its cellular uptake, which suggest that the modification of MBA did facilitate the 

sigma-2 receptor mediated endocytosis for Pc 4 loaded TRN. 

 
 
Figure 4.6 The expression of sigma-2 receptor in head and neck cancer and its effect on 
the cellular uptake of MBA-Pc 4-TRN.  The expression of sigma-2 receptor in normal 
tissue (A) and human head and neck cancer tissue (B).  Representative images shown.  
Sigma-2 receptor positive tissue areas were detected with immunohistochemistry and 
quantified as percent of total tissue and expressed as fold of normal tissue (mean ± SE, n 
>30, # p< 0.001) (C); The expression of sigma-2 receptor in UMSCC22A cell line 
detected by Western immunoblotting (D); Confocal images of UMSC22A cells treated 
with Pc 4 or Pc 4 loaded TRN (E). Cells were cultured with Pc 4 or Pc 4 loaded TRN 
(red) for 20 h. Cell nuclei were stained with DAPI (blue). Images from left to right were 
taken from DAPI, Pc 4, transmittance, and the overlay of the previous three channels; (F) 
Intracellular amount of Pc 4 for cells treated with Pc 4-TRNs containing different MBA 
densities (mean ± SD, n = 3). 
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Since TRN was taken up by cells via endocytosis, we assessed the sub-cellular 

localization of MBA-Pc 4-TRN in UMSCC22A cells after it entered cells by confocal 

microscopy. Cells were incubated with 200 nM Pc 4-TRN (blue) for 2, 3, and 20 h and 

subsequently co-loaded with LysoTracker Green (LTG, green) and tetramethylrhodamine 

methylester (TMRM, red) to label endosomes/lysosomes and mitochondria, respectively. 

After 2 h, the presence of small round green/light cyan spheres representing lysosomes 

indicate that Pc 4-TRN began to enter the lysosomes but very few co-localization of Pc 4-

TRN with mitochondria (red) was observed (Figure 4.7A). After 3 h, much more cyan 

spheres appeared, suggesting more TRN entered lysosomes; furthermore, the color of 

mitochondria turned from red to magenta, indicating strong co-localization between 

mitochondria and Pc 4 (Figure 4.7B). After 21 h, blue fluorescence became diffused, 

showing the expanding of TRN resulted in the release of Pc 4 (Figure 4.7C). Moreover, 

mitochondria exhibited stronger magenta fluorescence, indicating more Pc 4 transferred 

to mitochondria. It is also worth mentioning that we also observed some enlarged 

lysosome (cyan dots in Figure 4.7B and 4.7C), suggesting the expanding of TRN inside 

the lysosome during its intracellular traffic. To further quantitatively monitor the 

intracellular trafficking of TRN, images (n > 15) taken at different time points were 

analyzed by ImageJ to calculate the Pearson’s co-localization coefficient for lysosome 

and Pc 4 (Pc 4/L), as well as Pc 4 and mitochondria (Pc 4/M). Figure 4.7D shows that 

more TRNs entered lysosomes after 2 h of incubation than that of 1 h (p< 0.05). The 

stronger co-localization of Pc 4 and mitochondria occurred after 3 h of incubation (p< 

0.01). Since more TRN entered cancer cells (Figure 4.8) after 20 h of incubation, the co-
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localization of Pc 4/L further increased; as a consequence, more Pc 4 partitioned to 

mitochondria after it was freed from TRN. 

 

Figure 4.7 Subcellular co-localization of Pc 4 loaded TRN (red) with lysosome and 
mitochondria recorded at 2 h (A), 3 h (B), and 21 h (C) by confocal microscopy. 
LysoTracker Green (LTG, green) and tetramethylrhodamine methylester (TMRM, red) 
were used to label endosomes/lysosomes and mitochondria, respectively. Scale bar in (C) 
is 10 μm; (D) The trend for the Pc 4 co-localizing with lysosome (Pc4/L) and 
mitochondria (Pc 4/M) (mean ± SD, n> 15; * p< 0.05; # p< 0.01); (E) The PDT efficacy 
in killing UMSCC22A cells 12 h after irradiation (mean ± SD, n=3; # p< 0.01); (F, G) 
Biodistribution of MBA-Pc 4-TRN in vivo. Xenografts were created with UMSCC22A 
cells in nude mice. MBA-Pc 4-TRN was administered via tail vein. Mice were imaged 
before (F, left) and 72 h after drug administration (F, right). At 96 h, organs and tumor 
were dissected from the mouse treated with MBA-Pc 4-TRN and imaged ex vivo (G). 
Representative images shown.     
          

To validate whether the enhanced uptake of Pc 4 and effective mitochondria 

targeting could be translated into better PDT efficacy in cell killing, cell viability after 

PDT was assessed by propidium iodide (PI) fluorometry. 10 UMSCC22A cells were 

incubated with non-targeted and targeted Pc 4-TRN for 20 h prior to receiving PDT. 

Cells treated with the same dose of nanoparticle receiving no light were employed as 

control. Figure 4.7E showed that PDT of MBA-Pc 4-TRN killed almost all cancer 

cells12 h post irradiation, while only 44.5% cells were killed in the non-targeted TRN 
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treated group. Combining cellular uptake data from Figure 4.6E and 4.6F, we concluded 

that better cellular uptake of Pc 4 did translate into better PDT cell killing efficacy. 

Furthermore, no cytotoxicity appeared in either TRN groups without applying light 

irradiation, indicating MBA-Pc 4-TRN and nano-carrier itself were safe.  

 

Figure 4.8 Cellular uptake of Pc 4 after 4 and 20 h of culture. Data represent mean ± SD, 
n=3. 
 

