
 

A REVIEW OF PERFLUOROOCTANOIC ACID 
 

CARCINOGENICITY AND APPLICATION 
 

TO HUMAN RISK 
 
 
 
 
 
 
 
 
 
 

Kenneth Lee Stone 
 
 
 
 
 
 
 
 
 
 

Submitted to the faculty of the University Graduate School 
in partial fulfillment of the requirements 

for the degree 
Master of Science 

in the Department of Pharmacology and Toxicology 
Indiana University 

 
May 2010



ii 
 

 

 

 

 

Accepted by the Faculty of Indiana University, in partial 
fulfillment of the requirements for the degree of Master of Science. 

 
 
 
 
 
 
 

_____________________________ 
 

James E. Klaunig, Ph.D, Chair 
 

 
 

Master’s Thesis 
Committee 

_____________________________ 
 

Lisa M. Kamendulis, Ph.D. 
 
 

 
 

_____________________________ 
 

Barbara Hocevar, Ph.D. 

 

 

 

 

 



iii 
 

ACKNOWLEDGEMENTS 

 

I would like to thank the people who have influenced and inspired me.   Without 

their help I could not have succeed in my academic career and this thesis would not have 

been possible. 

I specifically want to thank my advisor, Prof. James E. Klaunig, for his guidance 

throughout my graduate career. His Introduction to Toxicology class inspired me to seek 

my Master’s degree where his life stories about his experiences as a Toxicologist 

captivated my interests and propelled me to continue my education.  I could not have 

accomplished my goal without his support and recommendation to the graduate program. 

I would also like to thank Dr. Lisa M. Kamendulis for her support and for serving 

as my co-advisor.  She has always been accessible and has regularly taken time out of her 

schedule to offer her assistance and her ear to listen to my concerns.  Her lectures will be 

remembered as engaging and motivational and her hard work and dedication have served 

as an example worthy of emulation. 

Dr. Barbara Hocevar also deserves special thanks as she has served on my thesis 

committee and has given valuable guidance and direction to me without which this thesis 

could not have been completed. 

My deepest gratitude goes to my wife, Jannie Stone, for her unwavering love and 

support throughout this entire process; I could not have achieved success without her.   

She is my soul mate, partner and friend and has never left my side. I am also indebted to 

my father, Kenneth Stone, for his example of Christian faith and work ethic. He worked 

tirelessly to support the family and spared no effort to provide the best possible home.  



iv 
 

Words cannot describe my gratitude for my mother, Janet Stone, who is simply the best 

mother a child could be given by God. I remember many sacrifices my mother has made 

for me, often going without simply to provide for me.  I remember her constant support 

and encouragement and the strength of her Christian faith. 

Furthermore, my children Sam Stone, Lindsay Stone and Misty Johnson have 

completed my life.  I am grateful for the love and joy they have given me and their 

encouragement which has motivated me to continue.  I also want to express my gratitude 

to God for giving me my grandchildren, Ronni, Cole and Camryn Johnson, whose smile 

alone brightens my day and makes me forget my struggles.  I also want to thank of my 

sister, Karen, for being the best sister a brother could ask for.  She has helped our family 

out more times than I can remember. 

Last but not least, my greatest thanks belong to God.  He has walked with me 

throughout my life and has stood by me during my most challenging times.  God, you 

have truly blessed me and made my life joyful and complete. I owe everything to you.  

 



v 
 

TABLE OF CONTENTS 

 

LIST OF TABLES ........................................................................................................... viii 

LIST OF FIGURES ........................................................................................................... ix 

LIST OF ABBREVIATIONS ............................................................................................. x 

I.  INTRODUCTION .......................................................................................................... 1 

A.  Environmental Persistence ........................................................................................ 2 

B.  Environmental Presence ............................................................................................ 2 

1)  PFOA in Humans ................................................................................................... 3 

2)  PFOA in Wildlife ................................................................................................... 6 

3)  PFOA in the Environment ...................................................................................... 7 

C.  Chemical and Physical Properties ............................................................................. 8 

II. TOXICITY IN ANIMALS........................................................................................... 10 

A.  Acute Toxicity ......................................................................................................... 10 

B.  Subchronic Toxicity ................................................................................................ 11 

C.  Mutagenicity ............................................................................................................ 14 

III. MECHANISMS OF CARCINOGENICITY .............................................................. 19 

A.  Liver ........................................................................................................................ 19 

1)  Reactive Oxygen Species ..................................................................................... 19 

2)  Mitochondrial Biogenesis .................................................................................... 21 

3)  PPARα Agonism .................................................................................................. 22 



vi 
 

4)  CAR Activation .................................................................................................... 23 

5)  GJIC Inhibition ..................................................................................................... 24 

6)  Estrogenic Signaling ............................................................................................ 25 

7)  Immunomodulation .............................................................................................. 26 

B.  Testis ........................................................................................................................ 28 

1)  Inhibition of Testosterone Biosynthesis ............................................................... 28 

2)  Estradiol Modulation ............................................................................................ 29 

C.  Pancreas ................................................................................................................... 30 

1)  Hepatic Cholestasis .............................................................................................. 30 

IV. HUMAN RELEVANCE ............................................................................................ 33 

A.  Liver ........................................................................................................................ 33 

1)  ROS Generation ................................................................................................... 33 

2)  CAR Activation .................................................................................................... 34 

3)  GJIC Inhibition ..................................................................................................... 34 

4)  Estrogenic Signaling ............................................................................................ 35 

5)  Immunomodulation .............................................................................................. 36 

6)  PPARα Agonism .................................................................................................. 36 

B.  Testis ........................................................................................................................ 37 

1)  Estradiol Modulation ............................................................................................ 38 

C.  Pancreas ................................................................................................................... 39 

V.  EPIDEMIOLOGICAL STUDIES ............................................................................... 40 

VI. DISCUSSION AND SUMMARY ............................................................................. 41 



vii 
 

VII. REFERENCES .......................................................................................................... 44 

CURRICULUM VITAE 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

LIST OF TABLES 

 

Table 1.1:      Summary of Geometric Mean and Range of PFOA 
Serum Concentrations in United States Populations…...............................4 

 
Table 1.2: Summary of Serum PFOA Concentrations (ng/ml) in Shenyang China 

Population…………………………………..……………..........................5 
 

Table 2.1: Summary of PFOA LD50 values...............................................................10 
 

Table 2.2: Summary of the PFOA levels found in surviving  
monkeys at sacrifice...................................................................................11 

 
Table 2.3: Summary of the Effects of APFO Exposure in Male Rats........................17  
 
Table 2.4: Summary of the Tumor Induction Frequency of APFO in Rats................18 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

LIST OF FIGURES 

 

Figure 3.1:      Summary of the roles of oxidative stress  
  in carcinogenesis…...................................................................................20 
 

Figure 3.2: Illustration detailing the proposed MOA for PFOA 
pancreatic acinar cell tumorigenesis..........................................................31 
 

Figure 3.3: Summary of Possible Mechanisms for PFOA  
Carcinogenicity in Rodents........................................................................32 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

LIST OF ABBREVIATIONS 

 

APFO  Ammonium Perfluorooctanoate 

CAR  Constitutive Androstane Receptor 

CAT  Catalase 

CCK  Cholestcystokinin 

CHO  Chinese Hamster Ovary 

DMSO  Dimethyl Sulfoxide 

EPA  Environmental Protection Agency 

ER  Estrogen Receptor 

ERK  Extracellular Receptor Kinase 

FSH  Follicle-Stimulating Hormone 

GR  Glutathione Reductase 

GJIC  Gap Junctional Intracellular Communication 

HPT  Hypothalamic Pituitary Testicular 

LCT  Leydig Cell Tumors 

LH  Luteinizing Hormone 

MOA  Mode of Action 

ND  None Detected 

8-OHdG 8-Hydroxydeoxyguanosine 

PACT  Pancreatic Acinar Cell Tumors 

PB  Phenobarbital 

PC-PLC Phosphatidylcholine-specific Phospholipase C 



xi 
 

PFCs  Perfluorochemicals 

PFDA  Perfluorodecanoic Acid 

PFOA  Perfluorooctanoic Acid 

PFOS  Perfluorooctane Sulfonate 

PHA  Provisional Health Advisories 

PP  Peroxisome Proliferator  

PPARα Peroxisome Proliferator-Activated Receptor Alpha 

ROS  Reactive Oxygen Species 

SOD  Superoxide Dismutase 

WY  Wyeth 14,643  

 



1 
 

I.  INTRODUCTION 

 

Perfluorooctanoic acid (PFOA) is a synthetic organic chemical that consists of an 

8 carbon alkyl chain with a terminal carboxyl group in which the carbon-hydrogen bonds 

have been replaced with carbon-fluorine bonds except at the terminal carboxyl end.  This 

perfluoralkyl carboxylate is a contemporary synthetic chemical that does not occur 

naturally in the environment [1] and has only seen widespread use within the last 50 

years.     Ammonium Perfluorooctanoate (APFO) is the ammonium salt derivative of 

PFOA and is used in the manufacturing process and readily disassociates into PFOA in 

the human body and environment.  The data on APFO/PFOA can be used 

interchangeably since, in the presence of water, APFO readily dissociates into the PFOA 

anion [2]. 

