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Xu Han 

IDENTIFICATION AND MECHANISTIC INVESTIGATION OF CLINICALLY 

IMPORTANT MYOPATHIC DRUG-DRUG INTERACTIONS 

 

 Drug-drug interactions (DDIs) refer to situations where one drug affects the 

pharmacokinetics or pharmacodynamics of another. DDIs represent a major cause of 

morbidity and mortality. A common adverse drug reaction (ADR) that can result from, or 

be exacerbated by DDIs is drug-induced myopathy. Identifying DDIs and understanding 

their underlying mechanisms is key to the prevention of undesirable effects of DDIs and 

to efforts to optimize therapeutic outcomes. This dissertation is dedicated to identification 

of clinically important myopathic DDIs and to elucidation of their underlying 

mechanisms. Using data mined from the published cytochrome P450 (CYP) drug 

interaction literature, 13,197 drug pairs were predicted to potentially interact by pairing a 

substrate and an inhibitor of a major CYP isoform in humans. Prescribing data for these 

drug pairs and their associations with myopathy were then examined in a large electronic 

medical record database. The analyses identified fifteen drug pairs as DDIs significantly 

associated with an increased risk of myopathy. These significant myopathic DDIs 

involved clinically important drugs including alprazolam, chloroquine, duloxetine, 

hydroxychloroquine, loratadine, omeprazole, promethazine, quetiapine, risperidone, 

ropinirole, trazodone and simvastatin. Data from in vitro experiments indicated that the 

interaction between quetiapine and chloroquine (risk ratio, RR, 2.17, p-value 5.29E-05) 

may result from the inhibitory effects of quetiapine on chloroquine metabolism by 

cytochrome P450s (CYPs). The in vitro data also suggested that the interaction between 
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simvastatin and loratadine (RR 1.6, p-value 4.75E-07) may result from synergistic 

toxicity of simvastatin and desloratadine, the major metabolite of loratadine, to muscle 

cells, and from the inhibitory effect of simvastatin acid, the active metabolite of 

simvastatin, on the hepatic uptake of desloratadine via OATP1B1/1B3. Our data not only 

identified unknown myopathic DDIs of clinical consequence, but also shed light on their 

underlying pharmacokinetic and pharmacodynamic mechanisms. More importantly, our 

approach exemplified a new strategy for identification and investigation of DDIs, one 

that combined literature mining using bioinformatic algorithms, ADR detection using a 

pharmacoepidemiologic design, and mechanistic studies employing in vitro experimental 

models.   

 

David A. Flockhart, M.D., Ph.D., Chair 

  



vii 
 

Table of Contents 

 

List of Tables .................................................................................................................... xii 

List of Figures .................................................................................................................. xiv 

Chapter 1. Introduction to clinical drug-drug interactions (DDIs) ....................................1 

1. Prevalence and significance of drug–drug interactions (DDIs) .....................................1 

2. Mechanisms underlying  drug interactions ....................................................................3 

3. Approaches to studying drug interactions......................................................................7 

4. Rationale for a translational approach ...........................................................................9 

5. Why is myopathy an appropriate outcome of interest? ...............................................12 

6. Hypothesis and aims ....................................................................................................14 

Chapter 2. Identification of DDIs associated with myopathy in a large scale ..................17 

1. Introduction ..................................................................................................................17 

a. Data sources for large-scale DDI identification.....................................................17 

b. Text mining using the published biomedical literature..........................................21 

c. Pharmacoepidemiology study designs for identification of DDIs .........................24 

d. Hypothesis and aims ..............................................................................................26 

2. Methods........................................................................................................................27 

a. Text mining and prediction of potentially interacting drug pairs ..........................27 

b. Preparing data for pharmacoepidemiology analyses .............................................28 

c. Identification of DDIs associated with myopathy using case-control studies .......30 

3. Original results .............................................................................................................32 

a. Substrate and inhibitor drugs mined from the published literature ........................32 



viii 
 

b. Demographics and characteristics of the CDM dataset .........................................33 

c. DDIs significantly associated with an increased risk of myopathy .......................34 

4. Discussion ....................................................................................................................35 

Chapter 3. In vitro assessment of inhibition of Cytochrome P450s ..................................46 

i. Screening for inhibition of CYPs .................................................................................46 

1. Introduction ..................................................................................................................46 

a. CYP450s are the major drug-metabolizing enzymes in humans ...........................46 

b. Inhibition of CYPs is an important mechanism of DDIs .......................................47 

c. In vitro systems for mechanistic studies of DDIs ..................................................49 

d. Approaches to evaluating enzyme kinetics ............................................................52 

e. Bioanalytical methods for studying DDIs ..............................................................53 

f. Quantitative assessment of the risk of clinical drug interactions ...........................54 

g. Hypothesis and aims ..............................................................................................57 

2. Methods........................................................................................................................57 

a. Materials ................................................................................................................57 

b. Screening for inhibition of the major CYPs and determining IC50s ......................58 

c. Determining dissociation constant (Ki) and mode of inhibition ............................59 

d. Assessing the risk of DDI using R values ..............................................................60 

3. Original experimental results .......................................................................................62 

a. IC50 estimates .........................................................................................................62 

b. Mode of inhibition and Ki estimates ......................................................................63 

c. Predicted risk of clinical DDIs ...............................................................................64 

4. Discussion ....................................................................................................................66 



ix 
 

ii. Investigating mechanism involved in the interaction between simvastatin and 

loratadine......................................................................................................................95 

1. Introduction ..................................................................................................................95 

a. Why is the interaction between simvastatin and loratadine of particular 

 interest? .................................................................................................................95 

b. Pharmacokinetics and biotransformation of simvastatin .......................................96 

c. Pharmacokinetics and biotransformation of loratadine .........................................98 

d. Mechanisms of DDIs with simvastatin or loratadine .............................................99 

e. Hypothesis and aims ............................................................................................100 

2. Methods......................................................................................................................101 

a. Materials ..............................................................................................................101 

b. Incubation with HLMs .........................................................................................101 

c. Sample preparation ..............................................................................................102 

d. Analytical methods using LC/MS/MS .................................................................102 

3. Original experimental results .....................................................................................104 

a. Inhibition of simvastatin and simvastatin acid metabolism by loratadine  

and desloratadine .................................................................................................104 

1) Inhibition profiles of loratadine and desloratadine for the major CYPs ........105 

2) IC50s of loratadine and desloratadine for the depletion of simvastatin  

and simvastatin acid in HLMs .......................................................................105 

b. Inhibition of loratadine metabolism by simvastatin and simvastatin acid ...........106 

1) Inhibition profiles of simvastatin and simvastatin acid for the major  

CYPs ..............................................................................................................107 



x 
 

2) IC50s of simvastatin and simvastatin acid for desloratadine formation  

in HLM ..........................................................................................................107 

3) Mode of inhibition and Ki estimates ..............................................................108 

4. Discussion ..................................................................................................................108 

Chapter 4. In vitro assessment of inhibition of OATPs ...................................................123 

1. Introduction ................................................................................................................123 

a. Role of transporters in drug disposition ...............................................................123 

b. OATPs: characteristics, role in drug disposition and clinical DDIs ....................125 

c. Experimental systems for assessing uptake transporter activity ..........................129 

d. Prediction of transporter-mediated DDIs .............................................................133 

e. Hypothesis and aims ............................................................................................135 

2. Methods......................................................................................................................136 

a. Materials ..............................................................................................................136 

b. Screening for inhibition of E217βDG uptake .......................................................136 

c. Estimating IC50s ...................................................................................................138 

d. Prediction of OATP1B1/1B3-mediated DDIs .....................................................138 

3. Original experiment results ........................................................................................139 

a. Screening for inhibition of E217βDG uptake .......................................................139 

b. IC50 estimates .......................................................................................................140 

c. Predicted risk of OATP1B1/1B3-mediated DDIs................................................141 

4. Discussion ..................................................................................................................141 

Chapter 5. In vitro assessment of direct myotoxicity .......................................................156 

1. Introduction ................................................................................................................156 



xi 
 

a. Pathogenic mechanisms underlying drug-induced myopathy .............................156 

b. Rat L6 myotubes as a model system to assess myotoxicity.................................160 

c. Methods to evaluate pharmacodynamic drug interactions...................................162 

d. Hypothesis and aims ............................................................................................166 

2. Methods......................................................................................................................167 

a. Materials ..............................................................................................................167 

b. Cell culture and drug treatment............................................................................167 

c. Gene expression of CKM and Myog ...................................................................168 

d. MTS/PMS assay...................................................................................................170 

e. Screening for the inhibition of L6 myotube viability ..........................................171 

f. Determining concentration-cell viability relationships ........................................171 

g. Determining the combined effect of simvastatin and desloratadine ....................172 

3. Original experimental results .....................................................................................173 

a. Gene expression of CKM and Myog ...................................................................173 

b. Screening for the inhibition of myotube viability ................................................175 

c. Concentration- cell viability relationships of tegaserod, desloratadine  

and simvastatin.....................................................................................................175 

d. The combined effect of simvastatin and desloratadine ........................................176 

4. Discussion ..................................................................................................................176 

Chapter 6. Summary ........................................................................................................189 

Appendix: Permission to resue Table 4-1 ........................................................................192 

References ........................................................................................................................199 

Curriculum Vitae  



xii 
 

List of Tables 

 

Table 1-1. The clinical spectrum of drug-induced myopathy ............................................16 

Table 2-1. The number of substrates and inhibitors of the major CYPs mined  

from the published literature ..............................................................................................43 

Table 2-2. Categories and frequencies of myopathy diagnoses .........................................44 

Table 2-3. Drug pairs significantly associated with an increased risk of myopathy .........45 

Table 3-1. Summary of incubation conditions of CYP fluorometric assays .....................81 

Table 3-2. IC50s (95% CI) (µM) for the inhibition of the major CYPs .............................82 

Table 3-3. Mode of inhibition and Ki ± SD (µM) ..............................................................90 

Table 3-4. Predicted fu,inc ...................................................................................................91 

Table 3-5. Predicted R values ............................................................................................92 

Table 3-6. Predicted AUCRs .............................................................................................94 

Table 3-7. Kinetics of simvastatin and simvastatin acid metabolism in HLMs ..............111 

Table 3-8. IC50s of loratadine and desloratadine for the major CYPs .............................115 

Table 3-9. IC50s of simvastatin and simvastatin acid for the major CYPs ......................118 

Table 3-10. Predicted R values ........................................................................................122 

Table 4-1. Summary of characteristics of clinically important OATPs in humans .........149 

Table 4-2. Inhibition (%) of E217βDG uptake at 100 µM ...............................................151 

Table 4-3. IC50s for the inhibition of E217βDG uptake ...................................................153 

Table 4-4. Predicted R values ..........................................................................................155 

Table 5-1. The experimental design to evaluate the combined effect of  

simvastatin and desloratadine ..........................................................................................182 



xiii 
 

Table 5-2. Myotube death after 5 days of treatment ........................................................185 



xiv 
 

List of Figures 

 

Figure 3-1. Inhibition-concentration curves grouped by CYP...........................................83 

Figure 3-2. Examples of abnormal kinetics observed from fluorometric assays ...............86 

Figure 3-3. Inhibition-concentration curves grouped by drug ...........................................87 

Figure 3-4. Biotransformation of simvastatin in humans ................................................112 

Figure 3-5. Biotransformation of loratadine in humans...................................................113 

Figure 3-6. Chromatography of simvastatin, simvastatin acid and desloratadine ...........114 

Figure 3-7. Depletion of simvastatin and simvastatin acid in relation to  

incubation time and HLM concentration .........................................................................116 

Figure 3-8. Inhibition of simvastatin and simvastatin acid metabolism in HLMs  

by loratadine, desloratadine and ketoconazole ................................................................117 

Figure 3-9. Kinetics of loratadine metabolism in HLMs .................................................119 

Figure 3-10. IC50 curves of the inhibition of desloratadine formation by  

simvastatin and simvastatin acid in HLMs ......................................................................120 

Figure 3-11. Kis for the inhibition of desloratadine formation by simvastatin  

and simvastatin acid in HLMs .........................................................................................121 

Figure 4-1. The rate of E217βDG uptake in cryopreserved rat hepatocytes ....................150 

Figure 4-2. Inhibition of E217βDG uptake in cryopreserved rat hepatocytes at  

100 μM .............................................................................................................................152 

Figure 4-3. IC50 curves for the inhibition of E217βDG uptake ........................................154 

Figure 5-1. Gene expression of Myog and CKM ............................................................183 

Figure 5-2. Cell viability (%) after 5 days of treatment as compared with DSMO  



xv 
 

controls .............................................................................................................................184 

Figure 5-3. Concentration-cell viability relationships of tegaserod, desloratadine  

and simvastatin.................................................................................................................186 

Figure 5-4. Concentration-effect curves of simvastatin and desloratadine in  

combination......................................................................................................................187 

Figure 5-6. Combination index (CI) – fraction of inhibition (fa) plot ..............................188 

  



1 
 

Chapter 1. Introduction to clinical drug-drug interactions (DDIs) 

 

1. Prevalence and significance of drug–drug interactions (DDIs) 

The term “drug-drug interactions” (DDIs) refers to interactions between two 

coadministered drugs in which one drug affects the pharmacokinetics or 

pharmacodynamics of another. The coadministration of two drugs is usually safe with no 

detectable interaction. Some drugs are coadministered purposefully to improve 

therapeutic outcomes. Some coadministered drugs can cause significant pharmacokinetic 

interactions that are not clinically important under usual therapeutic circumstances. 

Clinically important DDIs are drug interactions that cause failure to achieve the 

therapeutic effects of either or both drugs, or that result in or exacerbate severe or life-

threatening adverse drug reactions (ADRs). This thesis is focused on clinically important 

DDIs that are associated with ADRs.   

ADRs are a leading cause of morbidity and mortality in health care. According to 

a report of the Institute of Medicine, an estimated 7,000 deaths occur annually due to 

ADRs [1]. In hospitalized patient populations. It is estimated that 6.7% hospitalized 

patients experience serious ADRs with a fatality rate of 0.32% each year [2]. This means 

that more than 2,216,000 serious ADR events occur, which cause 106,000 deaths 

annually. ADRs are also a huge financial burden on health care. Drug-related morbidity 

and mortality is estimated to cost $30.1 to $136.8 billion in the ambulatory setting in the 

US each year [3].  

DDIs are a significant contributor to preventable ADRs. Leape et al. estimated 

that DDIs represent 3–5% of all in-hospital medication errors [4]. In an analysis with an 
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Italian spontaneous reporting database, it was estimated that 22% of patients exposed to 

potential DDIs experienced associated ADRs [5]. In addition, Becker et al.found that 

DDIs were responsible for approximately 0.054% of emergency department visits, 0.57% 

of hospital admissions and 0.12% of re-hospitalizations [6]. In 2010, there were 129.8 

million emergency department visits, 100.7 million outpatient department visits and 35.1 

million inpatient department discharges in the US [7], suggesting a substantial number of 

hospital visits due to DDIs. It is not surprising that DDIs also contribute to increased cost 

and duration of hospital stays [8].  

The risk of DDIs increases linearly with age and the number of prescribed drugs 

[9]. In a database involving 471,732 individuals, one-third of the population were found 

to be exposed to polypharmacy, and 15% of the population exposed to polypharmacy 

were exposed to potential drug interactions. 

As polypharmacy becomes more common, the prevalence of DDIs is expected to 

increase. The elderly are particularly susceptible to DDIs, due both to their advanced age 

and to polypharmacy. Gurwitz et al. estimated that more than 40% of the elderly 

population aged 65 or older use 5 or more medications, and 12% use 10 or more 

medications [11]. According to Bjerrum et al., among the elderly with polypharmacy, 25% 

aged 60-79 years and 36% over 80 years were potentially exposed to DDIs [10]. DDIs 

were responsible for 4.8% of hospital admissions in the elderly population [7]. It is worth 

noting that, according to Björkman et al., 10% of the potential DDIs could be avoided 

according to the Swedish interaction classification system [12].  

DDIs are also one of the most common reasons for drug withdrawal. When 

alternative medications are available and warnings in drug labels fail to manage the risk 
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of DDIs, DDIs associated with severe or life-threatening ADRs may lead to withdrawal 

of drugs from the market or restriction in drug use [13]. The interaction between the 

nonsedating antihistamine terfenadine and ketoconazole is associated with a significantly 

increased risk of torsade de pointes and fatal arrhythmia [14]. Because fexofenadine and 

loratadine are able to meet the same medical needs with better safety profiles, terfenadine 

was ultimately withdrawn from the market when the warnings in its label failed to 

adequately reduce the incidence of the fatal interaction. The nonsedating antihistamine 

astemizole and gastroprokinetic cisapride were withdrawn for similar reasons [15, 16]. 

The calcium channel blocker mibefradil was withdrawn because its inhibitory effects on 

drug metabolism caused dangerous interactions with at least 25 other drugs, including 

common antibiotics, antihistamines, and cancer drugs [17]. 

 

2. Mechanisms underlying  drug interactions 

There are a number of mechanisms by which drugs interact. These mechanisms 

can be divided into three general categories: pharmaceutical, pharmacokinetic and 

pharmacodynamic. Pharmaceutical drug interactions are those that occur prior to 

systemic administration and are often due to drug incompatibility [18]. Pharmacokinetic 

drug interactions are those in which one drug affects the absorption, distribution, 

metabolism or excretion of another [13]. The drug that causes the interaction is often 

referred to as the precipitant drug, and the drug whose pharmacokinetics is affected is 

often referred to as the victim drug. Pharmacodynamic drug interactions are those in 

which two drugs with overtly similar pharmacological effects produce exaggerated or 
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diminished effects when used in combination without changes in pharmacokinetics [19, 

20].  

The mechanisms by which pharmacokinetic interactions occur are relatively well 

understood. One of the common mechanisms underlying pharmacokinetic DDIs is 

alteration in drug absorption. The absorption of a drug can be altered due to changes in 

gastric pH. For example, didanosine requires a neutral-to-basic pH to be absorbed and its 

formulations are buffered. Medications, such as ketoconazole and itraconazole, are 

known to require an acidic environment for dissolution. The absorption of these drugs 

can be significantly decreased when given concomitantly with didanosine [21, 22]. 

Chelation and adsorption of drugs can also cause changes in absorption. Quinolone 

antibiotics, when combined with magnesium- and aluminum-containing antacids, can 

form insoluble complexes that are unable to permeate the intestinal mucosa and be 

absorbed [23]. Concomitant administration of antibiotics, such as penicillin G and 

tetracycline, with adsorbents, such as cholestyramine, can result in decreased absorption 

of antibiotics [24]. Another mechanism involves changes in gastric emptying and 

intestinal motility. Gastroprokinetic drugs such as cisapride can reduce gastrointestinal 

transit time and decrease the extent of absorption of drugs which are poorly soluble or 

absorbed only in a limited area of the intestine [25]. It has been recognized that inhibition 

or induction of drug-metabolizing enzymes, such as the cytochromes P450s (CYPs) and 

uridine 5’-diphosphate (UDP)-glucuronosyltransferases (UGTs), expressed in enterocytes 

of the intestinal epithelia can affect bioavailability and potentially contribute to DDIs [26]. 

Of similar importance is uptake or efflux drug transporters located on the basolateral 

membrane of the enterocytes. Inhibition of uptake transporters, such as organic anion 
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transporting peptides (OATPs), can lead to decreased absorption. On the other hand, 

inhibition of efflux transporters, such as P-glycoprotein, can enhance bioavailability [27].  

There has been a debate on whether alterations in plasma protein binding can 

cause DDIs by affecting drug distribution. Displacement of a victim drug from its plasma 

protein binding sites, such as albumin, can lead to an increase in the unbound plasma 

concentration. However, this increase is usually transient as redistribution and 

elimination occur immediately after displacement. Thus, DDIs involving plasma protein 

binding displacement may potentially be clinically significant if the victim drug is highly 

bound in plasma, has a narrow therapeutic index and a small volume distribution. A 

transient increase in drug concentrations may be clinically important with drugs such as 

warfarin and phenytoin; however, for majority of drugs, their mean steady-state unbound 

drug concentration will remain unchanged. Alteration in plasma protein binding is 

therefore usually not a significant mechanism of drug interactions [28, 29]. 

The most common and important mechanism of pharmacokinetic drug 

interactions is an alteration in drug metabolism. Inhibition of drug metabolism accounts 

for 76% of case reports involving pharmacokinetic DDIs identified in VigiBaseTM, an 

international database for drug safety maintained by the World Health Organization [30]. 

Most metabolism-based DDIs involve inhibition or induction of CYPs, a class of phase I 

enzyme that catalyze oxidation, reduction and hydrolysis reactions [31]. Drugs that are 

inhibitors or inducer of CYPs can significantly change the pharmacokinetics of other 

drugs, although these interactions may be attenuated by genetic polymorphisms of CYPs 

[32]. Inhibition of CYPs is the major mechanism that has led to regulatory withdrawal of 

drugs and label changes. A more detailed discussion on inhibition of CYPs as a 
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mechanism of DDIs is provided in Chapter 3. Less common is the occurrence of DDIs as 

a result of inhibition of phase II enzymes that are responsible for conjugation. A few 

studies have suggested that inhibition of UGTs can contribute to DDIs [33]. Recently, a 

number of clinically important DDIs have been attributed to inhibition of hepatic uptake 

transporters, OATPs in particular [34]. These transporters determine the availability of 

drugs for hepatic metabolism and can lead to significant changes in pharmacokinetics 

when inhibited. Further discussion on this mechanism of interaction can be found in 

Chapter 4.  

Relatively few DDIs occur due to alterations in renal elimination. The most 

common renal drug interactions occur at the site of tubular secretion, involving 

competition for transporters [35]. A number of important drug transporters are expressed 

in renal proximal tubule cells, including organic cation transporters (OCTs), organic 

anion transporters (OATs), the multidrug resistance-associated proteins (MRPs), p-

glycoprotein, and the multidrug and toxin extrusion proteins (MATEs) [36]. Inhibition of 

these transporters could cause DDIs by decreasing cellular drug uptake and impairing 

renal clearance. For example, MATE1 and OCT1 have been shown to be important for 

the tubular secretion of metformin [37, 38]. The inhibition of MATE1 and OCT1 by 

cimetidine [39] contributed to its interaction with metformin. Cimetidine was shown to 

decrease renal metformin clearance by 27% and to increase the AUC (0 to 24 h) and Cmax 

of metformin by 50% and 81%, respectively [40]. 

In contrast to pharmacokinetic drug interactions, pharmacodynamic interactions 

are less well studied and understood. Based on the outcome of combining two drugs, 

pharmacodynamic interactions can be either synergistic or antagonistic. 
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Pharmacodynamic DDIs can occur at the site of receptors or downstream signaling 

pathways [18]. The mechanisms underlying pharmacodynamic interactions are often 

difficult to study. This is in part because of the intrinsic complexity of biological systems 

that are usually involved in pharmacodynamic interactions. Also, some DDIs are dose-

dependent and a DDI may not be recognizable unless an appropriately high dose of one 

or both drugs is given. In addition, variability in demographics, physiology, underlying 

disease state and genetic variations can mask the effects of potential DDIs [20]. Recent 

advances in system pharmacology hold promise for promoting discovery and 

understanding of pharmacodynamic DDIs. 

 

3. Approaches to studying drug interactions 

There are three general approaches to discovery and investigation of DDIs, in 

vitro, in vivo and in populo [41]. In vitro pharmacokinetic experiments use cells or cell-

derived systems to characterize changes in drug metabolism and transport activity that 

may underlie DDIs [41]. Commonly used in vitro experimental systems include primary, 

cultured and cryopreserved hepatocytes, human liver microsomes and recombinant CYP 

and UGT enzymes [13]. In vitro methods are used routinely in drug development to 

evaluate the risk of DDIs for investigational drugs. They are particularly helpful means of 

uncovering underlying molecular mechanisms of DDIs observed clinically. The 

information obtained from in vitro experiments can be used to develop mathematical 

models to predict the changes in drug exposure due to DDIs in vivo. In vitro experiments 

thus allow investigation of DDIs without the expense and potential risks involved in 
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conducting human trials. However, data from in vitro experiments are often insufficient 

to assess the clinical significance of a DDI [41]. 

In vivo studies can involve clinical trials conducted in humans to evaluate the 

changes in pharmacokinetics, efficacy and the risk of ADRs that result from DDIs. 

Clinical studies investigating pharmacokinetic DDIs are in general small in size, 

involving 10 – 100 patients, and usually adopt a randomized or cross-over design [13]. 

Plasma concentrations are often closely monitored to estimate drug exposure and other 

important pharmacokinetic parameters. Efficacy and side effects may also be measured. 

Clinical studies, when appropriately designed and performed, can provide the most 

convincing evidence for conclusions as to whether one drug interacts with another [41]. 

Data from these studies serve as the basis for regulatory drug label changes. However, 

clinical studies are usually not able to provide mechanistic insight unless they use a probe 

substrate or an inhibitor that is specific to a target enzyme or a transporter. Also, clinical 

studies are often expensive and time-consuming to conduct. More importantly, it may not 

be ethically defendable to conduct a clinical trial and investigate the effect of a DDI on 

the risk of ADRs.  

Finally, in populo studies are pharmacoepidemiology studies investigating the 

effects of DDIs on efficacy and ADRs in a large population [42]. It is rare to perform a 

large-scale prospective observational study to investigate a drug interaction. Most 

pharmacoepidemiology studies on DDIs are retrospective, taking advantage of existing 

data from past clinical trials and medical databases such as spontaneous reporting 

systems and electronic medical record (EMR) databases [43].  Pharmacoepidemiology 

studies are an important tool used to discover unknown DDIs, especially those leading to 
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significant clinical changes such as in therapeutic efficacy or in ADR risk. They are 

particularly useful in detecting and quantifying rare ADRs resulting from DDIs. 

Compared to prospective clinical trials, pharmacoepidemiology studies have the 

advantages of larger sample size, longer observation periods, a paucity of potential 

ethical issues, and are less expensive, less time consuming, and possess greater ability to 

provide more generalizable results [42]. However, pharmacoepidemiology studies are 

themselves often subject to the limitations inherent in the use of existing data. A biased 

result may be obtained when confounding factors such as demographics, comedications, 

comorbidities and disease states are not appropriately accounted for [42]. 

 

4. Rationale for a translational approach 

The goal of research on DDIs is to identify them, understand them, treat them 

when possible and ultimately prevent them. Traditionally, research on DDIs adopts a 

bottom-up strategy that heavily relies on knowledge about individual drugs or proteins of 

relevance. Such knowledge may relate to how a drug is metabolized or transported, 

which drug-metabolizing enzymes or drug transporters can be inhibited or induced by a 

particular drug, or which common comedications are also substrates or inhibitors of the 

affected enzymes or transporters. This knowledge provides a scientific basis for 

predicting the changes in pharmacokinetics due to a potential DDI in humans. Clinical 

studies are then conducted to examine the clinical significance of DDIs that potentially 

occur. This strategy is well established and has been incorporated as a routine in drug 

development to evaluate the risk of DDIs of investigational drugs. The FDA requires in 

vitro characterization of drug metabolism and inhibition of the major CYPs and important 
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drug transporters for any investigational drug [13]. If a potential risk is predicted based 

on in vitro data, a clinical study is required to assess the potential of clinical DDIs with 

common comedications and probe substrates or inhibitors of the relevant proteins [13].  

This knowledge-based bottom-up approach has well-defined targets. It is applied 

to a particular pair of drugs involving specific pathways, and looks for changes in 

particular effects. Although highly specific, this approach is inefficient for identification 

of unknown DDIs. Only a very small number of targets can be studied at a time [41]. As 

a result, many DDIs remain undetected for a fairly long time until they are suspected 

once we know enough about the metabolism or transport of the involved drugs. This 

approach is particularly inefficient for identification of DDIs that are clinically important 

as most DDIs predicted from in vitro data turn out to have no effect clinically.  

As polypharmacy becomes more common and DDIs occur more frequently, 

research on DDIs must adapt to a high-throughput mode to discover and investigate 

unknown DDIs in a more efficient manner and with a stronger clinical orientation. This 

change can be achieved by taking advantage of the voluminous body of existing 

knowledge stored in the published literature and in large databases, identifying unknown 

DDIs that are actually of clinical consequence, and interpreting them mechanistically. We 

call this a ‘top-down’ approach. 

Identification of unknown, yet clinically important DDIs involves testing the 

clinical significance of possibly interacting drug combinations. This is a challenging task 

when the number of potential DDIs to be studied is prohibitively large. There are 1492 

small-molecule drugs approved by the FDA, and 1,112,286 two-drug combinations that 

could possibly interact. The clinical significance of any specific DDI can, in theory, be 
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tested with either clinical trials or pharmacoepidemiology studies; however, with such a 

large number of potential DDIs, clinical trials are obviously not a feasible option to 

identify clinically important DDIs. Pharmacoepidemiology studies provide a cost-

effective and efficient alternative. Performing pharmacoepidemiology studies requires 

defining an outcome of interest at first. With the aim of identifying clinically important 

DDIs in mind, we need to begin with an outcome of interest that is clinically important. 

An outcome of interest also needs to be identifiable from a data source, phenotypically 

well-defined, and not extremely rare. Myopathy is an outcome that meets all these criteria 

and we have thus selected this phenotypic outcome as our outcome of interest. The 

selection of myopathy as the outcome of interest is discussed in detail later. 

Even for pharmacoepidemiology studies with relatively frequent outcomes, 

evaluating such a huge number of potential DDIs is challenging, because the statistical 

power to detect DDIs decreases with the number of simultaneous tests, given a fixed 

sample size available from a database. It is therefore important to limit our ambition and 

reduce the search space to a subset of drug combinations instead of all of them. The 

question then becomes which subset of possible drug combinations to select for study. A 

reasonable choice is the subgroup of DDIs that we understand better and potentially have 

more confidence in providing mechanistic explanations. Inhibition of CYPs is the most 

important mechanism of pharmacokinetic DDIs [13]. It is also the DDI mechanism 

currently best understood. We have therefore limited our initial screening to DDIs that 

may result from inhibition of CYPs.  

A small number of published studies have taken an approach similar to ours. 

Percha et al. used a network of interrelationships between drugs and enzymes mined from 
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the published literature to provide mechanistic explanations for known DDIs and to infer 

new DDIs [44]. Their work, however, did not distinguish data from in vitro, in vivo or in 

populo studies. Also, they did not examine whether the predicted DDIs were clinically 

relevant. The work by Tatonetti et al. represents a progress as they not only predicted 

DDIs but also examined the association of predicted DDIs with clinical phenotypes using 

data from an EMR database [45]. A limitation of their work is the lack of mechanistic 

investigation. 

The simple presence of a pharmacoepidemiologic DDI does not allow one to infer 

its mechanism. Without knowing by what mechanisms an apparent DDI can occur, one 

cannot conclude with certainty that it is truly an interaction rather than a false positive 

due to methodological flaws. It is similarly difficult to provide a reasonable alternative 

with better therapeutic outcome and without drug interaction. As we predict DDIs from 

inhibition of CYPs, this is naturally the most likely mechanism of DDIs that are 

identified to be clinically important, but we also attempt to explore other possible 

mechanisms by which DDIs can occur as DDIs can be multifactorial.  

 

5. Why is myopathy an appropriate outcome of interest?  

There are a number of reasons for selecting myopathy as our outcome of interest. 

First, myopathy is a clinically important outcome. Drug-induced myopathy is among the 

most common causes of muscle disease [46]. The clinical presentation of drug-induced 

myopathy ranges from asymptomatic muscle enzyme elevation to chronic myopathy with 

severe weakness, and to massive rhabdomyolysis with acute renal failure. A summary of 

clinical presentations of drug-induced myopathy is displayed in Table 1-1 [47]. Muscular 



13 
 

weakness, myalgia and myositis are the most common clinical presentations of drug-

induced myopathy [46]. In the SIDER 2 database [48], a database of drug side effects 

mined from the FDA’s drug labels, there are 124 FDA-approved drugs associated with 

muscular weakness, 395 associated with myalgia and 51 associated with myositis. These 

muscle-related side effects can cause incompliance or discontinuation of drug treatment 

and potentially compromise therapeutic outcome. The most severe form of myopathy, 

rhabdomyolysis, is a rare but life-threatening condition. There are over 150 drugs of 

various classes that have been associated with rhabdomyolysis, including statins, 

antimalarials, antihistamines, antidepressants and antipsychotics [49-51].  

Second, myopathy can result from or be exacerbated by DDIs. One well 

recognized example is the interaction between cerivastatin and gemfibrozil. In a 

population-based cohort study, the risk of rhabdomyolysis associated with cerivastatin 

monotherapy was 10-fold higher than that with the use of other statins. The interaction of 

cerivastatin with gemfibrozil increased the risk of rhabdomyolysis 50-fold [52]. This 

interaction led to the withdrawal of cerivastatin from the market. Considering the number 

of drugs that can induce myopathy, it is reasonable to speculate that there potentially 

exists a large number of drug interactions associated with increased risk of myopathy.  

Third, myopathy is an outcome that is relatively phenotypically well-defined and 

readily detectable in EMR databases. Although myopathy has a broad spectrum of 

clinical presentations as shown in Table 1-1, each condition is relatively well-defined. 

Patients with myopathy can be identified from EMR databases using diagnostic codes.  

Lastly, myopathy is a relatively common ADR that enables detection of DDIs 

with sufficient statistical power. Given a fixed number of simultaneous tests, the 
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statistical power to detect DDIs increases with the sample size available from a database. 

If a rare outcome, such as rhabdomyolysis, were selected for pharmacoepidemiologic 

study, it is very likely that only a small number of patients with rhabdomyolysis would be 

identified from available databases. Analyses therefore would likely be under-powered to 

detect DDIs associated with this outcome.  

 

6. Hypothesis and aims 

The overall hypothesis of this thesis is that the combination of data mining and in 

vitro mechanistic studies can identify and shed mechanistic light on new DDIs that are 

associated with an increased risk of clinical myopathy. To test this hypothesis, DDIs 

associated with increased risk of myopathy will first be identified. The likelihood that 

such drug interactions are caused by changes in the activities of drug-metabolizing 

enzymes and/or drug transporters, or direct myotoxicity will then be assessed in vitro. 

Due to the limitations of current experimental techniques for studying drug transporters, 

only the drug transporters of most interest, namely, organic anion transporting 

polypeptide 1B1 and 1B3 (OATP1B1/1B3), will be studied. The mechanisms of drug 

interactions that are particularly important will be further investigated. To test this 

hypothesis, the following specific aims are pursued:  

Aim 1: Predict and identify DDIs associated with increased risk of myopathy by 

mining the published literature and EMR databases. 

Aim 2: Evaluate in vitro the likelihood that DDIs identified in Aim 1 are caused 

by inhibition of the major CYP isoforms. 
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Aim 3: Evaluate in vitro the likelihood that DDIs identified in Aim 1 are caused 

by inhibition of hepatic uptake transporters OATP1B1/1B3. 

Aim 4: Evaluate in vitro the likelihood that DDIs identified in Aim 1 are caused 

by direct myotoxicity using rat L6 myotubes. 
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Table 1-1. The clinical spectrum of drug-induced myopathy [47] 

Condition Definition 

Myopathy General term to describe all skeletal muscle-related adverse effects 

Asymptomatic 

CK elevation 

CK elevation without muscle symptoms  

Myalgia Muscle pain or weakness without CK elevation 

Myositis Muscle symptoms with CK elevation typically < 10 x ULN 

Rhabdomyolysis Muscle symptoms with CK elevation typically > 10 x ULN, and 

with creatinine elevation (usually with brown urine and urinary 

myoglobin) 

 

Note: CK, creatine kinase; ULN, upper limit of normal. 
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Chapter 2. Identification of DDIs associated with myopathy in a large scale 

 

1. Introduction 

a. Data sources for large-scale DDI identification 

Historically, clinical DDIs were identified through review of case reports and case 

series in which severe adverse events occur during the coadministration of drugs. In 

recent decades, there has been a rapid growth in both volume and complexity of data that 

have developed into large databases. Traditional pharmacovigilance applies high-

throughput signal detection algorithms to these databases in order to detect drug-event 

associations and more complex drug safety phenomena such as DDIs [53].  