To evaluate the tumor specific targeting effect of MBA-Pc 4-TRN, head and neck 

cancer xenograft mice model was employed. Mice were administered with MBA-Pc 4-

TRN through the tail vein injection. Fluorescence images were taken with an in vivo 

fluorescence imaging system. At 72 h post-injection, MBA-Pc 4-TRN signal mainly 

appeared in the regions of tumor and liver, some in the bladder but very little in other 

tissues (Figure 4.7F). The ex vivo images obtained from dissected organs at 96 h post Pc 

4 injection revealed that the majority of MBA-Pc 4-TRN was still retained in the tumor, 

while liver showed much less fluorescence signal compared to that of 72 h time point 

(Figure 4.7G). As expected, spleen, heart, lungs and kidney retained very little Pc 4, 

which is significantly different from other Pc 4 loaded carrier systems. 17,18  
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PDT causing minimal scar and loss of function of treated sites, has been proposed 

as an alternative for surgery to treat HNSCC. However, the clinical application of PDT 

has been hindered due to the poor water solubility and non-specific skin retention of PS, 

as well as low PDT efficacy. To address that, we designed a thermal, pH, and redox 

potential triple-responsive expansile nanogel system (TRN), which swells at a 

temperature higher than its transition temperature, acidic pH, and reducing environment. 

In vivo biodistribution experiment revealed that TRN could specifically target tumor 

tissue with the synergetic outcome of EPR effect and sigma-2 receptor targeting effect 

(Figure 4.7G). The immunohistochemistry analysis of HNSCC human tissue array found 

that human HNSCC expressed > 3-fold of sigma-2 receptor than normal tissues (Figure 

4.6C). In addition, Western immunoblotting confirmed that sigma-2 receptor is expressed 

in UMSCC22A head and neck cancer cells (Figure 4.6D), which makes UMSCC22A 

cell line a valid model for the study of sigma-2 receptor targeted therapy. Based on the 

experimental observations, we proposed the following pathway for MBA-Pc 4-TRN: (i) 

MBA-Pc 4-TRN entered head and neck cancer cells by sigma-2 receptor mediated 

endocytosis with the help of sigma-2 receptor ligand, MBA (Figure 4.6E and F); (ii) 

After that, MBA-Pc 4-TRN was transferred to endosome and then lysosome, where it has 

low pH. Partial of Pc 4 could be released from TRN due to the acidic pH (Figure 4.5A); 

(iii) Due the proton sponge effect of pyridine segments in PDA and the expansile 

property of TRN at low pH (Figure 4.3D and H), TRN and freed Pc 4 could escape from 

lysosome and enter cytosol; (iv) Since cytosol has an elevated GSH concentration, which 

can trigger the dramatic size expansion of TRN (Figure 4.3C, G, I, and 4.7B, C) and 

induce the release of Pc 4 (Figure 4.5B); (v) Due to its hydrophobicity, Pc 4 
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spontaneously transferred to mitochondria (Figure 4.7C and D). Therefore, MBA-Pc 4-

TRN exhibited enhanced cell killing effect after PDT (Figure 4.7E).  

Due to the advantages of PDT mentioned above, several of PS nano-carrier 

systems have been developed for HNSCC treatment [27-32].17-21 Among them, only a 

few were evaluated in vivo.  Wang et al. showed that an integrin β1 binding fibronectin-

mimetic peptide increased the accumulation of Pc 4 loaded iron oxide nanoparticle in 

HNSCC tumor19. However, this strategy also caused significantly higher Pc 4 retention in 

lung, liver, kidney, and skin tissues.  In order to shorten the waiting time between drug 

administration and PDT treatment, Cheng et al. attached Pc 4 to gold nanoparticles 

through N-Au bonds.18 Although the waiting period was reduced from 2 days to 2 h, this 

gold-Pc 4 system still couldn’t solve the high lung and kidney retention associated with 

Pc 4. Since EGFR is overexpressed in most HNSCC, Master et al. functionalized PCL-

PEG micelles with a EGFR targeting peptide, GE11. With the help of GE11, the targeted 

micelles exhibited higher cellular uptake and cell killing effect than the non-targeted 

ones.20 Though, the high skin Pc 4 retention issue remaining unaddressed. To tackle the 

non-specific retention of Pc 4, we integrated a triple-responsive nanogel system with a 

sigma-2 receptor targeting ligand, MBA. MBA functionalized Pc 4-TRN showed much 

better cellular uptake than Pc 4-TRN and killed more head and neck cancer cells after 

PDT. Because the existence of a dense PEG layer on the surface of TRN, which prevents 

non-specific bindings, only negligible amount of Pc 4 retained in lung, kidney, and other 

tissues. Therefore, MBA-Pc 4-TRN achieved HNSCC tumor specific targeting effect.   

 

 



108 

4.4 CONCLUSIONS 

In summary, a thermal, pH, and redox potential triple-responsive expansile 

nanogel system (TRN) has been developed. The transition temperature of TRN could be 

tuned from 30.5 °C to 47 °C by adjusting its crosslinking density. Due to the synergistic 

effect of its redox potential and thermal responsiveness, TRN could expand from 108 nm 

to over 1200 nm within 2 h in a reducing environment at body temperature, achieving 

more than 1000-fold size enlargement (in volume). Pc 4 loaded TRNs are stable (both 

size and retaining loaded drug) in a physiological condition, while quickly releasing Pc 4 

at lysosomal pH and reducing cytosol environment attributed to its rapid swelling 

response upon the trigger of acidic pH, high temperature, and elevated GSH. MBA 

functionalized Pc 4-TRN could effectively enter UMSC22A cancer cells with the help of 

sigma-2 receptor and transfer Pc 4 to its target, mitochondria. Consequently, PDT of 

MBA-Pc 4-TRN showed significant higher toxicity than its non-targeted counterpart and 

killed almost all cancer cells. Furthermore, in vivo biodistribution study proved that 

MBA-Pc 4-TRN could effectively target head and neck tumor tissue and be retained there 

for 4 days. Based on the unique responsiveness and promising in vitro and in vivo results 

from TRN, further studies will focus on the mechanisms for TRN escaping from 

lysosome and employing the system for in vivo tumor growth inhibition effect for head 

and neck cancer.  
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CHAPTER 5 

MUSSEL INSPIRED PLGA/POLYDOPAMINE CORE-SHELL NANOPARTICLE FOR 

LIGHT INDUCED CANCER THERMOCHEMOTHERAPY 

5.1 INTRODUCTION 

Photothermal therapy (PTT) has been extensively explored for cancer treatment 

by coupling localized near-infrared (NIR) irradiation and locally accumulated 

photothermal converting agents (PTCAa).1  By far, most developed PTCAs are made of 

metal based nanostructures, such as gold nanorod, gold nanocage, CuSx nanocrystal.2,3   

By manipulating their shape, size, and geometry, the localized surface plasmon resonance 

peak of these nanostructures can be tuned to a tissue transparent window (650-900 nm), 

where light can penetrate deeply.4 Because of that, upon NIR irradiation, PTCAs generate 

heat and can be applied for photothermal therapy.3,5 Due to the slow or non-degradable 

nature of these PTCAs, they are retained in many organs after finishing their mission. 

