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ABSTRACT OF DISSERTATION 
 
 
 
 

WHOLE FARM MODELING OF PRECISION AGRICULTURE TECHNOLOGIES 
 

This dissertation investigated farm management concerns faced by grain 
producers due to the acquisition of various precision agriculture technologies.  The 
technologies evaluated in the three manuscripts included 1) auto-steer navigation, 2) 
automatic section control, and 3) autonomous machinery.  Each manuscript utilized a 
multifaceted economic model in a whole-farm decision-making framework to determine 
the impact of precision agriculture technology on machinery management, production 
management, and risk management.  This approach allowed for a thorough investigation 
into various precision agriculture technologies which helped address the relative dearth of 
economic studies of precision agriculture and farm management.  Moreover, the research 
conducted on the above technologies provided a wide array of economic insight and 
information for researchers and developers to aid in the advancement of precision 
agriculture technologies.  Such information included the risk management potential of 
auto-steer navigation and automatic section control, and the impact the technologies had 
on optimal production strategies.  This dissertation was also able to provided information 
to guide engineers in the development of autonomous machinery by identifying critical 
characteristics and isolating the most influential operating machine.  The inferences from 
this dissertation intend to be employed in an extension setting with the purpose of 
educating grain producers on the impacts of implementing such technologies.   
 
KEYWORDS: Farm Management, Mathematical Programming, Economic Optimization, 
Simulation, Kentucky 
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CHAPTER ONE 

 

INTRODUCTION 

 

Precision agriculture is the use of technology to assist in optimizing agricultural 

production by improving the accuracy of existing management activities.  One commonly 

used expression to describe precision agriculture is “Doing the right thing, at the right 

place, at the right time, and in the right way.”  An array of state of the art technologies 

can be utilized to more accurately manage areas within the field.  Advancements in these 

technologies have provided site-specific management options to a broader range of 

producers.  These technologies have evolved such that precision agriculture is no longer 

considered only practical for the elite farmer.  Thus, precision agriculture technologies 

are well established in mainstream agricultural production.  Farm managers are faced 

with a host of critical decisions as this trend progresses. 

 The overall objective of this dissertation is to address farm management issues 

pertaining to the addition, replacement, and selection of precision agriculture 

technologies.  Specifically, this dissertation focuses on machinery, production, and risk 

management concerns faced by grain producers who adopt selected precision 

technologies.  A hypothetical Kentucky grain producer is used as the case study.  This 

dissertation embodies three separate yet complementary manuscripts.  Each manuscript 

utilizes a multifaceted economic model in a whole-farm decision-making framework to 

determine if certain precision technologies are economically viable.  This approach 

allows for a thorough investigation into various precision agriculture technologies which 

helps address the relative dearth of economic studies of precision agriculture and farm 

management.  The anticipated results will provide economic insight into precision 

agriculture technologies.  Moreover, inferences from this dissertation will be employed in 

an extension setting with the purpose of educating grain producers on the effects of 

implementing such technologies.  Furthermore, the conclusions from the investigations 

should provide information to researchers and developers to aid in the advancement of 

precision agriculture technologies.    
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To accomplish the goals of this dissertation, an appropriate framework must be 

established.  Because of the integrated nature of precision agriculture, a multidisciplinary 

approach is needed to evaluate the problem.  Accordingly, agricultural economics, 

agricultural engineering, and agronomic principles are employed.  Concepts from both 

disciplines help guide the framework of the dissertation which examines various 

precision agriculture technologies.  This is accomplished with a multifaceted, whole-farm 

management approach that encompasses enterprise budgets, economic optimization, and 

risk analysis.  Enterprise budgets are used to provide the underlying data necessary for 

the implementation of the economic optimization models.  Additionally, one of the 

largest factors influencing farm decision making is the farm manager’s willingness to 

bear risk.  Various agricultural risks exist: production risk, marketing/price risk, financial 

risk, legal risk, and human resource management risk.   Although consideration of all 

risks is important, only production risk is incorporated into these analyses to determine 

the influence on management decisions.      

Chapter Initiatives 

 Chapter One introduces the use of precision agriculture technologies and the 

evaluation of their economic potential in a whole-farm management setting.  The overall 

problems in acquiring precision technologies are outlined and the framework for 

addressing these concerns is summarized.  In addition, the potential for using the 

conclusions of this dissertation are explained. These concepts are pursued in Chapters 

Two, Three, and Four as individual manuscripts with their own objectives, literature 

review, methods, and conclusions. 

 Chapter Two establishes a framework to provide a detailed assessment of the 

economic viability of various auto-steer navigational technologies for grain producers.  

Specifically, the implementation of both sub-meter and real-time kinematic auto-steer are 

examined.  This chapter addresses established precision agriculture technologies that 

have already been widely adopted.  In addition, various production decisions and the 

producer’s aversion to risk are evaluated.  This chapter employs a resource allocation-

mean variance quadratic programming formulation to analyze information for a 

hypothetical Kentucky producer.  The hypothetical producer raises corn and soybeans 
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using no-till production practices.  The economic, risk, and production impacts of auto-

steer are assessed and conclusions are derived in Chapter Two.   

 The initiatives for Chapter Three are similar in nature to those of Chapter Two.  

Chapter Three provides a thorough assessment of automatic section control.  The 

incorporation of lightbar navigation with automatic section control is also considered.  

This chapter addresses precision agriculture technologies that are currently being 

adopted.  Additionally, various production decisions, the producer’s aversion to risk, and 

numerous field shapes are included in the investigation.  This chapter also employs a 

resource allocation-mean variance quadratic programming formulation to analyze 

information for a hypothetical Kentucky producer.  This producer also uses no-till 

farming practices in the production of corn and soybeans.  The economic, risk, and 

production impacts of automatic section control, with and without lightbar navigation, is 

assessed in Chapter Three.  

 Chapter Four develops a unique and multifaceted machinery management model 

to investigate various factors concerning autonomous machinery.  This chapter examines 

future precision agriculture technologies that are under development but have not been 

adopted.  The model integrates machinery selection, resource allocation, and sequencing 

theories to compare autonomous and conventional systems.  These economic techniques 

evaluate autonomous machinery to determine whether the technology can replace 

conventional systems on Kentucky grain farms.  Further, this chapter provides engineers 

and researchers with insight into the development and advancement of autonomous 

machinery.   

 Chapter Five presents the collective conclusions of this investigation.  It provides 

a summary of the previous chapters and how they addressed the overall objective of this 

dissertation.  Additionally, this chapter considers areas for future research.   

Approach      

 The overall objectives are addressed using a journal manuscript format.  Each 

manuscript is a separate entity but complement each other with a common theme.  This 

common theme includes a multidisciplinary/whole-farm approach which utilizes 

mathematical programming and economic optimization to address farm management 

issues related to the acquisition of precision agricultural technologies.  Specifically, the 
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multiple journal manuscript approach addresses established precision agriculture 

technologies that have already been widely adopted, precision agriculture technologies 

that are currently being adopted, and future precision agriculture technologies.   
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CHAPTER TWO 

 

A WHOLE FARM ANALYSIS OF THE INFLUENCE OF AUTO-STEER 
NAVIGATION ON NET RETURNS, RISK, AND PRODUCTION PRACTICES 

 

Automated steering (auto-steer) is a navigation aid that utilizes the global position 

system (GPS) to guide agricultural equipment.  Auto-steer has been commercially 

available for many years.  There are many combinations of auto-steer systems and GPS 

receivers available with correspondingly different levels of accuracy.  The potential 

benefits of these systems include reduction of overlaps and skips, the lengthening of 

operator’s workday, accurate placement of inputs, and reduced machinery costs resulting 

from an increase in machinery field capacity.  The increase in machinery field capacity 

not only could reduce direct costs, but permit more land area to be planted closer to the 

optimal date.  These advantages provide incentive for producers to evaluate the potential 

of this technology in their farm operation. 

Many Kentucky farmers have adopted some form of GPS-enabled navigation 

technology.  The trend for most Kentucky farmers is to first adopt a bolt-on auto-steer 

system equipped with a sub-meter receiver on the self-propelled sprayer.  For the utmost 

accuracy, a Kentucky farmer upgrades to an integral valve system with a Real Time 

Kinematic (RTK) GPS receiver on the tractor.  Few Kentucky farmers have utilized auto-

steer systems on their harvesters, but when they do, it is common to use a bolt-on system.  

In spite of rapid adoption, the quantitative benefits of auto-steer have been scrutinized by 

farmers.  A thorough investigation by researchers into this technology is long overdue.  

Issues regarding profitability, interactive effects of production practices, and the often 

ignored issue of risk are all essential to evaluate.      

The majority of existing studies conducted on navigational technologies focused 

on field performance or general overviews of the technology, which ultimately 

emphasized engineering concepts.  Field performance studies focused on issues regarding 

accuracy, topography, speed, and evaluation methods (Ehsani, et al., 2002; Gan-Mor, et 

al., 2007; Stombaugh, et al., 2007; Stombaugh and Shearer, 2001).  Research involving 

the overall status of navigational technologies in North America and Europe had also 



 
6 

 

been reported (Adamchuk, et al., 2008; Keicher and Seufert, 2000; Reid, et al., 2000).  

Other research previously conducted had focused on the economics of auto-steer.   

Economic studies regarding auto-steer often utilized simple techniques which 

failed to encompass all benefits and costs of the technology.  A limited number of whole 

farm economic studies of auto-steer had been conducted (Griffin, et al., 2008; Griffin, et 

al., 2005).  These economic studies had not included a farm manager’s ability to exploit 

the technology by altering production practices to increase profitability or reduce risk.  

While some of these studies were helpful, the economic potential of the technology may 

be understated to the extent that substitution of inputs and alteration of production 

practices were not addressed in these models.  Widespread interest, coupled with the 

scarcity of studies, motivates the incorporation this technology into a more complete 

whole farm planning model.  By including alternative production practices, economic 

optimization can be achieved.  In turn, this allows investigation into the full potential of 

auto-steer on the farm.  Furthermore, opportunities to exploit auto-steer technology for 

reducing production risk may also be explored.  

Few researchers conducted in-depth risk analyses of precision agriculture 

technologies, beyond the present focus of this study.  Dillon, et al. (2007) conducted 

educational workshops to inform farmers of the risk management potential of precision 

agriculture.  Oriade and Popp (2000) conducted a whole farm planning model of 

precision agriculture technology where risk was incorporated.  However, the lack of yield 

data, and the interactive effects of production practices necessarily led to overly 

restrictive assumptions and results.  Others have developed theoretical models that 

suggested variable rate technology could be utilized in managing production risk 

(Lowenberg-DeBoer, 1999).  The investigation into auto-steer as a risk management tool 

was meager, therefore became an objective of this study.   

The objectives of this study are to: (1) determine profitability of auto-steer under 

various scenarios, (2) determine if auto-steer can be utilized as a tool for risk 

management, (3) determine optimal production practices under various scenarios with 

and without auto-steer, (4) determine the break-even acreage level, payback period, and 

return on investment for the adoption of auto-steer, and (5) determine the impact of input 

price on the profitability of auto-steer.  A whole farm economic model is used to provide 
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a detailed assessment of auto-steer options for a hypothetical commercial grain farm in 

Kentucky.  Due to the adoption trend for auto-steer by Kentucky farmers, investigations 

are undertaken considering three scenarios: (1) the addition of a bolt-on auto-steer system 

with a sub-meter receiver on a self-propelled sprayer, (2) the addition of an integral valve 

auto-steer system with a RTK GPS receiver on a tractor, and (3) the addition of both 

auto-steer systems to the farm enterprise.  Scenario three investigates the situation in 

which a farmer is utilizing sub-meter auto-steer on the sprayer and a RTK auto-steer on 

the tractor.  Hence, the benefits and costs of both systems are incorporated into the 

model.  All five of the above objectives are investigated for each of the above scenarios 

as well as incorporating four farmer risk aversion attitudes: neutral, low, medium, and 

high risk aversion for objectives one through four.1   

Analytical Procedure 

 The experimental framework for this study includes the production environment, 

the economic optimization whole farm model, and the specific conditions and resource 

base of the hypothetical farm that represents the study focus.  These are each discussed in 

turn to establish the analytical framework of the study. 

The Production Environment 

Production data estimates were determined using Decision Support System for 

Agrotechnology Transfer (DSSAT v4), a biophysical simulation model (Hoogenboom, et 

al., 2004).  DSSAT has provided underlying production data for almost 15 years in 

studies covering a multitude of geographic locations and experimental requirements as 

evidenced by relevant refereed publications in numerous journals.  When coupled with 

the validation specific to the study at hand, as discussed later, DSSAT was determined to 

be an appropriate model for this study.   

The minimum input required to develop yield estimates in DSSAT includes site 

weather data for the duration of the growing season, site soil data, and definition of 

production practices.  Site weather data were obtained from the University of Kentucky 

Agricultural Weather Center (2008).  Daily climatology data were collected for 30 years 

in Henderson County, Kentucky.  Soil data were obtained from a National Cooperative 

                                                 
1 The four risk aversion levels reported are neutral, low, medium and high which represent a desire to 
maximize net returns that 50, 60, 75, and 85 percent likely to be achieved.   
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Soil Survey of Henderson County, Kentucky from the Natural Resources Conservation 

Service (NRCS).  After identifying all soil series located in Henderson County, 

information on those soil series was gathered using the NRCS Official Soil Series 

Description from their website.  Four representative soils (deep silty loam, deep silty 

clay, shallow silty loam, and shallow silty clay) were utilized in the biophysical 

simulation models.    Finally, numerous production practices were defined to complete 

the minimum requirements to operate DSSAT.  Production practices were identified for 

both corn and full season soybeans in accordance with the University of Kentucky 

Cooperative Extension Service Bulletins (2008).  Varying production practices utilized in 

this study included planting date, crop variety, plant density, row spacing, and fertilizer 

practices (Table 2.1.1 and Table 2.1.2).   

A comprehensive validation was performed on the response of yield estimates to 

varying production practices and compared to pertinent literature.  For instance, the 

response of corn yield to nitrogen rates exhibited a quadratic response which was 

consistent with previous studies (e.g. Schmidt, et al., 2002; Cerrato and Blackmer, 1990).  

Also, comparisons of simulated to actual historical yield trends were made for Henderson 

County, Kentucky.  Regression analyses were conducted, in which t-tests confirmed that 

the simulated yields for both corn and soybeans were not statistically different from the 

actual historical yields, with a significance of 99%.2  Discussions with specialists were 

also conducted to confirm that the simulated yield results were reasonable.  For more 

information with regard to the validation process, refer to the appendix.  Overall, yield 

estimates were believed to be representative of production in Henderson County, 

Kentucky.  These yield data were a key element of the economic model. 

The Economic Model 

The economic framework of a commercial Kentucky corn and soybean producer 

under no-till conditions was embodied in a resource allocation model employed within a 

mean-variance (E-V) quadratic programming formulation. Mathematical details of the 

model can be found in Appendix 1.  The model incorporated risk, as measured by the 

variance of net returns across years, which was consistent with formulations developed 

by Freund (1956).  Specifically, the model was modified from Dillon’s (1999) risk 
                                                 
2 The R2 for corn and soybean regression analyses were 0.22 and 0.46 respectively. 
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management model to include additional production practices such as nitrogen rate and 

row spacing.  The model was also modified by allowing multiple weeks for harvesting.  

In addition, four land types were incorporated within the model.  Finally, the inclusion of 

various auto-steer scenarios distinguished this model from Dillon’s (1999) model.     

The objective of this model was to maximize net returns less the Pratt risk 

aversion function coefficient multiplied by the variance of net returns.  The Pratt risk 

aversion coefficient measured a hypothetical producer’s aversion to risk and was in 

accordance with the method developed by McCarl and Bessler (1989).  Intuitively, the 

model represented the typical risk-return tradeoff in which the model discounts the 

expected net returns by the variance of net returns.   

The economic model included decision variables, constraints, and other data and 

coefficients.  The decision variables for the model were the land area in corn and soybean 

production.  These were identified by alternative production possibilities and soil types.3  

Based on the decision variables, expected average yields and net returns were calculated.  

For the model to determine these decision variables, constraints were required within the 

model.   

Constraints included land available, labor, crop rotation, and ratio of soil type.  

The land constraint guaranteed that the combined production of corn and soybeans did 

not exceed the available land assumed for this study.  In addition, agricultural tasks 

performed in the production of both corn and soybeans were required.  These tasks 

included: planting, spraying, fertilizing, and harvesting which were constrained by the 

estimated suitable field hours per week available for performing each operation.  The 

rotation constraint required 50% of the land to produce corn and 50% to produce 

soybeans.  This represented a two year crop rotation typical of a Kentucky grain 

producer.  Furthermore, constraints were required to ensure that production practices 

were uniformly distributed across all soil types.  This implied that variable rate by soil 

types could not occur.   

Besides the constraints, additional information required within the model        

included establishing the coefficients, data, and further assumptions of the model.  The 

                                                 
3 The economic model had the ability to choose various production alternatives across the allotted acres for 
all scenarios including the base case with no auto-steer technologies.   
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coefficients necessary for this investigation included labor hours and the prices for corn 

and soybeans.  Labor hours for producing corn or soybeans were based on the field 

capacities of the operating machines.  To determine the total labor required for each 

operation, a ten percent increase in field capacities was employed.  This reflected 

additional labor required for performing other tasks such as travelling from field to field, 

refilling the seed bins and sprayer tanks, and unloading the grain bin. Furthermore, the 

prices of corn and soybeans were also necessary for this analysis.  Prices for corn and 

soybeans were determined from the World Agricultural Outlook Board (2008).  Prices 

used were the 2009 median estimates less Kentucky’s basis, which resulted in $9.75/bu 

and $4.25/bu for soybeans and corn respectively.        

Supplementary data crucial for this investigation included the proper land area, 

suitable field hours, and the cost of auto-steer.  The land area chosen for this study was 

reflective of Henderson County, Kentucky.  Henderson County ranks second in the state 

in both corn and soybean production (Kentucky Agriculture Statistics, 2007-2008).  

According to the Kentucky Farm Business Management Program, a 2600 acre farm 

corresponded to the upper one third of all farms in management returns as represented by 

net farm income in the Ohio Valley region of Kentucky, where Henderson County is 

located (Pierce, 2008).  Therefore, the acreage level assumed for this investigation was 

deemed an appropriate size.  Suitable field days were calculated based on probabilities of 

it not raining 0.15 inches or more per day over a period of a month.4  This was 

determined from the 30 year historical climatological dataset previously mentioned.  The 

probabilities were multiplied by the days worked in a week and hours worked in a day to 

determine expected suitable field hours per week.  Moreover, the annualized ownership 

cost of both auto-steer systems included depreciation and the opportunity cost of capital 

invested.  Depreciation of the auto-steer technologies were calculated using the straight-

line method with an assumed 10 year useful life and no salvage value.  The opportunity 

cost of capital investment was calculated using an 8% interest rate.  A total investment of 

$7,000 for auto-steer with a sub-meter receiver and $35,000 for auto-steer with a RTK 

                                                 
4 An example for determining suitable field days is given for clarification.  Over the 30 year timeframe, the 
median days in January that it rained 0.15 inches or more was 5.  Therefore, the probability of it NOT 
raining .15 inches per day in January was (1-(days rained/days in the month)).  This probability was used to 
estimate the number of suitable field days for the model.   
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receiver was assumed.  As a result, the annualized costs of sub-meter and RTK auto-steer 

were $980 and $4,900, respectively.5  For the addition of both auto-steer systems, the 

costs were added together for a total investment of $42,000, with an annualized cost of 

$5,880.     

Finally, there were two assumptions within the model in need of clarification.  

First, the amount of area initially overlapped by the equipment without using auto-steer 

was assumed.  Secondly, there was an increase in the operators work day due to the 

adoption of auto-steer.  Unfortunately, scientific research pertaining to these factors was 

lacking since each was operator dependent.  Therefore, these factors were evaluated over 

a range to provide general economic insight into the profitability of auto-steer under two 

technological scenarios.  The technical coefficients of the model were varied to reflect 

various overlap scenarios.  The overlap scenarios were varied from 5 feet to 10 feet 

overlap for the sprayer and 0.5 feet to 3 feet overlap for tractor operations.  By doing so, 

both field capacity and cost (inputs, labor, and fuel) for the relative machinery operations 

were affected.  The operator’s work day was also evaluated for various increases in hours 

worked per day which reflected the operator’s ability to work further into the night with 

less fatigue. It was determined that varying the hours worked per day had no impact on 

profitability unless the farmer worked below the original hours assumed for the base case 

of 13 hours per day.  On the other hand, the results from varying the overlapped area 

were provided in the results section.  To address the specific objectives of this study, 

inquires into the appropriate overlap and workday scenario were required to represent a 

typical Kentucky farmer, and discussed in the following section.          