The primary data source for pharmacovigilance has been spontaneous reporting 

systems [53]. Spontaneous reporting systems are passive systems largely maintained by 

regulatory and health agencies collecting reports of suspected ADRs from health-care 

professionals, consumers, and pharmaceutical companies. The two most well-known of 

these are the FDA Adverse Event Reporting System (FAERS) [54] and the VigiBaseTM 

system [55] maintained by the World Health Organization. Spontaneous reporting 

systems largely rely on voluntary reporting, except for pharmaceutical companies, which 

are required to report suspected ADRs [54]. The information provided by spontaneous 

reporting systems include the drug suspected to cause the ADE, concomitant drugs, 

indications, suspected events, and limited demographics [53]. Data within spontaneous 

reporting systems are often used for detecting drug-event signals for follow-up analysis 

via formal pharmacoepidemiologic studies and to discover complex relationships, such as 

DDIs, that are difficult to identify manually. Spontaneous reporting systems have 
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advantages of centralized data collection and processing, large sample size and public 

accessibility. The limitations of spontaneous reporting systems include 1) over-reporting 

of ADRs known to result from a drug and underreporting of those otherwise; 2) the fact 

that only patients who experience ADRs are reported; 3) the fact that they often lack 

enough detail to evaluate the causality between a drug or a drug combination and an 

ADR; 4) duplication of reporting; and 5) missing or incomplete data [56, 57].   

Another data source that has been increasingly used for pharmacovigilance is 

electronic medical records (EMRs) [53]. EMRs contain a vast repository of disease and 

treatment data that could be mined for identification of DDIs. Compared to spontaneous 

reporting systems, the data within EMRs are chronological – they contain a more 

complete record of medical history, treatments, conditions and diagnoses of a patient. 

EMRs thus have more power to examine temporal relationships between drug 

administrations and ADRs [53]. EMRs also contain data from broader populations than 

spontaneous reporting systems can, as they are not restricted to patients who experience 

ADRs only [58]. However, EMRs are designed primarily for clinical care instead of 

research, so re-use of clinical EMR data for identification of DDIs can be challenging 

[53]. EMR data suffer from the common problems of observational data, including 

missing data and incorrect data [53]. ADRs may not be recorded as diagnostic or lab test 

codes, and may require further informatics processing before analysis [53]. Also, EMR 

data contain vast quantities of unstructured clinical narratives that are often the primary 

and richest source of patient information but are difficult to analyze using automated 

methods. In addition, EMR data are largely proprietary and involve legal and privacy 

issues concerning access to patient data [58-60].  
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In addition to spontaneous reporting systems and EMRs, a few other information 

sources have been used for detection and prediction of DDIs. These information sources 

are mined with methods integrating statistics, computer science, medicine, epidemiology, 

chemoinformatics and biology. It has been shown to be a powerful approach to uncover 

hidden relationships between coadministration of drugs and potential clinical 

consequences.  

One such data source is the published literature on biomedical science. PubMed is 

the most widely used online literature search service. It contains over 20 million articles 

and continues to add 40,000 new abstracts each month [61]. The published literature 

contains not only DDIs observed clinically, but also the potential underlying mechanisms 

investigated in experiments. Extracting and summarizing data from the voluminous body 

of biomedical literature using automated algorithms has been shown to be a promising 

approach to identification and prediction of DDIs. One recent example is the work by 

Percha et al., who text-mined the published literature for the interrelationship between 

drugs and proteins such as metabolic enzymes and drug transporters. The resulting 

network provided possible mechanistic explanations for drug pairs that interact, and 

enabled prediction of DDIs from known interacting drug pairs sharing similar 

mechanisms of interaction [44]. In addition, text mining of the biomedical literature has 

the potential to identify large numbers of DDIs in a cost-effective manner. 

Data sources relating to drug information have been increasingly used to study 

and predict DDIs. DrugBank is a bioinformatics and cheminformatics database that 

contains not only detailed chemical, pharmacological and pharmaceutical data of drugs, 

but also information relating to sequence, structure and pathway of drug targets. The 
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drugs in DrugBank include not only FDA-approved small molecule and protein drugs, 

but also experimental ones [62]. The KEGG DRUG is a similar database for all the 

approved drugs in the US, Europe and Japan, and contains information on molecular 

structure, target, metabolizing enzymes, transporters, known DDIs, and other molecular 

interaction network information [63]. The World of Molecular Bioactivity (WOMBAT) 

is a database containing protein-ligand binding data mined from papers published in 

medicinal chemistry journals between 1975 and 2012 [64]. ChEMBL and BindingDB are 

similar databases that are publicly available. Assuming that ADRs are predictable from 

the interaction of drugs with molecular actors, these databases have been used to bridge 

the gap between molecular mechanism and clinically observed ADRs resulting from 

drugs or drug combinations. There are a number of examples using information in these 

databases and ADRs discovered in the post-market phase to develop better models 

predicting ADR profile of drugs [65-67]. The data from DrugBank and KEGG DRUG 

can potentially be used to construct gold-standard sets of known DDIs for development 

of new DDI detection methods. These databases may not only provide a basis for better 

understanding of mechanisms underlying DDIs, but also enable prediction of DDIs and 

the resulting clinical consequences.  

Another useful source of data is drug labels which contain valuable information 

about ADRs and known drug interactions. The full text of drug labels for all the drugs, 

including both prescribed and over-the counter drugs, available in the US are provided on 

the National Library of Medicine DailyMed website 

(http://dailymed.nlm.nih.gov/dailymed/about.cfm). A similar resource for the drugs 

available in Japan can be obtained from the Japan Pharmaceutical Information Center 
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(JAPIC). The Side Effect Resource (SIDER) database contains drug-side effect 

relationships mined from the text of drug package inserts. In a study by Tatonetti et al., 

data from the SIDER database were used to predict DDIs [45]. PharmGKB is a database 

that provides curated knowledge about the impact of genetic variations on drug response, 

which can be potentially useful to study DDIs with respect to pharmacogenetics. Also 

available from PharmGKB are OFFSIDES and TWOSIDES which are databases of drug 

effects derived from adverse event reports and of DDI side effects, respectively [45]. 

Last but not least, social networks and online forums can also contribute to the 

discovery of DDIs. Health-related social networks such as Ask a Patient 

(http://www.askapatient.com/), DailyStrength (http://www.dailystrength.org/) and Yahoo 

Health (http://health.yahoo.net/) provide patients a platform for discussing and sharing 

experience with medications. Mining those websites is a promising approach to obtaining 

information on DDIs experienced by patients. Although extracting useful information 

from posts on these websites can be very challenging, they have been shown to provide 

supplementary information on side effects and therapeutic effects of drugs [68]. By 

examining the posts related to the use of aromatase inhibitors (AI) on 12 message boards 

between 2002 and 2010, Mao et al. identified common side effects experienced by breast 

cancer patients taking AIs in relation to drug switching and discontinuation [69].  

 

b. Text mining using the published biomedical literature 

Text mining in the biomedical literature has been increasingly recognized as a 

powerful approach that can not only transform the archives of science into rapidly 

accessible searchable data, but also promote the discovery of new knowledge and 
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development of science [70, 71]. It has grown in the last few years to be one of the major 

bioinformatics tools [72]. In general, text mining refers to “the process of extracting 

interesting and nontrivial information and knowledge from unstructured text” [73]. It lies 

at the interface of several computer science disciplines including but not limited to 

artificial intelligence, pattern recognition, neural networks, natural language processing, 

information retrieval and machine learning [73]. 

There are three commonly used approaches to text mining in the biomedical 

literature  [70]. One is co-occurrence-based methods that search for concepts occurring in 

the same sentence or abstract and posit a relationship between them [70]. This approach 

has been used to build many early biomedical text mining systems but is used less 

frequently today because it is error prone [70]. Two more commonly used and more 

sophisticated approaches are the rule- or knowledge- based approaches, and statistical- or 

machine-learning-based approaches [70]. A rule-based system uses certain rules as 

criteria for information extraction. The complexity of a rule-based text mining system 

depends on what rules are applied. Rules can be simply certain linguistic patterns that are 

used to find explicit statements of interest [74]. For example, the pattern “<gene> is 

<associated> with <disease>” can be used as the rule to find the statements about the 

association between a single gene and a disease. In more complicated cases, rules can be 

what relationships exist between sets of subjects, or what variant forms of a gene or a 

protein are mentioned [74]. Sophisticated linguistic and semantic analyses may be needed 

in such cases to recognize a variety of possible ways of making statements of interest 

[74]. In contrast, a statistical- or machine-learning-based approach uses a set of training 

data to build classifiers that serve as the basis for subsequent classification of full 
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sentences or documents to be analysed [74]. Rule-based text mining systems in general, 

although not always, are time-consuming to develop, whereas machine-learning-based 

systems may require a large amount of training data that is not always available [70]. As 

a result of their respective deficiencies, these two approaches are often used together to 

complement each other. Many text mining systems employ initial processing based on 

machine learning to classify whether or not a document is relevant, followed by rule-

based post-processing to extract information from the documents [70].  

Before performing text mining, a corpus needs to be constructed. A corpus is “a 

collection of text or speech material that has been brought together according to a set of 

predetermined criteria” as defined by Ali Farghaly [75]. An example of a 

pharmacokinetic corpus is the work by Wu et al. [76]. As summarized by Rzhetsk et al. 

[71], text mining pipelines in general contain the following major stages. (1) Information 

retrieval (IR). IR is the process that finds relevant information in an unstructured text 

source. It largely relies on PubMed that provides a searchable engine and automated 

methods for abstract download. 2) Named-entity recognition. Once the documents 

containing the information of interest are retrieved, an automated method is applied to 

scan each sentence and to identify the language entities of interest. The target entities are 

often predefined in a dictionary containing their synonyms and homonyms, so that an 

individual entity can be identified even though it may be referred to by several different 

names and acronyms. 3) Information extraction (IE). IE is a process that links the 

identified targeted entities using certain action words and assembles them into simple 

phrases that capture their relationship. For example, one may extract the sentences with 

the structure “gene is associated with disease”, where “gene” and “disease” are the target 
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entities and “associate” is the action word capturing their relationship. 4) Synthesis and 

use of the extracted information. There are a variety of ways to use the extract 

information depending on the goal of text mining [71]. Examples include answering a 

question about the relationship between two objects, collecting published experimental 

evidence supporting a set of conclusions, or examining the consistency of a statement in 

the literature. Extracted information can be used to construct a map or a network, a global 

description of the interrelationships between different categories of objects. One such 

example is the work by Coulet et al., who mined 17 million MEDLINE abstracts and 

built a network of 40,000 relationships between genes, drugs and phenotypes [77]. 

Another example is the work by Wang et al., who mined the published literature for 

numeric pharmacokinetic data of drugs [78]. 

 

c. Pharmacoepidemiology study designs for identification of DDIs 

Cohort and case-control studies are the two major study designs used to examine 

the association between an ADR and a drug exposure in pharmacoepidemiologic research 

[42]. 

A cohort means “a group of people who share similar characteristics or 

experience within a defined period” [79]. A cohort study is a study that “identifies 

subsets of a defined population and follow them over time, looking for differences in 

their outcome”, as defined by Strom et al. [42]. Cohort studies can be either prospective 

or retrospective. The output measure of cohort studies is relative risk, which is the ratio 

of the incidence rate of an outcome in the exposed group to the incidence rate of the 

outcome in the unexposed group [42]. A relative risk of greater than, equal to and less 
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than 1 indicates the risk of the outcome in the exposed group is greater than, equal to and 

less than that of the unexposed group, respectively. An adjusted risk ratio can be 

calculated using regression to account for the effect of confounders [80]. Cohort studies 

are particularly useful when one is interested in studying multiple possible outcomes at a 

time from a single exposure, especially a relatively uncommon exposure [42]. One major 

advantage of cohort studies as compared to case-control studies is not having to select a 

control group [42]. However, retrospective cohort studies often suffer from problems 

associated with retrospectively collected data [42]. Prospective cohort studies can be 

time-consuming and expensive to perform as they require following a large cohort of 

subjects over time. For an event occurs at a low rate, the size of a cohort can be 

prohibitively large [42, 80].  

In contrast, case–control studies are studies looking for differences in antecedent 

exposures between a group of cases with an event to a group of randomly selected control 

subjects without the event [42, 80]. The underlying assumption behind case-control 

studies is that cases and controls are selected from the same source population [80]. The 

exposure distribution in the source population is estimated from controls. For this reason, 

selection of controls is vitally important when performing a case-control study, as 

inappropriate controls can bring bias [42]. At the end of study, an odds ratio is calculated, 

which is a close estimate of relative risk when the disease under study is relatively rare 

[42]. Case–control studies are particularly useful when one is interested in multiple drug 

exposures as causes of an ADR [42]. They are also particularly useful when one is 

studying a relatively rare ADR, as the required sample size is markedly smaller that 

needed for a cohort study [42]. Because case-control studies are generally retrospective, 
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they are subject to limitations in the validity of retrospectively collected exposure 

information [42, 80].  

A variation of the case-control study is the nested case-control study. In a nested 

case-control study, a group of individuals are followed over time, only a sample of 

controls are selected for each case matching on the risk factors [81]. The resulting odds 

ratio from a nested case-control study, when proper sampling is used, closely 

approximates the relative risk obtained from a classic cohort study [81]. One of the 

advantages of nested case-control studies is that they have better control on the 

confounding factors through matching than cohort and classical case-control studies, 

while avoiding complicated statistical analysis such as propensity score [81]. 

 

d. Hypothesis and aims 

In this chapter, I hypothesize that data mining in the published literature and EMR 

databases can be used to predict and identify DDIs associated with increased risk of 

myopathy. To test this hypothesis, the following aims are pursued: 

1) Use text mining to identify substrate and inhibitor drugs of the major CYP 

isoforms and to predict drug pairs that potentially interact via inhibition of CYPs; 

2) Use an electronic medical record (EMR) database to identify predicted interacting 

drug pairs that are associated with increased risk of myopathy. 
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2. Methods 

a. Text mining and prediction of potentially interacting drug pairs 

Text mining was performed to identify the substrate and inhibitor drugs of the 

major drug-metabolizing CYP isoforms, including CYP1A2, CYP2A6, CYP2B6, 

CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4/5. Using the data in 

DrugBank, our group constructed a list of non-redundant generic names of 1492 small 

molecule drugs approved by the FDA. A rule-based approach was used for information 

retrieval. A template comprising key terms was constructed to retrieve PubMed abstracts 

meeting the following criteria: 1) involving in vitro studies characterizing drug 

metabolism, inhibition or induction of the major CYPs, or mechanisms underlying a 

CYP-based DDI; 2) involving the typical in vitro experimental systems for such studies, 

including recombinant CYP enzymes, human liver microsomes (HLMs) and human 

hepatocytes; 3) involving any of the drugs on our drug list; and 4) involving any of the 

probe substrates and specific inhibitors of the major CYPs defined by the FDA [13].  

A filter based on natural language processing was then applied to examine the 

linguistic expression pattern of each sentence in the retrieved abstracts and to identify the 

sentences with entities of interest. The identified sentences were those describing the 

relationship of a drug with a major CYP isoform or with another drug. Examples include 

‘drug D is (not) metabolized/a substrate of CYP isoform E’, ‘drug D (not) inhibit CYP 

isoform E’, ‘drug D is (not) an inducer of CYP isoform E’, ‘there is (not) interaction 

between drug A and B’.  

For information extraction, two students in our laboratory independently and 

manually curated all the extracted sentences in the context of the relevant abstracts to 
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make a call on the role of a drug to a CYP isoform, i.e. a substrate, an inhibitor or an 

inducer. There were a number of cases where the two curators could not agree. I then 

curated all the abstracts that were not agreed by them, and also a random subset (20%) of 

the abstracts for which they reached an agreement.  

The information extracted was summarized as lists of substrates, inhibitors, and 

inducers of each of the major CYP isoforms. Assuming that a substrate and an inhibitor 

of a particular CYP isoform have a metabolic interaction, potentially interacting drug 

pairs were predicted by pairing a substrate and an inhibitor of a CYP isoform. Since the 

primary interest was in DDIs associated with increased risk of myopathy, which are more 

likely to result from increased systemic exposure, DDIs that potentially result from 

induction of CYP enzymes were not considered.  

 

b. Preparing data for pharmacoepidemiology analyses 

A subset of data from the Indiana Network for Patient Care (INPC) Common 

Data Model (CDM) was used for the subsequent analysis. The INPC is a health 

information exchange data repository containing electronic medical records on over 11 

million patients throughout the state of Indiana. Derived from the INPC, the CDM 

contains coded prescribed medications, diagnosis, and observation data of 2.2 million 

patients between 2004 and 2009. The CDM also contains over 60 million drug dispensing 

events, 140 million patient diagnoses, and 360 million clinical observations such as 

laboratory values. A subset of the CDM data involving 817, 059 patients whose 

prescribed medication data were available were used for analysis. These data have been 
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anonymized and constructed specifically for research on adverse drug reactions through 

collaboration with the Observational Medical Outcomes Partnership project.  

Before performing the analyses, the drugs on our list were first mapped to those in 

the dataset. In the CDM, a prescribed medication is coded as a “Concept” identified by its 

“Concept ID” and described in detail in its “Concept Name”. The concept name of a 

medication typically describes the generic name(s) of the drug ingredient(s), the 

dosage(s), the route of administration, the formulation, and the trade name. An example 

of the concept name of a combination medication is “Atropine 0.025 MG / difenoxin 1 

MG Oral Tablet [Motofen]”. The data set has in total 54,490 unique medication concepts. 

The drugs on our list were mapped to the medication concepts in the CDM using lexical 

expression matching followed by manual review. Our group also examined in the data set 

which pairs of predicted interacting drugs were coadministered to patients. 

Coadministration was defined as the prescription windows of two drugs less than 30 days 

apart. This helped our group to filter out the predicted drug pairs that were not used 

together in clinical settings.  

The diagnoses relevant to myopathy, our health outcome of interest, were then 

identified in the data set. A diagnosis is coded as a “Condition Concept” in the CDM, 

also identified by its “Concept ID” and described in detail in its “Concept Name”. 

Myopathy has a broad spectrum of clinical presentations (Table 1-1), ranging from 

asymptotic creatine kinase (CK) elevation without any muscle symptoms to life-

threatening rhabdomyolysis. Our group focused on the myopathy diagnoses with muscle 

symptoms including, but not limited to, myalgia, myositis, muscle weakness, 

polymyositis and rhabdomyolysis.  
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c. Identification of DDIs associated with myopathy using case-control studies  

For each predicted potentially interacting drug pair, a retrospective case-control 

study was performed to examine the association between myopathy diagnosis and the 

concomitant use of the pair of drugs. Only myopathy diagnoses preceded by drug 

prescriptions were considered because the group attempted to infer the causal relationship 

between myopathy and drug exposures. In addition, only the association of drug 

prescriptions with the first diagnosis of myopathy in a sequence of myopathy diagnoses 

was considered, because drug prescribed following the first diagnosis may be used to 

treat myopathy and may be confounded. All the patients whose medication data were 

available were included in the study, except those who had their first diagnoses of 

myopathy within the first six months of the data set. This was because it was assumed 

that patients who did not have any subsequent diagnosis of myopathy within six months 

following the first diagnosis were cured, and that those who had the first diagnoses of 

myopathy within the first six months of the data set may have preexisting myopathy that 

was not captured in the data set.  

The exposure window of a drug was defined as the prescription duration of the 

drug and 30 days after the prescription supply. It was assumed that the risk of myopathy 

due to a drug exposure was highest within this window. Cases were considered to include 

patients who had at least one myopathy diagnosis. For each case, an index time was 

defined as the time of the first myopathy diagnosis. If an index time was within the 

exposure window of a drug, then the case was considered to be exposed to the drug. For a 

given predicted interacting drug pair, the cases of the substrate-only (or the inhibitor-only) 

group were the cases who were exposed to the substrate only (or the inhibitor only), and 
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the cases of the combination group were the cases exposed to both the substrate and the 

inhibitor. Patients who had no myopathy diagnosis were considered to be in a control 

pool. To select controls for the substrate-only group, an index time was defined as the 

same as that of a randomly selected case who was exposed to the substrate. The controls 

for the substrate-only group were considered to include all the patients in the control pool 

who were exposed only to the substrate at the index time. The controls for the inhibitor-

only group and the combination group were defined similarly. 

The synergistic effect of the substrate and inhibitor drugs on myopathy was tested 

using logistic regression. For a given drug, the risk of myopathy was determined by the 

number of cases divided by the total number of cases and controls. The risk ratio (RR) 

was calculated as risk ratio = risk12 / (risk1 + risk2), where risk1, risk2 and risk12 were the 

risk of myopathy in the subjects of the substrate-only group, the inhibitor-only group and 

the combination group, respectively. A risk ratio of greater than, equal to and less than 

unity indicates synergism, additive effect or antagonism, respectively. Of our interest 

were drug pairs with RRs greater than unity, indicating increased risk of myopathy when 

combined. Because the risk of myopathy is known to be correlated with age and gender 

[82], these two factors were incorporated into the model as covariates. The type I error 

rate was corrected for multiple testing using the Bonferroni method. The p-value 

threshold was therefore 0.0000136 (0.05/3670). The analyses were performed using SAS 

(Cary, NC). 
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3. Original results 

a. Substrate and inhibitor drugs mined from the published literature 

The sentences of interest extracted from PubMed abstracts were manually 

reviewed to identify substrates, inhibitors and inducers of the major CYP isoforms, 

including CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, 

CYP2E1 and CYP3A4/5. The first two student curators reached agreement on 78% of the 

extracted sentences. I made the call for the remaining 22% of the abstracts where the 

disagreement existed, and verified the 20% of randomly selected subset for which the 

other two curators agreed upon. This manual curation performed in the information 

retrieval step ensured a high quality of the literature mining data.  

Our data show that among the 1492 drugs approved by the FDA, 232 drugs were 

either substrates or inhibitors of at least one of the major CYP isoforms. The numbers of 

substrate inhibitor drugs for each of the major CYP isoforms are presented in Table 2-1. 

One hundred and forty nine drugs were identified as substrates of any major CYP 

isoforms, 102 (68%) of which were substrates of CYP3A4/5. This is consistent with the 

observation that CYP3A alone is responsible for the metabolism of over 50% of the 

prescription drugs metabolized by the liver [83]. 59 drugs were found to be substrates of 

multiple CYP isoforms. 123 drugs were identified as inhibitors of any major CYP 

isoforms, 50 of which were found to inhibit multiple isoforms. The number of inhibitors 

of CYP3A4/5, CYP2D6, CYP2C9, CYP1A2 and CYP2C19 were comparable.  
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b. Demographics and characteristics of the CDM dataset 

Assuming that a substrate and an inhibitor of a particular CYP isoform had a 

metabolic interaction, 13,197 pairs of drugs in total were predicted to be potentially 

interacting via inhibition of the relevant CYP isoforms by pairing a substrate with an 

inhibitor of a CYP isoform. Because not all these theoretical drug combinations are 

coadministered clinically, the analyses were limited only to those that are clinically 

relevant. To identify the drug pairs coadministered clinically, the drugs approved by the 

FDA were first mapped to the medication concepts in the database. Of these, 1,293 out of 

1492 drugs were mapped successfully, while 199 drugs could not be matched. The 

unmatched drugs were found to be banned drugs, illicit drugs, organic compounds, 

herbicide/insecticides, functional group derivatives, herbal extracts, DrugBank drugs 

absent from the CDM, and drug names that only exist in the published literature. By 

screening for drug pairs whose prescription windows were less than 30 days apart, 3670 

out of 13,197 predicted DDIs were identified to be coadministered to the patients in the 

database.  

59,572 out of 828,905 (7.2%) patients had at least one diagnosis of myopathy. 

The age and gender were missing for 11,846 (1.4%) patients in the population. For the 

59,572 patients who were diagnosed with myopathy, the average age was 40.2 ± 23 years, 

and 489,669 (59.1%) were female. The average number of medications taken by this 

population was 3.8 ± 2.5. Race is known to be a risk factor for myopathy, but data 

identifying patients’ race were only available for 11.84% of the total population, and 

were not included in the subsequent analyses. 
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Twelve concept IDs relevant to myopathy were identified in our data set (Table 2-

2). “Myalgia and myositis” was the most frequent diagnosis, accounting for 78% of the 

total myopathy diagnoses, followed by “Muscle weakness” (20%). There were in total 53 

cases of rhabdomyolysis identified from the date set.  

 

c. DDIs significantly associated with an increased risk of myopathy 

Using a case-control study design, the effect of each individual predicted drug 

pair on myopathy was tested using a synergistic model. This model was used since it is 

relatively conservative and since it lends itself to providing useful mechanistic insights. 

The model tested whether the risk of coadministration of both drugs was significantly 

higher than the additive risk from taking either drug alone. The risk was adjusted for age 

and gender, two known risk factors for myopathy. Both factors were significantly 

predictive of the risk of myopathy. Females were found to have a higher risk of myopathy 

than males with an odds ratio of 1.64 ± 0.0039. The risk of myopathy increased with age 

at a rate of 0.15% ± 0.0012% per year. 

There were 27 drug pairs significantly associated with the risk of myopathy. 

Many of these drug pairs involved narcotic analgesics such as fentanyl, hydrocodone, 

oxycodone, and a muscle relaxant tizanidine, which were likely administered to patients 

with myopathy to relieve muscle symptoms. The significant drug pairs involving these 

drugs were therefore not considered as myopathic. The remaining 15 pairs of drugs 

significantly associated with an increased risk of myopathy are shown in Table 2-3.  

The identified significant DDIs involved clinically important drugs including 

alprazolam, chloroquine, duloxetine, hydroxychloroquine, loratadine, omeprazole, 
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promethazine, quetiapine, risperidone, ropinirole, trazodone and simvastatin. Apart from 

the interaction between promethazine and tegaserod, all the other interactions involved 

chloroquine, hydroxychloroquine, or loratadine. Eight significant DDIs involved 

chloroquine and hydroxychloroquine. They were found to interact with risperidone, 

quetiapine, loratadine, trazodone and duloxetine. The highest relative risks (RRs) were 

observed with the interactions of risperidone with chloroquine and hydroxychloroquine 

(RR = 3.36 and RR = 2.88, respectively). Six significant DDIs involved loratadine. In 

addition to the interactions with chloroquine and hydroxychloroquine, loratadine was 

found to also interact with ropinirole, simvastatin, duloxetine, alprazolam, and 

omeprazole.  

 

4. Discussion 

In this chapter, I have addressed the hypothesis that literature mining and large 

databases can be used to predict and identify DDIs associated with myopathy. Using 

automated algorithms and rigorous manual review, the published literature was text-

mined. There were 232 drugs identified as either substrates or inhibitors of the major 

CYPs. 13,197 pairs of drugs were predicted to have metabolic interactions via inhibition 

of CYPs, 3670 of which were found to be coadministered to patients in an EMR database. 

Using a case-control study design and a synergistic model, fifteen drug pairs were further 

identified to be significantly associated with an increased risk of myopathy as compared 

to the additive risk from taking either of the drugs alone.  

Only a small number of studies designed to identify and predict DDIs using 

knowledge mined from the published literature have been published. Percha et al. [44] 
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and Tari et al. [84] identified through text mining the interrelationships between drugs 

and metabolic enzymes from which DDIs were inferred. Our work shared a similar 

assumption that a DDI can arise when a substrate drug and an inhibitor drug of a CYP 

enzyme are coadministered. The goal of our text mining work was to predict CYP-based 

metabolic DDIs for which there is more supporting evidence in the published literature. 

Consequently, our approach had the following features that distinguished our work from 

those published previously. First, our approach was strongly mechanism-oriented. We 

aimed only to mine from the literature the drugs that are substrates or inhibitors of the 

major CYPs, from which we could predict CYP-based metabolic DDIs. A resulting 

limitation of our work was that we could not obtain an exhaustive list of potentially 

interacting drug pairs. Second, we defined substrate and inhibitor of the major CYPs 

using a set of strict criteria – the drugs that had been investigated in a typical in vitro 

experimental system using probe substrates or specific inhibitors defined by the FDA. 

We recognize that this likely led to exclusion of some true substrates and inhibitors and 

consequently a smaller number of predicted drug pairs. Of 1492 small molecule drugs 

approved by the FDA, only 149 (10%) and 123 (8.2%) drugs were identified as substrates 

and inhibitors of any major CYP isoform, respectively. However, these identified drugs 

met the “norm” definition of a substrate or an inhibition of a CYP isoform. Third, the 

information extraction process was performed manually by three curators, including me, 

reviewing the extracted relevant sentences. Although less efficient than automated 

methods, manual curation ensured a high accuracy in identifying substrate and inhibitors 

of the major CYPs. All these features add our confidence in predicting CYP-based 

metabolic DDIs. Similar to the work of Percha et al. [44] and Tari et al. [84], the text 
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mining performed by our group was limited to PubMed abstracts. As pointed out by 

Cohen et al. [70],  extracting information from full text of the published literature 

remains a challenging task in the field of text mining. 

When compared to work published previously, our approach also differs in that 

we took a step forward from predicting novel metabolic DDIs to identifying those of 

clinical consequence from predicted DDIs. By testing the association of the predicted 

DDIs with myopathy diagnoses in an EMR database, fifteen pairs of drugs were found to 

increase the risk of myopathy when coadministered. This is similar to the approach used 

by Tatonetti et al., who identified DDIs shared by an entire drug class using a database of 

side effects and corroborated those DDIs in an EMR database [45].  

None of the fifteen DDIs identified by us has been reported before. Eight of these 

DDIs involved chloroquine and hydroxychloroquine. Both chloroquine and 

hydroxychloroquine are antimalarial drugs indicated for the suppressive treatment and for 

acute attacks of malaria. In developed countries such as in the US, they are mainly used 

to treat rheumatoid arthritis and systemic lupus erythematosus. The labels of both drugs 

note skeletal muscle myopathy or neuromyopathy as one of the side effects. There are a 

number of case reports on chloroquine and hydroxychloroquine induced neuropathy, 

myopathy, and cardiomyopathy [85, 86]. In a prospective cohort study by Casado et al., 

119 Spanish rheumatic patients treated with chloroquine or hydroxychloroquine were 

followed over three years. Of those patients, 22 (18.5%) were found to have persistently 

elevated serum levels of muscle enzymes. The prevalence of antimalarial induced 

myopathy was estimated to be 9.2% with an annual incidence of 1.2% during follow-up. 

The prevalence of antimalarial induced muscle weakness was estimated to be 6.7%. The 
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authors also pointed out that in rheumatic patients, the initial mild symptoms of muscular 

injury are often masked by the underlying disease, which may explain why the diagnosis 

of antimalarial myopathy is usually difficult and often delayed [87]. Their data suggest 

that the prevalence of myopathy in patients taking antimalarial drugs are higher than that 

expected previously [86]. Our data show that chloroquine and hydroxychloroquine can 

interact with a variety of drugs to bring about an even higher risk of myopathy. However, 

to date, there is no published study investigating drug interactions with chloroquine and 

hydroxychloroquine with respect to the risk of myopathy. Our data thus call for scientific 

attention to drug interactions that may lead to exacerbated antimalarial induced myopathy. 

Similarly, the risk of myopathy associated with the antihistamine loratadine has 

largely been unnoted. Loratadine was involved in six of 15 significant DDIs. Myalgia is 

one of the side effects of both loratadine and its major pharmacologically active 

metabolite, desloratadine [88, 89]. Desloratadine seems to be more myotoxic than 

loratadine. In randomized clinical trials, 2.1% of subjects treated with desloratadine 

experienced myalgia as compared to 1.8% treated with placebo, whereas less than 2% of 

subjects treated with loratadine experienced myalgia [88, 89]. Our data indicate that 

loratadine or desloratadine may be more myotoxic than they have been recognized, and 

they can pose even higher risk of myopathy when coadministered with other drugs.  

A review of drug labels revealed that myopathy is also one of the side effects of 

several other drugs involved in the significant DDIs. Statin-induced myopathy is one of 

the well-known side effects of statins. The risk of rhabdomyolysis associated with high 

dose of simvastatin is so well recognized that the FDA issued a black box warning 

against daily use of the 80 mg dose of simvastatin. Alprazolam is an anxiolytic indicated 
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for the management of anxiety disorder and panic disorder. Its side effects include 

muscular cramps and muscle stiffness which can be associated with myopathy. The use 

of trazodone, an antidepressant, can cause musculoskeletal pains. Back pain, muscle 

weakness, myalgia, muscle cramps and leg pain have been reported with the use of 

omeprazole, a proton pump inhibitor. Some other drugs can cause back pain, which may 

also be associated with myopathy. Those include risperidone and quetiapine, two 

antipsychotic drugs indicated for the treatment of schizophrenia and bipolar disorder 

mania, ropinirole, a dopamine agonist used to treat Parkinson's disease and restless legs 

syndrome, and tegaserod, a serotonin agonist used to treat irritable bowel syndrome and 

constipation. There are also a number of case reports in which rhabdomyolysis occurred 

in patients treated with risperidone [90-93] or quetiapine [94-99]. The muscle-related side 

effects of these drugs indicate that it is possible that interaction with these drugs may 

cause increased risk of myopathy. 

In addition to having a synergistically myopathic interaction, there are other 

possible explanations for the association of these drugs with increased risk of myopathy. 

One is that they may be used to treat diseases that co-occur with myopathy and related 

muscle symptoms. For example, risperidone [100], quetiapine [100, 101], alprazolam 

[102], tegaserod [103] and duloxetine [104] may be used to manage the symptoms of 

fibromyalgia. Notably, duloxetine is indicated for the management of chronic 

musculoskeletal pain, including fibromyalgia. In addition, these drugs can be associated 

because their common comedications are used to manage myopathy or other diseases co-

occur with myopathy. Not being able to establish a causal relationship is one of the 

inherent limitations of any pharmacoepidemiologic study. This issue can potentially be 
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addressed by performing carefully designed pharmacoepidemiology study that account 

for confounding factors such as comedications and comorbidities. However, it can be 

challenging to perform such studies for a large number of potentially interacting drug 

pairs. 

There are a number of known clinical drug interactions that are associated with an 

increased risk of myopathy, including the interactions between CYP3A4-metabolized 

statins (e.g. simvastatin, atorvastatin and lovastatin) and strong inhibitors of CYP3A4 

such as ketoconazole, itraconazole, and erythromycin, and the interactions between 

OATP-transported statins (e.g. cerivastatin, pravastatin and rosuvastatin) and strong 

inhibitors of OATPs such as gemfibrozil and cyclosporine. However, none of these 

known myopathic drug interactions were identified in our analyses. One possible 

explanation is that physicians and pharmacists were aware of such interactions and 

advised the patients not to take the interacting drugs together.  

There are a few limitations of our study due to the use of diagnostic codes to 

identify myopathy cases. Muscle weakness and muscle pain are relatively subjective 

feelings that rely on patients’ self-report and are subject to psychological factors [105]. 