The subsequently long-term safety concerns have thwarted their clinical PTT 

application.6  

Poly(lactic-co-glycolic acid) (PLGA) is a FDA approved biodegradable material, 

which has been extensively explored as a drug carrier for cancer targeted therapy.7 Since 

PLGA is not responsive to pH and redox potential, the release of payload from PLGA 

based carriers is mainly controlled by the degradation rate of the polymer. To endow light 

triggerable release capacities to these carriers, PLGA nanoparticles have been coated or 
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embedded with various metal based PTCAs.8 However, the inherited non-degradable 

nature of those PTCAs remains a challenge for their clinical translation.   

Inspired by the robust adherent property of mussel, polydopamine recently has 

been coated onto various surfaces to facilitate the functionalization of the templates.9 

Hereby, we developed a biodegradable photothermal converting nanomaterial based on a 

PLGA/polydopamine core/shell structure (Figure 5.1A). To be more effective in killing 

cancer cells, doxorubicin (DOX) was encapsulated into the nanoparticle. We expect that 

NIR irradiation can induce photothermal effect, and subsequently trigger the release of 

the encapsulated DOX to exhibit both photothermal therapy and chemotherapy for cancer 

(Figure 5.1B).  

5.2 EXPERIMENTS 

5.2.1 Materials and Reagents 

Poly(lactic-co-glycolic acid) (PLGA, 50/50, 16 kDa) was purchased from 

Lakeshore Biomaterials, Inc. (Birmingham, AL, USA).  Polyvinyl alcohol (PVA, 

Mw=9000-10000 Da), (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT), Poly(ethylene glycol) methyl ether thiol (PEG-SH, Mn= 2000 Da), Propidium 

Iodide (PI), Dopamine hydrochloride were purchased from Sigma Aldrich Chemical Co. 

(St. Louis, MO, USA). Penicillin (10,000 U/mL), streptomycin (10,000 mg/mL), 0.25% 

trypsin-EDTA, Dulbecco's Modified Eagle Medium (with L-glutamine) and fetal bovine 

serum (FBS) were obtained from American Type Culture Collection (ATCC, Manassas, 

VA, USA). Doxorubicin (DOX) was purchased from AK Scientific, Inc. (Union City, 

CA, USA). Cetuximab was acquired from ImClone LLC (Princeton, NJ, USA). Calcein 

AM was purchased from Thermo Fisher Scientific, Inc. (Waltham, MA, USA). 
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5.2.2 DOX@PLGA nanoparticle fabrication 

DOX encapsulated PLGA nanoparticle was fabricated by emulsion method. In 

briefly, 5 mg DOX was firstly dissolved in 1 mL CH3OH with 25 μL triethylamine and 

mixed with 5 mL CH2Cl2 containing 200 mg PLGA. The mixture solution was then 

poured into 20 mL 5% PVA solution on ice, followed by ultrasonication for 15 min 

(Misonix Sonicator, XL-2015, 80% power). After sonication, the emulsion solution was 

added into 100 mL ddH2O and stirred overnight to evaporate the organic solvent. The 

DOX@PLGA nanoparticle was firstly centrifuged at 1000 g for 10 min to remove big 

aggregates and then centrifuged at 16000 g for 15 min to collect the particles. The 

particles were washed by ddH2O for three times to remove excessed PVA and non-

encapsulated DOX and redispersed in 10 mL ddH2O and keep at 4 oC for further use.    

5.2.2 Dopamine coating  

The coating of dopamine on the DOX@PLGA nanoparticle was according 

previous reported.10 Briefly, 6 mg DOX@PLGA was centrifuged and redispersed in 12 

mL tris buffer (10 mM, pH 8.5) with 6 mg dopamine. The mixture was kept stirring for 3 

h at room temperature in an opened glass vial. The solution turned its color from 

yellowish brown to dark brown, indicating the successful coating of polydopamine on the 

DOX@PLGA nanoparticle. Finally, the DOX@PLGA/PD nanoparticle was collected by 

centrifuging at 16000 g for 10 min and washed for three times and redispersed in 6 mL 

tris buffer (20 mM, pH 8.5) for the subsequent surface modification.  

5.2.3 PEG and anti-EGFR antibody decoration  

DOX@PLGA/PD nanoparticle suspension (2 mL) prepared above was mixed 

with 4 mg thio-PEG2000 or 4 mg Anti-EGFR antibody (Cetuximab) in 2 mL PBS buffer, 
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respectively, and stirred for 30 min. The pH of mixture was immediately adjusted to 7.0. 

The PEG and EGFR antibody decorated nanoparticles were collected by centrifuging at 

16000 g for 10 min at 4 oC and washed 2 times to yield DOX@PLGA/PD-PEG and 

DOX@PLGA/PD-C. The resulting nanoparticles were redispersed in 500 µL ddH2O or 

DMEM culture medium and stored at 4 oC.  For EGFR antibody conjugation efficiency 

measurement, the supernatant of EGFR antibody decorated nanoparticle was collected 

and the unconjugated EGFR antibody was quantified by Bio-Rad assay and was used to 

calculate the EGFR conjugation efficiency. The result revealed that the EGFR antibody 

conjugation efficiency was about 60%.  

