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ABSTRACT OF THESIS 
 
 
 

PRECISION AGRICULTURE: REALIZING INCREASED PROFIT AND 
REDUCED RISK THROUGH COST MAP AND LIGHTBAR ADOPTION 

 
 
 

 This thesis examines the use of two specific types of precision agriculture 
technologies: cost maps and lightbar.  Cost maps visually depict spatial 
differences in production costs.  The visual depictions of these costs are 
represented using ArcGIS in an attempt to aide farmers in further decision 
making.  Results will show that cost maps have great possibilities in their addition 
to the set of tools that farmers use in decision making.  This thesis will expand the 
understanding of lightbar from a partial budget study to a whole farm model 
incorporating competition across different enterprises for labor and capital.  The 
results from the study of cost maps indicate that inaccuracy of machinery 
movement, whether in the application stage or the harvesting stage is very costly.  
As a result, the suggestion of lightbar as a guidance aide to improve farm 
profitability is recommended under the conditions analyzed and shows a net farm 
return increase in just over 6%.   
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Chapter One 
 

Introduction 
 

1.1 Introduction 
 
New opportunities and choices to make are brought before farmers every day.  

The goal of the farmer is to decide which of these opportunities will increase farm 

profitability as well as reduce risk.  In the early 1900’s, farmers were being introduced to 

the idea of tractors, whose initial efficiency on farms was still being decided.  

Applications which used the potential of tractors came only after users and manufacturers 

acquired experience with the new technology (Lowenberg-DeBoer, 1996).  The idea that 

it takes time and effort to realize the full potential of a concept is not new and is tested 

throughout this thesis.   

The study of precision agriculture and farm management practices will be the 

recurring theme throughout this thesis.  Precision agriculture can be described as 

information technology applied to agriculture.  Farmers have always known that certain 

parts of a field produce differently than others, but until precision agriculture came along, 

farmers lacked the technology to apply this knowledge.  The basis of precision 

agriculture is that it allows the study of fields on a much finer resolution.  This in turn 

provides opportunities for higher yields and/or lower costs.  Farm producers may have 

the opportunity to optimize production outputs with the application of technologies of 

precision agriculture.  Two separate technologies are studied in this thesis: Cost Maps 

and Lightbar.  The goal of the research is to analyze the application of cost maps and 

lightbar with the desired result of increasing net returns while decreasing risks. 
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The analysis of cost maps shows with a visual depiction that overlaps, misses, and 

reapplication of inputs to certain areas of a field may cost farmers more then they 

previously thought.  The suggestion is to use guidance aides such as lightbar to help 

reduce these costs.  Lightbar, which is not a relatively new topic in precision agriculture, 

is primarily studied from a partial budget approach.  The partial budget is a commonly 

used decision-making tool, which looks at incremental changes in the farm business 

(Forster and Erven, 1981).  This thesis extends previous partial budget studies into a 

whole farm model evaluation of lightbar and takes into consideration all costs, as well as 

competition across enterprises for labor and capital.  Both studies assess the relevance of 

individual precision agriculture technologies and their implications.  

1.2 Objectives of this Study 

 The objective of this study is to assess precision agriculture management practices 

to improve farm profitability as well as reduce risk, specifically, the practices of Cost 

Maps and Lightbar.  Each practice is written as an individual article that is relevant to 

precision agriculture but represents a self contained paper.  This is referred to as a 

‘multiple journal article’ approach.  The approach to a thesis with multiple journal 

articles provides more opportunities to the writer.  After the completion of one 

manuscript, attempts can be made to publish the work while still continuing on the other 

manuscript.  This not only allows the writer to work more fluidly but also allows 

introduction into the world of publications and conferences.  This approach however, 

does present the potential for repetition between chapters.   

 When deciding how much output to produce a farmer will consider where 

marginal revenue equals marginal costs.   Farmers have been able to study marginal 
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revenue in precision agriculture with the aid of yield maps and have begun to evaluate 

marginal costs by looking at single inputs.  An example of a single input may be 

fertilizer.  While yield is a good representative of marginal revenue, a single input such as 

fertilizer alone is not complete enough to comprehensively evaluate marginal costs.  To 

be more inclusive other variables such as labor, machinery repair, and fuel input need to 

be included.  With consideration of these additional variables a more complete 

assessment of marginal costs is available to farmers.  This increases the accuracy in 

which the farmer is able to equate marginal revenue to marginal costs.   

 The objective of Chapter 2 is three-fold.  The first objective is to develop spatial 

production cost maps. The second objective is to demonstrate the utility of production 

cost maps using empirical input functions.  The third objective is to discuss the potential 

uses of production cost maps.  Suggestions for management opportunities in this chapter 

include to the use of guidance aides such as lightbar.   

 The technology of lightbar has been applied and analyzed under enterprise partial 

budgets and has demonstrated to be profitable.  Expanding the study of lightbar 

technology to the whole farm is the next logical step for evaluation.  This expansion in 

Chapter 3 takes into consideration interactions between different enterprises of single 

cropped soybeans, corn, wheat and double cropped soybeans and wheat including the 

competition across enterprises for land, labor, and capital.  The most profitable 

combination of competitive enterprises can be determined by comparing the output 

substitution ratio and the output price ratio.  With a whole farm study, the comparison 

between the output substitution ratio and the output price ratio reflects the most profitable 

combination of competitive enterprises allowing for selection of variable planting dates 
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and enterprise mixes.  This improves on the partial budgeting framework of lightbar 

where changes of production practices or dates do not encompass all the costs/benefits of 

lightbar.  The objective of Chapter 3 is to expand the partial budget framework of lightbar 

analysis into a whole farm planning approach, which will take into account interactions 

between different enterprises. This will include the competition across enterprises for 

land, labor, and capital.  With lightbar becoming more prevalent in the Ohio Valley 

region, farmers need to see statistics on how it can affect them, and their whole farm.  

Partial budgeting does not take into consideration all the costs/benefits that lightbar has to 

offer and therefore does not give a complete understanding.  With this study the costs and 

benefits of lightbar will be evaluated for farmers of all types and sizes.   

  

 

 



 

Chapter Two 
 

Production Cost Maps as a Tool for Improved Farm Management 
 

2.1 Introduction 

Technology is constantly evolving with respect to production agriculture.  

Precision farming technologies have been increasingly recognized for their potential 

ability for improving agricultural productivity, reducing production cost, and minimizing 

damage to the environment (Zhang et al., 1999).  Advances in machinery that include the 

ability to accumulate detailed crop production data and advances in analytical tools to 

distill these data into performance metrics are changing the way these businesses are 

managed.  For many years, farmers have benefited from the use of yield monitoring data 

in making management decisions.  Since the late 1980s, technology for yield monitoring 

and accurate positioning has been available with the expansion of application since the 

early 1990’s (Cook and Bramley, 1998). The basis of precision agriculture is the 

opportunity yield monitoring affords in the provision of spatially detailed information in 

management when coupled with appropriate methods and analysis. One could simply say 

this is essentially the application of information technology to agriculture.   Relevant 

expansion of yield maps includes the concept of creating net returns maps to provide an 

economic perspective to spatial data.  What seems to be lacking is a reflection of detailed 

cost differentials.  While spatially dependent cost data associated with variable-rate 

management of crop production inputs may be considered, differences in machinery 

operating costs and operating capital costs across the field are generally not depicted in 

these maps.  This study focuses on the usefulness of analyzing variable costs associated 

with production.   
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The targeted area for this research will be to identify the usefulness, importance, 

and relevance of spatial production cost maps as another tool to guide producers in 

achieving optimal profitability.  Specifically, there are three objectives: 1) to develop 

spatial production cost maps, 2) to demonstrate the utility of production cost maps using 

empirical input functions, and 3) to discuss the potential uses of production cost maps.  

The study will include typical farms from Western Kentucky and will also apply 

to farms of various soil landscapes.  Machinery operating costs will vary in accordance 

with the spatial variation in ground speed and field efficiency, which are major factors in 

machinery operating costs.  For example, slowing down a tractor when making turns or 

speeding up a combine in areas of low yields results in the spatial variation of fuel, labor, 

and other machinery operating expenses.  Ultimately, these variations will be reflected in 

the production cost maps, and subsequently, more accurate net returns maps will be 

possible.  

2.2 Background Information and Literature Review 

With the advances of technology and a fast paced economy, precision agriculture 

is on the forefront of farming.  Precision agriculture may be viewed as site specific crop 

management.  Cook and Bramley (1998) refer to precision agriculture as crop 

management methods which recognize and manage spatial and temporal variations in the 

soil-plant-atmosphere system with the objective of improving control of input variables 

to increase profitability, reduce environmental risk and improve product quality.   The 

practice of precision agriculture may be viewed as four stages of information acquisition, 

interpretation, evaluation, and control (Cook and Bramley, 1998).  This four-stage cycle 

of precision agriculture begins with data collection.  Variable inputs are applied in field 
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operations which are then interpreted and evaluated with respect to economic and 

environmental impacts.  This evaluation becomes a part of the data collection process in 

subsequent years, refining the precision management plan.  System and technological 

applications are essential for efficient data collection and analysis.   