PFOA is used in the manufacture of fluoropolymers and fluoroelastomers and is 

present as a component of some of the top-antireflective coating materials in use today.  

Fluoropolymers have properties that are useful in the manufacturing and textile industry 

such as fire resistance and their ability to repel oil, stain, grease and water which makes 

them ideal for creating a non-stick surface for cookware and protective coatings on 

clothing and carpeting and are also valuable to the aerospace industry as well.  

Fluoroelastomers are a family of synthetic rubbers that can be repeatedly stretched and 

still return to their original shape, such as Viton.  Sinclair et al. found measurable PFOA 

released from several brands of nonstick cookware when heated which suggests that 

residual PFOA from the manufacturing process may remain on the surface and can be 

off-gassed when heated at normal cooking temperatures. This study also found that 
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PFOA was present in the vapors released from prepackaged microwave popcorn bags that 

are impregnated with PFOA to improve oil and fire resistance during microwaving. [3]  

Since there has been recent progress in understanding the developmental, tumorigenic 

and other adverse effects seen in laboratory animals exposed to PFOA, the purpose of 

this review is to provide an overview of the tumorigenic modes of action of PFOA that 

result in the tumor triad seen in rodents and to determine the relevance of these studies to 

human risk. 

 

A.  Environmental Persistence 

The hydrogen-fluorine bonds found in PFOA are extremely stable and as a result 

PFOA is resistant to hydrolysis, photolysis, biodegradation, and metabolism leading to a 

high degree of environmental persistence and bioaccumulation.  In January 2006, the 

Environmental Protection Agency (EPA) initiated the 2010/15 PFOA Stewardship 

Program in which the eight major companies in the industry committed voluntarily to 

reduce facility emissions and product content of PFOA and related chemicals on a global 

basis by 95 percent no later than 2010, and to work toward eliminating emissions and 

product content of these chemicals by 2015. 

 

B.  Environmental Presence 

The environmental persistence of PFOA has culminated in the ubiquitous 

presence of PFOA in the environment with bioaccumulation in many species worldwide, 

including humans.  We will discuss the results of recent studies that have shown the 

presence of PFOA in human, wildlife and the environment. 
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1)  PFOA in Humans  
 

Recent studies of human populations in the United Sates have demonstrated the 

presence of PFOA in similar concentrations in the serum of children, adults and the 

elderly in the general population as well as in higher concentrations in individuals that 

were occupationally exposed to PFOA as summarized in Table 1.1.  A study by Olsen et 

al. of 645 serum samples collected in 2001 from adults in the cities of Los Angeles, 

Boston, Minneapolis-St Paul, Charlotte, Portland, and Hagerstown found PFOA levels in 

serum that ranged from 1.4 ng/ml to 56.1 ng/ml with a geometric mean for all samples of  

4.6 ng/ml [4].  In this study the geometric mean PFOA levels were 4.9 ng/ml for males 

and 4.2 ng/ml for females.  Serum collected in 2001 from 238 elderly adults (age 65-96 

years) in Seattle also demonstrated PFOA concentrations in the range of 1.4 ng/ml to 16.7 

ng/ml with a geometric mean of all samples of 4.2 ng/ml.  Olsen et al. [5] also measured 

PFOA in serum collected from 598 children ages 2-12 at concentrations ranging from 1.9 

ng/ml- 56.1 ng/ml in samples collected in 1994 and 1995.  The geometric mean for all 

participants was 4.9 ng/ml with a geometric mean of 5.2 ng/ml for males and 4.7 ng/ml 

for females.  In a 2000 study by Olsen et al. of PFOA levels in the serum of 

occupationally exposed workers, Olsen determined that PFOA concentrations were over 

300 times higher in the serum of workers at a 3M Decatur Alabama plant than that of the 

general population [6].  Olsen reported a geometric mean of 1130 ng/ml from a sample of 

263 Decatur employees.  Serum samples collected from 2,094 members of the general 

US population in 2003-2004 for the National Health and Nutrition Examination Survey 

(NHANES) also indicated the presence of PFOA at a mean concentration of 3.9 ng/ml.  

This is a decrease from the mean PFOA concentration of 5.0 ng/ml found in the serum of 
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1562 participants in the 1999-2000 NHANES.  It is also important to note that PFOA was 

quantifiable in 99.7% of the U.S. population tested in this study [7].   

Table 1.1    
Summary of Geometric Mean and Range of PFOA Serum Concentrations in United States 
Populations 

Year 
Samples 
Taken 

Number Location Demographic 
PFOA 
Mean 

(ng/ml) 

Range 
(ng/ml) 

Reference 

2001 125 
Los Angeles, 
CA 

Adult                  
General 
Population 

4.1 
2.1-
34.1 

[4] 

2001 109 Boston, Ma 
Adult                  
General 
Population 

5.4 
1.5-
13.9 

[4] 

2001 100 
Mpls-St.Paul, 
MN 

Adult                  
General 
Population 

4.5 
1.9-
20.0 

[4] 

2001 96 Charlotte, NC 
Adult                 
General 
Population 

6.3 
2.1-
29.0 

[4] 

2001 107 Portland, OR 
Adult                  
General 
Population 

3.6 
2.1-
16.7 

[4] 

2001 108 
Hagerstown, 
MD 

Adult                  
General 
Population 

4.2 
2.1-
52.3 

[4] 

2001 238 Seattle, WA 
Elderly Adult  
General 
Population 

4.2 
1.4-
16.7 

[8] 

1994-
1995 

598 23 US States 
Children             
General 
Population 

4.9 
1.9-
56.1 

[5] 

2000 263 Decatur, AL 
Adult with          
Occupational 
Exposure 

1,130 
40-
12,700 

[6] 

1999-
2000 

1562 
US 
Population 

Adult                  
General 
Population 

5.0 
*4.7-
5.7 

[7] 

2003-
2004 

2094 
US 
Population 

Adult                  
General 
Population 

3.9 
*3.6-
4.3 

[7] 

*95th percentile confidence interval range. 
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The global presence of PFOAs in the human population has been evidenced by 

detection of PFOA in the blood of human adults in Columbia, Poland, Belgium, India, 

Korea, Japan, Sweden, China, Australia, Germany and Spain [9-14].  Results found in a 

recent study by Jin et al. on the serum levels taken in 1987, 1990, 1999 and 2002 from 

students, staff and faculty members at China Medical University in Shenyang China are 

indicative of the exposure to PFOA in the general population that is not occupationally 

exposed to PFOA [10].  Table 2.1 summarizes the significant increase of PFOA levels 

seen in the Shenyang China general population from 1987-2002. 

 

Table 1.2   
Summary of Serum PFOA Concentrations (ng/ml) in Shenyang China Population 

 

The marked increase of PFOA levels present in the blood of occupational exposed 

workers in the United States was reproduced in a study of exposed workers in Antwerp 

Belgium.  A study performed in 2000 by Olsen et al. [4] found the geometric mean level 

of PFOA in 255 occupationally exposed Antwerp workers to be 440 ng/ml with a range 

of 40- 6,240 ng/ml as compared to the range of 4.5-27 ng/ml found in a sample of 20 

members of the general Belgium population [11]. 
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2)  PFOA in Wildlife 

 The environmental persistence of PFOA and its global presence has triggered 

studies for detection of the compound in several species of wildlife across the globe.  

PFOA has been found in the sera of captive wildlife species Bengal tigers (Panthera tigris 

tigris) and African lions (Panthera leo Linnaeus) from Harbin Wildlife Park, Heilongjiang 

Province, in China [15].  PFOA was found in 175 samples of liver and blood of bluefin 

tuna (Thunnus thynnus), swordfish (Xiphias gladius), common cormorants 

(Phalacrocorax carbo), bottlenose dolphins (Tursiops truncatus), striped dolphins 

(Stenella coeruleoalba), common dolphins (Delphinus delphi), fin whales (Balenoptera 

physalus), and long- finned pilot whales (Globicephala melas) from the Italian coast of 

the Mediterranean Sea and in livers of ringed seals (Phoca hispida), gray seals 

(Halichoerus grypus), white-tailed sea eagles (Haliaeetus albicilla), in Atlantic salmon 

(Salmo salar) from coastal areas of the Baltic Sea [16].  PFOA has been found in the 

plasma of 73 loggerhead sea turtles (Caretta caretta) and 6 Kemp's ridley sea turtles 

(Lepidochelys kempii) captured from inshore waters of Core Sound, North Carolina 

(NC), and offshore waters of South Carolina, Georgia, and Florida. [17].  PFOA has even 

been detected in the serum of the giant panda and the red panda from zoos and animal 

parks from six provinces in China and has also been detected in all specimens of 

European Beaver's (Castor fiber) liver, in whole blood of Cod (Gadus morhua), Velvet 

Scoter (Melanitta fusca), Eider Duck (Sommateria mollisima), Long-tailed Duck 

(Clangula hyemalis), Razorbill (Alca torda), Red-throated Diver (Gavia stellata) sampled 

in Poland [18, 19].    PFOA has even been shown to be present in increasing levels in 

East Greenland as demonstrated by a study of a subsample of 128 subadult (3-5 years) 
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polar bears (Ursus maritimus) from 19 sampling years within the period 1984-2006 in 

which median concentrations showed a significant annual increase of 2.3%. [20] 

 

3)  PFOA in the Environment 
 

PFOA contamination has been found in fresh water bodies of the European 

region.  The PFOA levels concentrations were measured in samples of freshwater from 

several countries including Germany, Italy, Norway, and Sweden and were found to be in 

the range of <0.65–57 ng/L with approximately 75% of the data falling between  the 

range of non-detectable and 8 ng/L.   [21-25].   