5.2.4 Nanoparticle characterization  

The DOX concentration in the nano-suspension was measured by fluorescence 

intensity (Ex=485 nm, Em=595 nm) by dissolving nanoparticles in DMSO and calculated 

according pre-known calibration curve. The UV-Vis spectrum of DOX@PLGA 

nanoparticle before and after dopamine coating was recorded. To quantify the loading 

efficiency and content, nanoparticles were freeze dried to get the weight amounts. The 

morphology of DOX@PLGA/PD, DOX@PLGA/PD-PEG and DOX@PLGA/PD-C were 

observed by TEM and the hydrodynamic size and zeta potential of nanoparticles were 

measured by DLS. For DLS measurement, nanoparticles were dispersed in 1 mM PBS 

7.4 (0.2 mg/mL). The glass transition temperatures of the nanoparticles were measured 

by differential scanning calorimetry (Q2000, TA Instruments, heated from 25 oC to 80 oC 

with a heat flow rate of 1 oC/min).  
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5.2.5 Serum stability 

To investigate the serum stability, DOX@PLGA, DOX@PLGA/PD-PEG, and 

DOX@PLGA/PD-C were diluted in 10% FCS (equivalent DOX concentration was 15 

μg/mL) and incubated at 37 oC up to 7 days. The sizes of the nanoparticles were 

monitored by DLS to evaluate their stability in serum containing buffer.  

5.2.6 Photothermal conversion and efficiency calculation 

To test the photothermal effect of DOX@PLGA/PD-PEG nanoparticles, 50 µL 

nanoparticles with DOX concentration equal to 2, 5, 10, 25 and 50 µg/mL were irradiated 

with a 808 nm NIR laser (2.83 W/cm2, Scorpius-D IR Portable Laser, Laserglow 

Technologies) for 10 min.  The temperatures of the nanoparticles were measured every 1 

min by FLIR thermal camera (FLIR i7, FLIR® Systems, Inc). For photothermal 

conversion efficiency measurement, DOX@PLGA/PD-PEG nanoparticle (50 µL, DOX 

equivalent to 10 µg/mL) was firstly irradiated at 808 nm for 9 min, and the temperature 

was record every 10 sec. After that, the laser was removed and the decreasing of the 

temperature of the nanoparticle was continued to measure every 10 s up to 9 min.  Finally 

the photothermal conversion efficiency (η) was calculated according previous report as 

16.9% for DOX-PLGA/PD-PEG. 

5.2.7 In vitro DOX release 

The release profile of the DOX from the nanoparticles were measured at pH 5.0 

and pH 7.4 with or without laser irradiation. In brief, DOX@PLGA/PD-PEG 

nanoparticle was centrifuged and re-dispersed in 500 µL acetate buffer (10 mM, pH 5.0) 

and PBS buffer (10 mM, pH 7.4), respectively, and incubated at 37 oC. Both buffers were 
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supplemented with 2% Tween 80 to create a sink condition by improving the solubility of 

DOX. The initial DOX concentration in the suspension was 20 µg/mL. Each pH group 

included six parallel samples. At pre-determined time points, all samples were 

centrifuged at 16000 g for 10 min. After that, 250 µL supernatants were carefully 

retrieved and refilled with 250 µL fresh buffers to redisperse the nanoparticles. At 24 h 

and 32 h post incubation, three samples in each pH group were irradiated under 808 nm 

laser for 10 min while the other three samples were kept at 37 oC. All samples were 

continuously incubated up to 72 h. After that, the releasing of DOX from the 

nanoparticles were quantified by a microplate reader ((Ex=495 nm, Em=595 nm, 

Beckman Coulter DTX 880 Multimode Detector, Beckman Coulter, Inc).  

5.2.8 Confocal microscopy 

UMSCC 22A cells (200,000cells/dish) were seeded in 35mm2 Petri dishes (Mat 

Tek, MA, USA) overnight. After that, DOX, DOX@PLGA/PD-PEG and 

DOX@PLGA/PD-C nanoparticles were added into the dishes at the DOX equivalent 

concentration of 2 μg/mL. In order to study the effect of free anti-EGFR antibody on the 

uptake of DOX@PLGA/PD-C nanoparticle, cells were pretreated with free anti-EGFR 

antibody (200 μg/mL) for 30 min before adding the nanoparticles. All dishes were then 

incubated at 37 oC for 3 h. After that, cells were washed by PBS (3×), fixed with 

formaldehyde (4.5 % in PBS), and stained with Hoechst 33342 (final concentration 

1µg/mL). Cells were analyzed under a confocal microscope (LSM 700, Carl-Zeiss Inc.).  

5.2.9 Flow cytometry  

UMSCC 22A cells (300,000cells/well) were seeded in 6-well plates overnight. 

After that, DOX, DOX@PLGA/PD-PEG and DOX@PLGA/PD-C nanoparticles were 
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added at the DOX equivalent concentration of 1 μg/mL. In order to investigate the effect 

of EGFR receptor on the cellular uptake of DOX@PLGA/PD-C nanoparticle, cells were 

pretreated with free anti-EGFR antibody (200 μg/mL) 30 min before adding 

DOX@PLGA/PD-C nanoparticles. The plate was incubated at 37 oC for 3, 6 and 12 h 

respectively. Then cells were washed, trypsinized and resuspended in PBS. DOX positive 

cell population was quantified at Ex=488 nm, Em=585 nm using flow cytometry (BD 

Accuri C6, BD Biosciences). 

