IOWA STATE UNIVERSITY Digital Repository

Graduate Theses and Dissertations

Graduate College

2016

Long term effect of poultry manure application on water quality, yield under a corn-corn system in Iowa

Chenkai Wu Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd Part of the <u>Agriculture Commons</u>, and the <u>Bioresource and Agricultural Engineering Commons</u>

Recommended Citation

Wu, Chenkai, "Long term effect of poultry manure application on water quality, yield under a corn-corn system in Iowa" (2016). *Graduate Theses and Dissertations*. 15179. http://lib.dr.iastate.edu/etd/15179

This Thesis is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

Long term effect of poultry manure application on water quality, yield under a corn-corn system in Iowa

by

Chenkai Wu

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Agricultural and Biosystems Engineering

Program of Study Committee: Michelle Soupir, Major Professor Rameshwar Kanwar Huaiqing Wu

Iowa State University

Ames, Iowa

2016

Copyright © Chenkai Wu, 2016. All rights reserved.

TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES v
NOMENCLATURE vi
ACKNOWLEDGMENTS vii
ABSTRACTiv
CHAPTER I: GENERAL INTRODUCTION1
1.1 Introduction
1.2 Objectives
CHAPTER II: LITERATURE REVIEW4
2.1 Economic Considerations of Manure Utilization
2.1.1 Solution of poultry manure disposal
2.1.2 Crop yields improvement
2.1.3 Fertilizer efficiency6
2.2 Environmental Consideration of Manure Utilization
2.2.1 Effect of manure application on nitrate leaching
2.2.2 Effect of other factors on nitrate leaching10
2.2.3 Phosphorous loss11
2.3 Summary

СНА	APTER III: Materials and Methods14	4
Ē	3.1 Study Site	4
Ē	3.2 Tile Flow Measurement and Precipitation1	6
Э	3.3 Experimental Method1	8
3	3.4 Treatment Application	9
3	3.5 Sample Collection, Variable Calculation and Statistical Analysis2.	1
СНА	APTER IV: RESULTS AND DISCUSSION	4
4	4.1 Climate, Planting Date and Hydrology Differences during the Study Period	4
4	1.2 Poultry Manure Attributes and Application Rate2	8
4	4.3 Spring Soil Test Results	0
4	4.4. Effect of Multiple Variables on Crop Yield3.	5
4	4.5 Effects of Year and Treatment on Nutrient Loads from Drainage Flow	2
	4.5.1 Effects of year and treatment on NO ₃ -N load from drainage flow4	2
	4.5.2 Effects of year and treatment on PO ₄ -P load from drainage flow4	7
4	4.6 Effects of Year and Treatment on Nutrient Concentrations in Drainage Tile Water4	9
	4.6.1 Effects of year, treatment and water event on nitrate-nitrite concentrations in	
drain	age tile water4	9
	4.6.2 Effects of year, treatment on orthophosphate concentrations in drainage tile water5	1
4	4.7 Seasonal patterns of drainage NO₃-N5.	3
CHA	APTER V: CONCLUSIONS	6
СНА	APTER VI: SUGGESTION AND FUTURE EXPECTION	8

REFERENCES
APPENDIX A. SPRING SOIL TEST
APPENDIX B. CROP YIELDS
APPENDIX C. DRAINAGE EVEN AND WATER QUALITY UP ON PRECIPIRATION
APPENDIX C1. NO3-N concentration with drainage event and precipitation from 2010 to 201467
APPENDIX C2. PO4-P concentration with drainage event and precipitation from 2010 to 201470
APPENDIX C3. Event water quality from 2010 to 201472
APPENDIX D. STATISTICS
APPENDIX D1. Yield Modeling90
APPENDIX D2. NO₃-N Load Modeling95
APPENDIX D3. NO ₃ -N Concentration ANOVA and Tukey101
APPENDIX D4. PO4-P Wilcoxon Rank Sum Test104

LIST OF FIGURES

Figure 3.1 Location of field 5A (in green) and climate station AMES 8 WSW (in red,	
Lat. 42.0211, Log93.7742) at the Iowa State University's Agronomy Farm,	
Boone, IA	15
Figure 3.2 Field 5A research site at Iowa State University Agronomy Research Farm.	
Each plot is labeled with area and fertilizer or manure application rate.	
Plots 6, 9, and Check were excluded from data analysis.	17
Figure 3.3 Annual PM, PM2 and UAN achieved application rate, mean application rate	
and target application rate	19
Figure 4.1 Annual drainage for all research plots by treatment by year	28
Figure 4.2 0-15 cm and 15-30 cm soil test phosphorus concentrations for all treatments	
from 2010 to 2014	32
Figure 4.3 Soil test pH from 2010 to 2014	33
Figure 4.4 0-15 cm and 15-30 cm soil test NO ₃ -N concentrations for all treatments from	
2010 to 2014	35
Figure 4.5 Crop yields for all treatments all plots from 2010 to 2014	39
Figure 4.6 Effect of effective solar radiation on crop yield by treatment	40
Figure 4.7 Effect of the interaction of effective precipitation and effective solar radiation	
on crop yield	40
Figure 4.8 NO ₃ -N load for each treatment each plot from 2010 to 2014	45
Figure 4.9. Effect of the interaction of yield and drainage on NO ₃ -N yield	
Figure 4.10 PO ₄ -P load for each treatment each plot from 2010 to 2014	
Figure 4.11 Tile drainage NO ₃ -N concentration for all research plots by treatment and year	
Figure 4.12 Tile drainage PO ₄ -P concentration for all research plots by treatment and year	
Figure 4.13 Monthly NO ₃ -N loads for all treatments by year	
Figure 4.14 Monthly drainage for all treatments by year	
i gate in this and gate for an academic by your managements of the	

LIST OF TABLES

Table 3.1 Soil components of field 5 A (WSS, 2015)	. 15
Table 3.2 Annual N-basis application rates for all treatment plots and target manure rates	. 19
Table 3.3a Planting and fertilizer schedule	. 21
Table 4.1 Precipitation and temperature from the IEM climate station AMES 8 WSW	
(Lat. 42.0211, Log93.7742)	. 25
Table 4.2 Growing days, GDD, effective solar radiation and effective precipitation from	
2010 to 2014	. 26
Table 4.3 Tile drainage by treatment from 2010 to 2014	. 27
Table 4.4 Annual achieved nitrogen, phosphorus and potassium application rates for	
poultry manure treatments.	. 29
Table 4.5 Mean crop yields by treatment for years 2010 to 2014	. 36
Table 4.6 Best estimate MLR model of crop yield by BIC (BIC=-104.37, R ² =0.9648)	. 37
Table 4.7 Yearly nitrogen load by treatment from 2010 to 2014	. 43
Table 4.8 Best estimates MLR model of NO ₃ -N load by BIC (BIC=-82.83, R ² =0.9716)	. 44
Table 4.9 Yearly PO ₄ -P load for each treatment from 2010 to 2014	. 48
Table 4.10 Mean NO ₃ -N concentration by treatment from year 2010 to year 2014	. 50
Table 4.11 Median orthophosphate concentration by year from year 2010 to year 2014	. 51

NOMENCLATURE

ANOVA	Analysis of Variance
BIC	Bayesian Information Criterion
EPA	Environmental Protection Agency
GDD	Growing Degree Day
IEM	IOWA Environmental Mesonet
MCL	Maximum Contaminant Level
MCLG	Maximum Contaminant Level Goal
MLR	Multiple Linear Regression
NPS	Non-point Source
NUE	Nitrogen Use Efficiency
PM	Poultry Manure
TAN	Total Ammonia Nitrogen
TMDL	Total Maximum Daily Load
UAN	Urea Ammonia Nitrogen

- UAN Urea Ammonia Nitrogen
- WSS Web Soil Survey

ACKNOWLEDGMENTS

I would like to thank my committee chair, Michelle Soupir, and my committee members, Rameshwar Kanwar, Huaiqing Wu, for their guidance and support throughout the course of this research.

Additionally, I would like to thank Natasha Hoover and Leigh Ann Long for providing laboratory assistance and field site assistance. Also, I would like to thank students in our research group for their support over the past two years including: Xiao Liang, Ross Tuttle, Elizabeth Luby, Conrad Brendel, Rohith Gali, Claire Hruby, Bailey Sullivan, Ross Tuttle and Maurice Washington.

In addition, I would like to thank my family for their support and encouragement over the course of this study.

ABSTRACT

Nitrogen (N) and Phosphorus (P) are primary nutrients required for plant growth, but agricultural nitrogen and phosphorous losses through tile drainage systems pollute downstream waters. The objectives of this study were to assess the effects of poultry manure (PM) application to continuous-corn cropping system on nitrogen and phosphorous losses and crop yields from 2010 to 2014. Soil test sampling at 0 - 15 cm and 15 - 30 cm depth were collected each spring, prior to fertilizer application which included poultry manure at 112 kg \cdot ha⁻¹ (PM), poultry manure at 224 kg \cdot ha⁻¹ (PM2), and urea ammonia nitrogen at 224 kg \cdot ha⁻¹ (UAN). Water samples were collected from drainage tiles weekly and following precipitation during the research period (2010-2014) with tile drainage flow recorded by Neptune T-10 meters. PM $(7879 \text{ kg} \cdot \text{ha}^{-1})$ and PM2 (8756 kg $\cdot \text{ha}^{-1}$) application rates resulted in significantly greater vields, without considering the impacts of phosphorous and other micro nutrients. PM2 applications rate resulted in greater corn yield while at the same time contributing similar NO₃-N load (43.4 kg \cdot ha⁻¹) and concentration (38.7 mg \cdot L⁻¹) to tile waters in comparison with UAN (51.9 kg \cdot ha⁻¹, 43.5 mg \cdot L⁻¹). The PM application resulted in lower NO₃-N load $(13.8 \text{ kg} \cdot \text{ha}^{-1})$ and concentration $(13.5 \text{ mg} \cdot \text{L}^{-1})$ and larger crop yield than UAN. UAN treatment had lower PO₄-P load (0.017 kg \cdot ha⁻¹) and concentrations (0.004 mg \cdot L⁻¹) when compared to the PM (0.027 kg \cdot ha⁻¹, 0.01 mg \cdot L⁻¹) and PM2 (0.029 kg \cdot ha⁻¹, 0.019 mg \cdot L^{-1}) treatments. PM was found to be the best treatment for both acceptable crop yields and the lowest nutrient losses with the NO₃-N concentration closest to the 10 mg \cdot L⁻¹ NO₃-N MCL of drink water set by the U.S. EPA.

CHAPTER I: GENERAL INTRODUCTION

1.1 Introduction

Iowa, U.S. leads national agricultural production of commodities including corn, soybeans, and eggs (USDA-NASS, 2015). Approximately 1.2 billion pounds of poultry manure was generated every year from 2010 to 2014, with an average 2.5% annual increase. Due to the increase in poultry production in recent years, great opportunities as well as big challenges accompany the fast expansion of the poultry industry. Land application of manure is regarded as a good solution to reuse the manures generated each year (Moore et al., 1995). Poultry manure, though, is thought to be valuable and economical as an organic fertilizer from poultry industry in Iowa and other regions in the U.S. Poultry manure application may also contribute to non-point source pollution (NPS). Risks of water body impairments do exist, especially when over-application of fertilizer occurs frequently due to the desire to ensure sufficient fertilizer for increased crop yields (Power et al., 2000).

Nitrogen and phosphorous are important for plant growth but also recognized as important NPS pollutants. In the Upper Midwestern U.S., nitrate primarily enters waters through subsurface leaching while the majority of phosphorous export is thought to be associated with surface runoff and sediment. Bundy and Andraski (2005) found that about half of the Nitrogen applied to the soil is subject to leaching into groundwater. Studies have been conducted to determine the environmental mechanism affecting the N leaching, such as

cropping systems, hydrology, or fertilization rate (Hansen and Djurhuus, 1996; Morecroft et al., 2000; Bakhsh et al., 2002). Indicators such as Nitrogen Use Efficiency (NUE) are used to determine whether fertilizer is applied efficiently (Duan et al., 2011). Phosphorous is the primary cause of eutrophication in freshwaters. Except for sediment movement, Madison et al. (2014) revealed the variability on a watershed-by-watershed basis of phosphorous contribution from tile drainage. For Iowa, a state where subsurface drainage systems are widely implemented on farm land aiming for better yields, the risk of nitrate and phosphorous leaching to tile drainage systems is high. Studies have revealed nutrient losses from agricultural land through the drainage systems. Among them the nitrate concentrations measured are reported in the range of 10 mg \cdot L⁻¹ to 70 mg \cdot L⁻¹ (Hansen and Djurhuus, 1996; De Vos et al., 2000; Dinnes et al., 2002; Kladivko et al., 2004). Effort to restrain the nitrogen and phosphorous losses which is excessively entering the waterbodies, water quality criteria such as Maximum Contaminant Level (MCL) and Total Maximum Daily Load (TMDL) are under development, especially for specific water bodies in specific areas of the country. In the U.S., the MCL for nitrate nitrogen in drinking water is set at 10 mg \cdot L⁻¹ (EPA, 2015).

Crop rotation is also an important factor related to nutrient losses. Dinnes et al. (2002) pointed out that decreasing the diversity in crop rotations is one of the primary management strategies leading to increased nitrate leaching. Randall et al. (1997) found that corn-soybean rotation systems leach smaller amounts of nitrate than a corn-on-corn system; however, the amount of reduction depends on climate. None-controllable factors such as weather

conditions, known to affect flow, has a profound influence on nitrate N concentration and loads in subsurface drainage systems (Randall and Mulla, 2001). Different nitrate concentrations are found between wet years and dry years (Morecroft et al., 2000). As hydrology varies greatly from year to year, long term studies are needed to better understand these trends. Further, much of previous work on this topic is typically completed within a three year period, while a limited number of studies consider the long-term effect of hydrology (Benbi and Biswas, 1996; Hansen and Djurhuus, 1996; Kladivko et al., 2004; Zhang et al., 2009). Considering the many factors which influence nutrient fate and transport, the goal of this study is to define the effect of poultry manure application and hydrology on water quality and yield under a corn-corn cropping system.

1.2 Objectives

Considering the many factors which influence nutrient fate and transport, the goal of this study is to define the effect of poultry manure application and hydrology on water quality and yield under a corn-corn cropping system. The specific objectives are:

1. To determine how different application rates of poultry manure affect crop yield in comparison to commercial fertilizer.

2. To determine how different application rates of poultry manure affect tile drainage NO₃-N and PO₄-P load in comparison to commercial fertilizer.

3 To determine how different application rate of poultry manure affect tile drainage NO₃-N and PO₄-P concentration in comparison to commercial fertilizer

CHAPTER II: LITERATURE REVIEW

For decades, humans have dedicated research to manure, from subjects covering both economic and environmental aspects, including increasing the crop yield, decreasing the cost of fertilization from the economic aspects, and decreasing NPS pollution from the environmental aspect. This section is a review of work done in recent decades about manure, with an emphasis on poultry manure, guided by the research objectives.

2.1 Economic Considerations of Manure Utilization

Iowa leads the nation in the agricultural production of corn, soybeans, and eggs (UADA-NASS, 2014). About 1.2 billion pounds of poultry manure were generated every year during 2010 to 2014, with an average 2.5% annual increase (USDA-NASS, 2015). About 2.3 million Mg poultry manure were generated in Iowa poultry production area in 2007 (Nguyen et al., 2013). Due to the increases poultry production in recent years, opportunities and big challenges are developing along with the fast expansion of the poultry industry.

2.1.1 Solution of poultry manure disposal

Land application is regarded as a good solution to process the manures generated each year (Moore et al., 1995; Edwards and Daniel, 1992). Compared with traditional synthesis of fertilizer, manure is rich in many of the necessary nutrients for crop production (N, P and K).

2.1.2 Crop yields improvement

Improvements in crop yields under manure application is the goal of both farmers and researchers. Studies have reported a yield increase in many different crops, including Bermuda grass, corn, fescue, orchard-grass, rice, and wheat under application of poultry litter (Edwards and Daniel, 1992; Wood, 1992). This increase of yield is attribute to the rich nutrients, especially N and P in poultry manure. Though positive effects on farming were found, researches comparing yields under applying manure and applying traditional synthetic fertilizer are limited. A farming system with nutrient sources from synthetic fertilizers limited is known as organic farming system. An organic farming system with manure application reported an average of 27% decrease in yield under 47% less N application rates compared with the inorganic farming system (Kirchmann and Bergström, 2001). In China, manure with additional P application was reported to be the most efficient nutrient management on corn wheat rotation system, compared with other combinations of different synthetic or organic fertilization (Duan et al., 2011). A 12 year long term research (1998-2009) found that corn yields under corn-soybean rotation system under application of poultry manure was much higher than yields of field applied with urea ammonia nitrogen (Nguyen et al., 2013). However, yield is usually a difficult indicator of comparison. As none of controlling circumstances of the experiments mentioned above were set consistently, conclusions between these studies are incomparable.

2.1.3 Fertilizer efficiency

From the economic perspective, farmers would like to see their fertilizer applied effectively. In other words, producers prefer to pay less for the fertilizer while benefiting from higher yields. When it comes to scientists, the word "efficiency" as used in the literature usually refers to producing similar crop yields when applying smaller amount of fertilizer, where nutrient or element economic is considered. Although it is mentioned quite frequently, this concept is quite obscure, as it is not a model or a physical variable that can be calculated. Indicators are necessary to interpret the efficiency of a specific fertilizer or a method of fertilization management. Nitrogen Use Efficiency (NUE) and nitrogen availability are two parameters often referred to in the literature when selecting fertilizer or working on management comparison ((Iowa State University Extension, 2008; Duan et al., 2011).

Many factors can affect the fertilizer efficiency, including manure quality, land application management, soil conditions, and environmental factors like weather. Manure quality, the composition of manure, is further affected by several variables, including the type and amount of bedding material used, accumulation time, feed, amount and quality of water used to flush the house, location in a storage pit at which the manure is removed, and length of storage before land application (Edwards and Daniel, 1992). In order to regular the amount of nutrient applied, a rough manure analysis is generally done for manure quality on its moisture content, total nitrogen, ammonium nitrogen and total phosphorous for an estimate of application rate. Researchers have found that a higher dry matter (DM), higher

soil initial pH and higher per unit of TAN (Total Ammonia Nitrogen) applied, tend to positively affect ammonia volatilization (Sommer and Christensen, 1991; Sommer and Olesen, 1991; Menzi et al., 1997), a step of nitrogen emission which would indirectly negatively affect the manure efficiency. However, neither DM (Dry Matter) nor initial pH is regularly measured. Because of the huge variability of nutrient content in manure, manure analysis should be used as a guideline only (Moore et al., 1995).

Land application management is also well researched because of its importance in affecting the fertilizer efficiency. Researches have covered manure application timing and field earth work like tillage. Early spring manure application was reported to lead to nitrogen release in advance of crop uptake (Durieux et al., 1995). Higher nitrogen efficiency was found from spring manure slurry fertilizer application than from fall applied slurry (Smith and Chambers, 1995). Timing is also considered to affect ammonia volatilization (Meisinger and Jokela, 2000), which will affect the manure efficiency as well. Broadcasting is thought to be the simplest method in manure application. However, application manure before or during the tillage would promote the crop utilization of nutrient and benefit the fertilizer efficiency. Meisinger and Jokela (2000), also mentioned a merely small percentage of nitrogen loss through volatilization when manure is injected or incorporated immediately into the soil as it's applied.

Soil chemical properties like pH can affect fertilizer efficiency. In order to avoid over application of phosphorous, a soil test P based might be done. Soil and soil test research is usually comparable and valid within a single state. Comparison of three different methods of soil phosphorous test was done, reporting the most frequent choice in Iowa that the Bray test

for all samples and the Olsen only for samples with high pH (Sawyer and Mallarino, 1999), so that the accuracy of soil test is improved resulting in an avoidance of over-application of nutrients. Besides, soil tests recommend the residual effect of nutrient applied and may lead to a decreasing initial fertilizer application in the following years (Moore et al., 1995). However, though it adds efficiency for fertilization, soil test may add a burden to the farmers.

Environmental factors as well are reported to relate to the fertilizer efficiency. Sommer et al. (1991) found that increased temperature, higher wind speed and rainfall soon after manure application would respectively increase, increase and decrease the volatilization of manure.

2.2 Environmental Consideration of Manure Utilization

Though poultry manure is thought to be valuable and economical as an organic fertilizer as well as a solution for the poultry industry in Iowa and other regions in the U.S., potential negative impacts of poultry waste disposal related to non-point source (NPS) pollution must be addressed. Risk of water quality impairment exist especially when over application of fertilizer occurrs frequently due to the eagerness of applying sufficient fertilizer for higher yield to all crop fields (Power et al., 2000).

One of the cardinal problems with manure over application is nitrate leaching into the water. In 1974, the US Congress passed the Safe Drinking Water Act Law which requires EPA to determine the level of nitrate in drinking water at which no adverse health effects such as shortness of breath and blue baby syndrome are likely to occur. The non-enforceable maximum contaminant level goal (MCLG) was set at 10 mg/L or 10 ppm for

nitrate under that situation based on the health concern. Maximum contaminant level (MCL), which is 10 mg/L, is set to be as close to the maximum contaminant level goal as possible considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies, became effective in 1992 (US EPA). As for the other nutrient losses in water, phosphorous, there is no uniform standard of drinking water phosphorous at the state or national level. Instead of the uniform MCL, total maximum daily loads (TMDL) of phosphorous, which have higher flexibility and variability, are set on an individual watershed basis for streams, rivers and lakes.

2.2.1 Effect of manure application on nitrate leaching

The process of land management usually affects the manure application on its efficiency as well as the nutrient losses. Van Es et al. (2006) found that most of the urea and NH₄ would convert to NO₃-N under circumstance of sufficient incorporation, which makes nitrogen source plant available or subject to leaching. Early spring manure application was found to lead to an early timing of NO₃-N release in advance of crop uptake (Durieux et al., 1995), which may lead to leaching. A 3-year study on how manure application timing as well as cropping systems affect N losses was conducted on 2 soils, a Muskellunge clay loam and a Stafford loamy sand. The results showed that NO₃-N concentrations measured from different treatments (application varied among different timings) follow the application timing order: early fall> late fall> early spring=both early spring and late spring (Van Es et al., 2006).

2.2.2 Effect of other factors on nitrate leaching

In addition to manure application, other factors may affect the nitrate leaching. Similar to manure application, soil management (e.g. tillage) affect the nitrate leaching from fields receiving commercial fertilizer application. A randomized complete design within chisel plow vs. no tillage under two different treatments, pre-plant injected urea ammonium nitrate solution (UAN) at 110 kg \cdot ha⁻¹ and late–spring N application at 179 and 156 kg \cdot ha⁻¹ respectively found that nitrogen loss from chisel plow plots were 16% less, and late–spring N application leaches 25% lower nitrate nitrogen (Bakhsh et al., 2002), which is a similar finding as nitrate leaching affected by manure application timing and incorporation. However, Weed and Kanwar (1996) found that nitrate leaching can be most effectively minimized by decreasing the amount of N fertilizer applied, regardless of tillage.

Crop rotation is also one of the most effective factors that would significantly affect nitrate leaching. Many studies of the effect of crop rotation on nitrate leaching have been conducted (Kanwar et al., 1993; Weed and Kanwar, 1996; Randall et al., 1997; Randall and Mulla, 2001), with all showing a significant decrease of nitrate leaching from rotation cropping systems when compared to a continuous corn cropping system.

Yearly variation of nitrate leaching is usually explained by yearly uncontrollable variables. Non-controllable factors such as climate and soil organic matter are found to have a profound influence on nitrate N concentrations and loadings in subsurface drainage water (Randall and Mulla, 2001). Hydrology in the prior year is found to affect the nitrate leaching in the coming year. After 3 years (1995-1997) research at Oxfordshire in southern England,

leaching nitrate concentration of all sites was found to rise dramatically following a drought year (Morecroft et al., 2000). Accumulated nutrient in the prior year is found to affect the nitrogen loss in the following year. Baker and Johnson (1981) found that, although NO₃-N concentrations for the higher fertility plot decreased as time went by after the last fertilization, it still took about 3 years until the samples showed no effect of the higher level of fertilization.

2.2.3 Phosphorous loss

Agricultural phosphorus loss is known as the primary reason causing eutrophication in fresh waters ((Sharpley et al., 1994; Carpenter et al., 1998)). Manure application rates are regularly designed based primarily on the management of N to minimize nitrate losses by leaching, under that circumstance, it results in an excessive increase in soil P levels because of the limited N availability (Moore et al., 1995). Manure application based on phosphorous is suggested to mitigate the impairment caused by phosphorous over-application (Wood, 1992); however, additional nitrogen from commercial fertilizer might be required.

Whether phosphorous leaching through tile drainage is the major reason affecting the water area impairment is still under research. Sprague and Gronberg (2012) have concluded that tile drains are not main contributors to watershed P fluxes. A compromised conclusion is given as phosphorous contribution from tiles varies from case to case (Madison et al., 2014).

2.3 Summary

Producers prefer an outcome from manure application that results in both improvement of nutrient efficiency as well as decrease of nutrient losses (or both in opposite way), when compared with traditional commercial synthetic fertilizer application. Because it's easier to make a decision when advantages (or disadvantage) are shown in both economic and environmental perspectives. Thus, researchers not only focus on the fertilizer efficiency, but also consider nutrient loss when designing the experiments.

It is true that nitrogen loss is somehow correlated with nutrient efficiency, from the angle of mechanism nitrogen transport in soil. The N mechanisms occurring in the soil include mineralization, volatilization, denitrification, and immobilization (Edwards and Daniel, 1992). Once volatilization is reduced by on time tillage or significant rainfall, the part of nitrogen kept from emission will carry on to mineralization and then be utilized by crops or leach, of which the ratio is difficult tell. That is why it is difficult to get both economic and environmental benefits when designing the application rate and management.

Because of the huge variability of manure quality and limitation of parameters in manure tests, experimental circumstances vary from case to case. Although researchers reported their results and values, conclusion are likely to vary from different experimental circumstances. Additionally, the results might be highly affected by those uncontrollable factors such as soil content and climate. In order to avoid the influence of hydrology, there's a case that an impermeable polyvinyl chloride (PVC) geomembrane was applied surrounding the field plots to make them hydrologically independent (Van Es et al., 2006). This is going to be a challenge as well as a chance. Researches of effects from uncontrollable factors like climate and soil type require long term research period. Comparison between commercial fertilizers and organic fertilizer like manure is under great expectation.

CHAPTER III: Materials and Methods

3.1 Study Site

From 2010 to 2014, field experiments were conducted at field 5 A of the Iowa State University's Agronomy Farm located on US highway 30 between Ames and Boone, Iowa. Components of soil type and slope details are listed below (Figure 3.1, web soil survey). The research plots are located on soils with a Canisteo-Clarion-Nicollet association (Chinkuyu, 2000; Chinkuyu et al., 2002), with 44.4% area Nicollet Ioam, 45.1% area Clarion Ioam and the rest the combine of Canisteo silty clay Ioam and Harps clay Ioam (Table 3.1), with drainage classifications ranging from well-drained to poorly drained (Web Soil Survey, 2013). The 0 - 30 cm soil for all research plots during the research period range from 1.8 - 4.5% organic matter content. Plot slopes range from 0-6 percent, which roughly supports the assumption of the hydrologic independency of all plots.

A long-term study of the effects of poultry manure on water quality was initiated in 1998, with 11 chisel-plowed plots under a corn-soy rotation (Nygen et al, 2013; Hoover et al., 2015). For 12 years, fertilizers were applied in the spring, only to the half of each plot planted in corn. The center tile drain was taken as a dividing line for planting, with corn planted in the north half part and soybeans in south half part of each plot in even years, while the opposite planting of corn and soybean in odd years (Cheatham, 2003; Nguyen et al., 2013; Hruby, 2014; Hoover et al., 2015). In 2010, all plots were converted to a corn on corn rotation.

Table 0.1 Soil components of field 5 A (WSS, 2015)

Soil type	Area (ha)	Area (%)
Canisteo silty clay loam	0.08	2.5%
Nicollet loam	1.66	44.4%
Harps clay loam	0.28	8.0%
Clarion loam	1.66	45.1%
Total	3.68	100.0%

Figure 0.1 Location of field 5A (in green) and climate station AMES 8 WSW (in red, Lat. 42.0211, Log. -93.7742) at the Iowa State University's Agronomy Farm, Boone, IA.

3.2 Tile Flow Measurement and Precipitation

Subsurface drainage tiles with 10 centimeter diameter were installed 1.2 meters underground through the central of each plot, spaced about 34 meters (Figure 3.2). Sumps with effluent pumps were installed as the outlets at the downstream end of each plot (in red circle). Once the sump is filled by the drainage flow to a specific level, the flow is pumped out to the main tile. The Neptune T-10 flowmeter furnished on the pump take a record in the Hobo Pendant Event Data logger every time there is 14.16 liter (0.5 cubic feet) flow passing through the pump for instantaneous tile flow rates. Flow meters were read roughly weekly from May to August every year. A small fraction of flow is stored in a 20 liter plastic jar for flowweighted as drainage samples for water quality measurements. More details of the sump construction were given by Kanwar et al. (1988). Precipitation data were gathered from climate station AMES 8 WSW, with latitude and longitude 42.0211, -93.7742 (Figure 3.1), Iowa Environmental Mesonet (IEM) located 0.5 km from field 5 A.

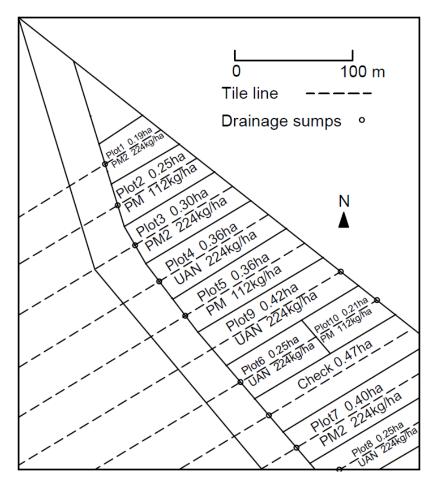


Figure 0.2 Field 5A research site at Iowa State University Agronomy Research Farm. Each plot is labeled with area and fertilizer or manure application rate. Plots 6, 9, and Check were excluded from data analysis.

3.3 Experimental Method

Within the 8 field plots (plot 1, plot 2, plot 3, plot 4, plot 5, plot 7, plot 8, and plot 10 (Figure 3.2), area ranging from 0.19 ha to 0.40 ha) in the experiment, three treatments, including two applications of poultry manure (PM and PM2) and one application of urea ammonia nitrate (UAN) laid out in a split plot design with a target N-basis application rates for PM of 112 kg \cdot ha⁻¹; PM2 of 224 kg \cdot ha⁻¹; and UAN of 224 kg \cdot ha⁻¹ (Figure 3.3, Table 3.2). Flow is no longer present from plot 6 or plot 9 since 2010 and the check plot lacks replicates. Therefore, these three plots were no longer offering any flow data since 2010. The application rates were based on N-basis poultry manure application rates assuming a 60% availability of N in poultry manure (Iowa State University Extension, 2008).