The Hypothetical Model Farm   

A base machinery complement was determined for a hypothetical commercial 

grain farm in Henderson County which practices no-till farming.  The machinery set 

included one 250-hp 4WD tractor with the following implements: a split row no-till 

planter (16 rows), a 42-ft anhydrous applicator, a grain cart with 500 bushel capacity, and 

a 20-ft stalk shredder for corn.  A 300-hp harvester was also utilized with an 8 row header 

                                                 
5 The annualized cost of an auto-steer technology was calculated using the following equation for the 
straight-line depreciation method plus the opportunity cost of capital represented by the average value 
times the interest rate.  [((Total Investment – Salvage Value)/(Useful Life)) + ((Total Investment + Salvage 
Value)*Interest Rate)/2]. 
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for corn and a 25-ft flex header for soybeans.  A self propelled sprayer with an 80-ft 

boom that applied herbicides on corn (Glyphosate, Bicep II, and Roundup), herbicides on 

soybeans (Roundup and 2, 4-D, B) and insecticide on soybeans (Acephate) completed the 

equipment set.  All equipment specifications (e.g. speed, width, and efficiency) were 

from the Mississippi State Budget Generator (MSBG), which complies with the ASABE 

Standards (Laughlin and Spurlock, 2007).  However, both the planter and applicator were 

added into MSBG with the appropriate data, which were compiled from the Illinois Farm 

Business Management (2008) machinery operation specifications.  For the base case, no 

machines were equipped with any GPS-enabled navigation technologies. 

It was recognized for the base machinery set that, due to operator error and/or 

fatigue and lack of navigational technologies, varying overlaps occurred.  The degree of 

overlap depended on machinery and the timing of application (i.e. pre-plant or post-

plant).  For this study, the focus was on the self-propelled sprayer and the implements 

attached to the tractor since those machines would be impacted by auto-steer.  First, an 

overlap of 10% of the equipment width was assumed for the pre-planting operations of 

the self propelled sprayer, hence eight feet of overlap (Griffin, et al., 2008; Palmer, 

1989).  Next, it was assumed that the planter passes would overlap by one foot.  

Therefore, all operations following planting would be overlapped by one foot since the 

implements would follow the enterprise row (Stombaugh, 2009).  By adopting auto-steer 

navigation the above overlaps could potentially be reduced.   

The potential benefits of auto-steer not only included a reduction in overlap but 

also an increase in field speed and length of operator’s work day.  When adopting bolt-on 

auto-steer with a sub-meter receiver on the self-propelled sprayer, a reduction in overlap 

from eight feet to three feet for pre-planting operations was utilized (Stombaugh, et al., 

2005).  There was no reduction in overlaps for post-planting operations due to the base 

accuracy of the planter (one foot overlap) since post planting operations would follow the 

enterprise row.  When adopting an integral valve auto-steer system with an RTK base 

station, reductions in overlap from one foot to one inch were utilized for tractor 

operations (Stombaugh, et al., 2005).   

Another benefit from auto-steer was an increase in field speed.  For the sprayer, it 

was assumed field speeds increased 20% for pre-planting applications and 10% for post-
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planting applications.  An increase in speeds during post-planting application were 

assumed because of the ability to drive faster during headland turns and the ability to 

quickly determine which row to enter to continue operating.  Speed increases of 5% for 

planting and 10% for both fertilizer application and stalk shredding were also assumed 

(Stombaugh, 2009).  With the above benefits of both auto-steer systems quantified, a 

percent multiplier was computed and implemented to calculate the new field capacities 

for the appropriate machines (Table 2.2).  The calculated multiplier was also utilized in 

determining the reduced costs associated with implementing auto-steer.     

In addition, suitable field days were altered to represent the adoption of auto-steer 

by increasing the operator’s workday from 13 hours to 15 hours.  This was attributed to 

the ability of the operator to work further into the night with less fatigue (Griffin, et al., 

2008).6 To determine the influence of auto-steer on net returns, risk, and production 

practices, both old and new field capacities, as well as suitable field days, were utilized in 

the economic model.  

Results and Discussion  

  Three auto-steer scenarios were investigated and then compared to the base 

scenario without auto-steer navigation: (1) the addition of a bolt-on auto-steer system 

with a sub-meter receiver on a self-propelled sprayer, (2) the addition of an integral valve 

auto-steer system with a RTK GPS receiver on a tractor, and (3) the addition of both 

auto-steer systems to the operation.  

Sub-Meter Auto-Steer Results 

The economic, risk, and production impacts of sub-meter auto-steer were first 

investigated.  The addition of sub-meter auto-steer increased expected net returns under 

all four risk scenarios compared to the base without navigational technology (Table 2.3).  

Across all risk aversion levels, the average increase in expected net returns was 1.08% 

                                                 
6 Scientific research for determining increased work hours is non-existent since it is the farmer’s preference 
on how many hours are worked each day, but it is known that farmers have the ability to work longer hours 
due to auto-steer if they wish.  Therefore, alterations in suitable field days were modeled after the cited 
study.  
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($4.05/acre)7. Also, the minimum and maximum net returns were both higher compared 

to the base scenario for all risk aversion levels.   

The break-even acreage level, payback period, and the return on investment for 

the adoption of sub-meter auto-steer were also determined.  To spread out the fixed cost 

associated with sub-meter auto-steer, a land area of 222 acres was required under the risk 

neutral scenario.8  Also, the payback period was calculated under the risk neutral 

scenario, and sub-meter auto-steer was able to pay for itself in 0.61 years for farms with 

2600 acres.  Furthermore, sub-meter auto-steer had a 153.73% return on investment9.    

 In addition to determining the economic impact of sub-meter auto-steer, 

investigating its potential to become a tool for risk management was also an objective.  

For this study, production risk was measured by the coefficient of variation (C.V) of net 

returns across years.  If the adoption of sub-meter auto-steer decreased the C.V. as well as 

increased expected net returns when compared to the base scenario, it could be inferred 

that the technology could be used to manage production risk.  Evidence of reduced risk 

through sub-meter auto-steer was displayed by more favorable C.V. across risk aversion 

levels when compared to the base scenario.  In addition, an increase in expected net 

returns occurred under all risk scenarios when compared to the base scenario (e.g. 17.6310 

and $1,030,817 under risk neutrality compared to 17.81 and $1,020,336). The average 

decrease in C.V. due to the adoption of sub-meter auto-steer was 0.16%.  As a result, it 

was determined that sub-meter auto-steer could be used as a tool for risk management.  

The farm manager’s capability to alter production practices was a large contributor in 

reducing the C.V.   

                                                 
7 For the risk neutral scenario, if the operator overlapped by only 5ft, net returns increased by 0.94% with a 
return on investment of 141.59%.  On the other hand, if the operator overlapped by 10ft, the net returns 
increased by 1.08% with a return on investment of 161.96%.   Note: Base overlap for the self-propelled 
sprayer was 8ft.   
8 Break-even acreage level could not be determined based solely on a calculation.  Both the base scenario 
and the specific auto-steer scenarios acreage level were varied within the model such that both their 
expected net returns converged.  Once the net returns for each model converged, the break-even acreage 
level was determined.   
9 The following formula was utilized to calculate the returns on investment: [(Net returns gained from 
technology)+(Opportunity cost of capital) ] / (Total investment in the technology).  The opportunity cost of 
capital was calculated using the following formula: (Interest rate*Total investment/2).  The return on invest 
was adjusted such that the opportunity cost of capital was not accounted for twice.  Therefore, the 
percentages appropriately reflected the return on the capital invested.     
10 +/- 17.63% of mean net returns occur in about 2/3 of the years.  C.V. is a relative measure of risk with a 
decrease representing a reduction in risk. 
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 It was also determined that the optimal production practices for the base scenario 

(Table 2.4) were altered when sub-meter auto-steer was adopted (Table 2.5).  This 

demonstrated the importance of a whole farm analysis and the need to adjust production 

practices to take full advantage of the new technology.  The majority of changes occurred 

in the production of soybeans.  For example, there was a removal of planting on April 

29th with maturity group four under risk neutrality.  This was due to the competition for 

suitable field hours during the planting of soybeans on the week of April 22nd with 

spraying post-emergence herbicide on corn planted on March 25th.  With the ability to 

spray more effectively with sub-meter auto-steer, more suitable field hours were available 

for planting the highest yielding soybean planting date/maturity group combination.   

The largest change that occurred due to the adoption of sub-meter auto-steer was 

for medium risk aversion.  Planting the week of May 6th with maturity group four was 

removed from the optimal production set and the acres redistributed to planting the week 

of May 13th with maturity group four.  This was due to the competition of suitable field 

hours during the week of spraying insecticide on soybeans planted on the week of May 

13th with harvesting the corn planted on March 25th with maturity group 2600.  Similar to 

what occurred under risk neutrality, the adoption of sub-meter auto-steer provided a more 

efficient means of spraying insecticide.  This allowed for more acres of soybeans planted 

on the week of May 13th.  Even though there were modification to the optimal production 

set when compared to the base scenario with no auto-steer navigation, the average yields 

of soybeans were not altered.   

Unlike soybeans, corn production practices in the optimal set were not change 

compared to the base scenario without sub-meter auto-steer.  There was a redistribution 

of acres within the optimal set for all risk aversions, but no more than 25 acres were 

reallocated.  Since there was no considerable change in the production of corn, average 

yields remained the same.     

RTK Auto-Steer Results 

 The economic, risk, and production implications of adopting an integral valve 

auto-steer system with an RTK GPS receiver on a tractor was also examined.  This study 

occurred while the tractor was planting, fertilizing, and stalk shredding.  With the 

adoption of RTK, expected net returns increased under all four risk scenarios when 
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compared with the base (Table 2.3).  Across all risk aversion levels, the average increase 

in expected net returns was 1.95% ($7.36/acre)11.  When compared to the addition of a 

bolt-on auto-steer system with a sub-meter receiver on a self-propelled sprayer, the 

average increase in expected net returns across all risk levels was 0.87% ($3.31/acre).  

Also, the minimum and maximum net returns were higher compared to the base scenario 

for all risk aversion levels, except for the minimum net returns under risk neutrality.   

The break-even acreage level, payback period, and the return on investment for 

the adoption of RTK auto-steer were also determined.  The break-even acreage under the 

risk neutral scenario was 521 acres.  Also, the payback period was calculated under the 

risk neutral scenario and was determined that RTK auto-steer would pay for itself in 1.45 

years for farms with 2600 acres. In addition, RTK auto-steer had a 59.19% return on 

investment.  While these numbers still seem favorable, they were higher than the less 

expensive sub-meter auto-steer option except for the payback period and return on 

investment.   

The possibility of RTK auto-steer to reduce production risk was also examined.  

Similar to the sub-meter auto-steer scenarios, RTK exhibited the ability to reduce risk by 

exemplifying a more favorable coefficient of variation across risk aversion levels when 

compared to the base scenario except for the low risk aversion level.  In addition, an 

increase in expected net returns occurred under all risk scenarios (e.g. 17.46 and 

$1,309,654 under risk neutrality compared to 17.81 and $1,020,336).  The average C.V 

across 30 years increased under the low risk aversion scenario.  However, after 

investigating the risk-adjusted net returns (Z-Value), results indicated that RTK auto-

steer had superior risk reducing properties compared to the base and sub-meter auto-steer.  

The higher C.V. indicated that the producer was willing to experience greater variability 

to achieve the higher expected net returns.  For the scenarios where C.V. decreased, the 

average was 0.20%.  As a result, it was determined that RTK auto-steer could be used as 

a tool for risk management for farmers.  The farm manager’s capability to alter 

                                                 
11 For the risk neutral scenario, if the operator overlapped by only 0.5ft, net returns increased by 1.61% 
with a return on investment of 49.25%.  On the other hand, if the operator overlapped by 3ft, the net returns 
increased by 5.20% with a return on investment of 155.72%.   Note: Base overlap for the tractor was 1ft. 
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production practices was a large contributor in reducing the C.V., hence the possibility to 

managing production risk.   

Production practices under the base scenario (Table 2.4) were also altered due to 

the adoption of RTK auto-steer (Table 2.6).  Unlike sub-meter auto-steer, RTK impacted 

optimal corn production practices as well as soybean production practices.  Interestingly, 

multiple factors contributed to the optimal nitrogen fertilizer results.  Specifically, a 

reduced expense attributed to RTK auto-steer led to a heightened derived quantity 

demanded for its use.  Thus, for a given planting date and plant population, a higher 

optimal nitrogen rate was often consequential.  Furthermore, risk averse behavior coupled 

with adjustments in planting date and plant population ultimately increased the average 

optimal nitrogen rate.  Notably, under risk neutrality, everything stayed constant except 

for the amount of nitrogen applied.  When comparing other risk aversion levels with the 

base scenario without auto-steer, planting dates and maturity groups remained the same 

but more acres were allocated towards higher nitrogen rates, seeding rates, or a 

combination of both.  For example, under high risk aversion, 600 acres of corn were 

planted with 100 lbs/N without RTK.  However, only 460 acres of corn were planted with 

the same nitrogen rate once RTK was incorporated within the model.  Also for high risk 

aversion, 570 acres of corn was planted without RTK at a seeding rate of 24,000 and only 

430 acres were planted with RTK at the same seeding rate.  These changes were 

attributed directly to the reduction in overlap that RTK auto-steer provided.  Specifically, 

RTK auto-steer increased the efficiency of planting and nitrogen application through 

enhanced performance rates and the amount of suitable field time available.  This allowed 

for shifts towards higher optimal plant populations which corresponded to a greater 

desired nitrogen rate.   

While the desired optimal nitrogen rate therefore increased, it was interesting to 

note that the greater efficiency of nitrogen application associated with RTK auto-steer 

was responsible for reduced nitrogen purchased.  Thus, the precise application of nitrogen 

reduced the cost to deliver the same quantity of fertilizer to the corn plant.  For the base 

scenario, a total of 270,518 lbs of nitrogen was applied to farm.  With RTK auto-steer 

and the reduction in overlap, only 268,978 lbs of nitrogen was applied to the farm.  

Therefore, production economic theory supported the observed increase in recommended 



 
18 

 

rates of nitrogen made available to the corn plant while the total nitrogen purchased 

actually declined because of reduced overlaps.  The observed increase in nitrogen rate 

and plant population resulted in a moderate increase in average corn yields of one or two 

bushels per acre depending on risk behavior.   

  Unlike corn, soybean production practices remained relatively constant when 

compared to the base scenario.  The largest change in the production of soybeans was the 

reallocation of acres under the low risk aversion level.  Two interesting results occurred 

under risk neutrality and medium risk aversion.  Similar to sub-meter auto-steer, planting 

the week of April 29th was also removed from the optimal set under risk neutrality.  This 

was attributed to the competition for suitable field hours during the week of planting 

soybeans and spraying corn.  The difference was that RTK increased the efficiency of 

planting whereas sub-meter auto-steer increased the efficiency of spraying.  However, the 

change in the production of soybeans remained the same.  For medium risk aversion, 

planting the week of May 6th with maturity group four was not removed from the optimal 

set like the occurrence with the adoption of sub-meter auto-steer.  This was because the 

competition for suitable field days was between spraying soybeans and harvesting corn, 

neither of which were influenced by RTK in this study.  In addition, soybean yields were 

not impacted by the utilization of RTK.               

Sub-Meter and RTK Auto-Steer Results 

Similar to the first two investigations, the economic, risk, and production impacts 

were analyzed for both auto-steer systems operating together. The adoption of both auto-

steer systems increased the expected net returns under all four risk scenarios when 

compared to the base scenario (Table 2.3).  Across all risk aversion levels, the average 

increase in expected net returns was 3.03% ($11.30/acre). When compared with the 

addition of a bolt-on auto-steer system with a sub-meter receiver on a self-propelled 

sprayer, the average increase in expected net returns across all risk levels was 1.93% 

($7.35/acre).  When compared with the addition of an integral valve auto-steer system 

with an RTK GPS receiver on a tractor, the average increase in expected net returns 

across all risk levels was 1.05% ($4.04/acre).  Also, the minimum and maximum net 

returns were higher compared to the base scenario for all risk aversion levels. 
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The break-even acreage level, payback period, and the return on investment for 

the adoption of both auto-steer systems were also determined.  The break-even acreage 

under the risk neutral scenario was 425 acres.  Also, the payback period was calculated 

under the risk neutral scenario and it was determined that the addition of both auto-steer 

systems would pay for themselves in 1.18 years for farms with 2600 acres. Furthermore, 

the addition of both auto-steer systems had a 74.93% return on investment.  These results 

were less than operating solely RTK auto-steer but still greater than sub-meter auto-steer 

alone.       

The possibility of utilizing both auto-steer systems for reducing production risk 

was also an objective.  The addition of both auto-steer systems exhibited the greatest 

ability to reduce risk.  When compared to other auto-steer scenarios, both coefficient of 

variations and expected net returns were favored.  The average decrease in the C.V. was 

0.29%; therefore the addition of both auto-steer systems could be used as a tool for risk 

management.  Similar to the first two investigations, the farm manager’s capability to 

alter production practices was a large contributor in reducing the C.V., hence the 

possibility to managing production risk.     

 Alterations in production practices for corn and soybeans were also investigated.  

When adding both auto-steer systems, production practices and division of acres were 

similar as the scenario when adding just RTK auto-steer.  Only a few differences 

occurred within the optimal production set.  The alterations in production practices when 

using both systems independently were seen when joined together in this analysis.  

Notably, results were similar to RTK auto-steer but there was the removal of May 6th 

from the optimal production set which occurred when adding just sub-meter auto-steer 

alone.  This was due to utilizing each auto-steer system in the production of corn and 

soybeans.          

Impact of Input Price on the Profitability of Auto-Steer 

Sensitivity analyses were conducted to determine the impact of input price 

fluctuations on the net returns and profitability of auto-steer under the risk neutral 

scenario.  Three inputs were investigated, herbicide, nitrogen, and seed prices.  However, 

only the inputs that each auto-steer scenario impacted were analyzed.  Specifically, sub-

meter auto-steer influences herbicide costs because it was on the sprayer.  Additionally, 
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RTK auto-steer influences nitrogen and seed cost because it was on the tractor.  When the 

technologies were combined, they influenced all three inputs.  Each input price was 

varied from -20% to 20% of the base, ceteris paribus.  Net returns for the base case and 

all three auto-steer scenarios were observed when input prices were varied (Table 2.7).  

As input prices were varied, the percent increase in profitability above the base case due 

to the adoption of auto-steer was also calculated.  For example, when herbicide price 

increased by 20%, there was an increase of 1.25% in profitability over the base scenario 

due to the adoption of sub-meter auto-steer.  As the appropriate input price increased, 

auto-steer became more profitable.  Also, as input price decreased, auto-steer became less 

profitable.  When operating with both auto-steer systems, herbicide price increases 

provided greater potential for profitability than nitrogen price increases.   Conversely, 

nitrogen price decreases provided greater potential for profitability than herbicide price 

decreases.   

 Conclusion 

A whole farm economic model is used to assess three auto-steer scenarios for 

various risk aversion levels.  First, a general investigation into the increase in net returns 

and return on investment for auto-steer under various overlap scenarios and hours worked 

per week are conducted.  Results indicate that at the lowest overlap scenario, both sub-

meter and RTK auto-steer systems are profitable and the return on investment is always 

substantially larger than the interest rate.  A base overlap and hours worked per day are 

assumed and a more thorough investigation is then conducted.   

The objectives of this study are to determine the economic, risk, and production 

implications due to the adoption of auto-steer.  For all risk levels, results indicate that all 

three auto-steer scenarios are profitable, with the greatest average increase in expected 

net returns of 3.03% ($11.30/acre) for the scenario with both auto-steer systems.  In 

addition, the minimum and maximum net returns that occur over thirty years are both 

higher due to the adoption of auto-steer except for RTK under risk neutrality.  

Furthermore, the break-even acreages under all scenarios are less than 525 acres, with a 

payback period of no more than 1.5 years.  Also, the largest return on investment is 

153.73% for sub-meter auto-steer.   
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The results also demonstrate that regardless of the auto-steer scenario or risk 

aversion level, the coefficient of variation decreases in all but one scenario.  None the 

less, when coupled with an increase in net returns, auto-steer can be used to manage 

production risk.  However, reduced production risk is based mainly on the farm 

manager’s capability to alter production practices.     

The results of this investigation also indicate that the adoption of auto-steer can 

impact optimal corn and soybean production practices.  Corn production is impacted the 

most by the addition of RTK auto-steer navigation.  This is due to the reduced overlap 

which results in an overall decrease in the total amount of fertilizer applied to the field 

despite an increase in the optimal nitrogen rate that the corn plant actually receives.  In 

addition, the increase in efficiency results in a higher plant population, which also 

corresponds to the increase in optimal nitrogen rates.  Soybeans are impacted the most 

due to the addition of sub-meter auto-steer, and its influence on the competition between 

resources, specifically suitable field hours.  Finally, changes in the input price directly 

affect the expected net returns and the profitability of auto-steer.      
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Table 2.1.1. Summary of corn production practices utilized within this study. 

Planting Date: March 25, April 1, April 8, April 15, April 22, April 29,  

May 6, May 13, May 20 

Maturity Group (GDD): 2600-2650, 2650-2700, 2700-2750 

Plant Population (plants/acre): 24,000, 28,000, 32,000 

Row Spacing: 30” 

Plant Depth: 1.5” 

Nitrogen Rate (actual lbs/acre): 100, 150, 175, 200, 225 

 

Table 2.1.2. Summary of soybean production practices utilized within this study. 