There is therefore a potential risk of misidentification of patients who actually 

experienced myopathy using diagnostic codes. This may be particularly problematic for 

identification of myopathy cases taking antipsychotic drugs such as risperidone and 

quetiapine. The plasma level of creatine kinase has been proposed to be used as a 

biomarker for myopathy [106]. However, according to our primary analysis, data on the 

plasma level of creatine kinase in the EMR database are not helpful in the identification 

of patients with myopathy for two reasons: 1) there are only a small number of patients 
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with such data, indicating that analysis to detect DDIs may be underpowered due to a 

small sample size; 2) the majority of data are indicative of myocardial infarction instead 

of myopathy. Another problem with identification of cases and controls is that we only 

identified patients with symptomatic myopathy and those with asymptomatic creatinine 

kinase elevation could not be identified. A potential improvement in identification of 

cases and controls may be achieved by reviewing clinical narratives, but this is 

technically challenging. 

Our analyses using the data existing in an EMR database also suffer from the 

weaknesses shared by retrospective observational studies in general. First, the data in the 

CDM dataset are incomplete. Age and gender information was missing for 11,846 (1.4%) 

patients, and race data were only available for 11.84% of the population. Second, the 

validity of the data is difficult to verify. For example, coadministration of drugs was 

identified using prescription codes, which could be unreliable. Third, our analyses are 

subject to potential population biases introduced by the EMR database.  

The synergistic model used to evaluate the combined effect of two drugs has a 

number of limitations as well. Suppose that there is a background prevalence, B, of 

myopathy that is independent of the effect of any drug. Then the true relative risk can be 

calculated as RR’ = (R12 – B) / [(R1 – B) + (R2 – B)], where (R12 – B), (R1 – B) and (R2 – 

B) are the risk of myopathy in the combination, substrate and inhibitor group that are due 

only to the drugs. When R12 is greater than the sum of R1 and R2 as in the case of 

synergistic interaction, this RR’ is greater than the RR we estimated as RR = R12 / (R1 + 

R2). In other words, the methods underestimated the relative risk when two drugs under 

study interact synergistically. B was, however, not estimable in our case because any 
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patient with a myopathy diagnosis was classified into a treatment group. As a result of 

underestimated RRs, a number of drug pairs that in fact had small synergistic effects 

when used in combination were probably misidentified as not having interactions. A 

potential solution to this issue is to select a group of controls for each case, matching on 

demographics, comorbidity and comedication distribution and other confounding factors. 

In addition, for some drug pairs the number of cases in the combination group was small, 

and that may limit our power to detect significant DDIs. 

Additional limitations of this specific pharmacoepidemiologic study include that 

dose and duration of exposure were not taken into consideration. The risk of myopathy is 

known to be both dose- and time- dependent for some drugs including statins. Unlike 

spontaneous reporting systems, data from EMR databases are longitudinal where time-to-

event methods are applicable. However, we could not apply such methods to evaluate the 

effect of duration of exposure because the current methods cannot be directly applied to 

EMRs for detection of DDIs.  

In spite of the limitations discussed above, we demonstrated that it is possible to 

identify new and clinically important DDIs using data mined from the published literature, 

followed by screening for DDIs associated with myopathy in an EMR database.  
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Table 2-1. The number of substrate and inhibitor drugs of the major CYPs mined 

from the published literature 

CYP Pathway The number of substrates The number of inhibitors 

CYP1A2 30 39 

CYP2A6 1 9 

CYP2B6 5 15 

CYP2C19 5 31 

CYP2C8 11 2 

CYP2C9 30 39 

CYP2D6 34 39 

CYP2E1 8 6 

CYP3A4/5 102 48 

Total 149 123 
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Table 2-2. Categories and frequencies of myopathy diagnoses 

Concept ID Concept Name Frequency 

84675 Myalgia and myositis 48877 

79908 Muscle weakness 12720 

80800 Polymyositis 372 

446370 
Antilipemic and antiarteriosclerotic drugs causing adverse 

effects in therapeutic use 206 

4217978 Myalgia and myositis, unspecified 185 

73001 Myositis 53 

439142 Myoglobinuria 52 

4345578 Rhabdomyolysis 52 

4218609 Muscle weakness (generalized) 22 

4262118 Other myopathies 7 

4147768 Myopathy, unspecified 1 

4248141 Rhabdomyolysis 1 
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Table 2-3. Drug pairs significantly associated with an increased risk of myopathy 

Drug 1 Drug 2 Risk Ratio P-value Risk1 Risk2 Risk12 M1 N1 M2 N2 M12 N12 

Chloroquine Risperidone 3.36 4.47E-05 0.16 0.04 0.65 689 4417 373 10233 11 17 

Hydroxychloroquine Risperidone 2.88 1.37E-04 0.19 0.04 0.65 684 3634 373 10233 11 17 

Loratadine Chloroquine 2.21 1.27E-05 0.03 0.16 0.42 1528 45104 683 4405 35 84 

Promethazine Tegaserod 2.20 1.28E-05 0.03 0.07 0.21 2325 80012 259 3893 48 228 

Chloroquine Quetiapine 2.17 5.29E-05 0.15 0.08 0.50 676 4394 1055 13813 26 52 

Loratadine Ropinirole 2.05 3.47E-05 0.03 0.12 0.31 1527 45107 713 6121 42 136 

Chloroquine Trazodone 1.99 2.23E-05 0.15 0.09 0.49 674 4391 875 9635 35 72 

Loratadine Hydroxychloroquine 1.95 7.02E-05 0.03 0.19 0.43 1528 45105 678 3622 35 81 

Hydroxychloroquine Trazodone 1.76 2.02E-04 0.19 0.09 0.49 669 3608 875 9635 35 72 

Chloroquine Duloxetine 1.65 1.34E-10 0.14 0.15 0.48 614 4289 3688 25173 138 288 

Loratadine Simvastatin 1.60 4.75E-07 0.03 0.05 0.13 1447 44623 4256 88683 152 1184 

Loratadine Duloxetine 1.56 7.43E-09 0.03 0.15 0.28 1446 44914 3685 25117 181 647 

Loratadine Alprazolam 1.56 1.06E-09 0.03 0.07 0.16 1372 44426 3726 50734 236 1447 

Hydroxychloroquine Duloxetine 1.53 1.46E-08 0.17 0.15 0.49 609 3509 3688 25173 138 282 

Loratadine Omeprazole 1.33 4.45E-07 0.03 0.07 0.13 1322 44207 4617 70800 354 2796 

 

Note: Risk1, Risk2 and Risk12 designate the risk of myopathy in the subjects of the substrate drug group, the inhibitor drug group and 

the combination group, respectively;  M1, M2 and M12 are the number of cases of the substrate drug group, the inhibitor drug group 

and the combination group, respectively; N1, N2 and N12 are the number of controls of the substrate drug group, the inhibitor drug 

group and the combination group, respectively.  
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Chapter 3. In vitro assessment of inhibition of Cytochrome P450s 

 

i. Screening for inhibition of CYPs 

1. Introduction 

a. CYP450s are the major drug-metabolizing enzymes in humans 

The cytochrome P450 superfamily (CYPs) is a large and diverse group of heme-

containing enzymes. The name P450 is derived from the maximum spectral absorbance 

peak at 450 nm when they are in the reduced and CO-bound form [31]. They catalyze the 

oxidation, peroxidation and reduction of endogenous metabolic intermediates such as 

steroids, prostaglandins and fatty acids, as well as xenobiotic substances such as drugs, 

toxins and environmental pollutants [31]. In humans, CYPs play a central role in phase I 

drug metabolism. They are responsible for metabolizing the vast majority of therapeutic 

drugs and thus have been the most studied xenobiotic metabolizing enzymes [83].  

The activity of CYPs requires both a reducing agent (nicotinamide adenine 

dinucleotide phosphate [NADPH]) and molecular oxygen. A typical reaction catalyzed 

by CYPs is a monooxygenase reaction, in which one molecule of oxygen is reduced per 

substrate molecule (RH), with one oxygen atom appearing in the product and the other in 

the form of water [107, 108]: 

RH + O2 + NADPH + H+ → ROH + H2O + NADP+ 

In contrast to most enzymes in the body, CYPs are promiscuous [83]. A single 

CYP isoform can metabolize many structurally distinct chemicals, owning to their large 

and fluid binding pockets. A substrate drug can be metabolized by several CYPs at the 

same time, although this may occur at different rates. As a result, there is significant 
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overlapping substrate specificity amongst CYPs. This is one of the underlying reasons for 

drug interactions as one drug may compete for the binding pocket and reduce the 

metabolic rate of another drug [83]. 

There are 55 individual CYPs in 16 families have been identified in humans [108]. 

The isoforms that are most significant in drug metabolism are members of the CYP1, 

CYP2 and CYP3 families [109, 110]. Drug-metabolizing CYPs are most abundant in the 

liver [83]. They are also expressed throughout the gastrointestinal tract, and in lower 

amounts in lung, kidney, and even in the central nervous system [83]. Intracellularly, 

these enzymes are located in the lipophilic endoplasmic reticulum membranes [83]. In the 

liver, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 appear 

to be the most important forms [109]. Together, they are responsible for the metabolism 

of about 75% of all marketed drugs [111]. It is worth noting that CYP3A4 is the most 

abundant isoform in the liver, accounting for about 30% of the total liver CYP content 

[112]. CYP3A4 alone is responsible for the metabolism of nearly 50% of the prescription 

drugs metabolized by the liver [111]. CYP3A4 is also the most abundant isoform in the 

gastrointestinal tract and is subject to DDIs occurring during drug absorption [110]. 

 

b. Inhibition of CYPs is an important mechanism of DDIs 

The central role of CYPs in drug metabolism render them a particularly important 

site of DDIs [111]. Clinically observed metabolic DDIs involving CYPs can be due to 

either induction or inhibition of enzyme activity. Compared to induction-mediated DDIs, 

inhibition-mediated DDIs are more common and more clinically significant. Amongst the 
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drugs that have been withdrawn from the market, a significant number have been due to 

inhibition-mediated interaction with a commonly co-administered drug [113].   

Enzyme inhibition can occur via two main biochemical mechanisms, reversible or 

irreversible. Competitive inhibition and noncompetitive inhibition are the two most 

commonly observed mechanisms that result in reversible inhibition [107]. When a 

reversible inhibition occurs, a drug reversibly binds to the affected enzyme(s), either 

competing for the binding pocket, or allosterically reducing the metabolic capacity. As a 

result, there is a reduction in the metabolism and an increase in the systemic exposure of 

another drug, which may lead to an increased in the risk of adverse drug reactions [107]. 

An example is inhibition of terfenadine metabolism by ketoconazole. Terfenadine is an 

antihistamine primarily metabolized by CYP3A4. At clinical doses, terfenadine is almost 

undetectable in plasma due to high first pass metabolism and efficient systemic clearance. 

However, when co-administered with ketoconazole, an antifungal and a very potent 

inhibitor of CYP3A4, the plasma concentration of terfenadine dramatically increases to a 

level that prolongs the electrocardiographic QT interval. The severe inhibition of 

terfenadine metabolism by ketoconazole led to episodes of torsade de pointes and fatal 

arrhythmias in many patients [114]. The drug was ultimately withdrawn from clinical use. 

Irreversible inhibition, or mechanism-based inhibition, can occur when a drug is 

metabolized by a CYP to a reactive intermediate which binds to the active site of the 

enzyme and inactivates it permanently. The body has to restore the pool through de novo 

synthesis of the enzyme which may take weeks. Irreversible inhibition thus has more 

profound effects on drug metabolism and accounts for some of the most potent clinically 

observed DDIs [13, 107]. One such example is mibefradil. Mibefradil is a calcium 
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channel antagonist and a potent metabolism-based inhibitor of CYP3A4/5 with a Kinact of 

0.4 min-1 [115]. It was withdrawn from the market due to unacceptable risk of DDIs with 

many CYP3A4 substrate drugs, including midazolam and triazolam, whose AUC was 

increased by 8-fold and 9-fold, respectively, when coadministered with mibefradil [116, 

117]. 

 

c. In vitro systems for mechanistic studies of DDIs  

Understanding the underlying mechanism of a DDI enables physicians to prevent 

and treat them, and allows scientists to predict future DDIs sharing similar mechanisms. 

Thus elucidation of the mechanism of individual DDIs is key. In vitro experimental 

systems are one approach to characterizing metabolism-based DDIs. Commonly used in 

vitro experimental systems include recombinant CYP enzymes, human liver microsomes 

(HLMs), and human hepatocytes [118]. 

Recombinant CYP enzymes are human CYP enzymes heterologously expressed 

in baculovirus-cultured insect cells or an E. coli-based expression system [119]. Because 

these enzymes are easy and affordable to prepare and in general offer high reproducibility, 

they have become a routine and reliable resource for characterization of metabolism 

during drug development [13]. Since there is only a single CYP enzyme present in the 

system, these enzymes have the advantage of not requiring the use of a highly selective 

probe substrate [120]. They are particularly useful in studying metabolic routes that exist 

in low abundance in vivo, such as CYP2D6 and CYP2B6 [112]. On the other hand, the 

kinetics in the presence of a single CYP are less predictive of that in vivo, where multiple 

CYPs may compete and metabolism of a drug may be diverted to alternative routes when 
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the primary route is blocked [118]. Also, the levels of nonspecific binding, accessory 

proteins and/or protein-protein interactions are different from those of other systems, 

further widening the difference in in vitro kinetics between recombinant and native 

systems [118]. 

HLMs are vesicle-like artifacts that are prepared from human liver tissue. After 

homogenization and differential centrifugation, the endoplasmic reticulum membranes of 

hepatocytes reform into vesicles that are enriched with a panel of drug metabolizing 

enzymes including CYPs, flavinmonooxygenases, carboxylesterases, epoxide hydrolase 

and UGTs [121]. The level of cytochrome b5 and the relative abundance of proteins are 

more similar to what is observed in vivo as compared to recombinant enzymes [121]. 

HLMs thus represent a more physiologically relevant system in terms of enzyme 

composition. They have been routinely used to evaluate the metabolic stability and 

inhibition of CYPs and UGTs by drugs, and to identify which enzyme or enzymes are 

responsible for oxidizing or glucuronidating a drug [13, 118]. One of the disadvantages, 

though, is that they require the use of a highly selective probe substrate for studying a 

particular enzyme of interest, potentially complicating analytical procedures [118]. Also, 

certain CYP isoforms may be absent or in low abundance in the liver of a donor due to 

genetic variations, which can introduce variability in results obtained using HLMs 

prepared from such a donor [118]. The commonly used HLMs are therefore pooled from 

HLMs prepared using livers from many donors. 

In recent years, human hepatocytes have been increasingly used to characterize 

drug metabolism and to evaluate DDIs. The most commonly used preparations include 

isolated primary hepatocytes and cryopreserved hepatocytes [122, 123]. These 
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preparations are particularly appealing as they are most representative of what occurs in 

vivo – they contain a full range of drug-metabolizing enzymes, including both phase I and 

phase II, and membrane drug transporters, as well as the intracellular apparatus for gene 

expression and protein modification [123]. This gives hepatocytes a unique advantage in 

studying (1) DDIs involving enzymes that are absent or present in low abundance in 

HLMs, (2) the interplay of drug transport and metabolism, and (3) enzyme induction and 

transporter regulation in response to drug treatment. However, the use of hepatocytes has 

been largely limited by availability [123]. In contrast to HLMs or recombinant CYPs, it is 

difficult to pool sufficiently large quantities of hepatocytes for detailed kinetic analysis 

[118]. Consequentially, CYP activity in hepatocytes is often measured under non-

Michaelis-Menten conditions. In addition, metabolites produced from substrates may be 

conjugated, further complicating the analysis. Inter-individual variability and variation in 

preparation procedure also add difficulty to promoting their use [118]. Recent progress in 

culturing hepatic cell lines in 2D and 3D has shown a promise to overcome some of the 

limitations and may become a substitute of hepatocytes for in vitro studies in the future 

[124]. 

Due to the advantages and limitations of the systems discussed above, data 

generated using any individual system can only provide a piece of knowledge in the 

picture of drug metabolism. These systems therefore often need to be used together to 

obtain a more comprehensive understanding on the metabolism of a drug. 
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d. Approaches to evaluating enzyme kinetics 

Biochemical reactions involving a single substrate are often assumed to follow 

Michaelis–Menten kinetics, as are most CYP-mediated drug metabolism reactions [125]. 

Determination of the kinetic parameters, Km, Vmax, and CLint, for CYP catalyzed reactions 

is important to the characterization of drug metabolism. These parameters not only enable 

scientists to predict the clearance of a drug in humans, but also provide insights into non-

linear pharmacokinetic behaviors and mechanisms of DDIs. There are two approaches to 

measuring Michaelis-Menten kinetics of a CYP reaction in vitro, namely, metabolite 

formation and substrate depletion. 

Conventionally, evaluation of Km and Vmax involves the incubation of a substrate 

with a single recombinant CYP enzyme or HLM preparation. The rate of metabolites 

formation then is measured under the conditions where the initial reaction velocity is 

linear. In cases where a drug has multiple metabolites, this approach requires 

identification and analytical method development for quantifying each of the individual 

metabolites [118]. This approach thus may not be feasible in some cases.  

Using the substrate depletion approach, incubations are conducted in the same 

way as using the conventional approach. Instead of following the rate of metabolite 

formation, the reaction velocity is measured by the rate of substrate disappearance from 

the incubation mixture. Consequently, Km and Vmax describe the overall metabolism of 

the substrate instead of formation of individual metabolites. When a predominant 

metabolite is formed, the kinetics estimates using the substrate depletion approach have 

been shown to be close to those obtained using the conventional approach [126]. The 

substrate depletion approach has several limitations as it requires consumption of a 
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substantial fraction of substrate to estimate the kinetics accurately. One is that it may 

violate the fundamental assumptions required for Michaelis-Menten kinetics. Also, it may 

not be applicable to drugs that have low intrinsic clearance. Furthermore, it may require a 

high enzyme concentration which could increase nonspecific binding and the 

experimental errors incurred in evaluation of kinetic parameters [126, 127].  

 

e. Bioanalytical methods for studying DDIs 

Advances in bioanalytical techniques used to study DDI have largely been made 

due to the need for screening of drug candidates with favorable metabolic and safety 

profiles in the early stages of drug development [128]. The traditional approach to in 

vitro DDI studies involves incubation of known probe substrates with CYP enzymes and 

measurement of change in the rate of metabolism in the presence of test compounds [13]. 

For example, inhibitors of CYP3A4 are usually identified by a decreased rate of the 1-

hydroxylation of midazolam or the 6’-hydroxylation of testosterone in the presence of a 

test compound [129]. Such assays require time-consuming and labor-intensive analytical 

tools such as liquid chromatography (LC) coupled with UV detection or mass 

spectrometry (MS). The principle bottleneck in the application of LC/UV and LC/MS is 

the limited throughput, largely owing to the need for extracting analytes from an 

incubation mixture [128]. Although throughput has been significantly improved by newer 

techniques, it remains a challenge in the application of LC/UV or LC/MS in a drug 

development setting [118].  

Absorbance- or fluorescence-based assays that do not require metabolite 

separation allow for simultaneous monitoring of a large number of reactions on plate 
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readers, thus enhancing sample throughput [130]. Examination of various O-alkyl 

derivatives of resorufin, fluorescein, 7-hydroxycoumarins, and 6-hydroxyquinolines as 

substrates of CYPs resulted in commercialization of some of these compounds for 

fluorometric assays testing inhibition of CYPs [131]. These assays in general involve 

non- or low- fluorescent substrates which produce high-fluorescent metabolites when 

incubated with CYPs. The rate of metabolism can be readily determined by monitoring 

the change in fluorescence which reflects the amount of fluorescent metabolites produced 

during a fixed period of time [130]. These assays can be easily adapted to a high-

throughput setting where multiple compounds at various concentrations can be tested in 

one application. Compared with the traditional LC/MS, fluorometric assays are a highly 

efficient means for assessing DDIs. However, because these assays involve substrates 

which in general lack specificity for individual CYPs, their application has been largely 

limited to recombinant CYP enzymes where only a single enzyme is present [132]. Also, 

because of the complex kinetic patterns of CYPs, occasionally, IC50s and Kis resulted 

from fluorometric assays are poorly correlated with those obtained using conventional 

probe substrates [132].   

 

f. Quantitative assessment of the risk of clinical drug interactions 

Tremendous efforts have been made to develop an overarching prediction of the 

risk of DDIs in vivo using in vitro experiment data. A variety of mathematical models 

have been developed using data from experiments involving drug metabolism and 

inhibition of drug-metabolizing enzymes. These models fall into three categories with 

increasing level of complexity: basic models, mechanistic static models, and 
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comprehensive dynamic models that include physiological-based pharmacokinetic 

models (PBPK) [133].  

The basic model is the one that has been most widely used largely due to its 

simplicity. It estimates the ratio (R value) of intrinsic clearance of a victim drug in the 

absence and presence of an inhibitor drug as R = 1 + [I]/Ki,u, where [I] is the maximal 

total (free and bound) systemic inhibitor concentration in plasma, and Ki,u is the unbound 

reversible inhibition constant determined in vitro for the affected pathway [134]. This 

model assumes reversible CYP inhibition (competitive or non-competitive), that the 

victim drug is orally administered, cleared exclusively by a single metabolic pathway that 

is affected by the inhibitor, that the ‘well-stirred liver’ model for hepatic clearance 

applies, that negligible inhibition of first-pass metabolism in the gastrointestinal tract 

occurs, and constant inhibitor concentration [133]. To be conservative, [I] is estimated as 

the systemic total peak concentration, Cmax, total (bound and free), of an inhibitor drug at 

the highest proposed clinical dose. For CYP3A inhibitors that are dosed orally, [I] is 

estimated by [I] = Igut = molar dose/250 ml. For time-dependent inhibitors, the R value is 

estimated as R = (Kobs+Kdeg)/Kdeg and Kobs=kinact([I]/(KI+[I]), where Kdeg is the apparent 

first order degradation rate constant of the affected enzyme, kinact and KI are maximal 

inactivation rate constant and apparent inactivation constant, respectively, Kobs is the 

apparent inactivation rate constant and Kobs = kinact ([I]/(KI+[I]) [13]. This approach in 

general over-predicts the risk of DDI, often due to the assumption of a single exclusive 

pathway [133]. 

In many cases, DDIs occur via simultaneous inhibition of multiple metabolic 

pathways. Mechanistic static models take into account all the interaction mechanisms by 
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incorporating the fraction of the affected drug metabolized by the inhibited enzyme 

(fm,CYP), thus improving prediction accuracy [133]. These models also include parameters 

reflecting the change in bioavailability in the gut due to inhibition of enzymes in 

enterocytes and/or the change in first-pass metabolism. They share assumptions with 

those used in the basic model. A generalized form of this approach is as follows [135],  

𝐴𝑈𝐶𝑅 =
𝐴𝑈𝐶𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑒𝑑

𝐴𝑈𝐶
=

𝐹𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑒𝑑

𝐹

1

∑
𝑓𝑚,𝐶𝑌𝑃𝑖

1+∑
[𝐼]𝑗

𝐾𝑖,𝑗,𝑢𝑛𝑏𝑜𝑢𝑛𝑑

𝑚
𝑗

+(1−∑ 𝑓𝑚,𝐶𝑌𝑃𝑖
𝑛
𝑖 )𝑛

𝑖

 Eq. 3-1 

where Finhibited and F are the bioavailability of a victim drug in the presence and absence 

of one or multiple inhibitor drugs, i and j denote multiple affected CYPs and inhibitors, 

respectively. These models have been shown to represent an improvement over the basic 

model and can provide more accurate predictions. One of the limitations of this model is 

that it “uses a single static estimate of in vivo concentration of an inhibitor drug to 

provide a point estimate of the average magnitude of change in the exposure to a victim 

drug” as made clear by Einolf et al. [133].  

Mechanistic dynamic models take into account the dynamics of drug 

concentration after a dose. A typical example of such models is the Simcyp simulator. 

This software simulates the concentration-time profile of a target drug under a 

mechanistic framework with parameters describing the human body in demographic, 

anatomical, genetic and physiological aspects on a population level, the physicochemical 

characteristics of drugs, and clinical study design. Compared with the static models 

discussed above, it allows one to investigate the dynamics of a DDI and the effects of 

inhibitory metabolites, and to predict the variability in the magnitude of DDI in a 

representative population [112, 136].  
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Because the basic model provides a conservative prediction, the R value can serve 

as an initial estimate. Currently, the FDA recommends a stepwise model-based strategy 

for assessing the risk for a drug-drug interaction.  For drugs with R values greater than 

1.1 (or greater than 11 for CYP3A4 inhibitors), the use of a mechanistic model, either 

static or dynamic, is recommended for further evaluation. A predicted AUCR outside the 

window of 0.8-1.25 indicates a possible clinical DDI and conduct of a clinical study is 

required [13].  

 

g. Hypothesis and aims 

In this chapter, I hypothesize that alterations in CYP metabolic activity contribute 

to the significant myopathic DDIs identified previously. To test this hypothesis, the 

following aims are pursued: 

1) Evaluate in vitro the drugs involved in the significant myopathic DDIs for their 

potential to inhibit the major drug-metabolizing CYPs; 

2) Investigate in detail the mode of inhibition for significant inhibitors identified in 

Aim 1); 

3) Quantitatively predict the risk of metabolism-based DDIs. 

 

2. Methods  

a. Materials 

All drugs and metabolites were purchased from Toronto Research Chemicals Inc. 

(North York, ON, Canada). The fluorometric cytochrome P450 inhibition kits for 

CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4 were purchased from BD Biosciences 
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(San Jose, CA). Methanol and acetonitrile were purchased from Sigma-Aldrich (St. Louis, 

MO). Corning™ black 96-well polypropylene assay plates were purchased from Fisher 

Scientific (Pittsburgh, PA). 

 

b. Screening for inhibition of the major CYPs and determining IC50s 

Cytochrome P450 inhibition kits were used to determine the IC50s of the drugs for 

the major CYPs, including CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 

and CYP3A4. The assays were conducted following the manufacturer’s manuals using 

the conditions that are summarized in Table 3-1 [130]. Briefly, the components were 

thawed and pre-warmed to 37 °C. The drugs were dissolved in methanol or acetonitrile. 

Organic solvents were kept below 2% for acetonitrile (1% for methanol and 0.2% for 

DMSO) of the final reaction volume since these solvents are known to inhibit CYP 

enzymes [137, 138]. In 96-well plates (maximum volume 300 μL), the drugs were diluted 

to a series of concentrations in a solution containing nicotinamide adenine dinucleotide 

phosphate (NADP+, final concentration 1.3 mM), MgCl2 (final concentration 3.3 mM), 

glucose-6-phosphate (G6P, final concentration 3.3 mM) and glucose 6-phosphate 

dehydrogenase (final concentration 0.4 U/mL). The enzymes and substrates were diluted 

to desired concentrations in sodium phosphate reaction buffer (pH 7.4, final 

concentration 200 mM) and mixed. The mixture was pre-incubated at 37 °C for 10 min. 

Reactions were initiated with addition of the enzyme and substrate mixture to the 

cofactor and drug mixture. The final reaction volume of all assays was 200 μL. After 

incubating at 37 °C for a pre-specified period of time (15 to 45 min, see Table 3-1), the 

reactions were stopped by adding 75 μL of quenching solution (0.5M Tris base or 2N 
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NaOH, see Table 3-1). Fluorescence was determined using a BioTek Synergy 2 

(Winooski, VT) fluorescence reader at excitation and emission wavelengths optimized to 

detect the metabolites. Each of the drugs was tested at eight concentrations in duplicate. 

The highest final concentration of the drugs ranged from 100 to 1000 μM depending on 

its solubility and the enzyme tolerance to organic solvents. The lowest final concentration 

ranged from 0.023 to 0.46 μM. Positive controls (see Table 3-1) were used to 

demonstrate the reproducibility of the assays. Fluorescence emission of the drugs alone at 

the relevant wavelengths was examined at the same concentrations as in assays. To 

estimate IC50s, percent of inhibition was calculated using net fluorescence that was 

corrected for the background. The values of percent of inhibition were then fitted to a 

two- (Eq. 3-2) or four- (Eq. 3-3) parameter log-logistic model as follows, 

% 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 =
100

1+10(𝑙𝑜𝑔𝐼𝐶50−log[𝐼])×𝐻𝑖𝑙𝑙 𝑠𝑙𝑜𝑝𝑒  Eq. 3-2 

% 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 = 𝐵𝑜𝑡𝑡𝑜𝑚 +
𝑇𝑜𝑝−𝐵𝑜𝑡𝑡𝑜𝑚

1+10(𝑙𝑜𝑔𝐼𝐶50−log[𝐼])×𝐻𝑖𝑙𝑙 𝑠𝑙𝑜𝑝𝑒 Eq. 3-3 

where top and bottom are the top and bottom asymptote of a sigmoidal inhibition curve, 

respectively. Data were analyzed using GraphPad Prism 5 software (La Jolla, CA). 

 

c. Determining dissociation constant (Ki) and mode of inhibition 

For the drug and pathway pairs which yielded IC50 values less than 20 μM, 

indicating a relatively potent inhibition, the mode of inhibition and Ki were determined. 

Fluorometric assays were adapted to test multiple substrate and inhibitor concentrations 

for a specific drug-enzyme pair in one setting. The reaction conditions and experimental 

procedures were the same as above except where indicated. More specifically, on a 96-

well plate, the test drug was diluted to the desired concentrations in solutions containing 
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cofactors. A mixture of the enzyme and the substrate was created for each of the desired 

substrate concentrations before being added to the test drug. Since the substrate and 

inhibitor concentrations in such assays can affect the estimate of Ki, the selection of 

concentrations was guided by the IC50 estimates and the reported Kms. In each 

experiment, the substrate was tested around 5x, 2x, 1x, 0.5x, and 0.2x Km, and the 

inhibitor drug was tested around 5x, 2x, 1x, 0.5x, 0.2x, and 0x IC50. Each combination of 

inhibitor drug and substrate concentration was tested in duplicate. 

The net fluorescence signals were obtained by subtracting the background from 

the original readouts after correction for the fluorescence produced by the drugs alone, 

and were fitted to the model of competitive inhibition, non-competitive inhibition, 

uncompetitive inhibition or mixed inhibition using GraphPad Prism 5 software. The final 

model was identified using Dixon plots with the aid of the method described by Geng et 

al. [139]. Briefly, the apparent inhibition constants regardless of the inhibition 

mechanism (Ki,NR) were calculated using Ki,NR = [I] * r/(1 - r), where [I] is inhibitor 

concentration, and r is the ratio of the reaction velocity in the presence and absence of 

inhibitors. When the values of Ki,NR were plotted against substrate concentrations, 

uncompetitive inhibitory reactions were identified with the characteristic decreasing trend, 

whereas data of competitive inhibition and noncompetitive inhibition formed a straight 

line with the slope being a positive number or zero, respectively.  

 

d. Assessing the risk of DDI using R values  

Following the recommendations from the FDA [13], for each inhibitor-pathway 

pair for which a Ki value was observed, I estimated the R values as 1+ [I]/Ki, u, where [I] 
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is the peak total plasma inhibitor concentration, and (Cmax) is the concentration at the 

highest proposed clinical dose obtained from the published literature (see Table 3-5). The 

highest Cmax was used as a conservative prediction when multiple such Cmax values had 

been reported. Because inhibition of CYP3A expressed in the gastrointestinal gut can 

cause changes in bioavailability and potentially lead to DDIs, the prediction involving 

inhibition of CYP3A uses an estimated concentration in the gut for inhibitors 

administered orally. Therefore, for drugs that inhibited CYP3A4 and are administered 

orally, [I] is estimated as [I] = Igut = molar dose/250 mL. Ki,u is the unbound dissociation 

constant of an inhibitor drug, estimated by Ki,u= fu,inc* Ki,  where Ki is the dissociation 

constant of an inhibitor determined in vitro, fu,inc is the fraction of unbound inhibitor drug 

in in vitro incubation. The value of fu,inc was predicted using the Hallifax-Houston model 

in the following equation (Eq. 3-4) [140], 

𝑓𝑢,𝑖𝑛𝑐 =
1

1+10
0.072(𝑙𝑜𝑔

𝑃
𝐷

)2+0.067𝑙𝑜𝑔
𝑃
𝐷

−1.126
  Eq. 3-4 

where log P and log D are the predicted partition coefficient and the distribution 

coefficient, respectively, obtained from DrugBank.  

Consistent with the FDA guidelines for metabolism-based inhibitory DDIs [13], 

inhibitors of CYP3A4 with an R value of >11, or inhibitor of other CYPs with an R value 

of >1.1, were interpreted as possibly involving clinically meaningful DDIs. For inhibitor 

drugs with an R value greater than the cutoffs, AUCR was further predicted for the 

relevant myopathic drug pairs using the mechanistic static model in Eq. 3-1. To predict 

AUCR, the fraction of metabolism (fm) of a victim drug via the affected pathway(s) was 

estimated by fm,CYPi = CLint,CYPi / CLint, total, where CLint,CYPi is the intrinsic clearance via 

the affected pathway under consideration (CYPi), and CLint,total is the total intrinsic 
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clearance. CLint,CYPi and CLint,total were obtained from the published literature. AUCRs 

between 1.25 and 2 were considered as clinically weak interactions; those between 2 and 

5 as moderate inhibitory interactions; and those greater than 5 as clinically strong 

inhibitory interactions [13]. 

 

3. Original experimental results 

To test the hypothesis that the DDIs identified previously are due, in part, to 

inhibition of important CYPs, I examined in vitro the potential of these drugs to inhibit 

the major CYPs using high-throughput fluorometric assays, and then predicted how likely 

inhibition of the CYPs contributes to the DDIs.  

 

a. IC50 estimates 

The thirteen drugs involved in the significant myopathic DDIs identified were 

screened for inhibition of the major CYP isoforms, including CYP1A2, CYP2B6, 

CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4. IC50s are shown in Table 3-2, 

and the inhibition curves are displayed in Figure 3-1. At the highest concentration tested, 

some of the drugs did not show any inhibition, e.g. omeprazole for CYP2B6, or failed to 

produce 50% inhibition, e. g. chloroquine for CYP1A2 and CYP2B6. In either of these 

two situations, IC50 was designated as greater than the highest concentration tested. Some 

drugs exhibited abnormal kinetics in the assays for CYP2C8, CYP2C9 and CYP2C19. 

For example, omeprazole and trazodone showed activation rather than inhibition (Figure 

3-2 A and B); loratadine and omeprazole seemed to inhibit CYP2C8 and CYP2C9, 

respectively, at lower concentrations but activate the enzymes at higher concentrations 
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(Figure 3-2 C and D); alprazolam and quetiapine exhibited inhibition at lower 

concentrations but activation at higher concentrations for CYP2C9, respectively (Figure 

3-2 E and F). IC50 could not be determined for such cases and they are therefore labeled 

as ND in Table 3-2. The causes of such unusual kinetics are addressed in detail later.  

IC50s were evaluated for 60 drug-enzyme pairs. The inhibitory potential of 

individual drugs was highly variable across the CYPs, which was reflected in a wide 

range of IC50 values spanning from 0.34 µM to 540 µM. Using arbitrary cutoffs, the 

inhibitors were classified as relatively potent (IC50 ≤ 20 µM), relatively moderate (20 µM 

≤ IC50 ≤ 200 µM), or relatively weak (IC50 ≥ 200 µM). Twenty inhibitory reactions were 

identified as involving relatively potent inhibition, 28 as relatively moderate inhibition 

and 12 as relatively weak inhibition. It should be noted that a number of relatively potent 

inhibitors discovered here had not been reported before. For example, promethazine was 

identified as a relatively potent inhibitor of CYP1A2 (IC50 = 1.0 (0.8, 1.2); ropinirole was 

a relatively potent and specific inhibitor of CYP2D6 (IC50 = 0.85 (0.79, 0.92)); tegaserod 

exhibited relatively potent inhibition for CYP2D6, 3A4 and 2C9 with an IC50 of 0.34, 5.6 

and 7.9 µM, respectively.  