Levels of PFOA contamination have been found in the surface fresh water of the 

German Ruhr area and of the river Moehne and selected contaminated tributaries where 

PFOA concentrations up to 3640 and 33,900 ng/L, respectively were found.   Saito [26], 

Tanaka [22] and So [27] reported that several surface fresh water bodies in Asia, from 

samples collected in China, Japan and other Asian areas, had PFOA concentrations 

mostly in the range of 0.10–41.60 ng/L, with peaks up to 456 ng/L.  In studies of North 

American fresh water A number of studies of surface water of the Great Lakes region 

reported PFOA concentrations of <2–59 ng/L [28-30].   

Atmospheric Levels of PFOA in Europe were measured in 2005 by de Voogt 

[24]. The PFOA levels varied from 0.226–0.828 ng/m3 in March 2005 and from 0.006–

0.222 ng/m3 in November.  Atmospheric PFOA levels, measured in the towns of  

Oyamazaki  and Morioka located in Kyoto Japan, and were found to be in the range of 

0.00159–0.919 ng/m3 with a Geometric mean of 0.2627 ng/m3 found in Oyamazaki and a 

geometric mean of 0.0020 ng/m3 found in Morioka [31, 32].  High levels of PFOA were 
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found in samples taken over a 10-week period by the fence of a fluoropolymer 

manufacturing facility in the United States where Barton [33] reported PFOA 

concentrations up to 900 ng/m3. 

PFOA is also found in the home.  House dust from homes (n = 102) and day care 

centers (n = 10) in Ohio and North Carolina in 2000-2001 were sampled and PFOA was 

measured at median concentrations of 142 ng/g of dust, with a maximum PFOA 

concentration of 1960 ng/g [34].  PFOA was found in dust samples that were taken from 

67 houses in Canada at levels in the range of 1.15–1234 ng/g of dust with a mean 

concentration of 106 ng/g [35].  Moriwaki [36] reported detection of PFOA in the indoor 

dust of Japanese houses at levels of 69–3700 ng/g with a  mean level of 380 ng/g.  

 

C.  Chemical and Physical Properties 

The following are the chemical and physical properties of PFOA: 

Molecular Formula:  C8-H-F15-O2  

Chemical Structure: 

 

  

 

Molecular Weight: 414.09 [37] 

Boiling Point: 189 deg C [38] 

Melting Point: 52-54 deg C [38] 
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Density/Specific Gravity: 1.792 g/ml @ 20 oC [38]  

Dissociation Constants: pKa = 2.80 [39] 

Vapor Pressure: 0.15 mm Hg @ 25 oC [40] 
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II. TOXICITY IN ANIMALS 

 

A.  Acute Toxicity  

Olson and Anderson [41] calculated the 30 day LD50 of a single IP injected dose 

of PFOA to be 189 mg/kg (175-208 mg/kg).  All rats treated with doses of PFOA of 175 

mg/kg or greater died within 5 days of exposure.  The LD50 for oral exposure was 

determined to be 680 mg/kg for male CD rats and 430 mg/kg for female CD rats by Dean 

and Jessup [42].  Glaza [43] determined that the LD50 for female Spraque-Dawley rats to 

be in the range of 250-500 mg/kg and the LD 50 for male Spraque-Dawley rats to be 

greater than 500 mg/kg which supports the results from Dean and Jessup.  The LD 50 

from the acute toxicity studies performed in rodents are summarized in Table 2.1 below. 

Table 2.1 
Summary of PFOA LD50 values 

 

 

 

Species Dose Exposure Route Reference 

Male Fischer rats 
LD 50/30day= 
189 mg/kg 

IP [41] 

Male CD rats 
LD 50= 
680 mg/kg 

Oral [42] 

Female CD rats 
LD 50= 
430 mg/kg 

Oral [42] 

Male Spraque-Dawley rats 
LD 50= 
>500 mg/kg 

Oral [43] 

Female Spraque-Dawley rats 
LD 50=  
250-500 mg/kg 

Oral [43] 
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B.  Subchronic Toxicity 

Subchronic toxicity studies were performed by Goldenthal [44] in rhesus 

monkeys (2 of each sex per group) at doses of 0, 3, 10, 30 and 100 mg/kg per day by 

gavage in 0.5% Methocel 7 for a period of 90 days.  Table 2.2 contains a summary of the 

PFOA levels found in the surviving animal’s serum and liver tissue at sacrifice.   

 
Table 2.2 
 Summary of the PFOA levels found in surviving monkeys at sacrifice 

 

All animals in the 100 mg/kg per day died during the study with the first death 

occurring during the second week, with death occurring in all animals by the fifth week.  

One male from the 30 mg/kg per day group died during week 7 and two females from 

this group also died during weeks 12 and 13.  All the animals that died during the study 

exhibited marked diffuse lipid depletion in the adrenal glands, slight to moderate bone 

marrow hypoplasia and atrophy of the lymphoid follicles in the lymph nodes.  Of the 

animals that survived until sacrifice, one male in the 30 mg/kg per day group exhibited 

similar marked diffuse lipid depletion in the adrenal glands, slight to moderate bone 

Daily 
Dose 
(mg/kg) 

Serum PFOA (µg/ml) 
Liver 

(µg/ml) 
Total PFOA Liver 

(µg) 

Male Female Male Female Male Female 

0 ND 1 0.05 0.07 3 5 
3 53 65 3 7 250 350 
3 48 50 ND ND ND ND 
10 45 79 9 ND 600 ND 
10 71 71 ND 10 ND 750 
30 145 Dead 61 Dead 4000 Dead 
30 Dead Dead Dead Dead Dead Dead 
100 Dead Dead Dead Dead Dead Dead 
100 Dead Dead Dead Dead Dead Dead 
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marrow hypoplasia and atrophy of the lymphoid follicles in the lymph nodes that was 

present in the animals that died during the study.  The absolute and relative weight of the 

hearts and the absolute brain weight were significantly decreased in females from the 10 

mg/kg per day group.  It was also noted that the mean weight of the pituitary in males 

from the 3 mg/kg per day group was significantly increased.  

Two subchronic toxicity studies were performed in male cynomolgus monkeys by 

Thomford in 2001 [45, 46]. The first was a 6 month study in which male cynomolgus 

monkeys were administered 0, 2 or 20 mg/kg per day orally via a capsule.  All animals 

survived until sacrifice and there were no adverse effects noted in either the gross or 

clinical studies.  This study was then followed by a 26 week study in which male 

cynomolgus monkeys were given 0, 3, 10 or 30 mg/kg doses per day orally via a capsule.  

Dosing was discontinued at day 11 because of statistically significant weight loss, 

decreased food consumption and decreased feces production in the 30 mg/kg per day 

group.  Treatment of this group was then resumed on day 22 at a 20 mg/kg per day dose.   

At sacrifice significant increases were noted in the mean absolute liver weights and the 

liver to body weight percentages in all groups receiving PFOA.  Thyroid hormones were 

also found to be decreased beginning on day 35 in the 10 and 30/20 mg/kg per day 

groups.  This study demonstrated a lowest-observed-adverse-effect-level of 3 mg/kg per 

day. 

A 28 day study by was conducted by Christopher and Marias [47] using ChR-CD 

mice (5/sex per group) administered a daily dietary dose of APFO (the ammonium salt of 

PFOA used in fluoropolymer manufacturing) ranging from 0 to 30,000 ppm.   All 

animals in the 1000 ppm and higher group died within the first 9 days of treatment, while 
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death of all the animals with the exception of one male in the 300 ppm occurred within 

26 days of treatment.  There was a dose-related reduction in the mean body weight of all 

the treated animals.  Liver weights were increased in mice receiving a dose of 30 ppm or 

greater.  Morphological changes in the livers of all treated animals were observed 

including changes, enlargement and/or discoloration of 1 or more lobes of the liver, a 

diffuse cytoplasmic enlargement of hepatocytes throughout the liver, with a random 

distribution of cytoplasmic lipid vacuoles of variable sizes.   