Yield mapping is one application of data analysis where the process of 

observation, interpretation, evaluation and implementation can be applied.  “The yield 

map intensifies observation, but benefit follows implementation which can only improve 

after the observation has been interpreted and evaluated by the decision maker” (Cook 

and Bramley, p. 754, 1998).  Interpretation describes the perceived likelihood of possible 

events, given information contained within the map.  The decision maker evaluates the 

likelihood of alternative outcomes to determine if an alternative decision or action should 

be implemented.   Although yield mapping provides valuable information pertaining to 

marginal revenue, a complimentary analysis of marginal cost needs to occur.  Marginal 

revenue and marginal cost may be affected by uncontrollable risks. 

Reduction in government price supports, weather variability, and other 

uncontrollable environmental factors such as insect and disease infestation contribute to 

the increased concern of risk management. It is hypothesized by Lowenberg-DeBoer 

(1999) that precision agriculture technologies are useful in risk reduction.  The 

application of such technologies provides producers with more and better information 

and increased control of crop growing conditions.   Lowenberg-DeBoer focused on site 

specific treatment of problem areas to reduce the probability of low yield and returns.  

Empirical evidence was provided to support the hypothesis.  He further concluded that 

“empirical work, especially on-farm trials, is needed to determine the potential for 
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widespread risk management benefits from precision agriculture technology.” (p. 284, 

1999)   

Companies new and old are investing time and money into precision agriculture 

technology products and tools.  As a result, markets have shown a decrease in price and 

an abundance of precision agriculture hardware.  Farmers are constantly bombarded with 

articles and advertisements that show the benefits of different applications where 

precision agriculture has been implemented.  With all these tools at reasonable prices, 

precision agriculture hardware sounds like an easy purchase, but there is more to 

precision agriculture than just buying the tools.  Along with economic theory, farm 

management techniques need to be applied before the tools of precision agriculture can 

be evaluated for profitability.   

Site specific application of agricultural technology and inputs may be 

implemented by dividing the field into smaller management zones.  A management zone 

is defined as a portion of the field differentiated from the rest for the purpose of receiving 

specific inputs and management attention (Kvien and Pocknee, 2006).  By this definition, 

different management zones may exist for different input purposes and analysis.  There 

are no set rules or processes for the establishment of management zones.   Zones are not 

solely functions of the field’s physical properties, but may also be a function of the input 

(Kvien and Pocknee, 2006).  The quality of the zones will depend on the skills and 

resources available and the nature of the field being mapped.  If there are insufficient 

skills or tools available, or if the field is complex, the utilization of management zones 

may not be effective.  One simplistic approach would be to begin by defining areas that 

would obviously benefit from differential management.  After identification of this area, 
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one could establish yield goals for the zone.  Inputs and technology can be applied to the 

mapped area with yield analysis.  Monitoring the performance of the individual zones 

over time can foster an understanding of the dynamics of the inputs and allow for 

modifications or replications of the process to other similar zones.  

Because cropland is not spatially homogenous, precision farming techniques of 

sampling, mapping, analysis, and management of production areas with recognition to 

spatial variability is necessary and beneficial.  Obtaining and applying spatially refined 

information presents a farmer with potential cost benefits.  For example, the spatial 

character of the field may vary within an existing mapped area.  This may result in a 

varied fertilizer application, variations in labor, fuel requirements, and other variable 

costs.  Considering spatial differences, there may be the ability to control some of the 

cost variances by calculating areas of efficient applications as compared to areas of less 

efficient applications.  Forecasting the effect of increased adaptation and technological 

advances or approaches on the cost of realized application surfaces is a task that is yet to 

be elaborated (Weiss, 1996).  In spatial machinery costs research is also a vital tool for 

farm management.  Traditionally, farmers have projected machinery costs based on total 

field application needs. The application of spatial machinery costs would allow for 

detailed data.  That detailed data contains within it an approximation of a thorough 

section by section analysis.  Now, instead of associating the aggregate cost of operations 

with a certain field, these costs can be depicted spatially as defined polygons.   

Similar, but not equivalent, research has been devoted to the field of spatial data.  

Many of these studies have focused on analyzing data associated with yield as well as 

field efficiency.  A paper written by Zhang and Taylor (2002) describes field efficiency 
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as accounting for “a failure to use the theoretical working width of a machine, operator 

habits, turning time, and field characteristics” (p.887).  Their objective was to use 

differential global positioning system (DGPS) data to evaluate the potential for 

improving harvest efficiency and capacity.  With spatial cost in mind, these researchers 

were striving to improve field efficiency.  Conclusions from their research suggested 

optimal field traffic patterns were a key to increasing field efficiency.  The idea for an 

optimal path to increase field efficiency is an underlying idea of this papers’ research, as 

well. 

Where past studies focused mainly on the field efficiency as well as yield 

implications, this study looks at the cost implications of the data.  Costs are associated 

with every aspect of farming, and with the technology available today, those costs can 

now be presented in the form of a color coordinated map.  The maps are a fast and 

effective way to present a large amount of data in an understandable manor.  

Geographical information system (GIS) software allows for computer mapping of 

inputs.  A GIS is a set of computer tools that allows one to work with data that are tied to 

a particular location or spatially mapped area on the earth.  A GIS is a database that is 

specifically designed to work with map data (Price, 2006).  This allows for multiple 

detailed data to be graphically depicted on a map and utilized for decision making.  

Farmers have long since utilized maps for data collection and decision making.  

However, the difference with applying the advanced technology of GIS is that the GIS 

map exhibits “intelligence” where you can ask a question and get an answer.  GIS 

technology application is influencing decision making because it avoids the shortcomings 

of traditional maps, allows for the rapid computer analysis, and applies sophisticated data 
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structures.  GIS technology application also efficiently represents the vastly 

comprehensive detailed environment (Kennedy, 2006).  There are many GIS applications 

available for agricultural use.  ArcGIS is developed and marketed by Environmental 

System Research Institute, Inc. (ESRI).  ArcGIS is the application that is used to evaluate 

data for this study.  As with most computer applications, improvements and 

enhancements to the program are embodied in new versions.  GIS is possibly in the 

infancy stage of being accepted from a business application. 

The term risk refers to the variability of the outcomes of some uncertain activity. 

The development of risk maps allow for a visual depiction of predicted risks.  

Incorporating risk maps into the decision making process allows for identification and 

management of problem areas or a comparison of production areas.  Management of risk 

may directly impact net returns.  

A previous study using ArcGIS used collected data to develop and analyze risk 

maps.  An initial focus on net returns map were presented, these maps were shown to be a 

profitable tool for farmers to use.  “However, the positive net returns were found to not 

imply a lack of risk” (Powers, et al., 2003).   Risk maps were generated to identify 

changes in temporal risk by combining yield monitor data with expenses.  Parts of the 

risky field were suggested to be enrolled into the Conservation Reserve Program (CRP) 

as applicable.   

Additional research utilizing risk maps has been presented to Kentucky farmers 

through the Kentucky Cooperative Extension Service.  These risk maps, specifically E-V 

maps, of net returns considered areas of non production.  These areas of non production 

were also recommended to be enrolled in the CRP program.  Statistics were calculated 
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for four risk aversion levels and found to have a tradeoff between net returns and risk.  

The tradeoff was found to be that when risk was decreased, expected net returns were 

also decreased.  As producers became more averse to risk, more land was removed from 

production (Dillon, et al. 2007).   

2.3 Material and Methods 

During the 2006 cropping season, data was collected from a grain farm in Central 

Kentucky.  The cooperating farmers, Mike, Bob and Jim Ellis of Worth and Dee Ellis 

Farm, have utilized some form of precision agriculture technology since 1995.  

Throughout the 12 year association of the Ellis Farm with the University of Kentucky the 

operators have been introduced to, and adopted, numerous precision agriculture 

technologies including: boundary mapping, grid soil sampling, yield monitoring, variable 

rate application (VRA) fertilizer and lime application, parallel tracking, and automated 

guidance.  All of these technologies are utilized in their 2500 ha (6000 ac) grain 

operation.  The fields which are small and irregularly shaped are a somewhat unique 

characteristic to Central Kentucky.  The average field size in the Ellis operation is just 

over 10 ha (25 ac).  When approached regarding the possibility of aiding in research 

associated with cost maps, the farm operators immediately assisted.  Data was given on 

field 38 of the Ellis operation which is a 15.6 ha (38.5 ac) field located in Shelby County 

Kentucky.   

