
Graduate Theses and Dissertations Graduate College

2012

root zone water quality and soil moisture dynamics
of biomass cropping systems and landscape
positions
Wade Welsh
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Hydrology Commons, and the Sustainability Commons

This Thesis is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Welsh, Wade, "root zone water quality and soil moisture dynamics of biomass cropping systems and landscape positions" (2012).
Graduate Theses and Dissertations. 12510.
http://lib.dr.iastate.edu/etd/12510

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F12510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1054?utm_source=lib.dr.iastate.edu%2Fetd%2F12510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1031?utm_source=lib.dr.iastate.edu%2Fetd%2F12510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/12510?utm_source=lib.dr.iastate.edu%2Fetd%2F12510&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


 

 

Root zone water quality and soil moisture dynamics of biomass cropping systems and 
landscape positions 

 

By 

 

Wade William Welsh 

 

 

A thesis submitted to the graduate faculty 

In partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

 

Major: Biorenewable Resources and Technology 

 

Program of Study Committee: 
Matthew J. Helmers, Major Professor 

Thomas M. Isenhart 
Lisa A. Schulte-Moore 

 

 

 

 

Iowa State University 

Ames, Iowa 

2012 

Copyright © Wade William Welsh, 2012.   All rights reserved. 



ii  
 

TABLE OF CONTENTS 

LIST OF FIGURES                                                                                                                      iv 

LIST OF TABLES                                                                                                                         v 

ABSTRACT                                                                                                                                  vi 

 

CHAPTER 1. GENERAL INTRODUCTION                                                                      

1.1 Introduction                                                                                                                                1 

1.2 Thesis overview                                                                                                                         4 

1.3 References                                                                                                                                  6 

 

 

CHAPTER 2. ROOT ZONE WATER QUALITY ASSOCIATED WITH VARIOUS 
BIOMASS CROPPING SYSTEMS AND LANDSCAPE POSITIONS       

2.1 Abstract                                                                                                                                     8 

2.2 Introduction                                                                                                                               9 

2.3 Materials and methods                                                                                                             12 

2.3.1 Research site                                                                                                             12 

2.3.2 Biomass cropping systems                                                                                        13 

2.3.3 Landscape positions                                                                                                  14 

2.3.4 Data collection                                                                                                          15 

2.3.5 Statistical analysis                                                                                                     16 

2.4 Results and discussion                                                                                                             17 

2.5 Conclusions                                                                                                                              21 

2.6 References                                                                                                                                23 

 



iii  
 

 

CHAPTER 3. SOIL MOISTURE DYNAMICS OF VARIOUS BIOMASS CROPPING  

SYSTEMS AND LANDSCAPE POSITIONS                                                                                    

3.1 Abstract                                                                                                                                    34 

3.2 Introduction                                                                                                                              35 

3.3 Materials and methods                                                                                                             38 

3.3.1 Research site                                                                                                             38 

3.3.2 Biomass cropping systems                                                                                        39 

3.3.3 Landscape positions                                                                                                  40 

3.3.4 Data collection                                                                                                          41 

3.3.5 Statistical analysis                                                                                                     43 

3.4 Results and discussion                                                                                                             44 

3.5 Conclusions                                                                                                                              50 

3.6 References                                                                                                                                51 

 

 

CHAPTER 4. GENERAL CONCLUSIONS                                                                                                                    

4.1 Conclusions                                                                                                                              73 

4.2 Recommendations                                                                                                                    74 

 

APPENDIX                                                                                                                                                                    

Erosion modeling                                                                                                                           75 

Soil moisture sensor calibration                                                                                                     85 

 

ACKNOWLEDGEMENTS                                                                                                        88 



iv 
 

LIST OF FIGURES 

Figure 2.1. Iowa State University Uthe research farm                                                                   29 

Figure 2.2. Landscape positions (a) and Soils (b) at the ISU Uthe research                                 30 

Figure 2.3. Comparison of precipitation                                                                                        31 

Figure 2.4. NO3-N concentrations by landscape position in (a) 2010 and (b) 2011.                     32 

Figure 2.5. NO3-N concentration by treatment in (a) 2010 and (b) 2011                                      33 

Figure 3.1. Iowa State University Uthe research farm                                                                   66 

Figure 3.2. Landscape positions (a) and soils (b) at the Uthe research farm                                 67 

Figure 3.3. Comparison of precipitation                                                                                        68 

Figure 3.4. 2010 soil water storage 0-60 cm by landscape position                                              69 

Figure 3.5. 2010 soil water storage 0-60 cm by cropping system                                                 69 

Figure 3.6  2010 soil water storage 0-120 cm by landscape position                                            70 

Figure 3.7. 2010 soil water storage 0-120 cm by cropping system                                               70 

Figure 3.8. 2011 soil water storage 0-60 cm by landscape position                                              71 

Figure 3.9. 2011 soil water storage 0-60 cm by treatment                                                             71 

Figure 3.10. 2011 soil water storage 0-120 cm by landscape position.                                         72 

Figure 3.11. 2011 soil water storage 0-120 cm by treatment                                                         72 

Figure 4.1. Landscape positions and cropping systems                                                                 83 

Figure 4.2. Average annual soil loss by landscape position                                                          84 

Figure 4.3. Average annual soil loss by cropping system                                                              84 

Figure 5.1. Decagon H2O probe calibration in Clarion soil                                                           86 

Figure 5.2. Decagon H2O probe calibration in Coland soil                                                           86 

Figure 5.3. Decagon H2O probe calibration in Clarion soil                                                           87 

Figure 5.4. Decagon H2O probe calibration in Clarion soil                                                           87 

 



v 
 

LIST OF TABLES 

Table 2.1. Effect of treatment, landscape position, and month on NO3-N concentration             26 

Table 2.2. Monthly effects of treatment and landscape position on NO3-N concentration           27 

Table 2.3. Comparison of NO3-N by (a) treatment and (b) landscape position                             28 

Table 3.1. Soil water storage and drainage information for landscape locations                          54 

Table 3.2. Soil water content and drainage information                                                                54 

Table 3.3. Results of comparison of soil moisture (%) 0-20 cm                                                   55 

Table 3.4. Results of comparison of soil moisture (%) 20-40 cm                                                 56 

Table 3.5. Results of comparison of soil moisture (%) 40-60 cm                                                 57 

Table 3.6. Results of comparison of soil moisture (%) 60-80 cm                                                 58 

Table 3.7. Results of comparison of soil moisture (%) 80-100 cm                                               59 

Table 3.8. Results of comparison of soil moisture (%) 100-120 cm                                             60 

Table 3.9. Precipitation and PET prior to collecting soil moisture measurements                        61 

Table 3.10. Results of comparison of soil water storage 0-60 cm                                                 61 

Table 3.11. Soil water storage 0-60 cm by (a) treatment and (b) landscape position                    62 

Table 3.12. Soil water storage 0-120 cm (a) treatment and (b) landscape position                       63 

Table 3.13. Results of comparison of soil water storage 0-60 cm                                                 64 

Table 3.14. Results of comparison of soil water storage 0-120 cm                                               65 

  



vi 
 

ABSTRACT 

Evaluating the water quality impacts and soil moisture dynamics of biomass production 

systems is essential to assessing their environmental impacts.  The objective of this study is to 

determine potential water quality and soil moisture impacts of various production systems across 

different landscape positions.  Five production systems are being evaluated: (1) continuous corn, 

(2) corn-soy/triticale-soy, (3) switchgrass, (4) triticale/sorghum, and (5) triticale/trees, at five 

landscape locations: (1) summit, (2) shoulder, (3) backslope, (4) toeslope, and (5) floodplain.  

Each production system is randomly assigned within three replicates at each landscape location.  

Soil water samples are taken monthly during the growing season from two suction lysimeters per 

plot at a depth of 60cm.  Volumetric soil moisture measurements were taken monthly during the 

2010 and 2011 growing seasons from two access tubes at 20 cm intervals to a depth of 120 cm.  

Significant differences among the cropping systems’ NO3-N concentrations in the root zone were 

observed with a likely association between nitrogen (N) fertilizer inputs to the systems 

containing corn.  The triticale/sorghum system showed consistently lower NO3-N concentrations 

in the root zone than the corn systems, although they received only slightly lower total N 

fertilizer.  Higher NO3-N concentration in the root zone was also not observed in the switchgrass 

plots following a significant N input from fertilization. The triticale/trees system had lower 

moisture and soil water storage in the upper 60 cm of the soil profile than the other systems in 

April, May, and October 2011, which may indicate increased evapotranspirative demand.  The 

relatively larger amount of stubble and residue in the switchgrass plots may account for the 

higher moisture levels at the surface in April, May and September 2011.  Quantifying 

environmental impacts of biomass production systems will aid in optimizing deployment as 

producers gear up to meet biomass production demand. 
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CHAPTER 1: GENERAL INTRODUCTION 

1.1 Introduction 

The Energy Independence and Security Act (EISA) of 2007 mandates that 136 billion 

liters of renewable fuels be produced in the United States annually by the year 2022 with 79 

billion liters of this being cellulosic biofuel.  The mandate also caps the production of grain 

based ethanol at 57 billion liters. As producers in the Midwest consider potentially shifting from 

conventional, first-generation grain-based biofuel feedstocks to advanced, second-generation 

feedstocks, it is necessary to consider the ecological impacts of these new cropping systems.  It is 

anticipated, that overall, the production of dedicated energy crops will have lower demand for 

water (Pellegrino et al., 2007; Sokhansanj et al., 2009; Williams et al., 2009) and they show the 

potential to improve water quality because of fewer fertilizer inputs as well as more efficient use 

of nitrogen when compared to corn production systems (McLaughlin and Walsh, 1998; Graham, 

2007).  While there are likely water quality and quantity benefits to be garnered by the 

conversion of row crop agriculture to perennial biofuel feedstock systems, it is unlikely that 

these benefits will be the same everywhere on the landscape across all potential biomass 

cropping systems (Schulte et al., 2006).  It is also possible, as Robertson et al. (2008) state, that 

the benefits of cellulosic crops could be negated by choosing poor locations to grow them.  

Crops grown on poor quality land may require relatively large inputs of fertilizer and water to 

make them economically viable, which would reduce the environmental benefit. 

Corn stover in the form of residue from corn grain harvest represents a potentially large 

volume of biomass in the Midwest. Under current farming practices the stover is generally 

returned to the soil, which aids in protecting the soil from erosion and maintaining soil organic 

carbon.  Large scale removal of corn stover for biofuel production will likely have negative 
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environmental impacts such as increased erosion, reduction of soil quality, and more fertilizer 

input requirements (Wilhelm et al., 2004; Lal, 2006).   Secchi et al., (2011) showed additional 

negative impacts by predicting that increased use of corn as a biofuel feedstock will have 

negative water quality impacts in the Upper Mississippi River Basin (UMRB).  Their model used 

increasing value of corn grain from increased demand by biofuel production as the driver to 

increase the intensity of corn production in the region, which they estimated would increase the 

quantity of total N and total P at the outlet of the UMRB.  This is of interest because increases in 

nitrate concentration in the Mississippi River from N fertilization of corn for grain production in 

the Midwest has been shown to be a major contributor to the enlargement of the hypoxic zone in 

the Gulf of Mexico (Goolsby et al., 1999; Turner and Rabalais, 2003). 

A potential solution to this is incorporating a winter cover crop or double crop into the 

system to protect the soil from erosion, increase water infiltration, and increase 

evapotranspiration, which could contribute to reduced dissolved nutrient loss, runoff and erosion 

(Hartwig and Ammon 2002; Heggenstaller et al., 2008).  Potential examples include 

incorporating a small grain (e.g., winter rye [Secale cereals L.], winter wheat [Triticum aestivum 

L.], or forage triticale [×Triticosecale rimpaui Wittm.]) into a continuous corn or corn-soybean 

rotation to form a corn/small grain or a corn-soybean-small grain/soybean production system.  

While these systems show benefits when compared to current systems, there is still concern 

about the further expansion of corn as a biofuel feedstock because of potential effects of 

increasing demand on the current food and feed system (Tilman et al., 2009). 

Hallam et al. (2001) and Codgill (2008) demonstrated the potential of sorghum as a 

biomass crop with high yields and composition that allows for efficient conversion to biofuel.  A 

negative aspect of growing sorghum is that it is not well suited to sloping areas due to the high 
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rates of soil erosion on these types of sites (Buxton et al., 1999; Hallam et al., 2001).  A winter 

cover crop incorporated with sorghum may reduce the erosion and make it more viable by 

reducing its negative environmental impacts (Reinbott et al., 2004).    

Perennial plants have also been proposed and studied as energy crops.  Miscanthus and 

Switchgrass (Pancium virgatum) are two of the herbaceous species that have received much 

attention as potential biofuel feedstocks (McKendry, 2002).  Zhou et al. (2010) showed that 

nitrate-nitrogen (NO3-N) concentrations in the vadose zone and shallow groundwater were lower 

under perennial filter strips than cropland.  Woody species have also received attention as biofuel 

feedstocks in the form of waste from the timber industry as well as dedicated biomass crops 

(Mann and Tolbert, 2000).     

The growth of switchgrass when compared to conventional row crops has been shown to 

have environmental benefits such as reduced erosion, reduced dissolved nutrient loss, and 

improved soil quality (Robertson et al., 2008; Diaz-Chavez et al., 2011; Love and Nejadhashemi, 

2011). Much of this positive impact is attributed to its reduced fertilizer input requirements and 

perennial root system (McLaughlin and Kszos, 2005; Diaz-Chavez et al., 2011).   

Woody biomass production systems have been shown to have substantial environmental 

benefits such as reduced erosion and nutrient loss as well as increased habitat to increase species 

diversity (Kort et al., 1998; Schultz et al., 2004).  Kort et al. (1998) also noted that one potential 

negative impact is that when woody biomass crops mature, they shade out the ground below 

them.  This may result in severe reduction of vegetative undergrowth, which could result in more 

erosion if the soil is left exposed after harvest of the trees.  Another potential drawback of woody 

biomass crops is that they often lower the water table from their increased evapotranspirative 

demand.  Kort et al. (1998) also noted a study from Australia where a pine plantation reduced the 
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water table level enough to change a naturally perennial stream to an ephemeral stream.  While, 

this will surely reduce water erosion, it is not necessarily beneficially to aquatic habitats and the 

species that rely on them.  It was also noted that the reduction in soil moisture from the increased 

water demand from the trees can leave a soil more susceptible to wind erosion.  The major 

detriment of growing woody species as a biomass crop lies in the fact that there is significant lag 

time (up to 10 years) between planting and harvest of a new crop.  A potential way to mitigate 

this is to intercrop the trees with a faster growing species during the establishment of the slower 

growing trees.  This has the potential to increase economic viability by producing biomass 

during the early, less productive years and may serve to control weed pressure on the woody 

crops and stabilize the soil (Schulte, 2010). 

As Midwest producers gear up to meet the biomass production requirements of the EISA 

of 2007 there is an opportunity to design and implement biomass production systems that will 

produce significant economic, environmental, and social benefits (Dale, 2011).  It is unlikely that 

any one of the systems outlined above will be best suited to produce superior biomass and yields 

and environmental benefits at all landscape locations at all times.  After reviewing relevant 

literature it is clear that there is a need to evaluate the water quality and quantity aspects of 

biomass cropping systems while also considering their position on the landscape.  This research 

will aid in the design of biomass production systems that perform at high levels when evaluated 

according to multifunctional criteria (Schulte, 2010). 

