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ABSTRACT 

 

Subsurface drainage, while necessary for maximizing row crop production in 

Iowa, short-circuits nitrate-N downstream. Drainage water management practices, such as 

controlled drainage and shallow drainage, have been shown to reduce NO3-N loss by 

reducing the volume of water leaving the field. 

The first investigation in this thesis focuses on how drainage water management 

effects crop yield, drainage volumes, NO3-N loss, depth to water table, and volumetric 

water content using data eight years of data collected from 2007 to 2014 at a drainage 

research site in Southeast Iowa from four treatments: controlled drainage, shallow 

drainage, conventional drainage, and no drainage. Controlled and shallow drainage 

reduced NO3-N loads by 49% and 42%, respectively. There were yield reductions from 

the shallow and controlled drainage treatments, as well as no drainage, especially in wet 

years. 

The second investigation concentrates on if drainage water management practices 

effected the planting dates of corn from 2012 to 2015 at the same research site. None of 

the four treatments affected volumetric water content near the surface where corn would 

be planted. Soil temperature at 10 cm was significantly greater in the undrained and 

shallow drainage treatments, but the reason is unknown. There were differences in depth 

to water table between treatments, which may impact the date of planting if the water 

table is near the surface. 

The third study investigates how shallow and controlled drainage practices 

affected peak drainage and water table recession time compared to the conventional 
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treatment for four small drainage events. There was no difference between treatments in 

the time to peak discharge, but shallow drainage increased peak discharge in two events 

wile controlled increased peak discharge during one event. There was no difference 

between treatments in time of water table recession, 

Due to growing concerns over the hypoxia zone in the Gulf of Mexico, further 

research should be conducted for both drainage water management practices at other sites 

in Iowa and across the Midwest as a practice to reduce nutrient losses. This research 

should focus on how these practices can either maintain or increase crop yields to make 

these practices more affordable to producers.
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CHAPTER 1. GENERAL INTRODUCTION 

 

Background 

In 2011, a five-year grant from the United States Department of Agriculture 

National Institute of Food and Agriculture (USDA-NIFA) began funding a 

transdisciplinary project: Climate Change, Mitigation, and Adaptation in Corn-Based 

Cropping Systems (CSCAP). This project included 11 Midwestern institutions: Iowa 

State University, Lincoln University, Michigan State University, The Ohio State 

University, Purdue University, South Dakota State University, University of Illinois, 

University of Minnesota, University of Missouri, University of Wisconsin, USDA 

Agricultural Resource Service-Columbus, Ohio, and USDA-NIFA. Personnel involved in 

the project include soil scientists, sociologists, anthropologists, economists, agricultural 

engineers, modelers, climatologists, extension field specialists, and next generation 

scientists in the form of graduate and post-doctoral students. The goals of the project 

were to create a suite of practices, which include tillage, crop rotations, cover crops, 

drainage water management, and nitrogen sensors, for corn-based systems that retain and 

enhance soil organic matter and nutrient and carbon stocks, reduce off-field nitrogen 

losses that contribute to greenhouse gas emissions and water pollution, better withstand 

droughts and floods, and ensure productivity under different climatic conditions using 

data gathered from over 20 field sites and thousands of farmers in nine Midwestern 

states. The long term objectives of the project were: 

1. Develop standardized methodologies for estimating carbon, nitrogen, and 

water footprints of corn production. 



2 

 

 

 

2. Evaluate the impact of the suite of practices in the field on carbon, nitrogen, 

and water footprints using the methodologies from objective 1. 

3. Apply climate and physical models to synthesize results from the field in 

order to predict climate and economic scenarios. 

4. Perform comprehensive life-cycle analyses of the practices in order to 

evaluate the socio-economic-environmental willingness of producers to adopt 

new practices using social science research, field research, and modeling of 

corn production systems. 

5. Integrate education, extension, outreach, and stakeholder participation across 

all aspects of the program (Morton, 2011). 

Drainage water management is designing the subsurface drainage system in order 

to reduce the drainage volume by either installing the subsurface drains at a shallower 

depth or managing the outflow, known as shallow and controlled drainage, respectively 

(Figure 1.1). Historically, subsurface drains, also known as tile lines, are typically 

installed below the rooting depth between 0.6-1.2 m with spacing ranging from 10-30 m 

depending on the soil properties and cost (Pavelis, 1987). While these drains are 

necessary in agricultural land in areas with poor natural drainage for maximized crop 

production, tile drainage also short circuits nitrate-N loss in the Mississippi River Basin 

contributing to the hypoxia zone in the Gulf of Mexico (Turner & Rabalais, 1994). The 

number of tile drained acres in the Midwest is unknown; in Iowa, it is estimated to be at 

least 3.6 million acres, which is approximately 40% of agricultural land (Baker et al., 

2004) while in other states it can be as high as 50% of all agricultural land (Skaggs et al., 

1992). Overall, it is estimated that a significant portion of nitrate-N export to the Gulf of 
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Mexico originated from tile drainage (David et al., 2010). Drainage water management 

was chosen as one of the practices as a focus for the CSCAP grant due to research 

indicating that controlled drainage can reduce drainage volume and nitrate-N losses by 

18%-80% and 18%-79%, respectively (Skaggs et al., 2012) while shallow drainage can 

reduce drainage volumes and nitrate-N losses by 20% -46% and 18%- 29%, respectively 

(Helmers et al., 2012; Sands et al., 2008). The project principal investigators of CSCAP 

hypothesized that drainage water management would reduce off-field nitrate-N pollution 

and increase resiliency to floods and droughts by retaining more water in the field 

(Morton, 2011). The objectives of this thesis are to: 

1. Investigate how drainage water management practices effect nitrogen and 

water footprints on a field site in Southern Iowa. 

2. Explore how drainage and drainage water management might affect the date 

of planting. 

 

Thesis Organization 

Chapter 2 addresses objective 1 and investigates how drainage and drainage water 

management impact crop yields, soil volumetric water content, depth to water table, 

drainage volumes, and nitrate-N export during the growing season at a field-site in 

Southeastern Iowa. Chapter 3 addresses objective 2 and examines in further detail how 

drainage and drainage water management impact soil volumetric water content, soil 

temperature, and depth to water table during a 51 day period from April to May when 

corn must be planted in Iowa to qualify for crop insurance. In order to further understand 

how drainage water management practices effect nitrogen and water footprints, peak flow 
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and water table recession time of shallow and controlled drainage systems are compared 

to a conventionally drained system in Chapter 4. Chapter 5 then summarizes the 

conclusions drawn from this thesis and discusses how this research fits within the larger 

USDA-NIFA project. This chapter also suggests areas of future research for drainage 

water management. References for each chapter are given at the end of the individual 

chapters. 

 

References 

Baker, J.L., Melvin, S.W., Lemke, D.W., Lawlor, P.A., Crumption, W.G., & Helmers, 

M.J. (2004). Subsurface Drainage in Iowa and the Water Quality Benefits and 

Problem. ASABE Paper No. 701P0304. St. Joseph, MI: ASABE. 

David, M.L., Drinkwater, L., & McIsaac, G. (2010). Sources of Nitrate Yields in the 

Mississippi River Basin. Journal of Environmental Quality, 39, 1657-1667. 

Helmers, M.J., Christianson, R., Brenneman, G., Lockett, D., & Pederson, C. (2012). 

Water Table, Drainage, and Yield Response to Drainage Water Management in 

Southeast Iowa. Journal of Soil and Water Conservation, 67(6), 495-501. 

Morton, Lois Wright. (2011). Project Narrative. Retrieved from 

http://sustainablecorn.org/doc/ 

 Project_Narrative_May2011.pdf 

Pavelis, G.A. (1987). Farm Drainage in the United States: History Status, and Prospects. 

Washington, D.C.: USDA Economic Research Service. 



5 

 

 

 

Sands, G.R., Song, I., Busman, L.M., & Hansen, B.J. (2008). The Effects of Subsurface 

Drainage Depth and Intensity on Nitrate Loads in the Northern Cornbelt. 

Transactions of the ASABE, 51(3), 937-946. 

Skaggs, R.W., Breve, M.A., & Gillham, J.W. (1992). Environmental Impacts of 

Agricultural Drainage. In T. Engman (Ed.), Irrigation and Drainage: Proceedings 

of the ASCE Water Forum ’92 (pp. 19-24). New York, NY: ASCE. 

Skaggs, R.W., Fausey, N.R., & Evans, R.O. (2012). Drainage Water Management. 

Journal of Soil and Water Conservation, 67(6), 167-172.  

Turner, R.E., & Rabalais, N.N. (1994). Coastal Eutrophication near the Mississippi River 

Delta. Nature, 368(6472), 619-621.



6 

 

 

 

 

Figure 1.1. Comparison of drainage systems. The top figure is an example of a conventional 

drainage system. The middle figure is an example of a shallow drainage system where subsurface 

drains are installed at a shallower depth than the conventional system. The bottom figure is an 

example of a controlled drainage system where subsurface drains are installed at the same depth 

as the conventional drainage system but has a control structure for water table depth regulation 

during key times of the year.
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CHAPTER 2. EFFECTS OF DRAINAGE WATER MANAGEMENT 

ON YIELD, DRAINAGE, WATER TABLE, AND SOIL WATER 

STORAGE 
 

 

A paper to be modified for submission to Journal of Water and Soil Conservation 

Linda R. Schott
1
, Ainis Lagzdins, Aaron L. Daigh, Carl Pederson, Greg Brenneman, 

Matthew J. Helmers 

 

 

Abstract 

  Subsurface drainage removes excess water from agricultural land, especially 

during the rainy spring months when the timeliness of field operations, such as planting, 

are important. Although it optimizes row crop production, subsurface drainage also short 

circuits nitrate-N loss downstream. The objective of this study was to determine the 

impact of shallow, controlled, conventional, and no drainage on crop yields, depth to 

water table, soil volumetric water content, subsurface drainage volumes, and nitrate loss 

through subsurface drainage. This research was conducted at the Iowa   State University 

Southeast Research Farm near Crawfordsville, Iowa from 2007 to 2014. The site consists 

of eight plots with two replicates for each of the four treatments. Each plot had half 

planted in soybeans (Glycine max L. Merr.) and the other half in corn (Zea mays L.), and 

the halves were rotated every year in accordance with a typical corn-soy rotation. Over 

the eight year study, controlled and shallow drainage reduced annual flow by 45% and 

51% while reducing NO3-N loads by 49% and 42%, respectively. Corn yields were 

reduced in the controlled drainage treatment by 4%, in the shallow drainage treatment by 

3%, and in the undrained treatment by 6%. Only the undrained treatment had a reduction 

                                                 
1
 Primary author and researcher 
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in soybean yield, an average of 12%, when compared to the conventional treatment. The 

undrained treatment had a shallower water table than the other treatments and also had a 

significantly higher (p < 0.05) number of hours during the growing season when the 

water table was within 30 cm of the ground surface than the other treatments. However, 

there was no difference in soil water content in the top 80 cm of the soil profile during the 

growing season between drainage treatments. This study highlights the effectiveness of 

shallow and controlled drainage to reduce NO3-N loads. 

 

Introduction 

Subsurface drains are used to remove excess water from the soil profile of 

agricultural land in areas with poor natural drainage. If the water table is within 30 cm of 

the soil surface, it begins to decrease trafficability potentially leading to planting delays 

and increasing the risk of compaction at the time of field activity, as well as contributing 

to excess water stress to the crop (Skaggs & van Schilfgaarde, 1999). Although there are 

benefits to subsurface drainage, there are also negative environmental impacts. Drainage 

has increased the loss of nitrate-N from agricultural lands in the Mississippi River Basin 

contributing to the hypoxia zone in the Gulf of Mexico (Turner & Rabalais, 1994). 

Furthermore, David et al. (2010) found that a significant portion of nitrate-N export 

originated from subsurface drainage. Historically, subsurface drains were made of 

concrete or clay tile, leading to the nickname of tile drainage or tile lines. Today, drains 

are often made of perforated plastic tubing. In a conventional drainage design, drains are 

installed below the crop rooting depth between 0.6 to 1.2 m with spacing ranging from 10 

to 30 m depending on the soil properties and cost (Pavelis, 1987).  
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One practice being proposed to combat NO3-N loss is drainage water 

management. Drainage water management can be defined in two ways. The first 

definition is the design of the subsurface drainage system in order to reduce the drainage 

volume by installing the drains at a shallower depth than what is conventionally done. 

This is known as shallow drainage. The second definition of drainage water management 

is the management of the subsurface drainage outlet. In this case, the subsurface drainage 

system is designed in the conventional way but includes water table control structures. 

This is known as controlled drainage. These control structures regulate the water table 

outflow height using boards, which are managed so drainage is reduced or eliminated 

during times of the year when it is not necessary (Strock et al., 2011; Skaggs et al., 2012). 

Drainage water management has been shown to reduce drainage volume and 

nitrate-N losses compared to conventional drainage. Sands et al. (2008) found that 

shallow drainage reduced drainage volume by 20% and NO3-N loss by 18% when 

compared to conventional drainage systems. Using 20 controlled drainage sites in the 

Midwest and Eastern United States and Canada, Skaggs et al. (2012) reported an 18% to 

80% reduction in annual drainage volume and an 18% to 79% reduction in NO3-N loads 

when compared to conventional drainage with no impact on NO3-N concentrations. 

Across those same sites, the effect of controlled drainage on crop yield ranged from no 

impact on soybean yield to increases of 10% while corn yield ranged from no effect to an 

increase of 19% depending on the site and weather conditions.  

The soil water content is important to plants and their health. The amount of water 

in the soil matrix influences gas exchange and the diffusion of nutrients to plant roots. 

The force with which the water is held in the soil matrix effects how much water can be 
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adsorbed by plants and the drainage of excess water by gravity (Jury & Horton, 2007). 

Too much or too little water in the plant root zone can negatively impact yield (Skaggs & 

van Shilfgaarde, 1999). The depth to water table, which is altered with drainage, effects 

how much water is in the soil profile. Madramootoo (1993) used controlled drainage to 

maintain the water table at shallower depths using sub-irrigation, and soil moisture 

significantly increased. Skaggs and Chescheir (2003) had similar findings using 

DRAINMOD. 

There are also some potential negative economic impacts of drainage water 

management. The cost of the installation of a drainage water management system is 

higher than conventional drainage due to increased materials and labor. If subsurface 

drains are installed at a shallower depth, the distance between drains must be reduced to 

maintain the same coefficient of drainage, which is the depth of water removed in a day. 