The results of a second 28-day study using the same APFO doses as Christopher 

and Marias were described in a report by Metrick and Marias [48].  All animals receiving 

a dose that was greater than 10,000 ppm died before the end of the first week of the study 

with morphological changes noted in the livers of all the animals who received APFO.  

The morphological changes in the liver noted in the study consisted of panlobular diffuse 

hypertrophy of the hepatocytes with accompanying focal to multifocal cytoplasmic lipid 

vacuoles.  

A 28-day study of the toxicological effects of oral exposure to PFOA and 

Perfluorooctane Sulfonate (PFOS) on male Spraque-Dawley rats by gavage has also been 

performed [49]. Cui used 5 groups of 10 animals per group with the control group 

receiving no perfluorochemicals (PFCs) and the remaining group receiving doses of 5 

mg/kg per day PFOA, 20 mg/kg per day of PFOA, 5 mg/kg per day PFOS and the final 

group received a dose of 20 mg/kg per day of PFOS.  Histological changes in the 

hepatocytes were observed in all exposed groups.  These changes included fatty 

degeneration, angiectasis in the central vein, congestion in the hepatic sinusoid, 

acidophilic lesions, focal hemorrhage with necrosis, cytoplasmic vaculation and hepatic 
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enlargement with inflammatory cellular infiltration.  A biodistribution assay was 

performed to measure the PFOA concentrations in the target organs and the tissue 

concentrations were found to be in the order of kidney>liver>lung>heart>testicle>spleen 

and brain. 

 

C.  Mutagenicity 

There is conflicting evidence on the genotoxic effects of PFOA.  Several studies 

conducted for the United States Environmental Protection Agencies by an independent 

laboratory concluded that PFOA and APFO did not induce mutations with or without 

metabolic activation in AMES tests, in human lymphocytes or in Chinese Hamster Ovary 

(CHO) cells [50, 51].  The same laboratory also tested the in-vivo mutagenic properties 

of APFO using micronucleus studies on the bone marrow of mice [52, 53] with negative 

results.  Other studies have found that APFO was able to induce both chromosomal 

aberrations and polyploidy with the presence of metabolic activation in human 

lymphocytes [54, 55]. A recent study by Yao et al. [56] using human the hepatoma cell 

line HepG2 found a significant increase in the tail moment in the single cell gel 

electrophoresis assay in HepG2 cells exposed to PFOA which indicates that PFOA was 

able to induce DNA strand breaks in HepG2 cells.  Yao also found PFOA induced a 

dose-dependent increase in the frequency that a micronucleus was found in binucleated 

HepG2 cells, which indicates that chromosome breaks occurred in HepG2 cells after 

PFOA treatment.  Shabalina et al. [57] found DNA breaks in HepG2 cells exposed to 

PFOA  using the TUNEL procedure and propidium iodide staining of cellular DNA. 
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Although there are conflicting evidence, PFOA has been found to produce a genotoxic 

effect on human cells in some studies.  

 

D.  Carcinogenicity 

Carcinogenicity studies of PFOA in rodents demonstrated that PFOA induced a 

tumor triad which consists of liver adenomas, Leydig cell adenomas and pancreatic 

acinar cell tumors in male Spraque-Dawley rats.   

Sibinski [58] performed a 2 year study of Spraque-Dawley rats exposed to APFO 

in their diet.  Groups of 50 animals from each sex consumed feed containing 0, 30 or 300 

ppm APFO; this corresponded to a mean APFO daily dose of 0.0, 1.3 and 14.2 mg/kg in 

the males and 0.0, 1.6 and 16.1 mg/kg per day in females.  The animals were observed 

daily with body weights and food consumption recorded weekly for the first six months 

and then bi-weekly for the remainder of the study.   

An interim 1 year study was also performed using groups of 15 additional rats per 

sex fed 0 or 300 ppm APFO with the animals sacrificed at 1 year and the weights of the 

kidney, liver, testes, adrenal gland and spleen recorded.  Pathological examinations which 

included hematology, serum chemistry and urinalysis were performed on samples from 

15 rodents from each group at 3, 6, 12, 18 and 24 months.  Post mortem observations 

were recorded on all animals that died during the study and those that were sacrificed at 

the 1 year interim and 2 year study end.  At the 2 year sacrifice, the organs were weighed 

for 15 randomly selected animals per sex in all remaining rats in each group.   On gross 

examination, lesions in the liver, testis and ovary were noted.   
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At the 1 year sacrifice liver hepatomegalocytosis was present in 80% of males 

consuming feed containing 300 ppm APFO with no hepatomegalocytosis seen in the 

control group.  Portal mononuclear cell infiltration was also present in 87% of the 300 

ppm APFO dosed male animals versus 47% of the control male animals and 

hepatocellular necrosis was evident in 40% of the 300 ppm APFO male animals with no 

hepatocellular necrosis observed in the control group.   Testicular masses were also 

discovered in 40% of the 300 ppm dosed group at the 1 year sacrifice with no testicular 

masses observed in the control group.  

At the 2 year sacrifice megalocytosis was present in 12% of the male rats 

consuming feed containing APFO at a concentration of 30 ppm and 80% of the males 

consuming feed with a APFO concentration of 300 ppm.  Megalocytosis was also 

observed in and 2% of the female rats consuming feed containing APFO at a 

concentration of 30 ppm and in 16% of the females that consumed feed with a APFO 

concentration of 300 ppm. There was no megalocytosis observed in either the male or 

female control groups.  It was also noted that hepatic cystoid degeneration was observed 

in 14% and 56% of the 30 ppm and 300 ppm male groups with only 8% observed in the 

control group.  At the 2 year sacrifice a significant increase in the incidence of testicular 

Leydig cell adenomas (LCT) was reported in the high dose group which was present in 

14% of the test animals.  4% of the low dose group also developed LCT with no LCT 

observed in the control group.  Historically, LCT have been observed in 0.82% of control 

animals in 2-year old Spraque-Dawley rats used in carcinogenicity studies [59].  The 

effects noted in this study are summarized in Table 2.3. 
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Table 2.3 
Summary of the Effects of APFO Exposure in Male Rats  
 

Observations 
Incidence   

Control Rats    
(0 ppm APFO) 

Incidence 
Treated Rats     

(30 ppm APFO) 

Frequency  
Treated Rats     

(300 ppm APFO) 

1 Year Sacrifice Male Rats 
Liver 
hepatomegalocytosis 

 NONE  N/A* 80%  

Portal mononuclear 
cell infiltration 

47%  N/A* 87%  

Hepatocellular 
necrosis 

 NONE  N/A* 40%  

Testicular masses NONE N/A* 40% 

2 Year Sacrifice Male Rats 
Liver 
hepatomegalocytosis 

NONE 12% 80% 

Hepatic cystoid 
degeneration 

8% 14% 56% 

Testicular Leydig 
Cell Adenomas 

NONE 4% 14% 

* Only rats treated with 0 and 300 PPM APFO were sacrificed at 1 year. 
 

Biegel et al. [60] performed a 2-year study in which APFO was introduced into 

the diet of male CD rats.  The study was conducted using feed containing 300 ppm 

APFO.  Increased relative liver weights and hepatic beta-oxidation activity were observed 

in the PFOA treated rats at all time points. Liver adenomas were induced in 13% of the 

PFOA treated group versus 3% of the control group.  Leydig cell adenoma was induced 

in 11% of the testes of the PFOA treated group versus 0% of the control group with 

Leydig cell hyperplasia present in 46% of the animals exposed to PFOA in their diet.  

Acinar cell adenoma was induced in 9% of the PFOA treated animals versus 0% of the 

control group. The frequency of tumor induction is summarized in Table 2.4.  
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Table 2.4 
Summary of the Tumor Induction Frequency of APFO in Rats   

 

Blood was sampled at 1, 3, 6, 9, 12, 15, 18, and 21 months. Testosterone, follicle-

stimulating hormone (FSH), luteinizing hormone (LH), prolactin and estradiol levels 

were quantified in the serum from each of these samples with no significant differences 

found in serum testosterone, FSH, prolactin, or LH concentrations in the PFOA treated 

rats when compared to their controls. However, significant increases in serum estradiol 

concentrations were present in the PFOA treated rats at all months sampled compared to 

the control groups. 