The Ellis operation, with its well maintained record keeping system, was able to 

provide data on fertilizer, planter, yield and sprayer applications for multiple fields.  This 

paper concentrates on the sprayer application data for field 38.  The application was 

administered by a 1994 model AgChem RoGator 664 self-propelled sprayer with a 24 m 
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(80 ft) wide boom.  This particular sprayer was equipped with KEE Technologies (KEE 

USA, Sioux Falls, South Dakota) ZYNX X15 Multi Functional Console and 30 channel 

Auto Section Control unit (Spray Electronic Control Unit).  A total of 48 nozzle bodies, 

spaced 50 cm (20 in.) apart, were fitted to the spray boom.  Each channel of the Spray 

ECU was mapped to one or more of the 48 nozzles through software and by hardwire on 

the machine to supply current for nozzle valve activation.  The Spray ECU was also 

connected to the flow meter and hydraulic flow control valve at the pump to facilitate 

control of spray application rates.  A Trimble Navigation, Ltd. (Sunnyvale, California) 

AG 132 Differential Global Positioning System (DGPS) receiver with U.S Coast Guard 

radio beacon correction was utilized to obtain positioning information at a rate of 5 Hz 

for input to the ZYNX system.  The radio beacon tower was located less than 40 km (25 

mi.) from the farm thereby insuring sub-meter horizontal accuracy for most field data 

collection activities, which relates to a high level of accuracy (Shearer et al., 2006).  

Figure 2.1 shows the sprayer and modifications applied. 

Data collected are stored in ASCII format on individual lines with corresponding 

geographic coordinate pairs in a Universal Transverse Mercator (UTM) projection.  

These data files were imported as text files into an Excel spreadsheet for analysis.  After 

transferring the data into Excel the first step was to convert the GPS seconds into the 

change of seconds from one point to the other.  Data collected from the sprayer indicated 

when the machines nozzles were turned off by a discontinuity of logged data.  These 

discontinuities in the data, which indicate non-application, were assumed to be the 

turning of the machine at the end or a row or maneuvering around an obstacle in the field.  

Although the machine was not applying during those times, it was still accruing variable 
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costs in the form of labor, fuel, maintenance, and lubrication.  Sensitive to the fact the 

variables still needed to be accounted for, the change in time from the end of one row to 

the beginning of the next was divided by the number of observations from the previous 

pass and distributed equally to each point’s initial change in seconds.  This redistribution 

of time encompasses the whole aspect of variable costs associated with the sprayer.   

The second step to be addressed was that of determining how much input at each 

given point was being applied.  To do this, calculations were made to convert a 30-bit 

binary value which communicates the state (“on” or “off”) of each sprayer channel into 

workable data.  This data was then used to calculate how much area of application each 

channel covered for a given point.  The area, combined with the input price of 

glyphosphate, was then related to the variable cost associated with the input.  Input prices 

were set at a base price of US$7.74 with an application rate of 1.76 liter ha-1.   

The next step, was to take into account the variable costs associated with labor, 

fuel, maintenance, and lubrication.  These data were taken from the Mississippi State 

Budget Generator (MSBG) version 6.0.  The MSBG used data relevant to the year 2007 

and was last updated in January 2007.  Data taken from the MSBG included labor, fuel, 

maintenance, and lubrication costs of a generic sprayer of similar specifications in US 

dollars per second.  The US dollars per second were then converted into US dollars per 

hectare, consistent with all other costs being analyzed.   

Finally, all of the data were then converted into a DBF format which is readable 

by the program ArcGIS.  ArcGIS is an integrated collection of geographic information 

system (GIS) software products for building a complete GIS.  Within ArcGIS, each data 

point was plotted onto a map.  Different layers were generated to represent costs 

-14- 



 

associated with the sprayer and subsequently the development of a map representing the 

total variable cost as shown in Figure 2.2 through Figure 2.5.  

2.4 Results and Discussion 

The cost maps indicate that the irregularly shaped field 38 had a relatively evenly 

distributed cost associated over the aggregate.  There were however, some passes in the 

field where costs jumped dramatically.  These jumps in cost are highly correlated with 

the increased time that was spent between the time the sprayer was turned off and then 

back on.  In making turns, the sprayer was recorded as being turned off for over 3 

minutes on some passes.  No matter how long the duration, each change in time from the 

end of one row, to the beginning of the next, was divided by the number of observations 

from the previous pass and distributed equally to each point’s initial change in seconds.  

This method, which is different from uniform machinery cost allocation, ensures that 

every second was accounted for in the calculation of variable costs and allocated 

accordingly.  In essence, every second had to be accounted for, so the accumulation of 

seconds represented in the data at the end of one pass were distributed evenly to every 

point in that pass.  While this approach more effectively represents the data it has the 

possibility of overestimating the cost for certain rows where the change in seconds was 

great.  By looking at Figure 2.2 through 2.5 it is apparent that the input cost and total 

variable cost have similar fluctuations in price over the whole field whereas; the repair, 

fuel, and lubrication costs have similar fluctuations in price for only the points of highest 

cost.  Seeing as how both repair and fuel costs are primarily changed due to the amount 

of time spent at each given point whereas the input costs are related to time and amount 

of input applied, the fuel and repair cost maps are similar.  High cost values for certain 
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areas could have been influenced by clogs in the sprayer applicators, time efficiency of 

machines, or by certain path selections. 

When looking at the descriptive statistics within Figures 2.2 through 2.5 certain 

concerns arise.  The maximums in the case of fuel, repair and total variable cost show 

evidence of positive outliers.  Further data analysis was done to remove less than 50 of 

these outliers, which in turn showed no major changes to the cost maps or the information 

presented.  While the removal of the outliers represented a more relevant data set, the 

calculation of the Total Variable Cost (TVC) mean was found to be somewhat higher 

than that of other enterprise budgets used for comparison.  This somewhat higher mean of 

the TVC is likely due to the change in performance rate.  When looking at the product of 

speed, width, and efficiency there are expected differences between this study and the 

studies used for comparison.  What was not reflected in the compared data set was the 

irregular shape of this specific field which alters speed and efficiency.   

The difference between the compared enterprise budget and this study, such as a 

higher TVC mean, highlights a need for farmers to be careful in relying strictly on pre-

constructed enterprise budgets.  Although they are relatively easy to acquire from 

different University’s and give good guidelines, pre-constructed enterprise budgets are 

not an accurate representation for the data collected from the Ellis operation.  

With the data presented, the Ellis Farm managers might consider upgrading filters 

on their sprayers and/or changing their path selection for machine operations.  The 

efficiency of the operator is apparent to have cost effects.  Utilizing guidance aides such 

as lightbar decreases the amount of skips and overlaps which in turn decrease the cost 

associated with each point.  Although these are just a few suggestions, with the cost maps 
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as an additional tool, the Ellis Farm will be better able to analyze how much money is 

being spent spatially on each field.   

2.5 Conclusion 

Cost maps have great possibilities in their addition to the set of tools that farmers 

use in decision making.  Even though there are still some adjustments that could be made 

to increase the accuracy of cost maps, they provide a visual depiction of the variable cost 

associated with each point of a field for a given machine.  The new visual depiction that 

cost maps offer farmers shows with great detail and simplicity the high cost areas.  These 

visual depictions can aid in management decisions such as changing the machinery 

optimal path selection or selecting areas of the field that may be removed from 

production based on the realization of elevated cost in this area.   Analysis of the cost 

maps demonstrates areas of potential production or non production as well as potential 

for enrollment in the Conservation Reserve Program.  One goal of the Conservation 

Reserve Program is to offset erosion in areas that have high potential for soil loss.  This is 

accomplished by removing these areas from production and offering financial incentive 

to do so, thus offsetting economic loss in these areas (Stull et al., 2000).  These identified 

areas are referred to as buffer strips.  While it may seem desirable to enroll specific costly 

areas as buffer strips in CRP, there are established criteria and guidelines set forth to be 

met to qualify for monetary payments.   

Analysis of the cost maps also allows for visual identification of problems which 

could result in higher costs.  One example of this could be operator time spent away from 

the machine i.e. going to use the rest room or to break for lunch, resulting in continually 

increasing costs.  Another example is the realization of the impact of annual calibration 
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or the lack of annual calibration of equipment effecting efficiency, which could be 

attributed to extra time for field calibrations.   