For controlled drainage, a control structure is needed for every 30 to 60 cm change in 

elevation within the field in order to maintain a constant water table elevation. This not 

only increases the cost of materials, but it also increases the management needs of the 

system and reduces the areas that can feasibly utilize this type of drainage (Frankenberger 

et al., 2007; Sands et al., 2008). The increased cost of drainage water management 

systems can be a drawback to producers, especially if there is not a yield benefit. With 

limited research directly comparing shallow and controlled drainage systems to a 

conventional system in the Midwest at the same site, the objective of this study was to 

evaluate the effect of shallow, controlled, conventional and undrained drainage 

treatments on crop yields, drainage volume, NO3-N loss, soil water content, and depth to 

water table. 
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Materials and Methods 

Site location and design 

Research was conducted at the Iowa State Southeast Research Farm (SERF) near 

Crawfordsville, Iowa (41°11'38" N, 91°28'58" W) from 2007 to 2014. The site has eight 

research plots with two replications for each of the following drainage treatments: 

undrained, conventional drainage, shallow drainage, and controlled drainage (Figure 2.1). 

The plots were blocked into a north and south replication because the site consists of two 

poorly drained silty clay loam soils. Kalona (silty clay loam, fine, smectitic, mesic Vertic 

Endoaquolls) is found predominantly in the northern plots while Taintor (silty clay loam, 

fine, smectitic, mesic Vertic Argiaquolls) is predominantly in the south. The site is 

relatively flat with less than a five meter elevation change over 17 ha. The plots were 

designed to have a maximum drainage coefficient of 1.9 cm day
-1

. Individual plots range 

in size from approximately 1.2 to 2.4 ha. The conventional and controlled drainage plots 

have a drain depth and spacing of 1.2 and 18 m, respectively. The shallow drained plots 

have drains at a depth of 0.76 m with 12.2 m spacing. 

Originally, the plots were split down the middle and cropped east to west with 

both corn (Zea mays L.) and soybeans (Glycine max L. Merr.) each year, which were 

alternated each consecutive year to replicate a typical corn-soybean rotation in Iowa. In 

2012, however, 24 rows of continuous corn were added on the north and south edges of 

the site, so each plot had rotational corn, rotational soybeans, and continuous corn every 

year creating three subplots per drainage plot. Subplots were chisel plowed in the fall 

following corn, and all subplots were field cultivated prior to planting. For the subplots 

planted to corn, nitrogen fertilizer in the form of anhydrous ammonia was applied in the 
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spring prior to planting at a rate of 169 kg ha
-1

 and 224 kg ha
-1

 for rotational and 

continuous corn, respectively. 

At this site, the boards in the controlled drainage treatment were removed in mid 

to late April approximately two weeks prior to planting to allow free drainage and 

replaced in late May to early June after planting was completed to a depth of 60 cm. 

Removal of the boards prior to harvest in the fall was not required at this site due to low 

water table conditions, but in the first few years, the boards were raised to be within 30 

cm of the ground surface following harvest (Table 2.1). 

Data collection 

Daily rainfall was measured using a manually-read rain gauge located 

approximately 1 km from the research plots from 2007 to 2014. At the end of December 

2013, a weather station, part of the Iowa State University Soil Moisture Network, 

containing a non-heated tipping bucket was installed adjacent to the research plots, which 

provided higher resolution rainfall data. As a result, beginning in 2014, the two rainfall 

data sets were averaged. The 50 year precipitation averages are from the National 

Weather Service Cooperative Observer Program where volunteers report daily 

precipitation, including melted snowfall, for Mount Pleasant, located approximately 15 

km away. 

Tile lines for all plots were laid out in a north-south orientation. The interior tiles 

were continuously monitored for flow rate with a 13 cm tall 45° V-notch weir and a 

Global Water pressure transducer (Global Water, Sacramento, California) logging in 5 to 

30 minute intervals. To account for differences in plot areas, drainage volumes were 

normalized to a depth of drainage. Border tiles were installed in each plot to hydraulically 



13 

 

 

 

isolate the treatments but were not monitored. In the controlled drainage plots, the border 

tiles also had water table control structures. Grab samples were collected weekly at the 

outflow when flow was present. The water samples were analyzed for NO3-N 

concentrations by the Wetland Research Laboratory at Iowa State University using the 

second-derivative spectroscopy technique (Crumpton et al., 1992). A linear interpolation 

was performed between NO3-N sample data to estimate daily concentrations (Wang et al., 

2002). The resulting daily concentrations were multiplied by daily flow volume to 

estimate total NO3-N loss from each drained plot. The annual NO3-N loss was then 

divided by annual flow volume in order to calculate the average annual flow-weighted 

NO3-N concentration. 

In 2007, water table monitoring wells were installed in half the plots to a depth of 

1.5 to 1.75 m midway between an interior set of tile lines in each plot (plots 2, 3, and 4). 

In the undrained plot (plot 1), the monitoring well was installed in the middle of the plot. 

In 2009, the monitoring wells were moved to the middle of each plot between the 

rotational corn and soybeans to minimize the impact of farming operations. At this time, 

additional monitoring wells were installed in the four remaining plots in the same manner 

as the previous four. Depth to water table was monitored hourly using Global Water 

pressure transducers. 

Bulk density samples were collected in 2011 using a modified Uhland sampler for 

depth increments of 0-10, 10-20, 20-30, 30-40, 40-50 and 40-60 cm at eight locations 

transecting each plot across all crops (Kladivko et al,. 2014). Soil bulk density was 

determined by oven drying samples at 105°C (Blake & Hartge, 1986). Soil samples for 

nutrient and texture analyses were collected using a 6 cm diameter hand probe at depth 
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increments of 0-10, 10-20, 20-40, and 40-60 cm at 12 locations transecting each cropping 

subplot in the early summer in 2011 and 2013 (Kladivko et al., 2014). The hydrometer 

method was used for particle size analysis (Gee & Or, 2002) in 2011. Total C and N soil 

concentrations for 2011 and 2013 were determined using 250 μm sieved samples by 

direct combustion with a TruSpec CHN Analyzer (LECO, St. Joseph, MI) (Kladivko et 

al. 2014). Gravimetric C and N at all depth increments were converted to a volumetric 

basis for the 0-60 cm soil profile using the depth incremented bulk density measurements 

and adding the depth increments together. 

ECH2O 5TM (Decagon, Pullman, Washington) soil moisture sensors were 

installed in the center of each plot in the continuous corn in May 2011. The soil 

volumetric water content (VWC) and temperature were measured at five depths: 10, 20, 

40, 60, and 100 cm. Data was recorded every five minutes using an Em50 logger. 

Maximum VWC values were capped to individual plot soil porosity at the sensor depth 

increments. Using the bulk density samples collected in each plot in 2011, soil porosity 

was calculated for the 10, 20, 40, and 60 cm sensors using the corresponding depth bulk 

density values for 0-10, 10-20, averaged 20-30 and 30-40, and averaged 40-50 and 50-60, 

respectively. Porosity for the sensor at 60 cm was used for the sensor at 100 cm. Average 

daily VWC was calculated for the top four depths, and  average daily soil water storage 

from 0-80 cm was calculated using weighted depth increments (0-15, 15-30, 30-50, 50-80 

cm) for the top four sensors.  

Yield data were collected with a yield monitor where readings were constrained to 

the center 12 to 18 rows of corn and soybeans for each plot depending upon the 
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equipment used. The length monitored was 36.6 m for each plot. The start and end of 

monitoring locations were midway between tile lines in the center of the plots. 

Data analysis 

Statistical analyses were conducted using Statistical Analysis System software 

(SAS, 2011). The general linear model (GLM) procedure was used with two replicates 

per treatment to determine the statistical significance of treatment effects on subsurface 

drainage volume, crop yield, soil total C and N, flow-weighted NO3-N concentration, and 

NO3-N loss. The mean values for subsurface drainage volume, crop yield, soil total C and 

N, flow-weighted NO3-N concentration, and NO3-N loss were separated using a least 

significance difference (LSD) test at p = 0.05 (LSD0.05). The generalized linear mixed 

model (GLIMMIX) procedure was used with two replicates per treatment to determine 

the statistical significance of treatment effects on average daily VWC at 10, 20, 40, 60 

cm, and soil water storage for the top 80 cm, as well as average daily depth to water 

table.  

In order to evaluate the effects of drainage and drainage water management over 

the lifetime research project for this thesis, data that that has already been published from 

2007-2010 in Helmers et al. (2012) has been included in the analyses. This allows a 

comprehensive record of the data to be summarized in one location. For submission to 

the Journal of Soil and Water Conservation, we will remove duplication with the 2012 

publication. This submission will be different from the original publication for a couple 

of reasons. Statistical analyses of the depth to water table as well as the effects of 

drainage on volumetric water content were not included in the original publication, and 

the precipitation patterns were markedly different. 
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Results and Discussion 

Precipitation 

Seasonal rainfall at SERF from March to October is approximately 800 mm 

according to the 50 year average near the site (Table 2.2). Overall, there were four years 

of above average rainfall, two years of below average rainfall, and two years of average 

rainfall. Both 2011 and 2012 had below average rainfall, receiving 23% and 20% less, 

respectively. The four years from 2007 to 2010 were characterized with above average 

rainfall with the site receiving between 13% and 41% greater rainfall than average.  The 

last two years of the study, 2013 and 2014, received average rainfall. 

Soils data 

 Consistent with the soil survey, all treatments had a silty clay loam soil texture 

(Table 2.3). There were no treatment differences (p < 0.05) in total C or total N in the 0-

60 cm soil profile. Drainage treatment did not affect the bulk density of the soil profile. 

Water table 

Expectedly, drainage affected the depth to water table. In nearly every month in 

all six years from 2009 to 2014, except during the drought in 2012, the water table was 

significantly shallower (p<0.05) in the undrained treatment (Table 2.4). Overall, the 

water tables in the other three drainage treatments were not statistically different (p<0.05) 

from one another. Generally, the water table in the conventionally drained treatment was 

the deepest followed by controlled then shallow. The northern replication had statistically 

shallower (p<0.05) water tables than the southern replication. 
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When the water table is within 30 cm of the ground surface, there is a greater risk 

of excess water stress to the crop, which can result in yield reductions (Skaggs & van 

Schilfgaarde, 1999). The number of hours the water table was within 30 cm of the ground 

surface was significantly higher (p<0.05) in the undrained treatment than the other three 

treatments for 2010-2014 (Table 2.5). There were also significantly more (p<0.05) hours 

in the undrained treatment that the water table was within 60 cm of the ground surface in 

2010, 2011 and the five year average. There were no statistical differences (p<0.05) 

between the four treatments in the number of hours the water table was within 60 cm of 

the ground surface in 2012 and 2013. In 2014, the number of hours the undrained 

treatment was within 60 cm of the ground surface was only significantly greater (p<0.05) 

than the controlled and conventional treatments. Overall, even with shallower drains 

during the growing season, the shallow and controlled drainage treatments did not 

increase the risk of excess water stress to the crop when compared to the conventionally 

drained treatment. 

Volumetric water content 

VWC content at 10 cm did not statistically differ (p<0.05) in any month of the 

growing season from 2012-2014 (Table 2.6). Comparing all three years, there was no 

clear pattern of drainage effect at this depth. There were drainage treatment effects in 

VWC at 20 cm (Table 2.7). During the growing season from June 2013 until the end of 

2014, the shallow drainage treatment had significantly lower (p<0.05) VWC than the 

other three drainage treatments. VWC at 20 cm tended to be slightly higher than at 10 cm 

in all treatments in all years. At 40 cm depth, there were no statistical differences 

(p<0.05) in VWC between drainage treatments (Table 2.8). The VWC at this depth was 
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once again slightly higher than the depth above it, especially at the end of the growing 

season. The VWC at 60 cm had different drainage effects than the depths above it (Table 

2.9). In early 2012, the shallow drained treatment had a significantly higher (p<0.05) 

VWC than the controlled drainage treatment. In July of that year, the effect changed, and 

the undrained treatment had significantly greater (p<0.05) VWC than the conventional 

and controlled drainage treatments, which were significantly greater than the shallow 

drainage treatment. By August, there was no statistical difference (p<0.05) between 

controlled, conventional, and undrained treatments. All treatments, except shallow in 

2013, had smaller VWC at 60 cm than at 40 cm. 

There were no statistical differences (p<0.05) in total soil water storage for an 80 

cm soil column (Table 2.10), except in October of 2013. Overall, there were no drainage 

treatment effects because all four drainage treatments tended to have the same amount of 

soil water storage. In October 2013, the shallow and undrained treatments had 

significantly less (p<0.05) soil water storage than the controlled drainage treatment, 

which is opposite of what would be expected. In 2012, all four treatments had similar 

amounts of soil water storage during periods of wet weather (Figure 2.2). The same trait 

also occurred in both 2013 (Figure 2.3) and 2014 (Figure 2.4). 

Initial thinking would indicate that there should be a difference in soil water 

storage since the depth of drainage is different between treatments. Skaggs and Chescheir 

(2003) also predicted increased VWC with a shallower water table.  However, due to soil 

type, it is not surprising that there are no differences in VWC or soil water storage 

between the different drainage treatments even though there were differences in the depth 

to water table. The soil water retention curve for this site (Figure 2.5) shows that the 
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VWC does not change much as the capillary pressure head increases from 0.5 to 3.3 m. 

The capillary pressure head can also be thought of as the depth to water table. The 

monthly time scale for comparison may also be too large to discern differences between 

drainage treatments. Soil volumetric water content changes due to rainfall, 

evapotranspiration, and other factors, which vary on an hourly or daily time scale. 

Drainage 

Drainage occurs during the time period when soils are not frozen, which is 

normally mid to late March until late November. In most years, the majority of drainage 

occurred in April, May, and June due to the timing of rainfall in the region (Table 2.11). 

In 2012, nearly 100% of total drainage from the conventionally drained treatment 

occurred during these months but only 30% in 2014. In the other years, over 50% of 

drainage occurred from April to June. Annual average drainage volumes (Figure 2.6) 

from the conventional treatment ranged from 49.2 cm in 2009 to 12.4 cm in 2011. 

Drainage for the controlled drainage treatment ranged from 31.2 cm in 2010 to 4.2 cm in 

2012, while drainage from the shallow treatment ranged from 26.9 to 5.9 cm for the same 

years. Drainage from the conventionally drained treatment in 2009, 2013 and 2014 was 

significantly greater (p<0.05) when compared to the other two drainage treatments. While 

all the other years had drainage reductions, they were not statistically different (p<0.05) 

due to variability between replicates. There was also no difference in drainage volumes 

between the north and south replicates (p<0.05). 

Over the eight years of the study, controlled drainage reduced flow volumes by 

45% while shallow drainage reduced flow by 51% when both were compared to 

conventional drainage. In this time period, both drainage water management treatments 
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had significantly reduced (p < 0.05) drainage than the conventionally drained treatment. 