 

1.2 Thesis overview 

This thesis has been organized with a general introduction followed by two manuscripts, 

a general conclusion, appendices and acknowledgements.  Each article consists of an abstract, 
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introduction, materials and methods, results and conclusion.  Chapter two contains a manuscript 

titled “Root zone water quality associated with various biomass cropping systems and landscape 

positions.”  The objective of this study is to determine potential water quality impacts of various 

production systems across different landscape positions.  Five production systems are being 

evaluated: (1) continuous corn, (2) corn-soy/triticale-soy, (3) switchgrass, (4) triticale/sorghum, 

and (5) triticale/trees, at five landscape locations: (1) summit, (2) shoulder, (3) backslope, (4) 

toeslope, and (5) floodplain.  Each production system is randomly assigned within three 

replicates at each landscape location.  Soil water samples are taken monthly during the growing 

seasons of 2010 and 2011 from two suction lysimeters per plot at a depth of 60 cm.  Quantifying 

the environmental impacts of biomass production systems will aid in optimizing deployment as 

producers gear up to meet biomass production demand.  Chapter three contains a manuscript 

titled “Soil moisture dynamics of various biomass cropping systems and landscape positions.”  

The objective of this study is to determine potential differences in soil moisture among the 

cropping systems and landscape positions during the growing season.  The same cropping 

systems and landscape positions were used as in Chapter two.  Soil moisture measurements were 

taken monthly at 20 cm intervals to a depth of 1.2 m at two access tubes per plot in 2010 and 

2011.  Quantifying the soil moisture dynamics will aid in optimizing the deployment of biomass 

cropping systems as producers gear up to meet biomass production demand.  Chapter four 

contains general conclusions drawn from the research and suggests future work in this area.  The 

appendix contains the results of erosion modeling of the research site using the Water Erosion 

Prediction Project (WEPP) and calibration of soil moisture sensors installed at the research site.  

The final section serves to acknowledge those who assisted in the work contained in this thesis. 
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CHAPTER 2: ROOT ZONE WATER QUALITY ASSOCIATED WITH VARIOUS 

BIOMASS CROPPING SYSTEMS AND LANDSCAPE POSITIONS                                                                                    

2.1 Abstract 

Evaluating the water quality impacts of biomass production systems is essential to 

assessing their environmental impacts.  The objective of this study is to determine potential 

water quality impacts of various production systems across different landscape positions.  Five 

production systems are being evaluated: (1) continuous corn, (2) corn-soy/triticale-soy, (3) 

switchgrass, (4) triticale/sorghum, and (5) triticale/trees, at five landscape locations: (1) summit, 

(2) shoulder, (3) backslope, (4) toeslope, and (5) floodplain.  Each production system is 

randomly assigned within three replicates at each landscape location.  Soil water samples are 

taken monthly during the growing season from two suction lysimeters per plot at a depth of 60 

cm.  NO3-N concentrations were significantly different between the production systems with a 

likely association with fertilizer input.  Corn systems had the highest concentrations and the 

triticale/tree treatment had the lowest.   Relative to other systems in this study, high 

concentrations in the corn plots following fertilization were observed.  A similar increase was not 

observed in the switchgrass or triticale/sorghum systems following fertilizer application.  This 

may indicate that these systems are more efficient at N uptake.  Quantifying the environmental 

impacts of biomass production systems will aid in optimizing deployment as producers gear up 

to meet biomass production demand. 

  



9 
 

2.2 Introduction 

The Energy Independence and Security Act (EISA) of 2007 mandates that 136 billion 

liters of renewable fuels be produced in the United States annually by the year 2022 with 79 

billion liters of this being advanced biofuel, mostly cellulosic.  The mandate also caps the 

production of grain-based ethanol at 57 billion liters. As producers in the Midwest prepare to 

shift from conventional, first-generation grain based biofuel feedstocks to advanced, second-

generation feedstocks, it is necessary to consider the ecological impacts of these new cropping 

systems.  It is anticipated that overall, the production of dedicated energy crops will improve 

water quality because of fewer fertilizer inputs as well as more efficient use of nitrogen when 

compared to corn production systems (McLaughlin and Walsh, 1998; Graham, 2007).  While 

there are likely water quality benefits to be achieved by the conversion of row crop agriculture to 

perennial biofuel feedstock systems, it is unlikely that these benefits will be the same everywhere 

on the landscape across all potential biomass cropping systems (Schulte et al., 2006).  It is also 

possible, as Robertson et al. (2008) state, that the benefits of cellulosic crops could be negated by 

choosing poor locations to grow them.  Crops grown on poor quality land may require relatively 

large inputs of fertilizer and water to make them economically viable, which would reduce the 

environmental benefit. 

Corn stover in the form of residue from corn grain harvest represents a potentially large 

volume of biomass from the current agriculture system in the Midwest. Under current farming 

practices the stover is generally returned to the soil which aids in protecting the soil from erosion 

and maintaining soil organic carbon.  Large scale removal of corn stover for biofuel production 

will likely have negative environmental impacts such as increased erosion, reduction of soil 

quality, and more fertilizer input requirements (Wilhelm et al., 2004; Lal, 2006).   Secchi et al., 
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(2011) showed additional negative impacts by predicting that increased use of corn as a biofuel 

feedstock will have negative water quality impacts in the Upper Mississippi River Basin 

(UMRB).  Their model used increasing value of corn grain from increased demand by biofuel 

production as the driver to increase the intensity of corn production in the region, which they 

estimated would increase the quantity of total N and total P at the outlet of the UMRB.  This is of 

interest because increases in nitrate in the Mississippi River from nitrogen fertilization of corn 

for grain production in the Midwest has been shown to be a major contributor to the enlargement 

of the hypoxic zone in the Gulf of Mexico (Goolsby et al., 1999 and Turner and Rabalais, 2003). 

A potential solution to mitigate some of the negative aspects of intensive row crop 

farming is incorporating a winter cover crop or double crop into the system to protect the soil 

from erosion, increase water infiltration, and evapotranspiration which could contribute to 

reduced dissolved nutrient loss, runoff and erosion (Hartwig and Ammon 2002; Heggenstaller et 

al., 2008).  Potential examples include incorporating a small grain (e.g., winter rye [Secale 

cereals L.], winter wheat [Triticum aestivum L.], or forage triticale [×Triticosecale rimpaui 

Wittm.]) into a continuous corn or corn-soybean rotation to form a corn/small grain or a corn-

soybean-small grain/soybean production system.  While these systems show benefits when 

compared to current systems, there is still concern about the further expansion of corn as a 

biofuel feedstock because of potential effects of increasing demand on the current food and feed 

system (Tilman et al., 2009) and the likely negative environmental impacts (Secchi et al., 2011). 

Hallam et al. (2001) and Codgill (2008) demonstrated the potential of sorghum (Sorghum 

bicolor (L.) Moench) as a biomass crop with high yields and composition that allows for efficient 

conversion to biofuel.  A negative aspect of growing sorghum is that it is not well suited to 

sloping areas due to its high rates of soil erosion on these types of sites (Buxton et al., 1999; 
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Hallam et al., 2001).  A winter cover crop incorporated with sorghum may reduce the erosion 

and make it more viable by reducing its negative environmental impacts (Reinbott et al., 2004).    

 Perennial plants, both herbaceous and woody, have also been proposed and studied as 

energy crops.  Miscanthus and switchgrass (Pancium virgatum) are two of the herbaceous 

species that have received much attention as a potential biofuel feedstock (McKendry, 2002).  

Woody species have also received attention as a biofuel feedstock in the form of waste from the 

timber industry as well as dedicated biomass crops (Mann and Tolbert, 2000).     

The growth of switchgrass when compared to conventional row crops has been shown to 

have environmental benefits such as reduced erosion, reduced dissolved nutrient loss, and 

improved soil quality (Diaz-Chavez et al., 2011, Robertson et al., 2008, Love and Nejadhashemi, 

2011). Much of this positive impact is attributed to its reduced fertilizer input requirements and 

perennial root system (McLaughlin and Kszos, 2005 and Diaz-Chavez et al., 2011).   

Woody biomass production systems have been shown to have substantial environmental 

benefits such as reduced erosion and nutrient loss as well as increased habitat to increase species 

diversity (Kort et al., 1998; Schultz et al., 2004).  Kort et al. (1998) also noted that one potential 

negative impact is when woody biomass crops mature, they shade out the ground below them 

which results in severe reduction of vegetative undergrowth that could result in more erosion if 

the soil left is exposed after harvest of the trees.  Another potential drawback of woody biomass 

crops is that they often lower the water table from their increased evapotranspirative demand.  

Kort et al. (1998) also noted a study from Australia where a pine plantation reduced the water 

table level enough to change a naturally perennial stream to an ephemeral stream.  While, this 

will surely reduce water erosion, it is not necessarily beneficially to aquatic habitats and the 

species that rely on them.  It was also noted that the reduction in soil moisture from the increased 



12 
 

water demand from the trees can leave a soil more susceptible to wind erosion.  The major 

detriment of growing woody species as a biomass crop lies in the fact that there is significant lag 

time (up to 10 years) between planting and harvest of a new crop.  A potential way to mitigate 

this is to intercrop the trees with a faster growing species during the establishment of the slower 

growing trees.  This has the potential to increase economic viability by producing biomass 

during the early, less productive years and may serve to control weed pressure on the woody 

crops and stabilize the soil (Schulte, 2010). 

As Midwest producers gear up to meet the biomass production requirements of the EISA 

of 2007 there is an opportunity to design and implement biomass production systems that will 

produce significant economic, environmental, and social benefits (Dale, 2011). It is unlikely that 

any one of the systems outlined above will be best suited to produce superior biomass and yields 

and environmental benefits at all landscape locations at all times.  After reviewing relevant 

literature it is clear that there is a need to evaluate the water quality aspects of biomass cropping 

systems while also considering their position on the landscape.  The objective of this study is to 

evaluate NO3-N concentrations in the root zone of various biomass cropping systems across 

landscape positions.  This research will aid in the design of biomass production systems that 

perform at high levels when evaluated according to multifunctional criteria (Schulte, 2010). 

2.3 Materials and methods 

2.3.1 Research site 

The research site is located in Story County, Iowa, approximately 15 km Southwest of the 

city of Ames (Figure 2.1).  A randomized, replicated block experiment has been established to 

compare five biomass systems across five landscape positions (summit, shoulder, backslope, 

toeslope and floodplain).  There is a 20 m elevation difference from the summit to the floodplain 



13 
 

position, ranging from 325 m to 305 m above sea level.  Each biomass production system is 

randomly assigned within each of three blocks at each landscape position for a total of 75 plots.  

All plots in the upper four landscape positions have slope lengths of 24.4m (80 ft) and widths of 

18.3m (60 ft) and those in the floodplain have slope lengths of 18.3m (60 ft) and widths of 24.4m 

(80 ft).  Each plot has an area of 0.5 ha (0.11 ac) and there is a 6m (19.7 ft) buffer between plots 

to accommodate equipment and isolate plots.  The buffer around the tree plots is at least 18.3 m 

(60 ft) to accommodate the larger above and below ground influence of the trees.  Areas between 

the plots have been planted in tall fescue which establishes quickly, stabilizes the soil and is 

tolerant of equipment traffic.  Treatments were established at the site from the fall of 2008 to the 

spring of 2009.  Prior to this, the upland portions of the research site were managed under a corn 

– soybean rotation and the downslope portions of the floodplain position consisted of mixed 

grasses.   

2.3.2 Biomass cropping systems  

The five biomass cropping systems being evaluated are (1) continuous corn (Zea mays), 

(2) corn-soybean-triticale/soybean (Zea mays-Glycine max-Glycine max/×Triticosecale) (3) 

corn-switchgrass (Zea mays-Pancium virgatum), (4) triticale/sorghum (×Triticosecale/Sorghum 

bicolor), and (5) triticale/trees (×Triticosecale / Populus alba X P. grandidentata).  Specific 

biomass systems were selected based on their compatibility with existing agricultural systems 

and their potential to provide either superior biomass yields (triticale/sorghum), some biomass 

yield while mitigating some negative environmental impacts (corn-soybean-triticale/soybean, 

corn-switchgrass), or some short-term biomass yield and superior long-term yield while strongly 

mitigating negative environmental impacts (triticale/trees) compared to conventional corn 

production systems.  All cropping systems are managed using no till practices.  The continuous 
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corn system serves as a baseline from which to compare the alternative biomass cropping 

systems.  Corn-switchgrass is an intercropping system in which corn provided weed control and 

a harvestable crop of grain and stover in the first year (2009) as the switchgrass was established.  

Corn-soybean-triticale/soybean supplements the conventional corn-soybean rotation with a 

winter triticale biomass crop. Triticale is planted the September following the first soybean 

harvest, serves as a winter cover crop reducing exposure of soil to water and wind erosion, and is 

then harvested as a biomass crop in the early summer; it is followed immediately by soybean 

which is then harvested for grain in the fall.  Triticale/sorghum is a double-cropping system in 

which winter triticale is planted in the fall and then harvested the following June.  After triticale 

harvest, sorghum is planted into its stubble and harvested in September.  Triticale/trees is an 

intercropping system in which winter triticale was planted in October before the trees are planted 

in May.  Triticale is then harvested from between the tree rows as a biomass crop in early July, 

providing biomass productivity and a harvestable crop while the high-yield aspen trees (Crandon 

clone) are establishing.  Triticale is then replanted between rows in the fall (Schulte, 2010). 

2.3.3 Landscape positions 

Five landscape positions, including (1) summit, (2) shoulder, (3) backslope, (4) toeslope, 

and (5) floodplain, are being evaluated for this study (Figure 2.2a).  The summit position consists 

of four soil types.  Block one has three plots on Zenor sandy loam and two plots on Clarion 

loam.  All plots in block two are in Nicollet loam and all plots in block three are in Clarion loam.  

The shoulder position is dominated by Clarion loam however; half of the first replicate is in 

Zenor sandy loam.  All of the backslope landscape position is planted in Clarion loam.  The 

toeslope position has replicate one in Spillville loam and replicates two and three in Clarion 

loam.  All of the floodplain position is in Coland clay loam (Figure 2.2b).    
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As described by the National Cooperative Soil Survey of the United States, Clarion series 

consists of very deep, moderately well drained soils on uplands. These soils were formed in 

glacial till and have slopes that range from 1 to 9 percent.  The Coland series consists of very 

deep, poorly drained soils formed in alluvium. These soils are on floodplains and alluvial fans in 

river valleys and upland drainage ways in dissected till plains. Slope ranges from 0 to 5 percent. 

The Nicollet series consists of very deep, somewhat poorly drained soils that formed in 

calcareous loamy glacial till on till plains and moraines. Slopes range from 0 to 5 percent.  The 

Spillville series consists of very deep, moderately well drained or somewhat poorly drained soils 

formed in dark colored, medium-textured alluvium. Spillville soils are on nearly level flood 

plains and gently sloping footslopes on uplands. Slope ranges from 0 to 5 percent.  The Zenor 

series consists of very deep, somewhat excessively drained, moderately rapidly permeable soils 

formed in glacial outwash on uplands and, less commonly, on stream benches. Slope ranges from 

2 to 30 percent.   

2.3.4 Data collection 

To measure NO3-N concentrations in the root zone, two porous cup suction lysimeters 

(Model 1920F1L24, Soilmoisture Equipment Corp., Santa Barbara, CA) were installed per plot. 

Holes were vertically cored using a 5 cm auger and were at least 8 m from the edges of the plot 

and the other lysimeter in the plot.  Soil from the cored hole was sieved through a 2mm sieve and 

mixed with water to create a slurry which was poured back into the hole prior to inserting the 

lysimeter to ensure good soil contact with the porous cup.  Bentonite clay was placed 10 cm 

below the surface to seal around the lysimeter tube to prevent preferential flow to the porous cup.  

A threaded PVC cap was placed at ground level over the lysimeter to allow access and protect it 

from farming operations.  Native soil removed from the sample site was then used to backfill 
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around the lysimeter and cap as necessary to fill voids.  Negative tension (-55 kPa) was applied 

using a hand vacuum pump and water samples are extracted approximately 1 week later.  