Planting Date: April 22, April 29, May 6, May 13, May 20, May 27,  

June 3, June 10, June 17 

Maturity Group: MG2, MG3, MG4 

Plant Population (plants/acre): 111,000, 139,000, 167,000 

Row Spacing: 15”, 30” 

Plant Depth: 1.25” 
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Table 2.2. Base field capacities, as well as new field capacities when auto-steer is 
adopted on the self-propelled sprayer and tractor 
 

Implement 

Old Field 
Capacity 
(hr/ac) 

New Field 
Capacity 
(hr/ac)1 

Multiplicative 
Factor2 

Sprayer: Pre-Plant 0.0132 0.0103 0.7792 
Sprayer: Post-Plant 0.0132 0.0120 0.9090 
Planter 0.0491 0.0457 0.9305 
Anhydrous Applicator 0.0491 0.0437 0.8892 
Stalk Shred 0.0825 0.0715 0.8672 

1New field capacities are calculated according to the changes in width and speed due to 
the adoption of auto-steer. 
2The multiplicative factor represents the percent change between the new and old field 
capacities.  For example, sub-meter auto-steer decreased the hours per acre for pre-
planting application of chemicals by approximately 22%.
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Table 2.3. Economics of auto-steer navigation under various risk aversion scenarios 
 

Risk Aversion Levels 
Base1 Neutral      Low Medium     High 

Expected Net Returns $1,020,336 $1,007,871 $979,545 $913,621 
Percent Optimal 100.00% 100.00% 100.00% 100.00% 
C.V. (%) 17.81 15.66 13.79 11.06 
Minimum Net Returns $658,928 $666,801 $680,614 $701,470 
Maximum Net Returns $1,364,489 $1,341,037 $1,276,158 $1,136,768 

Sub-Meter2 

Expected Net Returns $1,030,817 $1,018,353 $990,004 $924,306 
Percent Optimal 101.03% 101.04% 101.07% 101.17% 
C.V. (%) 17.63 15.50 13.63 10.94 
Minimum Net Returns $669,333 $677,251 $689,454 $712,151 
Maximum Net Returns $1,375,037 $1,351,584 $1,285,587 $1,148,208 

RTK3 

Expected Net Returns $1,039,654 $1,029,945 $997,029 $931,284 
Percent Optimal 101.89% 102.19% 101.78% 101.93% 
C.V. (%) 17.46 15.71 13.62 10.97 
Minimum Net Returns $657,201 $684,554 $696,721 $717,024 
Maximum Net Returns $1,374,844 $1,364,430 $1,294,246 $1,159,634 

Both4  

Expected Net Returns $1,050,126 $1,040,424 $1,007,642 $941,757 
Percent Optimal 102.92% 103.23% 102.87% 103.08% 
C.V. (%) 17.29 15.56 13.47 10.85 
Minimum Net Returns $667,673 $694,905 $705,437 $727,494 
Maximum Net Returns $1,385,317 $1,375,126 $1,304,026 $1,170,109 

 
1Base refers to operating without any auto-guidance systems. 
2Sub-Meter refers to the adoption of a bolt-on auto-steer system with a sub-meter receiver 
on a self propelled sprayer. 
3RTK refers to the adoption of an integral valve auto-steer system with a RTK GPS 
receiver on a tractor. 
4Both refers to the adoption of both auto-steer systems above and operating together.   
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Table 2.4. Production results and acres planted for various risk aversion levels under the 
base scenario with no auto-steer navigational technologies  
 
Section 1. Corn Management Practices Risk Aversion Levels 
Planting 

Date 
Maturity 
Group 

Plant 
Pop 

Nitrogen 
Rate Neutral Low Medium High 

March 25 2600 28000 150 0 0 333 485 
March 25 2650 28000 150 0 362 0 0 
March 25 2650 32000 150 362 0 0 0 
March 25 2700 24000 100 0 0 0 148 
March 25 2700 24000 150 0 0 413 0 
March 25 2700 28000 175 0 293 0 0 
March 25 2700 32000 175 722 272 0 0 
April 1 2700 24000 100 0 0 0 183 
April 1 2700 28000 100 0 0 0 30 
April 1 2700 28000 150 0 0 142 0 
April 1 2700 32000 150 0 157 65 0 
April 8  2600 24000 100 0 0 0 238 
April 8 2700 28000 150 0 0 103 0 
April 15 2700 28000 225 216 0 0 0 
April 22 2650 28000 150 0 216 244 216 

Yields1 163 159 153 147 

Section 2. Soybean Management Practices2 Risk Aversion Levels 
Planting 

Date 
Maturity 
Group Neutral Low  Medium High 

April 22 MG3 0 0 731 0 
April 22 MG4 1290 0 0 0 
April 29 MG2 0 0 0 804 
April 29 MG3 0 0 0 91 
April 29 MG4 10 616 0 0 
May 6 MG4 0 684 50 0 
May 13 MG4 0 0 519 0 
June 17 MG4 0 0 0 405 

Yields 62 62 61 57 
 
1Yields for both corn and soybeans are in bu/Acre. 
2Optimal plant population and row spacing was the same for all risk scenarios of 111,000 
plants per acre and 15 inch row spacing.   
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Table 2.5. Production results and land area planted for various risk aversion levels under 
sub-meter auto-steer 
 
Section 1. Corn Management Practices Risk Aversion Levels 
Planting 

Date 
Maturity 
Group 

Plant 
Pop 

Nitrogen 
Rate Neutral Low Medium High 

March 25 2600 28000 150 0 0 338 489 
March 25 2650 28000 150 0 362 0 0 
March 25 2650 32000 150 362 0 0 0 
March 25 2700 24000 100 0 0 0 148 
March 25 2700 24000 150 0 0 408 0 
March 25 2700 28000 175 0 291 0 0 
March 25 2700 32000 175 722 272 0 0 
April 1 2700 24000 100 0 0 0 181 
April 1 2700 28000 100 0 0 0 31 
April 1 2700 28000 150 0 0 167 0 
April 1 2700 32000 150 0 159 43 0 
April 8  2600 24000 100 0 0 0 235 
April 8 2700 28000 150 0 0 104 0 
April 15 2700 28000 225 216 0 0 0 
April 22 2650 28000 150 0 216 240 216 

Yields1 163 159 153 147 

Section 2. Soybean Management Practices2 Risk Aversion Levels 
Planting 

Date 
Maturity 
Group Neutral Low  Medium High 

April 22 MG3 0 0 720 0 
April 22 MG4 1300 0 0 0 
April 29 MG2 0 0 0 804 
April 29 MG3 0 0 0 97 
April 29 MG4 0 628 0 0 
May 6 MG4 0 672 0 0 
May 13 MG4 0 0 580 0 
June 17 MG4 0 0 0 399 

Yields 62 62 61 57 
 
 
1Yields for both corn and soybeans are in bu/Acre. 
2Optimal plant population and row spacing was the same for all risk scenarios of 111,000 
plants per acre and 15 inch row spacing.   
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Table 2.6. Production results and land area planted for various risk aversion levels under 
RTK auto-steer 
 
Section 1. Corn Management Practices Risk Aversion Levels 
Planting 

Date 
Maturity 
Group 

Plant 
Pop 

Nitrogen 
Rate Neutral Low Medium High

March 25 2600 28000 150 0 0 334 515 
March 25 2650 28000 150 0 362 0 0 
March 25 2650 32000 175 362 0 0 0 
March 25 2700 24000 100 0 0 0 117 
March 25 2700 24000 150 0 0 362 40 
March 25 2700 28000 175 0 0 45 0 
March 25 2700 32000 175 0 42 0 0 
March 25 2700 32000 200 722 559 0 0 
April 1 2700 24000 100 0 0 0 66 
April 1 2700 28000 100 0 0 0 137 
April 1 2700 32000 150 0 121 203 0 
April 8  2600 24000 100 0 0 0 209 
April 8 2700 28000 150 0 0 112 0 
April 15 2700 28000 225 216 0 0 0 
April 22 2650 28000 150 0 135 244 216 
April 22 2700 28000 175 0 81 0 0 

Yields1 165 161 154 148 

Section 2. Soybean Management Practices2 Risk Aversion Levels 
Planting 

Date 
Maturity 
Group Neutral Low  Medium High

April 22 MG3 0 0 734 0 
April 22 MG4 1300 0 0 0 
April 29 MG2 0 0 0 798 
April 29 MG3 0 0 0 98 
April 29 MG4 0 988 0 0 
May 6 MG4 0 312 53 0 
May 13 MG4 0 0 513 0 
June 17 MG4 0 0 0 403 

Yields 62 62 61 57 
 
1Yields for both corn and soybeans are in bu/Acre. 
2Optimal plant population and row spacing was the same for all risk scenarios of 111,000 
plants per acre and 15 inch row spacing.   
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Table 2.7.  Expected net returns as well as profitability of auto-steer above the base case 
(%) as input prices fluctuate by the percentages indicated.1 

 

Sub-Meter2  RTK3 Both4 
Herbicide Nitrogen Seed Herbicide Nitrogen Seed

20% 1.25 2.07 2.23 3.17 3.11 3.29 
10% 1.14 1.96 2.06 3.04 3.00 3.10 
0% 1.03 1.89 1.89 2.92 2.92 2.92 

-10% 0.92 1.85 1.74 2.80 2.87 2.74 
-20% 0.82 1.73 1.59 2.68 2.74 2.58 

 
1 The percentages indicate the increase in net returns above the base scenario with the 
same increase in input price.  
2 The impact of herbicide price fluctuations on the profitability of sub-meter auto-steer on 
the self-propelled sprayer when compared to the base case. 
3 The impact of nitrogen and seed price fluctuations on the profitability of RTK auto-steer 
on the tractor when compared to the base case. 
 4 The impact of herbicide, nitrogen, and seed price fluctuations on the profitability of 
both sub-meter auto-steer on the self-propelled and RTK auto-steer on the tractor when 
compared to the base case.    
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Jordan Murphy Shockley 2010 



 
29 

 

CHAPTER THREE 

 

WHOLE FARM ANALYSIS OF AUTOMATIC SECTION CONTROL FOR 
SELF-PROPELLED AGRICULTURAL SPRAYERS 

 

Precision agriculture technology has evolved in such a manner that it provides 

farmers with new and innovative ways to possibly improve profitability. One of these 

ways is a new approach to the application of liquid chemicals known as automatic section 

control.  Automatic section control on a sprayer has the ability to selectively manage 

input application across the spray boom.  This technology utilizes a global positioning 

system (GPS) to locate the position of the sprayer within the field, and then records the 

areas covered.  If the sprayer traverses an area previously covered it can automatically 

turn the appropriate section off, therefore eliminating over application.  In addition, 

automatic section control can manage chemical application in undesirable areas such as 

point rows, waterways, and during headland turns.  Currently, automatic section control 

is available by many manufacturers and has the ability to control up to 48 sections of the 

spray boom.  With this capability, numerous benefits are possible.       

The largest benefit associated with automatic section control is the reduction in 

overlapped areas especially prevalent on irregular shaped fields.  As a result, this new 

technology has the potential to increase profits due to reducing input costs.  Specifically, 

automatic section control can reduce the cost of any chemical application applied with 

the self-propelled sprayer (e.g. herbicide and pesticide).  Environmental benefits are also 

possible due to the ability to manage buffer zones and protect sensitive areas in and 

around the field.  Furthermore, improved efficiency can occur if coupled with a 

navigational aide such as lightbar or auto-steer.  To evaluate automatic section control as 

a viable replacement for standard uniform sprayers, economic analyses must be 

conducted.    

 Batte and Ehsani (2006) began investigating the possible economic benefits of 

this technology.  They concluded that input savings alone from the technology could be 

substantial if automatic section control could be developed.  Once a prototype was 

created and farm trials conducted, Dillon, et al. (2007) examined the economic 
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implications of utilizing automatic section control. They determined that input expense 

savings from the application of herbicide alone would justify adoption.  In addition, 

results indicated a break-even area of 785 acres and a payback period of 3.19 years based 

on herbicide alone.  Shockley, et al. (2008) expanded the above study to include 

additional inputs and benefits associated with navigational technologies.   Results from 

the study indicated a break-even area as low as 403 acres and payback period of less than 

one year for high rates of herbicide applications.  Mooney, et al. (2009) conducted the 

most recent economic analysis and determined automatic section control became 

profitable at input saving levels of 11% or above.   

Even though previous economic studies have provided valuable insight of 

automatic section control, numerous shortcomings exist.  The previous analyses utilized 

simple techniques and only focused on cost savings.  Moreover, the results understated 

the economic potential to the extent that substitution of inputs and the ability to alter 

production strategies were not considered within these models.  In addition, field shape 

could have a substantial impact on the economic viability of automatic section control, 

which was not investigated in previous studies.  Furthermore, previous research into 

automatic section control has excluded other issues such as the economic impact of 

including navigational aids and the impact on risk.      

The addition of navigational aids to automatic section control can have substantial 

economic implications.  By utilizing navigation aids such as lightbar with automatic 

section control, improved performance rates of the sprayer can occur.  In turn, this can 

impact the optimal production strategies.  As a result, opportunities to exploit automatic 

section control to reduce production risk should also be examined.  Lowenberg-DeBoer 

(1999) developed theoretical models suggesting variable rate technologies could be used 

to manage risk.  Therefore, the potential for automatic section control to manage 

production risk is an objective of this investigation.    

The objectives of this study are to: (1) determine the impact of automatic section 

control on expected net returns under various scenarios, (2) determine if automatic 

section control can be used to manage production risk, (3) determine the impact of 

automatic section control on optimal production strategies under various scenarios, (4) 

determine the break-even acreage level, percent overlap, payback period, and return on 
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investment required to justify the implementation of automatic section control, and (5) 

determine the influence of input price fluctuations on the profitability of automatic 

section control.   

To provide a detailed assessment of automatic section control for a hypothetical 

grain farmer in Kentucky, a whole farm economic model is utilized.  This study 

investigates automatic section control with and without lightbar navigation.  In addition, 

three different field shapes with corresponding overlap scenarios as well as four farmer 

risk aversion attitudes (neutral, low, medium, and high) are included into the whole farm 

model to accomplish the above objectives. 

Analytical Procedure 

The analytical framework of this study embodies the production environment, 

economic model, and explicit conditions pertaining to the hypothetical farm that 

represents the study focus and are detailed in the follow sections.  This section has a high 

degree of similarity to Chapter 2 and presented again due to the journal article approach 

of this dissertation.   

The Production Environment 

The Decision Support System for Agrotechnology Transfer (DSSAT v4), a 

biophysical simulation model, was utilized to estimate the production data for this study 

(Hoogenboom, 2004).  For almost 15 years, DSSAT has provided production data for 

refereed studies in numerous journal articles that encompassed various geographic 

locations.   DSSAT was determined to be an appropriate model for this study after a 

comprehensive validation specific to this study was performed and discussed later in this 

section.    

Developing yield estimates in DSSAT required input data that included site 

weather data for the duration of the growing season, site soil data, and a description of the 

production practices.  Daily climatology data were accumulated for 30 years in 

Henderson County, Kentucky and obtained through the University of Kentucky 

Agricultural Weather Center (2008).  To acquire the necessary soil data, a National 

Cooperative Soil Survey of Henderson County, Kentucky was developed from the 

Natural Resources Conservation Service (NRCS).  From the soil survey, it was 

determined that four representative soils (deep silty loam, deep silty clay, shallow silty 



 
32 

 

loam, and shallow silty clay) would be utilized in the biophysical simulation models.  

Finally, production practices were ascertained for corn and full season soybeans in 

accordance with the University of Kentucky Cooperative Extension Service Bulletins 

(2008).  These included a range of planting date, crop variety, plant density, row spacing, 

and fertilizer practices (Table 3.1).    

The estimated yields were validated by analyzing their response to varying 

production practices, and then compared to relevant literature.  For example, corn yields 

exhibited a quadratic response to nitrogen rates, which is consistent with previous 

literature (e.g. Schmidt, et al., 2002; Cerrato and Blackmer, 1990).  Furthermore, 

regression analysis was conducted to compare the estimated yields from DSSAT to actual 

historical yield trends for Henderson County, Kentucky.  Performing a t-test confirmed 

that the estimated yields were not statistically different from actual yields with a 

significance of 99% for both corn and soybeans.12  Refer to the appendix for more details 

with regard to the validation of the estimated yields.  In general, the simulated yields 

were thought to be typical of grain production in Henderson County, Kentucky.  The 

estimated yield data provided an essential element to be utilized within the economic 

model. 

The Economic Model 

A resource allocation model was employed within a mean variance (E-V) 

quadratic programming formulation to represent a commercial Kentucky corn and 

soybean producer operating under no-till farming conditions.  The mathematical details 

of the model can be found in the Appendix 1.  Freund (1956) developed the formulation 

to incorporate risk measured by the variance of net returns across years.  Dillon (1999) 

modeled risk within an E-V framework which has been modified for this study.  

Specifically, additional production practices, the incorporation of different land types, 

allowing for multiple harvest weeks, and the inclusion of automatic section control 

technology with and without lightbar navigation distinguished this model from Dillon’s 

(1999) model.       

The objective of the model was to maximize net returns less the product of the 

Pratt risk aversion coefficient and the variance of net returns.  The Pratt risk aversion 
                                                 
12 Corn and soybean regressions resulted in an R2 of 0.22 and 0.46 respectively.   
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coefficient was developed by McCarl and Bessler (1989) as a measure of a hypothetical 

producer’s aversion to risk.  By utilizing this coefficient, the model exhibited the classic 

risk-return tradeoff by penalizing net returns by its variance.  Four risk aversion levels 

were modeled within the E-V framework.13 

Various decision variables, constraints, and supplementary coefficients and data 

comprised the economic framework of this study.  Variables decided within the economic 

model include the production of corn and soybeans.  These are identified by the amount 

of acres produced by various production practices on the respected soil type.14  From the 

decision variables, the expected net returns and average yields could be determined.  To 

formulate the model and provide insights into the above decision variables, appropriate 

constraints were required.    

To provide insight into the above decision variables, the appropriate constraints 

were required which included land available, labor, crop rotation, and ratio of soil type. 

The land area constraint limited the total production of corn and soybeans by the 

available acres assumed for this investigation.  Additionally, the estimated suitable field 

hours per week bounded the operating hours of the machines required to perform the 

activities necessary in the production of corn and soybeans.  Since a Kentucky grain 

producer often utilizes a two year crop rotation, a constraint was required such that 50% 

of the land available was in corn production and 50% was in soybean production.  

Furthermore, it was assumed that the producer would not be utilizing variable rate 

applications based on soil type.  As a result, constraints requiring uniformity of 

production practices across soil types were required. In addition to the constraints, 

establishing the proper coefficients and data were essential in the framework of the 

economic model.    

The coefficients required for this study consisted of the labor hours and the prices 

for corn and soybeans.  Field capacity of the machines provided the basis for determining 

the labor required to perform the agricultural tasks.  A ten percent increase in hours per 

                                                 
13Risk aversion levels were given by percentages representing the desire of net returns likely to be 
achieved.  Percentages of 50, 60, 70, and 85 were modeled and were labeled as neutral, low, medium, and 
high risk aversion respectively.   
14 The various production practices and their respective allotted acres were decided within the model for all 
scenarios investigated including the base case without automatic section control. 
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acre was utilized to represent the total labor required to complete specific operations.  

The extra labor occurs from performing such tasks as refilling the sprayer tanks and seed 

bins, unloading the grain tank and any other labor tasks required.  In addition, the price 

for corn and soybeans also needed to be established.  The World Agricultural Outlook 

Board (2008) estimated the median 2009 prices for corn and soybeans, after adjusting for 

Kentucky basis, at $4.25/bu and $9.75/bu respectively.    

  Accompanying data critical to this study included of the appropriate land area, 

suitable field hours, and the costs of automatic section control and lightbar navigation.  

Because of the nature of this investigation, the land area chosen reflected a farm size 

located in Henderson County, Kentucky that supported the ownership of a self-propelled 

sprayer.  According to the Kentucky Agricultural Statistics (2008), Henderson County 

was the second largest corn and soybean producer in the state.  Henderson County is 

located in the Ohio Valley region of Kentucky where farm sizes of 2600 acres are 

representative of the upper one third of net farm income for farms registered into the 

Kentucky Farm Business Management program (Pierce, 2008).  This was deemed an 

appropriate size to support the ownership of a self-propelled sprayer.  Suitable field days 

were also determined from 30 years of historical climatological data.  They were 

estimated based on probabilities of it not raining 0.15 inches or more per day over a 

period of a month.15  The calculated probabilities were utilized to determine expected 

suitable field hours per week.  Finally, the cost of automatic section control was 

annualized and incorporated both depreciation and the opportunity cost of capital 

invested.  Depreciation was calculated using the straight-line method with an assumed 

eight year useful life and an 8% interest rate on capital investment.  With the adoption of 

automatic section control technology, additional costs included a Zynx-20 controller at 

$4750, a 30 channel spray ECU at $3100, 54 solenoid valves at $159 each and $470 for 

wiring and harness. Notably this allowed the replacement of the standard spray controller 

which was assumed to have a salvage value of $1050. This consequently nets a total 

investment outlay of $15,856 and an annualized cost of $2,616 per year.  With the 

                                                 
15 For clarification, an example was given for determining suitable field days.  If the median days in 
January that it rained 0.15 inches or more was 5 over 30 years, the probability of it NOT raining .15 inches 
per day in January was (1-(days rained/days in the month)).  
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addition of lightbar with sub-meter accuracy, the total investment outlay was $18,856 and 

an annualized cost of $3,111 (Dillon, et al., 2007; Shockley, et al., 2008; Stombaugh, 

2009).  With this technology, perfect control (i.e. zero overlap) was assumed for this 

investigation.      