 

Tumor Induced 
Incidence   

Control Rats    
(0 ppm APFO)

Frequency 
Control Rats    

(0 ppm 
APFO) 

Incidence 
Treated Rats     

(300 ppm 
APFO) 

Frequency  
Treated Rats     

(300 ppm 
APFO) 

Liver 

Adenoma 2/80 3% 10/76 13% 

Carcinoma 0/80 NONE 0/76 NONE 

Adenoma/carcinoma 
combined 

2/80 3% 10/76 13% 

Testes 
Leydig cell 
hyperplasia 

11/80 14% 35/76 46% 

Leydig cell 
adenoma 

0/80 NONE 8/76 11% 

Pancreas 
Acinar cell 
hyperplasia 

14/80 18% 30/76 39% 

Acinar cell adenoma 0/80 NONE 7/76 9% 

Acinar cell 
carcinoma 

0/80 NONE 1/76 1% 

Adenoma/carcinoma 
combined 

0/80 NONE 8/76 11% 
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III. MECHANISMS OF CARCINOGENICITY 

 

A.  Liver 

The available published scientific literature provides data suggesting that 

induction of hepatocellular adenomas by PFOA may result from: (1) generation of 

reactive oxygen species, (2) increased mitochondrial biogenesis, (3) the activation of 

Peroxisome Proliferator-Activated Receptor Alpha (PPARα),  (4) influence on molecular 

pathways such as those mediated by the constitutive androstane receptor (CAR), (5) the 

inhibition of gap junctional intracellular communication (GJIC), (6) increased estrogen 

levels and (7) modulation of the immune system. Data in support of these proposed 

mechanisms are described in the sections that follow.  

 

1)  Reactive Oxygen Species 

Chemically induced carcinogenesis is thought to consist of a multistage process 

definable by at least three steps or stages: initiation, promotion, and progression.  The 

oxidative stress that results from the presence of ROS impacts all three stages of the 

cancer process. During the initiation stage oxidative DNA damage may produce gene 

mutations and structural alterations of the DNA, resulting in a heritable mutation. During 

the promotion stage ROS and oxidative stress can contribute to abnormal gene expression 

and inhibition of GJIC which results in an increase in cell proliferation or a decrease in 

apoptosis in the initiated cell population. Oxidative stress may also participate in the 

progression stage of the cancer process by imparting further DNA alterations to the 

initiated cell population. These changes may result in changes in enzyme activity and 
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make the lesions resistant to normal growth control [61].  This is exemplified in figure 

3.1 taken from Klaunig et al. [61].  

 

Figure 3.1  
Summary of the roles of oxidative stress in carcinogenesis 

In a study by Liu et al. [62] cultured freshwater tilapia (Oreochromis niloticus) 

hepatocytes were exposed to PFOS or PFOA (at doses of 0, 1, 5, 15 and 30 mg/L for 24h) 

which resulted in a significant induction of reactive oxygen species (ROS) accompanied 

by increases in activities of superoxide dismutase (SOD), catalase (CAT) and glutathione 

reductase (GR), demonstrating that PFOA produced oxidative stress and induced 

apoptosis with involvement of caspases in primary cultured tilapia hepatocytes.  

Panaretakis et al. [63] measured reactive oxygen species (ROS) generation at 1.5, 3, 5 
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and 24 h after cultures of human HepG2 hepatoma cell lines were exposed to PFOA 

concentrations of 200 mM and 400 mM. At 3 h, 200 mM of PFOA had elicited detectable 

levels of H2O2 in 91% of the total cell population compared to 12% of the vehicle-treated 

cells and 400 mM PFOA induced H2O2 generation in 98% of the total cell population at 

the same time point.  Superoxide anions, which are another example of ROS species, 

reached detectable levels in 43% and 71% of the total cell population after treatment with 

200 mM and 400 mM PFOA respectively (versus 10% in DMSO-treated cells).  This 

accumulation of ROS is thought to be the result of disruption of the mitochondrial 

membrane. 

A study by Yao et al. [56] investigated the genotoxic potential of PFOA in human 

hepatoma HepG2 cells in culture using single cell gel electrophoresis (SCGE) assay and 

micronucleus assay.  Dichlorofluorescein diacetate was used as a fluorochrome to 

measure the intracellular generation of ROS with the level of oxidative DNA damage 

being evaluated by immunocytochemical analysis of 8-hydroxydeoxyguanosine (8-

OHdG) in PFOA-treated HepG2 cells. This study found significantly increased levels of 

ROS and 8-OHdG in the PFOA exposed cells which indicate that human HepG2 cells 

exposed to PFOA do produce ROS which may play a role in all three stages of the 

carcinogenesis process. 

 

2)  Mitochondrial Biogenesis 

PFOA does produce hepatic peroxisome proliferation (PP) in rats, which is 

discussed later; however, PFOA has been shown to stimulate mitochondrial biogenesis, 

which is not a characteristic response of PPs [64].  Berthiaume exposed male Spraque-
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Dawley rats to 100 mg/kg of the PP chemicals PFOA, PFOS and N-ethyl 

perfluorooctanesulfonamido ethanol dissolved in dimethyl sulfoxide (DMSO) via a single 

i.p. injection.  The animals were sacrificed 3 days post injection with the liver tissue and 

mitochondria collected from animals in each treatment group used to examine the effects 

of each compound on cytochrome oxidase activity, cytochrome content, and 

mitochondrial DNA copy number to determine their effect on mitochondrial biogenesis.  

PFOA and PFOS were capable of inducing PP in rats following injection; however, 

PFOA was the only compound that caused significant decreases in mitochondrial 

cytochrome oxidase activity with a significant increase in mitochondrial DNA copy 

number which reveals that a unique mitochondrial biogenesis is occurring in PFOA 

exposed rats that is not generally produced by other PPs.   

Starkov et al. [65] also demonstrated that PFOA and PFOS caused a slight 

increase in the intrinsic proton leak of the mitochondrial inner membrane, which 

resembled a surfactant-like change in membrane fluidity.   Since mitochondria play a 

significant role in cell signaling, ROS generation and apoptosis the resulting 

mitochondrial biogenesis seen in rodents exposed to PFOA may play a role in 

carcinogenesis. 

 

3)  PPARα Agonism 
 

PPARs are steroid hormone receptors that act as ligand-activated transcription 

factors.  Three PPAR isotypes have been identified, PPAR α, β/δ and γ.  These isotypes 

play a role in lipid metabolism, energy homeostasis and inflammation [66].  PPAR 

agonism results in an increase in the number and volume fraction of peroxisomes in the 
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cytoplasm of cells.  This proliferation can be visualized utilizing electron microscopy or 

can be quantitated by measuring the levels of selected peroxisome enzymes such as 

catalase, cytochrome P-450s (e.g., CYP4A1and 4A3), and acyl coenzyme A (CoA) 

oxidase.  The response to exposure to PP chemicals, such as PFOA, varies drastically 

between species with the rat and mouse being the most sensitive.   PP has been shown to 

be present in the hamster, to a lesser degree than the rat and mouse, with relatively no PP 

present in the guinea pig, monkey, and human when exposed to PPAR agonists at dose 

levels that produce marked response in the rat and mouse [67-70]. The liver tumors 

induced by PFOA exposure in rodents appears to occur as a result of PFOA binding to 

the PPARα, which results in PP [60, 71, 72]. PFOA is believed to produce these tumors 

in the liver by binding with and, as a result, activating PPARα.  PPARα modulates the 

transcription of genes involved in PP, regulation of the life/death cycle of the cell and 

lipid metabolism.  PPARα activation produces a proliferation of the peroxisomes, an 

increase in cell proliferation and a decrease in apoptosis.  The decrease in cell death 

combined with increased stimulation in cell proliferation results in increased cell 

reproduction.  This reproduction promoting environment coupled with the presence of 

ROS, and their resultant oxidative stress, promotes the reproduction of DNA-damaged 

cells. As a result preneoplastic foci arise and in the course of time develop into tumors by 

way of continued clonal expansion [73]. 

 

4)  CAR Activation 

PFOA has also been shown to activate CAR.  CAR activation is essential in liver 

tumor promotion by other nongenotoxic liver carcinogens such as Phenobarbital (PB) 
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[74]. A DNA microarray analysis of hepatic gene expression in Car–/– mice showed that 

CAR induced or repressed 70 genes [75].  In addition to up-regulation of drug-

metabolizing enzymes, CAR down-regulated genes that encode gluconeogenic enzymes, 

those involved in fatty acid oxidation, and proteins such as angiogenin and fibronectin.  

Nongenotoxic carcinogens such as PB are known to stimulate cell proliferation and 

suppress apoptosis, leading to tumor development. While PFOA has been shown to 

activate PPARα [71], PFOA also produces liver enlargement in the PPARα-null knock-

out mice [76, 77]. This PPARα-independent effect suggests other mechanism of 

carcinogenicity may be present other than PPARα activation. A study of gene expression 

changes in PPARα-null mice exposed to PFOA revealed an up-regulation of certain 

Cyp2b and Cyp2c genes, such as Cyp2b10, which are markers of CAR activation [78-

80].  Another study revealed that two days after a single i.p. administration (50 mg/kg) of 

(PFOA) and perfluorodecanoic acid (PFDA), mRNA expression of Cyp2b10 was 

increased 20-fold [81].  It was also shown that there is a strong correlation between the 

transcript profile of PPARα independent PFOA genes in PPARα-null mice exposed to 

PFOA and those of activators of CAR including Phenobarbital [82] which would suggest 

that a subset of genes are controlled by CAR in the PPARα-null mouse exposed to 

PFOA. 