Helmers et al. (2012) reported reductions in the shallow and controlled drainage 

treatments of 37% and 46%, respectively. For the years 2011-2014, drainage reductions 

in the shallow and controlled drainage treatments were 59% and 62%, respectively. 

Skaggs et al. (2012) reported average drainage volume reductions between 18% and 85%, 

and the last four years of the study from 2011-2014 were on the higher end of this range. 

The flow volume reduction from the shallow drainage treatment in this study was much 

higher than the 20% reduction reported by Sands et al. (2008). The reductions in the last 

four years of the study were greater than the reductions in the first four years. The four 

years from 2007-2010 all had above average rainfall while the last four years had below 

average and average rainfall. This is probably due to increased drainage from the 

drainage water management treatments due to high water tables throughout the season in 

the years with above average rainfall rather than seepage below the drains or crop uptake 

that probably occurred in the years with below average and average rainfall. 

Flow reductions of controlled drainage compared to conventional drainage varied 

annually. The smallest reduction, 3%, from controlled drainage occurred in 2008. This 

was probably due to water held in the fall of 2007 released in April 2008 when the 

controlled drainage treatment had over 2 cm more drainage than the conventional 

treatment and more than 3.5 cm than the shallow drainage treatment. The flow from the 

controlled drainage treatment in 2014 was reduced 68% compared to conventional since 

most of the seasonal drainage occurred in June, July and October when the water table 

control gates were closed. The flow reduction of the shallow drainage treatment was also 

annually variable with the smallest reduction also occurring in 2008 with a decrease of 
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29%. The largest reduction of flow, 79%, from shallow drainage treatment occurred in 

2011. Even though the majority of drainage during most years at the site occurred when 

the controlled drainage treatments were freely draining, there were still flow reductions. 

The shallow drainage treatment was also not statistically different than the controlled 

drainage treatment. This indicates that at least at this site, both drainage water 

management practices are effective at reducing drainage volumes. 

Nitrate-N loss 

Flow-weighted nitrate-N concentration in the tile flow of the shallow drainage 

treatment was significantly higher (p<0.05) than the conventional and controlled drainage 

treatments during the eight year study with an average concentration of 12.4 mg L
-1

 

(Table 2.12). The nitrate-N concentrations for the conventional drainage treatment was 

statistically higher (p<0.05) than the controlled drainage treatment. The former had an 

average concentration of 10.9 mg L
-1

, and the latter had an average concentration of 10.0 

mg L
-1

. When comparing shallow to conventional drainage designs, Burchell et al. (2005) 

found that nitrate-N concentrations were statistically greater in the shallow drainage 

treatment. They concluded that there were two explanations for the increase in 

concentration. They had evidence of preferential flow of water directly to the shallow 

drains and also hypothesized that during and directly following a rainfall event, the water 

retention time is too short for denitrification due to unsaturated flow near the drains. In 

their overview of twenty controlled drainage studies, Skaggs et al. (2012) reported that 

controlled drainage did not affect nitrate-N concentrations in drainage water. However, 

Adeuya et al. (2012) reported that although there wasn’t a difference in nitrate-N 

concentrations between their controlled drainage and conventional drainage treatments 
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over the course of a full year, the controlled drainage treatment did reduce NO3-N 

concentrations during the dormant season. This observation was also observed by Ng et 

al. (2002) and can be attributed to greater denitrification due to the higher water table.  

The southern replication had statistically greater (p<0.05) nitrate-N concentrations 

than the northern replication. In conjunction with the shallower water tables in the 

northern replication and the lack of differences in soil total nitrogen, the lower nitrate-N 

concentrations in the drainage water could be an indication of greater denitrification due 

to anaerobic conditions in the saturated soils.  

Nitrate-N loads from the conventionally drained treatment varied from 56.4 kg ha
-

1
 in 2014 to 16.2 kg ha

-1 
in 2012 (Figure 2.7). The NO3-N loads from the controlled and 

shallow drainage treatments varied from 22.4 and 25.6 kg ha
-1 

in 2007 to 5.1 and 9.0 kg 

ha
-1

, respectively, in 2012. The smaller NO3-N loads in all three drainage treatments in 

2012 can be attributed to reduced drainage volume due to the drought. There were only 

two years, 2009 and 2014, that the shallow and controlled drainage treatments 

significantly reduced (p<0.05) nitrate-N loads. This is most likely due to the variability of 

flow between the treatment replicates, and the shallow drained treatment had lower flow 

volume but higher NO3-N concentrations. 

Controlled drainage significantly reduced (p<0.05) NO3-N loads by 49% over the 

eight year study period when compared to conventional drainage while shallow drainage 

also had significant reductions of 42%. Helmers et al. (2012) reported reductions of 36% 

and 29% for controlled and shallow drainage treatments, respectively for the years 2007-

2010. The last four years of the study, 2011-2014, had much higher reductions than those 

previously reported. The controlled and shallow drainage treatments reduced NO3-N 
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loads by 61% and 56%, respectively. Like the reductions in drainage volume, the nitrate-

N load reductions from the last four years of the study from 2011-2014 were at the higher 

end of the range of 18% to 79% reported by Skaggs et al. (2012) and is much higher than 

the 18% reduction reported by Sands et al. (2008). Nitrate-N load reductions followed the 

same trends as drainage reductions. Both controlled and shallow drainage treatments 

reduced NO3-N loads the least in 2008, with reductions of 11% and 15%, respectively, 

when compared to the conventionally drained treatment. Controlled drainage had the 

greatest nitrate-N reduction, 72%, in 2014, while shallow drainage had the greatest 

reduction, 70%, in 2011. 

Crop yield 

Overall for corn, the conventional drainage treatment tended to have the highest 

yields followed by the shallow, controlled, and undrained treatments (Figure 2.8). For the 

eight year period, shallow drainage reduced corn yields by 3%, controlled drainage 

reduced corn yields by 4%, and no drainage caused a reduction of 6% when compared to 

conventional drainage. In the first four years of the study from 2007-2010, shallow 

drainage reduced yields by only 2%, controlled drainage by 6%, and no drainage by 7%. 

In the last four years of the study from 2011-2014, all three treatments reduced yields by 

3% to 4% compared to conventional. Controlled drainage reduced corn yields in 2009 

while the undrained treatment reduced corn yields in 2009 and 2014. Skaggs et al. (2012) 

reported drainage water management impacts on corn yields ranging from no effect to 

19%. Helmers et al. (2012) were the only authors to report a corn yield decrease. Even 

Jaynes (2012) reported no corn yield impacts for an Iowan drainage water management 

site that received four years of above average rainfall. One possible reason for the 
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decrease in yield in the controlled drainage treatment is that there was no active water 

table management during the summer months regardless of the rain amount resulting in a 

higher water table. This is supported by the reduction in corn yields in the controlled 

drainage treatment in 2009, which was the wettest year of the study. 

Soybean yields followed a slightly different pattern than corn. There were no 

differences between the conventional, shallow, and controlled drainage treatments 

(Figure 2.9). Over the eight year study period, no drainage reduced yields by 12% when 

compared to conventional. In the first four years of the study, shallow drainage reduced 

yield by 7%, controlled drainage by 2%, and no drainage by 17%. Yield differences 

between treatments were not as dramatic in the years from 2011-2014; soybeans in the 

shallow drainage treatment yielded 1% greater than conventional while controlled 

drainage yielded the same as conventional. The undrained treatment had a 6% reduction 

compared to conventional. In 2009, 2010, and 2014, soybean yields were reduced in the 

undrained treatment when compared to the conventional treatment. These results are 

consistent with Skaggs et al. (2012) who reported drainage water management effects on 

soybean yields ranging from no effect to a 10% increase. 

For both corn and soybean yields, the northern replication had a significant 

reduction (p<0.05) when compared to the southern replication. The northern replication 

also had shallower water tables and lower NO3-N concentrations. While the shallow 

water tables seemed to enhance denitrification, they also seem to have negatively 

impacted yields. 
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Conclusions 

This study showed that over the eight year study, which contained years of above 

average, average, and below average rainfall, drainage water management reduced 

drainage volume and NO3-N losses. Controlled and shallow drainage reduced annual 

flow by 45% and 51% while reducing NO3-N loads by 49% and 42%, respectively, when 

compared to conventional drainage. The reductions in drainage and nitrate-N from 2011-

2014 were 59% and 61% for controlled drainage and 62% and 56% for shallow drainage. 

These reductions were greater than the reductions reported by Helmers et al. (2012) for 

the years 2007-2010. The higher reductions occurred during the four years when average 

rainfall was below average or average rather than the above average rainfall that occurred 

in the first four years of the study. These results agree with a literature review by Skaggs 

et al. (2012) indicating average drainage volume reductions between 18% and 85% and 

NO3-N reductions between 18% and 79%. Soybean yields were also congruent with 

previous studies (Skaggs et al., 2012) indicating no yield differences between drainage 

water management and conventional drainage treatments. However, controlled drainage 

reduced corn yields by 4% while shallow drainage reduced corn yields by 3% when 

compared to conventional drainage. Greater yield reductions occurred in the first four 

years of the study when rainfall was greater, especially in the corn.  

Drainage treatment had an effect on the water table but not on VWC, unlike what 

was predicted by Skaggs and Chescheir (2003). The undrained treatment had the 

shallowest water table and a significantly higher (p<0.05) number of hours that the water 

table was within 30 cm of the surface, which can negatively impact crop production. 

There was little difference between conventional, shallow, and controlled drainage 
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treatments in the number of hours the water table was within 30 cm of the ground, but 

conventional drainage had the deepest water table. Even with the higher water tables 

found in the undrained, shallow, and controlled drainage treatments, there was no 

difference in VWC between any of the treatments, likely due to soil type. 

Overall, this study illustrated that while drainage is important to agricultural 

production at this site, and drainage water management reduced nitrate-N loss 

downstream by reducing drainage volume. Future work should focus on how to manage 

controlled drainage fields more effectively during wet years to mitigate yield losses from 

high water tables. 

 

Acknowledgements 

This research is part of a regional collaborative project supported by the USDA-

NIFA, Award No. 2011-68002-30190, “Cropping Systems Coordinated Agricultural 

Project: Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems.” 

Project Web site: sustainablecorn.org. Research data and supporting metadata are stored 

in the team’s centralized Climate and Cropping Systems database. 

 

References 

Adeuya, R., Utt, N., Frankenberger, J., Bowling, L., Kladivko, E., Brouder, S., & Carter, 

B. (2012). Impacts of drainage water management on subsurface drain flow, 

nitrate concentration, and nitrate loads in Indiana. Journal of Soil and Water 

Conservation, 67(6), 474-484. 



27 

 

 

 

Blake, G.R., & Hartge, K.H. (1986). Bulk Density. In A. Klute (Ed.), Methods of Soil 

Analysis, Part 1. Physical and Mineralogical Methods (2
nd

 ed., Vol. 5, pp 363-

375). Madison, WI: ASA and SSSA. 

Burchell, M.R., Skaggs, R.W., Chescheir, G.M., Gilliam, J.W., & Arnold, L.A. (2005). 

Shallow Subsurface Drains to Reduce Nitrate Losses from Drained Agricultural 

Lands. Transactions of the ASAE, 48(3), 1079- 1089. 

Crumpton, W.G., Isenhart, T.M., & Mitchell, P.D. (1992). Nitrate and organic N analysis 

with second-derivative spectroscopy. Limnology and Oceanography, 37(4), 907-

913. 

David, M., Drinkwater, L., & Mclsaac, G. (2010). Sources of Nitrate Yields in the 

Mississippi River Basin. Journal of Environmental Quality, 39, 1657-1667. 

Frankenberger, J., Kladivko, E., Sands, G., Jaynes, D., Fausey, N., Helmers, 

M.,…Brown, L. (2007). Questions and Answers about Drainage Water 

Management for the Midwest, Purdue Extension Publication WQ-44. West 

Lafayette, IN: Purdue Extension. 

Gee, G.W., & Or, D. (2002). Particle-size Analysis. In J. Dane and G. Topp (Eds.) 

Methods of Soil Analysis, Part 4. Physical Methods, (2
nd

 ed., Vol. 5, pp 255-294). 

Madison, WI: ASA and SSSA. 

Helmers, M.J., Christianson, R., Brenneman, G., Lockett, D., & Pederson, C. (2012). 

Water Table, Drainage, and Yield Response to Drainage Water Management in 

Southeast Iowa. Journal of Soil and Water Conservation, 67(6), 485-494. 



28 

 

 

 

Jaynes, D.B. (2012). Changes in yield and nitrate losses from using drainage water 

management in central Iowa, United States. Journal of Soil and Water 

Conservation, 67(6), 495-501. 

Jury, W., & Horton, R. (2004). Soil Physics, (6
th

 ed.). Hoboken, NJ: Wiley. 

Kladivko, E.J., Helmers, M.J., Abendroth, L.J., Herzmann, D., Lal, R., Castellano, 

M.J.,…  Villamil, M.B. (2014). Standardized research transdisciplinary research 

of climate variation impacts in corn production systems. Journal of Soil and 

Water Conservation, 69(6), 532-542. 

Madramootoo, C.A., Dodds, G.T., & Papadopoulos, A. (1993). Agronomic and 

Environmental Benefits of Water-Table Management. Journal of Irrigation and 

Drainage Engineering, 119(6), 1052-1065. 

Ng, H.Y.F., Tan, C.S., Drury, C.F., & Gaynor, J.D. (2002). Controlled drainage and 

subirrigation influences tile nitrate loss and corn yields in a sandy loam soil in 

Southwestern Ontario. Agriculture, Ecosystems & Environment, 90(1), 81-88. 

Pavelis, G.A. (1987). Farm Drainage in the United States: History Status, and Prospects. 

Washington, D.C.: USDA Economic Research Service. 

Sands, G.R., Song, I., Busman, L.M., & Hansen, B.J. (2008). The Effects of Subsurface 

Drainage Depth and Intensity on Nitrate Loads in the Northern Cornbelt. 

Transactions of the ASABE, 51(3), 937-946. 

SAS. 2011. SAS User’s Guide. Ver. 9.3. Cary, N.C.: SAS Institute, Inc. 

Skaggs, R.W., & Chescheir III, G.M. (2003). Effects of Subsurface Drain Depth on 

Nitrogen Losses from Drained Lands. Transactions of the ASABE, 46(2), 237-

244. 



29 

 

 

 

Skaggs, R.W. & van Schilfgaarde, J. (1999). Agricultural Drainage. Madison, WI: ASA, 

CSSA, and SSSA. 

Skaggs, R.W., Fausey, N.R., & Evans, R.O. (2012). Drainage Water Management. 

Journal of Soil and Water Conservation, 67(6), 167-172. 