Composite samples from each pair of lysimeters were acidified using 1 mL (per 145 mL sample) 

10% H2SO4 and refrigerated at 4oC before analysis.  Nitrate-nitrogen concentrations in the 

samples were determined by the automated flow injection Cadmium Reduction method using a 

Lachat Quickchem 8000 Automated Ion Analyzer system with a 0.1 mg L-1 detection limit 

(Lachat Instruments, Milwaukee, WI).  Nitrate was reduced to nitrite by a cadmium/copper 

column.  Nitrite was diazotized with sulfanilamide and then reacted with N-(1-naphthyl-)-

ethylenediamine dihydrochloride at a pH of 8.5 to form a colored (pink to red) azo compound, 

whose intensity is proportional to the amount of nitrate plus nitrite in the sample.  Nitrite was 

assumed to be negligible.  Measurements were made with a colorimeter at a wavelength of 520 

nm.  Concentrations in samples were determined by comparing sample absorbance with those 

obtained from a calibration curve comprised of standards containing NO3-N concentrations from 

0.25 to 30.0 mg NO3-N L-1. Samples with concentrations above 30 mg NO3-N L-1 were 

determined by diluting the samples and calculating actual concentration in the original sample. 

Precipitation was monitored at the Iowa State University South Reynoldson Farm (1.5 

km SE of research site).  Precipitation data was collected from April 1st to October 31st of each 

year.  Water samples were taken once per month, on average, throughout the growing season.  

Samples were taken on June 7th, July 9th, August 3rd, September 4th, and October 14th in 2010, 

and April 21st, May19th, June15th, July14th, August 9th and September 9th in 2011.  There were 

no samples available for collection in October 2011 due to dry conditions. 

2.3.5 Statistical analysis 
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Data was analyzed with the SAS statistical Software Package (SAS Institute, 2001) using 

the MIXED procedure to perform the analysis of variance.  We tested differences among NO3-N 

concentrations between experimental treatments (continuous corn, corn-soy-triticale/soy, 

switchgrass, and triticale/trees), landscape position (summit, shoulder, backslope, toeslope, and 

floodplain) and month. Interactions among the variables were also tested.   Statistical 

significance was evaluated at P≤0.05.  Means were separated using a least significant difference 

when effects were significant.  Data was analyzed for each year as well as each month separately 

to determine seasonal effects.   

2.4 Results and discussion 

Precipitation between the two years was similar and consistent with the 20 year average 

from mid-April until early June.  After this time, 2010 saw much more precipitation than 2011 

(Figure 2.3).  Overall, 2011 remained very close to the 20 year average during the study period 

while 2010 had double the 20 year average amount of precipitation from early June to the end of 

October.  

Overall, during both 2010 and 2011, there was a treatment and month effect as well as an 

interaction between the treatment and the month on NO3-N concentration in the root zone (Table 

2.1).  In 2010, the months of June and July had higher NO3-N concentrations than October and 

September (Table 2.2).  August had higher concentrations than June and lower than October and 

September. There was a general decline in NO3-N concentration from June to October in 2010 

(Figure 2.4a and 2.5a).  The decrease in NO3-N concentrations as the season progressed are 

likely attributable to dilution, leaching, and plant uptake (Zhou et al, 2010).   NO3-N 

concentrations were higher in July, than all other months in 2011 (Figure 2.4b and 2.5b).  There 

was a decrease in NO3-N concentration at the end of the growing season in 2011.  There were no 
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overall, annual landscape position effects on the NO3-N concentrations.  There was also no 

observed interaction between the treatment or landscape position or the landscape position and 

the month.  The upper four landscape positions (summit, shoulder, backslope, and toeslope) had 

lower NO3-N concentrations than the floodplain positions in October 2010 (Table 2.3b).  It is 

possible that there were higher rates of mineralization at the floodplain position from higher 

levels of organic matter potentially due to previous land use (mixed grasses in floodplain vs. row 

crop in other landscape positions).  No other differences among the landscape positions were 

observed in any month in 2010.  Similar results were observed in April 2011 as in October 2010, 

where the upper four landscape positions had lower NO3-N concentrations than the floodplain 

positions (Table 2.3b).  The shoulder positions also had lower concentrations than the toeslope 

positions in April 2011.  These were the only differences in NO3-N concentrations among the 

landscape positions in any month in 2011. 

Generally, the systems with corn in the crop rotation and their associated higher nitrogen 

fertilizer inputs showed higher NO3-N concentrations in the root zone (Table 2.3a).  The 

continuous corn cropping systems had higher NO3-N concentrations than the other treatments in 

July 2010 (Figure 2.5).  Similar results were observed in June 2010, but there were not enough 

samples collected for statistical analysis.  There was 150 kg N/ha applied to all continuous corn 

plots on May 7th, 2010, which is likely a major factor for the higher NO3-N concentrations in the 

root zone in June and July, 2010.  In August 2010, the triticale/sorghum systems had higher 

NO3-N concentrations than all other treatments, which are likely associated with the addition of 

100kg N/ha to these plots on July 1st, 2010.  The continuous corn systems had higher 

concentrations than the switchgrass and triticale/trees systems in August, 2010, which is likely 

still a result of the May 7th fertilization.  The corn-soy-triticale/soy systems had higher NO3-N 



19 
 

concentrations than the triticale/trees systems in August 2010.  In September 2010, the 

sorghum/triticale and corn/soy-triticale-soy systems had higher concentrations than the 

switchgrass and triticale/trees systems.  The corn-soy-triticale/soy system had higher NO3-N 

concentrations than all other treatments in October 2010.  While there were differences among 

the treatments during September and October, the concentrations were significantly lower during 

these months than in June, July and August.  During April, 2011, the corn-soy-triticale/soy and 

continuous corn systems had higher concentrations of NO3-N than the switchgrass and 

triticale/trees systems, which may be associated with the prior year fertilizations.  The 

triticale/sorghum system also had higher NO3-N concentrations than the switchgrass and triticale 

systems.  The switchgrass plots did not receive any nitrogen fertilizer in 2010, which could 

explain this difference and low NO3-N concentration for this system.  May 2011 results were 

similar with the continuous corn and corn-soy-triticale/soy systems having higher concentrations 

than the triticale/trees system.  The switchgrass and triticale/sorghum systems had concentrations 

that were less than continuous corn, not different than corn-soy-triticale/soy and greater than 

triticale/trees.  The months of June, July and August 2011 all had the continuous corn and corn-

soy-triticale/soy systems with higher NO3-N concentrations than the other three systems, 

although there were not enough samples collected in August to determine statistical differences.  

The peak concentrations of NO3-N in the corn plots were higher in 2011 (47.3 mg L-1) than in 

2010 (23.7 mg L-1).  This may be attributed to higher levels of fertilizer application in 2011 (168 

kg/ha in 2011, 150kg/ha in 2010), more dilution and leaching from high levels of precipitation in 

2010, more mineralization in 2011, and accumulation of nitrogen from fertilization in the 

systems (Zhou et al., 2010).  There were not enough samples collected in September 2011 to 
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determine differences among the treatments and there were no samples to be collected in October 

2011 due to dry conditions.  

On May 11, 2011 there was 124 kg N/ha applied to the switchgrass plots, though no large 

rise in root zone NO3-N concentrations was observed as in the corn plots following addition of 

nitrogen fertilizer.  This is likely attributed to greater uptake and/or immobilization of 

switchgrass in nitrogen uptake.  Randall et al., (1997) reported 37 X higher NO3-N loss through 

subsurface drainage under corn than perennial crops used in the conservation reserve program.  It 

is also consistent with Zhou et al. (2010) who showed that NO3-N concentrations in the vadose 

zone and shallow groundwater were lower under perennial filter strips than cropland.  The 

double cropping system of triticale/sorghum had only slightly lower total annual N fertilization 

than the corn plots (130kg/ha vs 150 kg/ha in 2010 and 160kg/ha versus 168kg/ha in 2011, 

respectively); however, they consistently showed significantly lower NO3-N concentrations in 

the root zone, with the exception of August 2010, when the two were not significantly different.  

This could be partially attributed to the total application of N fertilizer was split between a spring 

fertilization of the triticale (30kg/ha in 2010 and 33.6kg/ha in 2011) and a larger summer 

application following the planting of sorghum (100kg/ha in 2010 and 112kg/ha in 2011).  Other 

likely contributing factors to the lower NO3-N concentrations in the triticale/sorghum system are 

the longer period of the growing season when N is being taken up by the plants as well as the 

high N uptake efficiency of the sorghum (Lovelli et al., 2008).  Another possible explanation for 

this is the relatively lower precipitation following application of fertilizer in 2011 versus 2010, 

which may not have transported the NO3-N to the 60 cm collection depth.  There was also likely 

some loss to volatilization since the fertilizer was surface applied in granular urea form and there 

was little precipitation following application.  No-till practices may have also hindered the 
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movement of the surface applied fertilizer to the root zone because of higher compaction when 

compared to conventional till systems.  

To put these values in context, the standard for NO3-N concentration in surface waters 

used as a source for drinking water is 10 mg L-1 (USEPA, 1986) and it is recommended that total 

nitrogen concentrations in streams and rivers remain below 3.26 mg L-1 to prevent potential 

damage to aquatic ecosystems in this area (ecoregion VI, sub-ecoregion 47) (USEPA, 2000).  

There was never an observed value over either of these in the triticale/trees system and the corn 

treatments remained consistently above both.  Switchgrass generally remained below both 

USEPA values; with the exception of three months (of 11) it had NO3-N concentrations above 

the recommendations for preventing damage to aquatic ecosystems, but below the drinking water 

source standard.  The triticale/soy treatment generally had NO3-N concentrations near or below 

the aquatic ecosystem recommendation and the triticale/sorghum system generally had NO3-N 

concentrations between the aquatic ecosystem recommendation and the standard for drinking 

water sources. 

2.5 Conclusion 

As agricultural producers in the Midwest potentially consider shifting from grain based 

biofuel feedstocks to second-generation, cellulosic feedstocks it is essential that we assess the 

environmental impacts of these new cropping systems.  We have studied the effect of various 

biomass production systems across landscape positions on NO3-N concentration in the root zone.  

While others have shown impacts from the landscape location of biomass crops, we did not 

observe a definitive landscape effect to this point in this study on NO3-N concentration.  We did 

observe significant differences among the cropping systems, with a likely association between 

nitrogen fertilizer inputs to the systems containing corn and NO3-N concentrations in the root 

zone.  The triticale/sorghum system showed consistently lower NO3-N concentrations in the root 
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zone than the corn systems although they received only slightly lower total N fertilizer.  A rise in 

NO3-N concentration in the root zone was also not observed in the switchgrass plots following a 

significant N input from fertilization.  This may indicate that the triticale/sorghum double 

cropping system and the perennial switchgrass systems are more efficient at N uptake or that the 

NO3-N did not get transported to the root zone.  Quantifying the environmental impacts of 

biomass production will aid in optimizing the future deployment of biofuel feedstocks by 

providing part of the information needed to assess their multifunctional performance.  It would 

be beneficial to expand this study into the future to refine and expand on observed differences 

among the biomass production systems.  This would facilitate a more full understanding of the 

perennial cropping systems which should aid in them demonstrating their full potential. 



23 
 

2.6 References 

Buxton, D.R., I.C. Anderson, and A. Hallam. 1999. Performance of sweet and forage sorghum 
grown continuously, double-cropped with winter rye, or in rotation with soybean and 
maize. Agronomy Journal. 91:93-101. 

Cogdill, T.J. 2008. Investigation of management strategies for the production of sweet sorghum 
as a bioenergy crop and preservation of crop residue by the ensiling process. M.S. Thesis. 
Iowa State University, Ames, Iowa. 

Dale, B.E. 2011. Biofuels and water: another opportunity to ‘do biofuels right’. Biofuels, 
Bioprod.Bioref. 5:347-349. 

Diaz-Chavez, R., Berndes, G., Neary, D., Neto, A. E., Fall, M. 2011. Water quality assessment 
of bioenergy production.  Biofuels, Bioprod. Bioref. 5:445-463. 

Goolsby, D.A., and W. A. Battaglin. 2001. Long-term changes in concentrations and flux of 
nitrogen in the Mississippi River Basin, USA. Hydrological Processes. 15: 1209-1226. 

Graham, R. L.2007.  Forecasting the magnitude of sustainable biofeedstock supplies: the 
challenges and the rewards. Biofuels, Bioprod. Biorefin. 1, 255–263. 

Hallam, A., I.C. Anderson, and D.R. Buxton. 2001. Comparative economic analysis of perennial, 
annual, and intercrops for biomass production. Biomass and Bioenergy. 21:407- 424. 

Hartwig, N.L., and H.U. Ammon. 2002. Cover crops and living mulches. Weed Science. 50:688-
699. 

Heggenstaller, A.H.,R.P. Anex, M. Liebman, D.N. Sundberg, and L.R. Gibson. 2008. 
Productivity and nutrient dynamics in bioenergy double-cropping systems. Agronomy 
Journal. 100:1740-1748. 

Kort, J., M. Collins, and D. Ditsch. 1998. A review of soil erosion potential associated with 
biomass crops. Biomass and Bioenergy. 14:351-359. 

Lal, R. 2006. Soil and environmental implications of using crop residues as biofuel feedstock. 
International Sugar Journal. 108:161-167. 

Love, B. J., Nejadhashemi, P. 2011. Water quality impact assessment of large-scale biofuel crops 
expansion in agricultural regions of Michigan. Biomass and Bioenergy. 35: 2200-2216. 

Lovelli, S., M. Monteleone, G. Posca, M. Perniola. 2008. Nitrogen balance during Sweet 
Sorghum cropping cycle as affected by irrigation and fertilization rate. Italian Journal of 
Agronomy. 4:253-260. 

McKendry, Peter. 2002. Energy production from biomass (part 1): overview of biomass. 
Bioresource Technology. 83: 37-46. 



24 
 

McLaughlin, S.B., and L.A. Kszos. 2005. Development of switchgrass (Panicum virgatum) as a 
bioenergy feedstock in the United States. Biomass and Bioenergy. 28:515-535. 

McLaughlin, S. B., and M.E. Walsh. 1998. Evaluating environmental consequences of producing 
herbaceous crops for bioenergy. Biomass Bioenergy. 14, 317-324. 

Pellegrino, J., M  Antes, B. Zotter, H. Andres, C. Scher. 2007. Water Impacts from Increased 
Biofuels Production: An Analysis of Water Issues Based on Future Feedstock Production 
Scenarios. NREL: Golden, CO. 

Randall, G.W., D.R. Huggins, M.P. Russelle, D.J. Fuchs, W.W. Nelson, and J.L. Anderson. 
1997. Nitrate losses through subsurface tile drainage in conservation reserve program, 
alfalfa, and row crop systems. J. of Environmnetal Quality.26:1240-1247. 

Reinbott, T.M., S.P. Conley, and D.G. Blevins. 2004. No-tillage corn and grain sorghum 
responses to cover crop and nitrogen fertilization. Agronomy Journal. 96:1158-1163. 

Robertson, G.P., V.H. Dale VH, O.C. Doering, et al. 2008. Sustainable biofuels redux. Science. 
322: 49-50. 

SAS. 2003. SAS User’s Guide. Version 9.2. SAS Institute, Inc., Cary, NC. 

Schulte, L.A. 2010. Developing A Portfolio Of Sustainable Regional Feedstock Production 
Systems For The U.S. Midwest. AFRI Project Summary. 

Schulte, L.A., M. Liebman, H. Asbjornsen and T.R. Crow. 2006. Agroecosystem restoration 
through strategic integration of perennials.  Journal of Soil and Water Conservation. 
61:164A-169A. 

Secchi, S., P. W. Gassman, M. Jha, L. Kurkalova, C. L. Kling. 2011. Potential water quality 
changes due to corn expansion in the Upper Mississippi River Basin. Ecological 
Applications, 21(4), pp.1086-1084. 

Sokhansanj, S., S. Mani, A. Turhollow, A. Kumar, D. Bransby, L. Lynd, M. Laser. 2009. Large-
scale production, harvest and logistics of switchgrass (Panicum virgatum L.) – current 
technology and envisioning a mature technology. Biofuels, Bioprod. Biorefin. 3: 124–
141. 