Soil tests were conducted from 2010 to 2014 several weeks before spring manure application. In 2012, soil tests were done twice at different dates, once for the nutrient study and secondly for a study of pathogen fate and transport (Hruby, 2014). 0-15 cm depth and 15-30 cm depth soil samples were collected separately from each plot. Soil sample analysis was conducted at Iowa State University Agronomy Department's Soil and Plant Analysis Laboratory, with colorimetric method for soil NO₃-N concentration and Bray's 1-P test for soil plant available phosphorous.

	11		
Year	PM (kg · ha ⁻¹)	PM2 (kg · ha ⁻¹)	UAN (kg · ha ⁻¹)
2010	115	296	224
2011	125	257	224
2012	137	236	224
2013	114	241	224
2014	116	183	224
Mean	121	242	224
Target	112	224	224

Table 0.2 Annual N-basis application rates for all treatment plots and target manure rates

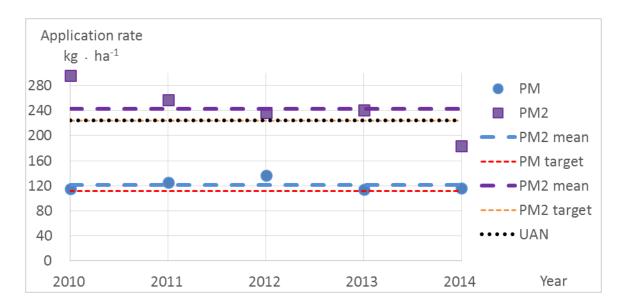


Figure 0.3 Annual PM, PM2 and UAN achieved application rate, mean application rate and target application rate

3.4 Treatment Application

Manure for this study was donated by a commercial poultry farm located in Humboldt, Iowa. Poultry manure samples were collected at the time of field application, started each year in May or June, and analyzed by Minnesota Valley Testing Laboratories Inc. in Nevada, IA for nutrient content (N, P and K). Samples were collected before application to estimate the poultry manure application rate according to the study design. Poultry manure samples were also collected during application so that the actual amount of nutrient applied could be calculated. All treatments (PM, PM2, and UAN) were applied to field plots by surface broadcast and then incorporated into the soil within 24 hours by chisel plow tillage to minimize nitrogen loss via volatilization.

Table 3.3 presents the schedule of major farming activities including planting date, fertilizer application date, and, harvesting date as well as the corn seed company, seed type, and, relative maturity for the study period. Growing date and fertilizer application date are typically in late May or early June when manure was available and field conditions were acceptable for application and tillage. It takes one day or two to apply and incorporate manure and UAN and then, right after fertilizer application, the crop was planted. The harvest date is based on corn seed type as well as the growing days, usually around late October. Pesticide and herbicide application are applied as needed each year and are not shown. Every other year the field is tilled after harvesting.

Year	Apply Manure	Apply UAN	Planting date	Harvest date	Growing days
2010	25-May	25-May	25-May	22-Oct	150
2011	2-Jun	2-Jun	3-Jun	25-Oct	144
2012	15-May	16-May	21-May	17-Oct	149
2013	21-Jun	20-Jun	27-Jun	12-Nov	138
2014	16-Jun	16-Jun	25-Jun	3-Nov	131

 Table 3.3b Seed Company, seed type and relative maturity

Year Company		Seed	Relative maturity
2010	Fontanelle	No record	No record
2011	Fontanelle	5T128	100-102
2012	Fontanelle	6T510	105-107
2013	Fontanelle	5V137	No record
2014	Kruger	9703	103

* corn seed were selected according to the estimated planting dates. ** corn seed with a lower relative maturity (not recorded) which is not hybrid was selected for 2013 because of the late planting.

3.5 Sample Collection, Variable Calculation and Statistical Analysis

Subsurface drainage water data including flow volume and sample water quality were collected approximately weekly after major rainfall events. Samples were acidified with sulfuric acid and stored at 4 degrees Celsius. Water samples were analyzed using a Seal Analytical AQ2 discrete auto-analyzer in the Water Quality Research Laboratory (WQRL) for the combine of nitrate-nitrite concentration and reactive orthophosphate concentration. As is required by the US EPA drinking water standard, no filter is used before sampling analysis.

The EPA-approved method for measuring nitrate-nitrite concentration, the cadmium reduction method, measures both nitrate and nitrite concentration for filtered water samples. Nitrate is reduced by copperized cadmium to nitrite, which reacts with sulfanilamide to form

a diazonium compound which, in dilute phosphoric acid, couples with N-(1-naphthyl)ethylenediamine dihydrochloride to form a reddish-purple azo dye. This is measured spectrophotometrically at 520 nm with method detection limit (MDL) 0.03 mg \cdot L⁻¹. Separate concentrations for nitrate and nitrite can be obtained by running the sample on a separate test without copperized cadmium.

The EPA-approved method for measuring total orthophosphate, the ascorbic acid method, measures both dissolved and suspended orthophosphate, because the sample is not filtered. A reagent (either liquid or powder) containing ascorbic acid and ammonium molybdate reacts with orthophosphate in the sample to form a blue compound which could be measured photometrically at 880 nm with method detection limit (MDL) 0.002 mg \cdot L⁻¹.

Corn was harvested using a combine with 3.05 meter (10 feet) or 3.81 meter (12.5 feet) in length. Yield calculation averaged combine passes excluding those passes from the edge of each plot to avoid the mixing of yields from two adjunct plots under different treatments. Weekly volume basis flow was calculated from weekly flow meter reading. Weekly drainage on a depth basis was calculated by dividing flow by plot area. Nutrient load (NO₃-N and PO₄-P) were calculated by drainage volume multiplied by nutrient (nitrate-nitrite and reactive orthophosphate) concentrations. Instead of annual mean temperature, total precipitation and total solar radiation, growing degree days (GDD) (Schneider and Gupta, 1985; McMaster and Wilhelm, 1997), effective precipitation and effective solar radiation, which are accumulation of annual heat, precipitation and solar radiation from planting date to harvest date, were calculated to interpret the actual amount of heat, precipitation and solar

radiation that crops received at the same time considering the effect of growing days.

(Schneider and Gupta (1985)) defined GDD

$$GDD = \Sigma \left(T_{\min} + T_{\max} \right) / 2 - T_{base}$$
⁽¹⁾

Where,

GDD are the growing degree days

T_{min} is the minimum daily temperature, if temperature is less than 10 °C, use 10 °C.

T_{max} is the maximum daily temperature, if temperature is greater than 30 °C, use 30 °C.

Tbase is the base temperature (10 °C for maize).

All the experimental data were processed and statistically analyzed using R software (R 3.1.2). Statistical methods include multiple linear regression (MLR), ANOVA, Tukey pairwise comparison and Wilcoxon rank sum. Models with continuous variables were analyzed by MLR. Models with discrete variables only were analyzed with ANOVA and Tukey pairwise comparison. Models which violated assumptions of MLR, ANOVA and Tukey including independence of observation, normality of distribution and equality of variance, were analyzed by Wilcoxon rank sum test. Bayesian information criterion (BIC) was used to select the best fit MLR model. A significant level $\alpha = 0.05$ was used in all statistical testing.

CHAPTER IV: RESULTS AND DISCUSSION

For this study, 5 years (2010-2014) of data was collected from eight field plots (1, 2, 3, 4, 5, 7, 8, and 10; Fig 3.2) amended with three different treatments-PM, PM2 and UAN under corn-on-corn management. Data included yearly crop yields, weekly nutrient concentrations and tile flow, and spring soil test nutrient concentrations. Annual nutrient load was calculated to assess the contribution of these three different treatments on crop production and environmental nutrient export. Soil tests were conducted in each of the research years. Statistics models with responses including weekly nitrogen concentration and phosphorous concentration, yearly corn yield, nitrogen load and phosphorous load were built. Multiple linear regression (MLR), ANOVA, Tukey pairwise comparison and Wilcoxon ranked sum test were used for statistical analysis.

4.1 Climate, Planting Date and Hydrology Differences during the Study Period

When year is considered as a variable, it indirectly affects the responses because the variable "year" is not a numerical variable, and therefore, it does not directly affect the response. Factors included in the year variable that directly impact responses are those annually changing variables that may include but are not limited to climate factors such as precipitation, temperature, solar radiation; and planting factors such as cultivar, growing days, and growing degree days. Temperature and precipitation data during the study period as well as the most recent 60 and 30-year periods are shown in Table 4.1.

Year	Daily Temperature (°C)			Daily Precipitation (mm)		
	average	max	min	average	max	annual total
2010	9.6	33.3	-29.4	3.5	126.5	1287.2
2011	10.0	35.6	-24.4	2.2	43.7	816.0
2012	12.0	37.8	-21.1	1.7	61.2	637.3
2013	8.9	36.1	-26.1	1.9	55.4	695.2
2014	8.0	32.8	-28.3	3.0	45.2	1076.8
Recent 60-year ¹	9.0	40.0	-34.4	2.3	142.0	840.5
Recent 30-year ¹	8.9	38.9	-33.3	2.4	142.0	866.0

Table 0.1 Precipitation and temperature from the IEM climate station AMES 8 WSW (Lat. 42.0211, Log. -93.7742)

¹recent 60-year and recent 30-year climate data is the max, min, mean temperature and precipitation data for the recent 60 and 30 years collected at this climate site. There is slight change in heat and precipitation conditions for the recent 30 years compared with the recent 60 years.

Precipitation varies by year (Table 4.1), with annual total precipitation in 2010,

1287mm, 2011 816 mm, 2012 637.3 mm, 2013 695.2 mm, and 2014 1076.8 mm. In comparison of the 60-year average annual precipitation, 840.5 mm, 2012 and 2013 are dry years, 2011 is a normal year, and 2010 and 2014 are wet years. Flooding occurred in 2010 with an extreme precipitation event; the maximum daily precipitation recorded was 126.5 mm on 2010/08/09, which is more than double the maximum daily precipitation of the other four years.

Temperature also contributes to crop growth, which directly affects crop yield, drainage flow, and crop evapotranspiration. According to the 60-year average daily temperature of 9.0 °C, 2010, 2011, and 2012 can be classified as warm years while 2013 and 2014 can be considered cooler years.

Year	Growing Days ¹	GDD	Effective Solar Radiation (MJ/m ²) ²	Effective Precipitation (mm) ²
2010	150	1710.0	3683.6	918.2
2011	144	1533.9	3471.2	390.7
2012	149	1640.1	3846.8	290.3
2013	138	1277.9	2907.3	203.7
2014	131	1076.6	2750.8	630.7

Table 0.2 Growing days, GDD, effective solar radiation and effective precipitation from 2010 to 2014

¹growing degree day (GDD) is an indicator of crop yield calculated with the method described in part 3.4

²both effective solar radiation and effective precipitation are accumulation of values during the growing seasons for the specific year.

As crop planting dates and harvesting dates vary, growing days is not a consistent variable. GDD, effective solar radiation, and effective precipitation are variables that describe the growing season for each year, and are a better description than the growing day. However, the effect of growing time on responses cannot be eliminated. Warm years 2010, 2011 and 2012 also have good effective solar radiation and sufficient GDD because there were plenty of growing days, while, years 2013 and 2014 have much lower GDD and effective solar radiation. When growing season is considered for precipitation, effective precipitation of wet year 2010 (918.2 mm) is 3-4 times the effective precipitation of dry years of 2012 (290.3 mm) and 2013 (203.7 mm).

Hydrology is important for concentration measurement and load calculations. Hydrology independency is assumed in part 3.1 (Table 3.1), which is to say that a similar amount of drainage is assumed from any treatment within each year (Table 4.3). Although, no significance is found from either ANOVA or Wilcoxon test for the mean (ANOVA) or median (Wilcoxon) drainage of different treatment for the overall research years (Table 4.3), different of mean (median) drainage by treatment is shown within years (Figure 4.1). For example, in 2010, the mean drainage in UAN plots is 334 mm, larger than the amount of mean drainage in PM2 plots, 205 mm, far larger than the amount drainage in PM plots, 187 mm. However, there is no consistent pattern showing a drainage trend for all treatments over all research years. In order to realize hydrological independency, Van Es et al. (2006) applied a 0.8-mm-thick impermeable PVC (polyvinyl chloride) geomembrane to a depth of 1.8m surrounding each plots; however, this is not the case at this research site. Therefore, drainage difference plays an important role in the modeling and analysis.

Table 0.3 Tile drainage by treatment from 2010 to 2014

Year	PM (mm)	PM2 (mm)	UAN (mm)	Mean (mm)
2010	$187 \pm (93)^1$	$205 \pm (119)$	$334 \pm (32)$	230±(104)a
2012^2	$70 \pm (60)$	$45 \pm (18)$	$63 \pm (1)$	$59 \pm (35)b$
2013	$100 \pm (43)$	$85 \pm (22)$	$95 \pm (5)$	$93 \pm (27)$ bc
2014	$79 \pm (27)$	$145 \pm (28)$	$119 \pm (56)$	$114 \pm (43)c$
Mean	$109 \pm (71)a^3$	$120 \pm (83)a$	153±(116)a	

¹the mean annual drainage of all research plots by treatment with standard deviation in parentheses

²very little drainage in 2011 resulted in no sample collection in 2011 ³Tukey pairwise comparison test shows no significant difference of mean annual drainage for all treatments In each row, values with the same letter are not significantly different at the p=0.05 level.

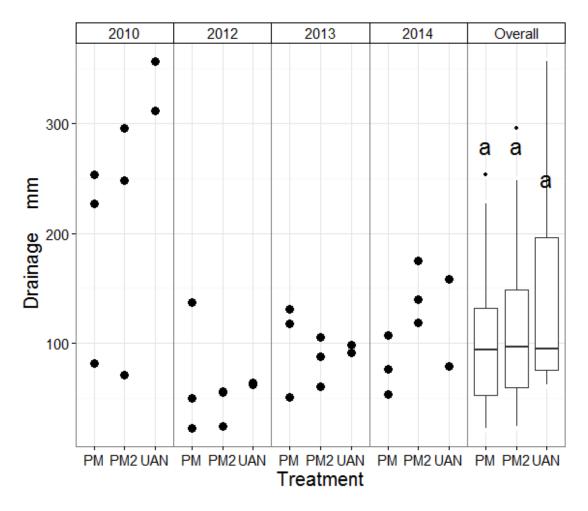


Figure 0.1 Annual drainage for all research plots by treatment by year

4.2 Poultry Manure Attributes and Application Rate

Average total moisture content of poultry manure at the time of application varies by year with average moisture of 26.8% in 2010, 60.6% in 2011, 29.7% in 2012 and 52.7% in 2014 year (moisture data in year 2013 was not recorded). Average total nutrient content of poultry manure varies, ranging from 1.58%-3.7% average total nitrogen, 2.1%-4.7% average phosphorous as P_2O_5 , and 1.6%-2.9% potassium as K_2O .

Year	PM (kg \cdot ha ⁻¹)			PM2 (kg \cdot ha ⁻¹)		
	Ν	Р	Κ	Ν	Р	Κ
2010	$115(\pm 27)^{1,2}$	$207(\pm 49)$	$241(\pm 57)$	$296(\pm 21)$	$535(\pm 38)$	$621(\pm 44)$
2011	$125(\pm 7)$	$156(\pm 8)$	$265(\pm 14)$	$257(\pm 36)$	$319(\pm 44)$	$544(\pm 75)$
2012	$137(\pm 1)$	$88(\pm 1)$	$85(\pm 1)$	$236(\pm 18)$	$151(\pm 11)$	$147(\pm 11)$
2013	$114(\pm 15)$	$81(\pm 11)$	$99(\pm 13)$	$241(\pm 51)$	$171(\pm 36)$	$207(\pm 44)$
2014	$116(\pm 15)$	$115(\pm 21)$	$145(\pm 33)$	$183(\pm 39)$	$174(\pm 21)$	$232(\pm 29)$
Mean	$121(\pm 16)^3$	$129(\pm 53)$	$167(\pm 80)$	$242(\pm 48)$	$270(\pm 153)$	$350(\pm 204)$

Table 0.4 Annual achieved nitrogen, phosphorus and potassium application rates for poultry manure treatments.

¹average nitrogen and phosphorous application rates for replicate plots for both PM and PM2 treatments are displayed with standard deviations in parentheses ²nitrogen application rate shown has already considered the assumption of 60% availability of N for all research years suggested by the Iowa State University Extension (2008) ³target N-basis manure application rates designed for PM and PM2 are 112 kg \cdot ha⁻¹ and 224 kg \cdot ha⁻¹ (Table 3.2)

Despite of the high variation of poultry manure moisture content which may result in high variability in N and P content and therefore highly variable manure application rates in the poultry manure by year (Harmel et al., 2011), there is no significant evidence that the N application rates differ by year (p=0.08153, ANOVA). Although, due to wide variation in nutrient concentrations between production facilities, nutrient application rates cannot be determined as specific and accurate as designed (Iowa State University Extension, 2008), it is able to conclude that all plots are applied fertilizer on an N-basis that is similar to the designed application rates (112 kg \cdot ha⁻¹ for PM and 224 kg \cdot ha⁻¹ for PM2, Table 3.2). However, high variation of phosphorous and other poultry manure nutrient content application still exists. There is significant evidence that P application rates vary by year (p=0, ANOVA). Availability is assumed to compensate the N lost during N cycling including volatilization and leaching. Because of lower availability, a greater amount of N is applied as to reach the target application rate. The Iowa State University Extension (2008) suggests the estimation methods of up to 60% N available during the first year of poultry manure application only, while with 10% of the previous year's N applied available for all following years. That is to say, starting from the second year, not only additional N application rate is waived because of the 100% availability assumed, but also a reduction of application rate equals to 10% the previous year's N applied should be considered. This suggested setting is different than the setting in this research, where, 60% availability of N were assumed not only for the first year, but also for remaining research years (Table 4.4). Therefore, except year 2010, plant available nutrients may be high for PM and PM2 plots.

4.3 Spring Soil Test Results

Result of spring soil test phosphorous are shown in Figure 4.2 by treatment and year with markers distinguishing between soil sampling depth 0-15 cm and 15-30 cm. Increased poultry manure application resulted in a higher soil test phosphorous concentration, with all three treatments statistically different from each other. Both the interaction of year and treatment (p<0.001, ANOVA), as well as the interaction of soil sampling depth and treatment (p<0.001, ANOVA) are significantly affecting the soil test phosphorous (Figure 4.2).

Although there is a tile drainage system in the field, phosphorous is easily absorbed and accumulates in the soil. As long as manure is applied, soil test phosphorous concentration for both treatments PM and PM2 are increasing annually. For the UAN control treatment which has not received phosphorous for over 5 years, soil test phosphorous changes only slightly. PM and PM2 have higher soil test phosphorous for 0-15 cm soil than 15-30 cm soil. This is consistent with the finding from long-term soil sampling at the same site under a corn-soy rotation from 1998-2009 (Hoover et al., 2015). For UAN treated plots, different soil sampling depths have similarly low soil test phosphorous concentrations.

For the 0-15 cm soil, the mean soil test phosphorous are 252 ppm for PM2, 113 ppm for PM and 15 ppm for UAN over the study period. For the 0-15 cm soil, all soil test phosphorous concentrations from PM and PM2 are classified as "very high" (>30 ppm) for corn growth as defined by Sawyer (2002). Based on this classification, no additional poultry manure is recommended for PM and PM2 treated soils. Soil test phosphorous concentrations of the 0-15 cm soil for UAN has a suitable amount of phosphorous (classified "optimum"), except in year 2012, the phosphorous concentration of which is classified as "low" (9~15 ppm) defined by (Sawyer, 2002).

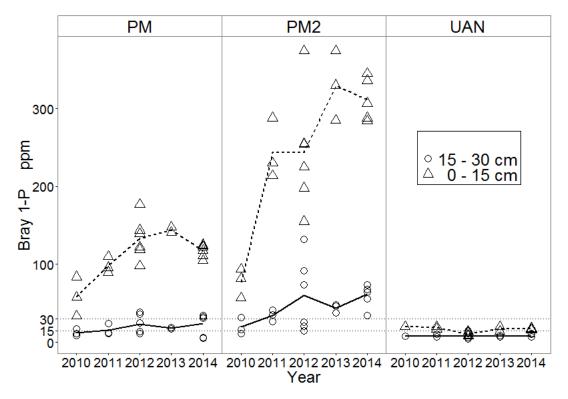
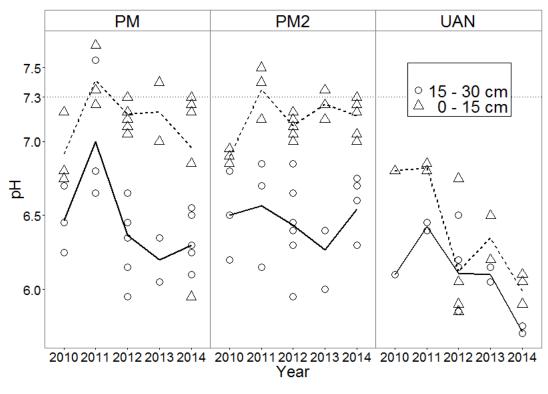



Figure 0.2 0-15 cm and 15-30 cm soil test phosphorus concentrations for all treatments from 2010 to 2014

The Bray 1-P test, the soil test used in this research, is targeted for non-calcareous because it often underestimate the plant available phosphorous in soil with pH> 7.3 compared with Olsen P test and Mehlich-3 P test (Mallarino, 2013). According to the soil test pH, most (103 out of 110) soil test samples from poultry manured plots and all samples from UAN plots have pH lower than 7.3 (Figure 4.3). Seven samples from PM and PM2 had higher pH. treatments are from calcareous soil, of which the soil phosphorous may be underestimated. Thus, there may exist an opportunity that over application of poultry manure may result in higher soil test phosphorous concentration than what is measured by Bray 1-P test. No soil samples from UAN plots have pH larger than 7.3, which shows no underestimation. Therefore, whatever the soil test method is, UAN plots have significant

lower soil phosphorous than poultry manure applied plots. Mehlich-3 test, which is suitable for all soils is suggested for the study of those calcareous soil samples with pH above 7.3. From 2012 to 2014, Mehlich-3 test, as well was used for soil phosphorous test. For the 2 soil samples tested in 2013 from calcareous soil (soil pH > 7.3), higher soil phosphorous concentrations (420 ppm P for the soil sample from plot 1; 200 ppm P for the soil sample from plot 2) were tested by Mehlich-3 test than those (300 ppm P for the soil sample from plot 1, PM; 148 ppm P for the soil sample from plot 2, PM2) tested by Bray 1-P for samples from both PM and PM2 treatments 0-15 cm soil.

Figure 0.3 Soil test pH from 2010 to 2014 The 0-15 cm and 15-30 cm soil NO₃-N concentrations are shown in Figure 4.4.

Unlike soil test phosphorous, an increasing trend of annual NO₃-N concentration is found for all three treatments (Figure 4.4) except 2013. The late manure application date in 2013

(Table 3.3) might explain this observation. As soil test was conducted several days before the manure application, the soil drained for months longer in 2013 than in other years. Large variation of soil NO₃-N was reported (the same with soil test phosphorous) in 2012. The soil test data in 2012 was a combination of two soil tests that might have been processed at different times which may explain the large variation of soil test data (both soil test phosphorous and NO₃-N concentration) in 2012.

When considering the effect of soil depth, none of the main variables year (p=0.11, ANOVA), treatment (p=0.76, ANOVA) or soil sampling depth (p=0.84, ANOVA) significantly affected the soil NO₃-N concentration. This finding is different from the result of (Cheatham, 2003), who found that PM2 and UAN (both with N application rates 336 kg \cdot ha⁻¹) treatments applied over 1998-2003 resulted in increase of soil NO₃-N concentration soil nitrogen, while, PM (with N application rates 168 kg \cdot ha⁻¹) had a lower likelihood of increase of soil NO₃-N concentration with both spring and fall soil test data. Soil NO₃-N concentration build up by year at the corn-on-corn field during the research study can be found from the trend shown (Figure 4.4), though statistical trends do not exist. This is different from the soil NO₃-N concentration build up trend of previous research (Cheatham, 2003), where no increase of either soil NO₃-N concentration or soil phosphorous could be found at the corn-soybean rotation field by year.

Therefore, compared with corn-soybean rotation, soil NO₃-N concentration under corn-on-corn planting get easier built up not only for UAN and PM2 treatment, but also for PM treatment, and soil phosphorous get easier built up for poultry manure plots as well.

34

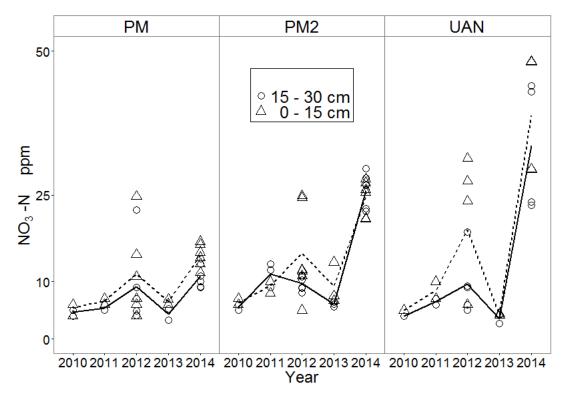


Figure 0.4 0-15 cm and 15-30 cm soil test NO₃-N concentrations for all treatments from 2010 to 2014

* different shape of points are used for different depth soil ** line through the mean value of each year are shown for each treatment

4.4. Effect of Multiple Variables on Crop Yield

The overall mean yields (Table 4.5) during the study period (2010-2014) for each treatment are PM2 8756 kg \cdot ha⁻¹, PM 7879 kg \cdot ha⁻¹, and UAN 6967 kg \cdot ha⁻¹. For different treatments for each year (Figure 4.5), the yields follow the order of PM2>PM>UAN. Although UAN plots are applied double the N rate than PM plots and similar N rate of the PM2 plots, the significant lower amount of soil phosphorous (section 4.3) likely explains the lower yield production for UAN plots in comparison with poultry manure plots. Mean yields for different treatments (p=0.0004) as well as different years (p<0.0001) and their interaction (p=0.0005) are all significantly different, according to ANOVA with year, treatment and the interactions as variables. Tukey pairwise comparison test also shows that mean yields for all three treatments are significantly different from each other, which is to say that the three treatments designed for the research contribute significantly differently to the crop yield. Multiple linear regression (MLR) model (BIC=-104.37, R²= 9648) with effective precipitation, effective solar radiation, GDD, treatment and the interaction of treatment and effective solar radiation, and the interaction of effective solar radiation and effective precipitation was developed to further explain the significance effect of variable year and the interaction of year and treatment (Table 4.6).

Year	PM (kg · ha ⁻¹)	PM2 (kg · ha ⁻¹)	UAN (kg · ha ⁻¹)	Mean (kg · ha ⁻¹)
2010	$8983(\pm 441)^1$	10130(±243)	8684(±377)	9338(±733)a
2011	9001(±116)	10218(±180)	8511(±314)	9335(±776)a
2012	9060(±441)	9329(±282)	8998(±551)	9145(±381)a
2013	5353(±686)	6468(±456)	3904(±337)	5408(±1157)b
2014	6999(±309)	7636(±142)	4737(±492)	6672(±1258)c
Mean	7879(±1582)a ²	8756(±1543)b	6967(±2322)c	

Table 0.5 Mean crop yields by treatment for years 2010 to 2014

^{*I*} the mean yearly yield is an average of all plots for each treatment with standard deviation in parentheses.

²Mean yields by treatment for all years follow the order PM2>PM>UAN. Tukey pairwise comparison test shows that mean yearly crop yields for all treatments are significantly different from each other. In each row, values with the same letter are not significantly different at the p=0.05 level.

Variables	Estimate	p-value
Intercept	-3.04×104	< 0.0001
GDD	35.5	< 0.0001
Effective solar radiation	-4.14	0.0008
Effective precipitation	84.3	< 0.0001
Treatment PM2	1.36×103	0.2347
Treatment UAN	-7.12×103	< 0.0001
Effective solar radiation * Treatment PM2	-0.144	0.6691
Effective solar radiation * Treatment UAN	1.86	< 0.0001
Effective solar radiation * Effective precipitation	-2.46×10-2	< 0.0001

Crop yields for all research plots by treatment and year are shown in Figure 4.5.

Table 0.6 Best estimate MLR model of crop yield by BIC (BIC=-104.37, R^2 =0.9648)

Tukey pairwise comparison shows that over the study period, 2010 (9338 kg \cdot ha⁻¹), 2011 (9335 kg \cdot ha⁻¹), and 2012 (9145 kg \cdot ha⁻¹) have similarly high mean crop yields, different from 2013 (5408 kg \cdot ha⁻¹) and 2014 (6672 kg \cdot ha⁻¹). The reason for lower yields from 2013 and 2014 is likely because of the variation of annual effective solar radiation (Table 4.2). Effective solar radiation is found to significantly (p=0.0008) affect the crop yield (Table 4.6). Further, the late planting date (Table 3.3) meant insufficient days 2013 and 2014. Yield in 2014 is higher than 2013 because the farm manager selected a corn seed (Table 3.3) with a lower relative maturity for year 2013, which is not a hybrid. Additionally, in 2014 there was sufficient precipitation (Table 4.1) and effective precipitation (Table 4.2), which is also a variable that significantly (p<0.0001) affects the yield (Table 4.6) Significant effect to crop yield is also found on GDD (p<0.0001, Table 4.6).

Higher yields from treatment PM2 than the other two treatments were found in all years except 2012. In 2012, PM plots were applied the largest N application rates (Table 4.4), which resulted in the smallest N source difference between PM and UAN plots. Compared

with the other effective solar radiation sufficient years 2010 and 2011 (Table 4.2), 2012 had the smallest N source difference between PM2 and PM (Table 4.4). These might explain the small yield difference over PM PM2 and UAN in 2012. Heat parameters are highly correlated to the solar radiation. Effective solar radiation seems to affect yields differently for UAN (p<0.0001, Table 4.6). As yields increase by solar radiation, steeper slope is found from UAN than poultry manure treatments (Figure 4.6). However, it is not logical in reality. In fact, the lower increase of yields for poultry manure treatment resulted from the small yield differences in 2012 (with the largest effective solar radiation). Effective solar radiation is also found to negatively affect the effect of the effective precipitation to crop yield (p<0.0001, Table 4.6). For years with low effective solar radiation ($< 3000 \text{ MJ} \cdot \text{m}^{-2}$), greater effective precipitation significantly increases the crop yield; while for years with high effective solar radiation (> 3400 MJ \cdot m⁻²), the effective of effective precipitation on yield is diminished (Figure 4.7). Similar but detailed results were found by Boyer (1970), who reported the inhibition of photosynthesis in field grown maize in low leaf water potentials (< -0.35 MPa).