5.2.10 Live & dead cell assay 

To study the photothermal cytotoxicity of the nanoparticles, Live and Dead cell 

assay was introduced. In briefly, UMSCC 22A cells (300,000cells/well) were seeded in 

6-well plates and incubated under a humidified atmosphere of 95/5% air/CO2 until 100% 

confluence. Then free DOX, PLGA/PD-PEG, DOX@PLGA/PD-PEG, and 

DOX@PLGA/PD-C were added to the plates. The equivalent DOX concentration was 10 

μg/mL and the absorbance at 808 nm for all nanoparticles were kept the same. Cells were 

incubated at 37 oC for another 2 h, and exposed to the 808 nm NIR laser for 30 min. Here 

we used longer irradiation time compared to the irradiation time in MTT assay because 

we wanted to make sure that obvious photothermal cytotoxicity could be observed 

immediately after laser irradiation. After that, cells were gently washed by PBS (2×) to 

avoid washing off dead cells. Calcein AM (0.2 μM) and propidium iodide (PI, 25 μg/mL) 

mixture solution (500 μL) was added and kept at room temperature for 30 min and then 

cells were observed directly by fluorescence microscopy (Olympus IX81, Olympus 

America Inc).  
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5.2.11 In vitro cytotoxicity  

The cytotoxicity of nanoparticles were evaluated by MTT assay. UMSCC 22A 

cells were seeded in 96-well plate (20,000 cells/well) for 24 prior to the study.  Then free 

DOX, DOX@PLGA/PD-PEG, and DOX@PLGA/PD-C with DOX concentration 

equivalent to 2, 5 and 10 μg/mL were added.  The cells were then incubated 3 h in 95/5% 

air/CO2 at 37 oC, following the irradiation under the 808 nm laser for 10 min. After that, 

all wells were washed 2 times and replaced with fresh culture medium and kept 

incubation for another 24 h. Finally, MTT reagent (100 μL, 5 mg/mL) in medium) was 

added and incubated for 4h, following the addition of MTT stop solution and the 

measurement of the optical density of the medium using a microplate reader (ELX808, 

Bio-Tech Instrument, Inc) at λ = 595 nm. 

5.2 12 Animal experiment 

All animal experiments were conducted in accordance with NIH regulations and 

approved by the Institutional Animal Care and Use Committee of the University of South 

Carolina. 

Tumor model 

UMSCC 22A cells (3×106 cells in 100 μL DMEM medium) were inoculated 

subcutaneously in female Balb/c nude mice (8-10 week old, ~20 g, Jackson Laboratory). 

The tumor volume were measured by a digital caliper and calculated according to the 

following formula: Tumor volume = (tumor length) × (tumor width)2/2. When the tumor 

reached to 50 mm3, free DOX and DOX@PLGA/PD-C were intratumorally injected (40 

μL, DOX concentration equivalent to 15 μg/mL). For control group, PBS was injected. 



119 

Mice were exposed to a 808 nm laser irradiation (2.78 W/cm2) 3 h post injection for 10 

min. The temperature of the mice during the irradiation were recorded by FLIR thermal 

camera. The tumor volumes (V) of the mice were measured every other day for 24 days. 

The relative tumor volume expressed as V/V0 (V0 was the tumor volume when the 

treatment was initiated) was used to represent the tumor size change during the whole 

treatment process.  After 24 days, the mice were sacrificed and the blood, tumor, liver, 

heart, lung, kidneys and spleen were collected for further analysis. All organs were firstly 

fixed in 10% neutral buffered formalin for 48 h and then washed with PBS and finally 

kept in 70% ethanol at 4 oC.   

Blood analysis  

Whole blood (50 μL) of the mice were firstly collected in heparinized tubes and 

analyzed for white blood cells, red blood cells, neutrophils, etc. (VetScan HM5, Abaxis, 

Inc.).  

TEM analysis for Heart tissue 

To study the cardiotoxicity of DOX, hearts from the mice were analyzed by TEM. 

The formalin fixed samples were further fixed with 1% perosmic oxide for 2 h at 4 oC, 

washed by water and then dehydrated in a serial of alcohol solutions, embedded, and 

sliced with the thickness between 50 and 70 nm. TEM analysis was performed on Hitachi 

H8000 operating at 200 kV.  

Histological Examinations 

The formalin fixed organs were embedded in OCT gel, sectioned into ~5 μm, 

stained with hematoxylin and eosin (H&E) and analyzed under light microscopy (Leica 
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DM1000 LED, Leica Microsystems Inc.). The histology was performed in a blinded 

fashion by professional personnel in the University of South Carolina. 

5.3 RESULTS AND DISCUSSION 

 

 

Figure 5.1 Schematic illustration of the fabrication of epidermal growth factor receptor 
targeted mussel inspired nanoparticle (A), and its proposed action pathway (B). TEM 
images of DOX@PLGA (C-D), DOX@PLGA/PD (E-F), and DOX@PLGA/PD after 
NIR irradiation (G-H). Scale bars are 100 nm in (C-H).  
 

The DOX loaded PLGA nanoparticle (DOX@PLGA) was fabricated according to 

our published emulsion method,11 and then coated with polydopamine (PD) under weak 

basic condition as shown in Figure 5.1A.The dark rings in Figure 5.1E and 5.1F proved 

the formation of a PD layer on the PLGA shell, which is about 13.38 nm. To enhance the 

stability and cancer cell targeting effect of the DOX@PLGA/PD nanoparticles, 

polyethylene glycol (PEG) and anti-EGFR antibody (Cetuximab) were conjugated onto 

the surface of the polydopamine (PD) (Figure 5.1A), respectively. Dynamic light 

scattering (DLS) found that the size of DOX@PLGA is about 110 nm (Figure 5.2A). 
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The coating of PD layer increased the size of DOX@PLGA/PD to 135 nm. The addition 

of PEG protection layer and Cetuximab slightly increased the size of DOX@PLGA/PD-C 

nanoparticles, which coincides with the observation of TEM (Fig. 5.1). Due to the high 

reactiveness of PD, PD based nanoparticle could react with serum protein and induce 

aggregation. To evaluate the stability of DOX@PLGA/PD-C nanoparticle during blood 

circulation, the size of the nanoparticle in 10% serum containing medium was monitored 

with DLS. Due to the existence of PEG protection layer, DOX@PLGA/PD-C was stable 

in culture medium containing 10% FBS (Figure 5.2B), and no obvious size change and 

aggregation were observed after one week of incubation. Zetasizer found that 

DOX@PLGA/PD-C carries negative surface charge (-14.6 ± 0.495). 