 

b. Mode of inhibition and Ki estimates 

Since IC50 is substrate-dependent and therefore has limited ability to predict the 

risk of DDIs, the potency and mode of inhibition were further characterized. Considering 

that estimating dissociate constant (Ki) requires a large number of incubations, I focused 

on the drug-pathway pairs which were more likely to be involved in DDIs – those that 

exhibited a relatively potent inhibition with an IC50 less than 20 µM. Drug-pathway pairs 
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involving omeprazole and CYP2C8 exhibited unusual kinetics, Ki and the mode of 

inhibition thus could not be determined. Inhibition was characterized in detail for 

eighteen drug – enzyme pairs (Table 3-3). The mode of inhibition was predominantly 

competitive, with Ki ranging from 0.25 µM to 20.1 µM. Noncompetitive inhibition was 

only observed for the inhibition of CYP2C19 by duloxetine.  

 

c. Predicted risk of clinical DDIs 

Following the FDA guidelines, I first estimated R values to obtain an initial 

assessment of the risk of clinical DDIs associated with the inhibitory reactions 

characterized above. To estimate R values, fu,inc, the fraction of unbound drug in in vitro 

incubation, was predicted for each individual drug of interest and is shown in Table 3-4. 

The estimated Ki,us and R values are shown in Table 3-5. With the R cutoff value of 11 

for CYP3A4 inhibitor drugs and 1.1 for inhibitor drugs of other CYPs, six inhibitory 

reactions were considered as having potential to inhibit intrinsic clearance of other drugs 

via the affected pathway and cause clinical DDIs. With a predicted R value of 13, 

quetiapine was the only CYP3A4 inhibitor drug predicted to potentially be involved in 

clinical DDIs at its highest proposed clinical dose (800 mg). The other drugs that 

inhibited CYP3A4, including simvastatin, tegaserod and duloxetine, had R values that 

were much smaller than 11, suggesting a remote chance to interact with drugs mainly 

metabolized by CYP3A4. Duloxetine, promethazine, risperidone and ropinirole exhibited 

relatively potent inhibition for CYP2D6 and had estimated R values of 1.8, 1.3, 1.2 and 

1.2, respectively. Because of the high peak plasma concentration, chloroquine also had an 

estimated R value across the borderline (R value =1.3), although its inhibition for 
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CYP2D6 was only relatively moderate (Ki,u = 14.03 µM). These drugs therefore had 

potential to interact with drugs that are exclusively metabolized by CYP2D6. The 

predicted risk of clinical DDIs for the other inhibitory reaction was considered to be 

negligible.  

The six drugs with significant R values above the cut off limits were involved in 

eight significant myopathic DDIs identified previously. Since R values usually 

overestimate the risk of DDIs and are not specific for interacting drugs, the contribution 

of inhibition of CYPs to those significant DDIs was further evaluated using a 

mechanistic-static model. To account for the contribution of the affected pathway to the 

total metabolism of a victim drug, the fraction of metabolism (fm) of the affected 

pathways, mostly CYP3A4 and CYP2D6, was estimated using data from the published 

literature. The AUCR was then predicted for scenarios where any of the six drugs was the 

perpetrator drug and the interacting drug was the victim drug. The estimated fm and 

predicted R values are shown in Table 3-6.  

The inhibition of CYP3A4 by quetiapine was predicted to result in a 1.25-fold 

increase in the AUC of chloroquine, although CYP3A4 only accounts for 25% of 

chloroquine metabolism [141]. Consistent with the definition by the FDA, this small 

predicted AUCRs indicates a weak clinical DDI between quetiapine and chloroquine. The 

predicted AUCRs suggested that the other drug pairs would not have significant 

interactions clinically. 
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4. Discussion 

In the first part of this chapter, I have addressed the hypothesis that inhibition of 

the major CYPs contributes to the significant drug interactions previously identified. I 

first screened the thirteen drugs involved in those DDIs for inhibition of the major CYPs. 

Then I characterized the mode of inhibition and potency in detail for eighteen inhibitory 

reactions that yielded IC50s less than 20 µM. Next, I predicted the risk of metabolism-

based DDI via inhibiting a single pathway for the reactions characterized in detail, and 

identified six drugs with significant potential to act as precipitant drugs and cause clinical 

DDIs. Lastly, for the myopathic DDIs involving any of these six drugs, I predicted the 

change in the AUC of the victim drugs in the presence of these drugs, and found that 

quetiapine and chloroquine may have a weak clinical drug interaction. 

The examination of the potential to inhibit the CYPs provides a relatively 

comprehensive view on the drugs’ inhibitory profile for the major drug-metabolizing 

enzymes. The inhibitory potential for CYP2B6 and CYP2C8 is particularly valuable 

since these two isoforms have been understudied. Such inhibitory profiles may not be 

available to the public, and are often lacking for drugs that were developed decades ago 

since the requirement by the FDA on evaluation of CYP inhibition by investigational 

drugs is only relatively recent. In general, the IC50s presented in Table 3-2 and the Kis 

presented in Table 3-3 are consistent with the inhibitory potential of these drugs 

published previously. My data represent not only a confirmation of some inhibitory 

profiles that have been published, but are also the first to provide such information on 

alprazolam, hydroxychloroquine, promethazine and quetiapine. Here, I discuss first the 
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consistency between my data and those that have been published. The clinical implication 

of these inhibitory profiles will be addressed later. 

Alprazolam had a rather favorable inhibitory profile for the major CYPs by exhibiting 

only relatively weak inhibitory effects on CYP2B6, CYP2C8, CYP2C19 and CYP3A4. 

This may explain the lack of publications on its inhibitory potential for CYPs.  

Chloroquine was identified as a relatively potent inhibitor of CYP2D6, a 

relatively moderate inhibitor of CYP2C8 and a relatively weak inhibitor of CYP3A4. It 

showed little inhibitory effect on the other isoforms. Further characterization of the 

inhibition of CYP2D6 revealed that chloroquine is a competitive inhibitor of this isoform 

with a Ki of 20.1 µM, that is consistent with the data of Biparo et al. and Masimirembwa 

et al. [142, 143], who reported that chloroquine was a competitive inhibitor of CYP2D6 

with Kis of 12.4 µM and 15.3 µM, respectively. These data are consistent with the results 

of Projean et al., who found that chloroquine was metabolized, in part, by CYP2D6 [141].  

Duloxetine exhibited relatively potent inhibition of CYP1A2, CYP2C9, 

CYP2C19, CYP2D6 and CYP3A4, and relatively moderate inhibition of CYP2B6 and 

CYP2C8. The broad inhibitory effect of duloxetine across CYP isoforms suggests that 

duloxetine could be involved in drug interactions by simultaneously inhibiting multiple 

pathways. Paris et al. showed that duloxetine inhibited CYP isoforms 1A2, 2B6, 2C8, 

2C9, 2C19, 2D6 and 3A4/5 with IC50s of 50, 15, 60, >100, 27, 7 and 38 µM, respectively 

[144], which are comparable to our IC50 estimates of  9.6, 33.3, 35.9, 26.3, 12, 0.9 and 

10.2 µM, respectively. It is worth noting that both sets of data identify CYP2D6 as the 

isoform most sensitive to duloxetine inhibition. Because duloxetine is a substrate of 

CYP2D6 [145], it was suspected that duloxetine is a mechanism-based inhibitor of 
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CYP2D6. However, the data of Chan et al. clearly showed that the inhibition of CYPs by 

duloxetine was not time-dependent [146]. I found that the inhibition of CYP1A2, 

CYP2D6 and CYP3A4 was competitive with Kis of 4.7, 0.3 and 10.5 µM, respectively, 

and that of CYP2C19 was noncompetitive with a Ki of 2.9 µM. Knadler et al. reported 

that the Ki for the inhibition of CYP1A2, CYP2C19, CYP2D6 and CYP3A4 by 

duloxetine was 17.7, 7.1, 2.4 and 133 µM, respectively [147]. Compared with these Ki 

values determined using conventional CYP probe substrates, my Ki estimates are in a 

similar range for CYPs but are in general of smaller values.  

The inhibitory profile of hydroxychloroquine resembles that of chloroquine in that 

it showed a relatively strong inhibition for CYP2D6, a relatively moderate inhibition for 

CYP2C8, a relatively weak inhibition for CYP3A4 and no inhibition for the other 

isoforms. The potential of hydroxychloroquine to inhibit CYPs in vitro has not been 

reported before, and my data are the first to provide such information.  

Loratadine also exhibited a broad inhibitory effect on CYPs. It was a relatively 

potent inhibitor of CYP2D6, CYP2B6 and CYP2C9, a relatively moderate inhibitor of 

CYP2C19 and CYP3A4 and a relatively weak inhibitor of CYP1A2. My data showing 

the relatively potent inhibition of CYP2D6 and CYP2B6 by loratadine are consistent with 

the results of Nicolas et al. [148] and Walsky et al. [149], who reported that IC50s of 

loratadine for CYP2D6 and CYP2B6 were 15 µM and 7.69 µM, respectively. I further 

found that the inhibitions of CYP2B6 and CYP2D6 by loratadine were both competitive 

with Kis of 2.0 and 0.5 µM, respectively. The relatively moderate inhibition of CYP3A4 

and weak inhibition of CYP1A2 are also consistent with the data presented by Nicolas et 

al. [148], who showed that IC50s for these isoforms were 32 µM and >100 µM, 
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respectively. Discrepancy exists in the inhibitory potencies for CYP2C9 and, more 

prominently, for CYP2C19. Lee et al. found that loratadine did not show significant 

inhibition for CYP2C9 and the IC50 was higher than 30 µM [150]; whereas my data 

indicate that loratadine was a relatively potent inhibitor of CYP2C9 with an IC50 of 12.35 

µM and a Ki of 7.6 µM. A relatively potent inhibition of CYP2C19 by loratadine has 

been reported by many groups with IC50 ranging from 0.76 µM [151] to 2.80 µM [150], 

whereas my data show that this inhibition is only relatively moderate in potency with an 

IC50 of 21.3 µM. The inhibition of CYP2C19 by loratadine has been identified by other 

groups as competitive with a Ki ranging from 0.006 µM [152] to 0.61 µM [151]. The 

cause of these discrepancies may lie in the estimation of IC50s. In the case of both 

CYP2C9 and CYP2C19, the observed inhibition-concentration curve of loratadine was in 

an incomplete sigmoidal shape and was rather flat across the concentrations (the light 

blue curves in Figure 3-1 CYP2C9A and CYP2C19.A), which would usually lead to 

inaccurate estimation of the model parameters. In addition, the IC50 of loratadine for 

CYP2C8 could not be evaluated due to unusual kinetics (Figure 3-2 C). A relatively 

potent inhibition of CYP2C8 by loratadine was reported by Walsky et al. with an IC50 of 

3.36 µM [153].  

Omeprazole was found to be a relatively potent inhibitor of CYP3A4, a relatively 

moderate inhibitor of CYP2C19, CYP1A2 and CYP2D6. The relatively moderate 

inhibition of CYP1A2 is consistent with the IC50 of 78 µM observed by Moody et al. 

[154]. The relatively weak the inhibition of CYP2D6 is consistent with the Ki values 

determined by others, ranging from 181.8 µM [155] to 302 µM [156]. Omeprazole has 

been identified as a mechanism-based inhibitor of CYP2C19 and CYP3A4 with Kinacts of 
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0.044 /min [157] and 0.099 /min [158], respectively. Since the inhibitory effect of a 

mechanism-based inhibitor is less apparent with shorter pre-incubation time as in the 

experiments, this may explain the discrepancy between my data and those showing 

omeprazole to be a relatively potent inhibitor of CYP2C19 [159, 160].  In addition, IC50 

of omeprazole for CYP2C9 could not be determined. Other groups have reported that 

omeprazole is a potent to moderate inhibitor of this isoform with a highly variable Ki 

ranging from 0.41 µM[161] [162] to 74. 9 µM [163].  

Promethazine was able to inhibit all the CYPs of interest. It was identified as a 

relatively inhibitor of CYP1A2 and CYP2D6, and a relatively moderate inhibitor of the 

other isoforms. I further found that promethazine was a competitive inhibitor of CYP2D6 

with a Ki of 0.25 µM, which represents a more potent inhibition than those reported by 

Hamelin et al. [164] and He et al. [165] who reported a Ki of 1.9 µM and 9 µM, 

respectively, for this inhibitory reaction. He et al. also reported a relatively moderate 

inhibition of CYP2C9 by loratadine with an IC50 of 88 µM [165], which is comparable to 

my IC50 estimate (12.4 µM) in magnitude. The inhibitory effect of promethazine on the 

other CYP isoforms has never been reported.  

Quetiapine exhibited a relatively potent inhibition for CYP3A4 and a relatively 

moderate inhibition for CYP2B6 and CYP2D6. Its potential to inhibit CYP2C8, CYP2C9 

and CYP2C19 could not be evaluated. The inhibition of CYP3A4 was identified as 

competitive with a Ki of 0.75 µM. The inhibitory effects of quetiapine on CYPs have 

never been reported before.  

Risperidone was found to be a relatively potent inhibitor of CYP2D6, a relatively 

moderate inhibitor of CYP2C9, CYP2C19 and CYP3A4, and a relatively weak inhibitor 
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of CYP2B6. The potent inhibition of CYP2D6 was identified as competitive with a Ki of 

1.62 µM. Zimmerline et al. found that risperidone is a mechanism-based inhibitor of 

CYP2D6 with a Kinact of 0.005 /min [158]. The moderate inhibition of CYP3A4 was 

consistent with the Ki of 67 µM observed by Prakash et al.[166]. The same group also 

reported that the IC50s of risperidone for CYP1A2, CYP2C9 and CYP2C19 were greater 

than 100 µM.  

Ropinirole exhibited a relatively potent inhibition for CYP2D6 and weak or no 

inhibition for the other CYP isoforms. The potent inhibition of CYP2D6 was also 

observed by Wynalda et al. who reported an IC50 of 0.54 µM [167]. I further found that 

this inhibitory reaction was competitive with a Ki of 0.85 µM.  

Tegaserod was a relatively potent inhibitor of CYP2D6, CYP2C9 and CYP3A4, a 

relatively moderate inhibitor of CYP2B6, and a relatively weak inhibitor of CYP1A2. 

The inhibition of CYP2D6, CYP2C9 and CYP3A4 was all found to be competitive with 

Kis of 0.51 µM, 11.4 µM and 5 µM. A thorough investigation on the inhibitory effect of 

tegaserod on CYPs was conducted by Vickers et al. using conventional VYP probe 

substrates and HLMs [168]. They found that tegaserod was a relatively potent inhibitor of 

CYP1A2 and CYP2D6 with Kis of 0.84 µM and 0.85 µM, respectively, and a relatively 

moderate inhibitor of CYP2C8, CYP2C9, CYP2C19 and CYP3A4 with IC50s of ~130 

µM, ~74 µM, ~153 µM, and ~107 µM, respectively. My data are consistent with those of 

Vickers et al. only with respect to the inhibition of CYP2D6.  

Trazodone was found to be a moderate inhibitor of CYP2B6, CYP2D6 and 

CYP3A4. The inhibition of CYP3A4 is consistent with the IC50 of 22.7 µM reported by 

Kalgutkar et al. [169]. A stronger inhibitory effect on CYP2D6 was observed by Otton et 
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al., who showed that trazodone was a competitive inhibitor of this isoform with a Ki of 9 

µM [170]. 

Simvastatin also exhibited inhibitory effect on many CYP isoforms. My data 

showed that simvastatin was a relatively potent inhibitor of CYP3A4, CYP2C9 and 

CYP2C8, and a relatively moderate inhibitor of CYP2C19, CYP2D6 and CYP2B6. The 

relatively moderate inhibition of CYP2C19 and the relatively potent inhibition of 

CYP2C8 and CYP2D4 are consistent with those observed elsewhere [129, 153, 171-173]. 

My estimate of Ki equal to 0.51 µM for inhibition of CYP3A4 is very close to that 

reported by Foti et al. (0.54 µM) [129]. Compared with my data, the inhibition of 

CYP2C9 was found to be much less potent with an IC50 ranging from 111.6 µM [174] to 

287 µM [171]. Also, a slightly more potent inhibition of CYP2B6 was observed (IC50 = 

15.9 µM) by Walsky et al. [149].  

Evaluating the inhibitory effects of these drugs on the CYPs in a consistent 

system also allows comparing the inhibitory potential across the major CYPs. Figure 3-3 

shows the inhibition-concentration curves grouped drug-wise. These drugs share a 

common trend of losing inhibitory selectivity at higher concentrations. Consistent with 

the values of IC50s and Kis, these plots suggest that some of the drugs can serve as 

selective inhibitors of specific CYP isoforms within certain concentration windows. For 

example, on the plot of chloroquine, the inhibition-concentration curve for CYP2D6 (hot 

pink) is clearly separated with those for the other isoforms on the right, indicating a more 

potent inhibition of CYP2D6. The blank space between the curve of CYP2D6 and those 

of the others corresponds to a window of concentration within which the inhibitory effect 

of chloroquine is relatively selective for CYP2D6. Apparently, chloroquine has a broad 
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“window of selectivity”. The range of concentration in which 70% inhibition of CYP2D6 

was observed with no significant inhibitory effect on other isoforms was approximately 

from 20 µM to 100 µM. The same also applies to risperidone and ropinirole for inhibition 

of CYP2D6. The concentration window of ropinirole for selective inhibition of CYP2D6 

is approximately 2 µM to 100 µM, and that of risperidone is approximately 3 µM to 20 

µM. It should be noted that the inhibition-concentrations curves were obtained using 

recombinant CYP enzymes and fluorogenic probes. Further studies are warranted to 

examine the selectivity of inhibition using conventional CYP probes in HLMs where 

multiple isoforms are present.  

The window of selective inhibition discussed above only applies to the CYP 

isoforms for which inhibitory potential could be evaluated, including those with IC50s 

designated as greater than the highest concentration tested. There are a number of cases 

where abnormal kinetics were observed and inhibitory potential could not be determined. 

The possibility remains that, in these cases, the test drug may be a potent inhibitor of the 

CYP isoform, and its window of selective inhibition taking account of all the major CYPs 

may consequently be different. 

Among the abnormal kinetics observed, an apparent enzyme activation was 

observed with omeprazole in the assay of CYP2C8 and with trazodone in the assay of 

CYP2C19 (Figure 3-2 A and B). There are a few possible explanations for these apparent 

enzyme activations. One is that the test drug is also fluorescent at the wavelength that the 

metabolite of the fluorogenic probe is being detected. Amongst the drugs tested, only 

omeprazole, chloroquine and hydroxychloroquine exhibited fluorescence at the relevant 

wavelengths. However, enzyme activation observed with omeprazole remained even after 
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correction for the fluorescence of this drug. Another possibility is that the metabolites of 

the test drugs may be highly fluorescent at the relevant wavelengths, so the fluorescent 

signal may largely represent the amount of the metabolites of the test drug. It is also 

possible that the test drugs and/or its metabolites allosterically bind to the enzyme, 

rendering the enzyme more efficient in metabolizing the fluorogenic probes (positive 

cooperativity). These possible mechanisms, and their combination, may explain the 

monotonic increase in fluorescent signal with the test drug concentration. For the other 

abnormal kinetics showing activation at lower concentrations and inhibition at higher 

concentrations, or the opposite, the mechanism may be even more complex.    

High-throughput fluorometric CYP inhibition assays enabled me to evaluate 

inhibitory potential of CYPs in a highly efficient way. However, this approach also 

represents one of the limitations of my study. While there is in general a good correlation 

between IC50 values determined using fluorogenic and conventional probes [132, 175], 

occasionally, IC50 values generated using  fluorogenic probes can be very different from 

those using conventional probes [132, 175]. It is well recognized that IC50 values are 

dependent on probe substrate, which is particularly true for CYP3A4. CYP3A4 

simultaneously binds and metabolizes multiple compounds in its active site. Therefore, 

cooperativity, activation, and complex inhibition kinetics are much more common with 

CYP3A4 than with enzymes of the CYP1 and CYP2 families [176, 177]. Also, the 

structural and physiochemical properties of fluorogenic probes are different from those of 

conventional probes [132]. These may explain the inconsistency between the IC50 values 

I observed and those from the published literature, all of which were determined with 

conventional probes. It follows that caution should be exercised when interpreting the 
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data from such fluorometric assays. In addition, I could not evaluate IC50 for some of the 

drugs in the assays involving CYP2C8, CYP2C9 and CYP2C19. It may be possible to 

evaluate the IC50s in such cases using conventional probes.  

In addition to the use of fluorescent probes, the use of recombinant CYP enzymes 

may also be problematic. The activities of purified recombinant CYP enzymes are known 

to be different in som respects from that observed in the liver or in HLMs [178]. This 

difference in enzymatic activity may cause inconsistency between IC50s determined here 

and those that have been published. Future studies thus are warranted to validate the 

inhibitory potencies using HLMs or hepatocytes and conventional probes. 

Another limitation of my in vitro study is that I did not examine the potential of 

these drugs as mechanism-based inhibitors of the CYPs. Some of these drugs are already 

known to be mechanism-based inhibitors, e.g. omeprazole for CYP2C19 and CYP3A4, 

and risperidone for CYP2D6. Since mechanism-based inhibition requires substrate 

activation, an inhibitory reaction involving a CYP isoform that also metabolizes its 

inhibitor drug can potentially be mechanism-based. For example, inhibition of CYP2D6 

by chloroquine and promethazine might be mechanism-based because CYP2D6 is 

involved in the metabolism of these drugs. The predicted R values and AUCRs may 

consequently underestimate the risk of clinical DDIs for mechanism-based inhibitory 

reactions due to their more profound effects on enzyme activity than reversible 

inhibitions. This underestimation may result in a false conclusion that some DDIs 

identified previously are not caused by inhibition of CYPs. 

The inhibitory potential obtained in vitro provided the basis for prediction of the 

risk of clinical DDIs in vivo. Applying the R value approach, I screened for inhibitory 
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reactions that potentially have clinical consequences. For the majority of the six drugs 

predicted with significant R values, there is little evidence for their potential to interact 

with other drugs clinically as precipitant drugs. 

As a relatively potent inhibitor of CYP2D6, duloxetine had an R value of 1.78 and 

was predicted to interact with CYP2D6 substrate drugs. This is consistent with drug 

interactions that have been observed with duloxetine clinically. Skinner et al. showed that 

duloxetine increased the AUC of desipramine, an in vivo probe of CYP2D6, by 192% and 

122% at a dose of 60 mg twice daily and 30 mg twice daily, respectively [145]. 

Coadministration of 40 mg of duloxetine twice daily with the CYP2D6 substrate 

tolterodine (2 mg twice daily) increased tolterodine steady state AUC and Cmax by 71% 

and 64%, respectively, and prolonged the half-life of tolterodine by 14% [179]. Also, 

duloxetine increased the Cmax and half-life of metoprolol, a CYP2D6 substrate, and 

decreased its clearance, leading to a 180% increase in the AUC [180]. However, 

duloxetine did not significantly change the pharmacokinetics of risperidone and 

aripiprazole [181], which are also CYP2D6 substrates. It therefore seems that the 

inhibitory effect of duloxetine on CYP2D6 is moderate from a clinical perspective. 

Chloroquine was predicted to interact clinically with drugs that are exclusively 

metabolized by CYP2D6. The R value of 1.36 is due mostly to the high Cmax (1547 ng/ml) 

that was reported for patients with malaria after receiving 1500 mg chloroquine for 3 

days [182]. But even if predicted with a much lower Cmax observed in healthy volunteers 

(838 ng/ml) [183], the resulting R value of 1.19 would still be significant. Since 

chloroquine has a long half-life of 146 to 333 hours [184], these Cmax values are likely 

lower than that at steady state. More importantly, chloroquine is known to accumulate in 
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tissues including the liver and muscles [185]. The accumulation ratio of chloroquine was 

795 ± 33 in viable isolated rat hepatocytes [186]. Therefore, the risk of chloroquine as a 

precipitant drug is likely substantially underestimated. Similar to the case of quetiapine, 

reports on pharmacokinetic drug interactions involving chloroquine as a precipitant drug 

are limited. Chloroquine increased the Cmax and AUC of paracetamol without affecting 

the elimination rate [187]. Chloroquine was also reported to reduce the bioavailability of 

ampicillin [188]. These studies, however, do not suggest a role of chloroquine in drug 

interactions by inhibiting CYP2D6. Future studies are needed to further evaluate the 

potential of chloroquine to act as a precipitant drug and its effect of the metabolism of 

other drugs by CYP2D6. 

Promethazine was also predicted to interact with CYP2D6 substrate drugs with an 

R value of 1.31. There are very few studies suggesting the role of promethazine as a 

precipitant drug in DDIs by inhibiting CYP2D6. The steady state plasma concentration of 

haloperidol, a substrate of CYP2D6, during promethazine coadministration was 

significantly higher than those before the coadministration or 1 week after the 

discontinuation of promethazine [189]. Coadministration of promethazine was found to 

increase the plasma concentration and AUC of chloroquine, a substrate of CYP2D6, 

suggesting a possible mechanism of CYP26 inhibition [190]. 

Both ropinirole and risperidone were predicted with R values of 1.15, suggesting 

a small risk of interacting with CYP2D6 substrate drugs clinically. The R value of 

risperidone is likely to be an underestimate since the drug is known to be a mechanism-

based inhibitor of CYP2D6. Both ropinirole and risperidone lack evidence of having 

clinical drug interactions as a precipitant drug. The only published study involving drug 
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interaction with ropinirole reported a small change in the Cmax and AUC of digoxin with 

coadministration of ropinirole [191]. This weak interaction is unlikely due to inhibition of 

CYP2D6 by ropinirole. No published DDI study showing risperidone as a precipitant 

drug was found.  

With a gut concentration estimated at the dose of 800 mg, quetiapine was 

predicted to cause DDIs with drugs that are exclusively metabolized by CYP3A4 (R 

value = 13). This seems at odds with the lack of publication on CYP3A4-based 

interactions with quetiapine given that CYP3A4 has such a broad substrate spectrum. The 

published DDIs studies involving quetiapine all observed it as a victim drug. Its 

pharmacokinetics were found to be affected by ketoconazole and carbamazepine, a 

CYP3A4 inhibitor and inducer, respectively [192], or by fluoxetine, a CYP2D6 inhibitor 

[193].  

It is possible that the general lack of publications on clinical drug interactions 

with the drugs discussed here are because these drugs have rarely been evaluated 

clinically as precipitant drugs. Another possibility is that the clinical risk of drug 

interactions with these drugs were overpredicted using the R value approach. Future 

studies are warranted to investigate the potential of these drugs to act as inhibitors of 

CYPs in vivo and their clinical consequences. 

Over-prediction of the risk of clinical DDIs using R values may be more 

prominent with the inhibitors of CYP3A4, for which a gut concentration that is normally 

much higher than the circulating concentration was assumed. However, in the case of 

quetiapine, the predicted risk using R value is supported by the predicted AUCR for the 

interaction of chloroquine with quetiapine. It should be noted that, even for chloroquine, 



 

79 

 

whose fraction of metabolism through CYP3A4 is only 0.25, quetiapine was predicted to 

result in 1.25-fold increase in the AUC when coadministered. The inhibitory effect of 

quetiapine on CYP3A4 would be more profound if a victim drug were metabolized by 

CYP3A4 to a larger extent. Considering that prediction of AUCR ignores the change in 

bioavailability due to inhibition of first-pass metabolism, this AUCR is likely an 

underestimate. On the other hand, the elimination of chloroquine is largely rate-limited 

by distribution rather than hepatic metabolism [184, 194]. The documented accumulation 

of chloroquine in the liver and muscles may further attenuate the overall effect of 

quetiapine on its pharmacokinetics.  

The risk of clinical DDIs is likely under-predicted when chloroquine is the 

precipitant drug due to its hepatic accumulation. Since the Cmax of chloroquine used for 

predicting AUCRs is likely much lower than its hepatic concentration, the AUCRs of 

chloroquine vs. duloxetine and of chloroquine vs. risperidone likely under-predicted the 

effects of chloroquine on the pharmacokinetics of the victim drugs. PBPK models that 

incorporate the hepatic concentration of chloroquine and the victim drugs may provide 

better predictions. Clinical studies that evaluate chloroquine as a precipitant drug will be 

very helpful.  

Aside from over-prediction in general and potential under-predictions in the case 

of chloroquine, the prediction of the risk of clinical DDIs has a major limitation that 

results from using the R value and AUCR approach. It is problematic to use a single 

static estimate of in vivo concentration of an inhibitor drug to provide a point estimate of 

the average magnitude of change in the exposure to a victim drug. The static nature of the 

two models may be particularly problematic for drugs that have relatively short half-lives 
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and whose circulating concentrations drop rapidly following a dose. One example is 

simvastatin, whose half-life can be as short as two hours [195]. The inhibitory effects of 

such drugs on the overall metabolism of a victim drug may be limited even when they are 

strong inhibitors of the relevant CYPs. In addition, the major CYPs, CYP2D6, CYP2C9 

and CYP2C19 in particular, are known to be polymorphic. The risk of clinical DDIs with 

the drugs of interest may be overpredicted for some individual and under-predicted for 

others.  
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Table 3-1. Summary of incubation conditions of CYP fluorometric assays. 

 CYP1A2 CYP2B6 CYP2C8 CYP2C9 CYP2C19 CYP2D6 CYP3A4 

Substrate CEC EFC DBF MFC CEC AMMC BFC 

Substrate 

Concentration (μM) 

5 2.5 1 75 25 1.5 50 

Enzyme 

Concentration (nM) 

2.5 5 9 5 2.5 7.5 5 

Km,app (μM) 3.5  1 78 29 1 >200 

Vmax,app (min-1) 3.4  0.4 2.1 0.016 1 1.5 @40uM 

Buffer 50mM KPO4 50mM KPO4 50mM KPO4 50mM KPO4 50mM KPO4 50mM KPO4 200mM KPO4 

pH 7.4 7.4 7.4 7.4 7.4 7.4 7.4 

Incubation Time (min) 15 30 40 45 30 30 30 

Quenching Solution 0.5M Tris base 0.5M Tris base 2N NaOH 0.5M Tris base 0.5M Tris base 0.5M Tris base 0.5M Tris base 

Metabolite CHC HFC Fluorescetin HFC CHC AHMC HFC 

Ex/Em (nm) 410/460 410/530 485/538 410/530 410/460 390/460 410/530 

Control inhibitor Furafyline Tranylcypromine Quercetin Sulfaphenazole Tranylcypromine Quinidine Ketoconazole 

 

Note: CEC, 3-cyano-7-ethoxycoumarin; EFC, 7-Ethoxy-4-trifluoromethylcoumarin; DBF, Dibenzylfluorescein; MFC, 7-methoxy-4-

trifluoromethylcoumarin; AMMC, 3-[2-(N,N-diethyl-N-methylammonium) ethyl]-7-methoxy-4-methylcoumarin; BFC, 7-benzyloxy-

4-trifluoromethylcoumarin; CHC, 3-Cyano-7-hydroxycoumarin; 7-HC, 7-Hydroxycoumarin; HFC, 7-hydroxy-4-

trifluoromethylcoumarin; AHMC, 3-[2-(N,N-diethylamino)ethyl]-7-hydroxy-4-methylcoumarin hydrochloride. 

Km,app, apparent Michealis Menton constant; Vmax,app, apparent maximum reaction velocity; Ex, excitation wavelength; Em, emission 

wavelength. 
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Table 3-2. IC50s (95% CI) (µM) for the inhibition of the major CYPs 

 CYP1A2 CYP2B6 CYP2C8 CYP2C9 CYP2C19 CYP2D6 CYP3A4 

Alprazolam >100 
773 

(723.3, 826.1) 

396.4  

(321.3, 489.2) 
ND 

443.9 

very wide 
>1000 

303.8 

(261.7, 352.6) 

Chloroquine >1000 >1000 
147.8  

(80.2, 272.5) 
>1000 >1000 

8.0 

(6.8, 9.4) 

367.0 

(326.5, 412.6) 

Duloxetine 
9.6 

(8.3, 11.0) 

33.3 

(30.7, 36.1) 

35.9 

(31.7, 40.6) 

26.3 

(22.9, 30.2) 

12.0 

(8.6, 16.8) 

0.9 

(0.8, 1.1) 

10.2 

(9.7, 10.6) 

Hydroxychloroquine >1000 >1000 
176.6  

(75.43, 413.5) 
>1000 >1000 

27.1 

(24.2, 30.5) 

352.4 

(323.9, 383.3) 

Loratadine 
630 

(438, 906.3) 

11.9 

(9.9, 14.4) 
ND 

12.35 

(7.8, 19.45) 

21.3 

(15.3, 29.7) 

9.1 

(8.3, 9.9) 

33.2 

(30.1, 36.6) 

Omeprazole 
112.1 

(97.3, 129) 
>1000 ND ND 

32.0 

(25.9, 39.5) 

190.7 

(158.4, 229.5) 

7.4 

(7.0, 7.8) 

Promethazine 
1.0 

(0.8, 1.2) 

51.1 

(46.7, 56) 

106.9  

(86.4, 131.9) 

43.8 

(39.3, 48.8) 

40.8 

(28.8, 57.8) 

0.39 

(0.35, 0.44) 

48.5 

(44.8, 52.6) 

Quetiapine >100 
51.2 

(42, 62.4) 
ND ND ND 

25.7 

(21.7, 30.6) 

4.5 

(3.7, 5.5) 

Risperidone >500 
358.9 

(297.3, 433.3) 
ND 

75.0 

(58.2, 99.3) 

169.9 

(140, 206.2) 

1.0 

(0.5, 2.0) 

169.2 

(143.7, 199.2) 

Ropinirole 
540.5 

(319.9, 913.2) 
>500 

407.8 

(279.2, 595.7) 
>1000 >1000 

0.85 

(0.79, 0.92) 

707.9 

(648.2, 773.2) 

Tegaserod 
347.1 

(307.4, 391.9) 

20.8 

(19.6, 22.1) 
>500 

7.9 

(4.9, 12.9) 

1.17 

(0.95, 1.43) 

0.34 

(0.31, 0.38) 

5.6 

(4.8, 6.4) 

Trazodone >100 
55.0 

(48.8, 62.1) 
ND >100 ND 

67.1 

(59.6, 75.7) 

67.7 

(54.4, 84.4) 

Simvastatin >100 
89.3 

(65.8, 121.2) 

17.2 

(13.1, 22.7) 

6.4 

(5.3, 7.6) 

43.4 

(37.1, 50.7) 

41.3 

(35.1, 48.5) 

4.3 

(2.4, 7.8) 
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Figure 3-1. Inhibition-concentration curves grouped by CYP. The inhibitions by 

alprazolam (black), chloroquine (red), duloxetine (green), hydroxychloroquine (dark 

blue), loratadine (light blue), omeprazole (hot pink) and promethazine (yellow) are 

shown in panel A for the CYPs tested. The inhibitions by quetiapine (red), risperidone 

(green), ropinirole (dark blue), tegaserod (light blue), trazodone (hot pink) and 

simvastatin (yellow) are shown in panel B for the CYPs tested. Each drug was tested in 

duplicate shown in open circles. The lines connect the average % inhibition values of the 

two replicates at each concentration. 
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Figure 3-2. Examples of abnormal kinetics observed from fluorometric assays. 