Tilman, D., R. Socolow, J. Foley, J. Hill, E. Larson, L. Lynd, S. Pacala, J. Reilly, T. Searchinger, 
C. Somerville, and R. Williams. 2009. Beneficial biofuels – the food, energy, and 
environment trilemma. Science. 325:270–271. 

Turner, R. E., and Rabalais. 2003. Linking landscape and water quality in the Mississippi River 
Basin for 200 years.  BioScience. 53:563-572. 

United States Environmental Protection Agency. 1986. Quality criterion for water. EPA 440/5-
86-001 p. 189. 



25 
 

United States Environmental Protection Agency. 2000. Ambient water quality criteria 
recommendations. EPA 822-B-00-017 p. vi. 

Wilhelm, W.W., J. M. F. Johnson, J. L. Hatfield, W. B. Voorhees, and D. R. Linden. 2004. Crop 
and soil productivity response to corn residue removal: a literature review.  Agronomy 
Journal. 96:1–17. 

Williams, P. R. D., D, Inman, A.Aden, and G.A. Heath. 2009. Environmental and sustainability 
factors associated with next-generation biofuels in the U.S.: What do we really know? 
Environmental Science and Technology.  43:4763-4775. 

Zhou, X., M. J. Helmers, H. Asbjornsen, R. Kolka, and M. D. Tomer. 2010. Perennial filter strips 
reduce nitrate levels in soil and shallow groundwater after grassland-to-cropland 
conversion. Journal of Environmental Quality. 39:2006-2015. 

 

 

 

 

 

 

 

 

 

 

 

 



26 
 

 

Table 2.1. Effect of treatment, landscape position, and month on NO3-N concentration. 

 

Treatment Landscape position Month Treatment X Landscape position Treatment X month Landscape position X month

p<0.0001 p=0.0982 p<0.0001 p=0.3465 p<0.0001 p=0.8778

5<2=4<1, 3<1
JUN=JUL<OCT=SEPT, 

JUN<AUG<OCT=SEPT

p<0.0001 p=0.0528 p<0.0001 p=0.2227 p<0.0001 p=0.5096

5=3<2=1, 5<4<2=1 JUN=APR=MAY=AUG<JUL

Treatment: 1-cont. corn, 2-corn-soy-triticale/soy, 3-switchgrass, 4-triticale/sorghum, 5-triticale/trees

2010

2011
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Table 2.2. Monthly effects of treatment and landscape position on NO3-N concentration. 

 

Month Treatment Landscape position Treatment X Landscape position

June not enough data to compare

July p<0.0001 p=0.6050 p=0.6491

5=4=2=3<1

August p<0.0001 p=0.1568 p=0.6661

5<1<4, 3=2<4, 3<1

September p=0.0094 p=0.3788 p=0.2966

3=5<2=4

October p<0.0001 p<0.0001 p<0.0001

4=3=5=1<2 1=3=2=4<5

April p<0.0001 p<0.0001 p=0.1110

5=3<4<2, 5=3<1 2<1=3=4<5

May p=0.0232 p=0.2873 p=0.8556

5=3<1,5<2, 4<1 

June p=0.0176 p=0.9636 p=0.9721

5=4=3<1=2

July p<0.0001 p=0.3871 p=0.3196

5=3=4<2=1

August not enough data to compare

September not enough data to compare

2010

2011

Treatment: 1-cont. corn, 2-corn-soy-triticale/soy, 3-switchgrass, 4-triticale/sorghum, 5-

triticale/trees

Landscape positon: 1-summit, 2-shoulder, 3-backslope, 4-toeslope, 5-floodplain
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Table 2.3. Comparison of NO3-N by (a) treatment and (b) landscape position. 

 

(a)

continuous corn 21.9 23.7 b 6.2 c 2.3 ab 1.0 a

corn-soy-trit/soy ## 1.5 a 3.7 bc 3.2 b 4.1 b

switchgrass 7.6 2.6 a 0.5 ab 0.1 a 0.4 a

sorghum/trit ## 1.1 a 10.8 d 3.3 b 0.3 a

trees 1.9 0.0 a 0.0 a 0.2 a 0.4 a

continuous corn 9.6 cd 17.7 c 8.6 b 47.3 b ## ##

corn-soy-trit/soy 11.6 d 12.4 bc 13.5 b 34.2 b ## ##

switchgrass 3.2 a 6.1 ab 3.1 a 6.4 a 1.4 0.7

sorghum/trit 7.6 bc 7.4 ab 2.5 a 6.5 a 6.3 4.0

trees 2.1 a 1.4 a 0.1 a 0.3 a 0.4 0.5

(b)

Summit ## 4.4 a 2.6 a 0.6 a 0.6 a

Shoulder 6.8 5.2 a 3.0 a 1.7 a 0.7 a

Backslope 5.6 6.4 a 2.7 a 2.5 a 0.6 a

Toeslope 9.3 6.9 a 6.4 a 1.6 a 0.9 a

Floodplain ## 5.9 a 6.7 a 2.8 a 3.5 b

Summit 4.7 ab 6.1 a 3.7 a 21.6 a ## ##

Shoulder 4.5 a 11.0 a 6.5 a 24.2 a ## ##

Backslope 4.9 ab 4.5 a 6.0 a 10.9 a 3.9 ##

Toeslope 7.7 b 15.6 a 6.3 a 20.7 a ## 0.5

Floodplain 12.3 c 8.0 a 5.2 a 17.4 a ## 2.6

LS Means estimate of NO3-N concentration (mg/L), Different letters in same month and year 

indicate difference at p<0.05, # no samples collected, ## not enough data for statistical analysis

Comparison of NO3-N concentrations by treatment

April May

####

##

#

Comparison of NO3-N concentrations by landscape position

#

June July August September October

2011

##

## ###

# #

April May June July August September October

#

2010

2011

2010



 

 

Figure 2.1. Iowa State University Uthe research farm (Schulte, 2010)
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Iowa State University Uthe research farm (Schulte, 2010) 

 



 

Figure 2.2. Landscape positions (a) and Soils (b) at the ISU Uthe research farm (Schulte, 2010)
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Landscape positions (a) and Soils (b) at the ISU Uthe research farm (Schulte, 2010)Landscape positions (a) and Soils (b) at the ISU Uthe research farm (Schulte, 2010) 



 

Figure 2.3. Comparison of precipitation from April 1
year average.  Vertical lines indicate sampling dates.
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. Comparison of precipitation from April 1st to October 31st in 2010, 2011 and the 20 
Vertical lines indicate sampling dates. 

 

in 2010, 2011 and the 20 



 

Figure 2.4. NO3-N concentrations by landscape position in (a) 2010 and (b) 2011.
indicate standard deviation of the samp
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N concentrations by landscape position in (a) 2010 and (b) 2011.
indicate standard deviation of the sample NO3-N concentrations. 

 

 

N concentrations by landscape position in (a) 2010 and (b) 2011. Error bars 



 

Figure 2.5. NO3-N concentration by treatment in (a) 2010 and (b) 2011.
standard deviation of the sample NO
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N concentration by treatment in (a) 2010 and (b) 2011. Error bars indicate 
standard deviation of the sample NO3-N concentrations. 

Error bars indicate 
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CHAPTER 3: SOIL MOISTURE DYNAMICS OF VARIOUS BIOMASS CROPPING 

SYSTEMS AND LANDSCAPE POSITIONS 

3.1 Abstract 

Evaluating the soil moisture dynamics of biomass production systems is essential to 

assessing their water use and associated environmental impacts.  The objective of this study is to 

determine potential soil moisture impacts of various production systems across different 

landscape positions.  Five production systems are being evaluated: (1) continuous corn, (2) corn-

soy-triticale/soy, (3) switchgrass, (4) triticale/sorghum, and (5) triticale/trees, at five landscape 

locations: (1) summit, (2) shoulder, (3) backslope, (4) toeslope, and (5) floodplain.  Each 

production system is randomly assigned within three replicates (blocks) at each landscape 

location.  Volumetric soil moisture measurements were taken monthly at 20 cm intervals during 

the 2010 and 2011 growing seasons from two access tubes to a depth of 120 cm.   The 

triticale/trees system had lower moisture and soil water storage in the upper 60 cm of the soil 

profile than the other systems in April, May, and October 2011, which may indicate increased 

evapotranspirative demand.  The relatively larger amount of stubble and residue in the 

switchgrass plots may account for the higher moisture levels at the surface in April, May and 

September 2011.  Quantifying the soil moisture dynamics of biomass production systems will aid 

in optimizing deployment as producers gear up to meet biomass production demand. 
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3.2 Introduction 

The Energy Independence and Security Act (EISA) of 2007 mandates that 136 billion 

liters of renewable fuels be produced in the United States annually by the year 2022 with 79 

billion liters of this being advanced biofuel, mostly cellulosic.  The mandate also caps the 

production of grain based ethanol at 57 billion liters. As producers in the Midwest prepare to 

shift from conventional, first-generation, grain-based biofuel feedstocks to advanced, second-

generation, cellulosic feedstocks, it is necessary to consider the ecological impacts of these new 

cropping systems.  It is estimated that in the US, 80% of total water consumed is for agricultural 

irrigation (Solley et al., 1998).  It is anticipated that overall, the production of dedicated energy 

crops will have lower demand for water (Pellegrino et al., 2007; Sokhansanj et al., 2009; 

Williams et al., 2009).  Globally, the conversion from current agricultural use to bioenergy 

production will reduce agricultural water demand by 54-82% (Berndes, 2002).  While there are 

likely water use benefits to be achieved by the conversion of row crop agriculture to perennial 

biofuel feedstock systems, it is unlikely that these benefits will be the same everywhere on the 

landscape across all potential biomass cropping systems (Schulte et al., 2006).  It is also possible, 

as Robertson et al. (2008) state, that the benefits of cellulosic crops could be negated by choosing 

poor locations to grow them.  Crops grown on poor quality land may require relatively large 

inputs of water to make them economically viable, which would reduce the environmental 

benefit. 

Corn stover in the form of residue from corn grain harvest represents a potentially large 

volume of biomass in the current agriculture environment in the Midwest. Under current farming 

practices the stover is generally returned to the soil which aids in protecting the soil from erosion 

and maintaining soil organic carbon.  Large scale removal of corn stover for biofuel production 
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will likely have negative environmental impacts such as increased erosion, reduction of soil 

quality, and more fertilizer input requirements (Wilhelm et al., 2004; Lal, 2006).    

A potential solution to this is incorporating a winter cover crop or double crop into the 

system to protect the soil from erosion, increase water infiltration, and evapotranspiration which 

could contribute to reduced dissolved nutrient loss, runoff and erosion (Hartwig and Ammon 

2002; Heggenstaller et al., 2008).  Potential examples include incorporating a small grain (e.g., 

winter rye [Secale cereals L.], winter wheat [Triticum aestivum L.], or forage triticale 

[×Triticosecale rimpaui Wittm.]) into a continuous corn or corn-soybean rotation to form a 

corn/small grain or a corn-soybean-small grain/soybean production system.  While these systems 

show benefits when compared to current systems, there is still concern about the further 

expansion of corn as a biofuel feedstock because of potential effects of increasing demand on the 

current food and feed system (Tilman et al., 2009).   

Hallam et al. (2001) and Codgill (2008) demonstrated the potential of Sorghum as a 

biomass crop with high yields and composition that allows for efficient conversion to biofuel.  It 

also has greater water use efficiency (Stone et al., 2010).  A negative aspect of growing Sorghum 

is that it is not well suited to sloping areas due to its high rates of soil erosion on these types of 

sites (Buxton et al., 1999; Hallam et al., 2001).  A winter cover crop incorporated with Sorghum 

may reduce the erosion and make it more viable by reducing its negative environmental impacts 

(Reinbott et al., 2004).    

Perennial plants have also been proposed and studied as energy crops.  Miscanthus  and 

Switchgrass (Pancium virgatum) are two of the herbaceous species that have received much 

attention as a potential biofuel feedstock (McKendry, 2002).  Conversion of row crop to 

perennial species has been predicted to reduce peak storm run-off (Gerla, 2007).  Woody species 
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have also received attention as a biofuel feedstock in the form of waste from the timber industry 

as well as dedicated biomass crops (Mann and Tolbert, 2000). 

The growth of Switchgrass when compared to conventional row crops has been shown to 

have environmental benefits such as reduced erosion, reduced dissolved nutrient loss, and 

improved soil quality (Diaz-Chavez et al., 2011, Robertson et al., 2008, Love and Nejadhashemi, 

2011). Much of this positive impact is attributed to its reduced fertilizer input requirements and 

perennial root system (McLaughlin and Kszos, 2005 and Diaz-Chavez et al., 2011).   

Woody biomass production systems have been shown to have substantial environmental 

benefits such as reduced erosion and nutrient loss as well as increased habitat to increase species 

diversity (Kort et al., 1998; Schultz et al., 2004).  Kort et al. (1998) also noted that one potential 

negative impact is when woody biomass crops mature they shade out the ground below them.  

This results in severe reduction of vegetative undergrowth which could result in more erosion if 

the soil left is exposed after harvest of the trees.  Another potential drawback of woody biomass 

crops is that they often lower the water table from their increased evapotranspirative demand.  

Kort et al. (1998) noted a study from Australia where a pine plantation reduced the water table 

level enough to change a naturally perennial stream to an ephemeral stream.  While, this will 

surely reduce water erosion, it is not necessarily beneficial to aquatic habitats and the species that 

rely on them.  It was also noted that the reduction in soil moisture from the increased water 

demand from the trees can leave a soil more susceptible to wind erosion.  The major detriment of 

growing woody species as a biomass crop lies in the fact that there is significant lag time (up to 

10 years) between planting and harvest of a new crop.  A potential way to mitigate this is to 

intercrop the trees with a faster growing species during the establishment of the slower growing 

trees.  This has the potential to increase economic viability by producing biomass during the 
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early, less productive years and may serve to control weed pressure on the woody crops and 

stabilize the soil (Schulte, 2010). 

As Midwest producers gear up to meet the biomass production requirements of the EISA 

of 2007 there is an opportunity to design and implement biomass production systems that will 

produce significant economic, environmental, and social benefits (Dale, 2011). It is unlikely that 

any one of the systems outlined above will be best suited to produce superior biomass and yields 

and environmental benefits at all landscape locations at all times.  After reviewing relevant 

literature it is clear that there is a need to evaluate the soil moisture dynamics of biomass 

cropping systems while also considering their position on the landscape.  This research will aid 

in the design of biomass production systems that perform at high levels when evaluated 

according to multifunctional criteria (Schulte, 2010).  

3.3 Materials and Methods 

3.3.1 Research Site 

A randomized, replicated experiment has been established to compare the five biomass 

systems across five landscape positions; (1) summit, (2) shoulder, (3) backslope, (4) toeslope and 

(5) floodplain (Figure 3.1).  There is a 20 m elevation difference from the summit to the 

floodplain position and ranges from 325 m to 305 m above sea level.  Each biomass production 

system is randomly assigned within each of three replicates at each landscape position for a total 

of 75 plots.  All plots in the upper four landscape positions have slope lengths of 24.4 m (80 ft) 

and widths of18.3 m (60 ft) and those in the floodplain have slope lengths of 18.3m (60 ft) and 

widths of 24.4 m (80 ft).  Each plot has an area of 0.5 ha (0.11 ac) and there is a 6m buffer 

between plots to accommodate equipment and isolate plots.  The buffer around the tree plots is at 
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least 18.3 m (60 ft) to accommodate the larger above and below ground influence of the trees.  

Areas between the plots have been planted in tall fescue which establishes quickly, stabilizes the 

soil and is tolerant of equipment traffic.  Treatments were established at the site from the fall of 

2008 to the spring of 2009.  Prior to this the upland portions of the research site were managed 

under a corn – soybean rotation and the riparian areas consisted of mixed grasses.  Each plot has 

been instrumented with two access tubes to a depth of 1.2 m.   

It is also known that there is some amount of artificial, subsurface drainage, but it has not 

been determined to what extent this drainage influences the research site.  There were six tile 

outlets identified draining into the creek below the floodplain position indicating artificial 

subsurface drainage in the poorly drained soils of the floodplain position. However, the type or 

extent of this subsurface drainage across the research site is not known.   