 

Figure 5.2 Physical properties of nanoparticles fabricated based on PLGA polymer. 
PLGA: PLGA nanoparticle; PLGA/PD: polydopamine coated PLGA nanoparticle; 
DOX@PLGA: DOX encapsulated PLGA nanoparticle; (A) The hydrodynamic size 
distributions of DOX@PLGA, DOX@PLGA/PD and DOX-PLGA/PD-C. (B) Serum 
stability of DOX@PLGA, DOX@PLGA/PD and DOX@PLGA/PD-C. Nanoparticles 
were dissolved in 10% FCS and incubated at 37 oC for 7 days. (C) UV-Vis spectra of 
PLGA, PLDA/PD, DOX@PLGA and DOX@PLGA/PD. (D) The glass transition 
temperatures (Tg) of PLGA polymer, DOX@PLGA and DOX@PLGA/PD measured by 
DSC.  
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PLGA nanoparticle has little absorbance in the NIR region, while PD has been 

reported showing strong absorbance in that window.12  The absorbance of PLGA 

nanoparticle shifted to the longer wavelength end after the coating of polydopamine 

(Figure 5.2C). Differential scanning calorimetry (DSC) revealed that PD coating 

significantly increased the glass transition temperatures (Tg) of PLGA nanoparticle from 

39.42 To 42.97 Ԩ (Figure 5.2D), suggesting that PLGA/PD nanoparticle could be a 

temperature sensitive carrier for targeted drug delivery. 

It has been reported that polydopamine nanoparticle can generate heat upon NIR 

irradiation.12 The coating of PD on the surface of PLGA nanoparticle boosted its 

absorbance in the NIR region (Figure 5.2A). To evaluate whether this increased 

absorbance in NIR region would endow PLGA/PD the ability to generate enough heat to 

elevate the solution temperature, the PLGA/PD nano-suspensions of different 

concentrations were irradiated with NIR laser (808 nm, 2.83 W/cm2) for 10 min at 

predesigned time intervals and their temperatures were monitored with a FLIR i7 thermal 

imaging camera and recorded every minute. Figure 5.3A revealed that PLGA/PD could 

effectively heat the media and exhibited a concentration-dependent photothermal effect. 

At the OD of 0.75, PLGA/PD nanoparticle quickly heated the solution temperature to 45 

Ԩ, indicating PLGA/PD is a good photothermal converting material. Based on the 

heating and cooling cycle shown in Figure 5.3B, we found the photothermal converting 

efficiency is 16.9%, just a slightly lower than that of gold nanorod (~22%) which are 

widely used for cancer therapy. Interestingly, for those experiments medium temperature 

reached higher than 60 Ԩ, we also noticed that medium temperature quickly reached its 

summit within 3 minutes and then exhibited as a plateau (Figure 5.3A), which is 
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different from most developed photothermal converting materials, their media 

temperatures always raise when the NIR irradiation is applied.13 This unique dose 

dependent-peak temperature feature could be critical for photothermal therapy, during 

which burning adjacent healthy tissue should be avoided.  To observe the morphology 

change after the NIR irradiation, we further examined DOX@PLGA/PD nanoparticles 

with TEM. Compared with the structure shown in Figure 5.1F, the size of the particles 

shrank after the irradiation (Figure 5.1H). Furthermore, the core/shell structure in Figure 

5.1F was compromised (Figure 5.1H), indicating the breakage of the PD shell. We 

postulate that contraction of the particle size was due to the melting of the nanoparticle 

after it reaches Tg during the heating process, while the breakage of the PD shell was 

caused by the heterogeneous heat stress responses between the PLGA core and PD shell. 

To investigate whether the coating of PD on the surface of PLGA nanoparticle 

could affect the release profile of its payload, anticancer drug doxorubicin (DOX) was 

adopted as a model drug. DOX@PLGA/PD nanoparticle was suspended in sodium 

acetate buffer (pH 5.0) and phosphate buffer (PBS, pH 7.4) to mimic the environments in 

the cytosol and lysosome, respectively. Figure 5.3C showed that DOX@PLGA/PD 

released 40.85% and 57.63% of its payload within 24 h of incubation in PBS and sodium 

acetate buffer, respectively. As we already proved that PLGA/PD nanoparticle could 

efficiently convert NIR laser irradiation into heat, we further investigated the effect of 

NIR irradiation on its release kinetics. Remarkably, Figure 5.3C showed that two pulses 

of 10 min of NIR irradiations induced 30% more DOX release for both pH conditions.  
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Figure 5.3 The photothermal effect of DOX@PLGA/PD on medium temperature 
elevation (A, B), drug release kinetics (C), and cell viability (D). Real-time temperature 
elevation of DOX@PLGA/PD at different concentrations after 808 nm irradiation (A). 
OD represents the absorbance at 808 nm. DOX@PLGA/PD nano-suspensions during 1 
cycle of NIR irradiation and cooling (B). Nanoparticles were irradiated with a 808 nm 
NIR laser for 10 min (2.83 W/cm2) and then cooled down for 10 min. DOX release 
profiles at different pHs with or without laser irradiation (C).  Arrows indicate the 
application of NIR irradiation. The live/dead cell staining after receiving different 
treatments coupled with or without NIR irradiation (D).  
 

To investigate the cell killing effect of NIR irradiation coupled with 

DOX@PLGA/PD on the head and neck cancer cells, live and dead cell assay was carried 

out immediately after the irradiation. As we expected, for cells co-incubated with 

PLGA/PD nanoparticle, nearly all non-irradiated cells were green (Figure 5.3D), while 

NIR irradiated cells were red. The distinct irradiation boundary as shown in red/green in 

the well treated with PLGA/PD nanoparticle and NIR irradiation suggests that NIR 

irradiation induced photothermal effect could effectively kill cancer cells while 



125 

PLGA/PD nanoparticle itself is non-toxic. Due to the relative short incubation time, most 

cells treated with DOX were alive. Therefore, no significant difference was observed 

between the cells treated with DOX@PLGA/PD and PLGA/PD.  