Strock, J.S., Sands, G.R., & Helmers, M.J. (2011). Subsurface Drainage Design and 

Management to Meet Agronomic and Environmental Goals. In . J.L. Hatfield and 

T.J. Sauer (Eds.) Soil Management: Building a Stable Base for Agriculture (pp. 

199-208). Madison, WI: ASA, CSSA, and SSSA. 

Turner, R.E., & Rabalais, N.N. (1994). Coastal Eutrophication near the Mississippi River 

Delta. Nature, 368(6472), 619-621. 

Wang, X., Frankenberger, J.R., & Kladivko, E.J. (2002). Estimating Nitrate-N Losses 

from Subsurface Drains Using Variable Water Sampling Frequencies. 

Transactions of the ASAE, 46(4), 1033-1040.



 

 

  

3
0
 

 

 

  

 

Figure 2.1. Aerial view of drainage plots at SERF in 2011 when 24 rows on the northern and southern side of the field were removed from rotation 

for continuous corn. The map illustrates data collection locations, drainage layout, and cropping system. 
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Figure 2.2. Average daily soil water storage (cm) for an 80 cm soil column for the 2012 growing 

season for all drainage treatments. 

 

 
Figure 2.3. Average daily soil water storage (cm) for an 80 cm soil column for the 2013 growing 

season for all drainage treatments.
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Figure 2.4. Average daily soil water storage (cm) for an 80 cm soil column for the 2014 growing 

season for all drainage treatments. 

 

 

 

 
Figure 2.5. Average soil water retention curve for the silty clay loams found at SERF. 
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Figure 2.6. Average annual drainage volumes (cm) from the three drainage treatments: 

conventional drainage (Conv.), controlled drainage (CD), and shallow drainage (SH). Years or 

the eight year average not connected with the same letter are statistically different (p < 0.05). 

 

 
Figure 2.7. Average annual nitrate-N loads (kg ha

-1
) for the three drainage treatments: 

conventional drainage (Conv.), controlled drainage (CD), and shallow drainage (SH). Years or 

the eight- year average not connected with the same letter are statistically different (p < 0.05). 
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Figure 2.8. Annual and eight-year average corn yields (kg ha

-1
) for the three drainage treatments: 

conventional drainage (Conv.), controlled drainage (CD), and shallow drainage (SH). Means 

within years or the eight-year average with a different letter are significantly different (p<0.05). 

Error bars show standard deviation. 

 

 
 

 
Figure 2.9. Annual and eight-year average soybean yields (kg ha

-1
) for the three drainage 

treatments: conventional drainage (Conv.), controlled drainage (CD), and shallow drainage (SH). 

Means within years or the eight-year average with a different letter are significantly different 

(p<0.05). Error bars show standard deviation.
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Table 2.1. Field activities from 2007-2014, including control dates for controlled drainage plots. An open control structure indicates the drainage 

depth is 1.2 m. In the spring, a closed control structure indicates drainage depth is 0.76 m. In the fall, if a date is given, the drainage depth is 0.30 

m. If a date is not provided, the drainage depth is the spring closed depth through the winter. 

 Corn  Soybean  Spring control  Fall control 

Year planting Harvest planting Harvest Open Close  Close 

2007 May 8 Oct. 16 late May Oct. 25 Apr. 30 June 2  Jan. 7, 2008 

2008 May 9 Nov. 4 June 2 Oct. 11 Apr. 14 June 5  Nov. 19 

2009 Apr. 17 to 18 Oct. 7, Oct. 12 to 13 May 22 Oct. 20 Apr. 15 May 29  Nov. 5 

2010 Apr. 15 Sept. 30, Oct. 12 May 28 Oct. 1 to 2 Apr. 15 June 24  Oct. 18 

2011 May 3 Sept. 29 May 11 Oct. 3 Apr. 25 June 1   

2012 Apr. 18 Sept. 24 May 15 Oct. 24 Apr. 5 June 14   

2013 May 17 Oct. 4 June 12 Oct. 2     

2014 May 19 Nov. 7 June 9 Oct. 10     

 

 
Table 2.2. Seasonal monthly rainfall (mm) at SERF from 2007-2014, including a long-term average at Mount Pleasant, approximately 15 km 

away. 

  Mar. Apr. May June July Aug. Sept. Oct. Season 

2007 121 128 140 202 124 234 51 86 1085 

2008 23 136 136 159 85 97 207 60 903 

2009 108 98 111 219 123 248 35 182 1123 

2010 69 110 156 321 100 125 207 26 1114 

2011 46 96 144 208 33 26 45 15 612 

2012 29 70 159 89 13 121 69 89 638 

2013 60 189 259 103 29 2 44 111 798 

2014 4 83 46 270 63 72 122 118 778 

50 yr Avg. 63 92 118 120 112 108 110 76 798 
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Table 2.3. Soil characteristics (0-60 cm in depth) of the four treatments: conventional drainage 

(Conv.), controlled drainage (CD), shallow drainage (SH), and no drainage (ND).  

Drainage Sand (%) Silt (%) Clay (%) TC (kg ha
-1

) TN (kg ha
-1

) ρb, g cm
-3

 

Conv. 13.3 47.2 39.5 12981 876 1.35 

CD 13.3 47.6 39.1 13488 910 1.35 

SD 13.2 48.3 38.5 13075 863 1.38 

ND 13.3 47.1 39.6 13191 912 1.37 
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Table 2.4. Average monthly depth to water table (m) from 2009-2014 for the four treatments: conventional drainage (Conv.), controlled drainage 

(CD), shallow drainage (SH), and no drainage (ND). Dashes indicate unavailable data. 

 

 

  2012  2013  2014 

  Conv. CD SH ND  Conv. CD SH ND  Conv. CD SH ND 

Jan. 1.79 2.01 1.75 1.80  1.73 1.85 1.71 1.62  ― ― ― ― 

Feb. 1.78 1.92 1.75 1.77  1.62 1.56 1.51 1.19  ― ― ― ― 

Mar. 1.78 1.92 1.74 1.73  1.37a 1.17ab 1.06ab 0.69b  ― ― ― ― 

Apr. 1.80 1.89 1.71 1.53  1.21a 0.99ab 0.77ab 0.47b  1.74 1.89 1.74 1.64 

May 1.30a 1.11ab 0.96ab 0.66b  1.24a 1.09ab 0.82ab 0.61b  1.80 1.89 1.68 1.46 

June 1.47 1.34 1.18 1.00  1.49a 1.27ab 0.97ab 0.84b  1.58a 1.50a 1.22ab 1.00b 

July 1.78 1.74 1.65 1.43  1.65a 1.35ab 1.19ab 1.13b  1.54a 1.20ab 1.07a 0.85a 

Aug. 1.89 2.05 1.73 1.83  1.93 1.80 1.66 1.53  1.80 1.69 1.60 1.40 

Sept. 1.88 2.05 1.73 1.66  2.10a 1.88a 1.77ab 1.32b  1.68a 1.61ab 1.5ab 1.20b 

Oct. 1.87 1.89 1.73 1.74  2.10a 1.88ab 1.76ab 1.37b  1.31a 1.14ab 0.97ab 0.71b 

Nov. 1.90 1.92 1.74 1.73  2.15a 1.88ab 1.76ab 1.54b  1.42 1.29 1.11 1.05 

Dec. 1.78 1.92 1.73 1.69  2.16a 1.88ab 1.76ab 1.62b  1.41 1.31 1.01 1.08 

Note: Monthly means within years with a different letter are significantly different (p<0.05). Only months where there were significant differences 

have letters included.

  2009  2010  2011 

  Conv. CD SH ND  Conv. CD SH ND  Conv. CD SH ND 

Jan. ― ― ― ―  1.3a 1.25a 1.24a 0.67b  1.44ab 1.47ab 1.53a 1.09b 

Feb. ― ― ― ―  1.41a 1.39a 1.37a 0.44b  1.36ab 1.42a 1.45a 1.02b 

Mar. ― ― ― ―  1.19a 1.09a 1.14a 0.60b  1.35a 1.21a 1.19a 0.53b 

Apr. ― ― ― ―  1.29a 1.22a 1.16a 0.52b  1.35a 1.25a 1.19a 0.63b 

May 1.32a 1.26a 0.99a 0.64b  1.27a 1.20a 1.04a 0.37b  1.31a 1.27a 1.17a 0.49b 

June 1.15a 0.88b 0.82b 0.16c  1.16a 1.07a 0.93a 0.27b  1.26a 1.22a 1.06a 0.52b 

July 1.26a 1.10a 1.03a 0.37b  1.38a 1.33a 1.33a 0.57b  1.43a 1.45a 1.36ab 1.01b 

Aug. 1.31a 1.27a 1.35a 0.55b  1.39a 1.42a 1.46a 0.78b  1.86 1.89 1.69 1.38 

Sept. 1.37a 1.34a 1.32a 0.54b  1.31a 1.27a 1.26a 0.67b  1.93 1.98 1.70 1.73 

Oct. 1.18a 1.07a 1.01a 0.43b  1.38a 1.38a 1.42a 0.64b  1.82 2.02 1.70 1.78 

Nov. 1.26a 1.08a 1.06a ―  1.42a 1.49a 1.58a 0.91b  1.76 1.99 1.70 1.74 

Dec. 1.29a 1.22a 1.28a 0.55b  1.41a 1.48a 1.58a 1.04b  1.76 1.94 1.70 1.74 
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Table 2.5. Number of hours water table is within 30 or 60 cm of the ground surface during the 

growing season (April- October) from 2010-2014 for the four treatments: conventional drainage 

(Conv.), controlled drainage (CD), shallow drainage (SH), and no drainage (ND).  

 

30 cm  60 cm 

 

Conv. CD SH ND  Conv. CD SH ND 

2010 36b 5b 0b 874a  55b 94b 115b 1824a 

2011 4b 0b 0b 60a  35b 0b 18b 1459a 

2012 20b 23b 33b 152a  14 35 75 131 

2013 7b 25b 182ab 524a  123 121 361 464 

2014 0b 3b 73b 291a  34b 70b 214ab 413a 

Avg. 13b 11b 57b 380a  52b 64b 156b 858a 

Note: Number of hours within years with a different letter are significantly different (p<0.05). 

Only months where there were significant differences have letters included. 
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Table 2.6. Average monthly volumetric water content (cm
3 
cm

-3
) at 10 cm depth from 2012-2014 for the four treatments: conventional drainage 

(Conv.), controlled drainage (CD), shallow drainage (SH), and no drainage (ND).  

 
2012  2013  2014 

 
Conv. CD SH ND  Conv. CD SH ND  Conv. CD SH ND 

Apr. 0.28 0.28 0.26 0.28  0.29 0.27 0.28 0.31  0.28 0.22 0.26 0.29 

May 0.31 0.29 0.29 0.30  0.33 0.29 0.32 0.34  0.29 0.24 0.27 0.31 

June 0.29 0.27 0.24 0.27  0.32 0.29 0.30 0.35  0.31 0.30 0.30 0.33 

July 0.23 0.20 0.17 0.17  0.27 0.25 0.26 0.27  0.30 0.30 0.29 0.30 

Aug. 0.24 0.21 0.19 0.19  0.20 0.21 0.22 0.22  0.25 0.26 0.25 0.24 

Sept. 0.28 0.29 0.24 0.26  0.16 0.18 0.19 0.18  0.30 0.27 0.30 0.30 

Oct. 0.28 0.30 0.24 0.25  0.16 0.20 0.18 0.18  0.30 0.29 0.29 0.30 

Note: Monthly means within years with a different letter are significantly different (p<0.05). Only months where there were significant differences 

have letters included. 

 

 

Table 2.7. Average monthly volumetric water content (cm
3
 cm

-3
) at 20 cm depth from 2012-2014 for the four treatments: conventional drainage 

(Conv.), controlled drainage (CD), shallow drainage (SH), and no drainage (ND).  

 
2012  2013  2014 

 
Conv. CD SH ND  Conv. CD SH ND  Conv. CD SH ND 

Apr. 0.35a 0.33ab 0.28b 0.30ab  0.34 0.33 0.29 0.33  0.32a 0.31a 0.21b 0.32a 

May 0.38 0.36 0.32 0.35  0.38 0.36 0.31 0.38  0.34a 0.33a 0.22b 0.34a 

June 0.32 0.31 0.28 0.30  0.39a 0.37a 0.28b 0.39a  0.38a 0.36a 0.26b 0.37a 

July 0.21 0.24 0.20 0.17  0.33a 0.30a 0.18b 0.30a  0.37a 0.32ab 0.24b 0.33a 

Aug. 0.25 0.26 0.21 0.18  0.27a 0.27a 0.15b 0.25a  0.30a 0.27a 0.16b 0.22ab 

Sept. 0.33 0.31 0.27 0.30  0.26a 0.25a 0.13b 0.22a  0.35a 0.32a 0.22b 0.34a 

Oct. 0.34 0.31 0.31 0.30  0.32a 0.23b 0.12c 0.19bc  0.35a 0.31ab 0.25b 0.35a 

Note: Monthly means within years with a different letter are significantly different (p<0.05). Only months where there were significant differences 

have letters included. 
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Table 2.8. Average monthly volumetric water content (cm
3
 cm

-3
) at 40 cm depth from 2012-2014 for the four treatments: conventional drainage 

(Conv.), controlled drainage (CD), shallow drainage (SH), and no drainage (ND). Dashes indicate unavailable data. 

 
2012  2013  2014 

 
Conv. CD SH ND  Conv. CD SH ND  Conv. CD SH ND 

Apr. 0.36 0.36 0.33 0.34  0.35 0.35 0.36 0.36  0.31 0.33 0.36 0.33 

May 0.39 0.39 0.38 0.39  0.38 0.38 0.38 0.40  0.34 0.36 0.38 0.35 

June 0.37 0.38 0.36 0.35  0.39 0.40 0.37 0.40  ― 0.39 0.42 0.40 

July 0.27 0.30 0.24 0.25  0.35 0.36 0.33 0.36  ― 0.38 0.41 0.39 

Aug. 0.29 0.30 0.22 0.24  0.27 0.31 0.27 0.29  ― 0.32 0.31 0.26 

Sept. 0.32 0.31 0.32 0.35  0.25 0.30 0.26 0.27  0.34 0.36 0.38 0.35 

Oct. 0.34 0.33 0.32 0.34  0.24 0.28 0.24 0.25  0.36 0.36 0.39 0.37 

Note: Monthly means within years with a different letter are significantly different (p<0.05). Only months where there were significant differences 

have letters included. 

 

Table 2.9. Average monthly volumetric water content (cm
3
 cm

-3
) at 60 cm depth from 2012-2014 for the four treatments: conventional drainage 

(Conv.), controlled drainage (CD), shallow drainage (SH), and no drainage (ND). 