The Hypothetical Model Farm   

A collection of machines was established that corresponded to a hypothetical farm 

located in Henderson County that operated under no-till farming conditions.  The 

collection of machines comprised one 250-hp 4WD tractor with the following 

implements: a 42-ft anhydrous applicator, a split row no-till planter (16 rows), a grain 

cart with 500 bu capacity, and a 20-ft stalk shredder for corn.  Also included was a 300-

hp harvester with an 8 row header for corn and a 25-ft flex header for soybeans.  

Additionally, a self propelled sprayer with a 90-ft boom that applied herbicides on corn 

(Glyphosate, Bicep II, and Roundup), herbicides on soybeans (Roundup and 2, 4-D, B) 

and insecticide on soybeans (Acephate) was the equipment set assumed.  Mississippi 

State Budget Generator (MSBG) was utilized to compile the ASABE Standard 

specifications for the above equipment set (i.e. speed, width, and efficiency).  However, 

the addition of the no-till split row planter and the anhydrous applicator was required 

(Laughlin and Spurlock, 2007).  Illinois Farm Business Management (2008) machinery 

specifications were utilized to gather appropriate data for the planter and anhydrous 

applicator.   

The benefits acquired by equipping the above self-propelled sprayer with 

automatic section control were influenced by whether or not lightbar navigation was also 

utilized.  For the scenarios that incorporated solely automatic section control, only direct 

input cost savings were reflected in the coefficients.  These variations in cost savings 

were dependent on which crop, input, and field shape the autonomous section control was 

operating on (Table 3.2).  When utilizing a sub-meter receiver with a navigational aid, 

such as lightbar, an enhanced performance rate of the sprayer occurred.  This was due to 

the ability to use GPS navigation to reduce overlaps within the field.  A reduction in 

overlap to three feet for the self-propelled sprayer due to the addition of lightbar to the 

self-propelled sprayer was assumed (Stombaugh, 2005).  Besides the technology, field 

shape could also influence the analysis.    
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The profitability of automatic section control could vary greatly depending on the 

field shape on which the sprayer was being used.  This was due to the differences in 

potential overlap.  Therefore, three different field shapes were chosen for this study that 

represented the breadth of Kentucky grain farms.  The three farms were chosen from a 

study conducted by Stombaugh et al. (2009).  The study collected data from numerous 

farms throughout Kentucky and were utilized in the development of a computational 

method and software tool.  The program had the ability to estimate the overlapped area in 

a particular field as it was affected by automatic section control.  By utilizing field 

boundary shape files, implement width, and number of sections controlled across the 

spray boom, the program could calculate the percentage overlapped area for a given field.  

The program generated field coverage using straight parallel paths in which overlaps 

occurred only due to headland encroachment and point row areas.  Obstacles within the 

field boundary were not considered in the model.  Three field shapes and corresponding 

percentage of overlapped area were chosen as base scenarios for this investigation.  In 

particular, fields with a low (5%), medium (16.5%), and high (25.5%) percentage of 

overlapped area were chosen (Figures 1).               

Results and Discussion 

Three base scenarios with the aforementioned differing percentage of overlapped 

area were investigated and then compared to the addition of automatic section control 

with and without lightbar navigation.  Table 3.3 presents the economic impact of the 

various base overlap scenarios. 

Automatic Section Control without Lightbar   

The addition of automatic section control without lightbar was examined to 

determine the economic, risk, and production impacts due to adoption.  When compared 

to the three base cases, expected net returns increased under every risk aversion level 

with the adoption of automatic section control (Table 3.3).  The increase in expected net 

returns varied from 0.16% ($0.60/acre) for a low overlap field (5% overlap) to an 

increase of 2.35% ($8.11/acre) in net returns for a high overlap field (25.5% overlap).  

The average increase in expected net returns across all three base scenarios under risk 

neutrality was 1.17% ($3.40/acre).  As risk aversion increased, results indicated the 

profitability of automatic section control without lightbar increased when compared to 
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the base scenarios.  In addition, as the overlapped area increased, profits increased due to 

the addition of automatic section control without lightbar when compared to the base 

scenarios.  Additionally, the results indicated the average percent decrease in expected 

total variable cost across all base scenarios for risk neutrality was 2.24%.  This was 

considerably less than the 11% which Mooney, et al. (2009) determined was needed for 

automatic boom section control to become profitable.  Furthermore, for all base overlap 

scenarios and risk aversion levels, both the minimum and maximum net returns were 

greater when incorporating section control. 

 The break-even acreage level, percent overlap, payback period, and return on 

investment for the adoption of automatic section control without lightbar were also 

determined.  For each overlap scenario under risk neutrality, break even acreage levels 

were calculated to determine the approximate land area necessary to justify the adoption 

of automatic section control16.  Results indicated that  land areas of 1535, 428, and 279 

acres for low, medium, and high overlaps, respectively, were needed to distribute the 

fixed cost associated with adoption.  Furthermore, an overlap of 4% or more was needed 

for automatic section control to be profitable with a farm size of 2600 acres.  The 

payback periods were calculated under risk neutral scenarios and results indicated that 

automatic section control was able to pay for itself in 3.75, 1.04, and 0.67 years for low, 

medium, and high overlaps, respectively, for farms with 2600 acres.  In addition, the 

return on investment for automated section control was 14.19%, 83.60%, and 137.00% 

for low, medium, and high overlaps respectively17.  As the overlap area increases, the 

input savings that occurred begins to dominate the depreciation of automatic section 

control, resulting in the above return on investments.  In addition, all three returns on 

investment were greater than the opportunity cost of capital (8%).  Therefore, automatic 

section control without lightbar was deemed a sound investment for the scenarios 

evaluated.   
                                                 
16 Break-even acreage levels could not be determined from a simple calculation.  Both the base and 
technology scenarios acreage levels must be varied accordingly such that both base and technology 
scenario converge to the same expected net return.   
17 The return on invest was adjusted such that the opportunity cost of capital was not accounted for twice.  
Therefore, the percentages appropriately reflected the return on the capital invested.  Specifically, the 
following formula was utilized to calculate the returns on investment: [(Net returns gained from 
technology)+(Opportunity cost of capital) ] / (Total investment in the technology).  The opportunity cost of 
capital was calculated using the following formula: (Interest rate*Total investment/2).     
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The potential of automatic section control to assist in managing production risk 

was also an objective.  It could be inferred that automatic section control reduces 

production risk if both the coefficient of variation (C.V.) decrease and expected net 

returns increase, when compared to a base scenario.18  For this investigation, automatic 

section control exhibited more favorable coefficients of variation and expected net 

returns when compared to all base overlap scenarios and risk aversion levels (e.g. 17.67 

and $1,026,270 under risk neutrality with automatic section control compared to 18.04 

and $1,005,182 for high overlap without automatic section control).  The average 

decreases in C.V. across risk levels were 0.16%, 0.99%, and 2.12% for low, medium, and 

high overlap, respectively.  As a result, automatic section control without lightbar could 

be utilized for managing production risk.   

 Optimal production practices with and without automatic section control were 

also determined for this study.  Since automatic section control without lightbar only 

affected direct input cost savings, optimal production practices were not altered.  

Therefore, detailed production results were discussed in the following section. 

 Automatic Section Control with Lightbar  

The addition of automatic section control with lightbar was also examined to 

determine the economic, risk, and production impacts due to adoption.  Overall economic 

results were similar to the addition of automatic section control without lightbar (Table 

3.4).  When compared to the base overlap scenarios, for all risk aversion levels, automatic 

section control with lightbar was profitable.  In addition, both minimum and maximum 

net returns were higher than the base overlap scenarios.  Even though net returns were 

above the base overlap scenarios, the addition of lightbar to automatic section control was 

only justified for medium and high overlap scenarios.  This observation was a result of 

the whole farm approach that was utilized.  Specifically, this investigation was able to 

capture the effect lightbar had on input cost savings and the performance rate of the 

sprayer based on the various overlap scenarios.  Therefore, this study was able to explain 

the full impact automatic section control with lightbar had on expected net returns.    

Additionally, the break-even acres, payback period, and the return on investment 

under risk neutrality were determined.  Land areas of 1893, 513 and 328 acres for low, 
                                                 
18 The C.V is a relative measure of risk and any decrease indicates a possibility of risk reduction 
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medium, and high overlaps, respectively, were needed to distribute the fixed cost 

associated with the adoption of automatic section control with lightbar.   The amount of 

acres required above to justify the addition of automatic section control with lightbar was 

considerably higher than without lightbar.  The greatest increase in acres occurred for the 

low overlap scenario in which an additional 358 acres were required due to the addition 

of lightbar to automatic section control.   Also, the payback periods for low, medium, and 

high overlap scenarios were 4.41, 1.19, and 0.76 years, respectively.  These were also 

greater than automatic section control without lightbar.  In addition, the returns on 

investment were lower than without lightbar of 10.18%, 71.71%, and 118.74% for low, 

medium, and high overlap, respectively. Similar to automatic section control without 

lightbar, as the overlapped area increases, the input savings that occurred began to 

dominate the depreciation costs of automatic section control, resulting in the above return 

on investments.  However, the percentage of overlap required to justify the adoption of 

automatic section control with lightbar was 4%, the same as without lightbar.  

Furthermore, results indicated that an overlap of 14% or more was needed before a 

farmer would prefer the addition of lightbar to automatic section control.  The above 

percentages of overlaps calculated were determined through numerous investigations 

within the model.  Even though the returns on investment and payback periods for 

automatic section control without lightbar were greater, the returns on the investment 

with lightbar were still above the opportunity cost of capital and the payback periods 

never differed more than one year.  Therefore, automatic section control with lightbar 

was still considered a sound investment.   

The potential of automatic section control with lightbar to assist in managing 

production risk was also an objective.  Similarly, automatic section control with lightbar 

exhibited more favorable coefficients of variation and expected net returns when 

comparing all base overlap scenarios and risk aversion levels.  Therefore, automatic 

section control with lightbar could become a tool for managing production risk.  The 

addition of a lightbar to automatic section control had a greater impact on the reduction 

of C.V. than without lightbar for medium and high overlap scenarios.  The average 

decreases in C.V. across risk levels were 0.14%, 1.38%, and 2.32% for low, medium, and 

high overlap, respectively.   
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Determining the impact on production practices from utilizing automatic section 

control with lightbar was also an objective.  Unlike before, operating section control with 

lightbar did influence the optimal production practices when compared to the base 

overlap scenarios.  As sprayer overlap increased, the performance rate of spraying 

operations decreased.  Therefore, when operations were competing for suitable field 

hours, the optimal production decisions were influenced by this constraint.  As sprayer 

overlap increased, the majority of change occurred in the production of soybeans (Tables 

3.5-3.7).  Conversely, corn production practices remained relatively unaffected.  This was 

attributed to the competition for suitable field hours with other production practices.  For 

example, under risk neutrality, planting corn on the week of March 25th occurred during 

the same week as the burn down herbicide application for soybeans planted on April 22nd.  

Therefore, as the performance rate of the sprayer decreased, more acres of soybeans must 

be planted at an alternative production combination (in this case planting the week of 

April 29th with maturity group IV).  For each risk aversion level, a different conflict 

occurred between production practices.  Examples included spraying corn while planting 

soybeans and harvesting corn while spraying beans during the same week.   

When analyzing the impact automatic section control with lightbar had on optimal 

production practices, results indicated that the same optimal production practices 

occurred as the low overlap scenario (Table 3.8).  Since the percent overlaps between the 

two scenarios only differed by less than two percent, there were no changes in production 

practices.  When compared to the other overlap scenarios, automatic section control with 

lightbar provided the sprayer with an enhanced performance rate.  This allowed for 

additional acres to be produced on previously bound production practices.  Since 

automatic section control with and without lightbar did not alter the production practice 

for the low overlap scenario, the additional cost of utilizing lightbar with automatic 

section control was not justified for the scenario.  

Impact of Input Price on the Profitability of Automatic Section Control 

Sensitivity analyses were conducted to establish the influence of input price on 

the profitability of automatic section control under the risk neutral scenario for all three 

overlap scenarios.  Since automatic section control influences the chemicals applied on 

the field, only herbicide price fluctuations were investigated by varying their respective 
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original price plus and minus ten and twenty percent, ceteris paribus.  Other inputs 

required in production would only result in a uniform change in net returns, therefore 

were not investigated.  The percent increase in profitability due to the adoption of 

automatic section control was determined based on the various input price scenarios 

(Table 3.9).  It was determined that as herbicide prices increased, automatic section 

control with and without lightbar became more profitable.  As input prices decreased, all 

scenarios investigated still exhibited increased profits.  However, if herbicide price 

decreased by 20%, the profitability of automatic section control without lightbar almost 

was almost zero.     

Conclusion     

Three base scenarios with initial sprayer overlaps of 5%, 16.5%, and 25.5% are 

investigated to determine possible economic, risk, and production practice impacts of 

automatic section control with and without lightbar.  The economic results indicate that 

regardless of risk level or overlap scenario, automatic section control with and without 

lightbar are profitable.  However, the addition of lightbar to automatic section control is 

only justified for medium and high overlap scenarios.  The greatest increase in expected 

net returns under risk neutrality is 2.44% ($8.43/acre) which corresponds to utilizing 

automatic section control with lightbar on the largest overlapped area in this 

investigation.  In addition, the average decrease in expected variable costs across all 

overlap scenarios is 2.29%.  This is considerably lower than the 11% that previous 

studies required to justify the adoption of automatic section control.  

The break-even acreage level, percent overlap, payback period, and return on 

investment for the adoption of automatic section control with and without lightbar under 

all three overlap scenarios are also determined.  Break-even acreages vary from 1893 to 

279 acres based on the percentage of overlap and whether or not lightbar is present on the 

sprayer.  In addition, automatic section control has a payback period of no more than five 

years.  The return on investment varies greatly from 10.18% for a low overlap field to 

137.00% for a high overlap field.  Even though the returns on investment and payback 

periods favor automatic section control without lightbar for overlaps less than 14%, the 

returns on investment with lightbar are still above the opportunity cost of capital.  In 

addition, the payback periods never differ more than one year.  Greater net returns and 
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lower coefficients of variation for automatic section control with lightbar are preferred 

for scenarios exhibiting 14% overlap or greater with the self-propelled sprayer.    

 The results also indicate that the coefficient of variation decreases when 

compared to each base scenario and risk aversion level.  This is due to the adoption of 

automatic section control with and without lightbar.  Automatic section control with 

lightbar reduces the coefficient of variation the greatest for both medium and high 

overlap scenarios.  Thus, when coupled with increases in net returns, automatic section 

control with and without lightbar can be used to manage production risk.   

In addition, the adoption of automatic section control alone has no impact on 

optimal production practices.  Similarly, results indicate that operating a sprayer with 

automatic section control and lightbar has the same optimal production practices as the 

low overlap base scenario.  Conversely, automatic section control with lightbar provides 

the sprayer with an enhanced performance rate for medium and high base scenarios.  This 

allows additional acres to be produced on previously bound production practices.  Hence, 

the adoption of automatic section control with lightbar influences the optimal production 

practices.  

Sensitivity analyses indicate the break-even overlap that justifies the adoption of 

automatic section control with or without lightbar is 4% or more for a 2600 acre farm.  

Furthermore, an initial overlap of 14% or more is needed to justify the addition of 

lightbar to automatic section control. Sensitivity analyses also indicate that automatic 

section control with and without lightbar become more profitable when herbicide price 

increases.   
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Table 3.1.1. Outline of production practices employed within this study for corn. 

Planting Date: March 25, April 1, April 8, April15, April 22, April 29,  

May 6, May 13, May 20 

Maturity Group (GDD): 2600-2650, 2650-2700, 2700-2750 

Plant Population1: 24,000, 28,000, 32,000 

Row Spacing: 30” 

Plant Depth: 1.5” 

Nitrogen Rate2: 100, 150, 175, 200, 225 
1Plant population values correspond to the amount of plants per acre. 
2Nitrogen rate values correspond to the actual pounds of nitrogen per acre. 

 

Table 3.1.2. Outline of production practices employed within this study for soybeans. 

Planting Date: April 22, April 29, May 6, May 13, May 20, May 27,  

June 3, June 10, June 17 

Maturity Group: MG2, MG3, MG4 

Plant Population1: 111,000, 139,000, 167,000 

Row Spacing: 15”, 30” 

Plant Depth: 1.25” 
1Plant population values correspond to the amount of plants per acre. 
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Table 3.2. Input cost savings ($ per acre) due to the adoption of automatic section control 

based on overlap and inputs applied on corn and/or soybeans. 

 
Overlap 

Low Medium High 
Herbicide on Soybeans 1.23 4.55 7.10 
Herbicide on Corn 1.82 6.58 10.25 
Insecticide on Soybeans 0.30 1.08 1.68 
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Table 3.3. Economics of various base overlap scenarios under a range of risk aversion 
levels. 

Risk Aversion Level 
Neutral Low  Medium  High 

Low Overlap 
Expected Net Returns $1,025,652 $1,013,187 $984,861  $918,937  
C.V. (%) 17.72 15.58 13.72 11.00 
Minimum Net Returns $664,244  $672,117  $685,930  $706,787  
Maximum Net Returns $1,369,805 $1,346,354 $1,281,474  $1,142,083 

Medium Overlap 
Expected Net Returns $1,014,088 $1,001,662 $974,450  $907,235  
C.V. (%) 17.90 15.76 13.95 11.13 
Minimum Net Returns $653,061  $660,614  $678,119  $695,071  
Maximum Net Returns $1,357,912 $1,334,786 $1,273,399  $1,129,705 

High Overlap 
Expected Net Returns $1,005,182 $992,796  $966,570  $898,198  
C.V. (%) 18.04 15.90 14.13 11.23 
Minimum Net Returns $644,536  $651,769  $673,020  $686,055  
Maximum Net Returns $1,348,677 $1,325,876 $1,267,245  $1,119,988 

 
1 Low, Medium and High risk aversion levels correspond to 60%, 70%, and 85% 
respectively. 
2 Low, Medium and High overlap correspond to 5%, 16.5%, and 25.5% respectively for a 
90 ft. self-propelled agricultural sprayer.  
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Table 3.4. Economics of automatic section control with and without lightbar for a range 

of risk aversion levels. 

Section 1:  Economics of automatic section control without lightbar for various overlap 
scenarios and risk aversion levels.   

Risk Aversion Level 
Neutral Low  Medium  High 

Low Overlap 
Expected Net Returns $1,027,268 $1,014,804 $986,478  $920,544  
Percent of Base 100.16% 100.16% 100.16% 100.17% 
C.V. (%) 17.69 15.56 13.70 10.98 
Minimum Net Returns $665,861  $673,734  $687,547  $708,403  
Maximum Net Returns $1,371,422 $1,347,971 $1,283,086  $1,143,701 

Medium Overlap 
Expected Net Returns $1,026,710 $1,014,284 $987,071  $919,857  
Percent of Base 101.24% 101.26% 101.30% 101.39% 
C.V. (%) 17.68 15.56 13.77 10.98 
Minimum Net Returns $665,683  $673,236  $690,749  $707,694  
Maximum Net Returns $1,370,533 $1,347,408 $1,286,017  $1,142,326 

High Overlap 
Expected Net Returns $1,026,270 $1,013,883 $987,657  $919,286  
Percent of Base 102.10% 102.12% 102.18% 102.35% 
C.V. (%) 17.67 15.57 13.83 10.98 
Minimum Net Returns $665,623  $672,857  $694,107  $707,092  
Maximum Net Returns $1,369,765 $1,346,964 $1,288,332  $1,141,076 

 
Section 2: Economics of automatic section control with lightbar for various risk aversion 
levels.  

Risk Aversion Level 
Neutral Low  Medium  High 

Expected Net Returns $1,026,817 $1,014,352 $986,026 $920,103 
Percent Optimal 
       Low Overlap  100.11 100.11 100.12 100.13 
       Medium Overlap 101.26 101.27 101.19 101.42 
       High Overlap 102.15 102.17 102.01 102.44 
C.V. (%) 17.70 15.56 13.70 10.98 
Minimum Net Returns $665,410 $673,283 $687,096 $707,952 
Maximum Net Returns $1,370,971 $1,347,519 $1,282,639 $1,143,249
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Table 3.5. Optimal production practices and corresponding land area for low overlap with 

the self-propelled sprayer without automatic section control for various risk scenarios. 

 
Section 1. Corn Management Practices Risk Aversion Levels 
Planting 

Date 
Maturity 
Group 

Plant 
Pop 

Nitrogen 
Rate Neutral Low Medium High 

March 25 2600 28000 150 0 0 333 485 
March 25 2650 28000 150 0 362 0 0 
March 25 2650 32000 150 362 0 0 0 
March 25 2700 24000 100 0 0 0 148 
March 25 2700 24000 150 0 0 413 0 
March 25 2700 28000 175 0 293 0 0 
March 25 2700 32000 175 722 272 0 0 
April 1 2700 24000 100 0 0 0 183 
April 1 2700 28000 100 0 0 0 30 
April 1 2700 28000 150 0 0 142 0 
April 1 2700 32000 150 0 157 65 0 
April 8  2600 24000 100 0 0 0 238 
April 8 2700 28000 150 0 0 103 0 
April 15 2700 28000 225 216 0 0 0 
April 22 2650 28000 150 0 216 244 216 

Yields1 163 159 153 147 

Section 2. Soybean Management Practices2 Risk Aversion Levels 
Planting 

Date 
Maturity 
Group Neutral Low  Medium High 

April 22 MG3 0 0 731 0 
April 22 MG4 1290 0 0 0 
April 29 MG2 0 0 0 804 
April 29 MG3 0 0 0 91 
April 29 MG4 10 616 0 0 
May 6 MG4 0 684 50 0 
May 13 MG4 0 0 519 0 
June 17 MG4 0 0 0 405 

Yields 62 62 61 57 
1Yields for both corn and soybeans are in bushels per acre.  
2110,000 plants per acre and 15 inch row spacing where determined optimal production 
practices for all risk scenarios.     
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Table 3.6. Optimal production practices and corresponding land area for medium overlap 

with the self-propelled sprayer without automatic section control for various risk 

scenarios. 