The next step in this study is to generate cost maps for each different machine 

used on field 38 and compare the statistics.  It is possible that with further study it will 

become evident that certain areas of the field should be removed altogether.  Implications 

may suggest that alternative paths for application have the possibility to decrease the 

costs. 
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Figure 2.1: RoGator 664 self-propelled sprayer with 24 m boom and map-based single  
nozzle control system. 
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Figure 2.2: Field 38 Fuel Cost Produced in ArcGIS 
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Figure 2.3: Field 38 Input Cost Produced in ArcGIS 
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Figure 2.4: Field 38 Repair Cost Produced in ArcGIS 
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Figure 2.5: Field 38 Total Variable Cost Produced in ArcGIS 

 

 



 

Chapter Three 

A Whole Farm Modeling Approach to Evaluate the Profitability of Lightbar 
Technology 

 
3.1 Introduction 

Managing a farm is extremely complex and encompasses an environment of 

multiple risks (Pannel, 1996).  The passage of the 1996 Farm Act as well as the 2002 

Farm Bill, with less government intervention, heightened the need for risk analysis and 

risk management.  Managing agricultural risk does not necessarily allow for avoidance of 

risk, but involves the best available combination of risk and return (Hardaker et al., 

2004).   

The historical farm management based on judgment, guesses, hunches, and 

outside advice remains valuable but should no longer be the primary focus.  The whole-

farm model provides a framework for analysis of global aspects impacting the 

management decisions of economic and yield outcomes.  This framework allows the 

consideration of both economics and technology with a resultant impact on profitability.  

The whole-farm model incorporates competition across different enterprises for land, 

labor, and capital. 

Today’s farm managers need to be able to adapt to changing situations.  Farm 

managers realize that when new technologies emerge into the agriculture community they 

have a decision of when or if to adopt it.  Early adoption has potential for larger gains or 

losses; whereas later adopters may benefit from the experience of the early adopters, 

potentially experiencing less risk. 

Farmers are continually looking for ways to improve the profitability of their 

farm.  One such way is to avoid lost production associated with unintentionally barren 
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land, while another way is to avoid costly overlaps in input applications.  To achieve this 

goal, farmers have looked towards technology, specifically lightbar technology. Lightbar 

technology has been around long enough where adoption would not be considered early 

at this stage.  Even though lightbar has proved to be profitable with farmers of the past, 

there are still farmers that have not realized the potential gains that could be acquired 

from utilizing this current technology.   

The main function of lightbar is to assist the machine operator in driving.  

Lightbar gives a visual guide that changes colors as the operator veers off the desired 

path.  Previous technologies were developed with the idea of achieving the same goal, for 

example, planter markers and foam markers.  Both of these previous technologies are 

becoming shadowed by lightbar and its effectiveness in improving farm profitability.  As 

a result, foam and planter markers are becoming an obsolete technology.     

Many of the initial studies associated with lightbar have relied upon partial 

budgeting.  Partial budgeting is a great place to start when trying to evaluate the initial 

economic benefits; however, that is only the first step.  Partial budgeting estimates the 

change in income and expenses as a result of one proposed change in the current farm 

plan (Kay, Edwards, and Duffy, 2004).  This study expands the partial budget framework, 

which only looks at one instant in time, into a whole farm planning approach which takes 

into account interactions between different enterprises. This includes competition across 

enterprises for labor and capital.  As an important variable in the farmers’ equation, 

researchers must assess the economic feasibility of a new technology, such as the 

utilization of lightbar, for the benefit of farmers, and other stakeholders.  A whole farm 

model approach provides for a greater detailed analysis with consideration of the multiple 
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variables which have an impact on the decisions made by farm managers.  The whole 

farm model encompasses interactions between enterprises which is not considered in 

partial budgets and could result in sub-optimal management decisions.  This study will 

examine the effects of lightbar technology under a whole farm model for a more 

encompassing view of the overall benefits it provides.   

3.2 Literature Review 

There are risks in agriculture familiar to any business as well as risks unique to 

the agricultural industry. Understanding risk is a beneficial starting place to aide farmers 

in making management choices where adversity and loss are potential outcomes.   

Common business risks include human or personnel, financial, institutional and 

price or market risks.  An additional risk unique to agriculture is yield risk.  Yield could 

be impacted by weather as well as application and harvesting errors resulting in reduced 

yields.  Production or yield risks are relatively high in agriculture due to the many 

uncontrollable natures of agriculture.  Variation in temperatures, rainfall, and, insects and 

diseases are among the most prevalent factors.  Technology can play a key role in the 

yield production risks. Harwood et al., (1999) acknowledge that farmers vary in their 

attitudes toward risks and risk management.  Risk management cannot be a one size fits 

all approach and requires choosing among alternatives to reduce the effects of the various 

risk types.   “While farmers have different willingness and ability to bear risk, most are 

willing to sacrifice some level of mean or expected profit to reduce the risk” (Dillon, 

2003, p.416).  As risk is a factor essential to this study, it was determined that the whole 

farm model rather than the partial budget model was selected allowing for a more 

complete analysis.   
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A partial budget model applies one aspect of change to the estimated changes in 

income and expenses.  Partial budgeting is an economic analytical tool in which one can 

focus on only changes made to an existing system (Dillon,2003).  The limitations of 

partial budgeting are (1) comparison of the present management plan with one alternative 

at a time, (2) multiple budgetary applications are required to analyze various alternatives 

which may be time consuming, (3) interactions across enterprises for labor and capital are 

not accounted for, and (4) the consideration of risk is not accounted.  Partial budgets are 

incomplete as they fail to consider specific issues, including whole farm interactions and 

risks.  For example, the feasibility of performing all necessary machine operations for the 

entire acreage being produced under various weather conditions is excluded in an 

enterprise partial budget analysis.  “Thus, it is possible for maximizing the profit for each 

enterprise will not maximize the profit for the overall farm operation “(Dillon, 2003, 

p.414). 

The whole farm model is an outline or summary of the type and volume of 

production for an entire farm.  This application can be designed for a specific time frame 

with the consideration of changes and their impact on the entire operation.  Risk exposure 

can be identified with this model with the application of (1) goal setting, (2) physical, 

financial and human resource assessment (3) enterprise and technical coefficient analysis 

(4) identification of a recommended plan and (5) identification of budgetary expenditure 

(Kay et al., 2004).    

Precision farming may seem to be a relatively new term, but the concept is well-

established.  Precision farming can be defined as “a philosophy of farm operation and 

management that used both agronomic data and modern technology to maximize the 
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efficiency of the agricultural production system” (Ima and Mann, p.2).  Higher yields, 

reduced inputs and lower risk have been the primary objectives of farmers employing 

these technologies.  Because of further advancing technology, farmers now have the 

ability to use components of guidance systems such as computers, global positioning 

systems (GPS), and lightbars in their farming operations.   

There are two classifications of guidance systems for agricultural production: 

autonomous systems, and guidance aides.  The intent of the autonomous system is to free 

up the operator of the machine from the guidance task and thus improve operating 

efficiency.  Guidance aides are devices that provide guidance information to the operator 

and still require the operator to fully control the machines operations.  Kaber and Endsley 

(1997) contend that critical issues exist with autonomous systems with “out of the loop” 

performance or the lack of an operator.  Concerns with autonomous systems are related to 

the loss of situational awareness and operator failure in regards to assessing situations 

and making needed changes, over the trust placed in computers may lead to negative 

impacts.  Guidance aide systems in which the level of automation is blended with human 

operator and computer control are advantageous and may lead to cost reductions.  

The term guidance aide refers to “devices that provide guidance information to 

the operator but do not attempt to replace the operator” (Ima and Mann, p.2).  Historically 

farmers have turned to the use of guidance aides to assist in maximizing production; 

using simple guidance aides such as flags, stakes, fence posts, and foam markers to 

reduce guidance error. One of the most broadly adopted and more recently developed 

methods to reduce guidance error is the lightbar technology.   
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The main function of lightbar is to assist the machine operator in driving; thus 

decreasing operator fatigue and minimizing application errors of overlaps and skips.  The 

term ‘lightbar’ refers to a monitor which is a plastic case with a row of light emitting 

diodes (LEDs) inside it (Figure 3.1).  “Most lightbar systems include a Differential GPS 

(DGPS) receiver and antenna, some kind of computer or microprocessor, and a lightbar 

or graphics display” (Stombaugh, p.1, 2002).  The LEDs are positioned to the right and 

left of a center position.  When driving corrections need to be made, the LEDs will flash 

or illuminate on the side in which the driver needs to turn.  In this way, the driver has a 

constant visual representation of where they need to be in order to reduce overlaps and 

misses.  A visual depiction of a lightbar is shown in Figure 3.1. 

Lightbar is one of the most recent technologies that is replacing foam markers.  

Foam markers are used by farmers by dropping a foam blob from the end of an applicator 

boom, or sometimes the center of the applicator when booms are not utilized.  After the 

foam blob is deposited on the field, the operator uses it as a visual indicator to know 

where the applicator has passed (Grisso and Alley, 2002).  There are several reasons why 

lightbar is replacing foam markers:  

“lightbar is more reliable and more accurate than foam markers, lightbar allows  
accuracy at higher speeds, lightbar is a possibility with spinner spreaders, lightbar  
is easy to use, lightbar provides effective guidance over growing crops, lightbar  
allows operation when visibility is poor, lightbar is less affected by weather, and  
lightbar has lower recurring costs” (Buick and White, 1999, p.425).   
 