 
2012  2013  2014 

 
Conv. CD SH ND  Conv. CD SH ND  Conv. CD SH ND 

Apr. 0.34 0.31 0.36 0.31  0.35b 0.31b 0.41a 0.37ab  0.32 0.30 0.34 0.30 

May 0.37ab 0.34b 0.40a 0.37ab  0.38ab 0.34b 0.42a 0.38ab  0.34 0.32 0.37 0.32 

June 0.37a 0.30b 0.36a 0.33ab  0.38ab 0.33b 0.43a 0.36b  0.37ab 0.35b 0.42a 0.37ab 

July 0.22b 0.22b 0.16c 0.28a  0.37 0.34 0.38 0.34  0.36 0.34 0.40 0.36 

Aug. 0.22a 0.23a 0.13b 0.27a  0.26 0.31 0.29 0.26  0.32 0.30 0.26 0.26 

Sept. 0.22b 0.22b 0.17b 0.32a  0.21c 0.30a 0.28ab 0.24bc  0.34 0.34 0.36 0.31 

Oct. 0.29 0.27 0.27 0.32  0.21b 0.30a 0.25ab 0.22b  0.36 0.35 0.41 0.36 

Note: Monthly means within years with a different letter are significantly different (p<0.05). Only months where there were significant differences 

have letters included. 
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Table 2.10. Average monthly total soil water storage (cm
3
 cm

-3
) for an 80 cm soil column from 2012-2014 for the four treatments: conventional 

drainage (Conv.), controlled drainage (CD), shallow drainage (SH), and no drainage (ND). Dashes indicate unavailable data 

 
2012  2013  2014 

 
Conv. CD SH ND  Conv. CD SH ND  Conv. CD SH ND 

Apr. 27.0 25.5 25.5 24.9  27.0 24.8 28.0 28.0  24.4 23.0 24.5 24.9 

May 29.3 27.6 28.7 28.5  29.8 26.3 29.7 30.2  27.0 24.9 26.1 26.5 

June 27.6 24.5 26.0 25.4  29.6 26.7 29.2 29.9  ― 28.2 29.3 29.4 

July 18.5 18.9 16.7 18.6  27.1 25.4 24.0 25.8  ― 27.1 28.2 28.2 

Aug. 19.5 19.3 17.1 18.5  20.4 22.7 19.7 20.5  ― 23.1 21.0 19.8 

Sept. 22.0 20.8 23.3 25.0  17.9 21.5 18.3 18.6  26.8 25.9 27.5 26.1 

Oct. 24.8 23.8 22.9 24.5  20.9ab 22.1a 17.1b 17.2b  27.9 26.7 28.0 28.0 

Note: Monthly means within years with a different letter are significantly different (p<0.05). Only months where there were significant differences 

have letters included. 
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Table 2.11. Average monthly drainage (cm) from 2007-2014 from the three drainage treatments: conventional drainage (Conv.), controlled 

drainage (CD), and shallow drainage (SH). Dashes indicate unavailable data. 

  2007  2008  2009  2010 

Month Conv CD SH  Conv CD SH  Conv CD SH  Conv CD SH 

Jan. 0.0 0.0 0.0  ― 0.0 1.1  0.0 0.0 0.4  0.0 0.0 ― 

Feb. 0.0 0.0 0.0  ― 0.0 0.0  0.2a 0.0b 0.0b  0.0 0.0 0.0 

Mar. 0.0 0.0 0.0  ― 1.3 0.2  ― 0.5a 2.2b  5.3 3.8 3.7 

Apr. ― ― ―  5.5 7.6 4.2  4.5 2.0 0.8  4.7a 4.1ab 3.3b 

May 3.0 5.6 2.8  5.5 5.6 3.2  8.4a 5.8a 2.9b  6.7 5.8 4.0 

June 9.8 6.4 8  7.4a 3.2b 3.3b  13.9a 4.3b 5.0b  16.6a 13ab 10.3b 

July 0.2 0.2 0.1  1.1a 0.0b 0.0b  6.8a 1.3b 1.6b  0.1a 0.0b 0.0b 

Aug. 4.1 2 2.8  0.0 0.0 0.0  4.0 3.0 2.3  0.2a 0.0b 0.0b 

Sept. 0.0 0.1 0.0  5.5a 4.6b 4.7ab  0.0 0.0 0.0  6.3 4.5 4.1 

Oct. 4.1a 2.8b 3.0b  0.4 0.0 0.1  7.5a 4.9b 4.2b  0.8a 0b 0b 

Nov. 0.0 0.0 0.0  0.3 0.0 0.0  2.8a 0.1b 0.8ab  0.0 0.0b 0.0b 

Dec. 3.9 0.0 0.0  0.2 0.0 0.1  1.0a 0.0b 0.2ab  0.0 0.0 0.0 

 

 

2011  2012  2013  2014 

Month Conv CD SH  Conv CD SH  Conv CD SH  Conv CD SH 

Jan. 0.3 0.4 0.1  0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0 

Feb. 1.7 0.1 0.0  0.0 0.0 0.0  0.2 0.0 0.0  0.0 0.0 0.0 

Mar. 3.8 0.0 0.0  0.0 0.0 0.0  4.4 1.7 0.8  0.0 0.0 0.0 

Apr. 6.3a 1.9b 0.8b  0.0 0.0 0.0  12.2 7.8 7.9  0.0 0.0 0.6 

May 9.3a 4.3b 1.6b  11.1 4.1 5.8  14.2a 10.6b 8.6b  0.0 0.0 0.3 

June 11a 4.6b 1.8b  1.3 0.0 0.0  3.8a 1.2b 1.4b  12.3 4.1 5.2 

July 0.5 0.0 0.0  0.0 0.0 0.0  1.3 0.0 0.0  13.3a 3.7b 3.9b 

Aug. 0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0  0.2 0.1 0.0 

Sept. 0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0  0.7 0.0 0.2 

Oct. 0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0  13.1a 4.3b 4.4b 

Nov. 0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0  1.1 0.8 0.0 

Dec. 0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0 

Notes: Monthly means within years with a different letter are significantly different (p<0.05). Only months where there are significant differences 

have letters included.
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Table 2.12. Average annual flow-weighted NO3-N concentrations (mg L
-1

) from 2007-2014 for 

the three drainage treatments: conventional drainage (Conv.), controlled drainage (CD), and 

shallow drainage (SH).  

Year Conv. CD SH 

2007 13.7 13.1 15.3 

2008 10.6 9.8 12.5 

2009 8.8 8.4 11.7 

2010 7.2ab 6.4b 9.1a 

2011 7.8 8.5 11.3 

2012 12.8 12.3 14.2 

2013 9.3 9.2 10.6 

2014 13.9 12.6 14.2 

Avg 10.9b 10.0c 12.4a 

Note: Years or the eight-year year average not connected with the same letter are significantly 

different (p < 0.05). Only years where there were significant differences have letters included. 
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CHAPTER 3. EFFECT OF DRAINAGE WATER MANAGEMENT 

ON THE PLANTING DATE OF CORN 
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Abstract 

In Iowa, when the timeliness of spring field activities are critical to achieve an 

adequate growing season for high yielding corn, subsurface drainage is necessary to 

improve trafficability and decrease excess water stress on crops. The objective of this 

study was to determine the effect of shallow, controlled, conventional and no drainage on 

depth to water table, volumetric water content, and soil temperature during a 51 day 

period, from mid-April through May, when corn needs to be planted in Iowa in order to 

qualify for crop insurance. This research was conducted at the Iowa State University 

Southeast Research Farm near Crawfordsville, Iowa from 2012 to 2015. The site consists 

of eight plots with two replicates for each of the four drainage treatments. Each plot had 

half planted in soybeans (Glycine max L. Merr.) and the other half in corn (Zea mays L.), 

and the halves were rotated every year in accordance with a typical corn-soy rotation. 

During the five year study period, the water table in the undrained treatment was 

significantly shallower (p<0.05) than the conventional and controlled drainage 

treatments. The soil temperature at 10 cm was also significantly warmer (p<0.05) in the 

undrained and shallow drainage treatments than the conventional and controlled drainage 
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treatment. Drainage treatment did not affect volumetric water content, maximum soil 

temperature, and minimum soil temperature at 10 or 20 cm as well as average soil 

temperature at 20 cm. Overall, drainage treatment did not impact planting date with 

respect to temperature and volumetric water content. Drainage treatment could impact the 

date of planting with respect to the depth of water table due to a higher risk of excess 

water stress on the crop. 

 

Introduction 

Subsurface drains are used to remove excess water from the soil profile of 

agricultural land in areas with poor natural drainage. High water tables reduce soil 

aeration, which in turn can prevent seed germination, cause plant root injury, and reduce 

plant nutrient uptake thereby reducing grain yields (Evans & Fausey, 1999). Field 

research conducted by Kanwar et al. (1988) showed that corn yields are impacted the 

most when excess water stress occurs during crop establishment soon after planting. 

Evans et al. (1991) used this information when they developed a corn yield model based 

on soil excess water stress based on a 30 cm water table (SEW30) as well as a factor for 

crop susceptibility to high water tables at various growth stages.  

In Iowa, when the timeliness of spring field activities are critical to achieve an 

adequate growing season for high yielding corn, subsurface drainage is also necessary to 

improve trafficability. Campbell and O’Sullivan (1991) defined trafficability as the 

ability of the soil to provide adequate traction for vehicles while withstanding traffic 

without excess compaction. Many authors have used a relationship between available 

water content and soil strength to show that as soil moisture decreases in the upper soil 
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profile, trafficability increases (Earl, 1996; Bornstein & Hedstrom, 1982; Kornecki & 

Fouss, 2001). Bornstein and Hedstrom (1982) concluded that trafficability developed 

more rapidly in the spring with drainage than without it by decreasing soil water content 

below field capacity. Soils cannot be too dry either at the time of planting either; corn 

seeds must absorb about 30% of their weight in water for germination (Elmore & Al-

Kaisi 2013). 

Soil temperature at 4 cm needs to be at least 10°C in order for corn to germinate 

and accumulate 50 to 67 growing degree days °C (GDD) to emerge (Elmore & Al-Kaisi 

2013). Historically, subsurface drainage was thought to increase soil temperatures in 

early spring, which could allow for earlier planting. In their literature review, Steenhuis 

and Walter (1986) found there were three main reasons for this rationale: evaporation 

from an undrained field decreases temperature, rainfall increases soil temperature faster 

in a drained field due to increased infiltration of warm rain water, and more heat is 

needed to warm a wet field than a dry one due to water’s high specific heat. However, 

their analytical analysis concluded that thermal diffusivity, which is a function of a soil’s 

ability to store and conduct thermal energy, is more important than the volumetric heat 

capacity, which is a soil’s ability to store thermal energy. However, there are very few 

field studies that support this conclusion. Jin et al (2008) concluded from their field study 

in Northern Minnesota that subsurface drainage significantly increased spring soil 

temperature but only at the depth of the subsurface drains. 

Although there are benefits to subsurface drainage, there are also negative 

environmental impacts. Drainage has increased the loss of nitrate-nitrogen from 

agricultural lands in the Mississippi River Basin contributing to the hypoxia zone in the 
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Gulf of Mexico (Turner & Rabalais, 1994). David et al. (2010) found that a significant 

portion of the nitrate-nitrogen export originated from subsurface drainage. One practice 

being proposed to combat these losses is drainage water management. Drainage water 

management is designing or managing the subsurface drainage system in order to reduce 

the drainage volume or to manage the outflow. The drains are either installed at a 

shallower depth or installed at the conventional depth described earlier with a control 

structure that regulates the water table outflow height. These two practices are known as 

shallow and controlled drainage, respectively (Strock et al., 2011). 

Drainage water management has been shown to reduce drainage volumes and 

NO3-N losses but yields impacts have been mixed. Shallow drainage reduced drainage 

volume and NO3-N loss by 46- 20% and 29-18%, respectively, when compared to 

conventionally drained systems (Helmers et al., 2012; Sands et al. 2008). Using 20 

controlled drainage sites across the Midwest and Canada, Skaggs et al. (2012) reported an 

18-80% reduction in annual drainage volume and an 18-79% reduction in NO3-N loads 

when compared to conventional drainage. However, corn yields ranged from a yield 

reduction in Iowa to an increase of 19% (Helmers et al., 2012; Skaggs et al. 2012). 

Since high yielding corn requires a longer growing season than soybeans, corn is 

planted first in Iowa. If planting date is delayed, producers may have to change corn 

hybrids for varieties with less growing degree units necessary for maturity, but these 

hybrids tend to be lower yielding. In Iowa, in order for producers to qualify for crop 

insurance, corn must be planted between April 11 and May 31
st
 (Plastina, 2014). The 

recommended planting window to obtain the highest corn yield potential in Southern 

Iowa is April 17 to May 8 (Elmore, 2012). Since planting delays and higher water tables 
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can reduce crop yields, it is important to understand the impact of drainage and drainage 

water management during the spring planting window. The objective of this study was to 

investigate the impact of drainage and drainage water management practices on 

volumetric soil water content, soil temperature, and depth to water table in order to 

evaluate trafficability and crop establishment during the crop insurance planting window 

for corn in Southern Iowa. Drainage treatment effect on soil volumetric water content and 

soil temperature were investigated at depths of 10 and 20 cm for this thesis, but 

realistically, only the 10 cm depth would be pertinent for seed germination. 

 

Materials and Methods 

Site location and design 

Research was conducted at the Iowa State Southeast Research Farm (SERF) near 

Crawfordsville, Iowa (41°11'38" N, 91°28'58" W) from 2007 to 2014. The site has eight 

research plots with two replications for each of the following drainage treatments: 

undrained, conventional drainage, shallow drainage, and controlled drainage. The plots 

were blocked into a north and south replication because the site consists of two poorly 

drained silty clay loam soils. Kalona (silty clay loam, fine, smectitic, mesic Vertic 

Endoaquolls) is found predominantly in the northern plots while Taintor (silty clay loam, 

fine, smectitic, mesic Vertic Argiaquolls) is predominantly in the south. The site is 

relatively flat with less than a five meter elevation change over 17 ha. The plots were 

designed to have a maximum drainage coefficient of 1.9 cm day
-1

, and the individual 

plots range in size from approximately 1.2 to 2.4 ha. The conventional and controlled 
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drainage plots have a drain depth and spacing of 1.2 and 18 m, respectively. The shallow 

drained plots have drains at a depth of 0.76 m with 12.2 m spacing. 