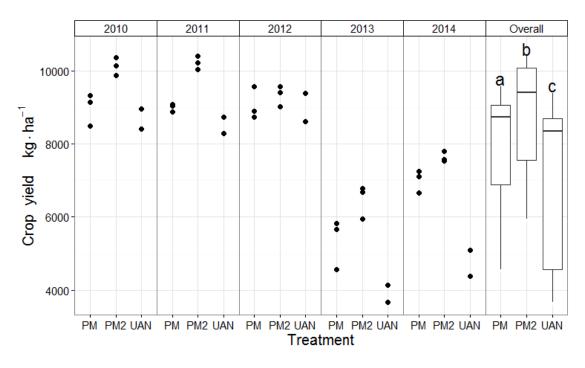


Figure 0.5 Crop yields for all treatments all plots from 2010 to 2014

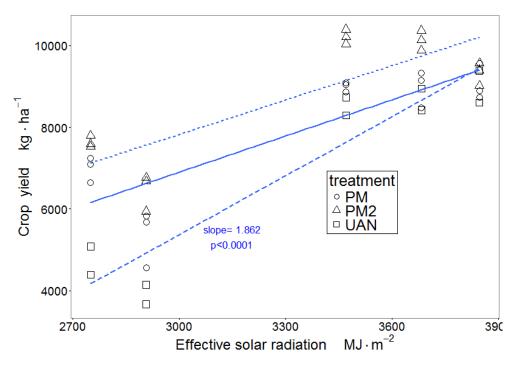


Figure 0.6 Effect of effective solar radiation on crop yield by treatment

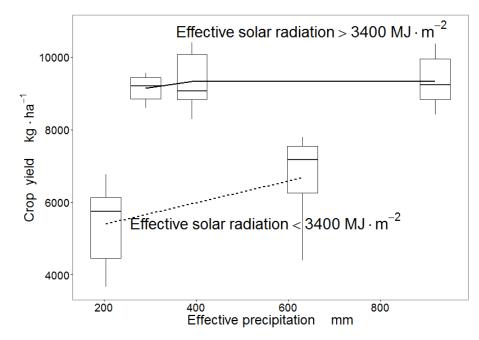


Figure 0.7 Effect of the interaction of effective precipitation and effective solar radiation on crop

yield

Therefore, we are able to conclude that under the same $(224 \text{ kg} \cdot \text{ha}^{-1})$ or half $(112 \text{ kg} \cdot \text{ha}^{-1})$ amount of nitrogen application rate with UAN $(224 \text{ kg} \cdot \text{ha}^{-1})$, PM2 and PM have greater yields, without considering the impact of significant different levels of soil phosphorous (section 4.3). Effective solar radiation is the dominant factor that increases the crop yield in comparison with effective precipitation, which would benefit the yield when lacking effective solar radiation.

4.5 Effects of Year and Treatment on Nutrient Loads from Drainage Flow

4.5.1 Effects of year and treatment on NO₃-N load from drainage flow

The treatment mean flow weighted NO₃-N load (Table 4.7) during the research years (2010-2014) are 43.4 kg \cdot ha⁻¹ for PM2, 13.8 kg \cdot ha⁻¹ for PM, and 51.9 kg \cdot ha⁻¹ for UAN. For different treatments, flow weighted NO₃-N loads follow the order UAN>PM2>PM in 2010, 2012 and 2013. Though plots from both UAN and PM2 treatments are applied under similar N application rate (about 224 kg \cdot ha⁻¹, Table 4.4) in 2010, 2012 and 2013, mean yearly drainage is 164 mm for UAN, 1.47 times the drainage of PM2, which is 112mm (Table 4.3). The flow weighted NO₃-N load from UAN in 2010, 2012 and 2013 is 44.8 kg \cdot ha⁻¹, 1.5 (similar to 1.47) times the flow weighted NO₃-N load from PM2, which is 29.8 kg \cdot ha⁻¹.

Differences were observed in 2014 when the flow weighted NO₃-N loads follow the order PM2> UAN >PM. This is because in 2014, UAN plots gathered about 119 mm tile drainage, 0.82 times of the amount of drainage PM2 plots gathered (145 mm, Table 4.3). This ratio is close to the ratio of mean flow weighted NO₃-N load for UAN (73.2 kg \cdot ha⁻¹, Table 4.7) over mean flow weighted NO₃-N load for PM2 (83.8 kg \cdot ha⁻¹) in 2014, which is 0.87. Therefore, the variation of treatment mean flow weighted NO₃-N load can be best explained by the variation of yearly tile drainage.

Statistical differences between NO₃-N load in different treatments is found according to ANOVA (p=0.0226). Tukey pairwise comparison test also shows that the mean NO₃-N

load for treatment PM plots is significantly different from the other two treatments (Figure 4.8). There is no significant difference between the NO₃-N load for treatment PM2 and UAN,

although it is reported that the mean NO₃-N load for UAN is larger than that of PM2. The

lower application rate of NO₃-N for PM plots (Table 4.4) may best explain the significant

lower NO₃-N load from PM plot tile drainage.

Table 0.7 Yearly nitrogen load by treatment from 2010 to 2014

Year	PM (kg · ha ⁻¹)	$\mathbf{PM2}(\mathbf{kg}\cdot\mathbf{ha}^{-1})$	UAN (kg \cdot ha ⁻¹)	Mean (kg \cdot ha ⁻¹)
2010	$16.6(\pm 8.4)1$	$32.8(\pm 20.2)$	$51.3(\pm 3.6)$	33.6(±18.6)a
2012^2	$11.8(\pm 13.3)$	$16.5(\pm 8.2)$	$25.6(\pm 2.7)$	$18(\pm 10.2)a$
2013	$12.3(\pm 4.4)$	$40.2(\pm 11.6)$	$57.4(\pm 3.2)$	$36.6(\pm 20.5)a$
2014	$13.9(\pm 3.2)$	$83.8(\pm 18.1)$	$73.2(\pm 26.3)$	$56.9(\pm 37)b$
Mean	$13.6(\pm 7.4)a^3$	43.4(±29.1)b	51.9(±20.9)b	

¹the mean yearly nitrogen load is an average of all plots for each treatment with standard deviation in parentheses

²little drainage in 2011, no sample were collected in 2011

³mean NO₃-N loads by treatment for all years follow the order UAN>PM2>PM. Tukey pairwise comparison test shows that mean yearly N loads of treatment PM is significantly lower than that of the other two treatments, there is no significant difference between N loads for PM2 and UAN. In each row, values with the same letter are not significantly different at the p=0.05 level.

Tukey pairwise comparison (Table 4.7) shows that over all the study years, 2010

 $(33.6 \text{ kg} \cdot \text{ha}^{-1})$, 2012 (18 kg \cdot ha⁻¹) and 2013 (36.6 kg \cdot ha⁻¹) have similarly lower mean

NO₃-N loads, when compared to 2014 (56.9 kg \cdot ha⁻¹). However suitable drainage is used to

explain the NO₃-N load, as both drainage and concentration are directly affecting the load in

the formula of calculation, statistic explanation by these two factors makes no sense. Instead,

other related factors, such as the greater precipitation (Table 4.1) with lower yield (Table 4.5)

occurred in 2014, may explain high NO₃-N load in that year. However, no significant

evidence is found for different annual mean NO₃-N load by ANOVA (p=0.9653). The interaction of year and treatment is significantly affecting the mean NO₃-N load (p=0.0069, ANOVA). MLR model (BIC=-82.83, R^2 = 0.9716) with variables yield, NO₃-N concentration by plot, drainage, and the interaction of treatment and drainage, the interaction of treatment and temperature and treatment and the interaction of yield and drainage was developed to further explain the significant effect of the interaction of year and treatment (Table 4.8). *Table 0.8 Best estimates MLR model of NO₃-N load by BIC (BIC=-82.83, R²=0.9716)*

Variables	Estimate	p-value
Intercept	-73	< 0.0001
Crop yield	8.28×10-3	0.0012
NO3-N concentration	1.10	< 0.0001
Drainage	0.702	< 0.0001
Treatment PM2 * Drainage	0.162	0.0006
Treatment UAN * Drainage	8.44×10-2	0.0136
Treatment PM2 * Yield	1.07×10-3	0.6608
Treatment UAN * Yield	-2.96×-3	0.1838
Treatment PM * Temperature	-0.880	0.529
Treatment PM2 * Temperature	-3.84	0.02
Treatment UAN * Temperature	-0.262	0.8495
Crop yield * Drainage	-6.88×10-5	< 0.0001

Mean NO₃-N concentration (p<0.0001), drainage (p<0.0001) and crop yield

(p=0.0012) are found to affect NO₃-N load significantly (Table 4.8). Drainage as well as mean NO₃-N concentration are used as parameters of load calculation shown in part 3.5, which are obviously highly related to nutrient load. Considering the nitrogen cycle in the soil, generally, the larger yield results in a greater nitrogen utilization, which leads to lower nitrate leaching under the same nitrogen source application. Thus, increased yield is related to lower nitrate leaching. The interaction of drainage and crop yield also significantly affects NO₃-N

load (p<0.0001, Table 4.8), which means, the amount of drainage affect the NO₃-N load differently in terms of different crop yields. For years with low crop yield (< 8000 kg \cdot ha⁻¹), the NO₃-N loads increases as drainage increases, when compared to years with high crop yield (> 8000 kg \cdot ha⁻¹).

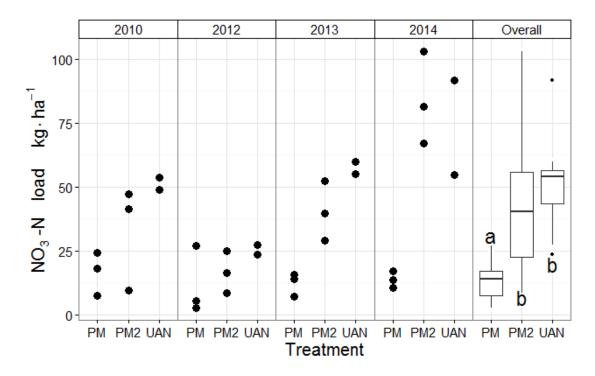


Figure 0.8 NO₃-N load for each treatment each plot from 2010 to 2014

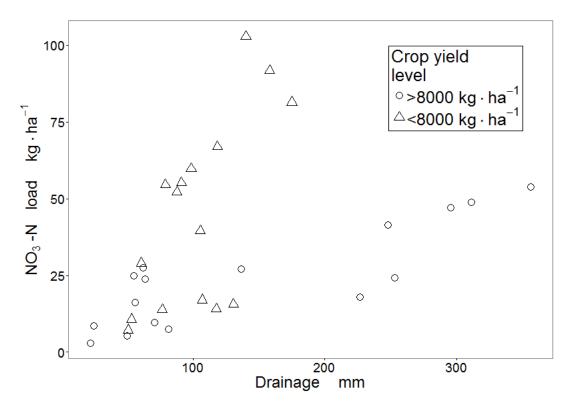


Figure 0.9. Effect of the interaction of yield and drainage on NO₃-N yield

Therefore, we are able to conclude that applying treatment PM leads to a lower NO₃-N load than applying the other two treatments. There is no difference of NO₃-N load by applying PM2 or UAN. A larger crop yield would diminish the increasing trend of NO₃-N load by drainage. In part 4.4, it shows that PM2 contributes to the largest yield, while applying UAN, which is of the same NO₃-N application rate with PM2, has the lowest yield. However, when it comes to NO₃-N load, UAN contributes similar NO₃-N load as PM2 does. Additionally, PM leads to larger yield but lower NO₃-N load relative to UAN. Therefore, when applying at the same N rate ($224 \text{ kg} \cdot \text{ha}^{-1}$), PM2 is more efficient for corn yield while at the same time contributes to similar amount of NO₃-N load in comparison with UAN.

When applying at about half the N rate (112 kg \cdot ha⁻¹), PM is more NO₃-N load friendly and crop yield efficient than UAN.

4.5.2 Effects of year and treatment on PO₄-P load from drainage flow

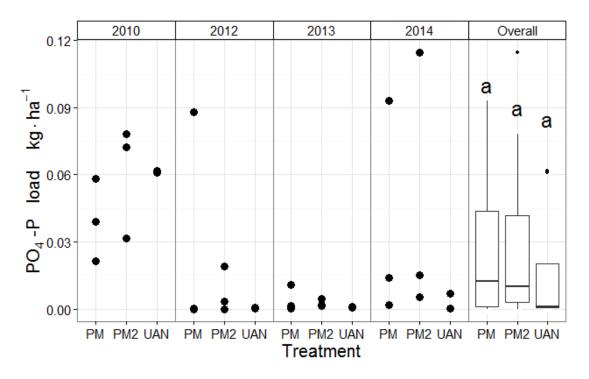

The treatment mean flow weighted PO₄-P load (Table 4.9) during the research years (2010-2014) are 0.029 kg \cdot ha⁻¹ for PM2, 0.027 kg \cdot ha⁻¹ for PM, and 0.017 kg \cdot ha⁻¹ for UAN. For different treatments, overall flow weighted PO₄-P loads follow the order PM2>PM>UAN. This is also the order of P application rate (Table 4.4), soil test phosphorous (Figure 4.2) and PO₄-P concentration (Table 4.11). UAN plots are assumed to leach little phosphorous as they have not received phosphorous application for over 5 years. In 2012 and 2013, the two dry years (Table 4.1), the water samples collected from the UAN plots had little PO₄-P load measured. However, in the wet years (2010 and 2014), high PO₄-P loads and high variation are found from all treatment plots likely because of the soil phosphorous movement through macropores under the impact of frequent precipitation. Geohring et al. (2001) also pointed out the important impact of phosphorus losses in subsurface runoff when weather conditions favor rapid flow through cracks or macropores. No significant difference among the median PO₄-P loads of all three treatments is found according to Wilcoxon rank sum test (Table 4.9, Figure 4.10). Significant difference of median PO₄-P loads are found between 2010 and 2012, 2010 and 2013, and 2013 and 2014 (Table 4.9).

Table 0.9 Yearly PO₄-P load for each treatment from 2010 to 2014

Year	PM (kg \cdot ha ⁻¹)	PM2 (kg · ha ⁻¹)	UAN (kg \cdot ha ⁻¹)	Mean (kg \cdot ha ⁻¹)
2010	$0.04(\pm 0.018)^1$	$0.061(\pm 0.025)$	$0.061(\pm 0)$	$0.054(\pm 0.008)$ a
2012^2	$0.029(\pm 0.051)$	$0.007(\pm 0.01)$	$0(\pm 0)$	$0.012(\pm 0.011)$ bc
2013	$0.004(\pm 0.006)$	$0.003(\pm 0.002)$	$0.001(\pm 0)$	$0.002(\pm 0.001)b$
2014	$0.036(\pm 0.05)$	$0.045(\pm 0.06)$	$0.003(\pm 0.005)$	$0.028(\pm 0.009)$ ac
Mean	$0.027(\pm 0.01)a^3$	$0.029(\pm 0.01)$ a	$0.017(\pm 0.009)$ a	

1. the mean yearly phosphorous loads by treatment with standard deviation in parentheses 2. there's little drainage in 2011, no sample were collected in 2011

3. mean PO_4 -P loads by treatment for all years are close. Wilcoxon rank sum non-parametric test shows that there is no significant difference among the median PO_4 -P loads of all three treatments. In each row, values with the same letter are not significantly different at the p=0.05 level.

*Figure 0.10 PO*₄*-P load for each treatment each plot from 2010 to 2014*

Therefore, we are only able to conclude that UAN is more PO₄-P load friendly in dry years. It is difficult to tell the difference between PM and PM2 for the contribution of PO₄-P load as they both have relatively high PO₄-P loads.

4.6 Effects of Year and Treatment on Nutrient Concentrations in Drainage Tile Water 4.6.1 Effects of year, treatment and water event on nitrate-nitrite concentrations in drainage tile water

The overall mean nitrate-nitrite concentrations (Table 4.10) during the research years (2010-2014) for each treatment are 38.7 mg \cdot L⁻¹ for PM2, 13.5 mg \cdot L⁻¹ for PM, and 43.5 mg \cdot L⁻¹ for UAN. For different treatments each year, the nitrate-nitrite concentrations follow the order UAN>PM2>PM. Due to the lower N application rate (Table 3.1), during the study period, PM has the lowest NO₃-N concentration and the smallest variation, which is the most likely to meet the 10 mg \cdot L⁻¹ NO₃-N MCL of drink water, set by the U.S. EPA. Treatment (p<0.0001), year (p<0.0001) and their interaction (p<0.0001) are found to significantly affect the mean NO₃-N concentrations according to ANOVA. Tukey pairwise comparison test also shows that NO_3 -N concentrations for all three treatments (Table 4.10, Figure 4.11) and for all research years (Table 4.10) are significantly different from each other. The annual NO₃-N concentrations during the research years are 13.2 mg \cdot L⁻¹ for 2010, 29.4 mg \cdot L⁻¹ for 2012, 38.6 mg \cdot L⁻¹ for 2013, and, 46.5 mg \cdot L⁻¹ for 2014. An increasing NO₃-N concentration trend by year is found as fertilizers are applied, which is consistent with the soil N source accumulation discussed in section 4.3. Therefore, we are able to conclude that among all three treatments, PM with lower N application rate has the lowest NO3-N concentration, 13.5 mg \cdot L⁻¹ that is closest to the 10 mg \cdot L⁻¹ NO₃-N MCL of drink

water, EPA. PM is also more NO₃-N concentration friendly and crop yield efficient than

UAN.

Table 0.10 Mean NO₃-N concentration by treatment from year 2010 to year 2014

Year	PM (mg · L ⁻¹)	PM2 (mg · L ⁻¹)	UAN (mg \cdot L ⁻¹)	Mean (mg · L ⁻¹)
2010	$9.1(\pm 0.5)^1$	$15.3(\pm 0.3)$	$15.2(\pm 0.6)$	$13.2(\pm 3.2)a$
2012^{2}	$14.3(\pm 3.6)$	$35.3(\pm 9.6)$	$38.5(\pm 4)$	$29.4(\pm 12.9)b$
2013	$12.8(\pm 1.7)$	$47.3(\pm 12.6)$	$55.8(\pm 1.6)$	$38.6(\pm 21.1)c$
2014	$17.9(\pm 1.8)$	$56.9(\pm 14.2)$	$64.6(\pm 8.8)$	$46.5(\pm 23.6)$ d
Mean	$13.5(\pm 3.8)a^3$	$38.7(\pm 20.5)$ b	$43.5(\pm 18.6)c$	

¹mean yearly sample NO₃-N concentration by treatment with standard deviation in parentheses

²there's little drainage in 2011, thus no sample were collected in 2011

³mean sample nitrate-nitrite concentration by treatment for all years follow the order UAN>PM2>PM. Tukey pairwise comparison test shows significant difference of the mean sample NO_3 -N concentrations for all treatments In each row, values with the same letter are not significantly different at the p=0.05 level.

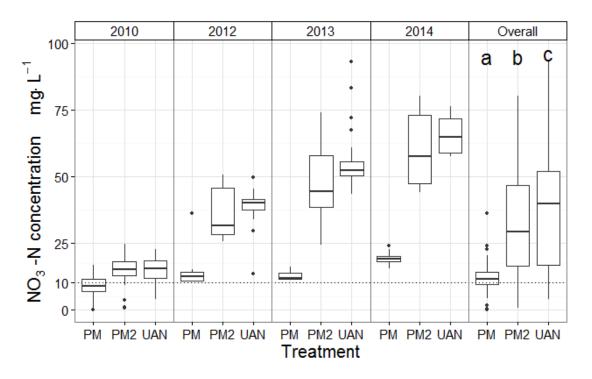


Figure 0.11 Tile drainage NO₃-N concentration for all research plots by treatment and year

4.6.2 Effects of year, treatment on orthophosphate concentrations in drainage tile water

Year	$\mathbf{PM}(\mathbf{mg}\cdot\mathbf{L}^{-1})$	PM2 (mg · L ⁻¹)	$UAN (mg \cdot L^{-1})$	Mean (mg \cdot L ⁻¹)
2010	$0.016(\pm 0.012)^1$	$0.029(\pm 0.006)$	$0.013(\pm 0.003)$	$0.02(\pm 0.01)$ a
2012^2	$0(\pm 0)$	$0.006(\pm 0.011)$	$0(\pm 0)$	$0.002(\pm 0.007)b$
2013	$0.001(\pm 0.001)$	$0.005(\pm 0.005)$	$0.001(\pm 0.001)$	$0.002(\pm 0.004)c$
2014	$0.023(\pm 0.036)$	$0.036(\pm 0.055)$	$0.001(\pm 0)$	$0.02(\pm 0.038)$ d
Mean	$0.01(\pm 0.019)ab^3$	$0.019(\pm 0.028)$ a	$0.004(\pm 0.006)b$	

Table 0.11 Median orthophosphate concentration by year from year 2010 to year 2014

¹median orthophosphate concentration, a median of all samples by treatment for each year with standard deviation in parentheses

²there's little drainage in 2011, no sample were collected in 2011

³*median* sample phosphate concentration by treatment for all years follow the order that PM2>PM>UAN. Wilcoxon rand sum non-parametric test only shows significant difference between the median PO₄-P concentration of UAN and PM2. In each row, values with the same letter are not significantly different at the p=0.05 level.

The median phosphate concentrations (Table 4.11) for each treatment are 0.019 mg \cdot

 L^{-1} for PM2, 0.01 mg · L^{-1} for PM, and 0.004 mg · L^{-1} for UAN. For different treatments for each year, the phosphate concentrations follow the order PM2>PM>UAN. This is also the order of P application rate (Table 4.4), soil test phosphorous (Figure 4.2) and PO4-P load (Table 4.9). Median is reported instead of mean is because of huge variation and the nonenormal distribution of concentration data, where mean value is not as suitable as median value to reveal the whole PO₄-P concentration data under the effect of huge data variation because of the soil phosphorous movement in precipitation.

Tile drainage PO₄-P concentration for all research plots by treatment and year are shown in Figure 4.12 with 6 samples which have extremely high PO₄-P concentrations (>0.25 mg \cdot L⁻¹) excluded in the figure (they were included in the statistical analysis). In 2012 and 2013, the two dry years, the water sample in all treatment plots had limited PO₄-P

concentration measured with medians close to 0.001, the detection level of PO₄-P. In wet years, 2010 and 2014, higher PO₄-P concentrations are found from all treatment except UAN in 2014. Median PO₄-P concentrations in wet year with low yield (2014) is lower than the median concentration in wet year with high yield (2010). Wilcoxon rank sum test only shows significant difference between the median PO₄-P concentrations of UAN and PM2. (Table 4.11, Figure 4.12). Significant different median PO₄-P concentrations are found for all research years (Table 4.11).

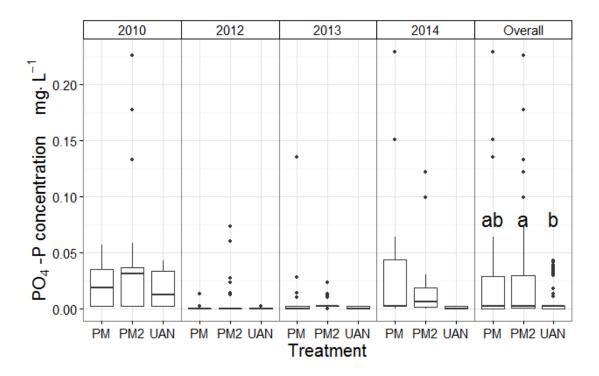


Figure 0.12 Tile drainage PO₄-P concentration for all research plots by treatment and year * 6 samples which have extreme high PO₄-P concentrations (>0.25 mg · L⁻¹) are excluded in the figure (they are included in statistical analysis)

Therefore, we are able to conclude that UAN is more PO₄-P concentration friendly in comparison of PM2 There tends to be higher PO₄-P concentrations in wet years than dry years.

4.7 Seasonal patterns of drainage NO₃-N

Significant decreasing trend of monthly NO₃-N loads can be found from both dry years, 2012 and 2013 (Figure 4.13). As for dry years (2012 and 2013), the majority of the load occurs before June when the amount of water the crop needs is limited, temperature is lower and tile drains are flowing. This observation was different for wet years, in wet years (2010 and 2014), NO₃-N loads in 2010 fluctuate, while, NO₃-N loads in 2014 increase by month. There exists a possibility that nitrate is stored in the soil in dry year (2012 and 2013) and then lost with drainage in the following wet years (2014); A dry year followed by a wet year may result in leaching of unused nitrogen.

Similar trends are found between monthly NO₃-N loads and monthly drainage (Figure 4.14). As described, variation of drainage can best explain the variation of treatment mean flow weighted NO₃-N loads. It seems as if NO₃-N loads are linear related to drainage only, although, in fact NO₃-N concentration also follows this pattern.

The fluctuation of NO₃-N concentration in 2010 (APPENDIX C1 a) looks similar as the trend Nguyen (2013) recorded from 1998 to 2009, with increase before June and decrease after July, indicating the usage of nitrogen for crop growth. This is a proof of the transfer year 2010, when before, corn-soybean rotation is applied on field 5 A. However, starting from 2010 the cropping system was changed to a corn on corn system. Similarly, the field is fertilized every year. An increasing amount of soil NO₃-N is observed (section 4.3). Soil NO₃-N build up is so serious that even crop usage does not affect the drainage NO₃-N concentration much for the following years. Actually, except 2010, the series drainage NO₃-N concentration keeps increasing annually but shows no similar trend (APPENDIX C1). And it seems as if NO₃-N loads are linear related to drainage only, although, in fact NO₃-N concentration follows similar trends. We can infer that not only during the last year, but also during the two dry years, the field is leaching NO₃-N that is stored during the previous year. Regarding 2014, it is difficult to know that if the high NO₃-N leaching is because 2014 is following by a dry year or because of continuous fertilizer application.

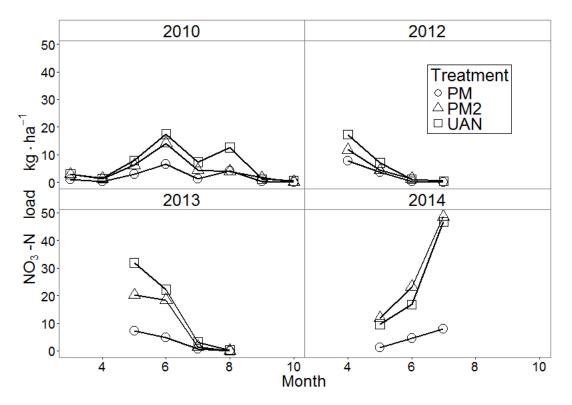


Figure 0.13 Monthly NO₃-N loads for all treatments by year

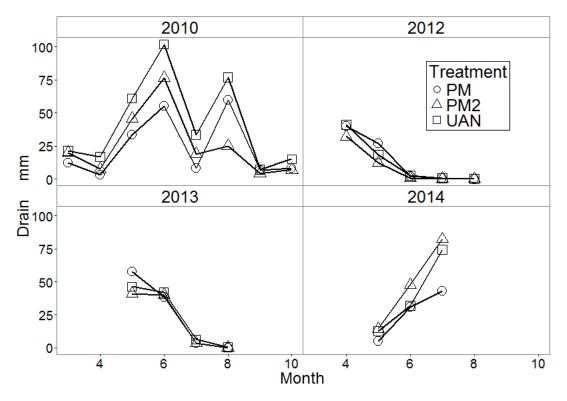


Figure 0.14 Monthly drainage for all treatments by year

CHAPTER V: CONCLUSIONS

With the experiment designed, the research covers the comparison of manure application, soil nutrients, crop yields, NO₃-N and PO₄-P loads, and NO₃-N and PO₄-P concentrations between treatments (PM, PM2 and UAN) and years (2010-2014). Major findings are listed below:

· All plots are applied fertilizer on an N-basis that is similar to the designed application rates (112 kg \cdot ha-1 for PM and 224 kg \cdot ha-1 for PM2, Table 3.2).

· Potential lack of soil phosphorous is significant on UAN plots

• Mehlich 3-P test are suggested for calcareous soil with pH larger than 7.3 to avoid underestimated of soil nitrate by Bray 1-P test.

• Instead of corn-soybean rotation, soil NO₃-N concentration under corn-on-corn planting builds up for all treatments. Soil phosphorous builds up for poultry manure applied plots

 \cdot Under half (112 kg \cdot ha⁻¹) or the same (224 kg \cdot ha⁻¹) amount of nitrogen application rate with UAN (224 kg \cdot ha⁻¹), PM and PM2 result in greater yield production, without considering the nutrient control of phosphorous and other micro nutrient sources. Effective solar radiation dominants the advantage of crop yield in comparison with effective precipitation, which would benefit the yield when lacking effective solar radiation.

• PM2 is more efficient on producing corn yield while at the same time contributes similar NO₃-N load and concentration in comparison with UAN. PM is more NO₃-N load and concentration friendly and produces larger crop yields than UAN. UAN has significantly lower PO₄-P concentrations than PM2 and is more PO₄-P loads friendly than the other two treatments.

CHAPTER VI: SUGGESTION AND FUTURE EXPECTION

Manure nitrogen is suggested to diminish the accumulation of nutrients in the soil of poultry manure plots. Applying additional phosphorous, potassium and micro nutrient source to UAN plots to a level that is similar to the amount of P as applied in PM or PM2 plots to reduce variables that would affect crop yield, which also better control the variables affect nutrient losses. Instead of requiring manure early in spring right before the planting, store manure on the field after stalk chopping before the winter in the prior year. This diminishes the possibility of late planting and results in sufficient time for plant growth, which leads to a consistent growing days and a consistent seed type each year during the research period, which further control the variables affect the crop yield and nitrogen and phosphorous losses.

Possible future research could be focused on further developing the P index. Make modular to model the drainage and tile P movement with monitored data support. Also effect of manure application on nutrient losses with a P-basis manure application design.