EGFR receptor is overexpressed in many types of cancer, including colon cancer, 

lung cancer, glioblastoma multiforme, and head and neck cancer.14 To enhance cellular 

uptake of DOX@PLGA/PD nanoparticles for UMSCC 22A head and neck cancer cells, 

EGFR receptor antibody, Cetuximab, was conjugated onto the surface of the particle. 

Confocal microscopy found that more red fluorescence signal in cells treated with 

Cetuximab conjugated DOX@PLGA/PD-C than its non-targeted counterpart (Figure 

5.4A). In addition, the block of free Cetuximab significantly decreased the uptake of 

DOX@PLGA/PD-C nanoparticles, which EGFR receptor mediated endocytosis. The 

EGFR receptor mediated cellular uptake of DOX@PLGA/PD-C nanoparticles and 

blocking effect of free Cetuximab were also observed by flow cytometry (Figure 5.4B). 

It is worthy to mention that free DOX entered cancer cells faster than the 

DOX@PLGA/PD-C nanoparticles (Figure 5.4B).   

To investigate whether the EGFR receptor enhanced cellular uptake of 

DOX@PLGA/PD-C nanoparticles and photothermal effect of the nanoparticle can be 

translated into higher efficacy in killing cancer cells, cell proliferation assay was 

employed. Figure 5.4C revealed that empty PLGA/PD nanoparticle itself is almost non-

toxic, while effectively killing cancer cell when coupled with NIR irradiation. It is worth 

noting that the effect of NIR irradiation only became significant when PLGA/PD at the 

DOX corresponding of 5 μM or higher, at which PLGA/PD could generate enough heat 

to ablate cancer cells and augment drug release. The EGFR targeted nanoparticles 
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showed much higher efficacy in killing UMSCC 22A cells than their non-targeted 

counterparts. As expected, NIR irradiation significantly boosted the potency of 

DOX@PLGA/PD and DOX@PLGA/PD-C, which reflects the combination effect of 

photothermal effect and its subsequent induced quicker drug release. Free DOX exhibited 

higher cell killing effect than other treatments except at 10 μM dose.    

 

 

Figure 5.4 Confocal images (A), flow cytometry spectra (B), and cytotoxicity (C) of 
DOX@PLGA/PD-C treated UMSCC 22A cells.  (A) All scale bars equal to 50 μm. Cells 
were co-incubated with various nanoparticles for 3 h before the MTT assay. Cells 
received NIR irradiation for 10 min, 2.83 W/cm2. Data expressed as mean ± SD (P < 0.05 
*; P < 0.01 #). 
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 Figure 5.5 Tumor response after receiving different treatments. The tumor model was 
established by s.c. injection of UMSCC 22A cells into the flanks of mice. (A) Thermal 
image of mice after receiving NIR irradiation over 10 min (2.83 W/cm2). (B) The tumor 
volume change profiles of mice after receiving different treatments. Data were expressed 
as mean ± SD, *P < 0.05. Insert shows the representative images of tumors harvested 
from different treatment groups at the end of the experiment. (C)  The body weight 
curves of tumor-bearing mice after receiving different treatments. (D) Representative 
images of developed tumors after receiving DOX treatment. (E) Representative images of 
developed tumors after receiving DOX@PLGA/PD-C NIR treatment. Circles in (D) and 
(E) indicate the locations of tumor. 
 

To investigate the tumor growth inhibitory effect of EGFR targeted 

DOX@PLGA/PD coupled with NIR irradiation, a subcutaneous head and neck cancer 

mouse model was introduced. To maximize the therapeutic effect of the treatment, free 

DOX and EGFR targeted DOX@PLGA/PD nanoparticles were administrated 

intratumorally. The thermal images shown in Figure 5.5A indicate that EGFR targeted 
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PLGA/PD could quickly elevate the temperature of tumor tissue to 55 Ԩ within 2 min. 

Different from other photothermal systems,15 the tissue temperature was maintained 

constant during the whole course of NIR irradiation.  The tumor mass in the 

DOX@PLGA/PD-C coupled with NIR irradiation treatment group collapsed and formed 

a scar 2 days post treatment (Figure 5.5E). The scar gradually disappeared and the 

original tumor did not recur during a 24 days period (Figure 5.5B and 5.5E). Contrary to 

its strong potency shown in the in vitro study, free DOX treatment initially only slightly 

reduced tumor size (Figure 5.5B and 5.5D). Furthermore, those tumors gradually 

bounced back 10 days post treatment. As expected, the non-treated tumors grew to 14 

times of its initial size at the end of the experiment (Figure 5.5B). We did not observe 

significant body weight change in all groups (Figure 5C). The negligible tumor mass in 

Figure 5.5B and 5.5E proved that DOX@PLGA/PD-C coupled with NIR irradiation is 

an effective approach for eradicating head and neck tumor.   

Cardiotoxicity is a major side effect associated with DOX based chemotherapy.16 

To evaluate the safety of DOX@PLGA/PD-C coupled with NIR irradiation, hearts in the 

treated groups were collected and processed for TEM observation. TEM image (top panel 

of Figure 5.6) revealed that the membrane integrity and ordered structure of 

mitochondria in the heart tissue from the mice receiving free DOX treatment have been 

significantly compromised. To our surprise, no obvious structure abnormalness was 

observed in the heart tissue in the DOX@PLGA/PD-C coupled with NIR irradiation 

treatment group. Furthermore, no histopathological changes were observed in the liver 

tissues among all treatment groups. Similarly, blood components analysis did not detect 

significant alteration among all treatment groups (Table. 5.1). In addition, H&E staining 
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of the tumor tissue (low panel of Figure 5.6) showed that the control and DOX treated 

tumor kept the characteristics of squamous cell carcinoma, while the shrunk nuclei in the 

DOX@PLGA/PD-C coupled with NIR irradiation treated tumor proved its effectiveness. 

All these results indicate that DOX@PLGA/PD-C coupled with NIR irradiation is a safe 

tool for head and neck cancer therapy.  