-4
0

0
-2

0
0

0

A . CYP2C8 Omeprazole

Concentration ( M)

%
In

h
ib

iti
o

n

1 10 100

-6
0

0
-3

0
0

0

B . CYP2C19 Trazodone

Concentration ( M)

%
In

h
ib

iti
o

n

0.1 1 10 100

-4
0

0
4

0
8

0

C . CYP2C8 Loratadine

Concentration ( M)

%
In

h
ib

iti
o

n

0.1 1 10 100

-5
0

0
5

0

D . CYP2C9 Omeprazole

Concentration ( M)

%
In

h
ib

iti
o

n

1 10 100 1000

-1
5

0
-5

0

E . CYP2C9 Alprazolam

Concentration ( M)

%
In

h
ib

iti
o

n

1 10 100 1000

-2
0

2
0

6
0

F . CYP2C9 Quetiapine

Concentration ( M)

%
In

h
ib

iti
o

n

0.1 1 10 100



 

87 

 

 

 

 

Alprazolam

Concentration ( M)

%
 I

n
h

ib
it
io

n

1 10 100 1000

0
2

0
4

0
6

0
8

0

Chloroquine

Concentration ( M)

%
 I

n
h

ib
it
io

n

1 10 100 1000

0
2

0
4

0
6

0
8

0
1

0
0

Duloxetine

Concentration ( M)

%
 I

n
h

ib
it
io

n

1 10 100 1000

0
2

0
4

0
6

0
8

0
1

0
0

Hydroxychloroquine

Concentration ( M)

%
 I

n
h

ib
it
io

n

1 10 100 1000

0
2

0
4

0
6

0
8

0
1

0
0

Loratadine

Concentration ( M)

%
 I

n
h

ib
it
io

n

1 10 100 1000

0
2

0
4

0
6

0
8

0
1

0
0

Omeprazole

Concentration ( M)

%
 I

n
h

ib
it
io

n

1 10 100 1000

0
2

0
4

0
6

0
8

0
1

0
0



 

88 

 

 

 

 

Promethazine

Concentration ( M)

%
 I

n
h

ib
it
io

n

1 10 100 1000

0
2

0
4

0
6

0
8

0
1

0
0

Quetiapine

Concentration ( M)

%
 I

n
h

ib
it
io

n

0.1 1 10 100

0
2

0
4

0
6

0
8

0

Risperidone

Concentration ( M)

%
 I

n
h

ib
it
io

n

1 10 100

0
2

0
4

0
6

0
8

0
1

0
0

Ropinirole

Concentration ( M)

%
 I

n
h

ib
it
io

n

1 10 100 1000

0
2

0
4

0
6

0
8

0
1

0
0

Tegaserod

Concentration ( M)

%
 I

n
h

ib
it
io

n

0.1 1 10 100 1000

0
2

0
4

0
6

0
8

0
1

0
0

Trazodone

Concentration ( M)

%
 I

n
h

ib
it
io

n

0.1 1 10 100

0
2

0
4

0
6

0
8

0



 

89 

 

 

Figure 3-3. Inhibition-concentration curves grouped by drug. The fraction of inhibition is 

shown for CYP1A2 (black), CYP2B6 (red), CYP2C8 (green), CYP2C9 (dark blue), 

CYP2C19 (light blue), CYP2D6 (hot pink) and CYP3A4 (yellow) for each individual test 

drug. Each drug was tested in duplicate with individual values shown in open circles. The 

lines connect the average % inhibition values of the two replicates at each concentration. 
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Table 3-3. Mode of inhibition and Ki ± SD (µM) 

 CYP1A2 CYP 2B6 CYP 2C9 CYP 2C19 CYP 2D6 CYP 3A4 

Chloroquine     
Competitive 

20.1 ± 2.9 
 

Duloxetine 
Competitive 

4.7 ± 0.6 
  

Noncompetitive 

2.9 ± 0.3 

Competitive 

0.3 ± 0.03 

Competitive 

10.5 ± 0.4 

Loratadine  
Competitive 

2.0 ± 0.3 

Competitive 

7.6 ± 1.0 
 

Competitive 

0.5 ± 0.08 
 

Promethazine     
Competitive 

0.25 ± 0.03 
 

Quetiapine      
Competitive 

0.75 ± 0.07 

Risperidone     
Competitive 

1.62 ± 0.19 
 

Ropinirole     
Competitive 

0.85 ± 0.09 
 

Tegaserod   
Competitive 

11.4 ± 2.8 

Competitive 

9.2 ± 2.8 

Competitive 

0.51 ± 0.06 

Competitive 

5.0 ± 0.7 

Simvastatin   
Competitive 

18.3 ± 3.5 
  

Competitive 

0.51 ± 0.1 

  

 



 

91 

 

Table 3-4 Predicted fu,inc 

Drug Log D Log P Log ka fu,inc 

Chloroquine 1.59 4.412 -0.364 0.698 

Duloxetine 2.31 4.809 -0.509 0.763 

Loratadine 3.895 3.9 -1.126 0.930 

Promethazine 3.4 4.887 -0.867 0.880 

Quetiapine 2.51 2.6 -1.119 0.929 

Risperidone 1.89 2.678 -1.028 0.914 

Ropinirole 0.49 2.486 -0.705 0.835 

Simvastatin 4.72 4.7 -1.127 0.931 
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Table 3-5 Predicted R values 

Drug Pathway 
Ki 

(µM) 
fu,inc 

Ki,u 

(µM) 

Cmax 

(ng/ml) 

MW 

(g/mol) 

[I] 

(µM) 
R 

R > 1.1 

or > 11 

for 3A4 

Cmax 

Reference 

Quetiapine 3A4 0.75 0.93 0.70 - 383.5 8.3441 12.97 + - 

Simvastatin 3A4 0.51 0.93 0.47 - 418.7 0.7642 2.61  - 

Duloxetine 2D6 0.3 0.76 0.23 53.2 297.4 0.179 1.78 + [196] 

Chloroquine 2D6 20.1 0.70 14.03 1547 319.9 4.836 1.34 + [183] 

Promethazine 2D6 0.25 0.88 0.22 19.3 284.4 0.068 1.31 + [197] 

Tegaserod 3A4 5 0.92 4.61 - 301.39 0.7963 1.17  - 

Risperidone 2D6 1.62 0.91 1.48 89.1 410.5 0.217 1.15  [198] 

Ropinirole 2D6 0.85 0.84 0.71 26.9 260.4 0.103 1.15 + [199] 

Duloxetine 3A4 10.5 0.76 8.02 - 297.4 0.8074 1.10  - 

Duloxetine 2C19 2.9 0.76 2.21 53.2 297.4 0.179 1.08  [196] 

Duloxetine 1A2 4.7 0.76 3.59 53.2 297.4 0.179 1.05  [196] 

Loratadine 2D6 0.5 0.93 0.47 4.12 382.9 0.011 1.02  [200] 

Tegaserod 2D6 0.51 0.92 0.47 2.7 301.39 0.009 1.02  [201] 

Loratadine 2B6 2 0.93 1.86 4.12 382.9 0.011 1.01  [200] 

Simvastatin 2C9 18.3 0.93 17.03 25.4 418.7 0.061 1.00  [202] 

Loratadine 2C9 7.6 0.93 7.07 4.12 382.9 0.011 1.00  [200] 

Tegaserod 2C19 9.2 0.92 8.48 2.7 301.39 0.009 1.00  [201] 

Tegaserod 2C9 11.4 0.92 10.51 2.7 301.39 0.009 1.00  [201] 
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Note:   

1. [I] of quetiapine was estimated as the highest proposed clinical dose (800 mg /383.5 

g/mol) divided by 250 mL. 

2. [I] of simvastatin was estimated as the highest proposed clinical dose (80 mg/418.7 

g/mol) divided by 250 mL. 

3. [I] of tegaserod was estimated as the highest proposed clinical dose (6 mg/ 301.39 

g/mol) divided by 250 mL. 

4. [I] of duloxetine was estimated as the highest proposed clinical dose (60 mg/ 297.4 

g/mol) divided by 250 mL. 

 

Pathway designates the inhibited CYP isoform; Ki is the dissociation constant; fu,inc is 

the fraction of unbound in incubation mixture; Cmax (ng/ml) is the maximal plasma 

concentration of the inhibitor drug at the highest proposed clinical dose; MW is the 

molecular weight of the inhibitor drug; [I] is the inhibitor concentration used for R value 

prediction, and is equal to the highest proposed clinical dose divided by 250 ml for 

inhibitors of CYP3A4 or equal to Cmax otherwise; R is the predicted  R value.  
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Table 3-6. Predicted AUCRs 

Precipitant Drug Victim Drug Pathway fm Ki,u (µM) [I] (µM) AUCR RR P value 
[I]  

Reference 

fm 

Reference 

Quetiapine Chloroquine CYP3A4 0.25 0.70 2.82 1.25 2.17 5.29E-05 [203] [141] 

Chloroquine Duloxetine CYP2D6 0.65 14.03 4.84 1.20 1.65 1.34E-10 [183] [204] 

Chloroquine Risperidone CYP2D6 0.4 14.03 4.84 1.11 3.36 4.47E-05 [183] [205] 

Duloxetine Chloroquine 
CYP2D6 0.16 0.23 

0.18 1.08 1.65 1.34E-10 [196] [141] 
CYP3A4 0.25 8.02 

Duloxetine Loratadine 

CYP2C19 0.2 2.21 

0.18 1.08 1.56 7.43E-09 [196] [206] CYP2D6 0.1 0.23 

CYP3A4 0.7 8.02 

Chloroquine Quetiapine CYP2D6 0.11 14.03 4.84 1.03 2.17 5.29E-05 [183] [207] 

Chloroquine Loratadine CYP2D6 0.1 14.03 4.84 1.03 2.21 1.27E-05 [183] [206] 

Ropinirole Loratadine CYP2D6 0.1 0.71 0.10 1.01 2.05 3.47E-05 [199] [206] 

Chloroquine Trazodone CYP2D6 0 14.03 4.84 1.00 1.99 2.23E-05 [183] [208] 

Promethazine Tegaserod CYP2D6 0 0.22 0.07 1.00 2.2 1.28E-05 [197] [168] 

Risperidone Chloroquine CYP2D6 0 1.48 0.22 1.00 3.36 4.47E-05 [198] [141] 

 

Note: Pathway designates the CYP isoforms that are inhibited by the precipitant drugs; fm, fraction of metabolism carried out by the 

inhibited CYP pathway; Ki,u, unbound dissociation constant; [I], the maximal plasma concentration of the precipitant drug at the 

highest proposed clinical dose; AUCR, the predicted ratio of area under plasma concentration-time curve of the victim drug in the 

presence vs. absence of the precipitant drug; RR, the relative risk of myopathy; P value, p value of RR. 
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ii. Investigating mechanisms involved in the interaction between simvastatin and 

loratadine 

 

1. Introduction 

Amongst the fifteen DDIs identified in Chapter 2, the interaction between 

simvastatin and loratadine was of particular interest. The second part of this chapter is 

dedicated to the mechanistic investigations on this specific interaction with regard to 

inhibition of CYP-mediated metabolism by the two drugs. 

 

a. Why is the interaction between simvastatin and loratadine of particular interest? 

First, the interaction involves drugs that are both widely prescribed to millions of 

patients. It may thus be relevant to a large patient population, and have a significant 

impact on public health. It follows that understanding the mechanism underlying the 

interaction could also benefit a large number of patients. Simvastatin (trade name 

Zocor™) is an antihypercholesterolemic agent in the “statin” class of HMG-CoA 

reductase inhibitors, and is indicated for hyperlipidemia and secondary prevention of 

coronary heart diseases and cardiovascular events. It has become standard practice to 

initiate statin therapy immediately after acute coronary syndromes, regardless of lipid 

levels. Simvastatin is the second-best selling statin of the seven statins currently on the 

market. Loratadine (trade name Claritin™, Alavert™) is a long-acting, non-sedating 

tricyclic antihistamine with selective peripheral histamine H1 – receptor antagonistic 

activity. It is indicated for the relief of nasal and non-nasal symptoms of seasonal allergic 
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rhinitis and for the treatment of chronic idiopathic urticarial. Loratadine is one of most 

prescribed antihistamine [209].  

Second, statin-induced myopathy represents a significant barrier to maximizing 

the benefits of statin therapy and can be exacerbated by DDIs. This compliance-limiting 

adverse drug reaction occurs in 5-20% of patients treated with statins [210]. Typical 

features of statin induced myopathy include fatigue, muscle pain, muscle weakness, 

muscle tenderness, cramping and tendon pain [211]. In 2012, the FDA issued a black box 

warning against the use of the 80 mg dose of simvastatin because of increased risk of 

myopathy and rhabdomyolysis with this dose [212]. Concomitant use of drugs that are 

known to increase the systemic exposure to simvastatin are contraindicated for increased 

risk of myopathy and rhabdomyolysis. A few examples of these drugs are gemfibrozil, 

ketoconazole, itroconazole, cyclosporine and danazol [213]. Investigations into the 

mechanism of the simvastatin-loratadine interaction may help us to identify other drugs 

interactions with simvastatin, or statins in general, that share similar mechanisms.  

Third, myalgia is one of the common side effects of both loratadine and its major 

pharmacologically metabolite, desloratadine [88, 89]. Investigations on the interaction of 

simvastatin and loratadine may call public and scientific attention to loratadine-induced 

myopathy and DDIs that increase the risk for it, thereby potentially improving the 

outcomes of patients treated with loratadine. 

 

b. Pharmacokinetics and biotransformation of simvastatin 

Simvastatin is administered orally as an inactive lactone prodrug at doses of 10, 

20 and 40 mg daily. The drug is well absorbed (60 – 85%) but its bioavailability is low 
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(5%) because of high hepatic extraction (>80%). Food has little effect on absorption or 

bioavailability of simvastatin. In plasma, 95-98% of the drug is protein-bound [214]. The 

plasma concentration of simvastatin was 25.4 ± 9.5 ng/mL (0.06 ± 0.02 µM) following a 

80-mg oral dose given once daily for 7 days to healthy adults [202].  

Simvastatin lactone is hydrolyzed to the active β-hydroxyl form, simvastatin acid, 

both in the gastrointestinal tract and in the liver [215, 216]. The lactone and the acid exist 

in an equilibrium which is both pH- and temperature-dependent. The lactone is 

hydrolyzed to the acid both chemically and enzymatically by esterase and by paraoxonase, 

and the acid can be converted back to the lactone [216]. In the liver, both simvastatin and 

the acid are extensively metabolized. The major metabolites of simvastatin observed in 

human bile are 3’-hydroxy, 6’β-hydroxy and 6’-carboxy simvastatin [216]. Upon 

incubation of simvastatin with HLMs, 3’-hydroxy, 6’-exomethylene and 3’, 5’-

dihydrodiol simvastatin were the major metabolites identified in addition to the acid 

[217]. CYP3A4/5 were the major enzymes responsible for the metabolism of simvastatin 

in HLMs, with CYP3A4 exhibiting a 3-fold higher affinity than CYP3A5. TAO, a 

selective inhibitor of CYP3A4, inhibited the formation of 3’-hydroxy, 6’-exomethylene 

and 3’, 5’-dihydrodiol simvastatin from simvastatin in HLMs by 25%, 75% and 40%, 

respectively. CYP2E1, and possibly CYP2B6, also contributed to simvastatin metabolism, 

but to a much less extent [26]. Simvastatin acid is also primarily metabolized by CYP3A 

(86%) with a minor contribution from CYP2C8 (14%) [218]. Upon incubation with 

HLMs, 3’-hydroxy, 6’-exomethylene and 3’,5’-dihydrodiol simvastatin hydroxyl acid 

were the major metabolites formed from simvastatin acid [218]. Biotransformation of 
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simvastatin and the structures of its metabolites are illustrated in Figure 3-4. The kinetics 

of simvastatin metabolism in HLMs are described in Table 3-7. 

Simvastatin is mainly eliminated through hepatic metabolism, with only 13% 

being renally excreted unchanged. The serum half-life of simvastatin is 2-5 hours, thus 

the optimal time of dosing is in the evening when hepatic cholesterol synthesis is most 

active [25-27].  

 

c. Pharmacokinetics and biotransformation of loratadine 

Loratadine is given orally at a recommended dose of 10 mg daily. It is rapidly 

absorbed following a single 10 mg dose. Maximal plasma concentrations are observed 

1.3 hours and 2.4 hours after administration for loratadine and its major metabolite, 

desloratadine, respectively. The Cmaxs of loratadine and desloratadine were 4.1 ± 4.4 

ng/mL (10.7 ± 11.4 nM) and 3.9 ± 2.4 ng/mL (12.5 ± 7.7 nM), respectively, following a 

10 mg oral dose of loratadine [200]. Food and water intake can improve the 

bioavailability of loratadine [200]. In the plasma, 95-98% of loratadine is protein-bound. 

In the liver, loratadine is extensively metabolized via descarboethoxylation to 

desloratadine, and by oxidation or glucuronidation. Desloratadine is a pharmacologically 

active metabolite. The major circulating metabolites of loratadine include 3-hydroxy-

desloratadine glucuronide, dihydroxy-desloratadine-glucuronide, and several metabolites 

resulting from descarboethoxylation and oxidation. Upon incubation of loratadine with 

HLMs, the major metabolite formed is desloratadine. CYP3A4 is the predominant 

enzyme (70%) responsible for the conversion of loratadine to desloratadine, followed by 

CYP2C19 (20%) and CYP2D6 (10%) [206]. Desloratadine itself is eliminated by further 
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metabolism. Biotransformation of loratadine and the structures of its metabolites are 

illustrated in Figure 3-5.  

 Approximately 84% of a 10 mg dose of loratadine was excreted into urine (41%) 

and feces (43%) in the form of metabolites within 10 days after oral administration. The 

half-life of loratadine is 8 hours, while that of desloratadine is 28 hours [209].  

 

d. Mechanisms of DDIs with simvastatin or loratadine 

Almost all the clinically significant DDIs with simvastatin that have been 

documented are pharmacokinetic, with the one exception being ezetimibe. Ezetimibe 

enhances the cholesterol-lowering effect of simvastatin in humans by selectively 

inhibiting dietary cholesterol absorption in the gastrointestinal tract [219]. One of the 

major mechanisms underlying the pharmacokinetic DDIs with simvastatin is inhibition of 

simvastatin metabolism. Drugs that are strong inhibitors of CYP3A4, including certain 

antifungal medications (itraconazole, ketoconazole, posaconazole) and macrolide 

antibiotics (erythromycin, clarithromycin, telithromycin) as well as HIV protease 

inhibitors, have been found to significantly increase the systemic exposure to simvastatin 

and are contraindicated with any dose of the drug. For example, erythromycin increased 

the AUC of simvastatin and simvastatin acid by 6.2-fold and 3.9-fold, respectively [220]; 

the AUC of simvastatin was 3059% higher in the presence of ritonavir/saquinavir 

compared to that of simvastatin alone [221]; posaconazole increased the AUC of 

simvastatin by 5- to 11-fold and that of simvastatin acid by 5- to 8-fold during co-

administration [222]. Some other drugs that inhibit CYP3A4 to a lesser extent are 

contraindicated with certain higher doses of simvastatin. These examples include 
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verapamil, diltiazem, amlodipine, ranolazine, amiodarone, dronedarone and ticagrelor. 

Since the incidence of statin-induced myopathy is dose-dependent, it is not surprising that 

the risk of myopathy in patients treated with simvastatin is higher during concomitant use 

of the above mentioned drugs. Patients receiving 20 to 80 mg of simvastatin daily were 

found to be 10-times more likely to experience myopathy with co-administration of 

verapamil than those without co-administration of verapamil [223]. 

As is the case for simvastatin, DDIs with loratadine are mostly due to inhibition 

of its metabolism. Loratadine has been found to interact with CYP3A4 inhibitors such as 

ketoconazole [224], clarithromycin [200], nefazodone [225] and cimetidine[224], which 

lead to a significantly increased systemic exposure to loratadine. The AUC of loratadine 

and desloratadine was increased by 76% and 49%, respectively, after coadministration 

with clarithromycin [200]. The plasma concentrations of loratadine and desloratadine 

were increased by 307% and 73%, respectively, after coadministration with ketoconazole 

[224]. Nefazodone increased the AUCs of loratadine and desloratadine by 39% and 12%, 

respectively. Moreover, the increased exposure to loratadine by nefazodone was 

associated with marked QTc prolongation that was correlated with loratadine plasma 

concentration [225]. These studies clearly demonstrate that CYP3A4 inhibitor drugs can 

significantly increase the systemic exposure to loratadine, thereby increasing the risk of 

adverse reactions to loratadine.  

 

e. Hypothesis and aims 

I wish to test the hypothesis that the interaction of simvastatin and loratadine is 

due, in part, to inhibition of metabolism, thereby leading to an increase in the systemic 
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exposure to either or both drugs and thus an increased risk of myopathy. To test this 

hypothesis, the following aims were pursued: 

1) Assess in vitro to what extent loratadine and its active metabolite, desloratadine, 

inhibit the metabolism of simvastatin and its active form, simvastatin acid, 

through incubation with HLMs; 

2) Assess in vitro to what extent simvastatin and simvastatin acid inhibit the 

metabolism of loratadine and desloratadine through incubation with HLMs. 

 

2. Methods  

a. Materials 

All the drugs and the metabolites were purchased from Toronto Research 

Chemicals (North York, Ontario, Canada). Glucose-6-phosphate, NADP and glucose-6-

phosphate dehydrogenase, acetonitrile (HPLC grade), methanol (HPLC grade), 

ammonium acetate and ammonium formate were purchased from Sigma-Aldrich (St. 

Louis, MO). Pooled human liver microsomes (HLMs) from 50 donors were purchased 

from BD Biosciences (Wobum, MA).  

 

b. Incubation with HLMs 

The drugs were dissolved and diluted in methanol to desired concentrations and 

were dried in a speed vacuum, followed by the addition of 200 mM potassium phosphate 

reaction buffer (pH 7.4) and HLMs. After pre-warming at 37 ◦C in a water bath for 5 min, 

reactions were initiated with the addition of a NADPH-regenerating system consisting of 

1.3 mM NADP+, 3.3 mM glucose-6-phosphate, 3.3 mM MgCl2, and 0.4 U/mL glucose-
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6-phosphate dehydrogenase. In the negative control samples, the NADPH-regenerating 

system was replaced with the same volume of potassium phosphate reaction buffer. The 

final volume of the reaction mixture was 250 µL. The mixture was then incubated at 37 

◦C for an additional length of time that allows the reaction to be linear. The reaction was 

stopped with the addition of 500 µL ice-cold acetonitrile, followed by vigorous vortex-

mixing.  

 

c. Sample preparation 

25 µL of internal standard (1 µM lovastatin for simvastatin and simvastatin acid, 

1 µM fluoxetine for loratadine) were added to each sample. After brief centrifugation, the 

liquid phase was transferred to a disposable clean capped glass tube. Next, 500 µL of 100 

mM ammonium acetate (pH 4.5) and 6 mL of hexane/ethyl acetate (50/50, v/v) were 

added to the samples of simvastatin and simvastatin acid; and 500 µL of glycine/NaOH 

and 6 mL of hexane/ethyl acetate (50/50, v/v) were added to the samples of loratadine. 

The samples were agitated for 15 min on a shaker, followed by centrifugation at 13,000 

rpm and 4 ◦C for 10 min. The upper organic phase was transferred to a clean glass culture 

tube and was dried in a speed vacuum. The samples were reconstituted with 100 µL of 

mobile phase, and 80 µL were injected into the LC/MS/MS for analysis. 

 

d. Analytical methods using LC/MS/MS  

LC/MS/MS assays were developed for quantification of simvastatin, simvastatin 

acid and desloratadine. The MS/MS system was an API2000 MS/MS triple quadruple 

system (Applied Biosystems, Foster City, CA) equipped with a turbo ion spray, coupled 
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with a Shimadzu (Columbia, MD) HPLC system consisting of an LC-20 AB pump and 

SIL-20A HT auto-sampler (Applied Biosystems/MDS Sciex, Foster City, CA), operating 

under Analyst 1.5.1 software. A flow rate of 0.3 mL/min was used for sample analysis on 

a Sonoma C8 (West Berlin, NJ) analytical column (3 μ, 100 Å, 7.5 cm X 4.6 mm). The 

column was maintained at ambient temperature (∼23 ◦C), while the auto-sampler 

temperature was set at 25 ◦C.  

For quantification of simvastatin and simvastatin acid, an isocratic HPLC elution 

mobile phase was used, consisting of 85% acetonitrile and 15% ammonium acetate 5 mM 

(v/v). Lovastatin served as the internal standard. The turbo ionspray source temperature 

was optimized at 550 ◦C. The analytes were detected by monitoring the 

precursor→product ion transition using multiple reaction monitoring (MRM) scan mode. 

For simvastatin quantification, the MRM was performed at m/z 419.425→119.2 for 

simvastatin and 405.4→199.1 for lovastatin. Results were obtained using the following 

settings: curtain gas at 12, collision gas at 3, nebulizer gas (GS1) at 44, the turbo ionspray 

gas (GS2) at 35 and ionspray voltage at 5000. For simvastatin acid quantification, the 

MRM was performed at m/z 437.4→199.2 for simvastatin acid and 405.4→199.1 for 

lovastatin. Results were obtained using the following settings: curtain gas at 16, collision 

gas at 4, nebulizer gas (GS1) at 48, turbo ionspray gas (GS2) at 35 and ionspray voltage 

at 5500. The peak area was measured, and the peak area ratio of drug to internal standard 

and the concentration were calculated using Analyst 1.5.1 software. The limit of 

quantification was 50 nM for both simvastatin and simvastatin acid. The chromatography 

of simvastatin and simvastatin acid are presented in panel A and B of Figure 3-6.  
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For quantification of desloratadine, the mobile phase consisted of 85% methanol 

and 15% 25 mM ammonium formate. Fluoxetine served as the internal standard. The 

turbo ionspray source temperature was optimized at 500 ◦C. The MRM was performed at 

m/z 311.2→258.9 for desloratadine and 310.3→44.0 for fluoxetine. Results were 

obtained using the following settings: curtain gas at 14, collision gas at 6, nebulizer gas 

(GS1) at 40, turbo ionspray gas (GS2) at 30 and ionspray voltage at 5500. The peak area 

was measured, and the peak area ratio of drug to internal standard and the concentration 

were calculated using Analyst 1.5.1 software. The limit of quantification for 

desloratadine was 25 nM. The chromatography of desloratadine is presented in panel C of 

Figure 3-6. 

 

3. Original experimental results 

a. Inhibition of simvastatin and simvastatin acid metabolism by loratadine and 

desloratadine 

I hypothesize that loratadine and/or desloratadine inhibit the hepatic metabolism 

of simvastatin and/or simvastatin acid, thereby increasing the systemic exposure to 

simvastatin and/or simvastatin acid. To test this hypothesis, I first examined in vitro the 

CYP inhibition profile of loratadine and desloratadine using fluorometric assays, in order 

to assess whether or not they have potential to inhibit the metabolism of simvastatin and 

simvastatin acid. Then I evaluated the impact of loratadine and desloratadine on the 

hepatic metabolism of simvastatin and simvastatin acid in a more physiologically 

relevant system, HLMs.  
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1) Inhibition profiles of loratadine and desloratadine for the major CYPs 

Using fluorometric assays, the IC50s of loratadine and desloratadine for the major 

CYPs were evaluated and are shown in Table 3-8. The IC50 of CYP2C8 could not be 

determined because of abnormal kinetics. Consistent with the previous definitions on 

inhibitory potency, the inhibitors with IC50s less than 20 µM were considered as 

relatively potent, those with IC50s between 20 µM and 200 µM were considered as 

relatively moderate, and those with IC50s greater than 200 µM were considered as 

relatively weak.  Loratadine was therefore a relatively potent inhibitor of CYP2D6, 

CYP2C9 and CYP2B6, a relatively moderate inhibitor of CYP2C19 and CYP3A4, and a 

relatively weak inhibitor of CYP1A2. Desloratadine exhibited relatively potent inhibition 

for CYP2D6 and CYP 3A4, relatively moderate inhibition for CYP2B6 and CYP 2C19, 

and relatively weak inhibition of CYP1A2 and CYP 2C9. The inhibitions, particularly 

those involving CYP3A4, indicated that both loratadine and desloratadine have the 

potential to inhibit the metabolism of simvastatin and simvastatin acid.  

 

2) IC50s of loratadine and desloratadine for the depletion of simvastatin and 

simvastatin acid  in HLMs 

Because both simvastatin and simvastatin acid are converted into multiple 

metabolites, measuring disappearance of substrate is preferred over monitoring 

metabolite formation as an approach to evaluating the rate of metabolism.  

I first defined the experimental conditions under which the initial reaction 

velocity is linear. Upon incubation of 1 μM simvastatin with 0.05 or 0.1 mg/ml HLMs for 

up to 30 min, simvastatin disappeared from the incubation mixture linearly for up to 10 
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min at both the HLM concentrations (Figure 3-7 A). Similarly, incubation of simvastatin 

acid with 0.2 or 0.4 mg/ml HLM showed that the metabolism was linear for up to 20 min 

(Figure 3-7 B). Since a sufficient amount of substrate needs to be depleted to detect an 

inhibition, in the subsequent incubations, simvastatin was incubated with 0.1 mg/ml 

HLMs for 10 min, and simvastatin acid was incubated with 0.4 mg/ml HLMs for 20 min. 

To test whether loratadine and desloratadine inhibit the metabolism of simvastatin 

in HLMs, a single concentration of simvastatin was incubated with various 

concentrations of loratadine or desloratadine. Ketoconazole was used as a control 

inhibitor because it is well known to inhibit CYP3A4 and simvastatin metabolism. The 

IC50s (95% CI) of loratadine, desloratadine and ketoconazole for simvastatin metabolism 

were 20.3 (11, 37.1) μM, 12.3 (4.6, 33.2) μM, and 1.7 (1.1, 2.8) μM, respectively (Figure 

3-8 A, C, E). Similarly, the effects of these drugs on the metabolism of simvastatin acid 

were evaluated. The IC50s (95% CI) were 129.5 (75, 223.4) μM, 86.0 (38.1, 194.3), and 

0.48 (0.17, 1.38) μM for loratadine, desloratadine and ketoconazole, respectively (Figure 

3-8 B, D, F). The IC50s suggested that loratadine and desloratadine had a greater impact 

on the hepatic metabolism of simvastatin than on that of simvastatin acid.  In addition, 

desloratadine had more potential than loratadine to inhibit the metabolism of both 

simvastatin and simvastatin acid, consistent with its smaller IC50 for CYP3A4.  

 

b. Inhibition of loratadine metabolism by simvastatin and simvastatin acid 

I hypothesize that simvastatin and/or simvastatin acid inhibit the hepatic 

metabolism of loratadine, thereby increasing the systemic exposure to loratadine. Using 

the same approach, I tested this hypothesis first using CYP fluorometric assays to assess 
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whether or not simvastatin and simvastatin acid is able to inhibit loratadine metabolism. I 

then evaluated the impact of simvastatin and simvastatin acid on the hepatic metabolism 

of loratadine in HLMs.  

 

1) Inhibition profiles of simvastatin and simvastatin acid for the major CYPs 

Using fluorometric assays, the IC50s of simvastatin and simvastatin acid that were 

estimated for the major CYPs are shown in Table 3-9. Simvastatin showed a relatively 

potent inhibition for CYP3A4, CYP2C9 and 2C8, relatively mild inhibition of CYP2D6, 

CYP2C19 and CYP2B6 and no inhibition of CYP1A2 at concentrations up to 100 μM. 

Simvastatin acid showed a relatively potent inhibition of CYP3A4, a relatively mild 

inhibition for CYP2C8 and 2C9, and no effect on the other isoforms at concentrations up 

to 100 μM.  

 

2) IC50s of simvastatin and simvastatin acid for desloratadine formation in HLMs 

Because desloratadine is the major metabolite of loratadine, its formation rate was 

used to evaluate inhibition of loratadine metabolism. Since the Km and Vmax of loratadine 

metabolism had not been reported, I first investigated the kinetics of loratadine 

metabolism in HLMs in order to optimize experimental conditions for accurate 

estimation of inhibitory potency. Upon incubation of 50 μM loratadine with 0.1 mg/ml 

HLMs for up to 60 min, the initial reaction velocity measured by the formation of 

desloratadine was found to be linear for up to 10 min (Figure 3-9 A). The metabolism of 

loratadine in HLMs exhibited typical Michaelis-Menten kinetics with a Km of 0.90 ± 0.23 

μM and a Vmax of 4.41 ± 0.25 nmol/min/mg HLMs (Figure 3-9 B).  
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To test whether simvastatin and simvastatin acid inhibit loratadine metabolism in 

HLMs, a single concentration of loratadine was incubated with various concentrations of 

simvastatin or simvastatin acid. The IC50s (95%CI) of simvastatin and simvastatin acid 

for desloratadine formation was 8.2 (4.9, 13.8) μM and 11.8 (6.8, 20.5) μM, respectively 

(Figure 3-10). 

 

3) Mode of inhibition and Ki estimates 

 Upon incubation of loratadine at various concentrations, both the inhibition by 

simvastatin and that by simvastatin acid were identified as noncompetitive with Kis of 6.9 

± 0.8 µM and 18.0 ± 3.6 µM, respectively (Figure 3-11). 

 

4. Discussion 

During this work, I have addressed the hypothesis that the interaction of 

simvastatin and loratadine was due, in part, to the mutual inhibition of their metabolism. I 

found that both loratadine and desloratadine were able to inhibit the major CYP isoform 

involved in simvastatin metabolism - CYP3A4. They could also inhibit the metabolism of 

its active metabolite, simvastatin acid. To confirm these inhibitory effects, I further 

examined the metabolism of simvastatin and simvastatin acid in the presence of 

loratadine and desloratadine in pooled HLMs. I found that loratadine and desloratadine 

inhibited the depletion of simvastatin with IC50s of 20.3 μM and 12.3 μM, respectively, 

and that of simvastatin acid with IC50s of 129.5 μM and 86.0 μM, respectively. Assuming 

that these inhibitions are reversible, Kis of these inhibitory reactions can be approximated 

using IC50 / (1 + [S] / Km). Given that these experiments were carried out at a substrate 
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concentration (1 μM) that was far below the Km (> 20.9 μM for simvastatin and > 47 μM 

for simvastatin acid), the Kis can be approximated by the IC50s since [S] / Km approaches 

zero in these cases.  

Because the IC50s determined in HLMs represent the inhibitory potential for the 

total metabolism of the substrates, R = 1 + [I]/Ki,u can be applied to estimate the ratio of 

total intrinsic clearance in the presence and absence of the inhibitor drugs. An R value in 

such cases can also be interpreted as a crude estimate of the change in the AUC of the 

substrate. With respect to the metabolism of simvastatin and simvastatin acid, the 

predicted R values of loratadine and desloratadine were close to unity due to the low 

circulating plasma concentrations (Table 3-10). These data imply that the inhibitory 

effects of loratadine and desloratadine on the metabolism of simvastatin and simvastatin 

acid observed in vitro are unlikely to produce any significant clinical consequences.  