 

5)  GJIC Inhibition 

When normal cells are no longer able to control their growth by way of contact 

inhibition, they can become transformed into tumorigenic cells [83] which may be due to 

defective intercellular communication [84].  These transformed cells can be benign or 
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they can develop genetic mutations that lead to a malignant state as demonstrated in 

multistage carcinogenesis.   It has been implied that changes occurring in the cell-to-cell 

communication by way of gap junction does play a role in the tumorigenic process [85]. 

A recent study by Upham et al. [86] verified that PFOA does inhibit GJIC and induce 

hepatomegaly in the livers of rats while the measured level of liver enzymes indicated no 

cytotoxic response.  The inhibition of GJIC was shown to be dependent on the activation 

of both ERK and phosphatidylcholine-specific phospholipase C (PC-PLC) in the 

dysregulation of GJIC in an oxidative-dependent mechanism. This study also indicated 

that PFOA is able to activate the extracellular receptor kinase (ERK).   In a previous 

study, Upham et al. [87] demonstrated that PFOA reversibly inhibited GJIC and this 

inhibition of GJIC was dependent on the length of the fluorinated tail. Since GJIC plays 

an essential role in preserving tissue homeostasis, disruption of gap junction function 

may play a role in the carcinogenicity of PFOA. 

 

6)  Estrogenic Signaling 

It is known that PFOA can produce PP in rodents, however humans and certain 

other species, including rainbow trout, guinea pigs, and nonhuman primates, show little 

to no evidence of PP [70, 88, 89].  A study by Tilton et al. [90] of rainbow trout exposed 

to PFOA (1,800 ppm or 50 mg/kg/day) and DHEA demonstrated enhanced liver tumor 

incidence in trout exposed to PFOA at concentrations of 50 mg/kg per day.  This 

carcinogenic effect was independent of PP which was determined by a lack of 

peroxisomal β-oxidation and catalase activity.   Gene profiling also demonstrated that 

PFOA induced an estrogenic gene signature that strongly correlated with that produced 
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by 17β-estradiol.  The results from this study suggest that the tumor-promoting activities 

of PFOA in trout are independent of PP and instead may be related to a mechanism 

involving estrogenic signaling.  A study by Liu et al. [91] demonstrated that PFOA 

possesses estrogenic activities and additional results of an estrogen receptor inhibition 

assay indicated that the estrogenic effect of PFCs may be mediated by the estrogen 

receptor pathway in primary cultured tilapia hepatocytes.  A gene expression profile 

study was conducting using liver tissue obtained from male and female rare minnows 

(Gobiocypris rarus) exposed to PFOA using a custom cDNA microarray containing 1773 

unique genes by Wei et al. [92].  The minnows were treated with continuous flow-

through exposure to PFOA at concentrations of 3, 10, and 30 mg/L for 28 days. 

Hepatocyte swelling and vacuolar degeneration with prominent eosinophilic hyaline 

droplets were observed in the cytoplasm of male and female hepatocytes exposed to 10 

mg/L. The livers from the cohort exposed to 10 mg/L PFOA were selected for further 

hepatic gene expression analysis.  The results revealed that a number of genes were either 

upregulated or downregulated in the livers of the minnows exposed to PFOA with a 

distinct induction of estrogen-responsive genes identified using a custom cDNA 

microarray.  The fact that other studies [93, 94] have shown that estrogen promotes liver 

carcinogenesis in rats makes the estrogenic signaling properties of PFOA a viable 

pathway for tumor promotion in the liver.   

 

7)  Immunomodulation 

A healthy and fully functional immune response allows the body to identify and 

remove abnormal cells, including initiated cells, while a weakened or suppressed immune 
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system has been associated with increased tumor development [95-97].  A study by Yang 

et al. [98] demonstrated that exposure of Male C57B1/6 mice to PFOA in the diet 

resulted in severe thymic and splenic atrophy with the weight of the thymus and spleen 

rapidly returning to normal within 10 and 5 days, respectively, following withdrawal of 

PFOA from the diet.  It was also noted that these changes in thymus and spleen weight 

paralleled the changes in total thymocyte and splenocyte counts.  Yang also evaluated the 

effects of PFOA on the adaptive immunity in mice by measuring antigen-specific 

antibody responses and lymphocyte proliferation in mice immunized with horse red 

blood cells [77].  Mice were fed a diet of 30 mg PFOA/kg for 15 days after which the 

immune response was quantified by employing both the plaque-forming cell assay and 

determination of the antibody titer by ELISA.  The results of the study revealed a 

suppression of the IgM and IgG titers relative to the titers present in the unexposed 

control animals and reduced plaque formations in the exposed animals compared to the 

animals in the control group.   The results from another study by Yang [99] revealed that 

while PFOA treatment of wild type mice led to a dramatic atrophy of the thymus and 

spleen reflecting losses of thymocytes and splenocytes, this effect is not as dramatic in 

PPARα-null mice.  Although the atrophy of the thymus and loss of thymocytes was not 

as marked as in the wild type mice, significant thymus atrophy and loss of thymocytes 

were observed in PPARα-null mice exposed to PFOA.  This weakened response clearly 

points toward the involvement of both PPARα-dependent and -independent mechanisms 

in the immunomodulation process.  Note that although immunomodulation is only 

discussed in this section the immune response is a physiological response of the body and 

modulation of the immune system affects the body as a whole.  As a result the 
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immunomodulation by PFOA may play a plausible role in tumorigenesis in the liver, 

testis and pancreas.   

 

B.  Testis 

Leydig cell adenomas are another type of tumor that is produced by exposure to 

PFOA.  The available published scientific literature provides data suggesting that 

induction of Leydig Cell adenomas by PFOA may result from: (1) inhibition of 

testosterone biosynthesis and (2) estradiol modulation.   Data in support of these 

proposed mechanisms are described in the sections that follow.  

 

1)  Inhibition of Testosterone Biosynthesis 
 

Inhibition of testosterone biosynthesis may be involved in the induction of Leydig 

cell tumors by PFOA which has been shown to decrease the production of testosterone in 

Leydig cells that are exposed to the compound [100].  Results from a study by Gazouli et 

al. [101] indicate that the inhibition of testosterone production may also be mediated by 

PPARα.  Decreased testosterone levels can lead to increased luteinizing hormone levels 

through a negative feedback mechanism called the hypothalamic pituitary testicular 

(HPT) axis that regulates metabolism. The disruption of the hypothalamus pituitary 

thyroid axis in the thyroid gland has been shown to produce follicular cell carcinoma in 

the thyroid [102] and may be applicable to LCT formation in the testis as a disruption of 

the HPT axis.  Several studies have produced sustained hypersecretion of LH in the testis, 

which are compromised of endocrine controlled tissues, with the disruption of the HPT 

axis [103-109].  This mechanism was demonstrated in a 1-year study where Viguier-
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Martinez et al. [108, 109] fed Sprague-Dawley rats feed containing flutamide, which is an 

androgen receptor antagonist that blocks the binding of testosterone to the testosterone 

receptor and results in hypersecretion of LH due to the disruption of the HPT axis, and 

produced Leydig cell hyperplasia in the animals fed flutamide which progressed to 

Leydig cell adenoma by the end of the study. 

 

2)  Estradiol Modulation 

Since PP chemicals have been shown to increase estradiol levels and estradiol 

modulates growth factor expression in the testes then PFOA may produce Leydig cell 

tumors (LCT) in the testes as a result of the increased cell hyperplasia produced by 

estradiol [100, 110].  Administration of estradiol to mice has produced Leydig cell 

tumors in several studies [111-113] which further supports the plausibility that PFOA can 

produce these tumors due to the compounds ability to increase estradiol levels.  It is also 

plausible that elevated estradiol levels may act as a mitogen and/or enhance growth factor 

secretion thereby causing Leydig cell hyperplasia and tumor formation.  The 

transforming growth factor α has been detected in Leydig cells[114] which stimulates cell 

proliferation and is an example of how enhanced growth factors could be involved in 

tumor formation. 

Although peroxisomes are present in both the liver and testes the limited data on 

Leydig cell induction by PFOA does not support PP as a plausible MOAs for tumor 

production in the testes.  Two separate studies exposing male rats to known PP chemicals 

found abundant PP in the liver using biochemical assays and visual examination with 

electron microscopy with no PP found in the Leydig cells [115, 116].  Currently no other 
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data exists to support any other alternate MOAs for LCT formation other than the 

hormonal mechanisms described.   