REFERENCES

- Baker, J., and H. Johnson. 1981. Nitrate-nitrogen in tile drainage as affected by fertilization. Journal of Environmental Quality. 10 (4): 519-522.
- Bakhsh, A., R. S. Kanwar, T. B. Bailey, C. A. Cambardella, D. Karlen, and T. S. Colvin. 2002. Cropping system effects on NO3-N loss with subsurface drainage water. Transactions of the ASAE. 45 (6): 1789.
- Benbi, D., and C. Biswas. 1996. Nitrogen balance and N recovery after 22 years of maize-wheatcowpea cropping in a long-term experiment. Nutrient Cycling in Agroecosystems. 47 (2): 107-114.
- Boyer, J. 1970. Differing sensitivity of photosynthesis to low leaf water potentials in corn and soybean. Plant Physiology. 46 (2): 236-239.
- Bundy, L. G., and T. W. Andraski. 2005. Recovery of fertilizer nitrogen in crop residues and cover crops on an irrigated sandy soil. Soil Science Society of America Journal. 69 (3): 640-648.
- Carpenter, S. R., D. BOLGRIEN, R. C. LATHROP, C. A. STOW, T. REED, and M. A. WILSON. 1998. Ecological and economic analysis of lake eutrophication by nonpoint pollution. Australian Journal of Ecology. 23 (1): 68-79.
- Cheatham, Melissa Rnee (2003). The impact of poultry manure on water quality using tile drained field plots and lysimeters. Master's Thesis
- Chinkuyu, A. J. 2000. Environmental impacts of the use of poultry manure for agricultural production systems.
- Chinkuyu, A. J., R. S. Kanwar, J. C. Lorimor, H. Xin, and T. B. Bailey. 2002. Effects of laying hen manure application rate on water quality. Transactions of the ASAE. 45 (2): 299-308.
- De Vos, J., D. Hesterberg, and P. Raats. 2000. Nitrate leaching in a tile-drained silt loam soil. Soil Science Society of America Journal. 64 (2): 517-527.
- Dinnes, D. L., D. L. Karlen, D. B. Jaynes, T. C. Kaspar, J. L. Hatfield, T. S. Colvin, and C. A. Cambardella. 2002. Nitrogen management strategies to reduce nitrate leaching in tiledrained Midwestern soils. Agronomy journal. 94 (1): 153-171.
- Duan, Y., M. Xu, B. Wang, X. Yang, S. Huang, and S. Gao. 2011. Long-term evaluation of manure application on maize yield and nitrogen use efficiency in China. Soil Science Society of America Journal. 75 (4): 1562-1573.
- Durieux, R. P., H. J. Brown, E. Stewart, J. Zhao, W. E. Jokela, and F. R. Magdoff. 1995. Implications of nitrogen management strategies for nitrate leaching potential: Roles of nitrogen source and fertilizer recommendation system. Agronomy Journal. 87 (5): 884-887.
- Edwards, D., and T. Daniel. 1992. Environmental impacts of on-farm poultry waste disposal—A review. Bioresource Technology. 41 (1): 9-33.

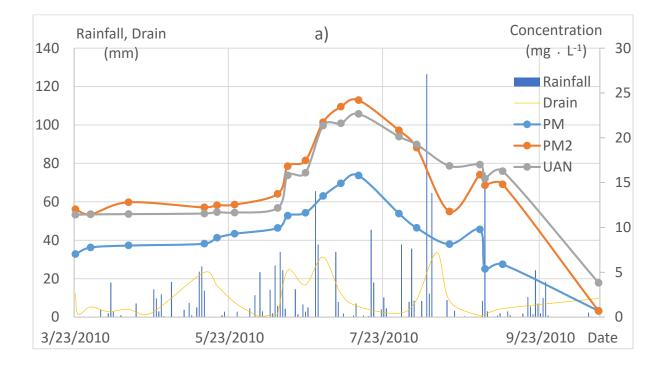
- Geohring, L. D., O. V. McHugh, M. T. Walter, T. S. Steenhuis, M. S. Akhtar, and M. F. Walter. 2001. Phosphorus transport into subsurface drains by macropores after manure applications: Implications for best manure management practices. Soil Science. 166 (12): 896-909.
- Hansen, E. M., and J. Djurhuus. 1996. Nitrate leaching as affected by long term N fertilization on a coarse sand. Soil Use and Management. 12 (4): 199-204.
- Harmel, R. D., R. L. Haney, and D. R. Smith. 2011. Effects of annual turkey litter application on surface soil quality of a Texas Blackland Vertisol. Soil science. 176 (5): 227-236.
- Hoover, N. L., R. Kanwar, M. L. Soupir, and C. Pederson. 2015. Effects of Poultry Manure Application on Phosphorus in Soil and Tile Drain Water Under a Corn-Soybean Rotation. Water, Air, & Soil Pollution. 226 (5): 1-12.
- Hruby, C. 2014. Impact of Poultry Manure Application on Bacteria and Phosphorous in Soils and Drainage Tile Waters. (Ph.D Dissertation).
- IowaStateUniversityExtension. 2008. Using Manure Nutrients for Crop Production. Iowa State University. Available at. Accessed.
- Kanwar, R., J. Baker, and D. Baker. 1988. Tillage and split N-fertilization effects on subsurface drainage water quality and crop yields. Transactions of the ASAE (USA).
- Kanwar, R., D. Stoltenberg, R. Pfeiffer, D. Karlen, T. Colvin, and W. Simpkins. 1993. Transport of nitrate and pesticides to shallow groundwater system as affected by tillage and crop rotation practices.
- Kirchmann, H., and L. Bergström. 2001. Do organic farming practices reduce nitrate leaching? Communications in Soil Science and Plant Analysis. 32 (7-8): 997-1028.
- Kladivko, E., J. Frankenberger, D. Jaynes, D. Meek, B. Jenkinson, and N. Fausey. 2004. Nitrate leaching to subsurface drains as affected by drain spacing and changes in crop production system. Journal of Environmental Quality. 33 (5): 1803-1813.
- Madison, A. M., M. D. Ruark, T. D. Stuntebeck, M. J. Komiskey, L. W. Good, N. Drummy, and E. T. Cooley. 2014. Characterizing phosphorus dynamics in tile-drained agricultural fields of eastern Wisconsin. Journal of Hydrology. 519: 892-901.
- Mallarino, A. P. S., J.E., 2013. Interpretation of Soil Test Results. Iowa State University Extension and Outreach.
- McMaster, G. S., and W. Wilhelm. 1997. Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology. 87 (4): 291-300.
- Meisinger, J., and W. Jokela. 2000. Ammonia volatilization from dairy and poultry manure. Managing nutrients and pathogens from animal agriculture. NRAES-130. Natural Resource, Agriculture, and Engineering Service, Ithaca, NY. 334-354.

- Menzi, H., P. Katz, R. Frick, M. Fahrni, M. Keller, S. Jarvis, and B. Pain. 1997. Ammonia emissions following the application of solid manure to grassland. Gaseous nitrogen emissions from grasslands.: 265-274.
- Moore, P., T. Daniel, A. Sharpley, and C. Wood. 1995. Poultry manure management: Environmentally sound options. Journal of Soil and Water Conservation. 50 (3): 321-327.
- Morecroft, M., T. Burt, M. Taylor, and A. Rowland. 2000. Effects of the 1995–1997 drought on nitrate leaching in lowland England. Soil Use and Management. 16 (2): 117-123.
- Nguyen, H. Q., R. S. Kanwar, N. L. Hoover, P. M. Dixon, J. M. Hobbs, and M. L. Soupir. 2013. Long-Term Effects of Poultry Manure Application on Nitrate Leaching in Tile Drain Water. Transactions of the ASABE. 56 (1): 91.
- Power, J., R. Wiese, and D. Flowerday. 2000. Managing nitrogen for water quality—Lessons from management systems evaluation area. Journal of Environmental Quality. 29 (2): 355-366.
- Randall, G., D. Huggins, M. Russelle, D. Fuchs, W. Nelson, and J. Anderson. 1997. Nitrate losses through subsurface tile drainage in conservation reserve program, alfalfa, and row crop systems. Journal of Environmental Quality. 26 (5): 1240-1247.
- Randall, G. W., and D. J. Mulla. 2001. Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices. Journal of Environmental Quality. 30 (2): 337-344.
- Sawyer, J. E., and A. P. Mallarino. 1999. Differentiating and Understanding the Mehlich 3, Bray, and Olsen Soil Phosphorus Tests. 19th Annual Crop Pest Management Short Course, University of Minnesota.
- Sawyer, J. E. 2002. General guide for crop nutrient and limestone recommendations in Iowa.
- Schneider, E., and S. Gupta. 1985. Corn emergence as influenced by soil temperature, matric potential, and aggregate size distribution. Soil Science Society of America Journal. 49 (2): 415-422.
- Sharpley, A. N., S. Chapra, R. Wedepohl, J. Sims, T. C. Daniel, and K. Reddy. 1994. Managing agricultural phosphorus for protection of surface waters: Issues and options. Journal of Environmental Quality. 23 (3): 437-451.
- Smith, K., and B. Chambers. 1995. Muck: from waste to resource utilization: the impacts and implications. Agricultural Engineer.
- Sommer, S., and B. Christensen. 1991. Effect of dry matter content on ammonia loss from surface applied cattle slurry. Odour and ammonia emissions from livestock farming. 141-147.
- Sommer, S. G., and J. E. Olesen. 1991. Effects of dry matter content and temperature on ammonia loss from surface-applied cattle slurry. Journal of Environmental Quality. 20 (3): 679-683.

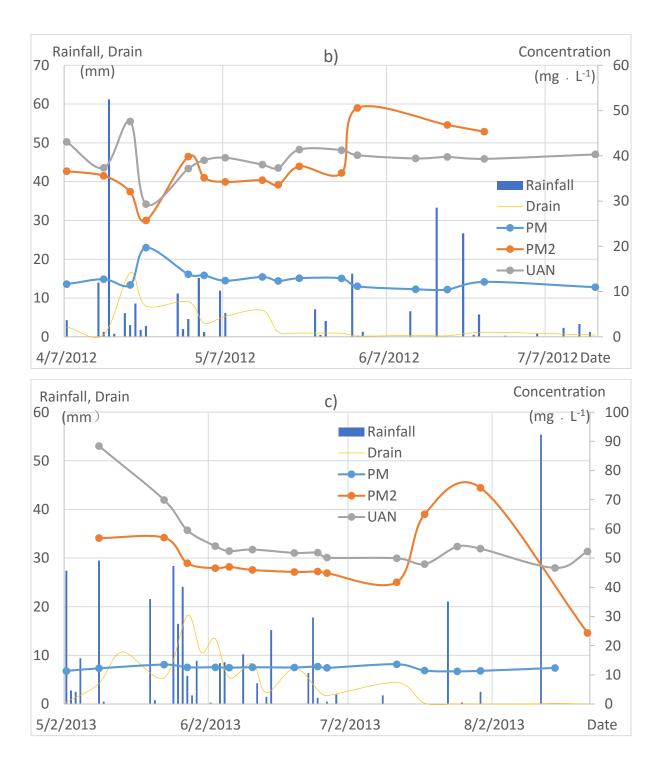
- Sommer, S. G., J. E. Olesen, and B. T. Christensen. 1991. Effects of temperature, wind speed and air humidity on ammonia volatilization from surface applied cattle slurry. The Journal of Agricultural Science. 117 (01): 91-100.
- Sprague, L. A., and J. A. M. Gronberg. 2012. Relating management practices and nutrient export in agricultural watersheds of the United States. Journal of environmental quality. 41 (6): 1939-1950.
- UADA-NASS. 2014. Agricultural Statistics 2013.
- USDA-NASS. 2015. USDA-NASS. Available at: http://www.nass.usda.gov/. Accessed 2015/02/05.
- Van Es, H. M., J. M. Sogbedji, and R. R. Schindelbeck. 2006. Effect of manure application timing, crop, and soil type on nitrate leaching. Journal of environmental quality. 35 (2): 670-679.
- Weed, D., and R. Kanwar. 1996. Nitrate and water present in and flowing from root-zone soil. Journal of Environmental Quality. 25 (4): 709-719.
- Wood, C. 1992. Broiler litter as a fertilizer: Benefits and environmental concerns. In Proc. Natl. Poultry Waste Manage. Symp., Birmingham, AL, 6-8.
- WSS. 2015. Web Soil Survey. Available at: <u>http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm</u>. Accessed 2015/05/21.
- Zhang, W., M. Xu, B. Wang, and X. Wang. 2009. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of southern China. Nutrient cycling in agroecosystems. 84 (1): 59-69.

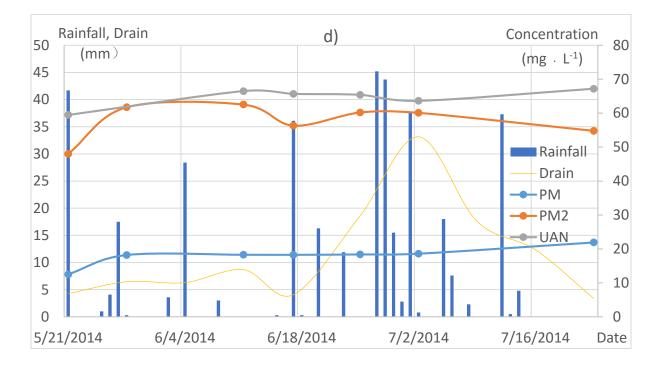
APPENDIX A	Α.	SPRING	SOIL	TEST

year	treatment	plot	depth	pН	Ompct	B-P(ppm)	NO3-N(ppm)
2010	PM2	1	0-15 cm	6.9	3.4	57	6
2010	PM2	1	15-30 cm	6.5	2.7	11	6
2010	PM2	3	0-15 cm	6.85	3.3	82	7
2010	PM2	3	15-30 cm	6.8	2.8	32	6
2010	PM2	7	0-15 cm	6.95	3.9	94	6
2010	PM2	7	15-30 cm	6.2	3.3	16	5
2010	PM	2	0-15 cm	6.8	2.9	34	4
2010	PM	2	15-30 cm	6.7	2	9	4
2010	PM	5	0-15 cm	6.75	3.6	58	6
2010	PM	5	15-30 cm	6.25	3.2	17	5
2010	PM	10	0-15 cm	7.2	3.4	84	6
2010	PM	10	15-30 cm	6.45	3.1	11	5
2010	UAN	8	0-15 cm	6.8	3.9	20	5
2010	UAN	8	15-30 cm	6.1	3.7	8	4
2011	PM2	1	0-15 cm	7.5	3.9	288	10
2011	PM2	1	15-30 cm	6.7	2.9	41	13
2011	PM2	3	0-15 cm	7.4	3.1	214	8
2011	PM2	3	15-30 cm	6.85	2.1	35	9
2011	PM2	7	0-15 cm	7.15	4.1	230	10
2011	PM2	7	15-30 cm	6.15	3.4	27	12
2011	PM	2	0-15 cm	7.35	2.9	90	6
2011	PM	2	15-30 cm	6.8	1.8	24	5
2011	PM	5	0-15 cm	7.65	3.7	96	7
2011	PM	5	15-30 cm	7.55	3	12	6
2011	PM	10	0-15 cm	7.25	3.6	110	7
2011	PM	10	15-30 cm	6.65	2.8	11	5
2011	UAN	4	0-15 cm	6.8	3.8	20	10
2011	UAN	4	15-30 cm	6.45	3.4	10	7
2011	UAN	8	0-15 cm	6.85	3.4	17	7
2011	UAN	8	15-30 cm	6.4	2.9	7	6
2012	PM2	1	0-15 cm	7.15	4	374	12
2012	PM2	1	15-30 cm	6.65	2.6	92	9
2012	PM2	3	0-15 cm	7.15	3.1	254	11
2012	PM2	3	15-30 cm	6.85	2.4	132	11
2012	PM2	7	0-15 cm	7.1	3.5	155	5
2012	PM2	7	15-30 cm	6.45	3.1	74	8
2012	PM	2	0-15 cm	7.3	2.6	98	4
2012	PM	2	15-30 cm	6.65	2.1	25	7
2012	PM	5	0-15 cm	7.15	3.2	144	7

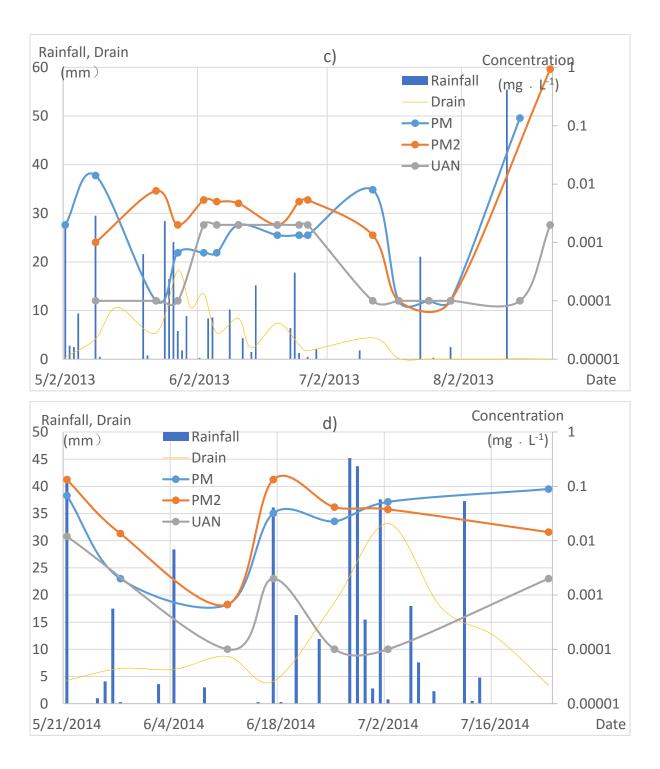

2012	PM	5	15-30 cm	6.35	2.7	39	7
2012	PM PM	10	0-15 cm	7.1	3.6	139	6
2012	PM PM	10	15-30 cm	6.65	3.0	36	9
2012	UAN	4	0-15 cm	6.05	2.9	8	6
			15-30 cm	6.2	3.2	o 11	5
2012 2012	UAN UAN	4 8	0-15 cm		2.8	11 12	6
		8		6.05			
2012	UAN		15-30 cm	6.5	3.4	15	6
2012	PM2	1	0-15 cm	7.2	4.076	255	24.55
2012	PM2	1	15-30 cm	6.4	3.066	15	8.8
2012	PM	2	0-15 cm	7.2	3.586	122	10.9
2012	PM	2	15-30 cm	6.15	2.691	14	4.92
2012	PM2	3	0-15 cm	7	3.446	198	24.85
2012	PM2	3	15-30 cm	6.3	2.56	21	10.85
2012	UAN	4	0-15 cm	5.85	4.167	9	23.95
2012	UAN	4	15-30 cm	5.85	3.383	4	9.15
2012	PM	5	0-15 cm	7.05	4.475	177	24.8
2012	PM	5	15-30 cm	5.95	3.861	14	22.45
2012	PM2	7	0-15 cm	7.05	4.522	225	11.85
2012	PM2	7	15-30 cm	5.95	4.298	26	10.25
2012	UAN	8	0-15 cm	6.75	3.776	14	31.4
2012	UAN	8	15-30 cm	6.15	3.25	6	18.6
2012	PM	10	0-15 cm	7.3	3.622	119	14.7
2012	PM	10	15-30 cm	6.45	3.052	11	4.045
2012	UAN	6	0-15 cm	5.9	3.931	9	27.45
2012	UAN	6	15-30 cm	5.85	3.351	4	8.95
2013	PM2	1	0-15 cm	7.35	3.913	330	13.35
2013	PM	2	0-15 cm	7.4	2.819	148	6.95
2013	PM2	3	0-15 cm	7.25	3.796	374	7.5
2013	UAN	4	0-15 cm	6.2	3.637	14	4.385
2013	PM	5	0-15 cm	7	3.616	141	6.05
2013	PM2	7	0-15 cm	7.15	3.754	285	6.65
2013	UAN	8	0-15 cm	6.5	3.583	20	4.16
2013	PM2	1	15-30 cm	6.4	2.563	46	6.45
2013	PM	2	15-30 cm	6.35	2.125	19	3.265
2013	PM2	3	15-30 cm	6.4	2.614	48	6.1
2013	UAN	4	15-30 cm	6.05	3.014	7	4.255
2013	PM	5	15-30 cm	6.05	3.163	17	5.3
2013	PM2	7	15-30 cm	6	2.905	38	5.65
2013	UAN	8	15-30 cm	6.15	3.091	9	2.76
2014	PM2	1	0-15 cm	7.25		307	25.95
2014	PM2	1	0-15 cm	7.3		307	27.8
2014	PM	2	0-15 cm	7.25		111	11.55

·		-	1		1	
2014	PM	2	0-15 cm	7.3	105	14.15
2014	PM2	3	0-15 cm	7	284	27.15
2014	PM2	3	0-15 cm	7.05	288	25.45
2014	UAN	4	0-15 cm	5.9	18	29.5
2014	UAN	4	0-15 cm	5.9	16	29.45
2014	PM	5	0-15 cm	6.85	125	16.95
2014	PM	5	0-15 cm	5.95	118	16.45
2014	PM2	7	0-15 cm	7.2	345	20.95
2014	PM2	7	0-15 cm	7.25	336	20.8
2014	UAN	8	0-15 cm	6.05	18	48.2
2014	UAN	8	0-15 cm	6.1	17	48.1
2014	PM	10	0-15 cm	7.2	122	13.1
2014	PM	10	0-15 cm	7.2	124	15.1
2014	PM2	1	15-30 cm	6.7	74	25.9
2014	PM2	1	15-30 cm	6.75	74	28
2014	PM	2	15-30 cm	6.5	34	10.95
2014	PM	2	15-30 cm	6.55	31	10
2014	PM2	3	15-30 cm	6.6	64	29.6
2014	PM2	3	15-30 cm	6.6	68	26.65
2014	UAN	4	15-30 cm	5.7	7	23.2
2014	UAN	4	15-30 cm	5.75	7	23.85
2014	PM	5	15-30 cm	6.1	33	13.95
2014	PM	5	15-30 cm	6.1	34	13
2014	PM2	7	15-30 cm	6.3	56	22.2
2014	PM2	7	15-30 cm	6.3	34	22.65
2014	UAN	8	15-30 cm	5.7	11	42.95
2014	UAN	8	15-30 cm	5.7	10	44
2014	PM	10	15-30 cm	6.3	6	8.95
2014	PM	10	15-30 cm	6.25	5	9.1


APPENDIX B.	CROP	YIELDS
-------------	------	--------


Year	Treatment	Plot	Yield (kg/ha)	Area (ha)
2010	PM	2	8484.415	0.234013
2010	PM	5	9142.604	0.357862
2010	PM	10	9321.557	0.202287
2010	PM2	1	9883.047	0.161521
2010	PM2	3	10136.16	0.288473
2010	PM2	7	10369.44	0.376415
2010	UAN	4	8950.802	0.327251
2010	UAN	8	8417.112	0.231059
2011	PM	2	9089.58	0.249129
2011	PM	5	8869.334	0.385492
2011	PM	10	9045.01	0.211728
2011	PM2	1	10399.56	0.174017
2011	PM2	3	10213.43	0.315071
2011	PM2	7	10040.02	0.405261
2011	UAN	4	8289.149	0.353737
2011	UAN	8	8732.609	0.249621
2012	PM	2	8894.546	0.273599
2012	PM	2 5	8725.552	0.414928
2012	PM	10	9560.087	0.236299
2012	PM2	1	9018.36	0.193563
2012	PM2	3	9568.693	0.33545
2012	PM2	7	9399.308	0.425565
2012	UAN	4	8608.596	0.376304
2012	UAN	8	9387.763	0.266562
2013	PM	2	5820.498	0.085471
2013	PM	5	5671.746	0.145114
2013	PM	10	4565.658	0.084913
2013	PM2	1	6774.457	0.051654
2013	PM2	3	6684.456	0.116779
2013	PM2	7	5943.88	0.151525
2013	UAN	4	4141.673	0.132387
2013	UAN	8	3665.596	0.094854
2014	PM	2	6652.866	0.104423
2014	PM	5	7245.7	0.163881
2014	PM	10	7097.923	0.081104
2014	PM2	1	7584.741	0.070142
2014	PM2	3	7796.52	0.104609
2014	PM2	7	7527.999	0.171592
2014	UAN	4	5084.623	0.149481
2014	UAN	8	4388.775	0.090488

APPENDIX C. DRAINAGE EVEN AND WATER QUALITY UP ON PRECIPIRATION


APPENDIX C1. NO3-N concentration with drainage event and precipitation from 2010 to 2014

APPENDIX C2. PO4-P concentration with drainage event and precipitation from 2010 to 2014

Date	Plot	Treatment	meter reading (cubit feet)	segment flow (L)	tile flow (mm)	Nitrate+nitrite (mg/L)	Phosphate (mg/L)
5/7/2014	1	PM2	35320.6		0.0		
5/21/2014	1	PM2	35505.8	5242.3	2.8	46.4	0.394
5/28/2014	1	PM2	35893.5	10979.0	5.8	57.6	0.002
6/4/2014	1	PM2	36347.1	12843.9	6.8		0.146
6/11/2014	1	PM2	36980.9	17947.8	9.4	59.9	0.000
6/17/2014	1	PM2	37220.2	6776.8	3.6	46.8	0.372
6/25/2014	1	PM2	38337.5	31638.6	16.7	50.9	0.122
7/2/2014	1	PM2	40652.5	65552.0	34.5	58.9	0.099
7/9/2014	1	PM2	41995.7	38034.8	20.0		0.015
7/16/2014	1	PM2	42991.4	28196.2	14.8		
7/23/2014	1	PM2	43274.1	8004.3	4.2	44.1	0.030
5/7/2014	2	PM	41659		0.0		
5/21/2014	2	PM	41678.1	543.4	0.2	17.9	0.031
5/28/2014	2	PM	42042.1	10306.7	4.1	18.2	0.002
6/4/2014	2	PM	42370.6	9300.4	3.7		0.000
6/11/2014	2	PM	42362.6	0.0	0.0	19.0	0.002
6/17/2014	2	PM	42354.5	0.0	0.0	19.9	0.014
6/25/2014	2	PM	42824.3	13303.5	5.3	19.3	0.002
7/2/2014	2	PM	44501.3	47487.8	19.0	20.3	0.002
7/9/2014	2	PM	45601.7	31160.1	12.5		0.000
7/16/2014	2	PM	46240.9	18098.4	7.2		
7/23/2014	2	PM	46360.1	3377.1	1.4	24.1	0.037
5/7/2014	3	PM2	111337		0.0		
5/21/2014	3	PM2	111730	11124.8	3.7	58.6	0.002
5/28/2014	3	PM2	112661	26360.7	8.8	65.9	0.025
6/4/2014	3	PM2	113630	27441.2	9.1		0.026
6/11/2014	3	PM2	115113	42013.6	14.0	80.4	0.002
6/17/2014	3	PM2	115622	14392.0	4.8	77.8	0.010
6/25/2014	3	PM2	117711	59153.8	19.7	79.2	0.000
7/2/2014	3	PM2	121887	118248.1	39.4	73.0	0.000
7/9/2014	3	PM2	124427	71924.4	24.0		0.000
7/16/2014	3	PM2	126136	48396.0	16.1		
7/23/2014	3	PM2	126179	1231.2	0.4	75.1	0.002
5/7/2014	4	UAN	125217		0.0	62.4	0.015
5/21/2014	4	UAN	125560	9722.3	2.7	63.7	0.002

APPENDIX C3	. Event water	quality from	2010 to 2014
-------------	---------------	--------------	--------------

5/28/2014	4	UAN	125797	6722.4	1.9		0.000
6/4/2014	4	UAN	125797	0.8	0.0		0.030
6/11/2014	4	UAN	125983	5263.5	1.5	71.8	0.000
6/17/2014	4	UAN	125991	221.7	0.1	71.6	0.002
6/25/2014	4	UAN	127108	31620.2	8.8	73.3	0.000
7/2/2014	4	UAN	130546	97346.9	27.0	68.7	0.000
7/9/2014	4	UAN	133430	81686.9	22.7		0.000
7/16/2014	4	UAN	135168	49197.3	13.7		
7/23/2014	4	UAN	135266	2786.4	0.8	76.2	0.002
5/7/2014	5	PM	119388		0.0		
5/21/2014	5	PM	119475	2475.5	0.7	8.8	0.172
5/28/2014	5	PM	119868	11115.5	3.1		0.016
6/4/2014	5	PM	120072	5779.2	1.6		0.002
6/11/2014	5	PM	120487	11751.2	3.3	16.2	0.000
6/17/2014	5	PM	121333	23954.9	6.7	16.7	0.050
6/25/2014	5	PM	124082	77837.5	21.6	18.0	0.002
7/2/2014	5	PM	126166	59026.4	16.4	19.9	0.002
7/9/2014	5	PM	126934	21731.7	6.0		0.000
7/16/2014	5	PM	128197	35765.0	9.9		
7/23/2014	5	PM	129138	26640.2	7.4	18.9	0.002
5/7/2014	7	PM2	124666		0.0	30.8	0.054
5/21/2014	7	PM2	125812	32453.9	8.1	39.0	0.002
5/28/2014	7	PM2	127807	56503.3	14.1		0.105
6/4/2014	7	PM2	129475	47213.5	11.8		0.012
6/11/2014	7	PM2	131768	64948.3	16.2	47.3	0.000
6/17/2014	7	PM2	132593	23346.6	5.8	44.3	0.016
6/25/2014	7	PM2	136185	101734.3	25.4	50.6	0.002
7/2/2014	7	PM2	142692	184241.3	46.1	48.4	0.014
7/9/2014	7	PM2	146165	98356.7	24.6		0.000
7/16/2014	7	PM2	148624	69623.6	17.4		
7/23/2014	7	PM2	149386	21589.0	5.4	45.1	0.011
5/7/2014	8	UAN	97848.1		0.0	58.3	0.002
5/21/2014	8	UAN	98683.1	23644.2	9.5	55.2	0.022
5/28/2014	8	UAN	99674.4	28070.7	11.2		0.000
6/4/2014	8	UAN	100471	22552.9	9.0		0.000
6/11/2014	8	UAN	101679	34204.1	13.7	61.2	0.000
6/17/2014	8	UAN	102303	17664.0	7.1	59.8	0.002
6/25/2014	8	UAN	104368	58487.8	23.4	57.5	0.000
7/2/2014	8	UAN	108200	108496.1	43.4	58.6	0.000
7/9/2014	8	UAN	109955	49696.0	19.9		0.000
7/16/2014	8	UAN	111279	37504.5	15.0		