 
Section 1. Corn Management Practices Risk Aversion Levels 
Planting 

Date 
Maturity 
Group 

Plant 
Pop 

Nitrogen 
Rate Neutral Low Medium High

March 25 2600 28000 150 0 0 340 482 
March 25 2650 28000 150 0 362 0 0 
March 25 2650 32000 150 362 0 0 0 
March 25 2700 24000 100 0 0 0 147 
March 25 2700 24000 150 0 0 423 0 
March 25 2700 28000 175 0 294 0 0 
March 25 2700 32000 175 722 272 0 0 
April 1 2700 24000 100 0 0 0 184 
April 1 2700 28000 100 0 0 0 29 
April 1 2700 28000 150 0 0 97 0 
April 1 2700 32000 150 0 156 102 0 
April 8  2600 24000 100 0 0 0 242 
April 8 2700 28000       150 0 0 100 0 
April 15 2700 28000   225 216 0 0 0 
April 22 2650 28000   150 0 216 238 216 

Yields1 163 159 153 147 

Section 2. Soybean Management Practices2 Risk Aversion Levels 
Planting 

Date 
Maturity 
Group Neutral Low  Medium High

April 22 MG3 0 0 724 0 
April 22 MG4 1241 0 0 0 
April 29 MG2 0 0 0 804 
April 29 MG3 0 0 0 85 
April 29 MG4 59 608 0 0 
May 6 MG4 0 692 230 0 
May 13 MG4 0 0 346 0 
June 17 MG4 0 0 0 411 

Yields 62 62 61 57 
1Yields for both corn and soybeans are in bushels per acre.  
2110,000 plants per acre and 15 inch row spacing where determined optimal production 
practices for all risk scenarios.     
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Table 3.7. Optimal production practices and corresponding land area for high overlap 

with the self-propelled sprayer without automatic section control for various risk 

scenarios. 

 
Section 1. Corn Management Practices Risk Aversion Levels 
Planting 

Date 
Maturity 
Group 

Plant 
Pop 

Nitrogen 
Rate Neutral Low Medium High

March 25 2600 28000 150 0 0 349 479 
March 25 2650 28000 150 0 362 0 0 
March 25 2650 32000 150 362 0 0 0 
March 25 2700 24000 100 0 0 0 147 
March 25 2700 24000 150 0 0 434 0 
March 25 2700 28000 175 0 295 0 0 
March 25 2700 32000 175 722 272 0 0 
April 1 2700 24000 100 0 0 0 184 
April 1 2700 28000 100 0 0 0 30 
April 1 2700 28000 150 0 0 51 0 
April 1 2700 32000 150 0 155 139 0 
April 8  2600 24000 100 0 0 0 245 
April 8 2700 28000 150 0 0 98 0 
April 15 2700 28000 225 216 0 0 0 
April 22 2650 28000 150 0 216 228 216 

Yields1 163 159 153 147 
Section 2. Soybean Management Practices2 Risk Aversion Levels 
Planting 

Date 
Maturity 
Group Neutral Low  Medium High

April 22 MG3 0 0 719 0 
April 22 MG4 1192 0 0 0 
April 29 MG2 0 0 0 804 
April 29 MG3 0 0 0 79 
April 29 MG4 108 600 0 0 
May 6 MG4 0 700 402 0 
May 13 MG4 0 0 170 0 
June 10 MG4 0 0 9 0 
June 17 MG4 0 0 0 417 

Yields 62 62 61 57 
1Yields for both corn and soybeans are in bushels per acre. 
2110,000 plants per acre and 15 inch row spacing where determined optimal production 
practices for all risk scenarios.     
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Table 3.8. Optimal production practices and corresponding land area when utilizing 

automatic section control with lightbar for various risk scenarios. 

Section 1. Corn Management Practices Risk Aversion Levels 
Planting 

Date 
Maturity 
Group 

Plant 
Pop 

Nitrogen 
Rate Neutral Low Medium High

March 25 2600 28000 150 0 0 333 485 
March 25 2650 28000 150 0 362 0 0 
March 25 2650 32000 150 362 0 0 0 
March 25 2700 24000 100 0 0 0 148 
March 25 2700 24000 150 0 0 413 0 
March 25 2700 28000 175 0 293 0 0 
March 25 2700 32000 175 722 272 0 0 
April 1 2700 24000 100 0 0 0 183 
April 1 2700 28000 100 0 0 0 30 
April 1 2700 28000 150 0 0 142 0 
April 1 2700 32000 150 0 157 65 0 
April 8  2600 24000 100 0 0 0 238 
April 8 2700 28000 150 0 0 103 0 
April 15 2700 28000 225 216 0 0 0 
April 22 2650 28000 150 0 216 244 216 

Yields1 163 159 153 147 

Section 2. Soybean Management Practices2 Risk Aversion Levels 
Planting 

Date 
Maturity 
Group Neutral Low  Medium High

April 22 MG3 0 0 731 0 
April 22 MG4 1290 0 0 0 
April 29 MG2 0 0 0 804 
April 29 MG3 0 0 0 91 
April 29 MG4 10 616 0 0 
May 6 MG4 0 684 50 0 
May 13 MG4 0 0 519 0 
June 17 MG4 0 0 0 405 

Yields 62 62 60 57 
1Yields for both corn and soybeans are in bushels per acre.  
2110,000 plants per acre and 15 inch row spacing where determined optimal production 
practices for all risk scenarios.     
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Table 3.9.  The percentage increase in net returns above the base overlap scenarios due to 

the adoption of automatic section control with and without lightbar as herbicide prices 

fluctuate. 

 
Overlap w/o Lightbar1 Overlap with Lightbar 

% Change in Price Low Medium  High   Low Medium High 
20% 0.24 1.54 2.58 0.19 1.56 2.63 
10% 0.20 1.39 2.33 0.15 1.40 2.39 
0% 0.16 1.24 2.10 0.11 1.26 2.15 

-10% 0.12 1.10 1.87 0.08 1.11 1.92 
-20% 0.08 0.95 1.64 0.04 0.96 1.69 

 
1 Low, Medium, and High overlap corresponds to 5%, 16.5%, and 25% respectively for a 
90 ft. self-propelled agricultural sprayer.  
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CHAPTER FOUR 

 

DEVELOPMENT OF AN ECONOMIC OPTIMIZATION MODEL TO GUIDE 
THE ADVANCEMENT OF AUTONOMOUS MACHINERY BY IDENTIFYING 

DOMINATE EQUIPMENT CHARACTERISTICS 
 

Over the years, there has been a trend in agricultural machinery where equipment 

size has increased to meet farmer demands.   One of the primary reasons farmers’ desire 

larger equipment is to benefit from economies of size.  Specifically, farmers can become 

more financially competitive by substituting capital for labor, thereby reducing average 

labor requirements.  Additionally, larger equipment can mitigate the risks associated with 

untimely operations due to unfavorable weather conditions.  Other factors such as the 

need to compensate for a declining agricultural workforce or a producer’s desire for more 

leisure time are also possible explanations for acquiring larger machines.  However, as 

the size of agricultural machines continues to increase, consequences that are detrimental 

to both the operator and environment will arise.  For the operator, controlling large 

implements on irregular soils and navigating narrow country roads becomes problematic.  

Furthermore, environmental degradation from soil compaction which reduces 

productivity is only magnified with larger machines.  Moreover, larger equipment can 

lead to excess chemical application on undesired areas due to operator errors and 

increases in overlaps.  The opportunity exists to reverse this trend in agriculture by 

introducing autonomous machinery to production systems.     

The replacement of large manned machines with small autonomous robots will be 

a paradigm shift in agricultural production to a small scale precision farming approach.  

Introduction of small, light-weight robots that can perform agricultural tasks 

autonomously may prove to be a realistic option for farmers in the future.  These robots 

will likely operate in fleets and utilize intelligent controls to cooperate with each other to 

perform tasks such as scouting for weeds and diseases, yield and field mapping, and plant 

specific operations like sowing and fertilizing.  Numerous benefits potentially exist from 

utilizing autonomous machines.  It is possible that autonomous machines can sense and 

manipulate the crop and its environment in a site-specific manner with the potential of 

increasing the efficiency, effectiveness, and quality of crop production.  They can 
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potentially have the ability to work in fleets 24 hours per day, year around, and be 

virtually weather independent.  Due to their inherent weight advantage over conventional 

machines, a reduction in soil compaction is possible.  Coupled with the ability to 

potentially reduce chemical application and lower current energy consumption, the 

environmental impacts of agricultural production can potentially diminish.  It is expected 

that autonomous machinery will have a smaller initial investment and lower labor costs 

than conventional systems.    

Recently, engineers have developed various autonomous machines capable of 

agricultural production.   Several studies have investigated the mechanization and the 

design of autonomous robots (Blackmore, et al., 2004; Blackmore and Blackmore, 2007; 

Vaugioukas, 2007; Vaugioukas, 2009).  The majority of studies have focused on the 

advancement of autonomous platforms with regard to accuracy, steering, and 

performance (van Henten 2009; Marchant 1997; and Bak 2004).  These platforms have 

the potential to attach various implements such as cultivators, seeders, and sprayers, for 

agricultural operations.  Other studies have concentrated on autonomous weed detection 

and management (Griepentrog, et al., 2009; Gottschalk et al., 2009; Astrand and 

Baerveldt, 2002; Penderson, et al., 2006; Penderson, et al., 2007).  Rackelshausen, et al. 

(2009) investigated an autonomous robot prototype that had the ability to perform 

individual plant phenotyping by detecting plant parameters such as crop density, plant 

height, stem thickness, biomass, and growth that could benefit plant breeders and farmers 

when developing agricultural field trials.   

Economists have begun investigating the potential benefits of autonomous 

vehicles for agricultural operations.  Goense (2005) analyzed an autonomous row crop 

cultivator to determine the effect of the size of autonomous implements on mechanization 

costs.  Pederson, et al. (2006) compared the costs and potential benefits of an autonomous 

machine that was capable of field scouting cereal crops.  Partial budgeting was used to 

determine that autonomous field scouting reduced the costs by 20%, but profitability was 

susceptible to initial investments and the annual costs for the GPS system.  In 2007, 

Pederson, et al. conducted another investigation into autonomous weeding and grass 

cutting.  Partial budgeting was used to compare the cost changes to conventional 

practices and determined that the utilization of autonomous machinery could be possible 
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if adequate safety controls and regulatory systems were imposed at reasonable costs.  Due 

to its infancy and lack of economic investigations, numerous research opportunities exist 

that could provide valuable insight into the advancement of autonomous machinery.   

The opportunity rarely presents itself in which economics can influence the 

development of a technology.  Specifically, economic evaluation can provide engineers 

with valuable information regarding the equipment characteristics required for 

autonomous machinery to be profitable.  Additionally, economics can determine the most 

influential autonomous machine in a whole farm setting.  Furthermore, advanced 

agricultural machinery, such as autonomous vehicles, are often perceived as only viable 

when operating on larger farms and/or high value crops.  Therefore, providing insights 

into whether autonomous machinery can flourish on a grain farm operation can also be 

accomplished through economic studies.   

The introduction of autonomous machines can have complex consequences to the 

farm by affecting not only machinery management but also related issues such as labor 

and cropping practices.  To provide such information, a multi-faceted machinery 

management model is required.  The model must consider the entire farming system and 

allow for changes in cropping patterns and labor requirements.  Therefore, this 

investigation aims to address the above issues through the following objectives:  (1) 

develop a mixed integer programming model which portrays a typical Western Kentucky 

grain farm, (2) determine the optimal conventional machines necessary to perform 

agricultural tasks common for a Western Kentucky grain producer, (3) determine the 

optimal number of autonomous machines and implements necessary to perform the same 

agricultural tasks in which profits exceed the use of conventional machinery, (4) 

determine the appropriate autonomous machinery specifications as well as benefits 

necessary for autonomous machines to be more profitable than the conventional 

machinery, and (5) analyze the impact farm size has on objectives 2-4.  

Analytical Procedure 

The analytical framework of this study consists of the underlying production 

environment as well as the development of the economic model.  This is presented in 

detail in the following sections. 
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The Production Environment  

To properly assess a Kentucky grain farmers’ optimal machinery selection 

decision, whether conventional or autonomous, the underlying production environment 

must first be established.  This investigation was modeled after a typical western 

Kentucky corn and soybean producer who operated under no-till farming conditions for 

various farm sizes.  Specific machinery operations occurred during the production of corn 

and soybeans.  For corn production, the following machinery operations must be 

completed: burn down treatment, planting, pre-emergence application of herbicide, post-

emergence application of herbicide, and a nitrogen application. Soybean production 

required: burn down treatment, planting, post-emergence herbicide application, and an 

insecticide treatment.  These production scenarios were consistent with University of 

Kentucky Cooperative Extension Service Recommendations (2008).  In addition, The 

University of Kentucky Cooperative Extension Service Recommendations (2008) 

provided various input application rates and the time for performing each specific 

operation.  These recommendations provided the basis for determining the appropriate 

levels to employ within the model.  Other production operations, such as the application 

of phosphorous, potassium, and lime, as well as harvest were required and assumed to be 

custom hired at costs determined from Halich’s (2008) Cooperative Extension Report.  

 To complete the above production activities, appropriate machinery was required.  

Due to the infancy of autonomous machinery and the lack of appropriate data for 

comparison, options other than purchasing the equipment (short-term rental, leasing, and 

custom hiring) were excluded for this study.  Therefore, a conventional machinery 

complement required the purchase of a tractor, planter, sprayer, and fertilizer applicator.  

The planter, sprayer, and fertilizer applicator were assumed implements, hence attached 

to the tractor.  The conventional machinery choice set assumed for a Kentucky grain 

producer was listed in Table 4.1.  The machinery choice set was developed to represent 

the breadth of options facing a Kentucky grain producer.  All data for conventional 

machinery was compiled from the Mississippi State Budget Generator (Laughlin and 

Spurlock, 2007), which complied with ASABE Standards.  Specifically, operating costs 

(fuel, repair and maintenance, and labor), annual costs of ownership, and the performance 
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rates of the implements differentiated each piece of equipment and were utilized in the 

machinery selection decision. 

 Data required for modeling a machinery selection decision in which autonomous 

machines performed the agricultural operation is difficult since they are still in the 

developmental stage.  On the other hand, this poses an opportunity to provide engineers 

with valuable information regarding the specifications and benefits of an autonomous 

system that can potentially be favored over conventional machinery for a Kentucky grain 

producer.  For this investigation, it was assumed that small, lightweight autonomous 

vehicles would perform agricultural tasks.  In addition, the implements would be 

interchangeable on a platform; therefore, one platform could potentially perform multiple 

tasks throughout the growing season.19  Various autonomous specifications and benefits 

were determined based on literature pertaining to autonomous prototypes and presented 

in Table 4.2 (e.g. Pedersen, et al., 2006; Blackmore, et al., 2004; Rackelshausen, et al., 

2009; van Henten, et al., 2009).   

Economic and engineering specifications were included which consisted of the 

purchase price and performance rates of the platform and implements, as well as 

operating hours per day.   The purchase prices of the platform and implements were 

determined from the study conducted by Pedersen, et al. (2006).  An autonomous micro-

sprayer was developed for weed control on sugar beets.  The platform’s capital outlay 

was roughly $53,000 with an additional $40,000 for a four row micro-sprayer.  A 

majority of the implement purchase price would come from the electrical components, 

which would be common to all three implements investigated.  Thus, all three implement 

purchase prices were varied over the same range.  The purchase prices of both platform 

and implement were annualized to include depreciation and the opportunity cost of 

capital invested.  Depreciation was calculated using the straight-line method with an 

assumed 3 year useful life and salvage value of 50% of the purchase price for both 

                                                 
19 For this investigation, a platform was defined as a device with locomotion and controls as well as a 
system for guiding the device.   
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platform and implement.20  The opportunity cost of capital investment was calculated 

using an 8% interest rate.   

Engineering specifications were also necessary for this analysis and included the 

performance rates of the implements as well as the machine operating hours per day.   

Various factors were taken into consideration when determining the performance rates of 

the implements.  Since it was assumed that small, lightweight autonomous vehicles were 

utilized, the power supply of these vehicles would range from 10-30 hp (Blackmore, et 

al., 2004).  Hence, implement width would be 2-4 rows with speeds ranging from 1-5 

miles per hour (Rackelshausen, et al., 2009; van Henten, et al., 2009).  As a result, 

performance rates for each implement varied from one to three acres per hour.  In 

addition, early studies suggested operating 24 hours per day would be feasible with 

autonomous machinery.  On the other hand, additional time would be required to carry 

out tasks such as traveling from field to field and performing repairs, which would limit 

actual field operating time.  Therefore, 21-23 hours per day were chosen for this study. 

Several potential benefits could occur with the utilization of autonomous vehicles, 

but for this study the quantitative benefits were limited to input cost and compaction 

reduction.  The reduction in input cost was considered one of the primary benefits of 

utilizing autonomous machinery.  Previous studies have reported up to a 90% reduction 

in herbicide cost alone for an autonomous micro-sprayer (Pedersen, et al., 2007).  Other 

inputs such as fertilizer and seed were not expected to experience such a dramatic 

reduction in costs21.  Therefore, the possible percent reductions of each input were 

weighted by their respective portion of total input costs to provide a range of 10% to 30% 

reduction in total input costs.  In addition, large, heavy farm machinery used today 

damages the soil structure resulting in a reduction in yields.  The University of Minnesota 

Extension (2001) services reported a reduction in corn yield of 7.5% due to soil 

                                                 
20 The annual costs for owning a autonomous machinery was calculated as follows using the straight-line 
depreciation method: [((Total Investment – Salvage Value)/(Useful Life)) + ((Total Investment + Salvage 
Value)*Interest Rate)/2]. 
21 The range for reduced input costs were formed from pertinent literature and conversations with 
professionals.  For the high end of the range estimated herein, herbicide costs decreased by 90% and 
fertilizer and seed costs decreased by 50%.  On the low end of the range estimated herein, herbicide costs 
decreased by 50% and fertilizer and seed costs decreased by 10%.  Using the weights of 15%, 40%, and 
45% for herbicide, seed, and fertilizer costs, respectively, the range for total input cost reduction was 
formed.    
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compaction.  Due to the lightweight configuration of the autonomous vehicles, soil 

compaction should be reduced resulting in increased yield potential.  Therefore, possible 

yield increases of 2.5 and 7.5 percent were modeled for this study.  In addition, operating 

labor typical with conventional machinery was removed from the autonomous 

investigation.  There was anticipated incidental labor costs associated with refilling seed, 

chemical, and fertilizer, as well as transporting the machines to different locations, but 

not addressed in this study.  In addition, there was an anticipated opportunity cost 

associated with the implementation of a new paradigm machinery operation, which was 

not included in this investigation.  The overall machinery selection model was consistent 

with both options of machines, with the above technical data differentiating the two 

analyses.      

The Economic Model 

One of the main objectives of this study was to develop a multi-faceted machinery 

management model to compare operating with conventional and autonomous machinery 

for a typical Kentucky row crop operation.  To accomplish this, a mixed integer 

mathematical programming formulation was developed that incorporated three 

optimization models: machinery selection, resource allocation, and sequencing.  The 

machinery selection model was the foundation for the development of the mixed integer 

programming model.  Machinery selection was first published by Wiengartner (1963) as 

an integer programming model.  Numerous researchers within the agricultural sector have 

utilized machinery selection models to gain insight into purchasing farming equipment 

(e.g. Camarena, et al., 2004; Sogaard and Sorensen, 2004; Danok, et al. 1980).  Even 

though these studies provided information on agricultural machinery investment, none 

had the necessary complexity to address no-till grain production in Kentucky or to model 

autonomous machinery.  Audsley (1981) developed a linear programming model to 

evaluate new machines applicable to arable farms and estimated whether farmers would 

purchase the hypothetical machines.  The overall goal of Audsley’s study parallels the 

goal of this study, but model formulation and application separated both investigations.  

In addition to machinery selection, resource allocation and sequencing models 

were incorporated within the mixed integer programming formulation.  The resource 

allocation model has been widely used in agriculture when products compete for scarce 
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resources such as land, labor, and capital.  Also in agriculture, crops are produced 

through a process involving multiple stages, especially grain crop production (e.g. 

spraying, planting, fertilizing, and harvesting).  Each process is not only competing for 

resources, but typically involves a sequence in which one process must be completed 

before the next begins.  In this study, sequencing within a variable was incorporated into 

the model to establish the grain crop production process of a typical Kentucky farmer.  

More details of all three of the above models were presented in McCarl and Spreen 

(2004).  Combining elements from these three models provided a unique and complex 

model that was capable of joint selection including machinery and crop planning.  The 

focus of this study was solely on machinery selection which could provide valuable 

information to engineers and researchers with regard to autonomous machinery 

specification and operation.   