Using a similar approach, I also tested the effects of simvastatin and simvastatin 

acid on the metabolism of loratadine. Both simvastatin and simvastatin acid exhibited 

inhibition for the major CYPs, especially for CYP3A4, the isoform primarily responsible 

for loratadine metabolism, suggesting a possible inhibition of loratadine metabolism in 

vivo. The follow-up experiments using HLMs showed that simvastatin and simvastatin 

acid were able to inhibit the metabolism of loratadine to desloratadine with IC50s of 8.2 

μM and 11.8 μM, respectively. Both inhibitory reactions were further identified as 

noncompetitive with Kis of 6.9 µM and 3.6 µM. The R values predicted for simvastatin 

and simvastatin acid, assuming the Cmax of simvastatin acid equal to that of simvastatin 

(0.06 µM), were also close to unity (Table 3-10), indicating that the exposure to 

loratadine would not be significantly different with coadministration of simvastatin. 
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These data together suggest that inhibition of metabolism is unlikely to be an 

important mechanism underlying the interaction between simvastatin and loratadine 

observed in the population studies carried out as part of this work. 
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Table 3-7. Kinetics of simvastatin and simvastatin acid metabolism in HLMs [217, 218]. 

 Simvastatin Simvastatin Acid 

Metabolite 3'-Hydroxy 6'-Exomethylene 3', 5'-Dihydrodiol 3'-Hydroxy 6'-Exomethylene 3', 5'-Dihydrodiol 

Km (µM) 20.9 ± 7.8 36.2 ± 15.5 35. 0 ± 5.6 47 ± 12 47 ± 21 76 ± 35 

Vmax 

(pmol/min/mg) 
2066.1 ± 799.5 1293.4 ± 447.1 2536.1 ± 1124.1 0.86 ± 0.26 0.59 ± 0.16 1.9 ± 1.8 

CLint 

(ml/min/mg) 
0.098 ± 0.007 0.037 ± 0.011 0.072 ± 0.026 0.02 ± 0.01 0.015 ± 0.01 0.02 ± 0.01 
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Figure 3-4. Biotransformation of simvastatin in humans [216, 218]. Note that the 

metabolism of simvastatin and simvastatin acid exists in parallel. The figure shows only 

the structures of simvastatin metabolites. Those of simvastatin acid metabolites are 

similar except that the lactone is replaced by an open acid. 
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Figure 3-5. Biotransformation of loratadine in humans [209, 226]. 

  

Loratadine Descarboethoxyloratadine 

(Desloratadine, DL) 

3-Hydroxy-desloratadine 

(3-OH-DL) 

3-OH-DL-glucuronide Dihydroxy-DL-glucuronide 

CYP3A4 (70%) 

CYP2D6 

CYP2C19 

UGT1A1 

UGT1A3 

UGT2B15 



 

114 

 

 

Figure 3-6. Chromatography of simvastatin (A), simvastatin acid (B) and desloratadine 

(C). Lovastatin served as the internal standard for simvastatin and simvastatin acid, and 

fluoxetine served as the internal standard for desloratadine. The analytes and the internal 

standards are shown in blue and red, respectively. 
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Table 3-8. IC50s of loratadine and desloratadine for the major CYPs 

 IC50 (95% CI, μM) 

1A2 2B6 2C8 2C9 2C19 2D6 3A4 

Loratadine 630 

(438, 906.3) 

11.9 

(9.9, 14.4) 
ND 

12.35 

(7.8, 19.45) 

21.3 

(15.3, 29.7) 

9.1 

(8.3, 9.9) 

33.2 

(30.1, 36.6) 

Desloratadine 506.6 

(397.2, 646.3) 

29.3 

(25.8, 33.4) 
ND 

158.9 

(107.1, 235.7) 

59.0 

(43.2, 80.7) 

14.0 

(13.2, 14.9) 

19.2 

(17.6, 21.0) 
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Figure 3-7. Depletion of simvastatin (A) and simvastatin acid (B) in relation to incubation 

time and HLM concentration. 1 µM simvastatin was incubated with 0.05 (●) and 0.1 (□) 

mg/ml HLMs and disappeared linearly up to 10 min. 1 µM simvastatin acid was 

incubated with 0.2 (●) and 0.4 (□) mg/ml HLMs and disappeared linearly also up to 10 

min.   
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Figure 3-8. Inhibition of simvastatin (A, C, E) and simvastatin acid (B, D, F) metabolism 

in HLMs by loratadine (A and B), desloratadine (C and D), and ketoconazole (E and F). 
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Table 3-9. IC50s of simvastatin and simvastatin acid for the major CYPs 

 IC50 (95% CI, μM) 

1A2 2B6 2C8 2C9 2C19 2D6 3A4 

Simvastatin 
>100 

89.3 

(65.8, 121.2) 

17.2 

(13.1, 22.7) 

6.2 

(5.4, 7.0) 

43.4 

(37.1, 50.7) 

41.3 

(35.1, 48.5) 

3.1 

(1.4, 7.2) 

Simvastatin acid 
>100 >100 

50.7 

(14.3, 179.7) 

96.6 

(53.5, 174.4) 
>100 >100 

10.7 

(4.9, 23.3) 



 

119 

 

Figure 3-9. Kinetics of loratadine metabolism in HLMs. The metabolism of loratadine 

was linear for up to 10 min (A). The Michaelis-Menten kinetics of loratadine metabolism 

in HLMs is shown in (B). DL, desloratadine.  
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Figure 3-10. IC50 curves of the inhibition of desloratadine (DL) formation by simvastatin 

(A) and simvastatin acid (B) in HLMs.  
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Figure 3-11. Kis for the inhibition of desloratdine formation by simvastatin (A) and 

simvastatin acid (B) in HLMs. 
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Table 3-8 Predicted R values 

Precipitant 

Drug 
Victim Drug 

Ki 

(µM) 
fu,inc 

Ki,u 

(µM) 

Cmax 

(ng/ml) 

MW 

(g/mol) 

Cmax 

(µM) 

R 

value 

Cmax 

Reference 

Loratadine Simvastatin 20.3 0.93 18.89 4.12 382.9 0.01 1.00 [200] 

Desloratadine Simvastatin 12.3 0.73 9.02 3.891 310.8 0.01 1.00 [200] 

Desloratadine Simvastatin 12.3 0.73 9.02 4.692 310.8 0.02 1.00 [227] 

Loratadine 
Simvastatin 

Acid 
129.5 0.93 120.48 4.12 382.9 0.01 1.00 [200] 

Desloratadine 
Simvastatin 

Acid 
86 0.73 63.08 3.89 310.8 0.01 1.00 [200] 

Desloratadine 
Simvastatin 

Acid 
86 0.73 63.08 4.69 310.8 0.02 1.00 [227] 

Simvastatin Loratadine 6.9 0.93 6.42 25.4 418.7 0.06 1.01 [202] 

Simvastatin 

Acid 
Loratadine 3.6 0.93 3.35 25.4 436.6 0.06 1.02 [202] 

 

Note: 

1. Peak plasma concentration observed following a 10 mg oral dose of loratadine. 

2. Peak plasma concentration observed following a 5 mg oral dose of desloratadine. 

 

Ki designates the dissociation constant determined in vitro, and is approximated by the IC50 for the inhibition of simvastatin and 

simvastatin acid; fu,inc, the fraction of unbound in incubation mixtures; Ki,u, unbound dissociation constant estimated by Ki * fu,inc; 

Cmax, the maximal plasma concentration of the precipitant drug at the highest proposed clinical dose; MW, the molecular weight of 

the precipitant drug; R value is estimated as  R = 1 + [I]/Ki,u. 
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Chapter 4. In vitro assessment of inhibition of OATPs 

 

1. Introduction 

a. Role of transporters in drug disposition 

 Approximately 900 transporter genes have been annotated in the human genome 

[228]. They encode for transporter proteins that are responsible for influx of essential 

nutrients and ions and the efflux of toxins, drugs and other xenobiotics. Transporter 

proteins thought to be involved in the pharmacokinetics and pharmacodynamics of drugs 

are from two superfamilies - the solute carrier (SLC) superfamily and the adenosine 

triphosphate (ATP) - binding cassette (ABC) superfamily [229]. Transporters important 

to pharmacokinetics generally are located in intestinal, renal and hepatic epithelia as well 

as in the endothelium of the blood–brain barrier, where they control the tissue distribution, 

selective absorption and elimination of drugs across cell membranes [83].  

Transporters that belong to the ABC superfamily rely on ATP hydrolysis to 

actively pump their substrates across the cell membrane. There are 49 genes that have 

been identified encoding ABC proteins that can be grouped into seven families from 

ABCA to ABCG [230]. Many ABC transporters mediate the efflux of drugs and their 

metabolites from the intracellular space of the epithelial cells. They prevent xenobiotics 

from reaching vital organs such as the brain, the cerebrospinal fluid, the testis and the 

fetus. Active efflux via ABC transporters thus acts as a defense mechanism that the body 

uses to decrease exposure to potentially toxic xenobiotics. On the other hand, ABC 

transporter-mediated active efflux impairs the absorption and distribution of drugs to 

their target sites. P-glycoprotein (P-gp, ABCB1) and breast cancer resistance protein 
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(BCRP, ABCG2) expressed on the intestinal luminal membrane reduce drug absorption 

by pumping drug molecules that have entered enterocytes back into the gastrointestinal 

lumen. P-gp, BCRP and multidrug resistance proteins (MRPs) expressed in brain 

capillary endothelial cells prevent the drugs from passing the blood-brain barrier [36, 

231]. Overexpressing efflux ABC transporters such as P-gp and BCRP is one of the 

mechanisms employed by cancer cells to develop resistance to chemotherapy. In addition, 

efflux via ABC transporters across the canalicular membrane of hepatocytes and the 

luminal membrane of kidney proximal tubule is an important mechanism for 

hepatobiliary and renal excretion of drugs and their metabolites [36, 83]. 

Transporters in the SLC superfamily mediate facilitated diffusion and active 

transporter of a variety of ions, endogenous compounds and xenobiotics. There are 315 

genes annotated for SLC transporter proteins in the human genome, which are grouped 

into 48 families [231]. Many SLC transporters serve as drug targets, including serotonin 

(5-HT) transporter and dopamine transporters. Some other SLC transporters, such as ones 

from SLCO, SLC15, SLC22 and SLC47 families, have been shown to play a role in the 

absorption, distribution and excretion of drugs and clinical DDIs [36]. For example, 

organic anion transporting polypeptides (OATPs) and peptide transporter 1 (PEPT1) 

expressed in the intestinal apical membrane mediate the absorption of drugs. OATPs, 

organic anion transporters (OATs) and organic cation transporter (OCTs) expressed on 

the hepatic sinusoidal membrane and the basolateral membrane of kidney proximal 

tubules that mediate the hepatic and renal uptake of drugs from the blood.  

 There has been an increasing recognition in recent years that transporters from the 

ABC and SLC superfamilies play an important role in drug disposition and clinical DDIs. 
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In a white paper published by the International Transporter Consortium [36], seven 

transporters were identified as having compelling clinical evidence of involvement in 

pharmacokinetics and DDIs. These transporters included P-gp, BCRP, OATP1B1, 

OATP1B3, OCT2, OAT1 and OAT3 [36]. The white paper and the FDA guideline 

recommend characterizing in vitro the role of these transporters in the disposition of 

investigational drugs during drug development to assess their potential for clinical DDIs 

[13, 36].  

 

b. OATPs: characteristics, role in drug disposition and clinical DDIs 

 Amongst the drugs transporters mentioned above, OATPs are of particular 

interest because they have been shown to be particularly important to pharmacokinetics 

and clinical DDIs. Also, OATPs have a broad substrate spectrum as discussed later. Since 

all the drugs involved in the significant DDIs identified previously are administered 

orally, it is possible that these drugs are substrates of OATPs and interact via inhibition of 

OATPs.  

 OATPs are a family of membrane transport proteins that mediate the sodium-

independent transport of a diverse range of amphipathic organic anions, neutral 

compounds and even some cations. OATPs belong to the solute carrier (SLC) 

superfamily as members of the solute carrier organic anion transporter family (SLCO) 

[232]. In humans, eleven members have been identified and grouped into six subfamilies. 

The general predicted OATP structure consists of thirteen transmembrane domains [233]. 

The mechanism of transport is believed to involve anion exchange by coupling the 

cellular uptake of substrate with the efflux of neutralizing anions such as bicarbonate, 
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glutathione or glutathione-S-conjugates [232]. The endogenous substrates of OATPs 

include bile acids, steroid conjugates, thyroid hormones, prostaglandins and bilirubin 

glucuronide. OATPs are also responsible for the transport of a number of drugs and 

xenobiotic substances [234]. Table 4-1 provides a summary of characteristics of the 

OATPs in humans and examples of their substrates [235].  

Particular attention has been paid to OATP1B1, 1B3 and 2A1 as they are the 

transporter proteins demonstrated to this point to be most engaged in drug disposition 

[232]. The mechanisms of hepatic uptake include passive diffusion along an 

electrochemical gradient, active transport for anionic compounds, and facilitative 

diffusion for cationic compounds [235]. Expressed on the sinusoidal membrane of 

hepatocytes, OATP1B1, 1B3 and 2A1 contribute to the active uptake of drugs from the 

portal venous blood into hepatocytes [236]. The substrates of OATP1B1, 1B3 and 2B1 

are mainly anionic amphipathic compounds with relatively high molecular weights (>350) 

and low plasma-protein unbound fraction (<30%), such as bile salts (taurocholate), 

several conjugated metabolites of steroids including estradiol-17β-D-glucuronide 

(E217βDG), thyroid hormones (T3, T4), statins, angiotensin converting enzyme 

inhibitors, and angiotensin II receptor antagonists [237]. It is worth noting that there is a 

significant overlap in the substrate spectrum among these three OATPs. 

Hepatic uptake is the prerequisite for the subsequent hepatic metabolism of drugs 

and the elimination of drugs themselves via the bile. Once a compound is in the 

intracellular space of a hepatocyte, it can be eliminated through any of the three routes: 

metabolism by hepatic enzymes, excretion into bile, or return to the sinusoids via 

sinusoidal efflux. At a given time, the intra-hepatocyte concentration of an OATP 
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substrate reflects the net balance between its hepatic uptake via OATPs and its hepatic 

clearance through metabolism, biliary excretion or sinusoidal efflux. OATPs thus are a 

determinant of the hepatic exposure for their substrates [235].  

This explains the association of OATPs with pharmacokinetics, efficacy and 

toxicity of their substrate drugs. First, for a drug whose target site of action is in the liver, 

OATPs can affect its efficacy by determining its intracellular concentration in 

hepatocytes. One example is simvastatin which targets HMG-CoA reductase in 

hepatocytes. The active form of simvastatin, simvastatin acid, is a substrate of both 

OAP1B1 and 1B3 [238]. In individuals carrying the less functional variant allele at 

c.521T>C SNP of SLCO1B1, the gene that encodes for OATP1B1, the reduction in the 

LDL cholesterol following simvastatin therapy was 1.3% lower per variant allele [239]. 

Second, for a drug that is actively excreted into bile or rapidly metabolized in hepatocytes, 

its hepatic uptake is the rate-limiting step in its hepatic clearance. OATPs thus can play a 

major role in determining such a drug’s hepatic elimination. This can be observed from 

the following equation, 

𝐶𝐿𝑖𝑛𝑡,𝑎𝑙𝑙 = 𝑃𝑆𝑢𝑝𝑡𝑎𝑘𝑒 ×
𝑃𝑆𝑒𝑓𝑓+𝐶𝐿𝑚𝑒𝑡

𝑃𝑆𝑒𝑓𝑓+𝐶𝐿𝑚𝑒𝑡+𝑃𝑆𝑏𝑎𝑐𝑘
 Eq. 4-1 

Where CLint,all is the overall hepatic clearance,  PSuptake is the rate of hepatic uptake, PSeff 

is the rate of biliary excretion, CLmet is the clearance of hepatic metabolism, and PSback is 

the efflux rate from hepatocytes to sinusoids. The overall hepatic clearance (CLint,all) 

approaches the rate of hepatic uptake (PSuptake) when the sinusoidal efflux (PSback) is 

much smaller than the total clearance of hepatic metabolism and biliary excretion (PSeff + 

CLmet) [240]. This is exemplified by atorvastatin, a substrate of OATP1B1 and 2B1 

extensively metabolized by CYP3A4. In a study by Maeda et al., following an oral 
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microdose (33 µg) of atorvastatin in healthy volunteers, the dose-normalized AUC was 

increased by 22-fold with coadministration of rifampin (a strong inhibitor of 

OATP1B1/1B3) but remained unchanged with intravenous coadministration of 

itraconazole (a strong inhibitor of CYP3A4) [241]. These data suggested that the hepatic 

clearance of atorvastatin was mainly determined by the rate of its hepatic uptake in 

humans. When the function of OATPs is impaired, due to either inhibition by drugs or 

genetic variation, OATP substrate drugs that are primarily eliminated through hepatic 

metabolism are expected to have reduced hepatic clearance and increased systemic 

exposure, potentially resulting in increased risk of toxicity at peripheral tissues. Taking 

simvastatin as an example again, in patients with the C allele at SLCO1B1 rs4149056, the 

odds ratio for statin-induced myopathy was 4.5 per copy as compared with the wild type 

allele [239]. This observation is so clinically important that the Clinical 

Pharmacogenetics Implementation Consortium (CPIC) has published therapeutic 

guidelines for the use of simvastatin in the clinic based on the genotype of SLCO1B1 

[242].  

 It has been increasingly recognized that OATPs represents an important site of 

DDIs since mechanistic studies have revealed that the interaction between cerivastatin 

and cyclosporine was caused by inhibition of OATP1B1 [243, 244]. Potent inhibitors of 

OATPs, such as cyclosporine, rifampin, gemfibrozil and itraconazole, have been reported 

to cause significant clinical DDIs with the drugs that rely on OATPs for hepatic uptake. 

DDIs involving inhibition of hepatic uptake via OATPs often also involve inhibition of 

hepatic metabolism by CYPs, leading to a remarkable increase in the systemic exposure 

to the victim drugs and the risk of adverse events. A typical example is the interaction of 
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cerivastatin and gemfibrozil. The interaction is caused by both the inhibition of the 

hepatic uptake of cerivastatin via OATP1B1 by gemfibrozil, and the inhibition of 

cerivastatin metabolism through CYP2C8 by the glucuronide metabolite of gemfibrozil 

[245, 246]. Consequently, gemfibrozil increased the AUC of cerivastatin by 559% in a 

pharmacokinetic study [247]. It also increased the risk of rhabdomyolysis for cerivastatin 

by 5-fold in a population-based cohort study [52]. Another example is cyclosporine and 

atorvastatin. Cyclosporine not only inhibits the OATP1B1-dependent hepatic uptake of 

atorvastatin in vitro [248], but also inhibits atorvastatin metabolism by CYP3A4. 

Coadministration of cyclosporine was shown to increase the AUC of atorvastatin by 9- to 

-15- fold [235]. 

 

c. Experimental systems for assessing uptake transporter activity 

 Understanding and predicting the role of transporters in pharmacokinetics and 

DDIs require appropriate characterization of uptake and efflux kinetics in vitro. For 

uptake transporters, there are two general types of in vitro systems commonly used to 

study their kinetics, recombinant cell and whole-cell systems [249].  

Recombinant cells, including Xenopus laevis oocytes or immortalized cell lines, 

overexpressing transporter proteins of interest are commonly used to estimate the kinetics 

and inhibition of uptake transporters [27]. Oocyte systems are established by injecting 

cDNA of the transporter to allow overexpression [236]. Because of the large volume of 

oocytes, the time course of the compound accumulation in oocytes can remain linear for a 

long period of time. Oocyte systems therefore have the advantage of providing high 

signal-to-noise ratios in assessing uptake of drugs [237]. However, due to cDNA 
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injection, oocyte systems are not appropriate for high-throughput screening and often 

show a large variability in the expression level of the transporter [237]. More importantly, 

some data suggest that transporter kinetic parameters determined using oocytes are not 

always comparable to those generated in mammalian cells [249].  

Immortalized cell lines transfected with cDNAs and stably overexpressing single 

or multiple transporters are thus preferred over oocytes for studying uptake transporters 

[27]. They allow constitutive expression of the transporter proteins of interest under 

certain selection pressure. HEK293 and CHO cells are the two host mammalian cell lines 

most commonly used because they demonstrate low endogenous transporter activity and 

are easy to maintain [249]. Additional advantages of these cell lines include that they are 

cost-effective, easy to perform experiments, and applicable to high-throughput screening 

[249]. There are numerous examples demonstrating the value of these cell lines in 

studying DDIs involving hepatic uptake transporters. One such example is using HEK293 

cells stably overexpressing OATP1B1 and OATP1B3 to examine the inhibition of 

OATP-mediated pravastatin uptake by several widely prescribed oral antidiabetic drugs 

[250]. As noted above, transporters often have overlapping substrate spectrums. 

Therefore, cell lines transfected with a single transporter often lack the endogenous 

uptake or efflux transporters to provide a complete transport mechanism for a drug. It 

may even be challenging to predict the true in vivo situation using cell lines transfected 

with multiple transporters [251]. In addition, a large variability has been observed with 

the data generated using these recombinant cell lines due to inconsistency in cell handling 

and experimental procedures [249].  
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Whole-cell systems refer to those derived cell lines such as Caco-2 and MDCK, 

and primary human or rodent hepatocytes. Caco-2 and MDCK cell lines are often used to 

study efflux transporters or the interplay between uptake and efflux transporters 

expressed in the intestine and in the kidneys, respectively [249]. These cells lines can also 

stably or transiently overexpress the transporters of interest when cDNA transfection 

methods are used. The cells are seeded on a permeable membrane support to form a tight 

polarized cell monolayer, with uptake transporters localized in the basolateral membrane 

and efflux transporters localized in the apical membrane. The transport of drugs is 

determined by measuring the flux through the cell monolayer from the basolateral 

compartment to the apical compartment [252, 253]. Because apparent uptake in these 

models is confounded by apical efflux, one of the limitations is possible misidentification 

of uptake transporter substrates for non-substrates due to saturation of efflux transporters 

[249].  

Primary hepatocytes, either freshly isolated or cryopreserved, have been widely 

accepted as the gold-standard models for identification of substrates of hepatic uptake 

transporters and for prediction of hepatic clearance [249]. They can be optimized to 

estimate kinetic parameters specific to uptake, metabolism, or efflux, as well as the 

interplay of these processes [249]. Cryopreserved hepatocytes are more commonly used 

than freshly isolated hepatocytes because they are more available and the majority of 

hepatic drug transporters appear to be preserved [254]. For studying uptake transporters, 

primary hepatocytes are often used in suspension because transporter function decreases 

quickly when cells are plated [255]. However, technical difficulties may arise as the 

viability of suspended hepatocytes decreases more rapidly than that of plated hepatocytes 
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[256]. Primary hepatocytes have been shown to be valuable tools for mechanistic studies 

on DDIs. In a study by Noe et al, gemfibrozil inhibited the OATP1B1-, OATP2B1-, and 

OATP1B3-mediated fluvastatin transport in individually transfected cell lines by 97, 70, 

and 62%, respectively, whereas only 27% inhibition was observed for fluvastatin uptake 

into primary human hepatocytes [251]. This study highlighted the advantages of 

hepatocytes as compared with recombinant cell lines in investigating the role of uptake 

transporters in DDIs. The application of human primary hepatocytes to transporter studies 

has been greatly limited by hepatocyte availability. Rat hepatocytes are a useful substitute 

in some cases. There is no true homologue of human OATP1B1/1B3 in rodents, but 

rodent OATP1B2 has been found very similar in function and substrate specificity to 

those human isoforms [232, 257]. Another issue often encountered in transporter studies 

using hepatocytes is that, due to the lack of specific inhibitors and substrates, it is often 

challenging to determine which individual isoforms of specific uptake transporters are 

involved in uptake of compounds [249]. A common goal in this research is therefore to 

identify probe substrates and specific inhibitors for individual clinically important 

transporters and to set up standards for experimental procedures similar to those that are 

described previously for CYPs.  

 In addition to the in vitro systems discussed above, an oatp1b2-/- knockout mouse 

model and humanized OATP1B1 and OATP1B3 transgenic mouse models have been 

developed. These mouse models have contributed to a better understanding of the role of 

hepatic uptake transporters for the disposition of drugs in vivo [257-260].  
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d. Prediction of transporter-mediated DDIs 

 Current methods for the prediction of DDIs due to inhibition of hepatic uptake 

focus on inhibition of OATPs. These methods are extensions of those derived for CYP-

mediated DDIs and can be grouped into three classes, static models (R value), 

mechanistic static models and PBPK models [27]. 

The static model estimates an R value as R = 1 + [I]inlet,max /Ki, where [I]inlet,max is 

the maximum inhibitor concentration at the inlet to the liver, and Ki is the dissociation 

constant determined for the affected uptake transporter in vitro [27]. [I]inlet,max is 

estimated as [I]inlet,max = Cmax + (ka x Dose x FaFg/Qh), where Cmax is the maximum 

systemic plasma concentration of the inhibitor drug, dose is the highest dose of the 

inhibitor in clinical use, FaFg is the fraction of the inhibitor dose that reaches the liver, ka 

is the absorption rate constant of the inhibitor, and Qh is the estimated hepatic blood flow 

(1500 mL/min) [13]. When values of FaFg and ka are not available, the theoretical 

maximum of 1 and 0.1 min-1 are assumed, respectively, for a conservative prediction [13]. 

When IC50 is evaluated at a substrate concentration well below Km for the uptake 

transporter, Ki can be approximated by IC50 based on Ki = IC50 / (1 + [S]/Km) [261]. In 

contrast to CYPs, well-defined probe substrates and specific inhibitor are not yet 

available for uptake transporters, and this issue contributes to the huge variability in the 

reported IC50s for OATPs [27]. A universal cutoff for R value thus has not been identified 

[27]. The recommendation of the International Transporter Consortium is to determine 

IC50 with the relevant co-medication substrates and inhibitors [27]. The FDA sets an R 

cutoff of 1.25 for investigational drugs inhibiting OATP1B1 and OATP1B3, and requires 

a follow-up clinical study with rosuvastatin, pitavastatin or pravastatin as probe substrates 
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for a predicted R value ≥ 1.25 [13]. The R value approach assumes that the uptake of the 

victim drug is exclusively via the OATP under consideration, and that any other potential 

contributing factors are negligible. This assumption often leads to overestimation of the 

magnitude of DDI in vivo [27, 262].  

It has been observed that the contribution of OATPs to total hepatic uptake is 

substrate-dependent [27]. In predicting the risk of DDIs involving OATP1B1, to account 

for the differential contribution of OATP1B1, a mechanistic model has been developed 

which incorporates the fraction of drug transported via OATP1B1 only (fOATP1B1) and has 

the following form [27], 

𝐴𝑈𝐶𝑅 =
𝐴𝑈𝐶𝑖

𝐴𝑈𝐶
=

𝐶𝐿𝑎𝑐𝑡,𝑢𝑝𝑡𝑎𝑘𝑒

𝐶𝐿𝑎𝑐𝑡,𝑢𝑝𝑡𝑎𝑘𝑒(𝑖)
=

1
𝑓𝑂𝐴𝑇𝑃1𝐵1

1+
[𝐼]𝑖𝑛𝑙𝑒𝑡,𝑚𝑎𝑥,𝑢𝑛𝑏𝑜𝑢𝑛𝑑

𝐾𝑖

+ (1 − 𝑓𝑂𝐴𝑇𝑃1𝐵1)
  𝐸𝑞. 4 − 2 

This model assumes that other potential contributing factors, such as other uptake 

transporters, efflux transporters and metabolism, are not affected by the inhibitor drug 

[27]. The successful application of this model is limited by (1) the general lack of 

fOATP1B1 estimates for OATP1B1 substrates, and (2) the sensitivity of the predicted 

AUCR to the input value of fOATP1B1 [27]. Furthermore, this model has the same caveat as 

its counterpart for CYP-based DDIs, that is, it uses “a static estimate of in vivo inhibitor 

concentration to provide a point estimate of the average magnitude of change in the 

exposure to any victim drug” as pointed out by Einolf et al. [133]. 

 To address more complicated situations where DDIs involving multiple 

transporters and/or transporter-enzyme interplay, many scientists advocate the use of 

PBPK models [263]. There has been an increasing use of whole-body PBPK modeling to 

integrate estimates of active uptake, passive permeability, intracellular binding, 
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metabolism, and efflux measured in vitro to predict in vivo pharmacokinetics. Compared 

with static models, PBPK models have the advantage of being able to simulate the 

concentration–time course of the inhibitor drug at the actual site of interaction [136]. For 

example, PBPK models can simulate the intracellular concentration in enterocytes for 

predicting inhibition of efflux transporters and CYP3A4 expressed in the gut wall. It can 

also simulate hepatic inlet concentration for predicting inhibition of hepatic uptake, or 

intracellular concentration in hepatocytes for predicting inhibition of hepatic efflux 

transporters and metabolic enzymes. In addition, PBPK models can be extended to 

incorporate the effects of metabolites on relevant transporters or metabolic enzymes 

[136]. Examples of using PBPK models for prediction of transporter-mediated DDIs are 

limited. Nevertheless, the current mechanistic framework of PBPK models makes 

quantitative assessment of complex DDIs possible [27]. 

 

e. Hypothesis and aims 

 Since all the drugs involved in the significant DDIs identified previously are 

administered orally, it is possible that inhibition of hepatic uptake via OATP1B1/1B3 

contributes to these interactions. In this chapter, I hypothesize that inhibition of 

OATP1B1/1B3 contributes to the significant myopathic DDIs identified previously by 

reducing hepatic uptake and thus the subsequent hepatic clearance of drugs, leading to 

increased systemic exposure and the risk of myopathy. To test this hypothesis, each drug 

involved in the significant DDIs identified previously needs to be evaluated as both a 

substrate and an inhibitor of OATP1B1/1B3. This approach is, however, unfeasible as 

current experimental techniques require radio-labeling each individual drug involved. 
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Since an inhibitor of a transporter is often also a substrate, I examined the ability of those 

drugs to inhibit OATP1B1/1B3 to probe their potential to be substrates of these 

transporters. The drugs were first screened for the inhibition of E217βDG uptake in 

cryopreserved rat hepatocytes. E217βDG is a substrate of rOATP1B2, a functional 

homologue of human OATP1B1/1B3 in rodents. The risk of OATP1B1/1B3-mediated 

DDIs in humans was then inferred from the inhibitory potencies determined.  

 

2. Methods 

a. Materials 

 All drugs and metabolites were purchased from Toronto Research Chemicals Inc. 

(North York, ON, Canada). Tritium-labeled estradiol-17 β-D-glucuronide ([3H] E217βDG) 

was purchased from Perkin Elmer (Waltham, MA). Cryopreserved rat hepatocytes were 

purchased from Life Technologies (Grand Island, NY). Acetonitrile, methanol and 

components of Krebs-Henseleit buffer (KHB) were purchased from Sigma-Aldrich (St. 

Louis, MO). Phosphate-buffered saline (PBS) and ScintiSafe™ Econo Cocktail 

(Scintanalyzed™) were purchased from Fisher Scientific (Pittsburgh, PA).  

 

b. Screening for inhibition of E217βDG uptake 

 To examine the inhibitory potential of the drugs of interest for rOATP1B2, the 

uptake of E217βDG was determined in the presence of the drugs under study in 

suspended cryopreserved rat hepatocytes. [3H] E217βDG and the test drugs were 

dissolved in methanol and diluted to the desired concentrations in KHB buffer. Rat 

hepatocytes were thawed, washed and suspended in Krebs-Henseleit buffer containing 2 
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g/L glucose. Following counting of the number of viable cells using trypan blue, the 

hepatocyte suspension was adjusted to a density of 2 x 106 viable cells per ml and kept on 

ice until the start of uptake. Aliquotes (100 μL) of cell suspension were then transferred 

to 2.5 mL tubes and were pre-warmed at 37 °C for 3 min in a shaker water bath, along 

with the solution containing radio-labeled E217βDG and the test drugs. The uptake was 

initiated with the addition of equal volume (100 μL) of the solution containing [3H] 

E217βDG and the test drugs to the cells. The hepatocytes were further incubated with [3H] 

E217βDG and the test drugs for a designated length of time at 37 °C. In parallel, the 

uptake studies were also performed on ice to estimate the rate of passive diffusion. The 

final concentration of [3H] E217βDG was 1 μM, 0.1 μCi. The final concentration of the 

test drugs were 100 μM, and each drug was tested in triplicate. The final concentration of 

hepatocytes was 0.2 x 102 per reaction (or 1 x 106 cells / mL). To ensure the consistency 

of uptake assays, 10 μM rifampin was used as a positive control in each experiment.  

Uptake was stopped with the addition of 1 mL ice-cold PBS and immediate 

centrifugation at 4500 rpm for 1 min at 4 °C. To wash off the residual substrate and test 

drugs, the cells were re-suspended with 1 mL ice-cold PBS and centrifuged again. After 

removing supernatants, the cell pellets were lysed with 200 μL of 50% acetonitrile in 

H2O, followed by vigorous vortexing. The cell lysates were then transferred to 

scintillation counting vials, 3 mL scintillation fluid was added, and radioactivity was 

determined by liquid scintillation counting in a LS 6500 multipurpose scintillation 

counter (Beckman Coulter, Fullerton, CA). 

 For data analysis, the total radioactivity was taken to be the sum of the 

radioactivity found in the supernatant and that of the hepatocyte lysates. The fraction of 
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total uptake was the ratio of the radioactivity of hepatocyte lysate to the total radioactivity. 

The fraction of active uptake was the obtained by subtracting the uptake at 0 °C from the 

total uptake at 37 °C. The fraction of inhibition was determined by comparing the active 

uptake in the presence of test drugs with that in the absence of any test drugs. 

 

c. Estimating IC50s 

 IC50 was determined for the drugs which yielded more than 50% inhibition of [3H] 

E217βDG uptake into hepatocytes at 100 μM in the screening. To determine IC50s, uptake 

studies were performed as described previously, except that the inhibition of [3H] 

E217βDG uptake was evaluated at multiple inhibitor concentrations in triplicate. The 

selection of inhibitor concentrations was guided by the fraction of inhibition in the 

screening study. The fraction of inhibition was determined as described above. IC50s were 

estimated by fitting the fraction of inhibition to a two- (Eq. 3-2) or four- (Eq. 3-3) 

parameter log-logistic model using GraphPad Prism 5 software. 

 

d. Prediction of OATP1B1/1B3-mediated DDIs 

 Following the FDA guidelines, for each drug administered orally for which an 

IC50 was observed, an R value was estimated as R = 1 + [I]inlet,max /Ki. Because the 

concentration of E217βDG (1 μM) was well below its Km [264, 265], the Kis were 

approximated by the IC50s based on Ki = IC50 / (1 + [S]/Km) [261]. [I]inlet,max was 

estimated as Cmax + (ka x Dose x FaFg/Qh), where Cmax was the maximum systemic plasma 

concentration of the inhibitor drug obtained from the published literature (see Table 4-4), 

dose was the highest proposed clinical dose of the inhibitor drug, FaFg was the fraction of 
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the inhibitor dose that reaches the liver, ka was the absorption rate constant of the 

inhibitor obtained from the published literature, and Qh was the estimated hepatic blood 

flow (1500 mL/min). For the drugs whose FaFg and ka were not available, these 

parameters were assumed to be 1 and 0.1 min-1. For simvastatin acid, the Cmax and dose 

were assumed to be equal to those of simvastatin. Because rifampin is usually given as an 

intravenous injection, its R value was estimated as R = 1 + [I]/Ki, where [I] is the Cmax 

following an injection at the highest proposed clinical dose (600 mg). Ki was similarly 

approximated by the IC50. 

 

3. Original experimental results 

a. Screening for inhibition of E217βDG uptake 

 Cryopreserved rat hepatocytes were used to examine the potential of the drugs of 

interest to inhibit OATPs. The hepatic uptake of E217βDG is known to be mediated by 

OATP1B1 and 1B3 in humans, and by rOATP1B2 in rodents [264, 265]. E217βDG 

uptake has been widely used as a marker activity of those OATPs in vitro. To examine 

the potential of the thirteen drugs involved in the significant myopathic DDIs and their 

active metabolites (e.g. simvastatin acid and desloratadine) for inhibition of OATPs, 

these compounds were screened for inhibition of E217βDG uptake in cryopreserved rat 

hepatocytes. 