Originally, the plots were split down the middle and cropped east to west with 

both corn (Zea mays L.) and soybeans (Glycine max L. Merr.) each year, which were 

alternated each consecutive year to replicate a typical corn-soybean rotation in Iowa. In 

2012, however, 24 rows of continuous corn were added on the north and south edges of 

the site, so each plot had rotational corn, rotational soybeans, and continuous corn every 

year. Since corn is generally planted first in Iowa and requires a longer growing season, 

the rotational corn will be the focus of analysis. Spring field activities included field 

cultivation, anhydrous ammonia application, planting, and a pre-emergence herbicide 

application (Table 3.1). All drainage treatments are planted on the same day due to plot 

layout and the field manager decided when field conditions were suitable for planting. If 

necessary, all activities for all plots can be completed in one day.  At this site, controlled 

drainage plots were only managed in the spring when necessary for field activities. The 

gates were typically opened in mid to late April approximately two weeks prior to 

planting to allow free drainage and closed in late May to early June after planting was 

completed. 

Data collection 

Daily rainfall was measured using a manually-read rain gauge located 

approximately 1 km from the research plots from 2012 to 2015. For both the long-term 

precipitation average and total rainfall during the planting period, daily manual 

measurements from 2000 to 2015 were averaged with rainfall amounts at a NOAA 

station in Mount Pleasant, approximately 15 km away, from 1990 to 2015. Daily average, 



50 

 

 

 

maximum, and minimum temperatures for the site were compiled using the Iowa State 

Agclimate Network for 2012 to 2013 and Iowa State University Soil Moisture Network 

for 2014 to 2015.  

In 2009, monitoring wells were installed in the center of each plot where the 

water table would be the shallowest and between the rotational corn and soybeans to 

minimize the impact of farming operations. Depth to water table was monitored hourly 

using Global Water pressure transducers (Global Water, Sacramento, California). Daily 

average water table depths were calculated as well as the daily minimum depth to water 

table. The daily minimums were used to calculate the soil excess water stress for 30 cm 

(SEW30) since crop susceptibility to SEW30 is greatest during the early stages of crop 

establishment and growth (Kanwar et al., 1988; Evans et al., 1999).  

SEW30 =  ∑ (30 − 𝑋𝑖)
𝑛
𝑖=1   

where 

Xi = the water table depth below the ground surface in cm on day i 

n = the number of days within the planting window 

Bulk density samples were collected in 2011 using a modified Uhland sampler for 

depth increments of 0-10, 10-20, 20-30, 30-40, 40-50 and 40-60 cm at eight locations 

transecting each plot across all crops (Kladivko et al., 2014) and were oven dried at 

105°C (Blake & Hartge, 1986). ECH2O 5TM (Decagon, Pullman, Washington) sensors 

were installed in the center of each plot in the continuous corn in May 2011. The soil 

volumetric water content (VWC) and temperature were measured at five depths: 10, 20, 

40, 60, and 100 cm although only the top two depths were used for this paper since corn 

is planted at a depth of 4 cm. Data was logged every five minutes using an Em50 logger. 
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Maximum soil moisture values were capped to individual plot soil porosity at the sensor 

depth increments. Using the bulk density samples collected in each plot in 2011, soil 

porosity was calculated for 10 and 20 cm sensors using the corresponding depth bulk 

density values for 0-10 and 10-20 cm, respectively. Daily average soil moisture and 

temperature were calculated for the top two depths. Using bulk density samples collected 

in 2013, the soil water retention curve for soil samples corresponding to 0-10 and 10-20 

cm depths were determined using a simultaneous collection system for pressures 50, 100, 

and 330 cm water (Powers et al., 1999). The permanent wilting point was defined at 15 

bar and was determined using a WP4C Water Potential Meter (Decagon, Pullman, 

Washington). Due to homogeneity, soil water retention curves were averaged to create 

one soil water retention curve for 0-20 cm representing the entire site. Field capacity is 

the soil volumetric water content after a rain event when previously saturated soils can no 

longer drain by gravity. Due to shallow water tables, field capacity at the site was defined 

at the volumetric water content at 100 cm capillary pressure head. 

Data analysis 

Statistical analyses were conducted using Statistical Analysis System software 

(SAS 2011). The generalized linear mixed model (GLIMMIX) procedure was used with 

two replicates per treatment as repeated measures to determine the statistical significance 

of treatment effects on the following measurements at 10 and 20 cm: daily average soil 

volumetric water content, daily average temperature, daily maximum temperature, daily 

minimum temperature, and daily temperature amplitude. The same procedure was also 

used to analyze the daily average depth to water table. 
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Results and Discussion 

Climate 

During the planting window from April 11 to May 31, average temperatures 

ranged from 13.6 °C in 2013 to 16.2°C in 2012 (Table 3.2). When compared to the long-

term average, the average temperature was 10% warmer in 2012 and 7% cooler in 2013. 

However, when accumulated growing degree days (GDD) for corn were considered, all 

four years of the study period were below average. The years of 2012 and 2013 were still 

the extremes with 24% and 42% fewer GDD than the long-term average. Every year, 

except 2013, had less than 201.6 mm of rainfall, which was the average for the planting 

period; 2012 received 3% less rain while 2014 and 2015 received 32% and 16% less, 

respectively. The planting window during 2013 received 75% more rain than average. 

Volumetric water content 

Over the four years of planting windows, there were no significant differences 

(p=0.90) between drainage treatments in VWC at 10 cm (Figure 3.1) nor were there 

significant differences (p<0.05) between drainage treatments on any individual day. 

There was also no significant difference (p=0.35) between the northern and southern 

replications. All treatments tended to have similar responsiveness to rainfall during both 

wetting and drying for the majority of events. Overall, 2013 had the greatest variation 

during the planting window for VWC due to the high rainfall with adequate time for 

drying between events. Both 2014 and 2015 had little variation in VWC because the 

rainfall events were smaller and closer together. 

Similarly to the VWC at 10 cm, over the four years of planting windows, there 

were no significant differences (p=0.53) in VWC at 20 cm between the drainage 
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treatments nor were there significant differences (p<0.05) between drainage treatments 

on any individual day. There was also no significant difference (p=0.24) between the 

northern and southern replications. The VWC at 20 cm tended to be wetter than at 10 cm. 

During large rain events, like in 2012 and 2013, the peaks were nearly the same, but the 

VWC at 20 cm appeared to dry slower (Figure 3.2).  

In all four years, corn was planted when VWC at 10 cm was between 0.25 and 

0.30. The VWC at 20 cm were more variable at the time of planting than the VWC at 10 

cm, ranging from 0.25 to 0.35. The VWC in both cases would be at or below field 

capacity, defined as 100 cm of capillary head, for this soil type. Since corn was never 

planted with VWC above field capacity, these results are consistent with the conclusion 

reached by Earl (1997) that as VWC decreases below field capacity trafficability 

increases. VWC in all drainage treatments never remained above field capacity after a 

large rain event for more than a few days. 

Soil temperature 

There were significant differences in soil temperatures at 10 cm (p=0.05) between 

drainage treatments. In the last three weeks of the planting window in 2012, when the 

average temperatures were the highest over the entire study period, the shallow drainage 

treatment had significantly higher (p<0.05) temperature than the controlled drainage 

treatment (Figure 3.3). During the second to last week, the undrained treatment was also 

significantly warmer (p<0.05) than the controlled drainage treatment. For the last few 

days in April in 2013, when the average temperature drastically increased, the undrained 

and shallow drainage treatments were significantly warmer (p<0.05) than the controlled 

drainage treatment, and during the middle of May in the same year, the undrained 
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treatment was also significantly warmer (p<0.05) than the controlled drainage treatment. 

There were no significant differences (p<0.05) in temperature in the other two years. The 

soil temperature at 10 cm was, on average, 2°C warmer in the shallow drainage and 

undrained treatments than in the controlled and conventionally drained treatments. In 

2012, when average air temperatures were the highest, corn was planted the earliest of all 

four years; the average soil temperature for all treatments was 15°C. In contrast, on the 

latest corn planting date in 2013, the average soil temperature was 21°C. There was no 

significant difference (p=0.14) between the northern and southern replications. While the 

increase in average temperature could allow for earlier planting, the differences occurred 

later in the planting window when soil temperatures were already above 10°C. These 

results are not intuitive, and the reason for why the shallow drainage and undrained 

treatments are warmer is unknown. 

Unlike the temperature differences between drainage treatments at 10 cm, there 

was no significant difference (p=0.71) in temperature at 20 cm between drainage 

treatments. There were also no significant differences (p<0.05) between drainage 

treatments on individual days within the planting windows. The average soil temperature 

at 20 cm was slightly cooler than at 10 cm for this part of the year. The average 

temperatures during planting at 20 cm varied from 13°C in 2015 to 18°C in 2013 (Figure 

3.4). There was also no significant difference (p=0.89) between the northern and southern 

replications, like average soil temperature at 10 cm. 

Overall, there was no significant difference (p=0.32) in daily maximum soil 

temperatures at 10 cm between drainage treatments, but there were some notable daily 

differences (p<0.05). In 2012 and 2013, the maximum daily soil temperature at 10 cm 
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was the warmest in the shallow and undrained treatments and coolest in the controlled 

and conventional (Figure 3.5). There were sporadic days throughout both years where the 

maximum temperature at 10 cm in the undrained treatment was significantly warmer 

(p<0.05) than the controlled drainage treatment. There were also a few instances in both 

years when the maximum temperature at 10 cm in the shallow drained treatment was also 

significantly warmer (p<0.05) than the controlled drainage treatment. These differences 

tended to occur when the soil temperature was increasing rapidly, like the end of 2012 

and mid-2013. The maximum soil temperature at 10 cm was between 3°C and 5°C 

warmer in the shallow drainage and undrained treatments, but just like the differences in 

average soil temperature at 10 cm, they tended to occur later in the planting window 

when soil temperatures were already warm.  Like 2014, the undrained treatment tended to 

have the highest maximums, but a few times during the end of the planting window, the 

undrained treatment was significantly warmer (p<0.05) than the shallow drainage 

treatment. There were no clear differences in 2015. There was also no significant 

difference (p=0.46) between the northern and southern replications. 

Like the average soil temperatures at 20 cm, the daily maximum temperatures at 

the same depth (Figure 3.6) showed fewer differences between treatments. There was no 

significant difference (p=0.83) between drainage treatments in daily maximum 

temperature at 20 cm. The daily maximum temperatures at 20 cm were cooler than the 

daily maximum temperatures at 10 cm. There was also no significant difference (p=0.93) 

between the northern and southern replications. 

There were no differences (p=0.49) between the daily minimum soil temperatures 

at 10 cm between drainage treatments during the four planting windows. There were only 
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two instances when there were daily differences (p<0.05) between drainage treatments. 

During the first week of May in 2012, the daily minimum soil temperature at 10 cm in the 

conventional drainage treatment changed from significantly warmer than the other three 

treatments to significantly cooler than the others (Figure 3.7). Then, in early May 2013, 

the undrained and shallow drainage treatments had significantly warmer minimum 

temperatures than the conventionally drained treatment for a couple of days. In 2012 and 

2014, the shallow drainage treatment had warmer minimum temperatures than the other 

three drainage treatments, and the undrained drainage treatment had the coolest daily 

minimums in the early part of both those years. There were no clear patterns between the 

other treatments in those years. In all four years, corn was planted when the daily 

minimum soil temperatures at 10 cm were above the 10°C necessary for seed 

germination; although in 2012 when corn was planted the earliest, soil minimum 

temperatures at 10 cm fell below 10°C. The daily minimum temperature at 10 cm in the 

northern and southern replications were also not different (p=0.73). 

Unlike the other temperature parameters, the daily minimum temperatures at 20 

cm were warmer than the daily minimum temperatures at 10 cm. However, like the other 

temperature parameters at 20 cm, there are no clear relationships between drainage 

treatments in the daily minimum temperatures (p=0.10), and there was also no difference 

between the replications (p=0.31). There were only two notable instances when there 

were significant daily differences (p<0.05) between drainage treatments. During the week 

of May in 2012, the daily minimum soil temperature at 20 cm in the conventional 

drainage treatment changed from significantly warmer than the other three treatments to 

significantly cooler than the others (Figure 3.8). The second instance was during late 
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April 2014 when the daily minimum temperature at 20 cm for conventional drainage was 

significantly cooler than the other three. 

Water table 

There were significant differences (p=0.05) in depths to water tables between 

drainage treatments. In all four years, the water table in the undrained treatment was the 

shallowest followed by the shallow drainage treatment (Figure 3.9). In 2012, 2013, and 

2015, the water table in the conventional treatment was the deepest, but in 2014 the 

controlled drainage treatment was slightly deeper. Low rainfall at the end of 2013 and 

inadequate rainfall in early 2014 kept the water tables deeper when compared to the other 

years. The water tables were the shallowest in 2013 compared to the other three years due 

to above average rainfall in the spring. Water tables were the shallowest at planting in 

2013 and 2015 when both the undrained and shallow drained treatments were 

approximately one meter from the surface. Unlike VWC and temperature, there was a 

significant difference (p=0.04) between the northern and southern replications. The 

northern replication tended to have shallower water tables than the southern one. 

In 2012, prior to the large rain event in early May, the undrained treatment had a 

significantly shallower (p<0.05) water table than the deepest water table, which was the 

controlled drainage treatment. During the week of rainfall at the end of April through 

early May, there were no significant differences (p<0.05) between treatments. 

Immediately following the rainfall event, nearly all treatments were significantly 

different (p<0.05) from one another. At the end of 2012, only the undrained treatment 

was significantly shallower (p<0.05) than the controlled and conventional drainage 

treatments. In 2013, the water table in the undrained treatment was significantly 
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shallower (p<0.05) than the other three treatments for most of the year. Since the boards 

in the controlled drainage treatment were maintained at 0.76 m during 2013, the other 

three treatments only significantly differed (p<0.05) from each other immediately 

following a big rain event. The undrained treatment was also significantly shallower 

(p<0.05) than the controlled and conventional drainage treatments for most of 2014. 

During 2015, the shallow and undrained treatments had a significantly shallower 

(p<0.05) water table than the other two treatments.  

In most years, there was little difference between the controlled and conventional 

drainage treatments, which is expected since this is the period of time when there is no 

water table management in the controlled drainage treatment. In 2013, when the water 

table control boards were maintained at 0.76 m, and there was substantial rainfall during 

the planting window, the water table in the controlled drainage treatment was shallower 

than the conventional treatment but deeper than the shallow drainage treatment. There 

were also several instances in 2012, 2013, and 2015 when the water table in the 

undrained treatment was at the surface, which likely reduced trafficability and would 

negatively impact crop establishment due to reduced soil aeration. The water tables in the 

other three drainage treatments also rose near the surface in 2012 and 2013 but receded 

faster. The water table wells were located in the center of each plot between two tile lines 

where the water table would be the shallowest. The wells in the undrained plots were also 

placed in the center of each plot and not necessarily where the water table would be the 

shallowest. Therefore, the water tables in the undrained plots could be much shallower 

than the data available. 
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Initial logic would indicate that since there were significant differences in the 

depth to water table between drainage treatments, there would also be significant 

differences between VWC. Theoretically, the VWC in the undrained and shallow 

drainage treatments would be higher than the VWC in the controlled and conventionally 

drained treatments (Skaggs and Chescheir, 2003). However, this is not the case. This 

inconsistency can be explained with the soil water retention curve for this soil type 

(Figure 3.10). There is little difference between VWC between 50 and 330 cm of 

capillary pressure. 