3.3.2 Biomass cropping systems  

The five biomass cropping systems being evaluated are (1) continuous corn (Zea mays), 

(2) corn-soybean-triticale/soybean (Zea mays-Glycine max-Glycine max/×Triticosecale) (3) 

corn-switchgrass (Zea mays-Pancium virgatum), (4) triticale/sorghum (×Triticosecale/Sorghum 

bicolor), and (5) triticale/trees (×Triticosecale / Populus alba X P. grandidentata).  Specific 

biomass systems were selected based on their compatibility with existing agricultural systems 

and their potential to provide either superior biomass yields (triticale/sorghum), some biomass 

yield while mitigating some negative environmental impacts (corn-soybean-triticale/soybean, 

corn-switchgrass), or some short-term biomass yield and superior long-term yield while strongly 

mitigating negative environmental impacts (triticale/trees), compared to conventional corn 

production systems.  All cropping systems are managed using no till practices.  The continuous 
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corn system serves as a baseline with which to compare the alternative biomass cropping 

systems.  Corn-switchgrass is an intercropping system in which corn provided weed control and 

a harvestable crop of grain and stover in the first year (2009) as the switchgrass biomass crop 

was established.  Corn-soybean-triticale/soybean supplements the conventional corn-soybean 

rotation with a winter triticale biomass crop. Triticale is planted the September following the first 

soybean harvest, serves as a winter cover crop reducing exposure of soil to water and wind 

erosion, and is then harvested as a biomass crop in the early summer; it is followed immediately 

by soybean which is then harvested for grain in the fall.  Triticale/sorghum is a double-cropping 

system in which winter triticale is planted in the fall and then harvested the following June.  

After triticale harvest, sorghum is planted into its stubble and harvested in September.  

Triticale/trees is an intercropping system in which winter triticale was planted in October before 

the trees are planted in May.  Triticale is then harvested from between the tree rows as a biomass 

crop in early July, providing biomass productivity and a harvestable crop while the high-yield 

aspen trees (Crandon clone) are establishing.  Triticale is then replanted between rows in the fall 

(Schulte, 2010). 

3.3.3 Landscape positions 

Five landscape positions (summit, shoulder, backslope, toeslope, and floodplain) are 

being evaluated for this study (Figure 3.2a).  The summit position consists of four soil types.  

Replicate one has three plots on Zenor sandy loam and two plots on Clarion loam.  All plots in 

replicate two are in Nicollet loan and all plots in replicate three are in Clarion loam.  The 

shoulder position is dominated by Clarion loam however; half of the first replicate is in Zenor 

sandy loam.  All of the backslope landscape position is planted in Clarion loam.  The toeslope 

position has replicate one in Spillville loam and replicates two and three in Clarion loam.  All of 
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the floodplain position is in Coland clay loam (Figure 3.2b).  The field capacity of each 

landscape position (Table 3.1) and soil series (Table 3.2) was determined using the United States 

Department of Agriculture Web Soil Survey (www.websoilsurvey.nrcs.usda.gov).  When there 

were different soils in a landscape position, the weighted mean was determined and used for the 

entire landscape position.     

As described by the National Cooperative Soil Survey of the United States, the Clarion 

series consists of very deep, moderately well drained soils on uplands. These soils were formed 

in glacial till and have slopes that range from 1 to 9 percent.  The Coland series consists of very 

deep poorly drained soils formed in alluvium. These soils are on floodplains and alluvial fans in 

river valleys and upland drainage ways in dissected till plains. Slope ranges from 0 to 5 percent. 

The Nicollet series consists of very deep, somewhat poorly drained soils that formed in 

calcareous loamy glacial till on till plains and moraines. Slopes range from 0 to 5 percent.  The 

Spillville series consists of very deep, moderately well drained or somewhat poorly drained soils 

formed in dark colored, medium-textured alluvium. Spillville soils are on nearly level flood 

plains and gently sloping footslopes on uplands. Slope ranges from 0 to 5 percent.  The Zenor 

series consists of very deep, somewhat excessively drained, moderately rapidly permeable soils 

formed in glacial outwash on uplands and, less commonly, on stream benches. Slope ranges from 

2 to 30 percent.   

3.3.4 Data Collection 

Two soil moisture access tubes were installed per research plot for a total of 150 access 

tubes. The access tubes are 52 mm inside diameter schedule 40 PVC and 120 cm in length with a 

3.7 mm wall thickness.  The access tubes were installed by taking a soil core down to 120 cm 

soil depth with a 5.7 cm (2-1/4 inch) soil tube (Giddings Machine Company, part # ST-144) 
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fitted with a quick relief bit (part # ST-230).  The access tube hole was then sized to fit the PVC 

pipe with the end plugged with a # 11 EPDM rubber stopper using a 5.7 cm (2-1/2 inch) by 122 

cm (48 inch) soil tube (Giddings Machine Company, part # ST-146) fitted with a reverse taper 

bit (part # ST-211).  Soil coring and access tube installation was accomplished with a tractor 

mounted hydraulic soil corer (Giddings Machine Company, Fort Collins, CO; model number 

HDGSRTS) mounted to a John Deere tractor (Deere and Company, Moline IL, Model 4110 

compact utility tractor).  Access tubes were capped with a 5 cm (2 inch) PVC end cap, and 

covered with a 10 cm (4 inch) PVC sewer clean out fitting to prevent damage from equipment 

used to plant and harvest crops within plots (Ontl, unpublished).   

Precipitation was monitored at the Iowa State University South Reynoldson Farm (1.5 

km SE of research site).  Precipitation data was collected from April 1st to October 31st of each 

year.  Soil moisture was monitored monthly at 20 cm intervals (0-20 cm, 20-40 cm, 40-60 cm, 

60-80 cm, 80-100 cm, 100-120 cm) to a depth of 1.2 m using an impedance probe and time 

domain reflectometry (TDR).  Potential evapotranspiration (PET) information was from the Iowa 

Environmental Mesonet (www.mesonet.agron.iastate.edu) Ames, IA monitoring site.  Soil 

moisture was monitored using a ML2 ThetaProbe Soil Moisture Sensor with the HH2 Handheld 

Moisture Meter (Delta-T Devices, Cambridge UK, marketed in the United States by Dynamax, 

Inc., Houston, TX) for measuring volumetric water content in the upper 6 cm and an Imko 

TRIME-FM instrument with a TRIME-T3 tube access probe (MESA Syst. Co., Medfield, MA) 

to measure volumetric water content from 20-120 cm.  Three readings were taken at the 0-6 cm 

depth and two readings at all other depths at each soil moisture access tube for a total of 1950 

readings per month.  Individual volumetric water content measurements were converted to a 

maximum value of 46%, which is the mean measured porosity for the research site (Ontl, 
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unpublished data).  This would represent a completely saturated situation and values over 46% 

were generally only observed during wet conditions.  Since there were no readings in the 6-20 

cm profile, the values from the 0-6 cm profile were used to represent the 0-20 cm portion of the 

soil profile.  The mean of the observed values at each depth in each plot were analyzed to 

determine differences among the treatments and landscape positions during each year as well as 

each month.  Evaluating the soil moisture at each individual depth gives an integrated measure of 

the soil water storage.  The mean volumetric water content of each depth was used to calculate 

(volumetric water content X length of soil profile) a soil water storage value for that 20 cm 

portion of the soil profile.  These values were then summed to calculate the soil water storage in 

the 0-60 cm and 0-120 cm portions of the soil profile.  Soil water storage represents the quantity 

(cm) of water in a given depth of the soil profile.  This is useful because when subtracted from 

the field capacity, it will give us the available storage.  More available storage allows for a larger 

quantity of water to infiltrate prior to water running off the surface.  During precipitation events, 

increased available storage has the potential to reduce runoff and associated negative impacts 

e.g., erosion, nutrient and pesticide transport, and flooding.  However, the available storage does 

not affect runoff caused by precipitation rates that exceed the infiltration rate.  Soil moisture 

measurements were taken on the 3rd, 4th, 7th and 9th of June, the 13th and 14th of July, the 28th and 

29th of August and the 25th and 26th of September in 2010 and on the 5th and 7th of April, 10-11th 

of May, 7-8th of June, 7-8th of July, 8-9th of August, 8-9th of September, and the 13th and 14th of 

October in 2011.  With the exception of June 2010, which took four days, it took two days to 

collect the data from all access tubes each month.   
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3.3.5 Statistical analysis 

Data was analyzed with the SAS statistical Software Package (SAS Institute, 2001) using 

the MIXED procedure to perform the analysis of variance.  Differences in soil water storage 

among experimental treatments (continuous corn, corn-soy-triticale/soy, switchgrass, and 

triticale/trees), landscape position (summit, shoulder, backslope, toeslope, and floodplain) and 

month were tested. Interactions among the variables were also tested.   Statistical significance 

was evaluated at P≤0.05.  Means were separated using a least significant difference when effects 

were significant.  Data for the 0-60 cm and 0-120 cm soil profiles were analyzed separately.  

Each depth of the volumetric soil moisture was also analyzed separately.  Data analysis was 

conducted on each year as well as each month to determine seasonal effects. 

3.4 Results and discussion 

Precipitation between the two years was similar and consistent with the 20 year average 

from mid-April until early June.  After early June, 2010 had much more precipitation than 2011 

(Figure 3.3).  Overall in 2011, precipitation remained very close to the 20 year average during 

the study period while 2010 had about double the 20 year average precipitation from early June 

to the end of October. 

Soil moisture 

 There were more differences in soil moisture at individual depths among both the 

cropping systems and the landscape positions in the shallower depths than the deeper depths 

(Tables 3.3-3.8).  This is likely contributed to more rapid soil moisture changes from greater 

evapotranspitation (ET) influence at shallower depths.  Generally the shallow depths were drier 

than the deeper depths.  In 2010, the only treatment effect observed was in June at the 20-40 cm 

depth (Table 3.4).  This should be interpreted with caution because the June 2010 data was 
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collected on 4 separate days over a 7 day period that saw 4 rain events totaling 53 mm (Table 

3.9).  Soil moisture data was collected starting at the summit and working down the landscape 

finishing at the floodplain.  Generally, the upper three landscape positions (summit, shoulder, 

and backslope) were collected on the first day and the lower two landscape positions (toeslope 

and floodplain) were collected on the second day.  This temporal difference should be considered 

when interpreting the landscape position results because it allows for the possibility of drying 

from evaporation or wetting from precipitation during or between sampling days.  There were 

significant differences in the landscape positions at the 0-20 cm (Table 3.3), 20-40 cm (Table 

2.4), 40-60 cm (Table 3.5), and 60-80 cm (Table 3.6) depths in June 2010 but, the same caution 

should be exercised here as discussed above for the treatment effect in June 2010.  The 

floodplain position had higher soil moisture (Table 3.3) at the 0-20 cm depth in July 2010 which 

could be a result of the 18 mm of rain between the two days of collection, although this does not 

explain why the toeslope was the driest position.  Precipitation during data collection (18 mm on 

day 1 and 0.3 mm on day 2) may account for the 0-20 cm depth (Table 3.3) being wetter in the 

floodplain in September 2010. 

 In 2011, there were more differences in soil moisture among the cropping systems than in 

2010.  This is likely associated with many variables such as differences in precipitation (Figure 

3.3); cropping system two was planted in corn in 2011 versus triticale/soy in 2010, and the 

perennial systems were more mature.  The 0-20 cm depth was wetter in the switchgrass plots in 

April, May and September 2011 which may be attributed to the relatively larger amount of 

stubble and residue (Table 3.3).  The triticale/trees system was drier at the 0-20 cm depth (Table 

3.3) in May, September, and October 2011 and the 0-40 cm depth (Table 3.4) in April and 

October 2011.  This may suggest that the trees have matured enough to have higher ET than the 
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other systems.  In 2011 the 0-20 cm and 20-40 cm depths were generally wetter as you moved 

from higher to lower on the landscape.  October 2011 was the exception to this and may be 

partially but, not completely explained from precipitation just prior to data collection.  Data was 

collected on two days (October 13th -14th) this month with these two positions being collected on 

the 14th and the upper three positions collected on the 13th.  October 11th, 12th, and 13th received 

1.27 mm, 0.25 mm, and 11.17 mm of precipitation respectively (Table 3.11).  It stopped raining 

in the early morning prior to the first day of data collection and the site was muddy.  The two 

days of collection had high temperatures of 17.2oC and 19.4oC respectively and average wind 

speeds of 26.4 kph (gusts to 64.4 kph) and 13.8 kph (gusts to 38.6 kph) respectively.  It is 

possible that evaporation between the two sampling days contributed to the lower values in the 

toeslope and floodplain positions but, this does not explain all of the water loss.  The potential 

evapotranspiration (PET) between the rain event prior to collecting soil moisture data and the last 

day of sampling was 1.1 cm and the differences in soil water storage ranged from 3.2 to 5.3 cm 

between the upper three positions and the lower two (Table 3.11).  It is also important to note 

that PET represents the maximum possible ET, and actual ET was almost certainly less than 

PET.  Further research is warranted to investigate this.  

Soil water storage 

Soil water storage in 2010 in the 0-60 cm profile for the landscape positions (Figure 3.4) 

and the cropping systems (Figure 3.5), as well as the 0-120 cm profile for the landscape positions 

(Figure 3.6) and cropping systems (Figure 3.7) had a general increase as the season progressed, 

which is consistent with the unusually large amount of precipitation.  There was a significant 

difference in soil water storage among the months during 2010 (Table 3.9).  In the 0-60 cm 

profile, June was the driest followed by July then August and September (which were not 
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different from each other).  The 0-120 cm profile had the same patterns with the exception that 

September was significantly wetter than August.  In 2010, there was an overall landscape 

position effect on soil water storage observed in the 0-60 cm profile with the summit being the 

driest and the floodplain being the wettest.  The shoulder, backslope and toeslope were all 

significantly wetter than the summit and drier than the floodplain (Table 3.9).  The majority of 

this annual difference is during the month of June (Table 3.10).  As discussed in the soil moisture 

section, this should be interpreted with caution because the June 2010 data was collected on 4 

separate days over a 7 day period that saw 4 rain events totaling 53 mm (Table 3.11).  It is very 

likely that these precipitation events influenced the observed soil moisture (and therefore soil 

water storage). The same effect was not statistically significant in the 0-120 cm profile.  While, 

the floodplain position appears to have less water stored in the 0-60 and the 0-120 cm profile 

during August 2010, this is almost certainly from missing all soil water storage values for the 0-

20 cm profile for the floodplain (and about ½ from the shoulder and toeslope).  Since there are 

three soil water storage values summed (0-20 cm, 20-40 cm, 40-60cm) to calculate the 0-60 cm 

soil water storage, missing one of the three for an entire landscape position is very likely causing 

this apparent effect.  Using the mean of the data that was on hand was considered, but this would 

not work in the floodplain in August 2010 because there are no observations.  It would also not 

be appropriate for other positions because there were significant differences among the replicates 

(blocks) observed within landscape positions. The soil water storage value from 0-120 cm in 

August 2010 was lower in the floodplain (Table 3.12) than the other positions but, as discussed 

previously, this is almost certainly due to the lack of the 0-20 cm data in this landscape position.  

The summit in September was also missing some of the data which may account for the lower 

soil water storage.  There was no overall treatment effect observed in the 0-60 cm or the 0-120 
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cm profile during 2010 (Table 3.9).  These lack of differences may be partially due to the young 

age of the perennial systems (switchgrass and trees were planted in 2009) in the study site.  The 

root systems of the perennial plants may not be well enough developed to show a difference in 

water uptake compared to the annual systems.  This is consistent with Thornton et al. (1998) for 

the tree plots, where they found no difference in erosion, which is likely in part due to water use, 

in the establishment phase.  It is also consistent with what Mann and Tolbert (2000) found for the 

switchgrass plots, where they did not detect a difference in runoff between switchgrass and no-

till corn until the 2nd year after establishment. There was no interaction observed between the 

treatment and the landscape position in 2010 (Table 3.13).   