Based on identified advantages of lightbar technology over other technologies, 

studies have been done to see what effect it has on farms’ profitability as determined with 

partial budgeting.  A study from Purdue University addressed the economic feasibility of 

lightbar, as well as other technologies, using a partial budget in a linear programming 
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model (Griffin, Lambert, and Lowenberg-DeBoer, 2005).  Griffin indicates that lightbar 

is commercially available and promises increased efficiency of field operations.  Five 

scenarios were compared in the study: (i) a baseline scenario with foam, disk or other 

visual marker reference, (ii) lightbar navigation with basic GPS availability (+/-3 dm 

accuracy), (iii) lightbar with satellite subscription correction GPS (+/-1 dm), (iv) auto-

guidance with satellite subscription (+/-1 dm), and (v) auto-guidance with a base station 

real time kinematic (RTK) GPS (+/-1 cm).  The returns from each scenario were then 

compared over incremental management scenarios (Griffin, Lambert, Lowenberg-

DeBoer, 2005.).  Initial results showed that adding lightbar with 3 dm accuracy increased 

the contribution margin by US$4,895 or US$4.03 ha-1.  Next a partial budget was created 

from the linear programming (LP) results.  Assumptions were made about useful life, 

discount rate, and salvage value, with each assumption holding great implications on the 

calculated results.  The results showed that lightbar was profitable when no land was 

added as well as when land was added.  The adoption of lightbar depended on cost and 

availability of capital and labor, as well as potential for farm expansion; consequently, 

the results may vary depending on location of the study.   

The study conducted by Griffin, Lambert, and Lowenberg-DeBoer was an 

excellent starting point that encompassed many different variables.  Where their research 

is lacking though is the analysis of lightbar in a whole farm model.  Although 

considerably more time consuming, the idea of interactions between different enterprises 

and the competition across those enterprises for labor and capital are realized and 

accounted for in a whole farm model.  This study improves on past studies by 
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incorporating multiple enterprises, risk, and the idea of competition for labor and capital 

between those enterprises.   

3.3 Data and Methods 

The whole farm model for evaluating the profitability of lightbar technology is 

essentially a resource allocation model.  This classic linear programming involves the 

allocation of an endowment of scarce resources among a number of competing products 

so as to maximize profits (McCarl).  The model depicts a hypothetical Kentucky crop 

producer on a loamy soil in Henderson County, located in the Ohio Valley region of 

Kentucky (Dillon, 1999).     

The expected value-variance (E-V) model, originally motivated by Markowitz, 

states that decisions are made using the mean and variance of net returns, preferring a 

higher mean and lower variance.  This realization came after Markowitz observed that 

investors only placed a portion of their funds in the highest-yielding investments.  After 

noticing this, Markowitz argued that “an LP formulation is inappropriate since an LP 

would reflect investment of all funds in the highest yielding alternative” (McCarl, p.373).  

To incorporate lightbar the specific E-V model is modified from Dillon’s (1999, p.251-2) 

model and shown below: 
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where activities include: 
 
              =Y expected net returns above variable cost (mean across years) 
           net returns above variable cost by year (net returns) =YRY
    production of enterprise E of variety V with a plant population P under   =SPVEX ,,,

                     sowing date S in acres 
=YRCSALES , bushels of crop C, sold by year  

  purchases of input I =IPURCH
 
constraints include: 
 

(1) Land resource limitation 
(2) Labor resource limitations by week 
(3) Sales balance by crop and year 
(4) Input purchases by input 
(5) Profit balance by year 
(6) Expected profit balance 
(7) Rotation limitations 

 
coefficients include: 
 
                                =φ Pratt risk-aversion coefficient 
                              Price of crop C in dollars per bushel =CP
                             Price of input I =IIP
               Multiplier representing area planted without lightbar = 1 and =EXPYLDLB

   with lightbar = 1.02 as discussed below 
     Expected yield of crop C for enterprise E of variety V planted in  =YRSPVECEXPYLD ,,,,,

population P planted on sowing date S in bushels per acre for  
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year YR 
          Multiplier representing requirement of input under production =REQLB

   without lightbar = 1 and with lightbar = .98 as discussed below 
          Requirement of input I for production in row and plant spacing P   =PIREQ ,

in units per acre 
                      Multiplier representing labor requirements under production  =LABLB

      without lightbar = 1 and with lightbar = 
9.
85.  as discussed below 

       Labor requirements for production of enterprise E planted on  =WKSELAB ,,

   sowing date S in week WK in hours per acre 
               Multiplier adjusting available field days to reflect a 13 hour day  =FLDDAYLB
      with lightbar and a 12 hour day without as discussed below 

    Available field days per week =WKFLDDAY
                Rotation categorization matrix by enterprise E to include corn if =ERROTATE ,

    R= 1 and other crops if R = 2 
 
indices include: 
 
C     = Crop  
E     = Enterprise 
V    = Variety (MG III, IV, and V for soybeans or Early, Medium, and Late for corn) 
P     = Plant population  
S     = Sowing date 
I      = Input 
WK = Week 
YR   = Year 
R      = Rotation category 
 

The E-V model is maximizing the expected net returns above variable cost.  In 

doing so it has to choose a maximum solution that does not exceed: (1) the amount of 

land available at 1350 acres, (2) or the two year rotation requirement which represents 

half the acres, to ensure for instance corn is not planted consecutively for two years.  The 

amount of labor required for production must not exceed the amount of available field 

days.  The amount of crop sold is equal to the amount of production.  Input purchases 

calculated are based on the sum of input requirement and total acreage produced.  The 

sales and input purchases are used in calculating net returns by year, which in turn are 

averaged to estimate mean net returns.  Yields for each enterprise are represented in the 
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model from past data collected.  Each enterprise has its own related production input 

requirement which represents the variable costs associated with each crop.  Labor 

requirements, which differ by enterprise, are accounted for by tables in the model.  The 

farm size, which stayed constant given lightbar, or no lightbar, was allotted at 1,350 

tillable acres.  This number was derived by rounding the average number of tillable acres 

for an Ohio Valley grain farm of 1,346 up to 1,350 (Dillon, 1999 and Morgan, 1998).  

Available field time is calculated by multiplying the average number of workable field 

days a week by 13 working hours a day (number determined for lightbar) for 2.56 

persons, the average number of persons working on Ohio Valley farms (Dillon, 1999 and 

Morgan, 1998).   

The data used from Dillon and Morgan needed expansion to include all years up 

to 2006.  The expansion took place by collecting weather data for those years between 

1998 and 2006 from the Kentucky State weather data service and entering it into the 

existing model.   

This specific model’s objective function value represents the average profits 

expected by the farmer.  To obtain this value, the cost of the lightbar instrument was 

subtracted from the average profits.  The constraints consisted of land, labor, and capital.  

Because of the size and complexity, the program General Algebraic Modeling System 

(GAMS) was used in solving the model.  There are other options that solve linear 

programming models such as Microsoft Excel, but the capability of GAMS is more suited 

for large complex problems such as whole farm modeling whereas Excel might be more 

suited for partial budgeting.   
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Lightbar is similar to many new technologies in that it helps with the achievement 

of goals in a more efficient manner.  The use of a lightbar reduces skips and overlaps in 

machinery operations.  “Most operators, in typical field operations, tend to overlap 

subsequent passes to avoid the more noticeable effects of a skip.” (Stombaugh, 2002, p.2)  

Consequently, labor costs as well as production input requirements were hypothesized to 

decrease with the implementation of lightbar, whereas the yields of each enterprise and 

time availability were hypothesized to increase as a result of lightbar.  Reduced skips and 

overlaps allow an operator to cover more land area for a given amount of time, essentially 

requiring fewer passes to cover the field which in turn increases performance rate causing 

labor costs to decrease.  Labor requirements were therefore decreased by a factor of 

(0.85/0.9) (Griffin, 2007).  A direct assessment of possible input savings (i.e. chemical) 

was expanded into an input requirement reduction by 2%  realizing that the same amount 

of input is covering more area (Stombaugh et al., 2003).  A yield increase was derived by 

evaluating the reduced skips and overlaps, coming up with the most reasonable number 

of an increase of 2%.  Sensitivity analysis was also done where the yield benefit was 

zero.  Because of lightbar and its ability to assist the operator in more accurately 

maneuvering the machine during fertilization (i.e. reducing skips as well as enterprise 

collection), the crop yield increases.  This benefit is represented by the 2% increased 

yields attributed to the model when lightbar is evaluated in the equation.  Time 

availability was increased from 12 to 13 hours to include the extended day afforded by 

lightbar (Griffin, Lambert, Lowenberg-DeBoer, 2005).  The cost of lightbar, which varies 

between $2,000 and $5,000 (Stombaugh et al., 2003) was estimated to have an annual 

cost of $980.  The annualized cost of lightbar was calculated as the sum of depreciation 
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and interest expense.  These costs were derived using a straight-line depreciation with a 

five year useful life, zero salvage value, risk neutral producer, and assuming an interest 

rate of eight percent.   