 

C.  Pancreas  

Pancreatic acinar cell tumors (PACT) are a third tumor type produced by 

exposure to PFOA.  The available published scientific literature provides data suggesting 

that induction of pancreatic tumors by PFOA may result from cholestasis. 

 

1)  Hepatic Cholestasis 

Steroids (such as estradiol and testosterone discussed previously), 

cholestcystokinin (CCK) and other growth factors, growth factor receptor over-

expression (CCKA receptor) and dietary fat intake have all been shown to produce PACTs 

in rats when their levels are altered [117-119].   PACT induction by PFOA and other PP 

appears to be seen in rats, but not mice, which indicates that PACT tumor formation may 

be species dependant [67, 68].  A chronic study by Osbourn et al. [120] demonstrated 

increases in pancreatic weights at 3 months (6% above control) and 6 months (17% above 

control) with an increase in CCK plasma levels in a 2 year bioassay of rats exposed to the 

PP chemical WY.  The results of the study indicate that chronic exposure to WY causes 

liver alterations such as cholestasis, which may increase plasma concentrations of CCK.  

PP chemicals such as PFOA may thus induce PACT as a result of a sustained mild 

increase in CCK levels produced by hepatic cholestasis.  Results from a second study by 

Osbourn et al. supported the validity of the role of increased CCK levels in PACT 
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formation [121].  The diagram below (Figure 3.2) depicts the proposed mode of action 

(MOA) with key events for pancreatic acinar cell tumors (PACTs) induced by PFOA.  

 

Figure 3.2 
Illustration detailing the proposed MOA for PFOA pancreatic acinar cell tumorigenesis 
 

 

 

 

 

 

 

 

 

 

 

 

 

As described above, the experimental evidence suggests that PPARα agonists 

such as PFOA induce PACTs in rats by increasing CCK levels secondary to reduced bile 

acid synthesis and/or alterations in bile acid composition [120, 121].  PPARα agonists 

have been shown to decrease transcription of cholesterol 7α-hydroxylase, the rate-

limiting step of bile acid synthesis, via the PPARα/RXRα heterodimer reducing 

hepatocyte nuclear factor-4 (HNF-4) binding to the DR-1 sequence, which regulates this 

gene [122]. The inhibition of cholesterol 7α-hydroxylase results in reduced bile flow and 
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altered bile acid composition resulting in cholestasis.  This reduction in bile acid flow 

and/or altered bile acid composition creates a reduction in trypsin activity which 

increases the CCK release from the duodenal mucosa.  This increased release of CCK 

results in increased activation of the CCKA receptors which can increase acinar cell 

proliferation and may lead to tumor formation. 

The mechanisms of carcinogenicity by PFOA that have been detailed are 

summarized in Figure 3.3. 

 

Figure 3.3 
Summary of Possible Mechanisms for PFOA Carcinogenicity in Rodents 
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IV. HUMAN RELEVANCE 

 

As described in the MECHANISMS OF CARCINOGENICITY section, PFOA 

has been shown to produce cancer in laboratory animals. This section previews studies 

that have used human sources in an attempt to determine if the possible mechanisms of 

carcinogenicity hypothesized in animal models are applicable to human risk.  

 

A.  Liver 

The induction of hepatocellular adenomas by PFOA in rodents may involve any 

of several pathways including ROS, CAR, GJIC, increased estrogen levels, decreased 

immune system response and/or PPARα agonism. Many of these pathways are plausible 

in human carcinogenesis. 

 

1)  ROS Generation 

Results of a recent study established that PFOA produces genotoxic effects on  

human HepG2 cells [56].  This DNA damage is thought to be the result of oxidative 

stress induced by intracellular ROS, particularly hydrogen peroxide.  In this study the 

fluorochrome 2’,7’-dichlorofluorescin was used to measure intracellular generation of 

ROS and 8-OHdG was used to determine the level of oxidative DNA damage.  A 

separate study by Hu et al. [123] that exposed human Hep G2 cells to PFOA and PFOS at 

concentrations of 50-200 μmol/l  (50–200 μmol/l) resulted in the generation of ROS.  

Panaretakas et al. [63] also demonstrated that human Hep G2 cells treated with 200 and 

400 umol PFOA exhibited a dramatic increase in the cellular content of superoxide 
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anions and hydrogen peroxide after 3 h.  Hypolipidemic drugs, which are known PP, 

were also shown to induce an overproduction of ROS in human hepatocytes [124].  Many 

other studies have implicated ROS and oxidative stress in human liver tumors [125-129] 

which indicates that ROS generation by PFOA may play a role in human carcinogenesis 

and warrants further study.   

 

2)  CAR Activation 

As previously discussed, PPARα-null mice exposed to PFOA developed liver 

enlargement and a measurable up-regulation of Cyp2b and Cyp2c genes, which are 

markers of CAR activation.   PB is known to stimulate cell proliferation and suppress 

apoptosis, leading to tumor development via the CAR activation pathway but has 

typically not been shown to produce liver tumors in humans [130].  Although little 

evidence suggests that CAR activation by PFOA could result in tumor formation in the 

liver, CAR expression shows a large amount of genetic polymorphism as demonstrated in 

a study by Change et al. [131] that revealed a 240-fold variability in hepatic CAR mRNA 

levels in humans.  This highly variable expression among individuals may explain why 

there are reported cases of liver tumors in humans that have been on long term PB 

therapy [132, 133] and could represent a plausible tumorigenic pathway for a subset of 

the human population that highly express CAR and are exposed to high levels of PFOA. 

 

3)  GJIC Inhibition 

Since carcinogenesis involves a disturbance of homeostasis and cancer cells show 

uncontrolled growth, it is conceivable that altered GJIC plays an important role in 
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carcinogenesis.   PFOA has been shown to inhibit GJIC and induced hepatomegaly in rat 

livers [86].  As previously discussed the inhibition of GJIC in rats appears to depend on 

the activation of the ERK pathway.  In studies of human cancer cell lines GJIC was 

absent or decreased in all human cancer cell lines that were analyzed by Mesnil et al. 

[134] and was found to be decreased in human hepatocellular carcinoma tissues and cell 

lines by other investigators as well [135-137]. The inhibition of GJIC via ERK activation 

has been shown to be a key pathway of in human carcinogenesis [138].  The potential for 

cross-species effects of PFOA on GJIC was established in a study by Hu et al. where 

PFOS was shown to inhibit GJIC in rat liver tissue as well as dolphin kidney cells [139].   

The ability of perfluorinated chemicals to inhibit GJIC appears to be neither species- nor 

tissue-specific and can occur both in vitro and in vivo.  Currently studies evaluating GJIC 

inhibition by PFOA in human cell lines are lacking.  Future experiments, particularly 

with human cell lines, on the inhibitory effect of perfluorinated chemicals on GJIC are 

needed as this may be a plausible MOA for carcinogenesis in humans. 

 

4)  Estrogenic Signaling 

Although it was discussed previously that PFOA has been shown to promote liver 

tumors in fish that lack PPARα through disruptions in estrogenic signaling, more studies 

are needed to assess the potential for PFOA to mediate carcinogenesis through the 

estrogenic pathway in other species such as humans. A previous study in primates [140] 

did not find any evidence of PFOA increasing estrogen levels which would infer that the 

estrogenic pathway would not be likely involved in human hepatocarcinogenesis, 



36 
 

however studies involving human cell lines are needed to exclude estrogenic signaling as 

a plausible MOA for PFOA carcinogenesis in humans. 

 

5)  Immunomodulation 

As discussed previously PFOA and other PP chemicals do exert an effect on the 

immune system of study animals.  The mechanisms are not clear as to why these 

chemicals are able to modulate the immune system and more research is needed to 

determine the impact on the human immune system as there does appear to be 

considerable species variability in the degree of response. The fact that the 

immunomodulatory effects of PFOA can be present independent of PPARα activation 

would imply that it would be possible for PFOA to induce liver carcinogenesis in humans 

via these effects as well as in other tissues and warrants further investigation.  

 

6)  PPARα Agonism 

PFOA has been shown to act as a strong tumor promoter in rodent livers [141] as 

well as other PP chemicals [142].  The PP produced by PFOA, which is thought to be the 

result of PFOA binding to the PPARα, does not appear to be occur in human livers, as 

humans show little [140] to no evidence of PP.  This may be due to the lower PPARα 

expression found in humans compared to rodents as reported by Palmer et al. [143] who 

found a >10-fold lower PPARα DNA binding activity in human liver lysates than the 

levels found in mouse liver lysates.   There is also evidence that activation of the human 

PPARα receptor elicits a different response than activation of the mouse PPARα receptor.  