7/23/2014	8	UAN	111812	15090.6	6.0	58.1	0.002
5/7/2014	10	PM	54351.3		0.0		
5/21/2014	10	PM	54857.4	14328.6	6.8	10.9	0.000
5/28/2014	10	PM	54859.5	59.5	0.0		
6/4/2014	10	PM	55613.4	21350.3	10.2		0.002
6/11/2014	10	PM	56523.4	25766.0	12.3	19.7	0.000
6/25/2014	10	PM	58599.6	58792.2	28.0	17.9	0.064
7/2/2014	10	PM	61733.9	88753.1	42.3	15.5	0.151
7/9/2014	10	PM	62290.7	15766.2	7.5		0.056
7/16/2014	10	PM	62290.7	0.0	0.0		
7/23/2014	10	PM	62290.7	0.0	0.0	22.7	0.229
4/19/2013	1	PM2	31251		0.0		
5/2/2013	1	PM2	31251	0.0	0.0		
5/9/2013	1	PM2	31251	0.0	0.0		
5/14/2013	1	PM2	31288	1047.7	0.6		
5/23/2013	1	PM2	31427	3936.0	2.1	58.8	0.023
5/28/2013	1	PM2	32394	27382.3	14.4	53.3	0.002
5/31/2013	1	PM2	32980	16593.6	8.7		
6/3/2013	1	PM2	33714	20784.5	10.9	45.5	0.012
6/6/2013	1	PM2	34019	8636.6	4.5	44.7	0.011
6/11/2013	1	PM2	34465	12629.3	6.6	43.7	0.010
6/14/2013	1	PM2	34584	3369.7	1.8		
6/20/2013	1	PM2	34975	11071.9	5.8	42.2	0.002
6/25/2013	1	PM2	35109	3794.5	2.0	39.7	0.013
6/27/2013	1	PM2	35195	2435.2	1.3	39.8	0.012
7/12/2013	1	PM2	35329	3794.5	2.0	31.9	0.002
7/18/2013	1	PM2	35329	0.0	0.0		
7/25/2013	1	PM2	35329	0.0	0.0		
7/30/2013	1	PM2	35329	0.0	0.0		
8/9/2013	1	PM2	35329	0.0	0.0		
8/15/2013	1	PM2	35329	0.0	0.0		
8/22/2013	1	PM2	35332	85.0	0.0	24.4	0.933
4/19/2013	2	PM	37188		0.0		
5/2/2013	2	PM	37188	0.0	0.0		
5/9/2013	2	PM	37188	0.0	0.0		
5/14/2013	2	PM	37476	8155.2	3.3		
5/23/2013	2	PM	37598	3454.6	1.4	15.7	0.000
5/28/2013	2	PM	38833	34971.2	14.0	13.8	0.000
5/31/2013	2	PM	39642	22908.3	9.2		
6/3/2013	2	PM	40659	28798.2	11.5	14.5	0.000
6/6/2013	2	PM	40992	9429.5	3.8	13.8	0.000

6/11/2013	2	PM	41529	15206.1	6.1	14.7	0.002
6/14/2013	2	PM	41673	4077.6	1.6		
6/20/2013	2	PM	41666	0.0	0.0	14.6	0.002
6/25/2013	2	PM	41663	0.0	0.0	15.0	0.002
6/27/2013	2	PM	41660	0.0	0.0	14.2	0.002
7/12/2013	2	PM	41658	0.0	0.0	16.1	0.014
7/18/2013	2	PM	41658	0.0	0.0		
7/25/2013	2	PM	41658	0.0	0.0		
7/30/2013	2	PM	41658	0.0	0.0		
8/9/2013	2	PM	41658	0.0	0.0		
8/15/2013	2	PM	41658	0.0	0.0		
8/22/2013	2	PM	41658	0.0	0.0		
4/19/2013	3	PM2	102004		0.0		
5/2/2013	3	PM2	102005	28.3	0.0		
5/9/2013	3	PM2	102262	7277.4	2.4	69.9	0.002
5/14/2013	3	PM2	103070	22880.0	7.6		
5/23/2013	3	PM2	103540	13308.9	4.4	73.5	0.000
5/28/2013	3	PM2	105314	50234.0	16.7	57.9	0.002
5/31/2013	3	PM2	106453	32252.8	10.8		
6/3/2013	3	PM2	107897	40889.5	13.6	56.7	0.002
6/6/2013	3	PM2	108461	15970.7	5.3	57.9	0.002
6/11/2013	3	PM2	109338	24833.8	8.3	55.6	0.002
6/14/2013	3	PM2	109572	6626.1	2.2		
6/20/2013	3	PM2	110355	22172.1	7.4	55.1	0.002
6/25/2013	3	PM2	110660	8636.6	2.9	58.3	0.000
6/27/2013	3	PM2	110848	5323.6	1.8	56.3	0.002
7/12/2013	3	PM2	111281	12261.2	4.1	59.8	0.000
7/18/2013	3	PM2	111295	396.4	0.1	65.0	0.000
7/25/2013	3	PM2	111301	169.9	0.1		
7/30/2013	3	PM2	111302	28.3	0.0	74.1	0.000
8/9/2013	3	PM2	111302	0.0	0.0		
8/15/2013	3	PM2	111302	0.0	0.0		
8/22/2013	3	PM2	111302	0.0	0.0		
4/19/2013	4	UAN	112688		0.0		
5/2/2013	4	UAN	112688	0.0	0.0		
5/9/2013	4	UAN	112689	28.3	0.0	93.3	0.000
5/14/2013	4	UAN	114013	37491.4	10.4		
5/23/2013	4	UAN	114602	16678.6	4.6	72.2	0.000
5/28/2013	4	UAN	116707	59606.9	16.6	60.9	0.000
5/31/2013	4	UAN	118108	39671.8	11.0		
6/3/2013	4	UAN	119986	53179.0	14.8	55.9	0.002

6/6/2013	4	UAN	120757	21832.3	6.1	55.6	0.002
6/11/2013	4	UAN	121884	31913.0	8.9	53.9	0.002
6/14/2013	4	UAN	122240	10080.8	2.8		
6/20/2013	4	UAN	123428	33640.4	9.3	52.0	0.002
6/25/2013	4	UAN	123919	13903.5	3.9	52.6	0.002
6/27/2013	4	UAN	124192	7730.5	2.1	51.9	0.002
7/12/2013	4	UAN	125030	23729.5	6.6	48.8	0.000
7/18/2013	4	UAN	125123	2633.5	0.7	47.7	0.000
7/25/2013	4	UAN	125136	368.1	0.1	54.0	0.000
7/30/2013	4	UAN	125138	56.6	0.0	53.2	0.000
8/9/2013	4	UAN	125138	0.0	0.0		
8/15/2013	4	UAN	125214	2152.1	0.6	49.8	0.000
8/22/2013	4	UAN	125216	56.6	0.0	52.2	0.002
4/19/2013	5	PM	102772		0.0		
5/2/2013	5	PM	102772	0.0	0.0		
5/9/2013	5	PM	103854	30638.8	8.5	11.7	0.000
5/14/2013	5	PM	105887	57568.1	16.0		
5/23/2013	5	PM	106937	29732.6	8.3	12.4	0.000
5/28/2013	5	PM	109492	72349.4	20.1	12.4	0.000
5/31/2013	5	PM	111055	44259.2	12.3		
6/3/2013	5	PM	113188	60399.7	16.8	11.9	0.002
6/6/2013	5	PM	114078	25202.0	7.0	12.0	0.002
6/11/2013	5	PM	115484	39813.4	11.1	11.5	0.002
6/14/2013	5	PM	115890	11496.6	3.2		
6/20/2013	5	PM	117274	39190.5	10.9	11.8	0.002
6/25/2013	5	PM	117863	16678.6	4.6	12.2	0.002
6/27/2013	5	PM	118185	9118.0	2.5	11.7	0.002
7/12/2013	5	PM	119315	31998.0	8.9	11.4	0.000
7/18/2013	5	PM	119349	962.8	0.3	11.5	0.000
7/25/2013	5	PM	119373	679.6	0.2	11.2	0.000
7/30/2013	5	PM	119377	113.3	0.0	11.4	0.000
8/9/2013	5	PM	119377	0.0	0.0		
8/15/2013	5	PM	119388	311.5	0.1	12.3	0.135
8/22/2013	5	PM	119388	0.0	0.0		
4/19/2013	7	PM2	109739		0.0		
5/2/2013	7	PM2	109739	0.0	0.0		
5/9/2013	7	PM2	110084	9769.3	2.4	43.8	0.000
5/14/2013	7	PM2	112037	55302.7	13.8		
5/23/2013	7	PM2	113090	29817.6	7.5	38.8	0.000
5/28/2013	7	PM2	115958	81212.6	20.3	33.5	0.002
5/31/2013	7	PM2	117590	46213.0	11.6		

6/3/2013 7 PM2 119620 57483.1 14.4 37.4 0.002 6/6/2013 7 PM2 120462 23842.7 6.0 38.3 0.002 6/11/2013 7 PM2 121759 36726.9 9.2 38.5 0.002 6/20/2013 7 PM2 123305 33838.6 8.5 38.5 0.002 6/25/2013 7 PM2 124035 8240.2 2.1 38.5 0.002 6/27/2013 7 PM2 124634 0.0 0.0 0.0 11/12/013 7 PM2 124634 0.0 0.0 11/12/013 7 PM2 124634 0.0 0.0 14/19/2013 7 PM2 124634 0.0 0.0 12/2/13 124634 0.0 0.0 14/19/2013 8 UAN 89700 0.0 0.0 14/19/2013 8 UAN 9082 10817.0 4.3 83.5 0.000 5/12/2013 8 UAN 9127 3242.7 13.0 14/14683.9 17.9 58.2 0.000 1/12/2013								
6/11/2013 7 PM2 121759 36726.9 9.2 38.5 0.002 6/14/2013 7 PM2 122110 9939.2 2.5	6/3/2013	7	PM2	119620	57483.1	14.4	37.4	0.002
6/14/20137PM21221109939.22.5 $6/20/2013$ 7PM212330533838.68.538.50.002 $6/25/2013$ 7PM212379413846.93.538.10.002 $6/27/2013$ 7PM212463415545.93.933.50.002 $7/12/2013$ 7PM21246340.00.00.0 $7/25/2013$ 7PM21246340.00.0 $7/30/2013$ 7PM21246340.00.0 $8/9/2013$ 7PM21246340.00.0 $8/15/2013$ 7PM21246340.00.0 $8/15/2013$ 7PM21246340.00.0 $8/2/2013$ 7PM21246340.00.0 $5/2/2013$ 8UAN897000.00.0 $5/2/2013$ 8UAN9008210817.04.383.50.000 $5/14/2013$ 8UAN912732422.713.00.00 $5/32/2013$ 8UAN912732422.710.752.30.002 $6/3/2013$ 8UAN9505026702.710.752.30.002 $6/3/2013$ 8UAN9505026702.710.752.30.002 $6/11/2013$ 8UAN9524110505.54.249.20.002 $6/21/2013$ 8UAN97157673.93.151.10.000 $6/22/2013$ 8<	6/6/2013	7	PM2	120462	23842.7	6.0	38.3	0.002
6/20/2013 7 PM2 123305 33838.6 8.5 38.5 0.002 6/25/2013 7 PM2 123794 13846.9 3.5 38.1 0.002 6/27/2013 7 PM2 124634 15545.9 3.9 33.5 0.002 7/12/2013 7 PM2 124634 0.0 0.0 0.0 7/25/2013 7 PM2 124634 0.0 0.0 0.0 8/15/2013 7 PM2 124634 0.0 0.0 0.0 8/2/2013 7 PM2 124634 0.0 0.0 0.0 8/2/2013 7 PM2 124634 0.0 0.0 0.0 5/2/2013 8 UAN 89700 0.0 0.0 0.0 5/2/2013 8 UAN 91227 32422.7 13.0 5/2/2013 8 UAN 9127 32422.7 13.0 5/2/2013 8 UAN 95021 1007 52.3 0	6/11/2013	7	PM2	121759	36726.9	9.2	38.5	0.002
6/25/2013 7 PM2 123794 13846.9 3.5 38.1 0.002 6/27/2013 7 PM2 124085 8240.2 2.1 38.5 0.002 7/18/2013 7 PM2 124634 0.0 0.0 7/18/2013 7 PM2 124634 0.0 0.0 7/30/2013 7 PM2 124634 0.0 0.0 7/30/2013 7 PM2 124634 0.0 0.0 8/15/2013 7 PM2 124634 0.0 0.0 0.0 7/18/2013 7 PM2 124634 0.0 0.0 8/12/2013 7 PM2 124634 0.0 0.0 0.0 7/11/2013 8 UAN 89700 0.0 0.0 0.0 5/2/2013 8 UAN 9002 10817.0 4.3 83.5 0.000 5/2/2013 8 UAN 9127 32427.7 13.0 5/2/2013 8 UAN 9127 32427.7 13.0 5/2/2013 8 UAN 95050 26702.7 10.7 52.3 0.002	6/14/2013	7	PM2	122110	9939.2	2.5		
6/27/2013 7 PM2 124085 8240.2 2.1 38.5 0.002 7/12/2013 7 PM2 124634 15545.9 3.9 33.5 0.002 7/18/2013 7 PM2 124634 0.0 0.0 7/30/2013 7 PM2 124634 0.0 0.0 8/9/2013 7 PM2 124634 0.0 0.0 8/15/2013 7 PM2 124634 0.0 0.0 8/15/2013 7 PM2 124634 0.0 0.0 8/22/2013 7 PM2 124634 0.0 0.0 5/2/2013 8 UAN 89700 0.0 0.0 5/2/2013 8 UAN 90082 10817.0 4.3 83.5 0.000 5/14/2013 8 UAN 91227 3242.7 13.0 0.002 6/6/2013 8 UAN 95205 2.0 0.002 6/2/2/2013 8 UAN 95	6/20/2013	7	PM2	123305	33838.6	8.5	38.5	0.002
7/12/2013 7 PM2 124634 15545.9 3.9 33.5 0.002 7/18/2013 7 PM2 124634 0.0 0.0 7/25/2013 7 PM2 124634 0.0 0.0 8/9/2013 7 PM2 124634 0.0 0.0 8/9/2013 7 PM2 124634 0.0 0.0 8/15/2013 7 PM2 124634 0.0 0.0 8/22/2013 7 PM2 124634 0.0 0.0 4/19/2013 8 UAN 89700 0.0 0.0 5/2/2013 8 UAN 90082 10817.0 4.3 83.5 0.000 5/14/2013 8 UAN 91736 14413.3 5.8 67.6 0.000 5/23/2013 8 UAN 9314 44683.9 17.9 58.2 0.002 6/3/2013 8 UAN 95050 26702.7 10.7 52.3 0.002 6/14/2013 8 UAN 95612.1 2.0 2.0	6/25/2013	7	PM2	123794	13846.9	3.5	38.1	0.002
7/18/2013 7 PM2 124634 0.0 0.0 7/25/2013 7 PM2 124634 0.0 0.0 8/9/2013 7 PM2 124634 0.0 0.0 8/15/2013 7 PM2 124634 0.0 0.0 8/15/2013 7 PM2 124634 0.0 0.0 8/22/2013 7 PM2 124634 0.0 0.0 4/19/2013 8 UAN 89700 0.0 0.0 5/2/2013 8 UAN 90082 10817.0 4.3 83.5 0.000 5/14/2013 8 UAN 91736 14413.3 5.8 67.6 0.000 5/23/2013 8 UAN 91736 14413.3 5.8 67.6 0.002 5/31/2013 8 UAN 94107 22455.2 9.0 9.0 0.02 6/6/6/2013 8 UAN 96037 17443.1 7.0 51.9 0.02 6/1/2013 8 UAN 9612.1 12.0 0.002 6/2/2/2013 8	6/27/2013	7	PM2	124085	8240.2	2.1	38.5	0.002
7/25/2013 7 PM2 124634 0.0 0.0 7/30/2013 7 PM2 124634 0.0 0.0 8/9/2013 7 PM2 124634 0.0 0.0 8/15/2013 7 PM2 124634 0.0 0.0 8/15/2013 7 PM2 124634 0.0 0.0 8/15/2013 7 PM2 124634 0.0 0.0 8/12/2013 8 UAN 89700 0.0 0.0 5/2/2013 8 UAN 99082 10817.0 4.3 83.5 0.000 5/14/2013 8 UAN 91227 32422.7 13.0 5.8 67.6 0.000 5/28/2013 8 UAN 9314 44683.9 17.9 58.2 0.002 6/3/2013 8 UAN 95050 26702.7 10.7 52.3 0.002 6/14/2013 8 UAN 96214 5012.1 2.0 0.002 6/20/2013 8 UAN 97716 12629.3 5.1	7/12/2013	7	PM2	124634	15545.9	3.9	33.5	0.002
7/30/2013 7 PM2 124634 0.0 0.0 8/9/2013 7 PM2 124634 0.0 0.0 8/15/2013 7 PM2 124634 0.0 0.0 8/15/2013 7 PM2 124634 0.0 0.0 8/22/2013 7 PM2 124634 0.0 0.0 5/2/2013 8 UAN 89700 0.0 0.0 5/9/2013 8 UAN 9082 10817.0 4.3 83.5 0.000 5/14/2013 8 UAN 91736 14413.3 5.8 67.6 0.000 5/23/2013 8 UAN 9314 44683.9 17.9 58.2 0.002 6/3/2013 8 UAN 95050 26702.7 10.7 52.3 0.002 6/12/2013 8 UAN 96214 5012.1 2.0 0.002 6/14/2013 8 UAN 96844 17839.6 7.1 51.6 0.002 6/20/2013 8 UAN 97730 3.0	7/18/2013	7	PM2	124634	0.0	0.0		
8/9/2013 7 PM2 124634 0.0 0.0 8/15/2013 7 PM2 124634 0.0 0.0 8/22/2013 7 PM2 124634 0.0 0.0 4/19/2013 8 UAN 89700 0.0 0.0 5/2/2013 8 UAN 89700 0.0 0.0 5/14/2013 8 UAN 90082 10817.0 4.3 83.5 0.000 5/14/2013 8 UAN 9127 32422.7 13.0 0 0.0 5/23/2013 8 UAN 91736 14413.3 5.8 67.6 0.000 5/31/2013 8 UAN 93314 44683.9 17.9 58.2 0.002 6/3/2013 8 UAN 95050 26702.7 10.7 52.3 0.002 6/11/2013 8 UAN 96234 5012.1 2.0 6 6/20/2013 8 UAN 9715 7673.9 3.1 51.1 0.002 6/27/2013 8 UAN 97716 <td< td=""><td>7/25/2013</td><td>7</td><td>PM2</td><td>124634</td><td>0.0</td><td>0.0</td><td></td><td></td></td<>	7/25/2013	7	PM2	124634	0.0	0.0		
8/15/2013 7 PM2 124634 0.0 0.0 8/22/2013 7 PM2 124634 0.0 0.0 4/19/2013 8 UAN 89700 0.0 0.0 5/2/2013 8 UAN 89700 0.0 0.0 5/9/2013 8 UAN 90082 10817.0 4.3 83.5 0.000 5/14/2013 8 UAN 91227 32422.7 13.0	7/30/2013	7	PM2	124634	0.0	0.0		
8/22/2013 7 PM2 124634 0.0 0.0 4/19/2013 8 UAN 89700 0.0 0.0 5/2/2013 8 UAN 89700 0.0 0.0 5/9/2013 8 UAN 90082 10817.0 4.3 83.5 0.000 5/14/2013 8 UAN 91227 32422.7 13.0 13.0 14413.3 5.8 67.6 0.000 5/23/2013 8 UAN 91736 14413.3 5.8 67.6 0.000 5/31/2013 8 UAN 93314 44683.9 17.9 58.2 0.002 6/3/2013 8 UAN 95050 26702.7 10.7 52.3 0.002 6/11/2013 8 UAN 96037 17443.1 7.0 51.9 0.002 6/2/2013 8 UAN 96844 17839.6 7.1 51.6 0.002 6/25/2013 8 UAN 97716 12629.3 5.1 51.1 0.000 7/12/2013 8 UAN 977	8/9/2013	7	PM2	124634	0.0	0.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8/15/2013	7	PM2	124634	0.0	0.0		
5/2/2013 8 UAN 89700 0.0 0.0 5/9/2013 8 UAN 90082 10817.0 4.3 83.5 0.000 5/14/2013 8 UAN 91227 32422.7 13.0 14413.3 5.8 67.6 0.000 5/23/2013 8 UAN 93314 44683.9 17.9 58.2 0.000 5/31/2013 8 UAN 94107 22455.2 9.0 9.0 0.02 6/3/2013 8 UAN 95050 26702.7 10.7 52.3 0.002 6/11/2013 8 UAN 95421 10505.5 4.2 49.2 0.002 6/14/2013 8 UAN 96037 17443.1 7.0 51.9 0.002 6/20/2013 8 UAN 96244 5012.1 2.0 0.02 6/21/2013 8 UAN 9715 7673.9 3.1 51.1 0.002 6/27/2013 8 UAN 97730 396.4 0.2 48.2 0.000 7/12/2013 <	8/22/2013	7	PM2	124634	0.0	0.0		
5/9/2013 8 UAN 90082 10817.0 4.3 83.5 0.000 5/14/2013 8 UAN 91227 32422.7 13.0 13.0 5/23/2013 8 UAN 91736 14413.3 5.8 67.6 0.000 5/28/2013 8 UAN 93314 44683.9 17.9 58.2 0.000 5/31/2013 8 UAN 94107 22455.2 9.0 9.0 10.1 10.1 52.3 0.002 6/3/2013 8 UAN 95050 26702.7 10.7 52.3 0.002 6/11/2013 8 UAN 96037 17443.1 7.0 51.9 0.002 6/14/2013 8 UAN 96214 5012.1 2.0 10.002 6/25/2013 8 UAN 9715 7673.9 3.1 51.1 0.002 6/27/2013 8 UAN 97730 396.4 0.2 48.2 0.000 7/12/2013 8 UAN 97730 0.0 0.0 0.0 1.1 0.000	4/19/2013	8	UAN	89700		0.0		
5/14/2013 8 UAN 91227 32422.7 13.0 5/23/2013 8 UAN 91736 14413.3 5.8 67.6 0.000 5/28/2013 8 UAN 93314 44683.9 17.9 58.2 0.000 5/31/2013 8 UAN 94107 22455.2 9.0 9.0 9.002 6/3/2013 8 UAN 95050 26702.7 10.7 52.3 0.002 6/6/2013 8 UAN 95050 26702.7 10.7 51.9 0.002 6/11/2013 8 UAN 96037 17443.1 7.0 51.9 0.002 6/20/2013 8 UAN 96214 5012.1 2.0 2.0 6/25/2013 8 UAN 97155 7673.9 3.1 51.1 0.002 6/27/2013 8 UAN 97730 396.4 0.2 48.2 0.000 7/12/2013 8 UAN 97730 0.0 0.0 0.0 343.5 0.000 8/9/2013 8 <tdu< td=""><td>5/2/2013</td><td>8</td><td>UAN</td><td>89700</td><td>0.0</td><td>0.0</td><td></td><td></td></tdu<>	5/2/2013	8	UAN	89700	0.0	0.0		
5/23/2013 8 UAN 91736 14413.3 5.8 67.6 0.000 5/28/2013 8 UAN 93314 44683.9 17.9 58.2 0.000 5/31/2013 8 UAN 94107 22455.2 9.0 - - 6/3/2013 8 UAN 95050 26702.7 10.7 52.3 0.002 6/6/2013 8 UAN 95421 10505.5 4.2 49.2 0.002 6/11/2013 8 UAN 96037 17443.1 7.0 51.9 0.002 6/14/2013 8 UAN 96214 5012.1 2.0 - - 6/20/2013 8 UAN 97115 7673.9 3.1 51.6 0.002 6/27/2013 8 UAN 9770 4389.1 1.8 48.4 0.002 7/12/2013 8 UAN 97730 30.0 0.0 - - 7/30/2013 8 UAN 97730 0.0 0.0 - - 8/22/2013 8 <td>5/9/2013</td> <td>8</td> <td>UAN</td> <td>90082</td> <td>10817.0</td> <td>4.3</td> <td>83.5</td> <td>0.000</td>	5/9/2013	8	UAN	90082	10817.0	4.3	83.5	0.000
5/28/2013 8 UAN 93314 44683.9 17.9 58.2 0.000 5/31/2013 8 UAN 94107 22455.2 9.0 6/3/2013 8 UAN 95050 26702.7 10.7 52.3 0.002 6/6/2013 8 UAN 95050 26702.7 10.7 52.3 0.002 6/11/2013 8 UAN 96037 17443.1 7.0 51.9 0.002 6/14/2013 8 UAN 96214 5012.1 2.0 6/20/2013 8 UAN 96244 17839.6 7.1 51.6 0.002 6/25/2013 8 UAN 97115 7673.9 3.1 51.1 0.002 6/27/2013 8 UAN 97730 396.4 0.2 48.2 0.000 7/12/2013 8 UAN 97730 0.0 0.0 7/30/2013 8 UAN 97730 0.0 0.0 8/15/2013 8	5/14/2013	8	UAN	91227	32422.7	13.0		
5/31/2013 8 UAN 94107 22455.2 9.0 6/3/2013 8 UAN 95050 26702.7 10.7 52.3 0.002 6/6/2013 8 UAN 95421 10505.5 4.2 49.2 0.002 6/11/2013 8 UAN 96037 17443.1 7.0 51.9 0.002 6/14/2013 8 UAN 96214 5012.1 2.0 2.0 2.0 6/20/2013 8 UAN 96844 17839.6 7.1 51.6 0.002 6/25/2013 8 UAN 97115 7673.9 3.1 51.1 0.002 6/27/2013 8 UAN 9770 4389.1 1.8 48.4 0.002 7/12/2013 8 UAN 97730 396.4 0.2 48.2 0.000 7/30/2013 8 UAN 97730 0.0 0.0 0.0 0.0 8/9/2013 8 UAN 97755 707.9 0.3 43.5 0.000 8/22/2013 8 UAN	5/23/2013	8	UAN	91736	14413.3	5.8	67.6	0.000
6/3/20138UAN9505026702.710.752.30.0026/6/20138UAN9542110505.54.249.20.0026/11/20138UAN9603717443.17.051.90.0026/14/20138UAN962145012.12.006/20/20138UAN9684417839.67.151.60.0026/25/20138UAN971157673.93.151.10.0026/27/20138UAN972704389.11.848.40.0027/12/20138UAN97730396.40.248.20.0007/18/20138UAN977300.00.00.07/30/20138UAN97755707.90.343.50.0008/9/20138UAN977550.00.00.00.08/22/20138UAN977550.00.00.08/22/201310PM456190.00.00.05/2/201310PM459358948.14.311.30.0025/9/201310PM459358948.14.311.30.0285/14/201310PM4847933045.715.7555/23/201310PM4897714101.86.712.40.000	5/28/2013	8	UAN	93314	44683.9	17.9	58.2	0.000
6/6/20138UAN9542110505.54.249.20.0026/11/20138UAN9603717443.17.051.90.0026/14/20138UAN962145012.12.0	5/31/2013	8	UAN	94107	22455.2	9.0		
6/11/20138UAN9603717443.17.051.90.0026/14/20138UAN962145012.12.0	6/3/2013	8	UAN	95050	26702.7	10.7	52.3	0.002
6/14/20138UAN962145012.12.06/20/20138UAN9684417839.67.151.60.0026/25/20138UAN971157673.93.151.10.0026/27/20138UAN972704389.11.848.40.0027/12/20138UAN9771612629.35.151.10.0007/18/20138UAN97730396.40.248.20.0007/25/20138UAN977300.00.07/30/20138UAN977300.00.08/9/20138UAN977300.00.00.08/15/20138UAN97755707.90.343.50.0008/15/20138UAN977550.00.00.00.00.00.00.08/22/20138UAN977550.00.00.00.00.00.05/2/201310PM456190.00.00.00.025/9/201310PM4731238992.218.612.80.0285/14/201310PM4847933045.715.70.00.05/23/201310PM4897714101.86.712.40.000	6/6/2013	8	UAN	95421	10505.5	4.2	49.2	0.002
6/20/20138UAN9684417839.67.151.60.0026/25/20138UAN971157673.93.151.10.0026/27/20138UAN972704389.11.848.40.0027/12/20138UAN9771612629.35.151.10.0007/18/20138UAN97730396.40.248.20.0007/25/20138UAN977300.00.00.07/30/20138UAN977300.00.08/9/20138UAN97755707.90.343.50.0008/15/20138UAN977550.00.08/15/201310PM456190.05/2/201310PM459358948.14.311.30.0025/9/201310PM4847933045.715.75/23/201310PM4847933045.715.75/23/201310PM4897714101.86.712.40.000	6/11/2013	8	UAN	96037	17443.1	7.0	51.9	0.002
6/25/20138UAN971157673.93.151.10.0026/27/20138UAN972704389.11.848.40.0027/12/20138UAN9771612629.35.151.10.0007/18/20138UAN97730396.40.248.20.0007/25/20138UAN977300.00.07/30/20138UAN977300.00.08/9/20138UAN977300.00.00.07/30/20138UAN97755707.90.343.50.0008/15/20138UAN97755707.90.343.50.0008/22/20138UAN977550.00.05/2/201310PM456190.00.00.020.020.020.025/9/201310PM459358948.14.311.30.0025/9/201310PM4731238992.218.612.80.0285/14/201310PM4847933045.715.70.0000.005/23/201310PM4897714101.86.712.40.000	6/14/2013	8	UAN	96214	5012.1	2.0		
6/27/20138UAN972704389.11.848.40.0027/12/20138UAN9771612629.35.151.10.0007/18/20138UAN97730396.40.248.20.0007/25/20138UAN977300.00.00.07/30/20138UAN977300.00.08/9/20138UAN977300.00.08/15/20138UAN97755707.90.343.50.0008/15/20138UAN977550.00.08/22/20138UAN977550.00.05/2/201310PM456190.05/9/201310PM4731238992.218.612.80.0285/14/201310PM4847933045.715.75/23/201310PM4897714101.86.712.40.000	6/20/2013	8	UAN	96844	17839.6	7.1	51.6	0.002
7/12/20138UAN9771612629.35.151.10.0007/18/20138UAN97730396.40.248.20.0007/25/20138UAN977300.00.00.07/30/20138UAN977300.00.08/9/20138UAN97755707.90.343.50.0008/15/20138UAN977550.00.08/22/20138UAN977550.00.04/19/201310PM456190.05/2/201310PM4731238992.218.612.80.0285/14/201310PM4847933045.715.75/23/201310PM4897714101.86.712.40.000	6/25/2013	8	UAN	97115	7673.9	3.1	51.1	0.002
7/18/20138UAN97730396.40.248.20.0007/25/20138UAN977300.00.07/30/20138UAN977300.00.0<	6/27/2013	8	UAN	97270	4389.1	1.8	48.4	0.002
7/25/2013 8 UAN 97730 0.0 0.0 7/30/2013 8 UAN 97730 0.0 0.0 8/9/2013 8 UAN 97730 0.0 0.0 8/9/2013 8 UAN 97730 0.0 0.0 8/15/2013 8 UAN 97755 707.9 0.3 43.5 0.000 8/22/2013 8 UAN 97755 0.0 0.0 0.0 41.5 0.000 4/19/2013 10 PM 45619 0.0 0.0 0.02 5/2/2013 10 PM 45935 8948.1 4.3 11.3 0.002 5/9/2013 10 PM 47312 38992.2 18.6 12.8 0.028 5/14/2013 10 PM 48479 33045.7 15.7 12.4 0.000	7/12/2013	8	UAN	97716	12629.3	5.1	51.1	0.000
7/30/2013 8 UAN 97730 0.0 0.0 8/9/2013 8 UAN 97730 0.0 0.0 8/15/2013 8 UAN 97755 707.9 0.3 43.5 0.000 8/22/2013 8 UAN 97755 0.0 0.0 0.0 4/19/2013 10 PM 45619 0.0 0.0 0.02 5/2/2013 10 PM 45935 8948.1 4.3 11.3 0.002 5/9/2013 10 PM 47312 38992.2 18.6 12.8 0.028 5/14/2013 10 PM 48479 33045.7 15.7 12.4 0.000	7/18/2013	8	UAN	97730	396.4	0.2	48.2	0.000
8/9/2013 8 UAN 97730 0.0 0.0 8/15/2013 8 UAN 97755 707.9 0.3 43.5 0.000 8/22/2013 8 UAN 97755 0.0 0.0 0.0 4/19/2013 10 PM 45619 0.0 0.0 0.02 5/2/2013 10 PM 45935 8948.1 4.3 11.3 0.002 5/9/2013 10 PM 47312 38992.2 18.6 12.8 0.028 5/14/2013 10 PM 48479 33045.7 15.7 12.4 0.000	7/25/2013	8	UAN	97730	0.0	0.0		
8/15/2013 8 UAN 97755 707.9 0.3 43.5 0.000 8/22/2013 8 UAN 97755 0.0 0.0 0.0 4/19/2013 10 PM 45619 0.0 0.0 0.02 5/2/2013 10 PM 45935 8948.1 4.3 11.3 0.002 5/9/2013 10 PM 47312 38992.2 18.6 12.8 0.028 5/14/2013 10 PM 48479 33045.7 15.7 12.4 0.000	7/30/2013	8	UAN	97730	0.0	0.0		
8/22/2013 8 UAN 97755 0.0 0.0 4/19/2013 10 PM 45619 0.0 5/2/2013 10 PM 45935 8948.1 4.3 11.3 0.002 5/9/2013 10 PM 47312 38992.2 18.6 12.8 0.028 5/14/2013 10 PM 48479 33045.7 15.7 12.4 0.000	8/9/2013	8	UAN	97730	0.0	0.0		
4/19/201310PM456190.05/2/201310PM459358948.14.311.30.0025/9/201310PM4731238992.218.612.80.0285/14/201310PM4847933045.715.75/23/201310PM4897714101.86.712.40.000	8/15/2013	8	UAN	97755	707.9	0.3	43.5	0.000
5/2/201310PM459358948.14.311.30.0025/9/201310PM4731238992.218.612.80.0285/14/201310PM4847933045.715.75/23/201310PM4897714101.86.712.40.000	8/22/2013	8	UAN	97755	0.0	0.0		
5/9/201310PM4731238992.218.612.80.0285/14/201310PM4847933045.715.75/23/201310PM4897714101.86.712.40.000	4/19/2013	10	PM	45619		0.0		
5/14/201310PM4847933045.715.75/23/201310PM4897714101.86.712.40.000	5/2/2013	10	PM	45935	8948.1	4.3	11.3	0.002
5/23/2013 10 PM 48977 14101.8 6.7 12.4 0.000	5/9/2013	10	PM	47312	38992.2	18.6	12.8	0.028
	5/14/2013	10	PM	48479	33045.7	15.7		
5/28/2013 10 PM 50788 51281.7 24.4 11.5 0.002	5/23/2013	10	PM	48977	14101.8	6.7	12.4	0.000
	5/28/2013	10	PM	50788	51281.7	24.4	11.5	0.002