Soil water storage in 2011 in the 0-60 cm profile for the landscape positions (Figure 3.8) 

and the cropping systems (Figure 3.9), as well as the 0-120 cm profile for the landscape positions 

(Figure 3.10) and cropping systems (Figure 3.11) showed a general decrease at the end of the 

season which is consistent with relatively dry conditions in the late part of 2011. There was an 

overall landscape effect on soil water storage in the 0-60 cm profile in 2011 with the backslope 

being significantly wetter than the toeslope and floodplain (which were not different from each 

other).  The summit and shoulder positions had soil water storage values between these but, not 

significantly different than any (Table 3.9).  There are differences in how well drained the soils 

are among the landscape positions, but this does not explain why the backslope position is 

wetter.  By the drainage classes from USDA Web Soil Survey 

(www.websoilsurvey.nrcs.usda.gov) it appears that the shoulder and backslope positions would, 

on average, be the most well drained positions (Table 3.2).  It is likely that the small spatial 

differences among the landscape positions are not well represented in the web soil survey.  The 

soils data was mapped at a scale of 1:15,840 which would not likely allow for sub-plot, or even 
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plot to plot differentiation between soil properties.  It should also be noted that the differences 

between soils are most likely not defined by abrupt lines, but a gradual change that may occur 

over several plots, replicates, or even landscape positions.  A detailed soils analysis is being 

conducted and will be useful for plot to plot evaluation.  April and May 2011 had lower soil 

water storage in the 0-120 cm profile in the summit and shoulder positions than in the toeslope 

and floodplain positions (Table 3.14).  These are the only landscape effects that are not explained 

by lack of data (July) or precipitation (October) in the 0-120 cm profile in 2011 (Table 3.12b).  

The toeslope and floodplain positions were drier than the other positions at all depths down to 

100 cm and had lower soil water storage values in both the 0-60 cm and 0-120 cm profiles in 

October 2011.   

The triticale/trees cropping system had lower soil water storage in the 0-60 cm profile in 

April, May and October of 2011 which may indicate increased ET demand.  The trees may have 

matured enough to be showing higher ET compared to the other systems during these months.  

Another contributing factor could be increased interception of rainfall from the trees and leaf 

litter on the ground.  Similar results were observed by Mitchell (1997) and Mann and Tolbert 

(2000) who saw decreased erosion after the first year of growing biomass crops, although they 

attributed much of the reduced erosion to increased raindrop interception from branches and leaf 

litter, increased infiltration likely contributed as well.  The triticale may also be contributing to 

the increased water use during these months but, if so it would be expected to see similar results 

in the other systems with triticale if it was the major factor in increased water use.  The soil 

moisture measurements were taken from within the tree rows, so the trees would likely have 

more influence than the triticale.  The switchgrass plots had higher moisture levels in the 0-20 

cm profile in April, May and September, 2011.  While the biomass is removed from all plots, it 
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is likely that there was more residue and stubble in these plots than others, which could have 

lessened the effects of evaporation and contributed to the higher moisture levels at the surface. 

3.5 Conclusion 

As producers in the Midwest prepare to potentially shift from first-generation, grain 

based biofuel feedstocks to second-generation, cellulosic feedstocks, it is essential to assessing 

biomass production systems’ water use and associated environmental impacts.  This study 

analyzed soil moisture impacts of various production systems across different landscape 

positions.  Five production systems were evaluated: (1) continuous corn, (2) corn-soy/triticale-

soy, (3) switchgrass, (4) triticale/sorghum, and (5) triticale/trees, at five landscape locations: (1) 

summit, (2) shoulder, (3) backslope, (4) toeslope, and (5) floodplain.  The triticale/trees system 

had lower soil moisture and soil water storage in the upper 60 cm of the soil profile than the 

other systems in April, May, and October 2011, which may indicate increased evapotranspirative 

demand.  The relatively larger amount of stubble and residue in the switchgrass plots may 

account for the higher moisture levels at the surface in April, May and September 2011.  There is 

a clear requirement to continue monitoring the soil water dynamics because this study potentially 

shows differences emerging among the biomass cropping systems that will likely become more 

apparent as the perennial systems continue to mature.  Quantifying the soil moisture dynamics of 

biomass production systems will aid in optimizing deployment as producers gear up to meet 

biomass production demand by providing part of the information needed to assess their 

multifunctional performance.  It will also aid in the development of hydrologic regulation and 

potential incentives for biomass production systems as we gain a clearer understanding of the 

benefits and drawbacks of each system. 
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Table 3.1. Soil water storage and drainage information for landscape locations 

 

 

Table 3.2. Soil water content and drainage information 

 

Water content 

at field 

capacity (1/3 

bar)(%)

Soil water storage 

@ field capacity (0-

120cm)

Soil water storage 

@ field capacity (0-

60cm) Drainage class Notes

Summit 27.8 33.4 16.7

Zenor- somewhat 

excessively drained, 

Nicollet- somehhat 

poorly drained, 

Clarion- well drained

Rep 1 , 3/5 Zenor sandy 

loam, 2/5 Clarion loam; Rep 

2 Nicollet loam; Rep 3 

Clarion loam

Shoulder 27.8 33.4 16.7

Zenor- somewhat 

excessively drained, 

Clarion- well drained

Rep 1, 1/2 Zenor sandy 

loam, 1/2 Clarion loam, 

Reps 2&# Clarion loam

Backslope 27.5 33.0 16.5 Well drained Clarion Loam

Toeslope 28.9 34.7 17.3

Spillville- 

moderately well 

drained, Clarion- 

well drained

Rep 1 Spillville loam, Reps 

2&3 in Clarion loam

Floodplain 35.1 42.1 21.1 poorly drained Coland clay loam

Soil data is from Web soil survey (USDA), When a landscape position had multiple soils, a weighted average was used 

for that landscape position

Soil series

Water content at 

field capacity 

(1/3 bar) (%) Drainage class

Clarion (1&2)* 28.2 well drained

Clarion (3&4)* 26.5 well drained

Coland 35.1 poorly drained

Nicollet 29.6 somewhat poorly drained

Spillville 31.7 moderately well drained

Zenor 18.7 somewhat excessively drained

1-summit, 2-shoulder, 3-backslope, 4-toeslope
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Table 3.3. Results of comparison of soil moisture (%) 0-20 cm 

 

 

2010 2011

Depth (cm) Month

Landscape 

position* 

cropping 

system

Landscape 

position* 

cropping 

system

0-20 April p=0.0005 p<0.0001 p=0.0824

1 19.6 a 18.0 a

2 19.1 a 19.3 ab

3 22.3 b 20.0 b

4 20.4 a 19.8 b

5 19.1 a 23.5 c

May p<0.0001 p<0.0001 p=0.0122

1 16.3 c 14.6 a

2 14.3 b 15.0 ab

3 18.9 d 18.3 c

4 16.2 c 14.7 ab

5 12.8 a 15.9 b

June p=0.4108 p<0.0001 p=0.8811

1 23.0 a

2 28.2 b

3 22.3 a

4 26.6 b

5 30.7 c

July p=0.8832 p<0.0001 p=0.7069

1 27.0 b

2 27.7 b

3 27.6 b

4 24.5 a

5 34.9 c

August p=0.4048 p=0.6090 p=0.8417 p<0.0001 p=0.6219 p=0.3912

1 31.7 b

2 32.0 b

3 31.2 b

4 25.7 a

5 31.7 b

September p=0.6228 p=0.0019 p<0.0001 p=0.0026 p=0.9911 p=0.5441

1 18.4 ab 20.0 a 18.3 ab

2 20.1 abc 20.3 a 20.2 bc

3 21.4 c 22.4 a 21.4 c

4 20.7 bc 20.1 a 16.6 a

5 16.5 a 26.0 b 20.6 bc

October p=0.0104 p<0.0001 p=0.4521

1 25.7 b 27.7 c

2 26.4 b 28.0 c

3 26.7 b 27.7 c

4 26.4 b 21.0 a

5 23.7 a 24.6 b

# # #

# # #

## ## ##

# # #

# # #

2010 2011 2010 2011

Cropping 

system

Cropping 

system

Landscape 

position 

Landscape 

position 

LS means of volumetric soil moisture (%)

Cropping systems: 1=continuous corn, 2=corn-soy-triticale/soy, 3=switchgrass, 4=triticale/sorghum, 5=triticale/trees

Landscape positions: 1=summit, 2=shoulder, 3=backslope, 4=toeslope, 5=floodplain

# no data collected

## not enough data for statistical analysis
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Table 3.4. Results of comparison of soil moisture (%) 20-40 cm 

 

 

2010 2011

Depth (cm) Month

Landscape 

position* 

cropping 

system

Landscape 

position* 

cropping 

system

20-40 April p=0.0290 p=0.0129 p=0.9982

1 43.3 ab 41.4 a

2 44.9 ab 43.4 ab

3 45.0 b 44.5 b

4 45.0 b 45.4 b

5 41.8 a 45.1 b

May p=0.1586 p=0.1825 p=0.7281

1

2

3

4

5

June p=0.0145 p=0.0013 p<0.0001 p=0.0698 p=0.3642 p=0.1315

1 33.1 b 39.8 bc 27.0 a

2 32.4 b 42.7 c 32.9 b

3 33.1 b 38.2 ab 33.9 b

4 29.0 a 35.7 a 33.3 b

5 31.1 ab 37.0 ab 31.6 b

July p=0.6748 p=0.2968 p=0.3150 p=0.3011 p=0.6029 p=0.1965

1

2

3

4

5

August p=0.4936 p=0.1678 p=0.2083 p=0.2396 p=0.7068 p=0.6242

1

2

3

4

5

September p=0.2893 p=0.1054 p=0.2243 p=0.0215 p=0.7397 p=0.5815

1 36.6 ab

2 39.4 bc

3 39.9 c

4 37.2 abc

5 35.6 a

October p=0.0010 p<0.0001 p=0.2292

1 32.5 b 33.8 c

2 34.5 b 37.3 d

3 35.2 b 38.3 d

4 35.0 b 30.0 b

5 28.6 a 26.3 a

2010 2011 2010 2011

Cropping 

system

Cropping 

system

Landscape 

position 

Landscape 

position 

# # #

# # #

# # #

LS means of volumetric soil moisture (%)

Cropping systems: 1=continuous corn, 2=corn-soy-triticale/soy, 3=switchgrass, 4=triticale/sorghum, 5=triticale/trees

Landscape positions: 1=summit, 2=shoulder, 3=backslope, 4=toeslope, 5=floodplain

# no data collected

## not enough data for statistical analysis
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Table 3.5. Results of comparison of soil moisture (%) 40-60 cm 

  

 

 

2010 2011

Depth (cm) Month

Landscape 

position* 

cropping 

system

Landscape 

position* 

cropping 

system

40-60 April p=0.1918 p=0.0026 p=0.7698

1 40.8 a

2 41.0 a

3 44.4 b

4 45.4 b

5 45.0 b

May p=0.3646 p=0.2670 p=0.8879

1

2

3

4

5

June p=0.1749 p=0.5583 p=0.0289 p=0.1612 p=0.8657 p=0.7269

1 28.9 a

2 31.5 ab

3 34.3 b

4 31.7 ab

5 31.0 a

July p=0.8249 p=0.1939 p=0.4009 p=0.2036 p=0.7672 p=0.6327

1

2

3

4

5

August p=0.3767 p=0.0520 p=0.2300 p=0.4047 p=0.8458 p=0.4716

1

2

3

4

5

September p=0.7995 p=0.0470 p=0.4961 p=0.4841 p=0.8916 p=0.6784

1 32.9 a

2 34.6 ab

3 37.5 b

4 38.7 b

5 36.5 ab

October p=0.0582 p<0.0001 p=0.5755

1 34.4 b

2 35.2 b

3 37.4 b

4 26.2 a

5 29.5 a

2010 2011 2010 2011

Cropping 

system

Cropping 

system

Landscape 

position 

Landscape 

position 

# # #

# # #

# # #

LS means of volumetric soil moisture (%)

Cropping systems: 1=continuous corn, 2=corn-soy-triticale/soy, 3=switchgrass, 4=triticale/sorghum, 5=triticale/trees

Landscape positions: 1=summit, 2=shoulder, 3=backslope, 4=toeslope, 5=floodplain

# no data collected

## not enough data for statistical analysis
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Table 3.6. Results of comparison of soil moisture (%) 60-80 cm 

  

 

 

2010 2011

Depth (cm) Month

Landscape 

position* 

cropping 

system

Landscape 

position* 

cropping 

system

60-80 April p=0.2807 p=0.0006 p=0.6602

1 38.8 a

2 41.5 b

3 43.9 bc

4 46.0 c

5 44.3 bc

May p=0.6689 p=0.1163 p=0.3257

1

2

3

4

5

June p=0.4770 p=0.6047 p=0.0426 p=0.1674 p=0.7998 p=0.5569

1 28.8 a

2 32.3 ab

3 34.4 b

4 32.4 b

5 32.7 b

July p=0.6491 p=0.2297 p=0.2852 p=0.2483 p=0.6282 p=0.6138

1

2

3

4

5

August p=0.7589 p=0.2777 p=0.1850 p=0.6168 p=0.3794 p=0.7671

1

2

3

4

5

September p=0.8303 p=0.0093 p=0.0612 p=0.0983 p=0.5506 p=0.5562

1 33.6 a

2 33.4 a

3 36.0 b

4 39.7 b

5 38.7 b

October p=0.1175 p<0.0001 p=0.5541

1 35.0 b

2 36.4 b

3 37.1 b

4 30.1 a

5 28.1 a

# # #

# # #

# # #

2010 2011 2010 2011

Cropping 

system

Cropping 

system

Landscape 

position 

Landscape 

position 

LS means of volumetric soil moisture (%)

Cropping systems: 1=continuous corn, 2=corn-soy-triticale/soy, 3=switchgrass, 4=triticale/sorghum, 5=triticale/trees

Landscape positions: 1=summit, 2=shoulder, 3=backslope, 4=toeslope, 5=floodplain

# no data collected

## not enough data for statistical analysis
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Table 3.7. Results of comparison of soil moisture (%) 80-100 cm 

  

 

2010 2011

Depth (cm) Month

Landscape 

position* 

cropping 

system

Landscape 

position* 

cropping 

system

80-100 April p=0.4693 p<0.0001 p=0.7567

1 38.3 a

2 39.6 a

3 44.1 b

4 45.9 b

5 45.5 b

May p=0.8136 p=0.0010 p=0.4170

1 39.1 a

2 38.3 a

3 42.6 b

4 44.2 b

5 42.8 b

June p=0.6740 p=0.7866 p=0.1586 p=0.0204 p=0.3953 p=0.3633

1 37.8 a

2 39.6 ab

3 42.9 b

4 42.4 b

5 42.2 b

July p=0.5218 p=0.5659 p=0.1649 p=0.1269 p=0.8825 p=0.6491

1

2

3

4

5

August p=0.8979 p=0.4613 p=0.0874 p=0.6282 p=0.6059 p=0.8843

1

2

3

4

5

September p=0.6262 p=0.0402 p=0.0037 p=0.0138 p=0.7917 p=0.7650

1 35.3 ab 38.3 a 33.2 a

2 34.1 a 41.2 ab 35.7 b

3 37.8 ab 44.1 bc 39.0 b

4 39.6 b 44.6 c 39.7 b

5 38.9 b 42.8 bc 38.1 b

October p=0.2750 p=0.0002 p=0.4033

1 36.6 b

2 36.1 b

3 38.0 b

4 32.1 a

5 30.3 a

# # #

# # #

# # #

2010 2011 2010 2011

Cropping 

system

Cropping 

system

Landscape 

position 

Landscape 

position 

LS means of volumetric soil moisture (%)

Cropping systems: 1=continuous corn, 2=corn-soy-triticale/soy, 3=switchgrass, 4=triticale/sorghum, 5=triticale/trees

Landscape positions: 1=summit, 2=shoulder, 3=backslope, 4=toeslope, 5=floodplain

# no data collected

## not enough data for statistical analysis
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Table 3.8. Results of comparison of soil moisture (%) 100-120 cm 

 

  

2010 2011

Depth (cm) Month

Landscape 

position* 

cropping 

system

Landscape 

position* 

cropping 

system

100-120 April p=0.6999 p<0.0001 p=0.7497

1 41.2 b

2 36.9 a

3 43.8 bc

4 45.7 c

5 45.7 c

May p=0.9258 p=0.0001 p=0.3874

1 42.1 b

2 36.9 a

3 42.2 b

4 44.6 b

5 43.5 b

June p=0.8592 p=0.8786 p=0.0541 p=0.1512 p=0.4400 p=0.4194

1

2

3

4

5

July p=0.6815 p=0.9748 p=0.1652 p=0.3835 p=0.7844 p=0.6237

1

2

3

4

5

August p=0.8706 p=0.8853 p=0.0270 p=0.2644 p=0.8444 p=0.8709

1 39.9 a

2 39.7 a

3 44.1 b

4 43.9 b

5 42.4 ab

September p=0.3463 p=0.6623 p=0.0018 p=0.3590 p=0.4151 p=0.9759

1 39.0 a

2 40.8 ab

3 44.5 c

4 44.5 c

5 43.6 bc

October p=0.6931 p=0.0561 p=0.8532

1

2

3

4

5

# # #

# # #

# # #

2010 2011 2010 2011

Cropping 

system

Cropping 

system

Landscape 

position 

Landscape 

position 

LS means of volumetric soil moisture (%)

Cropping systems: 1=continuous corn, 2=corn-soy-triticale/soy, 3=switchgrass, 4=triticale/sorghum, 5=triticale/trees

Landscape positions: 1=summit, 2=shoulder, 3=backslope, 4=toeslope, 5=floodplain

# no data collected

## not enough data for statistical analysis
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Table 3.9. Precipitation (mm) and potential evapotranspiration (PET) prior to collecting soil 
moisture measurements 

 

Table 3.10. Results of comparison of soil water storage 0-60 cm and 0-102 cm. 