The undrained treatment had the greatest SEW30 in every year followed by the 

shallow drainage treatment except 2015 (Table 3.3). In that year, the water table pressure 

transducer malfunctioned in the northern replication, which is typically has the shallowest 

water tables. In 2012, the conventionally drained treatment had a greater SEW30 than the 

controlled, but in the following year, the relationship switched. Over all four years, 

SEW30 was 2200% greater in the undrained plots than the conventional drainage 

treatment and 517% greater in the shallow drainage treatment. The conventional and 

controlled drainage plots were approximately equal. 

Results for SEW30 after planting were similar to those for SEW30 during the whole 

planting window (Table 3.4). In 2012, when corn was planted the earliest of all four 

years, all SEW30 occurred after planting. However, the same thing occurred in 2015 when 

corn was planted two weeks later. In 2013 when corn was planted the latest of all four 

years, all treatments had less SEW30 after planting than in the entire planting window; the 

shallow and controlled drainage treatments had nearly half SEW30 after planting than in 

the entire planting window. Since Iowa receives much of its rainfall in April through 
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June, planting date is heavily dependent on the timing of rainfall. Crop susceptibility to 

SEW30 is greatest during the early stages of crop establishment and growth (Kanwar et 

al., 1988; Evans et al., 1999). Interestingly, 2014, which had no SEW30 during the 

planting window, was the only year of this analysis that had corn yield reductions. In this 

year, the corn yields in the undrained treatment were 17% less than the yields in the 

conventional drainage treatment. Although yields do not seem to be associated with 

SEW30 during this time period, the years investigated were not wet years. Yields could 

also be driven by excess water stress or water deficit stress later in the season. 

Drainage effect on planting date 

When each plot had a VWC at 10 cm depth below field capacity (Earl, 1997), 

average soil temperature at 10 cm above 10 °C (Elmore & Al-Kaisi, 2013), and a water 

table deeper than 30 cm (Kanwar et al., 1988; Evans et al., 1999), the plot was deemed 

suitable for planting. Using the first day when both drainage plots within a treatment 

would be suitable for planting, a theoretical planting date was determined. For the years 

2012, 2014, and 2015, the theoretical planting dates for all treatments would have been 

April 11
th

 or 12
th

. In 2013, the conventionally drained and shallow drainage treatments 

would have been suitable for planting on the 14
th

 or 15
th

 of April. However, the undrained 

treatment was not suitable for planting until the 26
th

 of April due to shallow water tables. 

All of the theoretical dates of planting are well before the actual date of planting 

each year. Even though only one day of field work was allotted because all planting 

activities can be completed in one day, the field manager would probably want a larger 

window.  The water table in the undrained plots may also be shallower than the data 

available due to the location of the water table elevation wells, which could delay 
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planting. Producers may also be hesitant to plant on the first day of the planting window 

due to high risk of additional cold weather. 

 

Conclusions 

Overall, drainage treatment did not affect VWC, maximum daily soil temperature, 

and minimum daily soil temperature at 10 and 20 cm depth as well as average soil 

temperature at 20 cm. Drainage treatment did affect depth to water table and average soil 

temperature at 10 cm though. The water table in the undrained was the shallowest 

followed by the water table in the shallow drained treatment. In most years, there was 

little difference between the controlled and conventional drainage treatments, which is 

expected since this is the period of time when there is no water table management in the 

controlled drainage treatment. The average soil temperature at 10 cm tended to be 

warmest in the undrained and shallow drainage treatments and coolest in the conventional 

and controlled drainage treatments, but the reasons for this is unknown since it is not an 

intuitive relationship. These temperature differences also occurred later in the planting 

window when average soil temperatures were already above 10°C. 

The field manager used his judgement not the measurements analyzed for this 

paper to determine adequate conditions for planting. Using the metrics discussed in this 

paper, corn could have theoretically been planted much earlier in every year than when it 

was actually planted. In all four years, corn was planted when VWC at 10 cm was 

between 0.25 and 0.30. The VWC at 20 cm were more variable at the time of planting 

than the VWC at 10 cm, ranging from 0.25 to 0.35. The VWC in both cases would be at 

or below field capacity for this soil type. This is consistent with the conclusion reached 
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by Earl (1997) that as VWC decreases below field capacity trafficability increases. At the 

time of planting every year, average soil temperatures in all treatments were well above 

the 10°C necessary for germination although in 2012, when corn was planted the earliest, 

average soil temperatures fell below 10°C after planting. Water tables were the 

shallowest during planting in 2013 and 2015 when both the undrained and shallow 

drained treatments were approximately one meter from the surface, but the undrained 

treatment could have been shallower. The relationship between SEW30 and crop yields 

from 2012-2014 was not very strong at this field site, so there are likely other more 

important factors. 

Overall, drainage treatment did not impact the planting date of corn with respect 

to temperature and VWC since little soil temperature differences exist in the early part of 

the planting window, and there were no differences in VWC between treatments. 

However, drainage treatment does impact the date of planting with respect to the depth of 

water table. From the analyses discussed, the undrained treatment would have been 

delayed in planting in one year. When water tables were high after rain events, like in 

2012 and 2013, water tables in all three drainage treatments receded back to drain depth 

in a couple of days, which is the same time period that the VWC were above field 

capacity. More investigation is necessary to determine if drainage treatment effects yields 

in terms of SEW30, especially during wet years. 
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Figure 3.1. Average daily volumetric water content (cm

3
 cm

-3
) at 10 cm depth and daily rainfall 

amounts (mm) with the date of planting indicated for the planting windows in a) 2012, b) 2013, c) 

2014, d) 2015 for all drainage treatments: conventional drainage (Conv.), controlled drainage 

(CD), shallow drainage (SH), and no drainage (ND).
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Figure 3.2. Average daily volumetric water content (cm

3
 cm

-3
) at 20 cm depth and daily rainfall 

amounts (mm) with the date of planting indicated for the planting windows in a) 2012, b) 2013, c) 

2014, d) 2015 for all drainage treatments: conventional drainage (Conv.), controlled drainage 

(CD), shallow drainage (SH), and no drainage (ND). 
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Figure 3.3. Average daily soil temperature (°C) at 10 cm depth with the date of planting indicated 

for the planting windows in a) 2012, b) 2013, c) 2014, d) 2015 for all drainage treatments: 

conventional drainage (Conv.), controlled drainage (CD), shallow drainage (SH), and no drainage 

(ND).
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Figure 3.4. Average daily soil temperature (°C) at 20 cm depth with the date of planting indicated 

for the planting windows in a) 2012, b) 2013, c) 2014, d) 2015 for all drainage treatments: 

conventional drainage (Conv.), controlled drainage (CD), shallow drainage (SH), and no drainage 

(ND).
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Figure 3.5. Maximum daily soil temperature (°C) at 10 cm depth with the date of planting 

indicated for the planting windows in a) 2012, b) 2013, c) 2014, d) 2015 for all drainage 

treatments: conventional drainage (Conv.), controlled drainage (CD), shallow drainage (SH), and 

no drainage (ND).
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Figure 3.6. Maximum daily soil temperature (°C) at 20 cm depth with the date of planting 

indicated for the planting windows in a) 2012, b) 2013, c) 2014, d) 2015 for all drainage 

treatments: conventional drainage (Conv.), controlled drainage (CD), shallow drainage (SH), and 

no drainage (ND).
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Figure 3.7. Minimum daily soil temperature (°C) at 10 cm depth with the date of planting 

indicated for the planting windows in a) 2012, b) 2013, c) 2014, d) 2015 for all drainage 

treatments: conventional drainage (Conv.), controlled drainage (CD), shallow drainage (SH), and 

no drainage (ND).
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Figure 3.8. Minimum daily soil temperature (°C) at 20 cm depth with the date of planting 

indicated for the planting windows in a) 2012, b) 2013, c) 2014, d) 2015 for all drainage 

treatments: conventional drainage (Conv.), controlled drainage (CD), shallow drainage (SH), and 

no drainage (ND).
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Figure 3.9. Average daily depth to water table (m) and daily rainfall amounts (mm) with the date 

of planting indicated for the planting windows in a) 2012, b) 2013, c) 2014, d) 2015 for all 

drainage treatments: conventional drainage (Conv.), controlled drainage (CD), shallow drainage 

(SH), and no drainage (ND).
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Figure 3.10. Average soil water retention curve for the silty clay loam soils found at SERF. Field 

capacity is defined as the volumetric water content at 100 cm of pressure. 
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Table 3.1. Spring field activities for the corn rotation from 2012-2015 including control dates for 

controlled drainage plots. An open control structure indicates the drainage depth is 1.2 m. In the 

spring, a closed control structure indicates drainage depth is 0.76 m. If a date is not provided, the 

drainage depth is the spring closed depth. 

 Fertilizer Tillage  Herbicide Spring control 

Year Anhydrous Field Cultivate Planting Pre-emerge Open Close 

2012 Mar. 28 Apr. 11 Apr. 18 Apr. 25 Apr. 5 June 14 

2013 May 2 May 17 May 17 May 17   

2014 Apr. 23 May 6 May 6 May 19   

2015 Apr. 17 Apr. 29 Apr. 30  Mar. 31 May 22 

 

 
Table 3.2. Average temperature (°C), accumulated growing degree days (GDD) for a 10 °C 

baseline temperature, and rainfall (mm) at SERF during the planting window for 2012-2015, 

including a long-term average. 

Year Temp (°C) GDD Rainfall (mm) 

2012 16.2 333 196.5 

2013 13.6 254 351.8 

2014 15.1 299 137.3 

2015 15.6 304 168.3 

25 yr Avg. 14.7 436 201.6 

 

 
Table 3.3. SEW30 during planting window from 2012-2015 for all drainage treatments: 

conventional drainage (Conv.), controlled drainage (CD), shallow drainage (SH), and no drainage 

(ND). 

 

 

 

 

 

 

 

 
Table 3.4. SEW30 after planting was completed from 2012-2015 for all drainage treatments: 

conventional drainage (Conv.), controlled drainage (CD), shallow drainage (SH), and no drainage 

(ND). 

Year Conv. CD SH ND 

2012 23 14 41 221 

2013 0 10 42 95 

2014 0 0 0 0 

2015 0 0 13 1 

Avg. 6 6 24 79 

 

 

 

 

Year Conv. CD SH ND 

2012 23 14 41 221 

2013 2 13 94 332 

2014 0 0 0 0 

2015 0 0 13 1 

Avg. 6 7 37 138 
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CHAPTER 4. EFFECT OF DRAINAGE WATER MANAGEMENT 

ON PEAK DRAINAGE AND WATER TABLE RECESSION 
 

 

Linda R. Schott 

 

Abstract 

The effects of drainage water management practices on peak drainage and water 

table recession time are important for understanding the impact of nitrate-N transport 

within watersheds but has not been widely investigated. The objective of this study was 

to determine the effect of shallow and controlled drainage on time to peak drainage 

discharge, peak drainage discharge, and water table recession. This research was 

conducted at the Iowa State University Southeast Research Farm near Crawfordsville, 

Iowa from 2010 to 2015. This research focuses on six plots with two replicates of shallow 

drainage, controlled drainage, and conventional drainage. Each plot had half planted in 

soybeans (Glycine max L. Merr.) and the other half in corn (Zea mays L.), and the halves 

were rotated every year in accordance with a typical corn-soy rotation. There were no 

statistical differences in time to peak discharge between drainage treatments. The shallow 

drainage treatment had significantly greater (p<0.05) peak discharge than the 

conventional system in two of the four events, which could be due to a higher coefficient 

of drainage than what the system was designed for. The controlled drainage treatment 

also had a significantly greater (p<0.05) peak discharge than the conventional system in 

one event, which could be due to a shallower water table prior to the event. There were 

no differences between treatments in water table recession time. 
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Introduction 

Subsurface drainage removes excess water from agricultural fields in order to 

facilitate earlier planting in the spring. By removing this excess water, more soil pore 

space is available for infiltration by rainwater. The effect of subsurface drainage on 

hydrology is likely dependent upon a number of factors like soil type, rainfall pattern, 

antecedent moisture conditions, depth and spacing of drains, and topography (Robinson 

& Rycroft, 1999). The same authors concluded that soil type is the biggest factor 

impacting subsurface drainage hydrology; peak drainage discharge is likely to increase 

on tile drained compared to non-tile drained land on loamy soils but decrease on tile 

drained land with slowly permeable clayey soils.  

Subsurface drainage contribution to stream flow is important because drainage 

has increased the loss of nitrate-nitrogen from agricultural lands in the Mississippi River 

Basin contributing to the hypoxia zone in the Gulf of Mexico (Turner & Rabalais, 1994). 

David et al. (2010) found that a significant portion of the nitrate-nitrogen export 

originated from subsurface drainage. Schilling and Helmers (2008) found that tile 

drainage increased stream base flow and identified that the separation of stream base flow 

originating from groundwater seepage from groundwater removed by tile drainage is 

important to understanding nitrate-N fate and transport.  

One practice being proposed to combat nitrate-N losses is drainage water 

management. Drainage water management is designing or managing the subsurface 

drainage system in order to reduce the drainage volume or to manage the outflow. The 

drains are either installed at a shallower depth or installed at the conventional depth 

described earlier with a control structure that regulates the water table outflow height. 
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These two practices are known as shallow and controlled drainage, respectively (Strock 

et al., 2011). Helmers et al. (2012) cited slower water table recession as a hypothesis for 

why crop yields were reduced in controlled drainage plots. The effects of drainage water 

management practices on peak drainage and water table recession time are important for 

understanding the impact of nitrate-N transport within watersheds but has not been 

widely investigated. The objective of this paper is to investigate the impact of drainage 

water management practices on time to peak drainage discharge, peak drainage 

discharge, and water table recession at a field site near Crawfordsville, Iowa. 

 

Materials and Methods 

Site location and design 

Research was conducted at the Iowa State Southeast Research Farm (SERF) near 

Crawfordsville, Iowa (41°11'38" N, 91°28'58" W) from 2007 to 2014. The site has eight 

research plots with two replications for each of the following drainage treatments: 

undrained, conventional drainage, shallow drainage, and controlled drainage (Figure 4.1). 