5/31/2013	10	PM	51554	21690.7	10.3		
6/3/2013	10	PM	52376	23276.4	11.1	11.4	0.000
6/6/2013	10	PM	52743	10392.3	4.9	11.6	0.000
6/11/2013	10	PM	53305	15914.0	7.6	11.5	0.002
6/14/2013	10	PM	53439	3794.5	1.8		
6/20/2013	10	PM	53943	14271.7	6.8	11.1	0.000
6/25/2013	10	PM	54117	4927.1	2.3	11.4	0.000
6/27/2013	10	PM	54249	3737.8	1.8	11.2	0.000
7/12/2013	10	PM	54329	2265.3	1.1	13.3	0.010
7/18/2013	10	PM	54329	0.0	0.0		
7/25/2013	10	PM	54329	0.0	0.0		
7/30/2013	10	PM	54329	0.0	0.0		
8/9/2013	10	PM	54329	0.0	0.0		
8/15/2013	10	PM	54341	339.8	0.2		
8/22/2013	10	PM	54341	0.0	0.0		
4/19/2013	Check	None	364321		0.0		
5/2/2013	Check	None	367607	93049.0	19.8	6.1	0.000
5/9/2013	Check	None	375177	214358.2	45.6	14.4	0.032
5/14/2013	Check	None	382071	195216.0	41.5		
5/23/2013	Check	None	385244	89849.2	19.1	11.0	0.000
5/28/2013	Check	None	392254	198500.8	42.2	12.7	0.026
5/31/2013	Check	None	394569	65553.4	13.9		
6/3/2013	Check	None	401946	208893.0	44.4	16.1	0.002
6/6/2013	Check	None	404308	66884.3	14.2	15.9	0.002
6/11/2013	Check	None	408062	106301.3	22.6	16.0	0.002
6/14/2013	Check	None	409098	29336.2	6.2		
6/20/2013	Check	None	412647	100496.3	21.4	15.4	0.002
6/25/2013	Check	None	414071	40323.1	8.6	12.9	0.002
6/27/2013	Check	None	414853	22143.7	4.7	15.3	0.002
7/12/2013	Check	None	416993	60598.0	12.9	2.8	0.000
7/18/2013	Check	None	417486	13960.2	3.0	2.8	0.002
7/25/2013	Check	None	417887	11355.0	2.4	3.0	0.002
7/30/2013	Check	None	418108	6258.0	1.3	3.0	0.000
8/9/2013	Check	None	418405	8410.1	1.8	3.6	0.011
8/15/2013	Check	None	418756	9939.2	2.1	4.1	0.014
8/22/2013	Check	None	418965	5918.2	1.3	0.3	0.738
3/29/2012	1	PM2	29611.7		0.0		
4/7/2012	1	PM2	29611.7	0.0	0.0		
4/14/2012	1	PM2	29611.7	0.0	0.0		
4/19/2012	1	PM2	30468.6	24264.1	12.8	37.3	0.014
4/22/2012	1	PM2	30673	5786.5	3.0		

4/30/2012 1 PM2 30944.1 7677.5 4.0 31.5 0.000 5/3/2012 1 PM2 31003.3 1675.5 0.9 30.1 0.023 5/1/2012 1 PM2 31109.8 3016.0 1.6 28.9 0.027 5/14/2012 1 PM2 31251.4 9.1 0.0 0.060 5/21/2012 1 PM2 31251.4 9.1 0.0 0.00 6/12/2012 1 PM2 31251.4 0.0 0.0 0.0 6/12/2012 1 PM2 31251.4 0.0 0.0 0.0 6/12/2012 1 PM2 31251.6 0.0 0.0 0.0 8/6/2012 1 PM2 31251.6 0.0 0.0 0.0 4/17/2012 2 PM 35261.7 311.2 0.1 12.7 0.000 4/14/2012 2 PM 36561.1 25325.4 10.1 12.4 0.000 5/14/2012 2 PM 36689.8 8699.3.5 14.4 0.00								
5/7/2012 1 PM2 31109.8 3016.0 1.6 28.9 0.027 5/14/2012 1 PM2 31241.4 3728.2 2.0 29.9 0.012 5/17/2012 1 PM2 31251.4 9.1 0.0 26.1 0.060 5/21/2012 1 PM2 31251.4 0.8 0.0 0.0 6/12/2012 1 PM2 31251.4 0.0 0.0 6/12/2012 1 PM2 31251.4 0.0 0.0 6/12/2012 1 PM2 31251.6 0.0 0.0 6/25/2012 1 PM2 31251.6 0.0 0.0 7/16/2012 1 PM2 31251.6 0.0 0.0 3/29/2012 2 PM 3520.7 817.2 0.3 11.5 0.000 4/17/2012 2 PM 35250.7 817.2 0.3 11.5 0.000 4/14/2012 2 PM 36382.6 6414.0 2.6 12.3 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0	4/30/2012	1	PM2	30944.1	7677.5	4.0	31.5	0.000
5/14/2012 1 PM2 31241.4 3728.2 2.0 29.9 0.012 5/17/2012 1 PM2 31251 272.1 0.1 26.1 0.060 5/21/2012 1 PM2 31251.4 9.1 0.0 0.0 6/12/2012 1 PM2 31251.4 0.0 0.0 0.0 6/12/2012 1 PM2 31251.4 0.0 0.0 0.0 6/12/2012 1 PM2 31251.6 0.0 0.0 0.0 6/25/2012 1 PM2 31251.6 0.0 0.0 0.0 3/29/2012 2 PM 35221.8 0.0 0.00 4/14/2012 2 PM 35261.7 311.2 0.1 12.7 0.000 4/14/2012 2 PM 36382.6 6414.0 2.6 12.3 0.002 4/14/2012 2 PM 36698.8 8678.9 3.5 1.4.4 0.000 5/14/2012 2 PM 3709.4 5524.9 2.2 14.1 0.000	5/3/2012	1	PM2	31003.3	1675.5	0.9	30.1	0.023
5/17/2012 1 PM2 31251 272.1 0.1 26.1 0.060 5/21/2012 1 PM2 31251.4 9.1 0.0 5/29/2012 1 PM2 31251.4 0.8 0.0 6/12/2012 1 PM2 31251.4 0.0 0.0 6/12/2012 1 PM2 31251.4 0.0 0.0 6/12/2012 1 PM2 31251.4 0.0 0.0 6/25/2012 1 PM2 31251.6 0.0 0.0 8/6/2012 1 PM2 31251.6 0.0 0.0 3/29/2012 PM 35250.7 817.2 0.3 11.5 0.000 4/17/2012 2 PM 35261.7 311.2 0.1 12.7 0.000 4/12/2012 2 PM 3682.6 6414.0 2.6 12.3 0.002 4/30/2012 2 PM 36689.8 35.5 1.5 13.6 0.000 5/17/2012 2 PM	5/7/2012	1	PM2	31109.8	3016.0	1.6	28.9	0.027
5/21/2012 1 PM2 31251.4 9.1 0.0 5/29/2012 1 PM2 31251.4 0.8 0.0 6/1/2012 1 PM2 31251.4 0.0 0.0 6/12/2012 1 PM2 31251.4 0.0 0.0 6/18/2012 1 PM2 31251.7 7.6 0.0 6/25/2012 1 PM2 31251.6 0.0 0.0 3/29/2012 2 PM 3521.8 0.0 0.0 4/1/2012 2 PM 35261.7 311.2 0.1 12.7 0.000 4/14/2012 2 PM 36581.1 25325.4 10.1 12.4 0.000 4/19/2012 2 PM 36689.8 658.9 3.5 14.4 0.000 5/3/2012 2 PM 36689.4 3673.5 1.5 13.6 0.000 5/14/2012 2 PM 36694.3 3673.5 1.5 13.6 0.000 5/14/2012 2 PM 37133.6 967.3 0.4	5/14/2012	1	PM2	31241.4	3728.2	2.0	29.9	0.012
5/29/2012 1 PM2 31251.4 0.8 0.0 6/1/2012 1 PM2 31251.4 0.0 0.0 6/18/2012 1 PM2 31251.4 0.0 0.0 6/18/2012 1 PM2 31251.4 0.0 0.0 6/25/2012 1 PM2 31251.6 0.0 0.0 3/29/2012 2 PM 35221.8 0.0 0.0 4/1/2012 2 PM 35250.7 817.2 0.3 11.5 0.000 4/14/2012 2 PM 35261.7 311.2 0.1 12.7 0.000 4/12/2012 2 PM 36382.6 6414.0 2.6 12.3 0.002 4/30/2012 2 PM 36689.8 8698.9 3.5 14.4 0.000 5/1/2012 2 PM 3673.5 1.5 13.6 0.000 5/1/2012 2 PM 3719.4 2401.0 1.0 14.0 0.000 5/1/2012 2 PM 37184.5 0.0	5/17/2012	1	PM2	31251	272.1	0.1	26.1	0.060
6/1/2012 1 PM2 31251.4 0.0 0.0 6/12/2012 1 PM2 31251.4 0.0 0.0 6/18/2012 1 PM2 31251.4 0.0 0.0 6/25/2012 1 PM2 31251.6 0.0 0.0 7/16/2012 1 PM2 31251.6 0.0 0.0 3/29/2012 2 PM 35221.8 0.0 0.0 4/7/2012 2 PM 35250.7 817.2 0.3 11.5 0.000 4/14/2012 2 PM 36382.6 6414.0 2.6 12.3 0.002 4/30/2012 2 PM 36698.8 8698.9 3.5 14.4 0.000 5/1/2012 2 PM 36694.3 3673.5 1.5 13.6 0.000 5/14/2012 2 PM 37099.4 5524.9 2.2 14.1 0.000 5/14/2012 2 PM 37184.5 0.0 0.0 0.6 0.00 6/12/2012 2 PM 37184.5	5/21/2012	1	PM2	31251.4	9.1	0.0		
6/12/2012 1 PM2 31251.4 0.0 0.0 6/18/2012 1 PM2 31251.4 0.0 0.0 6/25/2012 1 PM2 31251.6 0.0 0.0 7/16/2012 1 PM2 31251.6 0.0 0.0 3/29/2012 2 PM 35225.8 0.0 4/7/2012 2 PM 35250.7 817.2 0.3 11.5 0.000 4/14/2012 2 PM 35261.7 311.2 0.1 12.7 0.000 4/19/2012 2 PM 36156.1 25325.4 10.1 12.4 0.000 4/20/2012 2 PM 3669.8 8698.9 3.5 14.4 0.000 5/3/2012 2 PM 36904.3 3673.5 1.5 13.6 0.000 5/14/2012 2 PM 37099.4 5524.9 2.2 14.1 0.000 5/11/2012 2 PM 37183.6 967.3 0.4 14.2 0.000 5/12/2012 2 PM </td <td>5/29/2012</td> <td>1</td> <td>PM2</td> <td>31251.4</td> <td>0.8</td> <td>0.0</td> <td></td> <td></td>	5/29/2012	1	PM2	31251.4	0.8	0.0		
6/18/2012 1 PM2 31251.4 0.0 0.0 6/25/2012 1 PM2 31251.7 7.6 0.0 7/16/2012 1 PM2 31251.6 0.0 0.0 3/29/2012 2 PM 35251.7 0.3 11.5 0.000 4/7/2012 2 PM 35250.7 817.2 0.3 11.5 0.000 4/14/2012 2 PM 35261.7 311.2 0.1 12.7 0.000 4/12/2012 2 PM 36382.6 6414.0 2.6 12.3 0.002 4/30/2012 2 PM 36689.8 8698.9 3.5 14.4 0.000 5/3/2012 2 PM 36043.3 3673.5 1.5 13.6 0.000 5/14/2012 2 PM 37199.4 5524.9 2.2 14.1 0.000 5/21/2012 2 PM 37184.5 435.2 0.2 15.1 0.002 6/12/2012 2 PM 37184.5 0.0 0.0 0.0 0.0 <td>6/1/2012</td> <td>1</td> <td>PM2</td> <td>31251.4</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td>	6/1/2012	1	PM2	31251.4	0.0	0.0		
6/25/2012 1 PM2 31251.7 7.6 0.0 7/16/2012 1 PM2 31251.6 0.0 0.0 3/29/2012 2 PM 3521.8 0.0 4/7/2012 2 PM 35250.7 817.2 0.3 11.5 0.000 4/14/2012 2 PM 35261.7 311.2 0.1 12.7 0.000 4/12/2012 2 PM 36156.1 25325.4 10.1 12.4 0.000 4/22/2012 2 PM 36689.8 8698.9 3.5 14.4 0.000 5/3/2012 2 PM 36674.6 2401.0 1.0 14.0 0.000 5/1/2012 2 PM 36904.3 3673.5 1.5 13.6 0.000 5/11/2012 2 PM 37199.4 5524.9 2.2 14.1 0.000 5/21/2012 2 PM 37184.5 435.2 0.2 15.1 0.002 6/12/2012 2 PM 37184.5 0.0 0.0 0.0 0.0 </td <td>6/12/2012</td> <td>1</td> <td>PM2</td> <td>31251.4</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td>	6/12/2012	1	PM2	31251.4	0.0	0.0		
7/16/2012 1 PM2 31251.6 0.0 0.0 3/29/2012 2 PM 35221.8 0.0 4/7/2012 2 PM 35250.7 817.2 0.3 11.5 0.000 4/14/2012 2 PM 35250.7 817.2 0.3 11.5 0.000 4/19/2012 2 PM 35261.7 311.2 0.1 12.7 0.000 4/19/2012 2 PM 36156.1 25325.4 10.1 12.4 0.000 4/22/2012 2 PM 36689.8 8698.9 3.5 14.4 0.000 5/3/2012 2 PM 36694.3 3673.5 1.5 13.6 0.000 5/1/2012 2 PM 37133.6 967.3 0.4 14.2 0.000 5/21/2012 2 PM 37184.5 0.0 <td>6/18/2012</td> <td>1</td> <td>PM2</td> <td>31251.4</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td>	6/18/2012	1	PM2	31251.4	0.0	0.0		
8/6/20121PM2 31251.6 0.00.0 $3/29/2012$ 2PM 35221.8 0.0 $4/7/2012$ 2PM 35250.7 817.2 0.311.50.000 $4/14/2012$ 2PM 35261.7 311.2 0.112.70.000 $4/19/2012$ 2PM 36156.1 25325.4 10.112.40.000 $4/22/2012$ 2PM 36689.8 8698.9 3.5 14.40.000 $5/3/2012$ 2PM 36774.6 2401.01.014.00.000 $5/7/2012$ 2PM 36904.3 3673.5 1.513.60.000 $5/14/2012$ 2PM 37099.4 5524.9 2.214.10.000 $5/17/2012$ 2PM 37184.5 967.30.414.20.000 $5/2/2012$ 2PM 37184.5 0.00.00.00 $6/12/2012$ 2PM 37184.5 0.00.00.0 $6/12/2012$ 2PM 37184.5 0.00.00.01 $6/25/2012$ 2PM 37184.5 0.00.00.03 $3/29/2012$ 3PM296186.30.000.00.073 $4/14/2012$ 3PM296488.32354.50.843.00.073 $4/14/2012$ 3PM296488.32354.50.843.00.073 $4/14/2012$ 3PM296488.32354.50.843.00.073 </td <td>6/25/2012</td> <td>1</td> <td>PM2</td> <td>31251.7</td> <td>7.6</td> <td>0.0</td> <td></td> <td></td>	6/25/2012	1	PM2	31251.7	7.6	0.0		
3/29/2012 2 PM 35221.8 0.0 4/7/2012 2 PM 35250.7 817.2 0.3 11.5 0.000 4/14/2012 2 PM 35261.7 311.2 0.1 12.7 0.000 4/19/2012 2 PM 36156.1 25325.4 10.1 12.4 0.002 4/22/2012 2 PM 36382.6 6414.0 2.6 12.3 0.002 4/30/2012 2 PM 36689.8 8698.9 3.5 14.4 0.000 5/3/2012 2 PM 3674.6 2401.0 1.0 14.0 0.000 5/1/2012 2 PM 3709.4 5524.9 2.2 14.1 0.000 5/1/2012 2 PM 3713.6 967.3 0.4 14.2 0.000 5/21/2012 2 PM 37184.5 435.2 0.2 15.1 0.002 6/12/2012 2 PM 37184.5 0.0 0.0 0.0 14.5 0.013 6/12/2012 2 PM <td>7/16/2012</td> <td>1</td> <td>PM2</td> <td>31251.6</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td>	7/16/2012	1	PM2	31251.6	0.0	0.0		
4/7/2012 2 PM 35250.7 817.2 0.3 11.5 0.000 4/14/2012 2 PM 35261.7 311.2 0.1 12.7 0.000 4/19/2012 2 PM 36156.1 25325.4 10.1 12.4 0.000 4/22/2012 2 PM 36382.6 6414.0 2.6 12.3 0.002 4/30/2012 2 PM 36689.8 8698.9 3.5 14.4 0.000 5/3/2012 2 PM 36904.3 3673.5 1.5 13.6 0.000 5/14/2012 2 PM 37099.4 5524.9 2.2 14.1 0.000 5/17/2012 2 PM 37133.6 967.3 0.4 14.2 0.000 5/12/2012 2 PM 37184.5 435.2 0.2 15.1 0.002 6/12/012 2 PM 37184.5 0.0 0.0 0.0 0.0 6/12/2012 2 PM 37188.7 0.0 0.0 0.0 3/29/2012 PM 371	8/6/2012	1	PM2	31251.6	0.0	0.0		
4/14/2012 2 PM 35261.7 311.2 0.1 12.7 0.000 4/19/2012 2 PM 36156.1 25325.4 10.1 12.4 0.000 4/22/2012 2 PM 36382.6 6414.0 2.6 12.3 0.002 4/30/2012 2 PM 36689.8 8698.9 3.5 14.4 0.000 5/3/2012 2 PM 36774.6 2401.0 1.0 14.0 0.000 5/7/2012 2 PM 36904.3 3673.5 1.5 13.6 0.000 5/14/2012 2 PM 37099.4 5524.9 2.2 14.1 0.000 5/17/2012 2 PM 37185.2 0.4 14.2 0.000 5/21/2012 2 PM 37184.5 0.0 0.0 0.0 0.0 6/12/012 2 PM 37184.5 0.0 0.0 0.0 3/29/2012 0.13.5 0.013 7/16/2012 2 PM 37188.7 0.0 0.0 0.0 3/29/2012 <	3/29/2012	2	PM	35221.8		0.0		
4/19/2012 2 PM 36156.1 25325.4 10.1 12.4 0.000 4/22/2012 2 PM 36382.6 6414.0 2.6 12.3 0.002 4/30/2012 2 PM 36689.8 8698.9 3.5 14.4 0.000 5/3/2012 2 PM 36774.6 2401.0 1.0 14.0 0.000 5/7/2012 2 PM 36904.3 3673.5 1.5 13.6 0.000 5/14/2012 2 PM 37099.4 5524.9 2.2 14.1 0.000 5/17/2012 2 PM 37169.2 1008.1 0.4 14.2 0.000 5/21/2012 2 PM 37184.5 435.2 0.2 15.1 0.002 6/12/2012 2 PM 37184.5 0.0 0.0 0.0	4/7/2012	2	PM	35250.7	817.2	0.3	11.5	0.000
4/22/2012 2 PM 36382.6 6414.0 2.6 12.3 0.002 4/30/2012 2 PM 36689.8 8698.9 3.5 14.4 0.000 5/3/2012 2 PM 36774.6 2401.0 1.0 14.0 0.000 5/7/2012 2 PM 36904.3 3673.5 1.5 13.6 0.000 5/14/2012 2 PM 37099.4 5524.9 2.2 14.1 0.000 5/17/2012 2 PM 37133.6 967.3 0.4 14.2 0.000 5/21/2012 2 PM 37184.5 435.2 0.2 15.1 0.002 6/12/2012 2 PM 37184.5 0.0 0.0 0.0 0.0 6/12/2012 2 PM 37188.7 10.0 0.0 0.01 3.5 0.013 7/16/2012 2 PM 37188.7 0.0 0.0 0.073 3/29/2012 9 PM2 96405.1 6196.3 2.1 43.6 0.002 4/14/2012	4/14/2012	2	PM	35261.7	311.2	0.1	12.7	0.000
4/30/2012 2 PM 36689.8 8698.9 3.5 14.4 0.000 5/3/2012 2 PM 36774.6 2401.0 1.0 14.0 0.000 5/7/2012 2 PM 36904.3 3673.5 1.5 13.6 0.000 5/14/2012 2 PM 37099.4 5524.9 2.2 14.1 0.000 5/17/2012 2 PM 37133.6 967.3 0.4 14.2 0.000 5/21/2012 2 PM 37184.5 435.2 0.2 15.1 0.002 6/12012 2 PM 37184.5 0.0 0.0 0.6 6/12/2012 2 PM 37184.5 0.0 0.0 0.01 6/12/2012 2 PM 37184.5 0.0 0.0 0.01 3.5 0.013 6/12/2012 2 PM 37188.7 119.5 0.0 13.5 0.013 7/16/2012 2 PM 37188.7 0.0 0.0 0.02 4/14/2012 3 PM2 96186.3 0.0 0.0	4/19/2012	2	PM	36156.1	25325.4	10.1	12.4	0.000
5/3/2012 2 PM 36774.6 2401.0 1.0 14.0 0.000 5/7/2012 2 PM 36904.3 3673.5 1.5 13.6 0.000 5/14/2012 2 PM 37099.4 5524.9 2.2 14.1 0.000 5/17/2012 2 PM 37133.6 967.3 0.4 14.2 0.000 5/21/2012 2 PM 37169.2 1008.1 0.4 15.0 0.000 5/29/2012 2 PM 37184.5 435.2 0.2 15.1 0.002 6/12/2012 2 PM 37184.5 0.0 0.0 0.0 6/18/2012 2 PM 37184.5 0.0 0.0 0.0 6/25/2012 2 PM 37188.7 119.5 0.0 13.5 0.013 7/16/2012 2 PM 37188.7 10.0 0.0 0.0 0.0 3/29/2012 3 PM2 96186.3 0.0 0.0 0.073 0.073 4/14/2012 3 PM2	4/22/2012	2	PM	36382.6	6414.0	2.6	12.3	0.002
5/7/2012 2 PM 36904.3 3673.5 1.5 13.6 0.000 5/14/2012 2 PM 37099.4 5524.9 2.2 14.1 0.000 5/17/2012 2 PM 37133.6 967.3 0.4 14.2 0.000 5/21/2012 2 PM 37169.2 1008.1 0.4 15.0 0.000 5/29/2012 2 PM 37184.5 435.2 0.2 15.1 0.002 6/12/2012 2 PM 37184.5 0.0 0.0 0.0 0.01 6/18/2012 2 PM 37184.5 0.0 0.0 0.01 0.013 6/18/2012 2 PM 37188.7 119.5 0.0 13.5 0.013 7/16/2012 2 PM 37188.7 0.0 0.0 0.0 0.02 3/29/2012 3 PM2 96186.3 0.00 0.0 0.073 0.073 4/14/2012 3 PM2 96495.1 6196.3 2.1 43.6 0.002 4/14/20	4/30/2012	2	PM	36689.8	8698.9	3.5	14.4	0.000
5/14/2012 2 PM 37099.4 5524.9 2.2 14.1 0.000 5/17/2012 2 PM 37133.6 967.3 0.4 14.2 0.000 5/21/2012 2 PM 37169.2 1008.1 0.4 15.0 0.000 5/29/2012 2 PM 37184.5 435.2 0.2 15.1 0.002 6/12/2012 2 PM 37184.5 0.0 0.0 0.0 6/18/2012 2 PM 37184.5 0.0 0.0 0.0 6/18/2012 2 PM 37188.7 10.0 0.0 0.01 6/25/2012 2 PM 37188.7 0.0 0.0 0.0 8/6/2012 2 PM 37188.7 0.0 0.0 0.02 4/14/2012 3 PM2 96186.3 0.0 0.0 0.073 4/14/2012 3 PM2 96495.1 6196.3 2.1 43.6 0.002 4/14/2012 3 PM2 96488.3 2354.5 0.8 43.0	5/3/2012	2	PM	36774.6	2401.0	1.0	14.0	0.000
5/17/2012 2 PM 37133.6 967.3 0.4 14.2 0.000 5/21/2012 2 PM 37169.2 1008.1 0.4 15.0 0.000 5/29/2012 2 PM 37184.5 435.2 0.2 15.1 0.002 6/12/2012 2 PM 37184.5 0.0 0.0 0.0 6/12/2012 2 PM 37184.5 0.0 0.0 0.0 6/18/2012 2 PM 37188.7 0.0 0.0 0.01 6/25/2012 2 PM 37188.7 0.0 0.0 0.013 7/16/2012 2 PM 37188.7 0.0 0.0 0.013 8/6/2012 2 PM 37188.7 0.0 0.0 0.02 4/7/2012 3 PM2 96186.3 0.00 0.0 0.073 4/14/2012 3 PM2 96488.3 2354.5 0.8 43.0 0.073 4/19/2012 3 PM2 98574.8 59083.0 19.7 19100067 25785.6<	5/7/2012	2	PM	36904.3	3673.5	1.5	13.6	0.000
5/21/2012 2 PM 37169.2 1008.1 0.4 15.0 0.000 5/29/2012 2 PM 37184.5 435.2 0.2 15.1 0.002 6/1/2012 2 PM 37184.5 0.0 0.0 0.0 6/12/2012 2 PM 37184.5 0.0 0.0 0.0 6/18/2012 2 PM 37184.5 0.0 0.0 0.0 6/18/2012 2 PM 37184.5 0.0 0.0 0.01 6/25/2012 2 PM 37188.7 119.5 0.0 13.5 0.013 7/16/2012 2 PM 37188.7 0.0 0.0 0.0 0.0 8/6/2012 2 PM 37188.7 0.0 0.0 0.0 0.002 4/17/2012 3 PM2 96186.3 0.0 0.0 0.002 0.002 4/14/2012 3 PM2 96488.3 2354.5 0.8 43.0 0.073 4/19/2012 3 PM2 96485.9 1963.0 <t< td=""><td>5/14/2012</td><td>2</td><td>PM</td><td>37099.4</td><td>5524.9</td><td>2.2</td><td>14.1</td><td>0.000</td></t<>	5/14/2012	2	PM	37099.4	5524.9	2.2	14.1	0.000
5/29/2012 2 PM 37184.5 435.2 0.2 15.1 0.002 6/1/2012 2 PM 37184.5 0.0 0.0 0.0 6/12/2012 2 PM 37184.5 0.0 0.0 0.0 6/12/2012 2 PM 37184.5 0.0 0.0 0.0 6/18/2012 2 PM 37188.7 0.0 0.0 0.013 6/25/2012 2 PM 37188.7 0.0 0.0 0.013 7/16/2012 2 PM 37188.7 0.0 0.0 0.0 3/29/2012 3 PM2 96186.3 0.0 0.0 4/7/2012 3 PM2 96488.3 2354.5 0.8 43.0 0.073 4/19/2012 3 PM2 98574.8 59083.0 19.7 19.7 4/22/2012 3 PM2 99155.9 16456.0 5.5 14/30/2012 3 PM2 100067 25785.6 8.6 50.2 0.000 5/3/2012 3 PM2 1000765 12052.8 4.0<	5/17/2012	2	PM	37133.6	967.3	0.4	14.2	0.000
6/1/20122PM37184.50.00.06/12/20122PM37184.50.00.06/18/20122PM37184.50.00.06/25/20122PM37188.7119.50.013.50.0137/16/20122PM37188.70.00.00.08/6/20122PM37188.70.00.00.03/29/20123PM296186.30.00.04/7/20123PM296405.16196.32.143.60.0024/14/20123PM296488.32354.50.843.00.0734/19/20123PM299155.916456.05.5114/30/20123PM210006725785.68.650.20.0005/3/20123PM21003397729.92.647.30.0005/7/20123PM210076512052.84.045.50.0005/14/20123PM210138617578.85.945.90.000	5/21/2012	2	PM	37169.2	1008.1	0.4	15.0	0.000
6/12/20122PM37184.50.00.06/18/20122PM37184.50.00.06/25/20122PM37188.7119.50.013.50.0137/16/20122PM37188.70.00.013.50.0138/6/20122PM37188.70.00.013.50.0133/29/20123PM296186.30.00.013.50.0024/7/20123PM296405.16196.32.143.60.0024/14/20123PM296488.32354.50.843.00.0734/19/20123PM298574.859083.019.71006725785.68.650.20.0005/3/20123PM210006725785.68.650.20.0005/3/20123PM21003397729.92.647.30.0005/7/20123PM210076512052.84.045.50.0005/14/20123PM210138617578.85.945.90.000	5/29/2012	2	PM	37184.5	435.2	0.2	15.1	0.002
6/18/20122PM37184.50.00.06/25/20122PM37188.7119.50.013.50.0137/16/20122PM37188.70.00.00.08/6/20122PM37188.70.00.00.03/29/20123PM296186.30.00.04/7/20123PM296405.16196.32.143.60.0024/14/20123PM296488.32354.50.843.00.0734/19/20123PM299155.916456.05.5114/30/20123PM210006725785.68.650.20.0005/3/20123PM21003397729.92.647.30.0005/7/20123PM210076512052.84.045.50.0005/14/20123PM210138617578.85.945.90.000	6/1/2012	2	PM	37184.5	0.0	0.0		
6/25/20122PM37188.7119.50.013.50.0137/16/20122PM37188.70.00.00.08/6/20122PM37188.70.00.00.03/29/20123PM296186.30.00.04/7/20123PM296405.16196.32.143.60.0024/14/20123PM296488.32354.50.843.00.0734/19/20123PM298574.859083.019.71000725785.68.650.20.0005/3/20123PM210006725785.68.650.20.0000.0005/7/20123PM210076512052.84.045.50.0005/14/20123PM210138617578.85.945.90.000	6/12/2012	2	PM	37184.5	0.0	0.0		
7/16/20122PM 37188.7 0.00.0 $8/6/2012$ 2PM 37188.7 0.00.0 $3/29/2012$ 3PM2 96186.3 0.0 $4/7/2012$ 3PM2 96405.1 6196.3 2.1 43.6 0.002 $4/14/2012$ 3PM2 96488.3 2354.5 0.8 43.0 0.073 $4/19/2012$ 3PM2 98574.8 59083.0 19.7 $4/22/20123PM299155.916456.05.5$	6/18/2012	2	PM	37184.5	0.0	0.0		
8/6/20122PM37188.70.00.03/29/20123PM296186.30.04/7/20123PM296405.16196.32.143.60.0024/14/20123PM296488.32354.50.843.00.0734/19/20123PM298574.859083.019.7100675.514/30/20123PM210006725785.68.650.20.0005/3/20123PM21003397729.92.647.30.0005/7/20123PM210076512052.84.045.50.0005/14/20123PM210138617578.85.945.90.00010000	6/25/2012	2	PM	37188.7	119.5	0.0	13.5	0.013
3/29/2012 3 PM2 96186.3 0.0 4/7/2012 3 PM2 96405.1 6196.3 2.1 43.6 0.002 4/14/2012 3 PM2 96488.3 2354.5 0.8 43.0 0.073 4/19/2012 3 PM2 98574.8 59083.0 19.7 10007 100067 5.5 4/30/2012 3 PM2 99155.9 16456.0 5.5 50.2 0.000 5/3/2012 3 PM2 100067 25785.6 8.6 50.2 0.000 5/7/2012 3 PM2 100339 7729.9 2.6 47.3 0.000 5/7/2012 3 PM2 100765 12052.8 4.0 45.5 0.000 5/14/2012 3 PM2 101386 17578.8 5.9 45.9 0.000	7/16/2012	2	PM	37188.7	0.0	0.0		
4/7/20123PM296405.16196.32.143.60.0024/14/20123PM296488.32354.50.843.00.0734/19/20123PM298574.859083.019.74/22/20123PM299155.916456.05.54/30/20123PM210006725785.68.650.20.0005/3/20123PM21003397729.92.647.30.0005/7/20123PM210076512052.84.045.50.0005/14/20123PM210138617578.85.945.90.000	8/6/2012	2	PM	37188.7	0.0	0.0		
4/14/20123PM296488.32354.50.843.00.0734/19/20123PM298574.859083.019.710019.710004/22/20123PM299155.916456.05.550.20.0004/30/20123PM210006725785.68.650.20.0005/3/20123PM21003397729.92.647.30.0005/7/20123PM210076512052.84.045.50.0005/14/20123PM210138617578.85.945.90.000	3/29/2012	3	PM2	96186.3		0.0		
4/19/20123PM298574.859083.019.74/22/20123PM299155.916456.05.54/30/20123PM210006725785.68.650.20.0005/3/20123PM21003397729.92.647.30.0005/7/20123PM210076512052.84.045.50.0005/14/20123PM210138617578.85.945.90.000	4/7/2012	3	PM2	96405.1	6196.3	2.1	43.6	0.002
4/22/20123PM299155.916456.05.54/30/20123PM210006725785.68.650.20.0005/3/20123PM21003397729.92.647.30.0005/7/20123PM210076512052.84.045.50.0005/14/20123PM210138617578.85.945.90.000	4/14/2012	3	PM2	96488.3	2354.5	0.8	43.0	0.073
4/30/20123PM210006725785.68.650.20.0005/3/20123PM21003397729.92.647.30.0005/7/20123PM210076512052.84.045.50.0005/14/20123PM210138617578.85.945.90.000	4/19/2012	3	PM2	98574.8	59083.0	19.7		
5/3/20123PM21003397729.92.647.30.0005/7/20123PM210076512052.84.045.50.0005/14/20123PM210138617578.85.945.90.000	4/22/2012	3	PM2	99155.9	16456.0	5.5		
5/7/20123PM210076512052.84.045.50.0005/14/20123PM210138617578.85.945.90.000	4/30/2012	3	PM2	100067	25785.6	8.6	50.2	0.000
5/14/2012 3 PM2 101386 17578.8 5.9 45.9 0.000	5/3/2012	3	PM2	100339	7729.9	2.6	47.3	0.000
	5/7/2012	3	PM2	100765	12052.8	4.0	45.5	0.000
5/17/2012 3 PM2 101534 4193.7 1.4 46.0 0.000	5/14/2012	3	PM2	101386	17578.8	5.9	45.9	0.000
	5/17/2012	3	PM2	101534	4193.7	1.4	46.0	0.000