 Because E217βDG uptake via rOATP1B2 in rat hepatocytes follows Michaelis-

Menten kinetics [264], uptake measured beyond the early linear phase can be confounded 

by efflux and metabolism [249]. Selection of appropriate time points in the initial linear 

phase is therefore critical for accurate determination of inhibitory potential. In 
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preliminary studies, I found that the velocity of E217βDG uptake into rat hepatocytes was 

linear for up to 1 min (Figure 4-1). All the subsequent uptake studies were thus 

performed within the 1 min linear phase.  

 The inhibition of 1 μM E217βDG uptake into rat hepatocytes by the compounds 

tested is summarized in Table 4-2. A bar plot showing the remaining uptake (%) as 

compared to the controls is displayed in Figure 4-2. Six drugs were found to inhibit more 

than 50% of E217βDG uptake at 100 μM, and they were simvastatin acid, quetiapine, 

risperidone, omeprazole, duloxetine and alprazolam. Noticeably, simvastatin acid 

inhibited E217βDG uptake completely (103.3 ± 0.5%) at 100 μM. Quetiapine also 

exhibited potent inhibition of E217βDG uptake (95.5 ± 0.4%) at 100 μM.  

 

b. IC50 estimates 

 For the six drugs that yielded more than 50% of inhibition of E217βDG uptake in 

the screening studies, IC50s were further determined and are shown in Figure 4-3 and 

Table 4-3. Because the interaction of simvastatin and loratadine was of particular interest, 

the IC50 of desloratadine was also determined although it only exhibited 45% of 

inhibition for E217βDG uptake in the screening studies. Rifampin, a known inhibitor of 

OATPs, served as a positive control inhibitor, and its IC50 (95% CI) was 8.9 (6.6, 12) μM. 

Simvastatin acid and quetiapine exhibited potent inhibition for E217βDG uptake in the 

screening studies and their IC50s were 4.3 (3.5, 5.3) and 16.9 (11.7, 24.4) μM, 

respectively. The IC50s of duloxetine, omeprazole, alprazolam, desloratadine and 

risperidone were relatively large and suggested only weak inhibition of rOATP1B2 at 

clinically relevant concentrations.  
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c. Predicted risk of OATP1B1/1B3- mediated DDIs 

 Following the FDA guidelines, an R value was predicted for each drug for which 

an IC50 was observed (Table 4-4). Assuming that the Cmax and dose of simvastatin acid 

are equal to those of simvastatin, the R value for simvastatin acid was 3.85. The R values 

of quetiapine, omeprazole and duloxetine were 5.28, 1.2 and 1.2, respectively, also higher 

than the FDA recommended cutoff of 1.1 [13]. The R values of simvastatin acid and 

quetiapine were larger than that of rifampin (R value 3.4), a known inhibitor of 

OATP1B1/1B3 that can cause clinical DDIs by inhibiting OATP1B1/1B3. Since 

rOATP1B2 is a functional homologue of human OATP1B1/1B3, these data suggest that 

simvastatin acid, quetiapine, duloxetine and omeprazole may inhibit the transport activity 

of OATP1B1/1B3 in humans, and interact with drugs whose hepatic uptake is primarily 

mediated by OATP1B1/1B3. The predicted R values for the other drugs were close to 

unity, indicating a negligible risk of OATP1B1- and OATP1B3- mediated DDIs in vivo. 

 

4. Discussion 

 In this chapter, I have addressed the hypothesis that the DDIs identified 

previously were caused, in part, by the inhibition of hepatic uptake via OATP1B1/1B3. 

The drugs and their relevant active metabolites were screened for inhibition of E217βDG 

uptake, a marker activity of rOATP1B2, in cryopreserved rat hepatocytes. Six drugs, 

namely, simvastatin acid, quetiapine, duloxetine, omeprazole, alprazolam and risperidone 

exhibited more than 50% of inhibition at 100 μM. IC50s were further determined for these 

drugs and the risk of OATP-mediated DDIs was predicted. The IC50 of desloratadine was 

determined too as its inhibition was close to 50% and the interaction between loratadine 
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and simvastatin was of particular interest. Simvastatin acid and quetiapine exhibited 

relatively potent inhibition of E217βDG uptake with IC50s of 4.3, and 16.9 μM, 

respectively. Omeprazole and duloxetine exhibited moderate inhibition of E217βDG 

uptake with IC50s of 84.3 μM and 56.8 μM, respectively. The predicted R values of 

simvastatin acid, quetiapine, omeprazole and duloxetine were 3.85, 5.28, 1.2 and 1.2, 

respectively, indicating that these drugs may interact with drugs that rely on 

OATP1B1/1B3 for hepatic uptake in vivo. It is worth noting that the predicted R values 

of simvastatin acid and quetiapine were larger than that of rifampin, indicating that these 

two drugs have more potential to cause clinical DDIs by inhibiting OATP1B1/1B3 than 

rifampin, a drug that is known to interact with OATP1B1/1B3 substrates. 

 The inhibitory potencies observed here are consistent with those published 

previously, demonstrating the validity of the experimental system. Rifampin, a known 

inhibitor of OATP1B1/1B3, inhibited E217βDG uptake with an IC50 of 8.9 μM, which is 

consistent with the reported inhibitory activity of rifampin in vivo [266]. Simvastatin acid 

inhibited E217βDG uptake with an IC50 of 4.3 μM. This is in line with the previous 

observation that simvastatin acid is a substrate of OATP1B1/1B3 in humans and inhibits 

the OATP1B1/1B3-dependent pravastatin uptake [7]. On the other hand, simvastatin 

lactone only reduced E217βDG uptake by 36.3%, consistent with the observation that 

simvastatin is not a substrate of OATP1B1/1B3 [267]. 

 The other compounds tested here have never been reported to inhibit 

OATP1B1/1B3. Many of them, such as omeprazole and duloxetine, are clinically 

important drugs that are often involved in significant clinical DDIs. My data are the first 

to describe their potential to inhibit rOATP1B2 and shed light on their potential to be 
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involved in OATP-mediated DDIs in humans. Future studies are needed to confirm the 

inhibitory potentials observed for these drugs and to integrate these considerations into 

clinical thinking about drug interactions.  

 Quetiapine draws particular attention as it was identified as a relatively potent 

inhibitor of rOATP1B2, thus a potential inhibitor of human OATP1B1/1B3. The IC50 of 

quetiapine (16.9 μM) was close to that of a known potent OATP1B1/1B3 inhibitor, 

rifampin. The high predicted R value of 5.28 underscored its potential to cause DDIs by 

inhibiting OATP1B1/1B3-mediated hepatic uptake. Future studies are required to 

characterize in detail the inhibition of human OATP1B1/1B3 by quetiapine and to 

investigate its potential to cause clinical DDIs. 

 Overall, the data indicate that the inhibition of hepatic uptake via OATP1B1/1B3 

is not the major mechanism for the DDIs identified previously. Other than simvastatin 

acid and quetiapine, the drugs involved in those DDIs exhibited only relatively weak or 

moderate inhibition of OATP1B1/1B3. Since the drugs were screened for inhibition at 

100 µM, a concentration that is much higher than the hepatic input concentration of any 

drug at clinical doses, a relatively weak or moderate inhibition indicates that the chance 

of inhibiting OATP1B1/1B3 in vivo is minimal. The majority of the DDIs identified 

previously therefore cannot be explained by inhibition of hepatic uptake via 

OATP1B1/1B3.  

 The predicted R value of simvastatin acid was 3.85, indicating a risk of 

OATP1B1/1B3-mediated DDI in vivo. For the interaction between simvastatin and 

loratadine, loratadine and its active metabolite, desloratadine, exhibited only relatively 

weak and moderate inhibition for E217βDG uptake, respectively. Since the predicted R 
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value of desloratadine was close to unity, both loratadine and desloratadine are unlikely 

to increase the risk of simvastatin-induced myopathy by inhibiting the hepatic uptake of 

simvastatin acid via OATP1B1/1B3. On the other hand, the inhibition of E217βDG 

uptake by desloratadine suggests that desloratadine might be a substrate of 

OATP1B1/1B3. With an R value of 3.85, simvastatin acid can potentially inhibit the 

uptake of desloratadine, thereby increasing the risk of loratadine-induced myalgia. 

However, as I assume that the Cmax and dose of simvastatin acid is equal to those of 

simvastatin, the R value of simvastatin acid is likely an overestimate because a fraction of 

dose and Cmax exists in the form of simvastatin which inhibited E217βDG uptake with 

much less potency. Future mechanistic studies are needed to examine whether 

desloratadine is a substrate of OATP1B1/1B3, and to explore the possibility that the 

inhibitory effects of simvastatin acid on the hepatic uptake of desloratadine contributes to 

the interaction of simvastatin with loratadine. 

 Both duloxetine and omeprazole were predicted to interact with OATP1B1/1B3 

substrate drugs with a relatively small risk (R value 1.2). Their inhibitory effects on 

OATP1B1/1B3 might contribute to their interactions with loratadine as they may inhibit 

the hepatic uptake of desloratadine. However, since the predicted R values are small and 

likely over-estimated, these inhibitions may have only small effects on the 

pharmacokinetics of loratadine.  

 The predicted R value of quetiapine was 5.28, indicating a risk of OATP1B1/1B3-

mediated DDI in vivo. However, chloroquine and its active metabolite, 

hydroxychloroquine, only caused 26.3% and 27.7% inhibition of E217βDG uptake, 

respectively, indicating that they are unlikely to be substrates of OATP1B1/1B3. 
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Therefore, the interaction between quetiapine and chloroquine is unlikely to be due to the 

inhibition of hepatic uptake of chloroquine or quetiapine via OATP1B1/1B3. For similar 

reasons, the interactions of duloxetine with chloroquine and hydroxychloroquine cannot 

be attributed to the inhibition of OATP1B1/1B3 by duloxetine, although duloxetine was 

predicted with a small risk of interacting with OATP1B1/1B3 substrate drugs (R value 

1.2). 

 Using E217βDG uptake as a functional marker, I was able to provide mechanistic 

insights into the DDIs identified previously with respect to inhibition of hepatic uptake 

via OATP1B1/1B3. On the other hand, I was not able to evaluate the overall effect of a 

perpetrator drug on the hepatic uptake of a victim drug for those DDIs. Such information 

can only be obtained via examining the uptake of a victim drug into hepatocytes in the 

absence and presence of a perpetrator drug.  

 Since the R value approach assumes that other potential contributing factors, such 

as uptake via other transporters, metabolism and efflux, are negligible, and that the 

inhibitor drugs concentration is constantly as high as the maximal hepatic inlet 

concentration at the highest proposed clinical dose, the R values are likely be 

overestimates of risk [27]. This approach is thus only appropriate for providing an initial 

assessment and for ruling out drugs that are unlikely to be involved in DDIs. Since the 

fraction of uptake via OATP1B1/1B3 is unknown for the drugs of interest, the AUCR 

approach cannot be applied. To obtain more accurate estimates of the risk of OATP-

mediated DDIs in vivo for simvastatin acid and quetiapine, more comprehensive models 

such as PBPK models may be required. 
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 Although my data demonstrate E217βDG uptake in rat hepatocytes as a useful 

model for evaluating inhibition of OATP1B1/1B3, there are a few caveats inherent to this 

model which limit the interpretation of the results. First, there is a concern that the 

species difference between rat and human hepatocytes, more specifically, between 

rOATP1B2 and human OATP1B1/1B3, may limit the extrapolation of uptake data from 

rats to humans. Indeed, the uptake kinetics of E217βDG in cryopreserved rat hepatocytes 

were found to be different from those in cryopreserved human hepatocytes. While the Km 

of E217βDG uptake in cryopreserved rat (12.9 μM) was very similar to that human 

hepatocytes (8.4 μM), the Vmax in rat hepatocytes (1300 pmol/min/106 cells) was 34-fold 

higher than that in human hepatocytes (33.1 pmol/min/106 cells), and the CLuptake in rat 

hepatocytes was 20-fold higher than that in human hepatocytes [32]. In fact, however, the 

inhibitory potential of rifampin for E217βDG uptake determined here in rat hepatocytes 

was consistent with that determined in cryopreserved human hepatocyte suspensions by 

De Bruyn et al., who reported that rifampin inhibited 70% of E217βDG (1 μM) uptake at 

25 μM [30]. Extrapolating from an IC50 of 8.9 μM determined here in rat hepatocytes, 

rifampin would inhibit 73.7% of E217βDG uptake (1 μM) at 25 μM (based on inhibition 

(%) = 1 / (1 + IC50 / [I]) [33]). These data indicate that IC50s may be more dependent on 

the affinity than on the abundance of transporter proteins on the hepatocyte membrane. 

This observation may not be generalizable since the inhibition of E217βDG uptake by the 

other compounds of interest has never been similarly tested in human hepatocytes. A 

similar concern also arises from using cryopreserved hepatocytes instead of fresh isolated 

hepatocytes. It has been shown that the Km of E217βDG uptake remained unchanged 

whereas the Vmax and CLuptake decreased on average by 47% after cryopreservation of 
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human hepatocytes [34]. It is possible that there is a discrepancy between IC50s 

determined in cryopreserved rat hepatocytes and in fresh isolated human hepatocytes as a 

result of species difference and cryopreservation. Since IC50s provide the basis for 

estimating R values, there is a possibility that this discrepancy translates into an 

underestimated or overestimated risk of OATP1B1/1B3-mediated DDIs. Future studies 

are thus warranted to confirm the inhibitory potencies of those drugs in fresh isolated 

human hepatocytes in order to predict the risk of OATP-mediated DDIs with more 

confidence. 

 In addition, the experimental procedure used here is different from the standard 

oil-filtration method with respect to stopping an uptake reaction. Using the oil-filtration 

method, uptake reactions are stopped by centrifuging samples that allow cells to pass 

through a thin layer of oil while leaving the aqueous incubation medium on the top of oil. 

A small number of cells may fail to pass through the oil layer, resulting in an 

underestimate of total uptake. Large variability has been observed using this method, 

partly due to the difficulties in sampling cells for radio-activity determination. Using my 

method, uptake reactions were stopped with the addition of ice-cold PBS followed by 

immediate centrifugation. Addition of ice-cold PBS, theoretically, would bring the 

temperature of incubation mixture down to close to 0 ◦C and would significantly reduce 

the rate of substrate concentration- and temperature-dependent active uptake. However, 

uptake may continue while the samples are kept on ice before centrifugation. Also, a 

small number of hepatocytes may be removed along with supernatant, potentially leading 

to an underestimate of total uptake. Further studies may be needed to compare the two 

methods. Nevertheless, using my methods, I was able to obtain data with consistency and 
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relatively small variability. The inhibitory potentials were consistent with those published 

previously, further providing the evidence for the validity of this method. 

 Lastly, there is debate as to the best approach to assessing the contribution of 

passive diffusion to overall uptake. The traditional approach, as used here, assumes that 

active uptake is negligible at 0 °C, and that passive diffusion can be approximated by 

total uptake at 0 °C. This approach is confounded by the fact that membrane fluidity and 

thus the rate of passive diffusion is temperature-dependent. Approximation of passive 

diffusion at 37 °C by total uptake at 0 °C may lead to underestimation of passive 

diffusion at 37 °C. Since active uptake is estimated by the difference between total uptake 

and passive diffusion, this approach likely leads to overestimation of active uptake at 

37 °C. In my case, this may result in underestimated inhibitory potencies.  
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Table 4-1. Summary of characteristics of clinically important OATPs in humans [235]. 
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Figure 4-1. The rate of E217βDG uptake in cryopreserved rat hepatocytes. The uptake of 

E217βDG was linear up to 1 min. 
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Table 4-2. Inhibition (%) of E217βDG uptake at 100 μM 

Drug % Inhibition  

Simvastatin Acid 103.3 ± 0.5 

Quetiapine 95.5 ± 0.4 

Risperidone 64.0 ± 5.9 

Omeprazole 60.1 ± 4.8 

Duloxetine 55.8 ± 0.9 

Alprazolam 54.5 ± 0.3 

Trazodone 48.4 ± 4.3 

Desloratadine 44.9 ± 14.2 

Simvastatin 36.3 ± 6.0 

Hydroxychloroquine 27.7 ± 8.7 

Chloroquine 26.3 ± 14.5 

Tegaserod 24.6 ± 15.3 

Ropinirole 23.7 ± 2.7 

Loratadine 18.1 ± 10.9 

Promethazine 17.7 ± 7.7 
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Figure 4-2. Inhibition of E217βDG uptake in cryopreserved rat hepatocytes at 100 

μM. 
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Table 4-3. IC50s for the inhibition of E217βDG uptake 

Drug IC50 (μM) 95% CI 

Simvastatin Acid 4.3 3.5, 5.3 

Rifampin 8.9 6.6, 12 

Quetiapine 16.9 11.7, 24.4 

Duloxetine 56.8 45.1, 71.4 

Omeprazole 84.3 49.8, 142.9 

Alprazolam 99.5 79.5, 124.6 

Desloratadine 140.5 111.4, 177.1 

Risperidone 234.6 204, 269.8 
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Figure 4-3. IC50 curves for the inhibition of E217βDG uptake. 
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Table 4-4. Predicted R values 

Drug 
IC50 

(μM) 

Dose 

(mg) 

MW 

(g/mol) 

Dose 

(mmol) 

Cmax 

(ng/ml) 

Cmax 

(μM) 

ka  

(min-1) 
FaFg 

[I]inlet 

(μM) 
R Reference 

Quetiapine 16.9 400 383.5 1.043 1080 2.816 0.1 1 72.349 5.3 [203] 

Simvastatin 

Acid 
4.3 80 436.6 0.183 25.4 0.058 0.1 1 12.274 3.9 [202] 

Rifampin 8.9  823  17400 21.143    3.4 [268] 

Omeprazole 84.3 80 345.4 0.232 1432 4.146 0.1 1 19.586 1.2 [269] 

Duloxetine 56.8 60 297.4 0.202 53.2 0.179 0.1 1 13.628 1.2 [270] 

Alprazolam 99.5 3 308.8 0.010 102.9 0.333 0.1 1 0.981 1.0 [271] 

Desloratadine 140.5 5 310.8 0.016 4.7 0.015 0.1 1 1.088 1.0 [272] 

Risperidone 234.6 4 410.5 0.010 89.1 0.217 0.1 1 0.867 1.0 [198] 

 

Note: Dose is the highest proposed clinical dose; Cmax is the maximal plasma concentration at the highest proposed clinical dose; ka is 

the absorption rate constant; FaFg is the fraction of the inhibitor dose that reaches the liver; [I]inlet,max is the maximal inlet 

concentration of the inhibitor and was estimated as Cmax + (ka x Dose x FaFg/Qh), where Qh is the hepatic blood flow (1500 mL/min). 

Because the values of ka and FaFg were not available conservative predictions, for conservative predictions, they were assumed to 

equal to the theoretical maxima of 0.1 min-1
 and 1, respectively. 
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Chapter 5. In vitro assessment of direct myotoxicity 

 

1. Introduction 

a. Pathogenic mechanisms underlying drug-induced myopathy 

 Drug-induced myopathy is among the most common causes of muscle disease. 

The clinical presentation of drug-induced myopathy ranges from asymptomatic muscle 

enzyme elevation to chronic myopathy with severe weakness and to massive 

rhabdomyolysis with acute renal failure. Over 150 drugs have been associated with 

rhabdomyolysis [49-51]. Mechanisms underlying drug-induced myopathy can be grossly 

classified as direct myotoxicity or immunologically induced inflammatory myopathy. 

Drugs that have been found to have direct myotoxicity include lipid-lowering drugs such 

as statins and fibrates, antimalarials such as chloroquine and hydroxychloroquine, 

glucocorticoids, cocaine, colchicine, antipsychotics such as phenothiazines, 

antiretrovirals such as zidovudine, and ipecac. Drugs that induce inflammatory myopathy 

through immunological system include statins, interferon alpha and penicillamine [273, 

274]. Here, I limit the discussion to myopathies induced by statins and antimalarials only 

as they are the most relevant to the work described previously. 

 The mechanism underlying statin-induced myopathy has been extensively studied 

but remains unclear. The existing evidence suggests that it is likely to be multifactorial. 

Statins inhibit the conversion from HMG-CoA to mevalonate by HMG-CoA reductase 

(HMGCR), which is the rate-limiting step in cholesterol synthesis. By reducing 

mevalonate production, statins decrease endogenous cholesterol synthesis which 

contributes to their lipid-lowering effects. However, mevalonate is a precursor of 
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isoprenoids such as farnesyl pyrophosphate and geranylgeranyl pyrophosphate, both of 

which are required for modification of proteins by prenylation. Protein prenylation is 

important for producing many functional proteins such as small G proteins (e.g. Rho and 

Rab) that are essential for cell survival [275, 276]. The decreased protein prenylation by 

statins eventually causes increases in cytosolic calcium which lead to the activation of the 

proteolytic enzyme caspase-3 and to cell apoptosis. Importantly, the treatment with 

geranylgeranyl pyrophosphate blocked the toxic effects of the statins in vascular smooth 

muscle cells [277]. These data suggest that statin-induced myotoxicity may be mediated, 

at least in part, through apoptosis caused by depletion of isoprenoid intermediates and 

subsequent dysfunction of small G proteins. 

 Mevalonate also serves as a precursor for coenzyme Q10 (CoQ10, ubiquinone), 

an important component of the mitochondrial electron transport chain. This leads to the 

hypothesis that statin-induced CoQ10 deficiency is involved in the pathogenesis of statin 

myopathy. Indeed, circulating levels of CoQ10 has been found to be lower during statin 

treatment.  However, the effect of statins on intramuscular levels of CoQ10 is 

controversial, and data on intramuscular CoQ10 levels in symptomatic patients with 

statin-induced myopathy are scarce. Although CoQ10 supplementation increases the 

circulating level of CoQ10, its effect on myopathic symptoms are contradictory. There is 

therefore insufficient evidence to conclude that there exists an etiologic role for CoQ10 

deficiency in statin-induced myopathy [278-280].  

 Atrogen-1 can also be affected by statin-induced changes in lipid metabolism. 

Atrogen-1 is a muscle-specific ubiquitin protein ligase and a key player in skeletal 

muscle atrophy. The expression of atrogen-1 was found to be upregulated in muscle 
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biopsies from patients with statin induced-myopathy [281]. The knockdown of atrogen-1 

in mice and in zebrafish abolished the myotoxicity of statins. Furthermore, statin-induced 

atrogen-1 expression and muscle damage in both of these systems were prevented by the 

treatment with geranylgeranol, a cell permeable precursor of geranylgeranyl 

pyrophosphate [282]. Thus, it has been speculated that statin myopathy may occur when 

an isoprenylation deficiency results in ineffective suppression of atrogen-1 [283]. 

 Another suggested mechanism of statin-induced myopathy due to reduced lipid 

levels is destabilization of the sarcolemmal membrane in myocytes [284]. There is 

normally a dynamic equilibrium between plasma lipids and the myocyte membrane 

which can be disturbed by the depletion of plasma cholesterol due to statin treatment. 

However, this theory seems at odds with the observations that myotoxicity did not occur 

when cholesterol was lowered due to inhibition of squalene synthetase, an enzyme in the 

distal cholesterol synthesis pathway, in human skeletal myotubes [285]. In addition, 

patients with genetic variations resulting in cholesterol biosynthetic defects do not 

present with skeletal myopathy clinically [286]. These data suggest that statin-induced 

myopathy is more likely a consequence of isoprenoid depletion rather than reductions in 

membrane cholesterol content per se. 

 Mitochondrial dysfunction seems to be a phenotypic presentation that results from 

various molecular mechanisms in statin-induced myopathy. In addition to potentially 

impaired mitochondrial respiratory chain due to deficiency of CoQ10, the activities of 

citrate synthase and respiratory enzymes in mitochondria were reduced in patients taking 

statins [287]. Statins can trigger Ca2+-induced opening of the permeability transition 

pore and loss of mitochondrial membrane potential, followed by cytochrome c release 
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and cell apoptosis [288]. A recent study by Kwak et al. found that simvastatin induces 

myotube atrophy and cell loss associated with impaired ADP-stimulated maximal 

mitochondrial respiratory capacity, mitochondrial oxidative stress, and apoptosis in 

primary human skeletal myotubes, suggesting that mitochondrial dysfunction may 

underlie statin-induced myopathy [289].  

 In most cases, patients with statin-induced myopathy can completely recover 

within weeks or months after statins are discontinued. The observation that myopathy 

persists or progresses in some patients even after statin discontinuation suggests that 

inhibition of cholesterol synthesis is not the only mechanism underlying statin-induced 

myopathy. A subgroup of patients with persistent statin-induced myopathy was 

diagnosed with necrotizing autoimmune myopathy, a subtype of idiopathic inflammatory 

myopathy characterized by myocyte necrosis without significant inflammation. Statins 

were found to upregulate the expression of HMGCR, the major target of autoantibodies 

in patients with statin-induced necrotizing autoimmune myopathy. Regenerating muscle 

cells express high levels of HMGCR, which may sustain the immune response even after 

statins are discontinued [290]. This finding potentially provides a diagnostic test to help 

differentiate immune from non-immune statin myopathy.  

 Unlike statins, the antimalarial drugs chloroquine and hydroxychloroquine induce 

myopathy through their lysosomotropic effects [291]. Chloroquine and 

hydroxychloroquine have significant lysosomal affinity and can mediate autophagic 

protein degradation in lysosomes.  Long term administration may result in the 

accumulation of these drugs which promotes accumulation of sequestered materials in 
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autophagic lysosomes [291]. This eventually leads to the development of the hallmark 

rimmed vacuoles in several tissues including muscles [292, 293].  

 

b. Rat L6 myotubes as a model system to assess myotoxicity  

 Commonly used in vitro cell models of skeletal muscles include primary cell lines 

and immortalized cell lines such as rat L6 myotubes and mouse C2C12 myotubes [294]. 

Primary skeletal muscle cell lines developed from muscle biopsies can retain the 

metabolic characteristics of the donor tissue and are particularly useful for studying the 

effects of metabolic diseases on skeletal muscles [294]. Those developed from patients 

with myopathy can retain phenotypic traits of the donor related to myopathy pathogenesis 

[294]. Although primary skeletal muscle cell lines are a valuable in vitro model of 

skeletal muscles, their use has been limited by availability and their limited replicative 

potential in culture [295]. In contrast to primary cell lines, undifferentiated immortalized 

skeletal muscle cell lines can replicate indefinitely in culture. Cells can continue to 

undergo mitotic divisions and expand rapidly when maintained under appropriate culture 

conditions. In addition, immortalized skeletal muscle cell lines are able to retain many 

physiological functions similar to those of primary skeletal muscle cell lines. These cell 

lines therefore provide a readily available and replicable experimental model that is 

alternative to primary skeletal muscle cell lines [295].  

 The rat L6 cell line is the best in vitro cell model to study glucose uptake 

involving GLUT4 in muscle cells [296]. This is because rat L6 myotubes are most similar 

to human muscle cells in terms of translocation of GLUT4 upon insulin stimulation when 

compared to other cell models [296]. This cell line is also one of the most commonly 
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used in vitro cell models to investigate myogenesis as the underlying molecular 

mechanisms governing myogenesis are conserved from rats to humans [297]. The L6 cell 

line was established from embryonic or newborn rat thigh skeletal muscle cells and 

immortalized by treatment with a carcinogen, methyl cholanthrene [298]. The treatment 

with methyl cholanthrene enabled L6 myoblasts to last for months in a continuous state 

of replication without losing their potential to differentiate [298]. The undifferentiated 

myoblasts are mononucleated, spindle-shaped cells that can proliferate when cultured 

with a serum-rich medium. When they are confluent or are starved with less serum, they 

withdraw from the cell cycle, elongate, adhere and begin to differentiate [297]. Myocytes 

at this stage still have the ability to return to the cell cycle and proliferate. Those that 

commit to differentiation can elongate, migrate and fuse into postmitotic multinucleated 

myotubes that are terminally differentiated. Further differentiation of myotubes to form 

myofibers is associated with the appearance of cross-striation and contractility [295, 298]. 

 Skeletal-muscle differentiation is a complex process coordinated by a number of 

factors. In addition to the extracellular matrix, which plays an important role in myocyte 

migration and fusion, many transcription factors that promote myogenesis have been 

discovered. Those include the members of the MyoD transcription factor family such as 

myogenin (Myog), Myf5 and Mef2. Under the regulation of P38/MAPK, Wnt and Sonic 

hedgehog, and the Notch/Delta pathway [297], the expression of myogenin increases 

during myoblast differentiation [299]. Also increasingly expressed are a number of 

muscle enzymes that closely associate with the metabolic capability of myofibers, 

including creatine kinase muscle type (CKM) [300, 301]. Creatine kinase is an enzyme 
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that catalyzes the conversion of creatine to create phosphocreatine and often used as a 

biomarker for differentiated myotubes [297]. 

 The rat L6 cell line has been shown to be a useful model to evaluate myotoxicity 

of drugs. Itagaki et al. used L6 myotubes to investigate potential mechanisms underlying 

statin-induced myopathy, and found that hydrophobic simvastatin and fluvastatin 

decreased cell viability in a dose-dependent manner via apoptosis characterized by 

typical nuclear fragmentation and condensation as well as caspase-3 activation [277]. 

Sakamoto et al. identified Oatp1a4 and Oatp2b1 as the transporters mediating the uptake 

of pravastatin into L6 myotubes, suggesting a potential role of these transporters in statin-

induced myopathy [302]. 

 

c. Methods to evaluate pharmacodynamic drug interactions 

 Two or more drugs that produce overtly similar effects can either produce 

exaggerated or diminished effects when used in combination [20]. When the combined 

effect is greater or less than that predicted by their individual effects, the combination is 

called synergism and antagonism, respectively [303]. Synergistic drug combinations are 

commonly used in the treatment of cancer, infectious diseases and pain so that desirable 

therapeutic effects can be achieved and adverse reactions can be avoided with lower 

doses [304]. When two drugs have synergistic toxicity, the adverse reactions could be 

exacerbated. 

 A number of methods have been developed to assess the nature and intensity of 

drug interactions. Greco et al. have summarized them as a strategy consisting of three 

steps [305]. The first step is to choose a good concentration-effect (dose-response) 
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structural model for each drug when applied individually [305]. A common choice is the 

Hill (or logistic) model (Eq. 5-1).  

𝐸 =
𝐸𝑚𝑎𝑥(

𝐷

𝐷𝑚
)𝑚

1+(
𝐷

𝐷𝑚
)𝑚

 Eq. 5-1 

In Eq. 5-1, E is the measured effect (response), D is concentration of drug; Emax is the full 

range of response that can be affected by the drug; Dm is the median effect dose or 

concentration of drug (e.g. IC50 and ED50), and m is a slope parameter [305]. Because 

data from real experiments rarely fit perfectly to an ideal curve, the second step is to 

choose an appropriate error model [305]. For example, a normal distribution is usually 

assumed for response measurements that are continuous; a binomial distribution can be 

assumed for proportions of failures or successes. A composite model then can be 

constructed from one structural model and one error model and used for fitting to 

experimental data. In the third step, one group of methods favored by mathematicians fits 

a combined action model to all of the data and estimates a parameter indicating the nature 

and intensity of an interaction. Another group of methods favored by pharmacologists is 

used more commonly. Such methods compare the observed combined effect with that 

predicted from a null reference model assuming no interaction [305]. Two commonly 

used null reference models are the Loewe additivity model and the Bliss independence 

model. The Loewe additivity model is in general considered a better reference model 

[305]. It is based on the idea that one drug cannot interact with itself. More specifically, 

in a sham experiment where a drug is combined with a diluted version of itself, the 

results would be additive [306]. A general mathematical description of Loewe additivity 

is shown in Eq. 5-2.  
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d. 1 =
𝐷1

𝐼𝐷𝑋,1
+

𝐷2

𝐼𝐷𝑋,2
 Eq. 5-2 

In Eq.5-2, IDX,1, IDX,2 are the concentrations of drugs to result in X% of effect for each 

respective drug alone, and D1, D2 are concentrations of each drug in the mixture that 

yield X% inhibition.  

 Developed and introduced by Loewe et al. [306], the isobologram is the most 

famous and widely accepted method to assess the nature of two drug interactions. It 

applies the first two steps of the above strategy implicitly by estimating IC50s using a Hill 

model and assuming normal distributions for continuous response data. In an 

isobologram, the diagonal NW-SE line connecting the IC50s of two drugs when applied 

alone is the line of Loewe additivity. Points below the line indicate Loewe synergism and 

those above the line indicate Loewe antagonism. This approach has the advantages of 

being simple, flexible, intuitive and inexpensive. The disadvantages, though, include 1) it 

lacks objective statistical measures and intensity measures of an interaction; 2) scattered 

points around the additivity line may lead to false conclusions; 3) isobolograms often 

lead to waste of data since IC50s cannot be estimated for dose-response curves with less 

than 50% effect, and consequently, it in general requires a large amount of data; and 4) 

many drug combinations have interactions that are not monotonically synergistic or 

antagonistic, and thus several isobols at particular effect levels (e.g. 10%, 25%, 50%, 

75%, 90%) may not capture the nature of interaction entirely and may lead to false 

conclusion [305]. 

 An algebraic analog of the isobologram is the method of Berenbaum et al. [307], 

in which an interaction index, I, is estimated using Eq. 5-3 to provide a quantitative 

measure of the intensity of an interaction.  
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𝐼 =
𝐷1

𝐼𝐷𝑋,1
+

𝐷2

𝐼𝐷𝑋,2
 Eq. 5-3 

When I > 1, Loewe antagonism is claimed; when I < 1, Loewe synergism is claimed. This 

method shares similar strengths and limitations with the use of an isobologram [305].  

 In the spirit of Berenbaum et al.’s method, a widely used method developed by 

Chou et al. also provides a quantitative measure of the nature and intensity of an 

interaction [308]. The Chou’s method involves estimating IC50s and the slope parameter, 

m, for each drug when applied alone using the median effect equation (Eq. 5-4) [308] or 

its log-linearized form (Eq. 5-5) [308], where fa is the fraction of effect affected by drug, 

fu is the fraction remains unchanged and equal to (1 - fa).  

𝑓𝑎

𝑓𝑢
= (

𝐷

𝐷𝑚
)𝑚 Eq. 5-4 

log
𝑓𝑎

𝑓𝑢
= 𝑚 × log(𝐷) − 𝑚 × log (𝐷𝑚) Eq. 5-5 

The median effect equation (Eq. 5-4) is equivalent to the Hill model depicted in Eq. 5-1 

but is derived from mass action enzyme kinetics. Assuming the two drugs are mutually 

exclusive, a combination index (CI) is then estimated using Eq. 5-6 [308]. A CI > 1 

indicates antagonism; a CI = 1 indicates additivity; and a CI between 0 and 1 indicates 

synergism. A CI – fa plot is often produced by plotting CI values on y axis and fas on x 

axis. 