The initial model was run without lightbar as a reference for the lightbar model.  

The initial model had a net farm income above selected costs (NFI) of $176,365.  When 

lightbar was added to the model the NFI increased by $10,768 or 6.11% giving a new 

NFI of $187,134.  This value represents the initial cost of lightbar and all of the expected 

benefits that will occur from the use of it.  Realizing that not every farmer is equal, 

sensitivity analyses as well as multiple iterations dealing with different varying levels of 

risk were conducted to study the effects of changes to the model. 

In each run of the model there were nine levels of risk observed.  The first level 

looked at a risk neutral individual and the next eight looked at further varying levels of 

risk aversion.  The Pratt risk-aversion function coefficient is a measure of a producer’s 

aversion to risk (Dillon, 1999).  This coefficient is calculated in the research previously 

done by Carl Dillon (Dillon, 1999), wherein a producer is said to maximize the lower 

limit from a confidence interval of normally distributed net returns.  The resulting risk 

aversion coefficient embodies the producer’s attitude towards risk, represented by the 

variance of net returns.  The formula for calculating the risk aversion parameter is: 

 =φ   
yS

Zα2
 

where =φ risk-aversion coefficient, = the standard normal Z value of αZ α  level of 

significance, and the relevant standard deviation the risk-neutral profit maximizing 

base case for each (McCarl and Bessler, 1989).  Although there were nine different levels 

=yS
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of risk aversion observed, only the first three were deemed relevant due to the fact that in 

the last six levels the hypothetical farmer produced wheat as a single crop, which is not a 

common practice for Ohio Valley farms.  In the interest of space, the multiple levels of 

risk aversion observed were then grouped into four levels of risk aversion: starting with 

risk neutral, then low risk aversion ( %50=α ), medium risk aversion ( %55=α ), and 

finally high risk aversion ( %60=α ).  A tool used to analyze risk aversion is application 

of the coefficient of variation (CV). 

 The CV which is the ratio of the standard deviation to the mean, continually 

decreases as risk aversion goes up.  A risk averse producer may prefer a cropping system 

with a lower mean expected net return but a lower CV of expected net returns over a 

cropping system with a greater expected net returns but a higher level of CV (Dillon, 

2003).  Results of this study will include the CV analysis and implications.   

3.4 Results 

With four different categories of risk incorporated including risk neutrality, the 

economic and production differences between the hypothetical Ohio Valley farm with 

lightbar and without lightbar were substantial.  As discussed above, results from the 

original experiments of the farm with and without lightbar were grouped into four 

different levels: risk neutral, low risk aversion, medium risk aversion, and high risk 

aversion.  These results in their respective levels are shown in Table 3.1 through 3.3.   

It was hypothesized that in the case of risk neutrality the expected net returns are 

higher with lightbar. It was also hypothesized that C.V. would decrease when lightbar 

was added as well as in higher levels of risk aversion.  When looking at higher levels of 
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risk aversion with lightbar, the C.V. is consistently lower than the without lightbar C.V. 

representing a greater opportunity to manage risk.   

The sensitivity analysis depicted in Table 3.2 reflects the specific attributes of 

lightbar with respect to time requirements, labor costs requirements, input costs 

requirements and yield benefits.  With each attribute adding a positive influence to the 

expected net returns of the lightbar case, some represent a greater percent of the optimal 

example which takes into consideration all attributes.  When all of the attributes are 

considered, adopting lightbar not only reduces risks but increases expected net returns.     

The obvious difference between the farm with lightbar and without lightbar is the 

change in net returns above variable cost.  The net returns above variable cost improved 

by $10,768.99, representing a 6.11% increase.  What is not as obvious is the changes in 

the production practices.  Without lightbar availability optimal double cropped soybean 

production was limited in resource allocation when deciding how much to devote to each 

sowing date, whereas when lightbar and all its attributes were added to the model, 

adjustments were made to allocate different quantities to the more beneficial sowing 

dates.  This fact was hypothesized initially with the thought that added time availability 

during the critical time of planting would increase critical sowing dates in double crop 

production.  The adjustment towards the more beneficial sowing dates in soybean 

production can be attributed to the fact that there are more suitable field days available 

with lightbar mainly because of the extended amount of workable day that is provided by 

lightbar (Griffin, Lambert, Lowenberg-DeBoer, 2005).   

Sensitivity analysis is a procedure for assessing the riskiness of a decision by 

using several possible price and or production outcomes to budget the results, and then 
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analyzing and comparing the results (Kay et al., 2004).  The question arises as to the 

relative contributions of the various benefits of lightbar (i.e. yield, suitable field days, 

input requirements and labor requirements) on economic and production decision results.  

Thus the desire to evaluate each benefit individually comes forth, requiring sensitivity 

analysis.  Sensitivity analysis was performed on the data in order to look at the relative 

impacts each individual benefit contributed to the overall benefit of lightbar.  These 

results can be observed in Tables 3.4 though 3.7. 

In the original case the model focused on the differences between a farm which 

adopts lightbar and one that does not.  The economic results, shown on Table 3.1, 

exemplify the benefits that lightbar contributes to the farm.  The farm with lightbar has a 

higher expected net return and maximum net return while showing a positive minimum 

net return as opposed to the negative amount represented by the farm without lightbar.  

As the risk aversion increases expected net return decrease for both cases but the farm 

that adopted lightbar continually has a higher expected net return.  In the risk neutral case 

the CV is shown to decrease when lightbar is added, implying a greater potential to 

manage risk.  Then when evaluated at the high risk aversion the CV is still less than that 

of the without lightbar case but not at such a difference.  Where at the risk neutral case 

the CV difference is 5.13% and at the high risk aversion level the CV difference is 

4.85%.  This implies that even though the ability to manage risk is still greater at all 

varying levels of risk for the case of lightbar, there is a greater potential for risk reduction 

at lower levels of risk aversion. 

The production results for the original case, shown on Table 3.3, illustrate that the 

farm which has adopted lightbar moves resources from sowing dates that are later in the 
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year to those that are earlier for both double crop soybeans and wheat as well as corn.   

This change in choosing more enterprises to be planted earlier in the year exemplifies the 

benefit of longer field days.    

The first sensitivity analysis to be preformed examined the lightbar case without 

the extra hour per day afforded by lightbar.  The time available without lightbar was 

calculated to be 12 working hours a day whereas with lightbar the hours were increased 

to 13 working hours a day (Griffin, 2007).  In the sensitivity analysis holding everything 

else constant the lightbar model was forced to run under the constraint that there could 

only be 12 working hours a day.  This in essence allowed lightbar to be evaluated without 

its time benefit.  When looking at the economic results there was a reduction in expected 

net returns, implying that the increased time availability that lightbar affords increases 

expected net returns.  CV increased in the risk neutral case and then changed only slightly 

in the higher risk aversion cases.  The most notable change in the production results is the 

shift in double crop soybeans and wheat from the earlier sowing date of September 27th to 

the later date of October 4th.  This change indicates that a key factor in the planting date 

of September 27th for double crop soybeans and wheat is the time allotted for each day’s 

workable hours.   

The next sensitivity analysis examined was the reduced time requirement.  Due to 

the consideration that laborers are able to cover more ground per hour with lightbar, there 

are different costs associated with labor in respect with lightbar.  This part of the 

sensitivity analysis evaluated the lightbar model holding all else constant while 

constricting the labor requirements to the without lightbar model level.  The economic 

results showed the change in the expected net returns to have a 0.16% decrease when the 
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labor cost requirements were held to the numbers of the without lightbar example.  This 

brings to light the idea that the labor cost savings which lightbar bring to the farm are not 

the major contributing factors that change expected net returns.  Although, the labor cost 

requirements did not contribute much to the expected net returns they were the only other 

factor that caused the double crop soybeans and wheat to be planted at the later date of 

October 4th instead of September 27th.   

The next sensitivity analysis looked at the reduced input costs.  Input cost 

requirements are calculated to decrease by two percent due to the reduction of over 

application.  This 2% reduction is reflected in the economic results as a 2.7% change in 

the expected net returns.  Without the reduction in input cost the CV increased slightly 

implying that when lightbar is able to reduce the input costs it is also able to decrease 

risk.  Looking at the combination of the input cost reduction along with the yield benefit 

explain for the majority of the change in expected net returns.     