 

Figure 5.6 The TEM images of heart tissue sections and H&E staining images of liver 
and tumor tissue sections. Scale bars in the TEM images (top panel) and H&E staining 
sections (middle and bottom panels) are 1 μm and 50 μm, respectively. 
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Table 5.1 Blood test results of mice after different treatments 

 

5.4 CONCLUSIONS  

In summary, we have developed a doxorubicin loaded biodegradable 

photothermal converting material based on a mussel inspired PLGA/polydopamine 

core/shell nano-structure for cancer photothermal therapy and chemotherapy. With the 

help of anti-EGFR antibody, the nanoparticle could effectively enter head and neck 

cancer cells and convert near infrared light to heat to trigger drug release from PLGA 

core for chemotherapy as well as ablate tumors by the elevated temperature. Since the 

nanoparticle was retained in the tumor tissue and subsequently released its payload inside 

the cancer cells, no any doxorubicin associated side effects were detected. Due to its 

unique biodegradable feature, the DOX@PLGA/PD-C nanoparticle is very promising to 

be clinically adopted for head and neck cancer treatment.  
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CHAPTER 6  

SUMMARY AND FUTURE DIRECTIONS 

6.1 SUMMARY 

In this dissertation, we have mainly focused on the development of stimuli 

responsive nanoparticle for cancer targeted therapy. We fabricated several nanoparticles 

and investigated their responsiveness to various stimuli such pH, redox potential, 

temperature and light. Then we studied the influence of the stimuli on the drug release 

kinetics. Furthermore, we modified the nanoparticles with different targeting ligands and 

investigated the impact of targeting ligands on cellular uptake, intracellular distribution 

and anticancer efficacy of nanoparticles both in vitro and in vivo. Finally, we evaluated 

the systematic toxicity of the nanoparticles. The major conclusions of this dissertation are 

summarized as follows:  

1. A polymer/copper combination has been developed and exhibits cancer cell-

selective killing effect. Factors determined the selectivity of this 

polymer/copper combination are discovered, which include intracellular 

glutathione and gene expression regulation. By differentially alterating the 

expression level of oncogenes (CIRBP and STMN1) and tumor suppressor 

genes (CDKN1C and GADD45B) between normal and cancer cells, the PDA-

PEG/Cu2+ exhibited high selectivity in killing a broad spectrum of cancer cells, 

including drug resistant one, while sparing normal cells.  
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2. A self-quenching bioactivatable nanogel has been developed for targeted 

photodynamic therapy (PDT). Under the help of targeting ligand, anti-EGFR 

affibody molecule, the nanogel can efficiently accumulate in the tumor and 

effectively enter cancer cells, where it can respond to intracellular elevated 

glutathione and restore its photoactivity to induce enhanced anticancer 

efficacy. 

3. A thermal, pH, and redox potential triple-responsive expansile nanogel system 

(TRN) has been developed for targeted PDT. The nanogel can expand by 

responding to acidic pH, intracellular glutathione and high temperature and 

release its payload Pc 4 for PDT. Targeting ligand 4-methoxybenzoic acid 

(MBA) is conjugated to the nanogel and enhances the cellular uptake and 

tumor accumulation of the nanogel, which eventaully results in high PDT 

efficacy.  

4. A mussel inspired PLGA/polydopamine core/shell nano-structure has been 

developed for cancer photothermal therapy and chemotherapy. With the help 

of anti-EGFR antibody, the nanoparticle can effectively enter head and neck 

cancer cells and convert near infrared light to heat to trigger drug release from 

PLGA core for chemotherapy as well as ablate tumors by the elevated 

temperature.  

6.2 INNOVATION AND SIGNIFICANCE  

The innovation and significance of researches in this dissertation are as follows: 

1. The cancer-cell selective killing effect of PDA-PEG/Cu2+ is firstly discovered 

and used to treat cancer and effectively reduce side effects. The determinants 
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of its selectivity is also revealed at the first time. These findings might 

expedite the development of copper as a target for cancer therapy.   

2. Bioactivatable and triple responsive nanogels have been developed for cancer 

targeted photodynamic therapy.  These novel nanogels can smartly control the 

drug release and effectively improve the PDT efficacy as well reduce side 

effects.   

3. A biodegradable polydopamine coated PLGA core-shell nanoparticle has been 

the first time to be used as thermochemotherapy. By using a near infrared light 

to trigger drug release for chemotherapy and to increase tumor temperature to 

ablate tumor to achieve thermotherapy, this nanoparticle achieves an 

extremely high anticancer efficacy. These findings might expedite the 

development of biodegradable nanoparticles to replace currently widely used 

metal nanoparticles for cancer photothermotherapy. 

6.3 FUTURE DIRECTIONS 

The future research will investigate the cell killing mechanism of PDA-PEG/Cu2+ 

in molecular level both in vitro and in vivo. The pharmacokinetics, in vivo anticacner 

efficacy as well as systemic toxicity of this polymer/copper combination will also need to 

be extensively evaluated to determine whether the PDA-PEG/Cu2+ can be translated into 

a safe and effective cancer treatment tool.  

For both bioactivatable and triple responsive nanogel, their pharmacokinetics and 

systemic toxicity will be studied. To evaluate the anticancer efficacy of triple responsive 

nanogel, the tumor inhibitory experiment will be conducted in the near future. The laser 
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power for both nanogels will also optimized to achieve high PDT efficacy and minimize 

the damage to normal tissues.  

For polydopamine coated PLGA nanoparticle, its size will be further decrease in 

future since smaller nanoparticle usually can achieve better anticancer performance in 

vivo. The thickness of polydopamine layer will be adjusted to realize better controlled 

drug release. Furthermore, systemic administration, instead of intratumoral injection 

which is used in this dissertation, will be employed to investigate the in vivo anticancer 

efficacy of the nanoparticle. The pharmacokinetics and systemic toxicity of the 

nanoparticle will be also studied.  
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PERMISSION TO REPRINT 

COPYRIGHT PERMISSION FOR CHAPTER 2 

The Copyright permission for Chapter 2 is attached below. 
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