 

-1 -2 -3 -4 -5

June 53.3/34.0 *25.4/9.1 0/2.4 *0/1.7 6.1/7.8 20.1/4.0 *1.8/6.9 *0.0/6.3

July 24.9/39.5 5.6/6.1 0.3/7.0 18/6.8 1/2.2 0.0/4.0 0.0/6.8 0.0/6.5

August 0.3/41.6 0.0/5.8 0.0/6.1 0.0/7.0 0.0/6.7 0.0/5.4 0.3/5.4 0.0/5.2

September 91.7/15.7 0.3/4.0 18/3.3 0.0/0.1 23.6/4.5 0.8/1.6 49/1.4 0.0/0.8

2011

April 14.0/31.5 13.7/1.7 0.0/3.2 0.0/5.7 0.0/5.6 0.0/4.5 0.0/7.2 0.3/3.6

May 24.1/42.6 22.3/4.6 0.0/3.5 0.0/11.0 0.0/7.0 0.0/8.6 0.0/5.9 1.8/5.9

June 0.0/53.5 0.0/2.5 0.0/9.9 0.0/12.0 0.0/9.1 0.0/6.8 0.0/4.8 0.0/8.5

July 1.0/32.6 0.0/5.7 0.0/4.3 0.0/5.3 0.3/3.3 0.3/5.9 0.3/2.4 0.3/6.1

August 54.9/26.5 0.0/5.2 4.6/6.2 0.0/3.7 0.0/5.3 15.7/3.0 34.5/1.4 0.0/1.7

September 19.0/30.0 0.0/4.4 0.3/4.9 0.3/4.2 0.0/3.9 0.0/3.8 0.0/4.2 18.5/4.7

October 12.7/23.3 0.0/3.7 0/3.9 11.2/3.7 0.3/1.0 1.3/3.1 0.0/2.5 0.0/5.3

Days prior to data collection

Data displayed as Precipitation (mm)/Potential evapotranspiration (PET)(mm). *Data collection days in June 

2010. Days prior to first day of collection in June 2010 had 19.6/3.9, 1.5/6.2, 3.6/7.7,0/7.1,0/8.6 mm of 

precipitation/PET, respectively.

Total precipitation/PET prior 

to last day of data collection

Collection 

day 2

Collection 

day 12010

Depth Treatment Landscape position Month Treatment X Landscape position Treatment X month Landscape position X month

0-60cm p=0.9595 p<0.0001 p<0.0001 p=0.8871 p=0.3537 p=0.0002

1<2=4=3<5 June<July<Aug=Sept

0-120cm p=0.9331 p=0.0598 p<0.0001 p=0.9306 p=0.0161 p=0.0001

June<July<Aug<Sept

0-60cm p=0.0876 p=0.0056 p<0.0001 p=0.5543 p<0.0001 p<0.0001

4=5<3 Jun<Jul=Oct<Sept<May<Apr<Aug

0-120cm p=0.4654 p=0.1028 p<0.0001 p=0.5075 p<0.0001 p<0.0001

Jun<Sept<Oct<Jul<May<Aug<Apr

2011

2010

Landscape position: 1-summit, 2-shoulder, 3-backslope, 4-toeslope, 5-floodplain. 

Treatment: 1-cont. corn, 2-corn-soy-triticale/soy, 3-switchgrass, 4-triticale/sorghum, 5-triticale/trees
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Table 3.11. Soil water storage 0-60 cm by (a) treatment and (b) landscape position 

 

  

(a) April May June July August September October

continuous corn 18.3 a 18.2 a 17.2 a 21.2 a

corn-soy-trit/soy 18.2 a 19.3 a 18.2 a 21.6 a

switchgrass 18.2 a 19.0 a 17.9 a 20.3 a

sorghum/trit 17.1 a 18.8 a 18.0 a 21.7 a

trees 17.4 a 19.6 a 18.0 a 21.0 a

continuous corn 21.0 ab 19.3 ab 15.7 a§ 17.7 a§ 21.3 a 17.6 a 17.5 ab

corn-soy-trit/soy 21.6 ab 20.0 bc 16.9 a§ 18.4 a§ 22.5 a 18.8 a 18.5 bc

switchgrass 22.1 b 20.7 c 16.7 a§ 17.8 a§ 22.6 a 19.8 a 19.2 c

sorghum/trit 22.1 b 20.1 bc 15.6 a§ 19.2 a§ 23.1 a 19.3 a 19.2 c

trees 20.6 a 18.6 a 15.3 a§ 17.8 a§ 22.0 a 17.7 a 16.8 a

(b)

Summit 15.8 a 18.4 ab 18.5 b 19.5 a

Shoulder 18.5 b 18.5 ab 17.9 ab 20.9 a

Backslope 18.1 b 19.4 bc 19.1 b 22.3 a

Toeslope 18.3 b 18.1 a 17.8 ab 21.3 a

Floodplain 18.7 b 20.6 c 16.0 a§ 22.0 a

Summit 20.1 a 18.9 a 15.3 a§ 19.1 b 22.1 ab 18.0 a 19.2 b

Shoulder 20.8 ab 19.2 a 15.9 a§ 19.5 b 23.0 b 19.0 a 20.0 b

Backslope 21.8 bc 20.8 b 16.7 a§ 20.1 b 23.1 b 20.1 a 20.7 b

Toeslope 22.1 c 20.0 ab 15.6 a§ 16.3 a§ 21.0 a 17.9 a 16.0 a

Floodplain 22.7 c 19.8 ab 15.3 a§ 15.7 a§ 21.1 ab 18.1 a 15.4 a

Treatment

2010

# # #

2011

LS Means estimate of soil water storage (cm), Different letters in same month and year indicate difference at p<0.05, # 

no samples collected, §No data from 0-20 cm 

2011

Landscape position

2010

# # #

April May June July August September October
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Table 3.12. Soil water storage 0-120 cm by (a) treatment and (b) landscape position 

 

(a) April May June July August September October

continuous corn 37.1 a 36.6 a 40.7 a 47.7 a

corn-soy-trit/soy 37.8 a 39.5 a 42.5 a 46.4 a

switchgrass 36.9 a 37.8 a 42.8 a 43.7 a

sorghum/trit 35.4 a 38.8 a 43.2 a 47.0 a

trees 35.7 a 40.5 a 41.9 a 44.9 a

continuous corn 46.2 a 43.7 a 39.2 a§ 42.2 a§ 43.9 a 38.9 a 37.5 a

corn-soy-trit/soy 48.0 a 45.3 a 41.9 a§ 43.7 a§ 46.0 a 40.2 ab 38.2 a

switchgrass 47.8 a 45.7 a 39.7 a§ 42.0 a§ 46.2 a 43.3 bc 40.5 a

sorghum/trit 48.0 a 45.0 a 39.5 a§ 44.3 a§ 47.6 a 41.2 c 40.6 a

trees 45.7 a 43.4 a 40.1 a§ 43.2 a§ 46.2 a 40.8 abc 37.6 a

(b)

Summit 33.9 a 37.8 a 42.0 ab 40.1 a

Shoulder 36.9 a 37.5 a 41.4 ab 45.8 ab

Backslope 36.9 a 40.0 a 45.1 b 48.8 b 

Toeslope 38.4 a 38.5 a 43.7 b 47.9 b 

Floodplain 36.9 a 39.5 a 38.9 a 47.1 b 

Summit 43.7 a 43.0 ab 38.2 a§ 42.7 abc 44.8 a 38.8 a 41.2 b

Shoulder 44.3 a 42.1 a 39.7 a§ 44.4 bc 46.2 a 40.2 a 41.3 b

Backslope 48.1 ab 46.3 c 42.3 a§ 45.7 c 47.6 a 43.3 a 43.2 b

Toeslope 49.7 b 46.5 c 41.0 a§ 42.2 ab§ 45.4 a 41.2 a 35.2 a

Floodplain 49.8 b 45.3 bc 40.0 a§ 40.3 a§ 45.8 a 40.8 a 33.6 a

2011

LS Means estimate of soil water storage (cm), Different letters in same month and year indicate difference at p<0.05, # 

no samples collected, §No data from 0-20 cm 

2011

Landscape position

2010

# # #

OctoberApril May June July August September

Treatment

2010

# # #
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Table 3.13. Results of comparison of soil water storage 0-60 cm

  

 

 

 

 

Treatment Landscape position

Treatment X 

Landscape position

June p=0.2907 p=0.0011 p=0.8354

1<2=3=4=5

July p=0.2263 p=0.0017 p=0.9568

4=1=2<5, 4<3

August p=0.8528 p=0.0371 p=0.9293

5<1=3

September p=0.7680 p=0.1572 p=0.8589

April p=0.0238 p<0.0001 p=0.9121

5<3=4 1=2<5, 1<3=4

May p=0.0224 p=.0383 p=0.7584

5=1<3, 5<2=4 1=2<3

June p=0.0724 p=0.1297 p=0.4459

July p=0.1920 p<0.0001 p=0.4103

5=4<1=2=3

August p=0.1407 p=0.0349 p=0.5731

4<2=3

September p=0.0543 p=0.0724 p=0.7362

October p=0.0073 p<0.0001 p=0.3732

5=1<3=4, 5<2 5=4<1=2=3

2011

2010

Landscape position: 1-cont. corn, 2-corn-soy-triticale/soy, 3-switchgrass, 4-

triticale/sorghum, 5-triticale/trees

Treatment: 1-summit, 2-shoulder, 3-backslope, 4-toeslope, 5-floodplain
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Table 3.14. Results of comparison of soil water storage 0-120 cm 

 

Treatment Landscape position

Treatment X 

Landscape position

June p=0.6062 p=0.1658 p=0.8258

July p=0.0981 p=0.3669 p=0.8236

August p=0.6953 p=0.0187 p=0.8763

5<4=3

September p=0.4867 p=0.0108 p=0.9213

1<5=4=3

April p=0.1493 p<0.0001 p=0.7802

1=2<4=5

May p=0.3505 p=0.0052 p=0.6460

2=1<3=4, 2<5

June p=0.4875 p=0.0841 p=0.4387

July p=0.4946 p=0.0088 p=0.5733

5<2=3, 4<3

August p=0.3118 p=0.5587 p=0.6926

September p=0.0765 p=0.0765 p=0.6359

October p=0.1005 p<0.0001 p=0.3451

5=4<1=2=3

Treatment: 1-summit, 2-shoulder, 3-backslope, 4-toeslope, 5-floodplain

Landscape position: 1-cont. corn, 2-corn-soy-triticale/soy, 3-switchgrass, 4-

triticale/sorghum, 5-triticale/trees

2010

2011



 

 

Figure 3.1. Iowa State University Uthe research farm (Schulte, 2010).
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.1. Iowa State University Uthe research farm (Schulte, 2010). 

 



 

 

Figure 3.2a) Landscape positions and b) soils at the Uthe research farm, Ames, IA (Schulte, 
2010) 

a) 

b) 
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.2a) Landscape positions and b) soils at the Uthe research farm, Ames, IA (Schulte, .2a) Landscape positions and b) soils at the Uthe research farm, Ames, IA (Schulte, 



 

 

 

 

 

Figure 3.3. Precipitation comparison at ISU Reynoldson research site (1.5 km SE of Uthe 
research site).  Boxes indicate sampling periods.

  

68 

.3. Precipitation comparison at ISU Reynoldson research site (1.5 km SE of Uthe 
research site).  Boxes indicate sampling periods. 

 

.3. Precipitation comparison at ISU Reynoldson research site (1.5 km SE of Uthe 
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Figure 3.4. 2010 soil water storage 0-60 cm by landscape position. Error bars indicate standard 
deviation of soil water storage. 

 

Figure 3.5. 2010 soil water storage 0-60 cm by cropping system. Error bars indicate standard 
deviation of soil water storage. 
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Figure 3.6. 2010 soil water storage 0-120 cm by landscape position. Error bars indicate standard 
deviation of soil water storage. 

 

Figure 3.7. 2010 soil water storage 0-120 cm by cropping system.  Error bars indicate standard 
deviation of soil water storage. 
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Figure 3.8. 2011 soil water storage 0-60 cm by landscape position. Error bars indicate standard 
deviation of soil water storage. 

 

Figure 3.9. 2011 soil water storage 0-60 cm by treatment.  Error bars indicate standard deviation 
of soil water storage. 
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Figure 3.10. 2011 soil water storage 0-120 cm by landscape position.  Error bars indicate 
standard deviation of soil water storage. 

 

Figure 3.11. 2011 soil water storage 0-120 cm by treatment.  Error bars indicate standard 
deviation of soil water storage. 
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CHAPTER 4: GENERAL CONCLUSIONS 

4.1 Conclusions 

As agricultural producers in the Midwest consider potentially shifting from grain-based 

biofuel feedstocks to second-generation, cellulosic feedstocks, it is essential that we assess the 

environmental impacts of these new cropping systems.  We have studied the effect of various 

biomass production systems across landscape positions on NO3-N concentration in the root zone 

and soil moisture dynamics.  We observed significant differences among the cropping systems 

with a likely association between nitrogen fertilizer inputs to the systems containing corn and 

NO3-N concentrations in the root zone.  The triticale/sorghum system had consistently lower 

NO3-N concentrations in the root zone than the corn systems although they received only slightly 

lower total N fertilizer.  A rise in NO3-N concentration in the root zone was also not observed in 

the switchgrass plots following a significant N input from fertilization.  This may indicate that 

the triticale/sorghum double cropping system and the perennial switchgrass systems are more 

efficient at N uptake or that the NO3-N did not get transported to the root zone.   The 

triticale/trees system had lower moisture and soil water storage in the upper 60 cm of the soil 

profile than the other systems in April, May, and October 2011, which may indicate increased 

evapotranspirative demand.  The relatively larger amount of stubble and residue in the 

switchgrass plots may account for the higher moisture levels at the surface in April, May and 

September 2011.  Quantifying the water quality and soil moisture dynamics of biomass 

production systems will aid in optimizing deployment of biomass cropping systems across 

landscape positions as producers gear up to meet biomass production demand by providing part 

of the information needed to assess their multifunctional performance. 
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4.2 Recommendations 

It would be beneficial to continue this study into the future to refine and fully understand 

observed differences among the biomass production systems.  This would facilitate complete 

establishment of the perennial cropping systems and allow them to demonstrate their full 

potential.  Continuous soil moisture monitors in each plot would increase the temporal data 

resolution and eliminate the effects of only having one data set per month.  It would also remove 

the possibility of error from sampling over multiple days.  Experiments could be conducted in 

the lab where rainfall rates and other variables could be controlled.  If the same cropping systems 

were replicated in a lab we could more easily determine the fate of fertilizer and water inputs.  