 The developed mixed integer programming model contained elements of three 

different optimization models.  The model provided insight into the optimal number and 

size of machines required to perform specific agricultural tasks.  In addition, the model 

had the ability to select the optimal production practices of corn and soybeans with their 

respective acreage allotment.  The underlying machinery selection model consisted of the 

objective function and various constraints.   

(1) Max NRതതതത 

Subject to: 

(2) ∑ ଵ
ே௒ோ ܴܰ௒ோ െ ܴܰതതതത ൌ 0 

(3) ∑ ஼ܲ஼ ஼,௒ோܵܧܮܣܵ െ ∑ ∑ ∑ ∑ ∑ ܥܣெܥܯ ாܶ,௉,ெ,஺,ௐ௄ௐ௄஺ெ௉ா െ ∑ ெܥܣ ெכ

ெܪܥܣܯ  െ ∑ ∑ ∑ ∑ ா,௏,௉,ௌ ௌ௉௏ாܦாܴܱܲܥܸ െ ܴܰ௒ோ ൌ  ܴܻ׊          0

(4) ∑ ∑ ∑ ∑ ா,௏,௉,ௌܦ஼,ா,௏,௉,ௌ,௒ோܴܱܲܦܮܻܲܺܧ െ ஼,௒ோܵܧܮܣܵ ൌ ,ܥ׊          0 ܻܴௌ௉௏ா  

(5) ∑ ∑ ∑ ∑ ∑ ܥܣ ாܶ,௉,ெ,஺,ௐ௄ௐ௄஺ெ௉ா െ ∑ ܯܩܫܤ כ ெெܪܥܣܯ ൑ 0 

Equation 1 represented the objective function of the model which was to maximize 

average net return (ܴܰതതതത).  Equations 2-4 represented constraints related to the machinery 

selection portion of the mixed integer programming model.  Equation 2 was the expected 

net returns balance which defined the average net returns as the sum of net returns (NR) 

estimated each year (YR) divided by the number of years considered (N).  Equation 3 
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was the net returns balance by year.  Each year, net returns equaled the total sales of 

crops produced which included the price of crop C ( ஼ܲ) multiplied by the amount of crop 

sold each year (ܵܵܧܮܣ஼,௒ோ).   Total costs were then subtracted from the sales which 

included:  machinery operating costs per acre for each machine M22 (ܥܯெ) to performing 

the various production processes (ܥܣ ாܶ,௉,ெ,஺,ௐ௄) for activity A, on enterprise E, planted 

on P with machine M on week WK.   The annual cost of owning the machines (ܥܣெ), 

and all other variable costs (ܸܥா) in producing (ܴܱܲܦா,௏,௉,ௌሻ enterprise E with variety V, 

on planting date P on soil type S were also subtracted from the total sales.  A sales 

balance equation by crop and year was required so that total sales did not exceed the 

amount produced, resulting in equation 3.  Since the model had the ability for selecting 

optimal cropping practices, yields were defined by the yield in bushels per acre 

 Specifically, the yields were estimated using the Decision Support  .(஼,ா,௏,௉,ௌ,௒ோܦܮܻܲܺܧ)

System for Agrotechnology Transfer (DSSAT), a biophysical simulation model 

(Hoogenboom, 2004).  Validations were performed and the simulated yields were 

thought representative of a Western Kentucky grain producer.  For this investigation, a 

subset of the yield data from the Shockley, et al. (2009) study was employed23.  Equation 

5 was the constraint in which machine M must be purchased (ܪܥܣܯெ) before 

performing the various production processes (ܥܣ ாܶ,௉,ெ,஺,ௐ௄).  The variable ܪܥܣܯெ 

represented the integer aspect of this model.  In addition, the Big M method, a 

mathematical programming technique, was utilized to guarantee the correct machine was 

purchased to perform the specific activities.   

The mixed integer programming model was also constrained by limitations associated 

with resource allocation. 

(6) ∑ ∑ ∑ ∑ ாௌௌ௏ா,ீܧܶܣܱܴܶ ா,௏,௉,ௌܦܱܴܲ
ଵ
ଶ

כ     ܩ׊          ܧܴܥܣ

                                                 
22 The machines defined within this model were in two categories, conventional and autonomous.  The 
conventional machinery included a tractor with the implements: sprayer, fertilizer, and planter.  The 
autonomous machinery consisted of a platform, which operates like a tractor in the conventional setting.  
Additionally, the autonomous implements included: sprayer, fertilizer, and planter.  The implements 
operating autonomously were not the same as the implements operating under the conventional setting. 
23 For both corn and soybeans, five planting dates, three maturity groups, one row spacing, one plant 
population and one nitrogen rate were used.  Therefore, this investigation had the ability to choose the 
optimal planting date and maturity group combination that maximized net returns.   
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ܫܶܣܴܮܫܱܵ (7) ௌܱ೔ܴܱܲܦா,௏,௉,ௌೕ െ ܫܶܣܴܮܫܱܵ ௌܱೕܴܱܲܦா,௏,௉,ௌ೔ ൌ

׊          0 ௜ܵ,௝,௜ஷ௝, ,ܧ ܸ, ܲ 

(8) ∑ ∑ ∑ ∑ ܴܲெ಺ܥܣ ாܶ,௉,ெ,஺,ௐ௄ െ ܣܦܦܮܨ ௐܻ௄ܪܥܣܯெ೅ ൑ ,ܭܹ׊          0 ஺ெ಺௉ா்ܯ  

(9) ∑ ∑ ∑ ∑ ܴܲெ಺ܥܣ ாܶ,௉,ெ,஺,ௐ௄ െ ܣܦܦܮܨ ௐܻ௄ܪܥܣܯெ಺ ൑ ,ܭܹ׊          0 ூ஺ெ೅௉ாܯ  

Equation 6 represented the typical land constraint for which the cropland produced 

 for enterprise E with variety V, on planting date P on soil type S should not (ா,௏,௉,ௌܦܱܴܲ)

exceed the total amount of available cropland acres assumed for the study (ACRE).  Also, 

there existed a rotation component that was common of a Kentucky grain farmer, in 

which 50% of the land area was designated to soybeans and the other 50% to corn.  To 

employ the rotational component within the model, a rotation categorization matrix 

 ா by enterprise E was utilized to include corn if G=1 and soybeans if G=2.    In,ீܧܶܣܱܴܶ

addition, various soil types ( ௜ܵ) were incorporated into the production data for which a 

soil balance constraint was required.  Equation 7 ensured that the optimal production 

practices chosen were consistently proportioned across all soil types S (ܱܵܫܶܣܴܮܫ ௌܱ).  It 

also guaranteed that variable rate by soil type did not occur.  Furthermore, equation 8 and 

9 represented the available machinery operating time, which was limited to the number of 

suitable field days each week24 (ܣܦܦܮܨ ௐܻ௄).  The total amount of time to complete 

various production activities were calculated based on the performance rate of the 

machine (ܴܲெ) and the total acres of each activity to be completed (ܥܣ ாܶ,௉,ெ,஺,ௐ௄).  

Both tractor and/or platform (்ܯ) and the implements (ܯூ) in question must be 

purchased (ܪܥܣܯெ) to have the suitable field days available.  Therefore, the total 

amount of time to complete each activity must be less than the available suitable field 

hours.       

 Finally, the sequential aspect of the mixed integer programming model was 

incorporated.         

(10) ∑ ∑ ∑ ா,௏,௉,ௌௌ௏ாܦܱܴܲ െ ∑ ∑ ∑ ∑ ܱܮܮܣ ாܹ,௉,஺,ௐ௄ௐ௄஺ொ ܥܣ  ாܶ,௉,ெ,஺,ௐ௄ ൏  ܲ׊          0

When determining the sequence of events, a reference point was designated.  For this 

model, all activities were performed either before or after planting (P) a specific crop.  
                                                 
24 Suitable field days were calculated based on the 30 years of historical climatological data and estimated 
based on the probability of it not raining 0.15 inches or more per day over a period of a month.  Each week 
in a month had the same number of suitable field days.  
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The optimal number of acres chosen to be planted on week S (ܴܱܲܦா,௏,௉,ௌ) corresponded 

to the acres (ܥܣ ாܶ,௉,ெ,஺,ௐ௄) of various activities (A), for enterprise E, planted on P with 

machine M on week WK.  Each activity (A), for enterprise E, planted on P, was assigned 

particular week(s) (WK) in which the activities could be performed based on the matrix 

ܱܮܮܣ ாܹ,௉,஺,ௐ௄.  This equation guaranteed that all production activities were completed 

in the correct sequence, as well as in the appropriate week typically performed by 

Kentucky grain farmers.  Equations 1-10 made-up the developed mixed integer 

mathematical programming formulation that was employed for evaluating conventional 

versus autonomous machinery. 

Results and Discussion 

 The use of both conventional and autonomous machinery for grain crop 

production in Kentucky was analyzed.  First, the optimal conventional machines were 

determined for various farm sizes.  Then, the combination of the profit maximizing 

number of autonomous machines and their economically superior set of machinery 

specifications and benefits were determined such that the expected net returns were 

greater than operating conventional machinery on the same acreage allotment.  

 The optimal conventional machinery chosen for various acreage levels were 

ascertained, which also included their expected net returns and machinery costs from 

production (Table 4.3).   It was determined that the same combination of tractor size and 

certain implements were optimal up to 2000 acres.  Specifically, a tractor with 150-hp 

was optimal for operating a 60-ft sprayer and an 8 row planter.  A 10 row fertilizer 

applicator was optimal for 500 acres but as the acreage level increased, a 12 row fertilizer 

applicator was required.  To plant 3000 acres, a larger planter was required, hence the 

increased tractor size.  The above results indicated the optimal machinery set for 

completing the agricultural tasks given the assumptions of this investigation.  Ultimately, 

the estimated suitable field days were the most influential factor with regards to optimal 

machinery selection.  In reality, most farmers have some degree of risk aversion towards 

expected suitable field days, which would lead to investing in larger equipment than 

indicated.  However, suitable field day risk was beyond the scope of this study.  The main 

purpose of analyzing conventional machinery was to collect the maximum net returns and 

compare those to various scenarios with autonomous machinery.  
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 General information with regard to the autonomous analyses and the optimal 

number of machines required to perform the necessary agricultural tasks were also 

presented in Table 4.3.25  For each acreage level analyzed, an individual investigation 

was conducted for every combination of specifications and benefits in this study to 

determine their respective net returns.  As a result, 20,25026 autonomous investigations 

were conducted for each acreage level.  The estimated net returns for every scenario were 

then compared to those for conventional machinery.  If the net returns of autonomous 

machinery were greater than conventional, the specifications and benefits were recorded. 

When averaged across all acreage levels examined, results indicated that 0.9% (188) of 

the autonomous investigations were economically superior than operating with 

conventional machinery.  The largest number of observations in which autonomous 

machinery was preferred occurred under the lowest acreage level examined.  

Additionally, the lowest acreage level provided the second largest potential increase in 

net returns over operating conventional machinery.  Contrary to popular belief, this 

indicated that advanced agricultural machinery could potentially flourish even when 

operating on small grain farms.  Unlike many new technologies, these results provided 

evidence of the economic potential for autonomous machinery for farms less than 1000 

acres in size.  This result was directly attributed to the reduced opportunity for 

improvement afforded to larger farms because of economies of size.  Specifically, new 

opportunities were afforded to small farms through autonomous machinery, while larger 

farms had already captured economies of size benefits under optimal conventional 

machinery.  In addition, farm machinery was considered an asset that cannot be acquired 

in small increments but must be obtained in large, discrete units.  Therefore, smaller 

farms had more opportunities to exploit the cost reducing potential enabled by 

autonomous machinery.  Moreover, a farm size of 1000 acres experienced the largest 

possible increase in net returns of 10.6% over operating with conventional machinery.  

                                                 
25 In addition to the optimal number of autonomous machines required, their frequency of occurrence based 
on the total number of observations preferred to conventional machinery were also presented in Table 4.3.    
26 These experiments were conducted for every combination of specifications and benefits, which included: 
three platform purchase prices, 3 implement purchase prices, five performance rates, three operating times, 
three input cost reductions, and two increases in yield.   
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To experience such increases in expected net returns, a wide range of autonomous 

machines were required.     

The optimal number of autonomous machines necessary to perform the 

agricultural tasks and had greater net returns than conventional machinery was also 

determined.  As the acreage levels increased, more platforms and implements were 

required to produce corn and soybeans.  The optimal number of autonomous machines 

varied from only needing one of each for 500 acres, to five platforms and as many as 

three sprayers and three planters for 3000 acres.  However, operating with only one of 

each implement, the autonomous system could still manage to complete every 

agricultural task required for up to 2000 acres given certain characteristics.  The optimal 

number of machines were determined exclusively by both the specifications and benefits 

evaluated in this study. 

 Values for the specifications and benefits of autonomous machinery were varied 

to determine which would provide net returns greater than conventional machinery.  Four 

specifications were the focus of this investigation: platform purchase price, implement 

purchase price, implement performance rate, and suitable field hours of operation per 

day.  If a particular specification was observed in which autonomous machinery provided 

greater net returns than conventional machinery, it was recorded.  The frequency of a 

particular specification being observed was then determined.  These frequencies were 

then presented as a percentage of the total number of observations in which autonomous 

machinery was favored (Table 4.4).  Of the specifications examined, the purchase price 

of the platform had a relatively minor influence on determining whether autonomous 

machinery could be more profitable than conventional machinery.  For each platform 

price investigated, autonomous was favored in at least one investigation.  However, of the 

three purchase prices investigated, the lowest purchase price of $40,000 was most often 

preferred.   

Similarly, low implement purchase price was important.  Compared to the 

average platform cost per acre, the implement cost per acre was larger.  This was 

attributed to the potential to utilize one platform for all production operations, therefore 

accruing a lower cost per acre.  Without a smaller implement investment, few scenarios 

occurred where the net returns were greater in the autonomous setting.  For all 
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investigations and acreage levels analyzed, observations favored autonomous machinery 

when the implement purchase price was less than $40,000.  One way a higher initial 

investment could be optimal would be providing the implements with a longer useful 

life.27  The useful lives of the implements were not investigated but increasing the life 

would reduce annual costs, therefore providing a better chance that higher initial 

investments could be preferred.   

When considering the performance rates of the implements, the sprayer was the 

most crucial machine in a whole farm setting, especially as acreage levels increased.  

This was due to the number of trips across the field required for the sprayer compared to 

the other implements (i.e. three trips for corn and soybeans compared to one trip for both 

planting and fertilizing).   Under no acreage level was a performance rate less than two 

acres per hour for the sprayer economically superior to conventional machinery.  

Conversely, the planter and fertilizer applicator could operate at lower performance rates 

only if the sprayer was operating at the highest specified performance rate investigated.  

This was attributed to the ability of the model to choose multiple planting dates instead of 

investing in additional machinery to complete planting.  By choosing multiple planting 

dates, sprayer activities often occurred during the same weeks as planting and fertilizing.  

If the performance rate of the sprayer was high, more hours would be available during 

weeks in which multiple activities were conducted.  Therefore, the other implement 

performance rates could be more flexible since more hours were available for 

accomplishing the required tasks.  For the planter, operating below two acres per hour 

rarely occurred as an observation in which autonomous was favored.  In addition, the 

fertilizer applicator was the only implement able to operate at the lowest performance 

rate evaluated because of its exclusive operation on corn acres.   

Suitable field hours of operation per day were the last of the specifications 

analyzed.  The available field hours evaluated for this study did not have a considerable 

impact on determining whether autonomous machinery could be more profitable than 

conventional machinery.  For example, every combination of specifications and benefits 

that was economically superior to conventional machinery for 21 suitable field hours was 

                                                 
27 Due to the technical components that would be involved for each implement, a useful life of 3 years 
(similar to a computer) was employed in this investigation. 
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economically superior for both 22 and 23 hours for 500 acres.  On the other hand, as 

acreage levels increased, suitable field hours did become more pertinent.   

The benefits that could occur from utilizing autonomous machinery were also 

influential characteristics in determining the economic viability of autonomous 

machinery.  In particular, input cost reductions and yield increases due to reduced 

compaction were investigated (Table 4.5).  An overwhelming frequency of 76%-87% of 

the observations, depending on farm size, required an input savings of 30%.  If an input 

savings of 30% was achieved, there would be more flexibility when it came to the 

machinery specifications.  Since input costs were reduced, additional machines could be 

purchased, therefore a lower performance rate was permissible.  Also, a reduction of only 

10% in input costs rarely occurred as an optimal choice.  Most importantly, a yield 

increase of 7.5% should occur for autonomous to be favored.  For all acreage levels 

analyzed, an observation that included only a 2.5% increase in yields rarely resulted in 

net returns greater than conventional machinery. 

 Conclusions  

 A mixed integer programming formulation that integrates three optimization 

models is developed to compare conventional and autonomous machinery for various 

acreage levels.  Specifically, a machinery selection model provides the foundation for the 

formulation while both resource allocation and sequencing models are embedded within.  

The multifaceted economic model is utilized to conduct numerous investigations to 

address issues that can aid in the advancement of autonomous machinery.   

 The optimal conventional machinery and the expected net returns are determined 

to compare with autonomous machinery.  Results indicate that the same combination of 

tractor size and implements, besides the fertilizer applicator, are optimal for up to 2000 

acres.  To compare to each acreage level in this study, an individual investigation is 

conducted for every combination of specification and benefit to determine their 

respective net returns.  The largest number of observations in which autonomous 

machinery is preferred occurs under the lowest acreage level.  In addition, acreage levels 

under 1000 acres exhibit the greatest potential to increase profits.  Therefore, this study 

concludes that advanced agricultural machinery can potentially flourish when operating 

on smaller grain farms.   
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    Results also indicate that several key factors shall exist if autonomous 

machinery becomes commercially viable.  First, a smaller implement investment is 

required for autonomous to be favored over conventional machinery.  Additionally, the 

sprayer is the most important of all the implements due to the operating time required for 

grain production.  As long as the sprayer is operating at a high performance rate, the other 

implement performance rates are more flexible.  Ultimately, for autonomous machinery 

to economically dominate conventional machinery, an input savings of at least 20% is 

required.  In fact, 30% input savings is required in most cases.  Finally, yield increases in 

excess of 2.5% are required for autonomous to become commercially viable.  These 

results provide valuable information to guide engineers in the development of 

autonomous machinery by identifying critical characteristics and isolating the most 

influential operating machine. 

     This study analyzes the most crucial specifications of autonomous machinery 

as well as their most likely benefits.  Results of this study are understated since only a 

few benefits are incorporated within the model.  Once additional benefits (e.g. energy 

savings and yield increases due to plant phenotyping) are quantified, or a refined range of 

current benefits are analyzed, a more thorough analysis can be conducted.  Furthermore, 

future investigation into suitable field day risk will provide a more comprehensive 

examination into the potential for autonomous machinery in grain crop production.   
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Table 4.1.  Conventional machinery choice set for a Kentucky grain producer.   

Tractor1:  150hp, 200hp, 300hp, 400hp   

Sprayer (Broadcast): 27’, 40’, 50’, 60’ 

No-Till Split-Row Planter2: 8R, 12R, 16R 

Liquid Fertilizer Applicator3: 6R, 8R, 10R, 12R 
1The 150 and 200 hp tractors were mechanical front wheel drive (MFWD) while the 300 
and 400 hp tractors were four wheel drive (4WD). 
2Due to the draft parameter necessary to pull various planters, certain tractor sizes were 
required.  Specifically, the 150hp tractor could not pull the 12 row planter and neither the 
150hp nor the 200hp tractor could pull the 16 row planter.   
3The liquid fertilizer applicators were utilized only in corn production and were all for 
designed for 30 inch row spacing.  
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Table 4.2. Autonomous machinery specification and benefit ranges modeled. 

Specifications 

Platform Price ($): 40,000; 50,000; 60,000 

Implement Price1 ($): 30,000; 40,000; 50,000 

Performance Rate (acres/hr): 1, 1.5, 2, 2.5, 3 

Operating Time (hours/day: 21, 22, 23 

Benefits 

Input Cost Reduction (%): 10, 20, 30 

Increase in Yields due to Reduced Compaction (%): 2.5, 7.5  
1The implement prices listed above apply to each sprayer, planter, and fertilizer 
applicator. 
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Table 4.3.  Optimal conventional and autonomous machinery results for various acreage 

levels required to perform the same agricultural tasks. 