The final sensitivity analysis evaluated looked at lightbar without the yield 

benefits.  This evaluation was found to be the most interesting mainly because the results 

were not expected to be very important.  Yield benefits which are calculated to increase 

by 2% have a 3.22% positive impact on net returns.  The statistical analysis study shows 

that yield benefits, along with reduction in input costs are the only factors that when 

changed to the without lightbar numbers cause the minimum net returns to be negative.  

This means that in order for the model to have a positive minimum net returns both the 

reduction in input costs and increased yield benefits need to be accounted for.  This also 

brings forth that biggest gains from the addition of lightbar, with respect to net returns, 

comes from the yield benefits associated with lightbar.   
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3.5 Conclusions 

This model has shown that lightbar has the potential to not only increase profits 

but reduce risks associated with those profits.  With the near 6.11% increase in net 

returns above variable cost and a decrease in CV, lightbar shows significant promise to 

the farmers of the Ohio Valley region.  When it is shown that lightbar increases expected 

net returns as well as reduces risk there are questions as to why every farmer does not 

have a lightbar system on their farm.  This can only be answered on a farm by farm basis.  

In some cases farmers have been given the stereotype of being reluctant to change.  If the 

information from this study was brought to a farmer who has made a living of farming his 

whole life and might be nearing retirement, that farmer is less likely to be enthused about 

changing his farming practices that have worked for years to something new that deals 

with technology.   

A break even analysis was preformed to find the acreage needed to make lightbar 

profitable.  The break even acreage was found to be 44.5 acres.  That means that if you 

have 44.5 acres you are indifferent in adopting lightbar or not, where those farmers below 

44.5 acres do not adopt and those above do adopt. Another reason that lightbar may not 

be adopted is that not all farmers own their own equipment and therefore do not have the 

rights to make changes to that equipment.   

Assumptions in the model are made that there are typical overlaps and misses in 

input applications, which commonly occur without lightbar.  Further assumptions are that 

lightbar reduces operator fatigue and increases the ease of working early in the morning 

and late in the evening.  Without these assumptions the model and its dynamics would 

change.  This model shows how a hypothetical Ohio Valley region farm would react to 
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the introduction of lightbar.  The final values and differences between the farm with and 

without lightbar differ from other studies because this model represents a whole farm 

with the ability to incorporate competition across enterprises for labor and capital.   

Overall, lightbar enables operators to have longer field days, more efficient field 

practices such as reduction of overlap and skips, and experience less fatigue.  Although 

the implications of this study show a positive relation between lightbar adoption and 

profit, this value is dependent on the cost and availability of capital and labor.  The model 

focuses on capital intensive economies such as the United States where labor is more 

readily substituted for capital, whereas studies of the same type in other regions might 

have different results.  Because of its low annualized cost, learning curve and potential 

for increased net returns above variable cost, lightbar is an easy first step into using 

precision agriculture.   

 As more farmers in the Ohio Valley region adopt lightbar it will become easier to 

evaluate its effects on farm profitability and risk reduction due to the comprehensive 

records that are being kept by farmers in that area.  With multiple years of lightbar data 

and today’s farmer becoming more proficient at data collection and storage, researchers 

will be able to perform farm specific analysis giving farmers more tailored information.   



 

Figure 3.1: Model representing the type of lightbar available through Trimble.  Model 
consists of a row of LEDs, with three green, and fourteen red on either side of the central 
green LED, as well as a screen below (Trimble). 
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Table 3.1: Economic Results of a Hypothetical Ohio Valley Farm With and Without 
Lightbar 

 
Risk Neutral Without LB Lightbar
Expected N/R  $176,365.04 $187,134.03
C.V. 55.71 52.85
Min N/R  ‐$4,857.36 $4,922.14
Max N/R  $333,089.42 $345,542.69
     

Low Risk Aversion    
Expected N/R  $151,720.20 $162,368.08
C.V. 55.38 52.51
Min N/R  ‐$4,948.57 $4,902.16
Max N/R  $330,002.50 $342,846.33
     

Medium Risk Aversion    
Expected N/R  $128,035.60 $138,207.36
C.V. 53.9 51.50
Min N/R  ‐$10,216.52 $2,257.16
Max N/R  $323,767.19 $338,791.91
     

High Risk Aversion    
Expected N/R  $106,441.63 $116,103.38
C.V. 50.88 48.41
Min N/R  ‐$6,112.23 $3,111.43
Max N/R  $287,690.72 $302,311.84
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Table 3.2: Economic Results of a Hypothetical Ohio Valley Farm With Lightbar 
Sensitivity Analysis 
 
 
  All Lightbar  Lightbar Benefits Without 

Risk Neutral Benefits  Time Req  Labor Cost Req  Input Cost Req  Yield Benefits
Expected N/R  $187,134.03  $186,719.87  $186,834.92  $182,085.71  $181,102.99
% of Optimal N/A  99.78%  99.84%  97.30%  96.78%
C.V. 52.85  52.9  52.88  54.31  54.36
Min N/R  $4,922.14  $4,466.14  $4,592.81  ‐$126.19  ‐$43.94
Max N/R  $345,542.69  $344,750.59  $344,970.62  $340,494.36  $338,443.92
           

Low Risk Aversion        
Expected N/R  $162,368.08  $162,006.45  $162,107.10  $157,319.76  $156,564.96
% of Optimal N/A  99.78%  99.84%  96.89%  96.43%
C.V. 52.51  52.58  52.56  53.97  54.01
Min N/R  $4,902.16  $4,422.37  $4,555.64  ‐$146.16  ‐$117.13
Max N/R  $342,846.33  $341,853.92  $342,129.59  $337,798.01  $335,747.44
           

Medium Risk Aversion        
Expected N/R  $138,207.36  $138,007.20  $138,075.44  $133,159.04  $132,700.47
% of Optimal N/A  99.86%  99.90%  96.35%  96.02%
C.V. 51.50  51.37  51.44  53.1  53.04
Min N/R  $2,257.16  $19.23  $570.65  ‐$2,791.17  ‐$3,372.10
Max N/R  $338,791.91  $336,416.58  $337,117.53  $333,743.59  $331,328.72
           

High Risk Aversion        
Expected N/R  $116,103.38  $116,058.97  $116,072.12  $111,161.00  $110,842.76
% of Optimal N/A  99.96%  99.97%  95.74%  95.47%
C.V. 48.41  48.4  48.4  49.76  49.95
Min N/R  $3,111.43  $2,304.31  $2,528.57  ‐$1,415.45  ‐$2,417.10
Max N/R  $302,311.84  $301,821.12  $301,957.43  $295,987.05  $296,366.20
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Table 3.3.  Production Results of a Hypothetical Ohio Valley Farm With and Without Lightbar Adoption for Different Levels of Risk   
 

  Risk Neutral Low Risk Aversion Medium Risk Aversion High Risk Aversion 

  
With 

Lightbar
Without 
Lightbar

With 
Lightbar

Without 
Lightbar

With 
Lightbar

Without 
Lightbar

With 
Lightbar

Without 
Lightbar

Double Crop 
Soybeans S27. MG3 29.43 92.51 385.41 336 347.45 315.62 325.5 270.8
  S27. MG4 216.41 104.77 150.18 83.62 211.81 196.37 50.95 78.99
  S27. MG5 341.45 314.72 51.71 92.38 1.04   
  O04.MG4  30.07 154.74   
  O04.MG5 87.71 163 57.63 8.26   
  N22.MG5   87.71 163 195.25 212.97
Wheat            103.29 112.24
Corn A26. late    7.48 34.84 66.03 168.52    
   Ao5. late 474.35 413.54 474.35 413.54 474.35 413.54 370.56 413.54
  A19. late 200.65 261.46 193.17 226.62 120.05 92.94 304.44 220.56
  M24. late       14.57    40.9
Soybean 
Yield   Bu/ac 28.71 28.79 28.67 28.75 29.17 29.69 30.15 30.33
Wheat Yield   Bu/ac 58.67 57.07 58.67 57.07 56.6 53.3 53.41 51.85
Corn Yield   Bu/ac 125.52 122.99 125.52 122.99 125.52 123 125.4 122.97

 
 
Where A26 = sowing data of April 26th, S27 = sowing date of September 27th, A05 = sowing date of April 5th, A19 = sowing date of 
April 19th, mg4 = plant variety 4 for soybeans, mg3 = plant variety 3 for soybeans, mg5 = plant variety 5 for soybeans, .late = plant 
variety late for corn. 
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Table 3.4: Production Results of a Hypothetical Ohio Valley Farm for Lightbar Adoption Sensitivity Analysis Under Risk Neutrality 
 
      Risk Neutral Lightbar w/o 
    All Lightbar Benefits  Time Req  Labor Cost Req  Input Cost Req  Yield Benefits 