This has been demonstrated in studies using a PPARα humanized mouse in which 
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PPARα-null mice have been genetically manipulated to express human PPARα at levels 

comparable to the mouse PPARα found in wild-type mice. In these studies fibrates 

altered the expression of genes associated with lipid metabolism in both wild-type and 

PPARα-humanized mice, however these compounds did not induce the hepatocyte 

proliferation in the PPARα-humanized mouse that is observed in the wild-type mice nor 

did the compounds induce the liver tumor formation in the PPARα-humanized that is 

observed in wild-type mice.  This information reinforces the theory that the effects of 

peroxisome proliferators are species specific and the induction of liver tumors by PFOA 

due to PPARα activation is highly unlikely [73].                                                                                           

 

B.  Testis 

It has been shown that PFOA does exert an effect on human testicular function as 

evident in a study by Joensen et al. [144] that analyzed serum samples for levels of 10 

different PFAAs and reproductive hormones and assessed semen quality in 105 Danish 

men from the general population (median age, 19 years).  They discovered the presence 

of measurable quantities of PFOS and PFOA in all subjects with a median of 24.5 and 4.9 

ng/mL respectively. A significant decrease in semen production was found in men with 

high combined levels of PFOS and PFOA compared to those with low levels.  Men 

exposed to high combined levels of PFOS and PFOA were found to produce 6.2 million 

normal spermatozoa in their ejaculate in contrast to 15.5 million among men with low 

levels of these PP chemicals in their bloodstream.  Not only is it apparent that PFOA 

exerts an effect on testicular function but it is also plausible that the estradiol modulation 
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MOA for LCT formation seen in the rat exposed to PFOA may also be relevant in 

humans. 

   

1)  Estradiol Modulation 

The ability of PFOA to induce human LCTs via the MOA associated with 

increased serum estradiol and testicular growth factors discussed previously in rodents 

may be of relevance to humans.  Several authors have reported that estrogen receptor 

(ER) expression is present in the normal LCs of human adult testis [145-147] which 

indicates that these cells are a target for estrogens.  It has also been shown that the 

cytochrome P450 aromatase, an enzyme that catalyzes the androgen aromatization into 

estrogens, has been detected in Leydig cells of normal human testis [148], which further 

suggests that locally produced estrogens plays a role in steroid production and 

spermatogenesis [149].  A recent human study by Carpino et al. [150]  investigated the 

expression of aromatase and estrogen receptors (ER, ERβ1, ERβ2) in testes from two 

patients with LCTs. A strong immunoreactivity for aromatase, ERβ1, and ERβ2, together 

with a detectable ER immunostaining, was revealed in tumoral tissues. These findings 

were confirmed by Western blot analysis of tumor extracts. The pattern of ER expression 

in the LCT cells was also demonstrated to be different from that of control Leydig cells 

which exhibited only ERβ1 and ERβ2 isoforms. The results of this study reveals that it is 

plausible that high estrogen production could play a role in the neoplastic transformation 

of Leydig cells and the exclusive presence of ER in tumoral cells could amplify estradiol-

17β signaling contributing to the tumor cell growth and progression produced by PFOA. 
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C.  Pancreas  

The tumorigenic pathways of PACT induction by PFOA in rodents that was 

discussed previously in this review may not be relevant in humans as the expression of 

CCKA  receptors in humans are much lower than rodents with data indicating that human 

pancreatic acinar cells do not respond to CCK receptor activation due to an insufficient 

level of receptor expression [151].  A study of cynomolgus monkeys exposed to PFOA 

for 6-months did not produce any effects on CCK levels or evidence of cholestasis [140] 

and human epidemiological studies of CCK levels in employees exposed to high levels of 

PFOA did not reveal any increases of CCK levels in workers [152, 153].  These studies 

also imply a lack of CCK receptor expression in humans.  It is also important to note that 

the majority of human pancreatic cancers are of the ductal type and are not derived from 

the acinar cells [154] as found in the PACT that is produced in rodents exposed to PFOA.  

With the incidence of pancreatic cancer in humans increasing every year, it has now 

become the fourth leading cause of cancer deaths [155], the ability of PFOA to induce 

pancreatic tumors in humans may warrant further investigation as the exact mechanism of 

PFOA carcinogenesis is not known, however the PACT induced in the rat would 

probably not correspond to a significant cancer risk in humans.   
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V.  EPIDEMIOLOGICAL STUDIES 

 

The current epidemiological studies of the carcinogenic effects of human 

exposure to PFOA are inconclusive.  The current data is based on occupational studies 

most of which was conducted by the 3M company on male workers from their plants.  In 

a 3M mortality study, prostate cancer mortality was the only statistically significant 

association found for workers exposed to high levels of PFOA in the manufacturing 

process; however, this was not observed in follow-up studies that utilized more specific 

exposure measures [156, 157].  A DuPont study did reveal an increase in the incidence of 

kidney and bladder cancer [158], but this study included very little data on other variables 

such as exposure to other chemicals in the plant.  An epidemiological study by Olsen et 

al. [153] looking at hormone levels in exposed workers found estradiol to be the only 

hormone level increased in workers exposed to PFOA and this increase was found only in 

workers with the highest levels of PFOA in their serum.  As discussed in the pancreatic 

section previously, an epidemiological study was done on CCK levels in employees 

exposed to PFOA with no increase in pancreatic tumor formation found [152, 153].  

There is a pertinent need for collection and analysis of more human data regarding PFOA 

exposure as there is currently little epidemiological data available, most of which has 

been collected and analyzed by the industry that manufactures PFOA. 
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VI. DISCUSSION AND SUMMARY 

 

As previously discussed PFOA, can be detected in the entire population of the 

United States.  The EPA Science Advisory Board has reviewed the information that was 

available at the time, and suggested that the PFOA cancer data are consistent with the 

EPA Guidelines for Carcinogen Risk Assessment descriptor “likely to be carcinogenic to 

humans.”  On January 9, 2009, EPA’s Office of Water developed Provisional Health 

Advisories (PHA) for PFOA and PFOS to protect against potential risk from exposure to 

these chemicals through drinking water. Provisional Health Advisories serve as informal 

technical guidance to assist federal, state and local officials in response to an urgent or 

rapidly developing drinking water contamination. They reflect reasonable, health-based 

hazard concentrations above which action should be taken to reduce exposure to these 

contaminants in drinking water. The PHA values are 0.4 µg/L for PFOA and 0.2 µg/L for 

PFOS.  It is striking to note that the PHA value for PFOA in drinking water is 0.4 µg/L 

when the mean serum concentration in the US population was found to be 3.9 µg/L in 

2003-2004 [7] and 3.4 µg/L in 2006 [7, 159].  The EPA and the eight major companies in 

the industry launched the PFOA Stewardship Program in 2006, in which companies 

committed to reduce global facility emissions and product content of PFOA and related 

chemicals by 95 percent by 2010 and to work toward eliminating emissions and product 

content by 2015.  It is evident that the EPA and manufacturers of PFOA are in agreement 

that PFOA is a persistent environmental contaminant that poses a potential health risk to 

the human population.   

The pathways by which the tumor triad is produced by PFOA exposure in rodents 

is still not clear.  It is evident that PPAR agonism plays a role in liver adenomas yet the 
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MOA for tumor production in the rodent testes and pancreas is still unknown.  Although 

current data supports that the PPAR agonistic properties of PFOA may not be applicable 

to human risk, since humans show little PP, several additional rodent tumorigenic 

pathways presented in this thesis may be applicable to humans.  Current research 

supports that exposure to PFOA results in the generation of ROS in humans and ROS and 

oxidative stress have been shown to play a role in tumor production in humans.  PFOA 

has been shown to interfere with GJIC by inhibiting GJIC via the ERK pathway which 

has been shown to be a key pathway of carcinogenesis in humans.  The alteration of the 

immune system by PFOA appears to result in a weakened immune system.  A weakened 

or suppressed immune system has been associated with increased tumor development.  

Increased estradiol levels were found in an epidemiologic study by Olsen described 

previously in this thesis and PP chemicals such as PFOA have been shown to increase 

estradiol levels.  This modulation of estradiol has been demonstrated to play a role in LC 

tumor formation in humans. The activation of the CAR pathway by PFOA has also been 

discussed in this thesis and a subset of the human population that highly express CAR 

may be susceptible to tumor formation as a result of CAR activation by PFOA. It is 

conceivable that each of these pathways may represent pathways of PFOA carcinogenesis 

in humans.   

The global presence and environmental persistence of PFOA, combined with the 

long half life of PFOA in  humans (4.37 years [160]), warrants careful consideration as to 

the proper handling, use and disposal of this chemical.  With little epidemiological 

studies conducted, most of which have been performed by industries that manufacture 

PFOA,  and given that PFOA is accumulating in not only the occupationally exposed, but 
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also in the general population is of concern.  The ubiquitous presence of PFOA in the 

environment compounded with the possibility that viable carcinogenic pathways exist in 

experimental animals that are mirrored in human carcinogenesis reflect a need to further 

evaluate the carcinogenic potential of PFOA in humans and the need for continued 

epidemiological studies of the human population. 
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