𝐶𝐼 =
𝐷1/(𝐷1+𝐷2)

𝐷𝑚1(
𝑓𝑎
𝑓𝑢

)1/𝑚1
+

𝐷2/(𝐷1+𝐷2)

𝐷𝑚2(
𝑓𝑎
𝑓𝑢

)1/𝑚2
 Eq. 5-6 

 The fundamental equation of this approach, the median effect equation (Eq. 5-4), 

is derived from basic mass action enzyme kinetics [308]. Thus, the estimable parameters 

have the potential to be biologically meaningful. This represents a major improvement 

since all the methods published previously have used empirical equations to describe 
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dose-response relationships. Also, the experimental design using this approach requires 

fewer data than other designs which are intended to be analyzed by isobolograms and 

other methods [308]. A CI – fa plot is able to provide a comprehensive view on the nature 

and intensity of interaction across the entire spectrum of effect [308]. However, this 

method also suffers from a number of limitations. The Eq. 5-6 is based on the assumption 

that the effects of two drugs are mutually exclusive [308]. This may not hold in cases 

involving complex biological systems [305]. As the method involved logarithmic 

transformation, the data points with more than 100% of effect produce a computational 

difficulty and have to be discarded. More importantly, large CI values often appear in the 

region near fa = 0, indicating a strong antagonism, which has been proven an artifact 

when the interaction is truly synergistic [305].  

 

d. Hypothesis and aims 

 I hypothesize that the significant myopathic DDIs identified previously are due, at 

least in part, to direct myotoxicity brought by individual drugs or their combinations. To 

test this hypothesis, the following aims are pursued: 

1) Evaluate individual myotoxicity of the drugs involved in the significant DDIs, and 

their important metabolites, to differentiated rat L6 myotubes; 

2) Examine the combined effects of drug pairs in which both drugs are significantly 

myotoxic. 
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2. Methods  

a. Materials 

 Rat L6 myotubes were a generous gift from Dr. Jeffrey Elmendorf (Indiana 

University School of Medicine, Indianapolis, IN). All the drugs and the metabolites were 

purchased from Toronto Research Chemicals (Toronto, Canada). Fetal bovine serum 

(FBS) and Dulbecco's phosphate buffered saline (DPBS) were from Thermo ScientificTM 

HyCloneTM (Waltham, MA). 24-well FalconTM tissue culture plates were from Corning 

Life Sciences (Tewksbury MA). BioWhittakeTM phosphate buffered saline (PBS) without 

calcium and magnesium were from Lonza (Walkersville, MD). CellTiter 96TM AQueous 

MTS reagent powder was from PromegaTM (Madison, WI). Phenazine methosulfate 

(PMS), methanol and DMSO were from SigmaTM (St. Louis, MO). RNeasy mini kit and 

QuantiTect reverse transcription kit were from Qiagen Inc (Valencia, CA). α-Minimum 

essential medium (α-MEM), Gibco® antibiotic-antimycotic and 0.25% trypsin-EDTA 

(1X), TaqMan® gene expression master mix, Qubit RNA BR assay kit, MicroAmp fast 

optical 96-well reaction plate, MicroAmp optical adhesive film, TaqMan gene expression 

assay for CKM (assay ID Rn01644605_m1), myogenin (assay ID Rn01490689_g1), and 

GAPDH (assay ID Rn01775763_g1) were obtained from Life Technologies Corporation 

(Grand Island, NY). 

 

b. Cell culture and drug treatment 

 Rat L6 muscle cells were cultured as previously detailed by Klip et al. [309] with 

slight modifications. Myoblast cells were maintained in continuous passages by 

trypsinization of subconfluent cultures using 0.25% trypsin. Cells were seeded at 7500 
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cells/well in 24-well plates, and were maintained in monolayer culture in α-MEM 

containing 10% FBS and 1% antibiotic-antimycotic solution (10,000 U/ml penicillin G, 

10 mg/ml streptomycin and 25 mg/ml amphotericin B) in an atmosphere of 5% CO2 at 

37°C. Five days after seeding, myoblasts were differentiated into multinucleated 

myotubes with 2% FBS. Cells were fed fresh medium every other day. All drug 

treatments were initiated when the majority of cells were differentiated myotubes (5 days 

after the initiation of differentiation and 10 days after seeding) and continued for 5 days. I 

chose this time window because it allows the longest possible time within the optimal 

drug treatment time window as determined by the expression profiles of CKM and Myog 

(see below).  

 

c. Gene expression of CKM and Myog 

 The expression of creatine kinase muscle type (CKM) and myogenin (Myog) 

mRNA in rat L6 muscle cells on day 0 through day 13 after the initiation of 

differentiation was measured by real-time PCR. Cells were removed from culture on 24-

well plates by trypsinization using 0.25% trypsin, and were stored immediately at -80 ◦C 

before extraction of total RNA. Total RNA of muscle cells was isolated using RNeasy 

mini kit in accordance with the manufacturer’s instructions. The isolated RNA was 

quantified using the Qubit RNA BR assay kit and a Qubit® 2.0 fluorometer (Life 

Technologies Corporation, Grand Island, NY), immediately followed by reverse 

transcription. For each sample, cDNA was reverse-transcribed from 1 µg of total RNA 

using QuantiTect reverse transcription kit following the manufacturer’s instructions. The 

cDNAs were stored at -80 ◦C before use.  



 

169 

 

 Real-time PCR was performed in triplicate for each sample. GAPDH served as an 

endogenous control to which the expression of CKM and Myog were normalized. Each 

reaction was carried out as a duplex reaction, employing a combination of a FAM-labeled 

CKM or Myog assay and a VIC dye-labeled GAPDH assay. All reactions were 

performed in MicroAmp fast optical 96-Well reaction plates covered by MicroAmp 

optical adhesive film. The final total volume was 20 µL per well, consisting of 1 µL of 

CKM or myog primer, 1 µL of GAPDH primer, 1 µL of cDNA, 10 µL of TaqMan master 

mix (2X) and 7 µL of nuclease-free water. Real-time PCR plates were run on a Bio-rad 

iCycler iQ PCR Thermal Cycler (Hercules, CA). Cycling conditions were 10 min / 95 °C 

initial denaturation / polymerase activation and 40 cycles each consisting of 15 s / 95 °C 

denaturation and 1min/60 °C annealing and elongation. 

 The gene expressions of CKM and Myog were quantified using the comparative 

CT (ΔΔCT) method. Briefly, for each sample, the ΔCT value was calculated as ΔCT = CT 

target – CT reference, where CT target is the CT value of CKM or Myog, and CT reference is the CT 

value of GAPDH. The ΔΔCT value was calculated by ΔΔCT = ΔCT test sample – ΔCT calibrator 

sample. For Myog, the calibrator sample was the cells sampled on the day of differentiation 

(day 0). For CKM, because the gene expression was undetectable for the samples on day 

0, 1 and 2, the cells sampled on day 3 since differentiation served as the calibrator sample. 

The standard error (SE) of ΔΔCT was same as that of ΔCT, and was calculated as SE 

(ΔCT) = SE (ΔΔCT) = [SE (CT target)
2 + SE (CT reference)

2]1/2. The fold-change of gene 

expression relative to a calibrator sample was calculated as 2–ΔΔCt, with 

2ΔΔ𝐶𝑇 + SE (ΔΔ𝐶𝑇) and 2ΔΔ𝐶𝑇− SE (ΔΔ𝐶𝑇) as the upper and lower bound of standard error. 
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d. MTS/PMS assay 

 The CellTiter 96® aqueous non-radioactive cell proliferation (MTS/PMS) assay 

was used to measure cell viability after drug treatment. Similar to XTT and MTT assays, 

this assay involves bioreduction of a tetrazolium compound, MTS, by dehydrogenase 

enzymes in metabolically active cells in the presence of PMS. The resulting formazan 

product is soluble in cell culture medium and can be quantitated by the amount of light 

absorbance at 490 nm. The number of viable cells has a linear relationship with light 

absorbance at 490 nm [310].  

 A MTS solution (2 mg/mL) was prepared by dissolving MTS reagent powder in 

DPBS in a light-protected container. The solution was adjusted to pH 6 to 6.5 with 1N 

HCl, followed by filtration through a 0.2 μm filter into a sterile, light-protected container. 

Similarly, a PMS solution (0.92 mg/mL) was prepared by dissolving PMS in DPBS 

followed by filtration through a 0.2 μm filter into a sterile, light-protected container. Both 

MTS and PMS solutions were stored at –20°C and protected from light before use.  

 For each 24-well plate to be assayed, 2 mL of MTS solution and 100 µL of PMS 

solution were added to 10 mL of α-MEM medium containing 2% FBS. 500 µL of this 

MTS/PMS-containing medium were added to each well. After incubating the plate for 3 

hours in an atmosphere of 5% CO2 at 37°C, the light absorbance at 490 nm was recorded 

using Molecular Devices Spectramax M2e (Sunnyvale, CA). The assay was also carried 

out at the same time on an empty plate without any cells to estimate the background 

absorbance. For data analysis, the net absorbance was calculated as the difference 

between the absorbance of the samples and the background absorbance. Cell viability 
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was calculated as the net absorbance of treated cells divided by that of the DMSO treated 

control cells. The MTS/PMS assay is linear  

 

e. Screening for the inhibition of L6 myotube viability 

 The compromise of L6 myotube viability was screened using the drugs involved 

in the significant myopathic DDIs identified previously, and using simvastatin acid, 3-

hydroxy simvastatin (3OH simvastatin), desloratadine and 3-hydroxy desloratadine (3OH 

desloratadine), the important major metabolites of simvastatin and loratadine, 

respectively. The drugs and metabolites were dissolved in methanol and diluted in 

DMSO to desired concentrations before addition to α-MEM with 2% FBS. The final 

concentration was 10 µM for all drugs, except for alprazolam and 3OH desloratadine 

which were tested at 5 µM due to limited aqueous solubility. Each drug was tested in six 

replicate wells on the same plate. Cells treated with 0.1% DMSO on the same plate 

served as controls. The final concentration of DMSO was kept at 0.1% for all treatments. 

Cells were treated for 5 days from day 5 to day 10 after the initiation of differentiation. 

Experiments were repeated three times with different passages (passage #11 to #14) to 

ensure reproducibility of results. 

 

f. Determining concentration – cell viability relationships 

 The viability of L6 myotubes at different concentrations was evaluated for drugs 

that yielded more than 50% inhibition in the screening study. These included tegaserod, 

desloratadine and simvastatin. For tegaserod, cells were treated at 0, 1, 2, 3, 4, 5, 6, 7, 8, 

9 and 10 µM. For desloratadine, cells were treated at 0, 1, 5, 7.5, 11, 17, 25 and 50 µM. 
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For simvastatin, cells were treated at 0, 0.5, 1, 2, 5 and 10 µM. Each concentration was 

tested column-wise in four replicate wells on a 24-well plate. For tegaserod and 

desloratadine, concentrations were tested with two plates of cells from the same passage. 

Cells treated with 0.1% DMSO served as controls. All the treatments started on day 5 and 

ended on day 10 after the initiation of differentiation. The experiments were repeated 

multiple times with different passages (passage #11 to #14) of myotubes to ensure 

reproducibility of results. Cell viability was calculated as described above. IC50s were 

estimated by fitting cell viability (%) and concentrations to a two- (Eq. 3-2) or four- (Eq. 

3-3) parameter logistic model using GraphPad Prism V5. 

 

g. Determining the combined effect of simvastatin and desloratadine 

 Fully differentiated myotubes were treated with simvastatin and desloratadine in 

combination on day 5 through day 10. The experimental design is displayed in Table 5-1. 

For 24-well plates 1 to 5, the dose response of simvastatin was tested column-wise at 

final concentrations of 0, 0.5, 1, 2, 4 and 8 µM, in the presence of desloratadine row-wise 

at final concentrations of 0, 5, 7.5, 10, 15 and 25 µM. Plates 6 to 10 were arranged 

similarly at the same concentration combinations except that the dose response of 

desloratadine was tested column-wise instead. 

 On plate 1 through 5, desloratadine at 0 µM was tested in row 1, 2, 3, 4 and 1 

respectively. Simvastatin at 0 µM was tested similarly on plate 6 to 10. This design has 

several advantages. First, it is relatively balanced in that it provides eight replicates for 

each concentration combination involving 0 µM and six replicates for those otherwise. 

Second, it helps to control for potential batch effect among different plates by including 
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the combination (0 µM, 0 µM) on each plate which serves as the control for that plate. 

Third, the control combination (0µM, 0 µM) appears in each row across plates, which 

helps to reduce confounding of an edge effect observed occasionally in the wells at 

corners. Lastly, the concentrations are evenly spaced on a logarithmic scale which helps 

with computation of interaction measures. 

 Combination index (CI) values were calculated as described by Chou et al. [308]. 

Cell viability, in this case was also the fraction unaffected (fu), was first calculated as 

described above. Fractional inhibition (fi) was calculated as 1 – fa. The slope factor m and 

IC50 of simvastatin and desloratadine were estimated by fitting the data of each drug 

when applied alone to Eq. 5-5. CI values were calculated using Eq. 5-6. A CI - fa was 

constructed by plotting CI values and fa on y and x axis, respectively.   

 

3. Original experimental results 

a. Gene expression of CKM and Myog 

 At any given time during myoblast differentiation, cells are a heterogeneous 

population consisting of proliferating myoblast, differentiating myocytes and terminally 

differentiated myotubes. I am most interested in the effects of drugs on differentiated 

myotubes as they are the victim of myotoxicity in vivo. Since the composition of a cell 

population may affect a drug’s myotoxicity, I sought to select an optimal drug treatment 

window within which the majority of viable cells were healthy, fully differentiated 

myotubes that were not too senescent to confound the measurement of cell viability.  

The expression of CKM and Myog are commonly used in skeletal muscle cell lines as 

biomarkers of myogenesis. For this reason, I examined the mRNA expression profile of 
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CKM and Myog in rat L6 muscle cells at various times after the initiation of 

differentiation. The results are presented in Figure 4-1. The expression of Myog (Figure 

4-1, A) is expressed as fold-change relative to that on day 0 when differentiation was 

initiated. Because the mRNA expression was undetectable for CKM on day 0, 1 and 2, its 

mRNA levels are expressed as fold-change relative to that on day 3 after differentiation 

(Figure 4-1, B). The expression of Myog increased dramatically (645-fold) during the 

first three days of differentiation, then gradually decreased to 200-fold on the 10th day of 

differentiation, and remained relatively stable thereafter up to the 13th day. The change in 

the expression level of CKM was smaller than that of Myog. The expression of CKM 

increased beginning on the third day and spiked on the sixth day, followed by a gradual 

decrease thereafter.  

 These data are consistent with the results observed previously indicating that L6 

myoblasts begin to express genes promoting differentiation upon the initiation of 

differentiation [297, 299, 300]. The gradual decrease in the expression of CKM and 

Myog may be due to an aging cell population. These expression profiles suggest that 

myotubes can be treated as early as day 5 and up to day 10 after the initiation of 

differentiation. Because I sought to test the worst-case scenario of drug myotoxicity, and 

because many of the drugs of interest are long-term treatments, I selected the longest 

possible time window, from day 5 to day 10 after the initiation of differentiation, as the 

treatment window for the subsequent experiments.  
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b. Screening for the inhibition of myotube viability 

 Cell viability was evaluated after 5 days of treatment with the drugs and 

metabolites of interest. Apart from alprazolam and 3OH desloratadine, which had limited 

aqueous solubility and were tested at 5 µM, all the other drugs were tested at a final 

concentration of 10 µM. Myotubes treated with tegaserod, simvastatin, desloratadine and 

simvastatin acid exhibited significantly decreased viability as compared to those treated 

with DMSO (Figure 5-2). Tegaserod was the most potent myotoxin (97.98% cell death), 

followed by desloratadine (73.66%), simvastatin (73.28%) and simvastatin acid (32.95%) 

at 10 µM (Table 5-1). It is worth noting that several drugs seemed to improve cell 

viability significantly after 5 days of treatment. Cells treated with chloroquine, 

hydroxychloroquine and promethazine were 46.8%, 43.4% and 42.1% more viable than 

those treated with DMSO as measured using the MTS/PMS assay. The data from three 

repeated experiments with myotubes of different passages were consistent.  

 

c. Concentration-cell viability relationships of tegaserod, desloratadine and simvastatin  

 Because treatment with tegaserod, simvastatin and desloratadine resulted in more 

than 50% myotube death, their concentration-effect curves were characterized with 

myotubes treated at various concentrations. Tegaserod inhibited myotube viability with 

an IC50 (95% CI) of 4.32 µM (4.15, 4.49) (Figure 5-3 A). Its concentration-effect curve 

was characterized by a steep drop between 3 µM to 6 µM. The IC50s (95% CI) of 

desloratadine and simvastatin were 10.94 µM (9.24, 12.96), and 1.64 µM (1.05, 2.56), 

respectively (Figure 5-3 B and C).  
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d. The combined effect of simvastatin and desloratadine 

 To test whether there is a myotoxic interaction between simvastatin and 

desloratadine, their combined effect on myotube viability was examined by treating 

myotubes with a range of concentrations of both drugs. In general, the concentration-

effect curves of simvastatin shifted leftward with increasing concentration of 

desloratadine (Figure 5-4, A). The same trend was observed with the concentration 

curves of desloratadine in the presence of simvastatin (Figure 5-4, B). Using the method 

of Chou et al. [308], combination index (CI) values indicating the intensity of interaction 

were calculated and plotted against fractional inhibitory effect on myotube viability (fa). 

The CI – fa plot is shown in Figure 5-5, in which the points above the horizontal line at 

CI = 1 indicate antagonism, and those below the line indicate synergism. Most CI values 

were greater than zero and less than unity, indicating that the interaction between 

simvastatin and desloratadine was synergistic, such that the drugs notably increased each 

other’s myotoxic effect. It follows that examination of each individual drug’s effect 

would have underestimated the toxicity of the combination.  

 

4. Discussion 

 In this chapter, I have addressed the hypothesis that direct myotoxicity of the 

individual drugs or their combinations contributes to the significant DDIs identified 

previously. An optimal drug treatment window between day 5 and day 10 after the 

initiation of differentiation was selected for rat L6 myotubes, based on the gene 

expression profiles of CKM and Myog, two maker genes of myogenesis. After 5 days of 

treatment, tegaserod, desloratadine and simvastatin caused significant decreases in the 
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viability of fully differentiated myotubes at 10 µM. Their IC50s for inhibition of viability 

were 4.32 µM, 10.94 µM and 1.64 µM, respectively. Simvastatin and desloratadine were 

further found to have a synergistic myotoxic interaction when applied in combination. 

 Both simvastatin and simvastatin acid induced cell death after 5 days of treatment, 

whereas 3-hydroxy simvastatin, one of the major circulating metabolites, was well 

tolerated by myotubes under these conditions. Simvastatin-induced myotoxicity observed 

here was consistent with the data of Kawk et al., who found that simvastatin induced 60% 

- 80% cell death at 10 µM in primary skeletal muscle cells after 2 days of treatment using 

the MTS/PMS assay [289]. At 10 µM, simvastatin was about 2-fold more myotoxic than 

simvastatin acid. This is consistent with the observation of Skottheim et al., who found 

that simvastatin lactone was 37-fold more potent in inducing of myotoxicity than its acid 

form in human primary skeletal myotubes [311]. These data suggest that simvastatin-

induced myopathy is due mainly to simvastatin lactone, rather than its downstream 

metabolites. 

 Unlike simvastatin, loratadine-induced myopathy seems largely due to its active 

metabolite desloratadine. Both loratadine and 3-hydroxy desloratadine were well 

tolerated by myotubes at concentrations up to 10 µM. Its major metabolite desloratadine 

caused 73.66% of cell death at 10 µM after 5 days of treatment. Neither loratadine nor 

desloratadine has been reported before to be toxic to muscle cells of any type. My data 

are the first suggesting that desloratadine myotoxicity may be responsible for myopathy 

associated with loratadine and desloratadine. The data showing that desloratadine is more 

myotoxic than loratadine in L6 myotubes seems consistent with the higher occurrence of 

myalgia in patients treated with desloratadine than in those treated with loratadine. In 
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randomized clinical trials, 2.1% of subjects treated with desloratadine experienced 

myalgia, whereas less than 2% of subjects treated with loratadine experienced the same 

side effect [88, 89]. The myotoxicity of desloratadine and its association with myalgia in 

humans need to be further evaluated both in human muscle cells and in vivo. 

 This thesis also provides the first description of the myotoxicity of tegaserod. 

Tegaserod induced myotube death with an IC50 of 4.36 µM. Its concentration – cell 

viability curve was characterized by a steep decrease between 3 and 6 µM, indicating that 

tegaserod may induce cell death through a mechanism that requires tegaserod 

concentration to cross a certain threshold. Tegaserod is a partial 5-hydroxytryptamine 

receptor 4 (5-HT4) agonist and a potent (5-HT2B) antagonist. There are a number of 

published studies investigating its inotropic effect on cardiomyocytes [312] and smooth 

muscle cells [313], which may be related to its toxicity to L6 myotubes. Future studies 

are needed to investigate whether tegaserod has similar effects on human muscle cells.  

 The drugs were screened for myotoxicity at 10 µM, a concentration that is much 

higher than the circulating concentration of any of these drugs. This concentration is also 

likely higher than the intramuscular concentrations of these drugs except for those of 

chloroquine and hydroxychloroquine, which are known to accumulate in tissues 

including muscle [185]. This high screening concentration allowed me to rule out the 

possibility of myotoxicity in vivo for the drugs that did not cause significant myotube 

death in vitro. Therefore, for those non-myotoxic drugs, direct myotoxicity is unlikely the 

mechanism for the relevant DDIs. On the other hand, this high concentration limits the 

interpretation of the myotoxicity of simvastatin, desloratadine and tegaserod in a clinical 

setting. It is possible that at clinical doses, the intramuscular concentrations of these three 
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drugs are never as high as those used in my experiments, and their toxicity to human 

muscle cells in vivo are minimal.  It is, however, also possible that at clinical doses, these 

drug are toxic enough to induce certain molecular changes that contribute to clinical 

myopathy in humans, but not as toxic as to induce apoptosis of muscle cells as 

determined here. Future studies should evaluate the actual myotoxicity of these drugs in 

humans at clinical doses.  

 Chloroquine and hydroxychloroquine are known to be toxic to muscle cells. 

However, my data show that, instead of being myotoxic, they were able to improve the 

viability of myotubes after 5 days of treatment. The MTS/PMS assay used to evaluate 

cell viability depends on dehydrogenase enzymes in metabolically active cells. As 

dehydrogenase enzymes are mostly located in mitochondria, this assay largely measures 

the collective metabolic activity of mitochondria in the cell population being assayed. 

Since the myotoxicity of chloroquine and hydroxychloroquine are caused by their 

lysosomotropic effects, the MTS/PMS assay may not be able to detect myotoxicity of 

such drugs. This implies that the MTS/PMS assay is only appropriate for evaluating 

myotoxicity induced by changes in mitochondrial activity. Future studies are warranted to 

assess the possibility that these drugs induce myotoxicity through other mechanisms. 

 As was the case for chloroquine and hydroxychloroquine, ropinirole, trazodone, 

quetiapine and promethazine also seemed to improve cell viability. Considering the high 

screening concentration that should, in theory, be toxic to cells, the data on these drugs 

might be an artifact of the MTS/PMS assay. The increased signal at the end of treatment 

might be cause by dehydrogenase activation of these drugs. They might be able to 

improve the overall metabolic activity of mitochondria, or to change the 
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microenvironment in mitochondria, so that dehydrogenase is more efficient in converting 

MTS to the light-absorbing product.  

 There are a number of limitations inherent to the use of rat L6 myotubes as the 

model system. Although rat L6 myotubes are a good model for investigating muscular 

glucose uptake [296] and myogenesis [297], they may not be the most appropriate model 

for evaluating drug-induced myopathy. In addition, although these cells have been used 

by other groups for in vitro evaluation of myotoxicity of statins [277, 302] and fibrates 

[314], they have never been used to examine myotoxicity of other drug or any drug 

combinations. The validity of this cell model may need to be further assessed, especially 

for evaluation of myotoxicity resulting from drug combinations. The species difference 

between rat and human would limit the interpretation of the data in a clinical setting. 

Future studies using primary human muscle cells may be helpful to further evaluate the 

myotoxicity of the drugs of interest.    

 Using Chou et al’s CI method, I identified a synergistic interaction between 

simvastatin and desloratadine in inducing myotube death. Most CI values are between 

zero and unity, and tend to decrease with increasing inhibition of cell viability. This 

suggests that at higher concentrations of simvastatin and desloratadine, where their 

combined toxic effect on myotubes are larger, the synergism between them is also 

stronger. There are a few large CI values indicating a strong antagonism in the region 

near fa=0. As pointed out by Greco et al., these may be an artifact resulting from 

methodological flaw. I could not obtain an isobologram for this drug combination 

because most of the concentration-effect curves could not provide reliable estimates of 

IC50s. Further analysis of the response surface may provide a more comprehensive view 
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of the nature and intensity of this interaction. Nonetheless, my data suggest that the 

synergistic myotoxicity of simvastatin and desloratadine may contribute to the interaction 

between simvastatin and loratadine. Because the data were obtained using concentrations 

likely much higher than the intramuscular concentrations at the clinical doses, future 

studies are needed to validate my results in vivo and in humans. As discussed in chapter 3, 

both simvastatin and loratadine are clinically important drugs that are used by a huge 

number of patients. If this synergistic toxicity is confirmed to be clinically relevant, 

simvastatin and loratadine should probably not be used together as they commonly are. 

Patients may need to switch to other statins or other antihistamines to avoid the harm of 

this synergistic interaction while achieving favorable therapeutic effects. 
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Table 5-1. The experimental design to evaluate the combined effect of simvastatin and desloratadine 

Note: The concentration combination in each well is shown as simvastatin concentration µM * desloratadine concentration µM. 

Dose-response of simvastatin in the presence of desloratadine Dose-response of desloratadine in the presence of simvastatin 

 A B C D E F  A B C D E F 

 Plate 1  Plate 6 

1 0 * 0 0.5 * 0 1 * 0 2 * 0 4 * 0 8 * 0 1 0 * 0 0 * 5 0 * 7.5 0 * 10 0 * 15 0 * 25 

2 0 * 5 0.5 * 5 1 * 5 2 * 5 4 * 5 8 * 5 2 0.5 * 0 0.5 * 5 0.5 * 7.5 0.5 * 10 0.5 * 15 0.5 * 25 

3 0 * 7.5 0.5 * 7.5 1 * 7.5 2 * 7.5 4 * 7.5 8 * 7.5 3 1 * 0 1 * 5 1 * 7.5 1 * 10 1 * 15 1 * 25 

4 0 * 10 0.5 * 10 1 * 10 2 * 10 4 * 10 8 * 10 4 2 * 0 2 * 5 2 * 7.5 2 * 10 2 * 15 2 * 25 

 Plate 2  Plate 7 

1 0 * 5 0.5 * 5 1 * 5 2 * 5 4 * 5 8 * 5 1 0.5 * 0 0.5 * 5 0.5 * 7.5 0.5 * 10 0.5 * 15 0.5 * 25 

2 0 * 0 0.5 * 0 1 * 0 2 * 0 4 * 0 8 * 0 2 0 * 0 0 * 5 0 * 7.5 0 * 10 0 * 15 0 * 25 

3 0 * 7.5 0.5 * 7.5 1 * 7.5 2 * 7.5 4 * 7.5 8 * 7.5 3 1 * 0 1 * 5 1 * 7.5 1 * 10 1 * 15 1 * 25 

4 0 * 15 0.5 * 15 1 * 15 2 * 15 4 * 15 8 * 15 4 4 * 0 4 * 5 4 * 7.5 4 * 10 4 * 15 4 * 25 

 Plate 3  Plate 8 

1 0 * 7.5 0.5 * 7.5 1 * 7.5 2 * 7.5 4 * 7.5 8 * 7.5 1 1 * 0 1 * 5 1 * 7.5 1 * 10 1 * 15 1 * 25 

2 0 * 10 0.5 * 10 1 * 10 2 * 10 4 * 10 8 * 10 2 2 * 0 2 * 5 2 * 7.5 2 * 10 2 * 15 2 * 25 

3 0 * 0 0.5 * 0 1 * 0 2 * 0 4 * 0 8 * 0 3 0 * 0 0 * 5 0 * 7.5 0 * 10 0 * 15 0 * 25 

4 0 * 25 0.5 * 25 1 * 25 2 * 25 4 * 25 8 * 25 4 8 * 0 8 * 5 8 * 7.5 8 * 10 8 * 15 8 * 25 

 Plate 4  Plate 9 

1 0 * 10 0.5 * 10 1 * 10 2 * 10 4 * 10 8 * 10 1 2 * 0 2 * 5 2 * 7.5 2 * 10 2 * 15 2 * 25 

2 0 * 15 0.5 * 15 1 * 15 2 * 15 4 * 15 8 * 15 2 4 * 0 4 * 5 4 * 7.5 4 * 10 4 * 15 4 * 25 

3 0 * 25 0.5 * 25 1 * 25 2 * 25 4 * 25 8 * 25 3 8 * 0 8 * 5 8 * 7.5 8 * 10 8 * 15 8 * 25 

4 0 * 0 0.5 * 0 1 * 0 2 * 0 4 * 0 8 * 0 4 0 * 0 0 * 5 0 * 7.5 0 * 10 0 * 15 0 * 25 

 Plate 5  Plate 10 

1 0 * 0 0.5 * 0 1 * 0 2 * 0 4 * 0 8 * 0 1 0 * 0 0 * 5 0 * 7.5 0 * 10 0 * 15 0 * 25 

2 0 * 5 0.5 * 5 1 * 5 2 * 5 4 * 5 8 * 5 2 0.5 * 0 0.5 * 5 0.5 * 7.5 0.5 * 10 0.5 * 15 0.5 * 25 

3 0 * 15 0.5 * 15 1 * 15 2 * 15 4 * 15 8 * 15 3 4 * 0 4 * 5 4 * 7.5 4 * 10 4 * 15 4 * 25 

4 0 * 25 0.5 * 25 1 * 25 2 * 25 4 * 25 8 * 25 4 8 * 0 8 * 5 8 * 7.5 8 * 10 8 * 15 8 * 25 
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Figure 5-1. Gene expression of Myog (A) and CKM (B). The mRNA expression of Myog 

and CKM is expressed as fold-change relative to that on day 0 when differentiation was 

initiated. 
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Figure 5-2. Cell viability (%) after 5 days of treatment as compared with DSMO controls. 

The drugs were tested with six replicates at 10 µM except for alprazolam and 3OH 

desloratadine which were tested at 5 µM. 
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Note: All the drugs were tested at 10 µM except for alprazolam and 3OH desloratadine 

which were tested at 5 µM.  

Table 5-2. Myotube death after 5 days of treatment. 

Drug % Cell death (± SEM) 

Tegaserod 97.9 ± 0.4 

Desloratadine 73.7 ± 2.6 

Simvastatin 73.3 ± 1.1 

Simvastatin Acid 33 ± 2.1 

3OH Desloratadine -3 ± 11.8 

Loratadine -9.1 ± 5.6 

Duloxetine -9.2 ± 6.2 

Risperidone -9.3 ± 2 

Omeprazole -11.4 ± 7.1 

3OH Simvastatin -11.6 ± 6 

Alprazolam -18 ± 6.5 

Ropinirole -21.3 ± 6.9 

Trazodone -28 ± 7.5 

Quetiapine -28 ± 8.4 

Hydroxychloroquine -42.1 ± 7.2 

Promethazine -43.4 ± 5.1 

Chloroquine -46.8 ± 6.649 
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Figure 5-3. Concentration-cell viability relationship of tegaserod (A), desloratadine (B), 

and simvastatin (C). Fully differentiated myotubes were treated at 1, 2, 3, 4, 5, 6, 7, 8, 9 

and 10 µM of tegaserod, 1, 5, 7.5, 11, 17, 25 and 50 µM of desloratadine, and 0.5, 1, 2, 5 

and 10 µM of simvastatin for 5 days with at least four replicates. 
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Figure 5-4. Concentration-effect curves of simvastatin and desloratadine in combination. 

The concentration-inhibition (%) curves of simvastatin in the presence of desloratadine 

are shown in panel A and those of desloratadine in the presence of simvastatin are shown 

in panel B. 
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Figure 5-6. Combination index (CI) – fraction of inhibition (fa) plot. The points above the 

horizontal dash line at CI = 1 indicate antagonism, and those below the line indicate 

synergism. 
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Chapter 6. Summary  

 

 In this thesis, I have tested the hypothesis that the combination of data mining and 

in vitro mechanistic studies can identify and shed mechanistic light on new DDIs that are 

associated with an increased risk of clinical myopathy.  

 Text mining of the published literature identified 232 drugs as either substrates or 

inhibitors of the major CYPs. 13,197 pairs of drugs were predicted to have metabolic 

interactions via inhibition of CYPs, 3670 of which were subjected to a 

pharmacoepidemiology study using a synergistic model and the data from an EMR 

database. Fifteen drug pairs were identified to be significantly associated with an 

increased risk of myopathy as compared to the additive risk from taking either of the 

drugs alone. These significant myopathic DDIs involved thirteen clinically important 

drugs including alprazolam, chloroquine, duloxetine, hydroxychloroquine, loratadine, 

omeprazole, promethazine, quetiapine, risperidone, ropinirole, trazodone and simvastatin.   

Many of these thirteen drugs were identified as inhibitors of the major CYPs in vitro. 

Their mechanisms and potencies were further characterized across eighteen inhibitory 

reactions that yielded IC50s less than 20 µM. Duloxetine, promethazine, risperidone, 

ropinirole, quetiapine and chloroquine were predicted to potentially act as precipitant 

drugs and cause clinical DDIs. When these interactions were carefully examined using 

the AUCR approach, the AUCR for the interaction between quetiapine and chloroquine 

was 1.25, indicating a weak clinical drug interaction. The risk of clinical DDIs for the 

other inhibitory reactions was predicted to be negligible. 
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 Detailed studies on the interaction between loratadine and simvastatin revealed 

that loratadine and desloratadine were able to inhibit the metabolism of simvastatin and 

simvastatin acid, and that simvastatin and simvastatin acid were able to inhibit the 

metabolism of loratadine. However, these inhibitory reactions were relatively weak or 

moderate, and were unlikely to result in any clinically meaningful effect.  

 Simvastatin acid and quetiapine were identified as relatively potent inhibitors of 

E217βDG uptake via OATP1B1/1B3. Their predicted R values were 3.85 and 5.28, 

respectively, larger than that of rifampin (R value 3.4), a drug that is known to cause 

clinical DDIs by inhibiting OATP1B1/1B3. These data suggest that simvastatin acid and 

quetiapine may interact with drugs that rely on OATP1B1/1B3 for hepatic uptake in vivo. 

The inhibitory effect of simvastatin acid may contribute to the interaction between 

simvastatin and loratadine by inhibiting the hepatic uptake of desloratadine via 

OATP1B1/1B3.  

 Tegaserod, desloratadine and simvastatin were able to induce significant 

apoptosis in fully differentiated myotubes. Their IC50s for inhibition of viability were 

4.32 µM, 10.94 µM and 1.64 µM, respectively. Simvastatin and desloratadine were 

further found to have a synergistic myotoxic interaction when applied in combination, 

which may contribute to the interaction between simvastatin and loratadine.  

 These data suggest that the interaction between quetiapine and chloroquine may 

be due to the inhibition of the metabolism of chloroquine by quetiapine. The data also 

suggest that the interaction between simvastatin and loratadine may result from the 

inhibition of OATP1B1/1B3 by simvastatin acid and from synergistic myotoxicity of 

simvastatin and desloratadine.  
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 Finally, with these data, I have demonstrated that our approach, that combines 

literature mining using bioinformatics algorithms, ADR detection using a 

pharmacoepidemiology design, and mechanistic studies employing in vitro experimental 

models, can identify and shed mechanistic light on new DDIs that are associated with an 

increased risk of clinical myopathy. 
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Appendix: Permission to Reuse Table 4-1 
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