5/21/2012	3	PM2	101664	3687.7	1.2	46.6	0.000
5/29/2012	3	PM2	101716	1470.2	0.5	44.5	0.000
6/1/2012	3	PM2	101734	497.5	0.2	50.6	0.000
6/12/2012	3	PM2	101767	955.7	0.3		
6/18/2012	3	PM2	101818	1422.9	0.5	46.8	0.000
6/25/2012	3	PM2	101977	4502.1	1.5	45.3	0.000
7/16/2012	3	PM2	102004	783.5	0.3		
8/6/2012	3	PM2	102004	0.0	0.0		
3/29/2012	4	UAN	104787		0.0	42.5	0.000
4/7/2012	4	UAN	105142	10040.0	2.8	39.0	0.000
4/14/2012	4	UAN	105319	5018.6	1.4	36.7	0.000
4/19/2012	4	UAN	107670	66583.0	18.5	49.7	0.000
4/22/2012	4	UAN	108397	20591.4	5.7	45.1	0.000
4/30/2012	4	UAN	109644	35304.3	9.8	44.7	0.000
5/3/2012	4	UAN	109979	9469.7	2.6	43.3	0.000
5/7/2012	4	UAN	110528	15555.8	4.3	39.6	0.000
5/14/2012	4	UAN	111365	23695.2	6.6	41.3	0.000
5/17/2012	4	UAN	111601	6693.0	1.9	40.5	0.002
5/21/2012	4	UAN	111829	6454.5	1.8	41.4	0.000
5/29/2012	4	UAN	112098	7608.7	2.1	40.6	0.000
6/1/2012	4	UAN	112148	1428.6	0.4	40.1	0.000
6/12/2012	4	UAN	112216	1933.5	0.5	39.4	0.002
6/18/2012	4	UAN	112261	1263.2	0.4	39.7	0.002
6/25/2012	4	UAN	112559	8441.5	2.3	40.7	0.000
7/16/2012	4	UAN	112688	3652.6	1.0	40.3	0.002
8/6/2012	4	UAN	112688	0.0	0.0		
3/29/2012	5	PM	96444.3		0.0		
4/7/2012	5	PM	96498.4	1529.7	0.4	13.1	7.441
4/14/2012	5	PM	96498.4	0.3	0.0		
4/19/2012	5	PM	98405.5	54004.4	15.0	10.6	0.375
4/22/2012	5	PM	99279.3	24742.7	6.9	10.5	0.000
4/30/2012	5	PM	99281.7	69.1	0.0	12.0	0.000
5/3/2012	5	PM	99657.3	10634.1	3.0	11.8	0.000
5/7/2012	5	PM	100265	17217.5	4.8	11.2	0.000
5/14/2012	5	PM	101212	26816.9	7.4	11.0	0.000
5/17/2012	5	PM	101488	7805.8	2.2	10.5	0.000
5/21/2012	5	PM	101628	3975.4	1.1	10.9	0.000
5/29/2012	5	PM	101835	5849.7	1.6	10.7	0.000
6/1/2012	5	PM	101932	2754.4	0.8	11.2	0.000
6/12/2012	5	PM	102134	5710.1	1.6	10.5	0.002
6/18/2012	5	PM	102240	2993.9	0.8	10.4	0.000

6/25/2012	5	PM	102593	10001.2	2.8	10.8	0.000
7/16/2012	5	PM	102773	5094.8	1.4	11.0	0.002
8/6/2012	5	PM	102773	0.0	0.0		
3/29/2012	7	PM2	101839		0.0		
4/7/2012	7	PM2	101984	4102.5	1.0	29.6	0.000
4/14/2012	7	PM2	102009	686.4	0.2	28.1	0.000
4/19/2012	7	PM2	105354	94744.6	23.7	26.8	0.000
4/22/2012	7	PM2	106205	24088.0	6.0	25.7	0.000
4/30/2012	7	PM2	107511	36978.9	9.2	37.7	0.000
5/3/2012	7	PM2	107897	10933.4	2.7	28.1	0.000
5/7/2012	7	PM2	108506	17244.1	4.3	28.3	0.000
5/14/2012	7	PM2	109377	24666.5	6.2	28.0	0.000
5/17/2012	7	PM2	109569	5422.4	1.4	28.7	0.000
5/21/2012	7	PM2	109695	3584.9	0.9	28.7	0.000
5/29/2012	7	PM2	109789	2661.5	0.7	27.9	0.000
6/1/2012	7	PM2	109789	0.0	0.0		
6/12/2012	7	PM2	109789	0.0	0.0		
6/18/2012	7	PM2	109789	0.0	0.0		
6/25/2012	7	PM2	109789	0.0	0.0		
7/16/2012	7	PM2	109789	0.0	0.0		
8/6/2012	7	PM2	109789	0.0	0.0		
3/29/2012	8	UAN	84075.8		0.0		
4/7/2012	8	UAN	84446.7	10500.7	4.2	47.1	0.013
4/14/2012	8	UAN	84600.8	4363.6	1.7	37.9	0.000
4/19/2012	8	UAN	86692.9	59243.3	23.7	45.5	0.000
4/22/2012	8	UAN	87191.4	14116.2	5.6	13.5	0.002
4/30/2012	8	UAN	87969.3	22027.1	8.8	29.6	0.000
5/3/2012	8	UAN	88190.6	6265.9	2.5	34.7	0.000
5/7/2012	8	UAN	88520.5	9342.0	3.7		
5/14/2012	8	UAN	89125.8	17139.3	6.9	34.8	0.000
5/17/2012	8	UAN	89279.2	4344.6	1.7	34.0	0.000
5/21/2012	8	UAN	89414	3816.8	1.5		
5/29/2012	8	UAN	89533.6	3386.7	1.4	41.8	0.000
6/1/2012	8	UAN	89534.3	21.5	0.0		
6/12/2012	8	UAN	89534.3	0.0	0.0		
6/18/2012	8	UAN	89535.1	20.4	0.0		
6/25/2012	8	UAN	89675.7	3983.3	1.6	37.9	0.002
7/16/2012	8	UAN	89700.6	705.1	0.3		
8/6/2012	8	UAN	89700.6	0.0	0.0		
3/29/2012	10	PM	16268.9		0.0		
4/7/2012	10	PM	17160.9	25258.6	12.0	10.3	0.000

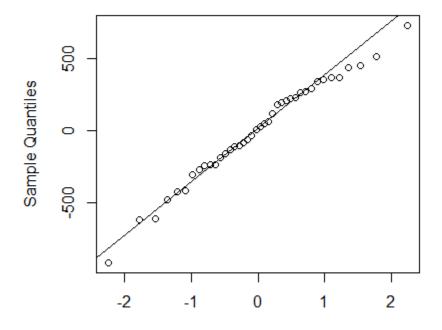
4/14/2012	10	PM	17160.9	0.0	0.0		
4/19/2012	10	PM	17160.9	0.0	0.0		
4/22/2012	10	PM	19717.1	72383.4	34.5	36.2	0.000
4/30/2012	10	PM	22315.1	73567.0	35.0	15.0	0.000
5/3/2012	10	PM	23461.5	32462.4	15.5	14.9	0.000
5/7/2012	10	PM	25012.6	43922.2	20.9		
5/14/2012	10	PM	26400.5	39299.5	18.7	14.6	0.000
5/17/2012	10	PM	0	0.0	0.0		
5/21/2012	10	PM	0	0.0	0.0		
5/29/2012	10	PM	0	0.0	0.0		
6/1/2012	10	PM	0	0.0	0.0		
6/12/2012	10	PM	0	0.0	0.0		
6/18/2012	10	PM	0	0.0	0.0		
6/25/2012	10	PM	0	0.0	0.0		
7/16/2012	10	PM	0	0.0	0.0		
8/6/2012	10	PM	0	0.0	0.0		
3/29/2012	check	None	338136		0.0	5.9	0.000
4/7/2012	check	None	339985	52370.8	11.1	7.8	0.000
4/14/2012	check	None	340550	15986.2	3.4	4.9	0.000
4/19/2012	check	None	348343	220691.8	47.0	15.2	0.000
4/22/2012	check	None	350800	69563.6	14.8	14.3	0.002
4/30/2012	check	None	354328	99915.3	21.3	14.4	0.000
5/3/2012	check	None	355544	34420.5	7.3	13.4	0.000
5/7/2012	check	None	357302	49778.4	10.6		
5/14/2012	check	None	359643	66299.8	14.1	13.4	0.000
5/17/2012	check	None	360162	14688.2	3.1	6.2	0.000
5/21/2012	check	None	360705	15376.6	3.3	5.3	0.000
5/29/2012	check	None	361524	23188.9	4.9	5.2	0.000
6/1/2012	check	None	361748	6340.7	1.3	5.3	0.000
6/12/2012	check	None	362370	17609.7	3.7	5.1	0.000
6/18/2012	check	None	362674	8625.3	1.8	5.1	0.002
6/25/2012	check	None	363453	22061.9	4.7	5.3	0.000
7/16/2012	check	None	364321	24574.5	5.2	4.9	0.002
8/6/2012	check	None	364321	0.0	0.0		
3/15/2010	1	PM2	22562		0.0		
3/18/2010	1	PM2	22562	0.0	0.0		
3/23/2010	1	PM2	22562	0.0	0.0		
3/24/2010	1	PM2	22755	5465.1	2.9		
3/29/2010	1	PM2	22789	962.8	0.5	9.2	0.133
4/5/2010	1	PM2	22789	0.0	0.0		
4/13/2010	1	PM2	22800	311.5	0.2		

4/22/2010	1	PM2	22800	0.0	0.0		
5/13/2010	1	PM2	23357	15772.5	8.3	10.6	0.034
5/18/2010	1	PM2	24050	19623.5	10.3	10.2	0.035
5/25/2010	1	PM2	24233	5182.0	2.7	10.2	0.036
6/1/2010	1	PM2	24233	0.0	0.0		
6/4/2010	1	PM2	24233	0.0	0.0		
6/9/2010	1	PM2	24233	0.0	0.0		
6/11/2010	1	PM2	24300	1897.2	1.0	12.2	0.041
6/15/2010	1	PM2	25588	36472.0	19.2	16.1	0.051
6/22/2010	1	PM2	26242	18519.2	9.7	16.5	0.039
6/29/2010	1	PM2	26446	5776.6	3.0	20.7	0.177
7/6/2010	1	PM2	26901	12884.1	6.8	22.9	0.002
7/13/2010	1	PM2	26902	28.3	0.0	24.7	0.012
7/29/2010	1	PM2	26902	0.0	0.0	18.8	0.002
8/5/2010	1	PM2	26905	85.0	0.0	20.4	0.002
8/13/2010	1	PM2	26906	28.3	0.0	14.3	0.226
8/18/2010	1	PM2	27137	6541.2	3.4	3.6	0.002
8/30/2010	1	PM2	27150	368.1	0.2		
9/1/2010	1	PM2	27159	254.9	0.1		
9/8/2010	1	PM2	27171	339.8	0.2		
10/16/2010	1	PM2	27306	3822.8	2.0		
3/15/2010	2	PM	23809		0.0		
3/18/2010	2	PM	23809	0.0	0.0		
3/23/2010	2	PM	23811	56.6	0.0	5.8	0.054
3/24/2010	2	PM	23813	56.6	0.0		
3/29/2010	2	PM	23854	1152.5	0.5	7.7	0.041
4/5/2010	2	PM	24020	4709.1	1.9		
4/13/2010	2	PM	24100	2265.3	0.9	8.3	0.032
4/22/2010	2	PM	24153	1500.8	0.6		
5/13/2010	2	PM	24214	1727.3	0.7		
5/18/2010	2	PM	25273	29987.5	12.0	8.8	0.032
5/25/2010	2	PM	25796	14809.7	5.9	9.7	0.033
6/1/2010	2	PM	25951	4389.1	1.8		
6/4/2010	2	PM	25970	538.0	0.2		
6/9/2010	2	PM	26083	3199.8	1.3		
6/11/2010	2	PM	26218	3822.8	1.5	9.9	0.036
6/15/2010	2	PM	27975	49752.6	19.9	11.4	0.037
6/22/2010	2	PM	29175	33980.2	13.6	12.5	0.034
6/29/2010	2	PM	29583	11553.3	4.6	13.9	0.002
7/6/2010	2	PM	29595	339.8	0.1	15.6	0.002
7/13/2010	2	PM	29598	85.0	0.0	16.7	0.010

7/29/2010	2	PM	29598	0.0	0.0		
8/5/2010	2	PM	29598	0.0	0.0	9.6	0.002
8/13/2010	2	PM	29599	28.3	0.0		
8/18/2010	2	PM	30035	12346.1	4.9	4.1	0.002
8/30/2010	2	PM	30065	849.5	0.3	14.2	0.002
9/1/2010	2	PM	30134	1953.9	0.8	4.1	0.002
9/8/2010	2	PM	30436	8551.7	3.4	4.6	0.002
10/16/2010	2	PM	30980	15404.3	6.2	0.1	0.002
3/15/2010	3	PM2	52941		0.0		
3/18/2010	3	PM2	52941	0.0	0.0		
3/23/2010	3	PM2	54317	38963.9	13.0	11.8	0.031
3/24/2010	3	PM2	54528	5974.8	2.0		
3/29/2010	3	PM2	55453	26181.7	8.7	12.5	0.032
4/5/2010	3	PM2	55713	7373.7	2.5		
4/13/2010	3	PM2	55713	0.0	0.0	12.8	0.032
4/22/2010	3	PM2	56077	10307.3	3.4		
5/13/2010	3	PM2	59440	95229.4	31.7	13.1	0.034
5/18/2010	3	PM2	61339	53773.6	17.9	13.7	0.036
5/25/2010	3	PM2	62381	29506.1	9.8	13.7	0.037
6/1/2010	3	PM2	62770	11015.2	3.7		
6/4/2010	3	PM2	62865	2690.1	0.9		
6/9/2010	3	PM2	63136	7673.9	2.6		
6/11/2010	3	PM2	63456	9061.4	3.0	14.5	0.039
6/15/2010	3	PM2	66453	84865.4	28.3	17.8	0.045
6/22/2010	3	PM2	68537	59012.2	19.7	17.9	0.041
6/29/2010	3	PM2	73219	132579.3	44.2	23.6	0.017
7/6/2010	3	PM2	74515	36698.6	12.2	23.2	0.002
7/13/2010	3	PM2	75340	23361.4	7.8	23.7	0.015
7/29/2010	3	PM2	75785	12601.0	4.2	22.8	0.002
8/5/2010	3	PM2	77327	43664.5	14.6	16.7	0.002
8/13/2010	3	PM2	79713	67563.9	22.5	15.4	0.058
8/18/2010	3	PM2	80833	31714.8	10.6	15.3	0.002
8/30/2010	3	PM2	80976	4049.3	1.3	14.1	0.002
9/1/2010	3	PM2	81361	10902.0	3.6	13.3	0.002
9/8/2010	3	PM2	82272	25796.6	8.6	14.1	0.002
10/16/2010	3	PM2	84281	56888.5	19.0	0.8	0.002
3/15/2010	4	UAN	49794		0.0		
3/18/2010	4	UAN	49794	0.0	0.0		
3/23/2010	4	UAN	51560	50007.5	13.9	11.8	0.032
3/24/2010	4	UAN	51730	4813.9	1.3		
3/29/2010	4	UAN	51732	59.5	0.0	11.8	0.031

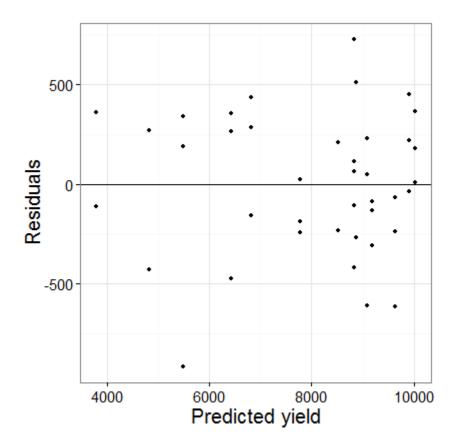
4/5/2010	4	UAN	52290.8	15820.6	4.4		
4/13/2010	4	UAN	53283	28095.9	7.8	11.9	0.035
4/22/2010	4	UAN	53888	17131.7	4.8		
5/13/2010	4	UAN	57728	108736.5	30.2	11.9	0.037
5/18/2010	4	UAN	60226	70735.4	19.6	11.7	0.036
5/25/2010	4	UAN	61671	40917.8	11.4	11.8	0.037
6/1/2010	4	UAN	62283	17329.9	4.8		
6/4/2010	4	UAN	62427	4077.6	1.1		
6/9/2010	4	UAN	62746	9033.1	2.5		
6/11/2010	4	UAN	63013	7560.6	2.1	12.2	0.041
6/15/2010	4	UAN	66394	95739.1	26.6	15.0	0.041
6/22/2010	4	UAN	69074	75889.0	21.1	15.6	0.039
6/29/2010	4	UAN	74509	153901.8	42.8	21.3	0.002
7/6/2010	4	UAN	77290	78749.0	21.9	21.6	0.011
7/13/2010	4	UAN	78503	34348.3	9.5	22.7	0.011
7/29/2010	4	UAN	78933	12176.2	3.4	20.4	0.002
8/5/2010	4	UAN	80263	37661.3	10.5	19.8	0.002
8/13/2010	4	UAN	84617	123291.3	34.2	17.9	0.002
8/18/2010	4	UAN	86159	43664.5	12.1	17.7	0.002
8/30/2010	4	UAN	86359	5663.4	1.6	18.3	0.002
9/1/2010	4	UAN	86371	339.8	0.1	17.4	0.002
9/8/2010	4	UAN	87229	24295.8	6.7	17.9	0.002
10/16/2010	4	UAN	89381	60937.8	16.9	3.8	0.002
3/15/2010	5	PM	50297		0.0		
3/18/2010	5	PM	50297	0.0	0.0		
3/23/2010	5	PM	51941	46552.8	12.9	7.0	0.032
3/24/2010	5	PM	52325	10873.7	3.0		
3/29/2010	5	PM	53074	21209.3	5.9	7.3	0.032
4/5/2010	5	PM	53185.4	3154.5	0.9		
4/13/2010	5	PM	53422	6699.8	1.9	7.5	0.033
4/22/2010	5	PM	53422	0.0	0.0		
5/13/2010	5	PM	55878	69546.1	19.3	7.9	0.035
5/18/2010	5	PM	58047	61419.1	17.1	8.4	0.035
5/25/2010	5	PM	58903	24239.2	6.7	8.6	0.036
6/1/2010	5	PM	58913	283.2	0.1		
6/4/2010	5	PM	58913	0.0	0.0		
6/9/2010	5	PM	58913	0.0	0.0		
6/11/2010	5	PM	58936	651.3	0.2	9.4	0.042
6/15/2010	5	PM	60312	38963.9	10.8	10.6	0.057
6/22/2010	5	PM	62487	61589.0	17.1	11.4	0.038
6/29/2010	5	PM	64401	54198.4	15.1	12.7	0.002

7/6/2010	5	PM	64421	566.3	0.2	13.9	0.002
7/13/2010	5	PM	65051	17839.6	5.0	14.0	0.015
7/29/2010	5	PM	65303	7135.8	2.0	11.4	0.002
8/5/2010	5	PM	66725	40266.5	11.2	10.4	0.002
8/13/2010	5	PM	74973	233557.0	64.9	6.5	0.002
8/18/2010	5	PM	76676	48223.5	13.4	5.9	0.002
8/30/2010	5	PM	76783	3029.9	0.8	5.3	0.002
9/1/2010	5	PM	77075	8268.5	2.3	5.9	0.002
9/8/2010	5	PM	77868	22455.2	6.2	5.9	0.002
10/16/2010	5	PM	79139	35990.7	10.0	0.4	0.002
3/15/2010	7	PM2	61129		0.0		
3/18/2010	7	PM2	61129	0.0	0.0		
3/23/2010	7	PM2	64164	85941.5	21.5	12.3	0.028
3/24/2010	7	PM2	64164	0.0	0.0		
3/29/2010	7	PM2	65754	45012.4	11.3	12.7	0.029
4/5/2010	7	PM2	66577.7	23335.9	5.8		
4/13/2010	7	PM2	67752	33252.4	8.3	12.8	0.030
4/22/2010	7	PM2	68056	8608.3	2.2		
5/13/2010	7	PM2	72268	119270.4	29.8	13.0	0.032
5/18/2010	7	PM2	74854	73227.2	18.3	13.6	0.032
5/25/2010	7	PM2	75963	31403.3	7.9	13.7	0.034
6/1/2010	7	PM2	76107	4077.6	1.0		
6/4/2010	7	PM2	76107	0.0	0.0		
6/9/2010	7	PM2	76112	141.6	0.0		
6/11/2010	7	PM2	76375	7447.3	1.9	14.5	0.038
6/15/2010	7	PM2	80703	122555.1	30.6	16.6	0.058
6/22/2010	7	PM2	83319	74076.7	18.5	18.0	0.037
6/29/2010	7	PM2	89360	171061.8	42.8	20.9	0.032
7/6/2010	7	PM2	92209	80674.6	20.2	24.3	0.002
7/13/2010	7	PM2	93026	23134.8	5.8		
7/29/2010	7	PM2	93026	0.0	0.0		
8/5/2010	7	PM2	94191	32989.1	8.2	19.6	0.002
8/13/2010	7	PM2	95510	37349.9	9.3	16.4	0.002
8/18/2010	7	PM2	96148	18066.1	4.5	16.4	0.002
8/30/2010	7	PM2	96149	28.3	0.0	17.7	0.002
9/1/2010	7	PM2	96149	0.0	0.0	16.1	0.002
9/8/2010	7	PM2	96149	0.0	0.0	15.5	0.002
10/16/2010	7	PM2	96149	0.0	0.0	0.5	0.002
3/15/2010	8	UAN	39440		0.0		
3/18/2010	8	UAN	39440	0.0	0.0		
3/23/2010	8	UAN	41024	44853.8	17.9	11.1	0.029


3/24/2010	8	UAN	41088	1812.3	0.7		
3/29/2010	8	UAN	41869	22126.7	8.9	11.2	0.031
4/5/2010	8	UAN	42319.6	12748.2	5.1		
4/13/2010	8	UAN	42939.7	17559.2	7.0	11.1	0.031
4/22/2010	8	UAN	43343	11420.2	4.6		
5/13/2010	8	UAN	46283	83251.4	33.3	11.2	0.032
5/18/2010	8	UAN	47875	45080.3	18.0	11.7	0.033
5/25/2010	8	UAN	48710	23644.5	9.5	11.5	0.033
6/1/2010	8	UAN	49026	8948.1	3.6		
6/4/2010	8	UAN	49083	1614.1	0.6		
6/9/2010	8	UAN	49272	5351.9	2.1		
6/11/2010	8	UAN	49488	6116.4	2.4	12.1	0.037
6/15/2010	8	UAN	52201	76823.5	30.7	16.6	0.043
6/22/2010	8	UAN	53784	44825.5	17.9	16.6	0.036
6/29/2010	8	UAN	57807	113918.5	45.6	21.4	0.002
7/6/2010	8	UAN	59556	49526.1	19.8	21.6	0.002
7/13/2010	8	UAN	60354	22596.8	9.0	22.6	0.013
7/29/2010	8	UAN	60656	8551.7	3.4	19.9	0.002
8/5/2010	8	UAN	61649	28118.6	11.2	18.8	0.002
8/13/2010	8	UAN	68024	180519.6	72.2	14.5	0.002
8/18/2010	8	UAN	68935	25796.6	10.3	16.0	0.002
8/30/2010	8	UAN	69069	3794.5	1.5	15.7	0.018
9/1/2010	8	UAN	69241	4870.5	1.9	13.4	0.002
9/8/2010	8	UAN	69711	13308.9	5.3	14.7	0.002
10/16/2010	8	UAN	70885	33243.9	13.3	3.8	0.002
3/15/2010	10	PM	24978		0.0		
3/18/2010	10	PM	24978	0.0	0.0		
3/23/2010	10	PM	25627	18377.6	8.8	8.3	0.030
3/24/2010	10	PM	25861	6626.1	3.2		
3/29/2010	10	PM	26063	5720.0	2.7	8.3	0.036
4/5/2010	10	PM	26082	538.0	0.3		
4/13/2010	10	PM	26283	5691.7	2.7	8.1	0.034
4/22/2010	10	PM	26283	0.0	0.0		
5/13/2010	10	PM	27939.2	46898.3	22.3	8.5	0.034
5/18/2010	10	PM	28928	27999.7	13.3	9.3	0.034
5/25/2010	10	PM	29179	7107.5	3.4	9.7	0.034
6/1/2010	10	PM	29179	0.0	0.0		
6/4/2010	10	PM	29179	0.0	0.0		
6/9/2010	10	PM	29179	0.0	0.0		
6/11/2010	10	PM	29292	3199.8	1.5	10.5	0.038
6/15/2010	10	PM	31400	59691.8	28.4	12.0	0.055