Double Crop Soybeans S27. MG3 29.43 67.28 56.77 29.43 29.43
  S27. MG4 216.41 149.43 168.03 216.41 216.41
  S27. MG5 341.45 325.41 329.87 341.45 341.45
  O04.MG4            
  O04.MG5 87.71 132.88 120.33 87.71 87.71
  N22.MG5            
Wheat               
Corn A26. late             
   Ao5. late 474.35 437.86 448 474.35 474.35
  A19. late 200.65 237.14 227 200.65 200.65
  M24. late             
Soybean Yield   Bu/ac 28.71 28.76 28.74 28.71 28.71
Wheat Yield   Bu/ac 58.67 58.4 58.47 58.67 57.52
Corn Yield   Bu/ac 125.52 125.48 125.49 125.52 123.06

 
Where A26 = sowing data of April 26th, S27 = sowing date of September 27th, A05 = sowing date of April 5th, A19 = sowing date of 
April 19th, mg4 = plant variety 4 for soybeans, mg3 = plant variety 3 for soybeans, mg5 = plant variety 5 for soybeans, .late = plant 
variety late for corn. 
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Table 3.5: Production Results of a Hypothetical Ohio Valley Farm for Lightbar Adoption Sensitivity Analysis Under Low Risk 
Aversion 
 
      Low Risk Aversion Lightbar w/o 
    All Lightbar Benefits  Time Req  Labor Cost Req  Input Cost Req  Yield Benefits 

Double Crop Soybeans S27. MG3 385.41 355.76 364 385.41 385.41
  S27. MG4 150.18 104.15 116.93 150.18 166.81
  S27. MG5 51.71 82.21 73.73 51.71 35.07
  O04.MG4 30.07 103.98 83.45 30.07 21.86
  O04.MG5 57.63 28.91 36.88 57.63 65.84
  N22.MG5            
Wheat               
Corn A26. late 7.48 16.39 13.92 7.48 27.96
   Ao5. late 474.35 437.86 448 474.35 474.35
  A19. late 193.17 220.74 213.08 193.17 172.69
  M24. late             
Soybean Yield   Bu/ac 28.67 28.72 28.7 28.67 28.67
Wheat Yield   Bu/ac 58.67 58.4 58.47 58.67 57.52
Corn Yield   Bu/ac 125.52 125.48 125.49 125.52 123.06
 
 
 
Where A26 = sowing data of April 26th, S27 = sowing date of September 27th, A05 = sowing date of April 5th, A19 = sowing date of 
April 19th, mg4 = plant variety 4 for soybeans, mg3 = plant variety 3 for soybeans, mg5 = plant variety 5 for soybeans, .late = plant 
variety late for corn. 
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Table 3.6: Production Results of a Hypothetical Ohio Valley Farm for Lightbar Adoption Sensitivity Analysis Under Medium Risk 
Aversion 
 
      Medium Risk Aversion Lightbar w/o 
    All Lightbar Benefits  Time Req  Labor Cost Req  Input Cost Req  Yield Benefits 

Double Crop Soybeans S27. MG3 347.45 339.15 348.96 374.45 373.22
  S27. MG4 211.81 202.96 205.71 211.81 204.26
  S27. MG5 1.04       1.04 97.52
  O04.MG4            
  O04.MG5            
  N22.MG5 87.71 132.88 120.33 87.71   
Wheat               
Corn A26. late 66.03 133.86 119.42 66.03 71
   Ao5. late 474.35 437.86 448 474.35 474.35
  A19. late 120.05 103.27 107.58 120.05 129.65
  M24. late 14.57       14.57   
Soybean Yield   Bu/ac 29.17 29.48 29.4 29.17 29.24
Wheat Yield   Bu/ac 56.6 55.26 55.63 56.6 55.2
Corn Yield   Bu/ac 125.52 125.49 125.5 125.52 123.07
 
 
Where A26 = sowing data of April 26th, S27 = sowing date of September 27th, A05 = sowing date of April 5th, A19 = sowing date of 
April 19th, mg4 = plant variety 4 for soybeans, mg3 = plant variety 3 for soybeans, mg5 = plant variety 5 for soybeans, .late = plant 
variety late for corn. 
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Table 3.7: Production Results of a Hypothetical Ohio Valley Farm for Lightbar Adoption Sensitivity Analysis Under High Risk 
Aversion 
 
      High Risk Aversion Lightbar w/o 
    All Lightbar Benefits  Time Req  Labor Cost Req  Input Cost Req  Yield Benefits 

Double Crop Soybeans S27. MG3 325.5 295.12 303.56 324.01 325.95
  S27. MG4 50.95 78.52 70.87 49.91 44.87
  S27. MG5            
  O04.MG4            
  O04.MG5            
  N22.MG5 195.25 196.32 196.02 192.43 206.17
Wheat   103.29 105.04 104.55 108.66 98
Corn A26. late             
   Ao5. late 370.56 433.82 416.25 370.24 361.86
  A19. late 304.44 241.18 258.75 304.76 313.14
  M24. late             
Soybean Yield   Bu/ac 30.15 30.17 30.18 30.15 30.23
Wheat Yield   Bu/ac 53.41 53.38 53.39 53.5 52.05
Corn Yield   Bu/ac 125.4 125.47 125.45 125.4 122.93
 
 
Where A26 = sowing data of April 26th, S27 = sowing date of September 27th, A05 = sowing date of April 5th, A19 = sowing date of 
April 19th, mg4 = plant variety 4 for soybeans, mg3 = plant variety 3 for soybeans, mg5 = plant variety 5 for soybeans, .late = plant 
variety late for corn. 
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Chapter Four 
 
 

Conclusions 
 
 This thesis has examined farm management practices in an attempt to improve 

farm profitability.  It has done so through two separate, yet complementary scientific 

articles; one addressing cost maps and the other the use of lightbar technology.  An 

underlying theme of assessing farm management practices in an effort to increase 

expected net returns while reducing risk has been present throughout this thesis.  This 

theme allowed me to look at the topic of precision agriculture in two regards: lightbar, 

and cost maps.  The topic of lightbar is part of the vernacular among precision farmers 

today.  Cost maps, however are an idea that is less talked about and whose benefits are 

still yet to be realized.  Both show supportive results that they have to ability to not only 

help farmers in increasing profits but also have the ability to possibly to reduce risk as 

well.   

The first manuscript explores production cost maps as a tool for improved farm 

management.  The need for the study arose from the primary equation of marginal 

revenue equaling marginal costs.  While yield is a good representation of marginal 

revenue, single inputs such as fertilizer needed to be expanded to incorporate more fully 

all marginal costs.  This expansion is represented in the form of the total variable cost 

map derived in Chapter 2.  The discussion utilized the collection of information gathered 

from machines while in operation to visually depict cost maps associated with those 

machines.  The cost maps show that skips and overlaps in application of inputs as well as 

going back to get missed sections of a field are very costly.  An analysis of the cost maps 

allows for new management decisions such as to produce or not to produce, CRP 
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enrollment, and optimal path determination.  These management decisions may be 

directly impacted by observing the total variable cost map and interpretation of the data.  

A recommendation that the cost maps suggest is that skips, overlaps and extra passes in 

the field have great cost.  In an attempt to reduce these costs, guidance aides as well as a 

properly planned path is suggested. 

 The second article, examines how lightbar under a whole farm model influences 

the profitability of a hypothetical farm.  The technology of lightbar has been studied 

under enterprise partial budgets but the study of lightbar under the whole farm model 

proves to be beneficial.  While lightbar demonstrates an increase in expected net returns 

this study also reflects the potential for risk reduction shown by the coefficient of 

variation.  Sensitivity analysis was performed on this model to look at different situations 

that may occur.  It is shown that by adding lightbar and all the influences attributed with 

it, farm profitability goes up as well as the possibility for risk reduction.  The biggest 

contribution that lightbar affords in a financial aspect is the yield increase, although the 

yield increase could not be fully realized without the ability to switch planting and 

harvesting dates as well as alternate between enterprises.   A recommendation of this 

study is for the adaptation of lightbar technology, provided that the farm acreage is in 

excess of 44.5 acres.     

 The results from this thesis are encouraging in the fact that they show 

improvements which farmers can make to existing farms to increase profits and reduce 

risk, but there are some considerations to be made.  This is a very comprehensive study 

which took years in acquisition of data and analysis.  Farmers may not have the luxury to 

complete a study of this size and scope and therefore the principles and/or the results of 
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this study may be applied to their individual farming situations.  That is where the state of 

Kentucky excels in its communication between researchers and farmers.  Kentucky has 

an Extension Service available to all farmers in each 120 counties, whose mission is to 

make a difference in the lives of Kentucky citizens through research-based education.  

The Extension Service takes the University to the people in their local communities, 

addressing issues of importance to all Kentuckians.  This Extension Service has agents 

that are well trained in the field of agriculture and are in close contact with the farmers of 

the State.  This is the link that researchers have between conception and implementation.  

With the help of the Cooperative Extension Service theories that were only tested on 

paper can now be brought to the public.   
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