We could use this information to determine if differences in NO3-N concentrations and soil water 

in the field are due to the plants or other uncontrolled factors.  This would increase our 

understanding of how varying amounts and timing of precipitation affect NO3-N transport and 

soil moisture.  Other potential biomass feedstocks (e.g.,  Miscanthus and willow) could be 

incorporated into the study.  It would also be of benefit to expand this study to a wider variety of 

locations to expand on landscape impacts. 
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APPENDIX  

Soil loss prediction of various biomass production systems across landscape positions using 

the Water Erosion Prediction Project (WEPP) model 

Introduction 

Many current agricultural practices are causing erosion rates to be much faster than soil 

can be generated (Montgomery, 2007 and Kort, 2009).   Kort et al (1998) reviewed the soil 

erosion potential of biomass crops and identified that overall the change from row crops to 

biomass crops would likely reduce erosion, but there are several potential negative effects as 

well.  They concluded that perennial species will lead to minimal soil erosion because of the year 

round soil protection they provide.  They stated that perennial sod crops resulted in soil loss 

levels well below levels that are generally accepted for sustained productivity.  They also noted 

that woody biomass crops generally reduce soil erosion by water and wind; however, one 

potential negative impact is that when woody biomass crops mature, they shade out the ground 

below them.  This results in severe reduction of vegetative undergrowth, which could leave the 

soil more vulnerable to erosion if it is exposed from harvest.  Another potential drawback of 

woody biomass crops is that they often lower the water table from their increased 

evapotranspirative demand.  Kort et al (1998) also noted a study from Australia where a pine 

plantation reduced the water table level enough to change a naturally perennial stream to an 

ephemeral stream.  While this will surely reduce water erosion, it is not necessarily beneficial to 

aquatic habitats and the species that rely on them.  They also noted that the reduction in soil 

moisture from the increased water demand from the trees can leave a soil more susceptible to 

wind erosion. 
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This study investigates the effects of landscape position and cropping system on soil loss.  

The Water Erosion Prediction Project (WEPP) is used to estimate soil loss on Iowa crop land.  

Each estimate is based on the annual average soil loss over a five year simulation.  Five biomass 

cropping systems are evaluated across five landscape positions. This paper investigates potential 

changes in estimated soil loss. 

Biomass cropping systems and landscape positions 

The five biomass cropping systems being evaluated are (1) continuous corn (Zea mays), 

(2) corn-soybean-triticale/soybean (Zea mays-Glycine max-Glycine max/×Triticosecale) (3) 

corn-switchgrass (Zea mays-Pancium virgatum), (4) triticale/sorghum (×Triticosecale/Sorghum 

bicolor), and (5) triticale/trees (×Triticosecale / Populus alba X P. grandidentata)  (Figure 1).  

Specific biomass systems were selected based on their compatibility with existing agricultural 

systems and their potential to provide either superior biomass yields (triticale/sorghum), some 

biomass yield while mitigating some negative environmental impacts (corn-soybean-

triticale/soybean, corn-switchgrass), or some short-term biomass yield and superior long-term 

yield while strongly mitigating negative environmental impacts (triticale/trees) compared to 

conventional corn production systems.   

A randomized, replicated experiment has been established to compare the five biomass 

systems across five landscape positions (summit, shoulder, backslope, toeslope and floodplain) 

(Fig. 4.1).  All cropping systems are managed using no-till practices.  The continuous corn 

system serves as a baseline from which to compare the alternative biomass cropping systems.  

Corn-switchgrass is an intercropping system in which corn provided weed control and a 

harvestable crop of grain and stover in the first year as the switchgrass established.  Corn-

soybean-triticale/soybean supplements the conventional corn-soybean rotation with a winter 
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triticale biomass crop. Triticale is planted the September following the first soybean harvest, 

serves as a winter cover crop reducing exposure of soil to water and wind erosion, and is then 

harvested as a biomass crop in the early summer; it is followed immediately by soybean 

harvested for grain in the fall.  Triticale/sorghum is a double-cropping system in which winter 

triticale planted in the fall, harvested the following June, and sorghum is planted into its stubble 

and harvested in September.  Triticale/trees is an intercropping system in which winter triticale 

was planted in October before the trees are planted in May.  Triticale is then harvested from 

between the tree rows as a biomass crop in early July, providing biomass productivity and a 

harvestable crop while the high-yield aspen trees (Crandon clone) are establishing.  Triticale is 

then replanted between rows in the fall. We expect to be able to grow and harvest triticale for the 

first 3-5 years, as the trees establish and before full canopy closure (Schulte, 2010). 

Five landscape positions (summit, shoulder, backslope, toeslope, and floodplain) are 

evaluated for this study.  Replicate three is evaluated because of the consistent soil series among 

the upper four landscape positions.  The soil series in all plots in all but the floodplain position is 

Clarion.  As described by the National Cooperative Soil Survey of the United States, the Clarion 

series consists of very deep, moderately well drained soils on uplands. These soils were formed 

in glacial till and have slopes that range from 1 to 9 percent.  The soil series in the floodplain is 

Coland.  As described by the National Cooperative Soil Survey of the United States, the Coland 

series consists of very deep poorly drained soils formed in alluvium. These soils are on 

floodplains and alluvial fans in river valleys and upland drainageways in dissected till plains. 

Slope ranges from 0 to 5 percent. The slope shapes are uniform along each plot’s length and are 

as follows: summit 2%, shoulder 4%, backslope 7%, toeslope 5%, and floodplain 1%.  All plots 

in the upper four landscape positions have slope lengths of 24.4 m (80 ft) and widths of 18.3 m 



78 
 

(60 ft) and those in the floodplain have slope lengths of 18.3m (60 ft) and widths of 24.4 m (80 

ft).   

Overview of the Water Erosion Prediction Project (WEPP)  

The WEPP erosion model calculates soil loss along a hillslope as well as sediment yield 

at the end of a hillslope.  Interrill and rill erosion processes are included in this determination of 

soil loss.  Interrill erosion is a process of soil detachment by raindrop impact, transport by 

shallow sheet flow, and sediment delivery to rill channels.  Sediment delivery rate to rill flow 

areas is assumed to be proportional to the product of rainfall intensity and interrill runoff rate.  

Rill erosion is described as a function of the flow’s ability to detach sediment, sediment transport 

capacity, and the existing sediment load in the flow (USDA, 1995).  For a more in depth 

overview of the WEPP program see Chapter 1 of USDA, 1995.   

The weather generator used in WEPP is Cligen which was produced by Arlin Nicks and 

Gene Gander at the USDA Agricultural Research Service (ARS) lab.  It is a stochastic weather 

generator which produces daily estimates of precipitation, temperature, dewpoint, wind, and 

solar radiation for a single geographic point, using monthly parameters (means, standard 

deviations, skewness, etc.) derived from the historic measurements (USDA, 1995).  For further 

details about Cligen see Chapter 2 of USDA, 1995.  The purpose of the surface water flow 

component in WEPP is to provide the erosion information with the length of rainfall excess, the 

rainfall intensity during the period of rainfall excess, the runoff volume, and the peak discharge 

rate. The sequence of calculations relevant to surface hydrology is infiltration, rainfall excess, 

depression storage, and peak discharge. Infiltration is computed using an implementation of the 

Green-Ampt Mein-Larson model for unsteady intermittent rainfall.  The rainfall excess rate only 

applies when the rainfall rate is greater than the infiltration rate.  The volume of rainfall excess is 
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decreased to account for depression storage and runoff is assumed to begin only after this storage 

has been filled (USDA, 1995).  For more details and explanation of each equation used see 

Chapter 4 of USDA, 1995.  Precipitation, maximum temperature, and minimum temperature data 

for the years 2006to 2010 were obtained from the National Weather Service (NWS) Cooperative 

Observer Program (COOP) from the Boone, IA observation site. These data were used as the 

input to Cligen for weather generation. Other parameters used by Cligen were taken from data in 

the WEPP parameter files for the Boone, IA weather station. The average predicted annual 

precipitation for 2006-2010 was 39.87 inches. 

WEPP results       

The average annual soil loss across all cropping systems and landscape positions for 

2006-2010 was 2.50 tons/acre.  As expected, the soil loss rates increased as the slope of the 

landscape position increased (Figure 4.2).   The soil loss was the least in the floodplain (1% 

slope), with an average soil loss among all cropping systems of 1.26 tons/acre.  The summit (2% 

slope), shoulder (4% slope), and toeslope (5% slope) landscape positions had an average annual 

soil loss of 2.552, 2.776, and 2.859 tons/acre, respectively.  The largest soil loss was found to be 

at the backslope landscape position (7% slope) with an annual soil loss of 3.06 tons/acre.  The 

cropping systems differed in the amount of soil loss (Figure 4.3).  The differences can likely be 

attributed to a combination of soil disturbance from planting/harvesting, canopy cover by the 

crops, root structure of the crops, and the timing of the crop growth (Kort et al, 1998).  The 

lowest amount of soil loss was found to be in the corn-switchgrass cropping system with an 

average annual soil loss of 2.101 tons/acre.  This is likely attributed to the perennial root system 

of the switchgrass stabilizing the soil.  The second lowest soil loss was in the triticale/sorghum 

cropping system with an annual average soil loss of 2.486 ton/acre.   This double cropping 
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system maintains ground cover that stabilizes the soil year round.  The greatest risk for erosion 

comes just after each harvest as the new crop is establishing.  This risk is mitigated somewhat by 

the root system of the previous crop being in place to stabilize the ground.   The middle value of 

soil loss was in the continuous corn system with an annual average of 2.587 tons/acre.  The no 

till farming practices which leave the root system in place after harvest mitigate some of the risks 

of leaving the soil bare after harvesting the grain and stover in the fall.  Next was the 

triticale/trees cropping system with an annual average soil loss of 2.625 ton/acre.  The 

combination of no crops being planted until the fall of the first season, the larger spacing and 

slow growth of the trees and there being little ground cover between triticale harvest in the 

summer and planting in the fall may account for the comparatively large soil loss (Kort, 1998).  

WEPP is unable to simulate two crops growing at the same time, so the impact of the trees’ 

reduction of soil loss is likely underestimated because they are not represented in the model until 

the third year.  The corn-soybean-triticale/soybean cropping system showed the most erosion 

with an annual average soil loss of 2.715 tons/acre.  The increased soil disturbance of planting 

and harvesting four crops in three years may negate some of the benefits of the winter cover crop 

of triticale in one of the winter seasons. 

Summary 

Soil loss estimations were obtained for various biomass cropping systems across 

landscape positions.  It was found that landscapes with steeper slopes produced the greatest soil 

loss and that there are differences in the soil loss of the production systems.  This study should 

not be assumed to represent actual soil loss quantities but rather its goal was to compare the 

potential erosion changes associated with specific biomass cropping systems.  There are 

limitations to how this study should be interpreted.  Cropping and management systems and 
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agricultural implements had to be manually created in WEPP because many of these crops and 

management practices are not in the WEPP database.  The systems that were used were manually 

modified from existing systems in WEPP by changing one or more of the parameters in the files.  

They are closer to representing actual crops and practices at the test site than the systems in 

WEPP but, are likely not close enough to reality to use for quantitative analysis.  Rather, the 

results should be used only to compare the systems to each other in a qualitative way.  The slope 

shape and actual slope percent likely vary slightly from plot to plot, so the uniform 

representation by landscape position also adds error.  The actual shape and slope of each plot 

could be directly determined in future research to refine these results.  Other possible sources of 

error include macropores (i.e., burrows, worm holes, voids from decaying roots, etc.) that are not 

able to be accurately represented in WEPP, small areas of local compaction (that would reduce 

infiltration) from foot traffic around data collection areas within the plots, and wildlife activity. 

Kort et al. (1998) point out several potential negative effects of planting trees for biomass 

production.  One key effect is that herbaceous undergrowth is suppressed from competition from 

sunlight.  This reduced undergrowth will result in the trees being the only thing that is stabilizing 

the soil.  This is likely little concern as long as the soil is protected by the trees, but could lead to 

increased erosion when the trees are removed for harvest.  Future research could focus on 

reducing the length of time the soil is exposed before new biomass growth from the woody crops 

protects the soil.  A possible solution that could be explored would be to seed a fast growing 

annual such as triticale or forage oats just prior to or at the time of harvest to stabilize the soil 

and reduce the risk of erosion.   
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Figure 4.1. Landscape positions and cropping systems (Schulte, 2010)
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Landscape positions and cropping systems (Schulte, 2010) 
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Figure 4.2. Average annual soil loss by landscape position. Error bars indicate standard deviation 
of soil loss. 
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Figure 4.3. Average annual soil loss by cropping system. Error bars indicate standard deviation 
of soil loss. 
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DECAGON CALIBRATION 

Methods 

 The ECH2O EC-TM probe (Decagon Devices, Inc, Pullman, WA) was calibrated for 

water content measurements in site specific soils.  Data was collected using the Em50 data 

logger (Decagon Devices, Inc, Pullman, WA).  Soil samples (~10,000 cm3) were taken from 

plots at the Uthe research site that were representative of the indicated soil series as shown in the 

USDA Web Soil Survey (www.websoilsurvey.nrcs.usda.gov).  These samples were sieved 

through a 2 mm sieve and allowed to air dry in the lab for at least 14 days.  The gravimetric 

water content was determined by drying a 150 g sample at 105oC for 24 hours.  The mass of air 

dry soil needed in a known volume (4000 cm3) to maintain measured bulk density was 

calculated.  The mass of water needed to reach volumetric water contents in 5% increments from 

10% to 35% was determined.  The appropriate mass of air dry soil was placed in a 4000 cm3 

container to maintain bulk density.  The probe was inserted vertically into the soil at least 8 cm 

from the edge of the container.  Care was taken to prevent air gaps around the probe.  Three 

locations were sampled for at least five minutes each.  The amount of water to reach 10% 

volumetric water content was added and mixed thoroughly.  Bulk density was maintained by 

compacting, as needed, to maintain the original volume.  This process was repeated until 35% 

volumetric water content was reached when the gravimetric water content was determined.  

Based on the difference between 35% volumetric water content and the measured gravimetric 

water content, corrections were made to account for water loss during the calibration.  Calibrated 

equations were determined by plotting the mean raw output at each water content from the 

sensor with the corrected volumetric water contents (Figures 5.1-5.4).  The equations for 

determining volumetric water content were determined to be: default y=0.00109x-0.629; Clarion 



 

y=0.000895x-0.4667; Coland y=0.000947x

y=0.000871x-0.43835, where x=raw output from sensor and y=volumetric water content.

Figure 5.1. Decagon ECH2O Probe calibration in Clarion soil

Figure 5.2. Decagon ECH2O Probe calibration
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0.4667; Coland y=0.000947x-0.48009; Spillville y=0.001045x-0.55397; Zenor 

0.43835, where x=raw output from sensor and y=volumetric water content.

 

O Probe calibration in Clarion soil 

 

O Probe calibration in Coland soil 

0.55397; Zenor 

0.43835, where x=raw output from sensor and y=volumetric water content. 



 

Figure 5.3. Decagon ECH2O Probe calibration

 

Figure 5.4. Decagon ECH2O Probe calibration
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O Probe calibration in Spillville soil 

 

O Probe calibration in Zenor soil 
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