The plots were blocked into a north and south replication because the site consists of two 

poorly drained silty clay loam soils. Kalona (silty clay loam, fine, smectitic, mesic Vertic 

Endoaquolls) is found predominantly in the northern plots while Taintor (silty clay loam, 

fine, smectitic, mesic Vertic Argiaquolls) is predominantly in the south. The site is 

relatively flat with less than a five meter elevation change over 17 ha. The individual 

plots range in size from approximately 1.2 to 2.4 ha. Each drainage treatment was 

designed to have a coefficient of drainage of approximately 1.27 cm day
-1

. Therefore, the 

conventional and controlled drainage plots have a drain depth and spacing of 1.2 and 18 
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m, respectively. The shallow drained plots have drains at a depth of 0.76 m with 12.2 m 

spacing. At this site, controlled drainage plots were only managed when necessary for 

field activities (Table 4.1). The gates were opened in mid to late April approximately two 

weeks prior to planting to allow free drainage and closed in late May to early June after 

planting was completed. Management for harvest in the fall was typically not required at 

this site due to low water table conditions. 

Data collection 

Daily rainfall was measured using a manually-read rain gauge located 

approximately 1 km from the research plots from 2007 to 2014. At the end of December 

2013, a weather station, part of the Iowa State University Soil Moisture Network, 

containing a non-heated tipping bucket was installed adjacent to the research plots, which 

provided higher resolution rainfall data. As a result, beginning in 2014, the two rainfall 

data sets were averaged.  

Tile lines for all plots were laid out in a north-south orientation. The interior tiles 

were continuously monitored for flow rate with a 13 cm tall 45° V-notch weir and a 

Global Water pressure transducer (Global Water, Sacramento, California) logging in 5 to 

30 minute intervals. To account for differences in plot size, flow was converted to a depth 

basis for comparison. Border tiles were installed in each plot to hydraulically isolate the 

treatments but were not monitored. On the controlled drainage plots, the border tiles also 

had water table control structures. In 2009, monitoring wells were installed in the center 

of each plot where the water table would be the shallowest. Depth to water table was 

monitored hourly using Global Water pressure transducers (Global Water, Sacramento, 

California).  
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Event definition 

The drainage main was designed to have a maximum drainage coefficient of 1.9 

cm day
-1

, which is 50% larger than necessary based on treatment design. However, 

following large rain events, it is evident that the actual drainage rate is higher than the 

design maximum (Figure 4.2). Therefore, only drainage events where the rate of drainage 

was below the maximum drainage coefficient were used. Events were also chosen where 

all three drainage treatments had drainage. An event was excluded if two consecutive 

events could not be distinguished from each other, such as when rainfall occurred soon 

after discharge had peaked. The start of the event was defined as the time when discharge 

began in one of the conventional plots, and the time of water table recession was defined 

as when the water table peaked to when it receded either below 30 or 60 cm in an 

individual plot. 

Data analysis 

Statistical analyses were conducted using Statistical Analysis System software 

(SAS 2011). The general linear model (GLM) procedure was used with two replicates per 

treatment to determine the statistical significance of treatment effects on peak discharge 

and time to peak discharge. The mean values for time to peak and peak drainage were 

separated using a least significance difference (LSD) test at p = 0.05 (LSD0.05).  

 

Results and Discussion 

Event description 

Four events were identified for analysis (Table 4.2). The rainfall for event 1 was 

the greatest of all four events, but rainfall began three days prior to the start of the event. 
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Event 2 had the lowest rainfall amount, but rainfall had not occurred for over a week. For 

both events 3 and 4, at least one of the conventionally drained plots was still flowing 

from a previous event, so the start of the event was defined as the time when the 

hydrograph began to rise again. The only event when the controlled drainage plots were 

freely draining was during event 2. During event 1, the water table depth for the 

controlled drainage treatment was set to 0.3 m from the surface. 

Time to peak discharge 

Overall, there were no events where there were statistical differences (p<0.05) 

between drainage treatments in the time to peak drainage discharge (Table 4.3). Time to 

peak drainage seems to be tied to rainfall amount. The larger the rainfall amount leading 

up to the event, the longer the time to peak drainage. Events 1 and 4 had the highest 

rainfall amounts and shortest average time to peak drainage discharge whereas event 2 

had the least rainfall and the longest average time to peak drainage discharge. 

Peak discharge 

The shallow drainage treatment had the greatest discharges for events 3 and 4 

(Table 4.4). For event 3, the shallow drainage treatment had a significantly greater peak 

discharge than the other two treatments, but for event 4, both the controlled and shallow 

drainage treatments had significantly greater (p<0.05) peak discharge than the 

conventional drainage treatment. If the saturated hydraulic conductivity is higher than 

what was used to design the drainage systems, the shallow drainage system could have a 

higher drainage coefficient than the conventional drainage system. If this is the case, the 

significant differences in the peak discharge between the drainage treatments for events 3 

and 4 can be explained from the depth to the water table prior to the events. For event 3, 
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when only the peak discharge for the shallow drainage treatment was higher than the 

other two treatments, the initial depth of the water table was shallower in the shallow 

drainage treatment than the other two. For event 4, when both the controlled and shallow 

drainage treatment had higher peak discharges than conventional drainage, the water 

tables for both the controlled and shallow drainage treatments were shallower prior to the 

event than the conventional drainage system. 

Water table recession time 

For the small events analyzed, the water tables in the conventionally drained 

treatment never peaked within 30 cm of the surface (Table 4.5). The controlled drainage 

treatment did peak shallower than 30 cm during event 1, but this was also when the water 

table control gate was at a depth of 30 cm from the surface. The controlled drainage 

treatment did not peak within 30 cm of the ground surface when the water table control 

gate was at 0.76 m, however. During events 3 and 4, the water table in the shallow 

drainage treatment did peak within 30 cm of the ground surface. However, it was only 

one replication, which was in the north side. Previous analysis completed indicates that 

the northern replication has shallower water tables, on average, than the southern one. 

 

Conclusions 

In general, the two drainage water management practices, shallow and controlled 

drainage, impacted the hydrology of small drainage events. At this research site, large 

drainage events could not be analyzed due to undersized drainage tile mains. There were 

no statistical differences between drainage treatments for the time to peak discharge. The 

shallow drainage treatment had greater peak discharges for events 3 and 4 than the 
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conventional drainage treatment while the controlled drainage treatment had a greater 

peak discharge than the conventional treatment for event 4. This is probably due to a 

higher drainage coefficient in the shallow drainage treatment due to a higher saturated 

hydraulic conductivity in all drainage treatments than the conductivity used in designing 

the systems and shallower water tables in the two drainage water management systems 

prior to event 4. 

Overall, the drainage events that were capable of being analyzed were not large 

enough for the water table to peak closer than 30 cm from the ground surface. There were 

two events when the water table in the northern replication of the shallow drainage 

treatment peaked at less than 30 cm of the ground surface. Previous work indicated that 

the water tables in the northern replication, on average, were shallower than the water 

tables in the southern replication. Other than first event, when the water table control gate 

was set at 30 cm from the ground surface, the water tables in the controlled drainage 

treatment did not come within 30 cm of the ground surface. From the analysis of these 

small events, it is unlikely that the time of water table recession during the summer is 

greater in the controlled drainage treatment causing yield reductions cited by Helmers et 

al. (2012). Additional hydrograph and water table recession analyses should be 

completed using the larger drainage events should be completed to attempt to separate the 

influence of plot location on overloaded drains from the impact of drainage design. 

 

Acknowledgements 

This research is part of a regional collaborative project supported by the USDA-

NIFA, Award No. 2011-68002-30190, “Cropping Systems Coordinated Agricultural 



85 

 

 

 

Project: Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems.” 

Project Web site: sustainablecorn.org. Research data and supporting metadata are stored 

in the team’s centralized Climate and Cropping Systems database. 

 

References 

Burchell II, M.R., Skaggs, R.W., Chescheir, G.M, Gilliam, J.W., & Arnold, L.A. (2005). 

Shallow Subsurface Drains to Reduce Nitrate Losses from Drained Agricultural 

Lands. Transactions of the ASAE, 48(3), 1079-1089. 

David, M., Drinkwater, L., & Mclsaac, G. (2010). Sources of Nitrate Yields in the 

Mississippi River Basin. Journal of Environmental Quality, 39, 1657-1667. 

Helmers, M.J., Christianson, R., Brenneman, G., Lockett, D., & Pederson, C. (2012). 

Water Table, Drainage, and Yield Response to Drainage Water Management in 

Southeast Iowa. Journal of Soil and Water Conservation, 67(6), 495-501. 

Poole, C.A., Chescheir, G.M., Skaggs, R.W., & Burchell, M.R. (2010). Effects of Drain 

Depth on Nitrate-N and Phosphorous Losses from Drained Agricultural Lands 

Receiving Nitrogen and Phosphorous from Organic Sources. CSBE Paper No. 

100224. St. Joseph, Mich.: ASABE. 

Robinson, M., & Rycroft, D.W. (1999). The Impact of Drainage on Streamflow. In 

Skaggs, R.W. and J. van Schilfgaarde (Eds.), Agricultural Drainage (pp. 767-

800). Madison, WI: ASA, CSSA, and SSSA. 

SAS. 2011. SAS User’s Guide. Version 9.3. Cary, NC: SAS Institute, Inc. 



86 

 

 

 

Schilling, K.E., & Helmers, M.J. (2008). Effects of Subsurface Drainage Tiles on 

Streamflow in Iowa Agricultural Watersheds: Exploratory Hydrograph Analysis. 

Hydrological Processes, 22, 4497-4506. 

Strock, J.S., Sands, G.R., & Helmers, M.J. (2011). Subsurface Drainage Design and 

Management to Meet Agronomic and Environmental Goals. In . J.L. Hatfield and 

T.J. Sauer (Eds.) Soil Management: Building a Stable Base for Agriculture (pp. 

199-208). Madison, WI: ASA, CSSA, and SSSA. 

Turner, R.E., & Rabalais, N.N. (1994). Coastal Eutrophication near the Mississippi River 

Delta. Nature, 368(6472), 619-621. 



 

  

8
7
 

8
7
 

 
Figure 4.1. Aerial view of drainage plots at SERF illustrating data collection locations and drainage layout. 
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Figure 4.2. Example of overloading of drainage main for plots 5, 6, and 2, corresponding to shallow (SH), conventional (Conv.), and controlled 

drainage (CD) systems, respectively. Due to location, drainage water from plot 5 is the first to enter the drainage main, followed by plot 6 then 2.
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Table 4.1. Field activities from 2010-2015, including control dates for controlled drainage plots. 

An open control structure indicates the drainage depth is 1.2 m. In the spring, a closed control 

structure indicates drainage depth is 0.76 m. In the fall, if a date is given, the drainage depth is 

0.30 m. If a date is not provided, the drainage depth is the spring closed depth. 

 Spring control  Fall control 

Year Open Close  Close 

2010 Apr. 15 June 24  Oct. 18 

2011 Apr. 25 June 1   

2012 Apr. 5 June 14   

2013     

2014     

 

 

Table 4.2. Description of drainage events that have a maximum drainage rate less than 1.9 cm 

day
-1

. 

Event Year Date Rainfall, mm 

1 2011 Apr. 19 41 

2 2011 May 14 18 

3 2013 June 25 23 

4 2014 July 5 36 

 
 

Table 4.3. Time to peak drainage discharge (hr) for each drainage event for the three drainage 

treatments: conventional drainage (Conv.), controlled drainage (CD), and shallow drainage (SH). 

Event Conv. CD SH 

1 10 11 6 

2 24 28 24 

3 14 15 13 

4 6 10 8 

Note: Years or average not connected by the same letter are statistically different (p<0.05). Only 

years where there were significant differences have letters included. 

 
 

Table 4.4. Peak drainage discharge (10
-2

 m
3
) for each drainage event for the three drainage 

treatments: conventional drainage (Conv.), controlled drainage (CD), and shallow drainage (SH). 

Event Conv. CD SH 

1 6.7 7.4 6.7 

2 8.8 6.9 6.1 

3 4.2b 5.3b 11.1a 

4 8.8b 13.2a 15.1a 

Note: Years or average not connected by the same letter are statistically different (p<0.05). Only 

years where there were significant differences have letters included. 
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Table 4.5. Time for water table to recede below 30 cm from peak water table depth (hr) for each 

drainage event for the three drainage treatments: conventional drainage (Conv.), controlled 

drainage (CD), and shallow drainage (SH). 

Event Conv. CD SH 

1 0 7 0 

2 0 0 0 

3 0 0 8 

4 0 0 13 
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CHAPTER 5. CONCLUSIONS 

 

General Discussion 

For off-field impacts, the second chapter of this thesis found that drainage water 

management practices were effective at reducing nitrate-N and drainage losses 

downstream when compared to conventional drainage, which is consistent with other 

studies (Skaggs et al. 2012). The fourth chapter found that shallow and controlled 

drainage increased peak drainage discharge while there were no differences in the time to 

peak drainage discharge. 

On-field impacts of drainage water management were also investigated. The 

second chapter showed both controlled and shallow drainage did not increase crop yields 

and in some years, corn yields were reduced. The second and third chapters also 

illustrated that drainage did not impact soil volumetric water content. The third chapter of 

this thesis found that drainage water management did not impact date of planting, but the 

soil temperature in the shallow drainage treatment was warmer in the late spring than 

controlled and conventional drainage systems, which is conflicting with results from Jin 

et al. (2008), who concluded that drainage did not impact soil temperatures near the 

surface. The fourth chapter was inconclusive in investigating the impact of drainage 

water management on water table recession due to the small events analyzed. 

In relationship to the USDA-NIFA project, drainage water management practices, 

such as shallow and controlled drainage, have been shown to significantly reduce off-

field nitrogen losses that contribute to water pollution by reducing drainage volumes. 
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Recommendations for Future Research 

The research presented previously in this thesis also highlighted the need for 

additional research relative to drainage water management: 

1. Future work should focus on how to manage controlled drainage fields 

more effectively during wet years to mitigate yield losses from high water 

tables. 

2. Drainage water management impact on planting date should be 

investigated on other fields with different soil types in order to determine 

if there are differences in volumetric water content that could impact 

trafficability. 

3. Since there were differences in soil temperature between drainage 

systems, which conflicts with some previous research, more research 

should be completed at other locations within the Midwest to determine if 

drainage impacts average and maximum soil temperatures throughout the 

year and whether or not this impacts crop production. 

4. More work also needs to be done to determine the effect of drainage water 

management practices on peak drainage discharge, time to peak discharge, 

and the time for water table recession when the water table in controlled 

drainage is managed in order to better understand drainage water 

management impact on streamflow and crop excess water stress from high 

water tables. 
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