Acres 
500 1000 2000 3000 

Conventional 
Expected Net Returns  $155,336 $333,774 $688,768 $1,039,892 
Total Ownership Cost  $22,990 $23,177 $23,177 $28,487 
Total Operating Cost  $5,530 $10,480 $20,960 $30,420 
Optimal Machinery Complement: 
     Tractor 150hp 150hp 150hp 200hp 
     Sprayer 60' 60' 60' 50' 
     Planter 8R 8R 8R 12R 
     Fertilizer 10R 12R 12R 12R 
Autonomous 
Number of Economically Superior 
Cases1 
 

305 
(1.5%) 

 

211 
(1.0%) 

 

105 
(0.5%) 

 

132 
(0.7%) 

 
Maximum Expected Net Returns2  

$170,795 
(10.0%) 

$369,213 
(10.6%) 

$745,226 
(8.2%) 

$1,124,086 
(8.1%) 

Optimal Number of Machines:3

     Platform 1 - 100% 1 - 80% 2 - 64% 3 - 52% 
2 - 20% 3 - 36% 4 - 48% 

5 - ~1% 
      
     Sprayer 

 
1 - 100% 1 - 100% 1 - 10% 2 - 68% 

2 - 90% 3 - 32% 

     Planter 
 

1 - 100% 1 - 100% 1 - 45% 1 -   2% 
2 - 55% 2 - 87% 

3 - 11% 

     Fertilizer 
 

1 - 100% 1 - 100% 1 - 92% 1 - 68% 
2 -   8% 2 - 32% 

 

1 The numbers in parentheses represented the percentage of the total number of 
investigations (20,250) that were economically superior to conventional machinery. 
2 The dollar amount represented the maximum net returns that occurred for the total 
number of investigations (20,250).  The numbers in parentheses represented the percent 
increase in expected net returns compared to conventional machinery. 
3 The percentages represented the fraction of economically superior cases for which each 
number of machines occurred. Example: For 1000 acres, 80% of the 211 economically 
superior cases required 1 platform.                
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Table 4.4. The percentage of each autonomous specification that occurs in the total 

number of observations preferred to the conventional setting for various acreage levels 

and model specifications. 

Acres 
500 1000 2000 3000

Platform Price ($/unit) 
          $40,000 60 55 59 60 
          $50,000 29 29 28 30 
          $60,000 11 16 13 10 
Implement Price ($/unit) 
          $30,000 98 88 92 92 
          $40,000 2 12 8 8 
          $50,000 - - - - 
Suitable Field Hours (hr/day) 
              21 33 25 30 27 
              22 33 35 29 32 
              23 33 40 42 41 
Performance Rates (Ac/hr) 
          Sprayer 
             3.0 60 78 68 76 
             2.5 32 21 30 24 
             2.0 8 1 2 - 
             1.5 - - - - 
             1.0 - - - - 
         Planter 
            3.0 40 57 63 50 
            2.5 31 30 25 33 
            2.0 21 9 9 14 
            1.5 8 4 3 3 
            1.0 - - - - 
       Fertilizer 
           3.0 30 37 43 42 
           2.5 27 29 30 30 
           2.0 21 22 17 19 
           1.5 16 8 9 9 
           1.0 6 4 1 - 
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Table 4.5. The percentage of each autonomous benefit that occurs in the total number of 

observations preferred to the conventional setting. 

Acres 
500 1000 2000 3000 

Input Reduction 
     30% 80 76 87 87 
     20% 20 22 13 13 
     10% - 2 - - 
Yield Increase 
     2.5% - 2 - - 
     7.5% 100 98 100 100 
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CHAPTER FIVE 

 

SUMMARY AND CONCLUSIONS 

 

The three investigations that are presented herein complement one another while 

covering an assortment of specific objectives that address the overall goal of this 

dissertation.  The overall objective of this dissertation is to investigate farm management 

concerns faced by Kentucky grain producers due to the addition, replacement, and 

selection of various precision agriculture technologies.  The specific farm management 

elements for this dissertation include machinery management, production management, 

and risk management.  The technologies that are evaluated in the three manuscripts 

include auto-steer navigation, automatic section control, and autonomous machinery.  

This research provides a wide array of economic insight and valuable information for 

researchers and developers to aid in the advancement of precision agriculture 

technologies. 

The first manuscript in this dissertation investigates machinery, production, and 

risk management implications of the addition of sub-meter auto-steer and/or RTK auto-

steer systems on specific farm machinery.  The enhancement of a previous whole farm 

risk model is required to appropriately reflect the production system of a Kentucky grain 

producer as well as to evaluate auto-steer technology.  Specifically, the model is adjusted 

to include additional production practices, harvest requirements, land types, and the 

benefits and costs associated with auto-steer.  In addition, four farmer risk attitudes are 

considered for this analysis.   

Machinery management issues are addressed by evaluating various economic 

aspects of auto-steer navigation.  Results indicate that each auto-steer system increases 

net returns over the base case without any navigational aid on average by $4.05/acre, 

$7.36/acre, and $11.30/acre for sub-meter, RTK, and both auto-steer systems, 

respectively.  The addition of both auto-steer systems proves to be the soundest 

economical investment.  This is due to higher increases in net returns ($11.30/acre), a low 

payback period (1.18 years), and a high return on investment (74.93%).  On the other 

hand, RTK auto-steer alone requires the most acres to break-even on the investment, the 
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largest number of years to payback, and the lowest return on investment.  In general, 

auto-steer requires less than 525 acres to breakeven, no more than 1.5 years for farms 

with 2600 acres to see a payback on the investment, and all returns on investment are 

greater than the opportunity cost of capital (8%).  Therefore, all auto-steer scenarios 

investigated in this manuscript are a sound economical investment.  

Production management issues are undertaken by incorporating alternative 

production practices, along with their representative simulated yields, within the whole 

farm model.  This allows for the substitution of inputs due to the benefits that incur by 

adopting auto-steer navigation.  This manuscript provides strong evidence that the 

adoption of auto-steer navigation alters optimal production practices.  These changes in 

production practices can be found in all three auto-steer scenarios analyzed.  For 

example, the addition of sub-meter auto-steer influences the production strategies of 

soybeans, but not corn.  With the ability to spray more efficiently with sub-meter auto-

steer, more suitable field hours are available during competing production operations.  

Furthermore, RTK auto-steer reduces overlap which results in an overall decrease in the 

total amount of fertilizer applied to the field and an increase in the application rate that 

the corn plant actually receives.  In addition, the increase in efficiency results in a higher 

plant population, which also corresponds to greater nitrogen rates.  Therefore, this 

manuscript demonstrates the importance of a whole farm analysis and the need for a 

producer to adjust production practices to take full advantage of auto-steer. 

Risk management issues are addressed by utilizing a mean-variance formulation 

and incorporating four farmer risk aversion levels: risk neutral, low risk aversion, 

medium risk aversion, and high risk aversion.  By employing this framework throughout 

this manuscript, the potential for auto-steer navigation to manage production risk can be 

investigated. For each risk aversion level, if the adoption of an auto-steer decreases the 

coefficient of variation as well as increases expected net returns, when compared to the 

base scenario, it can be inferred that the technology can be used to manage production 

risk.  All three auto-steer scenarios have the potential to manage production risk.  This is 

attributed to the enhanced performance rate provided by auto-steer and the ability of the 

model to alter production practices.  The greatest potential for managing production risk 

is exhibited when operating with both auto-steer systems.  This is attributed to greater 
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reductions in the coefficients of variations and larger increases in net returns when 

compared to the other auto-steer scenarios.  Therefore, this manuscript addresses the risk 

reduction potential of auto-steer navigation, and contributes to the meager research in this 

area.    

The second manuscript in this dissertation investigates machinery, production, 

and risk management implications due to the replacement of conventional controls on a 

self-propelled sprayer with automatic section control, while navigating with and without 

lightbar.  Including both technologies in a whole farm setting together is a novel 

approach of this manuscript.  The enhancement of a previous whole farm risk model is 

necessary to appropriately reflect the production system, as well as to evaluate automatic 

section control.  The model is adjusted to include additional production practices, harvest 

requirements, land types, and the benefits and costs associated with automatic section 

control.  Similar to the first manuscript, four farmer risk attitudes are considered for this 

analysis.  In addition, the unique approach of including various field shapes, hence 

overlaps, are analyzed to determine their impact on the farm management elements due to 

automatic section control.  Specifically, three different field shapes are assessed that 

represent low (5%), medium (16.5%), and high (25.5%) overlap scenarios.   

Machinery management concerns are assessed by determining various economic 

implications of adopting automatic section control.  Utilizing automatic section control 

with and without lightbar navigation is profitable on all three field shapes.  However, the 

addition of lightbar with automatic section control is only justified for the medium and 

high overlap scenarios.  The average increase in net returns, over the base case, for all 

three field shapes is $8.43/acre and $3.40/acre for automatic section control with and 

without lightbar, respectively.  As the overlapped area increases, the profitability of 

automatic section control also increases.  It is also important to note that, as the 

overlapped area increases, the benefit of input savings that occur with automatic section 

control increasingly dominates the ownership cost of the technology.  As a result, there is 

a wide range of returns on investments (14% - 137%).  In addition, an overlap of 4% or 

more is required to justify the adoption of automatic section control with or without 

lightbar navigation.  Furthermore, an overlap of 14% or more is necessary to justify the 

addition of lightbar to automatic section control.  For all scenarios in this study, 
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automatic section control has a payback period of no more than five years.  Also, all 

returns on investment are greater than the opportunity cost of capital (8%).  Therefore, 

automatic section control is deemed a sound economical investment for the scenarios in 

this manuscript; however, profitability is highly influenced by the shape of the field. 

    Production management issues are addressed by incorporating alternative 

production practices, along with their representative simulated yields, within the whole 

farm model.  This allows for the substitution of inputs due to the benefits that incur by 

adopting automatic section control.  Similar to auto-steer, operating a sprayer equipped 

with automatic section control with the aid of lightbar can improve the performance rate 

of the sprayer and, in turn, impact the optimal production strategies.  Evidence from this 

manuscript suggests that only automatic section control with lightbar will impact 

production decisions.  This is evident in the change in the production of soybeans that 

occurs, especially as the overlapped area increases.  This is due to the competition for 

suitable field hours with other production practices.  However, there is no change in the 

production practices if automatic section control with lightbar is operating on fields with 

little overlap.  Therefore, the additional cost of attaining lightbar is not justified for this 

scenario.  This demonstrates the importance of a whole farm analysis and the 

incorporation of both field shape and alternative production practices to capture the 

interactive effects that occur between automatic section control and lightbar. 

Risk management issues are ascertained through a mean-variance formulation and 

incorporating four farmer risk aversion levels: risk neutral, low risk aversion, medium 

risk aversion, and high risk aversion.  By employing this framework throughout this 

manuscript, the ability for automatic section control to manage production risk can be 

investigated. For each risk aversion level, if the adoption of automatic section control 

decreases the coefficient of variation as well as increases expected net returns when 

compared to the base scenario, it clearly can be inferred that the technology can be used 

to manage production risk.  The results of this manuscript demonstrate that automatic 

section control without lightbar can be utilized to manage production risk for all three 

field shapes.  Additionally, automatic section control with lightbar reduces the coefficient 

of variation the greatest for two of the three field shapes (medium and high overlap).  

This is due to greater reductions in the coefficients of variations and larger increases in 
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net returns when compared to automatic section control without lightbar.  Therefore, this 

manuscript addresses the risk reduction potential of automatic section control, and 

contributes to the meager research in this area.    

The third manuscript in this dissertation incorporates machinery and production 

management elements to analyze the economic feasibility of operating autonomous 

machinery on a Kentucky grain farm.  Although production strategies are incorporated 

into the model, the impact of autonomous machinery on production decisions are ignored 

due to the breadth of the objectives already undertaken.  This area of study is very 

unique, since autonomous machinery is not commercially available today.  Therefore, 

determining the circumstances for which autonomous machinery will be favored over 

conventional machinery is examined.  In addition, the opportunity rarely presents itself in 

which economics can influence the development of a technology.   

   To analyze various machinery management issues pertaining to autonomous 

machinery, a multifaceted economic model is developed.  Three economic optimization 

models are incorporated together for the analyses and include machinery selection, 

resource allocation, and sequencing.  Since autonomous machinery is not commercially 

available today, determining the circumstances for which autonomous machinery will be 

favored over conventional machinery is examined.  General results from this 

investigation suggest autonomous machinery can be profitable for a Kentucky grain 

producer if the machinery has certain characteristics.  In addition, advanced agricultural 

machinery, such as autonomous vehicles, can potentially flourish when operating on 

smaller grain farms.  This is apparent when the largest number of observations in which 

autonomous machinery is preferred occurs under the lowest acreage level (1.5% of the 

total observations).  Additionally, the lowest acreage level provides the second largest 

potential increase in net returns over operating conventional machinery (10%).  This is 

attributed to more opportunities to exploit the cost reducing potential enabled by 

autonomous machines because of economies of size experienced with conventional 

machinery by large farms.  Furthermore, the optimal number of autonomous machines 

necessary to perform agricultural tasks varies from only needing one of each machine for 

500 acres, to five platforms and as many as three sprayers and three planters for 3000 

acres. 
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 In addition to the general conclusions of this manuscript, several key factors are 

needed if autonomous machinery becomes commercially viable.  The results indicate that 

a smaller implement investment is required for autonomous machinery to be preferred to 

conventional machinery.  When considering the performance rates of the implements, the 

sprayer is the most crucial machine in a whole farm setting, especially as acreage levels 

increase.  This is due to the number of trips across the field required for the sprayer 

compared to the other implements.  When examining the potential benefits that can occur 

with autonomous machinery, two factors are necessary in order for autonomous to 

become commercially viable.  First, an input savings of at least 20% are essential.  

Second, yield increases in excess of 2.5% due to reduced compaction are crucial for 

autonomous machines to favor conventional.  By developing an economic optimization 

model, the deductions from this manuscript provide information to guide engineers in the 

development of autonomous machinery by identifying critical characteristics and 

isolating the most influential operating machine.  

 This dissertation provides a comprehensive investigation into various precision 

agriculture technologies and their impact on machinery, production, and risk management 

decisions.  However, the potential for further research exists that extends this 

investigation to include a host of topics which explore various economic aspects of 

precision agriculture technologies.  Due to the infancy of autonomous machinery and the 

lack of economic investigations, this manuscript has the most potential for expansion in 

an economic framework.  Such opportunities include conducting a more accurate 

economic analysis once the specifications and benefits of autonomous machinery are 

more clearly defined.  For instance, if any additional benefits (e.g. energy savings and 

yield increases due to plant phenotyping) are quantified or a finer range of current 

benefits are analyzed, a more thorough analysis can be conducted.  Additionally, the 

model specification of the autonomous analysis can be expanded to include suitable field 

day risk and its impact on the economic feasibility of the technology.   

 Possibilities also exist for expanding both auto-steer and automatic section control 

analyses.  When considering the investigation into auto-steer navigation, exploring how 

the accuracy of GPS receivers impacts the profitability of auto-steer can be assessed.  

Furthermore, the concept of automatic section control has expanded to other agricultural 
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machinery operations.  Specifically, automatic section control on a planter is currently 

commercially available.  Therefore, a whole farm economic analysis of automatic section 

control on a planter is a possibility for future research.  Finally, the most promising 

expansion of this manuscript includes evaluating the environmental potential of precision 

agriculture technologies.  In particular, the impact of precision agriculture on the carbon 

footprint of a Kentucky grain producer can be analyzed. 
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APPENDIX 1: MATHEMATICAL SPECIFICATION OF THE ECONOMIC 
DECISION-MAKING MODEL 

 The economic decision-making model described in the text is depicted 
mathematically as shown in Figure A1.  A description of the activities, constraints, 
coefficients, and indices, is provided in Figure A2.   
 

(1) max 2
yy σΦ−   

subject to: 

(2) 2600,,,,,,, ≤∑∑∑∑∑∑∑
E V P S N R L

HLRNSPVEX  

(3) TWK
E V P S N R L

HLRNSPVETHESVWK FLDDAYXLAB ,,,,,,,,,,,,, ≤∑∑∑∑∑∑∑   WK∀  

(4) 0,,,,,,,,,,,,,,,, =−∑∑∑∑∑∑∑ YRC
E V P S N R L

HLRNSPVEYRLRNSPVEC SALESXEXPYLD YRC,∀  

(5) 0,,,,,,,,, =−∑∑∑∑∑∑∑ I
E V P S N R L
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Figure A1.1.  Mathematical description of the auto-steer and automatic section control 

whole farm planning model. 
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Activities include: 

 =Y  expected net returns above variable cost (mean across years) 

 =YRY  net returns above variable cost by year (net returns) 

 =HLRNSPVEX ,,,,,,,  production of enterprise E of variety V with plant population P  

   under sowing date S with nitrogen rate N and row spacing R on 

land type L harvested in period H in acres 

 =YRCSALES ,  bushels of crop C, sold by year 

 =IPURCH  purchases of input I 

Constraints include: 

 (1) Objective function 

 (2) Land resource limitation 

 (3) Labor resource limitation by week 

 (4) Sales balance by crop and year 

 (5) Input purchases by input 

 (6) Net return balance by year 

 (7) Expected net return balance 

 (8) Rotation limitations 

 (9) Ratio of soil type  

Coefficients include: 

 =Φ  Pratt risk-aversion coefficient 

 =CP  Price of crop C in dollars per bushel 

 =YRLRNSPVECEXPYLD ,,,,,,,,  Expected yield of crop C for enterprise E of variety V  

   planted in population P planted on sowing date S with nitrogen rate  

   N and row spacing R on land type L for year YR in bushels 

 =TPIREQ ,,  Requirement of input I for production in row and plant spacing P for  

   auto-steer scenario T in units per acre 

=THWKSVELAB ,,,,,  Labor requirements for production of enterprise E planted with  

  variety V on sowing date S in week WK harvested in period H for  

auto-steer scenario T in hours per acre 
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 =TWKFLDDAY ,  Available field days per week for auto-steer scenario T at 

 varying probabilities 

 =TTECHCOST  Cost of auto-steer for scenario T 

 =EGROTATE ,  Rotation categorization matrix by enterprise E to include corn if  

   G=1 and other crops if G=2 

 =LSOILRATIO  Ratio of total acres allotted for each soil type 

Indices include:  

 C  =  Crop  

 E  =  Enterprise 

 V  =  Maturity group 

 P  =  Plant population 

 S  =  Planting date 

 N  =  Nitrogen rate 

 R  =  Row spacing 

 L  =  Land type 

 YR =  Year 

 H = Harvest period 

 I  =  Input 

 T  =  Technology scenario 

 WK =  Week 

 G  =  Rotation category 

 K = Total number of years 

Figure A1.2.  Explanations of activities, constraints, coefficients, and indices in the auto-
steer and automatic section control whole farm planning model. 
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APPENDIX 2: VALIDATION OF BIOPHYSICAL SIMULATION MODEL 

 The validation for the biophysical simulation model is presented in Appendix 2.  
A description of the model is given in the first section and why it was chosen for this 
study.  The second section validates the inputs utilized for both corn and soybeans within 
the biophysical simulation model.  The last section includes the validation of the 
estimated yield produced by the biophysical simulation model for both corn and 
soybeans. 
 
Biophysical Simulation Validation 

With regards to usefulness for this dissertation, biophysical simulation has been 

used in the past for whole farm economic modeling.  The motive for using The Decision 

Support System for Agrotechnology Transfer (DSSAT v4) was to estimate the yields of 

full season corn and soybeans over a 30 year period (Hoogenboom, et al., 2004).  DSSAT 

has been utilized in numerous journals for almost 15 years and have encompassed various 

geographical locations.  Several authors have published articles utilizing DSSAT in 

journals such as: Agronomy Journal, Transactions of the ASAE, Field Crops Research, 

Agricultural Systems, Crop Science, European Journal of Agronomy, and Climate 

Research.  DSSAT has also been used for multiple presentations at conferences such as: 

ASAE Annual International Meeting, Southern Agricultural Economics Association 

Annual Meetings, International Association of Agricultural Economics, Acta Horticulture 

(ISHS), and International Symposium of Systems Approaches for Agricultural 

Development.  Finally, the overall objective of this dissertation was to economically 

evaluate precision agriculture technologies in a whole farm model.  DSSAT has been 

used for precision agriculture research in over 15 journal articles.  The majority of these 

studies have focused on variable rate management (irrigation and fertilizer).  It could be 

argued that DSSAT is a precision agriculture tool itself.  It can be used to assist in 

determining the production decisions best suited to optimize yields. 

Input Validation 

The minimum data set required to run the crop models in DSSAT included site 

weather data for the duration of the growing season, site soil data, and definition of 

production practices.  Each of the required data sets are discussed in detail in the follow 

sections. 
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Weather Validation    

           Site weather data were collect from the University of Kentucky Agricultural 

Weather Center (2008).  Daily climatology data were collected which included: minimum 

temperature, maximum temperature, and rainfall for 30 years in Henderson County, 

Kentucky.  DSSTAT’s weather module then calculated solar radiation based on the 

coordinates of Henderson County, Kentucky.  These four elements completed the 

required weather data set in order to operated DSSAT.  

Soil Validation 

Soil data were collected for DSSAT from a National Cooperative Soil Survey of 

Henderson County, Kentucky from the Natural Resources Conservation Service (NRCS).  

After identifying all soil series located in Henderson County, information on those soil 

series was gathered using the NRCS’s Official Soil Series Description from their website.  

From the gathered information, soil inputs into DSSAT were determined.  First, 

information was calculated to establish the two most predominant types of general soils.  

It was determined that the two most common types of soil in Henderson County were 

silty loam and silty clay soils.  These two soil types represented 70% and 20% of all soils 

in Henderson County respectively.  DSSAT comes with various soils preloaded into its 

model.  Of the soils within DSSAT, it was determined that deep silty loam, deep silty 

clay, shallow silty loam, and shallow silty clay would best represent a hypothetical farm 

in Henderson County.  Further information was then gathered through NRCS’s Official 

Soil Series Description in order to edit the default soils to more accurately represent 

Henderson County’s soils.  Specifically, factors that determine the surface information 

and soil water holding capacity were required  

The required surface information included: soil color, drainage, percent slope, and 

runoff potential.  First, all four soil colors were changed to brown which was consistent 

for almost all soils in the county.  Conversely, drainage was kept the same as the default 

soils.  Furthermore, runoff potential was changed for the deep soils from the default.  