6/22/2010	10	PM	32175	21945.5	10.5	11.0	0.037
6/29/2010	10	PM	35059	81665.7	38.9	13.9	0.023
7/6/2010	10	PM	35975	25938.2	12.4	15.3	0.002
7/13/2010	10	PM	36162	5295.2	2.5	16.6	0.013
7/29/2010	10	PM	36319	4445.7	2.1	11.7	0.037
8/5/2010	10	PM	37299	27750.5	13.2	9.8	0.011
8/13/2010	10	PM	42106	136118.9	64.8	6.6	0.011
8/18/2010	10	PM	42502	11213.5	5.3	7.9	0.002
8/30/2010	10	PM	42502	0.0	0.0		
9/1/2010	10	PM	42797	8353.5	4.0	6.1	0.002
9/8/2010	10	PM	43073	7815.4	3.7	7.2	0.002
10/16/2010	10	PM	43735	18745.7	8.9	1.6	0.002
3/15/2010	check	None	160616		0.0		
3/18/2010	check	None	167587	197396.4	42.0		
3/23/2010	check	None	175210	215859.0	45.9	5.0	0.033
3/24/2010	check	None	176204	28146.9	6.0		
3/29/2010	check	None	180427	119581.8	25.4	5.1	0.033
4/5/2010	check	None	182772	66397.2	14.1		
4/13/2010	check	None	186071	93422.8	19.9	5.4	0.035
4/22/2010	check	None	187457	39247.1	8.4		
5/13/2010	check	None	198003	298629.0	63.5	7.0	0.037
5/18/2010	check	None	204388	180802.8	38.5	7.0	0.037
5/25/2010	check	None	207339	83562.9	17.8	7.4	0.038
6/1/2010	check	None	208647	37038.4	7.9		
6/4/2010	check	None	209035	10986.9	2.3		
6/9/2010	check	None	209657	17613.0	3.7		
6/11/2010	check	None	210310	18490.9	3.9	8.7	0.040
6/15/2010	check	None	218955	244798.7	52.1	9.6	0.046
6/22/2010	check	None	225134	174969.5	37.2	9.7	0.039
6/29/2010	check	None	226140	28486.7	6.1	9.5	0.010
7/6/2010	check	None	226140	0.0	0.0	10.2	0.002
7/13/2010	check	None	228153	57001.7	12.1	11.2	0.011
7/29/2010	check	None	232840	132720.8	28.2	7.1	0.002
8/5/2010	check	None	239370	184908.7	39.3	7.4	0.002
8/13/2010	check	None	254505	428574.8	91.2	6.3	0.002
8/18/2010	check	None	260870	180236.4	38.3	6.2	0.002
8/30/2010	check	None	263087	62778.3	13.4	4.6	0.002
9/1/2010	check	None	264719	46213.0	9.8	5.1	0.002
9/8/2010	check	None	269410	132834.1	28.3	5.3	0.002
10/16/2010	check	None	279628	289341.1	61.6	0.6	0.017
							_

APPENDIX D. STATISTICS


APPENDIX D1. Yield Modeling

MLR

Normal Q-Q Plot

Theoretical Quantiles

Response: yield						
	Sum Sq	Df	F value	Pr(>F)		
(Intercept)	242075252	1	1665.9042	< 2.2e-16	* * *	
year	33090633	4	56.9305	3.387e-12	* * *	
treatment	3113575	2	10.7134	0.0004361	* * *	
year:treatment	6360869	8	5.4717	0.0004760	* * *	
Residuals	3632791	25				

Tukey

\$treatment

	diff	lwr	upr	p adj
PM2-PM	876.8670	530.1591	1223.5748	
UAN-PM	-912.4684	-1300.0996	-524.8373	1.19e-05
UAN-PM2	-1789.3354	-2176.9666	-1401.7043	0.00e+00

\$year

2	diff	lwr	upr	p adj
2011-2010	-3.305372	-563.0695	556.4588	1.0000000
2012-2010	-192.779424	-752.5436	366.9847	0.8476832
2013-2010	-3929.647066	-4489.4112	-3369.8829	0.000000
2014-2010	-2665.748903	-3225.5131	-2105.9847	0.000000
2012-2011	-189.474052	-749.2382	370.2901	0.8554852
2013-2011	-3926.341694	-4486.1059	-3366.5775	0.000000
2014-2011	-2662.443531	-3222.2077	-2102.6794	0.000000
2013-2012	-3736.867642	-4296.6318	-3177.1035	
	-2472.969479	-3032.7336	-1913.2053	
2014-2013	1263.898163	704.1340	1823.6623	0.000056

R code

print.regsub <- function(l, sort='BIC', best=NULL) {</pre>

function written by PMD, 12 April 2015

print a table with model selection stats

based on information produced by summary.regsubsets()

#1 is an object returned by summary() of a regsubsets() result

sort is a character string with the variable to sort by

must be one of the names in the print.regsub() output

best is the number of results to print, NULL prints all

var <- apply(l\$which, 1, function(x){</pre>

paste(l\$obj\$xnames[x][-1],collapse=' ')})

nvar <- apply(l\$which[,-1], 1, sum)

aic <- l\$bic - log(l\$obj\$nn)*nvar + 2*nvar

temp <- data.frame(model=var, nvar=nvar, Rsq=l\$rsq, AdjRsq=l\$adjr2,

Cp=l\$cp, AIC = aic, BIC=l\$bic)

o <- order(temp[,sort])

if (!is.null(best)) {

o <- o[1:best]

}

temp[0,]

}

#Cite from STAT501, Dr. Dixon iastateregmdyield <- regsubsets(yield ~

#temperature+
gddcul+radncul+treatment+
gddcul:treatment+radncul:treatment+raincul:treatment+
radncul:raincul
##treatment:temperature+treatment:gddcul+treatment:radncul+treatment:raincul+
#N_rate+N_rate:temperature+N_rate:gddcul+N_rate:radncul+N_rate:raincul+
#P_rate+N_rate:temperature+N_rate:gddcul+N_rate:radncul+N_rate:raincul+
#K_rate+N_rate:temperature+N_rate:gddcul+N_rate:radncul+N_rate:raincul+
#N_rate:P_rate+N_rate:K_rate+P_rate:K_rate+N_rate:P_rate:K_rate
,
data=mdyieldandload2, method='exhaustive',
nbest=100, really.big=T)

summaryregmdyield<-summary(regmdyield)

use a function from Dr. Dixon Iastate (remember to run first)

print.regsub(summaryregmdyield,sort='BIC', best=20)

#this shows that temperature, gddcul, radncul, raincul, treatment, N_rate, and radncul*treatment are the chosen variables for mdyield

mdyield<-lm(yield ~

 $\# radncul + treatment + temperature : treatment + temperature : N_rate +$

 $\label{eq:state-radicul:N_rate+radicul:N_rate+radicul:N_rate+N_rate:P_rate:K_rate} \\$

gddcul+radncul+raincul+treatment+radncul:treatment+radncul:raincul

data=mdyieldandload2)

,

93

summary(mdyield)

mdyieldaov<-aov(yield ~

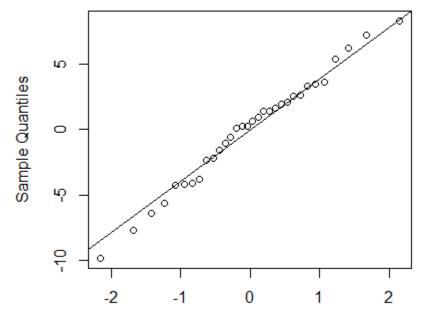
$\label{eq:linear} \ensuremath{\texttt{#radncul+treatment+temperature:}} N_rate+$
#gddcul:N_rate+radncul:N_rate+raincul:N_rate+N_rate:P_rate:K_rate
gddcul+radncul+raincul+treatment+radncul:treatment+radncul:raincul
,

data=mdyieldandload2)

Anova(mdyieldaov,type=3)

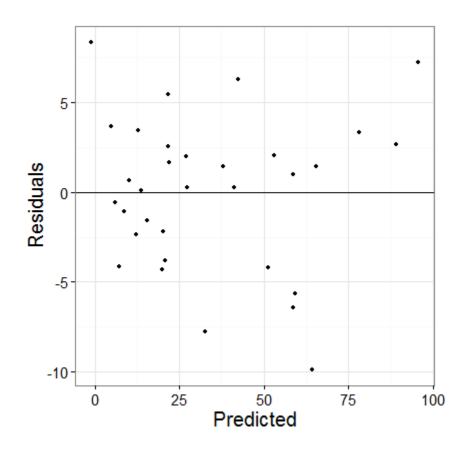
#tukey

mdyieldaov2<-aov(yield~year+treatment+year:treatment,data=mdyieldandload2)


Anova(mdyieldaov2,type=3)

TukeyHSD(x=mdyieldaov2, c('treatment', 'year'), ordered = FALSE, conf.level = 0.95)

TukeyHSD(x=mdyieldaov, 'treatment', ordered = FALSE, conf.level = 0.95)


APPENDIX D2. NO₃-N Load Modeling

MLR

Normal Q-Q Plot

Theoretical Quantiles

Response: N_yield							
	Sum Sq			Pr(>F)			
(Intercept)	827.1	1	5.2506	0.032927	*		
year	42.0	3	0.0889	0.965329			
treatment	1451.9	2	4.6085	0.022591	*		
year:treatment	3963.7	6	4.1938	0.006858	**		
Residuals	3150.4	20					

Tukey

	diff	lwr	upr	p adj
PM2-PM	29.712638	16.749433	42.67584	0.0000324
UAN-PM	38.243143	23.749840	52.73645	0.0000049
UAN-PM2	8.530505	-5.962799	23.02381	0.3171039

	diff	lwr	upr	p adj
2012-2010	-14.303644	-31.8680556	3.260768	0.1366087
2013-2010	2.701147	-14.8632647	20.265559	0.9725508
2014-2010	23.564952	6.0005404	41.129364	0.0062919

2013-2012	17.004791	-0.5596209	34.569203	0.0599061
2014-2012	37.868596	20.3041842	55.433008	0.0000372
2014-2013	20.863805	3.2993933	38.428217	0.0163822
R code				

mdyieldandload2<-read.csv("mdyieldandload2.csv")[,-1]

names(mdyieldandload2)

mdyieldandload2\$year<-as.factor(mdyieldandload2\$year)

mdyieldandload2[,c("year","treatment","plot","N_rate","yield","rainfall","raincul","flow","drain","N_conc","N_load")]

scatterplot.matrix(~year+treatment+year:treatment

+rainfall+flow+N_conc+drain+N_load

,

data=mdyieldandload2)

outlier exclude

residuals(mdN_load)

min(residuals(mdN_load))

mdyieldandload2[,c("year","treatment","plot","flow","drain","N_conc","N_load")]

str(mdyieldandload)

 $\label{eq:model} \ensuremath{\texttt{#mdyieldandload2}} \ensuremath{\texttt{mdyieldandload2}} \ensuremath{\texttt{N_load}} \ensuremath{\texttt{=}} 1.85579 \ensuremath{\texttt{mdyieldandload2}} \ensuremath{\texttt{N_load}} \ensuremath{\texttt{=}} 1.85579 \ensuremath{\texttt{mdyieldandload2}} \ensuremath{\texttt{N_load}} \ensuremath{\texttt{=}} 1.85579 \ensuremath{\texttt{mdyieldandload2}} \ensuremath{\texttt{N_load}} \ensuremath{\texttt{=}} 1.85579 \ensuremath{\texttt{mdyieldandload2}} \ensur$

#mdyieldandloadsubn[,c("year","treatment","plot","N_load")]

treatment

+yield

+N_conc +drain +rainfall +temperature +radn +treatment:N_conc +treatment:drain +treatment:rainfall +treatment:yield +treatment:temperature +treatment:radn +yield:rainfall +yield:N_conc +yield:drain +yield:temperature +yield:radn , data=mdyieldandload2, method='exhaustive', nbest=100, really.big=T) summaryregmdN_load<-summary(regmdN_load) # use a function from Dr. Dixon Iastate (remember to run first) print.regsub(summaryregmdN_load,sort='BIC', best=20) mdN_load<-lm(data=mdyieldandload2,N_yield~

#year+treatment+year:treatment

#year+treatment+drain+year:treatment+year:N_conc

#drain+N_rate+year:treatment+year:N_conc+treatment:N_conc+year:N_rate+treatment:N_rate+year:drain

#treatment+N_conc++drain+treatment:drain

yield+N_conc+drain+treatment:drain+treatment:yield+treatment:temperature+yield:drain

summary(mdN_load)

)

mdN_loadaov<-aov(data=mdyieldandload2,N_yield~ #year+treatment+year:treatment

mdN_loadaov2<-aov(data=mdyieldandload2,N_yield~ year+treatment+year:treatment

)

)

#tukey

Anova(mdN_loadaov,type=3)

Anova(mdN_loadaov2,type=3)

histogram(residuals(mdN_loadaov2)) qqnorm(residuals(mdN_loadaov2))

qqline(residuals(mdN_load))

qqnorm(residuals(mdN_load)) qqline(residuals(mdN_load))

abline(h=0)

theme_bw()+

)+

)+

plot(mdN_loadaov2\$fitted.values,rstudent(mdN_loadaov2))

theme(axis.text=element_text(size=15,colour="black"),

qplot(predict(mdN_load), residuals(mdN_load),

ylab="Residuals", xlab="Predicted"

axis.title=element_text(size=20)

geom_hline(yintercept=0)

#check assumptions

 $\label{eq:product} \ensuremath{\texttt{#year}}\ensuremath{\texttt{treatment}}\ensuremath{\texttt{N}}\ensuremath{\texttt{conc}}\ensuremath{\texttt{+}}\ensuremath{\texttt{vear}}\ensuremath{\texttt{:}}\ensuremath{\texttt{N}}\ensuremath{\texttt{conc}}\ensuremath{\texttt{+}}\ensuremath{\texttt{vear}}\ensuremath{\texttt{:}}\ensuremath{\texttt{N}}\ensuremath{\texttt{conc}}\ensuremath{\texttt{+}}\ensuremath{\texttt{vear}}\ensuremath{\texttt{:}}\ensuremath{\texttt{n}}\ensuremath{\texttt{conc}}\ensuremath{\texttt{+}}\ensuremath{\texttt{vear}}\ensuremath{\texttt{:}}\ensuremath{\texttt{n}}\ensuremath{\texttt{conc}}\ensuremath{\texttt{+}}\ensuremath{\texttt{vear}}\ensuremath{\texttt{n}}\ensuremath{n}\ensuremath{\texttt{n}}\ensuremath{\texttt{$

TukeyHSD(x=mdN_loadaov2, c('treatment', 'year'), ordered = FALSE, conf.level = 0.95)

 $yield + treatment + N_conc + drain + treatment: drain + treatment: yield + treatment: temperature + yield: drain + treatment: temperature + yiel$

99

ylab="Residuals", xlab="N_load"

) +abline(0,0)

qplot(predict(mdN_loadaov2), residuals(mdN_loadaov2), alpha = .001,

APPENDIX D3. NO₃-N Concentration ANOVA and Tukey

ANOVA

Response: N_conc

	Sum Sq	Df	F value	Pr(>F)	
(Intercept)	4640.4	1	87.2659	< 2.2e-16	* * *
year	1282.8	3	8.0411	3.395e-05	* * *
treatment	1319.7	2	12.4093	6.212e-06	* * *
year:treatment	19715.6	6	61.7938	< 2.2e-16	* * *
Residuals	18611.5	350			

Tukey

\$treatment

	diff	lwr	upr	p adj
PM2-PM	21.198898	19.0736863	23.32411	0.000000
UAN-PM	24.379907	22.1145631	26.64525	0.000000
UAN-PM2	3.181009	0.8966479	5.46537	0.0032953

\$year

diff lwr	upr p) adj
2012-2010 15.843421 13.231224 18.4		Ŏ
2013-2010 24.782630 22.283463 27.2	28180	0
2014-2010 33.456629 30.165569 36.7	74769	0
2013-2012 8.939208 6.061547 11.8	81687	0
2014-2012 17.613207 14.026262 21.2	20015	0
2014-2013 8.673999 5.168513 12.1	17948	0

.....

R code

######################################
wq<-read.csv("waterquality.csv")[,-1]
names (wq)
wq\$year<-as.factor(wq\$year) wq\$month<-as.factor(wg\$month)
wq\$day<-as.factor(wq\$day)
wq\$plot<-as.factor(wq\$plot)
wq\$BA<-as.factor(wq\$BA)
wq\$date<-as.Date(wq\$date,formate="%Y/%m/%d")
wq\$date2<-as.Date(format(wq\$date, "%m-%d"),"%m-%d") # add a month-day column wq<-na.omit(wq)
wq<-na.om/ctwq/ wq2<-summarise(group_by(wq,month,day,date,date2,BA,treatment,plot)
area=mean(area)
,rainfall=mean(rainfall),DD=mean(DD)
,flow=mean(flow),drain=mean(drain)
,N_conc=mean(N_conc),P_conc=mean(P_conc) ,N_yd=mean(N_yd),P_yd=mean(P_yd)
)

```
wq2$year<-"Overall"
names(wq)
names(wq2)
wq2<-rbind(wq,wq2)
names(wq2)
qplot(data=wq,x=DD,y=N_conc)
qplot(data=wq,x=bD,y=N_conc,facets=year~treatment)
qplot(data=wq,x=BA,y=N_conc,facets=year~treatment)
qplot(data=wq,x=BA,y=N_conc,geom="boxplot",facets=treatment~year)
qplot(data=wq,x=DD,y=N_conc,facets=treatment~year,colour=plot,shape=BA,size=I(3))
qplot(data=wq,y=D_y=N_conc,colour=BA)
qplot(data=wq,y=N_conc,x=year,geom="boxplot")
enlat(data=wq,y=N_conc,x=year,geom="boxplot")
qplot(data=wq,y=N_conc,x=treatment,geom="boxplot")
scatterplot.matrix(~
                                  year#+month
                                +treatment
                                #+year*month
                                +year*treatment
                                #+month*treatment
                                +flow+flow*year+flow*treatment
                                #+flow*month
                               #+rainfall+rainfall*year+rainfall*treatment
#+rainfall*month
                                +DD+BA+DD*BA
                                +N_conc
                               #+DD*year+DD*treatment+DD*flow
#+BA*year+BA*treatment+BA*flow
                                ḋata=wq
# outlier exclude
residuals(mdN_conc)
residuals(mdN_conc)[185]
order(residuals(mdN_conc))[1:4]
rstudent(mdN_conc)
max(rstudent(mdN_conc))
min(rstudent(mdN_conc))
wq[c(202),c("year","treatment","plot","N_conc")]
wq[c(202,276,259,221),c("year","treatment","plot","N_conc")]
str(wq)
wqsubn<-subset(wq,wq$N_conc>=0.08522|wq$N_conc<=0.08521)</pre>
wqsubn<-subset(wqsubn,wqsubn$N_conc>=0.51624|wqsubn$N_conc<=0.51623)
wqsubn<-subset(wqsubn,wqsubn$N_conc>=0.35407|wqsubn$N_conc<=0.35406)
wqsubn<-subset(wqsubn,wqsubn$N_conc>=0.82432|wqsubn$N_conc<=0.82431)</pre>
wqsubn[c(202,276,259,221),c("year","treatment","plot","N_conc")]
#############
regmdN_conc <- regsubsets(N_conc~</pre>
                                              treatment
                                           +rainfall
                                           +drain
                                           +year:drain
                                           +year:rainfall
                                           +treatment:drain
                                           +treatment:rainfall
data=wq, method='exhaustive',
nbest=30, really.big=T)
summaryregmdN_conc<-summary(regmdN_conc)
# use a function from Dr. Dixon Iastate (remember to run first)
print.regsub(summaryregmdN_conc,sort='BIC', best=20)
```

mdN_conc<-lm(data=wq,N_conc~ treatment +drain +year:drain +year:rainfall +treatment:rainfall summary(mdN_conc) mdN_conc2<-aov(data=wq,N_conc~ treatment +drain +year:drain +year:rainfall +treatment:rainfall Anova(mdN_conc2, type=3) mdN_concaov<-aov(data=wq,N_conc~ year+treatment+year:treatment)
Anova(mdN_concaov,type=3)
##########################check assumption
#histogram(residuals(mdN_conc))
gqnorm(residuals(mdN_concaov))
qqline(residuals(mdN_concaov))
qplot(predict(mdN_concaov), residuals(mdN_concaov),
 ylab="Residuals", xlab="N_conc"
) +abline(0,0)
#plot(mdN_conc\$fitted.values,rstudent(mdN_conc))
#abline(h=0)
#shapiro.test((mdN_conc)))

#shapiro.test((mdN_conc))

tukey test TukeyHSD(x=mdN_concaov, c('treatment', 'year'), ordered = FALSE, conf.level = 0.95)

APPENDIX D4. PO₄-P Wilcoxon Rank Sum Test

PO₄-P load Wilcoxon test

	p-value
PM-PM2	0.729
PM-UAN	0.4727
UAN-PM2	0.1569

	p-value
2010-2012	0.01352
2010-2013	0.000155
2010-2014	0.1049
2012-2013	0.3717
2012-2014	0.0829
2013-2014	0.04988

R code

outlier exclude
residuals(mdP_load)

max(residuals(mdP_load))
rstudent(mdP_load)
max(rstudent(mdP_load))
min(rstudent(mdP_load))
min(rstudent(mdP_load))
mdyieldandload2[,c("year","treatment","plot","P_load")]
str(mdyieldandload)

mdyieldandloadsubp<-subset(mdyieldandload2,mdyieldandload2\$P_load>=0.03166|mdyieldandload2\$P_ load<=0.03165) mdyieldandloadsubp<-subset(mdyieldandloadsubp,mdyieldandloadsubp\$P_load>=0.006026|mdyieldandl oadsubp\$P_load<=0.006025) mdyieldandloadsubp<-subset(mdyieldandloadsubp,mdyieldandloadsubp\$P_load>=0.019634|mdyieldandl oadsubp\$P_load<=0.019633)</pre>

```
mdP_load<-lm(data=mdyieldandload2,P_yield~</pre>
               yield+P_conc+drain
)
summary(mdP_load)
mdP_loadaov<-aov(data=mdyieldandload2,P_yield~
                  yield+P_conc+drain
                 )
Anova(mdP_loadaov
      ,type=3
mdP_loadaov<-aov(data=mdyieldandload2,P_yield~
                  year+treatment#+year:treatment
)
Ánova(mdP_loadaov
      ,type=3
)
qplot(data=subset(mdyieldandload2,mdyieldandload2$year!="2011"),x=treatment,y=P_load,facets=~
year)
qplot(data=subset(mdyieldandload2,mdyieldandload2$year!="2011"),x=year,y=P_load,facets=~treat
ment)
qplot(data=subset(mdyieldandload2,mdyieldandload2$year!="2011"),x=treatment,y=P_load,geom="bo
xplot'
aplot(data=subset(mdyieldandload2,mdyieldandload2$year!="2011"),x=year,y=P_load,geom="boxplot
```

although log transform is used its still unable to make a model for P_load that does not # violate the assumption of multiple linear regression # and the results shows no significant relationship between the variables and P_load despite of the violation of assumptions # As none of the linear model is acceptable for P load , wilcox.test will be used to only che ck the affect of different treatment names(mdyieldandload2) wilcox.test(na.omit(subset(mdyieldandload2,mdyieldandload2\$treatment=="PM")\$P_yield), na.omit(subset(mdyieldandload2,mdyieldandload2\$treatment=="PM2")\$P_yield), paired=F wilcox.test(na.omit(subset(mdyieldandload2,mdyieldandload2\$treatment=="PM")\$P_yield), na.omit(subset(mdyieldandload2,mdyieldandload2\$treatment=="UAN")\$P_yield), paired=F) wilcox.test(na.omit(subset(mdyieldandload2,mdyieldandload2\$treatment=="UAN")\$P_yield); na.omit(subset(mdyieldandload2, mdyieldandload2\$treatment=="PM2")\$P_yield), paired=F # check wilcox assumption qplot(data=mdyieldandload2,x=P_load,facets=~treatment,geom="histogram") wilcox.test(na.omit(subset(mdyieldandload2,mdyieldandload2\$year=="2010")\$P_yield), na.omit(subset(mdyieldandload2,mdyieldandload2\$year=="2012")\$P_yield), paired=F) wilcox.test(na.omit(subset(mdyieldandload2,mdyieldandload2\$year=="2010")\$P_yield), na.omit(subset(mdyieldandload2, mdyieldandload2\$year=="2013")\$P_yield), paired=F) wilcox.test(na.omit(subset(mdyieldandload2,mdyieldandload2\$year=="2010")\$P_yield), na.omit(subset(mdyieldandload2,mdyieldandload2\$year=="2014")\$P_yield), paired=F) wilcox.test(na.omit(subset(mdyieldandload2,mdyieldandload2\$year=="2012")\$P_yield), na.omit(subset(mdyieldandload2,mdyieldandload2\$year=="2013")\$P_yield), paired=F) wilcox.test(na.omit(subset(mdyieldandload2,mdyieldandload2\$year=="2012")\$P_yield), na.omit(subset(mdyieldandload2,mdyieldandload2\$year=="2014")\$P_yield), paired=F) wilcox.test(na.omit(subset(mdyieldandload2,mdyieldandload2\$year=="2013")\$P_yield), na.omit(subset(mdyieldandload2,mdyieldandload2\$year=="2014")\$P_yield), paired=F)

PO₄-P concentration Wilcoxon test

	p-value
PM-PM2	0.189
PM-UAN	0.07011
UAN-PM2	0.002086

	p-value
2010-2012	< 2.2e-16
2010-2013	< 2.2e-16
2010-2014	0.000729
2012-2013	2.87E-05
2012-2014	2.08E-07
2013-2014	0.007566

R code

scatterplot.matrix(~

year#+month

+treatment

#+year*month

+year*treatment

#+month*treatment

+flow+flow*year+flow*treatment

#+flow*month

+rainfall+rainfall*year+rainfall*treatment

#+rainfall*month

+DD+BA+DD*BA

+P_conc

#+DD*year+DD*treatment+DD*flow

 $\# + BA^* year + BA^* treatment + BA^* flow$

data=wq

,

)

wqsubp<-subset(wq,wq\$P_conc<=0.1)

wqsubp[,c("year","treatment","plot","P_conc")]

#wqsubp[which(wqsubp\$P_conc==0),c("P_conc")]<-0.000002</pre>

#wqsubp<-subset(wq,wq\$treatment!="UAN")</pre>

regmdP_conc <- regsubsets(P_conc~

year+treatment+year:treatment

+flow

+rainfall

+drain

+BA

+year:flow

+year:drain

+year:rainfall

+year:BA

+treatment:flow

+treatment:drain

+treatment:rainfall

+treatment:BA

data=wq, method='exhaustive',

nbest=30, really.big=T)

summaryregmdP_conc<-summary(regmdP_conc)</pre>

use a function from Dr. Dixon Iastate (remember to run first)

print.regsub(summaryregmdP_conc,sort='BIC', best=20)

mdP_conc<-lm(data=wq,P_conc~

year

+treatment

+year:treatment

+year:BA

+year:drain

+year:flow

+treatment:rainfall

)

summary(mdP_conc)

mdP_conc2<-aov(data=wq,P_conc~

year

+treatment

+year:treatment

+year:BA

+year:drain

+year:flow

+treatment:rainfall

)

```
Anova(mdP_conc2
```

,type=3

)

na.omit(subset(wq,wq\$year=="2012")\$P_conc),

na.omit(subset(wq,wq\$year=="2010")\$P_conc),

wilcox.test(

#year

wilcox.test(na.omit(subset(wq,wq\$treatment=="UAN")\$P_conc), na.omit(subset(wq,wq\$treatment=="PM2")\$P_conc), paired=F)

paired=F)

na.omit(subset(wq,wq\$treatment=="UAN")\$P_conc),

wilcox.test(

wilcox.test(na.omit(subset(wq,wq\$treatment=="PM")\$P_conc), $na.omit(subset(wq,wq\$treatment=="PM2")\$P_conc),$ paired=F)

 $na.omit(subset(wq,wq\$treatment=="PM")\$P_conc),$

#plot(mdN_conc\$fitted.values,rstudent(mdN_conc))

wilcox test

) +abline(0,0)

#abline(h=0)

#shapiro.test((mdN_conc))

names(wq)

111

)

```
wilcox.test(
    na.omit(subset(wq,wq$year=="2013")$P_conc),
    na.omit(subset(wq,wq$year=="2014")$P_conc),
    paired=F
```

)

```
wilcox.test(
    na.omit(subset(wq,wq$year=="2012")$P_conc),
    na.omit(subset(wq,wq$year=="2014")$P_conc),
    paired=F
```

```
)
```

```
wilcox.test(
    na.omit(subset(wq,wq$year=="2012")$P_conc),
    na.omit(subset(wq,wq$year=="2013")$P_conc),
    paired=F
```

```
)
```

```
na.omit(subset(wq,wq$year=="2010")$P_conc),
na.omit(subset(wq,wq$year=="2014")$P_conc),
paired=F
```

```
)
```

```
paired=F
```

wilcox.test(

```
na.omit(subset(wq,wq$year=="2013")$P_conc),
```

```
na.omit(subset(wq,wq\$year=="2010")\$P\_conc),
```

```
wilcox.test(
```

)

paired=F

check wilcox assumption

qplot(data=wq,x=P_conc,facets=~treatment,geom="histogram")