Deep silty loam was changed from a moderately low runoff potential to the lowest.  The 

lowest runoff potential was characterized as deep, rapidly permeable loess soil.  The 

qualification for a loess soil required 60-90% of the soil to be silt.  Since the deep silt 
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loam was a deep soil and contained 60% silt, the runoff potential was changed 

accordingly.  Deep silty clay was then changed from moderately high to moderately low 

runoff potential.  The description given for moderately low runoff potential was “deep 

soils less aggregated than soils in the lowest classification, but as a group have an above 

average infiltration after thorough wetting” (Hoogenboom, et al., 2004, SBuild). 

 The final surface characteristic changed was the percent slope of the soils.  These 

were also determined from the web soil survey in which they indicate the slope of the 

soils in the county.  The percent slopes were used to differentiate between deep and 

shallow soils.  The soil survey indicated that about 83% of the soils fall between no slope 

and 6%.  The majority of those soils were in the range of 1-3% slopes.  In addition, about 

17% of the soils were between 6-50% slopes.  A majority of these soils were categorized 

as having 6-10% slope.  Therefore, the percent slopes of one and eight percent were 

chosen for deep and shallow soils respectively.  The last three parameters presented in 

Table A2.1 included: runoff curve number, albedo and drainage rate were all determined 

within DSSAT once the surface information above is entered.   

Once the soil surface information was attained, variables associated with soil 

water holding capacity could then be determined.  These variables include drained upper, 

crop lower limit, bulk density, saturation, saturation hydraulic conduct, and root growth 

factor.  All of the variables values were determined within DSSAT and were not altered, 

except for the drained lower limit.  Conversations with Dr. Kenneth Boote (2008), an 

expert in biophysical simulation and co-creator of DSSAT, were conducted about water 

stress.  It was determined that the simulated water capacity (difference between drained 

upper limit and crop lower limit) was too low, resulting in the over estimation of water 

stress.  For that reason, he suggested lowering the crop lower limit by .04 in order to 

accurately depict water stress for soils in Kentucky.   

Production Practice Validation           

Defining the production practices must be determined in order to complete the 

minimum requirements to operate DSSAT.  Such production practices included: planting 

date, plant population, row spacing, crop variety, and fertilizer practices.  Each of these 

production practices was ranged in order to investigate the optimal production strategy in 

a whole farm setting.  Providing a range for various production practices to conduct 
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specific research has been utilized in previous studies, which are presented in Table A2.2.   

These references utilized various production practices in order to simulate corn and 

soybeans in DSSAT for published journal articles.   

Production practices were determined for both full season corn and soybeans 

through the University of Kentucky Cooperative Extension Service Bulletins (2008).  A 

majority of the corn production practices were determined from the University of 

Kentucky’s Cooperative Extension Service Bulletin, ID-139: A Comprehensive Guide to 

Corn Management in Kentucky, except for crop variety and nitrogen applications.  Since 

this dissertation was modeling a hypothetical farm in Henderson County, a broad 

spectrum of GDD varieties of corn were desired, therefore the three corn varieties of 

2600-2650, 2650-2700, and 2700-2750 GDD were chosen.  According to the University 

of Kentucky’s Cooperative Extension Service Bulletin ID-139, the optimal planting date 

in Western Kentucky (Henderson County is located in Western Kentucky) usually ranges 

from April 1 to May 1 at a planting depth of 1.5 to 2-inches and a recommended row 

width of 30 inches.  Given the above recommendations, the expected plant populations 

ranged from 26,000-30,000 plants/acre.  In accordance with the above recommendations, 

the following management practices were utilized in DSSAT for the simulation of corn: 

nine planting dates beginning March 25 and ending May 20 (planting every seven days), 

planting depth of 1.5 inches, row spacing of 30 inches, and three plant populations of 

24,200, 28,000 and 32,000 plants/acre.  Finally, the University of Kentucky Cooperative 

Extension Service Bulletin, AGR-1: 2008-2009 Lime and Nutrient Recommendations 

was utilized in determining the amount of nitrogen applied.   AGR-1 recommends a range 

of 125-200 lb actual N/A for conservation tillage to be applied approximately five weeks 

after planting.  Given this, five nitrogen rates of 100, 150, 175, 200, and 225 actual lbs 

N/acre applied five weeks after planting were chosen to simulate in order to cover the 

range suggested. 

Management practices for soybean production were collected from the University 

of Kentucky’s Cooperative Extension Service Bulletins (2008), AGR-129: Soybean 

Production in Kentucky Part II: Seed Selection, Variety Selection and Fertilization and 

AGR-130: Soybean Production in Kentucky Part III: Planting Practices and Double 

Cropping.  According to the above bulletins, soybean varieties best suited for Kentucky 
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are in maturity Groups III, IV, and V, with the earlier maturing varieties adapting the best 

to northern portions of Kentucky.  Also, optimal planting periods for Kentucky occurs in 

early May to mid-June at depths of 1-1.5 inches.  The Bulletins suggest 5 different row 

spacing ranging from 7-36 inches in which the expected plant populations were based.  In 

accordance with the above recommendations and to accomplish the goal of a broad 

spectrum for the simulations, the following management practices were simulated: 

maturity Groups II, III and IV (II was chosen due to northern location of Henderson 

County), planting dates beginning April 22 through June 17 (planting every seven days), 

and planting depth of 1.25 inches.  Two row spacings were chosen, 30 inches rows and 

15 inch rows to represent the lowest spacing without drilling.  With these row spacings, 

expected plant population ranged from 111,000 plants/acre to 167,000 plants/acre.   

Therefore, three plant populations of 111,000, 139,000 and 167,000 plants/acre were 

simulated.   

Estimated Yield Validation 

Once the above data sets were collected, corn and soybean yields were 

determined.  For each crop, every combination of soil and management practices were 

simulated across 30 years of weather data resulting in 48,600 observations for corn and 

19,440 observation for soybeans.  These yields were then weighted by soil type then 

added together to get one yield for every production practice over 30 years.  The weights 

were determined by the web soil survey conducted for Henderson County.  According to 

the survey, 70% of the soil is composed of silty loam and 20% composed of silty clay.  

The other 10% was then split between silty loam and silty clay resulting in a weighted 

measure by soil type of 75% silty loam and 25% silty clay.  The weights for depth of 

soils were determined by their slope and erosion.  Soils with a greater slope and those 

with greater erosion possibilities were categorized as shallow soils.  Sixteen percent of 

Henderson County soils have slopes greater than 16%, as well as 23.7% of the soils with 

some degree of erosion.  Therefore, those percentages were averaged together resulting in 

the weights for soil depth of 80/20 for deep and shallow soils respectively.  Once the 

weighted yields were calculated, comparisons to previous research were conducted.  

 

 



 
89 

 

Corn Yield Validation 

 A regression analysis was conducted to compare detrended historical corn yields 

for Henderson County, Kentucky to estimated corn yields averaged across all 

management practices.  A t-test confirmed that the simulated yield for corn was not 

statistically different from the actual historical yields, with a significance of 99%.  The R2 

calculated from the t-test conducted on corn was 0.22.  Figure 2A.1 depicts maps 

historical yields versus simulated yields.  It is apparent that no critical errors occurred in 

the simulation of corn.   

Corn yields were then analyzed by focusing on yield response to planting date.  

Early planting is not as important in Kentucky as other states to the north.  Kentucky’s 

growing season is long enough that late planting still results in relatively high yields.  For 

summary purposes the nine planting dates are categorized by early planting (March 25, 

April 1 and April 8), intermediate planting (April 15, April 22 and April 29) and late 

planting (May 6, May 13 and May 20).  Yields for these planting dates favor early 

planting as expected, with an average yield across all management practices for 30 years 

of 155 bu/acre, compared to 142 bu/acre and 129 bu/acre for intermediate and late 

planting dates respectively.  Also, early planting was favored in 24 of the 30 years 

simulated.  Research has shown a yield loss of 1% per day when planting corn after May 

10-15, according to University of Kentucky’s Cooperative Extension Service Bulletin, 

ID-139: A Comprehensive Guide to Corn Management in Kentucky.  For this simulation, 

there was only one date of May 20th that yield loss would occur.  After the previous 

planting date of May 13th, there was a yield loss of 5% when planting seven days later, 

which is consistent with research at the University of Kentucky.  Perez-Bidegain, et al., 

(2007) on the other hand, analyzed tillage systems by planting date and their effect on 

corn yields in Iowa.  Unlike this study, planting dates were determined by soil 

temperature and soil water content.  None the less, when averaged across the three year 

study, corn yields were significantly impacted by planting date, in which the earlier 

planting dates were favored.  Early planting was also favored in several other studies 

(Imholte and Carter, 1987; Lauer, et al., 1999; Nafziger, 1994).  However, planting too 

early or too late resulted in yield reductions due to the potential of frost.  Corn’s planting 
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date was not the only production practice analyzed to determine the validity of the yield 

estimates.         

Corn yield and plant population were also evaluated.  Recent studies at the 

University of Kentucky have shown that higher plant populations result in higher yields, 

unless plant populations greatly exceed the recommended optimal range.  Then, 

significant yield decreases could occur (Bitzer and Herbek, 2001).  Plant populations of 

24,000, 28,000, and 32,000 plants per acre were simulated and when averaged across all 

production practices and 30 years resulted in yields of 138 bu/acre, 142 bu/acre, and 147 

bu/acre.   The average yield difference between low and high plant populations was 7 

bu/acre.  All but one year, 1988, was consistent with research suggesting higher yields at 

each increasing level of plant populations.  The greatest benefit of higher plant 

populations occurred in 1989 with an average difference in yield of 13 bu/acre between 

low and high plant populations.  A three year study at the University of Kentucky showed 

an increase in corn yield at each increased level of plant populations (Bitzer and Herbek, 

2001).  Similar to the simulated results, the difference between low and high plant 

populations (22,000 plants/acre and 30,000 plants/acre) was 15 bu/acre, a difference of 

only 3 bu/acre.  Further investigations into the validity of corn yields based on the 

influence of production practices were also conducted.   

Furthermore, the maturity groups’ effect on corn yields were examined and 

compared to the study conducted by Bitzer and Herbek (2001).  This study suggests that 

early and medium maturity hybrids yield higher than late maturity hybrids in stress 

conditions.  On both deep soils simulated, the later maturity group performed better than 

both early and medium maturities.  On the other hand, early and medium maturities 

preformed better than the late maturity group on both shallow soils simulated.  These are 

consistent with Bitzer and Herbek (2001).  However, conversations conducted in 2009 

with Dr. Chad Lee, an Extension Grain Crop Specialist at the University of Kentucky, 

revealed that no substantial correlation between maturity groups and expected yields 

exists.  This is due to the complexity involved with the interaction of maturities group 

with other contributing factors (i.e. planting date, weather, and soil conditions).  In turn, 

predicting a specific maturity group’s impact on yields is difficult.    
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Finally, nitrogen rates effect on corn yields were examined and also compared to 

previous research.  Bitzer and Herbek (2001) report that it is impossible to precisely 

predict the exact amount of nitrogen to apply in order to maximize yields due to weather 

variability in Kentucky.  For that reason, nitrogen application rates are based on cropping 

history (intensive vs. conservation), soil management (no-till versus conventional) and 

soil properties (drainage).  Numerous studies have concluded that yield response to 

increased nitrogen rates operate in a quadratic manner   (Blackmer and Sanchez, 1988; 

Liang, et al., 1996; Miao, et al, 2006; Perez-Bidegain, et al., 2007; Shapiro and 

Wortmann, 2006).  Figure 2A.2 depicts the simulated yield response to actual nitrogen 

rate averaged across all management practices and over 30 years.  As depicted, results 

indicate a quadratic response to nitrogen rates, consistent with previous studies.  Also, 

when examining nitrogen rates impacts on yield for each year simulated, only three years 

exhibit a non-quadratic functional form.  This indicates that, as Bitzer and Herbek (2001) 

stated, nitrogen application rates are impacted based on the variability in weather 

conditions.      

Soybean Yield Validation 

Soybean yields were also simulated for all management practices and soil types in 

DSSAT.  The same percentages were used, 75-25 silty loam and silty clay, as well as 80-

20 deep and shallow, to determine a soybean yield for each management practice over 30 

years.  First, a regression analysis was conducted comparing detrended historical yields 

for Henderson County, Kentucky to simulated yields averaged across all management 

practices.  A t-test confirmed that the simulated yield for soybeans was not statistically 

different from the actual historical yields, with a significance of 99%.  The R2 calculated 

for the t-test conducted on soybeans was 0.46.  Figure 2A.3 depicts historical yields 

versus simulated yields.  It can be seen that simulated yields fit the trend of historical 

yields but are relatively higher.  A good portion of Kentucky soybean production is 

double-cropped with winter wheat resulting in late planting, hence lowers yields.  

Therefore simulated yields were higher than historical yields for Henderson County, 

Kentucky.     

Soybean yields were then analyzed for their response to planting dates.  Soybeans 

yield response to planting date can vary from year to year due to fluctuating 
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environmental conditions.  On average it is known that soybeans planted later in the year 

yield less than earlier planting dates for many areas in the United States (De Bruin and 

Pedersen, 2008; Oplinger and Philbrook, 1992; Perez-Bidegain, et al., 2007).  Multiple 

studies have been conducted on soybean production in Kentucky and the impacts that 

occur when planting dates vary.  Egli, et al., (1987) found planting soybeans late for the 

majority of Maturity Groups resulted in yield reduction due to incomplete insolation and 

the reduction of vegetative mass at pod set.  Egli and Bruening (1992) found late planting 

significantly reduce yields 13-36% in a majority of cases.  Herbek and Bitzer (1988b) 

suggest the penalty for planting late (June 10-15) results in a 1.5% per day yield loss.  

Egli (2008) supports this decline by concluding that states in the Upper South (including 

Kentucky) exhibit yield loss due to late planting after June 7th at a rate of 1.1% per day on 

average.    Figure 2A.4 depicts average soybean yields response to planting date averaged 

across all management practices.  When yields for all planting dates before June 10th 

(Julian day 161) are averaged and compared to June 17th (Julian day 168), yield loss of 

7% occurs (1% per day).  Yield loss is not as dramatic as research suggests, but due to the 

numerous factors involved in computing the average yields, such as soil type and 

management practices, these yields are creditable.  The shallow soils had an adverse 

planting date effect on yields with late planting being optimal.  This can be explained by 

Kentucky rainfall patterns.  With earlier planting dates, pod fill in soybeans occur on 

average in August when average rainfall was the lowest of the year.  This results in lower 

yields since the water table was not filled at this critical time in soybean production.  

Whereas, with later planting dates, pod fill occurred on average in September with 

greater rainfall.  Therefore, the adverse yield response to planting date on shallow soils is 

not a problem.  Further investigations into the validity of soybean yields based on the 

influence of production practices were also conducted.     

  Plant populations were also analyzed against previous research.  According to 

Herbek and Bitzer (1988b), soybean populations are not seriously affected by plant 

population when varied between the optimal ranges.  Excessively high or low plant 

populations (+/- >50%) result in yield losses.  However, these extreme ranges were not 

simulated for this research.  Therefore, simulated soybean yields, when averaged across 

years and management practices holding plant populations constant resulted in a 
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difference of 2 bu/acre between the low and high plant populations.  Over all 30 years, 

the difference between high and low plant populations was never greater than 3 bu/acre.  

Given this, it is believed that simulated yields based on plant population support the 

literature. 

Soybeans were then analyzed based on their response to row spacing.  Herbek and 

Bitzer (1988b) suggest that research from other states north of Kentucky have indicted 

yield advantages with narrower row spaces.  Oplinger and Philbrook (1992) also 

concluded that narrower row spacing increased soybean yield.  On the other hand, the 

farther you move south, the tendency for yield advantages due to narrow row spaces 

decreases, suggesting that Kentucky is in a transitional area and consistent yield 

responses to row spacing is lacking.  Herbek and Bitzer (1988b) also advise that for most 

varieties of soybeans for most years, row widths less than 15 inches will maximize yields.  

Across all years and management practices, holding row spacing constant, 15 inch row 

spacing yield 1 bu/acre higher than 30 inch row spacing.  For all 30 years simulated, 

when averaged across management practices holding row spacing constant, 15 inch row 

spacing yielded higher than 30 inch row spacing, with the greatest difference being 1 

bu/acre.  Simulated yield response to row spacing is also supported by Egli and Bruening 

(1992) where it was determined that row spacing of 8 inches and 15 inches did not 

constantly produce different yields in Kentucky.  Furthermore, a study conducted by 

Harder, et al., (2007) concluded: (1) soybean yields were greater in high plant population 

compared with low plant populations in 15 inch rows, (2) soybean yields were greater in 

moderate plant populations compared with low plant populations in 30 inch rows and (3) 

within plant populations row spacing of 15 inches always preformed better than 30 inch 

rows.  All three of these conclusions are akin to simulated results when averaged across 

30 years.   

Finally, cultivar’s impacts on soybean yields were examined against previous 

studies.  Herbek and Bitzer (1988a) indicate that for most years full-season varieties will 

yield the highest, but occasionally early varieties yield higher than full season varieties 

due to adverse weather conditions. Lee, et al. (2005) study on maturity groups and soil 

type also indicate that Maturity Group IV typically yields higher than any other Maturity 

Group’s for Kentucky’s conditions.  Also, Kane, et al. (1997) concluded in a four year 
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study in Lexington, KY that Maturity Group IV maximized yields over Maturity Group II 

and III.  Simulated soybean yields are consistent with the above studies. Maturity Group 

IV yielding higher than the other Maturity Groups 26 out of the 30 years, with the other 

four years dominated by Maturity Group II.  When averaged across all years and 

management practices, holding Maturity Group constant, results indicate Maturity Group 

IV maximizes yields.  Lee, et al. (2005) also indicated that Maturity Group II fair well or 

even better than Maturity Group IV varieties on drought-prone soils (i.e. shallow soils) in 

Kentucky.  Simulated yields directly illustrate this relationship with Maturity Group II 

attaining the maximum yields on both shallow soils when averaged across years when 

compared to the other Maturity Groups.  For the three year study conducted by Lee, et al. 

(2005), Maturity Group IV yielded about 10% better than Maturity Group III and 20% 

better than Maturity Group II averaged across the three years.  When averaged across 30 

simulated years, Maturity Group IV yielded 5% better than Maturity Group III and 12% 

better than Maturity Group II.  Due to unusual rainfall and weather conditions in 

Kentucky, the chance is greater over a 30 year period that Maturity Group II or III could 

maximize yields over Maturity Group IV.  This would result in lower yield advantages 

for the various Maturity Groups, when compared to Lee, et al. (2005) study. 

In conclusion, given all that has been validated in this paper, it is believed that 

both corn and soybean yields are representative of yields produced in Henderson County, 

Kentucky, therefore should be utilized in the economic model.   
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Table A2.1. Description of soil parameters entered into DSSAT for simulated Henderson 
County yields. 

 
  

Soils Color Drainage Runoff 
Potential 

Slope 
(%) 

Runoff 
Curve # Albedo Drainage 

Rate 
Deep 
Silty 
Loam 

Brown Moderately 
Well Lowest 1 61 0.13 0.40 

Shallow 
Silty 
Loam 

Brown Somewhat 
Poor 

Moderately 
Low 8 80 0.13 0.25 

Deep 
Silty Clay Brown Moderately 

Well 
Moderately 

Low 1 73 0.13 0.40 

Shallow 
Silty Clay Brown Somewhat 

Poor 
Moderately 

High 8 88 0.13 0.25 
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Table A2.2.  A list of references that have utilized DSSAT for conducting research and 
have incorporated a range for each production practice. 
 
Planting Date: Egli and Bruening, 1992; Farquharson, et al., 2006; Guerena, et al., 2001; 
Jagtop, et al., 1999; Jagtop and Abamub, 2003; Mavromatis, et al., 2002; O’Neil, et al., 
2002; O’Neil, et al., 2004; Royce, et al., 2001; Walfula, 1995. 
 
Cultivar: Cora, et al., 1999; Egli and Bruening, 1992; Guerena, et al., 2001; Jagtop, et al., 
1999; Jagtop, et al., 2003; Mavromatis, et al., 2002; O’Neil, et al., 2004; Paz, et al., 2001; 
Paz, et al., 2003; Royce, et al., 2001; Walfula 1995. 
 
Row Spacing: Egli, 1992; Mavromatis, et al., 2002; Royce, et al., 2001. 
 
Plant Population: Jagtop, et al., 1999; Jagtop, et al., 2003; Paz, et al., 1999; Paz, et al., 
2001; Royce, et al., 2001; Sadler, et al., 2000; Walfula 1995.  
 
Nitrogen (corn): Braga and Jones, 1999; Farquharson, et al., 2006; Hartkamp, et al., 
2004; Jagtop, et al., 1999; Jagtop, et al., 2003; O’Neil, et al., 2002; O’Neil, et al., 2004; 
Paz, et al., 1999; Royce, et al., 2001; Sadler, et al., 2000; Thorp, et al., 2007; Walfula 
1995. 
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Figure A2.1. Average Corn Yield for Henderson County, Kentucky by Year: Simulated 
versus Historical Yield (Detrended). 
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Figure A2.3. Average Soybean Yield for Henderson County, Kentucky by Year: 
Simulated versus Historical Yield (Detrended) 
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